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Program verification has a long and distinguished history in computer science. As early
as 1949, Alan Turing, in a technical report titled On Checking a Large Routine, raised
the question of how to verify computer programs. Ever since that time, this problem
has been investigated by several researchers. Some of them earned the ACM Turing
Award for their work on the subject.

With this concerted effort of several scientists in mind, one would think that the
“problem” of software correctness has been “solved” by now, whatever the qualifi-
cation “solved” is supposed to mean. Nothing is further from the truth.

In books on algorithms, for example, those covering the standard material on
algorithms on data structures, the correctness of the presented algorithms is ignored or
glossed over. At best a justification of the selected algorithms is given by presenting a
mathematical argument without a rigorous explanation of why this argument can be
applied to the program in question. The point is that a program is just a piece of text,
while the presented mathematical argument refers to the program execution. The rea-
soning then tacitly presupposes an implementation that conforms to the informal
description of the program meaning given in English. This subtle gap in reasoning is
especially acute if one deals with recursive programs or programs involving dynamic
data structures.

An alternative is to rely on a large body of literature on program verification and use
one of the formal systems developed to provide rigorous correctness proofs using
axioms and proof rules. Unfortunately, formal correctness proofs are very tedious and
hence error prone. This raises a natural question: If we do not trust the correctness of a
program, why should we trust its correctness proof?

A possible answer lies in relying on mechanized verification that provides a pro-
gramming environment allowing us to check the correctness proof of a program in the
sense that each step of the proof is mechanically verified. Such a programming envi-
ronment, when properly built, allows us to treat the underlying proof system as a
parameter, just as the program that is to be verified.

Mechanized verification has a distinguished history as well, and this is not the place
to trace it. It suffices to say that the KeY project, the subject of this book, is possibly the
most ambitious endeavor in this area. It started in 1998 and gradually evolved into,
what the authors call, the KeY framework.

This framework goes beyond mechanized verification by also providing a means of
program specification, a test case generation, a teaching tool for a number of courses on
software engineering, and a debugging tool. The current book is a substantial revision
and extension of the previous edition that takes into account this evolution of the KeY
system. It systematically explains several facets of the KeY framework, starting with
the theoretical underpinning and ending with a presentation of nontrivial case studies.
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I would like to congratulate the authors not only for the outcome but also for their
persistence and their vision. The current scientific climate aiming at maximizing your
number of publications and your H-index does not bode well with long-term projects.
It is refreshing to see that not everybody has yielded to it.

October 2016 Krzysztof R. Apt
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Wer hat an der Uhr gedreht? Ist es wirklich schon so spät?—Every child growing up
in the 1970s in Germany (like the author of this text) is familiar with these lines. They
are from a theme song played during the closing credits of the German version of the
Pink Panther Show. The ditty conveys the utter bafflement (“Who advanced the
clock?”) of the listener about 30 minutes of entertainment having passed in what
seemed to be mere seconds. And it is exactly this feeling that we editors have now:
What? Ten years since the first book about KeY [Beckert et al., 2007] was published?
Impossible! But of course it is possible, and there are good reasons for a new book
about KeY, this time simply called The KeY Book.

What Is New in The KeY Book?

In short: almost everything! This is not merely an overhaul of the previous book, but a
completely different volume: only eight of 15 chapters from the previous edition are
still around with a roughly similar function, while there are 11 completely new
chapters. But even most of the chapters retained were rewritten from scratch. Only
three chapters more or less kept their old structure. What happened?

First of all, there were some major technical developments in the KeY system that
required coverage as well as changes in the theoretical foundations:

• With KeY 2.x we moved from a memory model with an implicit heap to one with
explicit heaps, i.e., heaps have a type in our logic, can be quantified over, etc. As a
consequence, it was possible to:

• Implement better support for reasoning about programs with heaps [Weiß, 2011,
Schmitt et al., 2010], essentially with a variant of dynamic frames [Kassios, 2011].

• We dropped support for specification with the Object Constraint Language
(OCL) and drastically improved support for the Java Modeling Language
(JML) [Leavens et al., 2013].

• Rules and automation heuristics for a number of logical theories were added,
including finite sequences, strings [Bubel et al., 2011], and bitvectors.

• Abstract interpretation was tightly integrated with logic-based symbolic execution
[Bubel et al., 2009].

In addition, the functionality of the KeY was considerably extended. This concerns
not merely the kind of analyses that are possible, but also usability.

• Functional verification is now only one of many analyses that can be performed
with the KeY system. In addition, there is support for debugging and visualization
[Hentschel et al., 2014a,b], test case generation [Engel and Hähnle, 2007, ,
2008], information flow analysis [Darvas et al., 2005, Grahl, 2015, , 2016],
program transformation [Ji et al., 2013], and compilation [Ji, 2014].

 Gladisch
 Do et al.
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• There are IDEs for KeY, including an Eclipse extension, that make it easy to keep
track of proof obligations in larger projects [Hentschel et al., 2014c].

• A stripped down version of KeY, specifically developed for classroom exercises
with Hoare logic, was provided [Hähnle and Bubel, 2008].

Finally, the increased maturity and coverage of the KeY system permitted us to
include much more substantial case studies than in the first edition.

Inevitably, some of the research strands documented in the first edition did not reach
the maturity or importance we hoped for and, therefore, were dropped. This is the case
for specification patterns, specification in natural language, induction, and proof reuse.
There is also no longer a dedicated chapter about Java integers: The relevant material is
now, in much condensed form, part of the ‘chapters on “First-Order Logic” and
“Theories.”’

A number of topics that are actively researched have not yet reached sufficient
maturity to be included: merging nodes in symbolic execution proof trees, KeY for Java
bytecode, certification, runtime verification, regression verification, to name just a few.
Also left out is a variant of the KeY system for the concurrent modeling language ABS
called KeY-ABS, which allows one to prove complex properties about unbounded
programs and data structures. We are excited about all these developments, but we feel
that they have not yet reached the maturity to be documented in the KeY book. We refer
the interested reader to the research articles available from the KeY website at www.
key-project.org.

Also not covered in this book is KeYmaera, a formal verification tool for hybrid,
cyber-physical systems developed in André Platzer’s research group at CMU and that
has KeY as an ancestor. It deserves a book in its own right, which in fact has been
written [Platzer, 2010].

The Concept Behind This Book

Most books on foundations of formal specification and verification orient their pre-
sentation along traditional lines in logic. This results in a gap between the foundations
of verification and its application that is too wide for most readers. The main pre-
sentation principles of the KeY book is something that has not been changed between
the first book about KeY and this volume:

• The material is presented on an advanced level suitable for graduate (MSc level)
courses, and, of course, active researchers with an interest in verification.

• The dependency graph on the chapters in the book is not deep, such that the reader
does not have to read many chapters before the one (s)he is most interested in.
Moreover, the dependencies are not all too strong. More advanced readers may not
have to strictly follow the graph, and less advanced readers may decide to follow up
prerequisites on demand. The graph shows that the chapters on First-Order Logic,
the Java Modeling Language, and Using the KeY Prover are entirely self-contained.
The same holds for each chapter not appearing in the following graph.
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• The underlying verification paradigm is deductive verification in an expressive
program logic.

• As a rule, the proofs of theoretical results are not contained here, but we give
pointers on where to find them.

• The logic used for reasoning about programs is not a minimalist version suitable for
theoretical investigations, but an industrial-strength version. The first-order part is
equipped with a type system for modeling of object hierarchies, with underspeci-
fication, and with various built-in theories. The program logic covers full Java Card
and substantial parts of Java. The main omissions are: generics (a transformation
tool is available), floating-point types, threads, lambda expressions.

• Much emphasis is on specification, including the widely used JML. The generation
of proof obligations from annotated source code is discussed at length.

• Two substantial case studies are included and presented in detail.

Nevertheless, we cannot and do not claim to have fully covered formal reasoning
about (object-oriented) software in this book. One reason is that the choice of topics is
dependent on our research agenda. As a consequence, important topics in formal
verification, such as specification refinement or model checking, are out of our scope.

Typographic Conventions

We use a number of typesetting conventions to give the text a clearer structure.
Occasionally, we felt that a historical remark, a digression, or a reference to material
outside the scope of this book is required. In order to not interrupt the text flow we use
gray boxes, such as the one on page 40, whenever this is the case.

In this book a considerable number of specification and programming languages are
referred to and used for illustration. To avoid confusion we usually typeset multiline
expressions from concrete languages in a special environment that is set apart from the
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main text with horizontal lines and that specifies the source language as, for example,
on page 14.

Expressions from concrete languages are written in typewriter font with keywords
highlighted in boldface, the exception being UML class and feature names. These are
set in sans serif, unless class names correspond to Java types. Mathematical meta
symbols are set in math font and the rule names of logical calculi in sans serif.

Companion Website

This book has its own website at www.key-project.org/thebook2, where additional
material is provided: most importantly, the version of the KeY tool that was used to run
all the examples in the book (except for Chaps. 10,19) including all source files, for
example, programs and specifications (unless excluded for copyright reasons), various
teaching materials such as slides and exercises, and the electronic versions of papers on
KeY.
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1.1 What KeY Is

There is the KeY project, the KeY system, and a collection of software productivity
tools based on the KeY system that we call the KeY framework (see Figure 1.1
below).

The KeY project is a long-term research project started in 1998 by Reiner Hähnle,
Wolfram Menzel, and Peter Schmitt at University of Karlsruhe (now Karlsruhe
Institute of Technology). After Menzel’s retirement Bernhard Beckert joined the
project leader team which has been unchanged ever since. This proves that long-term
research on fundamental problems is possible—despite dramatic changes in the aca-
demic funding landscape—provided that the people involved think it is worthwhile.
The question is: why should they think it is?

From the very first publication [Hähnle et al., 1998] the aim of the KeY project
was to integrate formal software analysis methods, such as formal specification and
formal verification, into the realm of mainstream software development. This has
always been—and still is—a very ambitious goal that takes a long-time perspective
to realize. In the following we argue why we are still optimistic that it can be reached.

The KeY system was originally a formal verification tool for the Java program-
ming language, to be coupled with a UML-based design tool. Semantic constraints
expressed in the Object Constraint Language (OCL) [Warmer and Kleppe, 1999]
were intended as a common property specification language. This approach had to
be abandoned, because UML and OCL never reached a level of semantic foundation

Chapter 1
Quo Vadis Formal Verification?

Reiner Hähnle

The KeY system has been developed for over a decade. During this time, the field of
Formal Methods as well as Computer Science in general has changed considerably.
Based on an analysis of this trajectory of changes we argue why, after all these years,
the project is still relevant and what the challenges in the coming years might be. At
the same time we give a brief overview of the various tools based on KeY technology
and explain their architecture.
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that was sufficiently rigorous for formal verification [Baar, 2003]. In addition, OCL
is not an object-oriented language and the attempt to formally specify the behavior
of Java programs yields clumsy results.

To formally specify Java programs KeY currently uses the result of another long-
term project: the Java Modeling Language (JML) [Leavens et al., 2013] which enjoys
wide acceptance in the formal methods and programming languages communities.

From the mid 2000s onward, a number of application scenarios for deductive
verification technology beyond functional verification have been realized on the basis
of the KeY system. These include test case generation, an innovative debugging tool,
a teaching tool for Hoare logic, and an Eclipse extension that integrates functional
verification with mainstream software development tools. Even though they share the
same code base, these tools are packaged separately to cater for the different needs
of their prospective users.

1.2 Challenges To Formal Verification

First, let us clarify that in this book we are concerned with formal software verifica-
tion. With this we mean a formal, even mechanical argument, typically expressed in
a formal logical system, that a given program satisfies a given property which also
had been formalized. In contrast to this, most software engineers associate heuristic,
informal techniques such as testing or code reviews with the term “verification”
[Sommerville, 2015, Chapter 8].

Formal verification of nontrivial programs is tedious and error-prone. Therefore,
it is normally supported by tools which might be dedicated verification tools, such as
KeY, or general purpose interactive theorem provers such as Isabelle [Nipkow et al.,
2002] or Coq [Dowek et al., 1993]. One can further distinguish between interactive
tools where a verification proof is built in dialogue with a human user and tools
that work in “batch mode,” not unlike a compiler, where a program is incrementally
annotated with specifications and hints until its correctness can be automatically
proven. Examples of the latter are the systems Dafny [Leino, 2010] and VeriFast
[Jacobs and Piessens, 2008]. A full discussion of possible architectures of verification
systems, as well as their pros and cons, is found in the survey [Beckert and Hähnle,
2014].

For a long time the term formal verification was almost synonymous with func-
tional verification. In the last years it became more and more clear that full functional
verification is an elusive goal for almost all application scenarios. Ironically, this
happened because of advances in verification technology: with the advent of verifiers,
such as KeY, that mostly cover and precisely model industrial languages and that
can handle realistic systems, it finally became obvious just how difficult and time
consuming the specification of functionality of real systems is. Not verification but
specification is the real bottleneck in functional verification [Baumann et al., 2012].
This becomes also very clear from the case studies in Chapters 18 and 19.
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Even though formal verification of industrial target languages made considerable
progress, complete coverage of languages such as Java, Scala, or C++ in any formal
verification tool is still a significant challenge. The KeY tool, while fully covering
Java Card (see Chapter 10), makes similar restrictions to most other verification tools:
floating-point types are not supported, programs are assumed to be sequential, and
generic types are expected to have been compiled away. On the other hand, Java
integer types, exceptions and static initialization all are faithfully modeled in KeY.

Some of the restrictions will be, at least partially, addressed in the future. First
approaches to formal verification of concurrent Java have been presented [Amighi
et al., 2012] and are on their way into KeY [Mostowski, 2015]. On the other hand, to
the best of my knowledge, all existing formalizations of Java concurrency assume
sequential consistency. A full formalization of the Java memory model seems far
away at this moment.

Floating-point types seem a more achievable goal, because formal models of the
IEEE floating-point standard are available today [Yu, 2013] and it is only a matter of
time until they are supported in verification tools. A more difficult question, however,
appears to be how to formally specify floating-point programs.

A major challenge for all formal verification approaches, most of which are part
of academic research projects, is the evolution of industrial languages such as Java.
This evolution takes place at a too fast pace for academic projects with their limited
resources to catch up quickly. Moreover, the design of new language features takes
into account such qualities as usability, marketability, or performance, but never
verifiability. Many recent additions to Java, for example, lambda expressions, pose
considerable challenges to formal verification. Many others, while they would be
straightforward to realize, do not yield any academic gain, i.e., publishable papers.
This results in a considerable gap between the language supported by a verification
tool and its latest version. KeY, for example, reflects mostly Java 1.5, while the latest
Java version at the time of writing this article is 1.8.

A problem of a somewhat different kind constitute the vast APIs of contemporary
programming languages. The API of a language is among its greatest assets, because
it is the basis of programmer productivity, but it presents a major problem for program
analysis: in general neither the source code of an API method is available nor a formal
contract describing its behavior. For special cases like Java Card [Mostowski, 2007]
or for specific aspects such as concurrency [Amighi et al., 2014b] it is possible to
provide formal specifications of API classes, however, in general the usage of APIs
poses a serious problem for program analysis. To be fair, though, this is the case not
only in formal verification, but already for test case generation or much simpler static
analyses. That formal verification of APIs is, in principle, feasible shows the recent
complete verification of Eiffel’s container library [Polikarpova et al., 2015].

The preceding discussion gives a somewhat mixed prospect for formal verification
of functional properties of Java. So, why do we carry on with KeY? As a matter
of fact, we believe that there are many good reasons and one can even argue that
deductive verification is just beginning to become an interesting technology (see also
[Beckert and Hähnle, 2014]). Let us see why.
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1.3 Roles of Deductive Verification

A central insight from the last decade or so is that deductive verification technology
is not only useful for functional verification, but is applicable to a large number
of further scenarios, many of which avoid the problems discussed in the previous
section.

1.3.1 Avoid the Need for Formal Specification

If full-fledged functional verification is no longer the main focus, but deductive
verification technology is used for analyses that do not require to compare a program
against its functionality, then the problem of providing formal specifications is at
least alleviated or even vanishes completely.

For example, it is very useful to know that a program does not throw any runtime
exceptions, that it terminates, or that it only accesses a certain part of the heap. Such
generic properties can be specified in a uniform manner for a given program. In
the last years a number of specialized verification tools appeared for this class of
problems that scale up to real-world problems [Beyer, 2015]. Note, however, that it
might still be necessary to provide detailed specifications in order to avoid too many
false positives.

Closely related is the problem of resource analysis, where the best-case or worst-
case consumption for a target program of a given resource is computed. Analyzed
resources include runtime and memory, but also bandwidth or the number of parallel
threads. Cost analysis tools involve complex constraint solving and typically do
not include a formal semantics of the target language. Therefore, the question of
soundness arises. In this context, verification tools such as KeY were successfully
employed as “proof checkers” [Albert et al., 2012]. This is possible, because the
resource analyzer can infer enough annotations (such as the invariants) required for
automating the verification process and because resource properties can be expressed
in a uniform manner.

About ten years ago, several research groups independently proposed to generate
glass-box test cases with code coverage guarantees by symbolic execution of the
program under test [Tillmann and Schulte, 2005, Engel and Hähnle, 2007, Albert
et al., 2009].1 In Chapter 12 we describe how test cases can be obtained from
a verification attempt in KeY. The embedding into a deductive framework has a
number of advantages over using symbolic execution alone:

• full first-order simplification can eliminate unreachable code and hence irrelevant
test cases, in particular, when combined with preconditions;

• with suitable loop invariants and contracts even programs with loops and recur-
sive programs can be fully symbolically executed, thus increasing coverage;

1 None of them had realized at the time that this idea had in essence been already suggested by King
[1976].
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• test oracles can be specified declaratively and can be implemented by deductive
inference.

Yet another application of deductive verification that can dispense with detailed
specifications are relational properties. Relational properties became increasingly
important as an application scenario for verification in recent years. They compare
the behavior of two or more programs when run with identical inputs. The crucial
point is that it is not necessary to fully specify the behavior of the target programs, but
only compare their respective behaviors and ensure they maintain a certain relation
(e.g., bisimilarity). That relation is typically fixed and can be expressed in a uniform
manner for all given target programs. Therefore, the specification can either be
written once and for all or at least it can be computed automatically. This observation
was used, for example, by Benton [2004] to formalize program properties and the
soundness of program transformations in relational Hoare logic.

Examples of relational properties include information flow [Darvas et al., 2003,
2005], where the property to be proven takes the form of a security policy; another
is the correctness of compiler optimizations [Barthe et al., 2013a] and program
transformations [Ji et al., 2013] where it must be shown that the original and the
compiled/transformed program behave identically on all observable outputs. These
scenarios are supported by KeY and are discussed in Chapters 13 and 14, respectively,
in this book.

What makes relational properties attractive as an application of verification tech-
nology, besides the fact that extensive specifications are not needed, is the high
degree of automation that is achievable. The main obstacle against automation is the
need to provide suitable specification annotations in the form of loop invariants (or
contracts in the case of recursive calls). To prove relational properties, the required
invariants are often simple enough to be inferred automatically. In KeY a combination
of symbolic execution and abstract interpretation proved to be effective [Do et al.,
2016]. How this works is explained in Chapter 6.

Uniform specifications and simple invariants contribute towards automation in
another crucial way: the resulting proof obligations tend not to require complex quan-
tifier instantiations. Given sufficient support for reasoning over theories that occur
in the target program, full automation is achievable for many relational problems.
Chapter 5 explains by selected examples how theory reasoning has been integrated
into the deduction machinery of KeY.

1.3.2 Restricted Target Language

In Section 1.2 we pointed out that real-world languages, such as Java, C++, or Scala
with their vast scope, their idiosyncrasies and the dynamics of their development
pose significant challenges to formal verification. One obvious reaction to this is to
focus on programming languages that are smaller and less prone to change. Examples
include Java Card [JavaCardRTE], a Java dialect for small, mobile devices, Real-Time
Java [Bollella and Gosling, 2000], and SPARK [Jennings, 2009], an Ada dialect for
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safety-critical software. For these languages complete formalizations, including their
APIs exist. In KeY we support Java Card (see [Mostowski, 2007] and Chapter 10)
and Real-Time Java [Ahrendt et al., 2012].

A different approach is to design a modeling language that retains the essential
properties of the underlying implementation language, but abstracts away from some
of its complexities. Verification of abstract models of the actual system is standard in
model checking [Clarke et al., 1999]; PROMELA [Holzmann, 2003], for example,
is a widely used modeling language for distributed systems. In the realm of object-
oriented programming with concurrency the language ABS (for Abstract Behavioral
Specification) [Johnsen et al., 2011] was recently suggested as an abstraction for
languages such as Java, Scala, C++, or Erlang, several of which it supports with code
generator backends. ABS has a concurrency model based on cooperative scheduling
that permits compositional verification of concurrent programs [Din, 2014]. It also
enforces strong encapsulation, programming to interfaces, and features abstract data
types and a functional sublanguage. This allows a number of scalable analyses tools,
including resource analysis, deadlock analysis, test generation, as well as formal
verification [Wong et al., 2012]. A version of KeY that supports ABS is available
[Chang Din et al., 2015].

The formal verification system KeYmaera2 [Platzer and Quesel, 2008, Fulton et al.,
2015] targets a modeling language that combines an abstract, imperative language
with continuous state transitions that are specified by partial differential equations. It
can be used to formally specify and verify complex functional properties of realistic
hybrid systems [Loos et al., 2013] that cannot be expressed in model checking tools.

1.3.3 Formal Verification in Teaching

One important application area of formal verification is education in formal ap-
proaches to software development. Here the coverage of the target language and of
the APIs are not a critical issue, because the teacher can avoid features that are not
supported and is able to supply specifications of the required APIs.

On the other hand, different issues are of central importance when deductive
verification systems are used in teaching. The main challenge in teaching formal
methods is to convey to students that the learning outcomes are useful and worthwhile.
Students should not be force-fed with a formal methods course they find to be
frustrating or irrelevant. This puts high demands on the usability and the degree
of automation in the used tools. It is also crucial to present the course material in
a manner that connects formal verification with relevant every-day problems that
one has to solve as a developer. Finally, one has to take care that not too many
mathematical prerequisites are needed.

Since 2004 we use the KeY system in a variety of mandatory and specialized
courses, where we try to address the issues raised in the previous paragraph. In

2 KeYmaera branched off from KeY, see also Section 1.5.1.
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2007 we created a B.Sc. level course called Testing, Debugging, and Verification
[Ahrendt et al., 2009a] where we present formal specification and verification as part
of a continuous spectrum of software quality measures. This being a B.Sc. course,
we wanted to illustrate formal verification in Hoare style [Hoare, 1969], and with
a simple while-language, not Java. To our amazement, we could not find any tool
support with automatic discharge of first-order verification conditions (after all, we
did not want to include automated theorem proving in our course as well!). Therefore,
we decided to create a version of the KeY system that combines forward symbolic
execution with axiomatic reasoning on a while-language with automatic first-order
simplification [Hähnle and Bubel, 2008]. Incidentally, when we were looking for
examples for our course to be done with KeY Hoare, we found that a large number
of Hoare logic derivations published in lectures notes and text books are slightly
wrong: forgotten preconditions, too weak invariants, etc. This is practically inevitable
when formal verification is attempted by hand and demonstrates that tool support is
absolutely essential in a formal methods course. The KeY Hoare tool is discussed
in this book in Chapter 17. The aforementioned course is currently still taught at
Chalmers University3 (with KeY having been replaced by Dafny [Leino, 2010]).

Another course worth mentioning is called Software Engineering using Formal
Methods. It was created in 2004 by the author of this chapter, initially conceived as a
first year computer science M.Sc. course and it is still being taught4 in this fashion
at Chalmers University and elsewhere. The course introduces model checking with
PROMELA and SPIN [Holzmann, 2003] in its first part and functional verification of
Java with KeY in the second. It is a mix between theoretical foundations and hands-on
experimentation. By 2012 KeY was considered to be stable and usable enough (SPIN
had reached that state over a decade earlier) to design a somewhat stripped down
version of the course for 2nd year B.Sc. students. Since Fall 2012 that course is
compulsory for Computer Science majors at TU Darmstadt and taught annually to
250–300 students.5 The response of the students is on the whole encouraging and
evaluation results are in the upper segment of compulsory courses. Other versions of
the course, based on material supplied by the KeY team, are or were taught at CMU,
Polytechnic University of Madrid, University of Rennes, University of Iowa, RISC
Linz, to name a few.

What this shows is that formal verification can be successfully taught even in
large classes and to students without a strong background or interest in mathematics.
The user interface of the KeY system, in particular its GUI, plays a major role
here. Another important issue is ease of installation: KeY installs via Java webstart
technology on most computers with only one click.6 In this context it cannot be
overestimated how important usability and stability are for user acceptance. Students
later become professionals and are the prospective users of our technology. Their
feedback has been taken very seriously in the development of KeY. In fact, the results

3 www.cse.chalmers.se/edu/course/TDA567
4 www.cse.chalmers.se/edu/course/TDA293
5 www.se.informatik.tu-darmstadt.de/teaching/courses/formale-methoden-im-softwareentwurf
6 If you want to try it out right now, jump to Section 15.2 to see how.

http://www.cse.chalmers.se/edu/course/TDA567/
http://www.cse.chalmers.se/edu/course/TDA293/
http://www.se.informatik.tu-darmstadt.de/teaching/courses/formale-methoden-im-softwareentwurf/


8 1 Quo Vadis Formal Verification?

of systematic usability studies done with KeY [Beckert and Grebing, 2012, Hentschel
et al., 2016] are reflected in the design of its user interface. KeY’s user interface and
its various features are explained in Chapter 15. A systematic tutorial to get you
started with the verification of actual Java programs is found in Chapter 16.

1.3.4 Avoid the Need for Fully Specified Formal Semantics

There is one application scenario for deductive verification technology that not only
dispenses with the need for formal specification, but does not even require any prior
knowledge in formal methods and does not necessarily rest on a full axiomatization
of all target language constructs. First experiments with a prototype of an interactive
debugger based on KeY’s symbolic execution engine [Hähnle et al., 2010] resulted in
a dedicated, mature tool called Symbolic Execution Debugger (SED) [Hentschel et al.,
2014a]. It offers all the functionality of a typical Java debugger, but in addition, it can
explore all symbolic execution paths through a given program, which it visualizes
as a tree. Full exploration of all paths is possible, because the SED can handle loop
invariants and method contracts. Also the symbolic environment and heap at each
execution step can be visualized. The SED is realized as an Eclipse extension and
is as easy to use as the standard Java debugger of Eclipse. The SED is explained in
Chapter 11.

In the future we plan to support concurrent Java programs in the SED and programs
with floating-point types, both of which are not axiomatized in KeY’s program logic.
But for the purpose of debugging and visualization this is also not really necessary. To
debug concurrent programs it is already useful to concentrate on one thread—this is
what debuggers normally do. The underlying verification machinery of KeY can give
additional hints that go beyond the capabilities of standard debuggers, for example,
which values might have been changed by other threads.

Floating-point data can be represented simply by symbolic terms that contain the
operations performed to obtain a current value. As floating-point operations raise no
ArithmeticExcpetion besides “divide by zero,” they do not create control flow
that is not represented already in a symbolic execution tree over integer types. Of
course, a symbolic execution tree over “uninterpreted” floating-point terms may
contain infeasible paths. But this could be detected by test case generation.

1.3.5 Where Are We Now?

Where does deductive verification with KeY stand at this moment? What about our
original goal to bring formal verification into the realm of mainstream software
development? I believe we are on the right track: with the Symbolic Execution
Debugger, with the Eclipse integration of KeY, and with mostly automatic tools
such as test case generation. Other research groups are also working towards the
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general goal, even though by different means: several test case generation tools
based on symbolic execution are commercially used; a static analysis tool using
deduction is part of Microsoft’s developer tools, a termination analyzer will soon
follow; the Spec# programming system includes a verifier and bug finding tool for
the C# programming language.

As explained in Section 1.3.1 above, deductive verification technology is also a
base technology for security analysis, sound compilation and program transformation,
resource analysis and, in the future, to regression test generation, fault propagation
as well as possibly other scenarios. We predict that in ten years from now, deductive
verification will be the underlying technology, largely invisible to the end-user,
in a wide range of software productivity products used in different phases of the
development chain.

But what about functional verification—the supposed gold standard? Routine
functional specification and formal verification is possible—for restricted languages
such as Java Card or SPARK that can be fully formalized, or for languages such as
ABS that have been developed with verifiability in mind. Partial functional verifica-
tion of medium-sized, real C programs is possible [Alkassar et al., 2010, Klein et al.,
2010]—with huge effort and with limited reusability. Most importantly, functional
verification of complex Java library methods is possible, provided that they fall into
Java fragments covered by verification tools: with the help of KeY we found a subtle
bug in the default sorting method of Java (as well as Python, Haskell, and several
other programming languages and frameworks) and we showed that our fix actually
eliminates the bug [De Gouw et al., 2015]. The proof required over two million steps
and an effort of several person weeks.

A central limitation of all approaches to functional verification so far is their
brittleness in the presence of evolution of the verification target: any change to the
program under verification may necessitate to redo a large amount of the verification
effort already spent. Even though first approaches to alleviate this problem have been
presented [Bubel et al., 2014b], it is far from being solved.

For the reasons spelled out above, we expect that functional verification of ex-
ecutable source code remains a niche application of deductive verification in the
foreseeable future, suitable for safety-critical software, where restricted program-
ming languages are acceptable and changes to the verification target are carefully
controlled. Another area where formal verification will become widely used are
model-centric approaches, where verification of a software model is combined with
code generation. The latter is particularly interesting for industry, where model-driven
development approaches have been well received.

But then, who knows? Probably, the world (of verification) will have changed
again, when we prepare the third edition of the KeY book in 2025 or so. Already
now we see that the view on deductive verification of software became much more
differentiated than it was at the start of the KeY project. The question is no longer
whether deductive verification is useful, but how to make best use of it. These are
exciting times to work with Formal Methods in Software Engineering!
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1.4 The Architecture of KeY

We emphasize that KeY is an integrated, standalone system that doesn’t need any
external components to function. This is in contrast to, for example, verification
condition generators such as Dafny [Leino, 2010] that are part of a tool chain (in
Dafny’s case Boogie [Barnett et al., 2006] and various SMT solvers). Nevertheless,
KeY can be advantageously integrated with other deduction and software productivity
tools, as we shall see.

1.4.1 Prover Core

How does the architectureof KeY support the extended application scenarios of
deductive verification sketched above? Let us start at the core. Here we find a
pretty standard sequent or Gentzen calculus: a set of schematic rules that manipulate
structured implications, called sequents, of the form

ϕ1, . . . ,ϕm =⇒ ψ1, . . . ,ψn

where 0≤m, 0≤ n and the ϕi, ψ j are formulas. The semantics of sequents is that the
meaning formula of the sequent, i.e., the universal closure of the formula

∧m
i=1 ϕi→∨n

j=1 ϕ j, is valid in all models. This setup is a standard choice for many interactive
theorem provers [Balser et al., 2000, Nipkow et al., 2002].

A specific choice of KeY, however, is that formulas ϕi are from a program logic
that includes correctness modalities over actual Java source code fragments. Before
we come to that, let us note some important design decisions in KeY’s logic. First of
all, the program logic of KeY is an extension of typed first-order classical logic. All
KeY formulas that fall into its first-order fragment are evaluated relative to classical
model semantics and all sequent rules over first-order formulas are classically sound
and complete. In particular, we assume that all structural sequent rules are valid
so that associativity, order, and multiplicity of formulas occurring in sequents are
irrelevant. The first-order fragment of KeY’s logic and its calculus is explained in
detail in Chapter 2. Figure 2.1, for example, lists the rules for classical connectives
and quantifiers.

A central design issue for any interactive verifier is how the rules of its calculus
are composed into proofs. Here we come to a second peculiarity of KeY that sets
it apart from most other systems: the rule set is parametric to the system and can
be arbitrarily chosen during initialization. Many verifiers let the system user build
new rules from existing ones with the help of meta-rules, so-called tactics [Gordon
et al., 1979] with the restriction that only rules whose validity can be proven inside
the system are available [Nipkow et al., 2002, Paulin-Mohring, 2012]. This requires
some form of higher-order logic. The main advantage is that soundness of the rule
base can be reduced to a small set of trusted axioms, for example, those of set theory
in the case of Isabelle/HOL [Nipkow et al., 2002].
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In KeY we decided to follow a different path and trade off a small trusted foun-
dation for more flexibility and a less steep learning curve for users of the system.
Schematic sequent rules in KeY are specified as so-called taclets [Beckert et al.,
2004]. They contain the declarative, logical content of the rule schemata, but also
pragmatic information: in which context and when a rule should be applied by an
automated reasoning strategy and how it is to be presented to the user. Taclets consti-
tute in essence a tiny domain-specific language for typed, first-order schematic rules.
This is explained in detail in Chapter 4. At the core of the KeY system is an efficient
interpreter that applies taclets to goal sequents and thereby constructs proof trees. It
is called KeY Prover in Figure 1.1.

The language of taclets and the KeY Prover are intentionally restricted for ef-
ficiency reasons: for example, taclets always have exactly one main formula of a
sequent in focus that can be manipulated and automated proof search does not imple-
ment backtracking (though proofs can be pruned interactively). As a consequence,
one cannot describe most calculi for modal and substructural logics [D’Agostino
et al., 1999] with taclets; one could represent a calculus for intuitionistic logic, but
not automated proof search in it, etc. In other words, taclets are optimized for their
main use case: automated proof search in typed first-order logic and logic-based
symbolic execution in JavaDL.

KeY Framework

KeY System
K

eY
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Symbolic Execution API
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en

SED Integration

Eclipse Integration

KeY GUI

Translator
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Rule Set
JavaDL PO

Java + JML

.key, .proof

Figure 1.1 Architecture of the KeY tool set

Taclets provide the kind of flexibility we need for the various application scenarios
in KeY: there are different rule sets tailored to functional verification, to information
flow analysis, etc. Moreover, taclets dispense with the need to support higher-order
quantification in the logic. This makes interaction with the prover easier, both for
humans and with other programs: for example, as first-order logic is taught in
introductory courses on discrete math, it is possible to expose second-year B.Sc.
students to KeY in a compulsory course at Technische Universität Darmstadt (see
Section 1.3.3). But also the proximity of modeling languages such as JML and of
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the language of SMT solvers [Barrett et al., 2010] to typed first-order logic make it
simple to import and export formulas from KeY’s program logic. On the one hand,
this makes it possible to have JML-annotated Java as an input language of KeY, on
the other hand, using SMT solvers as a backend increases the degree of automation.

An important question is how to ensure soundness of the more than 1,500 taclets
loaded in a standard configuration of KeY. Many of them are first-order rewrite rules
and have been proven to be sound in KeY itself relative to the few rules given in
Chapter 2. Rules that manipulate programs, however, can in general not be validated
in KeY’s first-order logic. Instead, soundness of a large part of the rules dealing
with programs has been proven against a formal semantics of Java external to KeY
[Ahrendt et al., 2005]. That paper, as well as Section 3.5.3, discusses the pros and
cons of KeY’s taclet approach versus the foundational approach implemented in
higher-order logic proof assistants.

1.4.2 Reasoning About Programs

The program logic of KeY contains “correctness formulas” of the form [p]ϕ , where p
is an executable fragment of a Java program and ϕ a formula that may in turn contain
correctness formulas. This means that Java programs occur directly inside sequents
and are neither encoded nor abstracted. Informally, the meaning of the formula above
is that when started in an arbitrary state, if the program p terminates, then in its final
state ϕ holds. The formula [p]ϕ relates the initial and the final state of the program p,
i.e., its big step semantics [[p]]. Therefore, the [·]· operator can be seen as an (infinite)
family of modal connectives, indexed by p.

Program formulas are closed under propositional connectives and first-order
quantification, therefore, it is directly possible to express a Hoare triple of the form
{θ}p{ϕ} in KeY as θ → [p]ϕ . The resulting logic is known as dynamic logic and
due to Pratt [1977]. Dynamic logic is more expressive than Hoare logic, because it
allows one to characterize, for example, program equivalence. A deepened discussion
of dynamic logic is contained in [Harel et al., 2000] and Chapter 3. As the programs
occurring in our correctness formulas are Java programs, the logic used by KeY is
called Java Dynamic Logic, JavaDL for short.

It is possible to design proof rules for JavaDL that analyze formulas of the
form [p;ω]ϕ , where p is a single Java statement and ω the remaining (possibly
empty) program. For example, p might be a simple assignment of the form x=e,
where x is an int variable and e a simple int expression. Chapter 3 discusses rules
that reduce such a program to a statement about the remaining program [ω]ϕ plus
first-order verification conditions. Other rules decompose complex Java statements
into simple ones. The rules for program formulas in KeY are designed in such
a way that they constitute a symbolic execution engine for Java. Together with an
induction principle (in KeY: loop invariants), symbolic execution becomes a complete
verification method [Burstall, 1974, Heisel et al., 1987]: Any valid program formula,
for example, n≥ i→ [while (i<n) {i++};]i .= n can be syntactically reduced
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to a finite set of valid first-order formulas with arithmetic. In contrast to model
checking, it is neither necessary to abstract the target program, nor can spurious
counter examples occur. The price is, of course, that Java programs must be annotated
with suitable specifications, including loop invariants. In addition, some quantifier
instantiations might not be found automatically, but must be supplied by the user.
This requires a certain amount of expertise, at least if KeY is used for functional
verification.

While (logic-based) symbolic execution plus invariant reasoning is, in principle,
sufficient to formally verify programs, it is not feasible to verify anything but toy
programs without a modularization principle, because the number of branches in a
symbolic execution tree grows exponentially with the number of decision conditions
in a program. For an imperative, object-oriented language such as Java the most
common approach to decompose its verification problem into chunks of manageable
size is to provide for each method implementation a declarative specification of its
behavior in the form of a contract. The idea is that a method call is replaced by the
contract which the implementer of the method promises to honor. Thus the caller of
a method is the contract’s client and the callee is its supplier. This idea goes back
to Meyer [1992] who propagated it as design-by-contract and implemented a runtime
assertion checker in the Eiffel language, but did not use contracts for the purpose of
verification. Contracts became also part of the OCL [Warmer and Kleppe, 1999] and
in this form were implemented in KeY [Ahrendt et al., 2000].

JML introduced contracts systematically to the Java language; a method contract
consists of three parts: a precondition specifies when the callee considers the contract
to be applicable; a postcondition specifies what the callee promises to guarantee
in the final state after it returns; finally, an assignable clause records the program
locations that might have been changed during the execution. Many of the examples
in the JML specification and tutorials [Leavens et al., 2013] are geared towards the
use of JML in runtime verification. For this reason we found it useful to include
Chapter 7 in this book that explains in detail how JML can be used to formally
specify functional correctness of Java programs. It can be read with benefit even if
one is not interested in KeY and simply wants to learn about formal specification of
object-oriented programs.

While contracts provide a natural and effective way to reason about a program
by looking at one method at a time, there are two serious challenges in practice:
the first is technical and is related to the question of how to specify succinctly the
state change effected by a method execution. For example, assignable clauses in
practice are not static, but depend on the symbolic heap at call time. There are several
technical solutions to this problem, including ownership types [Clarke et al., 1998]
and dynamic frames [Kassios, 2006]. The approach of KeY is a variation of the
latter and discussed in Chapter 9. The second challenge is to come up with suitable
contracts in the first place. As pointed out above this is, at least partially, still an open
research issue.
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1.4.3 Proof Obligations

A minimal input file of a verification task for KeY might look as simple as this:

KeY
\problem{

\[{ ... a Java program ... }\] ϕ

}
KeY

The system will offer the user to prove validity of the formula given as the problem
specification, i.e., partial correctness of the given Java program with respect to the
postcondition ϕ (the square brackets are rendered in ASCII as \[, \]). How this
is done is explained in detail in Chapter 15. It is possible to load such a file with
the extension .key directly into the prover (see Figure 1.1). In most cases, however,
the JavaDL formula to be proven is the result of a translation and a selection of a
specific proof obligation. Consider the following snippet from a .java file with JML
annotations:

Java + JML
class C {
/*@ invariant ι; @*/
...
/*@
@ requires θ;
@ ensures ϕ;
@*/

void m(Object o) { ... method body ... }
...

}
Java + JML

At first glance, this looks similar to the .key file above. But there might be many
methods declared in it as well as class invariants. One of them has to be selected. And
then what to prove? That a selected method satisfies its contract? That the contract is
well-defined? But it is also possible to prove nonfunctional properties about a given
program (see Section 1.3.1), such as secure information flow (see Chapter 13) and
correctness of program transformations (see Chapter 14).

So for each given .java file there are a plethora of different proof obligations
(PO) one might want to look at. It is necessary to first select one of them and
then to translate it into JavaDL. This translation is far from trivial: the Java name
space must be flattened into a first-order signature, default assumptions of JML (for
example, o!=null above) must be ensured, well-formedness of the heap and default
values must be assumed. Implicit declarations in Java, such as default constructors or
“extends Object” must be made explicit, etc. The translation of JML (or, rather,
the KeY-specific extension of JML) to JavaDL and the generation of various proof
obligations is a fully automatic process and explained in Chapter 8.
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1.4.4 The Frontends

When you download, install, and start up the KeY system you will see its graphical
user interface (GUI), see Figure 1.2. This is the standard frontend of the KeY system.
The KeY GUI is a stand-alone Java application. Its usage scenario is to perform
functional verification of JML-annotated Java programs. Upon loading a .java
file the proof obligation selector is launched and selected POs are automatically
translated into JavaDL.

Figure 1.2 GUI of the KeY system with a loaded proof obligation

The test case generation tool, discussed in Chapter 12, is integrated into the
KeY GUI (and into the Eclipse GUI, see below), but test case generation typically
requires much less user interaction than functional verification. On the other hand,
the generated test cases need to be connected to JUNIT (see junit.org) or other unit
test frameworks to be executed and managed.

For some of the application scenarios of deductive verification discussed in
Section 1.2 the KeY GUI is not suitable. The various tools based on the KeY system
also address a variety of different user communities. Therefore, they are packaged
separately from the KeY system and provide alternative frontends.

The teaching tool KeY Hoare is a stripped down version of the KeY system that
lets students perform formal verification exercises on a simple while-language and
provides a Hoare logic-like view of JavaDL proofs [Hähnle and Bubel, 2008]. KeY
Hoare has an interface that is similar to the KeY GUI, but is much simplified.

There are two KeY frontends in the shape of extensions of the popular software
development environment Eclipse: the Symbolic Execution Debugger, mentioned
above in Section 1.3.4 and discussed more fully in Chapter 11, is fully immersed
into Eclipse. Generation of POs and proving them happens in the background, the

http://junit.org/
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KeY system is completely invisible to the user. This is made possible by a dedicated
symbolic execution API which exports the capabilities of the KeY system (described
in the previous subsections) to external programs without having to go via the KeY
GUI. Finally, the Eclipse integration of the KeY system attempts to integrate formal
verification with KeY into the standard development workflow. Currently, there are
two Eclipse extensions: the KeY 4 Eclipse Starter that connects existing Java projects
with the KeY system so it can be invoked from within Eclipse to verify methods.
The second extension is called KeY Resources and extends a standard Eclipse Java
project into a KeY project that permits to run proofs in the background and to manage
open proof obligations. The Eclipse integration is discussed in Chapter 15.

1.5 The Next Ten Years

A decade has passed since the first lines of the first edition of the KeY book [Beckert
et al., 2007] were written. In this introduction we tried to summarize what has
happened since then and where we stand at the moment. Now we take a glimpse at
the future and discuss what appear to be the most likely developments. The third
edition of the KeY book will tell whether we are on target.

1.5.1 Modular Architecture

The architecture of the KeY framework laid out in the previous section suggests
that the KeY system can be reused and instantiated for its various incarnations and
usage scenarios. To tell the truth, this is not quite the case. In reality, there are a
number of profiles of the KeY system: for functional verification, for Hoare logic,
for information flow, etc. They all started from the same basis, but live in different
development branches. The problem with this is obvious: it is difficult to propagate
bug fixes and other improvements. The system KeYmaera [Platzer and Quesel, 2008],
now developed by André Platzer at CMU Pittsburgh, branched off from KeY at
around 2007 and soon the differences between the systems became too large to
attempt a merge. This is regrettable, because a lot of improvements were made for
each system over the years that would have benefited both of them, but are now too
expensive to transfer.

To avoid this situation in the future, a major refactoring of the KeY system has been
initiated. There will be an extensible common core, into which all major development
branches eventually will be remerged.

A closely related architectural issue concerns the target language. KeY has been
developed to verify Java programs, but currently supports at least also the modeling
language ABS [Bubel et al., 2014a] and the while-language used in KeY Hoare.
A version of KeY for a subset of C was once available [Mürk et al., 2007], but
was abandoned: the lack of multi-language support in KeY made it impossible to
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attempt a merge and maintaining a separate branch was too expensive. Finally, the
sound compilation approach detailed in Chapter 14 requires at least to support Java
bytecode. All this suggests that KeY should strive to enable support for multiple target
languages. This seems possible, because the language-specific frontends (parsers,
pretty-printers) are largely separate and the internal data structures dealing with
ASTs are fairly general. Importantly, the taclet concept and the prover core can be
made generic.

We expect that the next major release of KeY will have a unified architecture for
different extensions and will offer multi-target language support.

1.5.2 Relational Properties Are Everywhere

Two of the various kinds of proof obligations currently supported by KeY are re-
lational in their nature (see Section 1.3.1): information flow and sound program
transformation. We argued above that relational properties are a highly interesting
scenario for deductive verification, because specifications are uniform and coupling
invariants are much easier to derive than functional invariants. We predict that rela-
tional verification problems will become a hotspot for research in formal verification
in the coming years. Not only are they feasible and practically relevant, but after a
closer look they are very widespread, even ubiquitous in software development. To
name just three examples:

1. Fault injection is an import testing strategy against external faults for safety-
critical systems. Using deductive verification, it can be generalized to a symbolic
fault analysis [Larsson and Hähnle, 2007]. In analogy to verification of informa-
tion flow properties one can then prove properties about the fault propagation
for a given program.

2. A growing problem for software that must work in many different environments
and configurations is to detect and to exclude unwanted feature interactions
[Apel et al., 2010]. To compare the behavior of two versions of a program with
different features again is a relational problem.

3. Regression verification is a problem of huge practical interest, particularly in
modern software development processes, such as continuous deployment. As
pointed out above in Section 1.3.1, it is much easier to verify the preservation
of behavior among two closely related programs than to establish functional
correctness. Therefore, automatic regression verification is an interesting and
feasible goal of deductive verification [Felsing et al., 2014].

And there is another important reason why relational verification problems are
interesting: they provide a natural bridge to test-based approaches. For example,
from a failed attempt at verifying secure information flow, it is possible to extract a
candidate for an attack on privacy, an exploit [Do et al., 2015]; from a failed attempt
to show behavioral equivalence of two versions of a program one can generate a
regression test, and so on.
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1.5.3 Learning from Others

Recently there has been substantial progress in the field of automata learning related
to the problem of learning behavioral structures from sets of computation traces
[Isberner et al., 2014]. It is possible to learn automata with at least a limited notion
of data types as part of their state. Formal verification tools at the moment almost
completely ignore the potential of machine learning, even though, as some first work
demonstrates [Howar et al., 2013], it should be possible to alleviate the specification
authoring problem (Section 1.2). Vice versa, learning algorithms for state machines
typically suffer from slow convergence and from scaling issues. Why not try to
import successful techniques from formal verification, such as contracts or symbolic
values, to machine learning? Clearly, here lie vast research opportunities.

1.5.4 Code Reviews

Code inspections and code reviews [Fagan, 1976] are popular and important software
quality assurance measures [Sommerville, 2015]. One of their downsides is that they
are very time-intensive. Tools such as the SED (see Chapter 11) can and should
be further developed into Code Review Assistants that efficiently guide through all
possible behaviors, animate execution paths and data structures and can find potential
problems or code smells not merely based on metrics and syntactic analyses, but
based on deductive verification technology. A recent experimental user case study
[Hentschel et al., 2016] showed that this is a promising path.

1.5.5 Integration

When writing an overview article on deductive verification [Beckert and Hähnle,
2014], we realized to which large extent the verification community suffers from a
fragmentation of tools. There are well over one hundred verification tools currently
available with widely varying scopes, theoretical bases, and usage scenarios. Only
a few subcommunities organize competitions or systematic tool comparisons [Kle-
banov et al., 2011, Beyer, 2015]. In most cases, larger case studies are not publicly
available. With the exception of SMT solvers that are integrated via the SMT-LIB
standard (smt-lib.org) [Barrett et al., 2010], virtually no generally accepted inter-
face languages or APIs exist. Even programs annotated in JML cannot be readily
exchanged, because of slightly different interpretation of the semantics of some JML
constructs in different tools and because of different coverage of Java.

Even though it is natural to combine, for instance, symbolic execution with
invariant generation and termination analysis, this is exceedingly time consuming in
practice. It is important to work on exchange standards that would allow, for example,

http://smt-lib.org/
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to transfer symbolic program states or invariants at a certain point of execution in a
semantically sound manner.
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Chapter 2
First-Order Logic

Peter H. Schmitt

2.1 Introduction

The ultimate goal of first-order logic in the context of this book, and this applies
to a great extent also to Computer Science in general, is the formalization of and
reasoning with natural language specifications of systems and programs. This chapter
provides the logical foundations for doing so in three steps. In Section 2.2 basic
first-order logic (FOL) is introduced much in the tradition of Mathematical Logic
as it evolved during the 20th century as a universal theory not tailored towards a
particular application area. Already this section goes beyond what is usually found
in textbooks on logic for computer science in that type hierarchies are included
from the start. In the short Section 2.3 two features will be added to the basic logic,
that did not interest the mathematical logicians very much but are indispensable for
practical reasoning. In Section 2.4 the extended basic logic will be instantiated to
Java first-order logic (JFOL), tailored for the particular task of reasoning about Java
programs. The focus in the present chapter is on statements; programs themselves
and formulas talking about more than one program state at once will enter the scene
in Chapter 3.

2.2 Basic First-Order Logic

2.2.1 Syntax

Definition 2.1. A type hierarchy is a pair T = (TSym,v), where

1. TSym is a set of type symbols;
2. v is a reflexive, transitive relation on TSym, called the subtype relation;
3. there are two designated type symbols, the empty type ⊥ ∈ TSym and the

universal type > ∈ TSym with ⊥v Av> for all A ∈ TSym.
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We point out that no restrictions are placed on type hierarchies in contrast to other
approaches requiring the existence of unique lower bounds.

Two types A, B in T are called incomparable if neither Av B nor Bv A.

Definition 2.2. A signature, which is sometimes also called vocabulary, Σ =
(FSym,PSym,VSym) for a given type hierarchy T is made up of

1. a set FSym of typed function symbols,
by f : A1× . . .×An → A we declare the argument types of f ∈ FSym to be
A1, . . . ,An in the given order and its result type to be A,

2. a set PSym of typed predicate symbols,
by p(A1, . . . ,An) we declare the argument types of p ∈ PSym to be A1, . . . ,An in
the given order,
PSym obligatory contains the binary dedicated symbol .=(>,>) for equality.
and the two 0-place predicate symbols true and false.

3. a set VSym of typed variable symbols,
by v : A for v ∈ VSym we declare v to be a variable of type A.

All types A, Ai in this definition must be different from ⊥. A 0-ary function symbol
c : → A is called a constant symbol of type A. A 0-ary predicate symbol p() is called
a propositional variable or propositional atom. We do not allow overloading: The
same symbol may not occur in FSym∪PSym∪VSym with different typing.

The next two definitions define by mutual induction the syntactic categories of terms
and formulas of typed first-order logic.

Definition 2.3. Let T be a type hierarchy, and Σ a signature for T . The set TrmA
of terms of type A, for A 6=⊥, is inductively defined by

1. v ∈ TrmA for each variable symbol v : A ∈ VSym of type A.
2. f (t1, . . . , tn) ∈ TrmA for each f : A1× . . .×An → A ∈ FSym and all terms ti ∈

TrmBi with Bi v Ai for 1≤ i≤ n.
3. (if φ then t1 else t2) ∈ TrmA for φ ∈ Fml and ti ∈ TrmAi such that A2 v A1 = A

or A1 v A2 = A.

If t ∈ TrmA we say that t is of (static) type A and write α(t) = A.

Note, that item (2) in Definition 3 entails c ∈ TrmA for each constant symbol c : →
A ∈ FSym. Since we do not allow overloading there is for every term only one type
A with t ∈ TrmA. This justifies the use of the function symbol α .

Terms of the form defined in item (3) are called conditional terms. They are a
mere convenience. For every formula with conditional terms there is an equivalent
formula without them. More liberal typing rules are possible. The theoretically most
satisfying solution would be to declare the type of (if φ then t1 else t2) to be the
least common supertype A1 tA2 of A1 and A2. But, the assumption that A1 tA2
always exists would lead to strange consequences in the program verification setting.

Definition 2.4. The set Fml of formulas of first-order logic for a given type hierar-
chy T and signature Σ is inductively defined as:
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1. p(t1, . . . , tn) ∈ Fml for p(A1, . . . ,An) ∈ PSym, and ti ∈ TrmBi with Bi v Ai for all
1≤ i≤ n.
As a consequence of item 2 in Definition 2.2 we know
t1

.= t2 ∈ Fml for arbitrary terms ti and true and false are in Fml.
2. (¬φ), (φ ∧ψ), (φ ∨ψ), (φ → ψ), (φ ↔ ψ) are in Fml for arbitrary φ ,ψ ∈ Fml.
3. ∀v;φ , ∃v;φ are in Fml for φ ∈ Fml and v : A ∈ VSym.

As an inline footnote we remark that the notation for conditional terms can also be
used for formulas. The conditional formula (if φ1 then φ2 else φ3) is equivalent to
(φ1∧φ2)∨ (¬φ1∧φ3).

If need arises we will make dependence of these definitions on Σ and T explicit
by writing TrmA,Σ , FmlΣ or TrmA,T ,Σ , FmlT ,Σ . When convenient we will also use
the redundant notation ∀ A v;φ , ∃ A v;φ for a variable v : A ∈ VSym.

Formulas built by clause (1) only are called atomic formulas.

Definition 2.5. For terms t and formulas φ we define the sets var(t), var(φ) of all
variables occurring in t or φ and the sets fv(t), fv(φ) of all variables with at least one
free occurrence in t or φ :

var(v) = {v} fv(v) = {v} for v ∈ VSym
var(t) =

⋃n
i=1 var(ti) fv(t) =

⋃n
1=i fv(ti) for t = f (t1, . . . , tn)

var(t) = var(φ)∪ fv(t) = fv(φ)∪ for t =
var(t1)∪ var(t2) fv(t1)∪ fv(t2) (if φ then t1 else t2)

var(φ) =
⋃n

i=1 var(ti) fv(φ) =
⋃n

i=1 fv(ti) for φ = p(t1, . . . , tn)
var(¬φ) = var(φ) fv(¬φ) = fv(φ)
var(φ) = var(φ1)∪ var(φ2) fv(φ) = fv(φ1)∪ fv(φ2) for φ = φ1 ◦φ2

where ◦ is any binary Boolean operation
var(Q v.φ) = var(φ) fv(Q v.φ) = var(φ)\{v} where Q ∈ {∀,∃}

A term without free variables is called a ground term, a formula without free variables
a ground formula or closed formula.

It is an obvious consequence of this definition that every occurrence of a variable
v in a term or formula with empty set of free variables is within the scope of a
quantifier Q v.

One of the most important syntactical manipulations of terms and formulas are
substitutions, that replace variables by terms. They will play a crucial role in proofs
of quantified formulas as well as equations.

Definition 2.6. A substitution τ is a function that associates with every variable v a
type compatible term τ(v), i.e., if v is of type A then τ(v) is a term of type A′ such
that A′ v A.

We write τ = [u1/t1, . . . ,un/tn] to denote the substitution defined by dom(τ) =
{u1, . . . ,un} and τ(ui) = ti.

A substitution τ is called a ground substitution if τ(v) is a ground term for all
v ∈ dom(τ).
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We will only encounter substitutions τ such that τ(v) = v for all but finitely many
variables v. The set {v ∈ VSym | τ(v) 6= v} is called the domain of τ . It remains to
make precise how a substitution τ is applied to terms and formulas.

Definition 2.7. Let τ be a substitution and t a term, then τ(t) is recursively defined
by:

1. τ(x) = x if x 6∈ dom(τ)
2. τ(x) as in the definition of τ if x ∈ dom(τ)
3. τ( f (t1, . . . , tk)) = f (τ(t1), . . . ,τ(tk)) if t = f (t1, . . . , tk)

Let τ be a ground substitution and φ a formula, then τ(φ) is recursive defined

4. τ(true) = true, τ(false) = false
5. τ(p(t1, . . . , tk)) = p(τ(t1), . . . ,τ(tk)) if φ is the atomic formula p(t1, . . . , tk)
6. τ(t1

.= tk) = τ(t1)
.= τ(tk)

7. τ(¬φ) = ¬τ(φ)
8. τ(φ1 ◦φ2) = τ(φ1)◦ τ(φ2) for propositional operators ◦ ∈ {∧,∨,→,↔}
9. τ(Qv.φ) = Qv.τv(φ) for Q ∈ {∃,∀} and dom(τv) = dom(τ)\{v} with τv(x) =

τ(x) for x ∈ dom(τv).

There are some easy conclusions from these definitions:

• If t ∈ TrmA then τ(t) is a term of type A′ with A′ v A. Indeed, if t is not a variable
then τ(t) is again of type A.

• τ(φ) meets the typing restrictions set forth in Definition 2.4.

Item 9 deserves special attention. Substitutions only act on free variables. So, when
computing τ(Qv.φ), the variable v in the body φ of the quantified formula is left
untouched. This is effected by removing v from the domain of τ .

It is possible, and quite common, to define also the application of nonground
substitutions to formulas. Care has to be taken in that case to avoid clashes, see
Example 2.8 below. We will only need ground substitutions later on, so we sidestep
this difficulty.

Example 2.8. For the sake of this example we assume that there is a type symbol
int ∈ TSym, function symbols + : int× int→ int, ∗ : int× int→ int, − : int→ int,
exp : int× int→ int and constants 0 : int, 1 : int, 2 : int, in FSym. Definition 2.3
establishes an abstract syntax for terms. In examples we are free to use a concrete,
or pretty-printing syntax. Here we use the familiar notation a+b instead of +(a,b),
a ∗ b or ab instead of ∗(a,b), and ab instead of exp(a,b). Let furthermore x : int,
y : int be variables of sort int. The following table shows the results of applying the
substitution τ1 = [x/0,y/1] to the given formulas

φ1 = ∀x;((x+ y)2 .= x2 +2xy+ y2) τ1(φ1) = ∀x;((x+1)2 .= x2 +2∗ x∗1+12)
φ2 = (x+ y)2 .= x2 +2xy+ y2 τ1(φ2) = (0+1)2 .= 02 +2∗0∗1+12

φ3 = ∃x;(x > y) τ1(φ3) = ∃x;(x > 1)

Application of the nonground substitution τ2 = [y/x] on φ3 leads to ∃x;(x > x).
While ∃x;(x > y) is true for all assignments to y the substituted formula τ(φ3) is not.
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Validity is preserved if we restrict to clash-free substitutions. A substitution τ is said
to create a clash with formula φ if a variable w in a term τ(v) for v ∈ dom(τ) ends
up in the scope of a quantifier Qw in φ . For τ2 the variable x in τ2(y) will end up in
the scope of ∀x;

The concept of a substitution also comes in handy to solve the following notational
problem. Let φ be a formula that contains somewhere an occurrence of the term t1.
How should we refer to the formula arising from φ by replacing t1 by t2? E.g. replace
2xy in φ2 by xy2. The solution is to use a new variable z and a formula φ0 such that
φ = [z/t1]φ0. Then the replaced formula can be referred to as [z/t2]φ0. In the example
we would have φ0 = (x + y)2 .= x2 + z + y2. This trick will be extensively used in
Figure 2.1 and 2.2.

2.2.2 Calculus

The main reason nowadays for introducing a formal, machine readable syntax for
formulas, as we did in the previous subsection, is to get machine support for logical
reasoning. For this, one needs first a suitable calculus and then an efficient implemen-
tation. In this subsection we present the rules for basic first-order logic. A machine
readable representation of these rules will be covered in Chapter 4. Chapter 15
provides an unhurried introduction on using the KeY theorem prover based on these
rules that can be read without prerequisites. So the reader may want to step through
it before continuing here.

The calculus of our choice is the sequent calculus. The basic data that is ma-
nipulated by the rules of the sequent calculus are sequents. These are of the form
φ1, . . . ,φn =⇒ ψ1, . . . ,ψm. The formulas φ1, . . . ,φn at the left-hand side of the se-
quent separator =⇒ are the antecedents of the sequent; the formulas ψ1, . . . ,ψm on
the right are the succedents. In our version of the calculus antecedent and succe-
dent are sets of formulas, i.e., the order and multiple occurrences are not relevant.
Furthermore, we will assume that all φi and ψ j are ground formulas. A sequent
φ1, . . . ,φn =⇒ ψ1, . . . ,ψm is valid iff the formula

∧n
1=i φi→

∨m
1= j ψ j is valid.

The concept of sequent calculi was introduce by the German logician Gerhard
Gentzen in the 1930s, though for a very different purpose.

Figures 2.1 and 2.2 show the usual set of rules of the sequent calculus with equality
as it can be found in many text books, e.g. [Gallier, 1987, Section 5.4]. Rules are
written in the form

ruleName
P1, . . .Pn

C

The Pi is called the premisses and C the conclusion of the rule. There is no theoretical
limit on n, but most of the time n = 1, sometimes n = 2, and in rare cases n = 3. Note,
that premiss and conclusion contain the schematic variables Γ ,∆ for set of formulas,
ψ,φ for formulas and t,c for terms and constants. We use Γ ,φ and ψ,∆ to stand for
Γ ∪{φ} and {ψ}∪∆ . An instance of a rule is obtained by consistently replacing the



28 2 First-Order Logic

andLeft
Γ ,φ ,ψ =⇒ ∆

Γ ,φ ∧ψ =⇒ ∆
andRight

Γ =⇒ φ ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ψ,∆

orRight
Γ =⇒ φ ,ψ,∆

Γ =⇒ φ ∨ψ,∆
orLeft

Γ ,φ =⇒ ∆ Γ ,ψ =⇒ ∆

Γ ,φ ∨ψ =⇒ ∆

impRight
Γ ,φ =⇒ ψ,∆

Γ =⇒ φ → ψ,∆
impLeft

Γ =⇒ φ ,∆ Γ ,ψ =⇒ ∆

Γ ,φ → ψ =⇒ ∆

notLeft
Γ =⇒ φ ,∆

Γ ,¬φ =⇒ ∆
notRight

Γ ,φ =⇒ ∆

Γ =⇒¬φ ,∆

allRight
Γ =⇒ [x/c](φ),∆

Γ =⇒∀x;φ ,∆
with c :→ A a new constant, if x:A

allLeft
Γ ,∀x;φ , [x/t](φ) =⇒ ∆

Γ ,∀x;φ =⇒ ∆

with t ∈ TrmA′ ground, A′ v A, if x:A

exLeft
Γ , [x/c](φ) =⇒ ∆

Γ ,∃x;φ =⇒ ∆

with c :→ A a new constant, if x:A

exRight
Γ =⇒∃x;φ , [x/t](φ),∆

Γ =⇒∃x;φ ,∆
with t ∈ TrmA′ ground, A′ v A, if x:A

close
∗

Γ ,φ =⇒ φ ,∆

closeFalse
∗

Γ , false =⇒ ∆
closeTrue

∗
Γ =⇒ true,∆

Figure 2.1 First-order rules for the logic FOL

schematic variables in premiss and conclusion by the corresponding entities: sets
of formulas, formulas, etc. Rule application in KeY proceeds from bottom to top.
Suppose we want to prove a sequent s2. We look for a rule R such that there is an
instantiation Inst of the schematic variables in R such that the instantiation of its
conclusion Inst(S2) equals s2. After rule application we are left with the task to prove
the sequent Inst(S1). If S1 is empty, we succeeded.

Definition 2.9. The rules close, closeFalse, and closeTrue from Figure 2.1 are called
closing rules since their premisses are empty.

Since there are rules with more than one premiss the proof process sketched above
will result in a proof tree.

Definition 2.10. A proof tree is a tree, shown with the root at the bottom, such that

1. each node is labeled with a sequent or the symbol ∗,
2. if an inner node n is annotated with Γ =⇒ ∆ then there is an instance of a rule

whose conclusion is Γ =⇒ ∆ and the child node, or children nodes of n are
labeled with the premiss or premisses of the rule instance.

A branch in a proof tree is called closed if its leaf is labeled by ∗. A proof tree is
called closed if all its branches are closed, or equivalently if all its leaves are labeled
with ∗.
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We say that a sequent Γ =⇒ ∆ can be derived if there is a closed proof tree whose
root is labeled by Γ =⇒ ∆ .

As a first simple example, we will derive the sequent =⇒ p∧ q→ q∧ p. The
same formula is also used in the explanation of the KeY prover in Chapter 15. As its
antecedent is empty, this sequent says that the propositional formula p∧q→ q∧ p is
a tautology. Application of the rule impRight reduces our proof goal to p∧q =⇒ q∧ p
and application of andLeft further to p,q =⇒ q∧ p. Application of andRight splits
the proof into the two goals p,q =⇒ q and p,q =⇒ p. Both goals can be discharged
by an application of the close rule. The whole proof can concisely be summarized as
a tree

∗
p,q =⇒ q

∗
p,q =⇒ p

p,q =⇒ q∧ p
p∧q =⇒ q∧ p

=⇒ p∧q→ q∧ p

Let us look at an example derivation involving quantifiers. If you are puzzled
by the use of substitutions [x/t] in the formulations of the rules you should refer
back to Example 2.8. We assume that p(A,A) is a binary predicate symbol with
both arguments of type A. Here is the, nonbranching, proof tree for the formula
∃v;∀w; p(v,w)→∀w;∃v; p(v,w):

∗
∀w; p(c,w), p(c,d) =⇒ p(c,d),∃v; p(v,d)

∀w; p(c,w) =⇒∃v; p(v,d)
∃v;∀w; p(v,w) =⇒∀w;∃v; p(v,w)

=⇒∃v;∀w; p(v,w)→∀w;∃v; p(v,w)

The derivation starts, from bottom to top, with the rule impRight. The next line above
is obtained by applying exLeft and allRight. This introduces new constant symbols
c :→ A and d :→ A. The top line is obtained by the rules exRight and allLeft with the
ground substitutions [w/d] and [v/c]. The proof terminates by an application of close
resulting in an empty proof obligation. An application of the rules exLeft, allRight is
often called Skolemization and the new constant symbols called Skolem constants.
The rules involving equality are shown in Figure 2.2. The rules eqLeft and eqRight
formalize the intuitive application of equations: if t1

.= t2 is known, we may replace
wherever we want t1 by t2. In typed logic the formula after substitution might not
be well-typed. Here is an example for the rule eqLeft without restriction. Consider
two types A 6= B with B v A, two constant symbols a : → A and b : → B, and a
unary predicate p(B). Applying unrestricted eqLeft on the sequent b .= a, p(b) =⇒
would result in b .= a, p(b), p(a) =⇒. There is in a sense logically nothing wrong
with this, but p(a) is not well-typed. This motivates the provisions in the rules eqLeft
and eqRight.
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eqLeft
Γ , t1

.= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ , t1
.= t2, [z/t1](φ) =⇒ ∆

provided [z/t2](φ) is well-typed

eqRight
Γ , t1

.= t2 =⇒ [z/t2](φ), [z/t1](φ),∆
Γ , t1

.= t2 =⇒ [z/t1](φ),∆
provided [z/t2](φ) is well-typed

eqSymmLeft
Γ , t2

.= t1 =⇒ ∆

Γ , t1
.= t2 =⇒ ∆

eqReflLeft
Γ , t .= t =⇒ ∆

Γ =⇒ ∆

Figure 2.2 Equality rules for the logic FOL

Let us consider a short example of equational reasoning involving the function
symbol + : int× int→ int.

7 ∗
6 (a+(b+ c))+d) .= a+((b+ c)+d),∀x,y,z;((x+ y)+ z .= x+(y+ z))

(b+ c)+d .= b+(c+d),a+(b+ c))+d) .= a+(b+(c+d)) =⇒
(a+(b+ c))+d) .= a+(b+(c+d))

5 (a+(b+ c))+d) .= a+((b+ c)+d),∀x,y,z;((x+ y)+ z .= x+(y+ z))
(b+ c)+d .= b+(c+d) =⇒

(a+(b+ c))+d) .= a+(b+(c+d))

4 (a+(b+ c))+d) .= a+((b+ c)+d),∀x,y,z;((x+ y)+ z .= x+(y+ z)) =⇒
(a+(b+ c))+d) .= a+(b+(c+d))

3 ∀x,y,z;((x+ y)+ z .= x+(y+ z)) =⇒ (a+(b+ c))+d .= a+(b+(c+d))

2 ∀x,y,z;((x+ y)+ z .= x+(y+ z)) =⇒
∀x,y,z,u;(((x+(y+ z))+u) .= x+(y+(z+u)))

1 =⇒∀x,y,z;((x+ y)+ z .= x+(y+ z))→
∀x,y,z,u;(((x+(y+ z))+u) .= x+(y+(z+u)))

Line 1 states the proof goal, a consequence from the associativity of +. Line 2 is ob-
tained by an application of impRight while line 3 results from a four-fold application
of allRight introducing the new constant symbol a, b, c, d for the universally quanti-
fied variables x, y, z, u, respectively. Line 4 in turn is arrived at by an application of
allLeft with the substitution [x/a,y/(b+c),z/d]. Note, that the universally quantified
formula does not disappear. In Line 5 another application of allLeft, but this time
with the substitution [x/b,y/c,z/d], adds the equation (b+c)+d .= b+(c+d) to the
antecedent. Now, eqLeft is applicable, replacing on the left-hand side of the sequent
the term (b+ c)+d in (a+b)+(c+d) .= a+(b+(c+d)) by the right-hand side
of the equation (b+ c)+d .= b+(c+d). This results in the same equation as in the
succedent. Rule close can thus be applied.
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Already this small example reveals the technical complexity of equational reason-
ing. Whenever the terms involved in equational reasoning are of a special type one
would prefer to use decision procedures for the relevant specialized theories, e.g., for
integer arithmetic or the theory of arrays.

We will see in the next section, culminating in Theorem 2.20, that the rules from
Figures 2.1 and 2.2 are sufficient with respect to the semantics to be introduced in that
section. But, it would be very inefficient to base proofs only on these first principles.
The KeY system contains many derived rules to speed up the proof process. Let us
just look at one randomly chosen example:

doubleImpLeft
Γ =⇒ b,∆ Γ =⇒ c,∆ Γ ,d =⇒ ∆

Γ ,b→ (c→ d) =⇒ ∆

It is easy to see that doubleImpLeft can be derived.
There is one more additional rule that we should not fail to mention:

cut
Γ =⇒ φ ,∆ Γ ,φ =⇒ ∆

Γ =⇒ ∆

provided φ is a ground formula

On the basis of the notLeft rule this is equivalent to

cut′
Γ ,¬φ =⇒ ∆ Γ ,φ =⇒ ∆

Γ =⇒ ∆

provided φ is a ground formula

It becomes apparent that the cut rule allows at any node in the proof tree proceeding
by a case distinction. This is the favorite rule for user interaction. The system might
not find a proof for Γ =⇒ ∆ automatically, but for a cleverly chosen φ automatic
proofs for both Γ ,φ =⇒ ∆ and Γ =⇒ φ ,∆ might be possible.

2.2.3 Semantics

So far we trusted that the logical rules contained in Figures 2.1 and 2.2 are self-
evident. In this section we provide further support that the rules and the deduction
system as a whole are sound, in particular no contradiction can be derived. So far
we also had only empirical evidence that the rules are sufficient. The semantical
approach presented in this section will open up the possibility to rigorously prove
completeness.

Definition 2.11. A universe or domain for a given type hierarchy T and signature Σ

consists of

1. a set D,
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2. a typing function δ : D→ TSym \ {⊥} such that for every A ∈ TSym the set
DA = {d ∈ D | δ (d)v A} is not empty.

The set DA = {d ∈ D | δ (d)v A} is called the type universe or type domain for A.
Definition 2.11 implies that for different types A,B∈ TSym\{⊥} there is an element
o ∈ DA∩DB only if there exists C ∈ TSym, C 6=⊥ with C v A and C v B.

Lemma 2.12. The type domains for a universe (D,δ ) share the following properties

1. D⊥ = /0, D> = D,
2. DA ⊆ DB if Av B,
3. DC = DA∩DB in case the greatest lower bound C of A and B exists.

Definition 2.13. A first-order structureM for a given type hierarchy T and signa-
ture Σ consists of

• a domain (D,δ ),
• an interpretation I

such that

1. I( f ) is a function from DA1 × ·· ·×DAn into DA for f : A1× . . .×An → A in
FSym,

2. I(p) is a subset of DA1 ×·· ·×DAn for p(A1, . . . ,An) in PSym,
3. I( .=) = {(d,d) | d ∈ D}.

For constant symbols c : → A ∈ FSym requirement (1) reduces to I(c) ∈ DA. It has
become customary to interpret an empty product as the set { /0}, where /0 is deemed
to stand for the empty tuple. Thus requirement (2) reduces for n = 0 to I(p)⊆ { /0}.
Only if need arises, we will say more precisely thatM is a T -Σ -structure.

Definition 2.14. LetM be a first-order structure with universe D.
A variable assignment is a function β : VSym→ D such that β (v) ∈ DA for

v : A ∈ VSym.
For a variable assignment β , a variable v : A ∈ VSym and a domain element

d ∈ DA, the following definition of a modified assignment will be needed later on:

β
d
v (v′) =

{
d if v′ = v
β (v′) if v′ 6= v

The next two definitions define the evaluation of terms and formulas with respect
to a structureM = (D,δ , I) for given type hierarchy T , signature Σ , and variable
assignment β by mutual recursion.

Definition 2.15. For every term t ∈ TrmA, we define its evaluation valM,β (t) induc-
tively by:

• valM,β (v) = β (v) for any variable v.
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• valM,β ( f (t1, . . . , tn)) = I( f )(valM,β (t1), . . . ,valM,β (tn)).

• valM,β (if φ then t1 else t2) =
{

valM,β (t1) if (M,β ) |= φ

valM,β (t2) if (M,β ) 6|= φ

Definition 2.16. For every formula φ ∈ Fml, we define when φ is considered to be
true with respect toM and β , which is denoted with (M,β ) |= φ , by:

1 (M,β ) |= true, (M,β ) 6|= false
2 (M,β ) |= p(t1, . . . , tn) iff (valM,β (t1), . . . ,valM,β (tn)) ∈ I(p)
3 (M,β ) |= ¬φ iff (M,β ) 6|= φ

4 (M,β ) |= φ1∧φ2 iff (M,β ) |= φ1 and (M,β ) |= φ2
5 (M,β ) |= φ1∨φ2 iff (M,β ) |= φ1 or (M,β ) |= φ2
6 (M,β ) |= φ1→ φ2 iff (M,β ) 6|= φ1 or (M,β ) |= φ2
7 (M,β ) |= φ1↔ φ2 iff ((M,β ) |= φ1 and (M,β ) |= φ2) or

iff ((M,β ) 6|= φ1 and (M,β ) 6|= φ2)
8 (M,β ) |= ∀ A v;φ iff (M,β d

v ) |= φ for all d ∈ DA

9 (M,β ) |= ∃ A v;φ iff (M,β d
v ) |= φ for at least one d ∈ DA

For a 0-place predicate symbol p, clause (2) says M |= p iff /0 ∈ I(p). Thus the
interpretation I acts in this case as an assignment of truth values to p. This explains
why we have called 0-place predicate symbols propositional atoms.

Given the restriction on I( .=) in Definition 2.13, clause (2) also says (M,β ) |=
t1

.= t2 iff valM,β (t1) = valM,β (t2).
For a set Φ of formulas, we use (M,β ) |= Φ to mean (M,β ) |= φ for all φ ∈Φ .
If φ is a formula without free variables, we may writeM |= φ since the variable

assignment β is not relevant here.
To prepare the ground for the next definition we explain the concept of extensions

between type hierarchies.

Definition 2.17. A type hierarchy T2 = (TSym2,v2) is an extension of a type hier-
archy T1 = (TSym1,v1), in symbols T1 vT2, if

1. TSym1 ⊆ TSym2
2. v2 is the smallest subtype relation containing v1∪∆ where ∆ is a set of pairs

(S,T ) with T ∈ TSym1 and S ∈ TSym2 \TSym1.

So, new types can only be declared to be subtypes of old types, never supertypes.
Also, ⊥v2 Av2 > for all new types A.

Definition 2.17 forbids the introduction of subtype chains like Av Bv T into the
type hierarchy. However, it can be shown that relaxing the definition in that respect
results in an equivalent notion of logical consequence. We keep the restriction here
since it simplifies reasoning about type hierarchy extensions.

For later reference, we note the following lemma.

Lemma 2.18. Let T2 = (TSym2,v2) be an extension of T1 = (TSym1,v1) withv2
the smallest subtype relation containing v1∪∆ , for some ∆ ⊆ (TSym2 \TSym1)×
TSym1.

Then, for A,B ∈ TSym1, C ∈ TSym2 \TSym1, D ∈ TSym2
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1. Av2 B iff Av1 B
2. C v2 A iff T v1 A for some (C,T ) ∈ ∆ .
3. Dv2 C iff D = C or D =⊥

Proof. This follows easily from the fact that no supertype relations of the form
Av2 C for new type symbols C are stipulated. ut

Definition 2.19. LetT be a type hierarchy and Σ a signature, φ ∈ FmlT ,Σ a formula
without free variables, and Φ ⊆ FmlT ,Σ a set of formulas without free variables.

1. φ is a logical consequence of Φ , in symbols Φ |= φ , if for all type hierarchies
T ′ with T vT ′ and all T ′-Σ -structuresM such thatM |= Φ , alsoM |= φ

holds.
2. φ is universally valid if it is a logical consequence of the empty set, i.e., if /0 |= φ .
3. φ is satisfiable if there is a type hierarchyT ′, withT vT ′ and aT ′-Σ -structure
M withM |= φ .

The extension of Definition 2.19 to formulas with free variables is conceptually not
difficult but technically a bit involved. The present definition covers however all we
need in this book.

The central concept is universal validity since, for finite Φ , it can easily be seen
that:

• Φ |= φ iff the formula
∧

Φ → φ is universally valid.
• φ is satisfiable iff ¬φ is not universally valid.

The notion of logical consequence from Definition 2.19 is sometimes called super
logical consequence to distinguish it from the concept Φ |=T ,Σ φ denoting that for
any T -Σ -structureM withM |= Φ alsoM |= φ is true.

To see the difference, let the type hierarchy T1 contain types A and B such that
the greatest lower bound of A and B is⊥. For the formula φ1 = ∀ A x;(∀ B y;(x 6= y))
we have |=T1 φ1. Let T2 be the type hierarchy extending T1 by a new type D and the
ordering Dv A, Dv B. Now, |=T2 φ1 does no longer hold true.

The phenomenon that the tautology property of a formula φ depends on symbols
that do not occur in φ is highly undesirable. This is avoided by using the logical
consequence defined as above. In this case we have 6|= φ1.

Theorem 2.20 (Soundness and Completeness Theorem). Let T be a type hierar-
chy and Σ a signature, φ ∈ FmlT ,Σ without free variables. The calculus for FOL is
given by the rules in Figures 2.1 and 2.2. Assume that for every type A ∈T there is
a constant symbol of type A′ with A′ v A.

Then:

• if there is a closed proof tree in FOL for the sequent =⇒ φ then φ is universally
valid
i.e., FOL is sound.

• if φ is universally valid then there is a closed proof tree for the sequent =⇒ φ

in FOL.
i.e., FOL is complete.
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For the untyped calculus a proof of the sound- and completeness theorem may be
found in any decent text book, e.g. [Gallier, 1987, Section 5.6]. Giese [2005] covers
the typed version in a setting with additional cast functions and type predicates. His
proof does not consider super logical consequence and requires that type hierarchies
are lower-semi-lattices.

Concerning the constraint placed on the signature in Theorem 2.20, the calculus
implemented in the KeY system takes a slightly different but equivalent approach:
instead of requiring the existence of sufficient constants, it allows one to derive via
the rule ex_unused, for every A ∈ T the formula ∃x(x .= x), with x a variable of
type A.

Definition 2.21. A rule

Γ1 =⇒ ∆1 Γ2 =⇒ ∆2

Γ =⇒ ∆

of a sequent calculus is called

• sound if whenever Γ1 =⇒ ∆1 and Γ2 =⇒ ∆2 are universally valid so is Γ =⇒ ∆ .
• complete if whenever Γ =⇒ ∆ is universally valid then also Γ1 =⇒ ∆1 and

Γ2 =⇒ ∆2 are universally valid.

For nonbranching rules and rules with side conditions the obvious modifications have
to be made.

An inspection of the proof of Theorem 2.20 shows that if all rules of a calculus
are sound then the calculus itself is sound. This is again stated as Lemma 4.7 in
Section 4.4 devoted to the soundness management of the KeY system. In the case of
soundness also the reverse implication is true: if a calculus is sound then all its rules
will be sound.

The inspection of the proof of Theorem 2.20 also shows that the calculus is
complete if all its rules are complete. This criterion is however not necessary, a
complete calculus may contain rules that are not complete.

2.3 Extended First-Order Logic

In this section we extend the Basic First-Order Logic from Section 2.2. First we turn
our attention in Subsection 2.3.1 to an additional term building construct: variable
binders. They do not increase the expressive power of the logic, but are extremely
handy.

An issue that comes up in almost any practical use of logic, are partial functions.
In the KeY system, partial functions are treated via underspecification as explained
in Subsection 2.3.2. In essence this amounts to replacing a partial function by all its
extensions to total functions.



36 2 First-Order Logic

2.3.1 Variable Binders

This subsection assumes that the type int of mathematical integers, the type LocSet
of sets of locations, and the type Seq of finite sequences are present in TSym. For
the logic JFOL to be presented in Subsection 2.4 this will be obligatory.

A typical example of a variable binder symbol is the sum operator, as in Σ n
k=1 k2.

Variable binders are related to quantifiers in that they bind a variable. The KeY system
does not provide a generic mechanism to include new binder symbols. Instead we
list the binder symbols included at the moment.

A more general account of binder symbols is contained in the doctoral thesis
[Ulbrich, 2013, Subsection 2.3.1]. Binder symbols do not increase the expressive
power of first-order logic: for any formula φb containing binder symbols there is a
formula φ without such that φb is universally valid if and only if φ is, see [Ulbrich,
2013, Theorem 2.4]. This is the reason why one does not find binder symbols other
than quantifiers in traditional first-order logic text books.

Definition 2.22 (extends Definition 2.3).

4. If vi is a variable of type int, b0, b1 are terms of type int not containing vi and s
is an arbitrary term in Trmint, then bsum{vi}(b0,b1,s) is in Trmint .

5. If vi is a variable of type int, b0, b1 are terms of type int not containing vi and s
is an arbitrary term in Trmint , then bprod{vi}(b0,b1,s) is in Trmint .

6. If vi is a variable of arbitrary type and s a term of type LocSet,
then infiniteUnion{vi}(s) is in TrmLocSet .

7. If vi is a variable of type int, b0, b1 are terms of type int not containing vi and s
is an arbitrary term in Trmany, then seqDef{vi}(b0,b1,s) is in TrmSeq.

It is instructive to observe the role of the quantified variable vi in the following syntax
definition:

Definition 2.23 (extends Definition 2.5). If t is one of the terms bsum{vi}(b0,b1,s),
bprod{vi}(b0,b1,s), infiniteUnion{vi}(s), and seqDef{vi}(b0,b1,s) we have

var(t) = var(b0)∪ var(b1)∪ var(s) and fv(t) = var(t)\{vi} .

We trust that the following remarks will suffice to clarify the semantic meaning of the
first two symbols introduced in Definition 2.22. In mathematical notation one would
write Σb0≤vi<b1svi for bsum{vi}(b0,b1,s) and Πb0≤vi<b1svi for bprod{vi}(b0,b1,s).
For the corner case b1 ≤ b0 we stipulate Σb0≤vi<b1svi = 0 and Πb0≤vi<b1svi = 1. The
name bsum stands for bounded sum to emphasize that infinite sums are not covered.
The proof rules for bsum and bprod are the obvious recursive definitions plus the
stipulation for the corner cases which we forgo to reproduce here.

For an integer variable vi the term infiniteUnion{vi}(s) would read in mathemati-
cal notation

⋃
−∞<vi<∞ s, and analogously for variables vi of type other than integer.

The precise semantics is part of Figure 2.11 in Section 2.4.4 below.
The semantics of seqDef{vi}(b0,b1,s) will be given in Definition 5.2 on page 151.

But, it makes an interesting additional example of a binder symbol. The term
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seqDef{vi}(b0,b1,s) is to stand for the finite sequence 〈s(b0),s(b0 +1), . . . ,s(b1−
1)〉. For b1 ≤ b0 the result is the empty sequence, i.e., seqDef{vi}(b0,b1,s) = 〈〉.
The proof rules related to seqDef are discussed in Chapter 5.

2.3.2 Undefinedness

In KeY all functions are total. There are two ways to interpret a function symbol f in
a structureM at an argument position ā outside its intended range of definition:

1. The value of the function valM ( f ) at position ā is set to a default within the
intended range of f . E.g., bsum{vi}(1,0,s) evaluates to 0 (regardless of s).

2. The value of the function valM ( f ) at position ā is set to an arbitrary value b
within the intended range of f . For different structures different b are chosen.
When we talk about universal validity, i.e., truth in all structures, we assume that
for every possible choice of b there is a structureMb such that valMb( f )(ā) = b.
The prime example for this method, called underspecification, is division by 0
such that, e.g., 1

0 is an arbitrary integer.

Another frequently used way to deal with undefinedness is to choose an error element
that is different from all defined values of the function. We do not do this. The
advantage of underspecification is that no changes to the logic are required. But, one
has to know what is happening. In the setting of underspecification we can prove
∃ i;( 1

0
.= i) for an integer variable i. However, we cannot prove 1

0
.= 2

0 . Also the
formula castint(c)

.= 5→ c .= 5 is not universally valid. In case c is not of type int
the underspecified value for castint(c) could be 5 for c 6= 5.

The underspecification method gives no warning when undefined values are used
in the verification process. The KeY system offers a well-definedness check for JML
contracts, details are described in Section 8.3.3.

2.4 First-Order Logic for Java

As already indicated in the introduction of this chapter, Java first-order logic (JFOL)
will be an instantiation of the extended classical first-order logic from Subsection 2.3
tailored towards the verification of Java programs. The precise type hierarchy T
and signature Σ will of course depend on the program and the statements to be
proved about it. But we can identify a basic vocabulary that will be useful to have
in almost every case. Figure 2.3 shows the type hierarchy TJ that we require to be
at least contained in the type hierarchy T of any instance of JFOL. The mandatory
function and predicate symbols ΣJ are shown in Figure 2.4. Data types are essential
for formalizing nontrival program properties. The data types of the integers and the
theory of arrays are considered so elementary that they are already included here.
More precisely what is covered here are the mathematical integers. There are of
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course also Java integers types. Those and their relation to the mathematical integers
are covered in Section 5.4 on page 161. Also the special data type LocSet of sets of
memory locations will already be covered here. Why it is essential for the verification
of Java programs will become apparent in Chapters 8 and 9. The data type of Seq of
finite sequences however will extensively be treated later in Section 5.2.

2.4.1 Type Hierarchy and Signature

The mandatory type hierarchy TJ for JFOL is shown in Figure 2.3. Between Object
and Null the class and interface types from the Java code to be investigated will
appear. In the future there might be additional data types at the level immediately
below Any besides boolean, int, LocSet and Seq, e.g., maps.

>

Any Heap Field

boolean int Object LocSet Seq

class types
from Java code

Null

⊥

Figure 2.3 The mandatory type hierarchy TJ of JFOL

The mandatory vocabulary ΣJ of JFOL is shown in Figure 2.4 using the same
notation as in Definition 2.2. In the subsections to follow we will first present the
axioms that govern these data types one by one and conclude with their model-
theoretic semantics in Subsection 2.4.5.

As mentioned above, in the verification of a specific Java program the signature
Σ may be a strict superset of ΣJ . To mention just one example: for every model
field m of type T contained in the specification of a Java class C an new symbol
fm : Heap×C→ T is introduced. We will in Definition 9.7 establish the terminology
that function symbols with at least one, usually the first, argument of type Heap are
called observer function symbols.
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int and boolean all function and predicate symbols for int, e.g., +,∗,<, . . .
boolean constants TRUE, FALSE

Java types null : Null
length : Object→ int
castA : Object→ A for any A in T with ⊥@ Av Object.
instanceA : Any→ boolean for any type Av Any
exactInstanceA : Any→ boolean for any type Av Any

Field created : Field
arr : int→ Field
f : Field for every Java field f

Heap selectA : Heap×Object×Field→ A for any type Av Any
store : Heap×Object×Field×Any→ Heap
create : Heap×Object→ Heap
anon : Heap×LocSet×Heap→ Heap
wellFormed(Heap)

LocSet ε(Object,Field,LocSet)
empty,allLocs : LocSet
singleton : Object×Field→ LocSet
subset(LocSet,LocSet)
disjoint(LocSet,LocSet)
union, intersect,setMinus : LocSet×LocSet→ LocSet
allFields : Object→ LocSet, allObjects : Field→ LocSet
arrayRange : Object× int× int→ LocSet
unusedLocs : Heap→ LocSet

Figure 2.4 The mandatory vocabulary ΣJ of JFOL

2.4.2 Axioms for Integers

polySimp_addComm0 k + i .= i+ k add_zero_right i+0 .= i
polySimp_addAssoc (i+ j)+ k .= i+( j + k) add_sub_elim_right i+(−i) .= 0
polySimp_elimOne i∗1 .= i mul_distribute_4 i∗ ( j + k) .=(i∗ j)+(i∗ k)
mul_assoc (i∗ j)∗ k .= i∗ ( j ∗ k) mul_comm j ∗ i .= i∗ j
less_trans i < j∧ j < k→ i < k less_is_total_heu i < j∨ i .= j∨ j < i
less_is_alternative_1 ¬(i < j∧ j < i) less_literals 0 < 1
add_less i < j→ i+ k < j + k multiply_inEq i< j∧0< k→ i∗ k< j ∗ k

int_induction
Γ =⇒ φ(0),∆ Γ =⇒∀n;(0≤ n∧φ(n)→ φ(n+1)),∆

Γ =⇒∀n;(0≤ n→ φ(n)),∆

Figure 2.5 Integer axioms and rules

Figure 2.5 shows the axioms for the integers with +, ∗ and <. Occasionally we
use the additional symbol ≤ which is, as usual, defined by x≤ y↔ (x < y∨ x .= y).
The implication multiply_inEq does in truth not occur among the KeY taclets. Instead
multiply_inEq0 i≤ j∧0≤ k→ i∗ k ≤ j ∗ k is included. But, multiply_inEq can be
derived from , multiply_inEq0 although by a rather lengthy proof (65 steps) based
on a normal form transformation. The reverse implication is trivially true.
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Figure 2.5 also lists in front of each axiom the name of the taclet that implements
it. The KeY system not only implements the shown axioms but many useful conse-
quences and defining axioms for further operations such as those related to integer
division and the modulo function. How the various integer data types of the Java
language are handled in the KeY system is explained in Section 5.4.

Incompleteness

Mathematically the integers (Z,+,∗,0,1,<) are a commutative ordered ring
satisfying the well-foundedness property: every nonempty subset of the positive
integers has a least element. Well-foundedness is a second-order property. It is
approximated by the first-order induction schema, which can be interpreted to say
that every nonempty definable subset of the positive integers has a least element.
The examples known so far of properties of the integers that can be proved in
second-order logic but not in its first-order approximation, see e.g. [Kirby and
Paris, 1982] are still so arcane that we need not worry about this imperfection.

2.4.3 Axioms for Heap

The state of a Java program is determined by the values of the local variables and
the heap. A heap assigns to every pair consisting of an object and a field declared
for this object an appropriate value. As a first step to model heaps, we require that
a type Field be present in JFOL. This type is required to contain the field constant
created and the fields arr(i) for array access for natural numbers 0≤ i. In a specific
verification context there will be constants f for every field f occurring in the Java
program under verification. There is no assumption, however, that these are the only
elements in Field; on the contrary, it is completely open which other field elements
may occur. This feature is helpful for modular verification: when the contracts for
methods in a Java class are verified, they remain true when new fields are added.
The data type Heap allows us to represent more functions than can possibly occur as
heaps in states reachable by a Java program:

1. Values may be stored for arbitrary pairs (o, f ) of objects o and fields f regardless
of the question if f is declared in the class of o.

2. The value stored for a pair (o, f ) need not match the type of f .
3. A heap may assign values for infinitely many objects and fields.

On one hand our heap model allows for heaps that we will never need, on the
other hand this generality makes the model simpler. Relaxation 2 in the above list
is necessary since JFOL does not use dependent types. To compensate for this
shortcoming there has to be a family of observer functions selectA, where A ranges
over all subtypes of Any.
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The axiomatization of the data type Heap, shown in Figure 2.6, follows the pattern
well known from the theory of arrays. The standard reference is [McCarthy, 1962].
There are some changes however. One would expect the following rule
selectA(store(h,o, f ,x),o2, f 2) if o .= o2∧ f .= f 2 then x else selectA(h,o2, f 2).
Since the type of x need not be A this easily leads to an ill-typed formula. Thus
we need castA(x) in place of x. In addition the implicit field created gets special
treatment. The value of this field should not be manipulated by the store function. This
explains the additional conjunct f ˙6=created in the axiom. The rule selectOfStore as
it is shown below implies selectA(store(h,o,created,x),o2, f 2) .= selectA(h,o2, f 2).
Assuming extensionality of heaps this entails store(h,o,created,x) .= h. The created
field of a heap can only be changed by the create function as detailed by the rule
selectOfCreate. This ensures that the value of the created field can never be changed
from TRUE to FALSE. Note also, that the object null is considered to be created from
the start, so it can be excepted from rule selectOfCreate.

selectOfStore selectA(store(h,o, f ,x),o2, f 2) 
if o .= o2∧ f .= f 2∧ f ˙6=created then castA(x) else selectA(h,o2, f 2)

selectOfCreate selectA(create(h,o),o2, f ) 
if o .= o2∧o ˙6=null∧ f .= created then castA(TRUE) else selectA(h,o2, f )

selectOfAnon selectA(anon(h,s,h′),o, f ) 
if(ε(o, f ,s)∧ f ˙6=created)∨ ε(o, f ,unusedLocs(h))
then selectA(h′,o, f ) else selectA(h,o, f )

with the typing o,o1,o2 : Object, f , f 2 : Field,h,h′ : Heap,s : LocSet

Figure 2.6 Rules for the theory of arrays.

There is another operator, named anon(h,s,h′), that returns a Heap object. Its
meaning is described by the rule selectOfAnon in Figure 2.6: at locations (o, f ) in
the location set s the resulting heap coincides with h′ under the proviso f ˙6=created,
otherwise it coincides with h. To get an idea when this operator is useful imaging
that h is the heap reached at the beginning of a while loop that at most changes
locations in a location set s and that h′ is a totally unknown heap. Then anon(h,s,h′)
represents a heap reached after an unknown number of loop iterations. This heap may
have more created objects than the initial heap h. Since location sets are not allowed
to contain locations with not created objects, see onlyCreatedObjectsAreInLocSets
in Figure 2.7, this has to be added as an addition case in rule selectOfAnon. This
application scenario also accounts for the name which is short for anonymize.

A patiently explained example for the use of store and select functions can be
found in Subsection 15.2.3 on page 526. While SMT solvers can handle expressions
containing many occurrences of store and select quite efficiently, they are a pain in
the neck for the human reader. The KeY interface therefore presents those expressions
in a pretty printed version, see explanations in Section 16.2 on page 544.
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The taclets in Figure 2.6 are called rewriting taclets. We use the  notation
to distinguish them from the other sequent rules as, e.g., in Figures 2.1 and 2.2. A
rewriting rule s t is shorthand for a sequent rule Γ ′=⇒∆ ′

Γ =⇒∆
where Γ ′ =⇒ ∆ ′ arises

from Γ =⇒ ∆ by replacing one or more occurrences of the term s by t. Rewriting
rules will again be discussed in Subsection 4.2.3, page 116.

onlyCreatedObjectsAreReferenced
wellFormed(h)→ selectA(h,o, f ) .= null∨ selectboolean(h,selectA(h,o, f ),created) .= TRUE

onlyCreatedObjectsAreInLocSets
wellFormed(h)∧ ε(o2, f 2,selectLocSet(h,o, f ))→ o2 .= null∨

selectboolen(h,o2,created) .= TRUE

narrowSelectType
wellFormed(h)∧ selectB(h,o, f )→ selectA(h,o, f ) where type of f is A and Av B

narrowSelectArrayType
wellFormed(h)∧o ˙6=null∧ selectB(h,o,arr(i))→ selectA(h,o,arr(i))

where type of o is A[] and Av B

wellFormedStoreObject
wellFormed(h)∧ (x .= null∨ (selectboolean(h,x,created) .= TRUE∧ instanceA(x) .= TRUE))

→ wellFormed(store(h,o, f ,x)) where type of f is A

wellFormedStoreArray
wellFormed(h)∧ (x .= null∨ (selectboolean(h,x,created) .= TRUE∧arrayStoreValid(o,x)))

→ wellFormed(store(h,o,arr(idx),x)))

wellFormedStoreLocSet
wellFormed(h)∧∀ov;∀ f v;(ε(ov, f v,y)→ ov .= null∨ selectboolean(h,ov,created) .= TRUE)

→ wellFormed(store(h,o, f ,y)) where type of f is A and LocSet v A

wellFormedStorePrimitive
wellFormed(h)→ wellFormed(store(h,o, f ,x))
provided f is a field of type A,x is of type B, and Bv A,B 6v Ob ject,B 6v LocSet

wellFormedStorePrimitiveArray
wellFormed(h)→ wellFormed(store(h,o,arr(idx),x))
provided o is of sort A,x is of sort B,B 6v Ob ject,B 6v LocSet,Bv A

wellFormedCreate
wellFormed(h)→ wellFormed(create(h,o))

wellFormedAnon
wellFormed(h)∧wellFormed(h2)→ wellFormed(anon(h,y,h2))

In the above formulas the following implicitly universally quantified variables are used: h,h2 : Heap,
o,x : Object, f : Field, i : int, y : LocSet

Figure 2.7 Rules for the predicate wellFormed
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Our concept of heap is an overgeneralization. Most of the time this does no harm.
But, there are situations where it is useful to establish and depend on certain well-
formedness conditions. The predicate wellFormed(heap) has been included in the
vocabulary for this purpose. No effort is made to make the wellFormed(h) predicate
so strong that it only is true of heaps h that can actually occur in Java programs. The
axioms in Figure 2.7 were chosen on a pragmatic basis. There is e.g., no axiom that
guarantees for a created object o of type A with select(h,o, f ) defined that the field
f is declared in class A.

The first four axioms in Figure 2.7 formalize properties of well-formed heaps
while the rest cover situations starting out with a well-formed heap, manipulate it
and end up again with a well-formed heap. The formulas are quite self-explanatory.
Reading though them you will encounter the auxiliary predicate arrayStoreValid:
arrayStoreValid(o,x) is true if o is an array object of exact type A[] and x is of
type A.

The meaning of the functions symbols instanceA(x), exactInstanceA(x), castA(x),
and length(x) is given by the axioms in Figure 2.8. This time we present the axioms
in mathematical notation for conciseness. The axiom scheme, (Ax-I) and (Ax-C)
show that adding instanceA and castA does not increase the expressive power. These
functions can be defined already in the basic logic plus underspecification. The
formulas (Ax-E1) and (Ax-E2) completely axiomatize the exactInstanceA functions,
see Lemma 2.24 on page 47. The function length is only required to be not negative.
Axioms (Ax-E1), (Ax-E2), and (Ax-L) are directly formalized in the KeY system as

∀Object x;(instanceA(x) .= TRUE↔∃y;(y .= x)) with y : A (Ax-I)
∀Object x;(exactInstanceA(x) .= TRUE→ instanceA(x) .= TRUE) (Ax-E1)
∀Object x;(exactInstanceA(x) .= TRUE→ instanceB(x) .= FALSE) with A 6v B (Ax-E2)
∀Object x;(instanceA(x) .= TRUE→ castA(x) .= x) (Ax-C)
∀Object x;(length(x)≥ 0) (Ax-L)

Figure 2.8 Axioms for functions related to Java types

taclets instance_known_dynamic_type, exact_instance_known_dynamic_type and
arrayLengthNotNegative. The other two axioms families have no direct taclet coun-
terpart. But, they can easily be derived.

2.4.4 Axioms for Location Sets

The data type LocSet is a very special case of the set type in that only sets of heap
locations are considered, i.e., sets of pairs (o, f ) with o an object and f a field. This
immediately guarantees that the is-element-of relation ε is well-foundedfor LocSet.
Problematic formulas such as aεa are already syntactically impossible.
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The rules for the data type LocSet are displayed in Figure 2.9. The only constraint
on the membership relation ε is formulated in rule equalityToElementOf. One could
view this rule as a definition of equality for location sets. But, since equality is a
built in relation in the basic logic it is in fact a constraint on ε . All other rules in this
figure are definitions of the additional symbols of the data type, such as, e.g., allLocs,
union, intersect, and infiniteUnion{av}(s1).

elementOfEmpty ε(o1, f 1,empty)  FALSE

elementOfAllLocs ε(o1, f 1,allLocs)  TRUE

equalityToElementOf s1 .= s2  ∀o;∀ f ;(ε(o, f ,s1)↔ ε(o, f ,s2))

elementOfSingleton ε(o1, f 1,singleton(o2, f 2)  o1 .= o2∧ f 1 .= f 2

elementOfUnion ε(o1, f 1,union(t1, t2))  ε(o1, f 1, t1)∨ ε(o1, f 1, t2)

subsetToElementOf subset(t1, t2)  ∀o;∀ f ;(ε(o, f , t1)→ ε(o, f , t2))

elementOfIntersect ε(o1, f 1, intersect(t1, t2))  ε(o1, f 1, t1)∧ ε(o1, f 1, t2)

elementOfAllFields ε(o1, f 1,allFields(o2)  o1 .= o2

elementOfSetMinus ε(o1, f 1,setMinus(t1, t2))  ε(o1, f 1, t1)∧¬ε(o1, f 1, t2)

elementOfAllObjects ε(o1, f 1,allOb jects( f 2)  f 1 .= f 2

elementOfInfiniteUnion ε(o1, f 1, infiniteUnion{av}(s1))  ∃av;ε(o1, f 1,s1)

with the typing o,o1,02 : Object, f , f 1 : Field,s1,s2, t1, t2 : LocSet, av of arbitrary type.

Figure 2.9 Rules for data type LocSet

2.4.5 Semantics

As already remarked at the start of Subsection 2.2.3, a formal semantics opens up the
possibility for rigorous soundness and relative completeness proofs. Here we extend
and adapt the semantics provided there to cover the additional syntax introduced for
JFOL (see Section 2.4.1).

We take the liberty to use an alternative notion for the interpretation of terms.
While we used valM,β (t) in Section 2.2.3 to emphasize also visually that we are
concerned with evaluation, we will write tM,β for brevity here.

The definition of a FOL structure M for a given signature in Subsection 2.2.3
was deliberately formulated as general as possible, to underline the universal nature
of logic. The focus in this subsection is on semantic structures tailored towards the
verification of Java programs. To emphasize this perspective we call these structures
JFOL structures.

A decisive difference to the semantics from Section 2.2.3 is that now the interpre-
tation of some symbols, types, functions, predicates, is constrained. Some functions
are completely fixed, e.g., addition and multiplication of integers. Others are almost
fixed, e.g., integer division n/m that is fixed except for n/0 which may have different
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interpretations in different structures. Other symbols are only loosely constrained,
e.g., length is only required to be nonnegative.

The semantic constraints on the JFOL type symbols are shown in Figure 2.10.
The restriction on the semantics of the subtypes of Object is that their domains

contain for every n ∈N infinitely many elements o with lengthM (o) = n. The reason
for this is the way object creation is modeled. When an array object is created an
element o in the corresponding type domain is provided whose created field has
value FALSE. The created field is then set to TRUE. Since the function length is
independent of the heap it cannot be changed in the creation process. So, the element
picked must already have the desired length. This topic will be covered in detail in
Subsection 3.6.6. The semantics of Seq will be given in Chapter 5.

• Dint = Z,
• Dboolean = {tt, ff},
• DObjectType is an infinite set of elements for every ObjectType with Null@ObjectTypevObject,

subject to the restriction that for every positive integer n there are infinitely many elements o
in DObjectType with lengthM (o) = n.

• DNull = {null},
• DHeap = the set of all functions h : DObject×DField → DAny,
• DLocSet = the set of all subsets of {(o, f ) | o ∈ DObject and f ∈ DField},
• DField is an infinite set.

Figure 2.10 Semantics on type domains

Constant Domain

Let T be a theory, that does not have finite models. By definition T ` φ iff
M |= φ for all modelsM of T . The Löwenheim-Skolem Theorem, which by
the way follows easily from the usual completeness proofs, guarantees that
T ` φ iffM |= φ for all countably infinite modelsM of T . Let S be an arbitrary
countably infinite set, then we have further T ` φ iffM |= φ for all modelsM of
T such that the universe ofM is S. To see this assume there is a countably infinite
model N of T with universe N such that N |= ¬φ . For cardinality reasons
there is a bijection b from N onto S. So far, S is just a set. It is straightforward
to define a structureM with universe S such that b is an isomorphism fromN
ontoM . This entails the contradictionM |= ¬φ .

The interpretation of all the JFOL function and predicate symbols listed in Fig-
ure 2.4 is at least partly fixed. All JFOL structures M = (M,δ , I) are required to
satisfy the constraints put forth in Figure 2.11.

Some of these constraints are worth an explanation. The semantics of the store
function, as stated above, is such that it cannot change the implicit field created. Also
there is no requirement that the type of the value x should match with the type of the
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1. TRUEM = tt and FALSEM = ff
2. selectMA (h,o, f ) = castMA (h(o, f ))
3. storeM(h,o, f ,x) = h∗, where the function h∗ is defined by

h∗(o′, f ′) =
{

x if o′ = o, f = f ′ and f 6= createdM

h(o′, f ′) otherwise

4. createM(h,o) = h∗, where the function h∗ is defined by

h∗(o′, f ) =
{

tt if o′ = o,o 6= null and f = createdM

h(o′, f ) otherwise

5. arrM is an injective function from Z into FieldM

6. createdM and fM for each Java field f are elements of FieldM, which are pairwise different
and also not in the range of arrM.

7. nullM = null

8. castMA (o) =
{

o if o ∈ AM

arbitrary element in AM otherwise
9. instanceA(o)M = tt⇔ o ∈ AM⇔ δ (o)v A

10. exactInstanceMA = tt⇔ δ (o) = A
11. lengthM(o) ∈ N
12. 〈o, f ,s〉 ∈ εM iff (o, f ) ∈ s
13. emptyM = /0
14. allLocsM = ObjectM×FieldM

15. singletonM(o, f ) = {(o, f )}
16. 〈s1,s2〉 ∈ subsetM iff s1 ⊆ s2
17. 〈s1,s2〉 ∈ disjointM iff s1∩ s2 = /0
18. unionM(s1,s2) = s1∪ s2
19. infiniteUnion{av}(s)M = {(a ∈ DT | sM [a/av]} with T type of av
20. intersectM(s1,s2) = s1∩ s2
21. setMinusM(s1,s2) = s1 \ s2
22. allFieldsM(o) = {(o, f ) | f ∈ FieldM}
23. allObjectsM( f ) = {(o, f ) | o ∈ ObjectM}
24. arrayRangeM(o, i, j) = {(o,arrM(x) | x ∈ Z, i≤ x≤ j}
25. unusedLocsM(h) = {(o, f ) | o ∈ ObjectM, f ∈ FieldM,o 6= null,h(o,createdM) = false}
26. anonM(h1,s,h2) = h∗, where the function h∗ is defined by:

h∗(o, f ) =

 h2(o, f ) if (o, f ) ∈ s and f 6= createdM , or
(o, f ) ∈ unusedLocsM(h1)

h1(o, f ) otherwise

Figure 2.11 Semantics for the mandatory JFOL vocabulary (see Figure 2.4)

field f . This liberality necessitates the use of the castA functions in the semantics of
selectA.

It is worth pointing out that the length function is defined for all elements in
DOb ject , not only for elements in DOT where OT is an array type.

Since the semantics of the wellFormed predicate is a bit more involved we put it
separately in Figure 2.12

The integer operations are defined as usual with the following versions of integer
division and the modulo function:



2.4. First-Order Logic for Java 47

h ∈ wellFormedM iff (a) if h(o, f ) ∈ DObject then h(o, f ) = null or h(h(o, f ),createdM) = tt
(b) if h(o, f ) ∈ DLocSet then nh(o, f )∩unusedLocsM(h) = /0
(c) if δ (o) = T [] then δ (h(o,arrM(i)))v T for all 0≤ i < lengthM(o)
(d) there are only finitely many o ∈ DObject for which h(o,createdM) = tt

Figure 2.12 Semantics for the predicate wellFormed

n/Mm =



the uniquely defined k such that
|m| ∗ |k| ≤ |n| and |m| ∗ (|k|+1) > |n| and
k ≥ 0 if m,n are both positive or both negative and
k ≤ 0 otherwise if m 6= 0

unspecified otherwise

Thus integer division is a total function with arbitrary values for x/M 0. Division is
an example of a partially fixed function. The interpretation of / in a JFOL structure
M is fixed except for the values x/M 0. These may be different in different JFOL
structures. The modulo function is defined by

mod(n,d) = n− (n/d)∗d

Note, that this implies mod(n,0) = n as / is – due to using underspecification – a
total function.

Lemma 2.24. The axioms in Figure 2.8 are sound and complete with respect to the
given semantics.

For a proof see [Schmitt and Ulbrich, 2015].



Chapter 3
Dynamic Logic for Java

Bernhard Beckert, Vladimir Klebanov, and Benjamin Weiß

3.1 Introduction

In the previous chapter, we have introduced JFOL a variant of classical first-order
logic tailored for reasoning about (single) states of Java programs (Section 2.4). Now,
we extend this logic such that we can reason about the behavior of programs, which
requires to consider not just one but several program states. As a trivial example,
consider the Java statement x++. We want to be able to express that this statement,
when started in a state where x is zero, terminates in a state where x is one.

We use an instance of dynamic logic (DL) [Harel, 1984, Harel et al., 2000, Kozen
and Tiuryn, 1990, Pratt, 1977] for this purpose, which we will call JavaDL. The
principle of dynamic logic is the formulation of assertions about program behavior
by integrating programs and formulas within a single language. To this end, the
modalities 〈p〉 and [p] can be used in formulas, where p can be any sequence of legal
program statements (i.e., DL is a multi-modal logic). These operators refer to the
final state of p and can be placed in front of any formula. The formula 〈p〉φ expresses
that the program p terminates in a state in which φ holds, while [p]φ does not demand
termination and expresses that, if p terminates, then φ holds in the final state. For
example, “when started in a state where x is zero, x++ terminates in a state where x
is one” can in DL be expressed as x .= 0→ 〈x++〉(x .= 1).

Nondeterministic programs can have more than one final state; but here, since
we consider Java programs to be deterministic, there is exactly one final state (if p
terminates normally, i.e., does not terminate abruptly due to an uncaught exception) or
there is no final state (if p does not terminate or terminates abruptly). “Deterministic”
here means that a program, for the same initial state and the same inputs, always
has the same behavior—in particular, the same final state (if it terminates) and the
same outputs. Assuming Java to be deterministic is justified as we do not consider
concurrency, which is the main source of nondeterminism in Java.

In exact terms, the programming language supported by JavaDL, as defined in this
chapter, is not full Java. It lacks features like concurrency, floating-point arithmetic,
and dynamic class loading, but retains the essentials of object-orientation. In fact,
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JavaDL supports all features that occur in both Java Card (version 2.2.2 or 3.0.x,
classic edition)—a Java dialect for smart cards—and Java (version 1.4). Beyond Java
Card features, JavaDL supports Java’s dynamic object creation and initialization,
assertions, the primitive types char and long, strings, multi-dimensional arrays,
the enhanced for-loop, and more. Extending JavaDL to cover Java Card-specific
extensions like transactions is the topic of Chapter 10.

Deduction in DL, and in particular in JavaDL is based on symbolic program
execution and simple program transformations and is, thus, close to a programmer’s
understanding of Java (see Section 3.5.6).

Dynamic Logic and Hoare Logic

Dynamic logic can be seen as an extension of Hoare logic. The DL formula
φ → [p]ψ is similar to the Hoare triple {φ}p{ψ}. But in contrast to Hoare logic,
the set of formulas of DL is closed under the usual logical operators: In Hoare
logic, the formulas φ and ψ are pure first-order formulas, whereas in DL they
can contain programs. Using a program in φ , for example, it is easy to specify
that an input data structure is not cyclic, which is impossible in pure first-order
logic.

A version of KeY that, for teaching purposes, supports a variant of Hoare
logic, is described in Chapter 17.

Structure of this Chapter

We first define syntax and semantics of JavaDL in Sections 3.2 and 3.3, respectively.
In Section 3.4, we add another type of modal operators to JavaDL, called updates,
that (like programs) can be used to describe state changes. Then, in Sections 3.5–3.7,
we present the JavaDL calculus, which is used in the KeY system for verifying Java
programs. Section 3.5 gives an overview, Section 3.6 describes the basic rules of
the calculus, and Section 3.7 gives an introduction to the rules for unbounded loops
and replacing method invocations by specifications. These latter rules use program
abstraction, which is described in more detail in Chapter 9.

3.2 Syntax of JavaDL

In this section, we define the syntax—and later in the chapter, semantics—of JavaDL
for a given Java program Prg. By Java program we mean, as usual, a set of source
files containing a set of class definitions. We assume that Prg can be compiled without
errors.
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It is worth noting that while the syntax and semantics of the logic are tied to a fixed
and completely known program, the calculus is “modular” and does not have this
restriction. Individual methods are soundly verified without the rest of the program
being taken into particular consideration—unless the user deliberately chooses to
forego modularity.

3.2.1 Type Hierarchies

The minimal type hierarchy TJ for JFOL was already introduced in Section 2.4.1. A
JavaDL type hierarchy for a given Java program Prg is any hierarchyT = (TSym,v)
that contains TJ as a subhierarchy (see Figure 2.3 on page 38). That is, it contains
(at least) the class and interface types from Prg in addition to the types Any, boolean,
int, Null, LocSet, Field, Heap, ⊥, >.

We map the finite-width Java integer types byte, short, int, etc. to the un-
bounded JavaDL type int ∈ TSym. This mapping does not necessarily mean that
integer overflows are ignored. Instead, the handling of overflow depends on the
semantics and rules for reasoning about the arithmetical operators of Java, which
are configurable in KeY. The KeY system allows the user to choose between several
different ways of reasoning about the Java integers: (i) ignoring integer overflows,
(ii) checking that no integer overflows can occur, and (iii) using the actual modulo
semantics of Java. The details can be found in Section 5.4 and, ultimately, in [Beckert
and Schlager, 2004, 2005].

Note that Java Card and KeY do not support the Java floating-point types float
and double, so there are also no corresponding types in TJ .

3.2.2 Signatures

In JavaDL, symbols can be either rigid or nonrigid. The intuition is that the inter-
pretation of nonrigid symbols can be changed by the program, while rigid symbols
maintain their interpretation throughout program execution. The class of nullary non-
rigid function symbols has a particular importance—we will refer to such symbols
as program variables.

Definition 3.1. Let T be a JavaDL type hierarchy for a Java program Prg. A JavaDL
signature w.r.t. T is a tuple

Σ = (FSym,PSym,VSym,ProgVSym)

where

• (FSym,PSym,VSym) is a JFOL signature, i.e., Σ includes the vocabulary
from ΣJ (see Figure 2.4);
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• the set ProgVSym of nullary nonrigid function symbols, which we call program
variables, contains all local variables a declared in Prg, where the type of
a :A ∈ ProgVSym is given by the declared Java type T as follows:

– A = T if T is a reference type,
– A = boolean if T = boolean,
– A = int if T ∈ {byte,short,int,long,char}.

• ProgVSym contains an infinite number of symbols of every typing.
• ProgVSym contains the “special” program variable

heap :Heap ∈ ProgVSym .

There is an important difference between logical variables in VSym and program
variables in ProgVSym: logical variables can be universally or existentially quanti-
fied but never occur in programs, while program variables can occur in programs but
cannot be quantified.

3.2.3 Syntax of JavaDL Program Fragments

The programs p occurring in modal operators 〈p〉 and [p] in JavaDL formulas are
written in Java, or, more precisely, in the intersection between Java and Java Card.
Thus, for full formal rigor, the definitions of JavaDL would have to include definitions
of the syntax and semantics of this subset of Java. However, this is beyond the scope
of this text. Instead, Definition 3.2 below defines the admissible programs p rather
informally, by referring to the Java language specification (JLS) [Gosling et al.,
2013].

Definition 3.2 (Legal program fragments). Let Prg be a Java program. A legal
program fragment p in the context of Prg is a sequence of Java statements, where
there are local variables a1, . . . ,an ∈ ProgVSym of Java types T1, . . . ,Tn such that
extending Prg with an additional class

class C {
static void m(T1 a1, . . ., Tn an) throws Throwable { p }

}
yields a legal program according to the rules of the Java language specification (with
certain deviations outlined below).

The purpose of the parameter declarations T1 a1, . . . , Tn an of m is to bind
free occurrences of the program variables a1, . . . ,an in p, i.e., occurrences not
bound by a declaration within p itself. For example, in the legal program fragment
“int a = b;” there is a free occurrence of the program variable b ∈ ProgVSym.
The throws Throwable clause is included to accommodate any uncaught checked
exceptions originating from p.
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The deviations from the program legality in the sense of the JLS, include the
following syntactical extensions:

• p may contain method frames in addition to normal Java statements. A method
frame is a statement of the form

method-frame(result=r,source=m(T1,...,Tn)@T,this=t):{ body }

where (a) r is a local variable (in case of a void method result=r is omitted),
(b) m(T1,...,Tn)@T is a class and method context (method m with given
signature of class T ), (c) t is an expression free of side-effects and without
method calls, and (d) body is a legal program fragment in the context of Prg.
The semantics of a method frame is that, inside body (but outside of any nested
method frames that might be contained in body), the visibility rules for the
given class and method context m(T1,...,Tn)@T are applicable, keyword this
evaluates to the value of t, and the meaning of a return statement is to assign
the returned value to r and to then exit the method frame.

• p may contain method body statements

retvar=target.m(t1,...,tn)@T;

where

– target.m(t1, . . . , tn) is a method invocation expression,
– the type T points to a class declared in Prg,
– the result of the method is assigned to retvar after return (if the method is

not void).

Intuitively, a method body statement is a shorthand notation for the precisely
identified implementation of method m(. . .) in class T (in other words, for the
unambiguously resolved corresponding method invocation). In contrast to a
normal method call where the implementation to be taken is determined by
dynamic binding, a method body statement is a call to a method declared in a
type that is precisely identified by the method body statement.

Typically, method body statements are already contained in initial proof obliga-
tions for functional contracts (Definition 8.4), while method frames are only created
during symbolic execution.

We also deviate from the JLS by relaxing its requirements in certain aspects,
among them:

• Outside method frames, p may refer to fields, methods, and classes that are not
visible in C. Inside a method frame, KeY follows the visibility rules of the JLS,
except that when resolving a method invocation by inlining, the inlined code
may refer to classes not visible in the calling method.

• We do not require definite assignment. In Java, the value of a local variable or a
final field must have a definitely assigned value when any access of its value
occurs [Gosling et al., 2013, Section 16]. In JavaDL we allow sequences of
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statements that violate this condition (the variable then has a well-defined but
unknown value).

• We do not ban unreachable statements [Gosling et al., 2013, Section 14.21]. For
example, we consider

throw new RuntimeException(); int i = 0;

a legal program fragment.

3.2.4 Syntax of JavaDL Terms and Formulas

JavaDL terms are defined in the same way as FOL terms (Definition 2.3). However,
the resulting set of terms is a strict superset of the terms of FOL, as the definitions of
terms and formulas are mutually recursive, and JavaDL admits formulas that contain
the modal operators 〈p〉 and [p] and are, thus, not part of FOL.

Definition 3.3 (Terms and Formulas of JavaDL). Let Prg be a Java program,
T a type hierarchy for Prg, and Σ a signature w.r.t. T .

The set DLTrmA of JavaDL terms of type A, for A 6=⊥, and the set DLFml of
JavaDL formulas are defined as in first-order logic (Definitions 2.3 and 2.4, page 24)
except for the following differences:

• The signature Σ now refers to the JavaDL signature.
• The mutual recursive references to TrmX and Fml are now to DLTrmX and

DLFml, respectively.
• The following fourth clause is added to the definition of formulas:

4. 〈p〉φ , [p]φ ∈ DLFml for all legal program fragments p.

A term or formula is called rigid if it does not contain any occurrences of program
variables.

We use the shorthand notation o.a for selectA(heap,o,a), where the declared
type of attribute a is A. Similarly, a[i] is shorthand for selectA(heap,a,arr(i)). These
notations are also used by the KeY pretty printer; see Section 16.2.

Definition 3.4. The definition of the sets var of variables and fv of free variables in a
term or formula is extended to JavaDL by adding the following clauses to the FOL
version of their definition (Definition 2.5):

• var(a) = /0, fv(a) = /0 for a ∈ ProgVSym
• var(〈p〉φ) = var(φ), fv(〈p〉φ) = fv(φ) for φ ∈ DLFml
• var([p]φ) = var(φ), fv([p]φ) = fv(φ) for φ ∈ DLFml
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3.3 Semantics

To define the syntax of JavaDL, we have extended first-order logic with program
variables and program modalities. On the semantic level, the difference is that JavaDL
formulas are not evaluated in a single first-order structure but in a so-called Kripke
structure, which is a collection of first-order structures.

3.3.1 Kripke Structures

Different first-order structures within a Kripke structure assign different values to
program variables. Accordingly, they are called program states or simply states. We
demand that states in the same Kripke structure differ only in the interpretation of the
nonrigid symbols (i.e., the program variables). Two different Kripke structures, on
the other hand, may differ in the choice of domain or interpretation of the predicate
and (rigid) function symbols.

Definition 3.5 (JavaDL Kripke structure). Let Prg be a Java program, T a type
hierarchy for Prg and Σ a signature w.r.t. T . A JavaDL Kripke structure for Σ is a
tuple

K = (S ,ρ)

consisting of

• an infinite setS of first-order structures over Σ (Definition 2.13), which we will
call states, such that:

– Any two states s1,s2 ∈S coincide in their domain and in the interpretation
of predicate and function symbols.

– S is closed under the above property, i.e., any FOL structure coinciding
with the states in S in the domain and the interpretation of the predicate
and function symbols is also inS .

• a function ρ that associates with every legal program fragment p a transition
relation ρ(p)⊆S ×S such that (s1,s2) ∈ ρ(p) iff p, when started in s1, ter-
minates normally in s2 (i.e., not by throwing an exception). (We consider Java
programs to be deterministic, so for all legal program fragments p and all s1 ∈S ,
there is at most one s2 such that (s1,s2) ∈ ρ(p).)

Here, we do not give a formal definition of the transition relation ρ and, thus, no
formalization of the semantics of Java. Instead, we treat the function ρ as a black
box that captures the behavior of the legal program fragments p and is informally
described by the Java Language Specification [Gosling et al., 2013]. We do, however,
explicitly formalize the behavior of Java programs on the level of the calculus, in the
form of symbolic execution rules (Section 3.6).

The fact that all states of a JavaDL Kripke structureK share a common domain
is sometimes referred to as the constant domain assumption. This simplifies, for
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example, reasoning about quantifiers in the presence of modal operators and updates.
On the other hand, the Java programs appearing in formulas may allocate new objects
(i.e., elements of DObject) that did not exist previously. This apparent contradiction
is resolved with the help of the special field created: given a heap h ∈ DHeap and an
object o ∈ DObject, the object o is considered “created” in h in the sense of Java if
and only if created is set to true for this object in h, i.e., if h

(
o, I(created)

)
= tt. An

allocation statement in a program is understood as choosing a previously noncreated
object in DObject, and setting its created field to true in the heap. The alternative of
abandoning the constant domain assumption has been investigated by Ahrendt et al.
[2009b].

3.3.2 Semantics of JavaDL Terms and Formulas

Similar to the first-order case, we inductively define the semantics of JavaDL terms
and formulas. Since program variables can have different meanings in different states,
the valuation function is parameterized with a Kripke structure K and a state s
inK .

The semantics of terms and formulas without modalities matches that of first-order
logic.

Definition 3.6 (Semantics of JavaDL terms and formulas). Let Prg be a Java
program, T a type hierarchy for Prg, Σ a signature w.r.t. T ,K = (S ,ρ) a Kripke
structure for Σ , s ∈S a state, and β : VSym→ D a variable assignment.

For every JavaDL term t ∈ DLTrmA, we define its evaluation by

valK ,s,β (t) = vals,β (t) ,

where vals,β is defined as in the first-order case (Definition 2.15).
For every JavaDL formula φ ∈ Fml, we define when φ is considered to be true with

respect toK ,s,β , which is denoted with (K ,s,β ) |= φ , by Clauses 1–9 as shown
in the definition of the semantics of FOL formulas (Definition 2.16)—withM = s
and (K ,s,β ) replaced for (M,β )—-in combination with the two new clauses:

10 (K ,s,β ) |= [p]φ iff there is no s′ with (s,s′) ∈ ρ(p) or
(K ,s′,β ) |= φ for s′ with (s,s′) ∈ ρ(p)

11 (K ,s,β ) |= 〈p〉φ iff there is an s′ with (s,s′) ∈ ρ(p) and
(K ,s′,β ) |= φ for s′ with (s,s′) ∈ ρ(p)

As said above, we consider Java programs to be deterministic, such that there is at
most one s′ with (s,s′) ∈ ρ(p) for each s ∈S .

Finally, we define what it means for a JavaDL formula to be satisfiable, respec-
tively valid. A first-order formula is satisfiable (respectively valid) if it holds in some
(all) model(s) for some (all) variable assignment(s). Similarly, a JavaDL formula is
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satisfiable (respectively valid) if it holds in some (all) state(s) of some (all) Kripke
structure(s)K for some (all) variable assignment(s).

Definition 3.7. Let Prg be a Java program, T a type hierarchy for Prg, Σ a signature
w.r.t. T , and φ ∈ Fml a formula.

φ is satisfiable if there is a Kripke structure K = (S ,ρ), a state s ∈S and a
variable assignment β such that (K ,s,β ) |= φ .

φ is logically valid, denoted by |= φ , if (K ,s,β ) |= φ for all Kripke struc-
turesK = (S ,ρ), all states s ∈S , and all variable assignments β .

3.4 Describing Transitions between States: Updates

3.4.1 Syntax and Semantics of JavaDL Updates

JavaDL extends classical logic with another syntactical category besides modal
operators with program fragments, namely updates. Like program fragments, updates
denote state changes. The difference between updates and program fragments is that
updates are a simpler and more restricted concept. For example, updates always
terminate, and the expressions occurring in updates never have side effects.

Definition 3.8 (Updates). Let Prg be a Java program, T a type hierarchy for Prg,
and Σ a signature for T . The set Upd of updates is inductively defined by:

• (a := t) ∈ Upd for each program variable symbol a : A ∈ ProgVSym and each
term t ∈ DLTrmA′ such that A′ v A.

• skip ∈ Upd.
• (u1 ||u2) ∈ Upd for all updates u1,u2 ∈ Upd.
• ({u1} u2) ∈ Upd for all updates u1,u2 ∈ Upd.

An expression of the form {u}, where u ∈ Upd, is called an update application.

Intuitively, an elementary update a := t assigns the value of the term t to the
program variable a. The empty update that does not change anything is denoted by
skip. A parallel update u1 ||u2 executes the subupdates u1 and u2 in parallel (as
parallel composition is associative, e.g., (u1 ‖(u2 ‖u3)) can be written as u1 ‖u2 ‖u3).
The semantics of {u} x, i.e., prefixing an expression x with an update application, is
that x is to be evaluated in the state produced by the update u (the expression x can
be a term, a formula, or another update). The precise definition of the semantics of
updates is given in Definition 3.11 below.

We extend the definition of occurring and free variables to include updates, which
is straightforward.

Definition 3.9. In extension of Definitions 2.5 and 3.4:
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var(a := t) = var(t) fv(a := t) = fv(t)
var(skip) = /0 fv(skip) = /0
var(u1 ||u2) = var(u1)∪ var(u2) fv(u1 ||u2) = fv(u1)∪ fv(u2)
var({u} x) = var(u)∪ var(x) fv({u} x) = fv(u)∪ fv(x)

for a ∈ ProgVSym, t ∈ DLTrm> u,u1,u2 ∈ Upd, x ∈ DLTrm>∪DLFml∪Upd.

To include updates, we extend the definitions of terms and formulas of JavaDL
(Definition 3.3) with additional clauses:

Definition 3.10 (Terms and formulas of JavaDL with updates). The definition
of terms (Definition 3.3 and Definition 2.3) is extended with a fourth clause:

4. {u} t ∈ DLTrmA for all updates u ∈ Upd and all terms t ∈ DLTrmA.

The definition of formulas (Definition 3.3) is extended with a fifth clause:

5. {u} φ ∈ DLFml for all formulas φ ∈ DLFml and updates u ∈ Upd.

Updates transform one state into another. The meaning of {u}t, where u is an
update and t is a term, a formula, or an update, is that t is evaluated in the state
produced by u. Note the last-win semantics of parallel updates u1 ‖u2: if there is a
“clash,” where u1 and u2 attempt to assign conflicting values to a program variable,
then the value written by u2 prevails.

Definition 3.11 (Semantics of JavaDL updates). Let Prg be a Java program, T a
type hierarchy for Prg, Σ a signature for T ,K a Kripke structure for Σ , s ∈S a
state, and β : VSym→ D a variable assignment.

The valuation function valK ,s,β : Upd→ (S →S ) is defined as follows:

valK ,s,β (a := t)(s′)(b) =

{
valK ,s,β (t) if b = a
s′(b) otherwise

for all s′ ∈S , b ∈ ProgVSym
valK ,s,β (skip)(s′) = s′ for all s′ ∈S

valK ,s,β (u1 ||u2)(s′) = valK ,s,β (u2)(valK ,s,β (u1)(s′)) for all s′ ∈S
valK ,s,β ({u1} u2) = valK ,s′,β (u2) where s′ = valK ,s,β (u1)(s)

Moreover, the definition of the semantics of JavaDL terms and formulas (Defini-
tion 3.6) is extended for terms with the clause

valK ,s,β ({u} t) = valK ,s′,β (t) where s′ = valK ,s,β (u)(s)

and it is extended for formulas with the clause

(K ,s,β ) |= valK ,s,β ({u} φ) iff (K ,s′,β ) |= φ where s′ = valK ,s,β (u)(s)
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Table 3.1 Simplification rules for updates

{. . . ‖a := t1 ‖ . . . ‖a := t2 ‖ . . .} t dropUpdate1

 {. . . ‖skip‖ . . . ‖a := t2 ‖ . . .} t

where t ∈ DLTrmA∪DLFml∪Upd

{. . . ‖a := t ′ ‖ . . .} t {. . . ‖skip‖ . . .} t dropUpdate2

where t ∈ DLTrmA∪DLFml∪Upd, a 6∈ fpv(t)

{u} {u′} t {u‖{u} u′} t seqToPar

where t ∈ DLTrmA∪DLFml∪Upd

{u ||skip} t {u} t where t ∈ DLTrmA∪DLFml∪Upd parallelWithSkip1

{skip ||u} t {u} t where t ∈ DLTrmA∪DLFml∪Upd parallelWithSkip2

{skip} t t where t ∈ DLTrmA∪DLFml∪Upd applySkip

{u} x x where x ∈ VSym∪{true, false} applyOnRigid1

{u} f (t1, . . . , tn) f ({u}t1, . . . ,{u}tn) where f ∈ FSym∪PSym applyOnRigid2

{u} (if φ then t1 else t2) if {u} φ then {u} t1 else {u} t2 applyOnRigid3

{u} ¬φ  ¬{u} φ applyOnRigid4

{u} (φ1 •φ2) {u} φ1 •{u} φ2 where • ∈ {∧,∨,→,↔} applyOnRigid5

{u}QAx;φ  QAx;{u} φ whereQ ∈ {∀,∃}, x 6∈ fv(u) applyOnRigid6

{u} (a := t) a := {u} t applyOnRigid7

{u} (u1 ‖u2) ({u} u1)‖({u} u2) applyOnRigid8

{a := t} a t applyOnTarget

3.4.2 Update Simplification Rules

The part of the JavaDL calculus that deals with simplification of updates is shown in
Table 3.1.

The dropUpdate1 rule simplifies away an ineffective elementary subupdate of a
larger parallel update: if there is an update to the same program variable a further to
the right of the parallel composition, then this second elementary update overrides
the first due to the last-win semantics of parallel updates (Definition 3.11).

The dropUpdate2 rule allows dropping an elementary update a := t ′ where the
term, formula, or update in scope of the update cannot depend on the value of
the program variable a, because it does not contain any free occurrences of a.
A free occurrence of a program variable is any occurrence, except for an oc-
currence inside a program fragment p that is bound by a declaration within p.
In addition to explicit occurrences, we consider program fragments p to always
contain an implicit free occurrence of the program variable heap. The function
fpv :DLTrmA∪DLFml∪Upd→ 2ProgVSym is defined accordingly. For example, we
have fpv([int a = b;](b .= c)) = {b,c,heap}. Java’s rules for definite assignment
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[Gosling et al., 2013, Chapter 16] ensure that within a program fragment p, a declared
program variable (such as a in the example) is always written before being read, and
that the behavior of p thus cannot depend on its initial value.

The seqToPar rule converts a cascade of two update applications—which corre-
sponds to sequential execution of the two updates—into the application of a single
parallel update. Due to the last-win semantics for parallel updates, this is possible by
applying the first update to the second, and replacing the sequential composition by
parallel composition.

The rules parallelWithSkipi and applySkip remove the effect-less skip update
from parallel updates or apply it as identity to any term, formula, or update.

The remaining rules are responsible for applying updates to terms, formulas and
(other) updates as substitutions. The various applyOnRigid rules propagate an update
to the subterms below a (rigid) operator. Ultimately, the update can either be simpli-
fied away with dropUpdate2, or it remains as an elementary update a := t applied to
the target program variable a itself. In the latter case, the term t is substituted for a
by the applyOnTarget rule.

The only case not covered by the rules in Table 3.1 is that of applying an update
to a modal operator, as in {u} [p]φ or {u} 〈p〉φ . For these formulas, the program p
must first be eliminated using the symbolic execution rules. Only afterwards can the
resulting update be applied to φ .

3.5 The Calculus for JavaDL

The calculus for JavaDL follows the same basic logical principles as the calculus
for first-order logic (FOL) introduced in Chapter 2. We do thus not repeat them here
but only explain extensions and restrictions in comparison to the FOL case. The
remaining bulk of this chapter is concerned with explaining in detail how the JavaDL
calculus formalizes symbolic execution of Java programs.

3.5.1 JavaDL Rule Schemata and First-Order Rules

Since first-order logic (FOL) is part of JavaDL, all the axioms and rule schemata of
the first-order calculus introduced in Chapter 2 are also part of the JavaDL and its
calculus. This inclusion pertains, inter alia, Figure 2.1 (classical first-order rules),
Figure 2.2 (equality rules), Figure 2.5 (integer axioms and rules), and Figure 2.8
(axioms about types). As a consequence, these rules can be applied to JavaDL
sequents—even if the formulas to which they are applied are not purely first-order.

Compared to Section 2.2.2 on FOL calculus, we do simplify and generalize the
rule schema notation in two ways, though. First, we leave out the explicit context
(in form of formula sets Γ and ∆ ), which is added on-the-fly during rule application.



3.5. The Calculus for JavaDL 61

Second, we extend the notion of context in that, when writing a rule schema, an
update that is common to all premisses can be left out as well.

Definition 3.12. If
φ 1

1 , . . . ,φ 1
m1

=⇒ ψ1
1 , . . . ,ψ1

n1
...

φ k
1 , . . . ,φ k

mk
=⇒ ψk

1 , . . . ,ψk
nk

φ1, . . . ,φm =⇒ ψ1, . . . ,ψn

is an instance of a rule schema, then

Γ ,U φ 1
1 , . . . ,U φ 1

m1
=⇒U ψ1

1 , . . . ,U ψ1
n1

, ∆

...
Γ ,U φ k

1 , . . . ,U φ k
mk

=⇒U ψk
1 , . . . ,U ψk

nk
, ∆

Γ ,U φ1, . . . ,U φm =⇒U ψ1, . . . ,U ψn, ∆

is an inference rule of our DL calculus, where U is the application of an arbitrary
syntactic update (it may be empty), and Γ ,∆ are finite sets of context formulas.

If, however, the symbol (∗) is added to the rule schema, the context Γ ,∆ ,U must
be empty, i.e., only instances of the schema itself are inference rules. Later in the
book we will present a few rules, e.g., the loop invariant rule (Section 3.7.2), where
the context cannot be omitted.

Example 3.13. Consider, for example, the rule impRight, which made a first appear-
ance in Figure 2.1 on page 28. In the just introduced notation, the rule schema for
this rule takes the following form:

impRight
φ =⇒ ψ

=⇒ φ → ψ

When this schema is instantiated for JavaDL, a context consisting of Γ ,∆ and an
update U can be added, and the schema variables φ ,ψ can be instantiated with
formulas that are not purely first-order. For example, the following is an instance of
impRight:

x .= 1, {x := 0}(x .= y) =⇒{x := 0}〈m();〉(y .= 0)
x .= 1 =⇒{x := 0}(x .= y→ 〈m();〉(y .= 0))

where Γ = (x .= 1), ∆ is empty, and the context update is U = {x := 0}.

Due to the presence of modalities and program variables, which do not exist in
purely first-order formulas, different parts of a formula may have to be evaluated in
different states. Therefore, the application of some first-order rules that rely on the
identity of terms in different parts of a formula need to be restricted. That affects
rules for universal quantification and equality rules.
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3.5.1.1 Restriction of Rules for Universal Quantification

The rules for universal quantification have the following form:

allLeft
∀x.φ , [x/t](φ) =⇒
∀x.φ =⇒

exRight
=⇒∃x.φ , [x/t](φ)

=⇒∃x.φ
where t ∈ DLTrmA′ is a rigid ground term

whose type A′ is a subtype of the type A of x

In the first-order case, the term t that is instantiated for the quantified variable x can
be an arbitrary ground term. In JavaDL, however, we have to add the restriction that
t is a rigid ground term (Definition 3.3). The reason is that, though an arbitrary value
can be instantiated for x as it is universally quantified, all occurrences of x must have
the same value in each individual instantiation.

Example 3.14. The formula ∀x.(x .= 0→ 〈i++;〉(x .= 0)) is logically valid, but in-
stantiating the variable x with the nonrigid program variable i is wrong as it leads to
the unsatisfiable formula i .= 0→ 〈i++;〉(i .= 0)).

In practice, it is often very useful to instantiate a universally quantified variable x
with the value of a nonrigid term t. That, however, is not easily possible as a quantified
variable, which is a rigid term, must not be instantiated with a nonrigid term. To
solve that problem, one can add the logically valid formula ∃y.(y .= t) to the left of
the sequent, Skolemize that formula, which yields csk

.= t, and then instantiate x with
the rigid constant csk.

Rules for existential quantification do not have to be restricted because they
introduce rigid Skolem constants anyway.

3.5.1.2 Restriction of Rules for Equalities

The equality rules (Figure 2.2) are part of the JavaDL calculus but an equality t1
.= t2

may only be used for rewriting if

• both t1 and t2 are rigid terms (Definition 3.3), or
• the equality t1

.= t2 and the occurrence of ti that is being replaced are (a) not in
the scope of two different program modalities and (b-1) not in the scope of two
different updates or (b-2) in the scope of syntactically identical updates (in fact,
it is also sufficient if the two updates are only semantically identical, i.e., have
the same effect). This same-update-level property is explained in more detail in
Section 4.3.1.

Example 3.15. The sequent

x .= v+1 =⇒{v := 2}(x .= 3)

is satisfiable, but not valid. According to the above restriction on the equality rule,
the equality x .= v+1 must not be applied to the occurrence of x on the right side of
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the sequent: (a) The terms are nonrigid; and (b) while the equation is not in the scope
of any update, the occurrence of x is below an update.

The example demonstrates that this restriction is crucial for soundness of the
calculus as, if we allow the equality to be applied, this would lead to the valid sequent

x .= v+1 =⇒{v := 2}(v+1 .= 3) .

Thus, we would have turned an invalid into a valid sequent.
In the sequent

{v := 2}(x .= v+1) =⇒{v := 2}(x .= 3) ,

however, both the equality and the term being replaced occur in the scope of identical
updates and, thus, the equality rule can be applied.

3.5.2 Nonprogram Rules for Modalities

The JavaDL calculus contains some rules that apply to modal operators and, thus,
are not first-order rules but that are neither related to a particular Java construct.

The most important representatives of this rule class are the following two rules
for handling empty modalities:

emptyDiamond
=⇒ φ

=⇒ 〈〉φ
emptyBox

=⇒ φ

=⇒ [ ]φ

The rule

diamondToBox
=⇒ [p]φ =⇒ 〈p〉true

=⇒ 〈p〉φ

relates the diamond modality to the box modality. It allows one to split a total
correctness proof into a partial correctness proof and a separate proof for termination.
Note, that this rule is only sound for deterministic programming languages like Java.

3.5.3 Soundness and Completeness of the Calculus

3.5.3.1 Soundness

The most important property of the JavaDL calculus is soundness, i.e., only valid
formulas are derivable.

Proposition 3.16 (Soundness). If a sequent Γ =⇒ ∆ is derivable in the JavaDL
calculus (Definition 2.10), then it is valid, i.e., the formula

∧
Γ →

∨
∆ is logically

valid (Definition 3.7).
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It is easy to show that the whole calculus is sound if and only if all its rules are
sound. That is, if the premisses of any rule application are valid sequents, then the
conclusion is valid as well.

Given the soundness of the existing core rules of the JavaDL calculus, the user
can add new rules, whose soundness must then be proven w.r.t. the existing rules (see
Section 4.4).

Validating the Soundness of the JavaDL Calculus

So far, we have no intention of formally proving the soundness of the JavaDL
calculus, i.e., the core rules that are not user-defined (the soundness of user-
defined rules can be verified within the KeY system, see Section 4.4). Doing
so would first require a formal specification of the Java language. No official
formal semantics of Java is available though. Furthermore, proving soundness
of the calculus requires the use of a higher-order theorem proving tool, and it
is a tedious task due to the high number of rules. Resources saved on a formal
soundness proof were instead spent on further improvement of the KeY system.
We refer to [Beckert and Klebanov, 2006] for a discussion of this policy and
further arguments in its favor. On the other hand, the KeY project performs
cross-verification against other Java formalizations to ensure the faithfulness of
the calculus.

One such effort compares the KeY calculus with the Bali semantics [von
Oheimb, 2001], which is a Java Hoare logic formalized in Isabelle/HOL. KeY
rules are translated manually into Bali rules. These are then shown sound with
respect to the rules of the standard Bali calculus. The published result [Trentel-
man, 2005] describes in detail the examination of the rules for local variable
assignment, field assignment, and array assignment.

Another validation was carried out by Ahrendt et al. [2005]. A reference Java
semantics from [Farzan et al., 2004] was used, which is formalized in Rewriting
Logic [Meseguer and Rosu, 2004] and mechanized in the input language of the
MAUDE system. This semantics is an executable specification, which together
with MAUDE provides a Java interpreter. Considering the nature of this semantics,
we concentrated on using it to verify our program transformation rules. These
are rules that decompose complex expressions, take care of the evaluation order,
etc. (about 45% of the KeY calculus). For the cross-verification, the MAUDE
semantics was “lifted” in order to cope with schematic programs like the ones
appearing in calculus rules. The rewriting theory was further extended with
means to generate valid initial states for the involved program fragments, and to
check the final states for equivalence. The result is used in automated validation
runs, which is beneficial, since the calculus is constantly extended with new
features.

Furthermore, the KeY calculus has been tested against the compiler test suite
Jacks (part of the Java compiler Jikes). The suite is a collection of intricate
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programs covering many difficult features of the Java language. These programs
are symbolically executed with the KeY calculus and the output is compared
to the reference provided by the suite. To what extent testing of verification
systems is able to provide evidence for the correctness of the rule base has been
examined in [Beckert et al., 2013].

3.5.3.2 Relative Completeness

Ideally, one would like a program verification calculus to be able to prove all state-
ments about programs that are true, which means that all valid sequents should be
derivable. That, however, is impossible because JavaDL includes first-order arith-
metic, which is already inherently incomplete as established by Gödel’s Incomplete-
ness Theorem [Gödel, 1931] (see the box on page 40). Another, equivalent, argument
is that a complete calculus for JavaDL would yield a decision procedure for the
Halting Problem, which is well-known to be undecidable. Thus, a logic like JavaDL
cannot ever have a calculus that is both sound and complete.

Still, it is possible to define a notion of relative completeness [Cook, 1978], which
intuitively states that the calculus is complete “up to” the inherent incompleteness
in its first-order part. A relatively complete calculus contains all the rules that are
necessary to prove valid program properties. It only may fail to prove such valid
formulas whose proof would require the derivation of a nonprovable first-order
property (being purely first-order, its provability would be independent of the program
part of the calculus).

Proposition 3.17 (Relative Completeness). If a sequent Γ =⇒ ∆ is valid, i.e., the
formula

∧
Γ →

∨
∆ is logically valid (Definition 3.7), then there is a finite set ΓFOL

of logically valid first-order formulas such that the sequent

ΓFOL,Γ =⇒ ∆

is derivable in the JavaDL calculus.

The standard technique for proving that a program verification calculus is relatively
complete [Harel, 1979] hinges on a central lemma expressing that for all JavaDL
formulas there is an equivalent purely first-order formula.

A completeness proof for the object-oriented dynamic logic ODL [Beckert and
Platzer, 2006], which captures the essence of JavaDL, is given by Platzer [2004].
ODL captures the essence of JavaDL, consolidating its foundational principles into a
concise logic. The ODL programming language is a While language extended with
an object type system, object creation, and nonrigid symbols that can be used to
represent program variables and object attributes. However, it does not include the
many other language features, built-in operators, etc. of Java.
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3.5.4 Schema Variables for Program Constructs

The schema variables used in rule schemata are all assigned a kind that determines
which class of concrete syntactic elements they represent. In the following sections,
we often do not explicitly mention the kinds of schema variables but use the name of
the variables to indicate their kind. Table 3.2 gives the correspondence between names
of schema variables that represent pieces of Java code and their kinds. In addition,
we use the schema variables φ ,ψ to represent formulas and Γ ,∆ to represent sets of
formulas. Schema variables of corresponding kinds occur also in the taclets used to
implement rules in the KeY system (see Section 4.2).

Table 3.2 Correspondence between names of schema variables and their kinds

π nonactive prefix of Java code (Section 3.5.5)
ω “rest” of Java code after the active statement (Section 3.5.5)
p, q Java code (arbitrary sequence of statements)
e arbitrary Java expression
se simple expression, i.e., any expression whose evaluation, a priori, does not have

any side-effects. It is defined as one of the following:
(a) a local variable
(b) this.a, i.e., an access to an instance attribute via the target expression

this (or, equivalently, no target expression)
(c) an access to a static attribute of the form t.a, where the target expression t

is a type name or a simple expression
(d) a literal
(e) a compile-time constant
(f) an instanceof expression with a simple expression as the first argument
(g) a this reference
(h) expressions of types LocSet (location sets), Seq (finite sequences) etc.,

provided that their subexpressions are simple expressions (e.g., union(r,s)
is a simple expression if r,s are simple).

An access to an instance attribute o.a is not simple because a
NullPointerException may be thrown

nse nonsimple expression, i.e., any expression that is not simple (see above)
lhs simple expression that can appear on the left-hand-side of an assignment. This

amounts to the items (a)–(c) from above
v, v0, . . . local program variables
a attribute
l label
args argument tuple, i.e., a tuple of expressions
cs sequence of catch clauses
mname name of a method
T type expression
C name of a class or interface

If a schema variable T representing a type expression is indexed with the name of
another schema variable, say e, then it only matches the Java type of the expression
with which e is instantiated. For example, “Tw v = w” matches the Java code
“int i = j” if and only if the type of j is int (and not, e.g., byte).
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3.5.5 The Active Statement in a Modality

The rules of our calculus operate on the first active statement p in a modality 〈πpω〉
or [πpω]. The nonactive prefix π consists of an arbitrary sequence of opening
braces “{”, labels, beginnings “try{” of try-catch-finally blocks, and begin-
nings “method-frame(. . .){” of method invocation blocks. The prefix is needed
to (i) keep track of the blocks that the (first) active command is part of, such that
the abruptly terminating statements throw, return, break, and continue can be
handled appropriately; and (ii) to correctly resolve field and method bindings.

The postfix ω denotes the “rest” of the program, i.e., everything except the
nonactive prefix and the part of the program the rule operates on (in particular,
ω contains closing braces corresponding to the opening braces in π). For example, if
a rule is applied to the following Java block operating on its first active command
i=0;, then the nonactive prefix π and the “rest” ω are the indicated parts of the
block:

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

No Rule for Sequential Composition

In versions of dynamic logic for simple programming languages, where no
prefixes are needed, any formula of the form 〈pq〉φ can be replaced by 〈p〉〈q〉φ .
In our calculus, decomposing of 〈πpqω〉φ into 〈πp〉〈qω〉φ is not possible (un-
less the prefix π is empty) because πp is not a valid program; and the formula
〈πpω〉〈πqω〉φ cannot be used either because its semantics is in general different
from that of 〈πpqω〉φ .

3.5.6 The Essence of Symbolic Execution

Our calculus works by reducing the question of a formula’s validity to the question
of the validity of several simpler formulas. Since JavaDL formulas contain programs,
the JavaDL calculus has rules that reduce the meaning of programs to the meaning
of simpler programs. For this reduction we employ the technique of symbolic execu-
tion [King, 1976]. Symbolic execution in JavaDL resembles playing an accordion:
you make the program longer (though simpler) before you can make it shorter.

For example, to find out whether the sequent1

=⇒ 〈o.next.prev=o;〉o.next.prev .= o

1 The expression o.next.prev is shorthand for selectA(heap,selectA(heap,o,next),prev); see
Section 3.2.4 and 16.2.
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is valid, we symbolically execute the Java code in the diamond modality. At first, the
calculus rules transform it into an equivalent but longer—albeit in a sense simpler—
sequence of statements:

=⇒ 〈ListEl v; v=o.next; v.prev=o;〉o.next.prev .= o .

This way, we have reduced the reasoning about the expression o.next.prev=o to
reasoning about several simpler expressions. We call this process unfolding, and it
works by introducing fresh local variables to store intermediate computation results.

Now, when analyzing the first of the simpler assignments (after removing the
variable declaration), one has to consider the possibility that evaluating the expression
o.next may produce a side effect if o is null (in that case an exception is thrown).
However, it is not possible to unfold o.next any further. Something else has to be
done, namely a case distinction. This results in the following two new goals:

o 6 .= null =⇒{v := o.next}〈v.prev=o;〉o.next.prev .= o

o .= null =⇒ 〈throw new NullPointerException();〉o.next.prev .= o

Thus, we can state the essence of symbolic execution: the Java code in the formulas
is step-wise unfolded and replaced by case distinctions and syntactic updates.

Of course, it is not a coincidence that these two ingredients (case distinctions and
updates) correspond to two of the three basic programming constructs. The third
basic construct are loops. These cannot in general be treated by symbolic execution,
since using symbolic values (as opposed to concrete values), the number of loop
iterations is unbounded. Symbolically executing a loop, which is called “unwinding,”
is useful and even necessary, but unwinding cannot eliminate a loop in the general
case. To treat arbitrary loops, one needs to use induction or loop invariants (see
Section 3.7.2). (A different method for treating certain loops of a simple, uniform
structure is described in [Gedell and Hähnle, 2006].)

Method invocations can be symbolically executed, replacing a method call by
the method’s implementation. However, it is often useful to instead use a method’s
contract so that it is only symbolically executed once—during the proof that the
method satisfies its contract—instead of executing it for each invocation.

3.5.7 Components of the Calculus

Our JavaDL calculus has several major components, which are described throughout
this book. However, since the calculus, as implemented in the KeY system, consists
of hundreds of rules, we cannot list them all in this book. Instead, we give typical
examples for the different rule types and classes.

The major components of the JavaDL calculus are:

1. Nonprogram rules, i.e., rules that are not related to particular program constructs.
This component contains first-order rules (see Chapter 2), which include rules
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for reasoning about heaps; rules for data-types, such as integers, sequences and
strings (see Chapter 5); rules for modalities (e.g., rules for empty modalities);
and the induction rule.

2. Update simplification rules (see Section 3.4.2).
3. Rules for symbolic execution of programs. These rules work towards reduc-

ing/simplifying the program and replacing it by a combination of case distinc-
tions (proof branches) and sequences of updates. These rules always (and only)
apply to the first active statement. Note that a “simpler” program may be syntac-
tically longer; it is simpler in the sense that expressions are not as deeply nested
or have less side-effects.
When presenting these rules, we usually only give the rule versions for the
diamond modality 〈·〉. The rules for box modality [·] are mostly the same—
notable exceptions are the rules for handling abrupt termination (Section 3.6.7)
and the loop invariant rule that, in fact, belongs to the next component.

4. Rules for program abstraction and modularization. This component contains the
loop invariant rule for reasoning about loops for which no fixed upper bound on
the number of iterations exists and the rules that replace a method invocation by
the method’s contract (Section 3.7, see also Chapter 9).

Component 3 is the core for handling Java programs occurring in formulas. These
rules can be applied automatically, and they can do everything needed for handling
programs except evaluating loops and using method specifications.

The overall strategy for proving a formula containing a program is to use the rules
in Component 3, interspersed with applications of rules in Component 4 for handling
loops and methods, to step-wise eliminate the program and replace it by updates and
case distinctions. After each step, Component 2 is used to simplify/eliminate updates.
The final result of this process are sequents containing pure first-order formulas.
These are then handled by Component 1.

The symbolic execution process is, for the most part, done automatically by the
KeY system. Usually, only handling loops and methods may require user interaction.
Also, for solving the first-order problems that are left at the end of the symbolic
execution process, the KeY system often needs support from the user (or from the
decision procedures integrated into KeY, see Chapter 15).

3.6 Rules for Symbolic Execution of Java Programs

3.6.1 The Basic Assignment Rule

In Java—like in other object-oriented programming languages—different object
variables can refer to the same object. This phenomenon, called aliasing, causes
serious difficulties for handling assignments in a calculus (a similar problem occurs
with syntactically different array indices that may refer to the same array element).
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For example, whether or not the formula o1.a .= 1 still holds after the execution of
the assignment “o2.a = 2;” depends on whether or not o1 and o2 refer to the same
object. Therefore, Java assignments cannot be symbolically executed by syntactic
substitution, as done, for instance, in classical Hoare Logic. Solving this problem
naively—by doing a case split—is inefficient and leads to heavy branching of the
proof tree.

In the JavaDL calculus we use a different solution. It is based on the concept of
updates, which can be seen as “semantic substitutions.” Evaluating {loc := value}φ
in a state is equivalent to evaluating φ in a modified state where loc evaluates
to value, i.e., loc has been “semantically substituted” with value (see Section 3.4 for
a discussion and a comparison of updates to assignments and substitutions).

The KeY system uses special simplification rules to compute the result of applying
an update to terms and formulas that do not contain programs (see Section 3.4.2).
Computing the effect of an update to a formula 〈p〉φ is delayed until p has been
symbolically executed using other rules of the calculus. Thus, case distinctions
are not only delayed but can often be avoided altogether, since (a) updates can be
simplified before their effect has to be computed, and (b) their effect is computed
when a maximal amount of information is available (namely after the symbolic
execution of the whole program).

The basic assignment rule thus takes the following simple form:

assignment
=⇒{loc := value}〈π ω〉φ
=⇒ 〈π loc = value; ω〉φ

That is, it just turns the assignment into an update. Of course, this does not solve the
problem of computing the effect of the assignment. This problem is postponed and
solved later by the rules for simplifying updates.

Furthermore—and this is important—this “trivial” assignment rule is correct only
if the expressions loc and value satisfy certain restrictions. The rule is only applicable
if neither the evaluation of loc nor that of value can cause any side effects. Otherwise,
other rules have to be applied first to analyze loc and value. For example, those other
rules would replace the formula 〈x = ++i;〉φ with 〈i = i+1; x = i;〉φ , before
the assignment rule can be applied to derive first {i := i+1}〈x = i;〉φ and then
{i := i+1}{x := i}〈〉φ .

3.6.2 Rules for Handling General Assignments

In the following we use the notion (program) location to refer to local program
variables, instance or static fields and array elements.

There are four classes of rules in the JavaDL calculus for treating general assign-
ment expressions (that may have side-effects). These classes—corresponding to steps
in the evaluation of an assignment—are induced by the evaluation order rules of
Java:



3.6. Rules for Symbolic Execution of Java Programs 71

1. Unfolding the left-hand side of the assignment.
2. Saving the location.
3. Unfolding the right-hand side of the assignment.
4. Generating an update.

Of particular importance is the fact that though the right-hand side of an assignment
can change the variables appearing on the left-hand side, it cannot change the location
scheduled for assignment, which is saved before the right-hand side is evaluated.

3.6.2.1 Step 1: Unfolding the Left-Hand Side

In this first step, the left-hand side of an assignment is unfolded if it is a nonsimple
expression, i.e., if its evaluation may have side-effects. One of the following rules is
applied depending on the form of the left-hand side expression. In general, these rules
work by introducing a new local variable v0, to which the value of a subexpression is
assigned.

If the left-hand side of the assignment is a nonatomic field access—which is to
say it has the form nse.a, where nse is a nonsimple expression—then the following
rule is used:

assignmentUnfoldLeft
=⇒ 〈π Tnse v0=nse; v0.a=e; ω〉φ

=⇒ 〈π nse.a=e; ω〉φ

Applying this rule yields an equivalent but simpler program, in the sense that the two
new assignments have simpler left-hand sides, namely a local variable or an atomic
field access.

Unsurprisingly, in the case of arrays, two rules are needed, since both the array
reference and the index have to be treated. First, the array reference is analyzed:

assignmentUnfoldLeftArrayReference

=⇒ 〈π Tnse v0 = nse; v0[e]=e0; ω〉φ
=⇒ 〈π nse[e]=e0; ω〉φ

Then, the rule for analyzing the array index can be applied:

assignmentUnfoldLeftArrayIndex

=⇒ 〈π Tv va = v; Tnse v0 = nse; va[v0]=e; ω〉φ
=⇒ 〈π v[nse]=e; ω〉φ

3.6.2.2 Step 2: Saving the Location

After the left-hand side has been unfolded completely (i.e., has the form v, v.a or
v[se]), the right-hand side has to be analyzed. But before doing this, we have to
memorize the location designated by the left-hand side. The reason is that the location
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affected by the assignment remains fixed even if evaluating the right-hand side of
the assignment has a side effect changing the location to which the left-hand side
points. For example, if i .= 0, then a[i] = ++i; has to update the location a[0]
even though evaluating the right-hand side of the assignment changes the value of i
to 1.

Since there is no universal “location” or “address-of” operator in Java, this memo-
rizing looks different for different kinds of expressions appearing on the left. The
choice here is between field and array accesses. For local variables, the memorizing
step is not necessary, since the “location value” of a variable is syntactically defined
and cannot be changed by evaluating the right-hand side.

We will start with the rule variant where a field access is on the left. It takes the
following form; the components of the premiss are explained in Table 3.3:

assignmentSaveLocation

=⇒ 〈π memorize; unfoldr; update; ω〉φ
=⇒ 〈π v.a=nse; ω〉φ

Table 3.3 Components of rule assignmentSaveLocation for field accesses v.a=nse

memorize Tv v0 = v;

unfoldr Tnse v1 = nse; set up Step 3

update v0.a = v1; set up Step 4

There is a very similar rule for the case where the left-hand side is an array access,
i.e., the assignment has the form v[se]=nse. The components of the premiss for that
case are shown in Table 3.4.

Table 3.4 Components of rule assignmentSaveLocation for array accesses v[se]=nse

memorize Tv v0 = v; Tse v1 = se;

unfoldr Tnse v2 = nse; set up Step 3

update v0[v1] = v2; set up Step 4
a This includes an implicit test that v is not null when v.length is analyzed.

3.6.2.3 Step 3: Unfolding the Right-Hand Side

In the next step, after the location that is changed by the assignment has been
memorized, we can analyze and unfold the right-hand side of the expression. There
are several rules for this, depending on the form of the right-hand side. As an example,
we give the rule for the case where the right-hand side is a field access nse.a with a
nonsimple object reference nse:



3.6. Rules for Symbolic Execution of Java Programs 73

assignmentUnfoldRight

=⇒ 〈π Tnse v0 = nse; v = v0.a; ω〉φ
=⇒ 〈π v = nse.a; ω〉φ

The case when the right-hand side is a method call is discussed in the section on
method calls (Section 3.6.5).

3.6.2.4 Step 4: Generate an Update

The fourth and final step of treating assignments is to turn them into an update. If
both the left- and the right-hand side of the assignment are simple expressions, the
basic assignment rule applies:

assignment
=⇒{lhs := se∗}〈π ω〉φ
=⇒ 〈π lhs = se; ω〉φ

The value se∗ appearing in the update is not identical to the se in the program because
creating the update requires replacing any Java operators in the program expression
se by their JavaDL counterparts in order to obtain a proper logical term. For ex-
ample, the Java division operator / is replaced by the function symbol javaDivInt
(or javaDivLong depending on the promoted type of its arguments). These function
symbols are then further replaced according to the chosen integer semantics (see
Section 5.4). The KeY system performs this conversion automatically to construct se∗

from se. The complete list of predefined JavaDL operators is given in Appendix B.
If there is an atomic field access v.a either on the left or on the right of the

assignment, no further unfolding can be done and the possibility has to be con-
sidered here that the object reference may be null—which would result in a
NullPointerException. Depending on whether the field access is on the left
or on the right of the assignment one of the following rules applies:

assignment

v 6 .= null =⇒{v0 := selectA(heap, v, Class::$a)}〈π ω〉φ
v .= null =⇒ 〈π throw new NullPointerException(); ω〉φ

=⇒ 〈π v0 = v.a; ω〉φ

assignment

v 6 .= null =⇒{heap := store(heap, v, Class::$a, se∗)}〈π ω〉φ
v .= null =⇒ 〈π throw new NullPointerException(); ω〉φ

=⇒ 〈π v.a = se; ω〉φ

In the rules you may have noticed that the field a is referred to by its unique field
constant Class::$a. This field constant unambiguously refers to the field named a
of type A declared in the class Class (where Class is the fully qualified name).
Determining Class can be nontrivial, in particular in the presence of field hiding.
Hiding occurs when derived classes declare fields with the same name as in the
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superclass. Inside a program the exact field reference can be determined from the
short name a using the static type of the target expression and the program context,
in which the reference appears. Since logical terms do not have a program context,
hidden fields have to be immediately disambiguated by the assignment rule.

The KeY system’s pretty-printer tries to improve readability of these terms by
displaying the shorthand v.a for selectA(heap,o,a), whenever the select expression
is in a defined normalform and no hiding occurs (for a thorough description of pretty
printing see Section 16.2). In the following, we use this shorthand notation unless
there is a danger of confusion.

For array access, we have to consider the possibility of an ArrayIndexOutOf-
BoundsException in addition to that of a NullPointerException. Thus, the rule
for array access on the right of the assignment takes the following form (there is a
slightly more complicated rule for array access on the left as it needs to account for
ArrayStoreExceptions):

assignment

v 6 .= null, se∗ ≥ 0, se∗ < v.length =⇒
{v0 := selectA(heap,v,arr(se∗))}〈π ω〉φ

v .= null =⇒
〈π throw new NullPointerException(); ω〉φ

v 6 .= null, (se∗ < 0 ∨ se∗ ≥ v.length) =⇒
〈π throw new ArrayIndexOutOfBoundsException(); ω〉φ

=⇒ 〈π v0 = v[se]; ω〉φ

Please note that, if possible, KeY’s pretty-printer uses the shorthand notation v[se∗]
for selectA(heap,v,arr(se∗)); see Section 16.2.

The JVM throws exceptions such as the ArrayIndexOutOfBoundsException
and the NullPointerException to signal an error condition during program execu-
tion. The assignment rules shown above faithfully model this behavior by introducing
explicit throw statements during symbolic execution for those cases where the JVM
would throw an exception.

However, the KeY system actually contains three user-selectable calculus varia-
tions for reasoning about such exceptions. The three variations are: ban, allow, and
ignore (see Section 15.2.3 for an explanation of how to select different rule sets).
The variation of assignment shown above is allow—it is both sound and complete.
The variation ban requires to prove that no JVM-thrown exceptions can occur—it is
sound but incomplete, as programs relying on catching such exceptions cannot be
proved correct. The upside of ban is smaller proof size, as less symbolic execution
is necessary. The third calculus variation is ignore; it makes the assumption that all
operations succeed and neither checks for nor generates JVM-thrown exceptions.
This variation is yet more efficient but neither sound nor complete.

A variability similar in spirit can be observed in the part of the calculus for
reasoning about integer arithmetic (see Section 5.4.3).

Example 3.18. Consider the JavaDL formula
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pre→ 〈i = 0; try { o.a = null; i = 1; }
catch(Exception e) {}

〉post

The following table shows the differences in provability of this formula for different
combinations of pre and post and different choices for exception handling in the
calculus:

provable
pre post allow ban ignore
o .= null i .= 0 Yes No No
o .= null i .= 1 No No Yes
o 6 .= null i .= 0 No No No
o 6 .= null i .= 1 Yes Yes Yes

3.6.3 Rules for Conditionals

Most if-else statements have a nonsimple expression (i.e., one with potential side-
effects) as their condition. In this case, we unfold it in the usual manner first. This is
achieved by the rule

ifElseUnfold

=⇒ 〈π boolean v = nse; if (v) p else q ω〉φ
=⇒ 〈π if (nse) p else q ω〉φ

where v is a fresh Boolean variable.
After dealing with the nonsimple condition, we will eventually get back to the

if-else statement, this time with the condition being a variable and, thus, a simple
expression. Now it is time to take on the case distinction inherent in the statement.
That can be done using the following rule:

ifElseSplit

se∗ .= TRUE =⇒ 〈π p ω〉φ
se∗ .= FALSE =⇒ 〈π q ω〉φ

=⇒ 〈π if (se) p else q ω〉φ

While perfectly functional, this rule has several drawbacks. First, it unconditionally
splits the proof, even in the presence of additional information. However, the program
or the sequent may contain the explicit knowledge that the condition is true (or false).
In that case, we want to avoid the proof split altogether. Second, after the split, the
condition se appears on both branches, and we then have to reason about the same
expression twice.

A different solution is the following rule that translates a program with an if-else
statement into a conditional formula:
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ifElse
=⇒ if(se∗ .= TRUE) then 〈π p ω〉φ else 〈π q ω〉φ

=⇒ 〈π if (se) p else q ω〉φ

Note that the if-then-else in the premiss of this rule is a logical and not a program
language construct (Definition 3.3).

The ifElse rule solves the problems of the ifElseSplit rule described above. The
condition se only has to be considered once. And if additional information about its
truth value is available, splitting the proof can be avoided. If no such information is
available, however, it is still possible to replace the propositional if-then-else operator
with its definition, resulting in

((se∗ .= TRUE)→ 〈π p ω〉φ) ∧ ((se∗ 6 .= TRUE)→ 〈π q ω〉φ)

and carry out a case distinction in the usual manner.
A problem that the above rule does not eliminate is the duplication of the code

part ω . Its double appearance in the premiss means that we may have to reason about
the same piece of code twice. Leino [2005] proposes a solution for this problem
within a verification condition generator system. However, to preserve the advantages
of a symbolic execution, the KeY system here sacrifices some efficiency for the sake
of usability. And, fortunately, this issue is hardly ever limiting in practice.

The rule for the switch statement, which also is conditional and leads to case
distinctions in proofs, is not shown here. It transforms a switch statement into a
sequence of if statements.

3.6.4 Unwinding Loops

The following rule “unwinds” while loops.2 Its application is the prerequisite for
symbolically executing the loop body. Unfortunately, just unwinding a loop repeat-
edly is only sufficient for its verification if the number of loop iterations has a known
upper bound. And it is only practical if that number is small (as otherwise the proof
gets too big).

If the number of loop iterations is not bounded, the loop has to be verified using
(a) induction or (b) an invariant rule (see Sections 3.7.2 and 9.4.2). If induction is
used, the unwind rule is also needed as the loop has to be unwound once in the step
case of the induction.

In case the loop body does not contain break or continue statements (which is
the standard case), the following simple version of the unwind rule can be applied:

loopUnwind
=⇒ 〈π if (e) { p while (e) p } ω〉φ

=⇒ 〈π while (e) p ω〉φ

2 Occurrences of for loops, enhanced for loops, and do-while loops are transformed into while
loops by means of dedicated rules.
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Otherwise, in the general case where break and/or continue occur, the following
more complex rule version has to be used:

loopUnwind

=⇒ 〈π if (e) l′:{ l′′:{ p′ } l1:. . .ln:while (e) { p } } ω〉φ
=⇒ 〈π l1:. . .ln:while (e) { p } ω〉φ

where

• l′ and l′′ are new labels,
• p′ is the result of (simultaneously) replacing in p

– every “break li” (for 1≤ i≤ n) and every “break” (with no label) that has
the while loop as its target by “break l′,” and

– every “continue li” (for 1≤ i≤ n) and every “continue” (with no label)
that has the while loop as its target by “break l′′.”

(The target of a break or continue statement with no label is the loop that
immediately encloses it.)

The label list l1:. . .ln: usually has only one element or is empty, but in general a
loop can have more than one label.

In the “unwound” instance p′ of the loop body p, the label l′ is the new target for
break statements and l′′ is the new target for continue statements, which both had
the while loop as target before. This results in the desired behavior: break abruptly
terminates the whole loop, while continue abruptly terminates the current instance
of the loop body.

A continue (with or without label) is never handled directly by a JavaDL rule,
because it can only occur in loops, where it is always transformed into a break
statement by the loop rules.

3.6.5 Replacing Method Calls by their Implementation

Symbolic execution deals with method invocations by syntactically replacing the call
by the called implementation (verification via contracts is described in Section 3.7.1).
To obtain an efficient calculus we have conservatively extended the programming
language (see Section 3.2.3) with two additional constructs: a method body statement,
which allows us to precisely identify an implementation, and a method-frame block,
which records the receiver of the invocation result and marks the boundaries of the
inlined implementation.
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3.6.5.1 Evaluation of Method Invocation Expressions

The process of evaluating a method invocation expression (method call) within our
JavaDL calculus consists of the following steps:

1. Identifying the appropriate method.
2. Computing the target reference.
3. Evaluating the arguments.
4. Locating the implementation (or throwing a NullPointerException).
5. Creating the method frame.
6. Handling the return statement.

Since method invocation expressions can take many different shapes, the calculus
contains a number of slightly differing rules for every step. Also, not every step is
necessary for every method invocation.

3.6.5.2 Step 1: Identify the Appropriate Method

The first step is to identify the appropriate method to invoke. This involves determin-
ing the right method signature and the class where the search for an implementation
should begin. Usually, this process is performed by the compiler according to the
(quite complicated) rules of the Java language specification and considering only
static information such as type conformance and accessibility modifiers. These rules
have to be considered as a background part of our logic, which we will not describe
here though, but refer to the Java language specification instead. In the KeY system
this process is performed internally (it does not require an application of a calculus
rule), and the implementation relies on the Recoder metaprogramming framework to
achieve the desired effect (Recoder is available at recoder.sourceforge.net).

For our purposes, we discern three different method invocation modes:

Instance or “virtual” mode. This is the most common mode. The target expression
references an object (it may be an implicit this reference), and the method is not
declared static or private. This invocation mode requires dynamic binding.

Static mode. In this case, no dynamic binding is required. The method to invoke is
determined in accordance with the declared static type of the target expression and
not the dynamic type of the object to which this expression may point. The static
mode applies to all invocations of methods declared static. The target expression
in this case can be either a class name or an object referencing expression (which
is evaluated and then discarded). The static mode is also used for instance methods
declared private (in which case the evaluated target reference is not discarded
but used to identify the object on which to invoke the method).

Super mode. This mode is used to access the methods of the immediate superclass.
The target expression in this case is the keyword super. The super mode bypasses
any overriding declaration in the class that contains the method invocation.

http://recoder.sourceforge.net
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Below, we present the rules for every step in a method invocation. We concentrate
on the virtual invocation mode and discuss other modes only where significant
differences occur.

3.6.5.3 Step 2: Computing the Target Reference

The following rule applies if the target expression of the method invocation is not a
simple expression and may have side-effects. In this case, the method invocation gets
unfolded so that the target expression can be evaluated first.

methodCallUnfoldTarget

=⇒ 〈π Tnse v0 = nse; lhs = v0.mname(args); ω〉φ
=⇒ 〈π lhs = nse.mname(args); ω〉φ

This step is not performed if the target expression is the keyword super or a class
name. For an invocation of a static method via a reference expression, this step is
performed, but the result is discarded later on.

3.6.5.4 Step 3: Evaluating the Arguments

If a method invocation has arguments that need to be evaluated, i.e., if at least one of
the arguments is not a simple expression, then the arguments have to be evaluated
before control is transferred to the method body. This is achieved by the following
rule:

methodCallUnfoldArguments

=⇒ 〈π Te1 a1=e1; ...; Ten an=en;
lhs = se.mname(a1,...,an);

ω〉φ
=⇒ 〈π lhs = se.mname(e1,...,en); ω〉φ

The rule unfolds the arguments using fresh variables in the usual manner.
In the instance invocation mode, the target expression se must be simple (otherwise

the rules from Step 2 apply). Furthermore, argument evaluation has to happen even if
the target reference is null, which is not checked until the next step.

3.6.5.5 Step 4: Locating the Implementation

This step has two purposes in our calculus: to bind the argument values to the formal
parameters and to simulate dynamic binding (for instance invocations). Both are
achieved with the following rule:
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methodCall

se 6 .= null =⇒ 〈π Tlhs v0; paramDecl; ifCascade; lhs = v0; ω〉φ
se .= null =⇒ 〈π throw new NullPointerException(); ω〉φ

=⇒ 〈π lhs = se.mname(se1,. . .,sen); ω〉φ

The code piece paramDecl introduces and initializes new local variables that later
replace the formal parameters of the method. That is, paramDecl abbreviates

Tse1 p1 = se1; . . . Tsen pn = sen;

The code schema ifCascade simulates dynamic binding. Using the signature of
mname, we extract the set of classes that implement this particular method from the
given Java program. Due to the possibility of method overriding, there can be more
than one class implementing a particular method. At runtime, an implementation is
picked based on the dynamic type of the target object—a process known as dynamic
binding. In our calculus, we have to do a case distinction as the dynamic type is in
general not known. We employ a sequence of nested if statements that discriminate
on the type of the target object, cast the callee variable to the static type in which the
method implementation is found, and refer to the distinct method implementations
via method body statements (see Section 3.2.3). Thus, ifCascade abbreviates:

if (se instanceof C1) {
C1 target = (C1)se; v0 = target.mname(p1,. . .,pn)@C1;

} else if (se instanceof C2) {
C2 target = (C2)se; v0 = target.mname(p1,. . .,pn)@C2;

...
} else if (se instanceof Ck−1) {

Ck−1 target = (Ck−1)se; v0 = target.mname(p1,. . .,pn)@Ck−1;
else {

Ck target = (Ck)se; v0 = target.mname(p1,. . .,pn)@Ck;
}

The order of the if statements is a bottom-up latitudinal search over all classes
C1, . . . ,Ck of the class inheritance tree that implement mname(. . .). In other words,
the more specialized classes appear closer to the top of the cascade. Formally, if i < j
then C j 6vCi.

If the invocation mode is static or super no ifCascade is created. The single
appropriate method body statement takes its place. Furthermore, the check whether
se is null is omitted in these modes, though not for private methods.

Please note that this step in method invocation and its associated rule forfeit
modular correctness: The rule is only sound if the constructed if-cascade is complete,
which requires all relevant methods to be known at the time of rule application (see
Section 9.1.3).
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3.6.5.6 Step 5: Creating the Method Frame

In this step, the method body statement v0=se.mname(. . .)@Class is replaced by the
implementation of mname from the class Class and the implementation is enclosed
in a method frame:

methodBodyExpand

=⇒ 〈π method-frame(result->lhs,
source=mname(T1, . . . ,Tn)@Class,
this=se

) : { body } ω〉φ
〈π lhs=se.mname(v1,. . .,vn)@Class; ω〉φ =⇒

in the implementation body the formal parameters of types T1, . . . ,Tn of mname are
syntactically replaced by v1, . . . ,vn.

3.6.5.7 Step 6: Handling the return Statement

The final stage of handling a method invocation, after the method body has been
symbolically executed, involves committing the return value (if any) and transferring
control back to the caller. We postpone the description of treating method termination
resulting from an exception (as well as the intricate interaction between a return
statement and a finally block) until the following section on abrupt termination.

The basic rule for the return statement is:

methodCallReturn

=⇒ 〈π method-frame(...):{ v=se; } ω〉φ
=⇒ 〈π method-frame(result->v, ...) : { return se; p } ω〉φ

We assume that the return value has already undergone the usual unfolding analysis,
and is now a simple expression se. Now, we need to assign it to the right variable v
within the invoking code. This variable is specified in the head of the method frame.
A corresponding assignment is created and v disappears from the method frame. Any
trailing code p is also discarded.

After the assignment of the return value is symbolically executed, we are left with
an empty method frame, which can now be removed altogether. This is achieved with
the rule

methodCallEmpty
=⇒ 〈π ω〉φ

=⇒ 〈π method-frame(. . .) : { } ω〉φ

In case the method is void or if the invoking code simply does not assign the
value of the method invocation to any variable, this fact is reflected by the variable v
missing from the method frame. Then, slightly simpler versions of the return rule are
used, which do not create an assignment.
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3.6.5.8 Example for Handling a Method Invocation

Consider the example program from Figure 3.1. The method nextId() returns for a
given integer value id some next available value. In the Base class this method is
implemented to return id+1. The class SubA inherits and retains this implementation.
The class SubB overrides the method to return id+2, which is done by increasing the
result of the implementation in Base by one.

Base

start()
int nextId(int)

SubA

SubB

int nextId(int)

public class Base {
public int nextId(int i) {

return ++i;
}

}

public class SubA extends Base {
}

public class SubB extends Base {
public int nextId(int i) {

return super.nextId(i)+1;
}

}

Figure 3.1 An example program with method overriding

We now show step by step how the following code, which invokes the method
nextId() on an object of type SubB, is symbolically executed:

Java
Base o = new SubB();
res = o.nextId(i);

Java

First, the instance creation is handled, after which we are left with the actual method
call. The effect of the instance creation is reflected in the updates attached to the
formula, which we do not show here. Since the target reference o is already simple at
this point, we skip Step 2. The same applies to the arguments of the method call and
Step 3. We proceed with Step 4, applying the rule methodCall. This gives us two
branches. One corresponds to the case where o is null, which can be discharged
using the knowledge that o points to a freshly created object. The other branch
assumes that o is not null and contains a formula with the following Java code (in
the following, program part A is transformed into A′, B into B′ etc.):
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Java
int j; {

int i_1 = i;
if (o instanceof SubB) {

SubB target = (SubB)o;
j=target.nextId(i_1)@SubB;

} else {
Base target = (Base)o;
j=target.nextId(i_1)@Base;

}
}
res=j;

Java

A

After dealing with the variable declarations, we reach the if-cascade simulating
dynamic binding. In this case we happen to know the dynamic type of the object
referenced by o. This eliminates the choice and leaves us with assigning o to a
variable of the same static type where the implementation is been found, and finally,
the method body statement pointing to the implementation from SubB:

Java
SubB target = (SubB)o;
j=target.nextId(i_1)@SubB;
res=j;

Java

A’

After executing the variable declaration of target and assigning it the value of o
(the cast succeeds because of the if-statement guard in the previous step), it is time
for Step 5: unfolding the method body statement and creating a method frame. This
is achieved by the rule methodBodyExpand:

Java
method-frame(result->j,source=nextId(int)@SubB,this=target):{

return super.nextId(i_1)+1;
}
res=j;

Java

A”

B

The method implementation has been inlined above. We start to execute it symbol-
ically, unfolding the expression in the return statement in the usual manner, which
gives us after some steps:



84 3 Dynamic Logic for Java

Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

int j_2 = super.nextId(i_1);
j_1=j_2+1;
return j_1;

}
res=j;

Java

B’C

The active statement is now again a method invocation, this time with the super
keyword. The method invocation process starts again from scratch. Steps 2 and 3 can
be omitted for the same reasons as above. Step 4 gives us the following code. Note
that there is no if-cascade, since no dynamic binding needs to be performed.

Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

int j_3; {
int i_2 = i_1;
j_3=target.nextId(i_2)@Base;

}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

C’

Now it is necessary to remove the declarations and perform the assignments to
reach the method body statement j_3=target.nextId(i_2)@Base;. Then, this
statement can be unpacked (Step 5), and we obtain two nested method frames. The
second method frame retains the value of this, while the implementation source is
now taken from the superclass:
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Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

method-frame(result->j_3,
source=nextId(int)@Base, this=target) : {

return ++i_2;
}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

C”

D

The return expression is unfolded until we arrive at a simple expression. The
actual return value is recorded in the updates attached to the formula. The code in
the formula then is:

Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

method-frame(result->j_3,
source=nextId(int)@Base, this=target) : {

return j_4;
}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

E

D’

Now we can perform Step 6 (rule methodCallReturn), which replaces the return
statement of the inner method frame with the assignment to the variable j_3. We
know that j_3 is the receiver of the return value, since it was identified as such by
the method frame (this information is removed with the rule application).
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Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

method-frame(source=nextId(int)@Base, this=target) : {
j_3=j_4;

}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

E’

The assignment j_3=j_4; can be executed as usual, generating an update, and
we obtain an empty method frame.

Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

method-frame(source=nextId(int)@Base, this=target):{
}
j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

E”

The empty frame can be removed with the rule methodCallEmpty, completing
Step 6. The invocation depth has now decreased again. We obtain the program:

Java
method-frame(result->j, source=nextId(int)@SubB, this=target):{

j_2=j_3;
j_1=j_2+1;
return j_1;

}
res=j;

Java

From here, the execution continues in an analogous manner. The outer method
frame is eventually removed as well.
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3.6.6 Instance Creation and Initialization

In this section we cover the process of instance creation and initialization. We do not
go into details of array creation and initialization, since it is sufficiently similar.

3.6.6.1 Instance Creation and the Constant Domain Assumption

JavaDL, like many modal logics, operates under the technically useful constant
domain semantics (all program states have the same universe). This means, however,
that all instances that are ever created in a program have to exist a priori. To resolve
this seeming paradox, we introduce implicit fields that allow to change and query
the program-visible instance state (created, initialized, etc.); see Table 3.5. These
implicit fields behave as the usual class or instance attributes, except that they are
not declared by the user but by the logic designer. To distinguish them from normal
(user-declared) fields, their names are enclosed in angled brackets.

Table 3.5 Implicit object repository and status fields

Modifier Implicit field Declared in Explanation

protected boolean <created> Object indicates whether the object
has been created

protected boolean <initialised> Object indicates whether the object
has been initialized

Example 3.19. To express that the field head declared in some class A is nonnull for
all created and initialized objects of type A, one can use the following formula:

∀a : A.(a 6 .= null∧a.<created> .= TRUE → (a.head 6 .= null))

In future, we use the easier to read created to refer to the field <created>, except
for syntax used as part of KeY input files or similar.

3.6.6.2 Overview of the Java Instance Creation and Initialization Process

We use an approach to handle instance creation and initialization that is based on
program transformation. The transformation reduces a Java program p to a program p′

such that the behavior of p (with initialization) is the same as that of p′ when
initialization is disregarded. This is done by inserting code into p that explicitly
executes the initialization.

The transformation inserts code for explicitly executing all initialization processes.
To a large extent, the inserted code works by invoking implicit class or instance
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methods (similar to implicit fields), which do the actual work. An overview of all
implicit methods introduced is given in Table 3.6.

Table 3.6 Implicit methods for object creation and initialization declared in every nonabstract
type T (syntactic conventions from Figure 3.2)

Static methods

public static T <createObject>() main method for instance creation and initiali-
sation

private static T <allocate>() allocation of an unused object from the object
repository

Instance methods

protected void <prepare>() assignment of default values to all instance fields
mods T <init>(params) execution of instance initializers and the invoked

constructor

The transformation covers all details of initialization in Java, except that we
only consider nonconcurrent programs and no reflection facilities (in particular no
instances of java.lang.Class). Initialization of classes and interfaces (also known
as static initialization) is fully supported for the single threaded case. KeY passes the
static initialization challenge stated by Jacobs et al. [2003].

In the following, we use the schematic class form shown in Figure 3.2.

mods0 class T {
mods1 T1 a1 = initExpression1;
...
modsm Tm am = initExpressionm;

{
initStatementm+1;
...
initStatementl;

}

mods T(params) {
st1;
...
stn;

}
...

}

Figure 3.2 Initialization part in a schematic class
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Example 3.20. Figure 3.3 shows a class Person and its mapping to the schematic
class declaration of Figure 3.2. There is only one initializer statement in class Person,
namely “id = 0,” which is induced by the corresponding field declaration of id.

class Person {
private int id = 0;

public Person(int persID) {
id = persID;

}
}

mods0 7→ −
T 7→ Person
mods1 7→ private
T1 7→ int
a1 7→ id
initExpression1 7→ 0
mods 7→ public
params 7→ int persID
st1 7→ id = persID

Figure 3.3 Example for the mapping of a class declaration to the schema of Figure 3.2

To achieve a uniform presentation we also stipulate that:

1. The default constructor public T() exists in T in case no explicit constructor
has been declared.

2. Unless T = Object, the statement st1 must be a constructor invocation. If this is
not the case in the original program, “super();” is added explicitly as the first
statement.

Both of these conditions reflect the actual semantics of Java.

3.6.6.3 The Rule for Instance Creation and Initialization

The instance creation rule

instanceCreation

=⇒ 〈π T v0 = T.<createObject>();
T1 a1 = e1; . . .; T1 an = en;
v0.<init>(a1,...,an)@T;
v0.<initialised> = true;
v = v0;

ω〉φ
=⇒ 〈π v = new T(e1,...,en); ω〉φ

replaces an instance creation expression “v = new T(e1,...,en)” by a sequence
of statements. The implicit static method <createObject>()is declared in each
nonabstract class T as follows:
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public static T <createObject>() {
T newObject = T.<allocate>();

// Invoke the preparation method to assign default values to
// instance fields

newObject.<create>();
// Return the newly created object in order to initialize it:

return newObject;
}

<createObject>() delegates its work to a series of other helper methods. The
generated code can be divided into three phases, which we examine in detail below:

1. <allocate>(): Allocate space on the heap, mark the object as created (as ex-
plained above, it is not really “created”), and assign the reference to a temporary
variable v0.

2. <create>(): Prepare the object by assigning all fields their default values.
3. <init>(): Initialize the object and subsequently mark it as initialized. Note that

the rule uses the method body statement instead of a normal method invocation.
This is possible as we exactly know which constructor has been invoked and it
allows us to achieve an improved performance as we do not need to use dynamic
dispatch.

The reason for assigning v0 to v in the last step is to ensure correct behavior in case
initialization terminates abruptly due to an exception.3

3.6.6.4 Phase 1: Instance Allocation: <allocate>

During the first phase, an implicit method called <allocate>(), performs the central
interaction with the heap. The <allocate>() method has no Java implementation;
its semantics is given by the following rule instead:

allocateInstance

o′ 6 .= null, exactInstanceT (o′) .= TRUE,(
wellFormed(heap)→ selectboolean(heap,o′,created) .= FALSE

)
=⇒ {heap := create(heap,o′)}

{lhs := o′}
〈π ω〉φ

=⇒ 〈π lhs = T.<allocate>(); ω〉φ

where o′ :T ∈ FSym is a fresh symbol

3 Java does not prevent creating and accessing partly initialized objects. This can be done, for
example, by assigning the object reference to a static field during initialization. This behavior is
modeled faithfully in the calculus. In such cases the preparation phase guarantees that all fields have
a definite value.
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The rule introduces a fresh constant symbol o′ to represent the new object, i.e.,
a constant symbol not occurring anywhere in the conclusion. The rule adds three
assumptions about the otherwise unknown object represented by o′: (i) it is different
from null; (ii) its dynamic type is T; and (iii) if the heap is well-formed, then the
object is not yet created. These assumptions are always satisfiable, because there is
an infinite reservoir of objects of every type, and because in a well-formed heap only
a finite number of them is created.

The new object is then marked as “created” by setting its created field to true, and
the reference to the newly created object is assigned to the program variable lhs.

3.6.6.5 Phase 2: Preparation: <create>

During the second phase, an implicit method called <create> marks the object as
not yet initialized (this.<initialized>=false;) and calls the implicit method
<prepare>(), which makes sure that all fields, including the ones declared in the
superclasses, are assigned their default values.4 Up to this point no user code is
involved, which ensures that all field accesses by the user observe a definite value.
This value is given by the function defaultValue that maps each type to its default
value (e.g., int to 0). The concrete default values are specified in the Java language
specification [Gosling et al., 2013, § 4.5.5]. The method <prepare>() used for
preparation is shown in Figure 3.4.5

protected void <prepare>() {
// Prepare the fields declared in the superclass. . .

super.<prepare>(); // unless T = Object

// Then assign each field ai of type Ti declared in T
// to its default value:

a1 = defaultValue(T1);
. . .
am = defaultValue(Tm);

}

Figure 3.4 Implicit method <prepare>()

4 Since class declarations are given beforehand this is possible with a simple enumeration. In case
of arrays, a quantified update is used to achieve the same effect, even when the actual array size is
not known.
5 In the KeY system, <create>() does not call <prepare>() on the new object directly. Instead
it invokes another implicitly declared method called <prepareEnter>(), which has private access
and whose body is identical to the one of <prepare>(). The reason is that due to the super call in
<prepare>()’s body, its visibility must be at least protected such that a direct call would trigger
dynamic method dispatching, which is unnecessary and would lead to a larger proof.
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3.6.6.6 Instance Initialization: <init>

After the preparation of the new object, the user-defined initialization code can be
processed. Such code can occur

• as a field initializer expression “T attr = val;” (e.g., (*) in Figure 3.5); the
corresponding initializer statement is attr = val;

• as an instance initializer block (similar to (**) in Figure 3.5); such a block is
also an initializer statement;

• within a constructor body (like (***) in Figure 3.5).

class A {
(*) private int a = 3;
(**) {a++;}

public int b;

(***) private A() {
a = a + 2;

}
(***) public A(int i) {

this();
a = a + i;

}
...

private <init>() {
super.<init>();
a = 3;
{a++;}
a = a + 2;

}

public <init>(int i) {
this.<init>();
a = a + i;

}
}

Figure 3.5 Example for constructor normal form

For each constructor mods T(params) of T we provide a constructor normal form
mods T <init>(params), which includes (1) the initialization of the superclass,
(2) the execution of all initializer statements in source code order, and finally (3) the
actual constructor body. In the initialization phase the arguments of the instance
creation expression are evaluated and passed on to this constructor normal form. An
example of the normal form is given in Figure 3.5.

The exact blueprint for building a constructor normal form is shown in Figure 3.6,
using the conventions of Figure 3.2. Due to the uniform class form assumed above,
the first statement st1 of every original constructor is either an alternate constructor
invocation or a superclass constructor invocation (with the notable exception of
T = Object). Depending on this first statement, the normal form of the constructor
is built to do one of two things:

1. st1 = super(args): Recursive restart of the initialization phase for the superclass
of T . If T = Object stop. Afterwards, initializer statements are executed in
source code order. Finally, the original constructor body is executed.

2. st1 = this(args): Recursive restart of the initialization phase with the alternate
constructor. Afterwards, the original constructor body is executed.

If one of the above steps fails, the initialization terminates abruptly throwing an
exception.
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mods T <init>(params) {
// invoke constructor
// normal form of superclass
// (only if T 6= Object)

super.<init>(args);

// add the initializer
// statements:

initStatement1;
. . .
initStatementl;

// append constructor body
sts; . . . stn;

// if T = Object then s = 1
// otherwise s = 2

}

(a) st1 = super(args)
in the original constructor

mods T <init>(params) {

// constructor normal form
// instead of this(args)

this.<init>(args);
// no initializer statements
// if st1 is an explicit
// this() invocation

// append constructor body
st2; . . . stn;

// starting with its second
// statement

}

(b) st1 = this(args)
in the original constructor

Figure 3.6 Building the constructor normal form

3.6.7 Handling Abrupt Termination

3.6.7.1 Abrupt Termination in JavaDL

In Java, the execution of a statement can terminate abruptly (besides terminating
normally and not terminating at all). Possible reasons for an abrupt termination
are (a) that an exception has been thrown, (b) that a statement (usually a loop or a
switch) is terminated with break, (c) that a single loop iteration is terminated with
the continue statement, and (d) that the execution of a method is terminated with
the return statement. Abrupt termination of a statement either leads to a redirection
of the control flow after which the program execution resumes (for example, if an
exception is caught), or the whole program terminates abruptly (if an exception is
not caught).

Note, that the KeY system contains three user-selectable calculus variations
for reasoning about run-time exceptions that may be thrown by the JVM (e.g.,
NullPointerException); see Section 3.6.2 and 15.2.3.

3.6.7.2 Evaluation of Arguments

If the argument of a throw or a return statement is a nonsimple expression, the
statement has to be unfolded first such that the argument can be (symbolically)
evaluated:

throwEvaluate
=⇒ 〈π Tnse v0 = nse; throw v0; ω〉φ

=⇒ 〈π throw nse; ω〉φ
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3.6.7.3 If the Whole Program Terminates Abruptly

In JavaDL, an abruptly terminating statement—where the abrupt termination does
not just change the control flow but actually terminates the whole program p in a
modal operator 〈p〉 or [p]—has the same semantics as a nonterminating statement
(Definition 3.5). For that case rules such as the following are provided in the JavaDL
calculus for all abruptly terminating statements:

throwDiamond

=⇒ false
=⇒ 〈throw se; ω〉φ

throwBox

=⇒ true
=⇒ [throw se; ω]φ

Note, that in these rules, there is no inactive prefix π in front of the throw statement.
Such a π could contain a try with accompanying catch clause that would catch the
thrown exception. However, the rules throwDiamond, throwBox etc. must only be
applied to uncaught exceptions. If there is a prefix π , other rules described below
must be applied first.

3.6.7.4 If the Control Flow is Redirected

The case where an abruptly terminating statement does not terminate the whole
program in a modal operator but only changes the control flow is more difficult to
handle and requires more rules. The basic idea for handling this case in our JavaDL
calculus are rules that symbolically execute the change in control flow by syntactically
rearranging the affected program parts.

The calculus rules have to consider the different combinations of prefix-context
(beginning of a block, method-frame, or try) and abruptly terminating statement
(break, continue, return, or throw). Below, rules for all combinations are
discussed—with the following exceptions:

• The rule for the combination method frame/return is part of handling method
invocations (Step 6 in Section 3.6.5.1).

• Due to restrictions of the Java language specification, the combination method
frame/break does not occur.

• Since the continue statement can only occur within loops, all occurrences of
continue are handled by the loop rules.

Moreover, switch statements, which may contain a break, are not considered here;
they are transformed into a sequence of if statements.

3.6.7.5 Rule for Method Frame and throw

In this case, the method is terminated, but no return value is assigned. The throw
statement remains unchanged (i.e., the exception is handed up to the invoking code):
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methodCallThrow
=⇒ 〈π throw se; ω〉φ

=⇒ 〈π method-frame(. . .) : {throw se; p } ω〉φ

3.6.7.6 Rules for try and throw

The following rule allows us to handle try-catch-finally blocks and the throw
statement:

tryCatchFinallyThrow

=⇒ 〈π if (se == null) {
try { throw new NullPointerException(); }
catch (T v) { q } cs finally { r }

} else if (se instanceof T) {
try { T v; v = (T)se; q } finally { r }

} else {
try { throw se; } cs finally { r }

}
ω〉φ
=⇒ 〈π try { throw se; p}

catch ( T v ) { q } cs finally { r }
ω〉φ

The schema variable cs represents a (possibly empty) sequence of catch clauses.
The rule covers three cases corresponding to the three cases in the premiss:

1. The argument of the throw statement is the null pointer (which, of course, in
practice should not happen). In that case everything remains unchanged except
that a NullPointerException is thrown instead of null.

2. The first catch clause catches the exception. Then, after binding the exception
to v, the code q from the catch clause is executed.

3. The first catch clause does not catch the exception. In that case the first clause
gets eliminated. The same rule can then be applied again to check further clauses.

Note, that in all three cases the code p after the throw statement gets eliminated.
When all catch clauses have been checked and the exception has still not been

caught, the following rule applies:

tryFinallyThrow

=⇒ 〈π if (se == null) { vse = new NullPointerException(); }
else { vse = se; }
r
throw vse;

ω〉φ
=⇒ 〈π try { throw se; p } finally { r }〉φ
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This rule moves the code r from the finally block to the front. The try-block gets
eliminated so that the thrown exception now may be caught by other try blocks in
π (or remain uncaught). The value of se has to be saved in vse before the code r is
executed as r might change se.

There is also a rule for try blocks that have been symbolically executed without
throwing an exception and that are now empty and terminate normally (similar rules
exist for empty blocks and empty method frames). Again, cs represents a finite
(possibly empty) sequence of catch clauses:

tryEmpty
=⇒ 〈π r ω〉φ

=⇒ 〈π try{ } cs { q } finally { r } ω〉φ

3.6.7.7 Rules for try/break and try/return

A return or a break statement within a try-catch-finally statement causes the
immediate execution of the finally block. Afterwards the try statement terminates
abnormally with the break or the return statement (a different abruptly terminating
statement that may occur in the finally block takes precedence). This behavior
is simulated by the following two rules (here, also, cs is a finite, possibly empty
sequence of catch clauses):

tryBreak

=⇒ 〈π r break l; ω〉φ
=⇒ 〈π try{ break l; p } cs { q } finally{ r } ω〉φ

tryReturn

=⇒ 〈π Tvr v0 = vr; r return v0; ω〉φ
=⇒ 〈π try{ return vr; p } cs { q } finally{ r } ω〉φ

3.6.7.8 Rules for block/break, block/return, and block/throw

The following two rules apply to blocks being terminated by a break statement that
does not have a label, or by a break statement with a label l identical to one of the
labels l1, . . . , lk of the block (k ≥ 1).

blockBreakNoLabel
=⇒ 〈π ω〉φ

=⇒ 〈π l1:. . .lk:{ break; p } ω〉φ

blockBreakLabel
=⇒ 〈π ω〉φ

=⇒ 〈π l1:. . .li:. . .lk:{ break li; p } ω〉φ
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To blocks (labeled or unlabeled) that are abruptly terminated by a break statement
with a label l not matching any of the labels of the block, the following rule applies:

blockBreakNomatch
=⇒ 〈π break l; ω〉φ

=⇒ 〈π l1:. . .lk:{ break l; p} ω〉φ

Similar rules exist for blocks that are terminated by a return or throw statement:

blockReturn
=⇒ 〈π return v; ω〉φ

=⇒ 〈π l1:. . .lk:{ return v; p} ω〉φ

blockThrow
=⇒ 〈π throw v; ω〉φ

=⇒ 〈π l1:. . .lk:{ throw v; p} ω〉φ

3.7 Abstraction and Modularization Rules

The symbolic execution rules presented so far are sufficient to verify many safety
properties of Java programs. With these rules, method declarations are inlined at the
invocation site and loops are unwound. Verifying programs this way is very similar
to using a bounded model checker, such as, for example, CBMC [Kroening and
Tautschnig, 2014].

Yet, in order for program verification to scale up, abstraction is in general required.
With abstraction, certain pieces of code being verified are replaced with an approx-
imation. The term “abstraction” refers to both the process and the approximation
used.

Before we give a definition, let’s recall that every program fragment p induces a
transition relation ρ(p) on states (Definition 3.5).

Definition 3.21 (Abstraction). We call a relation α(p) on states an abstraction of p,
iff

ρ(p)⊆ α(p) , (3.1)

i.e., iff the abstraction α(p) contains all behaviors that the program p exhibits (or
more).

The two major kinds of abstractions in KeY are method contracts and loop invari-
ants. They are user-supplied but machine-checked for correctness. The user describes
an abstraction syntactically using JavaDL or, more often, JML. KeY generates a
proof obligation that the abstraction is correct, i.e., that it fulfills (3.1). In parallel,
the abstraction can be used in place of the abstracted method or loop.

Abstraction offers several advantages:
1. Not all aspects of the code are crucial to establish a given correctness prop-

erty. Abstraction allows eliding irrelevant aspects, thus reducing proof size and
complexity.
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2. Abstractions can be used to facilitate inductive reasoning, such as is the case
with loop invariants.

3. Abstractions can be checked once and used multiple times, potentially saving
proof effort.

4. When a part of the program is extended or modified, it is sufficient to check
that the new version conforms to the same abstraction as the old one. It is not
necessary to reverify the rest of the program.

5. For certain program parts (library code, native code) the source code may be
unavailable. A user-provided abstraction is a convenient way to capture some or
all of the missing code’s functionality.

Advantages 3 and 4 are typically what is referred to as modularization.
At the same time, there are also costs to using abstraction. One of them is associ-

ated overhead. For simple methods, it might be more efficient to inline the method
implementation instead of writing, proving, and using a contract. Another one is
incompleteness. If a proof attempt cannot be completed, an insufficiently precise
abstraction can be the reason. The user needs to diagnose the issue and refine the
abstraction.

In the following, we briefly introduce the method contract and the loop invariant
rules of JavaDL.

3.7.1 Replacing Method Calls by Specifications: Method Contracts

The specification of a method is called method contract and is defined as follows
(this definition is identical to Definition 8.2 on page 268, where the translation of
JML contracts into JavaDL is presented).

Definition 3.22 (Functional method contract). A functional JavaDL method con-
tract for a method or constructor

R m(T1 p1, ..., Tn pn)

declared in class C is a quadruple

(pre,post,mod, term)

that consists of

• a precondition pre ∈ DLFml,
• a postcondition post ∈ DLFml,
• a modifier set mod ∈ TrmLocSet ∪{STRICTLYNOTHING}, and
• a termination witness term ∈ TrmAny∪{PARTIAL}.

Contract components may contain special program variables referring to the execu-
tion context:

• self : C for references to the receiver object (not available if m is a static method),
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• p1 : T1, . . . ,pn : Tn representing the method’s formal parameters,
• heap : Heap to access heap locations,
• heappre : Heap to access heap locations in the state in which the operation was

invoked (in the postcondition only),
• exc : Exception to refer to the exception in case the method terminates abruptly

with a thrown exception (in the postcondition only),
• res : R to refer to the result value of a method with a return type different from
void (in the postcondition only).

While pre,mod, term (only) refer to the state before method invocation, the post-
condition post refers (also) to the state after termination of the invoked method.
Therefore, post has more expressive means to its avail: Besides two heap represen-
tations (heap and heappre), the result value, and a possibly thrown exception can
be used in the postcondition. In some situations, certain context variables are not
available. For instance, there is no result value for a constructor invocation.

Usually (especially when employing JML as specification language), the postcon-
dition post ∈ DLFml is of the form

(exc .= null→ φ) ∧ (exc 6 .= null→ ψ) ,

where φ is the postcondition for the case that the method terminates normally and ψ

is the postcondition in case the method terminates abruptly with an exception.
The formulas pre and post are JavaDL formulas. However, in most cases, they

do not contain modal operators. This is in particular true if they are automatically
generated translations of JML specifications.

The termination marker term can be the special value PARTIAL, indicating that the
contract is partial and does not require the method to terminate. Alternatively, term
is an expression whose value needs to be decreasing according to some well-founded
ordering with every recursive call. If the method does not involve recursive calls, any
expression can be used for term (e.g., zero). More on termination proofs for recursive
methods can be found in Section 9.1.4.

Below, we give the rule methodContractPartial that replaces a method invocation
during symbolic execution with the method’s contract. The rule assumes that the
given method contract is a correct abstraction of the method. There must be a separate
argument (i.e., a separate proof) establishing this fact. Chapter 8 gives details on such
correctness arguments for method contracts.

The rule methodContractPartial applies to a box-modality and, thus, the question
of whether the method terminates is ignored.

The above rule is applicable to a method invocation in which the receiver setarget
and the arguments sei are simple expressions. This can be achieved by using the
rules methodCallUnfoldTarget and methodCallUnfoldArguments introduced in Sec-
tion 3.6.5.3.

In the first premiss, we have to show that the precondition pre holds in the state
in which the method is invoked after updating the program variables self and pi
with the receiver object setarget and with the parameters sei. This guarantees that the
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methodContractPartial
=⇒U pre

cont pre

U
post

cont Amod(exc
.= null) =⇒U post

cont Amod(post→{lhs := res} [π ω]φ)

U
post

cont Amod(exc 6
.= null) =⇒U post

cont Amod(post→ [π throw exc; ω]φ)
=⇒ [π lhs=setarget.method(se1, . . . ,sen); ω]φ

where
• (pre,post,mod, term) is a contract for method;
• U pre

cont = {self := setarget ||p1 := se1 || · · · ||pn := sen} is an update
application setting up the precondition-context variables;

• U post
cont =U pre

cont{heappre := heap ||res := cr ||exc := ce} is an update
application setting up the postcondition-context variables; cr and ce are
fresh constants of the result type of method or of type Throwable;

• Amod is an anonymizing update w.r.t. the modifier set mod.

Figure 3.7 Method contract rule

method contract’s precondition is fulfilled and, according to the contract, we can use
the postcondition post to describe the effects of the method invocation—where two
cases must be distinguished.

In the first case (second premiss), we assume that the invoked method terminates
normally, i.e., the context variable exc is null after termination. If the method is
nonvoid the return value res is assigned to the variable lhs. The second case deals
with the situation that the method terminates abruptly (third premiss). As in the
normal-termination case, the context variables are updated with the corresponding
terms. But now, there is no result value to be assigned, but the exception exc is
thrown explicitly.

Note that, in both cases, the locations that the method possibly modifies are
updated with an anonymizing update Amod. Such an update, which replaces the
values of the locations in mod with new anonymous values can be constructed using
the function anon : Heap×LocSet×Heap→ Heap (see Section 2.4.3). The heap
update

{heap := anon(heap,mod,h)} ,

where h is a new constant of type Heap, ensures that, in its scope, the heap coincides
with h on all locations in mod and all not yet created locations and coincides with
heap before the update elsewhere.

Anonymizing the locations in mod ensures that the only knowledge that can
be used about these locations when reasoning about the poststate is the knowledge
contained in post—and not any knowledge that may be contained in other formulas in
the sequence, which in fact refers to the prestate. Otherwise, without anonymization,
knowledge about the pre- and the poststate would be mixed in an unsound way. See
Section 9.4.1 for further information on the concept of anonymizing updates.

The method contract rule for the box modality is similar. It can be applied inde-
pendently of the value of the termination marker.
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3.7.2 Reasoning about Unbounded Loops: Loop Invariants

Loops with a small bound on the number of iterations can be handled by loop
unwinding (see Section 3.6.4). If, however, there is no bound that is known a priori or
if that bound is too high, then unwinding does not work. In that case, a loop-invariant
rule has to be used.

A loop invariant is a formula describing an overapproximation of all states reach-
able by repeated execution of a loop’s body while the loop condition is true. Using a
loop invariant essentially is an inductive argument, proving that the invariant holds
for any number of loop iterations—and, thus, still holds when the loop terminates.

Loop invariant rules are probably the most involved and complex rules of the KeY
system’s JavaDL calculus. This complexity results from the inductive structure of
the argument but also from the features of Java loops, which include the possibility
of side effects and abrupt termination in loop conditions and loop bodies.

In this section, we present basic versions of the loop invariant rules; in particular,
loop termination and using the loop’s modifier set for framing is not considered in
the following. Enhanced loop invariant rules are presented in Chapter 9. Moreover,
Section 16.3 provides a more intuitive introduction to formal verification of while
loops with invariants and contains a tutorial on systematic development of loop
invariants.

Also, automatic invariant generation is a hot research topic—a particular approach
to this challenge is described in Section 6.3.

The loop invariant rule has been cross-verified against another language framework
for an earlier version of JavaDL [Widmann, 2006].

3.7.2.1 Loop Specifications

A loop specification is similar to a method contract in that it formalizes an abstraction
of the relationship between the state before a method or loop is executed and the
state when the method or loop body, respectively, terminates. In that sense, a loop
invariant is both the pre- and the postcondition of the loop body. Yet, in most cases, a
useful loop invariant is more difficult to find than a method contract because it relates
the initial state with the states after every loop iteration.

Like method contracts, loop specifications contain two additional elements: (a) a
modifier set describing which parts of the state the loop body can modify and (b) a
termination witness providing an argument for the loop’s termination. As said above,
the basic rules presented in this chapter do not make use of this additional information.
Extended rules considering modifier sets and termination are presented in Chapter 9.

Definition 3.23. A loop specification is a tuple

(inv,mod, term)

that consists of
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• a loop invariant inv ∈ DLFml,
• a modifier set mod ∈ TrmLocSet ∪{STRICTLYNOTHING}.
• a termination witness term ∈ TrmAny∪{PARTIAL}.

Specification components may make use of special program variables which allow
them to refer to the execution context:

• all local variables that are defined in the context of the loop,
• self : C for references to the receiver object of the current method frame (not

available if that frame belongs to a static method),
• heap : Heap referring to the heap in the state after the current iteration,
• heappre : Heap referring to the heap in the initial state of the immediately en-

closing method frame.

3.7.2.2 Basic Version of the Loop Invariant Rule

The first basic loop invariant rule we consider makes two assumptions: It is only
applicable if (1) the loop guard is a simple expression se, i.e., the loop condition
cannot have side effects and cannot terminate abruptly. And (2) the loop body pnorm
must be guaranteed to always terminate normally, i.e.,

1. execution of pnorm does not raise an exception, and
2. pnorm does not contain break, continue, return statements.

The rule takes the form shown in Figure 3.8.

simpleInv

=⇒ inv
=⇒AheapAlocal

(
(inv∧ se .= TRUE) → [pnorm]inv

)
=⇒AheapAlocal

(
(inv∧ se .= FALSE) → [π ω]ϕ

)
=⇒ [π while(se) { pnorm } ω]ϕ

where
• se is a simple expression and pnorm cannot terminate abruptly;
• (inv,mod, term) is a loop specification for the loop to which the rule is

applied;
• Aheap = {heap := ch} anonymizes the heap; ch:Heap is a fresh constant;
• Alocal = {l1 := c1 ‖ · · · ‖ ln := cn} anonymizes all local variables l1, . . . , ln

that are the target of an assignment (left-hand side of an assignment state-
ment) in pnorm; each ci is a fresh constant of the same type as li.

Figure 3.8 Basic loop invariant rule

When a method contract is used for verification, the validity of the contract is not
part of the premisses of the contract rule but a separate proof obligation. In contrast
to that, the loop invariant rule combines both aspects in its three premisses.

• Base case: The first premiss is the base case of the inductive argument. One has
to show that the invariant is satisfied whenever the loop is reached.
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• Step case: The second premiss is the inductive step. One has to show that, if the
invariant holds before execution of the loop body, then it still holds afterwards.6

• Use case: The third premiss uses the inductive argument and continues the sym-
bolic execution for the code π ω following the loop but now with the knowledge
that the invariant holds.

Note that, in the step case, one can assume the loop condition se to be TRUE (i.e.,
the loop is iterated once more). In the use case, on the other hand, one can assume
that the loop condition se is FALSE (i.e., the loop has terminated).

The combination AheapAlocal is called the anonymizing update application of
the loop rule. It needs to be added to the second and the third premiss of the rule,
which refer to the state after an unknown number of loop iterations. Its application
ensures that only the knowledge encoded in inv can be used to reason about the heap
locations and the local variables changed by the loop. Instead, of using the update
application Aheap that anonymizes all heap locations, one can use a more precise
update Amod that only anonymizes the locations in mod (see the previous section on
method contracts and Section 9.4.1 for more information). This requires, however,
the additional proof that the loop body does indeed not modify any other locations
than those in mod.

3.7.2.3 Loop Conditions with Side-effects

In Java, loop conditions may have side effects. For example, the loop condition in
while(a[i++] > 0) { ... }

has a side effect on the local variable i.
In Figure 3.9, we present a loop invariant rule that allows the loop condition to

be a nonsimple expression nse, i.e., to have side effects. The idea is to capture the
value of nse in a fresh Boolean program variable b. To account for the effects of the
condition, its evaluation is repeated right before the loop body.

While the rule sideEffectInv takes into account any state changing side effects
in nse, it does not yet capture the exceptions that it might throw. For example,
the possibility that the loop condition a[i++] in the above example can throw an
ArrayIndexOutOfBoundsException is not considered.

3.7.2.4 Loops with Abrupt Termination

In the loop invariant rules shown above (simpleInv and sideEffectInv), the loop body
is executed outside its usual context π ω . Thus, a continue or a break statement
does not make sense. Likewise, a return statement is not sensible since it is not

6 Note that the loop body in the step case is not enclosed in the execution context π ω . Nevertheless,
the innermost method frame that is part of π has to be added implicitly so that method invocations
within pnorm can be resolved correctly.
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sideEffectInv

=⇒ inv
=⇒AheapAlocal

(
(inv∧ [b=nse; ]b .= TRUE) → [b=nse; pnorm]inv

)
=⇒AheapAlocal

(
(inv∧ [b=nse;]b .= FALSE) → [π b=nse; ω]ϕ

)
=⇒ [π while(nse) { pnorm } ω]ϕ

where
• pnorm and nse cannot terminate abruptly;
• (inv,mod, term) is a loop specification for the loop to which the rule is

applied;
• Aheap = {heap := ch} anonymizes the heap; ch:Heap is a fresh constant;
• Alocal = {l1 := c1 ‖ · · · ‖ ln := cn} anonymizes all local variables l1, . . . , ln

that are the target of an assignment (left-hand side of an assignment state-
ment) in pnorm or in nse; each ci is a fresh constant of the same type
as li;

• b is a fresh Boolean variable.

Figure 3.9 Invariant rule for loops with side effects in the loop condition

embedded into the original method frames, and exceptions do not occur within the
right try-catch-finally block.

In order to be able to deal with loop bodies in isolation, we transform them in
such a way that abnormal termination is turned into normal termination in which
certain flags are set signaling the abnormal termination. We will not go into details
of this transformation here, but illustrate it using one synthetic example loop, which
exhibits all possible reasons for abnormal termination:

while(x >= 0) {
if(x == 0) break;
if(x == 1) return 42;
if(x == 2) continue;
if(x == 3) throw e;
if(x == 4) x = -1;

}

We use the Boolean variables BREAK and RETURN, and a variable EXCEPTION
of type Throwable to store and signal the termination state of the loop body. In the
example, the original loop body is translated into the block
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loopBody: {
try {

Break=false; Return=false; Exception=null;
if(x == 0) { Break=true; break loopBody; }
if(x == 1) { res=42; Return=true; break loopBody; }
if(x == 2) { break loopBody; }
if(x == 3) { throw e; }
if(x == 4) { x = -1; }

} catch(Throwable e) {
Exception = e;

}
}

The result of the transformation is guaranteed to terminate normally, with the original
termination reason caught in the Boolean flags.

In general, this transformation can be more involved if it has to deal with nested
labeled blocks and loops. It then resembles the translation outlined in Section 3.6.4
for loop unwinding.

Using the above transformation, the loop invariant rules that can handle both
abrupt termination and side effects in the loop condition takes the form shown in
Figure 3.10.

In the second premiss of this rule (subformula post), if a loop is left via abnormal
termination rather than by falsifying the loop condition, the loop invariant does not
need be reestablished but the execution of the program in its original context π ω

is resumed—retriggering an exception or return statement if they were observed
in the loop body. The rationale behind this is that loop invariants are supposed to
hold whenever the loop is potentially reentered, which is not the case if a return,
throw, or break statement has been executed. If, however, a continue statement is
executed in the loop body p, the transformation ̂b=nse; p terminates normally and
the invariant has to hold before the next loop iteration is started (as in the NORMAL
case).

In this chapter, we have not presented a loop invariant rule that handles loops
in 〈·〉-modalities and, thus, needs to guarantee program termination; this issue is
addressed in Section 9.4.2. One aspect shall be mentioned here nonetheless: When
termination matters, the modality 〈·〉 is used instead of [·]. However, the box modality
[b=nse], which occurs on the left-hand side of the second and the third premiss in
rules sideEffectInv (Figure 3.9) and abruptTermInv (Figure 3.10), must remain a box
modality. If it were to be changed into a diamond modality, then a nonterminating
loop condition would make these two premisses of the loop invariant rules trivially
valid; the calculus would be unsound.
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abruptTermInv

=⇒ inv
=⇒AheapAlocal

(
(inv∧ [b=nse; ]b .= TRUE) → [ ̂b=nse; p]post

)
=⇒AheapAlocal

(
(inv∧ [b=nse;]b .= FALSE) → [π b=nse; ω]ϕ

)
=⇒ [π while(nse) { p } ω]ϕ

where
• (inv,mod, term) is a loop specification for the loop to which the rule is

applied;
• Aheap = {heap := ch} anonymizes the heap; ch:Heap is a fresh constant;
• Alocal = {l1 := c1 ‖ · · · ‖ ln := cn} anonymizes all local variables l1, . . . , ln

that are the target of an assignment (left-hand side of an assignment state-
ment) in pnorm or in nse; each ci is a fresh constant of the same type
as li;

• b is a fresh Boolean variable;
• ̂b=nse; p is the result of transforming b=nse; p as described above to handle

abrupt termination;
• post is the formula

(EXCEPTION 6 .= null→ [π throw Exception; ω]ϕ)
∧ (BREAK

.= TRUE→ [π ω]ϕ)
∧ (RETURN

.= TRUE→ [π return res; ω]ϕ)
∧ (NORMAL→ inv)

with
NORMAL ≡ BREAK

.= FALSE ∧
RETURN

.= FALSE ∧
EXCEPTION

.= null

Figure 3.10 Invariant rule for loops with abrupt termination



Chapter 4
Proof Search with Taclets

Philipp Rümmer and Mattias Ulbrich

4.1 Introduction

The primary means of reasoning in a logic are calculi, collections of purely syntactic
operations that allow us to determine whether a given formula is valid. Two such
calculi are defined in Chapter 2 and 3 for first-order predicate logic and for dynamic
logic (DL). Having such calculi at hand enables us, in principle, to create proofs of
complex conjectures, using pen and paper, but it is obvious that we need computer
support for realistic applications. Such a mechanized proof assistant primarily helps
us in two respects: 1. The assistant ensures that rules are applied correctly, e.g.,
that rules can only be applied if their side-conditions are not violated, and 2. the
assistant can provide guidance for selecting the right rules. Whereas the first point is
a necessity for making calculi and proofs meaningful, the second item covers a whole
spectrum from simple analyses to determine which rules are applicable in a certain
situation to the complete automation that is possible for many first-order problems.

Creating a proof assistant requires formalizing the rules that the implemented
calculus consists of. In our setting—in particular looking at calculi for dynamic
logic—such a formalization is subject to a number of requirements:

• JavaDL has a complex syntax (subsuming the actual Java language) and a large
number of rules: first-order rules, rules for the reduction of programs and rules
that belong to theories like integer arithmetic. Besides that, in many situations
it is necessary to introduce derived rules (lemmas) that are more convenient or
that are tailored to a particular complex proof. This motivates the need for a
language in which new rules can easily be written, rather than hard-coding rules
as it is done in high-performance automated provers (for first-order logic). It is
also necessary to ensure the soundness of lemmas, i.e., we need a mechanized
way to reason about the soundness of rules.

• Because complete automation is impossible for most aspects of program verifica-
tion, the formalization has to support interactive theorem proving. KeY provides
a graphical user interface (GUI) that makes most rules applicable only using
mouse clicks and drag and drop. This puts a limit on the complexity that a single
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rule should have for keeping the required user interaction clear and simple, and
it requires that rules also contain “pragmatic” information that describes how
the rules are supposed to be applied. Accounts on the user interface in KeY are
Chapter 15 and [Giese, 2004].

• The formalization also has to enable the automation of as many proof tasks as
possible. This covers the simplification of formulas and proof goals, the symbolic
execution of programs (which usually does not require user interaction) as well
as automated proof or decision procedures for simpler fragments of the logic
and for theories. The approach followed in KeY is to have global strategies that
give priorities to the different applicable rules and automatically apply the rule
that is considered most suitable. This concept is powerful enough to implement
proof procedures for first-order logic and to handle theories like linear integer
arithmetic or polynomial rings mostly automatically.

This chapter is devoted to the formalism called taclets that is used in KeY to meet
these requirements. The concept of taclets provides a notation for rules of sequent
calculi, which has an expressiveness comparable to the “textbook-notation” that is
used in Chapters 2 and 3, while being more formal. Compared to textbook-notation,
taclets inherently limit the degrees of freedom (nondeterminism) that a rule can
have, which is important to clarify user interaction. Furthermore, an application
mechanism—the semantics of taclets—is provided that describes when taclets can be
applied and what the effect of an application is.

Historically, taclets have first been devised by Habermalz [2000b,a] under the
name “Schematic Theory Specific Rules,” with the main purpose of capturing the
axioms of theories and algebraic specifications as rules. The language is general
enough, however, to also cover all rules of a first-order sequent calculus and most
rules of calculi for dynamic logic. The development of taclets as a way to build
interactive provers was influenced to a large degree by the theorem prover InterACT
[Geisler et al., 1996], but also has strong roots in more traditional methods like tactics
and derived rules that are commonly used for higher-order logics (examples for such
systems are Isabelle/HOL, see [Nipkow et al., 2002], Coq, see [Dowek et al., 1993],
or PVS, see [Owre et al., 1996]). Compared to tactics, the expressiveness of taclets
is very limited, for the reasons mentioned above. A further difference is that taclets
do not (explicitly) build on a small and fixed set of primitive rules, as tactics do in
(foundational) higher-order frameworks like Isabelle. It nevertheless is a good idea
to add comments in files containing taclets that signal which are meant to be axioms
and which are derived rules that require a proof from the axioms. This has, e.g., been
consistently done for the data type of finite sequences, see Section 5.2.

4.1.1 Purpose and Organization of this Chapter

The purpose of this chapter is twofold: on the one hand, it provides new KeY users
an introduction to the way calculus rules are implemented in the KeY system; on
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the other hand, it is a reference manual of the taclet formalism, targeting more
experienced users as well as developers. The main sections of the chapter are:

• A taclet tutorial (Section 4.2): a high-level overview of the most important
features provided by the taclet language, and the methodology how taclets are
used for introducing new theories.

• The taclet reference manual (Section 4.3): a detailed description of the taclet
language, and its semantics.

• Reasoning about the soundness of taclets (Section 4.4): techniques to mechani-
cally prove the soundness of taclets, by deriving a formula representation of the
logical content of a taclet.

4.2 A Taclet Tutorial

The next pages give a tour through the taclet language and illustrate the most im-
portant taclet features by means of a case study. Taclets are used in the KeY system
for multiple purposes: for the definition of first-order calculus rules, for the rules of
the JavaDL calculus, to introduce data types and decision procedures, and to give
users the possibility to define and reason about new logical theories. Users typically
encounter taclets in the context of the last scenario, which is why our tutorial will
describe the introduction of a new theory in KeY: we consider a simplified version
of a theory of lists, and refer the reader to a more complete and practical version of
finite sequences in Chapter 5 .

Theories are introduced by declaring a vocabulary of types and (interpreted)
functions, a set of basic axioms defining the semantics of the theory, as well as a set
of derived rules that are suitable for the construction of actual proofs. Both axioms
and derived rules are formulated as taclets in KeY, with the difference that axioms
are assumed and cannot be proven to be correct, while derived rules logically follow
from the axioms.

4.2.1 A Basic Theory of Lists

We will work with a simple data structure of lists resembling the data type found
in Lisp and functional programming languages. The core theory, in the following
sections denoted by TList, is defined through a type List; elements of the data type
are generated by two constructor symbols, nil and cons, representing the empty list
and extension of a list by adding a new head element respectively. For simplicity we
consider only elements of type int here. The theory of lists is in no way affected by
the type of its elements.
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nil : List

cons : int×List→ List

For instance, the sequence 〈3,5,−2〉 of integers will be represented through the term
cons(3,cons(5,cons(−2,nil))).

The symbols nil and cons are the only constructors of lists, and lists furthermore
represent a free algebraic data type, which implies that:

• every list can be represented as a term only consisting of nil and cons, and
possibly functions needed to construct the list elements (the first argument of
cons);

• the representation of a list using nil and cons is unique assuming a unique
representation of the integers.

Those properties are typically expressed with the help of axioms, which eliminate all
interpretations of the constructor symbols that are inconsistent with the two properties.
Axioms are formulas that are assumed to hold in all considered interpretations of
the theory symbols; there is no way to prove that axioms are correct, since they are
independent assumptions and cannot be derived from any other rules or axioms of
the logic. The consistency of the axioms can be shown by defining a model in which
all axioms are true: one such model is obtained by considering the set of ground
terms over the constructors nil and cons and a unique representation of all integers
as universe, and interpreting nil and cons and all integer ground terms as themselves.
More details are given in Chapter 5 on theories. For our core theory of lists, we need
three axioms:(

φ [l/nil] ∧ ∀List l; ∀int a;
(
φ → φ [l/cons(a, l)]

))
→ ∀List l; φ (4.1)

∀List l; ∀int a;
(
nil 6 .= cons(a, l)

)
(4.2)

∀List l1, l2; ∀int a1,a2;
(
cons(a1, l1)

.= cons(a2, l2) → a1
.= a2∧ l1

.= l2
)

(4.3)

The axiom (4.1) reflects the assumption that any element of the list data type can
be constructed using the symbols nil and cons. It can be shown that this assumption
cannot precisely be captured using an axiom in first-order logic, it can only be
approximated using weaker formulas, for instance using the induction axiom (4.1)
shown here. The formula represents an axiom schema, since it is formulated with
the help of a schematic variable φ that stands for an arbitrary formula that has to be
chosen when using the axiom in a proof; this formula φ will usually contain the free
variable l of type List.

In other words, (4.1) should be read as an infinite set of first-order formulas, one
for each possible choice of the symbol φ . The axiom schema introduces an induction
principle for lists, resembling the one for natural numbers (nonnegative integers)
defined in Section 2.4.2: if it is possible to show that some formula φ holds for the
empty list l = nil (denoted by the substitution [l/nil] replacing every occurrence of l
with nil), and that φ implies that also φ [l/cons(a, l)] holds for any a, then it can be
concluded that φ holds for all lists l.
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Taclet

\sorts {
List;

}

\functions {
\unique List nil;
\unique List cons(any, List);

}

\axioms {
list_induction {

\schemaVar \formula phi;
\schemaVar \variable List lv;
\schemaVar \variable any av;

\find( ==> \forall lv; phi )
\varcond(\notFreeIn(av, phi))

\replacewith( ==> {\subst lv; nil} phi
& \forall lv; \forall av;

(phi -> {\subst lv; cons(av, lv)}phi) )
};

}

Taclet

Figure 4.1 Vocabulary and induction axiom for a simplified theory of lists

Induction axioms are relevant for all theories that are assumed to be generated
by some set of function symbols, in the sense that all elements can be written as
terms over this set of functions. In particular, every algebraic data type (an example
of which are lists) comes with a predefined induction axiom similar to (4.1).

The axioms (4.2) and (4.3) represent uniqueness of the representation of a list
using nil and cons. (4.2) expresses that the ranges of nil and cons do not overlap,
whereas (4.3) states that cons is an injective function; in combination, the axioms
imply that two lists are equal only if they contain the same number of elements, and
the elements coincide.

4.2.2 The List Theory in Concrete Syntax

We now explain how the theory TList of lists (as introduced so far) can be modeled in
the concrete syntax of the KeY system. We first use declarations and taclets in order
to model the vocabulary and axioms of the theory in a direct way, and then describe
how further rules can be derived to make the theory more convenient to work with in
practice. Derived rules are also essential for automating the construction of proofs.
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The taclet syntax is explained in Section 4.3.1, and a complete description of the KeY
syntax is given in Appendix B.

Figure 4.1 shows the List type, the function symbols nil and cons, as well as the
induction axiom (4.1) in taclet syntax. The \sorts block is used to declare the types
of the theory, whereas \functions contains the declaration of available function
symbols and their signature (the result type and the type of arguments), in syntax
inspired by Java. The declarations and definitions would normally be placed in the
beginning of a KeY problem file, and can then be used for formulating and proving
formulas involving TList; the concrete steps to do this are described in Chapter 15,
and later chapters of the book.

Figure 4.1 also captures the two axioms (4.2)–(4.3) of lists. KeY provides a built-in
keyword for specifying the uniqueness of functions, so that the axioms (4.2) and (4.3)
do not have to be written by hand; it suffices to add the flag \unique in the function
declarations. A function declared to be \unique is injective, and the values of two
distinct \unique functions are never equal. The \unique flag implies that KeY will
internally generate (and automatically apply) rules that capture those assumptions.

The \rules block contains the taclet list_induction representing the induction
axiom (4.1). Operationally, the rule list_induction is applied to an existing for-
mula ∀List l; φ , and replaces this formula with φ [l/nil] ∧ ∀List l; ∀int a;

(
φ →

φ [l/cons(a, l)]
)
:

list_induction
Γ =⇒ φ [l/nil]∧∀List l; ∀int a;

(
φ → φ [l/cons(a, l)]

)
,∆

Γ =⇒∀List l; φ ,∆

In order to specify this transformation, the taclet uses a number of features of the
taclet language, which are explained in the following paragraphs.

• \find defines a pattern that must occur in the sequent to which the taclet
is supposed to be applied. In this taclet, the pattern ==> \forall lv; phi
matches on quantified list formulas in the succedent of a sequent; accordingly,
list_induction can be applied whenever such a quantified formula turns up in
a proof goal. The expression matched by \find is called the focus of a taclet
application.

• \replacewith tells how the focus of the taclet application will be altered: a
new proof goal is created from the previous one by replacing the expression
matched in the \find part with the expression in the \replacewith part.

For list_induction, the quantified list formula in the succedent will be replaced
by the somewhat complicated expression after the arrow ==>; upon closer in-
spection, it can be seen that the expression indeed represents the conjunction
φ [l/nil] ∧ ∀List l; ∀int a;

(
φ → φ [l/cons(a, l)]

)
. The operator {\subst x; t}

expresses substitution of a variable x with a term t.

Note 4.1. The keywords of the taclet language reflect the direction in which sequent
calculus proofs are constructed: we start with a formula that is supposed to be proven
and create a tree upwards by analyzing the formula and taking it apart. Taclets
describe expansion steps (or, as a border case, closure steps), and by the application
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of a taclet we mean the process of adding new nodes to a leaf of a proof tree following
this description.

The taclet illustrates a further important feature of the taclet language, namely the
use of schema variables in order to create flexible rules that can be instantiated in
many concrete ways. The taclet list_induction contains three such schema variables,
phi, lv, and av. Every schema variable is of a certain kind, defining which expres-
sions the variable can stand for (a precise definition is given in Section 4.3.2). In our
example, phi represents an arbitrary formula, while lv represents bound variables
of type List, and av bound variables of type int. The possible valuations of schema
variables are controlled with the help of variable conditions, and the \varcond
clause in list_induction:

• \varcond specifies conditions that have to hold for admissible instantiations of
the schema variables of a taclet. The condition \notFreeIn in list_induction, in
particular, expresses that the bound variable av must not occur as a free variable
in the formula phi.

Note that some, but not all occurrences of the schema variable phi in the rule
list_induction are in the scope of a quantifier binding av. Without the variable
condition \notFreeIn(av, phi) it would be ambiguous whether av is allowed to
occur in phi or not.

Example 4.2. We illustrate how the rule list_induction can be used to prove a theorem
in our theory TList, the fact that every list is constructed using either nil or cons:

∀List l;
(
l .= nil∨∃List m, int b; l .= cons(b,m)

)
(4.4)

For this, we apply the sequent calculus notation introduced in Section 2.2.2. This
sentence already has the shape of the formula \forall lv; phi in the \find part
of the taclet list_induction, so that the taclet can directly be applied; this has been
done in step (∗) in the proof in Figure 4.2. It should be noted, however, that inductive
proofs often require appropriate strengthening of the formula to be proven: in order
to show that ∀x;φ is a theorem, first a formula that implies ∀x;ψ is introduced using
the cut rule, and proven by means of induction. Luckily, no such strengthening is
necessary in the example at hand.

When applying list_induction at (∗), all schema variables occurring in the taclet
have to be instantiated with concrete syntactic objects: the variable lv is mapped
to the bound variable l, the variable av to the (fresh) variable a, and the formula
variable phi to the body l .= nil∨∃List m, int b; l .= cons(b,m). When constructing
the proof in the KeY system, the tool is able to determine those instantiations auto-
matically, it is only necessary to tell KeY to apply list_induction to the formula (4.4)
in the antecedent of the proof goal.

The rest of the proof can be constructed in a comparatively straightforward way
(and can in fact be found automatically by KeY). At (∗∗), it can be observed that
nil .= nil holds, so that the whole conjunct nil .= nil∨∃List m, int a; nil .= cons(a,m)
can be reduced to true and eliminated. Finally, at (∗ ∗ ∗), we can observe that the
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(∗∗)

(***)

∗
· · ·=⇒ cons(d,c) .= nil, cons(d,c) .= cons(d,c)

· · ·=⇒ cons(d,c) .= nil, ∃List m, int b; cons(d,c) .= cons(b,m)
c .= nil∨∃List m, int b; c .= cons(b,m)

=⇒ cons(d,c) .= nil∨∃List m, int b; cons(d,c) .= cons(b,m)

=⇒ (c .= nil∨∃List m, int b; c .= cons(b,m))
→ (cons(d,c) .= nil∨∃List m, int b; cons(d,c) .= cons(b,m))

=⇒
∀List l; ∀int a;

(
(l .= nil∨∃List m, int b; l .= cons(b,m))
→ (cons(a, l) .= nil∨∃List m, int b; cons(a, l) .= cons(b,m))

)

(*)

=⇒

(
nil .= nil∨∃List m, int a; nil .= cons(a,m)

)
∧∀List l; ∀int a;

(
(l .= nil∨∃List m, int b; l .= cons(b,m))
→ (cons(a, l) .= nil∨∃List m, int b; cons(a, l) .= cons(b,m))

)
=⇒∀List l;

(
l .= nil∨∃List m, int b; l .= cons(b,m)

)
Figure 4.2 Inductive example proof

existentially quantified variables m,b can be instantiated with the terms c and d,
respectively, concluding the proof.

4.2.3 Definitional Extension of the List Theory

At this point we have a fully defined, albeit very minimalist theory TList of lists
available, which could in principle be used to state and prove conjectures about lists
in KeY, or to reason about programs operating on lists or sequences. Most practical
applications require a richer set of operations on lists, however; a general strategy to
introduce such operations, without putting the consistency of the theory at risk, is
known as definitional extension, and proceeds by introducing further functions or
predicates over lists, and defining their intended meaning through recursive axioms
according to the list constructors. Again, for more details we refer to the dedicated
Chapter 5 on theories.

In the scope of our taclet tutorial, we consider two defined functions for computing
length and concatenation of lists; the resulting extension of TList will be denoted by
T LA

List, and include the following additional function symbols:

length : List→ Int

append : List×List→ List

The semantics of the functions can be formulated by simple recursion over one of
the List arguments of each function, in mathematical notation leading to equations as
follows:
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Taclet

\functions {
int length(List);
List append(List, List);

}

\axioms {
length_nil {

length(nil) = 0
};

length_cons {
\forall List l; \forall any a; length(cons(a, l)) = 1 + length(l)

};

append_nil {
\schemaVar \term List l;
\find( append(nil, l) )
\replacewith( l )

};

append_cons {
\schemaVar \term any a;
\schemaVar \term List l1;
\schemaVar \term List l2;
\find( append(cons(a, l1), l2) )
\replacewith( cons(a, append(l1, l2)) )

};
}

Taclet

Figure 4.3 Vocabulary and axioms for defined list functions

length(l) =

{
0 if l = nil
length(l′)+1 if l = cons(a, l′)

(4.5)

append(l1, l2) =

{
l2 if l1 = nil
cons(a,append(l′1, l2)) if l1 = cons(a, l′1)

(4.6)

The corresponding declarations and axioms in KeY syntax are shown in Figure 4.3.
The definitions can again be put in a KeY problem file, normally right after the
definitions from Figure 4.1, and extend the basic list theory with the two additional
functions length and append (as a technical detail, it is indeed necessary that the new
axioms appear textually after the declarations of the constructors nil and cons in the
KeY file, since KeY adopts a single-pass parsing approach).

Figure 4.3 illustrates that axioms can be written in two different styles. The first
two axioms length_nil and length_cons are formulated as (quantified) formulas, and
closely capture the recursive equation (4.5). When applying either rule in a proof, the
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KeY prover will add the given formula to the antecedent of a proof goal; afterwards,
quantifiers in the formula can be eliminated by instantiating with ground terms
occurring in the goal, and the resulting equation can be used for equational rewriting.
An example showing the rules is the following proof; after application of length_nil
and length_cons, the proof can be closed using equational and arithmetic reasoning
(not shown here):

∗

length_nil

length(cons(1,nil)) .= 1+ length(nil), length(nil) = 0
=⇒ length(cons(1,nil)) .= 1

length(cons(1,nil)) .= 1+ length(nil)
=⇒ length(cons(1,nil)) .= 1

length_cons

∀List l. ∀int a. length(cons(a, l)) .= 1+ length(l)
=⇒ length(cons(1,nil)) .= 1
=⇒ length(cons(1,nil)) .= 1

In contrast, the axioms append_nil and append_cons are formulated in a similar
operational style as the induction axiom in Figure 4.1; the main difference to the
induction axiom is the fact that \find expressions in Figure 4.3 are no longer
sequents but terms (they do not contain an arrow ==>). Rules of this form are called
rewriting taclets in the KeY terminology, and represent transformations that modify
subexpressions (either a formula or a term) of arbitrary formulas in a proof, both
in the antecedent and succedent, leaving the surrounding formula unchanged. For
instance, the rule append_nil can be used to rewrite any term append(nil, l) to the
simpler expression l, and rule append_cons is applicable to any expression of the
form append(cons(a, l1), l2). An example proof is:

append_cons

append_nil

∗
=⇒ cons(a, l) .= cons(a, l)

=⇒ cons(a,append(nil, l)) .= cons(a, l)
=⇒ append(cons(a,nil), l) .= cons(a, l)

Compared to the declarative style of length_nil and length_cons, the taclets
append_nil and append_cons have both advantages and disadvantages: in partic-
ular, rewriting taclets are usually a lot more convenient to apply when constructing
proofs interactively, since expressions can be simplified (or “evaluated”) with only
a few mouse clicks, in contrast to the multiple rule applications needed when us-
ing axiom length_nil. In addition, the rewriting taclet append_nil also captures the
direction in which the corresponding equation append(nil, l) = l should be
applied, namely rewriting the more complicated left-hand side to the simpler right-
hand side, and can therefore also be applied automatically by the KeY system (see
Section 4.3.1.10).

On the other hand, since the rules length_nil and length_cons are closer to the
recursive mathematical formulation, the introduction of axioms in this style tends
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to be less error-prone. In the exceedingly rare case that a user wants to rewrite l to
append(nil, l) when constructing a proof, append_nil is actually less practical
than the axiom length_nil, since the simple equation introduced by the latter rule can
be applied in both directions. Rewriting from right to left is still possible even with
append_nil, however, by means of introducing a cut in the proof.

4.2.4 Derivation of Lemmas

An important feature of the taclet language, and of the KeY prover, is the ability to
easily add further derived rules to a theory. Such rules represent lemmas that logically
follow from the theory axioms, and can help structure proofs because the lemmas
can be proven once and for all, and later be applied repeatedly for proving theorems.
The number of derived rules often exceeds the number of axioms of a theory by far:
to reduce the risk of inconsistencies, the set of axioms is usually kept minimalist,
whereas any number of derived rules can be added for reasons of convenience. The
soundness of derived rules can be verified using the same calculus as for proving
theorems, by translating taclets to meaning formulas that capture the logical content
of a rule (see Section 4.4).

A small selection of derived rules for the theory T LA
List is shown in Figure 4.4; many

more relevant lemmas exist. The first difference to earlier taclets is the fact that rules
are now formulated within a \rules block, and no longer as \axioms, to indicate
that the rules are lemmas.1 The definitions from Figure 4.4 can again be put in a KeY
problem file, either after the contents of Figures 4.1 and 4.3, or in a separate file that
KeY users can load on demand. In the latter case, the KeY system will request that
the soundness of the newly introduced rules is immediately justified by showing that
their meaning formula is valid (Section 4.4).

The rewriting rules length_nil_rw and length_cons_rw in Figure 4.4 are oper-
ational versions of the axioms length_nil and length_cons, and correspond to the
way the axioms append_nil and append_cons are written. Since rewriting rules are
usually more convenient than axioms in the form of formulas, as illustrated by the ex-
amples in the previous section, length_nil_rw and length_cons_rw are useful derived
rules; their correctness is directly implied by the theory axioms, of course.

The rule append_nil_right captures the fact that nil is also a right-neutral element
for concatenation append, and complements the axiom append_nil. The soundness
of append_nil_right has to be shown by induction over the first argument of append,
with the help of the axiom list_induction. Similarly, length_append expresses that
length distributes over concatenation, and can be proven correct by induction over
the first argument of append. Both append_nil_right and length_append are rules
that are frequently needed when proving theorems over lists, and present in every
self-respecting list theory.

1 In built-in rules of the KeY system, moreover the annotation \lemma can be added in front of a rule
to indicate that a correctness proof has been conducted; the proof will then be checked automatically
during regression testing.
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Taclet

\rules {
length_nil_rw {

\find( length(nil) )
\replacewith( 0 )

};

length_cons_rw {
\schemaVar \term any a;
\schemaVar \term List l;
\find( length(cons(a, l)) )
\replacewith( 1 + length(l) )

};

append_nil_right {
\schemaVar \term List l;
\find( append(l, nil) )
\replacewith( l )

};

length_append {
\schemaVar \term List l1, l2;
\find( length(append(l1, l2)) )
\replacewith( length(l1) + length(l2) )

};

length_cons_assume {
\schemaVar \term List l, l1;
\schemaVar \term any a;
\assumes( l = cons(a, l1) ==> )
\find( length(l) ) \sameUpdateLevel
\replacewith( 1 + length(l1) )

};

list_ctor_split {
\schemaVar \term List l;
\schemaVar \skolemTerm List skl;
\schemaVar \skolemTerm any ska;
\find( l ) \sameUpdateLevel
\varcond( \new(ska, \dependingOn(l)), \new(skl, \dependingOn(l)) )
\replacewith( nil ) \add( l = nil ==> );
\replacewith( cons(ska, skl) ) \add( l = cons(ska, skl) ==> )

};
}

Taclet

Figure 4.4 Derived taclets for the list theory T LA
List

The rules length_cons_assume and list_ctor_split are more sophisticated, and
show several further features of the taclet language. The rule length_cons_assume
is similar to length_cons_rw, but is (also) applicable to list terms that are not of the
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form cons(a, l): replacing length(l) with 1+ length(l1) is admissible provided that
the equality l .= cons(a, l1) holds for some element a. This can be expressed using
the keyword \assumes:

• \assumes imposes a condition on the applicability of a taclet, and has a sequent
as parameter. In the case of length_cons_assume, the \assumes clause states
that the taclet must only be applied if an equation l .= cons(a, l1) appears in the
antecedent of a goal (the sequent may contain further formulas).

• \sameUpdateLevel is a state condition that can be added to rewriting taclets,
and is relevant in the case of taclets in JavaDL proofs. The flag ensures that
the focus of the taclet application (the term that is represented by length(l)
in rule length_cons_assume) does not occur in the scope of modal operators
apart from updates. Updates are allowed above the focus, but in this case the
equation l .= cons(a, l1)—or, more generally, all formulas referred to using
\assumes, \replacewith and \add—have to be in the scope of the same
update.

This flag \sameUpdateLevel is necessary to ensure the soundness of the rule
length_cons_assume in dynamic logic, and in fact required for most rewriting rules
that contain any \assumes or \add clauses. In order to illustrate the effect of
\sameUpdateLevel, we consider two potential applications of length_cons_assume:

Illegal:

v .= cons(a,w) =⇒{w := nil}p(1+ length(w))
v .= cons(a,w) =⇒{w := nil}p(length(v))

Legal:

{w := nil}(v .= cons(a,w)) =⇒{w := nil}p(1+ length(w))
{w := nil}(v .= cons(a,w)) =⇒{w := nil}p(length(v))

The first application of length_cons_assume has to be ruled out, and is prevented
by KeY in the presence of the \sameUpdateLevel flag, since the application would
incorrectly move the term w into the scope of the update w := nil redefining the
meaning of w: in the equation v .= cons(a,w), the term w represents arbitrary lists,
whereas the update defines w to denote the empty list. The application illustrates the
case of a symbol changing its meaning due to the presence of modal operators.2 The
second application of length_cons_assume is correct and possible in KeY, because
all formulas involved are in the scope of the same update.

The rule list_ctor_split enables users to introduce case splits for arbitrary list
expressions l in a proof: either such an expression has to denote an empty list
(l = nil), or the list must have length at least one and can be represented in the

2 It should be noted, however, that KeY will usually apply updates immediately and thus simplify the
formula {w := nil}p(length(v)) to p(length(v)); the illegal situation shown here therefore requires
some mischievous energy to construct in an actual proof. Rule length_cons_assume without flag
\sameUpdateLevel would be unsound nevertheless.
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form l = cons(a, l1). In sequent notation, such case splits can be described using the
following rule, in which c,d are required to be fresh constants, and φ [l] expresses
that the list expression l occurs anywhere in the conclusion:

Γ , l .= nil =⇒ φ [nil],∆ Γ , l .= cons(c,d) =⇒ φ [cons(c,d)],∆
Γ =⇒ φ [l],∆

In contrast to all taclets shown up to this point, list_ctor_split contains two goal
templates separated by a semicolon ;, each with one \replacewith and one \add
clause, corresponding to the two cases (or premises) to be generated when applying
the rule. The \add clauses take care of adding the equations l = nil and l = cons(a, l1)
in the antecedent:

• \add specifies formulas that are added to a sequent when the taclet is applied. The
argument of \add is a sequent with the formulas to be added to the antecedent
and the succedent, respectively.

The taclet also states, by means of the variable condition \new, that ska and skl
have to be instantiated with fresh Skolem symbols each time the taclet is applied.
The correctness of list_ctor_split can again be proven by means of induction: the
meaning formula of the taclet is essentially the formula discussed in Example 4.2.

Derived taclets can be used not only to augment user-defined theories, but also for
all built-in data types and logics of the KeY system: for each proof to be constructed,
a set of tailor-made taclets can be loaded into the system. The soundness of the
derived taclets has to be shown as outlined before, by first producing a proof of the
meaning formula of the taclets. For instance, a user might choose to introduce the
following rule for modus ponens of antecedent formulas:

Taclet
\rules {
mpLeft {

\formula phi, psi;
\assumes( phi ==> ) \find( phi -> psi ==> )

\replacewith( psi ==> )
};

}

Taclet

This rule is subsumed by propositional rules that already exist in KeY (since the KeY
calculus is complete for propositional logic), but might sometimes be more natural
to use in proofs than the built-in rules. The soundness of the rule can easily be shown
automatically be KeY.
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4.3 A Reference Manual of Taclets

This section introduces the concrete syntax of the taclet language and explains its
semantics. It is written in the style of a reference manual for the different taclet
constructs and provides most of the information that is necessary for writing one’s
own taclets to implement a new theory.

4.3.1 The Taclet Language

Taclets formalize sequent calculus rule schemata (see Section 3.5.1) within the KeY
system. They define elementary proof goal expansion steps and describe

1. to which parts of a sequent and
2. under which conditions the taclet can be applied, and
3. in which way the sequent is modified yielding new proof goals.

This information is declared in the different parts of the body of a taclet. Figure 4.5
shows the syntax of the taclet language, which is explained in more detail on the
following pages. The taclet language is part of the language for KeY input files
whose grammar is described in Appendix B. The nonterminal symbols of the gram-
mar that are not further expanded in Figure 4.5 (in particular 〈schematicSequent〉,
〈schematicFormula〉, and 〈schematicTerm〉) can be found in the appendix.

4.3.1.1 A Taclet Section

〈taclets〉 ::= \rules { ( 〈taclet〉 )∗ }
| \axioms { ( 〈taclet〉 | 〈axiom〉 )∗ }

KeY input files are divided into different section that define various parts of
the syntactical language that can be used (functions, predicates, sorts, . . . ). Taclets
are declared in their own sections headed by either rules or axioms. The header
should be used to differentiate between rules which define the semantics of a newly
introduced logical theory and theorems and lemma rules which follow from the
axioms. Rules consisting only of a single formula (see Section 4.3.1.3) are only
allowed in sections headed axioms .
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KeY Syntax

〈taclets〉 ::= \rules { ( 〈taclet〉 )∗ }
| \axioms { ( 〈taclet〉 | 〈axiom〉 )∗ }

〈taclet〉 ::=
〈identifier〉 {
〈localSchemaVarDecl〉∗
〈contextAssumptions〉? 〈findPattern〉?
〈applicationRestriction〉? 〈variableConditions〉?
( 〈goalTemplateList〉 | \closegoal )
〈ruleSetMemberships〉?

}

〈axiom〉 ::= 〈identifier〉 { 〈formula〉 }

〈localSchemaVarDecl〉 ::= \schemaVar 〈schemaVarDecl〉
〈schemaVarDecl〉 ::= 〈schemaVarType〉 〈identifier〉 ( , 〈identifier〉 )∗ ;

〈contextAssumptions〉 ::= \assumes ( 〈schematicSequent〉 )

〈findPattern〉 ::= \find ( 〈schematicExpression〉 )
〈schematicExpression〉 ::=

〈schematicSequent〉 | 〈schematicFormula〉 | 〈schematicTerm〉

〈applicationRestriction〉 ::= \inSequentState | \sameUpdateLevel
| \antecedentPolarity | \succedentPolarity

〈variableConditions〉 ::= \varcond ( 〈variableConditionList〉 )
〈variableConditionList〉 ::= 〈variableCondition〉 ( , 〈variableCondition〉 )∗
〈variableCondition〉 ::= \notFreeIn( 〈identifier〉 , 〈identifier〉 )

| \new( 〈identifier〉 , \dependingOn( 〈identifier〉 ))

〈goalTemplateList〉 ::= 〈goalTemplate〉 ( ; 〈goalTemplate〉 )∗
〈goalTemplate〉 ::=

〈branchName〉?
( \replacewith ( 〈schematicExpression〉 ) )?
( \add ( 〈schematicSequent〉 ) )?
( \addrules ( 〈taclet〉 ( , 〈taclet〉 )∗ ) )?

〈branchName〉 ::= 〈string〉 :

〈ruleSetMemberships〉 ::= \heuristics ( 〈identifierList〉 )
〈identifierList〉 ::= 〈identifier〉 ( , 〈identifier〉 )∗

KeY Syntax

Figure 4.5 The taclet syntax
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4.3.1.2 A Taclet Declaration

〈taclet〉 ::=
〈identifier〉 {
〈localSchemaVarDecl〉∗
〈contextAssumptions〉? 〈findPattern〉?
〈applicationRestriction〉? 〈variableConditions〉?
( 〈goalTemplateList〉 | \closegoal )
〈ruleSetMemberships〉?

}

Every taclet has got a unique name and a body containing elements describing
how the taclet is to be matched against a sequent followed by a description of what
action will then take place. The order of elements matters in taclet definitions, the
system will not accept taclet definitions that disobey this order of declaration.

4.3.1.3 Special Case: Axiom Declarations

〈axiom〉 ::=
〈identifier〉 {
〈formula〉

}

When defining a logical theory, it is often clearer to state the axiomatic basis as a
set of individual formulas rather than as inference rules that are matched against the
current proof state. The semantics of axiom rules is very similar to rules that consist
of a single \add clause. The first axiom length_nil from Figure 4.3, for instance,
is semantically equivalent to the rule

Taclet
length_nil {

\add( length(nil) = 0 ==> )
}

Taclet

A special situation arises if quantified axioms are to be defined as taclets. The
formula patterns in nonaxiomatic rule definitions are schematic formulas in which
only schema variables can be quantified. The second example from the same figure,
would hence have to be reformulated more lengthily when composed as a usual rule:

Taclet
length_cons {

\schemaVar \variable List l;
\schemaVar \variable any a;
\add( \forall l; \forall a;

length(cons(a, l)) = 1 + length(l) ==> )
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}

Taclet

Not all axioms can be stated as individual first-order formulas. The induction rule
list_induction from Figure 4.1, for instance, is a schematic rule (standing for the
infinite set of all possible instantiations of the schema variable phi) that cannot be
formulated using this notation.

4.3.1.4 Schema Variables: Declaring Matching Placeholders

〈localSchemaVarDecl〉 ::= \schemaVar 〈schemaVarDecl〉
〈schemaVarDecl〉 ::= 〈schemaVarType〉 〈identifier〉 ( , 〈identifier〉 )∗ ;

The patterns within the clauses of taclet definitions are templates which can
be applied to many concrete instantiations. They may, hence, contain placeholder
symbols called schema variables which are instantiated during rule application either
by matching the template description containing schematic entities to a part of the
current proof sequent or through user input.

Schema variables can be declared locally at the beginning of a taclet or globally
in a separate section before the taclet definitions. The available types of schema
variables are listed and explained in Section 4.3.2.

4.3.1.5 Context Assumptions: What Has to Be Present in a Sequent

〈contextAssumptions〉 ::= \assumes ( 〈schematicSequent〉 )

Context assumptions are—together with the \find part of a taclet—the means
of expressing that a goal modification can only be performed if certain formulas
are present in the goal. If a taclet contains an \assumes clause, then the taclet may
only be applied if the specified formulas are part of the goal that is supposed to be
modified. Assumptions specify side conditions for the application of taclets. The
formulas specified as assumptions are not modified3 by the taclet application.

4.3.1.6 Find Pattern: To Which Expressions a Taclet Can Be Applied

〈findPattern〉 ::= \find ( 〈schematicExpression〉 )
〈schematicExpression〉 ::=

〈schematicSequent〉 | 〈schematicFormula〉 | 〈schematicTerm〉

More specifically than just to a goal of a proof, taclets are usually applied to an
occurrence of either a formula or a term within this goal. This occurrence is called

3 It is possible, however, that an assumption is also matched by the \find pattern of the taclet. In
this situation a taclet application can modify or remove an assumption.
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the focus of the taclet application and is the only place in the goal where the taclet
can modify an already existing formula.

There are three different kinds of patterns a taclet can match on:

• A schematic sequent that contains a formula: this either specifies that the taclet
can be applied if the given formula is an element of the antecedent, or if it is an
element of the succedent, with the formula being the focus of the application. It
is allowed, however, that the occurrence of the formula is preceded by updates
(see the section on “State Conditions” and Section 3.5.1).
The question how many formulas may appear in a schematic sequent is not
settled by the grammar. The KeY implementation insists that there is exactly
one formula in schematic sequents in find patterns while in assumes patterns
multiple occurrences are possible, e.g., \assumes (phi1, phi2 ==>).

• A formula: the focus of the application can be an arbitrary occurrence of the
given formula (also as subformula) within a goal.

• A term: the focus of the application can be any occurrence of the given term
within a goal.

Taclets with the last two kinds of \find patterns are commonly referred to as
rewriting taclets.

The find pattern is an optional part of a taclet definition. However, most taclets
possess a find pattern which acts as a hook for the strategy during automatic proof
search by which it finds applicable rules. There are only few taclets without find
clause with the cut rule that allows for case distinction being the most prominent
example. Axioms (in Figure 4.3, e.g.) are also taclets without find clause since they
add knowledge unconditionally onto the sequent.

4.3.1.7 State Conditions: Where a Taclet Can Be Applied

〈applicationRestriction〉 ::= \inSequentState | \sameUpdateLevel |
\antecedentPolarity | \succedentPolarity

In JavaDL—like in any modal logic—, the same expression may evaluate differ-
ently depending on the modalities in whose context it occurs. A finer control over
where the focus of a taclet application may be located is needed. For rewriting rules
it is, for instance, often necessary to forbid taclet applications within the scope of
modal operators in order to ensure soundness. Likewise, some rewrite rules are only
sound if the matched focus lies within a context of a certain polarity.

There are three different “modes” that a taclet can have and that restrict its
applicability:

• \inSequentState: the most restrictive mode, in which the focus of a taclet
application must not be located within the scope of any modal operator.Likewise,
the assumptions that match the \assumes pattern must not be under the influence
of any modality.
There are two submodes for this mode that restrict under which logical con-
nectives a formula may appear. These modes anticipate on which side of the
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Table 4.1 Matrix of the different taclet modes and the different \find patterns

\find pattern is
sequent

\find pattern is
term or formula

No \find

Operators that are allowed above focus
\inSequentState None All nonmodal

operators
Forbidden
combination

\sameUpdateLevel Forbidden
combination

All nonmodal
operators, updates

Forbidden
combination

Default Updates All operators —
Which updates occur above \assumes and \add formulas

\inSequentState None None Forbidden
combination

\sameUpdateLevel Forbidden
combination

Same updates as
above focus

Forbidden
combination

Default Same updates as
above focus

None None

Which updates occur above \replacewith formulas
\inSequentState None None Forbidden

combination

\sameUpdateLevel Forbidden
combination

Same updates as
above focus

Forbidden
combination

Default Same updates as
above focus

Same updates as
above focus

None

For each combination, it is shown (1) where the focus of the taclet application can be located, and
(2) which updates consequently have to occur above the formulas that are matched or added by
\assumes, \add or \replacewith.

sequent a subformula would end up if the top-level formula were fully expanded
using the basic propositional sequent calculus rules. For example, in the se-
quent ¬a =⇒ b∧¬c, the formula c has “antecedent polarity” while a and b
have “succedent polarity” since the fully expanded equivalent sequent reads
c =⇒ b,a. The mode flags \antecedentPolarity or \succedentPolarity
can be added to constrain the application of a taclet to the one polarity or the
other.

• \sameUpdateLevel: this mode is only allowed for rewriting taclets and allows
the application focus of a taclet to lie within the scope of updates, but not in
the scope of other modal operators. The same updates that occur in front of
the application focus must also occur before the formulas referred to using
\assumes. The same update context is used when the \replacewith and \add
patterns are expanded.

• Default: the most liberal mode. For rewriting taclets, this means that the focus
can occur arbitrarily deeply nested and in the scope of any modal operator. If
the \find pattern of the taclet is a sequent, then the application focus may occur
below updates, but not in the scope of any other operator.
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While there are no restrictions on the location of the focus, for rewriting taclets
in default mode, formulas that are described by \assumes or \add must not be
in the scope of updates.

An important representative for rules which require the mode \sameUpdateLevel
is the rule applyEq:

Taclet
applyEq {

\schemaVar \variable \term int t1, t2
\assumes( t1 = t2 ==> )
\find( t1 ) \sameUpdateLevel
\replacewith( t2 )

}

Taclet

The mode flag \sameUpdateLevel is mandatory for the soundness of the rule as it
prevents the rule from illegally replacing terms which are influenced by an update.
In the sequent c .= 3 =⇒{c := 0}(c > 0), the term c > 0 cannot soundly be replaced
with 3 > 0 since the equality c .= 3 does not hold in the scope of the update. see also
the examples on page 119.

As an example for a taclet that must be declared using the state condition
\antecedentPolarity, consider the taclet

Taclet
weaken {

\schemaVar \formula phi;
\find( phi )
\antecedentPolarity
\replacewith( true )

}

Taclet

that allows replacing of any subformula φ within the goal by true. In general, replac-
ing a subformula by true is not a sound proof step. The taclet becomes, however, a
sound rule if the polarity restriction is added: Replacing a formula in the antecedent
by true strengthens the proof obligation and is thus a valid proof step. Using the mo-
difier \antecedentPolarity, one can strengthen the obligation without having to
fully expand its propositional structure. State conditions also affect the formulas that
are required or added by \assumes, \add or \replacewith clauses. The relation
between the positions of the different formulas is also shown in Table 4.1.
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4.3.1.8 Variable Conditions: How Schema Variables May Be Instantiated

〈variableConditions〉 ::= \varcond ( 〈variableConditionList〉 )
〈variableConditionList〉 ::= 〈variableCondition〉 ( , 〈variableCondition〉 )∗
〈variableCondition〉 ::= \notFreeIn( 〈identifier〉 , 〈identifier〉 )

| \new( 〈identifier〉 , \dependingOn( 〈identifier〉 ))

Schema variables are declared with a kind restricting how they can be instantiated.
Many kinds additionally support sorts limiting instantiation even further (see Sec-
tion 4.3.2). In many cases, one has to impose further restrictions on the instantiations
of schema variables, for instance, state that certain logical variables must not occur
free in certain terms. The taclet formalism is hence equipped with a simple language
for expressing such conditions, variable conditions. To each taclet, a list of variable
conditions can be attached which will be checked when the taclet is about to be
applied.

Many variable conditions are available in KeY, but only two are of importance
when defining new theories. See Appendix B.2.3.3 for a list of all available variable
conditions.

notFreeIn The variable condition \notFreeIn(lv, te) is satisfied if the logical
variable which is the instantiation of the schema variable lv does not occur (freely)
in the instantiation of te (which is a term or a formula). The following rule, for
instance, removes a universal quantifier if the quantified variable x does not occur
in the matrix b.

Taclet
deleteForall {

\schemaVar \formula b;
\schemaVar \variable int x;
\find( \forall x; b )
\varcond( \notFreeIn(x, b) )
\replacewith( b )

}

Taclet

new The variable condition \new(sk, \dependingOn(t)) is used to indicate
that the schema variable sk is to be instantiated with a fresh symbol which has
not yet been used anywhere else within the proof. A fresh symbol not yet present
is surely not constrained by a formula on the sequent and can thus stand in for an
arbitrary value. After naming the schema variable sk which is to be instantiated,
one has to include a \dependingOn() clause listing all schema variables on
which the value of sk may depend. This variable condition used to be mandatory
in older versions of KeY, but is optional now. It is still valuable for documentation
purposes.
As an example consider the following taclet pullOut which allows the user
to replace a concrete integer expression t by a fresh constant sk. The equality
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between the two is added as assumption to the antecedent of the sequent:

Taclet
pullOut {

\schemaVar \term int t;
\schemaVar \skolemTerm int sk;
\find( t )
\sameUpdateLevel
\varcond( \new(sk, \dependingOn(t)) )
\replacewith( sk )
\add( t = sk ==> )

}

Taclet

4.3.1.9 Goal Templates: The Effect of the Taclet Application

〈goalTemplateList〉 ::= 〈goalTemplate〉 ( ; 〈goalTemplate〉 )∗
〈goalTemplate〉 ::=

〈branchName〉?
( \replacewith ( 〈schematicExpression〉 ) )?
( \add ( 〈schematicSequent〉 ) )?
( \addrules ( 〈taclet〉 ( , 〈taclet〉 )∗ ) )?

〈branchName〉 ::= 〈string〉 :

If the application of a taclet on a certain goal and a certain focus is permitted
and is carried out, the goal templates of the taclet describe in which way the goal is
altered. Generally, the taclet application will first create a number of new proof goals
(split the existing proof goal into a number of new goals) and then modify each of
the goals according to one of the goal templates. A taclet without goal templates will
close a proof goal. In this case the keyword \closegoal is written instead of a list
of goal templates to clarify this behavior syntactically.

Goal templates are made up of three kinds of operations:

• \replacewith: if a taclet contains a \find clause, then the focus of the taclet
application can be replaced with new formulas or terms. \replacewith has to
be used in accordance with the kind of the \find pattern: if the pattern is a se-
quent, then also the argument of the keyword \replacewith has to be a sequent,
etc. In contrast to \find patterns, there is no restriction concerning the number
of formulas that may turn up in a sequent being argument of \replacewith. It
is possible to remove a formula from a sequent by replacing it with an empty
sequent, or to replace it with multiple new formulas.

• \add: independently of the kind of the \find pattern, the taclet application can
add new formulas to a goal.

• \addrules: a taclet can also create new taclets when being applied. We will not
go into this subject any deeper in this chapter.
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Apart from that, each of the new goals (or branches) can be given a name using a
<branchName> rule in order to improve readability of proof trees. Observe that this
rule has to be terminated by :.

Note that a semicolon separates goal templates. The action of the taclet whose goal
template is defined as \find(A) \replacewith(B) \add(C==>) has a single
goal template: it replaces A with B and adds C to the antecedent of the sequent. In
contrast to this, the taclet defined as \find(A) \replacewith(B) ; \add(C==>)
has got two goal templates such that this rules spawns two child sequences, one
replacing A with B and one with adding C to the sequent.

4.3.1.10 Rule Sets: Control How Taclets are Applied Automatically

〈ruleSetMemberships〉 ::= \heuristics ( 〈identifierList〉 )
〈identifierList〉 ::= 〈identifier〉 ( , 〈identifier〉 )∗

Each taclet can be declared to be element of one or more rule sets, which are used
by the proof strategies in KeY to choose the taclets which are applied automatically.
Rule sets describe collections of taclets that should be treated in the same way by the
strategies. The strategies work by assigning weights (called “costs”) to all possible
rule application and by choosing that applicable taclet for a sequent that has the
lowest cost. The cost of an applicable rule application decreases over time (i.e., while
other taclets take precedence), thus guaranteeing that every possible rule application
will eventually be taken (fairness).

There exists a number of rule sets in KeY, of which only a few are relevant for
creating new data types definitions. Most rule sets are special-purpose indicators used
by the strategies. Table 4.2 lists those rule sets interesting for the design of data types
and theories. Of particular interest are the rule sets ‘userTaclets1’, ‘userTaclets2’ and
‘userTaclets3’ whose priority can be chosen by the user and even modified at runtime
during an interactive KeY proof.

There is one strategy optimization implemented to increase the performance
of KeY’s JavaDL calculus: the One-Step-Simplifier. This built-in aggregator rule
accumulates taclet applications of the ‘concrete’ and ‘simplify’ rule sets and applies
them as one modification to a formula within the sequent. The rules applied by the
one-step-simplifier are the same as are applied by the strategies; however, proofs with
and without activated One-Step-Simplifier may sometimes differ due to the order in
which the individual rules are applied.

4.3.2 Schema Variables

Schema variables are placeholders for different kinds of syntactic entities that can
be used in taclets. Despite their name variable, schema variables are a very broad
concept in KeY. Schema variables can stand in for different kinds of variables (like
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Table 4.2 Most important rule sets in KeY

concrete Rules that simplify expressions containing concrete constant values
are subsumed into this rule set. This includes, for instance, the rules
that simplify x∧ true to x or 2+4 to 6. Taclets for computations with
concrete values have the highest priority and are applied eagerly.

simplify Rules that simplify expressions locally, without making addi-
tional assumptions, are collected into this rule set. This includes
a large number of taclets, for instance, the one that simplifies the
expression elementOf (o, f ,union(A,B)) into elementOf (o, f ,A)∨
elementOf (o, f ,B) for location sets A and B. Taclets in set ‘simplify’
are applied eagerly, but with less priority than taclets in ‘concrete’.

simplify_enlarging Simplification taclets that expand a definition such that the resulting
expression is considerably longer than the original one go into this
rule set. It is applied with more reluctance than the above rule sets
since it makes sequents grow. The rules which expand the predicate
wellFormed (modeling the well-formedness of reachable Java heap
models) belong to this set, for instance.

inReachableState-
Implication

Taclets that add new formulas onto the sequent go into this set. The
strategies make sure that the same formula is not added twice onto
the same branch which could make the prover run round in circles.
Rules in this rule set are applied more reluctantly and only if no rule
of the above rule sets can be applied. The name of this rule set is
historic, a more appropriate name would be ‘adding’.

userTaclets1
userTaclets2
userTaclets3

These three rule sets are empty by default and are meant to be
inhabited by user-defined taclets implemented for new theories and
data types. Their priority can be controlled interactively by the user
in the user interface of KeY.

logical variables or program variables), terms, formulas, programs or more abstract
things like types or modal operators.

Schema variables are used in taclet definitions. When a taclet is applied, the
contained schema variables will be replaced by concrete syntactic entities. This
process is called instantiation and ensures that schema variables never occur in
proof sequents. Some schema variables are instantiated by matching schematic
expressions against concrete expressions on the goal sequent, other instantiations
come up only during taclet application (through user interaction or by the automatic
proof strategies).

In order to ensure that no ill-formed expressions occur while instantiating schema
variables with concrete expressions, e.g., that no formula is inserted at a place where
only terms are allowed, the kind of a schema variable defines which entities the
schema variable can represent and may be replaced with. Schema variables can be
declared locally at the beginning of a taclet definition or globally at the beginning of
a file.

Example 4.3. In KeY syntax, we globally declare phi to be a schema variable rep-
resenting formulas and n a variable for terms of type int. The taclet definition for
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Table 4.3 Kinds of schema variables in the context of a type hierarchy (TSym,v)

\variable A Logical variables of type A ∈ TSym
\term A Terms of type Bv A (with A ∈ TSym)
\formula Formulas
\skolemTerm A Skolem constants/functions of type A ∈ TSym
\program t Program entities of type t

impRight locally declares another schema variables psi for formulas and makes
use of it and the global phi.

KeY
\schemaVariables {

\formula phi;
\term int n;

}

\rules {
impRight {

\schemaVar \formula psi;
\find( ==> phi -> psi )
\replacewith( phi ==> psi )

};
}

KeY

4.3.2.1 Schema Variable Kinds

The most important kinds of schema variables in the KeY system are given in
Table 4.3. A more detailed explanation of each of the different categories is given
on the following pages. Out of the kinds of schema variables in the table, the first
four are relevant if you want to introduce user-defined logical theories and calculus
rules. The last one is needed only when taclets are introduced that deal with JavaDL
program modalities. Many subkinds of program schema variables exist and the kind
is listed here only for completeness’ sake and will not be explained in detail.

Variables: \variable A

Schema variables for variables can be instantiated with logical variables (not with
program variables) that have static type A. In contrast to schema variables for terms,
logical variables of subtypes of A are not allowed for instantiation.4 Schema variables

4 Such a semantics is hardly ever desired and would make development of sound taclets difficult.
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of this kind can also be bound by quantifiers or variable-binding function symbols
(see Section 2.3.1). Bound occurrences of such schema variables will also be replaced
with concrete logical variables when instantiations are applied.

Terms: \term A

Schema variables for terms can be instantiated with arbitrary terms that have the static
type A or a subtype of A. Subtypes are allowed because this behavior is most useful
in practice: there are only very few rules for which the static type of involved terms
has to match some given type exactly.5 In general, there are no conditions on the
logical variables that may occur (free) in terms substituted for such schema variables.
When a term schema variable is in the scope of a quantifier, logical variables can
be “captured” when applying the instantiation, which needs to be considered when
writing taclets. The occurrence of variables within the instantiation of a term can be
restricted using the variable condition notFreeIn (see Section 4.3.1.8).

Formulas: \formula

Schema variables for formulas can be instantiated with arbitrary JavaDL formulas.
As for schema variables for terms, the substituted concrete formulas may contain
free variables, and during instantiation variable capture can occur.

Skolem Terms: \skolemTerm A

A schema variable for Skolem terms is instantiated with a fresh constant csk of type A
that has not occurred anywhere in the proof, yet.

The taclet application mechanism in KeY creates a fresh constant symbols every
time a taclet with such a schema variable is applied. This ensures that the inserted
symbols are always new, and, hence, can be used as Skolem constants. Compare the
remarks on page 30 in Chapter 2 and at the end of Section 3.5.1.1 on page 62 in
Chapter 3.

There are only few rules that require schema variables for Skolem terms. Some-
times it is helpful to be able to talk about a witnessing object which has some property.
One can realize that using a Skolem schema variable. An alternative would be to
state a corresponding quantified formula.

Schema variables of this kind always require a corresponding variable condition
\new (see Section 4.3.1.8).

5 In case the reader needs to implement a schema variable with exact type A, they may use the
modifier strict after \term.
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Other schema variable types

Three schema variable kinds are concerned with matching program constructs and
modalities. They are usually not required to define new data types and theories.
Schema variables of type \program match against syntactical entities6 within Java
programs, and they can be used to compose new rules for symbolic execution (see
Section 3.5.6) of Java modalities in JavaDL formulas.

Moreover, there exist a few special purpose schema variable types to match other
syntactical entities like updates or term labels, but we will not discuss them here
since they are not relevant for data type definitions.

4.3.2.2 Schema Variable Instantiation

Schema variables are replaced with concrete entities when a taclet is applied. This re-
placement can be considered as a generalization of the notion of ground substitutions
from Section 2.2.1 in Chapter 2, and like substitutions the replacement is carried
out in a purely syntactic manner. A mapping from schema variables to concrete
expressions is canonically extended to terms and formulas.

Definition 4.4 (Instantiation of Schema Variables). Let (FSym,PSym,VSym) be
a signature for a type hierarchy T = (TSym,v) and SV a set of schema variables
over T . An instantiation of SV is a partial mapping7

ι : SV 7→
(
DLFml ∪

⋃
A∈TSym

DLTrmA
)

that maps schema variables to syntactic entities without schema variables in accor-
dance with Table 4.3. An instantiation is called complete for SV if it is a total mapping
on SV.

For sake of brevity, we also talk about instantiations of schematic terms or formulas,
which really are instantiations of the set of schema variables that occur in the
expression. Given a complete instantiation of a schematic expression, we can turn it
into a concrete one by replacing all schema variables sv with the expression ι(sv).
To this end we can extend ι to expressions which may also contain schema variables.
In such expressions, a schema variable of type \formula can be used in places
where a formula is admissible, for instance.

Example 4.5. Table 4.4 illustrates the instantiation of the different kinds of schema
variables for first-order logic. We assume that f ,g : A→ A are function symbols,
a,c : A are constants, p : A and q, r are predicates and x:A is a logical variable.

6 like Java expressions, local variables, method or field references, types, switch labels, . . .
7 This is for the schema variables presented here. The domain of ι must be extended if schema
variables for program elements, or modalities are considered.
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Table 4.4 Examples of schematic expressions and their instantiations

Expression t Instantiation ι Instance ι(t)
f (te) {te 7→ g(a)} f (g(a))
f (va) {va 7→ x} f (x)
∀va; p(va) {va 7→ x} ∀x; p(x)
∀va; p(te) {va 7→ x,te 7→ x} ∀x; p(x)
∀va;phi {va 7→ x, phi 7→ p(x)} ∀x; p(x)
phi∧ p(te) {phi 7→ q∨ r, te 7→ f (a)} (q∨ r)∧ p( f (a))
p(sk)→∃va; p(va) {sk 7→ c, va 7→ x} p(c)→∃x; p(x)

Schema variables:
\variables A va; \term A te;
\formula phi; \skolemTerm A sk;

4.3.2.3 Well-formedness Conditions

Not all taclets that can be written using the syntax of Section 4.3.1 are meaningful
or desirable descriptions of rules. We want to avoid, in particular, rules whose
application could destroy well-formedness of formulas or sequents.

Following Chapter 2, we do not allow sequents of our proofs to contain free
logical variables. Unfortunately, this is a property that can easily be destroyed by
incorrect taclets:

Taclet
illegalTac1 { \find(==> \forall va; p(va))

\replacewith(==> p(va)) };
illegalTac2 { \find(==> \forall va; phi)

\replacewith(==> phi) };
Taclet

In both examples, the taclets remove quantifiers and possibly inject free variables
into a sequent: (1) schema variables of kind \variable could occur free in clauses
\add or \replacewith, or (2) a logical variable ι(va) could occur free in the
concrete formula ι(phi) that a schema variable phi represents, and after removing
the quantifier, the variable would be free in the sequent (the same can happen with
schema variables for terms). We will rule out both taclets by imposing suitable
constraints.

To avoid that taclets like illegalTac1 endanger the well-formedness of proof
sequents, schema variables of kind \variable must not occur free in \find,
\assumes, \replacewith and \add clauses. To forbid taclets like illegalTac2,
schema variables must be used consistently: If a schema variable t is in the scope of
a quantification over a schema variable va, then

1. every occurrence of t must also be in the scope of va, or
2. the taclet must be annotated with the variable condition \notFreeIn(t, va).

Both properties can be checked statically, and the KeY implementation rejects ill-
formed taclets immediately; they cannot even be loaded.
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4.3.3 Application of Taclets

This section informally explains the process of how taclets are applied as sequent cal-
culus rules on JavaDL sequents in KeY. A more formal introduction of the semantics
of taclets can be found in Section 4.4 on reasoning about the soundness of taclets.

A taclet schematically describes a set of sequent calculus rules. By instantiating
the schema variables in its clauses with concrete syntactical elements, it becomes
a concrete applicable rule in the calculus (see Section 2.2.2). When applying a
taclet, all schema variables must be instantiated according to their declaration. Many
instantiations are determined by matching schematic expressions against concrete
expressions on the goal sequent. Thus, it is determined if (and by which instantiation)
the schematic and the concrete expression can be unified.

But if schema variables occur in the taclet but not in the \find or \assumes
clauses, they cannot be instantiated by matching. In interactive proofs, the user is then
asked to provide suitable instantiations; in automatic proofs, heuristics are invoked to
come up with instantiations (e.g., for finding suitable ground instances of quantified
statements).

An important role in the taclet application process is played by the \find clause
since it determines where on the sequent the taclet performs rewriting actions. Both
in automatic and interactive reasoning, this clause chooses the application focus
(see Section 4.3.1.6) and thus triggers the rule application. We write focus to denote
the located application focus of a rule application, that is, focus refers actually to
a position within the sequent. We will use the notation focus also for the matched
term or formula. The side conditions (variable conditions, \assumes clause, state
conditions) are checked afterwards, and only if all of them are satisfied will the rule
be applied.

Consider a well-formed taclet t and let SV denote the set of schema variables in t.
An applicable instantiation of t is a tuple (ι ,U ,Γ =⇒ ∆ , focus) consisting of

• a complete instantiation ι of SV,
• an update U describing the context of the taclet application (U can be empty),
• a sequent Γ =⇒ ∆ to which the taclet is supposed to be applied, and
• an application focus focus within Γ =⇒ ∆ that is supposed to be modified (we

write focus =⊥ if t does not have a \find clause)

that satisfies the following conditions:

1. ι is an admissible instantiation of SV,
2. ι satisfies all variable conditions of taclet t,
3. all logical variables ι(va) represented by schema variables va of kind \variable

in t are distinct,
4. if t has a \find clause, then the position of focus is consistent with the state

conditions of t (Table 4.1),
5. U is derived from focus according to the middle part “Which updates have to

occur above \assumes and \add formulas” of Table 4.1 (for focus =⊥ and the
fields “forbidden combination” we choose the empty update skip),
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6. for each formula φ of an \assumes clause of t, Γ =⇒ ∆ contains a correspond-
ing formula U ι(φ) (on the correct side),

7. if t has a clause \find( f), where f is a formula or a term, then ι( f ) = focus
(the \find pattern has to match the focus of the application),

8. if t has a clause \find( f), where f is a sequent containing a single formula φ ,
then ι(φ) = focus and the formulas φ and focus occur on the same sequent side
(both antecedent or both succedent),

9. if a state condition \antecedentPolarity or \succedentPolarity is part
of the rewrite taclet t (see Section 4.3.1.7), then focus must have antecedent/-
succedent polarity,

10. for every schema variable sv of t of kind \term or \formula and all free
variables x ∈ fv(ι(sv)),

• sv is in the scope of a schema variable of type \variable with ι(va) = x,
or

• t contains at most one \replacewith clause, sv turns up only in \find,
\replacewith or \varcond clauses of t, and x is bound above focus.

Once a complete taclet instantiation has been found applicable, it can be used to
perform a step in the sequent calculus. Applying it onto a focus within an open proof
goal spawns a set of new sequents, which are new proof goals after the application.
The emerging sequents are obtained by modification of the original, carrying out the
modification descriptions in the taclet’s goal templates. The following informally
describes the effects that the application of a taclet t together with an applicable
instantiation (ι ,U ,Γ =⇒ ∆ , focus) has on the goal.

First, the sequent is duplicated into new goals according to the number of goal
templates (see Section 4.3.1.9) declared in the taclet. Every new goal corresponds to
one goal template in t where its effects will be carried out. The new goals become
children of the original goal in the sequent calculus proof tree. The following steps
are then repeated for every new goal. If there are no goal templates in the taclet
(indicated by \closegoal) the rule application successfully closes the proof branch.

1. If the goal template has a clause \replacewith(rw), where rw is a formula
or a term, then focus is replaced with ι(rw). If rw is a term and the type Anew
of ι(rw) is not a subtype of the type Aold of focus, in symbols Anew 6v Aold, then
focus is replaced with (Aold)ι(rw) instead of ι(rw) (a cast has to be introduced
to prevent ill-formed terms).

2. If the goal template has a clause \replacewith(rw), where rw is a sequent,
then the formula containing focus is removed from Γ =⇒ ∆ , and for each for-
mula φ in rw the formula U ι(φ) is added (on the correct side).

3. If the goal template has a clause \add(add), then for each formula φ in add the
formula U ι(φ) is added (on the correct side).

It is important to note that it is not possible to modify parts of the sequent other
than through the focus. Formulas can be added to the sequent, but never can formulas
that are not in the focus be removed. In terms of schematic sequent calculus rules,
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this means that the context of the sequent (Γ and ∆ ) is always retained through taclet
application.

4.4 Reflection and Reasoning about Soundness of Taclets

This section summarizes results published by Bubel et al. [2008]. See the paper for
further details.

Taclets are a general language for describing proof modification steps. In order to
ensure that the rules that are implemented using taclets are correct, we can consider
the definitions of the previous sections and try to derive that no incorrect proofs can
be constructed using taclets. This promises to be tedious work, however, and is for a
larger number of taclets virtually useless if the reasoning is performed informally:
we are bound to make mistakes.

For treating the correctness of taclets in a more systematic way, we would rather
like to have some calculus for reasoning about soundness of taclets. This is provided
in this section for some of the features of taclets. To this end, a two-step translation
will be presented that define first-order soundness proof obligations for taclets.

• We describe a translation of taclets into formulas (the meaning formulas of
taclets), such that a taclet is sound if the formula is valid. This translation captures
the semantics of the different clauses that a taclet can consist of. Meaning
formulas do, however, still contain schema variables, which means that for
proving their validity, (higher-order) proof methods like induction over terms or
programs are necessary.

• A second transformation handles the elimination of schema variables in meaning
formulas, which is achieved by replacing schema variables with Skolem terms
or formulas. The result is a formula in first-order logic, such that the original
formula is valid if the derived formula is valid.

The two steps can be employed to validate taclets in different theorem prover contexts:

• Only the first step can be carried out, and one can reason about the resulting
formula using an appropriate proof assistant in which the semantics of schema
entities can be modeled, e.g., based on higher-order logic.

• Both steps can be carried out, which opens up for a wider spectrum of provers or
proof assistants with which the resulting formulas can be tackled. The formulas
can in particular be treated by KeY itself.

Proving KeY taclets within KeY is an interesting feature for lemma rules, i.e.,
taclets can be proven sound referring to other—more basic—taclets. The complete
translation from taclets to formulas of dynamic logic can automatically be performed
by KeY and makes it possible to write and use lemmas whenever this is useful, see
[Bubel et al., 2008].

Proof obligations cannot be generated for all taclets in KeY. At the time of writing
this, the following artifacts within a taclet definition keep it from being verifiable
within KeY:
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• program modalities in any clause,
• variable conditions other than \new and \notFreeIn (see Section B.2.3.3),
• meta-functions (symbols which are evaluated at rule application time by execut-

ing Java code),
• generic sorts, or
• schema variables other \term, \formula, \variable.

In the following, we first give a recapitulation about when rules of a sequent
calculus are sound, and then show how this notion can be applied to the taclet
concept. It has to be noted, however, that although reading the following pages in
detail is not necessary for defining new taclets, it might help to understand what
happens when lemmas are loaded in KeY.

4.4.1 Soundness in Sequent Calculi

This section continues the discussion of Sequent Calculi begun in Section 2.2.2 by
introducing a concept of soundness and criteria for it. In the whole section we write
(Γ =⇒ ∆)∗ :=

∧
Γ →

∨
∆ for the formula that expresses the meaning of the sequent

Γ =⇒ ∆ . This formula is, in particular:

(=⇒ φ)∗ = φ , (φ =⇒)∗ = ¬φ .

By the validity of a sequent we thus mean the validity of the formula (Γ =⇒ ∆)∗.
A further notation that we are going to use is the following “union” of two

sequents: (
Γ1 =⇒ ∆1

)
∪
(
Γ2 =⇒ ∆2

)
:= Γ1∪Γ2 =⇒ ∆1∪∆2 .

Because antecedents and succedents are defined to be sets, duplicate formulas will
not appear twice.

Definition 4.6 (Soundness). A sequent calculus C is sound if only valid sequents
are derivable in C, i.e., if the root Γ =⇒ ∆ of a closed proof tree is valid.

This general definition does not refer to particular rules of a calculus C, but
treats C as an abstract mechanism that determines a set of derivable sequents. For
practical purposes, however, it is advantageous to formulate soundness in a more
“local” fashion and to talk about the rules (or taclets implementing the rules) of C.
Such a local criterion can already be given when considering rules in a very abstract
sense: a rule R can be considered as an arbitrary (but at least semi-decidable) relation
between tuples of sequents (the premisses) and single sequents (the conclusions).
Consequently, (〈P1, . . . ,Pk〉, Q) ∈ R means that the rule R can be applied in an
expansion step

P1 · · · Pk

Q
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The following lemma relates the notion of soundness of a calculus with rules:

Lemma 4.7. A calculus C is sound, if for each rule R ∈C and also for all tuples
(〈P1, . . . ,Pk〉, Q) ∈ R the following implication holds:

if P1, . . . ,Pk are valid, then Q is valid. (4.7)

If condition (4.7) holds for all tuples (〈P1, . . . ,Pk〉, Q) ∈ R of a rule R, then this
rule is also called sound.

4.4.2 Meaning Formulas of Sequent Taclets

In our case, the rules of a calculus C are defined through taclets t over a set SV of
schema 15variables, and within the next paragraphs we discuss how Lemma 4.7 can
be applied considering such a rule. For a start, we consider a taclet whose \find
pattern is a sequent (without implicit update) and that has the following basic shape:

Taclet
t1 { \assumes(assum) \find(findSeq) \inSequentState

\replacewith(rw1) \add(add1);
...
\replacewith(rwk) \add(addk) };

Taclet

Using text-book notation for rules in sequent calculi (as in Chapter 2), the taclet
describes the rule

rw1∪add1∪assum∪ (Γ =⇒ ∆) · · · rwk∪addk∪assum∪ (Γ =⇒ ∆)
findSeq∪assum∪ (Γ =⇒ ∆)

In order to apply Lemma 4.7, it is then necessary to show implication (4.7) for all
possible applications of the rule, i.e., essentially for all possible ways the schema
variables that now turn up in the sequents can be instantiated. If ι is an applicable
schema variable instantiation, and if Γ =⇒ ∆ is an arbitrary sequent, then

Pi = ι(rwi∪addi∪assum)∪ (Γ =⇒ ∆) (i = 1, . . . ,k),
Q = ι(findSeq∪assum)∪ (Γ =⇒ ∆) . (4.8)

Implication (4.7) can be replaced with:(
P∗1 ∧ . . .∧P∗k → Q∗

)
is valid. (4.9)

Implication (4.7) is a global soundness criterion since validity of the premisses
implies validity of the conclusion while the implication (4.9) is local in the sense
that the premisses implies the conclusion in any single structure.



4.4. Reflection and Reasoning about Soundness of Taclets 141

This new condition is stronger than (4.7), however not significantly stronger
because of the side formulas Γ =⇒ ∆ that can be chosen arbitrarily. Inserting the
sequents (4.8) extracted from taclet t1 into (4.9) leads to a formula whose validity is
sufficient for implication (4.7):

P∗1 ∧ . . .∧P∗k → Q∗ =
∧k

i=1
(
ι(rwi∪addi∪assum)∪ (Γ =⇒ ∆)

)∗
→
(
ι(findSeq∪assum)∪ (Γ =⇒ ∆)

)∗ (4.10)

In order to simplify the right hand side of Equation (4.10), we can now make use
of the fact that ι distributes through all propositional connectives (→, ∧, ∨, etc.)
and also through the union of sequents. Thus, the formulas of Equation (4.10) are
equivalent to

ι

( k∧
i=1

(
rwi∗∨addi∗

)
→
(
findSeq∗∨assum∗

))
∨ (Γ =⇒ ∆)∗.

Showing that this formula holds for all sequents Γ =⇒ ∆ , i.e., in particular for the
empty sequent, is equivalent to proving

ι

( k∧
i=1

(
rwi∗∨addi∗

)
→
(
findSeq∗∨assum∗

))
for all possible instantiations ι . We call the formula

M(t1) =
k∧

i=1

(
rwi∗∨addi∗

)
→
(
findSeq∗∨assum∗

)
(4.11)

the meaning formula of t1. From the construction of M(t1), it is clear that if M(t1)
is valid whatever expressions we replace its schema variables with, then the taclet t1
will be sound. Note that the disjunctions ∨ in the formula stem from the union
operator on sequents. Intuitively, given that the premisses of a rule application are
true (the formulas on the left side of the implication), it has to be shown that at least
one formula of the conclusion is true.

We can easily adapt Equation (4.11) if some of the clauses of t1 are missing in a
taclet:

• If the \find clause is missing: in this case, findSeq can simply be consid-
ered as the empty sequent, which means that we can set findSeq∗ = false in
Equation (4.11).

• If \assumes or \add clauses are missing: again we can assume that the respec-
tive sequents are empty and set

assum∗ = false, addi∗ = false

• If a clause \replacewith(rwi) is not present: then we can normalize by set-
ting rwi = findSeq, which means that the taclet will replace the focus of the
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application with itself. If both \replacewith and \find are missing, we can
simply set rwi∗ = false.

Example 4.8. We consider the taclet impRight from Ex. 4.3 that eliminates implica-
tions within the succedent. The taclet represents the rule schema

phi =⇒ psi
=⇒ phi→ psi

and the meaning formula is the logically valid formula

M(impRight)
= ( ¬phi∨psi︸ ︷︷ ︸

=rw1∗

)→ ( phi→ psi︸ ︷︷ ︸
=findSeq∗

)≡ ¬(phi→ psi)∨ (phi→ psi) .

4.4.3 Meaning Formulas for Rewriting Taclets

The construction given in the previous section can be carried over to rewriting taclets.

Taclet
t2 { \assumes(assum) \find(findTerm) \inSequentState

\replacewith(rw1) \add(add1);
...
\replacewith(rwk) \add(addk) };

Taclet

In this case, findTerm and rw1, . . . , rwk are schematic terms. We can, in fact, reduce
the taclet t2 to a nonrewriting taclet (note, that the union operator ∪ is not part of
the actual taclet language).

Taclet
t2b { \assumes(assum) \inSequentState

\add( (findTerm=rw1 ==>) ∪ add1 );
...
\add( (findTerm=rwk ==>) ∪ addk ) };

Taclet

We create a taclet that adds equations findTerm=rw1, . . . , findTerm=rwk to the
antecedent. Using taclet t2b and a general rule for applying equations in the an-
tecedent, the effect of t2 can be simulated. On the other hand, also taclet t2b can be
simulated using t2 and standard rules (cut, reflexivity of equality), which means that
it suffices to consider the soundness of t2b. Equation (4.11) and some propositional
simplifications then directly give us the meaning formula
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M(t2b) ≡ M(t2) =
k∧

i=1

(
findTerm .= rwi→ addi∗

)
→ assum∗ . (4.12)

We have looked at rewriting taclets for terms so far. In the same way, rewriting
taclets for formulas can be treated, if equations in (4.12) are replaced with equiva-
lences:

k∧
i=1

(
(findFor↔ rwi)→ addi∗

)
→ assum∗ (4.13)

For a taclet like t2 but with mode flag \succedentPolarity (instead of
\inSequentSate), the taclet application is limited to occurrences with positive
polarity; the meaning formula is hence weaker and has the equivalence of (4.13)
replaced by an implication:

k∧
i=1

(
(findFor→ rwi)→ addi∗

)
→ assum∗

Likewise, for a taclet which is annotated with \succedentPolarity, the meaning
formula has this implication reversed:

k∧
i=1

(
(rwi→ findFor)→ addi∗

)
→ assum∗

Example 4.9. Let us go back to the taclet applyEq introduced in Section 4.3.1.7 on
page 127. According to (4.12) its meaning formula is

M(applyEq) = (t1 .= t2→ false)→ t1 .= t2 (4.14)

with t1 and t2 schema variables. The implication of false is introduced since the
taclet does not specify an \assumes clause. The next section will elaborate how the
schematic meaning formula is refined into a concrete proof obligation.

4.4.4 Elimination of Schema Variables

Meaning formulas of taclets in general contain schema variables, i.e., placeholders
for syntactic constructs like terms, formulas or programs. In order to prove a taclet
sound, it is necessary to show that its meaning formula is valid for all possible
instantiations of the schema variables.

Let us once more look at taclet applyEq (⇒ Ex. 4.9). In order to prove the
taclet sound, we would have to prove the meaning formula (4.14) valid for all
possible terms ι(t1), ι(t2) that we can substitute for t1, t2. Note that this syntactic
quantification ranges over terms and is completely different from a first-order formula
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∀int x; p(x), which is semantic and expresses that x ranges over all elements in the
set of integers.

Instead of explicitly enumerating instantiations using techniques like induction
over terms, it is to some degree possible, however, to replace the syntactic quantifi-
cation with an implicit semantic quantification through the introduction of Skolem
symbols. For M(applyEq), it is sufficient to prove validity of the formula

φ = (c .= d→ false)→ c .= d

in which c, d are fresh constant symbols. The validity of M(applyEq) for all other
instantiations follows, because the symbols c, d can take the values of arbitrary terms
ι(t1), ι(t2). Fortunately, φ is only a first-order formula that can be tackled with a
calculus as defined in Chapter 2.

We will only sketch how Skolem symbols can be introduced for some of the
schema variable kinds that are described in Section 4.3.2, more details can be found
in [Bubel et al., 2008]. For the rest of the section, we assume that a taclet t and
its meaning formula M(t) are fixed. We then construct an instantiation ιsk of the
schema variables that turn up in t with Skolem expressions. In the example above,
this instantiation would be

ιsk = {t1 7→ c, t2 7→ d}

Variables: \variable A

KeY makes the names of bound variables unique by internally renaming them8.
Thus we need only consider instantiations ι that map different schema variables va
to distinct logical variables. Such variables only occur bound in taclets and the
identity of bound variables does not matter. Therefore, this instantiation ιsk(va)
of a \variable schema variable va can simply be chosen to be a fresh logical
variable ιsk(va) = x of type A.

Terms: \term A

As already shown in the example above, a schema variable te for terms can be
eliminated by replacing it with a term. While it sufficed to choose Skolem constants
in the above case, in general, also the logical variables Π(te) that are bound in the
context of te have to be taken into account and have to appear as arguments of the
Skolem functions symbol. The reason is that such variables can occur in the term that
is represented by te. We choose the instantiation ιsk(te) = fsk(x1, . . . ,xl), where

• x1, . . . ,xl are the instantiations of the schema variables va1, . . . ,val , i.e., xi =
ιsk(vai),

8 applying so-called α-conversions
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• va1, . . . ,val are the (distinct) context variables of the variable te in the taclet t:
Π(te) = {va1, . . . ,val},

• fsk : A1, . . . ,Al → A is a fresh function symbol,
• A1, . . . ,Al are the types of x1, . . . ,xl and te is of kind \term A.

An example motivating the more complex Skolem expression will follow after
the next paragraph which first describes a very similar situation.

Formulas: \formula

The elimination of schema variables phi for formulas is very similar to the elimina-
tion of term schema variables. The main difference is, obviously, that instead of a
program variable, which is a nonrigid function symbol, a nonrigid predicate symbol
has to be introduced: ιsk(phi) = psk(x1, . . . ,xl), where

• x1, . . . ,xl are the instantiations of the schema variables va1, . . . ,val , i.e., xi =
ιsk(vai),

• va1, . . . ,val are the (distinct) context variables of the variable te in the taclet t:
Πt(te) = {va1, . . . ,val},

• psk : A1, . . . ,Al is a fresh predicate symbol,
• A1, . . . ,Al are the types of x1, . . . ,xl .

As an example to demonstrate the necessity of the arguments x1, . . . ,xl , consider
the following unsound9 taclet:

Taclet
swapMixedQuants {

\schemaVar \variable int x;
\schemaVar \variable int y;
\schemaVar \formula phi;

\find(\exists y; \forall x; phi)
\replacewith(\forall x; \exists y; phi)

}

Taclet

Its meaning formula (according to (4.12)) is

M(swapMixedQuants) = (∃x;∀y;phi) ↔ (∀y;∃x;phi)

with x, y and phi schema variables. Were phi replaced by a Skolem (propositional)
constant ι(phi) = c and x, y by logical variables x, y, then the instantiated meaning
formula ι(M(swappedMixedQuants)) = (∃x;∀y;c) ↔ (∀y;∃x;c) ≡ c↔ c would
be valid although the taclet is clearly unsound.

9 This taclet can, e.g., be used to prove ∃int x;∀int y;x .= y which is not a valid formula.
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If, on the over hand, the instantiation for phi is chosen as ι ′(phi) = b(x,y)
with x and y as dependencies to a fresh Skolem predicate symbol b : int, int, the
resulting formula ι ′(M(swapMixedQuants)) = (∃x;∀y;b(x,y)) ↔ (∀y;∃x;b(x,y))
is not valid.

Skolem Terms: \skolemTerm A

Schema variables of kind \skolemTerm A are responsible for introducing fresh con-
stant or function symbols in a proof. Such variables could in principle be treated like
schema variables for terms, but this would strengthen meaning formulas excessively
(often, the formulas would no longer be valid even for sound taclets).

We can handle schema variables sk for Skolem terms more faithfully: if in
implication (4.7) the sequents P1, . . . ,Pk contain symbols that do not occur in Q, then
these symbols can be regarded as universally quantified. Because a negation occurs in
front of the quantifiers in (4.9) (the quantifiers are on the left side of an implication),
the symbols have to be considered as existentially quantified when looking at the
whole meaning formula. This entails that schema variables for Skolem terms can be
eliminated and replaced with existentially quantified variables: ιsk(sk) = x, where x
is a fresh variable of type A.10 At the same time, an existential quantifier ∃x; has to
be added in front of the whole meaning formula.

Example 4.10. The taclet pullout allows replacing any ground term t with a fresh
Skolem constant sk; equality between them is guaranteed by an added assumption.

Taclet
pullout {

\schemaVar \term G t;
\schemaVar \skolemTerm G sk;

\find( t ) \sameUpdateLevel
\varcond( \new(sk, \dependingOn(t)) )

\replacewith( sk )
\add( t = sk ==> )

};

Taclet

The meaning formula of the taclet pullout is

M(pullout) = (t .= sk→¬t .= sk)→ false ≡ t .= sk

10 Strictly speaking, this violates Definition 4.4, because schema variables for Skolem terms must
not be instantiated with variables according to this definition. The required generalization of the
definition is, however, straightforward.
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according to (4.12). In order to eliminate the schema variables of this taclet, we first
assume that the schematic type11 G of the taclet is instantiated with a concrete type A.

If both schema variables t and sk were replaced by Skolem constants c and d,
the resulting formula c .= d would be far from valid—though the taclet pullout is
sound.

To overcome this imprecision, the schema variable sk can be replaced with a fresh
logical variable ιsk(sk) = x of type A. The schema variable t is eliminated through
the instantiation by a Skolem constant ιsk(t) = d. Finally, we add an existential
quantifier ∃x. The resulting formula without schema variables is

∃x; ιsk(M(pullout)) ≡ ∃x;(x .= d)

which is obviously universally valid.

The Order Matters

To establish the soundness of taclets for a theory, validity of the meaning formu-
las of all taclets in the theory must be shown. To this end, it would be convenient
if already proved taclets could be used in the soundness proofs of the remaining
taclets.

Such taclet applications must be restricted however: If taclets could be used
unconditionally in each other’s soundness proofs, two unsound taclets could be
abused to mutually establish their validity. The consistency of the taclet rule
base could thus be compromised.

A simple heuristics guarantees that such cyclic dependencies within the set
of taclets of a theory are impossible: For the verification of the soundness of
taclet, only taclets which are defined before it in the input file may be used.

This requires that the order of taclets is well thought of for the design of
a theory to simplify the proof workload. Naturally, the axioms which fix the
semantics, go first; followed by taclets capturing reusable lemmas, optimized
special purpose taclets follow last.

11 Schematic types, known as generic sorts in KeY, are like schema variables for type references
that can be instantiated by concrete types.



Chapter 5
Theories

Peter H. Schmitt and Richard Bubel

5.1 Introduction

For a program verification tool to be really useful it needs to be able to reason about
at least the most important data types, both abstract data types and those built into
the programming language. In Section 5.2 below the theory of finite sequences of
arbitrary objects, allowing in particular arbitrary nestings of sequences in sequences,
is presented. This presentation covers axioms for a core theory plus definitional
extensions plus consistency considerations.

Section 5.3 contains an axiomatization of Java’s String data type. The theory of
the mathematical integers has already been dealt with in Subsection 2.4.2. Section 5.4
below explains how the KeY system deals with the Java integer data types.

5.2 Finite Sequences

This section develops and explains the theory Tseq of finite sequences. By Seq we
denote the type of finite sequences. The vocabulary Σseq of the theory is listed
in Figure 5.1. We will start with a simple core theory CoTseq and incrementally
enrich it via definitional extensions. Typing of a function symbol f is given as
f : A1× . . .×An→ R with argument types Ai and result type R, typing of a predicate
symbol p as p(A1× . . .×An).

Our notion of a sequence is rather liberal, e.g., 〈5,6,7,8〉 is a sequence, in fact a se-
quence of integers. But the heterogeneous and nested list 〈0,〈 /0,seqEmpty,null〉, true〉
is also allowed.

The semantics of the symbols of the core theory will be given in Definition 5.3.
We provide here a first informal account of the intended meaning. The function value
seqLen(s) is the length of list s. Since for heterogeneous lists there is no way the
type of an entry can be recovered from the type of the list, we provide a family
of access functions seqGetA that yields the cast to type A of the i-th entry in list s.

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 149–166, 2016
DOI: 10.1007/978-3-319-49812-6 5
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Core Theory
A::seqGet : Seq× int→ A for any type Av Any
seqGetOutside : Any
seqLen : Seq→ int

Variable Binder
seqDef : int× int×Seq→ Seq

Definitional Extension
seqDepth : Seq→ int
seqEmpty : Seq
seqSingleton : Any→ Seq
seqConcat : Seq×Seq→ Seq
seqSub : Seq× int× int→ Seq
seqReverse : Seq→ Seq
seqIndexOf : Seq×Any→ int
seqNPerm(Seq)
seqPerm(Seq,Seq)
seqSwap : Seq× int× int→ Seq
seqRemove : Seq× int→ Seq
seqNPermInv : Seq→ Seq

Figure 5.1 The vocabulary Σseq of the theory Tseq of finite sequences

(The concrete, ASCII syntax is A::seqGet, but we stick here with the slightly shorter
notation seqGetA.) The constant seqGetOutside is an arbitrary element of the top
type Any. It is, e.g., used as the value of any attempt to access a sequence outside
its range. seqDef is a variable binder symbol, check Section 2.3.1 for explanation.
Its precise semantics is given in Definition 5.2 below. The reader may get a first
intuition from the simple example seqDef{u}(1,5,u2) that represents the sequence
〈1,4,9,16〉. We will comment on the symbols in the definitional extension, when we
are finished with the core theory following page 152.

lenNonNegative
∀Seq s;(0≤ seqLen(s))

equalityToSeqGetAndSeqLen
∀Seq s1,s2;(s1

.= s2 ↔ seqLen(s1)
.= seqLen(s2) ∧

∀int i;(0≤ i < seqLen(s1)→ seqGetAny(s1, i)
.= seqGetAny(s2, i)))

getOfSeqDef
∀int i,ri, le;∀Any x̄;(

((0≤ i∧ i < ri− le)→ seqGetA(seqDef{u}(le,ri, t), i) .= castA(t{(le+ i)/u}))∧
(¬(0≤ i∧ i < ri− le)→ seqGetA(seqDef{u}(le,ri, t), i) .= castA(seqGetOutside)))

lenOfSeqDef
∀int ri, le;((le < ri→ seqLen(seqDef{u}(le,ri, t)) .= ri− le)∧

(ri≤ le→ seqLen(seqDef{u}(le,ri, t)) .= 0))

Figure 5.2 Axioms of the core theory CoTseq (in mathematical notation)
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The axioms of the core theory CoTseq are shown in Figure 5.2 in mathematical
notation together with the names of the corresponding taclets. In getOfSeqDef the
quantifier ∀Any x̄ binds the variables that may occur in term t.

Definition 5.1 below extends the semantics of type domains given in Figure 2.10
on page 45. More precisely, the definition gives the construction to obtain DSeq when
all other type domains are fixed.

Definition 5.1 (The type domain DSeq). The type domain DSeq is defined via the
following induction:

DSeq :=
⋃
n≥0

Dn
Seq

where

U = DAny \DSeq

D0
Seq = {〈〉}

Dn+1
Seq = {〈a0, . . . ,ak−1〉 | k ∈ N and ai ∈ Dn

Seq∪U,0≤ i < k} for n≥ 0

The type domain for Seq being fixed we now may deliver on the forward reference
after Definition 2.22 and define precisely the meaning of the variable binder symbol
seqDef{iv}(le,ri,e) in the JFOL structureM . As already done in Section 2.4.5 we
will use the notation tM,β for term evaluation instead of valM,β (t). We further will
suppress β and write tM if it is not needed or not relevant.

Definition 5.2.

seqDef{iv}(le,ri,e)M,β =

 〈a0, . . .ak−1〉 if (ri− le)M,β = k > 0 and ai = eM,βi

with βi = β [le+ i/iv] and all 0≤ i < k
〈〉 otherwise

Remember, that β [le+ i/iv] is the variable assignment that coincides with β expect
for the argument iv where it takes the value le+ i.

The core vocabulary of CoTseq is interpreted as follows:

Definition 5.3.

1. seqGetMA (〈a0, . . . ,an−1〉, i) =
{

castMA (ai) if 0≤ i < n
castMA (seqGetOutsideM ) otherwise

2. seqLenM (〈a0, . . . ,an−1〉) = n
3. seqGetOutsideM ∈ DAny arbitrary.

To have a name for it we might call a structure M in the vocabulary ΣJ (see Fig-
ure 2.4) plus the core vocabulary of finite sequences a CoreSeq structure, if its
restriction to the JFOL vocabulary is a JFOL structure as defined in Section 2.4.5
and, in additionM satisfies Definition 5.3. We observe, that the expansion of a JFOL
structureM0 to a CoreSeq structure is uniquely determined once an interpretation
seqGetOutsideM0 is chosen.
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Theorem 5.4. The theory CoTseq is consistent.

Proof. It is easily checked that the axioms in Figure 5.2 are true in all CoreSeq
structures. The explicit construction guarantees that there is at least one CoreSeq
structure.

∀Seq s;(∀int i;((0≤ i < seqLen(s)→¬instanceSeq(seqGetAny(s, i)))→ seqDepth(s) .= 0)∧
∀Seq s;(∀int i;((0≤ i < seqLen(s)∧ instanceSeq(seqGetAny(s, i)))→

seqDepth(s) > seqDepth(seqGetSeq(s, i)))∧
∀Seq s;(∃int i;(0≤ i < seqLen(s)∧ instanceSeq(seqGetAny(s, i)))→

∃int i;(0≤ i < seqLen(s)∧ instanceSeq(seqGetAny(s, i))∧
seqDepth(s) .= seqDepth(seqGetSeq(s, i))+1)

Figure 5.3 Definition of seqDepth

We observe that seqDepth(s) as defined in Figure 5.3 equals the recursive defini-
tion

seqDepth(s) = max{seqDepth(seqGetSeq(s, i)) | 0≤ i < seqLen(s)∧
instanceSeq(seqGetSeq(s, i))}

with the understanding that the maximum of the empty set is 0. Since we have not
introduced the maximum operator we had to resort to the formula given above. The
function seqDepth is foremost of theoretical interest and at the moment of this writing
not realized in the KeY system. seqDepth(s) is an integer denoting the nesting depth
of sequence s. If s has no entries that are themselves sequences then seqDepth(s) .= 0.
For a sequence sint of sequences of integers we would have seqDepth(sint)

.= 0.
In Figure 5.4 the mathematical formulas defining the remaining noncore vo-

cabulary are accompanied by the names of the corresponding taclets. A few ex-
plaining comments will help the reader to grasp their meaning. The subsequence
seqSub(s, i, j) from i to j of sequence s includes the i-th entry, but excludes the
j-th entry. In the case ¬(i < j) it will be the empty sequence, this is a consequence
of the semantics of seqDe f . The term seqIndexOf (s, t) denotes the least index n
such that seqGetAny(s,n) .= t if there is one, and is undefined otherwise. See Sec-
tion 2.3.2 on how undefinedness is handled in our logic. A sequence s satisfies the
predicate seqNPerm(s) if it is a permutation of the integers {0, . . . ,seqLen(s)−1}.
The binary predicate seqPerm(s1,ss) is true if s2 is a permutation of s1. Thus
seqNPerm(〈5,4,0,2,3,1〉) and seqPerm(〈a,b,c〉,〈b,a,c〉) are true.

Careful observation reveals that the interpretation of the vocabulary outside the
core vocabulary is uniquely determined by the definitions in Figures 5.3 and 5.4.

We establish the following notation:

Definition 5.5. By Tseq we denote the theory given by the core axioms CoTseq plus
the definitions from Figures 5.3 and 5.4.

On the semantic side we call a structureM in the vocabulary ΣJ plus ΣSeq a Seq
structure if the restriction ofM to ΣJ is a JFOL structure andM satisfies Definitions
5.3 and 5.4.
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defOfEmpty
seqEmpty .= seqDef{iv}(0,0,x)
x is an arbitrary term of type Any not containing the variable iv.

defOfSeqSingleton
∀Any x;(seqSingleton(x) .= seqDef{iv}(0,1,x))

defOfSeqConcat
∀Seq s1,s2;(seqConcat(s1,s2)

.=
seqDef{iv}(0,seqLen(s1)+ seqLen(s2), if iv < seqLen(s1)

then seqGetAny(s1, iv)
else seqGetAny(s2, iv− seqLen(s1)))))

defOfSeqSub
∀Seq s;∀int i, j;(seqSub(s, i, j) .= seqDef{iv}(i, j,seqGetAny(s, iv)))

defOfSeqReverse
∀Seq s;(seqReverse(s) .= seqDef{iv}(0,seqLen(s),seqGetAny(s,seqLen(s)− iv−1)))

seqIndexOf
∀Seq s;∀Any t;∀int n;(0≤ n < seqLen(s)∧ seqGetAny(s,n) .= t ∧

∀int m;(0≤ m < n→ seqGetAny(s,m) 6= t)
→ seqIndexOf (s, t) .= n)

seqNPermDefReplace
∀Seq s;(seqNPerm(s)↔

∀int i;(0≤ i < seqLen(s)→∃int j;(0≤ j < seqLen(s)∧ seqGetint(s, j) .= i)))

seqPermDef
∀Seq s1,s2;(seqPerm(s1,s2)↔ seqLen(s1)

.= seqLen(s2)∧
∃Seq s;(seqLen(s) .= seqLen(s1)∧ seqNPerm(s)∧
∀int i;(0≤ i < seqLen(s)→

seqGetAny(s1, i)
.= seqGetAny(s2,seqGetint(s, i)))))

defOfSeqSwap
∀Seq s;∀int i, j;(seqSwap(s, i, j) .=

seqDef{iv}(0,seqLen(s), if ¬(0≤ i < seqLen(s)∧0≤ j < seqLen(s))
then seqGetAny(s, iv)
else if iv .= i

then seqGetAny(s, j)
else if iv .= j

then seqGetAny(s, i)
else seqGetAny(s, iv)))

defOfSeqRemove
∀Seq s;∀int i;(seqRemove(s, i) .= if i < 0∨ seqLen(s)≤ i

then s
elseseqDef{iv}(0,seqLen(s)−1, if iv < i

then seqGetAny(s, iv)
else seqGetAny(s, iv+1)))

defOfSeqNPermInv
∀Seq s;(seqNPermInv(s) .= seqDef{iv}(0,seqLen(s),seqIndexOf (s, iv)))

Figure 5.4 Definition for noncore vocabulary in mathematical notation
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Theorem 5.6. The theory TSeq is consistent.

Proof. The consistency of TSeq follows from the consistency of CoTSeq since it is a
definitional extension.

A proof of Theorem 5.6 together with a detailed review of the concept of defini-
tional extensions, plus statement and proof of the relative completeness of TSeq can
be found in the technical report on first-order logic available from the companion
website to this book www.key-project.org/thebook2.

1 seqSelfDefinition
∀Seq s;(s .= seqDef{u}(0,seqLen(s),seqGetAny(s,u)))

2 seqOutsideValue
∀Seq s;(∀int i;((i < 0∨ seqLen(s)≤ i)→ seqGetα (s, i) .= (α)seqGetOutside))

3 castedGetAny
∀Seq s;∀int i;((β )seqGetAny(s, i)

.= seqGetβ (s, i))

4 getOfSeqSingleton
∀Any x;∀int i;(seqGetα (seqSingleton(x), i) .= if i .= 0 then (α)x else (α)seqGetOutside)

5 getOfSeqConcat
∀Seq s,s2;∀int i;(seqGetα (seqConcat(s,s2), i) .= if i < seqLen(s)

then seqGetα (s, i)
else seqGetα (s2, i− seqLen(s)))

6 getOfSeqSub
∀Seq s;∀int from, to, i;(seqGetα (seqSub(s, from, to), i) .= if 0≤ i∧ i < (to− from)

then seqGetα (s, i+ from)
else (α)seqGetOutside)

7 getOfSeqReverse
∀Seq s;∀int from, to, i;(seqGetα (seqReverse(s), i) .= seqGetα (s,seqLen(s)−1− i))

8 lenOfSeqEmpty
seqLen(seqEmpty) .= 0

9 lenOfSeqSingleton
∀Any x;(seqLen(seqSingleton(x)) .= 1)

10 lenOfSeqConcat
∀Seq s,s2;(seqLen(seqConcat(s,s2)) .= seqLen(s)+ seqLen(s2))

11 lenOfSeqSub
∀Seq s;∀in from, to;(seqLen(seqSub(s, from, to)) .= if from < to then (to− from) else 0)

12 lenOfSeqReverse
∀Seq s;(seqLen(seqReverse(s)) .= seqLen(s))

13 seqConcatWithSeqEmpty
∀Seq s;(seqConcat(s,seqEmpty) .= s)

14 seqReverseOfSeqEmpty
seqReverse(seqEmpty) .= seqEmpty

Figure 5.5 Some derived rules for finite sequences

Figure 5.5 lists some consequences that can be derived from the definitions in
Figure 5.4 and the Core Theory. The entry 1 is a technical lemma that is useful

http://www.key-project.org/thebook2
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in the derivation of the following lemmas in the list. The entry 2 clarifies the role
of the default value seqGetOutside; it is the default or error value for any out-of-
range access. Rules 2 to 7 are schematic rule. These rules are applicable for any
instantiations of the schema variable α by a type. Entry 3 addresses an important
issue: on one hand there is the family of function symbols seqGetα , on the other hand
there are the cast expressions (α)seqGetAny. The lemma says that both coincide. The
entries 4 to 12 allow to determine the access function and the length of the empty
sequence, singleton, concatenation, subsequence and reverse constructors. The last
two entries 13 and 14 are examples for a whole set of rules that cover corner cases of
the constructors involved.

1 seqNPermRange
∀Seq s;(seqNPerm(s)→
∀int i;(0≤ i∧ i < seqLen(s)→ (0≤ seqGetint(s, i)∧ seqGetint(s, i) < seqLen(s))))

2 seqNPermInjective
∀Seq s; (seqNPerm(s)∧
∀int i, j;(0≤ i∧ i < seqLen(s)∧0≤ j∧ j < seqLen(s)∧ seqGetint(s, i)

.= seqGetint(s, j))
→ i .= j)

3 seqNPermEmpty
seqNPerm(seqEmpty)

4 seqNPermSingleton
∀int i;(seqNPerm(seqSingleton(i))↔ i .= 0)

5 seqNPermComp
∀Seq s1,s2;(seqNPerm(s1)∧ seqNPerm(s2)∧ seqLen(s1) .= seqLen(s2)→
seqNPerm(seqDef{u}(0,seqLen(s1),seqGetint(s1,seqGetint(s2,u)))))

6 seqPermTrans
∀Seq s1,s2,s3;(seqPerm(s1,s2)∧ seqPerm(s2,s3)→ seqPerm(s1,s3))

7 seqPermRefl
∀Seq s;(seqPerm(s,s))

Figure 5.6 Some derived rules for permutations

Figure 5.6 lists some derived rules for the one-place predicate seqNPerm and
the two-place predicate seqPerm that follow from the definitions in Figure 5.4.
Surprisingly, none of the proofs apart from the one for seqNPermRange needs
induction. This is mainly due to the presence of the seqDef{}(, ,) construct. The
lemma seqNPermRange itself is a kind of pigeon-hole principle and could only be
proved via induction.

Applications of the theory of finite sequences can be found in Section 16.5 and
foremost in Chapter 19.
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5.3 Strings

Java strings are implemented as objects of their own and they are not identified
with arrays of characters. This eases treatment of strings in our program logic as we
can reuse all the mechanisms already in place for objects. So, do we need special
treatment for them at all? Why not simply use contracts as for other API classes?

To answer the first question: Although strings are normal objects, the Java Lan-
guage Specification [Gosling et al., 2013] provides some additional infrastructure
not available for other kinds of objects. In particular, the existence of string liter-
als like "Hello␣World" requires additional thought. A string literal is a reference
to a string object whose content coincides with the string literal name within the
quotation marks. The problem to be solved is to make string literals ’behave’ like in-
teger or Boolean literals. For instance, the expression "Hello" == "Hello" should
always be true. To solve this issue, Java ensures that all occurrences of the same
literal reference the same object. To ensure this behavior Java manages a pool of
strings in which all strings referenced by string literals (actually, all compile time
constants of type String) are put. Nevertheless, the taken solution does not hide
completely that string literals are different from other literals, e.g., the expression
new String("Hello") == "Hello" evaluates to false. To represent the pool, we
could model it in Java itself. This solution would allow us to be mostly ignorant to
strings on the logic level, but introduce a lot of clutter in the reasoning process when
string literals are involved. Instead we use an alternative route and model the pool
purely on the logic level, which allows us a more streamlined representation and
deemphasizes the use of a pool.

We go a step further and introduce a kind of "ghost" field for Java string objects that
assigns each string a finite sequence of characters based on the Sequence data type
introduce in the previous section. As specifications about strings express properties
about their content, e.g., that the content equals or matches a given expression (e.g.,
a regular expression), providing an abstract data type for strings allows us to separate
concerns and to ease writing of specifications.

In this section we describe three parts that constitute our handling of Java strings:
The theory Tcl of sequences of characters representing the content of a Java string as
an extension of the theory of finite sequences, a theory Trex of regular expressions to
express and reason conveniently about the content of strings, and finally we conclude
with the actual theory Tjava.lang.String of Java strings, which uses the previous two
theories to model Java strings.

5.3.1 Sequences of Characters

Characters are not represented as a distinct type, but as integers which are interpreted
as the characters unicode (UTF-16) representation. A finite sequence of characters
is used to model the underlying theory to support Java Strings. The length of the
sequence is the number of 16-bit unicode values. This value might not coincide with
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the number of actual characters as some unicode characters need to be represented by
two 16-bit numbers. The presentation below and the actual implementation assumes
that only unicode characters in the range 0x0000−0xFFFF are used.

We extend the theory of finite sequences by the additional functions and predi-
cates shown in Table 5.1. They allow us later to specify the behavior of the String’s
method concisely. The first four functions return the first (or last) index of a sequence

Table 5.1 The additional functions and predicates of Tcl (int∗ is used to indicate that a character’s
UTF-16 unicode representation is expected as argument; the actual type is int)

Extensions
clIndexOfChar :Seq× int∗× int→ int

clIndexOfCl :Seq× int×Seq→ int
clLastIndexOfChar :Seq× int∗× int→ int

clLastIndexOfCl :Seq× int×Seq→ int
clReplace :Seq× int∗× int∗→ Seq

clTranslateInt :int→ Seq
clRemoveZeros :Seq→ Seq

clHashCode :Seq→ int

clStartsWith :Seq×Seq
clEndsWith :Seq×Seq
clContains :Seq×Seq

starting from the position given as third argument at which to find the specified
character (start of the given character sequence) or −1 if no such character (character
sequence) exists (this differs from seqIndexOf , which is undefined for elements not
occurring in a sequent). Function clReplace(s,c1,c2) evaluates to a sequence equal
to s except that all occurrences of character c1 have been replaced by character c2.
Function clTranslateInt takes a character sequence specifying a number and trans-
lates it into the corresponding integer. It comes paired with the auxiliary function
clRemoveZero which removes any leading zeros, as in "000123", first, before the
result can be handed over to clTranslateInt in order to rewrite it into the integer 123.

The predicates clContains, clStartsWith, and clEndsWith evaluate to true if the
character sequence given as first argument contains, starts or ends with the character
sequence given as second argument, respectively.

The actual axiomatizations are rather technical, but not complicated. Those
for clIndexOfChar and clContains are shown in Figure 5.7. The axiomatization
of clIndexOfChar makes use of JavaDL’s ifEx operator to determine the minimal
(first) index of the searched character, if one exists.

For convenience reasons, we write short ”abc” instead of the actual term
seqConcat(seqSingleton(′a′),seqConcat(seqSingleton(′b′),seqSingleton(′c′))). The
pretty printer of KeY outputs a character sequence in this way (outside of modalities),
and the parser accepts string literals as an alternative syntax for character sequences.
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indexOf
∀Seq l,c;∀int i;

(
clIndexOfChar(l,c, i) .=

ifEx int iv;(i≥ 0∧ iv≥ i∧ iv < seqLen(l)∧ seqGetint(l, iv)
.= c)

then(iv) else(−1)
)

containsAxiom
∀Seq textString, searchString;

(
clContains(textString,searchString)↔
∃int iv;

(
iv≥ 0 ∧ iv+ seqLen(searchString)≥ seqLen(textString)

∧ seqSub(textString, iv, iv+ seqLen(searchString)) .= searchString
))

Figure 5.7 Axioms for clIndexOfChar and clContains

5.3.2 Regular Expressions for Sequences

To be able to conveniently specify methods manipulating strings, the theory Trex al-
lows one to match elements of type Seq using regular expression.1 Pattern expressions
(PExp) are represented as terms of type rex. Table 5.2 lists the PExp constructors.
For instance, the pattern represented by the term repeatStar(rex(”ab”)) matches a

Table 5.2 Pattern expressions (PExp) with cl : Seq and pe, pe1, pe2 : rex.

constructor (of type rex) constructor
rex(cl) matches exactly cl repeatStar(pe) pe∗

opt(pe) pe? repeatPlus(pe) pe+

alt(pe1, pe2) pe1+ pe2 repeat(pe,n) pen

regConcat(pe1, pe2) pe1 · pe2

finite but arbitrary repetition of the word ”ab”. Match expressions are constructed
using the predicate match(rex,Seq). The predicate match takes two arguments: a
PExp as first argument and the concrete character sequence to be matched against the
pattern as second argument. The match expression is true if and only if the provided
pattern matches the complete Seq.

Our calculus features a complete axiomatization of the pattern and matching
language. Further, there are a number of derived rules to reduce and simplify pattern
and match expression terms as far as possible. We give here only a few typical
representatives of these axioms and rules.

The first axiom maps the alternative pattern constructor back to a logical disjunc-
tion:

altAxiom
∀rex pe1, pe2;∀Seq cl;

match(alt(pe1, pe2),cl)↔ (match(pe1,cl)∨match(pe2,cl))

1 Remark: Trex goes actually beyond regular expressions.
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The second axiom removes the pattern concatenation by guessing the index where to
split the text to be matched into two parts. Each part is then independently matched
against the corresponding subpattern:

regConcatAxiom
∀rex pe1, pe2;∀Seq cl;

(
match(regConcat(pe1, pe2),cl)↔

(
∃int i;(i≥ 0∧ i≤ seqLen(cl)

∧match(pe1,seqSub(cl,0, i)) ∧ match(pe2,seqSub(cl, i,seqLen(cl))))
))

A typical reduction rule aiming to reduce the complexity of is for instance:

regConcatConcreteStringLeft
∃rex pre;∃Seq s,cl;

(
match(regConcat(rex(s), pe),cl)

↔
(
seqLen(s)≤ seqLen(cl)
∧ match(rex(s),seqSub(cl,0,seqLen(s)))
∧ match(pe,seqSub(cl,seqLen(s),seqLen(cl)))

))

5.3.3 Relating Java String Objects to Sequences of Characters

The previous sections introduced the logic representation of character sequences and
regular expressions. To achieve our goal to specify and verify programs in presence
of Strings, the abstract representation of a string’s content and the implementation of
Java’s String class need to be related.

This could be simply achieved by introducing a ghost field and keeping the content
on the heap. We choose a similar but slightly different modeling, which simplifies
verification down the road by exploiting that once a String instance is created, its
content does not change. This is the same situation as for the length field of an array,
and we use the same idea. The function strContent : java.lang.String→ Seq maps
each String instance to a sequence of characters. It is left unspecified initially and
upon creation of a new String instance s representing, e.g., the character list sc,
the formula strContent(s) .= sc is added to the antecedent of the formula. This is
well-defined as the content of a String instance cannot be changed. The following
sequent calculus rule illustrates this mechanism:

stringConcat

Γ ,strContent(sk) .= seqConcat(strContent(s1),strContent(s2)),sk 6 .= null =⇒
{v := sk} {heap := create(heap,sk)} 〈πω〉φ ,∆

Γ =⇒ 〈π v = s1+ s2; ω〉φ ,∆

Schema variables v,s1,s2 match local program variables of type java.lang.String
and sk is a fresh Skolem-constant.
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5.3.4 String Literals and the String Pool

The Java string pool caches String instances using their content as key. On start-up
of the virtual machine and after class loading all compile-time constant of type
String (in particular all string literals) are resolved to an actual String object. New
elements can be added to the cache at run-time with method intern(), but Java
programs cannot remove elements from the cache.

We model the string pool as an injective function

strPool :Seq→java.lang.String

The assignment rule for string literals in the presence of the string pool can now be
defined as follows:

stringAssignment

Γ ,strContent(strPool(sLitCL)) .= sLitCL,
strPool(sLitCL) 6 .= null,
selectboolean(heap,strPool(strContent(sLitCL)),created) .= TRUE
=⇒
{v := strPool(sLitCL)} 〈π ω〉φ ,∆

Γ =⇒ 〈π v = sLit; ω〉φ ,∆

Here sLit is a schema variable matching string literals and sLitCL denotes the finite
sequence Seq representation of the matched string literal sLit.

One side remark at this point concerning the concatenation of string literals, i.e.,
how a program fragment of the kind v = "a" + "b"; is treated. In this case the
expression "a" + "b" is a compile time constant, which are as their name suggests
evaluated at compile time. Hence, any such expression has already been replaced by
the result "ab" when reading in the program (in other words, in JavaDL all compile
time constants are already replaced by their fully evaluated literal expression).

Finally, we give one of the rules for updating the Java string pool with a new
element. Note, this rule is actually specified as a contract of method intern() of
class String:

updatePool

Γ ,¬(v .= null),strPool(strContent(v)) 6 .= null,
selectboolean(heap,strPool(strContent(v)),created) .= TRUE
=⇒{r := strPool(strContent(v))} 〈π ω〉φ ,∆

Γ ,¬(v .= null) =⇒ 〈π r = .intern(); ω〉φ ,∆
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5.3.5 Specification of the Java String API

To obtain a complete calculus for Java strings, additional rules have to be created
which translate an integer or the null reference to its String representation. The
formalization of the necessary translate functions is rather tedious, but otherwise
straightforward. The technical details are described in [Geilmann, 2009].

Based on the formalization described in this section, we specified the majority of
the methods declared and implemented in the java.lang.String class. The Seq
ADT functions have been chosen to represent closely the core functionality provided
by the String class. The specification of the methods required then merely to consider
the border cases of most of the methods. Border cases are typically those cases where
the ADT has been left underspecified and that cause an exception in Java.

5.4 Integers

Arithmetic reasoning is required for a number of verification tasks like proving that a
certain index is within the array’s bounds, that no arithmetic exception occurs and,
of course, that a method computes the correct value. Mathematical integers have
already been covered in Section 2.4.5, in this section we highlight the axiomatization
of integers with respect to their finite integral counterparts used in Java.

In lieu of the whole numbers Z, programming languages usually use finite integral
types based on a two-complement representation. For instance, Java’s integral types
(byte, char, short, int and long) are represented in 8-bit, 16-bit, 32-bit and 64-bit
two-complement representation (with the exception of char which is represented as
an unsigned 16-bit number).

The finiteness of integral types and the often used modulo arithmetics entail the
possibility of underflows and overflows. While sometimes intended, they are also
a source of bugs leading to unexpected behavior. As pointed out by Joshua Bloch2

most binary search algorithms are broken because of an overflow that might happen
when computing the middle of the interval lower . . .upper by (upper+lower)/2
(e.g., for lower equal to 100 and upper equal to the maximal value of its integral
type).

The question arises: How do we model finite integral types within the program
logic. One possibility is to define new sorts to model the required fixed-precision
numbers together with functions for addition and subtraction, e.g., as a general fixed-
width bit-vector theory. Another approach, and that is the one we pursued in JFOL,
is to map all Java arithmetic operations to standard arithmetic operations without the
need to introduce new additional sorts.

2 googleresearch.blogspot.se/2006/06/extra-extra-read-all-about-it-nearly.html

http://googleresearch.blogspot.se/2006/06/extra-extra-read-all-about-it-nearly.html
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5.4.1 Core Integer Theory

The predefined sort int is evaluated to the set of whole numbers Z. Table 5.3 shows a
selection of the most important interpreted core functions. All of them are interpreted
canonically. In case of division, div rounding towards the nearer lower number takes
place, and mod is interpreted as the modulo function.

On top of these core functions, derived functions (shown in Table 5.3 as extensions)
are defined. Their domain is still the whole numbers, i.e., no modulo arithmetics are
involved, but otherwise they reflect the division and modulo semantics in Java more
closely. Namely, function jdiv is interpreted as the division on Z rounding towards
zero, while jmod is interpreted as the remainder function in opposite to the modulo
function.

Finally, functions like addJint, addJlong etc. are defined in such a way that they
reflect the modulo semantics of the Java operations. They are axiomatized solely
using the functions shown in Table 5.3

Table 5.3 Core and extension functions for the int data type

Core
add ’+’ addition on Z
sub ’-’ subtraction on Z
div ’/’ division on Z (Euclidean semantics)
mod ’%’ modulo on Z
mul ’*’ multiplication on Z

Extensions
jdiv n/a division on Z (rounding towards zero)
jmod n/a remainder on Z

Table 5.4 Functions for Java arithmetics
addJint/addJLong addition with overflow for int/long
divJint/divJLong modulo with overflow for int/long
moduloByte/moduloChar/moduloShort/. . . modulo operation mapping numbers

into their respective range
. . .

On the calculus side the axiom for e.g. addJlong is given as rewrite rule

addJlong(fst,snd) moduloLong(add(fst,snd))

and expresses the meaning of addition with overflow w.r.t. the value range of long
in terms of the standard arithmetic addition and a modulo operation. The calculus
rewrite rule defining function moduloLong is

moduloLong(i) 
add(long_MIN,mod(add(long_HALFRANGE, i), long_RANGE))
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Its definition refers only to the standard arithmetic functions for addition and mod-
ulo. The only other elements long_MIN, long_HALFRANGE and long_RANGE are
constants like the smallest number of type long or the cardinality of the set of all
numbers in long.

In our logic all function symbols are interpreted as total functions. There are
several possibilities to deal with terms like div(x,0) like (a) returning a default value,
(b) returning a special named error element or (c) using underspecification. Solution
(a) might easily hide an existing problem in the specification as it might render
it provable but not matching the specifiers intuition, solution (b) would require to
extend the definition of all functions defined on the integers to deal with the special
error element. For these reasons, we choose underspecification, i.e., the semantics
of logic does not fix a specific value for div in case of a division by zero. Instead
each JFOL structureM assigns divM (d,0) a fixed but unknown integer value for
each dividend d ∈ Z. These values may differ between different Kripke structures
but are not state-dependent in the sense that div(1,0) is assigned a different value in
different states.

Besides the avoidance of a proliferation of special error cases or dealing with
partial functions, the use of underspecification in the sketched manner provides
additional advantages, e.g., a formula like

• div(x,0) .= div(x+1,0) is neither a tautology nor unsatisfiable, but
• div(x,0) .= div(x,0) remains a tautology.

5.4.2 Variable Binding Integer Operations

Variable binding operators are used to express sums and products. Our theory of
integers supports the general versions sum{T x}(φ(x), t), prod{T x}(φ(x), t) as well
as their bounded variants bsum{int x}(start,end, t) and bprod{int x}(start,end, t).
These functions are defined as follows:

sum{T x}(ϕ(x), t)M = ∑
φ(x)M

tM prod{T x}(ϕ(x), t)M = ∏
φ(x)M

tM

bsum{int x}(start,end, t)M =
endM−1

∑
x=startM

tM (if start > end , otherwise 0)

bprod{int x}(start,end, t)M =
endM−1

∏
x=startM

tM (if start > end , otherwise 1)

The logic axiomatization for the bounded sum is given as: For any int-typed term t

∀int start,end;(bsum{int x}(start,end, t) .=
if(start < end) thenbsum{int x}(start,end−1, t)+({\subst x; start}t)else(0))



164 5 Theories

The bounded sum and bounded product are inclusive for the first argument start
and exclusive for the second argument end. Besides the axioms there are as usual
a large number of lemmas that ease reasoning and increase automation. We show
here the Taclet definition for the splitting a bounded sum as it highlights a feature of
Taclet language that allows one to specify triggers:

KeY
bsum_split {

\schemaVar \term int low, middle, high;
\schemaVar \variables int x;

\find(bsum{x;} (low, high, t))
\varcond ( \notFreeIn(x, low), \notFreeIn(x, middle),

\notFreeIn(x, high) )
\replacewith (

\if(low <= middle & middle <= high)
\then(bsum{x;}(low, middle, t) + bsum{x;}(middle,high,t))
\else(bsum{x;}(low, high, t)) )

\heuristics(comprehension_split, triggered)
\trigger{middle} bsum{x;}(low, middle, t)

\avoid middle <= low, middle >= high;
};

KeY

The above rule splits the bounded sum expression somewhere between the lower
and upper bound. The trigger specification is used by the strategies to determine
good candidates for the splitting point. A trigger consists of three parts: (i) the
schema variables to be instantiated by the trigger (trigger variables) (here: middle);
(ii) the pattern to be matched against an existing term (or formula) in the sequent
(here: bsum{x;}(low, middle, t)) (the match determines the value of the trigger
variables) and (iii) an optional part \avoid that specifies the condition under which a
candidate should be rejected. In the above case the trigger searches for positions at
which to split the bounded sum into two parts such that the first summand already
occurs in the sequent. The optional avoid part prevents superfluous splits outside the
bounds (or directly at the start).

5.4.3 Symbolic Execution of Integer Expressions in Programs

In the following section, we explain how integer expressions are translated into logic
terms. One obstacle to overcome is that there are several integral types in Java but
only the logic type int. Given the following sequent

=⇒ 〈i = i + 1;〉i > 0
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and assume i is a program variable that had been declared to be of program type
long (the logic type of i is int). As one of summands is of program type long the
addition is widened to type long, i.e., it results only in an overflow (or underflow)
if the normal mathematical addition results in a value outside of the range of type
long.

The assignment is obviously side-effect free and can be directly moved into an
update. Modeling the Java semantics faithfully, the application of the according
assignment rule should result in

=⇒{i := addJLong(i,1)}〈〉i > 0

using the addition with overflow function for long. However, performing this step
within KeY results instead in the sequent

=⇒{i := javaAddLong(i,1)}〈〉i > 0

where the Java operator + has been translated using the function javaAddLong :
int× int → int (if i would have been declared of program type int the function
javaAddInt : int× int→ int would have been used).

These functions are intermediate representations which are used to represent the
translation result of an integer program operation. The reason that we support three
different integer semantics to cater for different usage scenarios. The three semantics
are

Integer ignoring overflow semantics: All Java integral types and their operations
are interpreted as the normal arithmetic operations without overflow. In this seman-
tics the function javaAddLong would be interpreted as the arithmetic addition on
Z (the same holds for javaAddLong). On the calculus level the corresponding rule
would simply rewrite javaAddLong(t1, t2) to add(t1, t2). This semantics does
obviously not model the real program semantics of Java and is hence unsound
and incomplete w.r.t. to real-world Java programs. It is nevertheless useful for
teaching purposes to avoid the complexities which stem from modulo operations.

Java integer semantics: Java integer semantics is modeled as specified by the
JLS, i.e., some operations might cause an overflow. This means javaAddLong
would be interpreted the same as addJlong. In this semantics the axiom rule
for javaAddLong simply replaces the function symbol by addJlong. This seman-
tics is sound and (relatively) complete, but comes with higher demands on the
automation and requires in general more user interaction.

Integer prohibiting overflow semantics: This semantics provides a middle ground
between the two previous semantics. Intuitively, when using this semantics one
has to show that all arithmetic operations are safe in the sense that they do not
overflow . In case of an overflow, the result is a fixed, but unspecified value.
Verifying a program with this semantics ensures that either no overflow occurs, or
in case of an overflow, the value of this operation does not affect the validity of
the property under verification (i.e., the property is true for any outcome of the
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operation). This semantics is sound, but only complete for programs that do not
rely on overflows.

The predicate symbols inByte, inChar, inShort, inInt and inLong which determine
if the provided argument is in the value range of the named primitive type are also
interpreted dependent on the chose integer semantics. While the ignoring overflow
semantics always interprets these predicates as true, the two other semantics evaluate
define them to be true if the given argument is within the bounds of the primitive type
(for instance, inInt(x) is true in the latter semantics iff x≥−231∧ x < 231 is true).



Chapter 6
Abstract Interpretation

Nathan Wasser, Reiner Hähnle and Richard Bubel

6.1 Introduction

The previous chapters focused on the development of a faithful and relatively com-
plete program logic for sequential Java. Consequently we obtain a formal language of
high expressivity and a powerful calculus to prove the stated properties. Nevertheless
expressivity comes with a cost, namely, an unpredictable degree of automation. This
does not necessarily mean interaction with the theorem prover as such, but also
the necessity to provide hand-crafted specifications like loop invariants or method
contracts. The latter often needs to take idiosyncrasies of the theorem prover into
account, at least, in regard of automation. This is also true in cases for which one is
only interested in establishing simple properties like “No NullPointerExceptions
are thrown.”

Other techniques from static program analysis, like abstract interpretation as
introduced by Cousot and Cousot [1977], utilize program abstraction to achieve
full automation. But they pay with loss of precision that manifests itself in reduced
expressivity (often only predefined properties can be expressed and ensured) and
false positives.

In this chapter we show how to integrate abstract interpretation in JavaDL to
achieve high automation while also maintaining high precision. Our approach has
two main characteristics: i) abstraction of the state representation instead of the
program, and ii) full precision until a loop or (recursive) method call is encountered.
Only at those program points is abstraction applied and then only on the state region
which might be modified by the loop or method. All other object fields or local
variables keep their exact symbolic value.

c© Springer International Publishing AG 2016
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6.2 Integrating Abstract Interpretation

6.2.1 Abstract Domains

We introduce notions commonly used in abstract interpretation [Cousot and Cousot,
1977]. The core of abstract interpretation is abstract domains for the types occurring
within the program. Each abstract domain forms a lattice and there is a mapping
between each concrete domain DT (i.e., the externalization of a concrete program
type) and its corresponding abstract domain AT . Their relationship is established by
two total functions:

α :2DT → AT (abstraction function)

γ :AT → 2DT
(concretization function)

The abstraction function maps a set of concrete domain elements onto an abstract
domain element and the concretization function maps each abstract domain element
onto a set of concrete domain elements, such that α(γ(a)) = a and C ⊆ γ(α(C))
holds. A pair of functions with the latter two properties is a special case of a Galois
connection called Galois insertion. Figure 6.1 illustrates such a mapping. The arrows
represent the concretization (from wheel to vehicle) and abstraction function (from
vehicle to wheel).

Figure 6.1 An example abstract domain: The concrete domain of vehicles is abstracted w.r.t. the
number of wheels

We can now summarize the above into a formal definition of an abstract domain.

Definition 6.1 (Abstract Domain). Let D be a concrete domain (e.g., from a first-
order structure). An abstract domain A is a complete lattice with partial order v
and join operator t. It is connected to D with an abstraction function α : 2D→ A
and a concretization function γ : A→ 2D which form a Galois insertion [Cousot and
Cousot, 1977], i.e. α(γ(a)) = a and C ⊆ γ(α(C)). In this chapter we only deal with
countable abstract domains.

Let f : A→ A be any function. The monotonic function f ′ : A→ A is defined as
f ′(a) = at f (a). If A satisfies the ascending chain condition (trivially the case if
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A has finite height), then starting with any initial input x ∈ A a least fixed point for
f ′ on this input can be found by locating the stationary limit of the sequence 〈x′i〉,
where x′0 = x and x′n+1 = f ′(x′n).

Abstract interpretation makes use of this when analyzing a program. Let p be
a loop, x the only variable in p and a ∈ A the abstract value of x before execution
of the loop. Then we can see f as the abstract semantic function of a single loop
iteration on the variable x. The fixed point for f ′ is an abstract value expressing
an overapproximation of the set of all values of x before and after each iteration.
Therefore it is sound to replace the loop with the assignment x = a.

If A does not satisfy the ascending chain condition, there may not be a stationary
limit for 〈x′i〉. In these cases a widening operator is required.

Definition 6.2 (Widening Operator ·∇·). A widening operator for an abstract do-
main A is a function ∇ : A×A→ A, where

1. ∀a,b ∈ A. av a∇b
2. ∀a,b ∈ A. bv a∇b
3. for any sequence 〈y′n〉 and initial value for x′0 the sequence 〈x′n〉 is ultimately

stationary, where x′n+1 = x′n∇y′n.

If A has a least element ⊥, it suffices to use this as the initial value for x′0, rather
than proving the property for all possible initial values.

Abstract domains come traditionally in two flavors relational and nonrelational.
Advantages with relational abstract domains are expressiveness and the abilities to
easily formulate often-occurring and helpful abstract notions such as i≤ a.length.
The advantage of nonrelational abstract domains is their ease of use from an imple-
mentation standpoint, as nonrelational abstract domains care only about the actual
variable being updated, rather than having potential to change multiple values at
once. We choose a third path: using nonrelational abstract domains but including
invariant suggestions which can model certain relational-style expressions such as
the example i≤ a.length.

To achieve a seamless integration of abstract domains within JavaDL, we refrain
from the introduction of abstract elements as first-class members. Instead we use a
different approach to refer to the element of an abstract domain:

Definition 6.3 (γa,Z-symbols). Given a countable abstract domain A = {a1,a2, . . .}.
For each abstract element ai ∈ A−{⊥} there

• are infinitely many constant symbols γa, j ∈ FSym, j ∈ N and γMai, j ∈ γ(ai),
• is a unary predicate χai where χMai

is the characteristic predicate of set γ(ai).

The interpretation of a symbol γai, j is restricted to one of the concrete domain
elements represented by ai, but otherwise not fixed. In other words, the only guarantee
about (restriction on) the actual value of γai, j is to be an element of α(ai).
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6.2.2 Abstractions for Integers

In this subsection, we introduce a simple abstract domain for integers, which we use
to illustrate our approach. This abstract domain is called Sign Domain and shown in
Figure 6.2. As its naming suggests, it abstracts from the actual integer values and

>

⊥

≤ ≥

0neg pos

γ(>) = Z
γ(≤) = {i ∈ Z | i≤ 0}
γ(≥) = {i ∈ Z | i≥ 0}

γ(neg) = {i ∈ Z | i < 0}
γ(pos) = {i ∈ Z | i > 0}

γ(0) = {0}
γ(⊥) = /0

Figure 6.2 Sign Domain: An abstract domain for integers

distinguishes them only w.r.t. their sign. The associated abstraction and concretization
function obviously form a Galois connection.

The abstract domain is integrated into JavaDL by adding γa,Z symbols and their
characteristic predicates χa for a ∈ {neg,0,pos,≤,≥,>}. The characteristic predi-
cates are defined as follows:

∀int x;(χ0(x)↔ x .= 0) ∀int x;(χ>(x)↔ true)
∀int x;(χneg(x)↔ x < 0) ∀int x;(χpos(x)↔ x > 0)
∀int x;(χ≤(x)↔ x≤ 0) ∀int x;(χ≥(x)↔ x≥ 0)

6.2.3 Abstracting States

We now have all the parts together to explain how to abstract a given program state.
We go further and embed the approach in a general notion of weakening, which
provides us also with a natural soundness notion.

Given the following sequent:

c≥ 5 =⇒{i := c+1} [i++;]i > 0

The idea is to provide an abstraction rule that rewrites the above rule into:

c≥ 5 =⇒{i := γpos,1} [i++;]i > 0
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where we replaced the ‘more’ complicated expression c+1 on the right hand side
of the update to i by a simpler gamma symbol. The latter sequent preserves the
knowledge about the sign of i under which the box formula is evaluated (namely
that it is strictly greater than 0), but we lose all knowledge about i’s actual value.
More formally, if the latter sequent is valid then also the first one is valid. We call the
update i := γpos,1 weaker than i := c+1 as the first one allows more reachable states:
For the sequent to be true, the formula behind i := γpos,1 must be true in all Kripke
structuresK , i.e., for any positive value of i as γpos,1 does not occur anywhere else
in the sequent. The original sequent only requires the formula behind the update to
be true for all values strictly greater than 5.

We can formalize the weakening notion by introducing the update weakening rule
from [Bubel et al., 2009]:

weakenUpdate
Γ ,U (x̄ .= c̄) =⇒∃γ̄.U ′(x̄ .= c̄),∆ Γ =⇒U ′ϕ,∆

Γ =⇒U ϕ,∆

where x̄ denotes a sequence of all program variables occurring as left-hand sides
in U and c̄ are fresh Skolem constants used to store the values of the variables
x̄ under update U . The formula ∃γ̄.ϕ is a shortcut for ∃ȳ.(χā(ȳ)∧ψ[γ̄/ȳ]), where
ȳ = (y1, . . . ,ym) is a list of fresh first-order variables of the same length as γ̄ , and
where ψ[γ̄/ȳ] stands for the formula obtained from ψ by replacing all occurrences of
a symbol in γ̄ with its counterpart in ȳ. This rule allows us to abstract any part of the
state with a location-wise granularity.

Performing value-based abstraction becomes thus simply the replacement of an
update by a weaker update. In particular, we do not perform abstraction on the
program level, but on the symbolic state level. Thus abstraction needs to be defined
only on symbolic states (updates) and not on programs.

6.3 Loop Invariant Generation

In this section we describe how to use update weakening to automatically infer
loop invariants that allow us to verify unbounded loops without the need for a user
provided loop invariant. To describe the approach we restrict ourselves to simple
program variables of integer type. We discuss extensions for objects and in particular
arrays in a later section.

As indicated earlier we intend to perform abstraction on demand when reaching a
loop (or recursive method call), as those cases require user interaction in the form of
loop specification or method contracts. Our aim is to avoid this tedious work. We
solve this by two steps (i) an adapted loop invariant rule which allows one to integrate
value abstraction as part of the anonymizing update, and (ii) a method to compute
the abstracted state.

Assume a proof situation in which we encounter a loop. To reason about the loop’s
effect, we use the following rule:
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invariantUpdate

Γ ,U (x̄ .= c̄) =⇒∃γ̄.U ′mod(x̄
.= c̄),∆

Γ ,U ′modg, U ′mod [p](x̄
.= c̄) =⇒∃γ̄.U ′mod(x̄

.= c̄),∆
Γ ,U ′mod¬g =⇒U ′mod [r]ϕ,∆

Γ =⇒U [while (g) {p}; r]ϕ,∆

With its three premisses and its basic structure, the invariantUpdate rule still
resembles the classical loop invariant rule. The role of the loop invariant is taken
over by the anonymizing update U ′mod . The idea is to be smarter when anonymizing
locations that might possibly be changed by the loop. Instead of anonymizing these
locations by fresh Skolem constants, losing all information about their value and
retroactively adding some knowledge back using a loop invariant, we use fresh γa,Z
symbols. This way we keep some information about the value of these locations,
namely, that their value remains within the concretization γ(a) of the abstract element
a. As we no longer have a traditional loop invariant, the lower bound of precision
loss for the anonymized locations is given by the granularity of our abstract domain.

The rule’s third premiss is the use case and represents the case where we have
just exited the loop. The reachable states after the loop are contained in the set of all
states reachable by update U ′mod strengthened by the fact that only those states need
to be considered where the loop’s guard evaluates to false. For all those states we
have to show that after symbolic execution of the remaining program the property to
prove holds. The second premise ensures that U ′mod is a sound approximation of all
states reachable by any loop iteration. The first premiss ensures that the entry state is
also contained in U ′mod .

Example 6.4. Given the following sequent

i≥ 0 =⇒{n := 0} [while (i>0) {i--; n++;}](i .= 0∧n≥ 0)

To apply rule updateInvariant we need to provide U ′mod . Intuitively, we see that the
loop modifies both variables i and n. About n we know that it is initially 0 and
afterwards only increased. In case of i we know that its initial value is nonnegative
and decreased by one with each loop iteration. Hence, we can conclude that both i
and n are always covered by abstraction ≥. This gives us the following anonymizing
update U ′mod

i := γ≥,1 ||n := γ≥,2

The resulting proof goals after the rule application are: For the initial case

i≥ 0,{n := 0}(i .= c1∧n
.= c2) =⇒

∃y1,y2.
(
χ≥(y1)∧χ≥(y2)∧{i := y1 ||n := y2}(i

.= c1∧n
.= c2)

)
which can easily be proven valid by choosing i for y1 and 0 for y2 as instantiations
of the existential formula on the right sequent side. The second branch proving that
the update describes all possible values of i and n after any loop iteration is
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i≥ 0,{i := γ≥,1 ||n := γ≥,2}(i > 0),
{i := γ≥,1 ||n := γ≥,2}[i--;n++;](i

.= c1∧n
.= c2) =⇒

∃y1,y2.
(
χ≥(y1)∧χ≥(y2)∧{i := y1 ||n := y2}(i

.= c1∧n
.= c2)

) .

This sequent can also be proven directly. After executing the loop body, applying the
updates and some simplifications the above sequent becomes

i≥ 0, γ≥,1 > 0, γ≥,1−1 .= c1, γ≥,2 +1 .= c2 =⇒
∃y1,y2.

(
χ≥(y1)∧χ≥(y2)∧{i := y1 ||n := y2}(i

.= c1∧n
.= c2)

)
by choosing γ≥,1−1 for y1 and γ≥,2 +1 for y2 we can prove the sequent as χ≥(γ≥,2 +
1) is obviously true and the truth of χ≥(γ≥,1−1) follows from the formula γ≥,1 > 0
which is part of the antecedent (obtained from the knowledge that the loop guard is
true).

Finally the last proof goal to be shown valid is

{i := γ≥,1 ||n := γ≥,2}(¬i > 0) =⇒{i := γ≥,1 ||n := γ≥,2}[](i
.= 0∧n≥ 0)

which, once we derive that i is 0 from the antecedent, is trivial.

The question remains how to find a good candidate for U ′mod automatically. The
solution is to start a side proof which unwinds the loop; once the loop body has been
symbolically executed, we join the updates of all open branches by assigning each
changed location the smallest abstract domain element that encompasses all of its
potential values on the different branches. Repeat unwinding the loop until the update
created by the join does not change any longer. The such obtained update is a sound
candidate for U ′mod .

Definition 6.5 (Joining Updates). The update join operation is defined as

ṫ : (2Fml×Upd)× (2Fml×Upd)→ (2Fml×Upd)

and is defined by the property: Let U1 and U2 be arbitrary updates in a proof P and
let C1,C2 be formula sets representing constraints on the update values. Then for
(C,U ) = (C1,U1) ṫ (C2,U2) the following holds for i ∈ {1,2}:

1. U is (P, Ci)-weaker than Ui, and
2. Ci =⇒{Ui}

∧
C

A concrete implementation tabs of ṫ for values can be computed as follows: For
each update x := v in U1 or U2 the generated update is x := v, if {U1}x

.= {U2}x.
Otherwise it is x := γαi, j for some αi where χαi({U1}x) and χαi({U2}x).

Example 6.6. We illustrate the described algorithm along the previous example: The
sequent to prove was

i≥ 0 =⇒{n := 0} [while (i>0) {i--; n++;}](i .= 0∧n≥ 0)

instead of ‘guessing’ the correct update, we sketch now how to find it automatically:
Unrolling the loop once ends in two branches: one where the loop guard does not



174 6 Abstract Interpretation

hold and the loop is exited (which we can ignore) and the second one where the loop
body is executed. After finishing the symbolic execution of the loop body the sequent
is

i > 0 =⇒{i := i−1 ||n := 1} [while (i>0) {i--; n++;}](i .= 0∧n≥ 0) .

We now compare the two sequents and observe that i and n has changed. Finding the
minimal abstract element for n which covers both values 0 and 1 returns the abstract
element ≥. For i we know that the previous value was greater-or-equal than the 0,
after this iteration we know it has been decreased by one, but we also learned from
the loop guard that on this branch the initial value of i was actually strictly greater
than 0, hence, i−1 is at least 0 and thus the abstract element covering both values is
also ≥. We continue with the sequent

i > 0 =⇒{i := γ≥,1 ||n := γ≥,2} [while (i>0) {i--; n++;}](i .= 0∧n≥ 0)

where the update has been replaced by the ‘abstracted’ one. The result of unrolling
the loop once more results in the sequent

γ≥,1 > 0 =⇒{i := γ≥,1−1 ||n := γ≥,2 +1} [while (i>0) {...}](i .= 0∧n≥ 0) .

Joining this update with the previous one results in the update i := γ≥,4 ||n := γ≥,4
which is (except for the numbering) identical to the previous one. This means we
have reached a fixed point and we can use this update as the anonymizing update.

The approach of finding the update is sound, but we want to stress that this
is actually not essential as the invariantUpdate rule checks the soundness of the
provided updated.

6.4 Abstract Domains for Heaps

In KeY the program heap is modeled by the program variable heap of type Heap.
Therefore any changes to the program heap will be expressed as an update to the
program variable heap. Furthermore, the program rules, i.e., those calculus rules
for dealing with program fragments, can only ever modify heap by extension. By
this we mean that given an initial update heap := h the application of a program rule
can produce an update heap := h′ only if h is a subterm of h′ and h′ extends h only
with anon, create, and/or store operations. Heap simplification rules, however, may
reduce the heap term.

Our intentions for abstraction are to join multiple program states originating from
a single source program state, such as the program state before execution of a loop,
method call, if- or switch-statement. Therefore we can assume an initial value old
for the program heap at the originating program point and based on this create the
abstract domain as follows:
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We define LS⊂ DLocSet to contain all object/field pairs not containing the created
field, i.e.:

LS = DObject× (DField \{createdM })

We define the family of abstract domains A Heap
old = (AHeap

old ,vold,told) for all
initial well-formed heaps old as

AHeap
old = {⊥,>}∪2LS

xtold y =



x , if y =⊥
y , if x =⊥
> , if y =>
> , if x =>
x∪ y , otherwise

xvold y = (y = xtold y)

Abstraction and concretization functions are given as:

αold : 2DHeap → AHeap
old

heaps 7→


⊥ , if heaps = /0
a , if ∀h ∈ heaps,o ∈ DObject.

wellFormedM (h)∧ (old(o,createdM )→ h(o,createdM ))
> , otherwise

where a = {(o, f ) ∈ DLS | ∃h ∈ heaps. h(o, f ) 6= old(o, f )}

γold : AHeap
old → 2DHeap

⊥ 7→ /0

> 7→ DHeap

ls⊆ LS 7→ {h | (∀o ∈ DObject. old(o,createdM )→ h(o,createdM )) ∧

(∀(o, f ) ∈ DLS\ls. h(o, f ) = old(o, f )}

As A Heap
old contains infinite ascending chains due to both Object and Field being

infinite, we require either a weakening or a subset of AHeap
old for which no infinite

ascending chains exist. We could, for example, reduce the set of available location
sets from LS to the subset thereof for which no location set contains more than n
elements, for some n ∈ N. Anytime a larger location set were required, we would
instead return >. This works, but has the distinct disadvantage that the following
infinite ascending chain 〈xi〉 will wind up overapproximating not only for the cause
of the infinite ascension (the field f ), but also for all other fields as well:
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x0 = /0 (6.1)
xi+1 = xi∪{(oi, f )} (6.2)

In order to keep the overapproximation as localized as possible, we consider the
following points:

• Field can be separated into array indices Arr = {arrM (x) | x ∈N} and non array
indices Field \Arr.

• For any Java program there is a finite subset fs⊂ (Field \Arr) in a closed world
determinable a priori which contains all non array index fields modifiable by the
program.

We therefore introduce the family of abstract domains A Heap
old,fs,n,m,k for all finite

sets fs⊂ (Field \Arr) and integers n,m,k ∈ N, which contain no infinite ascending
chains:

A
Heap

old,fs,n,m,k = (AHeap
old,fs,n,m,k,vold,fs,n,m,k,told,fs,n,m,k)

AHeap
old,fs,n,m,k = {⊥,>}∪{Wfs,n,m,k(ls) | ls⊆ LS}

xtold,fs,n,m,k y =


> , if x => or y =>
x , if y =⊥
y , if x =⊥
Wfs,n,m,k(x∪ y) , otherwise

xvold,fs,n,m,k y = (y = xtold,fs,n,m,k y)

where Wfs,n,m,k : 2LS→ 2LS is defined as:

ls 7→

{
LS , if ∃(o′, f ′) ∈ ls. f ′ 6∈ (fs∪Arr)
ls∪W N

fs,n(ls)∪W M
m (ls)∪W K

k (ls) , otherwise

with W N
fs,n,W

M
m ,W K

k defined as:

W N
fs,n(ls) = {(o, f ) | f ∈ fs∧|{o′ | (o′, f ) ∈ ls}|> n}

W M
m (ls) = {(o, f ) | f ∈ Arr∧|{ f ′ ∈ Arr | (o, f ′) ∈ ls}|> m}

W K
k (ls) =

{
DObject×Arr , if |{o | ∃ f ∈ Arr. (o, f ) ∈ ls}|> k
/0 , otherwise

The function Wfs,n,m,k is the identity on any location set which:

• contains only pairs (o, f ) where f is in fs or is an array index,
• contains no more than n pairs (o, f ) for any fixed f ∈ fs,
• contains no more than m pairs (o,arrM (x)) for any fixed o ∈ DObject, and
• contains pairs (o,arrM (x)) for no more than k different objects o ∈ DObject.
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⊥

/0

DObject×Arr

{(o1, f )} {(o2, f )} . . .

DObject×{ f}
(DObject×Arr)∪{(o1, f )} (DObject×Arr)∪{(o2, f )} . . .

DObject× (Arr∪{ f})

LS

>

Figure 6.3 Abstract Domain A Heap
heap,{ f},1,0,0

⊥

/0

{(o1,arr(0))} {(o1,arr(1))} {(o2,arr(0))} {(o1,arr(2))} {(o2,arr(1))} . . .

{o1}×Arr {o2}×Arr . . .

DObject×Arr

LS

>

Figure 6.4 Abstract Domain A Heap
heap, /0,0,1,1
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For location sets outside of this scope, Wfs,n,m,k extends the set by completion of
those pairs which violate the above rules, i.e.:

• Full extension to LS for any location set containing a field not in fs or Arr.
• Inclusion of all pairs (o, f ) for each f ∈ fs which had more than n occurrences.
• Inclusion of all pairs (o,arrM (x)) for each o ∈ DObject which had more than m

index references.
• Inclusion of all pairs (o,arrM (x)) for all objects and indices if there were more

than k different objects containing index references.

The above treatment limits overapproximation, while still ensuring that no infinite
ascending chains are possible.

Example 6.7 (Two Small Heap Abstractions). To demonstrate these finite height
abstract domains for heaps, we look at the two heap abstractions A Heap

heap,{ f},1,0,0 and

A
Heap

heap, /0,0,1,1 in Figure 6.3 and Figure 6.4. Here the nodes marked as “. . .” represent
an infinite number of nodes, full lines from or to such infinite nodes represent edges
from or to each actual node, while dotted lines from such nodes represent edges from
an infinite subset of these nodes to the corresponding connecting node. In general,
of course, there will be many more available fields in fs, as well as n,m and k being
greater than 1.

6.5 Abstract Domains for Objects

In addition to an abstraction for the heap variable, there also exist local variables for
objects which must be abstracted as well, therefore we require an abstract domain
for DObject. Most of the information about an object is actually only representable if
the heap on which the object resides is also known. From an abstract domain point
of view this would require a relational abstract domain linking objects and heaps.
As our approach does not use relational abstract domains (at least not directly), our
abstract domain for objects can only express the knowledge directly obtainable from
only the object itself. The following attributes of an object can be obtained without
knowledge of the heap:

• Reference equality of this object with any other object, in particular null.
• The length of this object (used only by arrays).
• The type of this object.

We therefore first introduce abstract domains for objects based on each of these
points separately and can then combine them into one abstract domain for ob-
jects A Object.
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6.5.1 Null/Not-null Abstract Domain

The abstract domain A Object
null for objects based on reference equality to null is quite

simple and at the same time incredibly useful, in that it can be used to check for
possible NullPointerExceptions or prove the lack thereof in a piece of Java code.
A

Object
null is shown in Figure 6.5 with abstraction and concretization functions.

⊥

null not-null

>
α
A

Object
null

(X) =


⊥ , if X = /0
null , if X = {nullM }
not-null , if nullM 6∈ X
> , otherwise

γ
A

Object
null

(x) =


/0 , if x =⊥
{null} , if x = null
DObject \{null} , if x = not-null
DObject , if x =>

Figure 6.5 Abstract Domain A Ob ject
null

6.5.2 Length Abstract Domain

An abstract domain for objects based on their length is useful only for arrays. For all
other object types the length is some arbitrary number which has no meaning. For
arrays, however, abstracting these to their length can be quite helpful, for example
one could conclude based on this abstraction whether a loop iterating over an array
should be unrolled completely or a loop invariant generated for it.

We require an abstract domain A Z for the concrete domain Z and map each
object’s length to said abstract domain. We can then define the abstract domain for
objects based on their length as A Object

length :=A Z with abstraction and concretization
functions as follows:

α
A

Object
length

(X) = αA Z({lengthM (x) | x ∈ X})

γ
A

Object
length

(x) = {o ∈ DObject | lengthM (o) ∈ γA Z(x)}

We can use any abstract domain for Z, for example the simple sign domain
in Figure 6.2. However, using this abstract domain would not be very clever as
the abstract elements neg and ≤ will never abstract valid array lengths, while the
abstraction of both 1 and 10000 to the same abstract element pos is not very helpful.
Instead, let us consider the following:
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⊥

0 1 2 3 4 5 6 7 8 9 10 > 10

0..1 2..3 4..5 6..10

0..3

0..5

0..10

≥ 0

>

Figure 6.6 An Abstract Domain A Ob ject
length

1. Iterating over an array of length 0 is trivial (do not enter loop) and therefore full
precision should be kept, rather than abstracting by applying a loop invariant.

2. Iterating over an array of length 1 is similarly trivial (execute the loop body
once) and therefore full precision should also be kept here by unrolling the loop,
rather than applying a loop invariant. The loop invariant rule must still prove that
the loop body preserves the invariant, thus execution of the loop body is always
required once, even when applying a loop invariant.

3. Iterating over an array of length 2 or 3 can usually be done reasonably quickly
by unrolling the loop a sufficient number of times, therefore unrolling should be
favored over applying a loop invariant except in cases where symbolic execution
of the loop body is extremely costly.

4. Iterating over an array of length 4 or 5 can often be done reasonably quickly
by loop unrolling, therefore applying a loop invariant should only be done for
somewhat complex loop bodies.

5. Iterating over an array of length 6 to 10, applying a loop invariant should be
favored, except in cases where the loop body is trivial.

6. Iterating over an array of length greater than 10 should almost always be solved
by applying a loop invariant.

The above are reasonable guidelines (or in the case of lengths 0 and 1 simple fact),
such that we can present the abstract domain in Figure 6.6 for the concrete domain Z
and therefore also for objects based on their length.
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6.5.2.1 Type Abstract Domain

Abstracting on object type requires knowledge of the type hierarchy. However, due
to logical consequence of a formula requiring that the formula hold in all extensions
of the type hierarchy, we must in essence create an abstract domain based on not just
the type hierarchy given directly by the program, but any extension thereof.

For a set of objects X we offer abstractions for their types based on which exact
types are present in X , i.e., a set of types such that each element in X is an exact
instance of one of those types.

For any given type hierarchy T we must create an abstract domain, such that
there exist abstraction and concretization functions for all type hierarchies T ′ which
extend T .

For a given type hierarchy T = (T Sym,v) we first define the set of all dynamic
object types Od = {d ∈ T Sym | d v Object and d is not marked abstract} and based
on this define the abstract domain A Object

Od
, as shown in Figure 6.7. Then for any

type hierarchy extension T ′ = (T Sym′,v′) of T the abstraction and concretization
functions are given in Figure 6.8.

A
Object

Od
= (AObject

Od
,vObject

Od
,tObject

Od
)

AObject
Od

= {>}∪ (2Od \Od)

X tObject
Od

Y =

{
> , if X => or Y => or X ∪Y = Od

X ∪Y , otherwise

X vObject
T

Y =


tt , if Y =>
ff , if X => and Y 6=>
X ⊆ Y , otherwise

Figure 6.7 Family of Abstract Domains A Object
Od

α
Object
Od ,T ′ (X) =


> , if ∃x ∈ X . δ ′(x) 6∈ Od

or {d ∈ Td | ∃x ∈ X . δ ′(x) = d}= Od

{d ∈ Td | ∃x ∈ X . δ ′(x) = d} , otherwise

γ
Object
Od ,T ′ (X) =

{
{o ∈ D′ | δ ′(o)v′ Object} , if X =>
{o ∈ D′ |

∨
d∈X δ ′(o) = d} , otherwise

Figure 6.8 Galois connection between A Object
Od

and the Concrete Object Domain from T ′
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Example 6.8. We can consider a simplified Java program containing only the types
declared in Listing 6.1. Based on this we have the set of concrete object types

class Object {...}
abstract class A {...}
interface I {...}
class B extends A implements I {...}

Listing 6.1 Type declarations

{Object,B,Null} and the abstract domain A Object
{Object,B,Null} as shown in Figure 6.9.

/0

{Object} {B} {Null}

{Object,B} {Object,Null} {B,Null}

>

Figure 6.9 Abstract Domain A Object
{Object,B,Null}

The abstract domains A Object
Od

can be used, for example, to:

• prove that casting of an object does not cause a ClassCastException to be
thrown,

• prove that no ArrayStoreException is thrown when inserting an object into
an array,

• prove that an instanceof check will be successful,
• prove that an instanceof check will be unsuccessful, and/or
• narrow the list of possible method body instantiations down which is created

when unfolding a method call.

It is important to point out that although A Object
Od

always has abstract elements

{Null} and Od \{Null}, it is not inherently stronger than the abstract domainA Object
null .

This is because given a type hierarchy extension T ′ which introduces a new dy-
namic type d′ @ Object, for which it holds for some o that δ ′(o) = d′ the following
abstractions exist:

α
Object
Od ,T ′({o}) =>

α
Object
null ({o}) = not-null
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6.5.2.2 Combining the Object Abstract Domains Into One

Of course, we would like just one abstract domain for objects encompassing all of
the abstractions discussed in the previous subsections. The abstract domain A Object

for a given type hierarchy T is a partial cartesian product of the abstract domains
A

Object
null , A Object

length and A Object
Od

such that the abstraction and concretization functions
for any type hierarchy extension T ′ can be given as in Figure 6.10. The reason why
only a subset of the cartesian product is required is due to the following: As it must
hold that α(γ(a)) = a for all abstract elements a, there can never be more than one
abstract element representing the same set. We therefore cannot have both (⊥,y,z)
and (x,⊥,z) as separate abstract elements, as intuitively both of these would have to
represent the empty set. Additionally, while the abstraction for length is orthogonal
to the abstractions for null and exact type (due to the function length being defined
for all objects, including null and nonarray types), the abstractions for null and
exact type are not. While it is true that in one abstraction we may know that null
does not appear, while in the other abstraction we do not, it is nonetheless impossible
for certain abstract elements to be combined without representing the empty set, for
example the abstract elements null and {Object}.

The abstract domain A Object is defined in Figure 6.11.

α
Object(X) = (αObject

null (X),αObject
length(X),αObject

Od ,T ′ (X))

γ
Object((a,b,c)) = γ

Object
null (a)∩ γ

Object
length(b)∩ γ

Object
Od ,T ′ (c)

Figure 6.10 Abstraction and concretization Functions between A Object and concrete objects in T ′

A
Object = (AObject,vObject,tObject)

AObject ⊂ AObject
null ×AObject

length×AObject
Od

(a,b,c)vObject (x,y,z) = avObject
null x∧bvObject

length y∧ cvObject
Od

z

(a,b,c)tObject (x,y,z) = (atObject
null x,btObject

length y,ctObject
Od

z)

Figure 6.11 Abstract Domain A Object
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6.6 Extensions

In this section we briefly sketch how to add additional precision for arrays while
staying fully automatic. For sake of presentation we use a simplified abstract domain
for arrays (but which is included in the abstraction given in Section 6.4) and define a
more specific notion to join heap values. Based on this we can then sketch how to
automatically generate loop invariants for arrays that maintain a reasonable level of
precision for many use cases. This section is basically a shortened version of [Hähnle
et al., 2016] to which we refer the reader for details.

6.6.1 Abstractions for Arrays

We extend the abstract domain of the array elements to a range within the array.
Given a set of indexes R, an abstract domain A for array elements can be extended to
an abstract domain AR for arrays by copying the structure of A and renaming each αi
to αR,i. The αR,i are such that γαR,i, j ∈ {arrOb j ∈ int[] | ∀k ∈ R.χαi(arrOb j[k])}.

Example 6.9. As abstract domain A we use the sign domain for integers, producing
for each R⊆ N an abstract domain AR:

>R

/0R

≤R ≥R

0RnegR posR

γ(>R) = int[]

γ(≤R) = {arrOb j ∈ int[] | ∀k ∈ R.arrOb j[k]≤ 0}
γ(≥R) = {arrOb j ∈ int[] | ∀k ∈ R.arrOb j[k]≥ 0}

γ(negR) = {arrOb j ∈ int[] | ∀k ∈ R.arrOb j[k] < 0}
γ(posR) = {arrOb j ∈ int[] | ∀k ∈ R.arrOb j[k] > 0}

γ(0R) = {arrOb j ∈ int[] | ∀k ∈ R.arrOb j[k] .= 0}
γ( /0R) = {}

With R = {0,2}, we get γ(≥{0,2})= {arrOb j∈ int[] | arrOb j[0]≥ 0∧arrOb j[2]≥
0}. Importantly, the array length itself is irrelevant, provided arrOb j[0] and arrOb j[2]
have the required values. Therefore the arrays (we deviate from Java’s array literal
syntax for clarity) [0,3,6,9] and [5,−5,0] are both elements of γ(≥{0,2}).

Of particular interest are the ranges containing all elements modified within a
loop. One such range is [0..arrOb j.length). This range can always be taken as a
fallback option if no more precise range can be found.

6.6.2 Loop Invariant Rule with Value and Array Abstraction

To be able to deal with arrays we extend the updateInvariant rule:
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invariantUpdate

Γ ,U (x̄ .= c̄) =⇒∃γ̄.{U ′}(x̄ .= c̄),∆
Γ ,old .=U heap =⇒U Inv,∆
Γ ,old .=U heap, U ′mod(g∧ Inv), U ′mod [p](x̄

.= c̄) =⇒
∃ γ̄;U ′mod(x̄

.= c̄),∆
Γ ,old .=U heap, U ′mod(g∧ Inv) =⇒U ′mod [p]Inv,∆
Γ ,old .=U heap, U ′mod(¬g∧ Inv) =⇒U ′mod [r]ϕ,∆

Γ =⇒U [while (g) {p}; r]ϕ,∆

whereU ′mod := (U ′ ‖ V heap
mod ) withU ′ being theU ′mod from the previous sections and

V
heap

mod denotes the abstraction of the heap stored in program variable heap. The x̄, c̄, γ̄
and ∃ γ̄;ϕ are defined as previously. In addition to heap abstraction, we reintroduce
the loop invariant formula Inv, which is subsequently used to express properties
about the content of the heap. This includes explicit heap invariants of the form
∀i ∈ S. C→ P(selectint(heap,arrObj,arr(i))) as well as invariants which further
specify S or C. The program variable and old is a fresh constant used in Inv to refer
to the heap before loop execution.

i = 0; j = 0;
while(i < a.length) {

if (a[j] > 0) j++;
b[i] = j;
c[2*i] = 0;
i++;

}

Listing 6.2 Example program for array abstraction

Most branches serve a similar approach as those in the previous version. The
second and the third branch are new ensuring that the loop invariant formula is
initially valid as well as preserved by the loop body. Given program p in Listing 6.2,
applying the assignment rule to Γ =⇒U [p]ϕ,∆ leads to Γ =⇒{U ‖ i := 0 ‖ j :=
0}[while...]ϕ,∆ . Now the invariantUpdate rule is applied with, e.g., the fol-
lowing values:
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U
′ = (U ‖ i := γ≥,1 ‖ j := γ≥,2)

V
heap

mod =
heap := anon(anon(heap,b[0..i],anonHeap1),c[0..c.length],anonHeap2)

Inv =
(
∀k ∈ [0..j); χ>(selectint(heap,a,arr(k)))

)
∧
(
∀k ∈ [0..i); χ≥(selectint(heap,b,k))

)
∧ (∀m ∈ [0..c.length);

(m < 2∗ i∧m%2 .= 0)→ χ0(selectint(heap,c,arr(2∗m))))

∧
(
∀m ∈ [0..c.length);¬(m < 2∗ i∧m%2 .= 0)

→ (selectint(heap,c,arr(m)) .= selectint(old,c,arr(m)))
)

The update U ′mod is equal to the original update U except for the values of i and j
which can both be any nonnegative number. The arrays b and c have (partial) ranges
anonymized. We use arrOb j[lower..upper] to express the set of locations consisting
of all array elements of array arrOb j from lower (included) to upper (excluded).

Array a is not changed by the loop and thus not anonymized. The invariants in
Inv express that

1. a contains positive values at all positions prior to the current value of j,
2. the anonymized values in b (cf. V heap

mod ) are all nonnegative, and
3. the anonymized values in c are equal to their original values (if the loop does

not or has not yet modified them) or are equal to 0.

6.6.3 Computation of the Abstract Update and Invariants

We generate U ′, V heap
mod and Inv automatically in a side proof, by symbolic execution

of single loop iterations until a fixed-point is found. The computation of U ′ is as
in Section 6.3, but ignores the heap variable heap. We generate V heap

mod and Inv by
examining each array modification1 and anonymizing the entire range within the
array (expressed in V heap

mod ) while adding a partial invariant to the set Inv. Once a
fixed-point for U ′ is reached, we can refine V heap

mod and Inv by performing in essence
a second fixed-point iteration, this time anonymizing possibly smaller ranges and
potentially adding more invariants.

To perform this we need to generalize our notion of joining updates to include
heaps.

Definition 6.10 (Joining Heaps). Any operator with the signature

t̂ : (2Fml×DLTrmHeap)× (2Fml×DLTrmHeap)→ (2Fml×DLTrmHeap)

1 Later we also examine each array access (read or write) in if-conditions to gain invariants such as
∀k ∈ [0..j). χ>(select(heap,a,arr(k))) in the example above.
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is a heap join operator if it satisfies the properties: Let h1, h2 be arbitrary heaps
in a proof P, C1,C2 be formula sets representing constraints on the heaps (and
possibly also on other update values) and let U be an arbitrary update. Then for
(C,h) = (C1,h1) t̂ (C2,h2) the following holds for i ∈ {1,2}:

1. (U ‖ heap := h) is (P, Ci)-weaker than (U ‖ heap := hi),
2. Ci =⇒{U ‖ heap := hi}

∧
C, and

3. t̂ is associative and commutative up to first-order reasoning.

We define the set of normal form heaps HeapNF ⊂DLTrmheap to be those heap terms
that extend heap with an arbitrary number of preceding stores or anonymizations.
For a heap term h ∈ HeapNF we define

writes(h) :=


/0 if h = heap
{h}∪writes(h′) if h = store(h′,a,arr(idx),v) or

h = anon(h′,a[l..r],h′′)

A concrete implementation t̂heap of t̂ is given as follows: We reduce the signature to
t̂heap : (2Fml×HeapNF)× (2Fml×HeapNF)→ (2Fml×HeapNF). This ensures that
all heaps we examine are based on heap and is a valid assumption when taking the
program rules into account, as these maintain this normal form. As both heaps are in
normal form, they must share a common subheap (at least heap). The largest common
subheap of h1,h2 is defined as lcs(h1,h2) and all writes performed on this subheap can
be given as writeslcs(h1,h2) := writes(h1)∪writes(h2) \ (writes(h1)∩writes(h2)).
For the interested reader, the actual algorithms to compute the update abstractions
are shown in [Hähnle et al., 2016].

6.6.4 Symbolic Pivots

Finally, we sketch briefly how to generate the loop invariant formula Inv capturing
knowledge about the modified content of an array. In the previous section we com-
puted the update Umod , which provides us the abstraction for primitive types as well
as the heap, in particular, arrays. For the latter this information is relatively weak as
it assumes any update to an array element could cause a change at any array index.
With the generated U ′, however, we can now refine V heap

mod and Inv. We try to keep
the anonymizations in V heap

mod to a minimum, while producing stronger invariants Inv.
Consider the starting sequent

Γ =⇒U [while (g) {p}; r]ϕ,∆ .

As U ′ is weaker than U , the update (U ′ ‖ heap :=U heap) remains weaker than
U . For the sequent

Γ =⇒{U ′ ‖ heap :=U heap}[while (g) {p}; r]ϕ,∆
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while computing the heap join (by unrolling the loop) we reach open branches

Γi =⇒{Ui}[while (g) {p}; r]ϕ,∆i .

Aside from the values for heap, U ′ is weaker than Ui, as U ′ is a fixed-point. We
therefore do not have to join any nonheap variables when computing (U ∗, Inv).

When joining constraint/heap pairs we distinguish between three types of fm,n:

1. anonymizations, which are kept, as well as any invariants generated for them
occurring in the constraints,

2. stores to concrete indexes, for which we create a store to the index either of the
explicit value (if equal in both heaps) or of a fresh γi, j of appropriate type, and

3. stores to variable indexes, for which we anonymize a (partial) range in the array
and give stronger invariants.

Given a store to a variable index store(h,a,arr(idx),v), the index idx is express-
ible as a function index(γi0, j0 , . . . ,γin, jn). These γix, jx can be linked to program vari-
ables in the updateU ′, which contains updates pvx := γix, jx .We can therefore express
idx as the function sp(. . .pvx . . .).

We call idx = sp(. . .pvx . . .) a symbolic pivot, as it expresses what elements of the
array can be changed based on which program variables and allows us to partition the
array similar to pivot elements in array algorithms. Symbolic pivots split the array
into an already modified partition and an unmodified partition, where (parts of) the
unmodified partition may yet be modified in later iterations of the loop.

If P(W ) = ∀k ∈ [U sp..W sp). W χα j(selectint(heap,arrObj,arr(k)), for a sym-
bolic pivot sp, P(U ) is trivially true, as we are quantifying over an empty set.
Likewise, it is easy to show that the instance Q(U ) of the following is valid:

Q(W ) =
∀k 6∈ [U sp..W sp);

selectint(W heap,W arrObj,arr(k)) .=
selectint(U heap,W arrObj,arr(k))

Therefore, anonymizing an array arrObj with

anon(h,arrObj[0..arrObj.length],anonHeap)

and adding invariants P(U ∗) and Q(U ∗) for the contiguous range [U sp..{U ∗}sp)
is inductively sound, if P(U ′) =⇒ P(Ui) and Q(U ′) =⇒ Q(Ui).

Definition 6.11 (Iteration affine). Given a sequent Γ =⇒U [p]ϕ,∆ where p starts
with while, a term t is iteration affine, if there exists some step ∈ Z such that
for any n ∈ N, if we unroll and symbolically execute the loop n times, for each
branch with sequent Γi =⇒Ui[p]ϕ,∆i it holds that there is some value v, such that
Γi∪!∆i =⇒Uit

.= v and Γ∪!∆ =⇒U t +n∗ step .= v.

If the symbolic pivot is iteration affine, we know the exact elements that may be
modified. We could anonymize only this range. However, as expressing the affine
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range as a location set is nontrivial, we anonymize the entire array and create the
following invariants for the modified and unmodified partitions (using the symbols
of Definition 6.11):

∀k ∈ [0..arrObj.length). (k ≥U sp∧ k < sp∧ (k−U sp)%step .= 0)→ P(k),
and ∀k ∈ [0..arrObj.length). ¬(k ≥U sp∧ k < sp∧ (k−U sp)%step .= 0)

→ selectint(heap,arrObj,arr(k)) .= selectint(U heap,arrObj,arr(k))

Finally, we can also add invariants (without anonymizations) for array ac-
cesses which influence control flow. For each open branch with a condition
C(selectint(h,arrObj,arr(idx))) not already present in the sequent leading to it, we
determine the symbolic pivot for idx and create an iteration affine or contiguous
invariant for it.

6.7 Conclusions

In this section we outlined how to integrate abstraction into JavaDL. We looked first
into cases without a heap to explain the basic idea. We sketched then our approach to
extend the approach to arrays. We explained the necessary extensions to maintain a
reasonable amount of precision when abstracting arrays. The presented approach has
also been used to cover method contracts and recursion [Wasser, 2015]. It has been
applied in an eVoting case study [Do et al., 2016] to achieve full automation for the
purpose of detecting information leaks.
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Introduction

The Java Modeling Language, JML, is an increasingly popular specification language
for Java software, that has been developed as a community effort since 1999. The
nature of such a project entails that language details change, sometimes rapidly,
over time and there is no ultimate reference for JML. Fortunately, for the items that
we address in this introduction, the syntax and semantics are for the greatest part
already settled by Leavens et al. [2013]. Basic design decisions have been described
in [Leavens et al., 2006b],2 who outline these three overall goals:

• “JML must be able to document the interfaces and behavior of existing software,
regardless of the analyses and design methods to create it. [. . . ]

1 Chapter 8 defines a translation of the JML variant supported by KeY into Java dynamic logic,
and thereby defines a (translational) semantics of JML. Appendix A provides a language reference
for the exact JML variant supported by KeY, presenting syntax, as well as more details on the
semantics. Chapter 9 is entirely dedicated to modular specification and verification using JML and
KeY. Chapter 16 is a tutorial on KeY, using JML in a very intuitive manner only.
2 This 2006 journal publication is a revised version of a technical report that first appeared in 1998.

Chapter 7
Formal Specification with the
Java Modeling Language

Marieke Huisman, Wolfgang Ahrendt, Daniel Grahl, and Martin Hentschel

This text is a general, self contained, and tool independent introduction into the Java
Modeling Language, JML. It appears in a book about the KeY approach and tool,
because JML is the dominating starting point of KeY style Java verification. However,
this chapter does not depend on KeY, nor any other specific tool, nor on any specific
verification methodology. With this text, the authors aim to provide, for the time
being, the definitive, general JML tutorial.

Other chapters in this book discuss the particular usage of JML in KeY style
verification.1 In this chapter, however, we only refer to KeY in very few places,
without relying on it. This introduction is written for all readers with an interest in
formal specification of software in general, and anyone who wants to learn about the
JML approach to specification in particular. A preliminary version of this chapter
appeared as a technical report [Huisman et al., 2014].

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 193–241, 2016
DOI: 10.1007/978-3-319-49812-6 7
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• The notation used in JML should be readily understandable by Java programmers,
including those with only standard mathematical training. [. . . ]

• The language must be capable of being given a rigorous formal semantics, and must
also be amenable to tool support.”

This essentially means two things to the specification language: Firstly, it needs to
express properties about the special aspects of the Java language, e.g., inheritance,
object initialization, or abrupt termination. Secondly, the specification language itself
heavily relies on Java; its syntax extends Java’s syntax and its semantics extend
Java’s semantics. The former makes it convenient to talk about such features in a
natural way, instead of defining auxiliary constructs or instrumenting the code as in
other specification methodologies. The latter can also come in handy since, with a
reasonable knowledge of Java, little theoretical background is needed in order to use
JML. This has been one of the major aims in the design of JML. It however bears the
problem that reasoning about specifications in a formal and abstract way becomes
more difficult as even simple expressions are evaluated w.r.t. the complex semantics
of Java.

History and Background

Assertions in source code to prove correctness of the implementation have already
been proposed long time ago by Floyd [1967]. However, assertions were not widely
used in practice—the assert statement in Java only first appeared in version 1.4,
in 2002. Other programming languages adopted assertions earlier: Bertrand Meyer
introduced the concept of Design by Contract (DbC) in 1986 with the Eiffel language
[Meyer, 1992, 1997]. DbC is a programming methodology where the behavior of
program components is described as a contract between the provider and the clients
of the component. The client only has to study the component’s contract, and this
should tell him or her exactly what he or she can expect from the component. The
provider is free to choose any implementation, as long as it respects the component’s
contract. Design by Contract has become a popular methodology for object-oriented
languages. In this case, the components are the program’s classes. Contracts naturally
correspond with the object-oriented paradigm to hide (or encapsulate) the internal
state of an object.

The Eiffel compiler came with a special option to check validity of a contract
at runtime. Subsequently, the same ideas where applied to reason about other pro-
gramming languages (including Modula-3, C++, and Smalltalk, that were all handled
in the Larch project [Guttag and Horning, 1993, Leavens and Cheon, 1993]). With
the growing popularity of Java, several people decided to develop a specification
language for Java. Gary T. Leavens and his students at Iowa State University used
their experience from the Larch project, and started work on a DbC specification
language for Java in 1998. They proposed a specification language, and simultane-
ously developed a JML runtime assertion checker, that could be used to validate
the contracts at runtime. At more or less the same time, K. Rustan M. Leino and
his team at the DEC/Compaq research center started working on a tool for static
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code analysis. For the Extended Static Checker for Java, ESC/Java [Leino et al.,
2000], they developed a specification language that was more or less a subset of
JML. A successor, ESC/Java2 [Cok and Kiniry, 2005], finally adopted JML as it is
now. Several projects have been targeting tool supported formal verification of Java
programs: the LOOP project [van den Berg and Jacobs, 2001], the Krakatoa project
[Marché et al., 2004], and of course KeY. While in KeY originally specifications had
been written in the Object Constraint Language (OCL), that is part of UML, from
version 0.99 (released in 2005) on, JML has been the primary input language.

Ever since, the community has worked on adopting a single JML language, with
a single semantics—and this is still an ongoing process. Over the years, JML has
become a very large language, containing many different specification constructs,
some of which are only sensible in a single analysis technique. Because of the
language being so large, not for all constructs the semantics is actually understood
and agreed upon, and moreover all tools that support JML in fact only support a
subset of it. There have been several suggestions of providing a formal semantics
[Jacobs and Poll, 2001, Engel, 2005, Darvas and Müller, 2007, Bruns, 2009], but as
of 2015, there is no final consensus. Moreover, JML suffers from the lack of support
for current Java versions; currently there are no specifications for Java 5 features,
such as enums or generic types. Dedicated expressions to deal with enhanced foreach
loops have been proposed by Cok [2008].

How to Read this Chapter

When introducing JML, we mix a top-down and a bottom-up approach. At first,
we introduce the probably most important concept of JML (and similar languages),
method contracts, in a high-level manner (Section 7.1). We then jump to the most ele-
mentary building blocks of JML specifications, JML expressions (Section 7.2), which
are needed to discuss method contracts in more detail (Section 7.3). Then, we lift
the granularity of contracts from to the method to the class level (Section 7.4). After
discussing the treatment of the null reference, and of exceptions (Sections 7.5,7.6),
we turn to measures for increasing the separation of specification and implementation,
specification-only fields, methods, and variables (Section 7.7). Subtle complications
of the integer semantics deserve their own, brief discussion (Section 7.8). Finally, we
show that JML is not only used to specify desired behavior, but also to support the
verification process through auxiliary assertions (Section 7.9). An overview of JML
tools and a comparison with other specification languages (Section 7.10) conclude
this tutorial.

During the course of this chapter, the reader may want to experiment with the
examples (available from www.key-project.org/thebook2), using various tools, like
KeY and OpenJML, among others. This is strongly encouraged. However, there are
differences, unfortunately, concerning which language features and library methods
are supported, and different restrictions on the way JML is written. Some of these
difference are a bit arbitrary, others are more fundamental. For instance, runtime ver-
ification tools impose restrictions on JML which are not present in static verification

http://www.key-project.org/thebook2
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tools, e.g., that invariants and postconditions have to be executable. The reader may
therefore encounter examples that cannot be (without changes) processed by every
JML tool.

7.1 Introduction to Method Contracts

Specifications, whether they are presented in natural language or some formalism,
can express properties about system artifacts on various levels of granularity; like for
instance the overall system, some intermediate level, like architectural components,
or, on an even finer level of granularity, source code units. JML is designed for unit
specification. In Java, those units are:

• methods, where JML specifies the effect of a single method invocation;
• classes, where JML merely specifies constraints on the internal structure of an

object; and
• interfaces, where JML specifies the external behavior of an object.

Specifications of these units serve as contracts for their implementers, fixing what
they can rely upon, and what they have to deliver in return, following the aforemen-
tioned Design by Contract paradigm.

We start by introducing method specifications in this section. While we go along,
we will also introduce more general concepts, such as JML expressions, that are later
used for class and interface specifications as well.

7.1.1 Clauses of a Contract

Contracts of methods are an agreement between the caller of the method and the
callee, describing what guarantees they provide to each other. More specifically, it
describes what is expected from the code that calls the method, and it provides guar-
antees about what the method will actually do. While in our terminology, ‘contract’
refers to the complete behavioral specification, written JML specifications usually
consist of specification cases.3 These specification cases are made up of several
clauses.

The expectations on the caller are called the preconditions of the method. Typically,
these will be conditions on the method’s parameters, e.g., an argument should be
a nonnull reference; but the precondition can also describe that the method should
only be called when the object is in a particular state. In JML, each precondition is
preceded by the keyword requires, and the conjunction of all requires clauses forms
the method’s precondition. We would like to emphasize that it is not the method

3 In the context of KeY, what is called a contract approximately corresponds to a specification case
in JML. What is called ‘the contract’ in JML (i.e., the complete specification) is considered as a set
of multiple contracts for the same target in KeY. For details see Section 8.2.4.
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implementer’s responsibility to check or handle a violation of the precondition.
Instead, this is the responsibility of the caller, and the whole point of contracts is to
make this distribution of responsibilities explicit, and checkable. Having said that, it
can be a difficult design decision when the caller should be responsible for ‘good’
parameters and prestates, and when the called method should check and handle this
itself. We refer to Section 7.1.2 for a further discussion of defensive versus offensive
specifications and implementations.

The guarantees provided by a method are called the postcondition of the method.
They describe how the system state is changed by the method, or what the expected
return value of the method is. A method only guarantees its postcondition to hold
whenever it is called in a state that respects the precondition. If it is called in a state
that does not satisfy the precondition, then no guarantee is made at all. In JML, every
postcondition expression is preceded by the keyword ensures, and the conjunction
of all ensures clauses forms the method’s postcondition.

JML specifications are written as special comments in the Java code, starting with
/*@ or //@. The @ symbol allows the JML parser to recognize that the comment
contains a JML specification. Sometimes, JML specifications are also called anno-
tations, because they annotate the program code. Preconditions and postconditions
are basically just Java expressions (of Boolean type). This is done on purpose: if the
specifications are written in a language that the programmer is already familiar with,
they are easier for him or her to write and to read. JML extends Java’s syntax; almost
every side effect free Java expression, i.e., that does not modify the state and has no
observable interaction with the outside world, (see [Gosling et al., 2013]) is also a
valid JML expression. See Section 7.2 for a detailed discussion of JML expressions.

Example 7.1. Listing 7.1 contains an example of a basic JML specification. It con-
tains specification cases for the methods in an interface Student, modeling a typical
student at some university.

We discuss the different aspects of this example in full detail. To specify a certain
method with JML, requires and ensures clauses are placed immediately before that
method, within a JML comment, starting with /*@ or //@. For instance, the method
changeStatus is specified in JML using two pre- and two postconditions.

The @ symbol is not only used at the beginning of a JML comment, but possibly
also at the beginning of each line of the JML specification, and before the */. This is
not necessary, but helps to highlight the JML specifications better. In general, an @ is
ignored within a JML annotation if it is the first (nonwhite) character in the line, or if
it is the last character before ‘*/.’

The requires and ensures clauses always consist of the keyword requires or
ensures, respectively, followed by a Boolean expression. Note that a specification
case must at least contain one ensures clause and that requires clauses may only
appear at the beginning of a specification case.

For method getName, we specify that it is a pure method, i.e., it may not have
any (visible) side effects. Also, it must terminate unconditionally (possibly with an
exception). Only pure methods may be used in specification expressions, because
these should not have side effects, and always terminate.
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1 public interface Student {
2

3 public static final int bachelor = 0;
4 public static final int master = 1;
5

6 public /*@ pure @*/ String getName();
7

8 //@ ensures \result == bachelor || \result == master;
9 public /*@ pure @*/ int getStatus();

10

11 //@ ensures \result >= 0;
12 public /*@ pure @*/ int getCredits();
13

14 //@ ensures getName().equals(n);
15 public void setName(String n);
16

17 /*@ requires c >= 0;
18 @ ensures getCredits() == \old(getCredits()) + c;
19 @*/
20 public void addCredits(int c);
21

22 /*@ requires getCredits() >= 180;
23 @ requires getStatus() == bachelor;
24 @ ensures getCredits() == \old(getCredits());
25 @ ensures getStatus() == master;
26 @*/
27 public void changeStatus();
28

29

30 }

Listing 7.1 First JML example specification

Method getStatus is also specified as being pure. In addition, we specify that
its result may only be one of two values: bachelor or master. To denote the return
value of the method, the reserved JML keyword \result is used.

For method getCredits we also specify that it is pure, and in addition we specify
that its return value must be nonnegative; a student thus never can have a negative
amount of credits.

Method setName is nonpure, i.e., it may have side effects. Its postcondition is
expressed in terms of the pure methods getName and equals: it ensures that after
termination the result of getName is equal to the parameter n.

Method addCredits’s precondition states a condition on the method parameters,
namely that only a positive number of credits can be added. The postcondition
specifies how the credits change. Again, this postcondition is expressed in terms
of a pure method, namely getCredits. Notice the use of the keyword \old. An
expression \old(E) in the postcondition actually denotes the value of expression
E in the state where the method call started, the prestate of the method. Thus the
postcondition of addCredits expresses that the number of credits only increases:



7.1. Introduction to Method Contracts 199

after evaluation of the method, the value of getCredits is equal to the old value of
getCredits, i.e., before the method was called, plus the parameter c.

Method changeStatus’s precondition specifies that this method only may be
called when the student is in a particular state, namely when they have obtained a
sufficient amount of credits to pass from the Bachelor status to the Master status.
Moreover, the method may only be called when the student is still having a Bachelor
status. The postcondition expresses that the number of credits is not changed by this
operation, but the status is. Notice that the two preconditions and the two postcon-
ditions of changeStatus are written as separate requires and ensures clauses,
respectively. Implicitly, these are each joined in conjunction, thus the specification is
equivalent to the following specification:
/*@ requires getCredits() >= 180 &&
@ getStatus() == bachelor;
@ ensures getCredits() == \old(getCredits()) &&
@ getStatus() == master;
@*/

public void changeStatus();
The reader might have wondered why not all method specifications in Student

have a pre- and a postcondition. Implicitly though, they have. For every specification
clause, there is a default. For pre- and postconditions this is the predicate true, i.e., no
constraints are placed on the caller of the method, or on the method’s implementation.

Example 7.2. Thus for example the specification of method getStatus actually is
the following:

Java + JML
/*@ requires true;
@ ensures status == bachelor || status == master;
@*/

public int getStatus() {
return status;

}
Java + JML

7.1.2 Defensive Versus Offensive Method Implementations

An important point about method contracts is that they can be used to avoid defensive
programming. Consider the specification of method addCredits in Listing 7.1,

This method assumes that its argument is nonnegative, and otherwise it is not
going to function correctly. When one uses a defensive programming style, one
would first test the value of the argument and throw an exception if this was negative.
This clutters up the code, and in many cases it is not necessary. Instead, using
specifications, one can use an ‘offensive’ coding style. The specification states what
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the method requires from its caller. It only guarantees to function correctly if the
caller also fulfills its part of the contract. When validating the application, one checks
that every call of the method is indeed within the bounds of its specification, and thus
the explicit test in the code is not necessary. Thus, making good use of specifications
can avoid adding many parameter checks in the code. Such checks are only necessary
when the parameters cannot be controlled—for example, because they are given via
an external user.

7.1.3 Specifications and Implementations

Method specifications are written independently of possible implementations. Classes
that implement this interface may choose different implementations, as long as they
respect the specification. Method specifications do not always have to specify the
exact behavior of a method; they give minimal requirements that the implementation
should respect.

Example 7.3. Considering the specification in Listing 7.1 again, the method speci-
fication for changeStatus prescribes that the credits may not be changed by this
method. However, method addCredits is free to update the status of the student.
So for example, an implementation that silently updates the status from Bachelor
to Master is appropriate according to the specification. The specification case is
repeated here for understandability and that it is not required and recommended to
copy specifications of interfaces in classes that realize them.

Java + JML
/*@ requires c >= 0;
@ ensures getCredits() == \old(getCredits()) + c;
@*/

public void addCredits(int c) {
credits = credits + c;
if (credits >= 180) {status = master;}

}

Java + JML

According to the specification, both addCredits and changeStatus would
be free to change the name of the student, even though we would typically
not expect this to happen. A way to avoid this, is to add explicitly conditions
getName()==\old(getName()) to all postconditions. Later, in Section 7.9.1, we
will see how assignable clauses can be used to explicitly disallow these unwanted
changes in a more convenient way.
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7.2 Expressions

We have already seen that standard Java expressions can be used in JML specifica-
tions. These expressions have to be side effect free, thus for example assignments,
or increment/decrement operators, are not allowed. As also mentioned above, JML
expressions may contain method calls to pure methods.

In addition, JML defines several specification-specific constructs, to be used in
expressions. The use of the \result and \old keywords has already been demon-
strated in Listing 7.1, and the official language specification contains a few more
of these. Besides Java’s logical operators, such as conjunction &, disjunction |and
negation !, also other logical operators are allowed in JML specifications, e.g., im-
plication ==>, and logical equivalence <==>. Since expressions are not supposed to
have side effects or terminate exceptionally, in JML in many cases the difference
between logical operators such as & and |, and short circuit operators, such as &&,
and || is not important. However, sometimes the short circuit operators have to be
used to ensure an expression is well-defined. For instance, y != 0 & x/y == 5
may not be a well-defined expression, while y != 0 && x/y == 5 is.

7.2.1 Quantified Boolean Expressions

For specifying interesting properties, purely propositional Boolean expressions are
too limited. How could one for instance express any of the following properties with
just propositional connectors?

• An array arr is sorted.
• The variable m holds the maximum entry of array arr.
• All Account objects in an array allAccounts are stored at the index corre-

sponding to their respective accountNumber field.

Given that the arrays in these examples have a statically unknown length, proposi-
tional connectives are not enough to express any of the above. What we need here
is quantification. For that, Boolean JML expressions are extended by the following
constructs.4

• (\forall T x; b)
‘for all x of type T , b holds’

• (\forall T x; a; b)
‘for all x of type T fulfilling a, b holds’

• (\exists T x; b)
‘there exists an x of type T such that b holds’

• (\exists T x; a; b)
‘there exists an x of type T fulfilling a, such that b holds’

4 The JML keywords \forall and \exists correspond to ∀ and ∃ in textbook notation.
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Here, T is a Java (primitive or reference) type, x is any name (hereby declared
to be of type T ), and a and b are Boolean JML expressions. The a is called
range predicate. The two forms using a range predicate are not strictly needed,
as they can be expressed without. (\forall T x; a; b) is logically equivalent to
(\forall T x; a ==> b), and (\exists T x; a; b) is logically equivalent
to (\exists T x; a && b). However, the range predicates have a certain prag-
matics not shared by their logical counterparts. In (\forall T x; a; b), as well
as in (\exists T x; a; b), the Boolean expression a is used intuitively to restrict
range of x further than T does.

Example 7.4. Using quantifiers, we can specify that an array should be sorted, for
instance in a precondition for a logarithmic lookup method that assumes sorting.

JML
//@ requires (\forall int i, j;
//@ 0 <= i & i < j & j < a.length;
//@ a[i] <= a[j]);
public int lookup(int elem) {...

JML

The first argument int i,j is the declaration of the variables over that the
quantification ranges. The second argument 0 <= i & i < j & j < a.length
defines the range of the values for this variable, and the third argument is the actually
universally quantified formula (a[i] <= a[j] in this case).

Example 7.5. An alternative, but less preferred, way to phrase the specification in
Example 7.4 is the following:

JML
//@ requires (\forall int i, j;
//@ 0 <= i & i < j & j < a.length ==> a[i] <= a[j]);
public int lookup(int elem) {...

JML

Besides supporting readability, the range predicate form helps certain JML tools
to ‘execute’ quantified formulas where possible. This is less important for theorem
provers, like KeY. But a runtime verification tool would need to operationalize the
precondition, by looping through all i,j fulfilling 0<=i & i<j & i<a.length,
instead of looping through all i,j between Integer.MIN_VALUE and
Integer.MAX_VALUE.

Example 7.6. To specify that a method returns the index of an integer array arr
holding the maximum entry, we can write the following postcondition.

JML
//@ ensures (\forall int i; 0 <= i &&
//@ i < arr.length; \result >= arr[i]);

JML
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But is that enough? (The reader may briefly reflect before reading on.) This single
line only specifies that the result is larger than any other element. An implementation
always returning Integer.MAX_VALUE would satisfy the above postcondition5. We
therefore need an additional postcondition that states that the result is actually an
element of the array:

JML
//@ ensures arr.length > 0 ==>
//@ (\exists int i; 0<=i && i<arr.length; \result==arr[i]);

JML

Example 7.7. The following Boolean JML expressions say that all Account objects
in an array allAccounts are stored at the index corresponding to their respective
accountNumber field.

JML
(\forall int i; 0 <= i && i < allAccounts.length;

allAccounts[i].accountNumber == i)
JML

Such an expression could for instance be used in an invariant, see Section 7.4.1.

7.2.2 Numerical Comprehensions

In addition to the Boolean quantified expressions, JML offers so called general-
ized quantifiers \sum, \product, \min, \max, and \num_of. Those are actually
numerical comprehensions (or higher-order functions) with bound variables; see
Section 2.3.1. The postcondition in Example 7.6 can alternatively be given as:
//@ ensures \result ==
//@ (\max int i; 0 <= i && i < arr.length; arr[i]);
The above is syntactically similar to a quantified formula: the \max operator binds a
variable i, and a Boolean guard expression restricts it to be within the range of the
array’s indices. The type of the \max expression is the type of its body; here it is int.
The intuitive semantics is obviously that the result is the maximum of all arr[i]
where i is in the array range. However, the \max construct is not total, i.e., it is not
always a well-defined expression. In case arr has zero length, for instance, there
is no maximum. A similar case appears with a noncompact range, e.g., the set of
all mathematical integers (represented by the JML type \bigint, see Section 7.8):
(\max \bigint i; true; i).

Another comprehension operator is the summation operator \sum, of which we
make use in Example 7.9 on page 224 since the exact number of summands is not
known:
5 See also Section 7.8 for a discussion on Java integers.
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(\sum int i; 0 <= i && i < s1.length; s1[i].getCredits())

This expression corresponds to ∑
s1.length−1
i=0 s1[i].getCredits() in mathematical

notation. More generally, sum comprehensions in JML can have several bound vari-
ables that range over sets of values. The general pattern is (\sum T x; P; Q)
where T is a type, P a Boolean expression and Q an integer expression corresponds
to ∑x∈{y∈T |P}Q. Likewise the \product operator is used to express product compre-
hensions. Since addition (as multiplication) is commutative and associative, there is
no particular order in which elements are summed up. Sums with empty ranges have
value 0 by definition, empty products have value 1.

Expressions using the \num_of operator, that gives the cardinality of a finite
set, can be expressed in terms of sums: (\num_of T x; P) is syntactic sugar for
(\sum T x; P; 1).

However, like for maximum, sum comprehensions are not always well-defined. For
instance, the expression (\sum \bigint i; 0 <= i; i) corresponds to ∑

∞
i=0 i,

the value of which is undefined since it diverges. In some tools—including KeY—
effective reasoning about these comprehensions is therefore restricted to closed
integer intervals, for which sums, etc., are always defined. In particular, KeY only
interprets sums of the shape (\sum int i; ` <= i && i < u; Q), where the
lower bound ` is included and the upper bound u is excluded. This restricted form
using intervals has the advantage of having a simple induction schema to define
these comprehensions, that lays the foundation to reasoning about sums and products.
More details about this are discussed in Section 8.1.

7.2.3 Evaluation in the Prestate

As indicated in the introductory example, JML allows us to mark any expres-
sion e in a postcondition with \old(e), which means that e is not evaluated in
the current (post)state of the method, but in its prestate. In most cases, \old(e)
is a subexpression of some bigger expression, and it is important to be aware
that all parts of the expression not included in \old(. . .) construct are evalu-
ated in the current (post)state. This is fairly obvious in many examples, like
ensures getCredits() == \old(getCredits()) + c; in Listing 7.1. For a
more subtle example, consider an ATM scenario, where an insertedCard (repre-
sented by an object with a Boolean field invalid) is ‘confiscated’ after too many
failed attempts to enter the correct PIN, specified by
//@ ...
//@ ensures \old(insertedCard).invalid;
//@ ...

We encourage the reader, before reading on, to reflect on the difference between
\old(insertedCard).invalid and \old(insertedCard.invalid).

Writing \old(insertedCard.invalid) would mean that the method imple-
mentation has to guarantee that the invalid field of the old insertedCard object
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was true before the method’s execution. This makes no sense, as a method implemen-
tation can never influence its prestate. However, \old(insertedCard).invalid
makes much more sense, as an implementation can, for instance, set the invalid
field of the old insertedCard object to true. To demand the invalidation of the
object insertedCard in the poststate, \old(insertedCard).invalid refers to
the current field of the object formerly referred to by insertedCard.

7.3 Method Contracts in Detail

Now that the reader is familiar with the particular features of JML expressions, we
are ready to continue the presentation of method contracts. Among other things, we
will introduce specification visibility, much more structure, and more semantics, in
contracts.

7.3.1 Visibility of Specifications

So far, the specifications have not specified anything about the values of an object’s
fields. Typically, these are declared private, which limits also their use within spec-
ifications. Basically JML uses the same access rules like Java which means that
elements used within specifications have to be visible to it and that a specification
itself also has a visibility. The access modifiers public, protected, and private
are explicitly used to define specifications visibility. If none of these modifiers is
used a specification has the default (package) visibility.

In addition to the Java access rules, JML forbids the usage of elements within
specifications that are less visible than the specification itself. The reason of this
restriction is to avoid to expose implementation details to the clients (information
hiding). As a consequence, it is not possible to use private variables directly within
protected or public specifications. However, it is possible to change their visibility
only for the specification layer via spec_protected or spec_public. These mod-
ifiers have to be used with care and only if the adjusted field fits the abstraction level
of the specification.

Example 7.8. If we specify the instance variables of CStudent to be spec_public,
then its constructor can also be specified as in Listing 7.2.

A second restriction of specification visibility to keep in mind is that specifications
that constrain a field must have at least the visibility of the field. The reason is that
otherwise a user of a field would not see the constraints to maintain. This is especially
important for invariants and constraints, discussed in Sections 7.4.1 and 7.4.3.
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class CStudent implements Student {

/*@ spec_public @*/ private String name;
/*@ spec_public @*/ private int credits;
/*@ spec_public @*/ private int status;
...
/*@ requires c >= 0;
@ ensures credits == c;
@ ensures status == bachelor;
@ ensures name = n;
@*/

public CStudent (int c, String n) {
credits = c;
name = n;
status = bachelor;

}
}

Listing 7.2 Class CStudent with spec_public variables

7.3.2 Specification Cases

When specifying a method, it is often useful—and sometimes necessary—to describe
the behavior separately for different parts of the prestate/input space. The structuring
mechanism for that is the specification case, each of which is specific for a particular
precondition. Specification cases are combined by the also keyword. The above
method contracts consisted of only one specification case. We now give an example
where two specification cases are given for one method.

Example 7.9. Listing 7.3 shows the specification of a class implementing a set of
integers, with a limited capacity that is fixed at the time when the integer set object is
constructed.

Here, method add is specified by two specification cases, one for the case, where
the set is not full and the element to be added is not contained (size < limit &&
!contains(elem)); and one for the case, where the set is full or the element to be
added is already contained (size == limit || contains(elem);). Note that it
is possible to specify add with only one specification case. Refer to [Raghavan and
Leavens, 2000] for a procedure to produce flat specifications.

Listing 7.3 is furthermore an example for extensive usage of quantification. More-
over, it demonstrates the power of pure methods. Without the ability to use contains
in the specification of the other methods, all occurrences of contains would need
to be replaced by the existentially quantified JML expression specifying contains,
resulting in a much more complicated specification. We will extend on this example
when discussing class invariants.
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1 public class LimitedIntegerSet {
2 public final int limit;
3 /*@ spec_public @*/ private int arr[];
4 /*@ spec_public @*/ private int size = 0;
5

6 public LimitedIntegerSet(int limit) {
7 this.limit = limit;
8 this.arr = new int[limit];
9 }

10

11 /*@ requires size < limit && !contains(elem);
12 @ ensures \result == true;
13 @ ensures contains(elem);
14 @ ensures (\forall int e;
15 @ e != elem;
16 @ contains(e) <==> \old(contains(e)));
17 @ ensures size == \old(size) + 1;
18 @
19 @ also
20 @
21 @ requires size == limit || contains(elem);
22 @ ensures \result == false;
23 @ ensures (\forall int e;
24 @ contains(e) <==> \old(contains(e)));
25 @ ensures size == \old(size);
26 @*/
27 public boolean add(int elem) {/*...*/}
28

29 /*@ ensures !contains(elem);
30 @ ensures (\forall int e;
31 @ e != elem;
32 @ contains(e) <==> \old(contains(e)));
33 @ ensures \old(contains(elem))
34 @ ==> size == \old(size) - 1;
35 @ ensures !\old(contains(elem))
36 @ ==> size == \old(size);
37 @*/
38 public void remove(int elem) {/*...*/}
39

40 /*@ ensures \result == (\exists int i;
41 @ 0 <= i && i < size;
42 @ arr[i] == elem);
43 @*/
44 public /*@ pure @*/ boolean contains(int elem) {/*...*/}
45

46

...
47 }

Listing 7.3 Specifying limited size integer set
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7.3.3 Semantics of Normal Behavior Specification Cases

An important question is when a method specification is actually satisfied. And in
particular, if a method does not terminate, does it then satisfy its specification? The
specifications as we have seen here implicitly state that the method must always
terminate, i.e., they specify a total correctness condition, see [Hoare, 1969]. If
method m is specified as follows:
/*@ requires P;
@ ensures Q;
@*/

public . . . m(. . .) { . . .

this means the following: If method m is executed in a prestate where P holds,
then execution of method m from this prestate terminates, and—if it terminates
normally6—in the final state the postcondition Q holds. Section 8.2 provides a more
formal account on contract semantics.

Nontermination and Exceptions

To specify that a method may not terminate under some precondition, one can add
an explicit diverges clause. A diverges clause specifies under which conditions
a method may not terminate, for example to express that for certain parameters a
method may not terminate. As we have seen above, the default is false, i.e., a
method must always terminate. Like requires, diverges clauses are evaluated in
the prestate; a diverges clause thus describes a precondition that is necessary for
nontermination.
/*@ requires P;
@ ensures Q;
@ diverges x < 0;
@*/

public . . . m(int x) { . . .

Sometimes we wish to exclude the case that a method may terminate because
of an exception. In this case, the respective specification case is preceded by the
keyword normal_behavior, which states that the method execution must terminate
normally, and in the final state the postcondition must hold.

Lightweight and Heavyweight Specification

The JML reference manual [Leavens et al., 2013] further distinguishes between
so called lightweight and heavyweight specifications. Heavyweight specification

6 A method is said to terminate normally if either it reached the end of its body, in a normal state,
or it terminated because of a return instruction. In Section 7.6 we discuss how we can specify
methods that terminate because of an exception.
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cases are preceded by one of the keywords behavior, normal_behavior, or
exceptional_behavior (see Section 7.6); all others are lightweight. The differ-
ence is that, in lightweight specifications, there are no standardized defaults—except
for diverges whose default is always false. Instead, every tool is free to choose
its own semantics. KeY takes the choice of applying the same defaults as for heavy-
weight specifications. The visibility of a lightweight specification case in JML is
always the one of the method they specify.

7.3.4 Specifications for Constructors

Constructors can be considered as special methods. In the prestate of a constructor, the
object does not yet exist. Thus a precondition of a constructor can only put constraints
on the constructor parameters, it cannot require anything about the internal state of
the object—as the object does not exist yet when the constructor is called. However,
the postcondition of the constructor can specify constraints on the state of the object.
Typically, it will relate the object state to the constructor’s parameters.

Example 7.10. Suppose we have a class CStudent implementing the Student inter-
face. It could have the following constructor:

Java + JML
/*@ requires c >= 0;
@ ensures getCredits() == c;
@ ensures getStatus() == bachelor;
@ ensures getName() == n;
@*/

CStudent (int c, String n) {
credits = c;
name = n;
status = bachelor;

}

Java + JML

Thus, it would be incorrect to specify requires getCredits() >= 0; or
requires getStatus() == bachelor; these specifications are meaningless at
the moment that the constructor is invoked.

7.3.5 Notions of Purity

Above in Section 7.1.1, we have said that only pure methods may be used in a method
specification, and purity was defined as terminating unconditionally and having no
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visible side effects. ‘No visible side effects’ means that the state that was allocated
on the heap before the method call may not be changed. Thus, this does not exclude
that a method creates a new object and initializes it. In the same way, constructors are
pure if they only operate on fields of the object they initialize, not touching the state
that was allocated before the call to the constructor. If it, however, changes other parts
of the state it is not pure. Later, in Section 9.4.4, we will see how purity annotations
help to verify programs in a modular way. For clarity, this notion of purity in JML
is sometimes known as weak purity. This is in contrast to strict purity that requires
that the heap is not changed in any way. While weakly and strictly pure methods
have the same observable behavior, reasoning about hidden changes in weakly pure
methods can make a proof more complicated. In KeY’s dialect of JML, strict purity
is indicated by the modifier strictly_pure.

Apart from that, there are situations where methods are technically speaking
not pure, but from a client point of view may be considered to be so. Consider for
an example the function that computes a hash code. The first time this function is
called on an object, a field of the object will be written, so that the next calls can be
evaluated by looking up this field. Because of this, different notions of purity and
observational purity exist in the literature [Barnett et al., 2004, 2005b, Darvas and
Müller, 2006, Darvas and Leino, 2007, Naumann, 2007, Cok and Leavens, 2008].

For the scope of this chapter, it is sufficient to define purity simply as not having
any observable side effects.

While pure methods must terminate under any circumstance, they may still raise
exceptions or have a nontrivial precondition. In these cases, the value of a pure
method invocation is not always well-defined. Therefore, it is a best practice to have
true as precondition of pure methods and to rule out exceptions and not defined
return values.

7.4 Class Level Specifications

Consider again the specification of Student in Listing 7.1. If we look carefully at
the specifications and the description that we give about the student’s credits, we
notice that we implicitly assume some properties about the value of getCredits
that hold throughout. For example, we wrote above:

“a student thus never can have a negative amount of credits”

and also

“the number of credits only increases.”

But if we would like to make explicit that we assume that these properties always hold,
we would have to add this to all specifications in Student, and thus in particular,
also to all methods that do not relate at all to the number of credits. Thus for example,
we would get the following specification:
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Java + JML
/*@ requires getCredits() >= 0;
@ ensures \result == bachelor || \result == master;
@ ensures getCredits() >= 0;
@*/

/*@ pure @*/ public int getStatus();

Java + JML

Clearly, this is not desired, because specifications would get very large, and be-
sides describing the intended behavior of that particular method, they also describe
properties over the lifetime of the object. Therefore, JML provides also class level
specifications, such as invariants, history constraints, and initially clauses. These
specify properties over the internal state of an object, and how the state can evolve
during the object’s lifetime.

7.4.1 Invariants

One of the most important and widely-used specification elements in object-
orientation are type invariants7, also called class or interface invariants, depending
on where they are defined. An invariant is a Boolean (JML) expression over the
object state, and can be seen as a condition to constrain the state an instance can be in.
In addition, any constructor has to ensure that the invariant is established. Methods
can be except from this scheme by adding the modifier helper to their declaration.

Example 7.11. Listing 7.4 shows three possible invariants that can be added to inter-
face Student. These specify that credits are never nonnegative; a student’s status
is always either Bachelor or Master, and nothing else; and if a student’s status is
Master, he or she has earned more than 180 credits. The pure methods are used in
the invariants.8

Of course, instead of specifying invariants, one could also add these specifications
to all pre- and postconditions explicitly. However, this means that if you add a method
to a class, you have to remember to add these pre- and postconditions yourself.
Moreover, invariants are also inherited by subclasses (and by implementations of
interfaces). Thus any method that overrides a method from a superclass still has
to respect the invariants. And any method that is added to the subclass also has to
respect the invariants from the superclass. This leads to a very nice separation of
concerns.

7 Not to be confused with loop invariants. Those will be discussed in Section 7.9.2.
8 There is an unresolved discussion about whether methods that are used in invariants have to be
helper, or how to otherwise avoid potential circularity between showing and assuming invariants.
We choose to not mark public methods as helper, because helper methods are designed for local
usage. Please note, though, that some tools, like OpenJML, require methods used in invariants to be
helper.
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interface Student {

public static final int bachelor = 0;
public static final int master = 1;

/*@ instance invariant getCredits() >= 0;
@ instance invariant getStatus() == bachelor ||
@ getStatus() == master;
@ instance invariant getStatus() == master ==>
@ getCredits() >= 180;
@
@ instance initially getCredits() == 0;
@ instance initially getStatus() == bachelor;
@
@ instance constraint getCredits() >= \old(getCredits());
@ instance constraint \old(getStatus()) == master ==>
@ getStatus() == master;
@ instance constraint \old(getName()) == getName();
@*/

public /*@ pure @*/ String getName();

public /*@ pure @*/ int getStatus();

public /*@ pure @*/ int getCredits();

/*@ requires c >= 0;
@ ensures getCredits() == \old(getCredits()) + c;
@*/

public void addCredits(int c);

/*@ requires getCredits() >= 180;
@ requires getStatus() == bachelor;
@ ensures getCredits() == \old(getCredits());
@ ensures getStatus() == master;
@*/

public void changeStatus();

}

Listing 7.4 Interface Student with class level specifications

An important point to realize is that invariants have to hold only in all states in
which a method is called or terminates. Thus, inside the method, the invariant may
be temporarily broken. Note that the kind of termination of a method does not matter.
Regardless of terminating normally, exceptionally, or erroneously, a method has to
meet the invariant.

Example 7.12. The following possible implementation of addCredits is correct,
even though it breaks the invariant that a student can only be studying for a Master
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if they have earned more than 180 points inside the method: if credits + c is
sufficiently high, the status is changed to Master. After this assignment the invariant
does not hold, but because of the next assignment, the invariant is reestablished
before the method terminates.

Java + JML
/*@ requires c >= 0;
@ ensures getCredits() == \old(getCredits()) + c;
@*/

public void addCredits(int c) {
if (credits + c>= 180) {status = master;} // invariant broken
credits = credits + c;

}

Java + JML

However, if a method calls another method on the same object, it has to ensure
that the invariant holds before this callback. Why this is necessary, is best explained
with an example.

interface CallBack {

//@ instance invariant getX() > 0;
//@ instance invariant getY() > 0;

/*@ pure @*/ public int getX();
/*@ pure @*/ public int getY();

//@ ensures getX() == x;
public void setX(int x);

//@ ensures getY() == y;
public void setY(int y);

//@ ensures \result == getX() % getY();
public int remainder();

public int longComputation();

}

Listing 7.5 Interface CallBack

Example 7.13. Consider the interface CallBack in Listing 7.5. Typically, correctness
of the method remainder crucially depends on the value of getY being greater
than 0. Suppose we have an implementation of the CallBack interface, where the
method longComputation is sketched in Listing 7.6.
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public int longComputation(){
. . .
if (getY() . . .) {

setY(0); // invariant broken
}
. . .
int r = remainder(); // callback
. . .
setY(r + 1); // invariant reestablished
. . .
return . . .

}

Listing 7.6 Invariant broken during callback

Naively, one could think that the fact that the invariant about getY() is bro-
ken inside this method, is harmless, because the invariant is reestablished by the
setY(r + 1) statement. However, the call to method remainder is a callback, and
the invariant should hold at this point. In fact, correct functioning of this method call
depends on the invariant holding. The invariant implicitly is part of remainder’s
precondition. If the invariant does not hold at the point of the callback, this means
that remainder is called outside its precondition, and no assumption can be made
about its result as well.

Although invariants are always specified within a class or interface, their effective
scope is global. A method of some specific class is obliged to respect invariants of
all other classes. There is a way to avoid the requirement that the invariant has to
hold upon callback, by specifying that a method is a helper method. Such methods
must not depend on the invariant to hold, and they do not guarantee that the invariant
will hold afterwards. Typically, only private methods should be specified as helper
methods, because one does not want that any other object can directly invoke a helper
method. Finally we note that, while a pure helper method cannot assume the invariant
to hold when it is called, it does preserve any invariant because of purity.

Where Do Invariants Come From?

Sometimes invariants are imposed by the domain which is modeled by the code.
The interface Student in Listing 7.4 is such an example. Students can only have a
positive number of credits, they must be either Master or Bachelor students, and so
forth. Another common motivation for invariants is efficiency. Efficient computations
often require to organize data in a specific way. One way is introducing redundancy,
like for instance in an index of a book, mapping words to pages where they occur.
Such an index is redundant (we can always search through the whole book to find the
occurrences of a word), but it enables efficient look-up. On the downside, redundancy
opens up for inconsistencies. The countermeasure is to use invariants, formalizing the
consistency conditions (like each word in an index appearing in the text as well, at
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the page given by the index). Other ways to increase efficiency limit the organization
of data to comply to certain restrictions. A prominent example of that is sortedness,
which allows for quicker look-up. In the following, we demonstrate how sortedness
can be expressed with an invariant.

Example 7.14. We turn the LimitedIntegerSet (Listing 7.3) into a sorted data
structure, by adding the invariant

JML
/*@ public invariant (\forall int i;
@ 0 < i && i < size;
@ arr[i-1] <= arr[i]) ;
@*/

JML

to that class. With that, the implementer of each method can rely on sortedness in the
prestate, and the implementer of each (impure) method has to guarantee sortedness
in the poststate.

Static Invariants vs. Instance Invariants

Class invariants may or may not refer to the object this and its instance (i.e.,
nonstatic) fields or methods. For example, the class invariant in Example 7.14 refers
to the instance field arr. Such invariants are also called instance invariants, and
can be declared as such with the instance modifier. This is however not necessary,
as class invariants are instance invariants per default. If, on the other hand, a class
invariant does not refer to this, neither to any instance field or instance method, we
can highlight that (and potentially help verification tools) by declaring the invariant
as static, using the static modifier. Please note that, since instance methods might
change static variables, static invariants have to be respected by instance methods as
well.

Similarly, interface invariants may or may not refer to instance (i.e., nonstatic)
methods. For example, all invariants in Listings 7.4 and 7.5 mention instance methods,
and are therefore instance invariants. The reader may have noted that invariants
in Listings 7.4 and 7.5 are explicitly declared as instance invariant. This is
necessary because, for interfaces, the default is different from classes: invariants are
static, if not declared otherwise.

Semantics of Invariants

Defining a precise semantics for invariants is still an active area of research, see, e.g.,
[Poetzsch-Heffter, 1997, Leino and Müller, 2004, Barnett et al., 2004, Müller et al.,
2006, Bruns, 2009]. A complication is that, although invariants are declared in a
particular class, not only instances of that class have to respect it, but all objects in the
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system. An alternative approach, that is used in the Spec# framework, is to explicitly
add specification statements unpack and pack for invariants. An invariant may only
be broken if it has been explicitly unpacked. When the invariant is reestablished, it
has to be explicitly be packed again, and this only succeeds if the invariant indeed
holds at this point. Every method can then specify explicitly whether it assumes
invariants to hold (i.e., to be packed) or not. This approach is sometimes referred to
as the Boogie methodology [Barnett et al., 2006].

Similar to the Boogie methodology, in the KeY system, invariants are not implicitly
added to specifications. Instead, the specification must make explicit which specific
invariants are included, and which are not. This specification may be more verbose,
but it is clear from the given specification that invariants are assumed or established.
See Section 9.2.1.3 for further discussion. The invariant for an object o can be referred
to through \invariant_for(o). This allows fine-grained usage of invariants in
specifications. Unlike in Boogie, explicit packing/unpacking instructions in the code
are not necessary. Instead, the specifier has to specify a set of locations the invariant
depends on at most (accessible clause). Usually, methods rely at least on the
invariant of the current receiver. For convenience, this invariant is implicitly included
for nonhelper methods (see Section 8.2 on proof obligations).

Finally, it is important to realize that the notion of invariants that we discussed
here only makes sense in a sequential setting. In a multithreaded setting, there always
may be another thread accessing the object simultaneously, and one cannot talk about
initial and final states of a method invocation anymore. Instead, in a multithreaded
setting, one sometimes specifies strong invariants that may never be broken. For
instance, Zaharieva-Stojanovski and Huisman [2014] present a modular specification
and verification technique for class invariants in a concurrent setting.

7.4.2 Initially Clauses

Sometimes, one explicitly wishes to specify the conditions that are satisfied by an
object upon creation. Each (nonhelper) constructor9 of the object has to establish the
predicate specified by the initially clause. Another advantage of initially clauses is
that they are inherited; that means that also constructors of subclasses have to fulfill
them. Constructors in Java itself are not inherited. As a consequence, a constructor
can rely on the guarantees provided by a called super constructor but does not have
to maintain them.

Example 7.15. Listing 7.4 shows some possible initially clauses for the Student
interface.

Again, it would be possible to specify this property as a postcondition of all
constructors, instead of as a single initially clause. But in this way, any additional
constructor has to respect the initially clause, and we ensure that also subclasses
respect it.

9 Again, typically only private constructors would be annotated as a helper constructor.
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7.4.3 History Constraints

Invariants as we discussed above define a predicate that every state of the object
should respect. However, sometimes one also wishes to specify how an object
may evolve over time, i.e., the relationship that exists between the prestate and the
poststate of a method call. This could be seen as a sort of general postcondition that
has to be respected by every method, however the definition is actually more fine
grained than that. For this, history constraints (usually constraints for short) have
been introduced by Liskov and Wing [1993]. Constraints can be seen as implicit
postconditions, but just as invariants and initially clauses, they have the advantage that
they are inherited, and immediately are required to hold for any additional methods.
Constraints may rely on syntactical features that are used to measure changes between
states such as the \old operator. Assigning suitable semantics to history constraints
is nontrivial; a possibility would be to see them as special two-state model methods
(see Section 9.2.2). This is not yet implemented in KeY at the time of publishing this
book.

Example 7.16. Listing 7.4 defines several constraints for the Student interface. The
first constraint specifies that the amount of credits can never decrease. The second
constraint specifies that if a student has obtained the Master status, he or she will
remain a Master student, and cannot be downgraded to a Bachelor student again.
Finally, the third constraint specifies that a student’s name can never change.

When specifying constraints, it is important that they should denote a reflexive
relation, i.e., it should be possible to respect a constraint without actually changing
the state. In particular, any pure method should be able to respect the constraint.
Therefore, one should not specify the following strict constraint:
constraint \old(getCredits()) < getCredits();

as it is impossible to respect this constraint with a pure method. Typically, constraints
will also be transitive, so that when you consecutively call two methods from the
same object, you also know the relationship that holds between the prestate of the
first method, and the poststate of the second method.

Example 7.17. Consider the possible implementation of addCredits in Listing 7.7.
To show that the constraint is respected, it has to hold for the following state pairs:

• (prestate, call-state changeStatus)
• (call-state changeStatus, return-state changeStatus)
• (return-state changeStatus, poststate)

Notice that if the constraint is transitive, the relationship also holds for the pair of
prestate and poststate, which is indeed what we want.

Again, in a multithreaded setting, the meaning of constraints would become less
clear. Because any interleaving is possible, all intermediate states must be assumed
to be visible to other threads. However, a constraint such as that getName returns
a constant value could still be meaningful also in a multithreaded setting (except
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//@ constraint \old(getCredits()) <= getCredits();

/*@ requires c >= 0;
@ ensures getCredits() == \old(getCredits()) + c;
@*/

// prestate
public void addCredits(int c) {

credits = credits + c;
if (credits >= 180) {

// call-state changeStatus
changeStatus();
// return-state changeStatus

}
} // poststate

Listing 7.7 Checking history constraints

that the number of possible visible state pairs that have to be considered might
grow exponentially). Therefore, in a concurrent setting one could imagine a notion
of strong history constraints, i.e., a relationship that has to hold for any pair of
consecutive states.

7.4.4 Initially Clauses and History Constraints: Static vs. Instance

Just as class invariants (see Section 7.4.1), also initially clauses and history constraints
have instance as well as static versions, which can be declared with the instance
and static modifier, respectively. The static variants cannot explicitly mention an
instance (i.e., nonstatic) field or method, neither can they refer to this itself. The
instance variants, on the other hand, have no such restriction.

In classes, the default for initially clauses and history constraints is instance,
meaning this modifier can be omitted. For interfaces, the default for initially clauses
and history constraints is static. Note that, in interface Student (Listing 7.4), all
initially clauses and history constraints mention nonstatic methods or fields. They
can therefore not be static (which is the default), and have to be marked as instance
explicitly.

7.4.5 Inheritance of Specifications

Design by Contract allows one to impose the concept of behavioral subtyping [Liskov,
1988], that is usually defined by the Liskov substitution principle, or Liskov principle
for short [Liskov and Wing, 1994]. A type T ′ is a behavioral subtype of type T
if every observable behavior of T is also observable on T ′. In an object-oriented
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program, this means that any subclass may be used wherever a superclass is expected.
Behavioral subtyping expresses the idea that a subclass thus should behave as the
superclass (at least, when it is used in a superclass context). Subclasses in Java do
not always define behavioral subtypes. They can be used simply for the purpose of
code reuse.

However, the substitution principle as originally stated by Liskov [1988] can
sometimes be too strong in practice (see [Leavens, 1988]). For instance, what exactly
is the refined behavior of a linked list, as compared to a list in general? Surely, there is
no nondeterminism that can be refined. This means there cannot be strict behavioral
subtypes regarding all behaviors. Instead, we focus on the client perspective again
and define behavior subtypes regarding contracts (and invariants). This means that a
class C′ is a behavioral subtype of a super class C, if for every method m implemented
in both C and C′ (i.e., the implementation in C′ is overriding), every specification
case for C :: m is also a specification case for C′ :: m, and that the contract of C :: m is
refined by the contract of C′ :: m. A full formalization of this definition of behavioral
subtyping can be found in [Leavens and Naumann, 2006].

To ensure that a subclass indeed defines a behavioral subtype, specification in-
heritance can be used [Dhara and Leavens, 1995, Leavens and Dhara, 2000]: In
JML, every (nonprivate) method in the subclass inherits the overridden method’s
specification cases defined in the superclass. And in addition, all invariants of the
superclass are inherited by the subclass. Notice that this same approach applies for
interfaces and implementing classes. An interface can be specified with its desired
behavior. Every class that implements this interface should be a behavioral subtype
of the interface, i.e., it should satisfy all the specifications of the interface. Concretely,
this means the following:

• every method that overrides a method from a superclass, or implements from an
interface, has to respect the method specification from the superclass;

• every class that implements an interface has to respect the specifications of the
interface; and

• every class that extends another class has to respect the specifications of that
class.

Still, it is possible to refine specifications in subclasses (or implementing classes),
in addition to what is inherited. Any additional specification of an inherited method
(whether or not the implementation is overridden) is added to the inherited specifica-
tions from the superclass, using the also keyword.
/*@ also
@ <subclass-specific-spec-cases>
@*/

public void method () { ...
Note that the JML annotation starts with also, not preceded by anything. This is
because the inherited specification cases are still there, even if implicit, to be extended
here by whatever is written after the also.

Invariants are also fully, and implicitly, inherited. Extending the set of inherited
invariants by additional invariants specific for a subclass is easy, by simply writing
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them in the subclass, using the normal syntax for invariants. The same applies also to
initially clauses and constraints.

The idea of behavioral subtypes is crucial for the correctness of object-oriented
programs. We can specify the behavior of a class in an abstract way. For example, in
class Average in Listing 7.8, we have an array of Student instances; the concrete
instances that are stored in the array may have different implementations, but we know
that they all implement the methods specified in the interface Student in Listing 7.1.
This means that we can rely on the specification case of Student#getCredits()
in Line 11 of Average#averageCredits().

Respecting inherited specifications is a good practice, but it does not guarantee
behavioral subtyping per se. JML allows us to make program elements more visible
in the specification than they are in the implementation (through the spec_public
modifier, see Section 7.3.1). In this way, specifications may expose implementation
details. While it is also a good practice to declare those specifications private, in many
cases, this would disable us from giving any meaningful specification. A solution to
this dilemma is abstraction, that will be covered in Section 7.7.1 below.

7.5 Nonnull Versus Nullable Object References

In Java, the set of values of reference type include the null reference. (Note that the
same is true for the values of array type, because each array type is also a subtype of
Object.) But even if the type system always allows null, the specifier may want
to exclude the null reference in many cases. Whether or not null is allowed can be
expressed by means of simple (in)equations, like, for instance, o != null, in pre/-
postconditions or invariants. However, this issue is of so dominant importance that
JML offers two special modifiers just for that, non_null and nullable. Class mem-
bers (i.e., fields), method parameters, and method return values can be declared as
non_null (meaning null is forbidden), or nullable (in which case null is allowed,
but not enforced).

Here are some examples for forbidding null values.
private /*@ non_null @*/ String name;
adds the implicit invariant invariant name != null; to the class at hand.
public void setName(/*@ non_null @*/ String n) {...
adds the implicit precondition requires n != null; to each specification case of
setName.
public /*@ non_null @*/ String getName() {...
adds the implicit postcondition ensures \result != null; to each specification
case of getName.

The reader can imagine that non_null modifiers can easily bloat the specification.
Therefore, JML has built-in non_null as the default for all fields, method parameters,
and return types, such that all non_null modifiers in the above examples are actually
redundant. By only writing the following, without any explicit non_null, we get
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exactly the same implicit invariants, preconditions, and postconditions as mentioned
above.
private String name;

public void setName(String n) {. . .

public String getName() {. . .

But how can we allow null anyway? We can avoid the restrictive nonnull default
by the aforementioned modifier nullable. In the above examples, we could allow
null (and thereby avoid the implicit conditions), by writing
private /*@ nullable @*/ String name;

public void setName(/*@ nullable @*/ String n) {...

public /*@ nullable @*/ String getName() {...

Notice that the nonnull by default also can have some unwanted effects, as
illustrated by the following example.

Example 7.18. Consider the following declaration of a LinkedList.

Java + JML
public class LinkedList {

private Object elem;
private LinkedList next;
. . .

}

Java + JML

Because of the nonnull by default behavior of JML, this means that all elements in
the list are nonnull. Thus the list must be cyclic, or infinite.10 This is usually not
the intended behavior, and thus the next reference should be explicitly annotated as
nullable.

Java + JML
public class LinkedList {

private Object elem;
private /*@ nullable @*/ LinkedList next;
....

}

Java + JML

In short, it is important to remember that for all class fields, method parameters,
and method results, the null reference is forbidden wherever we do not state otherwise
with the JML modifier nullable.

10 A linked data structure having infinite length is indeed a contradiction. At runtime, there are only
finitely many created objects on the heap.
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In the context of allowing vs. forbidding the null reference, handling of arrays de-
serves special mentioning. The additional question here is whether, or not, the prohibi-
tion of null holds for the elements of the array. Without loss of generality, we consider
the following array typed field declaration: String[] arr;. Because of nonnull be-
ing the default, this is equivalent to writing /*@ non_null @*/ String[] arr;.
Now, in both cases, the prohibition of null references extends, in JML, to the elements
of the array! In other words, both the above forms have the same meaning as if the
following invariants were added:

Java + JML
//@ invariant arr != null;
//@ invariant (\forall int i;
//@ i >= 0 && i < arr.length;
//@ arr[i] != null);

Java + JML

Again, no such invariant is needed for disallowing null; writing String[] arr; is
enough. We can, however, allow null for both, the whole array and its elements (at
first), by writing /*@ nullable @*/ String[] arr;. To that, we can add further
restrictions. For instance, if only the elements may be null, but not the whole array,
we can write:

Java + JML
//@ invariant arr != null;
/*@ nullable @*/ String[] arr;

Java + JML

7.6 Exceptional Behavior

So far, we have only considered normal termination of methods. But in some cases,
exceptions cannot be avoided. Therefore JML also allows one to specify explicitly
under what conditions an exception may occur.

The signals and signals_only clauses are introduced to specify exceptional
postconditions. In addition, one can give an exceptional_behavior method. Ex-
ceptional postconditions have the form signals (E e) P, where E is a subtype
of Throwable, and the following meaning: if the method terminates because of an
exception that is an instance of type E, then the predicate P has to hold. The variable
name e can be used to refer to the exception in the predicate. Note the implication
direction: a signals clause does not specify under which condition an exception
may occur by itself, neither that it must occur. Such specification patterns can only be
obtained in combination with requires and ensures clauses. The signals clause
describes a necessary condition, but not a sufficient one. For a formal account on
contract semantics, see Section 8.2 in the following chapter.
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The signals_only clause is optional in a method specification. Its syntax is
signals_only E1, E2, . . ., En, meaning that if the method terminates because
of an exception, the dynamic type of the exception has to be a subclass of E1, E2,
. . . , or En. If signals_only is left out, only the exception types that are declared in
the method’s throws clause and unchecked exceptions, i.e., instances of Error and
RuntimeException, are permitted. These are exactly the exception types that are
permitted by Java’s type system.

1 class Average {
2

3 /*@ spec_public @*/ private Student[] sl;
4

5 /*@ signals_only ArithmeticException;
6 @ signals (ArithmeticException e) sl.length == 0;
7 @*/
8 public int averageCredits() {
9 int sum = 0;

10 for (int i = 0; i < sl.length; i++) {
11 sum = sum + sl[i].getCredits();
12 };
13 return sum/sl.length;
14 }
15 }

Listing 7.8 Class Average

Example 7.19. Consider for example class Average in Listing 7.8. The specifi-
cation of method averageCredits states that the method may only terminate
normally, or with an ArithmeticException—and thus, it will not throw an
ArrayIndexOutOfBoundsException. Moreover, if an ArithmeticException
occurs, then in this exceptional state the length of sl is 0.

Notice that it is incorrect in this case to use an ensures clause, instead of a
signals clause: an ensures clause specifies a normal postcondition, that only
holds upon normal termination of the method.

Above, in Section 7.1 we discussed normal_behavior specifications. Implic-
itly, these state that the method has to terminate normally. Similarly, JML also
features an exceptional_behavior method specification. This specifies that, if
the method terminates, then this must be due to an exception.11 In contrast, a plain
behavior specification may well contain both ensures clauses and signals or
signals_only clauses, whereas a normal behavior specification may not contain
these, and an exceptional behavior specification may not contain an ensures clause.
As mentioned above in Section 7.3.2, a single method can be specified with several
method specifications, joined with also. Exceptional behavior specifications are
typically used in this case.

11 Remember that an explicit diverges clause still permits nontermination.
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Example 7.20. Consider the more detailed specification for averageCredits in
Listing 7.9. This states that if sl.length > 0, i.e., there are students in the list,

class Average2 {

/*@ spec_public @*/ private Student[] sl;

/*@ normal_behavior
@ requires sl.length > 0;
@ ensures \result ==
@ (\sum int i; 0 <= i && i < sl.length;
@ sl[i].getCredits())/sl.length;
@ also
@ exceptional_behavior
@ requires sl.length == 0;
@ signals_only ArithmeticException;
@ signals (ArithmeticException e) true;
@*/

public int averageCredits() {
int sum = 0;
for (int i = 0; i < sl.length; i++) {

sum = sum + sl[i].getCredits();
};
return sum/sl.length;

}
}

Listing 7.9 Class Average2

then the method terminates and the result is the average value of the credits obtained
by these students. If sl.length == 0 then the method will terminate exceptionally,
with an ArithmeticException.

In this example, the two preconditions together cover the complete state space for
the value of sl.length. If sl.length could be less than 0, the method’s behavior
would not be specified.

Finally, it is important to realize that invariants and constraints also must hold
when a method terminates exceptionally. This might seem strange at first: something
goes wrong during the execution, so why would it be necessary that the object stays
in a good state. But in many cases, the execution can recover from the exception, and
normal execution can be resumed. But this means that it is necessary that also when
an exception occurs, the object stays in a ‘well-defined’ state, i.e., a state in which
the invariants hold, and that evolves according to the constraints.

A Note on false

The Boolean expression false is used frequently to exclude certain behaviors. For
instance, the clause
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signals (Throwable e) false;

states that the method at hand must not terminate exceptionally. Because, if it did, the
property false would need to hold, which is never the case. Therefore, exceptional
termination is never able to satisfy such a specification. Similarly, if one speci-
fies a postcondition ensures false; this states that a method must not terminate
normally. Thus a method specification:
ensures false;
signals (Throwable e) false;
diverges true;

implicitly says that a method must never terminate (neither normally, nor exception-
ally). Finally, a method can also be specified with a precondition requires false;.
This means that the method may not be invoked, as no caller can fulfill the precondi-
tion of the method.

7.7 Specification-Only Class Members

The previous sections shows how the behavior of code members is specified in JML.
But sometimes it is easier or even required to introduce new members only for
specification. Model fields, as discussed in Section 7.7.1, allow to provide abstraction
from the concrete program state. For each abstract state, a relationship to the concrete
program state can be defined. In addition to model fields, sometimes it is also useful
to define model methods, i.e., methods that are used in specifications only.

This section also introduces ghost variables (Section 7.7.2). These can be used
to extend the state space with specification-only information. They do not provide
abstraction, but can record extra information. The use of model and ghost fields is
often confused, and therefore Section 7.7.3 compares both approaches, and highlights
their differences. For an in-depth account on model field and model method semantics,
their encoding in KeY, and how to use them in verification, the reader is kindly
referred to Section 9.2.

7.7.1 Model Fields and Model Methods

An important feature of specifications is that they provide abstraction over the
concrete implementations. Model fields serve as an abstraction feature in a familiar
guise. They are declared like regular fields, but within JML specifications and with
the modifier keyword model. Model fields can be read from like regular fields,
but there are no assignments to them since they do not have a state of their own.
Instead, to make sure that the concrete implementation corresponds to the abstract
specification, a link between the two has to be made. For this purpose, the represents
clause defines how the value of the abstract variable is defined in terms of the values
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of the concrete entities. In the so called functional form, the represents clause, that is
a class member, appears similar to an assignment, as can be seen in the following
example taken from [Breunesse et al., 2005].

Example 7.21. Class Decimal implements decimal variables using an intPart and
decPart variable, but the specification is given in terms of a single model field that
represents the value of the composed decimal number.

Java + JML
class Decimal {

public static final short PRECISION = (short) 1000;
/*@ spec_public @*/ private short intPart = (short) 0;
/*@ spec_public @*/ private short decPart = (short) 0;

//@ model int value;
//@ represents value = intPart * PRECISION + decPart;

}
Java + JML

Sometimes, a represents clause cannot be defined directly as a translation into
concrete variables; sometimes a (nonfunctional) relation between the abstract and
the concrete state can be expressed, sometimes only a dependency relation. JML
provides a way to define nonfunctional represents clauses. Instead of the assignment
operator, they consist of the keyword \such_that followed by a Boolean expression.
It means that the model field points to some value such that this condition is satisfied.

Example 7.22. Consider class MatrixImplem in Listing 7.10. It implements a matrix
as a single array (on some platforms, like JavaCard, only one-dimensional arrays are
allowed). A model variable matrix is declared, that specifies the abstract representa-
tion of the matrix. Unfortunately, no functional represents clause can be specified for
this. Instead, the such_that keyword is used to define a relational represents clause,
that enables to write the specifications of the matrix methods in terms of the abstract
matrix variable.

Model fields are useful in many cases. Typical examples are specifications of
interfaces. The behavior of an interface is specified in terms of model variables, and
the classes implementing the interface define represents clauses for these model
variables, relating them to their own concrete implementation. Because of the flexible
connection between concrete and abstract state using the represents clause, this
does not impose any restriction on the internal state of a class implementing the
interface. Note that in interfaces, model field declarations are static by default,
nonstatic model field declarations must use the modifier instance.

Example 7.23. Listing 7.11 gives an alternative specification for interface Student
using model fields. It shows the specification for an implementing class CCStudent.
Note that it does not declare the model variables, but only defines the represents
clause.
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public class MatrixImplem {

//@ public model int[][] matrix;
private int x;
private int y;
private int[] matrix_implem;
/*@ represents matrix \such_that
@ (\forall int i; i >= 0 && i < x;
@ (\forall int j; j >= 0 && j < y;
@ matrix[i][j] == matrix_implem[x * j + i]));
@*/

/*@ ensures
@ (\forall int i; i >= 0 && i < x;
@ (\forall int j; j >= 0 && j < y;
@ matrix[i][j] == 0));
@*/

public MatrixImplem(int x, int y) {
this.x = x;
this.y = y;
matrix_implem = new int [x * y];

}

//@ ensures \result == matrix[i][j];
public /*@ pure @*/ int get (int i, int j) {

return matrix_implem[x * j + i];
}

/*@ ensures \result >= 0 && \result < x
@ ==> matrix[\result][coordY(elem)] == elem;
@*/

public /*@ pure @*/ int coordX (int elem) {
for (int i = 0; i < matrix_implem.length; i++)

if (matrix_implem[i] == elem)
return i % x;

return -1;
}

/*@ ensures \result >= 0 && \result < y
@ ==> matrix[coordX(elem)][\result] == elem;
@*/

public /*@ pure @*/ int coordY (int elem) {
for (int i = 0; i < matrix_implem.length; i++)

if (matrix_implem[i] == elem)
return i / x;

return -1;
}

}

Listing 7.10 Relational represents clause
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public interface Student {

/*@ public instance model int status;
@ public instance model int credits;
@ represents status = (credits < 180 ? bachelor : master);
@*/

/*@ public instance invariant status == bachelor || status == master;
@ public instance invariant credits >= 0;
@*/

public static final int bachelor = 0;
public static final int master = 1;

/*@ pure @*/ public String getName();

//@ ensures \result == status;
/*@ pure @*/ public int getStatus();

//@ ensures \result == credits;
/*@ pure @*/ public int getCredits();

//@ ensures getName().equals(n);
public void setName(String n);

/*@ requires c >= 0;
@ ensures credits == \old(credits) + c;
@*/

public void addCredits(int c);

/*@ requires credits >= 180;
@ requires status == bachelor;
@ ensures credits == \old(credits);
@ ensures status == master;
@*/

public void changeStatus();
}

class CCStudent implements Student {

private int[] creditList;

/*@ private represents credits =
@ (\sum int i; 0 <= i && i < creditList.length; creditList[i]);
@*/

// rest of class continued...
}

Listing 7.11 Interface Student with model fields and an implementation.
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Sometimes, to complete a specification, one needs a method that only is intended
for specification. To support this, JML provides model methods. A model method is
defined as part of the specification. It can be implemented, but it may also be abstract.
And the behavior of a model method is typically defined in terms of its pre- and
postconditions again. Typical usages for model methods are:

• if the specification needs a method that is not related to the code, for example to
sum all the elements in an array;

• if the specification needs a method that cannot be implemented easily, but that
can be specified without any problem.

7.7.2 Ghost Variables

Sometimes the information needed in specifications is not provided by the source
code itself. Typical examples are specifications that express something about the
control flow, e.g., how often or in which order methods are called, or about the used
resources, e.g., to limit the number of objects. This additional knowledge can be
modeled with ghost variables.

A ghost variable in JML can be defined as a class/instance member or as a local
variable. In both cases, it is declared like a normal Java variable, but inside a JML
annotation preceded by the keyword ghost. The used type may be a specification-
only type such as \bigint (see Section 7.8). The initial value of a ghost variable
can be directly assigned at its declaration. Its value can be updated during method
execution by a set statement. This is a JML annotation statement within a method
body, consisting of a keyword set followed by an assignment. The left-hand side of
the assignment has to be a ghost variable and the right sight can be any side-effect-free
JML expression.

Example 7.24. Consider class LinkedList in Listing 7.12, that represents a linked
data structure. In general, this structure could be circular. To specify that it really is a
list, i.e., that it is finite and noncircular, we use a ghost field length to represent the
length of a list. Since there may be more elements than Java’s primitive int type can
accommodate, we use the specification-only type \bigint. The invariant states that
length is always positive and that the length of the tail is always smaller than the
current one. From this, we may conclude the above property.

7.7.3 Ghost Variables Versus Model Fields

It is important to understand the difference between model and ghost variables. Both
are variables that are used for specification purposes only, and they do not occur
during the execution of the program.
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1 public class LinkedList {
2 private /*@ spec_public @*/ int value;
3 private /*@ spec_public nullable @*/ LinkedList next;
4

5 //@ public ghost \bigint length;
6 //@ public invariant 0 < length;
7 //@ public invariant next == null || next.length+1 == length;
8 }

Listing 7.12 Using a ghost field to track recursion depth

However, model variables provide an abstract representation of the state. If the
underlying state changes, implicitly the model variable also changes. Often it is
possible to define this relationship explicitly as a translation, but sometimes it can
only be given in a nonconstructive manner (or even as a dependency relation).

In contrast, ghost variables extend the state. They provide some additional infor-
mation that cannot be directly related to the object state. Ghost variables are often
used to keep track of the events that have happened on an object, e.g., which methods
have been called, how often have these methods been called etc. There also exists
work where ghost variables have been used to keep track of the resources used by the
program: every time a new object is created, there is an associated set annotation
that increases a resource counter, modeled as a ghost variable [Barthe et al., 2005].
In this way, the specification can state something about the number of objects that
have been created by the program. This information allows then to define a resource
analysis over the application.

7.8 Integer Semantics

Since JML incorporates Java expressions, specifications also adhere to the semantics
of the Java numerical data types. This means in particular that always special care
has to be taken regarding overflows in integer operations12. Undoubtedly, dealing
with finite numerical data types is a very common source of programming errors. The
most infamous example from the real world is the maiden flight of Ariane 5, where
conversion of 64-bit floating-point data to 16-bit integers finally caused the spacecraft
to be destroyed just seconds after lift off [Nuseibeh, 1997]. It is thus desirable to
detect such errors and to not repeat them in the specification. We will show how
to avoid this problem through the use of JML’s \bigint data type, that represents
the mathematical integers. This section does not discuss semantics of integral data
types in general; those can be found in [Beckert et al., 2007, Chapter 12] or (more
elaborate) in [Schlager, 2002].

12 Similar issues arise with rounding in floating-point operations, which however will not be covered
here.
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Example 7.25. Regard the short method mult() below; it returns a*b, but this is not
multiplication in the mathematical sense, since an overflow may occur.
public int mult (int a, int b) { return a*b; }
The naive specification ensures \result == a*b; would be trivially true since
JML uses the very same overflow semantics as in Java.

This example shows a feature of Java that may be a large source of confu-
sion. Integer operators in Java are often misunderstood to equal their mathemat-
ical counterparts, see, e.g., the survey by Chalin [2003]. But the actual mathemat-
ical functionality13 represented by, e.g., a*b (where both are int expressions) is
((a+231) · (b+231) mod 232)−231). In addition, these operators are overloaded—
the * operator has different semantics if one operand is of type long (64-bit integers).
This means that, in many situations, naive specifications are just incorrect due to

the presence of overflows. For instance, in Listing 7.4, the invariant that credits
are nonnegative can be broken by method addCredits(), that does not check for
overflows.

Example 7.26. To display even more obscure characteristics of overflow semantics,
the following Boolean JML expression is trivially true. We leave it to the reader to
find out with which element the quantifier would be instantiated.

JML
(\exists int x; x-1 > x

&& (\forall int y; x <= y)
&& x == -x
&& x != 0 && x * 2 == 0);

JML

Besides Java’s bounded integer types (also known as bit vector types), JML
offers the specification only primitive type \bigint that represents the mathematical
integers Z. ‘Specification only’ means that, besides variables bound by a quantifier,
only ghost variables and ghost/model fields can be declared with type \bigint.
The Java standard library also provides a type called BigInteger, that represents
arbitrary precision integers. While \bigint is a primitive type with an infinite
number of elements, BigInteger is just a regular Java object type. This means, in
particular, that instances of BigInteger must be created through constructors and
that quantification makes little sense since it only ranges over the (finitely many)
created instances. It is therefore inadequate for specification purposes.

Let us come back to Example 7.25. How can we specify that there is no overflow?
In Java, all arithmetic operations are unchecked, i.e., an overflow is not indicated in
any way, e.g., by exceptions. A precondition like a*b <= Integer.MAX_VALUE is
trivially true. Instead, we can apply numerical conversion to \bigint to expressions

13 More mathematically speaking, the int data type with operators + and * forms a finite Abelian
ring that is isomorphic to Z/Z232 . This means that addition and multiplication are commutative,
associative, and distributive; but there are zero-dividers—as shown in Example 7.26.
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of type int. Note that this kind of conversion, a widening, has no effect on the values
of a and b, but on the semantics of the * operator. Under the preconditions that the
(mathematical) product of a and b is within the bounds of int, we can ensures that
the result is indeed the mathematical product:

Java + JML
//@ requires Integer.MIN_VALUE <= (\bigint) a * (\bigint) b;
//@ requires Integer.MAX_VALUE >= (\bigint) a * (\bigint) b;
//@ ensures \result == (\bigint) a * (\bigint) b;
public int mult (int a, int b) { return a*b; }

Java + JML

Because this specification is tedious to write and even more horrible to read,
classes and methods can be annotated in JML with math modifiers [Chalin, 2004].
The default integer semantics in specifications can be changed by declaring the
method spec_bigint_math, that achieves the above while saving to write down
casts explicitly.

Java + JML
//@ requires Integer.MIN_VALUE <= a * b;
//@ requires Integer.MAX_VALUE >= a * b;
//@ ensures \result == a * b;
public /*@ spec_bigint_math @*/ int mult (int a, int b) {

return a*b;
}

Java + JML

An even simpler way to express the absence of overflows is to change the semantics
of the Java implementation through the code_safe_math modifier. It causes the
program to be interpreted as if operations were checked, leading to an exception in
case of overflow. The only thing left to show is that there are no exceptions:

Java + JML
//@ signals_only \nothing;
public /*@ code_safe_math @*/ int mult (int a, int b) {

return a*b;
}

Java + JML

There are six math modifiers in total, declaring integer expressions in specifications
or code to be interpreted as either Java integers with default operations, mathematical
integers, or Java integers with checked operations. While these modifiers are currently
not directly supported, the KeY prover offers to select different integer semantics
with a similar effect; see Section 15.2.3 on page 531 and Section 5.4.
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7.9 Auxiliary Specification for Verification

The previously discussed specification constructs are essential to the Design by
Contract philosophy and relevant to all analysis techniques. However, for static
verification of Java programs it is typically required to provide some additional
information, like the locations a method might access (Section 7.9.1); guidance for
the verification tool in the presence of loops via loop invariants (Section 7.9.2); or in
general via assert statements (Section 7.9.3).

7.9.1 Framing

An important aspect of verification is modularity. Each method is verified in isolation,
and any method call inside a body is abstracted by its method specification. To
achieve this, it is not enough to specify what a method does; it is also required to
specify what a method does not do. This is known as the frame problem [Borgida
et al., 1995, Müller et al., 2003]. Basically, for modular verification one needs to
know what is the frame of a method, i.e., what are the variables that may be changed
at most by the method, and what is the antiframe, i.e., which variables must not be
changed by the method.

To specify this, JML uses the assignable clause. This provides a set of variable
locations that may be modified by a method (thus, it may be an over-approximation
of the actual set of locations that are modified by the method). Location sets can
be given through comma separated lists of single variables or one of the special
keywords \nothing (only locations of newly allocated objects may be changed,
corresponds to weak purity, see Section 7.3.5), \everything (any location may
be changed), this.* (all locations provided by the current object), and array[*]
or array[i..j] (all elements in the array or between indices i and j). Whereas
assignable clauses are attached to single specification cases, pure methods are defined
to have an empty frame under any precondition. The extension to JML that is used in
KeY provides additional constructs to specify frames, offering more flexibility; see
Section 9.3.2. Most importantly, the keyword \strictly_nothing denotes strictly
the empty set of locations; strictly pure methods are annotated with strictly_pure,
see Section 7.3.5.

JML also allows one to add an accessible clause to method specifications, Sec-
tion 9.9.10 of the JML reference manual [Leavens et al., 2013]. This clause provides
a set of variable locations on which the observable behavior of the method depends.
The way this clause is used in KeY differs from and considerably goes beyond stan-
dard JML. We postpone explanation of accessible clauses to Sections 8.3.2 and
9.3.

Example 7.27. Listing 7.13 contains the specification of Listing 7.1, but with as-
signable clauses added. Method addCredits increases the achieved credits, which
means that it may have to update the master flag to maintain the invariant. There-
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fore, the assignable clause of this method lists the instance variables credits and
master. Even though the variables are not modified directly by the method, it is
required to list them in the assignable clause, because they may be modified during
the method execution. Methods updateCredits, changeToMaster and setName
modify only one instance variable, that is listed in the assignable clause of their
method specifications. Finally, method getName is specified as a pure method, that
automatically implies that the assignable clause is \nothing by default.

Of course, it would be possible to add the information in the assignable clause
to the postcondition, explicitly specifying that the variables not mentioned in the
assignable clause are not changed. But this is not a satisfactory solution: a class might
have many variables and only a few are typically changed by a method. Moreover,
when a new variable is added, for every method that does not change it, an additional
postcondition about this variable not being changed would have to be added. As one
can imagine, this is error-prone, and leads to overly verbose specifications.

For readers who would like to dive further into the topic of modularity, Chapter 9
is entirely dedicated to aspects of modularity in specification and verification. In
particular, it introduces a specification-only type \locSet, which represents sets of
program locations as first class subjects.

7.9.2 Loop Invariants

A verification tool typically needs some guidance in presence of loops to verify that
a method implementation complies to its specification. This is due to the general
impossibility to statically evaluate the loop body repeatedly until the loop condition
evaluates to false. The number of iterations is not static but depends on dynamic
input parameters and initial states. In program verification, the dominating solution
to this problem is the usage of a loop invariant [Floyd, 1967, Hoare, 1969]. This is a
formula whose validity is preserved by the loop body (given the loop condition was
true before). From this we can conclude that, if the entire loop starts in a state where
the loop invariant holds, then it will still hold once the loop terminates in addition to
the negated loop condition14.

There exist approaches to automated invariant generation [German and Wegbreit,
1975, Karr, 1976] (see also Chapter 6), and the recent years saw a very dynamic
development in this area. Yet, much more needs to be done to automatically find good
invariants, and to integrate that into verification tools. (The bottleneck is currently not
to generate formulas that are invariant over the loop body, but to identify those that
contribute to the overall correctness proof.) For the time being, finding loop invariants
that allow us to verify some code unit is still a largely manual task. Guidance on
how to write loop invariants is beyond our scope here. But the reader can refer to
Section 16.3 in this book.

14 In fact, to reason about Java, it is required to also support abrupt loop termination, caused by an
exception or programmatically by a return, break or continue statement.
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1 public class Student {
2 private /*@ spec_public @*/ String name;
3

4 /*@ public invariant credits >= 0;
5 @*/
6 private /*@ spec_public @*/ int credits;
7

8 /*@ public invariant credits < 180 ==> !master &&
9 @ credits >= 180 ==> master;

10 @*/
11 private /*@ spec_public @*/ boolean master;
12

13 /*@ requires c >= 0;
14 @ ensures credits == \old(credits) + c;
15 @ assignable credits, master;
16 @*/
17 public void addCredits(int c) {
18 updateCredits(c);
19 if (credits >= 180) {
20 changeToMaster();
21 }
22 }
23

24 /*@ requires c >= 0;
25 @ ensures credits == \old(credits) + c;
26 @ assignable credits;
27 @*/
28 private void updateCredits(int c) {
29 credits += c;
30 }
31

32 /*@ requires credits >= 180;
33 @ ensures master;
34 @ assignable master;
35 @*/
36 private void changeToMaster() {
37 master = true;
38 }
39

40 /*@ ensures this.name == name;
41 @ assignable this.name;
42 @*/
43 public void setName(String name) {
44 this.name = name;
45 }
46

47 /*@ ensures \result == name;
48 @*/
49 public /*@ pure @*/ String getName() {
50 return name;
51 }
52 }

Listing 7.13 Full specification of Student with assignable clauses
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In the first place, loop invariants are proof artifacts, comparable to induction
hypotheses in inductive proofs. But JML offers the possibility to annotate loops, in the
source code, with invariants, to be used by verification tools during the proof process.
The corresponding keyword is maintaining or loop_invariant, followed by
a Boolean JML expression. The JML comment that contains this must be placed
directly in front of the loop. Notice that a loop invariant may contain an \old(E)
expression. This refers to the value of the expression E before the method started,
not to the value of E at the previous iteration of the loop.

As long as no diverges clause (see Section 7.3.3) is defined, it is required
to prove that a method terminates. In presence of a loop this is only possible if a
decreasing clause (also named variant) is provided together with the loop invariant.
The decreasing term must be well-founded, which means that it cannot decrease
forever. For the decreasing clause, it has to be shown that it is strictly decreasing for
each loop iteration and that it evaluates to a nonnegative value in any state satisfying
the invariant. Therefore, this is sufficient to conclude that the loop terminates. In
JML the decreasing term is specified via keyword decreasing, followed by an
expression of type integer.

Example 7.28. The loop invariant in method search in Listing 7.14 shows a very
common loop invariant pattern for methods iterating over an array. All the elements
that have been examined so far respect a certain property, and the loop terminates
at least when all the elements in the array have been examined. Variable found
indicates in this example whether the element to search is contained in the already
examined elements or not. A loop invariant restricting the range of loop variables is
typically always needed, but not sufficient alone. In this example, the range of loop
variable i is limited to valid array indices (0 <= i && i <= a.length). Finally,
a well-founded decreasing clause is provided, that allows one to prove termination.

1 /*@ normal_behavior
2 @ requires a != null;
3 @ ensures \result == (\exists int i;
4 @ 0 <= i && i < a.length; a[i] == val);
5 @*/
6 public boolean search(int[] a, int val) {
7 int i = 0;
8 /*@ maintaining !(\exists int j; 0 <= j && j < i; a[j] == val);
9 @ maintaining 0 <= i && i <= a.length;

10 @ decreasing a.length - i;
11 @*/
12 while (i < a.length) {
13 if (a[i] == val)
14 return true;
15 i++;
16 }
17 return false;
18 }

Listing 7.14 Loop invariant example to search an element in an array
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Loop invariants are sensitive to the frame problem as discussed for method calls
in Section 7.9.1. Basically, it is necessary to specify which variable locations might
be changed by a loop and which not. In KeY this is done with the assignable clause.
Only locations have to be specified since local variables changed by the loop are
computed automatically by KeY. Note that a loop assignable clause refers to all
locations that are possibly changed by any loop iteration, not just a single one. For
instance, if an array a is manipulated at a (variable) index i, it is not enough to
specify assignable a[i]; but instead assignable a[*]; refers to any element.

Example 7.29. Method sum of Listing 7.15 computes the sum of the values pro-
vided by an array using a for-each loop. The assignable clause is explicitly set to
\strictly_nothing to make sure that no objects are created during loop execution.
Local variables are not listed in the assignable clause since they are automatically
added by KeY.

1 /*@ requires array != null;
2 @ ensures \result == (\sum int i;
3 @ 0 <= i && i < array.length; array[i]);
4 @*/
5 public static int sum(int[] array) {
6 int sum = 0;
7 /*@ maintaining sum == (\sum int j;
8 @ 0 <= j && j < \index; array[j]);
9 @ maintaining \index >= 0 && \index <= array.length;

10 @ decreasing array.length - \index;
11 @ assignable \strictly_nothing;
12 @*/
13 for (int value : array) {
14 sum += value;
15 }
16 return sum;
17 }

Listing 7.15 Loop invariant example to compute the sum of an array

Java 1.5 introduced so called enhanced for loops (also called foreach loops, see
[Gosling et al., 2013, Section 14.14]) that iterate over elements of an array or a
collection. Here, the index variable is only implicit. As proposed by Cok [2008], the
keyword \index refers to this value. An example is also shown in Listing 7.15.
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7.9.3 Assertions and Block Contracts

Sometimes, the program verifier needs some additional guidance in proving a contract.
This can be given as an intermediate assertion: assert P;15 We have to prove that
P is true in this intermediate state. Afterwards, we can use this additional knowledge
to prove the overall proof obligation. In this way, assertions in the code are similar
to cuts in proofs. JML also provides a dual assume statement. It is supposed to be
assumed to be true without verifying it.

While the intuition behind these constructs is clear, they perturb the concept of
design by contract. In particular, the statement assume false; would make any
contract trivially satisfied. For this reason, in KeY assert and assume are replaced
by the more flexible concept of block contracts [Wacker, 2012]. The behavior of any
Java block can be specified in the same way as a method is specified (see Section 7.1)
by placing the specification directly in front of the Java block. It can contain any
clause that is available for method contracts. The only differences are: First, that \old
represents the value before executing the block, and not the one before executing the
method, and second, that the \signals_only definition must be explicitly specified,
because a block has no throws definition from which it can be computed. Listing 7.16
shows the usage of a block contract within a longer method. The block itself swaps
the value of the two variables x and y.

1 public void swapInBetween() {

2

...
3 /*@ ensures x == \old(y);
4 @ ensures y == \old(x);
5 @ assignable x, y;
6 @ signals_only \nothing;
7 @*/
8 {
9 y = x + y;

10 x = y - x;
11 y = y - x;
12 }

13

...
14 }

Listing 7.16 Usage of a block contract to swap two values

15 JML assert statements are not to be confused with Java assert statements. The former are only
present in specifications and meant to guide the prover. The latter is an actual program statement to
be checked at runtime, that raises an exception upon failure.
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7.10 Conclusion

This chapter has provided a short overview of the Java Modeling Language (JML),
its main features and how it can be used to describe intended program behavior.
More information about JML, including people involved in the community effort,
the reference manual, tools supporting JML, teaching material, and relevant papers
are available from the JML webpage jmlspecs.org.

To conclude, we briefly discuss other related program annotation languages, and
the wide range of tool support that exists for JML.

7.10.1 Tool Support for JML

One of the strong points of JML is that many different kinds of tool support exist for
it, covering the whole spectrum of formal methods. For an—unfortunately outdated—
overview of JML tools, the reader may refer to [Burdy et al., 2003a]. We briefly
describe a few, more information is available from the JML webpage. It should
be noted that most recent tool development, including KeY, aims at combining
different kinds of tool support within a single environment. In particular both the
JMLEclipse [Chalin et al., 2010] and OpenJML [Cok, 2011] tool suites each include
their own runtime checker, static analysis tool, and test case generator.

The original developers of JML started the work on JML with runtime checking
in mind, i.e., JML should provide support to check pre- and postconditions during
program execution. Many different tools exist that support this, for different subsets
of JML, e.g., JMLRac [Cheon, 2003], AspectJML [Rebêlo et al., 2014], and as
mentioned subtools of JMLEclipse and OpenJML. The runtime checking approach
has also been the basis for model checking of JML annotated programs in Bogor:
every program annotation is translated into an assertion, that is validated during the
software model checking procedure [Robby et al., 2006].

JML is also used for test case generation. JMLunitNG [Zimmerman and Nagmoti,
2010] extends standard unit testing with knowledge derived from the program an-
notations. It is included in the OpenJML tool suite. The test case generation feature
of KeY (see Chapter 12) uses information from the KeY prover to improve test case
generation. As mentioned, also JMLEclipse provides support for test case generation,
based on the JET tool [Cheon, 2007]. A recently developed test case generation tool
is JMLOK2 [Milanez et al., 2014].

There are also several tools that support static checking of JML annotations,
i.e., at compile time, without executing the program. These tools differ in the level
of automation and the support they provide for manually constructing a proof. In
general, the more user intervention is possible, the more complex properties can be
verified. KeY is a typical example of a tool that can verify complex properties, but
may require manual intervention. Other tools in this category are Krakatoa [Marché
et al., 2004] and KIV [Balser et al., 2000, Stenzel, 2005].

http://jmlspecs.org/
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ESC/Java [Leino et al., 2000] and its successor ESC/Java2 [Cok and Kiniry,
2005] follow the auto-active verification paradigm. They intend to provide automatic
support for proving program correctness (if necessary, compromising soundness
or completeness). Another tool that has been developed with automation in mind
is JACK [Barthe et al., 2007], however it also provides support to fall back on
interactive proving using Coq. Also the static verification subtools of JMLEclipse
and OpenJML are developed with automation in mind. Finally, the VerCors tool set
[Amighi et al., 2012] combines separation logic support for concurrent programs
with JML annotations.

Last, it should be mentioned that there are also very different tools that support
JML. There is a JMLdoc facility that allows one to generate web pages for JML
annotations (similar to Javadoc). There also exist tools that generate JML annotations.
These range from generating arbitrary JML specifications such as Daikon [Ernst
et al., 2007], and Houdini [Flanagan and Leino, 2000] to tools that can generate
one specific class of annotations, such as Chase [Cataño and Huisman, 2003]. The
KeY project provides support for editing JML specifications in Eclipse. The Eclipse
extension is called JML Editing and offers features such as syntax highlighting and
refactoring. It is available at www.key-project.org/eclipse/JMLEditing.

7.10.2 Comparison to Other Program Annotation Languages

The JML language has been a pioneer in the area of annotation based specification
languages dedicated to a single programming language. As explained above, in
Section II, the intention of the developers was to provide a language to write assertions
for Java programs. Its design has been inspired by earlier experiences of some of the
developers on annotating Modula-3 [Leino and Nelson, 1998], and C++ (the Larch
project) [Cheon and Leavens, 1994].

As a major difference to more abstract specification languages, such as Z [Spivey,
1992], VDM [Fitzgerald et al., 2008], Alloy [Jackson, 2003], the B method [Abrial,
1996], and UML [Rumbaugh et al., 2010], JML focuses solely on the phases of
software development in which source code is written. It is also primarily intended
to specify existing code, rather than to implement programs according to a preex-
isting specification. However, it should be noted that some work has been done on
translating specifications in these high level languages into JML, e.g., for B [Cataño
et al., 2012].

JML also has a number of similarities to the Object Constraint Language
(OCL) [Warmer and Kleppe, 1999], a language for annotating UML class diagrams
with constraints on object states. It is used for both meta modeling and application
modeling. In the latter case, annotations are added to the fine design of the imple-
mentation, much like class and method specifications in JML. But unlike JML, OCL
does not subscribe to any programming language, and therefore does not address
language-specific concerns (like, e.g., exceptions). Earlier versions of KeY supported
OCL as well [Beckert et al., 2007], but this has been discontinued.

http://www.key-project.org/eclipse/JMLEditing
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JML has been an inspiration for many other program annotation languages that
have emerged over the last years, such as the ANSI/ISO C Specification Language
(ACSL) [Baudin et al., 2010], and the language of the VCC tool (formerly “Veri-
fying C Compiler”) [Cohen et al., 2009], Spec# for C# [Barnett et al., 2005a], and
Dafny [Leino, 2010], that is an integrated annotation and programming language.

Recently, separation logic [O’Hearn et al., 2001, 2004] has become a popular
alternative to Hoare logic to specify program behavior. Separation logic allows
explicit reasoning about the heap, that makes it suitable for reasoning about pointer
programs, and for concurrent programs. Several approaches exist that combine
separation logic with JML (or JML like languages), to enable reasoning about pointers
and/or concurrent programs, while maintaining the expressiveness of JML [Tuerk,
2009, Jacobs and Piessens, 2011, Amighi et al., 2012]. The dynamic frame approach
[Kassios, 2011, Weiß, 2011] offers even more flexibility to specify and reason about
complex heap modifications. KeY uses its own extension to JML, that makes use of
dynamic frames; it is covered in Section 9.3.



Specification with the Java Modeling Language (JML) has been introduced by
example in the previous chapter without giving formal definitions of the meaning
of JML specifications. Unfortunately, the JML reference manual [Leavens et al.,
2013] does not provide a formal semantics, but informal descriptions, often stated
in operational terms of the Java language. This is a serious shortcoming since the
primary use case of JML is formal specification. Some formal representations from
within the JML community have been suggested before [Jacobs and Poll, 2001,
Engel, 2005, Darvas and Müller, 2007, Bruns, 2009], but none of them prevailed.
Furthermore, over the years several extensions or dialects to JML have emerged (e.g.,
the extension with dynamic frames by Weiß [2011] that is used in KeY).

In the present chapter, we provide a denotational formal semantics to JML by
translating expressions and contracts to formulas in JavaDL. It thus links Chapter 3
on JavaDL with Chapter 7 on JML. We assume that the reader is familiar with JavaDL
and with the basic syntax of JML, and that he or she has an intuitive sense of their
semantics. This chapter gives a comprehensive definition of the semantics of JML,
more specifically of the dialect of the specification language used in the KeY system.
It is marked where the semantics presented in this chapter refines or deviates from
that given in the reference manual.

The chapter is divided into three sections: In Section 8.1, we define a translation
from JML expressions to JavaDL terms and formulas. In Section 8.2, we introduce
JavaDL contracts to which JML specifications are translated. Finally, in Section 8.3,
we give proof obligations for contracts, i.e., we explain which formulas need to be
proven for a given program to be correct w.r.t. its contract. We distinguish three kinds
of proof obligations: (1) functional correctness proof obligations (Section 8.3.1),
(2) dependency proof obligations (Section 8.3.2), and (3) well-definedness proof
obligations (Section 8.3.3). The full definition comprises many similar cases which
we present exemplarily. A full account of the JML semantics can be found in Ap-
pendix A.

We focus on local correctness of a single method implementation. This means that
we only cover the provider’s side of a contract in the design by contract framework.
Chapter 9 on modular specification and verification goes beyond this and defines
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correctness of whole programs. Calculus rules that use contracts can be found there.
Chapter 13 on information flow introduces yet another extension to JML, which
is based on the semantics described in this chapter and generalizes the concept of
dependency proof obligations from Section 8.3.2.

8.1 Formal Semantics of JML Expressions

We start by giving semantics to JML expressions by providing a translation to JavaDL
terms or formulas (see Chapter 3). While JML has been designed to be intuitively
understandable, in particular expression syntax being similar to first-order logic, a
formal account is not always straightforward. On a closer look, the fact that JML
semantics relies on the Java program that is being specified renders the whole issue
more complex than expected. In particular, JML contains several implicit assumptions
that are not contained per se in JavaDL.

A note on notation: We use typewriter font for terminal (program) syntax
elements—such as local variables or operators—and math font for nonterminal
JML expressions.

We fix a Java program Prg with JML annotations. Let JTypesPrg denote the set of
JML types, including the reference types that are defined in Prg. Let JExpPrg denote
the set of well-formed JML expressions w.r.t. Prg according to syntax and typing
rules defined in the JML reference manual [Leavens et al., 2013].

JML expressions are statically typed such that for every operator the argument
and result types can be inferred at compile-time. Thus the translation of overloaded
operators distinguishes cases by types, e.g., the binary JML operator & is translated
to either logical conjunction (if the operands are of type Boolean) or an appropriate
bit vector operation (if the operands are of an integer type).

In JML, the concept ‘formula’ does not exist; its place is rather taken by Boolean
expressions. JavaDL, on the other hand, distinguishes between Boolean terms and
formulas. For a translation from JML to JavaDL we need to distinguish both cases
and define the translation from JML expressions as a mapping to either terms or
formulas in JavaDL.

Definition 8.1. Let T be a JavaDL type hierarchy for a Java program Prg. The
translation function b·c : JExpPrg ∪ JTypesPrg → TrmAny ∪DLFml∪T maps JML
expressions and types to terms, formulas, or types in JavaDL. It is defined in Tables
A.6–A.11 in Appendix A.2. Whether the result is a formula or a term depends on the
context; if necessary, a Boolean term x can be converted to a formula x .= TRUE.

Logical symbols

The translated JavaDL terms may contain the predefined function symbols of the
signature ΣJ (see Figure 2.4). In addition, they may contain the program variables
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and function symbols (i) self for the reference to the current receiver object (i.e.,
the equivalent to this in Java), (ii) heap for the current heap, (iii) heappre for the
prestate heap, (iv) exc for an exception to be raised (and not caught) by the program,
(v) res for the result of a method, as well as (vi) any local variables, parameters, and
field identifiers defined by the Java program. The symbols heappre, exc, and res
only appear in postconditions.

In the remainder of this section, we discuss the translation for representative
examples.

8.1.1 Types in JML

The type system of JML comprises the type system of Java and extends it with the
specification-only types \bigint (mathematical integers), \real (real numbers),
and \TYPE (the type of all types). The JML dialect used in KeY further introduces
the types \seq (finite sequences), and \locset (location sets).1 All Java/JML types
that occur in the program under inspection (both primitive types and defined classes
and interfaces) have a direct counterpart in JavaDL.

In JML, the different integer data types (byte, short, char, int, long, and
\bigint) refer to different ranges of mathematical integers while there is only one
type int in JavaDL—representing the mathematical integers Z. Note that these types
are not subtypes of each other, but rather retrenchments [Schlager, 2002]. All JML
integer types are translated to the same domain int in JavaDL. To account for the
different value ranges, there exist restriction predicates inInt(x), inByte(x), etc. for
each integral type except \bigint. The semantics of this type restriction depends on
the choice of integer semantics in JavaDL; the resulting formulas will be different
(see Section 5.4): For instance IJava(inInt) = [−231,231−1] while Imath(inInt) = Z.

All mentioned specification-only types (\real, \bigint, \TYPE, \seq and
\locsec) are primitive data types, put in Java lingo. Note that the JML model-
ing classes, like JMLObjectSet, are not primitive but reference types. This chapter
does not cover some of the available primitive data types: floating-point types (float
and double) as well as the JML types \real and \TYPE are currently not supported
in KeY. There is no translation into JavaDL for them. The interested reader can
refer to [Bruns, 2009]. In contrast to the JML reference manual [Leavens et al.,
2013], we do not allow array types such as \bigint[]. Unlike all other array types,
they are not subtypes of java.lang.Object and therefore expose some semantical
irregularities.

Reference types are mapped to their equally named Java correspondence. A distinc-
tion is made concerning whether or not the value null is included in the translation.
By default, bound variables in JML do not include null as possible value. This
default restriction is motivated by the observation that null dereference is a common

1 For the underlying theories of finite sequences and location sets, see Sections 2.4 and 5.2,
respectively. Usage of the \seq and \locset data types in JML specifications will be discussed in
Sections 8.1.3 and 9.3.2, respectively.
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source of programming errors. Chalin and Rioux [2005] reported on the observa-
tion that the majority of type references used in declarations in a Java program are
designed to hold only values different from null. It is therefore natural to assume
this constraint as the implicitly assumed default and have all situations in which
null is an admissible value be annotated explicitly. This shortens specifications and
enhances safety by making contracts stricter by default. Nonnull types are built into
the Eiffel language [Meyer, 1989]. For Java, there are dedicated static checkers for
nonnull annotated types (see [Chalin et al., 2008]).

We understand the JML type non_null T ∈ JTypes (which excludes the null
reference) as a subtype to the respective unrestricted type nullable T (i.e., the
actual Java reference type). In JavaDL we represent both types as the same type T and
encode the nonnullness as a constraint. We define a family of formulas inRangeT (x)
that represents the restrictions on term x to JML type T ∈ JTypes. This type restriction
formula is used anywhere in JavaDL formulas where range restriction is required,
e.g., in preconditions or in quantifier ranges. Note that the symbol inRange() does
not actually occur in formulas, but is merely an abbreviation used in this book.

For a reference type T that is not an array type, inRangeT (x) is defined as the
following formula:

x.created .= TRUE∧ x 6 .= null

For reference array types, e.g., Object[], there is a further restriction that all
array entries x[i] are different from null as well—even in depth in case of multi-
dimensional arrays.2 To encapsulate this ‘deep nonnull,’ we use the recursively
defined predicate nonNull(h,x,d) which means that in heap h reference x is not null
for dimension d, see Section 8.2.1.2 for the formal definition.

Similar to the definition for reference types, the type \locset is restricted to
location sets in which all members of the set belong to allocated objects. There is no
JML expression denoting an unallocated object, and there is no way of constructing
an expression that denotes a set that contains unallocated locations. In Section 9.3.4,
we will encounter an example for why it is useful that dynamic frames in JML never
contain unallocated locations.

8.1.2 Translating JML Expressions to JavaDL

This subsection explains the translation of selected, relevant operators. A comprehen-
sive list can be found in Appendix A.2.

2 The translation does not include that the entries must be created. It is an implicit axiom in JavaDL
that all referenced objects are created. This is captured in the semantics of the wellFormed predicate,
see Definition 3.5.
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8.1.2.1 Boolean Logical Expressions

Boolean expressions are translated in a straightforward manner. For most JML
operators, there is simply an alternative JavaDL syntax. E.g., all three expres-
sions A != B, A <=!=> B, and A^B are translated to ¬(bAc ↔ bBc). For quan-
tified expressions, we add a type restriction to the range, as discussed above. E.g.,
(\forall int x; A; B) is translated to ∀ int x;(inInt(x)∧bAc → bBc), where
we assume the bound variable x in JML to be identified with the logical variable x.
According to the JML reference manual [Leavens et al., 2013, Sect. 12.4.24.6],
the range of quantification over reference types “may include references to ob-
jects that are not constructed by the program.” Our translation deviates from this
since in practice all nontrivial quantified expressions would not be well-defined.3

This means that a JML expression (\forall Object o; B) is translated to
∀ Object o;(o.created .= TRUE∧o 6 .= null→ bBc).

8.1.2.2 Integer Expressions

Operations on integers in JML are the same as in Java with two exceptions: Expres-
sions with side effects such as x++ are not allowed in JML. The only addition is that
expressions can be of type \bigint, on which arithmetic operators represent their
mathematical counterparts. Depending on the promoted result type of the compound
expression, there are up to three different translations: one each for types int, long,
and \bigint. The promoted type is the least restrictive type of the subexpressions
(see [Gosling et al., 2013, Sect. 5.1.2]). Other integral types do not occur; there is
always an implicit promotion to int.

Arithmetic expressions of type \bigint are translated to their mathematical
counterpart. E.g., n + m is translated to bnc+ bmc if at least one of n or m is of
type \bigint. For the Java types int and long, the translation relies on dedicated
functions which represent the respective modulo semantics; n + m is translated to
either javaAddInt(bnc,bmc) or javaAddLong(bnc,bmc). As with the type restriction
predicates above, these proxy functions have different semantics depending on the
options in use. The division and modulo operators applied to \bigint are translated
to the functions jdiv and jmod,4 respectively.

Bitwise operations are also translated for int and long (i.e., operations on the
32- and 64-bit vector types), but it is a type error to use them with \bigint. The full
table of translations can be found in Table A.9 in the appendix. It is possible to use
explicit conversions to enforce certain semantics; e.g., -n where n is of type int is
translated to javaUnaryMinusInt(bnc) while -(\bigint)n is translated to −bnc.

3 In JML, there is no way of expressing createdness of objects. At some point an explicit \created
operator had been proposed and it was used in older versions of the KeY system, but it has never
found its way into the reference manual.
4 The functions jdiv and jmod represent division and remainder according to Java rules, albeit in
the unbounded domain. They must not be confused with the / and % operators in JavaDL, which
represent Euclidian division and modulo; see Section 5.4.
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8.1.2.3 Generalized Quantifiers

JML features so-called generalized quantifiers,5 which include sum and product
comprehensions as well as minimum and maximum operators. Syntactically, all of
them bind a (logic) variable of some type and consist of an optional Boolean guard
expression and a body expression of type int, both of which the bound variable may
appear in. Sum and product comprehensions are not always total functions—consider,
e.g., ∑i∈N i. For this reason, JavaDL provides dedicated bounded comprehension
operators over integer intervals, for which induction schemata can be given (see
Section 5.4.2). For bounded comprehensions to be translated, we restrict them to
conform to a shape like (\sum T x; n <= x && x < m; t) with only one bound
variable and an interval which is closed to the left and open to the right, and where T
is an integral type. Of course, this excludes certain (well-defined) comprehensions,
because of their syntactical shape, such as (\product Object o; false; 42)
or (\sum \bigint i, j; 0 < i && i < j && j < 23; i*j). Such compre-
hensions are translated to the unbounded sum and product operators sum and prod,
for which only minimal reasoning support is available.

Bounded sum and product comprehensions in JavaDL represent iterated addition
or multiplication in the mathematical integers. In JML, the type of a generalized quan-
tifier is the type its body. For a faithful translation, an additional cast is applied to the
bounded comprehensions. The expression (\sum int x; n <= x && x < m; t),
for example, is translated to the following:

castToInt(bsum{int x}(bnc,bmc,btc))

Minimum and maximum operators appear in the form (\max T i; A; t),
which intuitively stands for ‘the maximum of all t(i) such that A(i) holds.’ However,
maximum is not a total function either. Consider, e.g., (\max \bigint i; i), for
which the above axiomatization would entail that there exists a largest integer. Mini-
mum and maximum operators are translated to dedicated operators in JavaDL, for
which there exists only minimal reasoning support at the time of writing;6 using the
\min and \max is discouraged. Minimum and maximum can instead be formalized
in first-order logic with basic arithmetic. Since it allows for complete reasoning, this
is the preferred way in practice.

8.1.2.4 Pure Method Calls

Methods declared as pure can be used as specification expressions. In JavaDL,
pure methods are represented by observer symbols (see Definition 9.7). An instance
method call o.m(p1, . . ., pn) is thus translated to C ::m(heap,boc,bp1c, . . . ,bpnc)

5 See also [Mostowski, 1957] on the concept of generalized quantifiers in logic.
6 In particular, the property described in the JML reference manual [Leavens et al., 2013,
Sect. 12.4.24.2] is not provable, where the maximum over an empty range is defined as the minimum
over the body type (which is also undefined for \bigint).
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where C is the class of which boc is an instance containing the most specific method
implementation for m according to the dynamic dispatch rules of the Java language.
For static methods, the receiver parameter is null. Not all methods may be used
in specifications: Since evaluating the specification must not change the execution
context, only pure methods may be referred to from JML clauses. Note that in JML,
methods that occur in specifications may also be weakly pure, i.e., they may create
new objects on the heap and change their state, but do not have an influence on the
existing part of the heap. The translation to JavaDL thus ignores possible side effects.

8.1.2.5 Referring to the Prestate

In postconditions of method contracts and in history constraints the expression
\old(x) is used to denote the prestate value of x. There is no restriction on the
type or syntactical structure of x in general; it may include pure method calls or
object references. In JavaDL, this can be achieved by performing every heap ac-
cess which appears in the scope of \old with the prestate heap heappre instead of
the default heap. This applies to both field accesses and observer symbols such as
pure methods or model fields. E.g., the reference expression \old(o.f.g) is trans-
lated to selectT (heappre,selectT ′(heappre,o,f),g) and \old(o.f).g is translated to
selectT (heap,selectT ′(heappre,o,f),g). A pure method call as in \old(this.m())
is translated to C ::m(heappre,self).

This implementation is an improvement over older versions of KeY which did not
use an explicit heap, but replaced occurrences of \old with fresh variables which
were assigned prior to symbolic execution [Baar et al., 2001]. Neither was it allowed
to access pure methods in the prestate.

Note that \old can only be applied to proper expressions. This means that JavaDL
terms like selectT (heappre,selectT ′(heap,o,f),g) cannot be expressed in JML—at
least not without jumping through hoops like adding model methods. The obvious
o.f.\old(g) is not a well-formed JML expression because the reference suffix g
is not an expression. The generalized version of \old with a label to refer to an
arbitrary heap state (not just the prestate) is currently not supported in KeY.

Two Notions of the Past

Yi et al. [2013] propose another notion of referring to the prestate. While \old
stands for a value (which may be of a reference type), the proposed \past oper-
ator represents a pointer into the prestate heap. This means that every expression
using this pointer is implicitly evaluated in the prestate, e.g., \past(o).f.g or
\past(o.f).g both mean the same as \old(o.f.g). The main motivation for
such an operator is to bridge a gap with \old which exposes implementation
detail. Imagine o’s static type to be an interface. How do we state that the object
denoted by o in the poststate equals o in the prestate without exposing implemen-
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tation details? Using \past, this can be expressed as o.equals(\past(o)),
but there does not exist an equivalent expression using \old. Please note that
the value of \past(o) is still the same as \old(o).

Even on the level of JavaDL, this is difficult to express. While not in standard
JML, KeY’s extension features two-state model methods (see Section 9.2.2).
These represent observer functions which observe two heaps simultaneously.
This allows the \old operator to appear in the implementation. We could give a
two-state model method equalsOld() with the following implementation:
/*@ public two_state model boolean equalsOld ()
@ { return this.f == \old(this.f); }
@*/

However, we would have to implement such a model method for each concrete
subtype because the implementation refers to the fields of the concrete type.
Note that model methods are always strictly pure in our JML dialect.

The Boolean expression \fresh(o) also appears in postconditions and states that
o points to a freshly allocated object, i.e., it was not created in the prestate and it is
not a null reference:

b\fresh(o)c= selectboolean(heappre,boc,created) .= FALSE∧boc 6 .= null

Note that the value of o is evaluated in the poststate. Please note that the \fresh
operator is overloaded; there is an expression \fresh(s) where s is a location set
expression in KeY’s dialect of JML, which means that all locations in s belong to
objects which were newly allocated.

8.1.2.6 Type Expressions

Standard JML features a type of types \TYPE, which is not present in KeY’s
JML since the underlying JavaDL assumes a finite type system. Type expressions
as such are supported within certain contexts: Boolean expressions of the form
\typeof(x) == \type(T)where x is an expression of any type and T is a type, are
translated to exactInstanceT (x) (introduced in Section 2.4.3). Only the syntax where
a \typeof expression appears on the left hand side and \type(T) (denoting a fixed
type) appears on the right hand side is supported. Any other occurrences of type
equality are Skolemized.

To describe that an expression x evaluates to an instance of type T , but not
necessarily to an exact instance of T , the Java operator instanceof can be used.
The expression x instanceof T is translated to instanceT (bxc).
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8.1.2.7 Location Set Expressions

Weiß [2011] introduced dedicated location set expressions to JML. For some of
them a translation is straightforward, as they have been designed to correspond to
predicates and functions in JavaDL with obvious meaning, e.g., \intersect(s,t).
But location set expressions also replace reference set expressions from standard JML.
These are faithfully translated to terms in JavaDL. For instance, b\everythingc=
setMinus(allLocs,unusedLocs(heap)), taking into account that JML only considers
locations which belong to already allocated objects. Please note that the keyword
\strictly_nothing (an extension introduced by KeY) is not an expression in this
sense, but can be used to form a nonstandard assignable clause, see Definition 8.4
below.

The binary union operator is called \set_union for technical reasons. The
JML language also features a set comprehension operator \infinite_union that
binds a variable of any type and has a location set expression in the body. Op-
tionally, a guard can be given. Like other comprehension operators, the translation
from JML to JavaDL includes default guards. For instance, the JML expression
\infinite_union(Object o; \singleton(o,f)) is translated to the follow-
ing term:

infiniteUnion{Object o}(if (x.created .= TRUE∧ x 6 .= null)
then ({(o,f)}) else (empty))

The set comprehension notation of standard JML is not supported in KeY.

8.1.2.8 Reachability

Both standard JML and the dialect used by KeY feature a \reach operator, but their
syntax and semantics differ. Both serve the purpose of specifying properties on the
set of objects (excluding null) which are reachable by subsequent field and array
index references. In standard JML, \reach(o) intuitively stands for the set7 of all
objects transitively reachable through any instance field from the reference o.

By contrast, in KeY \reach is a predicate symbol that states whether an object
is reachable from another one. It takes as a parameter the locations that are allowed
in the reference chain—including static fields. The operator appears both as 3-
place and 4-place, where \reach(`, o1, o2) means ‘bo2c is transitively reachable
from bo1c through any location in b`c,’ where ` is a location set expression; and
\reach(`, o1, o2, n) stands for reachability in exactly bnc steps. The former is
equivalent to (\exists \bigint n; n >= 0; \reach(`, o1, o2, n)).

Except for the fact that there is no explicit reasoning about sets of objects
in KeY, its reachability operators are more expressive than those of standard
JML. The standard JML expression \reach(o1).contains(o2) is equivalent to

7 More precisely, it is an object of type JMLObjectSet since JML does have abstract data types.
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\reach(o1.*, o1, o2), while nontrivial location sets cannot be expressed in stan-
dard JML.

A similar operator is \reachLocs that denotes a location set consisting of all
locations of reachable objects. Again, there are two versions of \reachLocs, one
with an explicit number of steps and one with implicit quantification.

8.1.2.9 Escaping to JavaDL

It may happen that some properties cannot (or at least not without considerable effort)
be represented in JML, but can be represented on the level of JavaDL. A typical
case are user-defined functions or predicates which do not have a counterpart on
the JML level.8 For this purpose, KeY introduces escapes from JML into JavaDL.
Within the delimiters (* *)+ (known as “informal predicate” in standard JML) any
JavaDL term may appear, which is inserted verbatim during translation. Even more
convenient is the function escape \dl_, which allows one to refer to a nonbinding
JavaDL function (or predicate) while parameters are still given in JML. The escape
sequence \dl_ must be immediately followed by a function name. Variable binding
is not allowed.

For instance, \dl_add(a,\old(a)) refers to the function add, which represents
addition in the mathematical integers. This function is not directly available in JML
when the parameters have Java integer type. In case the JavaDL function has a
heap parameter the base heap heap is implicitly added as the first parameter. Take
a function f : Heap×Object→ Object, for instance. \dl_f(o) is translated into
f (heap,boc). JML operators such as \old, whose translation to JavaDL can be
tedious to express,may be used in parameters.

8.1.3 Abstract Data Types in JML

KeY’s extension to JML additionally features the abstract data type [Reynolds, 1994]
of finite sequences at the language level, referred to as \seq. This type is primitive in
Java lingo, like the other specification-only types \bigint and \locset (see above).
Reasoning about the underlying theory of finite sequences is well supported in KeY
(see Section 5.2).

Algebraic data types can be defined inductively, i.e., their definition consists of a
definition for each constructor. This kind of recursive definition is both well-founded
and total due to the inductive nature of initial algebras [Jacobs and Rutten, 1997] that
entails that every element of the carrier set can be uniquely described using a finite
number of constructor applications (i.e., construction is invertible). As an example,
in the List example above, we can model each state of the list using only the two

8 Model methods (see 9.2.2) may instead be used for specification. However, in reasoning, model
methods are treated similarly as (pure) Java methods, while functions or predicates can be given
dedicated rules to reason about them efficiently.
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constructors ‘empty list’ and ‘appending an element,’ which form a basic sequence
data type. This principle also allows us to do proofs by induction. The length can be
defined as an observer of these constructors. We can then perform induction over the
length of a sequence.

The algebraic data type \seq of finite sequences is predefined in KeY-JML,
its operations are displayed in Table 8.1. These operators are directly translated
to their counterparts in JavaDL. Section 5.2 presents the underlying theory of fi-
nite sequences. In particular, we have a comprehension operator \seq_def where
(\seq_def \bigint x; i; j; t) denotes the sequence 〈t[x/i], . . . , t[x/ j− 1]〉.
Please note that \seq is not a parametric type; its elements are not typed. For
this reason, sequence access always needs to be preceded by an (unsafe) type cast.9

Table 8.1 Defined operations on the \seq data type in JML (extension in KeY)

syntax signature

empty sequence \seq_empty →\seq
singleton sequence \seq_singleton(e) T → \seq
concatenation \seq_concat(s1, s2) \seq×\seq→\seq
subsequence s[i.. j] \seq×\bigint×\bigint→\seq
comprehension (\seq_def \bigint x; i; j; t) \bigint×\bigint×T →\seq
access (T)s[i] \seq×\bigint→ T
length s.length \seq→\bigint

Like \bigint or \locset, the type \seq counts as a primitive type in the Java
sense. This means that all operations are side effect-free like mathematical func-
tions, instances do not need to be created, and expressions can be compared using
equality (==). In particular, it is allowed to quantify over all (infinitely many) se-
quences. Abstract data types must be distinguished from model types [Leavens et al.,
2006b, Sect. 2.3] in standard JML, which are not supported by KeY. These model
types—like JMLObjectSequence—still are Java reference types that may be used
in specifications—with all their issues like createdness.

8.1.4 Well-Definedness of Expressions

Some functions or predicates are only partially defined. A standard example is the
division function which is only defined for divisors other than zero. In the context
of Java programs, illegal heap accesses are particularly important, e.g., the value of
a field access on null is not defined, as is the value of a[5] where a is an array of
length 5 or less. According to the JML reference manual [Leavens et al., 2013], a
Boolean expression is valid in a state if it has the truth value true and “does not cause
an exception to be raised.”

9 In JavaDL, the access function itself is type parametric. An access in JML (prefixed with a type
cast) is translated to the appropriate typed access. See Table A.15 in Appendix A for details.
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Our translation from JML to JavaDL ignores this dimension of undefinedness.
KeY can generate well-definedness proof obligations (see Section 8.3.3 below) that
establish well-definedness of JavaDL formulas as described by Kirsten [2013].

8.2 From JML Contract Annotations to JavaDL Contracts

In this section we introduce JavaDL contracts as the principal concept in the verifica-
tion framework of KeY. First and foremost, JavaDL contracts serve as an intermediate
layer between JML specifications and proof obligations in JavaDL. The largest part
of this section is taken by defining a normalization of JML contracts comprising
various steps (Section 8.2.1). Then the special cases of contracts for constructors
(Section 8.2.4) and model methods and fields (Section 8.2.3) are covered and fi-
nally the formal definition of a JavaDL contract—and how it is derived from a JML
contract—is given in Section 8.2.4. The subsequent Section 8.3 then describes how
the JavaDL proof obligations for the correctness of a JML specification are con-
structed. It will be explained in Chapter 9 how contracts can be used in proofs for
sound modular reasoning about Java programs.

The definition of a proof obligation encompasses more than a mere translation of
the JML expressions in the clauses of the contract into JavaDL. Additional logical
constructions are needed to model aspects of the Java world precisely in the first-
order setting of JavaDL. We add constraints to confine the liberal model of general
predicate logic to those system states which can be reached through the execution of
Java code. For instance, in Java a field with a reference type can only point to either
null or to an already created object, but in JavaDL, it could possibly also point to
an object yet to be created. The proof obligations for methods use dynamic logic
constructs of JavaDL as they need to talk about both the before- and the after-state of
execution of methods.

We discuss in general how the contracts for a generic method are handled in KeY.
For this sake we assume that a method m is defined in some class C as follows.
class C {

public R m (final T1 p1, . . ., final Tn pn) { . . . }
...

}

We assume that all parameters pi are declared final, i.e., they are not assigned a
value in the method body.10

10 This restriction is not present in the KeY system, but it eases the presentation.
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8.2.1 Normalizing JML Contracts

JML is a feature-rich specification language in which the same specification intention
can often be formulated in different ways. This eases the job for the specifier and
makes specifications more concise and easier to understand.

For instance, JML allows the formulation of structured specifications. The be-
havior of a method does not need to be formulated as a single contract, but can be
split up into multiple, possibly nested individual contracts (called specification cases)
that model different parts of the behavior. Within a contract, multiple clauses of the
same kind (e.g., several ensures clauses) can be used to express properties of the
behavior; keywords like normal_behavior or pure can be used as abbreviations of
frequently applied specification elements. Moreover, JML is designed as a redundant
language in which many features have more than one associated keyword.

The syntactic richness of the specification language is a benefit when readability
and understandability of specifications is desired. However, for the precise description
of the translation of contracts, a small core language having the same expressiveness,
is favorable. In the following, we consider such a core language11 for JML in which
additional specifications constructs are assumed syntactic sugar defined in terms of
that core. The considered JML core language closely resembles the one presented by
Raghavan and Leavens [2000], although we deliberately deviate in some respects.

We present a normalization process that translates a general JML method contract
without syntactical restriction into a normalized JML contract in the core language.
This ‘desugaring’ may yield one or more separate contracts12 for the given method,
of which it needs to satisfy all. Note that this transformation is only used as a concept
for explanation; JML contracts are not implemented in this way in the KeY system.

The JML normalization process consists of the following steps:

1. Flattening of nested specifications
2. Making implicit specifications explicit
3. Processing of modifiers
4. Adding of default clauses, if not present
5. Contraction of multiple clauses
6. Separation of verification aspects

We consider two classes of normalized contracts: functional contracts and dependency
contracts. Listing 8.1 displays the shape of a normalized functional method contract
as we produce it in this section, while Listing 8.2 displays the shape of a normalized
dependency contract. For details on JML clauses, see Section 7.1.1.

In the next paragraphs we outline the ideas behind the normalization steps. They
may be skipped by readers familiar with the semantics of the desugared JML con-

11 Our idea of a ‘core’ is to include a minimal syntax that has enough expressive means to accom-
modate the meaning of the entire language as we support it.
12 We say here that a method can have more than one contract since that fits best the translation into
JavaDL. Within the JML community it is more common to say that every method has precisely one
contract with possibly several cases (including those inherited from supertypes). The difference is
only terminological, not conceptual.
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/*@ M behavior
@ requires Pre;
@ ensures Post;
@ signals (Throwable e) ExPost;
@ diverges [true|false];
@ measured_by Var;
@ assignable Ass;
@ helper
@*/

/*@nullable*/ RetType methodName(/*@nullable*/ T1 p1, . . . )

Listing 8.1 JML functional method contract specification case template

/*@ M behavior
@ requires Pre;
@ measured_by Var;
@ accessible Acc;
@ helper
@*/

/*@nullable*/ RetType methodName(/*@nullable*/ T1 p1, . . . )

Listing 8.2 JML method dependency contract specification case template

structs and who are convinced that the shape of the normalized contract is general
enough.

8.2.1.1 Flattening of Nested Specifications

JML allows the specification of nested cases (also called structured specifications)
using the {| . . . |} construct with opening and closing braces. It can be used to
formulate specifications with some common clauses which are relevant for all cases,
and with clauses for several separate and specific cases. The listing on the left of

before
{| alt1

also alt2 . . .
also altn |}

before
alt1

also
before
alt2

. . .
also

before
altn

Figure 8.1 A nested JML specification (on the left) and the flattened contracts (on the right) after
expansion

Figure 8.1 depicts the syntactical form of a nested specification where before is a
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(possibly empty) sequence of requires clauses and alti is a sequence of arbitrary
JML clauses (possibly including further requires clauses). The intuitive meaning
of the nested clauses is that any one of the clauses connected by also makes a valid
contract (but not the ‘outside’ preconditions on their own). The nonnested specifica-
tion cases can thus be derived by replacing {| . . . |} by any one of the alternatives
alti. The nested contract in the listing on the left of Figure 8.1 is, hence, equivalent
to the list of the n separate specification cases (conjoined using the keyword also)
that appears in the listing on the right. This expansion can be performed in the same
manner when more than one nesting operator occurs, or if the nesting of cases is
nested itself.

For the remaining desugaring steps, we consider the separated flat contracts
individually.

8.2.1.2 Making Implicit Specifications Explicit

JML provides a number of modifiers and specific keywords for frequent specification
scenarios. For the description of the translation, however, it is advisable to make their
meaning explicit by means of other specification clauses to reduce the number of
cases that need to be considered. Section 7.5 describes how the JML user can specify
whether a method parameter or its return value may take the value null.

Making Nonnull Specifications Explicit

JML follows a ‘nonnull by default’ policy (see also Sections 7.5 and 8.1.1) which
means that every reference type in a method declaration (type of a parameter or return
type) which is not explicitly annotated with the JML modifier /*@nullable*/ is
implicitly declared as nonnull. In a first normalization step, we make these implicit
assumptions explicit by adding /*@non_null*/ in those places without explicit
nullity annotation.13

Then we make the semantics of the nullity modifiers explicit by replacing every
/*@non_null*/ modifier in front of a method parameter p by /*@nullable*/ and
at the same time add the clause requires p != null; to every method contract
for the method. If the return type of a method is /*@non_null*/, we also replace
that modifier by /*@nullable*/ and add the clause ensures \result != null;
to every contract for the method. These steps do not change the semantics of the
contracts, but make it explicit.

In case the type of a method parameter (or the return type) is an array type over a
reference type (e.g. Object[]), the nonnull annotation does not only specify that the
value is always different from null, but also that all entries differ from null, too.
For arrays of higher dimension this goes even deeper. To specify this, we introduce
the JavaDL predicate nonNull : Heap×Object× int. The formula nonNull(h,x,d) is

13 Unless the enclosing class has been annotated with /*@nullable_by_default*/, in which
case /*@nullable*/ is the added modifier.



258 8 From Specification to Proof Obligations

true if and only if x refers (on heap h) to an array of objects different from null that
themselves are nonnull arrays of dimension d−1. Formally, it is defined through the
following axiom.

∀Heap h, Object x; nonNull(h,x,0)↔ x 6 .= null∧
∀Heap h, Object x, int d; d > 0→ (nonNull(h,x,d)↔ x 6 .= null ∧

(∀int i; 0≤ i∧ i < x.length→ nonNull(h,selectObject(h,x,arr(i)),d−1)) .

For a d-dimensional array parameter x declared as /*@non_null*/ Object[]d x,
the precondition then reads requires \dl_nonNull(x, d);.14

Making Object Invariant Specifications Explicit

Like the nonnullness of method parameters, receiver class invariants are also part of
the specification without being explicitly written down.

In standard JML the objects for which the class invariants hold are determined by
the so-called visible state semantics; in KeY’s JML, all objects for which the class
invariants hold must be stated explicitly using the operator \invariant_for. With
one exemption: A nonstatic method is implicitly assuming (as a precondition) the
invariant for the receiver object this before the method call and needs to assure
it after the call (as a postcondition). This default specification can be explicitly
deactivated by adding the modifier /*@helper*/ to the method specification.

To desugar the implicit invariant semantics for nonhelper methods, we add a
helper modifier to the method and the clauses

• requires \invariant_for(this);
• ensures \invariant_for(this); and
• signals (Throwable e) \invariant_for(this);

to every specification case for the method. A static method has no receiver object,
and thus cannot refer to an object invariant. Instead, the static class invariant is
implicitly assumed and must be guaranteed. The translation as explicit clauses15

reads requires \static_invariant_for(C); in which C is the enclosing class
in which the static method defined.

The order of clauses plays an important role in the well-definedness of contracts
(see Section 8.3.3). It is therefore important to mention that the newly added clauses
are added before the first existing annotation.

14 The first argument to \dl_nonNull of type Heap is added automatically by the translation as
outlined in Section 8.1.2.9.
15 The operator \static_invariant_for(C) referring to the static invariant of class C is a KeY
extension to JML.
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Making The Kind Of Behavior Explicit

JML supports specification not only of normally terminating program runs, but also
for the case of abnormal termination (uncaught exceptions). When writing a specifica-
tion, one can distinguish between specification of the normal and of the exceptional
case by declaring them as normal_behavior and exceptional_behavior, re-
spectively.

For a normalized contract, both keywords are reduced to the keyword behavior
by which a contract is initiated. The normal behavior gets an additional clause
signals (Throwable t) false; indicating that the method does not raise any
exception or error. Likewise, exceptional behavior specifications get an additional
postcondition ensures false; indicating that the method never terminates nor-
mally. Note that the declaration of either behavior does not specify divergence.

Desugaring signals_only Clauses

KeY supports signals_only clauses, which restrict the types of exceptions that can
possibly be raised by a method. Unlike the throws declaration in the Java language,
it does not only constrain checked exception types (subclasses of Exception which
are not subclasses of RuntimeException), but all instances of class Throwable.
For a discussion on exception types in Java, see the box on page 260.

The clause signals_only T1, . . ., Tp; lists one or more names Ti of classes
extending Throwable. It can be replaced by the semantically equivalent clause:
signals (Throwable e) (e instanceof T1 ||. . .|| e instanceof Tp);

8.2.1.3 Expanding Purity Modifiers

There are two more method modifiers pure and strictly_pure indicating that a
method does not have (observable) side effects. They both mean that the method
terminates unconditionally and that it does not modify existing heap locations.
The modifier pure is hence translated into the two clauses diverges false; and
assignable \nothing;. The modifier strictly_pure is an extension introduced
to JML by KeY to indicate that the heap is not modified at all (neither existing nor
freshly created locations; see also Section 7.9.1). It becomes diverges false; and
assignable \strictly_nothing; when translated into JavaDL. The semantic
differences between pure/nothing and strictly_pure/strictly_nothing are
outlined in Section 8.2.4.

8.2.1.4 Adding Default Clauses

The clauses in the normalized contract in Listing 8.1 are not optional. If a contract
does not have (at least) one clause for every keyword, clauses with default values
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Table 8.2 Default values for absent clauses and operators used to contract two or more clauses with
the same keyword

Clause Default value Contraction operator

requires true &&
ensures true &&
diverges false ||
assignable \everything \set_union
accessible \everything \set_union
signals (Throwable t) true see below
signals_only see below not allowed
measured_by not specified not allowed

are added to make the contract complete. The second column in Table 8.2 lists the
default values which are used for the clauses added in case a keyword does not occur.

Default values are designed in such a fashion that they match the user’s expecta-
tions of an unconstrained method, known as the principle of least surprise [Leavens,
1988]. The default clauses express that the method may be called in any state and that
it may terminate in any state. It may also terminate abnormally with any exception or
error; it may read from or write to any location on the heap.

The default clause for diverges is a little different in this context since its default
is to disallow nonterminating behavior. Instead, if nontermination is to be allowed for
a specific method (e.g., for the event loop of a reactive system), it must be explicitly
stated. In this respect, the default value is not the most liberal, but rather the most
restrictive one. It matches user expectation, however, since more often than not do
we want our code to terminate.

As described above, clauses of type signals_only are desugared. We define a
default value in case no such clause is given, even though it will be translated into
a signals clause. The default for signals_only clauses includes the unchecked
exception types Error and RuntimeException as well as those checked exception
types that are explicitly declared in the throws clause of the method signature. This
is the most liberal specification possible in Java since these are all the exception
types that the compiler permits to be thrown. For a method with the signature
void foo() throws IOException, for instance, the default clause is
signals_only Error, RuntimeException, IOException; .

Exceptions and Errors

In Java methods one may throw exceptions and errors to indicate abnormal situ-
ations and to terminate execution abruptly. Java discriminates between regular
exceptions (i.e., instances of java.lang.Exception) and errors (i.e., instances
of java.lang.Throwable that are not instances of Exception). While the for-
mer are designed to be handled within the program (to recover from the abnormal
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Object
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VirtualMachineError AssertionError

OutOfMemoryError
RuntimeException

IOException

NullPointerException

Figure 8.2 The type hierarchy of exceptions in Java

situation), the latter are reserved for severe, unexpected internal problems. Er-
rors are not meant to be caught but to terminate the whole program abruptly. A
typical example for an error is OutOfMemoryError that is thrown by the virtual
machine if a memory allocation fails due to lack of (physical) memory.

Both, regular exceptions and errors, have unchecked exceptions as sub-
types, that may be raised at any time during execution without the been
to declare them at compile time. Unchecked regular exceptions are in-
stances of java.lang.RuntimeException, unchecked errors are instances
of java.lang.Error. All other exception types are checked exceptions. An
excerpt from the Java type hierarchy is shown in Figure 8.2.

In the JML view of things, an execution which terminates abnormally by a
thrown exception is still within the scope of the specification. JML distinguishes
between normal postconditions (specified using ensures) and exceptional post-
conditions (specified using signals).

The situation is different for errors: The JML reference manual [Leavens
et al., 2013, Sect. 9.6.2] defines any method contract to be fulfilled vacuously
if the method terminates with an error. On the one hand, errors may appear at
many occasions during execution and in an unpredictable (and in some sense
nondeterministic) manner; hence, it may be justified to ignore them. On the other
hand, an error represents a severe failure of the software system that must not be
overlooked (see [Bloch, 2008, Item 57f.]).

One pathological example that shows that ignoring errors is problematic is
the following method which employs the Java assert statement (not the JML
equivalent in JML comments). If the asserted property is not met, an assertion
in Java code raises an AssertionError. Hence, the following JML method
contract is valid according to the JML reference manual [Leavens et al., 2013]:



262 8 From Specification to Proof Obligations

//@ normal_behavior
//@ ensures false;
void foo () { assert false; }

This is surprising since the contract is intuitively unsatisfiable. It can be argued
that the semantics in the JML reference manual [Leavens et al., 2013]is mostly
motivated by runtime assertion checking, not by static verification, and therefore
does not need to be concerned with errors. Since, however, the Java language
actually allows the programmer to raise arbitrary instances of Throwable (and
its subclass Error)—and also to catch them—it is reasonable to extend the se-
mantics of exceptional contracts to embrace errors as well as regular exceptions.

In KeY, JML signals clauses may list any subclass of Throwable. This is
vital for the soundness of the contract framework of KeY (see Section 9.1.3).
Otherwise, a caller of the above method could rely on the (unsatisfiable) post-
condition after catching the error.

The actual causes of unpredictable errors (insufficient main memory, too
deeply nested recursions, incompatible class files, etc.) could be modeled in a
static analysis and be reasoned about. This would increase the verification cost
tremendously, however. In KeY, all such error causes are hence silently ignored.

The measured_by clauses do not have a default value. If it is not specified, that
aspect of the specification is left open. Unless the method calls itself recursively
(directly or indirectly via intermediate method calls), this clause is not required.

8.2.1.5 Contraction of Clauses

The normalized contracts of Listings 8.1, 8.2 not only require at least one clause
for every keyword, but also that there be at most one. Prior to normalization, there
may be several clauses of the same kind in a contract, which helps structuring the
specification. It is, for instance, considered good practice to specify each aspect of
the precondition in its own requires clause.

In cases where multiple clauses of the same kind have been specified, they must be
contracted to one single clause. The operator used to contract two or more clauses into
one clause depends on the kind of the clause. The operators used for the respective
clause types are listed in the right column of Table 8.2. Pre- and postconditions, for
instance, are both connected using the logical conjunction &&. Note that due to lazy
evaluation in Java, the order of clauses matters for well-definedness as we will point
out in Section 8.3.3.

The contraction of signals clauses is a little more delicate since they may give
postconditions for various exceptional situations. The two clauses
signals (ExcClass1 e) Post1;
signals (ExcClass2 e) Post2;

can be contracted to the semantically equivalent single signals clause
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signals (Throwable e) (e instanceof ExcClass1 ==> Post1)
&& (e instanceof ExcClass2 ==> Post2) .

Depending on the type of the exception by which the method is terminated, the
respective postcondition must hold.

For signals_only and measured_by clauses, multiple specifications do not
make sense and are, hence, not allowed.

8.2.1.6 Separation of Verification Aspects

The contract language of JML is rich and the specifications may cover several
behavioral aspects at the same time. We now describe how a single contract touching
on more than one specification aspect is broken down into different single-aspect
contracts.

Separation Of Functional And Dependency Contracts

A contract at this point may still have both functional clauses (that appear in List-
ing 8.1) and dependency clauses (that appear in Listing 8.2).

These are separated into the two categories: The functional clauses (signals,
diverges, ensures and assignable) constitute the functional contract whereas
the accessible clause makes up the dependency contract. The requires and
measured_by clauses are shared by both.

If one of the functional or the dependency contract is trivially fulfilled (for in-
stance if accessible \everything is specified), that trivial contract is dropped
immediately.

Splitting Possibly Diverging Contracts

JavaDL can only handle either partial or total contracts and does not have a concept
of contracts for conditional termination. Therefore, any contract with conditional
termination is transformed into two unconditional contracts such that a contract that
contains diverges d; becomes the two cases

requires d; requires !d;
diverges true; diverges false;

unless it is a constant (true or false) already. We will assume this shape of contract
from now on.
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8.2.1.7 Example

We illustrate with a small example the result of normalization. Listing 8.3 shows
a method specified with a single method contract that contains both functional
elements (like the signals or the ensures clauses) and dependency elements (the
accessible clause).

class Example {
/*@ public behavior
@ requires to >= from;
@ signals_only IndexOutOfBoundsException;
@ signals (IndexOutOfBoundsException e) from < 0 || to >= a.length;
@ ensures a[\result] >= a[from];
@ accessible a[*];
@*/

/*@ pure */
public int maxIntArray(int[] a, int from, int to) {

// ...
}

}

Listing 8.3 Example of a JML method contract prior to desugaring

Listing 8.4 shows the same method with the two contracts that are the result of
the normalization process described above. Semantically, the two specifications are
equivalent. It is easy to see that the original specification is much conciser. However,
the normalized contracts have no implicit clauses and are easier to handle in logic.

8.2.2 Constructor Contracts

JML contracts can also be annotated to Java class constructors. The normalization
process is almost the same as the one described above. But a few differences do exist:

• As the object has only been created just prior to the constructor call, as-
suming the instance invariant to hold already, is not sensible. Therefore,
\invariant_for(this) is not an implicit precondition for constructors. It
is, however, implicitly added to the (normal and exceptional) postconditions for
constructors, because a constructor is obliged to establish initially the invariant
of the created object. The static class invariant \static_invariant_for(C)
is added to any nonhelper constructor of class C.

• In contrast to original JML, constructor contracts in KeY’s variant of JML are
attached to new invocations, i.e., the sequence of both instance allocation, field
initialization, and the actual constructor execution (see Section 3.6.6).
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class Example {
/*@ public behavior
@ requires a!= null
@ && \invariant_for(this) && to >= from;
@ signals (Throwable e)
@ (e instanceof IndexOutOfBoundsException ==>
@ from < 0 || to >= a.length)
@ && (e instanceof Throwable ==> \invariant_for(this))
@ && (e instanceof IndexOutOfBoundsException);
@ ensures a[\result] >= a[from] && \invariant_for(this);
@ diverges false;
@ assignable \nothing;
@ also
@ requires array != null
@ && \invariant_for(this) && to >= from;
@ accessible a[*];
@*/

/*@ helper */
public int maxIntArray(/*@nullable*/int[] a, int from, int to) {

// ...
}

}

Listing 8.4 Example of the JML method contract from Listing 8.3 after desugaring

• As a consequence, the instance to be initialized is fresh, i.e., \fresh(this) is
true in the poststate. Likewise, a (weakly) pure constructor may assign the fields
of this.

8.2.3 Model Methods and Model Fields

JML supports methods which exist for verification purposes only: model methods.
They reside, like all JML annotations, in special comments and may—as specification
artifacts—make use of the language capabilities of JML. The types and expressions
used in model methods need not be constrained to those of Java. Model methods
can be subjected to contracts in exactly the same way as Java methods. When
defining a model method, the modifier model must be used to indicate its nature as
specification-only element (like for model fields).

A model method to compute the sum of the absolute values of a sequence of
integers together with a method contract could thus read:

JML
/*@ public behavior
@ requires seq.length > 0;
@ ensures \result >= 0;
@ assignable \strictly_nothing;
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@ model int sumAbs(\seq seq) {
@ return (\sum int i;
@ 0<=i && i<seq.length; Math.abs((int)seq[i]));
@ }
@*/

JML

Besides model methods, JML also supports the less general, but related, concept
of model fields (motivated and introduced in Section 7.7.1). Conceptually, model
fields can be considered as model methods without arguments. Thus, model fields
are far more related to query methods than to ordinary Java fields since their value is
not stored within the heap state space but is computed from the heap state. However,
on the syntactic level model fields are declared like fields and quite differently than
model methods. The expressive power of model methods is much higher than that of
model fields and will be explained in detail in Section 9.2.2. To reduce the number of
syntax elements in normalized annotations, this section reports on how model fields
can be reduced to nullary model methods, and proceeds then with model methods.

Model fields have their definition fixed by a represents clause. Such clauses are
implicitly private, in the sense that the definition given by them applies only to exact
instances of the class with the clause; a redefinition (or a repetition of the original
definition) is required in subclasses. Represents clauses have an unmodifiable implicit
precondition \invariant_for(this); thus, the definition of a model field must
only be expanded if the object invariant of the receiver object holds.

The general model field definition
/*@ model T modelField;
@ represents modelField = Repr;
@ accessible modelField : Acc
@ \measured_by Var;
@*/

hence is semantically equivalent16 to the definition of the strictly pure model method
/*@ public behavior
@ accessible Acc;
@ measured_by Var;
@ requires \invariant_for(this);
@ assignable \strictly_nothing;
@ model T modelMethod() {
@ return Repr;
@ }
@*/

in which the represents clause Repr has become the value returned by the model
method. All references to modelField must be replaced by a call modelMethod()
to the method without arguments. The clause requires \invariant_for(this);

16 See the box on page 267.
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has been made explicit17 to emphasize the fact that the invariant needs to hold when
evaluating the model method.

If the value of a model field is not defined using a functional predicate represents
but relationally using the more general such_that mechanism, the model field defi-
nition
/*@ model T modelField;
@ represents modelField \such_that Cond;
@*/

becomes as a model method with the semantically equivalent definition
/*@ public behavior
@ requires \invariant_for(this);
@ ensures Cond[this.modelField→\result];
@ assignable \strictly_nothing;
@ model T modelMethod();
@*/

in which Cond[this.modelField→\result] denotes the JML expression Cond
in which every reference to this.modelField has been replaced by the keyword
\result.

A model method may—like an abstract method—be declared without specifying
a method body. While an abstract method, however, must be refined in a concrete
implementation class by a concrete method with a method body definition, a model
method may remain underspecified without implementation. It is then the contract of
the model method that characterizes the semantics of the symbol, see Section 9.2.2.

Subtle Differences Between Model Methods and Model Fields

Above we claimed that the model method replacement for a model field is
semantically equivalent. This is the case when looking at the matter from a
distance. Model methods possess some advanced features which make their
semantics deviate slightly from model fields:

• Model method bodies are inherited, but represents clauses of model fields
are not. As for an ordinary method, a model method definition is inherited by
all subclasses unless they provide a new method definition. Thus, a subclass
not mentioning a redefinition of the model method has the same definition
as the superclass whereas the model field remains undefined for instances
of the subclass.

• Termination conditions are different between model methods and fields. For
recursive model fields, a variant must be specified using a \measured_by
statement. Mutually dependent model fields need not provide evidence for
termination and formulating inconsistent definitions is thus possible. Model

17 It would also be assumed implicitly unless modelMethod were declared helper.
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methods have a stricter termination model in the sense that there must never
occur infinite recursion when evaluating them.

8.2.4 JavaDL Contracts

With normalized JML contracts at hand, it is time to bring the specification language
artifacts into the logical context of JavaDL. In the following, we will see how JML
contracts are translated into contracts on the level of JavaDL in such a fashion that
most of the clauses in a normalized JML contract have a direct counterpart on the
JavaDL side. Some of the clauses are contracted on the logical side, when they
express aspects of common concern. As with normalized JML contracts, there are
separate JavaDL contracts for the functionality of a method (describing the behavioral
effects of a method) and contracts for the dependency of a query method (describing
which part of the heap a computation may depend upon).

For the reader’s convenience we repeat Definition 3.22 of functional method
contracts here:

Definition 8.2 (Functional method contract). A functional JavaDL method con-
tract for a method or constructor R m(T1 p1, ..., Tn pn) declared in class C is a
quadruple

(pre,post,mod, term)

that consists of

• a precondition pre ∈ DLFml,
• a postcondition post ∈ DLFml,
• a modifier set mod ∈ TrmLocSet ∪{STRICTLYNOTHING},
• and a termination witness term ∈ TrmAny∪{PARTIAL}.

All contract components may refer to the special program variables self (unless m is
static), heap and to the program variables pi (1≤ i≤ n) representing the method pa-
rameters. The postcondition may additionally refer to the program variables heappre,
exc and res (if the result type R of m is not void).

The postcondition can access more program variables, because it talks about two
program states (before and after the execution) while the other components of the
contract are all evaluated in a single program state—the state before the execution.

The modifier set mod deviates a little from the other components since it may
be either a term (describing the set of locations that may be changed) or the string
STRICTLYNOTHING which does not stand for a term but is an indicator subject to
special treatment when proving and applying the contract. The set mod denotes the
set of existing memory locations that m may modify; hence, the empty location
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set corresponds to assignable \nothing. A method with assignable STRICTLY-
NOTHING must not change any location, not even a freshly created one; this fact can
therefore not be expressed as a location set and requires the special indicator.

More on termination proofs for recursive methods can be found in Section 9.1.4,
specifically in the rule in Definition 9.14.

Ghostbusters

When we speak of a contract for a method then, more precisely, we mean the
complete program code consisting of the proper Java code and all JML annota-
tions. That is not necessarily the same as the original Java code. Ideally, program
code and its specification are strictly separated: only the proper program is
executable, while its specification states a property on these executions. Unfor-
tunately, that is not the case with specification and annotation languages like
JML. In addition to contracts and invariants, JML has annotations that are placed
as additional specification-only statements inside the code. These are assign-
ments to ghost variables (i.e., set statements) or assertions (see Sections 7.7.2
and 7.9.3, respectively).

If contracts refer to the annotated code, then how can they make statements
about the original program? The principal idea is that a program augmentation
with JML statements must be a conservative extension w.r.t. program semantics,
i.e., JML statements must not have effects on the part of the state space accessible
by the Java program. Otherwise, the program executions which are considered
during verification would be different from the ones actually run by a Java
virtual machine, and the proofs worthless. The JML language rules forbid set
statements to assign to regular Java locations. However, set statements (and
even assertions) may still alter the control flow by raising exceptions. The
absence of such exceptions—typically runtime exceptions—needs to be proven
separately, see [Filliâtre et al., 2014].18

A dependency contract has fewer items:

Definition 8.3 (Dependency contract). A JavaDL method dependency contract
(pre,var,dep) for a method consists of

• a precondition pre ∈ DLFml,
• a termination witness term ∈ TrmAny,
• and a dependency set dep ∈ TrmLocSet.

All components may refer to the program variables self (unless m is static), heap
and to the program variables pi representing the method parameters.

18 In KeY, not all checks have been implemented yet that are required to ensure JML statements are
conservative extension.
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The preprocessing of contracts within JML laid out in Section 8.2.1 was designed
to provide a quite direct translation into JavaDL contracts: Every normalized func-
tional JML contract that adheres to the template in Listing 8.1 becomes a functional
contract according to Definition 8.2, while every JML dependency contract adher-
ing to Listing 8.2 becomes a dependency contract according to Definition 8.3. The
elements of the contracts are extracted from their JML counterparts as follows:

• The precondition pre and the dependency set dep of a JavaDL contract are the
direct translation of their JML counterpart: pre := bPrec, dep := bAccc.

• The JavaDL postcondition combines the postcondition for normal termination
Post and the exceptional termination postcondition Signals into one formula:
post := (exc .= null→ bPostc)∧ (exc 6 .= null→ bSignalsc)

• A special case exists for the modifier set. For most assignable clauses the mo-
difier set mod is the JavaDL correspondent to the location set Ass specified as
assignable clause. If the special symbol STRICTLYNOTHING has been used as
assignable clause, however, the modifier set keeps this special symbol:

mod :=

{
STRICTLYNOTHING if Ass = STRICTLYNOTHING

bAssc otherwise
In Definition 8.4 and in equation (8.4) we will see that this case is treated
specially in the construction of a proof obligation.

• The normalized JML contract allows only true or false as divergence clauses.
The termination indicator term can be directly taken from the JML specification:

term :=

{
PARTIAL if Diverges = true
bVarc if Diverges = false

The Use of Contracts

In this chapter, a correctness proof for a method contract stands on its own.
Whenever a contract has been proved sound, it has been ensured that the formal
requirement laid out in the specification is fully met by the implementation. The
use of method contracts as abstraction of method invocation has already been
briefly covered in Section 3.7.1, but it is only in the next chapter on modular
specification verification that we will learn how method contracts can be used to
reason about Java programs in a modular fashion. There, the contracts give rise
to new calculus rules applicable to method calls in programs. Those rules are
only sound if the corresponding proof obligations have been discharged. They go
hand in glove like lemmas in mathematical proof tradition: the claim of a lemma
corresponds to the specification, its proof corresponds to the proofs conducted in
this chapter, and using it within another proof corresponds to applying calculus
rules that will be introduced in the next chapter.
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8.2.5 Loop Specifications

Methods and model fields are not the only syntactical constructs that can be anno-
tated with a specification. Loops can also be furnished with a formal specification.
Definition 3.23 introduced loop specifications as a triple (inv,mod, term) of loop
invariant, modifier set and termination witness. Section 7.9.2 has already outlined
the syntax for loop specifications in JML:
/*@ maintaining maint;
@ decreasing decr;
@ assignable ass;
@*/

JML allows the annotation of several loop invariants in one loop specification. If
more than one loop invariant clause is given, the clauses are combined into one using
&&. Table 8.3 lists the clauses allowed in loop specifications and their default values
in case they are omitted. JML has synonyms for the loop specification keywords
which are also listed in the table.

Table 8.3 Clauses in JML loop specifications

JML keyword synonyms default value

maintaining maintains, true
loop_invariant

decreasing decreases PARTIAL

assignable \everything

The translation from a JML loop specification as above into a JavaDL loop
specification (inv,mod, term) is straightforward and works as follows:

inv = bmaintc
mod = bassc
term = bdecrc

The translation of JML expressions in loop invariants that make use of the \old
operator requires a little attention: The old state refers to the state in which the
enclosing method has been invoked; it does not refer to the state directly prior to
loop entry, and it does not refer to the state after the last iteration.

The translation of heap expressions in \old refers to the heap variable heappre

which has then been set to the according heap at method entry, a method parameter
p is mapped to special purpose program variable ppre in which p’s value at method
entry is stored. Local variables are not affected by \old.
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8.3 Proof Obligations for JavaDL Contracts

JML and JavaDL method contracts capture requirements on the behavior of Java
methods in a formal manner. For the verification of method implementations, for-
mulas will be introduced in the following that encode their correctness into JavaDL.
Their validity is equivalent19 to the correctness of the method implementation with re-
spect to the contract of the method. On the other hand, if the formula can be falsified,
the counterexample is a proof that the contract is not correct. Proof obligations thus
define a semantics for JavaDL contracts: A method implementation fulfills its formal
contract if and only if the corresponding JavaDL proof obligation is universally valid.

While proof obligations for methods can already be used to prove programs
correct, the specification and verification of individual methods of a Java program is
part of a greater task: the modularization of verification process. In Section 9.4.3 we
will encounter inference rules that replace method invocations by instances of their
JavaDL method contracts. These rules tie in with the proof obligations presented
here in the sense that the correctness of the latter imply the soundness of the former
rules presented in Chapter 9.

By the way: A method contract relevant for a method needs not be annotated
with the method implementation under verification: Recall that JML features in-
heritance of contracts in order to implement the concept of behavioral subtyping
(see Section 7.4.5). Therefore, if a method implementation overrides an implementa-
tion from a superclass or if it implements a signature declared in an interface, the
implementation inherits all (nonprivate) specifications from the supertype.

8.3.1 Proof Obligations for Functional Correctness

Below we define a JavaDL formula whose validity is equivalent to the correctness
of a function method contract. Unlike in other verification frameworks (e.g., earlier
versions of KeY [Beckert et al., 2007]), we do not encode the verification condition
into various assertions to be proved, but construct one single formula per contract.
The general idea of this proof obligation is to show that the precondition implies
that the postcondition holds after the execution of the method. But the postcondition
is not the only guarantee that we are interested in: the assignable clause specified
in JML (respectively the mod set in the JavaDL functional contract) states the
locations that may be modified by the method; and this also needs to be checked. If
Contract = (pre,post,mod, term) with term 6= PARTIAL is a functional contract for
total correctness of method m according to Definition 8.2, both proof objectives can
be expressed together as the formula

pre→ 〈res = self.m(p1,...,pn);〉post ∧ frame (8.1)

19 As a matter of fact, these formulas actually define the notion of correctness in KeY.
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in JavaDL. The formula frame capturing the framing condition will be defined in (8.4)
and (8.5) below. In Section 9.5, a concrete example for a functional contract proof
obligation is examined more closely.

Free Preconditions

Since Java is a real-world programming language whose rich feature set has to be
modeled logically in JavaDL, the above proof obligation is too simple. A number
of adaptations need to be made to the proof obligation (8.1) to accommodate the
idiosyncrasies of the Java language and its encoding in JavaDL. One point is that (8.1)
is too strong since the initial state is only constrained by the precondition. The state
space that JavaDL spans for all possibly definable interpretations of the logical
symbols contains a lot more states than are reachable by the execution of Java
programs. This includes the range of values that are admissible for programs. A
typical example is that the this pointer (i.e., the program variable self) must not
hold the null reference. From the logic’s perspective, nothing speaks against this
particular value; it must be ruled out explicitly: Additional assumptions must be
made that constrain the states to those that can actually be reached by a Java program,
thus weakening the proof obligation, e.g., by assuming self 6= null.

This weakening improves precision of the proof obligation, yet it does not com-
promise its correctness since we are only interested in proving the contract correct
w.r.t. all states reachable by a Java program. This additional assumption is called the
free precondition:

freePre := wellFormed(heap)
∧self 6 .= null

∧self.created .= TRUE

∧ exactInstanceC(self)
∧paramsInRange

(8.2)

The free precondition contains the assumption that the heap is well-formed (e.g.,
there are no dangling references, see Figure 2.7 in Section 2.4.3 on page 42), that the
receiver object is of exact type C, and that the values of all parameters are within the
bounds defined by their type:

paramsInRange :=
n∧

i=1



pi
.= null∨ pi.created .= TRUE

if the parameter is of reference type
inInt(pi) if the parameter is declared int pi

inByte(pi) if the parameter is declared byte pi
... likewise for short, long, char

true otherwise

(8.3)
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The predicates inInt, etc., are true if the argument is within the bounds of that type
(int for inInt). See Section 5.4.3 for the semantics of the predicates in the various
integer semantics available in KeY.

Also method m(p1,...,pn) in (8.1) is subject to a change: The method call
needs to be wrapped in a try-catch statement to capture an exception that might
be thrown during the execution of m in the dedicated program variable exc—thus
making thrown exceptions accessible to the postcondition. In the method call, it
is also made specific which implementation of the method is to be used (dynamic
binding is switched off) by using the method body statement (see Section 3.6.5)
instead of the method call. Finally, an update is added to provide access to values
from before the method execution.

Definition 8.4 (Proof obligation for functional contracts). Consider a functional
method contract Contract = (pre,post,mod, term) for the method m(p1, ..., pn) de-
clared in class or interface C. The implementation of m in a class C′ vC is called
correct with respect to Contract if the following JavaDL formula, called the contract
proof obligation for Contract,

pre∧ freePre→{heappre := heap‖exc := null‖mby := term}s
try { res=self.m(p1,...,pn)@C’; }
catch(Throwable e) { exc = e; }

{
(post ∧ frame)

is valid. The modality J·K is instantiated by [·] if term = PARTIAL and by 〈·〉 otherwise.
The assignment to res is omitted if m is declared void. The update mby := term is
left out if term = PARTIAL.

This definition makes use of a formula frame (called the framing condition)
encoding the proof obligation that the method does not change locations outside the
modifier set mod. If mod = STRICTLYNOTHING, then the framing condition is

frame := ∀o∀ f ; o. f .= o. f @heappre (8.4)

requiring that every location on the heap that is reached after the method invocation
holds the same value as before that invocation. If mod differs from STRICTLYNOTH-
ING, the condition is more sophisticated and reads as follows:

frame := ∀o∀ f ; o.created@heappre .= FALSE

∨o. f .= o. f @heappre

∨ (o, f ) ∈ {heap := heappre}mod
(8.5)

This condition states that any heap location (o, f ) either

• belongs to an object o which has not (yet) been created before the method
invocation, or

• holds the same value after the invocation as before the invocation, or
• belongs to the modifier set described by mod (evaluated in the prestate).
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The framing problem will be topic of a larger discussion in Section 9.3.
The modality in the contract proof obligation is prefixed with an update which

prepares a few program variables:

heappre := heap the heap state before the method execution is stored in the pro-
gram variable heappre to have it available for evaluation of the postcondition.

exc := null There is no exception observed initially. Unless an exception is
raised, this variable will remain null.

mby := term The value of the termination witness at the beginning of the method is
stored in mby. In Definition 9.18 in Section 9.4.3, we will see that when invoking
a method n, its variant expression termn must be proved smaller20 than mby to
guarantee that there is no infinite recursion.

‘Assignable’ Semantics Versus ‘Modifies’ Semantics

There is a subtle difference in the understanding of assignable clauses between
what JML defines and how KeY implements it in form of the proof obligation
from Definition 8.4. In standard JML, a heap location may only ever be assigned
to if it is contained in the assignable clause. That means that it must not occur
on the left hand side of any Java assignment operator unless included in the
assignable set (hence the name ‘assignable’).

KeY’s dialect of JML, however, sees this a little more liberal: The assignable
clause specifies the set of locations that may have a modified content after
the method has finished. This semantics considers a location unchanged if it
has the original value at the end of the method call. It may change its value
throughout the course of the method as long it regains the old value at the end of
the method. We called this set the ‘modifies’ set for that reason. It is evident that
the assignable semantics is stricter than the modifies semantics. Every program
that is correct with respect to former is correct with respect to the latter.

The opposite direction does not hold. Listing 8.5 shows a small example
of a program that is correct w.r.t. modifies semantics, but not w.r.t. to the as-
signable semantics: The method must not ‘change’ any existing location on the
heap (assignable \nothing;). The value of this.f is temporarily changed
in line 9 but restored directly afterwards to the original value such that at the
end of the method, the original value is in this.f again (at least in sequential,
single-threaded programs). For sequential programs, in which only the initial and
terminal state are relevant, nothing speaks against the more liberal understanding
since intermediate violations cannot be observed. The ‘modifies’ semantics ad-
mits more programs in which locations may have their values changed during the
run. The choice of semantics does make a difference, however, for multithreaded

20 w.r.t. a well-founded ordering
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programs where threads may rely upon the fact that a parallelly executed thread
keeps the heap state untainted.

1 class Assignable {
2 int f;
3

4 /*@ normal_behavior
5 @ assignable \nothing;
6 @*/
7 void pureMethod() {
8 int old = this.f;
9 this.f = 0;

10 this.f = old;
11 }
12 }

Listing 8.5 The two semantics of assignable clauses

The general proof obligation as it has been introduced in Definition 8.4 applies to
normal Java methods. The general idea for the proof obligation applies as well to
special types of methods and to model methods. However, there are cases that differ
from the above pattern and we will in the following list the proof obligations for
constructors, abstract classes and model methods.

8.3.1.1 Constructors

The proof obligations for constructor contracts are a little different from the proof
obligations presented in Definition 8.4 for ordinary Java methods. It is the Java block
within the modality which has to be modified; for a constructor A(T1 p1, . . . ,Tn pn)
for a class A it reads:
try {
A self = A.<createObject>();
self.<init>(p1, ..., p_n);
self.<initialized> = true;

} catch(Throwable e) { exc = e; }
The Java code fragment makes use of the synthetic methods <createObject> and
<init> and the synthetic Boolean field <initialized> which are not part of the
Java language but additions introduced in the context of symbolic execution and
object creation in KeY. See Section 3.6.6.3 for an introduction to these synthetic
symbols and on how they are used during symbolic execution of object creation.

Note that the contract for a constructor does not only span over the initializing
code in the constructor’s body but also includes the creation of the object. This has
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as an implication that the this reference (which points to a created object after the
constructor) is a not-yet-created object in the prestate: \fresh(this) is a valid
postcondition for any constructor.

8.3.1.2 Methods in Abstract Classes

If the class C is declared abstract, there cannot be objects that are exactly of that
type. The predicate exactInstanceC(self) can thus never hold, the free precondition
is always false, and the condition in Definition 8.4 is trivially valid. This seems
against the semantics of method contracts, but since proof obligations exist also for
inherited methods, it is ensured that every running implementation is verified against
their contracts.

The KeY system treats abstract classes specially in that it suppresses the creation
of the corresponding trivial proof obligations altogether to allow the user to focus on
the relevant proof obligations.

8.3.1.3 Model Methods

For a strictly pure model method with a single side-effect-free return statement, the
Java modality can be replaced by an update. Let the body of a model method be
return Expr for some JML expression Expr.

The proof obligation for a such model method is thus

pre∧ freePre→{exc := null‖mby := term}{res := bExprc}post .

in which a simple update takes the place of the Java modality.
Since Expr is side-effect-free, exceptions need not be considered here. An advan-

tage of this formulation of the model method proof obligation is that JML-expressions
(going beyond the Java language) can be used in the return statement as they need
not go through symbolic execution.

For model methods which are not strictly pure or which have a nontrivial method
body, a modality like in Definition 8.4 must be used. If the body additionally makes
use of JML-only expressions or statements, a more liberal modality operator which
allows for JML constructs in Java programs is needed. Currently, this is not supported
in the KeY system.

8.3.1.4 Static Methods

Static methods differ from instance methods essentially in one respect: They do not
have a “this” reference pointing to receiver object. For a static method the proof
obligation of Definition 8.4 therefore needs to be adapted by
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1. dropping the conjuncts in the free precondition freePre which refer to the pro-
gram variable self and by

2. changing the method body statement such that it refers to the class rather
than to the receiver object self. (The assignment in the modality then reads
res = C.m(p1, . . . ,pn)@C.)

8.3.2 Dependency Proof Obligations

We are not solely interested in verifying that the result of a method invocation adheres
to a given postcondition, but we are also interested in formalizing, specifying and
verifying that the result of a method depends at most on a given set of locations on
the heap.

This question is closely related to the noninterference problem examined in the
light of information flow properties in Chapter 13, and dependency checking can be
regarded as a special case of noninterference checking.

In Section 8.3.1, we discussed that for assignable clauses we do not check that ev-
ery write operation affects a location in the set of modifiable locations, but rather look
at the locations’ contents in the end. A similar situation arises now for checking read
accesses to heap locations. One approach would be to check (by adding assertions
during symbolic execution) that every read access is to an admissible location.

Like for checking assignable clauses, we take a more liberal approach that requires
checking an assertion only after the execution of the method has finished: We assert
that the result of the method is semantically independent from all locations from
which it must not read. This is more liberal than read access checking in that it
allows a location to be read as long as the value does not have any influence on the
method’s result. In the expression o.f*0, for instance, it not necessary that o.f is in
the dependency set since the result of the operation is constant and does not depend
on the location’s value though that occurs syntactically in the evaluation.

Now, the task is to come up with a JavaDL proof obligation for this independence.
One technique to formalize that the result of a method m depends at most on a set
of inputs specified in dep is to prove the following: Invoking the method in two
memory states that agree on memory locations in dep (but may disagree on all other
locations) must yield the same result. This formalization of noninterference is called
self-composition (see [Darvas et al., 2003, 2005]), and a variation of it is also used
for noninterference proofs with KeY, see Section 13.5.1 for details.

Definition 8.5 (Proof obligation for dependency contracts). Consider a method
dependency contract Contract = (pre, term,dep) for the method T m(p1, ...,pn) de-
clared in class C with T 6= void. The implementation is called correct with respect
to Contract if the following JavaDL formula, called the dependency contract proof
obligation,
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pre∧ freePre∧wellFormed(h)∧mby .= term

∧heap2
.= anon(heap,setMinus(allLocs,dep),h)

∧ [res = self.m(p1, . . ., pn)@C;]res
.= r1

∧{heap := heap2}[res = self.m(p1, . . ., pn)@C;]res
.= r2

→ r1
.= r2

is valid. In this formula additional constants h,heap2 : Heap and r1,r2 : bTc are
used.

The rule is implemented slightly differently (yet equivalently) in the KeY system
where the proof obligation coincides with the one for dependency contracts for
general observer symbols as introduced in Definition 9.12 in Section 9.3.3.

Our interpretation of accessible clauses requires only that the result value of a
method must depend at most on the locations in dep while any heap location may
be modified without restriction. This deviates from the semantics defined for JML
where every effect (on result or heap state) may depend at most on the part of the
heap specified in a accessible clause.

In the course of Chapter 9 we will see that dependency contracts play an important
role for modular reasoning within the KeY approach. Their primary use case is to
specify in which cases pure methods used within specifications return the same
result. For this purpose it is natural to only analyze dependency of the method return
value disregarding all effects on heap locations. The reader who is interested in more
accurate and general specification and more powerful verification of information
flow properties using KeY is referred to Chapter 13.

8.3.3 Well-Definedness Proof Obligations

Some operators of the expression language have a canonical semantics only for a
subset of possible inputs, and the meaning of expressions in which such operators
are applied outside this set—called the operator’s domain—is yet to be defined. As
an example, consider the following method specification

Java + JML
/*@ public normal_behavior
@ ensures \result >= 1000 / n;
@*/

int m(int n) { ... }

Java + JML

which postulates that 1000/n is a lower bound for the result value. If somewhere
in the program the method is invoked via m(0), the problem of the specification
becomes apparent: To evaluate the postcondition, the expression 1000/0 would also
have to be evaluated—but what is the result of this operation?



280 8 From Specification to Proof Obligations

Since the expression language of JML is an extension of the side effect-free
expressions in Java, it is desirable that the semantics of Java expressions should be
retained if they are used in JML context. This is problematic since evaluating 1/0
in Java does not give a value but raises a DivisionByZeroException. Exception
handling is a concept for managing program control flow and not for expression
evaluation: If an exception is raised during expression evaluation, control flow is
transferred abruptly and the according expression does not give any value.

In JavaDL, all functions and predicates are total such that every expression always
yields a value in its co-domain. The expression 1/0 evaluates to an integer value—
however, we cannot assume anything about this value, except that it is an integer. This
approach is called underspecification; see Section 2.3.2 and [Schmitt, 2011, Sect. 2]
for more details. It has the advantages of being easily definable and that axioms
of classical logic are still valid. If a function symbol is applied to argument values
which are not in its domain, then the function symbol is left uninterpreted for these
input values. For a formula to be valid, it is required to be satisfied for all possible
results in the undefined places; i.e., it must be valid in all structures which lift the
places of partiality with an arbitrary value. For example, two interpretations that
map 1/0 to 0 and 1/0 to 42, respectively, both need to be taken into consideration
when proving the validity of a formula. The property ∃int x; x .= 1/0 is valid since
JavaDL’s division is a total function and in any model there is one integer (albeit
unknown) value which is equal to 1/0 . The equality 1/0 .= 1/0 is also valid due to
the reflexivity of .=. However, neither of the statements 1/0 > 0 nor ¬(1/0 > 0) is
valid since 1/0 is positive in some interpretations and is nonpositive in the others.
Likewise, the equality 1/0 .= 2/0 is neither valid nor unsatisfiable; it also depends
on the semantics of the underspecified parts of integer division.

There are several concepts to model undefinedness logically. Besides underspecifi-
cation, the issue of undefined function applications can be modeled using a dedicated
error element, three-valued logics, dependent types, or partial functions to name a
few concepts. For an extensive comparison refer to [Hähnle, 2005].

In the following, proof obligations will be introduced that show that an expression
does not depend on the semantics of undefined function applications. Hence, the
concept by which function applications outside domains are modeled becomes
irrelevant since the valuation of expressions is guaranteed not to be influenced by
external valuations.

The analysis presented in the following is targeted at JML specifications. This
raises the question: What are the admissible argument values for the JML operators?
According to the JML reference manual [Leavens et al., 2013], a Boolean expression
is satisfied in a state if it has the truth value true and “does not cause an exception
to be raised.” Raising an exception is thus the Java/JML indication for applying a
function outside its domain. We capture this in the following definition which cannot
be entirely formal since we have not formally defined the concepts of memory state
(being program execution contexts with local variables, heap, method call stack, . . . ).

Definition 8.6 (Well-definedness). Given a JML expression e and a memory state
s, the expression e is called well-behaving in s if the from-left-to-right short-circuit
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evaluation of e in s does not raise an exception. The expression e is called well-defined
if it is well-behaving in all memory states.

A JML method contract is called well-defined if

1. its precondition is well-defined, and
2. all clauses evaluated in the prestate are well-behaving in all states that satisfy the

precondition, and
3. all clauses evaluated in the poststate (i.e., signals and ensures clauses) are

well-behaving in all states which are reachable by executing the method in a
state satisfying the precondition.

The intuition behind this exception-based definition becomes more natural when
considering another use case of JML specifications (besides deductive verification):
During runtime assertion checking, a specification is to be refused and to be consid-
ered ill-defined if its evaluation causes an exception.

When checking JML contracts, it is always the precondition which is checked
before anything else. Hence, all other specification elements are only ever evaluated
if the precondition holds (and is well-behaving). Hence for the well-definedness
of contracts, the fact that the precondition holds21 can be safely assumed when
investigating the well-definedness of other specification elements. We say that the
precondition guards the other specification elements. The idea of a conservative
formulation of specifications in which the precondition guards the postcondition has
been brought forward by Leavens and Wing [1998].

Example 8.7. The method contract for method m introduced at the beginning of the
section is not well-defined since there is a memory state (namely, if n = 0) in which
the postcondition is not well-behaving.

The situation can be remedied by adding the precondition requires n != 0;
to the contract. Under assumption of this precondition, the division 1000/x does not
raise an exception; the postcondition is well-defined.

It is not only the precondition that guards other parts of a specification. Since
expressions are evaluated from left to right in Java (and, hence, also in JML), it is
possible to guard subexpressions which occur ‘further to the right’ from within the
same specification element. As soon as the result of certain Boolean operations is
inevitable in the evaluation of a Java expression, the remainder of the expression is
no longer considered for evaluation. This is called short-circuit or lazy evaluation.
When the JVM computes the value of A && B for the short-circuited conjunction &&,
it first evaluates A and if that is false, the conjunction is falsified and B needs not be
evaluated for the result. In the logic we can formulate this as

val(bA && Bc) =

{
ff if val(bAc) = ff
val(bBc) if val(bAc) = tt

21 nota bene: we assume that the precondition holds, not that it is well-behaving or well-defined.
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The value val(bBc) is only referred to if A evaluates to true. Hence, It suffices when
B is well-behaving in states where A is satisfied. In classical (two-valued) logics, this
definition is not different from the usual definition of conjunction. It is different if
one allows val to fail, for instance, by giving a special error truth value different from
tt and ff .

Example 8.8. The class invariants of the following class are well-defined since all
possibly not well-behaving operations are guarded.

Java + JML
1 class GuardExample {
2 int[] values;
3 int length;
4 /*@ nullable @*/ GuardExample next;
5

6 //@ invariant next != null ==> length == next.length+1;
7 //@ invariant (\forall int i;
8 //@ 0<=i && i < values.length; values[i] > 0);
9 }

Java + JML

The first invariant in line 6 aligns the values of the length fields of nodes in a singly
linked list. In the expression next.length, the operand next may be null and the
field access locally ill-behaving. But when evaluating the entire invariant, it cannot
raise an exception since the implication operator ==> has short-circuit semantics.
If this.next is different from the null reference, the equality can be evaluated
without raising an exception; and if this.next is null, then the left hand side of the
implication evaluates to false and the expression is already true without evaluation of
the equality.

The second invariant in line 7 is also well-defined since for every possible
value for i, the range check 0<=i && i<values.length guards the array access
values[i] which can thus not cause an ArrayIndexOutOfBoundsException.

8.3.3.1 Well-Definedness of JML Expressions

In order to be able to describe the proof obligations which come up for JML expres-
sions, we introduce a new transformation function ω which takes a JML expression
and produces a JavaDL formula from it.

Definition 8.9. The well-definedness term transformation operator ω : JExp →
DLFml assigns to every JML expression a JavaDL formula. It is defined in Ap-
pendix A.3. For its evaluation, it makes use of the translation function b·c from
Definition 8.1.

The intention behind ω is that whenever ω(e) is true then e is well-behaving. This
logical notion of a well-definedness condition refines the informal Definition 8.6 and
leads to
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Proposition 8.10. Let s be a memory state and bsc the corresponding JavaDL struc-
ture. and e ∈ JExp. If bsc |= ω(e), then e is well-behaving in s. If ω(e) is universally
valid, then e is well-defined.

A formal proof is omitted mainly since it would require the formalization of
left-to-right short-circuit evaluation for the entire JML language, which we do not
want to provide here.

Instead, we focus on central items of ω’s definition, the full definition can be
found in Appendix A.3. For many JML function and operator applications, well-
definedness of the application reduces to well-definedness of all arguments. Only if
the function’s domain is restricted, additional requirements are to be met. For the
arithmetic expressions we have, for instance,

ω(A + B) = ω(A)∧ω(B) (accordingly for *, +, -, <, ==, . . . )
but ω(A / B) = ω(A)∧ω(B)∧bBc 6 .= 0 (accordingly for %) .

Note that the well-definedness transformation ω refers to the evaluation transforma-
tion b·c. Boolean expressions support short-circuit evaluation as mentioned above:

ω(A && B) = ω(A)∧ (bAc → ω(B))
ω(A ==> B) = ω(A)∧ (bAc → ω(B))

ω(A || B) = ω(A)∧ (¬bAc → ω(B))
but ω(A & B) = ω(A)∧ω(B)

An interesting question for short-circuit evaluation is the extension of the
concept to quantifiers. One can argue that the existentially quantified formula
(\exists int x; 1/(x+1) == 1) is well-defined since there exists a witness
(the value 0) that makes the statement true such that all other evaluations are irrele-
vant and can be omitted due to short-circuit evaluation. That would require, however,
that in a left-to-right evaluation the matrix of the quantifier is evaluated at 0 before
it is evaluated at −1 (which would raise an exception). To do so, a (well-)ordering
of the values of the quantified domain must be fixed such that in the sequence of
valuations those coming later are guarded by those ordered before. In the case of
integers, a natural order might be suggested, but for other domains (like Object), no
canonical, intuitive order comes to mind. For that reason, we opt for a conservative
approach for the well-definedness of quantifiers: The valuation of one instantiation
cannot guard another instantiation, and we have

ω((\Q T v; A; B)) = ∀bTc v;
(
ω(A)∧ (bAc → ω(B))

)
for a generalized quantifier Q ∈ {forall,exists,sum,infinte_union,product,
min,max}, where a missing guard A defaults to true as usual.

Another important issue of well-definedness is null dereferencing. The operator
o.f for a field access is only well-behaving if the receiver object is different form the
null reference. The same applies to array accesses, where the index must additionally
lie within the array bounds such that we have
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ω(A.f) = ω(A)∧bAc 6 .= null for a field access
and ω(A[B]) = ω(A)∧ω(B)∧bAc 6 .= null∧0≤ bBc∧bBc< length(bAc)

for an array access.
For references to method invocations within specifications, the design-by-contract

principle persists: A method invocation must satisfy the precondition of the contract.
Let Prem be the functional precondition22 of method m (compare Listing 8.1). The
precondition refers to the formal receiver this and parameters p1, . . . ,pn which have
to be replaced by the concrete receiver o and the arguments ai:

ω(o.m(a1, . . . ,an)) = ω(o)∧boc 6 .= null∧
n∧

i=1

ω(ai)∧⌊
Prem[p1/a1, . . . ,pn/an,this/o]

⌋

8.3.3.2 Well-Definedness of Method Contracts

Using the well-definedness term transformation ω , we can now also define a con-
dition for the well-definedness of method contracts. According to Definition 8.6,
well-definedness of contract clauses other than the precondition is only required
conditionally under assumption of the precondition being satisfied (the precondition
guards the other clauses).

Definition 8.11 (Method contract well-definedness). Let the normalized method
contract according to Listing 8.1 for method m be given. The well-definedness proof
obligation for the contract for m is

ω(m) = ω(Pre)∧
(bPrec → ω(Var)∧ω(Ass)∧

{heap := anon(heap,bAssc,heap′)‖heappre := heap}
(ω(Post)∧ (bec 6 .= null→ ω(ExPost))))

and the well-definedness proof obligation for the dependency contract in Listing 8.2
reads

ω(m) = ω(Pre)∧ (bPrec → ω(Var)∧ω(Acc)) .

While the precondition Pre, the variant Var, the accessible clause Acc, and the
assignable clause Ass are all evaluated in the prestate of the method invocation, the
postcondition Post and the exceptional postcondition ExPost are evaluated in the
poststate. Since the specification should be consistent in itself without reference
to the implementation, the poststate should not be considered as the state after the

22 If m has more than one contract, it suffices to satisfy one of the preconditions. Then Prem refers
to the disjunction of the preconditions of all functional method contracts which guarantee absence
of exceptions (e.g., by being annotated normal_behavior).



8.3. Proof Obligations for JavaDL Contracts 285

execution of the implementation. Instead a most general poststate is assumed in
which all assignable locations on the heap are assigned an unknown value using the
anonymizing function anon (see Figure 2.11 in Section 2.4.5).

For well-definedness, the order of clauses is important. During normalization, if
several clauses of a kind are present, they are combined into one (see Section 8.2.1.5).
Two preconditions are conjoined into one using the short-circuit conjunction &&
such that preconditions mentioned earlier in a contract guard preconditions which
are mentioned afterwards. Nonnullness among other implicit assumptions is made
explicit during normalization (see Section 8.2.1.2). The explicit clauses which result
from this normalization are added before the explicit preconditions such that they
can guard them.

Example 8.12. Consider the following method contract with two preconditions.

Java + JML
//@ requires a.length > 0;
//@ requires a[0] == 0;
void m(/*@non_null*/ int[] a);

Java + JML

A desugaring normalization of this contract results in the following contract with a
single precondition

Java + JML
//@ requires a != null && a.length > 0 && a[0] == 0;
void m(/*@nullable*/ int[] a);

Java + JML

in which a!=null and a.length > 0 together guard the array access a[0] such
that this contract is well-defined.

8.3.3.3 Observations Concerning Well-Definedness

Modularity of Well-Definedness Proof Obligations

A remark on the precision of well-definedness for well-behaving specifications:
It may be that a specification behaves well for all runs of a program, but that
expressions—when inspected in isolation—are not well-defined. If x is a variable
whose value is set to 1 initially, and never changed later, then the expression 1/x
is well-behaving within the context of this program. However, if the context (i.e.,
the concrete program) is removed and the expression is considered in isolation, 1/x
needs to be considered ill-defined. This is the view that KeY takes.

It is a deliberate choice: Specifications should be checked modularly for well-
definedness ignoring the concrete program which they annotate. Well-definedness
should not be a property depending on the behavior of the program. This has the
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benefit that if the program context changes (modification or extension of the program
text), the well-definedness of the specification is not compromised.

Method contracts can always be made well-defined by adding the necessary
assumptions guaranteed by the code explicitly to the specification. Making the
guards explicit also clarifies specifications since it explicitly points out corner cases
which are often the reason behind misunderstood specifications.

On The Evaluation Of Ill-Behaving Contracts

Up to this point, we have defined when a contract is or is not well-defined and found
proof obligations to show its well-definedness. But, what happens if a clause of a
contract is evaluated despite being ill-defined?

JML answers this by saying that any ill-behaving Boolean expression evaluates to
false. This is called strong validity by Chalin and Rioux [2008]. It can be rephrased as
‘an expression in which undefined subexpressions occur syntactically is not satisfied.’
This is a very restrictive definition; occurrences of undefined expressions have an
effect on satisfiability even if they do not matter in the classical logic sense.

Originally, JML propagated underspecification for the semantics of ill-defined
expressions; the JML expression 1/0 == 1/0 would have been evaluated to true,
now it evaluates to false. Chalin [2007] demonstrated through empirical studies that
this semantics for function application outside of definition domain operations did
not match programmers’ expectations. For a software engineer, the expression 1/0
does not have a value but raises an exception which has to be dealt with.

Left-to-Right Versus Bidirectional Evaluation

JML defines the evaluation of expressions from left to right with short-circuiting as
shown above. This is owed to the fact that JML semantics is based on the semantics
of the Java programming language.

However, when discussing the issue of well-definedness of logical formulas, there
is no reason why the formula x 6= 0∧1/x > 0 should be treated any differently from
1/x > 0∧ x 6= 0—the conjunction is commutative after all.

And it is possible to define well-definedness symmetrically such that both con-
juncts guard each other and the order of arguments to connectives does not play a
role for their semantics. If done naively, the bi-directional guarding produces well-
definedness proof obligations which are exponential in the length of the original
formula. However, Darvas et al. [2008] proposed an efficient encoding that produces
well-defined conditions with bidirectional guarding with linear effort.

However, it was not the complexity of the proof-obligation that was the rationale
for the choice of JML semantics, but its heritage from Java semantics. The expression
1/x > 0 && x != 0 may throw an exception in Java even if its truth value does
not depend on the value of 1/x.
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The well-definedness proof mechanism implemented in KeY (see [Kirsten, 2013])
supports both left-to-right and efficient bidirectional short-circuiting semantics.

Well-Definedness Is An Issue Of Pragmatics

Is well-definedness an issue of the syntax or the semantics of the specification
language? There are aspects of well-formedness at the syntactic level: the adherence
of programs and specifications to the languages’ grammars and their well-typedness.
The syntax and type checking for JML and JavaDL can be done efficiently on
a syntactical level. However, well-definedness following Definition 8.6 is not a
syntactic property that can be checked automatically by an efficient static analysis
in all cases; it is not decidable. At the same time, it is wise to separate the concerns
of well-definedness of a specification from its meaning. From a language designer’s
point of view, well-definedness is neither a syntactic nor a semantic problem but
answers to the question whether a statement is sensible (in its context). Linguists
call the field of interpretation of statements beyond that of its bare (model-theoretic)
evaluation the pragmatics of a language. The statement 1/x > 0, for instance, might
invoke in the reader the implicature “x cannot be 0 since it occurs as denominator in
a division.” Doing well-definedness checking ensures that pragmatic issues outside
the semantic truth value evaluation do not arise.

Auxiliary JML statements that may occur within the code (such as the set statement
to assign to ghost variables/fields or loop invariants) have not been considered here,
and neither have been class or loop invariants. For details on their treatment in KeY,
see [Kirsten, 2013]. The implementation in KeY is slightly different from the current
presententation, because it operates on JavaDL, where well-definedness of heap and
field expressions is checked in addition.



Software systems can grow large and complex, and various programming disciplines
have been developed addressing the problem how programmers can cope with such
complex systems. We focus in this book on the paradigm of object-orientation which
seems to be the widely adopted mainstream approach.

In parallel to these development in software engineering, formal verification needs
complementary techniques for dealing with large software systems and increased
complexity. Yet, achieving complete functional verification of a complex piece of
software still poses a grand challenge to current research ([Leino, 1995, Hoare and
Misra, 2005, Leavens et al., 2006a, 2007, Klebanov et al., 2011, Huisman et al.,
2015]). In this chapter we will present which support the KeY system offers in this
direction and review the research background it is based on. In most subsections
we will come back to concepts already presented in earlier chapters, but now with
special emphasis on modularization. We will take extra pain to precisely delineate
these dependencies.

It is common wisdom that the keys to scale up a technique for large applications
are modularization and abstraction. In our case, the deductive verification of object-
oriented software, the central pillar for modularization and abstraction is the Design
by Contract principle as pioneered by Meyer [1992]. Once the contract for a method
has been separately verified we need not at every call to this method inspect its code
again but use its contract instead. In Chapter 7 method contracts have already been
introduced as a central concept of the behavioral specification language JML (Java
Modeling Language). Syntax and semantics of JML method contracts have been
thoroughly explained there. Chapter 8 explained how JML method contracts are
translated into proof obligations in JavaDL whose validity entails the correctness of
the method w.r.t. the contract. In this chapter, we explain what needs to be considered
when using a contract instead of the code of a method on the caller side and present
logical calculus rules implementing this. A separate subsection is devoted to recursive
methods. They are a special case since the contract to be verified is used itself at
every recursive call of the method.

Method contracts can only play out their advantages if they do not themselves
make use of implementation details. To achieve this it is necessary to have means
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available that abstract away from the code. To this end JML offers model fields and
model methods, syntax elements that only occur in specifications and are not part
of the code. These have already been addressed Section 7.7.1. Here we present in
great detail the semantics of these concepts at the level of JavaDL and also show and
discuss calculus rules.

Object invariants have already been addressed in Section 7.4.1. Here we present
technical details, the representation of invariants as implicit model fields and how
they are handled in KeY. In modular specification and verification, knowing which
memory locations a method does not change is almost as important as knowing
the effects of it. How to formalize and utilize this information is known as the
frame problem. There is a long history of verification techniques that deal with the
frame problem. Our approach, see [Weiß, 2011], is inspired by the dynamic frames
technique from [Kassios, 2011] that aims at providing modular reasoning in the
presence of abstractions as they occur in object oriented programs. In Section 7.9 we
encountered already the assignable clause in JML specifications that provides a
set of locations that a method might at most assign to. In Section 8.2 we saw how
the JML assignable clause is translated into the mod part of a JavaDL loop or
method contract. The calculus rules for proving these contracts were already covered
in Section 3.7. In this chapter rules will be presented (1) for a more fine grained
treatment of anonymization in loop verification and (2) for using method contracts.

In a way complementary to the information which locations a method may write
to is the information which locations a method may read from. How this information
is formulated was already explained (1) on the JML level via accessible clauses
in Section 7.9, (2) as a JavaDL dependency contract in Definition 8.3 and, (3) as
a JavaDL proof obligation in Definition 8.5. In this chapter accessible clauses
for model methods are introduced. The previous proof obligation for dependency
contracts has to be revised to cover this extension.

Although we use Java and JML as technological basis in this chapter, we expect all
mentioned concepts to be adaptable to other object-oriented programming languages
and their associated specification languages.

Chapter Overview

We start off this chapter with introducing the basic concepts of modular specification
in Section 9.1. This will explain in general method contracts, behavioral subtyping,
and lead up to our formalization of modular code correctness. A running example that
will be used throughout this chapter will make its first appearance in Section 9.1.2.
The special case of unbounded recursion is discussed in Section 9.1.4.

We present model fields as they appear in standard JML and their role in the KeY
system in Section 9.2.1, as well as the more advanced concept of model methods in
Section 9.2.2. The frame problem is the topic of Section 9.3.

Section 9.4 takes us to the second theme in the title of this chapter—verification.
Building on the calculus for JavaDL from Section 3.5, we introduce additional
rules for modular reasoning. This includes 1. an improved loop invariant rule, that
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retains most of the execution context and that caters for unbounded recursion depth
(Section 9.4.2); 2. a rule for applying functional methods contracts (Section 9.4.3);
3. a rule for dependency contracts, based on the dynamic frame theory (Section 9.4.4);
and 4. rules for inserting class invariants into the proof (Section 9.4.5).

In Section 9.5 we will verify the example from Section 9.1.2 putting to work the
techniques that will have been introduced by then.

In Section 9.6 we give a quick glimpse of related work and the chapter closes with
a summarizing look back on what has been covered in Section 9.7.

9.1 Modular Verification with Contracts

Method contracts are a central pillar of modular program verification. When com-
bined with behavioral subtyping, they provide means for both abstraction and mod-
ularization. In this section, we will, after a review of the general background and
the presentation of the chapter’s running example, discuss the notion of modularity
employed in JavaDL and how it can be used for the verification of recursive methods.

9.1.1 Historical and Conceptual Background

The concept of modules in programming languages can be traced back to early
examples such as Simula 67 [Nygaard and Dahl, 1981] or Modula [Wirth, 1977].
Single modules (i.e., method implementations or classes containing them) may be
added, removed, or changed with only minimal changes to their clients; programs can
be reused or evolved in a reliable way. Modular analysis of a module can be based on
the module itself in isolation—without a concrete representation of its environment.
This allows one to adapt modules to other environments without losing previously
established guarantees.

These ideas were put forth with the development of object-oriented programming:
“The cornerstone of object-oriented technology is reuse.” [Meyer, 1997] In object-
oriented programming (OOP), methods (or procedures) consist of declarations and
implementations. Declarations are visible to clients while implementations are hidden.
One important addition in OOP to the base concept of modularity is that classes
(i.e., modules) are meant to define types—and subclasses define subtypes. And, in
particular, different classes may implement a method in different ways (overriding),
including covariant and contravariant type refinement. A client never knows which
implementation is actually used. Any call to a (nonprivate) method is subject to
dynamic dispatch, i.e., the appropriate implementation is chosen at runtime from the
context. This concept is also known as virtual method invocation.

The concept of a contract between software modules was first proposed by
Lamport [1983] and later popularized by Meyer [1992] under the trademark Design
by Contract. It allows one to abstract from those concrete implementations and to
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approximately predict module behavior statically.1 The metaphor of a legal contract
gives an intuition: A client (method caller) and a provider (method implementer)
agree on a contract that states that, under given resources (preconditions), a product
with certain properties (postconditions) is provided. This is a separation of duties;
the provider can rely on the preconditions, otherwise he or she is free to do anything.
Given the preconditions, he or she is only obliged to ensure the postconditions, no
matter how they are established. On the other hand side, the client is obliged to ensure
the preconditions and can only assume a product to the given specifications. In the
basic setup, a method contract just consists of such a pair of pre- and postcondition.
As it has already been explained in Chapter 7, state of the art specification languages
as JML feature contracts with several clauses (of which all can be seen as specialized,
functional or nonfunctional pre- or postconditions).

Contracts do not only play an important role in software design, but also in verifi-
cation. In verifying a method that calls another method, there are two possibilities
to deal with that case. Either, the implementation can be inserted or a contract can
be used. The former is intriguingly simple; this is what would happen in an actual
execution. But it carries three disadvantages:

1. It transgresses the concept of information hiding.
2. The concrete implementation of the callee must be known. This cannot always

guaranteed in static verification techniques as in many cases the actual type of
objects is not known at verification time. When verifying extensible programs,
the implementation code may not even be available at verification time.

3. In the case of recursive implementations (with an unbounded recursion depth),
inserting the same implementation again would let the proof run in circles.

This leaves contracts as a good choice to deal with method calls in most cases. In
Subsection 16.4 the reader is guided through a tutorial example of using simple
contracts.

Behavioral Subtyping

In a completely modular context, the concrete method implementations generally
are not known. Nevertheless, a client will assume that all implementations of a
common public interface (i.e., a method declaration) behave in a uniform way. This
concept is known as behavioral subtyping, Liskov’s substitution principle, or the
Liskov-Leavens-Wing principle [Liskov, 1988, Leavens, 1988, Liskov and Wing,
1993, 1994].2,3 It can be formulated as follows: A type T ′ is a behavioral subtype
of a type T if instances of T ′ can be used in any context where an instance of T is
expected by an observer. In other words, behavioral “subtyping prevents surprising

1 Note that contracts give semantical properties about modules and are in some sense orthogonal to
design documents such as class diagrams, that are mostly syntactical.
2 Liskov and Wing themselves use the term “constraint rule.”
3 Despite first appearing in Leavens’ thesis, it has been attributed to Liskov because of her widely
influential keynote talk at the OOPSLA conference 1988.
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behavior” [Leavens, 1988]. Note that this notion of a ‘type’ is different to both types
in logic (see Section 2.2) and types in Java (i.e., classes and interfaces).

Behavioral subtyping is a semantical property of implementations. Although
the concept is tightly associated with design by contract, it cannot be statically
enforced by programming languages. It is not uncommon to see—especially in
undergraduate exercises—that subclasses in object-oriented programs are misused in
a nonbehavioral way. Imagine, for instance, a class Rectangle being implemented
as a subclass of Square because it adds a length to Square’s width. This kind of
data-centric reuse is a typical pattern for modular programming languages without
inheritance. Not all rectangles are squares, so intuitively, this should not define a
behavioral subtype. But whether it actually does, depends on the public interface
(i.e., the possible observations). If the class signature of Square allows one to set
the width to a and to observe the area as a2, then the subclass Rectangle is not a
behavioral subtype.

For modular reasoning about programs, we may only assume contracts for a
dynamically dispatched method that are associated with the receiver’s static type,
since the precise dynamic type depends on the context. This technique is known as
supertype abstraction [Leavens and Weihl, 1995]. Behavioral subtyping is essential
to sound supertype abstraction.4 To (partially) enforce it, in the Java Modeling Lan-
guage, method contracts are inherited to overriding implementations [Leavens and
Dhara, 2000]; see also Section 7.4.5. We can provide additional specifications in sub-
classes, which are conjoined with the inherited specification. This means, whatever
the subclass specification states locally, it can only refine the superclass specifica-
tion, effectively. This leads us to a slightly relaxed version of behavioral subtyping:
instead of congruence w.r.t. any observable behavior, we restrict it to the specified
behavior.5 This relaxation renders behavioral subtyping more feasible in practice, as
it allows more freedom in implementing unspecified behavior, in particular regarding
exceptional cases. Consider, for instance, a class that implements a collection of
integers. Is a collection of nonnegative integers a behavioral subtype?—The correct
answer is ‘maybe;’ it depends on whether the operations that add members to the
collection are sufficiently abstract to be implemented differently.

This notion of behavioral subtyping w.r.t. specified behavior also enables us to
regard interfaces and abstract classes as behavioral supertypes of their implementa-
tions. While they do not provide a (complete) implementation themselves, they can
be given a specification that is inherited to the implementing classes.

4 Leavens and Naumann [2006] present a language-independent formalization of behavioral subtyp-
ing and prove that it is actually equivalent to supertype abstraction.
5 Still, it is possible to explicitly specify the observable behavior in its entirety. On the other hand
side, specification is slightly more expressive than program constructs. The reason for this is that
specification can refer to the entire heap. For instance, the notions of weak purity and strong purity
differ in whether objects may be freshly allocated. This difference is not observable programmati-
cally. Yet, JML allows one to declare a method strictly pure or—more generally—to express the
number of created objects. While strict purity annotations may simplify modular verification, it
cannot be included in a behavioral interface specification since it reveals an implementation detail.



294 9 Modular Specification and Verification

9.1.2 Example: Implementing a List

Consider we want to implement a mutable list of integers in Java. It should support
the following operations: (i) adding an element at the front, (ii) removing the first
entry, (iii) indicating whether it is empty, (iv) returning its size, (v) retrieving an
element at a given position (random access).

# tail

�interface�
List

+ add (elem: int)
+ remFirst ()
+ empty (): bool
+ size (): int
+ get (idx: int): int

LinkedList

LinkedListNonEmpty

- head: int

ArrayList

- a: int[]

Figure 9.1 A list interface and its implementations

Figure 9.1 shows a UML class diagram with the interface List that provides the
intended signature as public methods. There are multiple ways to implement this
interface. The figure shows two possibilities attached via dashed triangle-headed
arrows: firstly simply as an ArrayList and secondly using a variant of the com-
posite design pattern by the classes LinkedList and LinkedListNonEmpty. The
annotation on the association from LinkedList to LinkedListNonEmpty signifies
that LinkedList contains a protected field of type LinkedListNonEmpty.
The list [1,2,3] is represented in this design as follows (with squares for instances of
class LinkedList and circles for instances of LinkedListNonEmpty):

Note how the empty list is represented. This approach is called the sentinel pattern
and prevents the null reference to be exposed.

An common alternative pattern for linked lists uses two classes Nil and Cons,
where Nil is a singleton representing the empty list and Cons is a sentinel, that plays
the same role as LinkedListNonEmpty in our example. This pattern is appropriate
to implement immutable list objects. The disadvantage is that Nil and Cons are not
(behavioral) subtypes of one or another.



9.1. Modular Verification with Contracts 295

Before looking at an implementation, let us briefly discuss contracts in natural
language. The operation ‘removing the first element’ only makes sense when there
is at least one element—this would make a precondition. Similarly, ‘retrieving an
element at position n’ only makes sense if n is nonnegative and there are at least
n elements in the list. Again, implementations are free to do anything if they are
called in a context where these preconditions do not hold. Listing 9.1 shows an
implementation of class LinkedList. Here, we see two different styles of method
implementations. In Lines 11ff., method remFirst() silently returns directly if it is
called on an empty list, i.e., the precondition is violated. Alternatively, we could first
check for such violations and then throw a more precise exception explicitly. This
style is known as defensive implementation, where the implementing code checks for
and handles abnormal situations. In lines 24ff., method get() is implemented in an
offensive manner. It does not check for abnormal situations, but optimistically calls
tail.get(idx) where tail may be a null reference. In case the precondition is
violated, an instance of NullPointerException will be thrown. Design by contract
itself does not advertise either style, but in practice the latter is usually preferred.

1 public class LinkedList implements List {
2

3 protected LinkedListNonEmpty tail;
4

5 public void add (int elem) {
6 LinkedListNonEmpty tmp = new LinkedListNonEmpty(elem);
7 tmp.tail = this.tail;
8 this.tail = tmp;
9 }

10

11 public void remFirst () {
12 if (empty()) return;
13 else tail = tail.tail;
14 }
15

16 public boolean empty () {
17 return tail == null;
18 }
19

20 public int size () {
21 return empty()? 0: tail.size();
22 }
23

24 public int get (int idx) {
25 return tail.get(idx);
26 }
27 }

Listing 9.1 An implementation to the List interface using a linked data structure

It is instructive to observe that most methods in LinkedList delegate to an ele-
ment of the subclass LinkedListNonEmpty. This is possible since every (nonnull)
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object in LinkedListNonEmpty represents a non empty list, while objects in the
supertype LinkedList represent—possibly empty lists. This ensures that we have a
behavioral subtype relation here. A nonempty linked list exposes at least the expected
behavior of a possibly empty linked list. This allows for a maximum of reuse in class
LinkedListNonEmpty, which is shown in Listing 9.2; only three methods need to
be overridden.

Note that the default constructor of LinkedList returns a (nonunique) empty list.

1 class LinkedListNonEmpty extends LinkedList {
2

3 private int head;
4

5 LinkedListNonEmpty (int elem) { head = elem; }
6

7 public boolean empty () { return false; }
8

9 public int size () {
10 return 1+(tail==null? 0: tail.size());
11 }
12

13 public int get (int idx) {
14 if (idx == 0) return head;
15 else return tail.get(idx-1);
16 }
17 }

Listing 9.2 Nonempty lists is a behavioral subtype to lists

The implementation of size in lines 9ff in Figure 9.2 does not work for lists of
length greater than 231−1. We will live with this imperfection rather than resort to
using BigInteger.

The above list example will be used throughout the rest of this chapter. Notable
other case studies covering single linked lists can be found in the literature [Zee et al.,
2008, Gladisch and Tyszberowicz, 2013]. In [Bruns, 2011] the more general data
type of maps is considered. Its specification uses model fields and dynamic frames
and its implementation is based on red/black trees. This has been proposed as one of
the challenges in [Leino and Moskal, 2010].

9.1.3 Modular Program Correctness

In this section we explain our understanding of modular program correctness in a
spirit similar to and inspired by Müller [2002], Roth [2006]. Müller [2002] defines
the concept of modular correctness by distinguishing open programs and closed
programs. Open programs are intended to be used in different (not a priori known)
contexts, like, for instance, library code. Closed programs are self-contained and not
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meant to be extended. When analyzing the correctness of a closed program, stronger
assumptions can be made than for the analysis open programs; in particular, every
object must be an instance of one of the types declared in the program under test
which may not be a safe assumption if the program is used in an extending context.

We will define modular correctness by the portability of correctness proofs to
program extensions. Before we can look at modular correctness, we need to fix the
notion of a program extension. Remember that for the purposes of this book, a Java
program is a collection of class and interface declarations.

Definition 9.1 (Program Extension). A Java program p′ is called an extension of
the Java program p, denoted by p′ ⊇ p, if

1. p′ is obtained from p by adding new class or interface declarations, and
2. the declarations obtained from p are in no way modified.

We stress that in passing from p to p′ no field, method, extends or implements
declarations of existing classes or interfaces may be added, modified or removed. On
the other hand, classes in which are new in p′ may implement interfaces or extend
classes from p, and methods introduced in p may be overridden in new subclasses
in p′.

The soundness of logical inferences in JavaDL may depend on the type system
and thus on the investigated program. For example: it is sound to deduce from
instanceB(x) .= TRUE that instanceA(x) .= TRUE if and only if the type hierarchy
contains Bv A. However, there are also inference rules that are either independent
of the program or resilient to a program extension.

Definition 9.2 (Modular soundness). Let p be a Java program.
A logical inference rule is called modularly sound for p if it is a sound inference

rule for every program extension p′ with p′ ⊇ p.
A proof is called modularly correct for p if it has been conducted with only

modularly sound inference rules.

Most rules in the JavaDL sequent calculus in KeY are independent of the type
hierarchy of the program (rules of propositional logic, rules dealing with numbers,
sequences, ...). Some rules depend on the type hierarchy but are modularly sound
(like the removal of unnecessary type cast operations). Only very few rules of the
calculus are not modularly sound. In their core, all of them rely on the principle of
enumeration of all subtypes of a type declaration:

Let T be a type declaration in p and furthermore {U1, . . . ,Uk} = {U | U v
T and U is not abstract.} denote the set of nonabstract class declarations which
extend T (directly or indirectly). The rule typeDist allows replacing an instance
predicate instanceT (x) by the disjunction over all possible exact instance predicates
exactInstanceUi(x) of the subtypes.

instanceT (x) exactInstanceU1(x)∨ . . .∨ exactInstanceUk(x) typeDist

In an extension, a new subclass Uk+1 of T may be added rendering this rule unsound.
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The rule methodCall defined in Section 3.6.5.5 is another rule that is not modularly
sound based on the same principle of type enumeration. With it, a method call o.m()
can be replaced by a type distinction over the dynamic type of o during symbolic
execution, resulting in method-body statements o.m()@Ui enumerating the different
overriding implementations of m(). Again a new subclass with a new implementation
breaks the rule’s soundness.

It is evident from Definition 9.2 that a proof which is modularly correct for p can
also be conducted in p′ ⊇ p without adaptation.

Definition 9.3 (Modular Correctness). Let p be a program and C a set of contracts
(functional or dependency) for the declarations in p.

A program p is called modular correct if there exists a proof modularly correct
for p for every proof obligation for c ∈C.

Lemma 9.4. Let p, p′ ⊇ p be programs and C a set of contracts for p and C′ ⊇C a
set of contracts for p′ with C′

∣∣
p = C.

If p is modularly correct and there exist proofs for all proof obligations in p′ \ p
against C′, then p′ is correct.

This means that once a library has been proved modularly correct, it can be used
in any context, and it suffices to prove the context correct against its contracts and
the contracts of the library to obtain a correct composed program.

As a consequence of definition 9.3, modular correctness proofs may only contain
method inlining for private or final methods which cannot be overridden. For general
method inlining, it is up to the verifying person to decide if they want to conduct a
proof for an open or for a closed program.

9.1.4 Verification of Recursive Methods

We turn now to the verification of recursive methods. The simplest version of a
recursive method is a method that calls itself, a pattern often found in implementations
of divide-and-conquer algorithms. Method get() in Listing 9.2, which retrieves the
n-th element of a list, is a typical example.

The issue which sets recursive methods apart from normal methods is that when
verifying their correctness, we are confronted with a situation that results in a
circular proof dependency. Assume we are verifying the correctness of the previously
mentioned get() method. During the verification we end up at the recursive method
invocation tail.get(idx-1). How can we proceed now (and also maintain modular
correctness)? Obviously applying the contract for this call of get introduces a circular
proof dependency, we use a contract whose correctness depends on the contract
currently been proven. Closely related, but not identical, is the topic of termination.
Next to loops, recursive methods are the other source for nonterminating programs.

One note of caution, in KeY we are oblivious to the method frame stack size.
Hence, for instance, a partial correctness proof for a contract requiring a method not
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to terminate with an exception may succeed even though a StackOverflowError
would be thrown in real life. In other words, when verifying a Java program, we
are only correct under the assumption that no concrete run of the program causes a
StackOverflowError to be thrown by the virtual machine.

In case of partial correctness the introduced proof dependency does not pose any
problem and we can apply the contract for the method, as already observed by Hoare
[1971]. Intuitively, that is sound for the following reason: When symbolically exe-
cuting the method, we explore all paths that do not lead to a recursive call, i.e., all
base cases are covered. Paths with recursive calls can then simply use the contract
performing the step cases from n+1 recursive invocations to n invocations. The only
problem is when the recursion is not well-founded, which would lead to an infinite
recursion. But in case of partial correctness, the validity of the contract is then a
triviality.

Let us turn to the case of total correctness. Its solution is similar to the treatment
of termination in loops: the user has to supply an expression as part of the method
contract which we call a termination witness. A termination witness is always
nonnegative and strictly decreasing with each call. In JML a termination witness is
specified using the keyword measured_by, see also Section 8.2.

Example 9.5. A call get(idx) of the get() method from Listing 9.2 retrieves the
idx-th element of the list as follows: if the argument’s idx value is 0 then the value
at the current list element is returned otherwise the method recursively retrieves the
(idx-1)-th element of the tail of the list. A reasonable choice for the termination
witness is the argument itself, namely,

@ measured_by idx;

which is obviously strictly decreased at each recursive call together with the pre-
condition that the value of idx must be nonnegative it follows directly that at each
recursive call site the value is strictly decreased and nonnegative.

In the process of verifying a recursive method the value of the termination witness
is captured by an equation in the prestate. When we then apply the contract we are
just about to prove, we have as part of the precondition to show that the value of the
termination witness is nonnegative and less than the captured value of the prestate.
This additional preconditions ensures well-foundedness w.r.t. the proof dependencies.

When the user or the system applies a method contract it should be clear if it
is a recursive method or not. How is this checked? The detection is trivial for the
examples above as we have a direct recursion. But what about mutual recursions or
what if an extension adds an (indirect) recursion—how do we maintain correctness in
such situations? The solutions is to track the contracts used in a proof. When applying
the method contract rule, the system checks if there exists a proof for the contract
depending (directly or indirectly) on the proof obligation we are currently verifying.
If a dependency is detected, the system allows the application of the contract rule
only if the contract in question is equipped with a measured_by clause and upon
contract application we require to show that the value of that expression is strictly
less than in the initial state of the current method. Thus, circular reasoning is avoided:
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Either the dependency is unidirectional or the termination witness guarantees well-
foundedness.

We conclude this section with some words on the expressiveness of termination
witnesses and loop variants. In the above examples the termination witnesses are
always strictly decreasing integer expressions with lower bound 0. The KeY system
also allows the declaration of termination witnesses and loop variants of other
data types. The binary JavaDL predicate symbol ≺: >×> used in termination
proofs is axiomatized as a well-founded (Noetherian) relation. Besides supporting
integers, KeY comes with built-in axioms for lexicographic ordering of pairs and finite
sequences. One may, e.g., use the declaration measured_by i, j; with integer
expressions i and j. This will be interpreted as the lexicographical ordering of pairs
(i, j). In this case the definition of ≺ requires to show that either i has decreased
strictly (while remaining nonnegative) or that i did not change and instead j has been
strictly decreased, i.e., (i1, j1)≺ (i2, j2) iff i1 ≺ i2∨ (i1 = i2∧ j1 ≺ j2). The relation
≺ can be extended to other data types, but it is then the user’s responsibility that the
axiomatization guarantees that ≺ is well-founded.

9.2 Abstract Specification

Specifications in JML are relatively close to the implementation in comparison to
other specification mechanisms like OCL or Z that operate on abstract data. But even
if specification refer to implementation entities at source code level, abstraction and
modularization are indispensable for handling larger programs. Consider, for instance,
the interface List again. We have not yet stated specifications for its methods. Our
goal is to provide an interface specification that is amenable to modular specification
and verification, i.e., one which is robust to extensions of the implementation. This
puts us in a dilemma since such a specification must speak for parts of the software
which are not yet there but may be added in an extension. Therefore, it must not
expose implementation details.

A common approach is to use pure methods in specifications, see [Gladisch and
Tyszberowicz, 2013]. Listing 9.3 shows the example of the List interface, specified
using pure query methods. We can specify the behavior of all methods using the
two pure methods size() and get(). The query empty() checks is a list is empty,
which is true if its size (returned by the query size()) is zero. In the same way,
the specification of add() uses the pure method get(): The observable effect of
adding an element is that it can be retrieved again at the last position of the list, and
that the elements at all other positions of the list remain unchanged. Using queries
in specifications requires that every impure method lists the changes to all relevant
queries in its postcondition. The abstract value of a List object is thus ‘distributed’
over the two queries get() and size().

Often it is more convenient for the specifier, however, if the abstract object state
is not only available through these methods but as an explicit artifact that can be
handled effectively.
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1 public interface List {
2

3 //@ public invariant size() >= 0;
4

5 /*@ public normal_behavior
6 @ ensures size() == \old(size()) + 1;
7 @ ensures get(\old(size)) == elem;
8 @ ensures (\forall int i; 1 <= i && i < size()-1;
9 @ get(i) == \old(get(i-1)));

10 @*/
11 public void add (int elem);
12

13 /*@ public normal_behavior
14 @ requires !empty();
15 @ ensures size() == \old(size()) - 1;
16 @ ensures (\forall int i; 0 <= i && i < size();
17 @ get(i) == \old(get(i+1)));
18 @*/
19 public void remFirst ();
20

21 /*@ public normal_behavior
22 @ ensures \result == (size() == 0);
23 @*/
24 public /*@ pure @*/ boolean empty ();
25

26 /*@ public normal_behavior
27 @ requires 0 <= idx && idx < size();
28 @*/
29 public /*@ pure @*/ int get (int idx);
30

31 public /*@ pure @*/ int size ();
32 }

Listing 9.3 Java interface List specified using pure methods

To this end, JML offers model fields and model methods as specification-only
abstract representations of concrete implementation data; they have already been
introduced briefly in Section 7.7.1, These mechanisms enable implementation hiding:
the requirement specification only refers to model fields while the abstraction relation
is part of the (hidden) implementation details. We will discuss model fields in
Section 9.2.1 and the more general concept of model methods in Section 9.2.2 below
in depth. Both concepts are deliberately close to actual Java (both syntactically and
semantically), which makes them more comprehensible for Java programmers.

It is natural to represent the abstract state of an instance of the interface List
as a finite sequence, and we will use the abstract data type (ADT) \seq introduced
in Section 8.1.3 for this purpose. \seq is an algebraic data type (a primitive data
type in Java terms). It comprises constructors for 1. empty sequence, 2. singleton
sequences, 3. sequence concatenation, 4. subsequences, and 5. comprehension, and
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has random access and length observer functions. See Section 5.2 for details on the
corresponding theory in JavaDL.

Example 9.6. Assume that the contents of a list can be abstracted to a \seq rep-
resentation of the list and that the entity theList holds this abstract value. Then
we can describe the addition of an element (as new first element of the list) as a
concatenation of a singleton sequence and the prestate sequence:

JML
/*@ public normal_behavior
@ ensures theList ==
@ \seq_concat(\seq_singleton(elem),\old(theList));
@*/

public void add (int elem);
JML

Analogously, the other modification methods can be specified using sequence
operations. The remaining question is: what type of program entity does the identifier
theList refer to in this example? Or, how does this ADT representation integrate
into the specification? One solution is to use model fields, as explained in the
following.

9.2.1 Model Fields

Based on the idea of abstract variables by Hoare [1972], JML provides model fields
[Leino and Nelson, 2002] as a means of abstraction from the concrete program state
in a syntactically convenient form (i.e., as fields in a class; see also Section 7.7.1).
Together with modeling-only types such as sequences, model fields allow us to give
abstract interface specifications.

It is not possible to assign values to model fields, they do not have a proper,
modifiable state space of their own, but they observe the state space spanned by
heap memory by computing a value from values on the heap. The relation between a
model field and the state, i.e., the abstraction relation, is specified through represents
clauses. A model field can be defined by a functional relation where the field’s name
is followed by the assignment operator = and an expression compatible with the
type of the model field. A more general relational form is also available and uses
the keyword \such_that followed by a Boolean expression. Model field definitions
may refer to Java entities as well as to other specification-only entities like other
model fields. In general, the abstraction relation needs not be total, i.e., not every
concrete object needs to possess an abstract value. For instance, the model field x
defined via represents x = x+1 has an empty abstraction relation; no instance
has an abstract value.

We will use the term concrete field to denote both Java fields and JML ghost
fields (see Section 7.7.2) in order to distinguish them from model fields. Even
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though model fields syntactically resemble concrete fields, their semantics is closer
to methods. The model field declaration corresponds to a method declaration as
the public interface and the represents clause corresponds to an implementation. If
model fields have publicly observable properties, they need to be specified in class
invariants. In contrast, ghost fields behave like ‘real’ Java fields that can only be used
within the specification.

9.2.1.1 Example: List Specification with Model Fields

To specify the abstract behavior of the List interface, we introduce a model field
theList as shown in Listing 9.4. It is a member of this interface and can be referred
to in specifications like a concrete Java field Model fields declared in classes are
instance members by default as for concrete fields. Model fields declared in interfaces
are class members by default. This can be overridden by the modifier instance.

Now all operations declared on lists can be specified in terms of this model field.
For instance, the postcondition to method add() on line 4 in Listing 9.4 states that
an element is added to the front of the sequence, or more precisely that the sequence
in the poststate is a concatenation of the singleton sequence containing the element
with the sequence in the prestate.

Note that the two queries get() and size() which were basic operations in the
query-based specification in Listing 9.3 are now also specified in terms of the model
field. Thanks to the abstract data type, this specification is very concise and intuitive.

In the concrete implementations of the interface, a represents clause specifies
the abstraction relation. Listing 9.5 shows an implementation of ArrayList, which
internally uses an array to store the list elements. The add and remFirst methods
increase/decrease the size every time and copy all elements one place to the right/left.
This is not very efficient, but serves its demonstrative purpose here. The model field
is represented by the elements of the array (as a sequence):
represents theList = (\seq_def int i; 0; size; a[i]);

Now that we have a working implementation for List, we can verify the methods
in ArrayList against the abstract contracts given in List and linked through the
represents clause for theList. Given adequate loop invariants for add/remFirst,
all method implementations can be verified completely automatically with KeY. We
turn our attention to the second implementation of the List interface through the
class LinkedList in Listing 9.1. Here we need a recursive represents clause i.e., a
represents clause that refers to the same model field theList again.

A list’s abstract value is defined by the tail’s model field’s value—or the empty
sequence if tail is a null reference. This leads to the following represents clause in
class LinkedList
represents theList = tail==null? \seq_empty: tail.theList;
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1 public interface List {
2 //@ public instance model \seq theList;
3

4 /*@ public normal_behavior {}
5 @ ensures theList == \seq_concat(\seq_singleton(elem),
6 @ \old(theList));
7 @*/
8 public void add (int elem);
9

10 /*@ public normal_behavior
11 @ requires !empty();
12 @ ensures theList == \old(theList[1..theList.length]);
13 @*/
14 public void remFirst ();
15

16 /*@ public normal_behavior
17 @ ensures \result == (size() == 0);
18 @*/
19 public /*@ pure @*/ boolean empty ();
20

21 /*@ public normal_behavior
22 @ ensures \result == theList.length;
23 @*/
24 public /*@ pure @*/ int size ();
25

26 /*@ public normal_behavior
27 @ requires 0 <= idx && idx < size();
28 @ ensures \result == (int)theList[idx];
29 @*/
30 public /*@ pure @*/ int get (int idx);
31 }

Listing 9.4 Interface specification using a model field

This is overridden by

Java + JML
class LinkedListNonEmpty {

...
/*@ private represents theList =

@ \seq_concat( \seq_singleton(head),
@ tail==null? \seq_empty: tail.theList);
@*/

}

Java + JML
in the subclass LinkedListNonEmpty. It is here that the head attribute is available.
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1 public final class ArrayList implements List {
2

3 private int[] a = new int[0];
4 /*@ private represents theList =
5 @ (\seq_def int i; 0; a.length; a[i]);
6 @*/
7

8 public void add (int elem) {
9 int[] tmp = new int[a.length+1];

10 /*@ maintaining 0 <= i && i <= a.length;
11 @ maintaining (\forall int j; i < j && j <= a.length;
12 @ tmp[j] == \old(a[j-1]));
13 @ decreasing i;
14 @ assignable tmp[*];
15 @*/
16 for (int i= a.length; i > 0; i--)
17 tmp[i] = a[i-1];
18 a = tmp;
19 a[0] = elem;
20 }
21

22 public void remFirst () {
23 int[] tmp = new int[a.length-1];
24 /*@ maintaining 0 < i && i <= a.length;
25 @ maintaining (\forall int j; 0 < j && j < i;
26 @ tmp[j-1] == \old(a[j]));
27 @ decreasing a.length - i;
28 @ assignable tmp[*];
29 @*/
30 for (int i= 1; i < a.length; i++)
31 tmp[i-1] = a[i];
32 a = tmp;
33 }
34

35 public boolean empty () {
36 return size() == 0;
37 }
38

39 public int size () {
40 return a.length;
41 }
42

43 public int get (int idx) {
44 return a[idx];
45 }
46 }

Listing 9.5 ArrayList implementation of the List interface
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9.2.1.2 Semantics of Model Fields

The semantics of model field is given by a set of logical axioms that arise canonically
from the represents clauses [Weiß, 2011]. In JavaDL terms, model fields (as well as
calls to pure methods) are represented by observer symbols (called location dependent
symbols by Beckert et al. [2007], Bubel [2007]). The intuition is that they ‘observe’
a set of locations on the heap and compute a value from them. The parameters differ
between the different kinds of observer symbols; model fields have the heap and the
receiver object as sole arguments6. Boolean model fields are translated to observer
predicates, model fields of all other types become observer functions.

Definition 9.7 (Observer symbol). An observer symbol is either a function symbol
f : Heapk×T ×A1×·· ·×An→ A′ ∈ FSym or a predicate symbol p : Heapk×T ×
A1×·· ·×An ∈ PSym where T v Object and k,n ∈ N, k ≥ 1.

Observer symbols formalize heap-dependent functions, hence, all have in common
that they take one or more parameters of type Heap .

The fundamental difference between regular Java fields and JML model fields
becomes apparent when their translations to JavaDL are compared; which will be
done here by an illustrative example:

Example 9.8. Consider the class fragment

Java + JML
class C {

int f;
//@ model int mf;

}
Java + JML

in which a regular Java field f and a model field mf are declared. If c is a variable of
type C, then the field references are translated to JavaDL as follows (remember from
Section 8.1 that b·c is the translation from JML to JavaDL):

bc.fc= selectint(heap,bcc,C::f)
bc.mfc= C::mf(heap,bcc)

While the one access c.f becomes a heap read access, the other c.mf is translated
into an application of the according observer symbol. We silently omit the class prefix
from the verbose symbol names C::f and C::mf and use f and mf in the following if
the context is clear.

Do not confuse concrete fields and model fields: To make proof obligations more
legible in KeY, the pretty printing mechanisms are the same for both expressions,
yielding the seemingly structurally equal terms c.f and c.mf in the logic. If the heap
in which the fields are evaluated is not the default heap, but a term h, then the accesses
read c.f @h and c.mf @h.

6 Without loss of generality, we only cover instance observers here.The static case is similar, only
lacking the receiver object parameter.
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Observer symbols are the entities that carry the value of model fields, however the
value returned by them is not constrained yet. It is the represents clause for the model
field which provides this constraint on the side of JML. Two types of represents clau-
ses were introduced in Section 9.2.1, functional and relational. To ease the presenta-
tion in this section, we regard a functional clause represents mf = def as a short-
hand for the general relational form represents mf \such_that mf == def .
The defining represents clauses give rise to JavaDL axioms thus fixing the meaning
of the observer symbols.

Definition 9.9 (Represents axiom). Let m : Heap×C → A ∈ FSym be an ob-
server function7 symbol representing a model field m defined in type T . Let
represents m \such_that rep be the definition of m in type T ′ v T . The repre-
sents axiom is the formula

∀Heap h;∀T ′ o;
(
exactInstanceT ′(o) .= TRUE→
{self := o‖heap := h}(inRangeA(m(h,o))∧brepc)

)
(9.1)

where self ∈ PVar is the program variable to which this is translated in JavaDL.

The type restriction inRangeA(m(h,o)) ensures that the model field’s value is always
valid and not an unallocated object or an integer out of range.

Example 9.10. Consider the class fragment of Example 9.8; now augmented by the
JML clause

//@ represents mf = f;

which binds the value of the model field mf directly to that of the Java field f .
Whenever c. f changes for an object c of type C, the value c.m f silently changes as
well. In the logic, this coupling is fixed in a represents axiom which is equivalent to

∀Heap h;∀C c; exactInstanceC(c) .= TRUE→ mf (h,c) .= selectint(h,c,f) .

This axiom cannot compromise consistency of the logic since it provides a definition
for the symbol mf in form of a conservative extension.

In general, represents axioms need not be conservative extensions and may intro-
duce inconsistencies. Keep in mind that with an unsatisfiable axiom any statement—
even “false”—can be proved valid.

KeY provides some measures to prevent the introduction of most obvious con-
tradictory represent axioms. As a first measure against unsatisfiability, Weiß [2011]
proposes to restrict the represent axiom to situations where brepc is satisfiable, i.e.,
axiom (9.1) is replaced by the conditional formula

7 If m is a Boolean model field, it is represented by a observer predicate symbol m : Heap×T ∈ PSym
instead of a function symbol. The definition remains the same.
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∀Heap h;∀T ′ o;
(
exactInstanceT ′(o) .= TRUE∧

(∃R r;{self := o‖heap := h}brep[self.m/r]c)→
{self := o‖heap := h}(inRangeA(m(h,o))∧m(h,o) .= brepc)

)
(9.2)

in which rep[self.m/r] denotes the represents clause in which every occurrence
of the model field m is replaced by the quantified variable r of type R which
is the value type of the model field. This prevents that represents clauses like
represents m \such_that m!=m lead to immediate inconsistencies. The value
of m(h,o) is defined only if the represents clause is satisfiable—and it remains
underspecified if rep is not satisfiable.

Not only relational represents clauses can be unsatisfiable, also a functional
clause can be unsatisfiable if it employs nonprimitive recursion, like, e.g., in
represents m = m+1. However, the guard introduced in (9.2) can only guarantee
local satisfiability for individual clauses. It may still occur that multiple repre-
sents clauses contradict each other. In particular, a contradiction may arise from
mutually recursive represents clauses. Consider, e.g., a case with two int fields x
and y with the two represents clauses represents x \such_that x > y and
represents y \such_that y > x, in which the values of x and y mutually de-
pend on each other. Both are obviously satisfiable on their own, but their conjunction
is not. Later in this chapter, we will explain how to deal with recursive represents
clauses in order to further mitigate the issue of unsatisfiability.

If inconsistencies are brought into the system through represents clauses, this is
not a soundness issue of the calculus. The axioms are part of the specification and
thus reflect the intention of the specifier to whom it is up to account for his or her
axioms. This is a very liberal view on the matter with one important consequence:
When reviewing the specification of a program, it is vital to inspect all represents
clauses annotated to the program since they may introduce inconsistencies into the
specification rendering it entirely worthless. As we will see later in Section 9.2.2.3 a
different decision has been taken for the semantics of model methods: Their (possible
recursive) computation must always terminate, the functions they define are thus
always consistent conservative extensions.

9.2.1.3 A Model Field for Class Invariants

There is one model field which receives special treatment and is considered “built
in” by the KeY system: It is called \inv, of type boolean, and declared in class
Object. This model field is used to model class invariants (also called object invari-
ants, see also Section 7.4.1 on how to use them in JML). The KeY dialect of JML
deliberately deviates from standard JML semantics in this respect because the model
field formalization integrates better with the dynamic frames approach taken by KeY
(which is explained in the upcoming Section 9.3).

Standard JML implements the visible state semantics for class invariants which
requires that the invariants of an object o must hold in a state s if s is a poststate of a
constructor call on o, if s is a pre- or poststate of a method call on o, or if no call on
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o is in progress. This allows invariants to be broken temporarily, as long as a method
is in the process of being executed on the object for which the invariant is broken.

The problem with this definition is that the set of methods being executed when
entering m is not a property of m itself, or the current heap state. Rather, it is a property
of a particular call to m. A modular verification attempt of m independently of the
rest of the program is not able to know which other methods are already on the call
stack when entering m. Thus, the only invariants that can safely be assumed to hold
in the beginning are the invariants of the receiver object this which is a very weak,
often insufficient assumption. This problem can be mitigated by means of combining
visible states with ownership approaches, a few of which are listed in Section 9.6.

In KeY-JML specifications have to state explicitly which object invariants are
expected to be satisfied using the (standard JML) keyword \invariant_for. Only
the invariant for the receiver object this of a method is by default implied by both
precondition and postcondition of a method (see Section 8.2.1.2).

Note that, to formulate that the invariant of object o holds, two equivalent notations
can be used: o.\inv is the same as \invariant_for(o) (while only the latter is
defined in standard JML).

All calculus rules which are applicable to model field apply to \inv as well.
However, the definition of invariants works differently and this allows more modular
inference rules. Both advanced aspects are explained in Section 9.4.5.

9.2.1.4 Calculus Rules for Model Fields

Like the other kinds of axiom, the axioms generated from represents clauses can
also be expressed as rules instead of as formulas. For every class D that declares a
represents clause rep for a model field m the following rule repD,m is available.

Γ , exactInstanceD(d) .= TRUE, {heap := h‖self := d}rep =⇒ ∆
repD,m

Γ , exactInstanceD(d) .= TRUE =⇒ ∆

Even though rule repD,m can be applied to any sequents with exactInstanceD(d) .=
TRUE in the antecedent, the application in KeY is triggered by an occurrence of an
application m(h,d) of the observer symbol m on either side of the sequent. Because
the rule matches against d being an exact instance of class D, there is at most one
applicable rule. The rule is an obvious adaptation of the represents axiom (9.3) in
Definition 9.9.

For functional clauses of the form represents m = def , we can also use the
conditional rewriting rule repSimpleD,m

m(h,d) {heap := h‖self := d}def

if exactInstanceD(d) .= TRUE =⇒ on the sequent.

The rule repSimpleD,m allows replacing references to a model field by its defini-
tion def directly. This is more efficient in practice than adding an equation to the
antecedent. Applying repSimpleD,m repeatedly to a recursively defined model field
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would result in a infinite expansion of the proof sequent. The proof strategy in KeY
is designed to apply recursive definitions very sparsely and only up to a certain depth
to avoid infinite recursion expansion.

The type restriction from Definition 9.9 is not represented in these rules. Instead,
there is a separate rule

Γ , inRangeA(m(h,d)) =⇒ ∆
OnlyCreatedObjectsObserved

Γ =⇒ ∆

that can be applied whenever the observer symbol m(h,d) of type A appears in the
sequent Γ =⇒ ∆ .

KeY offers a taclet option modelFields : showSatisfiability (see p. 530 for details
on taclet options) to control whether local satisfiability is to be checked upon us-
ing a represents clause. If this option is activated, the rules rep/repSimple have an
additional premiss implementing the existential quantifier from (9.2). Proving lo-
cal satisfiability usually makes proofs more complicated. Moreover, as mentioned
earlier, local satisfiability is only an heuristic measure that cannot always guarantee
consistency.

9.2.1.5 Discussion

Model fields are a powerful and often welcome specification instrument. It is however
debatable whether general nonfunctional model fields may not create more problems
than they solve.

For consistency one would have to prove simultaneous satisfiability of all repre-
sents clauses in the system. This is currently not enforced in KeY, it is not modular,
and one may doubt whether that will ever be practical. Thus, the responsibility to
work with a consistent set of axioms rests on the specifier. A theoretical alternative is
presented in [Beckert and Bruns, 2012] that evaluates all model fields simultaneously
and checks for global satisfiability of represents clauses. It avoids inconsistencies
in the logic through underspecification. The practicality of this approach is under
investigation. For model methods consistency must always be shown by means of
termination witnesses (see Section 9.2.2.3).

In case of generalized relational \such_that represent clauses, there may be
more than one possible value. But, since model fields are represented by functions in
the logic, evaluation is deterministic and only depends on the heap and the receiver. to
a model field. When the model field is evaluated several times in the same heap, it has
the same value. In particular, classical logic equations like m(heap,o) .= m(heap,o)
are still valid. If the heap changes slightly, the model field value may be different.
Dependency contract rules (see Section 9.4.4) can be used to prove that its value
stays the same if it does not depend on the changed fields.

Using objects of reference type for abstract object states is problematic since they
must point to objects that exist on the concrete heap. This means that represents
axioms may postulate the existence of such object, which is another source of
potential inconsistency.

From our experience, we recommend to use functional represents clauses only.
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9.2.2 Model Methods

In JML expressions, one can not only refer to fields but also to invocations of pure
methods. Moreover, JML allows the definition of model methods which are—quite
analogous to model fields—method declarations to be used in specifications only.
Like model fields, model methods do not reside in locations on the heap but compute
a value which depends on the values of locations on the heap—they are observer
symbols.

As pointed out by Mostowski and Ulbrich [2015, 2016], JML model methods are
a generalization of JML model fields and go beyond them in several respects:

1. They are parametric, i.e., they can take arguments like Java methods.
2. Method contracts can be specified for model methods like for Java methods.
3. Model methods can be used to abstract from expressions which are evaluated in

more than one state (so called two-state predicates).
4. Model methods always define conservative extensions. Their definition is given

by a constructive method body, and they are required to always terminate
(diverges false). This implies that their definitions are well-founded and
no inconsistencies are introduced.

A JML model method and its contract are stated like all other JML constructs
within special JML comments. A model method definition in KeY follows the
following general schema (all clauses in [...] are optional)

class C {
/*@ model_behavior8

@ [requires pre;]
@ [ensures post;]
@ [accessible acc;]
@ [measured_by mby;]
@ [two_state] [no_state]
@ model R m(T1 p1, ..., Tn pn) {
@ return exp;
@ }
@*/

}
This pattern allows only for those model methods whose body consists of a single

return statement, a restriction which simplifies the treatment of a model method in
the logical context as it avoids the evaluation of the method body using a JavaDL
modality. Later in this section, we will see that the concept of model methods can
be generalized to method bodies with real control flow, but the presentation in this
section and the implementation in KeY follow the above pattern.

As for pure Java methods and for JML model fields, a model method declaration
gives rise to an observer symbol (see Definition 9.7) in JavaDL. For the above
declaration, a observer function symbol C::m is introduced to represent the model

8 The keyword model_behavior is not strictly required but the specifier is encouraged to use it.
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method in JavaDL. Leaving aside the two-state modifier for the moment, its signature
is C::m : Heap×C×T1× . . .×Tn→ R.

Semantically, the evaluation of a model method invocation is coupled to the
expression exp in the return statement by the following definition axiom which
refines the general represents axiom (9.1) for observer symbols from Definition 9.9:

∀Heap heap,C self,T1 p1, . . . ,Tn pn;
exactInstanceC(self) .= TRUE∧bprec →

C::m(heap,self, p1, . . . , pn)
.= bexpc) (9.3)

The formula, as shown, violates the JavaDL restriction that program variables, in
this case heap and self, cannot be quantified. But, to make formulas in this section
more readable, we take the liberty to write ∀Heap heap;ϕ as an abbreviation for the
formula ∀Heap h;{heap := h}ϕ .

The function symbol C::m is determined by the class (or interface) C in which
the method m has been first declared. All method definitions overriding that initial
declaration refer to the same function symbol (and not to a new symbol). Constraining
the same function symbol thus realizes the dynamic dispatch of model methods. That
is, the function symbol is always the same, while its meaning is implied by the exact
type of self changes.

For a subclass C′ of C overriding m, another axiom of shape (9.3) is added for
C::m, with the typing guard changed to exactInstanceC′(c)

.= TRUE. If C′ chooses not
to override m, an axiom is added as if the definition with the body of the superclass-
method had been repeated, which matches programmers’ expectations as it is the
same behavior as for Java method declarations. The guards exactInstanceC′(self)

.=
TRUE ensure that the definition only applies if the receiver object self is exactly
of the defining type. These typing guards make sure that (possibly contradicting)
definitions of C::m constrain different parts of its domain and that definitions are
not automatically inherited. Unlike model fields, the definition of model methods
may be additionally constrained by a precondition. It is not strictly necessary to
restrict the domain in which C::m can be applied, but we decided that it is better
to allow a specifier to say when a model method is defined. Also to deal with the
well-definedness and well-foundedness (see Section 9.2.2.3), it is important to limit
the definition to those situations for which it is well-defined.

Since our model method body (see above) consists only of a single side-effect-
free return statement, definition (9.3) can make use of its expression directly. If a
one-state model method did have a nontrivial method body, the above axiom would
need to involve a dynamic logic operator and read

∀Heap heap,C self,T1 p1, . . . ,Tn pn;(
exactInstanceC(self) .= TRUE∧bprec →[
res = self.m(p1, ..., pn);

]
(C::m(heap,self, p1, . . . , pn)

.= res)
)

,
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ensuring that the value of the function symbol is the same as the result value of
the method call. This formula points out a crucial advantage of dynamic logic in
comparison to other program logics like wp-calculus or Hoare calculus: dynamic
logic is closed under all its operators which allows us to state the quantified program
formula directly in JavaDL, and not on a meta-level. The dynamic logic thus also
allows us to seamlessly extend the presented approach to nonmodel queries.

Besides its method body, a model method may also have a functional contract (in
its postcondition). Unlike the body which defines the value of the function symbol,
the contract describes a property of the symbol and is not an axiom, but a theorem.
To establish the correctness of the contract theorem, it suffices to prove that the
definition makes the postcondition true, i.e., that

∀Heap heap,C self,T1 p1, . . . ,Tn pn;
(exactInstanceC(self) .= TRUE∧bprec →

{res := C::m(heap,self, p1, . . . , pn)}bpostc) . (9.4)

follows from axiom (9.3). If (9.4) is shown for every class C′ extending C (with a
corresponding type guard), the statement is shown for all conceivable instances of
C. Therefore, when using the proved contract as additional assumption, it is save
to omit the type guard exactInstanceC(self) .= TRUE from (9.4). This approach is
still modular, however: The verification of C happens independently of that of its
subclasses. At the time of verification, one can even be oblivious to the existence of
subtypes.

The properties of model fields cannot be specified in contracts, they need to be
captured in class invariants. Model method contracts have one crucial modularization
advantage over formalizing properties in invariants: While the former are proved
once and for all in a separate proof obligation, the latter need to be reproved whenever
the invariant needs to be reestablished.

9.2.2.1 Two-State Model Methods

As has been mentioned before, the expressive power of model methods goes beyond
that of Java methods and model fields in that more than one state can be referred to
from a method body or contract. The number of accessible heaps is not limited in
theory, but in practice three types of model methods have proved useful:

• No-state model methods can be used to formalize mathematical statements which
are not heap-dependent at all. A query which checks if a sequence (of type \seq)
is duplicate-free would be an example for a no-state model method. In KeY the
JML modifier no_state can be used to mark a model method heap-independent.

• One-state model methods are like regular Java methods or model fields bound to
a single evaluation context. This is the default if no state modifier is annotated to
the method



314 9 Modular Specification and Verification

• Two-state model methods are evaluated in two evaluation contexts. They are
valuable where two-state predicates need to be specified which formalize the
relationship between the before- and the after-state of an operation. In KeY-JML,
two state. methods are annotated with the modifier two_state.

No-state model methods are not really observer functions since they do explicitly
not dependent on the heap. Two-state model methods, however, are observers that
receive two heap arguments (k = 2 in Definition 9.7). We show how the representation
axiom (9.3) needs to be adapted to the two-state case; the other conditions are
analogous.

∀Heap heap,Heap heap2,C self,T1 p1, . . . ,Tn pn;
(exactInstanceC(self) .= TRUE∧bprec →

C::m(heap,heap2,self, p1, . . . , pn)
.= {heappre := heap2}bexpc) (9.5)

The second heap heap2 is thus automatically mapped to the prestate heap which is
accessed from JML via the \old operator.

The translation of a reference to a two-state model method in JML to JavaDL
remains to be defined. This extends the translation outlined in Section 8.1.2.4 such
that we have for a one-state model method osm and a two-state model method tsm
defined in class C that

bo.osm(p1, . . . , pn)c= C::osm(heap,boc,bp1c, . . . ,bpnc)
bo.tsm(p1, . . . , pn)c= C::tsm(heap,heappre,boc,bp1c, . . . ,bpnc) .

Note how the heap arguments need not be specified in the JML specification but are
added during the translation. The second heap heap2 is automatically mapped to the
prestate heap heappre.

Example 9.11. Consider the program given in Listing 9.4 once more. To showcase
a very simple application scenario for two-state model methods, assume that the
specifier wants to capture the difference in the length of the abstraction between
before and after an operation into a model method sizeDiff():

JML
/*@ model two_state int sizeDiff() {
@ return theList.length - \old(theList.length);
@ }
@*/

/*@ normal_behavior
@ ensures sizeDiff() == 1;
@*/

void add(Object o);

JML



9.2. Abstract Specification 315

class Cell {
int val;

/*@ ensures \result == val; @*/
int /*@ pure @*/ get() {

return val;
}

/*@ ensures val == v; @*/
void set(int v) {
val = v;

}
}

class Client {
/*@ ensures c.val == v; @*/
static void callSet(Cell c,int v){
c.set(v);

}
}

class Recell extends Cell {
int oval;

/*@ ensures val == oval; @*/
void undo() {
val = oval;

}

/*@ ensures oval==\old(val); @*/
void set(int v) {
oval = val;
super.set(v);

}
}

Figure 9.2 Listings of Cell/Recell example

Note how \old is used to refer canonically to the second heap.

Using such two-state model methods makes obviously only sense when the model
method is only invoked (referred to) in places where two states are imminently
present: for instance in postconditions of method contracts (but also signals clauses
or history constraints)

9.2.2.2 Dynamic Dispatch for Contracts using Model Methods

The possibility to override the implementation of a method defined in a super-
type is the essential polymorphism feature of the object orientation paradigm. The
mechanism which chooses at runtime the implementation to be taken for a method
invocation is called dynamic dispatch. Also in the context of design-by-contractand
behavioral subtyping, different implementations for the same operation can coexist—
if they adhere to a common specification. It is most natural that not only the imple-
mentations but also the specifications vary from subtype to subtype, for instance
by adding implementation-dependent aspects. This dynamic dispatch mechanism
should, hence, also be available for the formulation of formal specifications in an
equally flexible way.

Instead of spelling out the definition of this specification element, it should be
possible to refer to it symbolically. Only when the dynamic type of the object is
known, one also knows the actual contract definition.



316 9 Modular Specification and Verification

We motivate and explain our specification approach by means of a small Java
example, shown in the listings in Figure 9.2. Another example (modeling the visitor
pattern) and a larger case study (modeling symbolic permissions) can be found in
[Mostowski and Ulbrich, 2015].

The challenge presented here has originally been proposed by Distefano and
Parkinson [2008] and has been dealt with by Bengtson et al. [2011] using a higher-
order separation logic. The listings in Figure 9.2 show the program annotated with
traditional specification means. Cell objects encapsulate integer values which can
be set using a method set and be retrieved using get. The class Recell, which
extends Cell, allows an additional one level undo operation which restores the cell
value to the state before the most recent call to set. The class Client provides a
method callSet which indirectly calls the set method of the Cell argument it
receives. This particular indirection may seem artificial, but indirection is a very
natural phenomenon in object orientation, e.g., in a situation where this operation is
done only conditionally or after some locks have been acquired or in combination
with other operations.

The contract of callSet copies the postcondition of Cell.set literally. It does
not guarantee the stronger postcondition of Recell.set if the argument is of type
Recell. The present contract does not suffice to verify the following test case:

Java
Recell rc = new Recell();
rc.set(4);
Client.callSet(rc, 5);
rc.undo();
assert rc.get() == 4;

Java

While this program would not fail its assertion, the proof for that would not succeed
as the abstraction of callSet by its contract neglects the additional postcondition
oval == \old(val) introduced in Recell and only ensures the weaker postcondi-
tion of Cell.

This could be amended by introducing case distinctions on the type of the argu-
ment in the postcondition of Cell.set. This could be achieved by an additional
clause c instanceof Recell ==> ((Recell)c).oval == \old(c.val)s. How-
ever, it has significant limitations regarding the modularity of the specification:
(1) Details on the implementation of Recell are revealed where it is not necessary
and should be kept under the hood and, more severely, (2) the implementation of
Recell might not yet be known at the time that Cell is implemented or speci-
fied. Assume Cell and Client are part of a library and Recell is a user-written
extension. How can the library account for all potential extensions?

This is precisely where abstract predicates in the form of model methods can be
used to solve the issue. In the listings of Figure 9.3, the example has been reformulated
using a model method post_set (lines 4–8) formalizing the postcondition of the
method set (used in line 15). The model method has a body which defines its value.
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class Cell {
2 int val;

4 /*@ ensures \result ==> get()==x;
@ model two_state

6 boolean post_set(int x) {
return val == x;

8 } @*/

10 /*@ ensures \result == val; @*/
int /*@ pure @*/ get() {

12 return val;
}

14

/*@ ensures post_set(v); @*/
16 void set(int v) {

val = v;
18 }

}

class Recell extends Cell {
int oval;

/*@ model two_state
boolean post_set(int x) {

return super.post_set(x) &&
oval == \old(get());

} @*/

/*@ ensures get()==\old(oval); @*/
void undo() {
val = oval;

}

void set(int x) {
oval = get(); super.set(x);

}
}

Figure 9.3 Listings of Cell/Recell example annotated with model methods

In this case, it returns true if and only if its argument x is equal to the value stored in
field val. Looking at class Cell alone, no semantic change has been done.

Things change when the class Recell is again added to the scenario. In Recell,
the model method post_set is overridden and adds a condition to the result obtained
by Cell.post_set. By redefining the predicate locally for all instances of class
Recell, the semantics of the contract Cell.set has now also changed, although
syntactically it is the same. As the contract refers to the postcondition only sym-
bolically, its semantics is left open and can be redefined by an implementing class.
Furthermore, post_set makes use of its two_state declaration in class Recell as
the definition relates values from two execution states, namely \old(get()) and
oval. The two states that this definition refers to are the pre- and poststate of the
method set.

The redefinition of post_set in Recell cannot be arbitrary, however. The model
method has got a contract (line 4) saying that whenever its result is true, the condition
val == x needs to hold. All overriding implementations need to obey that contract,
but may add to it. This ensures behavioral subtyping.

The above example test case can be proved correct if the model method invocation
c.post_set(v) is used as postcondition for Client.callSet abstracting away
from the actual definition of the postcondition.

Model methods can also be used to modularly specify framing conditions (using
dynamic frames, which will be discussed in Section 9.3.2 below). Listing 9.6 shows
the scenario including frame conditions where the frame has been abstracted by a
single state model method footprint().

Note how this method is used to specify the part of the heap on which the cell
operates. The actual shape of this set of locations is different in the two classes; this
can be addressed by giving the exact definition for footprint() in the correspond-
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ing classes. To provide global constraints on the footprint we can specify a contract
for this model method. In the example we added an upper and a lower bound for the
location set.

class Cell {
int val;

/*@ accessible \nothing;
@ ensures \subset(\result, this.*) &&

\subset(\singleton(this.val), \result);
model \locset footprint() {

return \singleton(this.val);
} @*/

/*@ accessible footprint();
@ ensures \result ==> get()==x;

model two_state boolean post_set(int x) {
return get() == x;

} @*/

/*@ accessible footprint();
@ ensures \result == val; @*/

int /*@ pure @*/ get() { return val; }

/*@ ensures post_set(v);
@ assignable footprint(); @*/

void set(int v) { val = v; }
}

class Recell extends Cell {
int oval;

/*@ model \locset footprint() {
return \set_union(this.val, this.oval);

} @*/

/*@ model two_state
boolean post_set(int x) {

return super.post_set(x) &&
oval == \old(get());

} @*/

/*@ ensures get() == \old(oval);
@ assignable footprint(); @*/

void undo() { val = oval; }

void set(int x) {
oval = get(); super.set(x);

}
}

Listing 9.6 Cell/Recell annotated with footprint specifications
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9.2.2.3 Model Methods and Termination

Showing termination for programs is optional; analyzing the partial correctness
problem alone can be a challenge already. For the definition of model methods,
however, termination is a central point that must not be omitted. A model method
definition gives rise to a universally quantified axiom claiming that the function
has certain properties even if it may be unsatisfiable. Consider for instance the
problematic declaration
class X { /*@ model int bad() { return this.bad() + 1; } @*/ }

for which the model method would be translated into the axiom

∀Heap heap,X self;(exactInstanceX(self)→
X::bad(h,self) .= X::bad(h,self)+1) ,

which is obviously inconsistent. Consistency can be guaranteed if termination
(or well-foundedness) of all recursive method references is checked. Here, the
measured_by clauses are employed to avoid such unsatisfiable recursive defini-
tions. We require that all definitions are primitive recursive. The termination witness
mby specifies for each method a termination measurement which must be decreased
in all referenced (model) method invocations in exp. To this end, an additional proof
obligation per model method is generated to ensure this. Assuming that the termi-
nation witness of a model method referenced in exp is mby′, it has to be shown that
mby′ is a strict nonnegative predecessor of mby, i.e., 0≤ mby′ < mby.

In practice, one may also encounter mutually recursive definitions of model meth-
ods. In this case simple integer expressions as termination clauses are in general not
sufficient. For that reason, we additionally allow tuples of integer expressions with a
standard lexicographic order to serve as termination clauses and the above mecha-
nism is modified accordingly to check the lexicographic ordering of the expressions
instead, see also the last paragraph of Section 9.1.4 on page 300. Furthermore, to
weaken the resulting proof obligations, we use left-to-right evaluation similar to that
of well-definedness checking described in Section 8.3.2. Thus, expressions in return
statements only need to decrease the termination witness if a prefixing guard is true.

9.3 The Frame Problem

For modular static verification, where we assume that the program may be extended,
even the goal to check the correctness of individual program parts locally—that
is, without considering the program as a whole—puts higher demands both on
specifications and on the specification language itself than for approaches working
under a closed program assumption. This sets modular verification apart from runtime
checking. JML pledged to satisfy the additional demands of modular verification,
but the classical static frame annotations fall short of this goal. Weiß [2011] presents
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a solution with an extension to the framing concept of JML, based on the dynamic
frames approach by Kassios [2006, 2011]. Dynamic frames is a flexible approach for
framing in the presence of dynamic data structures and data abstraction. Compared
with alternative solutions, such as data groups [Leino, 1998], the advantages of this
approach are its simplicity and generality.

9.3.1 Motivation

In object-oriented programming, data is organized in pointer-based data structures
in which references from one object reach out to other objects in the memory, thus
combining individual parts of the memory to complex compound data networks.
The structure built up by the references is usually not limited by the programming
language. In particular, the Java programming language does not pose any restrictions
(other than by its type system) on how objects may refer to one another. There are
many reasons to employ references between objects: They may point to objects
which constitute a separate subpart of a larger structure. References may be used
for efficiency reasons like in caches, to point into areas which are shared between
various components. One direct consequence of the ability to have arbitrary pointer
chains leading from one to another object is that effects of a piece of code cannot be
assumed to be local to some object. The code may follow references on the heap and
may potentially modify parts of the memory which are seemingly ‘far away’ from
the original starting point. If an item is added to a collection that is kept as a heap
data structure, for instance, it seems natural to assume that the content of a second,
different list, would not be affected by such an action. But there are implementations
which deliberately share data between collection instances to save memory. A glitch
in such an implementation may indeed result in the modification of more objects
than intended and their independence may not always silently be assumed.

It is thus an obligation of formal specification and verification to name the places
in memory to which a piece of code has read or write access. An alternative to stating
which part of the memory a program may look at or modify is to explicitly state what
a program must not touch. While this seems like a viable alternative at first glance, it
bears many issues concerning modularity: A specification cannot be local since it
would have to include that a very distant part of the memory remains unchanged by
the code. It may also not be open to extensions of the program because a specification
cannot possibly talk about memory entities which are only to be included in an
extension of the program.

We will now demonstrate these general concerns by an example. We consider in
Listing 9.7 a simple client to our running List class example. A client object holds
references to two list instances. The m() method adds an element to one of them.
The question is how to prove the postcondition that states that the other list has not
changed in size. We have to add the precondition that a and b do not alias, otherwise
the postcondition could never be valid.
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class Client {
List a, b;

//@ requires a != b;
//@ ensures b.size() == \old(b.size());
void m() { a.add(23); }

}

Listing 9.7 Client code using two instances of the List interface (from Listing 9.9)

As we have seen above in Section 9.1.2, a correct implementation of add() must
satisfy the postcondition that the passed element has been added to the list. This
is an impartial description of the method’s behavior. For our particular situation
here, however, we aim for the property that a.add() does not do anything harmful
to b—that, besides the given functional property, “nothing else changes” [Borgida
et al., 1995]. Such a property is usually expressed as a set of locations to which the
method may write at most, called the frame of the method and a set of locations on
which the result of a query depends at most, called the footprint.

Listing 9.8 shows the client specification with framing. One problem we encounter
when trying to specify its frame, is that we need to address the concrete locations on
which the method depends and to which it writes. This means that we have to expose
the nature of the contained list, i.e., which implementation of the List interface
is used. Here, we chose the LinkedList implementation and fixed it using a class
invariant. Its accessible clause defines the footprint, i.e., the program locations it
reads and on which its functionality depends. The accessible clause defines the
locations that might be changed by the method.

class Client {
List a, b;
//@ invariant a instanceof LinkedList && b instanceof LinkedList;

//@ requires a != b;
//@ requires ((LinkedList)a).tail != ((LinkedList)b).tail;
//@ ensures b.size() == \old(b.size());
//@ accessible a, ((LinkedList)a).tail;
//@ assignable ((LinkedList)a).tail;
void m() { a.add(23); }

}

Listing 9.8 Client code using framing (exposing implementation details)

But what if we do want to keep the nature of the used list open? We answer this
question in the following section by providing a solution on how to frames elegantly
and without exposing (or even fixing) implementation details.
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9.3.2 Dynamic Frames

The dynamic frame theory [Kassios, 2011] aims at solving the frame problem in
the presence of data abstraction. The essence of the dynamic frames approach is to
leverage the ubiquitous location sets to first-class citizens of the specification lan-
guage: specification expressions are enabled to talk about such location sets directly.
In particular, this allows us to explicitly specify that two such sets do not overlap, or
that a particular concrete location is not part of a particular set. This is an important
property for pointer-based programs, which is called the absence of abstract aliasing
(also known as deep aliasing) [Leino and Nelson, 2002, Kassios, 2006]. For example,
this property is what is missing in the specification of Listing 9.7. The knowledge
that the location sets represented by a.footprint and b.footprint are disjoint
allows us to conclude that the postcondition is actually satisfied.

What is called a dynamic frame is an abstract set of locations. A dynamic frame
is ‘dynamic’ in the sense that the set of locations to which it evaluates can change
during program execution, just like the value of a model field can change.

Dynamic Frames in JML

Weiß [2011] presented an implementation of the dynamic frames approach in KeY,
using an extension of JML that includes high-level specification elements for location
set expressions. The type \locset has already been briefly introduced in Chapter 8,
with the underlying JavaDL data type introduced in Section 2.4. Semantically, expres-
sions of type \locset stand for sets of memory locations. These expressions replace
the store ref expressions from the JML reference manual [Leavens et al., 2013]as
the expressions that are used to write assignable and accessible clauses. The
primary difference between store ref expressions and \locset expressions is that
\locset is a proper type. This for example allows us to declare model and ghost
fields of this type.

The singleton set consisting of the (Java or ghost) field f of the reference expres-
sion o can be denoted in JML as \singleton(o.f), and the singleton set consisting
of the i-th component of the array reference a as \singleton(a[i]). The set con-
sisting of a range of array components and the set consisting of all components of an
array are written as a[i.. j] and a[*], and the set of all fields of an object is written
as o.*. The keywords \nothing and \everything refer to the empty set and the
set of all locations, respectively.More precisely, \everything refers to the set of
all locations belonging to created objects. In the same spirit, \nothing is used to
denote the set of locations that belong to freshly allocated objects. Intuitively, they
denote the set of ‘observably all’ locations and ‘observably none.’ The actual empty
set (in the mathematical sense) is denoted by \strictly_nothing similar to the
difference between the pure and strictly_pure annotations.

In addition, JML features the following basic set operations on expressions of type
\locset, with the standard mathematical meaning: the set intersection \intersect,
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the set difference \set_minus, the set union \set_union, the subset predicate
\subset, and the disjointness predicate \disjoint.

The notations o.f and a[i] can be used as short-hands for the singleton sets
\singleton(o.f) and \singleton(a[i]), but only in contexts where understand-
ing them as representing the value of o.f or a[i] is syntactically forbidden. For
example, on the top level of a modifies clause, the expression o.f is equivalent to
\singleton(o.f) if f is a Java or ghost field of type int, but it denotes the value
of the field if the f is of type \locset. As another familiar shorthand, a comma sepa-
rated list s1, . . ., sn can be used to abbreviate the union of the \locset expressions
si where this does not lead to syntactical ambiguity.

Frames and Dependencies

Depend clauses have already been the topic of Subsection 8.3.2 and Definition 8.3
with the emphasis on their representation in JavaDL and the translation from JML.
Here, we place dependency contracts in the context of modular verification.

While depends clauses for pure methods are already part of standard JML, we
generalize the mechanism of depends clauses to model fields here. A depends clause
for a model field is declared as a class member, using the syntax accessible m: f;
where m is a model field (defined for the class containing the depends clause) and
where f is an expression of type \locset. Such a depends clause means that m
may depend at most on the locations in f (in other words, ‘f frames m’), pro-
vided that the invariants of the this object hold in the current state. More formally,
accessible m: f is true in a state s if any state change (starting in s) that pre-
serves the values of the locations in the evaluation of f in s also preserves the value
of m. This is a contract that all represents clauses for m must satisfy (in the cur-
rent class or interface and in its subclasses), just like a depends clause for a pure
method is a contractual obligation on all implementations of the method. As dynamic
frames may be model fields themselves, they may also occur on the right hand side
of a depends clause. It is a common pattern for a dynamic frame to frame itself:
accessible f: f means that, if the values of the locations in the value of f are
not changed, then the value of f itself also remains the same.

We extend the \fresh operator so that it can be applied to location sets, in addition
to applying it to objects. An expression \fresh( f), where f is an expression of type
\locset, is satisfied in a postcondition if and only if all the locations in the poststate
interpretation of f belong to an object that was not yet allocated in the prestate. More
formally, it is b\fresh( f)c = subset(b f c,unusedLocs(heappre)); see Figure 2.11
for the semantics of unusedLocs.

The so-called swinging pivots operator \new_elems_fresh can be applied to a
dynamic frame f within a postcondition. The meaning of \new_elems_fresh( f)
is that if there are any locations in the set f in the poststate that have not been
there in the prestate, then these must belong to objects that have been freshly al-
located in between (in the sense of \fresh). It is thus equivalent to the expres-
sion \fresh(\set_minus( f,\old( f))). Intuitively, a swinging pivot indicates a
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change on the heap that is benign—in the sense that no previous separation properties
can be invalidated. In combination with assignable and accessible clauses, the
swinging pivots operator is useful to specify preservation of the absence of abstract
aliasing. For example, if for some method execution we know that

1. the dynamic frames f and g do not contain any unallocated locations in the
prestate,

2. f and g are disjoint in the prestate,
3. g frames itself in the prestate (accessible g:g),
4. only the values of the locations in f may be different in the poststate (i.e.,

assignable f ), and that
5. the modification respects \new_elems_fresh( f),

then we can conclude that f and g are still disjoint in the poststate. The reasoning
behind this is as follows: assignable f and the disjointness of f and g together
imply that the values of the locations in g are not changed. Combined with g being
self-framing, this implies that the location set referred to by g itself also remains
the same. The set f may change, but \new_elems_fresh( f) guarantees that if
this change adds to f any additional locations, then these locations were previously
unallocated. As the set g is unchanged and did not contain any unallocated locations
in the prestate, the locations added to f cannot be members of g, and so the sets
must still be disjoint. We see a concrete application of this chain of reasoning in
Section 9.3.4.

9.3.3 Proof Obligations for Dynamic Frames Specifications

Section 8.3.2 presented a proof obligation which, if proven valid, ensures that the
dependency contract of a pure method is correct. The formula presented in Defini-
tion 8.5 uses modalities for the evaluation of the method under examination.

In the previous section, we showed how to specify dynamic frames for model
fields using accessible clauses, and Section 9.2.2 showed that model methods can
also be specified with such clauses. But the proof obligation in Definition 8.5 from
Chapter 8 cannot be applied in this situation: The rule embeds the method call into a
JavaDL modality which is not possible for model fields and model methods.

To this end, we generalize this proof obligation to one which applies to arbitrary
observer symbols.

Definition 9.12 (Proof obligation for dependency contracts of observers). Given
an observer symbol obs : Heap×E × T1× . . .× Tn together with its dependency
contract (pre, term,dep). The definition of obs is called correct w.r.t. the dependency
contract if the following JavaDL formula

pre∧ freePre∧wellFormed(h)∧mby .= term

→ obs(heap,self,p1, . . . ,pn)
≡ obs(anon(heap,setMinus(allLocs,dep),h),self,p1, . . . ,pn)
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is valid for the fresh constant h : Heap and parameter variables p1 : T1, . . . , pn : Tn.
The symbol ≡ is interpreted as .= if obs is a function symbol and as ↔ if it is a
predicate symbol.

For a model field, there are no arguments to the observer (i.e., n = 0), but a model
method may possess additional arguments besides the receiver self.

9.3.4 Example Specification with Dynamic Frames

A version of the List interface from Section 9.1.2 this time specified using dynamic
frames, is shown in Listing 9.9. As in Listing 9.3, the specification of the interface
is based on the pure methods get() and size(). It also includes a dynamic frame
footprint, that abstracts from the concrete memory locations that represent the
list in possible subclasses. This dynamic frame is used in the modifies clause of the
add() method, and in the depends clauses of the pure methods of List. In lines 3
and 6 of Listing 9.9, depends clauses are additionally given for the model fields
footprint and (implicitly) \inv: their values, too, may depend at most on the
locations in footprint.

As none of the methods of List are annotated as helper methods, all contracts
contain implicit pre- and postconditions that assert that \invariant_for(this)
is true before and after method execution. No other objects have to satisfy their
invariants before calling the methods of the interface.

The additional postcondition for add() in line 12 demands that, even though
the set footprint may change, all locations that are added to it must be fresh.
This grants an implementation of add() the license to discard old data structures
in footprint and to add fresh ones as needed. The same holds for remFirst(),
where the footprint is even strictly smaller in the poststate. For the other methods of
List, there is no need for a postcondition that describes their effect on footprint.
Roughly, this is because these methods are pure, and thus we expect that they cannot
affect footprint at all. This expectation is correct, but the precise justification for
this is more complex than it may seem at first sight, because pure methods are allowed
to allocate and initialize new objects, and because without further knowledge, such
a state change might affect the interpretation of a model field such as footprint.
Fortunately, the semantics of JML guarantees that dynamic frames like footprint
never contain any unallocated locations. We know from the depends clause in line 6
that footprint frames itself, i.e., that a change to locations that are not in the value
of footprint cannot affect the value of footprint. Thus, any change to previously
unallocated locations in a pure method is guaranteed to leave the value of footprint
untouched.
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1 public interface List {
2 //@ public model instance \locset footprint;
3 //@ public accessible footprint: footprint;
4

5 //@ public instance invariant size() >= 0;
6 //@ public instance accessible \inv: footprint;
7

8 /*@ public normal_behavior
9 @ ensures size() == \old(size()) + 1 && get(size()-1) == elem;

10 @ ensures (\forall int i;0 <= i &&
11 @ i < size()-1;get(i) == \old(get(i)));
12 @ ensures \new_elems_fresh(footprint);
13 @ assignable footprint;
14 @*/
15 public void add (int elem);
16

17 /*@ public normal_behavior
18 @ requires !empty();
19 @ ensures size() == \old(size()) - 1;
20 @ ensures (\forall int i;0 <= i &&
21 @ i < size();get(i) == \old(get(i+1)));
22 @ ensures \new_elems_fresh(footprint);
23 @ assignable footprint;
24 @*/
25 public void remFirst ();
26

27 /*@ public normal_behavior
28 @ ensures \result == (size() == 0);
29 @ accessible footprint;
30 @*/
31 public /*@ pure @*/ boolean empty ();
32

33 /*@ public normal_behavior
34 @ ensures \result == size();
35 @ accessible footprint;
36 @*/
37 public /*@ pure @*/ int size ();
38

39 /*@ public normal_behavior
40 @ requires 0 <= idx && idx < size();
41 @ ensures \result == get(idx);
42 @ accessible footprint;
43 @*/
44 public /*@ pure @*/ int get (int idx);
45 }

Listing 9.9 Interface List specification using pure methods and a dynamic frame footprint
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9.3.4.1 Specifying the List Client

Listing 9.10 shows the Client class from Listing 9.7 with dynamic frame spec-
ifications. We have only inserted the additional preconditions in lines 7f.: when
entering method m() of class Client, the invariants of a and b must hold, and there
must not be abstract aliasing between a.footprint and b.footprint. Given this
specification, we are now able to conclude that the postcondition in Line 9 holds, by
using only the code and specifications in Listings 9.9 and 9.10.

1 class Client {
2 List a, b;
3 static int x;
4

5 /*@ normal_behavior
6 @ requires a != b;
7 @ requires \invariant_for(a) && \invariant_for(b);
8 @ requires \disjoint(a.footprint, b.footprint);
9 @ ensures b.size() == \old(b.size());

10 @ ensures \invariant_for(a) && \invariant_for(b);
11 @*/
12 void m() { a.add(23); }
13 }

Listing 9.10 The client from Listing 9.9 specified with dynamic frames

We reach this conclusion as follows. The disjointness of a.footprint and
b.footprint implies that there is no abstract aliasing between a and b before
calling a.add(). Thus, the depends clause of size() guarantees that changing the
locations in the prestate value of a.footprint would not affect b.size(). But
calling a.add() may have an effect on the model field a.footprint itself. But
we know that a.footprint is only changed in an benign way; this is what the
swinging pivots predicate states in line 12 of Listing 9.9. From this we can deduce
that both footprints are still disjoint in the poststate. Overall, we can conclude that
the postcondition in line 9 holds.

Analogously, the depends clause for the class invariant in List guarantees that
\invariant_for(b) still holds after the change, as asserted in line 10. Listing 9.10.
This property holds independently of the concrete implementations of List that may
occur as the dynamic type of List, as long as all these implementations satisfy the
specifications given in the interface.

9.3.4.2 Specifying the ArrayList Implementation

A particular implementation of the List interface is shown in Listing 9.11, which
already appeared earlier. We have now added specifications based on dynamic
frames and made the default constructor explicit. The contents of the dynamic



328 9 Modular Specification and Verification

frame footprint are defined for objects of dynamic type ArrayList through the
represents clause in line 3. This represents clause satisfies the depends clause for
footprint in Listing 9.9, because all locations that its right hand side depends on
are themselves part of the right hand side. If we would omit a in the represents clause,
then the depends clause would be violated: the location this.a would then not be a
member of the value of this.footprint, but changing the value of this location
would still affect the value of the expression this.a[*] and thereby the value of
this.footprint.

The invariant declarations of ArrayList (the implicit clause this.a!=null
plus the one inherited from List) define the represents clause for the implicit mode
field \inv. This represents clause satisfies the depends clause for \inv specified in
Listing 9.9, because it only accesses locations that are part of footprint as defined
in the applicable represents clause for footprint. We do not consider a.length to
be a location here, because it is unmodifiable.

Line 9 of Listing 9.11 gives a postcondition \fresh(footprint) for the con-
structor of ArrayList. This postcondition is satisfied by the implementation of the
constructor: in deviation from the JML reference manual [Leavens et al., 2013],
the this object is considered to be fresh in the postcondition of a constructor,9

and consequently the location this.a is also fresh. By the represents clause of
footprint, its other members are the locations of the array that is stored in a. This
array is freshly allocated.

9.4 Calculus Rules for Modular Reasoning

In Chapter 3, an extensive sequent calculus for JavaDL has been introduced, and
Section 3.7 gives a brief introduction to the concept of abstraction and presents
rules that deal with the two kinds of abstraction relevant for our purposes, loop
invariants and method contracts. In this section, we present advanced rules that
go beyond those shown in Chapter 3. We begin with invariant rules for loops in
Section 9.4.2 and a contract-rule for method calls in Section 9.4.3. These rules
incorporate the concept of dynamic frames outlined in Section 9.3.2. Another central
rule for frame-aware reasoning are dependency rules which allow deducing if two
applications of an observer symbol have the same value by inspection of their
footprints. JavaDL dependency contracts have been introduced in Section 8.2.4,
according proof obligations in Section 8.3.2. This chapter will present in Section 9.4.4
rules that use proved dependency contracts to infer that observer invocations must
have the same value. Finally rules will be stated that allow the expansion of model
field and method definitions in Section 9.4.5.

9 This means, the constructor contract is considered a contract for the entire new call, that includes
object allocation, initialization, and the constructor; see Section 3.6.6.
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1 public final class ArrayList implements List {
2

3 //@ private represents footprint = a, a[*];
4

5 private int[] a;
6

7 /*@ public normal_behavior
8 @ ensures size() == 0;
9 @ ensures \fresh(footprint);

10 @*/
11 public /*@ pure @*/ ArrayList() {
12 a = new int[0];
13 }
14

15 public void add (int elem) {
16 int[] tmp = new int[a.length+1];
17 for (int i= a.length; i > 0; i--)
18 tmp[i] = a[i-1];
19 a = tmp;
20 a[0] = elem;
21 }
22

23 public void remFirst () {
24 int[] tmp = new int[a.length-1];
25 for (int i= 1; i < a.length; i++)
26 tmp[i-1] = a[i];
27 a = tmp;
28 }
29

30 public /*@ strictly_pure @*/ boolean empty () {
31 return size() == 0;
32 }
33

34 public /*@ strictly_pure @*/ int size () {
35 return a.length;
36 }
37

38 public /*@ strictly_pure @*/ int get (int idx) {
39 return a[idx];
40 }
41 }

Listing 9.11 Java class ArrayList implementing the List interface of Listing 9.9

9.4.1 Anonymizing Updates

When modeling abstraction, it is important that the concrete memory state at a point
during execution can be replaced with a fresh unconstrained state. This is needed in
particular when dealing with unbounded loops or with method invocations—both of
which are abstraction by means of an overapproximation (the contract or the loop
invariant).
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In order to be able to continue execution with “any value for x satisfying the
invariant,” for instance, we need to forget the value of x and assume then the invariant
holds. This is done by assigning an unconstrained new value to x in an update. Harel
et al. [2000] suggest to incorporate the notation x :=? into dynamic logic with the
semantics [x :=?]ϕ↔∀x;ϕ for such a forgetting assignment. In JavaDL, we employ
updates and assign to x a fresh unconstrained Skolem constant x′ (of the same type
as x) that may hold any value. We call such updates anonymizing updates. They are
also called random assignment or wildcard assignments in literature.

Heap anonymization, i.e., anonymization of the program variable heap is particu-
larly interesting in the face of dynamic frames: In the abstraction rules in Chapter 3,
we treated heap like any other program variable and anonymized it with a fresh
Skolem variable h′. But having dynamic frames at hand, we can do better now and
only assign fresh values to those locations inside a frame, leaving all locations outside
the frame untouched.

To this end, we use the function anon : Heap×LocSet×Heap→ Heap (whose
semantics was introduced in Figure 2.11 in Section 2.4.5) which does precisely that.
The heap update

{heap := anon(heap,mod,h′)}

ensures that in its scope, the heap coincides with h′ : Heap on all locations in mod
and all not yet created locations and coincides with heap before the update elsewhere.

9.4.2 An Improved Loop Invariant Rule

Other parts of this book describe how a JavaDL loop specification is obtained: Sec-
tion 16.3 provides guidelines for the user to find useful loop invariants, Section 7.9.2
explains how loop specifications can be formulated in JML and Section 8.2.5 de-
scribes how JavaDL loop specification are obtained from the JML specifications.

Here, we assume that a JavaDL loop specification (inv,mod, term) according to
Definition 3.23 is given with loop invariant inv, modifier set mod and termination
witness term. A first rule for dealing with JavaDL loop specification has already been
presented in Section 3.7.2 ignoring the mod and term parts. Here we will remedy
this omission.

The general structure of a loop invariant rule looks like this:

Invariant Initially Valid (INIT)
Body Preserves Invariant (STEP)
Use Case (USE)

Γ =⇒ U [π while(se)p; ω]ϕ, ∆

We assume that the loop condition se is a simple expression and that the loop body
p always terminates normally. How to deal with the general case, that se may not be
simple and p may contain return, continue, or break statements if explained in
Subsections 3.7.2.3 and 3.7.2.4.
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We will comment in detail on the three premisses:

1. In the base case INIT, it is to be proved that the invariant holds in the initial state
of the loop execution;

2. in the step case STEP, it is to be proven that execution of the loop body p in
a state which satisfies the loop invariant reestablishes the invariant; if term 6=
PARTIAL then it has also to be shown that the termination witness term strictly
decreases;

3. in the use case USE we may assume that the invariant holds after the loop has
finished and continue symbolic execution with the remainder program ω .

and end up with the rules loopInvariant and termLoopInvariant in Definitions 9.13
and 9.14.

The base case requires that the invariant is true in the current context spanned by
Γ ,∆ and U .

Γ =⇒U inv, ∆ (INIT)

The information about the execution context encoded in the update U and the
formula sets Γ and ∆ is retrieved by matching the calculus rule against the a sequent
it is applied to.

The step and use cases are to be proved in symbolic states where an arbitrary
number of loop iterations have already been executed, potentially invalidating all
information in the context. The necessary masking of the context can be formalized
by anonymizing as introduced in the last section. This led to the introduction of the
anonymizing update V in the simple loop invariant rule in Section 3.7.2. For the
convenience of the reader we repeat its step case

Γ =⇒U V
(
inv∧ se .= TRUE→ [p]inv

)
,∆ . (STEP0)

In this condition, V anonymizes the variable heap and all local variables which
are potentially modified in the loop body p. As far as the heap is concerned, this
is a very coarse approximation because all locations on the heap are assigned a
fresh unconstrained value. This implies a burden for the specifying person as he or
she must encode into the loop invariant which memory locations the loop does not
change. Therefore, we will now go one step further and incorporate the modifier set
of the loop specification into the rule to limit the anonymization of the heap.

Remember that the loop specification contains a modifier set term mod : LocSet∪
{STRICTLYNOTHING} which models the locations which can be modified by the
loop. If mod 6= STRICTLYNOTHING, we replace the coarse anonymizing update V
in (STEP0) by the more precise anonymizing update

W := {heap := anon(heap,mod,h′)‖b1 := b′1 ‖ . . . ‖bn := b′n} (9.6)

in which b1, . . . ,bn enumerate the local variables that can be modified by the loop
body, and b′1, . . . ,b

′
n are fresh anonymization constants of appropriate type. The heap

is partially anonymized with the fresh values taken from a fresh unconstrained heap
object h′ : Heap.
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The set of locations affected by the anonymizing update cannot be statically
determined, it is the value of the term mod which determines the extension of the
location set. This is why the frames featuring in this approach are called dynamic
frames: The location sets may differ between different states.

Let us have a closer look at the case mod = /0. Unraveling the semantics definition
of anon from Figure 2.11, we see that (despite mod being empty) all fields of objects
not yet created in heap are anonymized. This models that in the code block abstracted
by the anonymization, new objects may be created. This may put a considerable
burden on the verification. In case it is known that the code block does not change
anything and does not create new objects, the according assignable clause of the
method contract or loop specification may be set to \strictly_nothing which will
be translated to the special indicator mod = STRICTLYNOTHING. The corresponding
update then is

W := {b1 := b′1 ‖ . . . ‖bn := b′n}

which is (9.6) without the assignment to heap.
On the other hand, no matter what locations occur in mod the semantics definition

of anon guarantees that no created object may be deleted.
The loop specification (inv,mod, term) guarantees that after an arbitrary number

of loop iterations at most the locations in mod have changed. We have exploited this
fact in the anonymizing updateW just described. On the other hand, we have to prove
that after the next loop iteration still at most the location in mod may change. To this
end, we add the formula frame to the postcondition in the step case premiss. We have
encountered frame already in (8.5) in Section 8.3.1 when the method contract proof
obligation was presented. It serves the same purpose there and here: to ensure that at
most the locations in M are modified:

frame(M) := ∀o∀ f ; o.created@heappre .= FALSE

∨o. f .= o. f @heappre

∨ (o, f ) ∈M
(9.7)

Since the modifies clause mod is to be evaluated in the state before the loop execution
and not in the current state, mod cannot be used directly. Instead, a new program
variable M : LocSet is introduced that captures the modifies set in the prestate by
means of an updateM := {M := mod}

At this intermediate point the step case thus reads:

Γ =⇒UMW
(
inv∧ se .= TRUE→ [p](inv∧ frame(M))

)
, ∆ (STEP1)

The corresponding use case that goes with this step case is the same as the one already
introduced with the simple rule in Chapter 3—but with the refined anonymizing
update W that only masks out mod.

Γ =⇒U W
(
inv∧ se .= FALSE→ [π ω]ϕ

)
, ∆ (USE1)
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One more addition is needed, concerning what we might call free invariants in par-
allel to the free preconditions explained in Section 8.2.4. These are well-formedness
statements that we need not verify since they are automatically maintained by the
semantics of the Java language. But it is helpful, and in many cases vital, to have them
explicitly available at the beginning of each loop iteration. For the local variables
a1, . . . ,am in whose scopes the loop lies we define:

locVarInRange :=
m∧

i=1



ai
.= null∨a.created .= TRUE

if ai is of reference type
inInt(ai) if ai is of type int
inByte(ai) if ai is of type byte
... likewise for short, long, char

disjoint(ai,unusedLocs(heap))
if ai is a ghost variable of type LocSet

true otherwise

(9.8)

This definition of locVarInRange parallels (8.3) where the same is assumed about
method arguments in a method invocation.

locVarInRange formalizes that all variables ai must have reachable values, i.e.,
they must not refer to noncreated objects, their value must be in range, and they must
not hold location sets that contain locations belonging to noncreated objects. We add
locVarInRange to the INIT premiss to be shown next to the invariant. If this property
holds in the initial state of the loop, then the semantics of Java guarantees that it is
preserved by arbitrary loop iterations. It may thus be used as an assumption in the
second and third premiss.

We have now assembled all we need to formulate the loop invariant rules. We
mention once again that the rules are presented under the assumption that the loop
condition is a simple expression, and that loop body does not throw exceptions and
does not use return, break and continue statements. The rule can be extended to
handle these technicalities in the same way as in Section 3.7.2.

Since the sequent context (Γ ,∆ ,U ) is maintained by this invariant rule, we omit
it in the following rule schema as explained in Section 3.5.1.

Definition 9.13 (Rule loopInvariant without Termination). Let (inv,mod, term) be
a loop specification (see Definition 3.23) with term = PARTIAL, se a simple expres-
sion (see Table 3.2) and pnorm a program fragment (see Definition 3.2) that does
never throw an exception and does not contain break, continue, return statements.

The rule loopInvariant is defined as

=⇒ inv∧wellFormed(heap)∧ locVarInRange
=⇒MW

(
inv∧wellFormed(h′)∧ locVarInRange∧ se .= TRUE→

[pnorm](inv∧ frame)
)

=⇒W
(
inv∧wellFormed(h′)∧ locVarInRange∧ se .= FALSE→ [π ω]ϕ

)
=⇒ [π while(se) { pnorm } ω]ϕ



334 9 Modular Specification and Verification

where:
• locVarInRange is defined in (9.8),
• frame is defined in (9.7),
• a1, . . . ,am ∈ ProgVSym are the local program variables in whose scopes the

loop lies (except for heap),
• b1, . . . ,bn ∈ ProgVSym are the program variables that are potentially modified

by the loop body p (except for heap),
• h′, b′1, . . . ,b

′
n are fresh constant symbols of appropriate type,

• M = {M := mod},

• W =

{
{b1 := b′1 ‖ . . . ‖bn := bn} if mod = STRICTLYNOTHING

{heap := anon(heap,mod,h′)‖b1 := b′1 ‖ . . . ‖bn := b′n} otherwise.

For the heap, assuming wellFormed(heap) in the scope of the update W would
amount to assuming wellFormed(anon(heap,mod,h)). Assuming wellFormed(h′)
is shorter and simpler, in particular because this term does not depend on heap.

We have not considered termination so far. Rule loopInvariant is one for the ‘box’
modality. In the corresponding invariant rule for the ‘diamond’ modality, we are
required to ensure that the loop terminates. This incorporates two things: (1) every
loop iteration terminates, and (2) there is no program execution with infinitely many
loop iterations. The first goal can be ensures by using the diamond modality in the
step case and the second is established through a well-founded relation and the
term component of the loop specification. The well-founded relation ≺: Any×Any
has already been introduced in Section 9.1.4 and can be reused here. If every loop
iteration makes the variant term smaller, no infinite repetitions are possible.

Definition 9.14 (Rule termLoopInvariant). Let (inv,mod, term) be a loop specifica-
tion (see Definition 3.23) with term 6= PARTIAL, se a simple expression (see Table 3.2)
and pnorm a program fragment (see Definition 3.2) that does never throw an exception
and does not contain break, continue, return statements.

The rule termLoopInvariant is defined as

=⇒ inv∧wellFormed(heap)∧ locVarInRange
=⇒T MW

(
inv∧wellFormed(h′)∧ locVarInRange∧ se .= TRUE→
〈pnorm〉(inv∧ frame∧ term≺ termpre)

)
=⇒W

(
inv∧wellFormed(h′)∧ locVarInRange∧ se .= FALSE→ 〈π ω〉ϕ

)
=⇒ 〈π while(se) { pnorm } ω〉ϕ

where:
• all conditions from Definition 6 apply,
• termpre : Any is a fresh program variable,
• T = {termpre := term} is the update that stores the value of term before the

loop body into variable termpre.

One may wonder why in Definitions 9.13 and 9.14 wellFormed(heap) has been
added to the proof obligations in the INIT case. After all this can never be violated by
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a Java program. The explanation is that a user might inadvertently produce a proof
state e.g., by the cut rule, where wellFormed(heap) might not hold.

Lemma 9.15 below establishes a formal connection between the two framing
formalisms using frame and anon respectively. This connection is the reason why
it is admissible to use anon for anonymizing the locations in the modifies clause,
while using frame in the proof obligation for verifying the correctness of the modifies
clause in the second premiss.

Lemma 9.15 (Connection between frame and anon). Let mod ∈ TrmLocSet and
frame be as in (9.7).

Let furthermore noDeallocs(h1,h2) be the formula

unusedLocs(h2) ⊆̇ unusedLocs(h1)
∧ selectAny(h1,null,created) .= selectAny(h2,null,created) .

Then the following holds:

|= (frame(mod)∧noDeallocs(heappre,heap))
↔ heap .= anon(heappre,{heap := heappre}mod,heap)

A proof of Lemma 9.15, an easy comparison of the semantic definition of anon
and the frame formula—though with many case distinctions—can be found in [Weiß,
2011, Appendix A.5]. Roughly speaking, the lemma gives a necessary and sufficient
condition for the equation h2 = anon(h1,M,h2). This equation describes a situation
where for all locations that h2 does not overwrite h2 and h1 coincide.

The formula noDeallocs(heappre,heap) expresses that all objects created in the
prestate heap array are still created in the current heap array (and that createdness
of null does not change). Obviously, this is a very essential property of the Java
memory model. The impossibility of deallocating created objects is also built into the
semantics definition of anon, see Figure 2.11. Lemma 9.15 is a main ingredient in
the proof of Theorem 9.17, which establishes that the loop invariant rules are sound.

But why are there two mechanisms for formalizing the framing condition in the
first place? One is used where framing needs to be shown, and the other one is used
in the use case. The loop invariant rules uses both mechanisms. The reason is that
having an explicit function symbol to refer to the updated state allows us to formulate
heap anonymization as an update.

The following lemma shows that both notions are semantically equivalent: heap
anonymization using anon is as good as total anonymization together with assuming
the condition frame.

Lemma 9.16. Let noDeallocs be like in Lemma 9.15, frame as defined in (9.7) and
ϕ ∈ DLFml a formula in which M does not occur. Then the following formula is
universally valid.
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∀Heap h;(noDeallocs(heap,h)→

{heappre := heap‖heap := anon(heap,mod,h)}ϕ)
)

↔
(
∀Heap h;(noDeallocs(heap,h)→

{heappre := heap‖heap := h‖M := mod}(frame(M)→ ϕ))
)

We have formalized this lemma as a JavaDL formula and proved it using the KeY
system.

Theorem 9.17. Rule termLoopInvariant is sound.

A variant of Theorem 9.17 for the ‘box’ modality is proven by Weiß [2011, Ap-
pendix A.6].

9.4.3 A Rule for Method Contracts

In Section 8.3.1 we came across proof obligation formulas whose validity implies the
correctness of a method contract. In this section, we will encounter rules which make
use of method contracts essentially by abstracting away from the method invocation
by assuming its contract’s postcondition instead.

These two concepts go hand in glove: The rule useMethodContract shown in the
following is sound if the corresponding method contract proof obligation is a valid
formula.

A rule that makes use of a functional method contract is defined in Definition 9.18
below. We show the general case of a nonstatic method whose return type is not
void. The rules for void or static methods are similar, but lack the assignment to x
or the references to self and se, respectively. The presented rule is a refinement
of the rule simpleContract presented in Section 3.7.1. It incorporates the issues of
framing and termination which had been factored out in Chapter 3.

Like there, the rule makes a few assumptions about the receiver and the arguments
of the method call: They are assumed to be simple expressions (see Table 3.2 for
a listing of simple expressions), requiring no further symbolic execution. The sym-
bolic execution rules methodCallUnfoldTarget and methodCallUnfoldArguments
establishing this property have been presented in Section 3.6.5.4.

Definition 9.18 (Rule useMethodContract). Let R m(T1 p1, ..., Tn pn) be a
method defined in class or interface C, se ∈ DLTrmC′ a simple expression of type C′,
a1 ∈ DLTrmT1 , . . . ,an ∈ DLTrmTn simple expressions, x : R a program variable. Let
(pre,post,mod, term) be a functional method contract for m stated in a class C′′ such
that C′ vC′′ vC with term 6= PARTIAL.

The rule useMethodContractTotal is defined as follows:
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=⇒ V (pre∧wellFormed(heap)∧paramsInRange)
=⇒ V (term≺ mby)
=⇒ V (self 6 .= null∧self.created .= TRUE)
=⇒ V W (post∧wellFormed(h)∧ reachableRes∧exc .= null→

〈π x=res; ω〉ϕ)
=⇒ V W (post∧wellFormed(h)∧ reachableRes∧exc 6 .= null→

〈π throw exc; ω〉ϕ)
=⇒ 〈π x = se.m(a1, . . . ,am); ω〉ϕ

where:
• paramsInRange ∈ DLFml is defined in (8.3),
• reachableRes = inRangeR(res)∧ inRangeThrowable(exc),
• V = {self := se‖p1 := a1 ‖ . . . ‖pn := an},
• W = {heappre := heap‖heap := anon(heap,mod,h)‖res := r‖exc := e

)
is

an anoymizing update with h : Heap,r : R,e : Throwable∈ FSym fresh symbols.
If mod = STRICTLYNOTHING, then the heap content is not modified by the
method, and the assignment to heap is removed.

The formulas paramsInRange and reachableRes play the same roles as the for-
mula locVarInRange in the loopInvariant rule of Definition 9.13. Similar to that, the
update W anonymizes the locations that may be changed by the call to m by setting
them to unknown values with the help of the fresh constant symbol h. It also sets the
variables res and exc to unknown values denoted by the fresh constant symbols r
and e, respectively. As before, an empty modifies clause still gives rise to anonymiza-
tion. Specifying the method as strictly pure, however, leads to the update W leaving
the heap untouched. The update V instantiates the variables used in the contract with
the corresponding terms in the method call statement.

In the first premiss, the precondition has to be established. According to our
understanding of a contract this is a necessary requirement to use the postcon-
dition as an approximation of the method call. In addition the proof obligations
wellFormed(heap) and paramsInRange have to been dispatched. The reason is the
same as in Rule 9.13: to save-guard against inadvertent violation of these conditions
by the user, e.g., by the cut rule.

Termination is addressed in the second premiss; the termination witness of the
called method must be smaller than the termination witness of the current method
context stored in the program variable mby (which is set in the correctness proof
obligations, see Definition 8.4). The next premiss requires establishing that the
receiver object se is created and different from null.

Unlike the rule methodContractPartial presented in Figure 3.7 in Section 3.7.1
handling the case of a null receiver by throwing an exception, this rule strictly
requires nonnull receiver and is thus weaker but proves way more efficient in practice.
There is a taclet option to control which behavior is taken.

The last two cases effect that method invocation is replaced by using the postcon-
dition. In the fourth premiss, the method call is replaced by an assignment of the
result to x, under the assumption that no exception has been thrown (exc .= null).
If the call raises an exception (exc 6 .= null) in the last premiss, the control flow of
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the program continues with raising this exception (see Section 3.6.7). In both cases,
the control flow continues in the context of π...ω . Unlike the postcondition post the
formulas wellFormed(h) and reachableRes need not be proved. The semantics of
Java guarantees that they are true after termination of any program.

In the KeY implementation, the first two premisses have been combined into one.

Theorem 9.19. Rule useMethodContract is sound, provided that for all subtypes
C′ vC of the type C in which method m has been declared, the proof obligation for
functional correctness from Definition 8.4 is valid.

A proof of Theorem 9.19 can be found in [Weiß, 2011, Appendix A.7]. The proof is
similar to the proof of Theorem 9.17 in many respects. In particular, it also makes
use of Lemma 9.15, which states that the heap is unaffected in all locations outside
mod if and only if frame condition (9.7) is valid for mod.

Using contracts for constructors works essentially the same as in Definition 9.18,
except that (1) the first active statement in the conclusion is a constructor invocation
of the form x = new C(a′1, . . . ,a

′
m); (2) the propositions about self in the first

premiss are omitted, (3) in the update V the subupdate self := se is replaced with
self := x, and (4) the second premiss contains an additional assumption besides
post∧wellFormed(h)∧ reachableRes, namely the formula (9.9) below, which states
(i) that the dynamic type of the created object is C, (ii) that the object was not created
previously, and (iii) that it is created in the current heap.

exactInstanceC(x)
.= TRUE

∧x.created@heappre .= FALSE

∧x.created .= TRUE
(9.9)

When a method contract is attached to a constructor, the subject of this constructor
contract is the entire object allocation and initialization, see Section 3.6.6. This means,
it refers to an allocation statement of the form new C(. . .). It does not constrain
the behavior of nested constructor invocations via this(. . .); nor super(. . .);
statements. For this reason, there are no contracts available for calls to this() or
super().

Using the contract of a recursive method mr is in no way different from using the
contract of a nonrecursive method. This is, however, not true when in the course of
proving the contract of mr this contract is used for one of the recursive calls. The
KeY system will detect this circularity and only allow it if the contract contains a
measured_by clause. See Section 9.1.4 for details on dealing with recursion.

Traditionally, the concept of a contract applies to methods (and constructors)
only, which represent natural software modules. However, the concept can be used
to modularize the target program further by providing a contract to an arbitrary
code block within a method body. Rule useBlockContract in Section 13.5.1.3 is an
adaptation of the method contract rule.



9.4. Calculus Rules for Modular Reasoning 339

9.4.4 A Rule for Dependency Contracts

Dually to method contracts which describe the effects of a method, dependency
contracts describe what affects the value of observer expressions. The concept
of a JavaDL dependency contract (pre, term,dep) has already been introduced in
Definition 8.3, its associated correctness proof obligation in Section 8.3.2. Intuitively,
this formula establishes that under assumption of a precondition pre, the value of
an observer depends at most on the locations in the location set dep. Recursive
definitions for dep are allowed. In this case the termination witness term is used to
provide well-foundedness of the definition.

In this section, we show how dependency contracts can be used to show that
observer terms are equal even if examined in different heap contexts. In contrast
to useMethodContract, the rule useDependencyContract is applied on a term or
formula in the logic, not on a program modality with a method call as the active
statement.

The underlying logical idea behind the dependency contract boils down to the
following implication which should give you an intuition of its semantics.

frame(dep)∧{heap := heappre}pre∧well∧noDeallocs(heappre,heap)→
obs(heappre,p1, . . . ,pn)

.= obs(heap,p1, . . . ,pn)
(9.10)

The implication states that an observer symbol obs yields the same value if evaluated
in two heaps heappre and heap if the two heaps and the arguments pi of the observer
satisfy the following conditions in the premiss of (9.10):

1. heappre and heap must coincide on the dependency set dep, see (9.11) below,
2. the precondition pre of the observer must be satisfied,
3. the two heaps and all arguments must be well-formed, see (9.12) below,
4. there is no deallocation; all objects allocated in heappre are still allocated in

heap.

We have encountered the formula frame which captures the equality of the lo-
cations in dep already in (9.7). We need to formalize here that everything but the
locations in dep may change, hence we use the complement dep of dep:

frame(dep) = ∀o∀ f ;
(

o.created@heappre .= FALSE

∨o. f .= o. f @heappre

∨¬(o, f ) ∈ {heap := heappre}dep)
(9.11)

The well-formedness condition well includes the two heaps and all parameters and
reuses the predicate paramsInRange introduced in (8.3):

well = wellFormed(heappre)∧wellFormed(heap)∧paramsInRange (9.12)

The property noDeallocs that no objects are ever deleted from the heap has been
introduced in Lemma 9.15.
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We now introduce the rule useDependencyContract which formalizes the infor-
mal semantics explanation outlined in (9.10). It adds an assumption to the sequent that
is itself an implication with left-hand side guard. The right-hand side relates the value
of an observer symbol obs for the heaps denoted by the terms hpre,hpost ∈ TrmHeap,
where hpost results from hpre through a cascade of applications of the function sym-
bols store, create, and anon. Such cascades are the result of symbolic execution of
heap manipulating programs with successive update simplification. It is instructive
to compare the rule useDependencyContract with the proof obligation of Defini-
tion 8.5.

Definition 9.20 (Rule useDependencyContract).

Γ ,guard→ obs(hpre,o,a1, . . . ,an)≡ obs(hpost,o,a1, . . . ,an) =⇒ ∆

Γ =⇒ ∆

where:
• obs ∈ FSym (or obs ∈ PSym) is an observer symbol obs : Heap×E×T1× . . .×

Tn→ T (or obs : Heap×E×T1× . . .×Tn, respectively) with n ∈ N
• (pre,dep, term) is a dependency contract for obs,
• o ∈ TrmE ,a1 ∈ TrmT1 , . . . ,an ∈ TrmTn are valid arguments for obs.
• hpost = fk( fk−1(. . .( f1(hpre, . . .)))) with f1, . . . , fk ∈ {store,create,anon}
• ≡ stands for .= if obs ∈ FSym and for↔ if obs ∈ PSym
• guard is the formula

P{heappre := hpre ‖heap := hpost}frame(dep)
∧P{heap := hpre}pre

∧wellFormed(hpre)∧wellFormed(hpost)
∧P paramsInRange∧o 6 .= null∧o.created .= TRUE

in which the updateP = {p1 := a1 ‖ . . . ‖pn := an} assigns the concrete argu-
ments to the formal parameters of obs.

Besides the property that only certain locations change, the equality of the observer
applications in (9.10) requires the heap evolution does not deallocate previously
created objects; as for instance formalized in Lemma 9.15. For the state change from
hpre to hpost, the absence of deallocations is guaranteed by the fact that the latter
is derived from the former by invocations of the function store, create and anon.
Their semantics ensure that no object is ever deallocated. This is formalized in the
following lemma.

Lemma 9.21 (No deallocations). Let hpost ∈ TrmHeap with

hpost = fk( fk−1(. . .( f1(hpre, . . .))))

for some f1, . . . , fk ∈ {store,create,anon} with 1 ≤ k and for some hpre ∈ TrmHeap.
Then the following holds:

|= noDeallocs(hpre,hpost)
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The lemma—is also needed for the proof of Theorem 9.22 below—is the reason
why noDeallocs can be excluded from the condition guard in Definition 9.20.

Theorem 9.22. Rule useDependencyContract is sound, provided that for all sub-
types E ′ v E of the static receiver type E of obs, the proof obligation for dependency
contracts from Definition 8.5 for pure methods and the obligation from Definition 9.12
for general observer symbols, respectively, is valid.

Proofs for this theorem and for Lemma 9.21 can be found in [Weiß, 2011, Ap-
pendix A].

This is plausible since the proof obligation for dependency contracts (Defini-
tion 8.5) expresses that the observer obs does not depend on locations outside dep.
If the formula guard in (9.12) is valid, i.e., the difference between the heaps hpre

and hpost lies only in dep, then we can conclude that the value of obs is the same for
both heaps.

Automatic application of the useDependencyContract rule is not as straightfor-
ward as for other rules. The rule can be applied to many different combinations
of hpre and hpost which increases the search space considerably. To avoid a large
number of ‘unsuccessful’ applications where guard cannot be proven and where the
application thus does not contribute to the proof, a strategy that proves to work well
in practice is to apply the rule only lazily (once all other means of advancing the
proof have been exhausted), and only for choices of hpre that already occur on the
sequent. Best results for an automatic rule application are obtained whenever hpre is
a constant and appears in an equation together with hpost in the antecedent.

An application of the useDependencyContract rule will be demonstrated in the
course of verifying the List example in Section 9.5.

9.4.5 Rules for Class Invariants

As outlined in Section 9.2.1.3, in JavaDL, class invariants are realized by means
of a special model field \inv whose counterpart in JavaDL is the implicit observer
symbol Object::inv ∈ PSym.

The definition of the class invariant of a type T collects all class invariant declara-
tions in T and the public invariants of T ’s supertypes, their combination is essentially
the represents clauses for the model field \inv. If more than one object invariant
declaration is relevant, e.g., invariant e1; . . . invariant en, the collection of
the individual invariant declarations stands for a single represents clause

represents \inv = e1 && . . . && en . (9.13)
This represents clause defines the meaning of the observer Object::inv : Heap×

Object for objects exactly of type T . The rules for expanding represents clauses
(repD,m from Section 9.2.1.4) and for dependency contracts (useDependencyContract
from the last section) can be used in proofs like for any other model field.

One property sets class invariants aside from arbitrary model fields: While for
general model fields, the definition may change arbitrarily in subclasses, public class
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invariants are inherited to subtypes according to the principle of behavioral subtyping.
The invariant can only be changed by adding further clauses. The implicit represents
clause from (9.13) thus enumerates all clauses in the current class and all clauses
inherited from its super types.

The following classInv j
T rule allows inferring an individual invariant clause

invariant e j present in type T if the invariant Object::inv(h,o) is known to
hold for the object o ∈ TrmT .

Object::inv(h,o), {heap := h‖self := o}be jc =⇒
classInv j

TObject::inv(h,o) =⇒

Note that this rule10 can only be applied if Object::inv(h,o) occurs in the antecedent,
i.e., under the assumption that the invariant holds. It can be applied for any object
o ∈ TrmT of type T also if it belongs to one of T ’s subtypes. Unlike the represents
axiom repD,m, it does not require that o is exactly of type T .

Rule classInv j
T only adds a consequence of the invariant to the sequent, not its

definition. The entire invariant can only be soundly added when the dynamic type T
of the ‘receiver’ object o is known. In these cases, the rewrite rule repSimpleD,m for
represents clauses can be used to replace an invariant by its definition:

Object::inv(h,o) 
n∧

j=1

be jc

if exactInstanceT (o) .= TRUE occurs in the antecedent

In many cases, in particular when conducting modular proofs, the definition of
the invariant cannot be fully expanded because its actual definition is unknown
to the current context. When modularly reasoning that an invariant still holds af-
ter a modification of the heap, dependency contracts can be valuable. When both
the formulas Object::inv(h,o) and Object::inv(h′,o) appear in the sequent, rule
useDependencyContract can be applied to reduce one to the other.

Example 9.23. Let us turn back to the List interface outline in Listing 9.9 whose
sole class invariant in line 5 states that the size of a list is nonnegative. Assume we
have a program variable al of type ArrayList (Listing 9.11), and we know that the
invariant for the list al is satisfied, i.e., that Object::inv(heap,al) is true.

Then the rule classInv1
List allows us to deduce that List::size(heap,al) ≥ 0

since the invariant clause is inherited from List to ArrayList.
However, to establish that the invariant for al holds, it does not suffice to show this

property. The array list class has an additional (implicit) invariant ¬self.a .= null
which also needs to be proved. If exactInstanceArrayList(al)

.= TRUE is known,
then these two properties make up the definition of the invariant.

When reasoning modularly, on the other hand, there might exist a further subtype
of ArrayList (which is not declared final) which has an invariant definition which

10 The actual rule name used in the KeY prover fits the template
Partial_inv_axiom_for_JML_class_invariant_nr_ j_in_T .
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differs from the one in ArrayList. This prohibits the calculus from replacing the
invariant symbol by the collection of known invariant clauses—there might be more,
yet unknown, clauses.

There are few situations in which a specifier wants to constrain implementation
details to the enclosing class. In such cases, a class invariant declaration intentionally
should not be inherited by the refining subclasses. To distinguish between class
invariant declarations subject to inheritance and local declarations, the former can be
declared as public invariant and the latter as private invariant. By default,
class invariants are private.

9.5 Verifying the List Example

This section is a continuation of Section 9.3.4. We assume a list implementation
according to the structure shown in the class diagram in Figure 9.1. The program that
we consider contains the interface List from Listing 9.9 annotated with dynamic
frames and a class Client. In this modular proof scenario, we do not consider
specific implementations of the List interface, such as LinkedList or ArrayList,
that were presented above. All reasoning can be based on the interface specification
alone. As an example for the verification of JML specifications with dynamic frames,
we consider a proof for the method m of the Client class:

/*@ normal_behavior
@ requires \invariant_for(list);
@ requires \disjoint(list.footprint, ((Client)null).*);
@ requires 0 < list.size();
@*/

static void m(List list) {
x++;
list.get(0);

}
The JML method contract is translated to a JavaDL method contract where the
precondition pre, the postcondition post and the modifies clause mod are:

pre = list.inv∧disjoint
(
list.footprint,allFields((Client)null)

)
∧0 < list.size()∧list 6 .= null

post = exc .= null

mod = allLocs\unusedLocs(heap)

To ease the presentation of the more bulky formulas of the concrete example, we
employ a few self-explanatory abbreviations in this subsection and write ∈,∩,\, . . .
instead of elementOf ,union,setMinus, . . . .

The corresponding proof obligation from Definition 8.4 is:
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list.inv∧disjoint
(
list.footprint,allFields((Client)null)

)
∧0 < list.size()∧list 6 .= null

∧wellFormed(heap)∧ (list .= null∨list.created .= TRUE)
→{heappre := heap}〈exc = null;

try { self.m(list); }

catch(Exception e) { exc = e; }〉(
exc .= null

∧∀Object o;∀Field f ;
((o, f ) ∈ {heap := heappre}(allLocs\unusedLocs(heap))

∪ unusedLocs(heappre)

∨ selectAny(heap,o, f ) .= selectAny(heappre,o, f )))
)

(9.14)

Note that the method does not return a value, and that thus the assignment of the
returned value to the program variable res is omitted. The following invariant axiom
rule of Section 9.4.5 is visible when proving the validity of formula (9.14)

• The object invariant declaration ‘public invariant 0 <= size()’ in List
gives rise to an inv axiom for inv on objects of type List, as discussed in
Section 9.4.5 and in particular in Example 9.23:

Γ , inv(h, list), {heap := h‖self := list}
(
0≤ self.size()

)
=⇒ ∆

Γ , inv(h, list) =⇒ ∆

where list is a placeholder for a term of type List (or of a subtype). The axiom
is visible in the context of Client because of the public visibility of the
underlying invariant declaration.

The structure of a proof for the proof obligation is shown in Figure 9.4. Starting
from the root sequent ‘=⇒ f ormula(9.14),’ the first steps are simplifying the sequent
and applying nonsplitting first-order rules (indicated as ‘FOL’ in the figure), which
leads to the following sequent:

list.inv,
allFields(null)∩list.footprint .= empty,
0 < list.size(),
wellFormed(heap),
list.created .= TRUE,

self.created .= TRUE


Γ

=⇒
list .= null,

〈exc = null;

try { Client.m(list); }

catch(Exception e) { exc = e; }〉(exc .= null)
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root
FOL

method call
SE

pre post

useMethodContract (list.get(0))

0 < list.size list.inv well-formed

FOL
SE

*
uDC (list.size) uDC (list.inv) FOL *

* *
FOL FOL

Figure 9.4 Structure of proof for the method contract of method m in class Client

The formula disjoint
(
list.footprint,allFields(self)

)
has been reduced to the

formula allFields(null)∩ list.footprint .= empty.The negated occurrence of
the formula list .= null in the antecedent has been replaced by the nonnegated
occurrence in the succedent via the notLeft rule. The formula frame below the
modality has vanished entirely, because it holds trivially due to the modifies clause
being everything. Subsequently, the update heappre := heap has been eliminated
using the dropUpdate2 rule of Table 3.1, because heappre no longer occurred in its
scope.

Next, we start symbolic execution of the program inside the diamond modality,
indicated as ‘SE’ in Figure 9.4. As one of the first steps of symbolic execution,
the body of the method m being verified is inlined as described in Section 3.6.5.
Eventually, symbolic execution reaches the method call ‘list.get(0)’ inside m().
This call is dispatched using its normal_behavior JML contract by applying the
useMethodContract rule of Section 9.4.3. The application of useMethodContract
splits the proof into four branches. We consider here only the two branches for
1. proving the precondition (‘pre’ branch) valid and 2. continuing after normal
termination using the method’s postcondition (‘post’ branch). The other branches
close trivially.

• After applying the update w to the formula below it, the ‘pre’ branch is:

Γ =⇒
list .= null,

{exc := null‖heap := store(heap,null,Client::$x,Client.x+1)}(
0≤ 0∧0 < list.size()∧list.inv∧wellFormed(heap)

∧list 6 .= null∧list.created .= TRUE
)
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where Γ is the same antecedent as before. Closing the ‘pre’ branch requires
showing that the six conjuncts below update hold. The first conjunct 0≤ 0 holds
trivially. For the other conjuncts, we consider a further split of the proof tree into
three subbranches, where the first one corresponds to ‘0 < list.size(),’ the
second one to ‘list.inv,’ and the third one to ‘wellFormed(heap)∧ list 6 .=
null∧list.created .= TRUE):’

– “0 < list.size().” This branch is:

Γ =⇒
list .= null,

0 < size
(
store(heap,null,Client::$x,Client.x+1)},list

)
The sequent now contains both the term size(heap,list) (inside Γ )
and the term size

(
store(heap,self,x,self.x+1),list

)
. This triggers

an application of the useDependencyContract rule of Section 9.4.4 (indi-
cated as uDC in Figure 9.4), where we choose hpre = heap and hpost =
store(heap,null,Client::$x,Client.x + 1)}. The rule uses the de-
pendency contract for size generated out of the JML depends clause
‘accessible footprint’ in line 9 of Listing 9.9. It adds the formula
guard→ equal to antecedent, where the subformula guard (after some sim-
plification) is:

wellFormed(heap)

∧wellFormed
(
store(heap,null,Client::$x,Client.x+1)

)
∧list.inv∧list 6 .= null∧list.created .= TRUE

∧
(
allFields(null)∩list.footprint .= empty

)
All conjuncts of guard follow directly from the rest of the sequent. The
formula equal is:

size(heap,list) .=

size
(
store(heap,null,Client::$x,Client.x+1),list

)
Because Γ demands that 0 < size(heap,list) and the succedent con-
tains 0 < size

(
store(heap,null,Client::$x,Client.x+1),list

)
, the

information given by equal is enough to close this branch of the proof.
– “list.inv.” The branch is:

Γ =⇒
list .= null,

inv
(
store(heap,null,Client::$x,Client.x+1),list

)
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The sequent now contains the formulas inv(heap,list) (inside Γ ) and
inv
(
store(heap,null,Client::$x,Client.x+1),list

)
. The proof con-

tinues as on the “0 < list.size()” branch above, except that we apply
the useDependencyContract rule for inv instead of for size().

– ‘wellFormed(heap)∧list 6 .= null∧list.created .= TRUE.’ This branch
is easy to close, using propositional reasoning only.

• After some simplification, the “post” branch is:

Γ =⇒
list .= null,

{exc := null‖heap := store(heap,null,Client::$x,Client.x+1)}
{heap := anon(heap, ,h)‖exc′ := e}(

exc′ .= null∧ (exc′ .= null→ list.inv)

∧ (instanceException(exc′)→ (false∧list.inv))

∧wellFormed(h)

→ 〈try { method-frame(source=m(List)@Client):{} }

catch(Exception e) { exc = e; }〉(exc .= null)
)

where exc′ :Exception∈ ProgVSym is the variable used in the applied contract
for get, and where the constant symbol e : Exception ∈ FSym are fresh. The
remaining program is basically a try-catch with an empty try body. Symbolic
execution finishes without entering the catch block, and hence, excis still null
afterwards, which allows us to close the branch.

This concludes the example proof for the method contract mctm. The proof shows
that the implementation of method m in Client satisfies the contract mctm, provided
that all implementations of get in subclasses of List satisfy the normal_behavior
method contract for get, and provided that all implementations of size() and inv
in subclasses of List satisfy the respective dependency contracts.

9.6 Related Methodologies for Modular Verification

Data Groups

KeY’s dialect of JML uses dynamic frames whereas standard JML supports data
groups. Data groups enable the specification of modifies and depends clauses while
leaving a certain amount of freedom to implementations about the actual locations
that are modified or read. Inclusion of a location into a data group can either be static
(using data group inclusions [Leino, 1998] via in) or dynamic (via maps . . . \into
clauses). Static inclusion of a field adds the locations of the field of all instances to
the data group. This makes membership checking easy, but is little suited for dynamic
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structures. Dynamic inclusion allows a data group of an object to contain locations
of other objects and is suitable for dynamic data structures.

Due to dynamic inclusion, the usage of JML’s data groups is unsuitable for
modular verification as it cannot be known locally whether a location belongs to a
data group or not. This may depend on the subclasses. Solutions by imposing global
restrictions on the usage of data groups in programs have been proposed by Leino
et al. [2002], but are not part of the standard.

Techniques Related to Dynamic Frames

KeY-JML has been inspired by and is very closely related to the dynamic frames
based version of the Spec# specification language [Barnett et al., 2005a] that has
been proposed by Smans, Jacobs, Piessens, and Schulte [2008]. The main difference
is that their language operates on pure functions (and does not support model fields).
The advantage is uniformity, but pure method bodies are not allowed to contain
specification-only features like quantifiers.

As an extension of their language, Smans et al. propose an implicit framing field
footprint which is used as default value in modifies and depends clauses. This
approach could be adopted in KeY and JML as well.

Another relative of dynamic frames in JML is the programming and verification
language Dafny by Leino [2010]. In Dafny specifications, dynamic frame footprints
usually occur as ghost fields of type ‘set of objects’. Frame specifications in Dafny are
thus coarser (all locations of an object are considered), but reasoning is simpler than
with arbitrary location sets. Much like with the model field \inv in KeY-JML, Dafny
specifications encode invariants by introducing a Boolean pure function Valid.

Ownership

Müller et al. [2003] describe a version of JML that features abstraction dependencies
in place of data groups. Ownership types [Clarke et al., 1998], more precisely, the uni-
verse types of Müller [2002], can be used to make dependency specifications modular.
Roughly, the idea of ownership is to structure the domain of objects hierarchically
into a tree of disjoint contexts. An ownership type system guarantees statically that,
at run-time, every object is only ever referenced from within its context or from its
owner object. Ownership can thus prevent unwanted aliasing and abstract aliasing.

A widely used ownership based approach to object invariants is the Spec# method-
ology of Barnett et al. [2004], also known as the Boogie methodology. Here, objects
are furnished with a ghost field st representing their state concerning the invariants.
The value of st is either ‘valid’ or ‘invalid’. If an object o is valid, all objects owned
by o are valid, and the invariants of o is guaranteed to hold. If it is invalid, its owner
must have been invalidated, too. Invariants may refer only to locations of this and
of owned objects, and object fields can only be modified when the object has been
put in the ‘invalid’ state.
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The methodology also addresses the frame problem: Code cannot compromise
the invariant of valid objects. Even if classes may be unknown at verification time,
objects are guaranteed to be valid unless they are in the process of being worked on.

A more recent development is the ownership-related invariant protocol semantic
collaboration by [Polikarpova et al., 2014]. It is a generalization which weakens the
hierarchical principle of ownership and allows for more liberal structures. This is
achieved by introducing new relationships subjects and observers: the objects
in subjects may be used in invariants even if they are not strictly below in the
ownership hierarchy. Conversely, the subjects must require that all its observers
are invalidated when modified. Semantic collaboration can be used to specify and
verify design patterns like the observer or visitor pattern which are difficult to treat
with ownership alone.

The authors of Spec# report that the Spec# methodology proved too restrictive for
some programs they encountered [Barnett et al., 2011]. On the other hand, the VCC
project turned back to an ownership based approach, after reportedly encountering
limiting performance problems with an approach based on dynamic frames [Cohen
et al., 2009].

An advantage of ownership based specification and verification techniques over
the very liberal technique of dynamic frames is that the framework clearly fixes
which invariants can be expected to hold and need to be established. This results
in clearer and shorter specifications. Dynamic frames, on the other hand, are not
restricted to strictly hierarchical structures but their liberal framework allows for any
kind of interaction and interdependencies between objects and their invariants. While
this relieves a burden as far as the layout of data structures is concerned, it requires
the specifier to write more extensive specifications.

Separation Logic

Separation logic [Reynolds, 2002, O’Hearn et al., 2001, 2009] is a nonclassical
extension to Hoare logic. Similar to the dynamic frames approach, it allows ex-
plicit reasoning about the heap, which makes it suitable for reasoning about pointer
programs and about concurrent programs. Separation properties are however not
formulated explicitly using location sets. They are rather blended with functional
specifications, using special ‘separating’ logical connectives. Instead of modifies
clauses and depends clauses, framing information is inferred from a method’s precon-
dition: only locations mentioned by the precondition may be read or written by the
method. This leads to specifications that tend to be shorter, but perhaps less intuitive,
than dynamic frames specifications.

Abstraction in separation logic is achieved by abstraction predicates [Parkinson
and Bierman, 2005] which serve a similar purpose as object invariants with model
fields. Parkinson [2007] makes the case that class invariants may be obsolete as
a fundamental concept in specifying object-oriented programs, pointing out the
restrictions of the existing modular global invariant protocols and arguing that a
concept like abstract predicates can provide a more flexible foundation for expressing
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consistency properties of object structures. A defense of invariants as an independent
concept controlled by a global invariant protocol has been put forward by Summers
et al. [2009].

The VerCors system by Amighi et al. [2014a] features a high-level specification
language inspired by JML. It uses separating conjunctions and implications, a built-in
permission predicate, and abstract specification predicates [Parkinson and Bierman,
2005] (which are similar to Boolean model methods). Programs and specifications
are translated to the Chalice tool [Leino et al., 2009] for verification.

Implicit Dynamic Frames

Implicit dynamic frames [Smans et al., 2012] is an approach inspired both by dynamic
frames and by separation logic. Instead of using location sets explicitly, the technique
centers around a concept of permissions: a method may read or write a location only
if it has acquired the permission to do so, and these permissions are passed around
between method calls by mentioning them in pre- and postconditions. The C and
Java verifier VeriFast [Jacobs et al., 2011c] is based on implicit dynamic frames.

Region Logic

Specifications in region logic [Banerjee et al., 2008b] are closely related to dynamic
frames specifications, more so than specifications in the implicit dynamic frames
approach. There, modifies and depends clauses are expressed with the help of regions,
that are expressions that evaluate to sets of object references. Region logic is an
extension of Hoare logic for reasoning about such specifications [Banerjee et al.,
2008a, Rosenberg et al., 2012].

Model Fields

Although model fields are an important element of specifications in JML, there is
not yet a common understanding of their semantics. There are several proposed
semantics implicitly given through their implementation in actual verification and
runtime checking tools. These are sometimes restricted to ‘functional’ represents
clauses [Müller, 2002, Cok, 2005], to model fields of a primitive type, or by restricting
the syntax of represents clauses [Breunesse and Poll, 2003, Leino and Müller, 2006].
A detailed discussion can be found in [Bruns, 2009, Sect. 3.1.5].
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9.7 Conclusion

This chapter presented a framework for composing and verifying modular design-
by-contract specifications. One of its core features is the introduction of a type
\locset, elevating sets of memory locations to first-class citizens of the language,
thus allowing the specification of memory dependency constraints using dynamic
frames. A feature of this framework is the flexibility in writing specifications without
assumptions on the heap structure: Almost any memory dependency pattern can
be formulated using dynamic frames, and it allows for a remarkably simple and
uniform treatment of model fields and methods, pure methods, and class invariants.
Specifications can not only determine the dependencies of methods but also of
model fields. The absence of abstract aliasing can be specified explicitly in contracts
and invariants, using operators such as \disjoint and \new_elems_fresh. The
downside of this simplicity is that specifications may get more verbose, and that their
verification may be computationally more expensive.

Furthermore, modularity is also achieved by means of abstraction. The framework
has a variety of means for abstraction in specifications which can be used to formulate
and verify specifications modularly; modular correctness proofs are still valid if the
program is extended.

To achieve these modularity goals in the verification system addressed in this
book, the chapter presented advanced calculus rules.

Outlook

KeY’s contributions to specification and verification of concurrent programs have not
reached a state to warrant inclusion in this book. One of the most promising lines
of attack is the use of permissions as outlined in Section 10.7.2. There is ongoing
research also with respect to modularity. Grahl [2015] describes a modular approach
to the verification of concurrent programs based on the rely/guarantee technique
from [Jones, 1983]. Grahl extends the specification concepts by dynamic frames. The
classical rely/guarantee approach is not entirely modular since it considers programs
that are closed under parallel composition. This issue is solved by Grahl [2015]
through the addition of frame annotations.



10.1 Introduction

One of the fundamental assumptions of the KeY project at its beginning was that it
should support verification of an actual programming language and handle realistic
programs. Back then, complete handling of arbitrary Java programs was still consid-
ered an unreachable goal in source code based interactive verification. For that reason
a simpler, yet actually existing and officially developed, Java technology was chosen
as our verification target, namely Java Card—a considerably stripped down version
of Java for programming smart cards [Chen, 2000]. The additional motivation for
choosing this particular technology were the corresponding application areas that are
subject to strict security requirements. Nowadays, smart cards are widely used in the
financial sector (bank cards), telecommunications (SIM cards), identity (electronic
passports and identity cards), and transportation (electronic tickets). Many of the
products are indeed developed on the Java Card platform, in particular, the Dutch
biometric passport is based on the Java Card technology. The security requirements
of such applications and, sadly, still often occurring security problems in this area1

highly justify the use formal verification.
In fact, other verification tools back in the days have chosen the Java Card dialect

for similar reasons. The KIV [Balser et al., 2000], Krakatoa [Marché et al., 2004], or
Jack [Burdy et al., 2003b] tools all explicitly mention Java Card as a target language
in the corresponding publications. Furthermore, Java Card was also in the center of
the EU VerifiCard project started in 2001 [Jacobs et al., 2001], that consolidated the
efforts to provide verification techniques for Java based smart cards.

Many research teams targeted their effort towards Java Card, but the KeY sys-
tem was the first tool to implement extensions to support an initially overseen by
researchers feature of Java Card, the atomic transaction mechanism [JavaCardRTE,
Chap. 7]. This extension of the Java Card Virtual Machine allows one to group

1 Two recent high profile cases of security flaws in smart card based applications are the Dutch
OV-chipcard [Garcia et al., 2008] and one of the smart card based payment authentication protocol
for Internet banking [Blom et al., 2012].
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assignments into atomic blocks in the context of two types of writable memory on
smart card chips: volatile RAM and persistent EEPROM. From the point of view of
a formal verification system, the most complicating factor of the transaction mech-
anism is the possibility of a programmatic abort of an on-going transaction. The
result of such an abort is a program that continues its execution, but with selected
variable assignments reverted according to the complex Java Card Virtual Machine
transaction rules.

Our formalization of Java Card transactions for the previous generation of the
KeY system [Beckert and Mostowski, 2003, Mostowski, 2006] was admittedly rather
heavyweight with deep changes in the implementation of KeY. Nevertheless, the
formalization provided a complete and sound verification framework for Java Card
programs. This was illustrated with realistically sized case studies described by
Mostowski [2005, 2007].

In this chapter, we discuss a new solution tailored to the explicit heap model of KeY
as described in detail in Chapter 3. The core of the new solution is the simultaneous
use of two heaps during the verification. The first heap is used as usual, and keeps
track of the current reachable state of the program for the purpose of evaluating
properties to be verified. The second additional heap is used to keep a backup copy
of the main heap for the purpose of transaction roll-back in case of an abort. The
resulting solution turns out to be very simple and clean, and most importantly, is very
modular with respect to the rest of the JavaDL. Further simplifications of our new
formalization come from a more pragmatic approach to the notion of a verifiable
Java Card program. Following our practical experience with Java Card technology
[Mostowski and Poll, 2008], rather than to support every possible and contrived use of
transaction related constructs, we opted to support only patterns commonly agreed as
safe by security experts [Pallec et al., 2012]. Programs not adhering to these patterns
cannot be verified because of the design of the formalization. Furthermore, apart
from supporting Java Card, the idea of using more than one heap, in general arbitrary
many heaps, provides solutions for other areas of research in Java verification, in
particular for permission-based reasoning about concurrent programs.

The chapter starts with introducing the Java Card technology in more detail
in the next section, and then continues with explaining the details of our current
formalization of transactions based on two heaps in Section 10.3. In Section 10.5 we
discuss the (transparent) extensions to JML to accommodate multiple heap references
also on the specification level. Section 10.6 discusses the verification of several Java
Card example programs. Finally, in Section 10.7 we discuss the applications of
reasoning based in multiple heaps in other areas of verification.

10.2 Java Card Technology

In the following, we concentrate on features of Java Card relevant for this chapter. A
comprehensive overview of the Java Card technology is described by Chen [2000],
and [JavaCardRTE, JavaCardVM] provide a technical reference.
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The Java Card technology is now at version 3.0 and divided into two editions:
Classic and Connected. In this chapter, we refer to the classic edition which is still the
established standard in the smart card industry and is essentially the same as previous
Java Card versions that were only released as one edition. The connected edition
is a feature-rich regular Java edition and no longer a subset of Java like the classic
edition. However, the connected edition remains still to be fully accepted as it is not
widely used by the industry, yet. Also, Java Card devices actually implementing the
3.0 connected version are still scarce, despite the fact that the connected variant of
Java Card was proposed more than 8 years ago.

The Java Card technology in general provides means to program smart cards with
Java. The classic edition of Java Card consists of a language specification, which
defines the subset of permissible Java in the context of smart cards, a Java Card
Virtual Machine specification, which defines the semantics of the Java byte-code
when run on a smart card, and finally the Java Card API, which provides access
to the specific routines usually found on smart cards, in particular the transaction
mechanism. What makes Java Card easier for verification is the lack of concurrency,
floating-point numbers, or dynamic class loading, and a very small API (less than 100
classes). The important feature that adds complexity to the Java Card environment
compared to Java is that programs can directly operate on two memories built into
the card chip. Any data allocated in the EEPROM memory is persistent and kept
between card sessions, the data that resides in RAM is transient and always lost at
the end of a card session. That is, EEPROM provides storage facilities to the card,
and RAM provides computation space. The following are the memory allocation
rules:

• all local variables are transient,
• all newly created objects and arrays are by default persistent, and
• when allocated with a dedicated API call, an array (but not an object) can be

made transient.

Note the important difference between a reference to an object and the actual object
contents. While the object fields are stored in the persistent memory, the object
reference can be kept in a local variable and be transient itself. A garbage collector
is not obligatory in Java Card either. Thus, careless handling of allocated references
leads to memory leaks, something that is often addressed in Java Card programming
guidelines [Pallec et al., 2012]. Any Java reference, once allocated in its target
memory, is transparent to the programmer from the syntax point of view, and it
is only the underlying Java Card virtual machine that takes appropriate actions
according to the memory type associated with a given reference.

Example 10.1. Suppose the following program would be run in a Java Card execution
environment:

Java Card
class MyClass {

int persistentField;
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void method(int parameter) {
int localVariable = parameter * 2;
this.persistentField = localVariable;
if(persistentField < 0) {
MyClass mc = new MyClass();
mc.method(persistentField);

}
}

}

Java Card

Being an instance field of a class, the value of persistentField is stored in a per-
manent chip memory location. The local variables parameter and localVariable
are stored in the transient RAM memory and are forgotten upon method exit. The
assignment this.persistentField = localVariable; effectively copies data
from one type of memory to another type, but this transfer between different memory
types is not explicit in the program. The mc variable is also local and hence transient,
however, the contents of the freshly created object of class MyClass to which mc
refers is part of the persistent storage, and so are all of its fields. Upon return from
method, a memory leak occurs—the reference to the freshly created object that
was stored only in the local variable is lost. On Java Card devices without garbage
collection, such leaked memory is irrecoverable.

Additionally, this particular program would very likely cause a memory overuse
problem on an actual device. The continuous allocations of MyClass would quickly
exhaust the limited amount of available persistent memory (which is usually in the
range of 64kB to 128kB), but even sooner the RAM memory (in the range of 4kB)
would be filled with the call stack caused by the recursion and cause a stack overflow
exception. Hence, it is often advisable not to use recursive method calls on Java Card,
and not to do postinitialization object allocation. We come back to the issue of object
allocation later in Section 10.3.3.

Objects allocated in EEPROM, like in the example above, provide the only
permanent storage to an application. To maintain consistent updates of this persistent
data, Java Card offers the atomic transaction mechanism accessible through the API.
The following is a brief, but complete summary of the semantics of transactions:
Updating a single field or array element is always atomic. Updates can be grouped
into transaction blocks, an API call to the static method JCSystem.beginTransac-
tion() opens such a block; it is ended by a commitTransaction() call, an explicit
abortTransaction() call, or an implicit abort caused by an unexpected program
termination (e.g., card power loss). A commit guarantees that all the updates in the
block are executed in one atomic step. An abort reverts the contents of the persistent
memory to the state before the transaction was entered. Note that an explicit abort
does not terminate the whole application, only cancels out persistent updates from
the corresponding transaction. The program continues execution with the persistent
updates reverted but all the transient updates are still in effect.
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Example 10.2. The following program uses a transaction to ensure consistent update
of persistent fields a and b:

Java Card
class MyClass {

int a, b;

void transferFromAtoB(int num) {
JCSystem.beginTransaction();
a = a - num;
b = b + num;
if(a < 0 || b < 0) {

// Too much transfered / overflow
JCSystem.abortTransaction();

} else {
JCSystem.commitTransaction();

}
}

}

Java Card

In case that either of the two fields goes beyond its assumed bound (they are supposed
to be nonnegative), the transaction is aborted, and the values of both fields are reverted
to their respective values when the transaction was started. Regardless of the outcome
of the transaction, the program could continue its execution and, e.g., try to update
a and b with a smaller value, say num/2. Finally, had the local num variable itself
been updated in any way within the transaction, it would maintain its updated value
regardless of the transaction outcome.

Finally, the API provides so-called nonatomic methods to bypass the transaction
mechanism. A nonatomic update of a persistent array element is never reverted by an
abort, provided the same array was not manipulated with regular assignments earlier
in the same transaction. We postpone illustrative examples of nonatomic updates to
the next section when we explain the details of the formalization of such updates.

10.3 Java Card Transactions on Explicit Heaps

In the following, driven by examples, we gradually present the complete formalization
of the Java Card transaction semantics in JavaDL using two heap variables. To start
with, we introduce synthetic transaction statements to the Java syntax. That is,
the calculus should allow for symbolic execution of #beginTr, #commitTr, and
#abortTr synthetic statements that define the transaction boundaries in the verified
program. Bridging the actual API transaction calls from the JCSystem discussed
in Section 10.2 to these logic-only statements is a straightforward extension of the
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verification system. Then, consider the following snapshot of a more realistic Java
Card program, where the fields balance and opCount are persistent, permanently
storing the current balance and operation count of some payment application. The
local variables change and newBalance are transient:

Java Card
int newBalance = 0;
#beginTr;

this.opCount++;
newBalance = this.balance + change;
if(newBalance < 0) {
#abortTr;

} else {
this.balance = newBalance;
#commitTr;

}

Java Card

Following the rules from Chapter 3, symbolic execution of this program piece results
in the following sequence of state updates to the heap and local variables—ignoring
the transaction statements for now:

{newBalace := 0}
{heap := store(heap,self ,opCount,selectint(heap,self ,opCount)+1)}
{newBalance := selectint(heap,self ,balance)+ change}
{heap := store(heap,self ,balance,newBalance)}

The symbolic execution of the if statement causes proof splitting, and the last
update only appears on the else proof branch where newBalance is assumed to be
nonnegative.

After further simplification, these state updates can be applied to evaluate a
postcondition. It could, e.g., query the new value of operation count, i.e., the term
selectint(heap,self ,opCount). The evaluation of this term would indicate a one unit
increase with respect to the value stored on the heap before this code is executed.

10.3.1 Basic Transaction Roll-Back

Now let us consider what is required to model the basic semantics of an abort, first
under the assumption of a simplified Java Card definition, in which updates to local
variables should be kept while updates to persistent locations should be rolled back
to the state before the transaction. Up till now, data in these persistent locations are
synonymous with the data stored on the heap in the logic. Hence, under the above
assumption, it is sufficient to roll back the value of the whole heap. This can be
done by introducing two simple symbolic execution rules for transaction statements
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#beginTr and #abortTr that respectively store and restore the value of the heap to
and from a temporary heap variable savedHeap (the 〈[·]〉 operator indicates that the
rule is applicable to both the box and the diamond modality):

beginTransaction
=⇒U {savedHeap := heap}〈[π ω]〉φ

=⇒U 〈[π #beginTr;ω]〉φ

abortTransaction
=⇒U {heap := savedHeap}〈[π ω]〉φ

=⇒U 〈[π #abortTr;ω]〉φ

This can be done and works as expected because the heap variable has the call-by-
value characteristics. Now the state updates (on the negative newBalance branch)
of our example program are the following:

{newBalace := 0}
{savedHeap := heap}
{heap := store(heap,self ,opCount,selectint(heap,self ,opCount)+1)}
{newBalance := selectint(heap,self ,balance)+ change}
{heap := savedHeap}

Whatever terms referring to heap contents are to be evaluated with these updates, the
result are the values on the heap at the point where it was saved in the savedHeap
variable. The commit statement needs no special handling apart from silent stepping
over this statement. In this case, the saved value of the heap in the savedHeap variable
is simply forgotten until a possible subsequent new transaction where savedHeap is
freshly overwritten with a more recent heap.

These rules are sufficient for superficial treatment of transactions in JavaDL under
the assumption made at the beginning of this section. Note that, so far, no new or
modified assignment rules of any kind were introduced, yet assignments can be
canceled.

10.3.2 Transaction Marking and Balancing

The two rules we just introduced do not enforce any order on the transaction state-
ments. Indeed, they allow to successfully verify programs:

#abortTr; #beginTr; or #commitTr; #commitTr;

One solution to enforce balancing of transactions is to keep track of a transaction
depth counter and make additional checks upon transaction statements. In fact, this
is how the Java Card API methods enforce balancing. In Java Card, transactions
cannot be nested, i.e., the maximum allowed depth is always 1. However, by the same
specification, an open transaction does not have to be terminated within the same
syntactical block of a program, it is only required that the transaction is eventually
terminated within the same card session, if not, the transaction is aborted by the
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system itself. Thus, in principle, a transaction can be initiated in one method, and
terminated in another.

In the logic we opt for a more restrictive use of transactions, with the following
rationale. Java Card security guidelines [Pallec et al., 2012] ban programs with large
transaction blocks spanning over several methods (due to the high risk of overrunning
the transaction buffer). A logic calculus allowing for such arbitrary “spreading” of
transaction statements would need to carry around complete information about the
state of a transaction across method invocations, a complication that would make
proofs unnecessarily more cluttered and difficult.

Following this rationale, our formalization not only relies on this transaction use
restricted to one method, but also enforces it, in the following way. A transaction
marker TR attached to any modality indicates that the current execution context of
the verified program is an open transaction. In practice, such a marked modality is
simply a separate modality 〈TR·〉 (or [TR·] as the case may be). Rules for handling
transaction opening and closing statements defined only for the adequate modalities
automatically enforce correct transaction balancing. Similarly, the absence of a
logic rule for an empty transaction modality prevents closing proof goals with open
transactions. Overall this forces a complete transaction block to appear in a single
verification context, i.e., one method. Furthermore, special array assignment rules
(which we introduce shortly) are also defined for the transaction context only, without
cluttering any nontransaction context. This keeps regular Java verification efforts
clear of any transaction artifacts in the logic without the need to introduce any special
Java Card modes or switches in the prover or similar mechanisms.

The new rules for the transaction statements are the following, now with an
explicit rule for the commit statement, in which nothing happens to the heap variable,
but the transaction context is canceled out by changing the transaction modality
〈[TR·]〉 back to 〈[·]〉:

beginTransaction
Γ =⇒U {savedHeap := heap}〈[TRπ ω]〉φ ,∆

Γ =⇒U 〈[π #beginTr;ω]〉φ ,∆

abortTransaction
Γ =⇒U {heap := savedHeap}〈[π ω]〉φ ,∆

Γ =⇒U 〈[TRπ #abortTr;ω]〉φ ,∆

commitTransaction
Γ =⇒U 〈[π ω]〉φ ,∆

Γ =⇒U 〈[TRπ #commitTr;ω]〉φ ,∆

10.3.3 Object Creation and Deletion

In Section 10.2 we already mentioned that object allocation on Java Card requires
special attention due to limited memory of a smart card and absence of a garbage
collector. Because of this, according to the Java Card specification, objects created in-
side transactions require detailed consideration. In short, when aborting a transaction
all objects created in that transaction need to be deallocated, regardless of whether
these objects are still referenced from objects outside of the transaction. To prevent
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dangling references, all such references to the deleted objects must be replaced with
null by the Java Card virtual machine. In other words, the Java Card virtual machine
should perform an explicit, forced garbage collection upon transaction abort.

This causes problems for our logic, which, being a logic for garbage-collected
Java, was never designed to do any object allocation back-tracking (probably, none
of the logics for Java are). However, this is also problematic in the actual Java Card
virtual machine implementations. It is not uncommon for the implementations to be
buggy and lead to serious security issues, as reported by Mostowski and Poll [2008].
Because of that, both security guidelines and newer Java Card specifications strongly
discourage object allocation inside transactions altogether.

In our formalization of transactions, we take the same approach, we do not allow
objects to be allocated in transaction contexts. This is simply done by not providing
any object allocation rules for the transaction modalities.

10.3.4 Persistent and Transient Arrays

By default, in Java Card new objects and arrays are allocated in the persistent memory.
For scenarios where an object needs to be allocated in transient memory, the Java
Card API offers special static methods that redirect allocation to the transient memory,
namely:

• makeTransientBooleanArray(short size, byte transientType),
• makeTransientByteArray(short size, byte transientType),
• makeTransientShortArray(short size, byte transientType),
• makeTransientObjectArray(short size, byte transientType).

Hence, only arrays can be allocated in transient memory, contents of other objects
are always persistent. When allocating transient arrays, one also specifies, through
the transientType argument, the moment when the transient memory is cleared.
In Java Card the transient memory can be cleared either upon card reset, i.e., when
the card session is terminated, or already upon application termination. The latter is
useful in practice when, e.g., one application does not wish for any other application
to access the data it worked on for security reasons. However, for our formalization,
this is irrelevant. But, to be consistent with the API philosophy, in the following we
keep using a number to describe the different types of Java Card memory, rather than
just a Boolean differentiating between transient and persistent memory types.

In the next step we need to address the issue of separate transaction treatment for
persistent and transient arrays in Java Card. Our solution is general enough to also
consider the possibility of regular objects to be transient, but we refer only to arrays
in our explanations.

So far in our formalization, we roll back the whole contents of the heap. The
actual Java Card transaction semantics require that the contents of transient arrays,
allocated by the above API methods, are never rolled back. Since in JavaDL all
arrays are stored on the heap, we somehow need to introduce a selective roll-back



362 10 Verifying Java Card Programs

mechanism. We achieve this with the following. Whenever an array element is
updated in a transaction we check for the persistency type of the array. The check
itself is simply done by introducing an additional implicit integer field to all objects,
called <transient>, that maintains the information about the persistency type of
an object. Standard JavaDL allocation rules set this field to 0 that denotes persistent
objects, while the dedicated API methods for creating transient arrays specify this
field to reflect the transientType argument discussed above.

Then, when handling assignments, for persistent arrays we take no additional
action, for transient arrays we update the value on the heap and additionally update
the value on the backup heap savedHeap. During an abort, the regular heap is restored
to the contents of the backup heap that now also includes updates to transient arrays
that were not supposed to be rolled back. The resulting assignment rule for arrays is
the following (for simplicity we skip array bounds checks and similar here, these are
no different from the rules discussed in Section 3.6.2):

arrayAssignTransaction

U (a.<transient> .= 0) =⇒{heap := store(heap,a, i,se)}〈[TRπ ω]〉φ
U (a.<transient> > 0) =⇒ {savedHeap := store(savedHeap,a, i,se)}

{heap := store(heap,a, i,se)}〈[TRπ ω]〉φ
=⇒U 〈[TRπ a[i]=se;ω]〉φ

Assuming that arrays tr and ps are, respectively, transient and persistent, the sym-
bolic execution of this program:
tr[0] = 0;
ps[0] = 0;
#beginTr;
tr[0] = 1;
ps[0] = 1;

#abortTr;

results in the following sequence of state updates:

{heap := store(heap, tr,0,0)}{heap := store(heap,ps,0,0)}
{savedHeap := heap}
{heap := store(heap, tr,0,1)}{savedHeap := store(savedHeap, tr,0,1)}
{heap := store(heap,ps,0,1)}
{heap := savedHeap}

With these updates, the evaluation of terms selectint(heap,ps,0) and selectint(heap,
tr,0) results in 0 and 1, respectively, as required by the Java Card transaction seman-
tics.
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10.3.5 Nonatomic Updates

The last quirk in the semantics of Java Card transactions are the so-called nonatomic
updates of persistent array elements. Such updates are invoked by dedicated API calls
and they bypass transaction handling, i.e., no roll-back of data updated nonatomically
is ever performed, similarly to local variables and transient array updates, even though
the data is persistent. By this definition updates to transient arrays as defined by Java
Card are in fact nonatomic, as they are indeed never rolled back either. We have just
introduced a mechanism that prevents the roll-back of transient arrays, by checking
the <transient> field of the array and providing corresponding state updates. To
extend this behavior to persistent arrays, we allow for the implicit <transient>
field of an array to be mutable in our logic. In turn, we can temporarily change
the assignment semantics for an array by manipulating the <transient> field.
Concretely, a nonatomic assignment to a persistent array element can be modeled by
first setting the <transient> field to a positive value, then performing the actual
assignment, and then changing the value of <transient> back to 0. Hence, a
nonatomic assignment a[i] = se, where a is a persistent array, is simply modeled
as:
a.<transient> = 1; a[i] = se; a.<transient> = 0;

Then, the array assignment rule we provided above introduces the necessary updates
to the regular and backup heaps to achieve transaction bypass, i.e., a nonatomic
assignment.

Similarly to transient memory allocation, in Java Card the nonatomic updates are
delegated to dedicated API methods. Hence, the manipulation of the <transient>
field is delegated to the reference implementation of these API methods, and this
emulation of nonatomic assignments is easily achieved in the actual Java Card
programs to be verified by KeY.

Unfortunately, there is one more additional condition that Java Card defines
for nonatomic updates that we need to check. A request for a nonatomic update
becomes effective only if the persistent array in question has not been already updated
atomically (i.e., with a regular assignment) within the same transaction. If such an
update has been performed, any subsequent updates to the array are always atomic
within the same transaction and rolled back upon transaction abort. We illustrate
this with the following two simple programs operating on a persistent array a, for
simplicity we mark a nonatomic assignment with #=, which would otherwise require
a lengthy call to a static API method:

a[0] = 0;
#beginTr;
a[0] #= 1;
a[0] = 2;

#abortTr;
assert a[0] == 1;

a[0] = 0;
#beginTr;
a[0] = 2;
a[0] #= 1;

#abortTr;
assert a[0] == 0;
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The program on the left results in a[0] equal to 1 (a nonatomic update is in effect),
the program on the right rolls a[0] back to 0, as the regular assignment a[0] = 2;
disables any subsequent nonatomic assignments, and hence all transaction updates
are reverted.

To introduce this additional check in the logic, we employ one more implicit
field for array objects, <transactionUpdated>, that maintains information about
atomic updates. Set to true, it indicates that the array was already updated with a
regular assignment, false indicates no such updates and allows for nonatomic updates
in the same transaction still to be effective. The new assignment rule for arrays needs
to be altered to handle all these conditions and also to record the changes to the
<transactionUpdated> field itself. Without quoting the complete assignment rule
again, the complete state updates to be introduced for an assignment a[i] = se is
the following:

{heap := store(heap,a, i,se)}
{savedHeap :=

if selectint(heap,a,<transient>) .= 0 then
store(savedHeap,a,<transactionUpdated>,TRUE)

else
if selectint(savedHeap,a,<transactionUpdated>) .= FALSE then

store(savedHeap,a, i,se)
else savedHeap}

The updates to the <transactionUpdated> field are purposely stored on the backup
heap savedHeap to ease the resetting of this field with each new transaction. On
transaction abort, the heap reverting update filters out any updates to this field on the
backup heap using the anonymization function (see Section 3.3.1) of the logic:

{heap := anon(savedHeap,allObjects(<transactionUpdated>),heap)}

This expresses the operation of copying the contents of heap savedHeap to heap,
but retaining the value of the <transactionUpdated> field in all objects in heap.
Thus all manipulations of <transactionUpdated> in proofs are local to a single
transaction.

10.4 Taclets for the New Rules

The implementation of the new logic rules to handle Java Card transactions that we
have just presented is almost trivial. Only a handful of new taclets (see Chapter 4)
have to be added to the KeY rule base, most of them very simple. Only the rule
for assigning array elements within transactions is considerably more complicated
because of the cascade update that needs to be introduced. Yet it only involves
changing one kind of rule for array assignments. The only nontaclet extensions, i.e.
internal to KeY, are:
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• the introduction of the additional modalities 〈[TR·]〉 in the KeY data structures.
With the help of schematic modal operators these new modalities are easily
added to the existing rules for Java constructs that are not affected by transaction
semantics,

• the addition of the built-in Java statements for transaction boundaries #beginTr,
#commitTr, and #abortTr to the Java syntax. In the implementation they re-
ceived fully descriptive names;

• the addition of two new implicit fields to objects, <transient> and <transac-
tionUpdated>.

Below we give the essential taclets that implement the new rules.
The two additional modalities 〈TR·〉 and [TR·] are denoted with

\diamond_transaction{ ... }\endmodality
and
\box_transaction{ ... }\endmodality
in the taclet language, respectively. The existing rules for all Java constructs are
extended to handle these new modalities by including them in the schematic modal
operator #allmodal:
\modalOperator { diamond, box,

diamond_transaction, box_transaction } #allmodal;
Then, the rules for entering and exiting the transactions for the diamond operator

are given with the following three taclets:

KeY
beginJavaCardTransactionDiamond {

\find (==> \<{.. #beginJavaCardTransaction; ...}\> post)
\replacewith(==> {savedHeap := heap}

\diamond_transaction{.. ...}\endmodality post)
\heuristics(simplify_prog)
\displayname "beginJavaCardTransaction"

};

commitJavaCardTransactionDiamond {
\find (==> \diamond_transaction{..

#commitJavaCardTransaction;
...}\endmodality post)

\replacewith(==> \<{.. ...}\> post)
\heuristics(simplify_prog)
\displayname "commitJavaCardTransaction"

};

abortJavaCardTransactionDiamond {
\find (==> \diamond_transaction{..

#abortJavaCardTransaction;
...}\endmodality post)
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\replacewith(==> {heap := anon(savedHeap,
allObjects(java.lang.Object::<transactionUpdated>),
heap)} \<{.. ...}\> post)

\heuristics(simplify_prog)
\displayname "abortJavaCardTransaction"

};

KeY

The rule for the abort also includes the heap update necessary to reset all transaction-
updated flags for arrays as described at the end of Section 10.3.5.

Then, the rule for new instance allocations of arrays (see Section 3.6.6.3) needs
to be amended to include the initialization of the new implicit fields for transaction
handling:

KeY
allocateInstanceWithLength {

\find (==> \modality{#allmodal}{.#pm@#t2()..
#lhs = #t.#allocate(#len)@#t;

...}\endmodality post)
\replacewith (==> { heap :=

store(store(create(heap, #lhs),
#lhs, java.lang.Object::<transient>, 0),
#lhs, java.lang.Object::<transactionUpdated>, FALSE) }

\modality{#allmodal}{.. ...}\endmodality post)
. . .

};

KeY

Finally, the rule for assigning array elements is now the following. We skip the
null object reference, array index bounds, and array store validity checks for clarity,
as they are exactly the same as described in Section 3.6.2:

KeY
assignment_to_array_component_transaction {

\schemaVar \modalOperator { diamond_transaction,
box_transaction } #transaction;

\find (\modality{#transaction}{..
#v[#se] = #se0;

...}\endmodality post)
\sameUpdateLevel
"Normal␣Execution␣(#v␣!=␣null)": \replacewith(
{heap := store(heap, #v, arr(#se), #se0)}
{savedHeap :=

\if(int::select(heap, #v,
java.lang.Object::<transient>) = 0)

\then(store(savedHeap, #v,
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java.lang.Object::<transactionUpdated>, TRUE))
\else(

\if(boolean::select(savedHeap, #v,
java.lang.Object::<transactionUpdated>) = FALSE)

\then(store(savedHeap, #v, arr(#se), #se0))
\else(savedHeap)) }

\modality{#transaction}{.. ...}\endmodality post)
\add (!(#v=null) & lt(#se, length(#v)) &

geq(#se,0) & arrayStoreValid(#v, #se0) ==> );
. . .Other proof branches to check for exceptions . . .
\heuristics(simplify_prog, simplify_prog_subset)

};

KeY

10.5 Modular Reasoning with Multiple Heaps

The taclets that we have just discussed cover the implementation of the new logic
rules to handle Java Card transactions. This makes the core JavaDL calculus and the
associated proving engine of KeY aware of transactions. It does not yet, however,
handle modular reasoning with contracts in the presence of multiple, simultaneously
evolving heap data structures. This issue of modularity for multiple heaps is entirely
orthogonal to the transaction semantics. That is, other possible extensions to KeY that
involve the use of more than one heap face the same problem. Such additional heaps
can be used to model some concrete execution artifact, like the transaction handling
described here or different physical memories present on some device. Alternatively,
additional heaps can be used to introduce additional abstractions to the logic, for
example, permission accounting for thread-local concurrent reasoning. We discuss
these possible scenarios in a bit more detail in the concluding Section 10.7.

From the point of view of KeY, heap variables are simply program variables,
only that they require special handing when proof obligations are generated and
when contract or loop rules are applied (see Chapter 9). In particular, location sets
declared in assignable clauses are used to properly handle framing. In the presence
of multiple, simultaneously changing heaps, the framing conditions, and hence the
assignable clauses, have to take into account the additional heaps.

To lift this up to the specification layer of JML, we now allow the assignable
clauses to take an additional (and optional) argument that declares the heap that the
subsequently listed locations refer to. When no heap argument is given, the default
memory heap represented with the heap variable, is assumed. In this extension
of JML, the heap argument is given in angle brackets following immediately the
assignable keyword. Hence, the following are all valid assignable clauses:
assignable o.f; refers to the default heap
assignable<heap> o.f; the same, but explicit
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assignable<savedHeap> o.f, o.g; locations that can change
on the backup heap

assignable<heap><savedHeap> o.f; location that can change
on both heaps simultaneously

For such specifications (for methods and/or loops), KeY can now generate and use
appropriate framing conditions over all defined heaps. On the implementation side
KeY can handle any arbitrary, but fixed, number of additional heaps. We give more
realistic examples of how this is used in practice in the next section.

The idea of making heaps explicit parameters in assignable clauses is further
extended to other specification constructs to allow even more flexible reasoning.
In principle, not all of the additional heaps are active in all verification and/or
proof contexts. In particular, savedHeap is only relevant in proof contexts where
there is an active Java Card transaction, i.e., only within the scope of transaction
modalities 〈[TR·]〉. In other contexts, all specification expressions relating to the
savedHeap can be just ignored. Since we allow all of the specification elements, in
particular requires and ensures clauses, to declare the heaps they relate to, KeY
can selectively create method contracts that filter out the correspondingly unused
heaps for the different verification and proof contexts. Conversely, the presence of
additional heaps in the specification give the KeY system an indication whether
the given contract is applicable in a given context. In particular, contracts that are
not listing assignable locations for the savedHeap are not considered applicable in
transaction contexts.

Apart from assignable and other specification clauses, the user has to be able to
refer to locations on different heaps in regular JML expressions. To this end, the
operator \backup can be applied to any field or array element access expression to
indicate that the backup heap savedHeap should be accessed rather than the regular
one, exactly in the same way as the \old operator accesses the heap prior to the
method call. Other additional heaps would introduce their own corresponding access
keywords, for example, \perm to specify concurrent access permissions stored a
separate heap (again, see the end of the concluding Section 10.7).

The final extension for JML to fully access the Java Card transaction extensions
is the ability to access the implicit fields <transient> and <transactionUp-
dated> from specifications. Both can be simply accessed directly as field references.
Additionally, for any object o, the former can be access with a proper Java Card API
call, JCSystem.isTransient(o), the latter can be accessed with the JML keyword
\transactionUpdated(o).

10.6 Java Card Verification Samples

This section is devoted to a handful of examples that make use of the presented
formalization of Java Card transactions. We start with the JML specified version of
the balance updating method that we used as a running example in Section 10.3, then
we discuss how the actual reference implementation of the native transaction-sensitive
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array manipulation routines of the Java Card API can be specified and verified with
KeY. Finally, we show a short example of Java Card code implementing a pin counter
update routine using one of these API methods. It illustrates the verifiability of the
effects of nonatomic updates to ensure the routine’s security. All of the presented
examples are verified with KeY fully automatically, hence we discuss mostly the
specifications.

10.6.1 Conditional Balance Updating

Below we list the updateBalance example we used earlier in Section 10.3 with
full JML specifications. The method has two specification cases to reflect the two
possible outcomes of the method: either both object fields are updated or none of
them is. Additionally, we specify that both fields should never be negative:

Java + JML
public class PurseApplet {

short balance = 0; //@ invariant balance >= 0;
short operationCount = 0; //@ invariant operationCount >= 0;

/*@ public normal_behavior
requires JCSystem.getTransactionDepth() == 0;
requires balance + change >= 0;
ensures balance == \old(balance) + change;
ensures operationCount == \old(operationCount) + 1;
ensures \result == \old(balance) + change;

also
public normal_behavior

requires JCSystem.getTransactionDepth() == 0;
requires balance + change < 0;
ensures balance == \old(balance);
ensures operationCount == \old(operationCount);
ensures \result == \old(balance) + change;

@*/
public short updateBalance(short change) {

short newBalance = 0;
JCSystem.beginTransaction();
this.operationCount++;
newBalance = (short)(this.balance + change);
if(newBalance < 0) {
JCSystem.abortTransaction();
return newBalance;

}
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this.balance = newBalance;
JCSystem.commitTransaction();
return newBalance;

}
...

}

Java + JML

The newly calculated balance is returned by the method, regardless of the actual
outcome of the balance updating, i.e., the method also returns a possibly negative
would-be balance. This is to illustrate that updates to local variables are not at
all affected by transactions. In both specification cases, the method’s result is the
same, i.e., equal to the sum of the initial balance and the requested change. Also,
both specification cases require that there is not any on-going transaction when this
method is called. That is, the transaction depth recorded by the API should be 0. The
remaining parts of the two specification cases spell out the property that the two
object fields are updated simultaneously. If the new requested balance is not negative,
the operation count is increased and the new balance is stored. Otherwise, both fields
remain unchanged.

10.6.2 Reference Implementation of a Library Method

As mentioned in Section 10.2, the Java Card API is a substantially cut-down version
of the regular Java API. The classic edition Java Card API consists of less than 100
classes, moreover, a lot of the methods in the API are not implemented in Java Card
themselves, but as native code. This is because most of the API is an interface to
the smart card hardware: an Application Protocol Data Unit (APDU) buffer that is
used for communication with the host, the transaction facilities that we have been
discussing here, or the cryptographic facilities usually supported by a dedicated CPU.

One particular part of this API is responsible for efficient handling of bulk memory
updates, i.e., complete array updating or copying. These native array methods not
only improve the performance, but also offer transaction specific handling of the
arrays. That is, one class of array methods ensure atomic update of the given array
(as if the whole operation were included in a transaction block), the second class
allow for nonatomic updates of array elements. Such nonatomic updates, as discussed
in Section 10.3.5, allow by-passing an on-going transaction to effectively enforce
unconditional update of persistent memory that would otherwise be reverted by a
transaction abort.

From the point of view of the reference implementation, these nonatomic methods
are the most interesting and the most challenging. Here we discuss one that fills an
array with data, the arrayFillNonAtomic method from the Util class with the
following signature:
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public static final short arrayFillNonAtomic(
byte[] bArray, short bOffset, short length, byte value)

throws NullPointerException, ArrayIndexOutOfBoundsException;
In regular execution contexts, i.e., outside of any transaction, this method does
what one would expect: It fills the range of array elements from bOffset to
bOffset+length-1 incl. with the value byte. The return value is the first off-
set index right after the modified elements. The specification is straightforward with
JML, our specification also requires conditions for normal termination:

Java + JML
public normal_behavior

requires JCSystem.getTransactionDepth() == 0;
requires bArray != null && length >= 0;
requires bOffset >= 0 && bOffset+length <= bArray.length;
ensures (\forall short i; i >= 0 && i < length;

bArray[bOffset+i] == value);
ensures \result == bOffset + length;
assignable bArray[bOffset..bOffset+length-1];

Java + JML

The first precondition limits the use of the method to nontransaction contexts only.
The code to achieve this behavior is also straightforward, this is done with a simple
loop specified with JML:

Java + JML
/*@ loop_invariant i >= 0 && i <= length &&

(\forall short j; j>=0 && j<length;
bArray[bOffset + j] == (j < i ?

value : \old(bArray[bOffset + j]))
);

decreases length - i;
assignable bArray[bOffset..bOffset+length-1]; @*/

for(short i=0; i<length; i++) {
bArray[bOffset + i] = value;

}
return (short)(bOffset + length);

Java + JML

The verification of this poses KeY no problems whatsoever.
Extending both the specification and the reference implementation to the trans-

actional behavior makes things a little bit more complicated. First of, our top-level
specification needs to state what the effects on the contents of the savedHeap are go-
ing to be. This is specified with the following and reflects the semantics of nonatomic
updates described in Section 10.3.5 above.

JML
public normal_behavior
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requires JCSystem.getTransactionDepth() == 1;
requires !\transactionUpdated(bArray);
requires JCSystem.isTransient(bArray) ==

JCSystem.NOT_A_TRANSIENT_OBJECT;
requires bArray != null && length >= 0;
requires bOffset >= 0 && bOffset+length <= bArray.length;
ensures (\forall short i; i >= 0 && i < length;

bArray[bOffset+i] == value);
ensures \result == bOffset + length;
ensures (\forall short i; i>=0 && i<length;

\backup(bArray[bOffset + i]) == value);
assignable<heap><savedHeap>

bArray[bOffset..bOffset+length-1];

JML

The presence of the savedHeap reference in the assignable clause makes this spec-
ification applicable to transaction contexts, the first precondition narrows this to
transaction contexts only. Then, we limit ourselves only to persistent arrays and
require that the array has not been updated with regular assignments in the same
transaction, i.e., to execution contexts where the update caused by the method is
indeed nonatomic. The remaining preconditions are as before to ensure nonexcep-
tional behavior of the method. The first two postconditions are the same as before
and specify the effects of the method on the state of the regular heap. The third
postcondition states that the contents of bArray is also changed on the backup heap.
Effectively this means that the method bypasses the transaction and updates the array
unconditionally.

The implementation of the method and the specification of the loop also need
to be changed accordingly. First, to emulate the nonatomic update in the code we
need to temporarily change the persistency type of the array, following the schema
described in Section 10.3.5 above. This should only be done in case the array is not
already transient. Thus, we surround the loop with the following:

Java Card
final boolean changeTransient = (JCSystem.isTransient(bArray)

== JCSystem.NOT_A_TRANSIENT_OBJECT);
if(changeTransient) {

JCSystem.nativeKeYSetTransient(bArray,
JCSystem.CLEAR_ON_RESET);

}

// The update loop...

if(changeTransient) {
JCSystem.nativeKeYSetTransient(bArray,

JCSystem.NOT_A_TRANSIENT_OBJECT);
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}

Java Card

The method nativeKeYSetTransient is a built-in KeY method that can change the
<transient> field of objects, something that is not normally possible with regular
Java syntax.2

Finally, we add specifications to our update loop to also account for changes
on the savedHeap. The loop invariant quoted before stays the same, as does the
decreases clause. We add a new loop invariant that states the effects of the loop on
the backup heap and adds this heap to the assignable clause:

JML
// Previous loop invariant and decreases clause
loop_invariant (\forall short j; j >= 0 && j < length;

\backup(bArray[bOffset + j]) == value);
assignable<heap><savedHeap>

bArray[bOffset..bOffset+length-1];

JML

KeY also has no problems verifying this modified method automatically. The
final remark for this method is that it is clear that we introduced redundancy in the
specification. The first, nontransactional specification is practically a subset of the
second specification. This was done purposely for the clarity of the presentation.
However, it is possible to combine the two specifications (both the method contract
and the loop specification) into one and make KeY construct a contract that is
applicable in both nontransactional and transactional contexts. This is done by also
annotating the requires and ensures clauses with the corresponding heap variable.
Then, in a nontransaction context only the clauses not annotated with savedHeap are
used, in transaction contexts both clauses are used. In particular, the postconditions
that specify quantifier expressing the new state of the array would now be specified
in one contract with:

JML
ensures (\forall short i; i >= 0 && i < length;

bArray[bOffset+i] == value);
ensures<savedHeap> (\forall short i; i >= 0 && i < length;

\backup(bArray[bOffset+i]) == value);

JML

2 One can consider the <transient> field purposely hidden, so that only the API is allowed to
make changes of this field that are legal in terms of Java Card specification.
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10.6.3 Transaction Resistant PIN Try Counter

We can now use the method arrayFillNonAtomic to implement a transaction-safe
PIN (Personal Identification Number) try counter [Hubbers et al., 2006]. A try counter
is a simple one variable counter that gets decreased with every authentication event,
i.e., entering the PIN. Only when the entered PIN is correct, the try counter gets reset
to its predefined maximum value (typically 3). Once the counter reaches zero, no
further authentication attempts should be possible, and resetting the PIN back to a
usable state requires some sort of a administrative procedure, for example, entering a
PUK (Personal Unlocking Key) code or simply getting a new card.

This describes the security of the PIN try counter on the functional level, and up
to this point such a try counter is trivial to implement. On top of this functionality,
one needs to ensure that the try counter is resistant to all sorts of attacks. Using
the transaction mechanism, one of the possible attacks on a PIN is the following.
The try counter of the PIN is stored in the persistent memory of the card so that
the PIN state is not reset during every new card session. Then, one could use an
aborting transaction to revert the try counter. The PIN checking routine is enclosed
in a transaction. The attacker guesses a PIN code and in case the PIN is not correct
the transaction is aborted, which in effect reverts all the updates to the persistent
memory, and that would include the try counter. Effectively this gives the attacker an
infinite number of possible guesses to break the PIN code. And, given the usually
short PIN numbers (4 or 6 decimal digits), this breaks the security of the card wide
open. Such an attack is realistically possible if an attacker is able to upload such an
exploiting applet that would attempt to break the global PIN of the card, normally
accessible through one of the security APIs of Java Card.

To tackle this problem, the try counter needs to be updated in a nonatomic fashion,
so that no transaction aborts would ever affect its value. Although the Java Card
API provides nonatomic updates for arrays only, it is still possible to implement a
try counter using these methods. Instead of storing the counter in a single variable
(object field), we store the counter in a one element array. Then we simply always
use a nonatomic method from the API to update the try counter.3 For this we provide
the following Java Card class:

Java Card
final public class TryCounter {

private byte[] counter = new byte[1];
private final byte max;

public TryCounter(byte max) {
this.max = max;
reset();

}

3 To prevent denial-of-service attacks, also resetting the counter to its maximum value should be
done in a nonatomic ways. Otherwise, a correct PIN may not be able to reset the counter properly
when any possible on-going transaction gets aborted or interrupted.
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public void reset() {
Util.arrayFillNonAtomic(counter, (short)0, (short)1, max);

}

public boolean decrease() {
if(counter[0] == (byte)0) return false;
byte nv = (byte)(counter[0] - 1);
Util.arrayFillNonAtomic(counter, (short)0, (short)1, nv);
return true;

}

public byte get() {
return counter[0];

}
}

Java Card

For verification we shall also provide a handful of JML annotations. We concentrate
here on the decrease method. The invariants that we need are the following:

JML
invariant counter != null && counter.length == 1 &&
JCSystem.isTransient(counter) ==
JCSystem.NOT_A_TRANSIENT_OBJECT;

invariant !\transactionUpdated(counter) && counter[0] >= 0;
JML

Then the contract for decrease in most part reflects the contract for arrayFill-
NonAtomic as decrease essentially just calls arrayFillNonAtomic:

JML
public normal_behavior

ensures \result <==> (\old(counter[0]) != 0);
ensures counter[0] == \old(counter[0]) - (\result ? 1 : 0);
ensures<savedHeap> \backup(counter[0]) ==

\old(counter[0]) - (\result ? 1 : 0);
assignable<heap><savedHeap> counter[0];

JML

We are now ready to specify and verify our security property, i.e., that the counter
is decreased regardless of any on-going (and aborting) transaction. We do this by
writing an auxiliary test method with the following specification:

Java + JML
/*@ normal_behavior

requires \invariant_for(c) && c.get() > 0;
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ensures \invariant_for(c) && c.get() == \old(c.get()) - 1;
@*/

void testCounter(TryCounter c, boolean abort) {
JCSystem.beginTransaction();
c.decrease();
if(abort) {
JCSystem.abortTransaction();

} else {
JCSystem.commitTransaction();

}
}

Java + JML

The unspecified Boolean parameter abort makes KeY consider both transaction
cases and effectively verifies that the counter is always decreased. Similar specifi-
cations and additions to the TryCounter’s invariant are required to also verify the
reset() method’s resistance to transactions, we leave this is as an exercise for the
reader.

10.7 Summary and Discussion

This chapter discussed a complete solution to reason about Java Card transactions
in JavaDL using KeY. The base of the solution is the manipulation of two memory
heaps to model the effects of selective transaction roll-backs. This formalization is
fully implemented in KeY, and we presented complete relevant verification examples
of realistic Java Card programs.

In its previous instance [Beckert et al., 2007], the KeY system was the first verifica-
tion system to fully handle Java Card platform intricacies. The current formalization
presented in this chapter improves considerably over the previous one discussed in
detail in [Beckert and Mostowski, 2003] and [Mostowski, 2006], while considerably
sized Java Card verification case studies done with the previous version of KeY are
discussed in [Mostowski, 2005] and [Mostowski, 2007]. In the new formalization,
there is no need to introduce new semantics for state updates of KeY and the number
of additional (transaction marked) modalities is smaller. Also the number of logic
rules that extend the basic KeY logic is very low compared to our previous work. As
for efficiency, there is not much to discuss—all the examples from this chapter verify
fully automatically with KeY in a matter of seconds. The simplicity of our current
solution also underlines the good choice of modeling the memory with explicit heap
variables—explicit manipulation of these variables makes our Java Card reasoning
model very compact.
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10.7.1 Related Work

We are only aware of one more verification system that formalized Java Card transac-
tions with similar success to KeY, namely the Krakatoa tool [Marché and Rousset,
2006]. There, a complete solution is also provided with corresponding extensions to
JML and implemented in the Why verification platform. When it comes to simplicity
and reusability of their solution, we would place it somewhere in between our old
and our new solution. In particular, the notion of backup heap locations is used there,
however, each single memory location has its own corresponding backup cell on
the same heap as the original memory locations, instead of the whole heap being
copied/mirrored like in our solution. A support for Java Card transactions has been
also reported for the VeriFast platform [Jacobs et al., 2011a,b], however, it is not
clear how and if the semantics of the transactions has been formalized there. Finally,
Java Card transactions have been considered to be formalized in the LOOP tool using
program transformation to explicitly model transaction recovery directly in the Java
code, but the ideas where never implemented in the tool [Hubbers and Poll, 2004].

10.7.2 On-going and Future Research

The use of multiple heaps is a generic feature of our formalization. That is, the same
methodology of simultaneous manipulation of several heaps can be used to model
other specific features of (Java) programs or to add new elements to the verification
model. In particular, in distributed systems one can consider the local and remote
memories as separate heaps. Similarly, multi-level caches can be treated by assigning
separate heap to each cache. Going further, multi-core systems (like GPUs) could be
also modeled using multiple explicit heaps, each heap representing the local memory
of a single core. Finally, real-time Java can be also considered in this context, where
programs access memories with different physical characteristics on one embedded
device.4

10.7.3 Multiple Heaps for Concurrent Reasoning

In the context of the VerCors project5 [Amighi et al., 2012], we concentrate on ex-
tending the KeY logic with permission accounting to enable thread-local verification
of concurrent Java programs. The VerCors project is concerned with the verification
of concurrent data structures, both from the point of view of possible thread interfer-

4 Admittedly, in the last two examples the different memories are likely to be disjoint and not
sharing any heap locations, hence not really utilizing the full power of reasoning with multiple
heaps.
5 www.utwente.nl/vercors/.

http://www.utwente.nl/vercors/
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ence and with respect to meaningful functional properties. Permission accounting
[Boyland, 2003] is a specification oriented methodology for ensuring noninterference
of threads. Single threads verified with respect to permission annotations (specifying
rights to read and/or write memory locations) are guaranteed to be data-race free.
This approach is very popular in verification methods based on Separation Logic or
similar concepts [Reynolds, 2002]. In particular, the VeriFast [Jacobs et al., 2011b]
system implements fractional permission accounting, and the Chalice [Leino et al.,
2009] verifier also uses permission annotations to verify concurrent programs spec-
ified with implicit dynamic frames style specifications [Smans et al., 2012]. The
VerCors project also employs permission accounting in its own version of Separation
Logic [Amighi et al., 2014b] and its corresponding automated tool set [Blom and
Huisman, 2014]. Adapting KeY to incorporate permission accounting is a step in
providing also interactive verification support in the VerCors project [Huisman and
Mostowski, 2015, Mostowski, 2015].

The essential part of adding permission accounting to KeY is the addition of the
parallel permission heap to the logic, simply represented with the permissions
heap variable. This heap stores access permissions to object locations while the
corresponding location values are stored on the regular heap like before.6 Each
access to the regular heap is guarded by checking the corresponding access right
on the permission heap. Locations on the permission heap can also change like on
the regular heap. Namely, permissions to single object locations are mutated when
permission transfer occurs in the verified program, that is, upon new object creation,
forking and joining of threads, and acquiring/releasing synchronization locks (either
through the synchronized blocks or through dedicated Java concurrency API
classes). As with the Java Card transaction treatment the permissions heap is
explicit in the specifications. In particular, locations listed in the assignable clause
for permission indicate possible permission transfer. Conversely, locations not listed
in such an assignable clause are guaranteed to preserve their permissions.

Example 10.3. At the time of the writing of this chapter, the current official version
of KeY already implements permission accounting as an experimental feature. For ex-
ample, the three following (admittedly artificial) methods annotated with permission
specifications are easily verifiable with KeY:

Java + JML
public class MyClass {

int a, b;
Object o;

/*@ public normal_behavior
requires<permissions> \writePerm(\perm(this.o));

6 In fact, this is the same way of treating permissions as in the Chalice verifier [Leino et al., 2009].
In Chalice memory locations are stored on the regular heap denoted with H, while permissions
reside in the permission mask denoted with P. In Chalice, however, these variables are hidden from
the user in the depth of the module translating the specifications and programs to the SMT solver.



10.7. Summary and Discussion 379

ensures<permissions>
\perm(this.o) == \old(\perm(this.o));

ensures \fresh(this.o);
assignable<heap><permissions> this.o;

@*/
public void method1() {
o = new Object();

}

/*@ public normal_behavior
requires<permissions> \writePerm(\perm(this.o));
ensures \fresh(this.o);
assignable<heap> this.o;
assignable<permissions> \nothing;

@*/
public void method2() {
o = new Object();

}

/*@ public normal_behavior
requires<permissions>

\writePerm(\perm(this.a)) && \readPerm(\perm(this.b));
ensures this.a == this.b;
assignable this.a;
assignable<permissions> \nothing; @*/

public MyClass method3() {
this.a = this.b;
MyClass tmp = new MyClass();
tmp.a = 1;
tmp.b = 1;
return tmp;

}
}

Java + JML

The references to the permissions heap in the specification clauses follow the
same pattern as described in Section 10.5 in the context of the savedHeap variable.
The additional JML keywords present in the specifications are \perm, \readPerm,
and \writePerm. The first one is analogous to the \backup operator, and it redirects
object location look-up to the permission heap instead of the regular heap. The other
two keywords are operators to interface JML with the corresponding predicates
in the logic that evaluate the underlying permission expressions to establish the
resulting access rights. Permission expressions as such are an orthogonal issue to
heap handling. Many verification systems use fractional permissions in the range
(0,1] represented with rational numbers [Boyland, 2003], where 1 denotes a full
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access (write) permission, and any positive number strictly less than 1 a partial access
(read) permission. In KeY, we are using fully symbolic permission expressions
that are described in detail in [Huisman and Mostowski, 2015]. However, in the
specification that we present here the permission values are abstracted away to be
simply read or write permissions, and they could be anything, including the classical
fractional permissions.

The first two methods are identical in code, but they differ in the specifications.
For method1() we state that the permission to this.o might be changed by this
method, and in the postcondition we specify what this change is going to be, simply
that the permission stays the same. Thus, the specification can be optimized to what is
stated for method2(), i.e., that the permission to this.o does not change at all. For
method3() we need to require that there is a read permission to this.b and a write
permission to this.a. This ensures that the first assignment in the method is valid.
Then a new object is created and both its fields are assigned with new values. None of
these remaining statements require any additional access permissions. This is because
local variables are always fully accessible, and new objects are always allocated
with full access permission to the current thread. As in the other two methods, apart
from creating new objects, method3() does not do any permission transfers, hence
the assignable \nothing for the permission heap. Note that because of the object
creation, we cannot specify \strictly_nothing for any of these methods as this
would exclude new object creation, which also affects the permission heap.

At the time of writing this, the full support for permission accounting is not
yet finished in the KeY system and should be considered experimental. The crucial
missing element is the verification of specifications themselves. That is, in permission-
based concurrent reasoning, it is only sound to express properties about object
locations to which the specification has at least a read access. That is, similarly to the
accessible condition checking for self-framed footprints described in Section 9.3, all
permission-based specifications need to frame themselves in terms of read access
permissions. The details of the self-framing of permission-based specification in KeY
are described in [Mostowski, 2015], where we also discuss modular specifications
for API synchronization classes using JML model methods (see Section 8.2.3).
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11.1 Introduction

Out of the four papers ([Burstall, 1974, Boyer et al., 1975, Katz and Manna, 1975,
King, 1976]) that independently introduced symbolic execution as a program analysis
technique during the mid 1970s, no less than three mention debugging as a motivation.
Indeed, symbolic execution has a number of natural properties that make it attractive
in helping to debug programs:

• A time-consuming task for users of classical interactive debuggers is to set up a
(small) initial program state which leads to an execution that exhibits the failure.
It is usually nontrivial to build the required, complex data structures. Symbolic
program execution, on the other hand, permits to execute any method or any
statement directly without setting up an initial state. This is possible by using
symbolic values instead of concrete ones. The capability to start debugging from
any code location makes it also easy to debug incomplete programs.

• Not only is it time-consuming to build concrete initial states, it is often also
difficult to determine under which exact conditions a failure will occur. This can
be addressed by symbolic execution, which allows one to specify initial states
only partially (or not at all) and which generates all reachable symbolic states up
to a chosen depth.

• Classical debuggers typically pass through a vast number of program states
with possibly large data structures before interactive debugging mode is en-
tered. Once this happens, it is often necessary to visit previous states, which
requires to implement reverse (or omniscient) debugging, which is nontrivial to
do efficiently, see [Pothier et al., 2007]. In a symbolic execution environment
reverse debugging causes only little overhead, because (a) symbolic execution
can be started immediately in the code area where the defect is suspected and
(b) symbolic states are small and contain only program variables encountered
during symbolic execution.

• The code instrumentation typically required by standard debuggers can make it
impossible to observe a failure that shows up in the unaltered program (so-called
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“Heisenbugs,” see [Gray, 1985]). This can be avoided by symbolic execution of
the unchanged code.

The question is then why—given these advantages of symbolic execution, plus
the fact that the idea to combine it with debugging has been around for 40 years—all
widely used debuggers are still based on interpretation of programs with concrete
start states. Stable Mainstream debugging tools evolved slowly and their feature
set remained more or less stable in the last decades, providing mainly the standard
functionality for step-wise execution, inspection of the current program state, and
suspension of the execution before a marked statement is executed. This is all the
more puzzling, since debugging is a central, unavoidable, and time-consuming task
in software development with an accordingly huge saving potential.

The probable answer is that, until relatively recently, standard hardware simply
was insufficient to realize a debugger based on symbolic execution for real-world
programming languages. On a closer look, there are three aspects to this. First, sym-
bolic execution itself: reasonably efficient symbolic execution engines for interesting
fragments of real-world programming languages are available only since ca. 2006
(for example, [Beckert et al., 2007, Grieskamp et al., 2006, Jacobs and Piessens,
2008]). Second, and this is less obvious, to make good use of the advantages of
symbolic execution pointed out above, it is essential to visualize symbolic execution
paths and symbolic states and navigate through them. Otherwise, the sheer amount
and the symbolic character of the generated information make it impossible to under-
stand what is happening. Again, high-quality visual rendering and layout of complex
information was not possible on standard hardware in real-time until a few years ago.
The third obstacle to adoption of symbolic execution as a debugging technology is
lack of integration. Developers expect that a debugger is smoothly integrated into
the development environment of their choice, so that debugging, editing, testing, and
documenting activities can be part of a single workflow without breaking the tool
chain.

These issues were for the first time addressed in a prototypic symbolic state
debugger by Hähnle et al. [2010]. However, that tool was not very stable and its
architecture was tightly integrated into the KeY system. As a consequence, the
Symbolic Execution Debugger (SED) [Hentschel et al., 2014a] presented in this
chapter was completely rewritten, much extended and realized as a reusable Eclipse
extension.

The SED extends the Eclipse debug platform by symbolic execution and visual-
ization capabilities. Although different symbolic execution engines can be integrated
into the SED platform, we will consider in the following only the integration of
KeY as symbolic execution engine. In contrast to the KeY verifier, the SED can be
used without any specialist knowledge, exactly like a standard debugger. To make
full usage of its capabilities, however, it is of advantage to know the basic concepts
of symbolic execution. To make the chapter self-contained we give a short intro-
duction into symbolic execution and to our notion of a symbolic execution tree in
Section 11.2. The debugging and visualization capabilities of SED are explained in
tutorial style in Section 11.3. We show how to employ the SED profitably in various
use cases, including tracking the origin of failures, help in program understanding,
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and even actual program verification. We also explain its architecture, which has a
highly modular design and allows other symbolic execution engines than KeY to be
integrated into SED. How KeY is employed in the SED, and which technical features
are necessary, is the topic of the final Section 11.4.

The reader who only wants to know how the SED is used and is not interested in
its realization can safely skip Section 11.3.7 and Section 11.4.

11.2 Symbolic Execution

In this section we explain symbolic execution and our notion of a symbolic execution
tree by way of examples.

Listing 11.1 shows Java method min, which computes the minimum of two given
integers. When the method is called during a concrete execution, the variables x and
y have defined values. The if statement can compare these values and decide to
execute either the then or the else block. Concrete execution always follows exactly
one path trough a (sequential) program. To explore different paths it is required to
execute the program multiple times with different input values.

1 public static int min(int x, int y) {
2 if (x < y) {
3 return x;
4 }
5 else {
6 return y;
7 }
8 }

Listing 11.1 Minimum of two integers

Symbolic execution uses symbolic in lieu of concrete values, so that when method
min is called, variables x and y are assigned symbolic values x and y. As long as
nothing is known about the relation of x and y, the if statement cannot decide
whether to follow the then or the else branch. Consequently, symbolic execution has
to split to follow both branches, resulting in a symbolic execution tree. One branch
continues the execution in case that the branch condition x < y is fulfilled and the
other in case that !(x < y) holds instead. The conjunction over all parent branch
conditions is named path condition and defines a constraint on the input values that
ensures this path to be taken. The knowledge gained from branch conditions is used
in subsequent symbolic execution steps to prune infeasible execution paths. If method
min is called a second time with the same symbolic values x and y and with one of
the possible branch conditions from the first call, then symbolic execution will not
split again. In this way symbolic execution discovers all feasible execution paths and
each symbolic path may represent infinitely many concrete executions.
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The complete symbolic execution tree of method min is shown in Figure 11.1.
The root of each symbolic execution tree in our notion of symbolic execution is a
start node, usually followed by a call of the method to execute.

<end> <end>

<return x as result of Numbers.min(x,y)> <return y as result of Numbers.min(x,y)>

return x; return y;

if (x<y)

y >  x y <= x

<call Numbers.min(x,y)>

<start>

Figure 11.1 Symbolic execution tree of static method min defined in class Numbers

Typically, an if statement splits execution. For this reason it is represented as a
branch statement. Its child nodes are branch conditions representing the condition
when a branch is taken. Branch conditions occur after branch statements if and only
if execution splits. If a branch statement does not split, then its child is the next state-
ment to execute. But also other statements than explicit branch statements can split
execution, for instance, an object access that may throw a NullPointerException.
Whenever a statement splits execution, its children show the relevant branch condi-
tions and continue execution.

In the example, on each branch a return statement is executed which causes
a method return and lets the program terminate normally (without an uncaught
exception).

Loop statements are unwound by default, similar to a concrete program execution.
The first time when a loop is entered it is represented as a loop statement in the
symbolic execution tree. Whenever the loop guard is executed, it will be represented
as a loop condition node and may split execution into two branches. One where
the guard is false and the execution is continued after the loop and one where it is
true and the loop body is executed once and the loop guard is checked again. As a
consequence, unwinding a loop can result in symbolic execution trees of unbounded
depth. As an illustration we use the method in Listing 11.2 which computes sum of
array elements.

The beginning of a symbolic execution tree resulting from execution of sum with
precondition array != null is shown in Figure 11.2. The left branch stops before
the loop guard is evaluated the second time, whereas the right branch terminates after
the computed sum is returned. When symbolic execution is continued on the left
branch, similar child branches will be created until Integer.MAX_VALUE is reached.

To render symbolic execution trees finite in presence of loops, optionally, a loop
invariant can be supplied [Hentschel et al., 2014b]. In this case a loop invariant node
is shown in the symbolic execution tree splitting execution into two branches. The
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1 public static int sum(int[] array) {
2 int sum = 0;
3 for (int i = 0; i < array.length; i++) {
4 sum += array[i];
5 }
6 return sum;
7 }

Listing 11.2 Sum of all array elements

i<array.length <end>

i++; <return 0 as result of Numbers.sum(array)>

sum_1+=array[i]; return sum_1;

i<array.length

array.length >  0 array.length < 1

int i = 0;

for ( int i = 0; i<array.length; i++ )

int sum = 0;

<call Numbers.sum(array)>

<start>

Figure 11.2 Symbolic execution tree of static method sum defined in class Numbers

first body preserves invariant branch represents all possible loop iterations ending
in loop body termination nodes.1 The second use case branch continues execution
after the loop. It is possible that the invariant was initially not valid or that it is not
preserved by the loop body. This would be a problem in a verification scenario, but a
violated loop invariant should not stop one from debugging a program. Therefore,
different icons indicate whether the loop invariant holds initially and in a loop body
termination node.

The sum example in Listing 11.2 is extended by a weak (and wrong) loop invariant
in Listing 11.3. A correct loop invariant would treat the case that i can be zero. For
verification it is also required to specify how the value of sum is changed by the loop.

The resulting symbolic execution tree using the loop invariant and precondition
array != null is shown in Figure 11.3. The icon of the loop invariant indicates
that it is initially not fulfilled.

Method calls are handled by default by inlining the body of the called method. In
case of inheritance, symbolic execution splits to cover all possible implementations
indicated by branch condition nodes in front of the method call node.

1 In case an exception is thrown or a jump outside of the loop is initiated by a return, break or
continue statement, execution is continued directly in the body preserves invariant branch.
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1 /*@ loop_invariant i > 0 && i <= array.length;
2 @ decreasing array.length - i;
3 @ assignable \strictly_nothing;
4 @*/
5 for (int i = 0; i < array.length; i++) { /* ... */ }

Listing 11.3 Wrong and weak loop invariant of loop from Listing 11.2

<start>

<call Sum.sum(array)>

int sum = 0;

for ( int i = 0; i<array.length; i++ )

int i = 0;

Body Preserves Invariant: array.length < 0 | i_0 >= 1 & array.length >  i_0

i<array.length

sum_1+=array[i];

i++;

<loop body end>

Use Case: array.length < 0 | i_0 >= 1 & array.length = i_0

return sum_1;

<return sum_1_0 as result of sum>

<end>

invariant: i >  0 & i <= array.length; 

variant: javaSubInt(array.length, i) 

mod: false

Figure 11.3 Symbolic execution tree of static method sum using a loop invariant

The usage of inlined methods is explained with help of the example in Listing 11.4
which executes in method run of class Main the run method of an IOperation.
Two different IOperation implementations are available.

The resulting symbolic execution tree under precondition operation != null
is shown in Figure 11.4. The target method is inlined first and its body is executed
between the method call and the corresponding method return node. The only state-
ment calls method run on the argument operation. As the concrete implementation
is unknown, symbolic execution has to split to consider both of them, shown by
the child branch condition nodes. The left branch continues execution in case that
operation is an instance of BarOperation and the right one in the other case.
Both branches inline the target method next, execute the return statement, return
from the called method, and finally terminate normally.

As in the case of loops, recursive method calls can lead to unbounded symbolic
execution trees. But even unfolding nonrecursive calls can quickly lead to infeasibly
large symbolic execution trees. To address this issue, instead of inlining the method
body, it is possible to replace a method call by a method contract (see Chapter 7).
This can also be useful when the source code of a method implementation is not
available (for example, if it is proprietary code or simply unfinished).
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1 public class Main {
2 public static String run(IOperation operation) {
3 return operation.run();
4 }
5 }
6

7 interface IOperation {
8 public String run();
9 }

10

11 class FooOperation implements IOperation {
12 public String run() {
13 return "foo";
14 }
15 }
16

17 class BarOperation implements IOperation {
18 public String run() {
19 return "bar";
20 }
21 }

Listing 11.4 Method call with inheritance

<end> <end>

<return strPool("bar") as result of Main.run(operation)> <return strPool("foo") as result of Main.run(operation)>

<return strPool("bar") as result of operation.run()> <return strPool("foo") as result of operation.run()>

return "bar"; return "foo";

<call operation.run()> <call operation.run()>

return operation.run();

BarOperation::instance(operation) = TRUE !BarOperation::instance(operation) = TRUE

<call Main.run(operation)>

<start>

Figure 11.4 Symbolic execution tree of static method run

Upon application of a method contract, symbolic execution is continued separately
for the specification cases corresponding to normal and to exceptional behavior. As
in the case of loop invariants, node icons are used to indicate if certain conditions
like preconditions or that the callee is not null could not be established.

Listing 11.5 shows the contract of method sum from Listing 11.2. The sum method
is used to compute the average of all array elements in Listing 11.6.

The symbolic execution tree resulting from the execution of method average,
where the contract of sum is used to handle the call to sum, is shown in Figure 11.5.
The left branch terminates with an uncaught ArithmeticException in case that
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1 /*@ normal_behavior
2 @ requires array != null;
3 @ ensures \result == (\sum int i; i >= 0 && i < array.length; array[i]);
4 @
5 @ also
6 @
7 @ exceptional_behavior
8 @ requires array == null;
9 @ signals_only NullPointerException;

10 @ signals (NullPointerException) true;
11 @*/
12 public static /*@ pure @*/ int sum(/*@ nullable @*/ int[] array) {
13 // ...
14 }

Listing 11.5 Method contract of method sum from Listing 11.2

1 public static int average(/*@ nullable @*/ int[] array) {
2 return sum(array) / array.length;
3 }

Listing 11.6 Average of all array elements

the array is empty whereas the middle branch terminates normally after the computed
average is returned. The right branch terminates with an uncaught Throwable in
case the array is null.

Table 11.1 summarizes the different nodes which are used in our notion of a
symbolic execution tree. Readers familiar with the Eclipse IDE will notice that the
icons in start and statement nodes are compatible with Eclipse usage.

11.3 Symbolic Execution Debugger

The Symbolic Execution Debugger with KeY as symbolic execution engine allows
the user to execute any Java method or any Java statement(s) symbolically resulting in
a symbolic execution tree as discussed in Section 11.2. The main goal of the tool is to
help program understanding. Like a traditional debugger it allows the user to control
the execution, to inspect states and to suspend execution at defined breakpoints.

11.3.1 Installation

The Symbolic Execution Debugger and other Eclipse extensions provided by the
KeY project can be added to an existing Eclipse installation via an update-site. The
supported Eclipse versions and the concrete update-site URLs are available on the
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<uncaught java.lang.Throwable>

<exceptional return of <call Numbers.average(array)>>

<uncaught java.lang.ArithmeticException>

<exceptional return of <call Numbers.average(array)>>

<end>

<return 
 quotient_4 {result_0 >  -1}, 
 quotient_3 * -1 {result_0 < 0}
as result of Numbers.average(array)>

result_0 = sum(array) catch(exc_0)
pre: array = null | !array = null
post: (   array = null
   ->   !exc_0 = null
      &   java.lang.NullPointerException::instance(exc_0)
        = TRUE)
& (   !array = null
   ->     result_0
        = javaCastInt(sum{int i;}(\if (  inInt(i)
                                       & (  i >= 0
                                          &   i
                                            < array.length
                                          & inInt(i)))
                                      \then (TRUE)
                                      \else (FALSE),
                                  array[i]))
      & exc_0 = null)
mod: \if (true)  \then (empty)  \else (allLocs)
\cap \if (!array = null)
         \then (empty)
         \else (allLocs)
termination: diamond

Post (sum): !array = null

array.length = 0 !array.length = 0

Exceptional Post (sum): array = null

return sum(array)/array.length;

<call Numbers.average(array)>

<start>

Figure 11.5 Symbolic execution tree of method average using a contract for the called method

KeY website (www.key-project.org). When reading the following sections for the
first time, we strongly recommend to have a running Eclipse installation with the
SED extension at hand, so that the various features can be tried out immediately. We
assume that the reader is familiar with the Java perspective of the Eclipse IDE.

11.3.2 Basic Usage

The main use case of the SED using KeY is to execute a Java method symbolically. It
can be achieved by opening the context menu of a method and by selecting Debug As,
Symbolic Execution Debugger (SED). Alternatively, it is possible to execute individual
Java statements by selecting them first in the Java text editor and then by selecting
the same context menu entry. Additional knowledge to limit feasible execution paths

http://www.key-project.org/
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Table 11.1 Symbolic execution tree nodes

Icon & Node Type Description

Start The root of a symbolic execution tree.
Branch Statement The program state before a branch statement (if and switch in

Java) is executed.
Loop Statement The program state before a loop (while, do, for and for-each

loop in Java) is executed. It occurs only once when the loop is
entered the first time.

Loop Condition The program state before a loop condition is executed. It is repeated
in every loop iteration.

Statement The program state before a statement which is not a branch state-
ment, loop statement and loop condition is executed.

Branch Condition The condition under which a branch is taken.
Termination The last node of a branch indicating that the program terminates

normally. If the postcondition does not hold icon is used instead.
Exceptional Termination The last node of a branch indicating that the program terminates

with an uncaught exception. If the postcondition does not hold
icon is used instead.

Method Call The event that a method body is inlined and will be executed next.
Method Return The event that a method body is completely executed. Execution

will be continued in the caller of the returned method.
Exceptional Method Return The event that a method returns by throwing an exception. Execu-

tion will be continued where the exception is caught. Otherwise,
execution finishes with an exceptional termination node.

Method Contract A method contract is applied to treat a method call. If the object on
which the method is called can be null, icon is used instead. If
the precondtion does not hold, icon shows this circumstance. If
both do not hold, icon is used.

Loop Invariant A loop invariant is applied to treat a loop. If it is initially not
fulfilled the icon is used instead.

Loop Body Termination The branch of a loop invariant node which executes only loop
guard and loop body once is completed. If the loop invariant does
not hold, the icon is used instead.

can be supplied as a precondition in the Debug Configuration. Also a full method
contract can be selected instead of specifying a precondition.2 In this case icons of
termination nodes will indicate whenever the postcondition is not fulfilled. After
starting execution, it is recommend to switch to the perspective Symbolic Debug
which contains all relevant views explained in Table 11.2.

Figure 11.6 shows a screenshot of the Symbolic Debug perspective in which the
symbolic execution tree of method equals, whose implementation is shown in the
bottom right editor, is visualized. The method checks whether its Number argument
instance has the same content as this, which is named self in KeY. The left branch
represents the case when both instances have the same content, whereas the content
is different in the middle branch. The right branch terminates with an uncaught
NullPointerException, because the argument is null.

2 The use of a method contract activates full JML support including non_null defaults.
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Table 11.2 Views of perspective Symbolic Debug

View Description

Debug Shows symbolic execution trees of all launches, as well
as to switch between them and to control execution.

Symbolic Execution Tree Visualizes symbolic execution tree of selected launch.
Symbolic Execution Tree (Thumbnail) Miniature view of the symbolic execution tree for navi-

gation purposes.
Variables Shows the visible variables and their symbolic values.
Breakpoints Manages the breakpoints.
Properties Shows all information of the currently selected ele-

ment.
Symbolic Execution Settings Customizes symbolic execution, e.g., defines how to

treat method calls and loops.

Figure 11.6 Symbolic Execution Debugger: Interactive symbolic execution

The additional frames (rectangles) displayed in view Symbolic Execution Tree of
Figure 11.6 represent the bounds of code blocks. Such frames can be independently
collapsed and expanded to abstract away from the inner structure of code blocks,
thus achieving a cleaner representation of the overall code structure by providing
only as much detail as required for the task at hand. A collapsed frame contains
only one branch condition node per path (namely the conjunction of all branch
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conditions of that particular path), displaying the constraint under which the end of
the corresponding code block is reached. In Figure 11.7, the method call node is
collapsed. Collapsed frames are colored green, if all execution paths reached the end
of the frame. Otherwise they are colored orange. Expanded frames are colored blue.

Figure 11.7 Symbolic Execution Debugger: Collapsed frame (frame color is green)

The symbolic program state of a selected node is shown in the view Variables.
The details of a selected variable (e.g. additional constraints) or symbolic execution
tree node (e.g. path condition, call stack, etc.) are available in the Properties view.
The source code line corresponding to the selected symbolic execution tree node
is highlighted in the editor. Additionally, the editor highlights statements and code
members reached during symbolic execution.

The Symbolic Execution Settings view lets one customize symbolic execution,
e.g., one can choose between method inlining and method contract application.
Breakpoints suspend the execution and are managed in the Breakpoints view.

In Figure 11.6 the symbolic execution tree node return true; is selected, which
is indicated by a darker color. The symbolic value of field content of the current
instance self and of the argument instance n are identical. This is not surprising,
because this is exactly what is enforced by the path condition. A fallacy and source
of defects is to implicitly assume that self and n refer to different instances as they
are named differently and here also because that an object is passed to itself as a
method argument. This is because the path condition is also satisfied if n and self
reference the same object. The SED helps to detect and locate unintended aliasing
by determining and visualizing all possible memory layouts w.r.t. the current path
condition.

Selecting context menu item Visualize Memory Layouts of a symbolic execution
tree node creates a visualization of possible memory layouts as a symbolic object
diagram, see Figure 11.8. It resembles a UML object diagram and shows (i) the
dependencies between objects, (ii) the symbolic values of object fields and (iii) the
symbolic values of local variables of the current state.

The root of the symbolic object diagram is visualized as a rounded rectangle
and shows all local variables visible at the current node. In Figure 11.8, the local
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variables n and self refer to objects visualized as rectangles. The symbolic value
of the instance field content is shown in the lower compartment of each object.
The local variable exc is used by KeY to distinguish among normal and exceptional
termination.

The scrollbar of the toolbar (near the origin of the callout) allows one to select
different possible layouts and to switch between the current and the initial state
of each layout. The initial state shows how the memory layout looked before the
execution started resulting in the current state. Figure 11.8 shows both possible
layouts of the selected node return true; in the current state. The second memory
layout (inside the callout) represents the situation, where n and self are aliased.

Figure 11.8 Symbolic Execution Debugger: Possible memory layouts of a symbolic state

11.3.3 Debugging with Symbolic Execution Trees

The Symbolic Execution Debugger allows one to control execution like a traditional
debugger and can be used in a similar way. A major advantage of symbolic execution
is that it is not required to start at a predefined program entry point and to run the
program until the point of interest is reached. Instead, the debug session can start
directly at the point of interest. This avoids building up large data structures and the
memory will contain only the variables used by the code of interest. If knowledge
about the conditions under which a failure can be observed is available, it can be
given as a precondition to limit the number of explored execution paths.

The main task of the user is, like in a traditional debugger, to control execution
and to comprehend each performed step. It is helpful to focus on a single branch
where the execution is expected to reach a faulty state. If this is not the case, the
focus can be changed to a different branch. There is no need for a new debugging
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session or to find new input values resulting in a different execution path. It is always
possible to go back to previous steps, because each node in the symbolic execution
tree provides the full symbolic state.

Of special interest are splits, because their explicit rendering in the symbolic
execution tree constitutes a major advantage of the SED over traditional debuggers.
Unexpected splits or missing expected splits are good candidates for possible sources
of defects. This is explained by example. Listing 11.7 shows a defective part of a
Mergesort implementation for sorting an array called intArr. The exception shown
in Listing 11.8 was thrown during a concrete execution of a large application that
contained a call to sort. It seems that method sortRange calls itself infinitely often
in line 9 until the call stack is full, which happened in line 7.

Either the value of l or the value of r is the termination criterion. Using a
traditional debugger the user has to execute the whole program with suitable input
values until method sort is executed. From this point onward, she may control the
execution, observe how the r value is computed and try to find the origin of the
failure. With the SED, however, she can start execution directly at method sort.
Clearly, the array intArr needs to be not null. This knowledge can be expressed as
precondition intArr != null. The resulting symbolic execution tree in Figure 11.9
shows already after a few steps that the if-statement is not branching in case that
intArr is not empty and the defect is found (the comparison should have been
l < r).

int q = (l_1+r_1)/2;

if (l_1<=r_1)

<call Mergesort.sortRange(intArr_2,l_1,r_1)> <end>

sortRange(intArr_1,l,q); <return of sort>

int q = (l+r)/2; <return of sortRange>

if (l<=r)

intArr.length >  0 intArr.length < 1

<call Mergesort.sortRange(intArr_1,l,r)>

sortRange(intArr,0,intArr.length-1);

<call Mergesort.sort(intArr)>

<start>

Branching expected

Figure 11.9 Symbolic Execution Tree of the mergesort implementation in Listing 11.7

3 Modified version of the Mergesort implementation by Jörg Czeschla,
see javabeginners.de/Algorithmen/Sortieralgorithmen/Mergesort.php

http://javabeginners.de/Algorithmen/Sortieralgorithmen/Mergesort.php
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1 public class Mergesort {
2 public static void sort(int[] intArr) {
3 sortRange(intArr, 0, intArr.length - 1);
4 }
5

6 public static void sortRange(int[] intArr, int l, int r) {
7 if (l <= r) {
8 int q = (l + r) / 2;
9 sortRange(intArr, l, q);

10 sortRange(intArr, q + 1, r);
11 merge(intArr, l, q, r);
12 }
13 }
14

15 private static void merge(int[] intArr, int l, int q, int r) {
16 int[] arr = new int[intArr.length];
17 int i, j;
18 for (i = l; i <= q; i++) {
19 arr[i] = intArr[i];
20 }
21 for (j = q + 1; j <= r; j++) {
22 arr[r + q + 1 - j] = intArr[j];
23 }
24 i = l;
25 j = r;
26 for (int k = l; k <= r; k++) {
27 if (arr[i] <= arr[j]) {
28 intArr[k] = arr[i];
29 i++;
30 }
31 else {
32 intArr[k] = arr[j];
33 j--;
34 }
35 }
36 }
37 }

Listing 11.7 Defective part of a mergesort implementation3

11.3.4 Debugging with Memory Layouts

It is easy to make careless mistakes in operations which modify data structures. To
find them with a traditional debugger can be time consuming, because large data
structures have to be inspected after each execution step. A complication is that a
program state contains not only the data structure of interest, but all information
computed before the state of interest is reached. Traditional debuggers present the
current state typically as variable-value pairs in a list or tree. This representation
makes it very hard to figure out object type data structures.
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Exception in thread "main" java.lang.StackOverflowError
at Mergesort.sortRange(Mergesort.java:7)
at Mergesort.sortRange(Mergesort.java:9)
at Mergesort.sortRange(Mergesort.java:9)
at Mergesort.sortRange(Mergesort.java:9)
...

Listing 11.8 Exception thrown by the mergesort implementation of Listing 11.7

With the Symbolic Execution Debugger it is possible to visualize the current
state as well as the initial state from which the execution started in the form of a
symbolic object diagram. As an example, consider the rotate left operation of an
AVL tree. Each node in such a tree has a left and a right child and it knows its parent
as well. Again, symbolic execution is started directly in the method of interest, here
the rotateLeft method and we let the SED compute all memory layouts for one of
its return nodes.

Consider the initial state in Figure 11.10. The node to rotate is named current
and it is the root of the tree because its parent is null. It has a right child, which in
turn has a left child. The AVL tree itself is named self. Additionally, precondition
current != null && current.right != null is used to ensure that the nodes
to rotate exist.

current.right.left : Nodeself : AVLTree
self

left

<start> resulting in <return of self.rotateLeft(current);> current : Node

parent = null
current.right : Node

current right

Figure 11.10 Initial symbolic object diagram of an AVL Tree rotate left operation

The symbolic state automatically computed and visualized by the SED after
performing the rotation is shown in Figure 11.11. It shows the initial objects with all
performed changes. By inspecting this diagram it is obvious that the parent of object
current.right.left was not correctly updated because its parent is now the node
itself.

11.3.5 Help Program and Specification Understanding

An important feature of symbolic execution trees is that they show control and data
flow at the same time. Thus they can be used to help understanding programs and
specifications just by inspecting them. This can be useful during code reviews or
in early prototyping phases, where the full implementation is not yet available. It
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current.right.left : Node
parent

<return of self.rotateLeft(current);> current : Node current.right : Node

parent = null

self : AVLTree

current

self

right

parent

left

root

Self reference after rotation

Figure 11.11 Current symbolic object diagram of an AVL Tree rotate left operation

works best, when some method contracts and/or invariants are available to achieve
compact and finite symbolic execution trees. However, useful specifications can be
much weaker than would be required for verification.

For example, Listing 11.9 shows a defective implementation of method indexOf
which should return the first array index excepted by the given Filter or -1 in case
none of the array elements were accepted. The method is specified by a basic method
contract limiting the expected input values. In addition, a very simple loop invariant
is given.

The corresponding symbolic execution tree is shown in Figure 11.12. It captures
the full behavior of indexOf. Without checking any details, one can see that the
left-most branch terminates in a state where the loop invariant is not preserved. Now,
closer inspection shows the reason to be that, when the array element is found, the
variable i is not increased, hence the decreasing clause of the invariant is violated.
The two branches below the use case branch correspond to the code after the loop
has terminated. In one case an element was found, in the other not. Looking at the
return node, however, we find that in both cases instead of the index computed in
the loop, the value of i is returned.

As this example demonstrates, symbolic execution trees can be used to answer
questions, for example, about thrown exceptions (none in the example) or returned
values. Within the SED the full state of each node is available and can be visualized.
Thus it is easily possible to see whether and where new objects are created and which
fields are changed when (comparison between initial and current layout). Using
breakpoints, symbolic execution is continued until a breakpoint is hit on any branch.
Thus it can be used to find execution paths (i) throwing a specified exception, (ii)
accessing or modifying a specified field, (iii) calling or returning a specified method
or (iv) causing a specified state.

11.3.6 Debugging Meets Verification

As the SED is based on symbolic execution it actually verifies the target program for
the contract specified in the debug configuration. The program was proven correct
if and only if each branch in the symbolic execution tree ends with a termination
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1 public class ArrayUtil {
2 /*@ normal_behavior
3 @ requires \invariant_for(filter);
4 @*/
5 public static int /*@ strictly_pure @*/ indexOf(Object[] array,
6 Filter filter) {
7 int index = -1;
8 int i = 0;
9 /*@ loop_invariant i >= 0 && i <= array.length;

10 @ decreasing array.length - i;
11 @ assignable \strictly_nothing;
12 @*/
13 while (index < 0 && i < array.length) {
14 if (filter.accept(array[i])) {
15 index = i;
16 }
17 else {
18 i++;
19 }
20 }
21 return i;
22 }
23

24 public static interface Filter {
25 /*@ normal_behavior
26 @ requires true;
27 @ ensures true;
28 @*/
29 public boolean /*@ strictly_pure @*/ accept(/*@ nullable @*/
30 Object object);
31 }
32 }

Listing 11.9 A defective and only partially specified implementation

node and no warning icons are raised in the whole tree. This means that all branches
terminate in a state where the specified postcondition is fulfilled. If a method call
is approximated by a method contract, the precondition- and caller-no-null checks
must have been successful, too. Likewise, all applied loop invariants are valid at the
start of their loop and are preserved by the loop body.

Whereas a proof tree in KeY shows all performed steps during the proof, includ-
ing intermediate steps of symbolic execution and proofs of first-order verification
conditions, a symbolic execution tree contains only nodes that correspond to reach-
able program states. Hence, the debugger provides a view on a KeY proof from the
developer’s perspective, hiding intermediate and nonprogram related steps. Program
states are visualized in a user-friendly way and are not encoded into side formulas of
sequents.

Another advantage of SED over the KeY system is that insufficient or wrong
specifications are directly highlighted. Whenever a symbolic execution tree node
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<loop body end> <loop body end>

index_1=i; i++;

result_0 = var.accept(var_1) catch(exc_0)

pre: var.<inv>

post: var.<inv> & exc_0 = null

mod: empty, creates no new objects

termination: diamond

result_0 = TRUE !result_0 = TRUE

if (_filter.accept(_array[i]))

<end>

<return i_0 as result of ArrayUtil.indexOf(_array,_filter)>

<end>

<return i_0 as result of ArrayUtil.indexOf(_array,_filter)>

return i;

index_1_0 >  -1

index_1_0 < 0

invariant: i >= 0 & i <= _array.length;

variant: javaSubInt(_array.length, i)

mod: false

Body Preserves Invariant:   index_1_0 < 0

& (index_1_0 >  -1 | i_0 >= 0 & array.length >  i_0)

Use Case:   (index_1_0 < 0 | i_0 >= 0 & array.length >= i_0)

& (index_1_0 >  -1 | i_0 >= 0 & array.length = i_0)

int i = 0;

int index = -1;

<call ArrayUtil.indexOf(_array,_filter)>

<start>

index_1<0&&i<_array.length
Return of index
index_1_0
expected

Return of index
index_1_0
expected

Loop invariant does not hold

Figure 11.12 Symbolic execution tree of method indexOf (see Listing 11.9)

is crossed out, then something went wrong in proving the verification conditions
for that path. The user can then inspect the parent nodes and check whether the
implementation or the specifications contain a defect. More specifically, if the post-
condition in a termination node is not fulfilled, then the symbolic program state
at that point should be inspected. Wrong values relative to the specified behavior
indicate a defect in the implementation. Values that have been changed as expected,
but which are not mentioned in the specification indicate that the specification has to
be extended. Moreover, crossed out method call and loop invariant nodes indicate
that the precondition of the proven method contract is too weak or that something
went wrong during execution. If a loop invariant is not preserved, the state of the
loop body at the termination nodes gives hints on how to adjust the loop invariant.

11.3.7 Architecture

The Symbolic Execution Debugger (SED) is an Eclipse extension and can be added
to existing Eclipse-based products. In particular, SED is compatible with the Java
Development Tools (JDT) that provide the functionality to develop Java applications
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in Eclipse. To achieve this and also a user interface that seamlessly integrates with
Eclipse, SED needs to obey a certain architecture, which is shown in Figure 11.13.
The gray-colored components are part of the Eclipse IDE, whereas the remaining
components are part of the SED extension.

Workspace

Debug CoreJDT Core/Debug

Symbolic Debug Core

KeY Debug Core

Workbench

Debug UI JDT UI

Visualization UI

Symbolic Debug UI

KeY Debug UI

Figure 11.13 Architecture of the Symbolic Execution Debugger (SED)

The foundation is the Eclipse Workspace which provides resources such as
projects, files and folders, and the Eclipse Workbench which provides the typical
Eclipse user interface with perspectives, views and editors. Eclipse implements on top
of these the debug platform which defines language-independent features and mech-
anisms for debugging. Specifically, Debug Core provides a language-independent
model to represent the program state of a suspended execution. This includes threads,
stack frames, variables, etc. Debug UI is the user interface to visualize the state
defined by the debug model and to control execution. JDT Core defines the func-
tionality to develop Java applications, including the Java compiler and a model to
represent source code, whereas JDT Debug uses the debug platform to realize the
Java debugger. Finally, JDT UI provides the user interface which includes the editor
for Java source files.

The Symbolic Execution Debugger is based on the components provided by
Eclipse. First, it extends the debug platform for symbolic execution in general.
Second, it provides a specific implementation based on KeY’s symbolic execution
engine, described in Section 11.4.

Symbolic Debug Core extends the debug model to represent symbolic execution
trees. This is done in a way that is independent of the target programming language
and of the used symbolic execution engine.4 It is also necessary to extend the debug-
ger user interface, which is realized in Symbolic Debug UI. It contains in particular
the tree-based representation of the symbolic execution tree that is displayed in the
Debug view. The graphical representation of the symbolic execution tree shown in

4 Each implementation of the symbolic debug model can define new node types to represent
additional language constructs not covered by Table 11.1.
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the Symbolic Execution Tree view as well as the visualization of memory layouts is
provided language-independently by Visualization UI. Finally, KeY Debug Core
implements the symbolic debug model with help of KeY’s symbolic execution engine
(implemented as pure Java API without any dependency to Eclipse). The functionality
to debug selected code and to customize the debug configuration is provided by KeY
Debug UI.

The extendable architecture of SED allows one to reuse the symbolic debug
model for symbolic execution to implement alternative symbolic debuggers while
profiting from the visualization functionality. All that needs to be done is to provide
an implementation of the symbolic debug model for the target symbolic execution
engine. KeY’s symbolic execution API itself is part of the KeY framework and has
no dependencies to the Symbolic Execution Debugger or to Eclipse. This makes it
possible to use it like any other Java API.

11.4 A Symbolic Execution Engine based on KeY

The KeY verification system (see Chapter 15) is based on symbolic execution, but it
is not directly a symbolic execution engine. In this section we describe how to realize
a symbolic execution engine as API based on the KeY system. It is used for instance
by the Symbolic Execution Debugger (see Section 11.3). We attempted to make this
section self-contained, but it is certainly useful to have read Chapter 3 in order to
appreciate the details.

11.4.1 Symbolic Execution Tree Generation

All the required functionality is implemented by KeY, because it already performs
symbolic execution to verify programs. The simplified5 schema of proof obligations
to verify a piece of Java code looks as follows in KeY:

=⇒ pre → U

〈
try {codeOfInterest}
catch (Exception e) {exc = e}

〉
post

The meaning is as follows: assuming precondition pre holds and we are in a sym-
bolic state given by U , then the execution of the code between the angle brack-
ets terminates, and afterwards postcondition post holds. The catch-block around
codeOfInterest is used to assign the caught exception to variable exc which can be
used by the post condition to separate normal from exceptional termination. The code
of interest is usually the initial method call but can be also a block of statements.

Rules applied on a 〈code〉post modality rewrite the first (active) statement in
code and then continue symbolic execution. Symbolic execution is performed at

5 The proof obligation is explained in detail in Section 8.3.1
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the level of atomic expressions, such that complex Java statements and expressions
have to be decomposed before they can be executed. For example, the method
call even(2 + 3) requires a simple argument expression, so that the sum must
be computed before the method call can be performed. As a consequence, many
intermediate steps might be required to execute a single statement of source code.
An empty modality 〈〉post can be removed, and the next step will be to show that the
postcondition is fulfilled in the current proof context.

All symbolic execution rules have in common that, if necessary, they will split
the proof tree to cover all conceivable execution paths. This means that the rules
themselves do not prune infeasible paths. It is the task of the automatic proof strategy
(or the user) to check the infeasibility of new proof premisses before execution is
continued.

We realize a symbolic execution engine on top of the proof search in KeY by
extracting the symbolic execution tree for a program from the proof tree for the
corresponding proof obligation. The main tasks to be performed are:

• Define a ‘normal form’ for proof trees that makes them suitable for generation
of a symbolic execution tree.

• Design a proof strategy that ensures proof trees to be of the expected shape.
• Separate feasible and infeasible execution paths.
• Identify intermediate proof steps stemming from decomposition of complex

statements into atomic ones. Such intermediate steps are not represented in the
symbolic execution tree.

• Realize support for using specifications as an alternative to unwind loops and to
inline method bodies.

It is important to postpone any splits of the proof tree caused by an attempt to
show the postcondition until symbolic execution has completely finished. Otherwise,
multiple proof branches representing the same symbolic execution path might be
created. Whereas this does not affect the validity of a proof, it would cause redundant
branches in a symbolic execution tree.

We also want to have at most one modality formula (of the form 〈code〉post) per
sequent, otherwise it is not clear what the target of symbolic execution is. Later, we
will see that to support the use of specifications, this condition has to be relaxed.

The standard proof strategy used by KeY for verification almost ensures proof
trees of the required shape. It is easy to modify this strategy: first, we forbid for the
moment symbolic execution rules that introduce multiple modalities; second, we
stipulate that all rules not pertaining to symbolic execution and that cause splitting are
only applied after finishing symbolic execution. Even with these restrictions the proof
strategy is often powerful enough to close infeasible execution paths immediately.

After the strategy stops, symbolic execution tree generation takes place. During
this it is required to separate proof branches representing a feasible execution path
from infeasible ones. This information is not available in the proof itself, because it
is not needed for proving. Complicating is also the fact that KeY throws information
away that is not needed for verification, however, it might later be needed for sym-
bolic execution tree generation. This can be easily solved with the following trick.
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The uninterpreted predicate SET is added to the postcondition of the initial proof
obligation:

=⇒ pre → U

〈
try {codeOfInterest}
catch (Exception e) {exc = e}

〉
post ∧ SET(exc)

The effect is that infeasible paths will be closed as before and feasible paths remain
open since no rules exist for the predicate SET . Variables of interest are listed as
parameters, so KeY is not able to remove them for efficiency if no longer needed.

To separate statements that occur in the source code from statements that are
introduced by decomposition we use meta data in the form of suitable tags. Each
statement occurring in the source code contains position information about its source
file as well as the line and column where it was parsed. Statements introduced during
a proof have no such tags.

The mechanisms described above are sufficient to generate a symbolic execution
tree by iterating over a given proof tree. Each node in a proof tree is classified
according to the criteria in Table 11.3 and added to the symbolic execution tree. Java
API methods can optionally be excluded. In this case only method calls to non-API
methods are added and statement nodes are only included if they are contained in
non-API methods.

Table 11.3 Classification of proof nodes for symbolic execution tree nodes (excluding specifica-
tions)

SET node type Criterion in KeY proof tree

Start The root of the proof tree.
Method Call The active statement is a method body statement.
Branch Statement The active statement is a branch statement and the position information

is defined.
Loop Statement The active statement is a loop statement, the position information is

defined, and it is the first loop iteration.
Loop Condition The active statement is a loop statement and the position information is

defined.
Statement The active statement is not a branch, loop, or loop condition statement

and the position information is defined.
Branch Condition The parent of proof tree node has at least two open children and at

least one child symbolic execution tree node exist (otherwise split is not
related to symbolic execution).

Normal Termination The emptyModality rule is applied and exc variable has value null.
Exceptional Termination The emptyModality rule is applied and exc variable has not value null.
Method Return A rule which performs a method return by removing the current method

frame is applied and the related method call is part of the symbolic
execution tree.

To detect the use of specifications in the form of method contracts and loop
invariants it is sufficient to check whether one of the rules UseOperationContract or
LoopInvariant was applied. The problem is that specifications may contain method
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calls, as long as these are side effect-free (so-called query methods). During the KeY
proof these give rise to additional modalities in a sequent. Hence, we must separate
such ‘side executions’ from the target of symbolic execution. This is again done with
the help of meta information. We add a so-called term label SE to the modality of
the proof obligation, such as in:

=⇒ pre → U

〈
try {codeOfInterest}
catch (Exception e) {exc = e}

〉
(post ∧ SET(exc))«SE»

A term label is a noncorrectness relevant information attached to a term and main-
tained during a proof. When symbolic execution encounters a modality with an SE
label, it will be inherited to any child modalities. It is easy to modify the KeY proof
strategy to ensure that modalities without an SE label are executed first, because their
results are required for the ongoing symbolic execution. Finally, during symbolic
execution tree generation only nodes with an SE label are considered.

A complication is that symbolic execution of modalities without an SE label may
cause splits in the proof tree, but the knowledge gained from their execution is used in
symbolic execution of the target code. Such splits have to be reflected in the symbolic
execution tree. We will discuss later in Section 11.4.3 how they can be avoided.

When a method contract is applied, two branches continue symbolic execution,
one for normal and one for exceptional method return. Two additional branches
check whether the precondition is fulfilled in the current state and whether the caller
object is null. The latter two are proven without symbolic execution and their proof
branches will be closed if successful. Boolean flags (represented as crossed out icons
in the SED) on a method contract node indicate their verified status as described in
Section 11.2.

The situation is similar for loop invariant application: one proof branch checks
whether the loop invariant is initially (at the start of the loop) fulfilled. A Boolean flag
(icon in the SED) on the loop invariant node indicates its verified status. A second
branch continues symbolic execution after the loop and a third branch is used to
show that the loop invariant is preserved by the loop guard and the loop body. The
latter is complex, because in case an exception is thrown or that the loop terminates
abnormally via a return, break or continue, the loop invariant does not need to
hold. The loop invariant rule (see Section 3.7.2) of KeY solves this issue by first
executing loop guard and loop body in a separate modality. If this modality terminates
normally, then the proof that the loop invariant holds is initiated. Otherwise, symbolic
execution is continued in the original modality, without assuming that the invariant
holds. As above, the problem of multiple modalities is solved by term labels. We add
a (proof global) counter to each SE label. The label of the original proof obligation is
SE(0) and it is incremented whenever needed. KeY’s proof strategy is modified to
ensure that symbolic execution is continued in the modality with the highest counter
first.

The loop invariant rule encodes in the preserves branch whether a loop iteration
terminated abnormally or normally. Depending on the kind of termination different
properties have to be shown. The different cases are distinct subformulas of the form
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reasonForTermination→ propertyToHold

We label the subformula reasonForTermination which characterizes the normal ter-
mination case with a LoopInvariantNormalBehaviorTermLabel term label6. If this
labeled formula could be simplified to true, then a loop body termination node is
added to the corresponding branch of the symbolic execution tree.

There is one special case we have not covered yet. The proof branches that check
whether a loop invariant holds initially, whether a precondition holds, and whether the
caller object is null, each can be proven without symbolic execution, as they contain
no modality. This does not hold, however, when a loop invariant or a method contract
is applied on the branch that shows the invariant to be preserved by loop condition
and loop body. The reason is that in this case the modality which continues symbolic
execution in case of an abnormal loop exit is still present and the proof strategy is free
to continue symbolic execution on it. We are not interested in this execution, because
it does not contribute to the verification of the actual proof obligation. Consequently,
all term labels have to be removed from proof branches that only check the conditions
listed above.

11.4.2 Branch and Path Conditions

Applicability of a proof rule in KeY generally depends only on the sequent it is
applied to, not on other nodes in the proof tree. Consequently, KeY does not maintain
branch and path conditions during proof construction, because the full knowledge
gained by a split is encoded in the child nodes. A branch condition can be seen as
the logical difference between the current node and its parent and the path condition
is simply the conjunction over all parent branch conditions or, in other words, the
logical difference between the current node and the root node.

In the case of symbolic execution rules, branch conditions are not generated from
modalities to avoid a proliferation of modality formulas. Instead, splitting symbolic
execution rules rewrite the active statement contained in their modality and add
knowledge gained by the split in the succedent of the premisses. Consequently,
branch conditions in symbolic execution trees are defined by:(∧

added antecedent formula
)
∧¬
(∨

added succedent formula
)

Method contract and loop invariant rules are so complex that they cannot be
expressed schematically in KeY with the help of taclets (see Chapter 4), but are com-
puted. After applying a method contract the branch conditions contain the knowledge
that the caller object is not null and that the conjunction of all preconditions (both
for normal and exceptional termination) hold. The branch condition on the proof
branch ensuring that an invariant is preserved is the conjunction of the loop invariant

6 For technical reasons the label is currently around the whole implication and the analysis checks
the evaluation of the left subformula (reasonForTermination).
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and the loop guard. The branch condition on the branch that continues symbolic
execution after the loop is the conjunction of the loop invariant and the negated loop
guard.

11.4.3 Hiding the Execution of Query Methods

As pointed out above, the presence of query methods in specifications or in loop
guards may spawn modalities that have nothing to do with the target code. These
are used to compute a single value, such as a method return value or a Boolean flag.
Even though their execution is hidden in the symbolic execution tree, possible splits
in the proof tree caused by them are visible, because the knowledge gained from
them is used during subsequent symbolic execution. Such splits complicate symbolic
execution trees, so we want to get rid of them.

These modalities have in common the fact that they are top level formulas in a
sequent that compute a single value const in the current symbolic state U :

U 〈tmp = ...〉const=̇tmp

This computation is ‘outsourced’ from the main proof via a built-in rule that executes
the modality in a side proof. The initial proof obligation of the side proof is:

Γ =⇒U 〈tmp = ...〉ResultPredicate(tmp),∆

It executes the modality in state U with an uninterpreted predicate ResultPredicate
as postcondition. That predicate is parameterized with variable tmp, which will be
replaced during the proof by its computed value. Γ and ∆ are all first-order top-level
formulas of the original sequent, representing the context knowledge7.

The standard KeY verification strategy is used in the side proof. If it stops with
open goals, where no rule is applicable, the results can be used in the original
sequent.8 Each open branch in the side proof contains a result res as parameter
of the predicate ResultPredicate(res) that is valid relative to a path condition pc
(Section 11.4.2). Now for each such open branch a new top-level formula is added
to the sequent from which the side proof was outsourced. If the modality with the
query method was originally in the antecedent, then pc → const=̇res is added to the
antecedent, otherwise, pc ∧ const=̇res is added to the succedent. The last step is to
clean up the sequent and to remove the now redundant modality of the query.

7 In the context of this chapter, formulas containing a modality or a query are excluded from the
context knowledge. Otherwise, a side proof would reason about the original proof obligation as
well.
8 The side proof is never closed, because the predicate in the postcondition is not provable. If the
proof terminates, because the maximal number of rule applications has been reached, then the side
proof is abandoned.
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11.4.4 Symbolic Call Stack

KeY encodes the method call stack with help of method frames directly in the Java
program of a modality. For each inlined method, a new method frame is added
that contains the code of the method body to execute. For more details, we refer to
Section 3.6.5.

During symbolic execution tree generation the symbolic call stack has to be
maintained. Whenever a method call node is detected, it is pushed onto the call stack.
All other nodes remove entries from the maintained call stack until its size is equal
to the number of method frames in their modality.

The branch of the loop invariant rule that checks whether the loop body preserves
the invariant contains multiple modalities with different call stacks. The modality
that executes only the loop guard and the loop body contains only the current method
frame. All parent method frames are removed. This requires to maintain a separate
call stack for each counter used in SE term labels. Whenever a modality with a new
counter is introduced, its call stack is initialized with the top entry from the call stack
of the modality where the loop invariant was applied.

11.4.5 Method Return Values

Method return nodes in a symbolic execution tree that return from a method declared
as nonvoid allow one to access return values.

Several proof rules are involved in a method return. Assuming that the argu-
ment of the return statement has been decomposed into a simple expression, the
methodCallReturn rule executes the return statement. For this, the rule adds an as-
signment statement that assigns the returned value to the result variable given in the
current method frame. As the result variable is then no longer needed, it is removed
from the method frame. A subsequent rule executes that assignment and yet another
rule completes the method return by removing the, by now, empty method frame.

According to Table 11.3 a method return node is the proof tree node that removes
the current method frame, say cmf. At this point, however, the name of the result
variable is no longer available. This requires to go back to the parent proof tree
node r, where rule methodCallReturn which assigns the returned value to the result
variable of cmf was applied.

A side proof, similar to the one in Section 11.4.3, can be performed to compute
returned values and the conditions under which they are valid. The proof obligation
is:

Γ =⇒U
〈
cmf(result->resVar, ...):
return resExp;

〉
ResultPredicate(resVar),∆

The symbolic state U is that of the return node r. Only the return statement is exe-
cuted in the current method frame cmf. Postcondition is the uninterpreted predicate
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ResultPredicate that collects the computed result. Γ and ∆ are all first-order top-level
formulas of the sequent of r representing the context knowledge. After applying the
standard verification strategy, each open branch represents a return value valid under
its path condition.

11.4.6 Current State

The values of visible variables in each symbolic execution tree node can be inspected.
Visible variables are the current this reference, method parameters, and variables
changed by assignments. This includes local variables and static fields, but highlights
also two differences as compared to Java:

• KeY does not maintain local variables on the call stack. If a name is already in
use it is renamed instead. As a consequence, the current state contains also local
variables from all previous methods in the call stack.

• For efficiency, KeY removes variables from symbolic states as soon as they are
no longer needed. This means that a previously modified local variable may get
removed if it is not used in the remaining method body.

Each visible variable can have multiple values caused by, for instance, aliasing, or
because nothing is known about it yet. The values for a variable loc, together with
the conditions under which they are valid, are computed in a side proof, similar as in
Section 11.4.3. The proof obligation is Γ =⇒U ResultPredicate(var),∆ using the
same notation as above.

If a value is an object, then it is possible to query its fields in the same way. This
brings the problem that it is possible to query fields about which no information
is contained in the current sequent. Imagine, for instance, class LinkedList with
instance variable LinkedList next and a sequent which says that obj.next is not
null. When obj.next is now queried, its value will be a symbolic object. Since
the value is not null we can query obj.next.next. But this time, the sequent says
nothing about obj.next.next, consequently it could be null or not. In case it is
not null, the query obj.next.next.next can be asked, etc. To avoid states with
unbounded depth, the symbolic execution engine returns simply <unknown value>
in case a field is not mentioned in the queried sequent.

Defining the current state by visible variables offers a view related to the source
code. Alternatively, the current state could be defined as all locations and objects
contained in the update (ignoring visibility). This offers a view related to verification
with JavaDL.
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11.4.7 Controlled Execution

A proof strategy not only decides which rule is applied next, but also selects the
branch on which the next rule is applied and it decides when to stop rule application.
The strategy used for verification performs a depth first proof search. It applies rules
on one branch until it is closed or no more rules are applicable. It continues then with
another branch in the same way until the whole proof is closed or a preset maximal
number of rule applications is reached.

This behavior is not suitable for symbolic execution because a single path may
never terminate. Instead, the symbolic execution strategy applies rules on a branch
as long as the next rule application would generate a new symbolic execution tree
node. Before that rule is applied, the strategy continues on another branch. When
the next rule on all branches would cause a new symbolic execution tree node, the
cycle starts over on the first branch. This ensures that one symbolic execution step
at a time is performed on all branches. A preset number m of maximally executed
symbolic execution tree nodes per branch is used as a stop condition in case that a
symbolic execution tree has an unbounded depth.

If m is set to one, this corresponds to a step into instruction in an interactive
debugger. A step over can be realized by stopping when a node with the same
or lower stack trace size than the current one is encountered. The instruction step
return is even more strict and requires that the stack trace size is indeed lower. More
advanced stop conditions are available for each supported breakpoint type (e.g., line
or exceptional breakpoints).

11.4.8 Memory Layouts

Aliased references do not necessarily result in different execution paths. One single
symbolic execution path can represent many concrete execution paths with differ-
ently aliased references, corresponding to different data structures in memory. The
symbolic execution engine allows one to compute for each node in the symbolic
execution tree all possible aliasing structures and the resulting data structures in
memory. Each equivalence class of variables referring to the same object, together
with the resulting memory structure, is named a memory layout.

Memory layouts can be computed for the current state as well as for the initial
state where the current computation started. The first step in doing this is to compute
all possible equivalence classes of the current state. Based on this, it is then possible
to compute the specific values resulting in the memory structure.

To compute the equivalence classes, the used objects occurring in the current
sequent must be known. These are all terms with a reference type, meaning that they
represent an object in Java, except those objects created during symbolic execution,
and the variable exc in the proof obligation (11.4.1). Symbolic states U in KeY
explicitly list objects created during symbolic execution, so they can be easily filtered
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out. The constant null is also added to the used objects because we want to check
whether an object can be null.

After the used objects are identified, a side proof checks which of them can be
aliases. The initial proof obligation is simply the current context knowledge

Γ =⇒ ∆

where Γ and ∆ are all first-order top-level formulas of the original sequent.
For each possible combination of two used objects o1 and o2 (ignoring symmetry),

first a case distinction onUroot(o1
.= o2) is applied to all open goals of the side proof,

then the automatic proof strategy is started. The updates Uroot of the proof tree root
is considered because it backups the initial state and thus provide additional equality
constraints.

This will close all branches representing impossible equivalence classes. The
branch conditions from the case distinctions on each open branch of the side proof
represent the equivalence classes of a memory layout m. The symbolic values of
variables var1, . . . ,varn can be queried as shown in Section 11.4.6, but with the
slightly modified initial sequent Γ ,cbc =⇒ U ResultPredicate(var1, . . . ,varn),∆ ,
where cbc is the conjunction of the branch conditions from case distinctions on the
path specifying m. As the case distinctions were exhaustive on all used objects, only
a single value can be computed from this query. The side proof can be based either
on the current node or on the root of the proof to inspect how the memory was before
symbolic execution started.

The symbolic execution API does not query field by field to compute the full data
structures of the memory. Instead, all variables used in the sequent are queried at
once, which is achieved by adding them as parameters var1, . . . ,varn to predicate
ResultPredicate.

11.5 Conclusion And Future Work

Recent years witnessed a renewed dynamics in research devoted to debugging. To
a considerable degree this is based on breakthroughs in static analysis of software,
see [Ayewah et al., 2008]. The book by Zeller [2006] presents a systematic approach
to debugging and an overview of currently developed and researched debugging
techniques.

The Symbolic Execution Debugger is the first debugging tool that is (a) based
on symbolic execution and first-order automated deduction, (b) visualizes complex
control and data structures, including reference types, (c) can render unbounded loops
and method calls with the help of specifications, and (d) is seamlessly integrated into
a mainstream IDE (Eclipse). Other tools have capabilities (b) and (d), but to the best
of our knowledge, the SED is the first tool to realize (a) and (c). A prototype of the
SED was presented by Hähnle et al. [2010], however, it lacked (c).
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The SED can also be used as alternative GUI for the KeY prover. It is possible to
use the SED for formal verification (see Section 11.3.6) and in addition to switch
into interactive mode when KeY’s proof strategy was not powerful enough to close a
goal automatically. The advantages are obvious: the SED-like interface for the KeY
prover inherits properties (b) and (d) from above. In addition it is not only attractive
to software developers unfamiliar with formal methods, but it also constitutes a
continuous transition from the world of software developers into the world of formal
verification.

In future work we plan to develop the SED further into a software analysis tool
that supports code reviews, as pioneered by Fagan [1976]. For this it is necessary to
increase the coverage of Java beyond what is currently supported by the KeY verifier.
The most important gaps are floating-point types and concurrent programs. Both
areas constitute open research problems for formal verification, however, it is not at
all unrealistic to implement support of these features in the context of debugging.
The reason is that for debugging purposes often an approximation of the program
semantics is already useful. For example, floating-point types might be approximated
by fixed point representations or by confidence intervals, whereas symbolic execution
of multithreaded Java would simply concentrate on the thread from which execution
is started.



12.1 Introduction

Even though the area of formal verification made tremendous progress, other valida-
tion techniques remain very important. In particular, software testing has been, and
will be, one of the dominating techniques for building up confidence in software. For-
mal verification on the one hand, and testing on the other hand, are complementary
techniques, with different characteristics in terms of the achieved level of confidence,
required user competence, and scalability, among others.

The fundamental complementarity between verification and testing is thus: on
one hand, as Dijkstra famously remarked, it is generally impossible to guarantee the
absence of errors merely by testing, i.e., testing is necessarily incomplete. But formal
verification suffers from a different kind of incompleteness: it applies only to those
aspects of a system that are formally modeled, while testing can exhibit errors in
any part of the system under test. Therefore, testing and verification need to address
different goals. One of the main challenges of testing is the creation of good test
suites, i.e., sets of test cases. The meaning of ‘good’ is generally fuzzy, but there
exist criteria, some of which we discuss in Section 12.3.

Beyond the complementary nature of formal verification and testing, the former
can even contribute to the latter. The ability of the verification machinery to analyze
programs very thoroughly can be reused for the automated creation of test suites
which enjoy certain quality criteria by construction. This goal is achieved also by
KeYTestGen, the verification based test case generation facility of KeY. To explain
the basic principle, let us first recapitulate the ‘standard’ usage of KeY as a formal
verification tool.

From source code augmented with JML specifications (see Chapter 7), KeY
generates proof obligations (see Chapter 8) in dynamic logic (DL, see Chapter 3).
During verification with the KeY prover, the proof branches over case distinctions,
largely triggered by Boolean decisions in the source code (see below, Section 12.6).
On each proof branch, a certain path through the program is executed symbolically.
It turns out that for test case generation, one can use the same machinery. The idea is
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to let the prover construct a (possibly partial) proof tree (with a bounded number of
loop unwindings), to then read off a path condition from each proof branch, i.e., a
constraint on the input parameters and initial state for a certain path to be taken. If we
generate concrete test input data satisfying each of these constraints, we can achieve
strong code coverage criteria by construction, like for instance MC/DC (Modified
Condition/Decision Criterion, see Definition 12.6). KeYTestGen implements these
principles [Engel and Hähnle, 2007, Beckert and Gladisch, 2007, Gladisch, 2011]. It
is integrated into the KeY GUI, and offers the automated generation of test cases in
the popular JUnit [Beck, 2004] format.

In addition to the source code, KeY’s test generation facility employs formal
specifications, for two purposes. First, specifications are needed to complete the test
cases with oracles to check the test’s pass/fail status. The second role of specifications
is to allow symbolic execution of method calls within the code under test. The prover
can use the specification, rather than the implementation, of called methods to
continue symbolic execution.

1 public class ArrayUtils {
2 /*@ public normal_behavior
3 @ ensures (\forall int i; 0<=i && i<a.length; a[i]==b[i]);
4 @*/
5 public void arrCopy(int[] a, int[] b) {
6 for(int i=0; i<a.length; i++) {
7 b[i]=a[i];
8 }
9 }

10 }

Listing 12.1 Method arrCopy violates its contract

As an example, Listing 12.1 shows the method arrCopy which is supposed to
copy the contents of array a to array b. This is clearly not the case since the length
of the array b may be smaller than that of array a, in which case a is only partially
copied and an exception is thrown. We will show in the rest of this chapter how the
user can find errors, like also this one, using KeYTestGen. Throughout the chapter
we will explain what effects different settings and options have on the generated tests
and give advice which of them should be used for different purposes.

12.2 A Quick Tutorial

This section contains instructions for the set-up and basic usage of KeYTestGen.
Naturally, some of the artifacts and concepts that appear in this section will be
clarified only in the latter sections.
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12.2.1 Setup

The minimal software requirement that is needed in order to run KeYTestGen is
the KeY system and the Z3 SMT solver. Version 4.3.1 (or higher) of Z3 is required
which can be downloaded from github.com/Z3Prover/z3.1 If the Z3 command is
available in the environment in which KeY is running, then KeYTestGen will run out
of the box. The SMT solver is needed for the test data generation. This is the only
requirement necessary for test case generation, the other two libraries mentioned in
this section are merely required for running the test cases when certain options have
been selected during the test case generation phase.

OpenJML is a library which contains various tools for the JML specification
language. Among them there is a runtime assertion checker (RAC) which can be
used to check at runtime whether the code fulfills the JML specification. This library
is needed for compiling and running the generated test cases with OpenJML. Note,
however, that OpenJML as of this moment is not compatible with Java 8, such that it
must be compiled and executed with Java 7. The library can be downloaded from
www.openjml.org. KeYTestGen requires OpenJML version 0.7.2 or higher.

Objenesis is a library which allows the initialization of private class fields and the
instantiation of classes which do not have a default constructor. When the Objenesis
option is selected, then the generated test cases use functions from this library
when initializing object fields of the test data. This library can be downloaded from
objenesis.org. KeYTestGen requires Objenesis version 2.2 or higher.

12.2.2 Usage

Generating test cases for the method arrCopy in Listing 12.1 consists of the follow-
ing steps2:

1. First download the examples for this chapter from this book’s web page,
www.key-project.org/thebook2.

2. Start KeY. (See also Section 15.2.)
3. We open the file browser by selecting File→ Load (or selecting in the tool

bar), and navigate to the examples directory for this chapter.
4. Preselect the arrCopy folder and press the Open button.
5. The Proof Management window will open. In its Contract Targets pane, we make

sure that ArrayUtils is expanded, and therein select the method arrCopy(). We are
asked to select a contract (in this case, there is only one), and press the Start
Proof button.

6. Press in the main window which opens the Test Suite Generation window.

1 In addition, Z3 is offered as a package for various Linux distributions.
2 Here it is assumed that KeY is configured with the default settings and that the environment has
been setup according to Section 12.2.1. Default settings of KeY can be enforced by deleting the .key
directory in the user’s home directory and restarting KeY.

https://github.com/Z3Prover/z3
http://www.openjml.org/
http://objenesis.org/
http://www.key-project.org/thebook2


418 12 Proof-based Test Case Generation

7. Select the settings as shown in Figure 12.1 (adjusting the paths to your environ-
ment) and press the Start button.

8. Browse to the directory where the tests have been generated. The path is dis-
played in the notification panel of the Test Suite Generation window. Compile
and execute the tests.

In the following, we describe these steps in more detail and describe also alternative
steps.

Concerning the Java code under test, two technicalities should be noted. First,
the generation of test inputs is based on symbolic execution of the source code.
This requires either the entire source code under test, or source code stubs (method
signatures) of all called library methods. The imported files can be placed in the
same directory as the file that is loaded: KeY will load all files from that directory.
Second, KeY can load only methods annotated with Java Modeling Language (JML)
contracts (or specifications). This issue can be easily solved by placing the trivial
JML contract

/*@ public normal_behavior requires true; ensures true; @*/

in the source code line above the method that is called in the code under test (similar
as in Listing 12.1). The keyword normal_behavior specifies that no exception is
thrown, requires specifies the precondition, and ensures specifies the postcondi-
tion of the method. Since the precondition is true, all inputs and initial states of the
method are permitted; since the postcondition is true as well, all outputs and final
states of the method satisfy the postcondition, thus the JML contract is trivial.3

KeYTestGen bases test generation on the analysis of (possibly partial) proofs. Any
partial or completed proof in KeY for a Java program can be used. If no such proof is
available, KeYTestGen will generate one. To open the Test Suite Generation window,
the user needs to press the button. From the Test Suite Generation window, shown
in Figure 12.1, the user can start the test case generation process by pressing the Start
button. The process can be forcefully stopped by using the Stop button.

The left side of the Test Suite Generation window consists of a notification panel.
It notifies the user about the progress of the test case generation process, about any
errors which may have occurred during the process, and the directory in which the
generated test files are stored. In Figure 12.1, the output reports on the symbolic
execution and test case generation for the arrCopy example shown in Listing 12.1,
after loading the specified program into KeY. After the program is symbolically
executed, path conditions are extracted for the resulting open goals.

Since the option to include postconditions is checked, the postconditions are not
removed from the proof obligation. In this case, KeYTestGen will try to avoid generat-
ing test cases that satisfy the postcondition. To prepare the checking, a preprocessing
step called “Semantic Blasting” is applied to each of the goals, replacing the occur-
rence of certain KeY functions by an axiomatization of their semantics, as explained
in Section 12.7. The resulting goals are then translated to bounded SMT format and

3 While such trivial contracts of called methods satisfy the technical requirement for test generation,
more informative specifications may be needed in some cases to produce good test cases.
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Figure 12.1 The Test Suite Generation window

handed over to an SMT solver, here Z3. In the example, not all path conditions lead to
counterexamples, only four paths can be solved. For the remaining three conditions,
where the postcondition is satisfied, no test data is generated. The four test cases are
then generated and written to a file. The final lines in the notification panel tell the
user into which directory the test cases and supplementary files were stored. The user
may browse this directory, compile and run the tests.

Two possibilities are offered for compiling and executing the generated tests.
When the option Use JUnit and test oracle is enabled, KeYTestGen generates test cases
in JUnit format, featuring test oracles that are translated from the JML specification
of the currently loaded Java program. The generated files are located in the directory
specified in the text area Store test cases to folder and can be compiled using a Java
compiler. OpenJML does not support the JUnit API and uses its own runtime checker
as test oracle. When using OpenJML, the former option must be disabled and the
path of the folder containing the OpenJML library should be specified in the text
field at the bottom. For convenience, KeYTestGen generates in this case the shell
scripts compileWithOpenJML.sh and executeWithOpenJML.sh in the test output
directory. These scripts can be used for compiling and running the tests on Linux
systems. The usage of these scripts is explained in Section 12.8.2. (Also, the scripts
contain instructions as comments.) On other systems the user can manually compile
and run the tests as instructed in the OpenJML’s user manual.

12.2.3 Options and Settings

Here we summarize the remaining options and settings of the Test Suite Generation
window. Some of the options and settings are described in more detail throughout
the chapter where the respective techniques are explained.
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Figure 12.2 TestGen macro and Finish symbolic execution macro

The first option, Apply symbolic execution, allows the user to symbolically execute
the program as part of the test case generation process. This option should be checked
if the user has just loaded a Java program into KeY and has not yet manually triggered
proof tree generation, i.e., the proof tree consists only of the root node. The symbolic
execution performed here is based on the TestGen macro provided by KeY. Macros
(see Section 15.3) are proof search strategies that a user can manually trigger by a
right-click on a proof node in the proof tab of the main KeY window and selecting
Strategy macros (see Figure 12.2).

The only difference between the Apply symbolic execution option in the Test Suite
Generation window and the Finish Symbolic Execution macro of the main window is
that loop invariants and method contracts for methods called inside the method under
test are not needed. Instead, loops are unwound and method calls inlined finitely
often as specified by the second option Maximal Unwinds. The number given in this
option is the maximum number of allowed occurrences of loop unwinding or method
inlining rule applications from the root of the proof tree to a leaf. After reaching it
on a given path, symbolic execution will stop on that path. KeYTestGen will then use
the resulting proof tree for generating a test suite.

The Require invariant for all objects option needs to be checked if the user wants
the generated test data objects to fulfill their respective class invariants. The default
semantics of KeY requires only the class invariants of the this object. The Include
postcondition option allows the user to choose whether test data should be generated
for all leaf nodes in the proof tree, or whether KeYTestGen should only generate test
data that does not satisfy the postcondition of the method under test (see Section 12.6
for more details). The first type of test data is useful if the user is interested in a high
coverage test suite, while the second type is useful when looking for counterexamples
only, i.e., inputs that violate the postcondition. It should be noted that activating
Include postcondition only affects the open proof goals where symbolic execution is
finished.4

The option Concurrent Processes determines how many instances of the Z3 SMT
solver will run in parallel when looking for test data.

When the method under test uses classes without a default constructor, or if
private or protected object fields must be initialized by the test, then the option
Use reflection framework should be activated. When activated, the Objenesis library

4 There is no modality containing a program in the sequent.
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is used to instantiate classes without default constructors and the Java reflection
framework is used to initialize private and protected fields. The text field below the
option allows the user to set the path of the location the Objenesis library file. It
should be noted that the runtime checker OpenJML is not capable of handling code
using the reflection framework. In this case, it is recommended to also activate the
option Generate JUnit and test oracle.

12.3 Test Cases, Test Suites, and Test Criteria

This section is a brief introduction into some testing concepts and criteria. It is
neither complete nor general, but aims to give the reader a lightweight introduction
to the testing-related taxonomy that matters in the present context. For an in-depth
treatment see, for example, [Ammann and Offutt, 2008]. Here, our particular focus
is automation of testing activities.

In general, the two major activities in a testing process are the creation and the
execution of sets of test cases. Traditionally, both activities were manual, whereas
modern testing methods automate the execution of test cases. For Java, the pioneering
framework for automated test execution is JUnit, developed by Kent Beck and Erich
Gamma [Beck, 2004]. Automated test case creation, however, is less common, even
though in the past decade a considerable number of test generation tools have been
proposed. Several of them are, like KeYTestGen, based on symbolic execution
and can automatically generate test cases in the JUnit format. As a result, both
the creation and the execution of test cases are automated. What sets KeYTestGen
apart from most other approaches is its embedding into a program logic for formal
verification. As a consequence, KeYTestGen can interleave test generation and
advanced logical simplification, for example, when filtering out test cases that do
not meet preconditions. It is also possible to formulate and satisfy strong coverage
criteria and to generate test oracles from postconditions, as will be shown below.
Related work is discussed in Section 12.10 below.

A test case can formally be described as a tuple 〈D,Or〉 consisting of test data
D and oracle Or, where D is a tuple 〈PD,SD〉 of input parameters PD and initial
state SD before the execution of the test case. The oracle is a function Or(R,S f ) 7→
{pass, f ail}, telling for each combination of return value R and final state S f whether
those are the expected results of executing this test case.

A test suite TSm for a (Java) method m consists of n test cases for that method:

TSm = {〈D1,Or1〉, . . . ,〈Dn,Orn〉} (12.1)

In the simplest cases Ori compares the result with a single expected value unique for
Di, but in general, Ori may accept a whole set of results. This definition reflects the
fact that the oracle is specific for each and every test case in testing theory as well as
in most testing frameworks, such as JUnit. In the KeYTestGen approach, however,
we aim at having a single, generic oracle, Orm, for each method m, to be computed
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from the JML specification of m. Then, a test suite TSm, looks like

TSm = {〈D1,Orm〉, . . . ,〈Dn,Orm〉} . (12.2)

Accordingly, in our usage of JUnit, we place a call to the same oracle method in each
test case. Conceptually, as the oracle is the same for all D j in TSm, we can omit Orm

from the representation of test cases, and keep it separate. Thus, we finally define a
test suite TSm as:

TSm = 〈{D1, . . . ,Dn},Orm〉 (12.3)

where {D1, . . . ,Dn} is the set of test data, which we now can identify with the set
of test cases, and Orm is the, now single, oracle for m. Assuming a test suite TSm is
given in any of the forms (12.1), (12.2), or (12.3), we write D(TSm) to denote the
test data set {D1, . . . ,Dn} of the test suite.

Automation of test suite generation should relieve the developers from

• identifying and manually writing test data sets,
• identifying and manually writing oracles,
• using additional tools to assess coverage properties of test suites.

The KeYTestGen tool presented in this chapter automates and merges these items. It
computes a test suite (12.3), and from that (provided the JUnit option is checked)
assembles a JUnit test suite which is closer to the form (12.2). The generated test
suite is formally guaranteed to satisfy certain coverage criteria which are explained
below. From the user’s perspective, the generated test suite does not need further
investigation to check what kind of coverage it achieves.

Approaches used for deriving test data can be roughly divided in two main
categories:

White-box testing: when derivation of test data sets is based on analyses of source
code.

Black-box testing: when derivation of test data sets is based on external descrip-
tions of the software (specification, design documents, requirements, probability
distributions).

KeYTestGen is actually a hybrid of these two categories. Its generation of the test
data set D(TSm) is mainly white-box, with elements of black-box. It is mainly
based on a thorough analysis of the source code, but also on the preconditions from
the specification. It is its white-box nature which allows KeYTestGen to generate
test suites featuring strong code based coverage criteria by construction (including
MC/DC, see below). In general, the view of a clear cut between white-box and
black-box methods is somewhat old-fashioned. Several approaches combine the two,
in which case we can call the method gray-box. Moreover, used artifacts, like, e.g.,
software models, can be positioned in between the internal and external descriptions.
In any case, the value of these notions is that they mark the extreme points of the
design space.
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Please note that, regardless of the test data, most methods treat the generation of
oracles entirely in black-box fashion. The same is true for KeYTestGen. Otherwise,
the oracles would be in danger of inheriting errors from the implementation.

Let us turn to coverage criteria which may, or may not, be fulfilled by test suites, or,
more precisely, by their test data sets. Two important groups of code based coverage
criteria are classified as graph coverage criteria and logical coverage criteria. Each
graph coverage criterion defines a specific way in which a test data set may, or may
not, cover the control flow graph.

Definition 12.1 (Control flow graph). A Control Flow Graph represents the code of
a program unit as a graph, where every statement is represented by a node and edges
describe control flow between statements. Edges can be constrained by conditions.

On the other hand, when coverage criteria are defined with reference to the set
of logical expressions occurring in the source code, they are referred to as logical
coverage criteria. These criteria talk about the values logical (sub)expressions take
during the execution of different test cases, and the way they are exercised. There is
a rich body of results on subsumptions between different coverage criteria (see [Zhu
et al., 1997] for an extended comparison). A testing criterion C1 subsumes C2 if, for
any test suite TS fulfilling C1, it is true that TS fulfills C2.

Definition 12.2 (Branch, Path, Path condition). A (program) branch is a pair of
program locations (a,b) where a is followed by b in the control flow, with the
restriction that a is also followed by a location other than b in the control flow. A
(program) path is a consecutive sequence of program positions that may be visited
in one execution of a program unit. A path condition is a condition on the inputs
and the initial state of a program unit that must be met in order for a particular path
through the unit to be executed.

For example, the program

Java
if (x>0) { A } else { B };
x = x - 1;
if (x<0) { C } else { D }

Java

has four branches: (if(x>0), A), (if(x>0), B), (if(x<0), C), and (if(x<0), D).
And it contains four paths, within which AC, AD, BC, and BD are executed, respec-
tively. These correspond to path conditions x>0 && (x-1)<0, x>0 && !(x-1)<0,
!x>0 && (x-1)<0, and !x>0 && !(x-1)<0, respectively. After simplification,
they become x>0 && x<1, x>0 && x>=1, x<=0 && x<1, and x<=0 && x>=1.
Note that in general the guards may be complex statements with side effects, in
which case they must be considered as part of the branch or path.

Definition 12.3 (Feasible/infeasible path condition). If a path cannot be executed
because its path condition is contradictory (i.e., it is equivalent to false), then the path,
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respectively the path condition, is called infeasible. Otherwise, the path, respectively
the path condition, is feasible. A feasible or infeasible program branch is defined
analogously.

In the above program the paths AC and BD are infeasible because the path conditions
x>0 && x<1 and x<=0 && x>=1 are infeasible, i.e., unsatisfiable. (We assume x to
be of type int.)

Definition 12.4 (Full feasible bounded path coverage). Let BP be the set of paths
of a method or a sequence of statements P which are bound by a given number of
method invocations and loop iterations. A test suite T satisfies full feasible bounded
path coverage for P if every feasible path of BP is executed by at least one test of T .

For example, a test suite satisfying full feasible bounded path coverage with bound 2
for the program
while (i<n) { if (cond) { A } else { B } }

must execute the feasible paths from the set {AA, AB, BA, BB}.

Definition 12.5 (Full feasible branch coverage). Let BB be the set of branches of
a method or a sequence of statements P. A test suite T satisfies full feasible branch
coverage for P if every feasible branch of BB is executed by at least one test of T .

Full feasible branch coverage requires that in the above loop the two branches
(if(cond), A) and (if(cond), B) are executed if feasible paths exists containing
these branches. We will see in Section 12.6 that achieving full feasible branch
coverage can be very challenging in certain cases (e.g., Listings 12.2 and 12.3), but
due to the theorem proving capabilities of KeY it can be achieved also for difficult
cases.

The MC/DC coverage criteria is in particular interesting for industrial applications,
because it is required in the aviation domain for certification of critical software
by the DO-178C/ED-12C standard [RTCA] and it is highly recommended in the
automotive domain by the standard ISO 26262. Its interest lies in providing relatively
strong coverage while its complexity (the size of test suites) grows linearly with
the number of atomic conditions in a program. In the following, we give no formal
definition for conditions and decisions, but explain those terms by the example
following the definition.

Definition 12.6 (Modified Condition / Decision Coverage (MC/DC) [RTCA]).
Every point of entry and exit in the program has been invoked at least once, every
condition in a decision in the program has been taken on all possible outcomes at
least once, and each condition has been shown to independently affect the decision’s
outcome. A condition is shown to independently affect a decision’s outcome by
varying just that condition while holding fixed all other possible conditions.

In [Vilkomir and Bowen, 2001] the MC/DC coverage criterion is illustrated by the
following example:
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Table 12.1 MC/DC coverage example as illustrated in [Vilkomir and Bowen, 2001]

combination values variations MC/DC
number A B C d A B C

1 1 1 1 1
2 1 1 0 1 * * +
3 1 0 1 1 * +
4 0 1 1 1
5 1 0 0 0 * * +
6 0 1 0 0 * +
7 0 0 1 0
8 0 0 0 0

d = (A && B) || (A && C) || (B && C)

The decision is the entire expression denoted by d. The conditions are the three
subexpressions (A && B), (A && C), and (B && C). A test suite satisfying the
MC/DC criterion is shown in Table 12.1. The pair satisfying each condition is
marked ’*’. The subset of combinations marked ’+’ satisfies the criterion.

KeYTestGen can satisfy different coverage criteria. Which coverage criterion is
satisfied depends on the selected settings in the Proof Strategy Settings tab of the KeY
GUI. These settings determine among others how the program is analyzed. If Loop
treatment is set to Expand, then the resulting test suite achieves full feasible bounded
path coverage (Definition 12.4). The bound for expanding (or unrolling) loops can be
set in the Test Suite Generation dialogue (by pressing the button). If Loop treatment
is set to Invariant and sufficiently strong loop invariants are provided by the user for
loops in the program, then full feasible branch coverage (Definition 12.5) can be
achieved. To fully satisfy either of the coverage criteria it is necessary that symbolic
execution of the program is executed to the end on every execution branch, i.e.,
the maximum number of rule applications must be set sufficiently high in the Proof
Search Strategy tab. A description of how the symbolic program analysis works and
how test cases are selected is provided in Section 12.6.

In order to obtain MC/DC coverage using KeYTestGen, it is necessary to set
Proof splitting to Free in the Proof strategy settings tab when KeY performs symbolic
program analysis (symbolic execution, see Section 12.6). The complexity of the
program analysis and the number of test cases may grow rapidly. This is because in
addition to MC/DC coverage also the coverage criteria defined in Definition 12.4
or 12.5 will be fulfilled when the symbolic program analysis is performed with the
respective settings.
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12.4 Application Scenarios and Variations of the Test Generator

12.4.1 KeYTestGen for Test Case Generation

KeYTestGen is designed to generate unit tests for one method at a time, hereafter
method under test (MUT). Within this scenario it can be used in a variety of ways.
For example, it can be used as a stand-alone test generation tool with or without the
use of formal specifications, or it can be used to support or complement the formal
verification process with KeY. It covers a spectrum of automation possibilities from
interactively selected tests for specific branches of a proof tree up to fully automatic
generation of test suites. KeYTestGen can generate JUnit tests suites and test oracles
from JML specifications, or it can generate a set of test methods that simply execute
the MUT without any additional features (see Section 12.2.2). The user may choose
to use his own test oracle. For instance, the generated test suites can be compiled and
executed with the runtime assertion checker of OpenJML [Cok, 2011] as shown in
Section 12.8.2.

In the simplest usage scenario, KeYTestGen performs symbolic execution (as
described in Section 12.6) of the MUT and generates a test suite that executes all the
paths of the MUT up to a given bound on loop unwindings and recursive method
calls. The generated tests not only can initialize the parameters PD of the MUT but
also the fields of objects SD (using the notation in Section 12.3). A generated JUnit
test may create objects, possibly with a complex linked data structure, to exercise a
particular path through the MUT.

In an advanced usage of KeYTestGen, the user may provide formal specifications,
possibly with quantified formulas, as they are also used in formal verification. The
formal specifications can be used in two ways: (a) to restrict test generation such
that the precondition of the MUT is satisfied and to generate a test oracle from the
postcondition, and (b) to reduce the number of test cases that arise from method and
loop unwindings. An example of case (a) is:
/*@ requires 0<=i && i<b.length; @*/
... b[i]=x; ...

where the precondition prevents an array overflow that may be caused by the expres-
sion b[i]. For an example of case (b) consider the program:
arrCopy(a,b);
x=b[i];

which calls the method from Listing 12.1. Before the statement x=b[i] can be
analyzed via symbolic execution, the symbolic execution engine must first analyze
the call arrCopy(a,b). One possibility is that symbolic execution enters the method
and executes its body as described in Section 12.6.4 below. Generally, this may create
many test cases from case distinctions in the called method. The other possibility is
to—loosely speaking—replace the method call by its postcondition which specifies
the result of all possible executions in one expression, hence reducing the number
of test cases. The same principle applies to loops that may be annotated with loop
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Figure 12.3 Three use-cases of KeYTestGen when used in connection with formal verification.

invariants. We elaborate on this technique in Section 12.6.5. When using method
contracts, the generated tests are white-box tests with respect the MUT, but they are
black-box tests with respect to methods called by the MUT. To take advantage of
method contracts or loop invariants the user must select the respective options in the
Proof Search Strategy tab of the KeY GUI.

12.4.2 KeYTestGen for Formal Verification

When using KeYTestGen in the context of formal verification, we consider three use
cases. These are summarized in Figure 12.3.

The first use case is finding, i.e. locating, software faults. Tests are helpful to
find software faults because when a program is executed in its runtime environment,
i.e. not symbolically, then a standard program debugger can be utilized.5 Program
debuggers are powerful tools that enable the user to follow the program control
flow at different levels of granularity and they enable the inspection of the program
state. A strength of program debuggers is also that the user reads the source code
as it is executed, which is helpful for understanding it. When a proof attempt fails,
either due to a timeout6 or because no more rules are applicable, it is difficult to read
the program (execution) from the open proof branches. Even if a counterexample
is generated which represents the initial state of the program revealing the fault it
maybe hardly readable by an inexperienced user. However, this information can be
used to initialize a program in its runtime environment, enabling to use a program
debugger.

5 It is also possible to use the KeY system as a debugger based on symbolic execution, rather than
concrete execution. This is described in Chapter 11 of this book.
6 Maximum number of rule applications reached.
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The second use case is to further increase confidence in the correct behavior
of a program, even if verification of the program was successful. It is usually not
practical to rigorously apply formal verification to the whole environment of program
that can influence its behavior. This includes components, such as compilers, the
hardware, the operating system, the runtime system, etc. But all these components
are executed when the program is tested. Hence, testing complements verification
where the latter has a systemic incompleteness. In this sense, proofs cannot substitute
tests. An illustrative example is that even if engineers have proved with mathematical
models that an airplane should have the desired aerodynamic properties, passengers
will not be seated in the airplane before it has undergone numerous flight tests.

The third use case is regression testing. Regression testing is used to ensure that
modifications made to software, such as adding new features or changing existing
features, do not worsen (regress) unchanged software features. As software evolves,
existing tests can be quickly repeated for regression testing. Proof construction, on
the other hand, is more expensive and therefore it is reasonable to run a set of tests
before proceeding to a verification attempt after the software has been modified.
More on regression verification with KeY can be found in [Beckert et al., 2015].

Hence, in the first use case a single test or a small number of focused tests is
generated if the verification has failed. A successful verification attempt on the other
hand leads to the second and third use cases. Contrary to the first use case, in the
other use cases a high code coverage test suite is desired.

12.5 Architecture of KeYTestGen

Symbolic Execution +
FOL Theorem Proving

Model/Testdata
Generator

Testoracle
Generator

JUnit Test Suite
 TestMethod_0
  ...
 TestMethod_n

Proof Tree

Uses

MUT (Method Under Test)+
JML Specification

Test-Preamble
Generator

Figure 12.4 Main components and test generation procedure of KeYTestGen
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Figure 12.4 depicts the test generation process and its main components. The input
to KeYTestGen is a Java method under test (MUT), with its JML requirement
specification. The KeYTestGen approach starts with the creation of a proof tree.
The branches of the proof tree mimic the execution of the program with symbolic
values.7 Case distinctions (including implicit distinctions like, e.g., whether or not
an exception is thrown) in the program are reflected as branches of the proof tree.
The different branches are used for deriving different test cases.

A path condition, together with the precondition from the specification, constitute
a test data constraint, which has to be satisfied by the test data of a test case for this
path. For example, to generate a test that creates an ArrayIndexOutOfBoundsExcep-
tion when executing the statement b[i]=a[i] in method arrCopy (Listing 12.1), the
test data constraint b.length>=0 && b.length < a.length may be generated.
The extraction of test data constraints from the proof tree is described in Section 12.6.

To create a test, concrete test (input) data D must be generated which satisfies
the test data constraint obtained from the first phase. For example, we may use the
concrete array lengths b.length==1 && a.length==2 to satisfy the above test
data constraint. This task is handled by the model generator (Section 12.7). Here
the term model means the first-order logic interpretation that satisfies the test data
constraint. The challenge of model generation in the context of KeYTestGen is to
generate models for quantified formulas which may stem from the requirement
specification, loop invariants, other JML annotations, or from the logical modeling
of the object heap in the KeY framework.

The test suite consists of a set of test methods (test drivers). The generation of the
test driver is discussed in Section 12.9. It prepares the initial state of the test, executes
the MUT, and checks the final state after the execution of the MUT with a test oracle
(Or). The first part executed by each test driver (test method) is the test preamble. The
test preamble prepares the initial state in which the MUT is executed by creating Java
objects and initializing program variables and fields with test data. The model which is
generated by the model generator is therefore the input to the test preamble generator.
For example, given the test data b.length==1 && a.length==2, the test pream-
ble may generate the statements int[] a=new int[2]; int[] b=new int[1];.
Additional test data is required to initialize the array elements, but in this example no
specific values were defined by the test data constraint. The final part of the test driver
is the test oracle. The test oracle can be either an external runtime assertion checker
(e.g. OpenJML), or generated by KeYTestGen from the requirement specification
when the user chooses the option Generate JUnit and test oracle in the Test Suite
Generation window (see Figure 12.1). The generation of the test oracle is explained
in Section 12.8.

7 Symbolic values are expressions over variables.
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12.6 Proof-based Constraint Construction for Test Input Data

When KeY reads source code and its specification, it translates these entities to a
Dynamic Logic (DL) formula, representing the various properties to be verified, see
Chapter 8. DL (see Chapter 3) is a superset of first-order logic (FOL, see Chapter 2). It
includes all FOL operators, e.g., ∧ (and), ∨ (or), ¬ (not),→ (implication); predicates
such as < (less than), .= (equality), as well as named predicates and functions; and
quantifiers ∃ (exists) and ∀ (forall). Additionally, in DL one can write 〈p〉φ to express
that formula φ is true in the state after executing the program p. Thus, the formula
PRE→〈p〉POST means that if p is executed from a state where the precondition PRE
is true, then in the final state after executing p the postcondition POST must be true as
well. Update operators {x := e || . . .} are used to collect assignments from a program
which have been simplified such that the expressions e has no side-effects. Since KeY
uses Java programs and defines Java-specific predicates we refer to KeYFOL and
JavaDL. In the following we use the sequent notation A⇒ B which is an implication
where A is a conjunction of formulas and B is a disjunction of formulas.

12.6.1 Symbolic Execution for Test Constraint Generation

A proof in KeY is essentially inference on DL formulas, using a proof strategy
called symbolic execution. It is exactly this principle which makes the KeY prover
an excellent basis for code coverage-oriented test generation. Therefore, we briefly
demonstrate the principle of KeY-style symbolic execution on an example.

Consider the DL formula (12.4), where we abstract away from the concrete pre-
and postcondition PRE and POST, and from the program fragments p1 and p2. The
program swaps the values stored in x and y, using arithmetic, and continues with an
if statement branching over 2x>y.

PRE⇒ 〈x=x+y; y=x-y; x=x-y; if (2x>y) {p1} else {p2}〉 POST
(12.4)

When proving this formula, KeY symbolically executes one statement after the other,
turning Java code into a compact representation of the effect of the statements. This
representation is called update, which essentially is an explicit substitution, to be
applied at some later point. In our example, symbolic execution of x=x+y; y=x-y;
x=x-y; will, in several steps, arrive at the DL formula given in (12.5).

PRE⇒{x := y ||y := x}〈if (2x>y) {p1} else {p2}〉 POST (12.5)

The ‘x := y ||y := x’ is the update, where the || symbol indicates its parallel nature;
that is, the substitutions of x and y will be simultaneous once the update gets applied.

The next step in the proof is a branching caused by the if statement. Essentially,
we branch over the if condition 2x>y, but not without applying the update on the
condition. This leads to the two proof branches for proving the following formulas:
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PRE∧ ({x := y ||y := x}2x > y)⇒{x := y ||y := x}〈p1〉 POST
PRE∧ ({x := y ||y := x}2x≤ y)⇒{x := y ||y := x}〈p2〉 POST

Next, we apply the update (i.e., the substitution) on 2x > y and 2x≤ y, resulting in:

PRE∧2y > x⇒{x := y ||y := x}〈p1〉 POST (12.6)
PRE∧2y≤ x⇒{x := y ||y := x}〈p2〉 POST (12.7)

Note that the update application has exchanged x and y on the left side of ⇒,
translating the condition on the intermediate state into a condition on the initial state
for the path p1 or p2 to be taken, respectively. And indeed, the original program (see
12.4) will, for instance, execute p1 if 2y > x holds in the initial state. If we choose
to create tests from the proof branches 12.6 and 12.7, then two test cases will be
created, where the formulas PRE∧2y> x and PRE∧2y≤ x are used as the test data
constraints, respectively.

When the proof continues on 12.6 and 12.7, p1 and p2 will be executed symboli-
cally in a similar fashion. When symbolic execution is finished, all proof branches
will have accumulated conditions on the initial state for one particular program path
being taken. If we now generate test data satisfying these conditions, we arrive at test
cases covering all paths the program can take (up to the used limit of loop unwindings
and recursion inlining).

Updates are extremely useful not only for verification, but also from the logic
testing criteria perspective, as they solve the inner variable problem, i.e., the problem
of inferring initial conditions on variables from intermediate conditions on variables.
Applying an update on a branching condition means to compute the weakest precon-
dition of the branching condition with respect to the symbolically executed program
up to this point.

It is worth noting that KeY may generate more than two proof branches for an
if statement, as the guard could be a complex Boolean formula. All the possible
combinations (with respect to lazy evaluation) are evaluated.

12.6.2 Implicit Case Distinctions

KeY can create proof branches also for implicit conditions that check whether an
exception should be raised. To enable this feature, the user must select the option
runtimeExceptions:allow in the Options→ Taclet Options menu. When this option is
activated, then, for example, symbolic execution of the code:

PRE⇒ 〈u.v = a[i]; p〉 POST

will result in the following five proof branches:
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PRE∧a .= null
⇒ 〈throw new NullPointerException(); p〉 POST

PRE∧u .= null
⇒ 〈throw new NullPointerException(); p〉 POST

PRE∧a 6 .= null∧i < 0
⇒ 〈throw new ArrayIndexOutOfBoundsException();p〉 POST (12.8)

PRE∧a 6 .= null∧i≥ a.length
⇒ 〈throw new ArrayIndexOutOfBoundsException();p〉 POST (12.9)

PRE∧u 6 .= null∧0≤ i∧i≤ a.length
⇒ 〈p〉 POST

Hence, the test data constraints are in this case the formulas:

PRE∧a .= null
...
PRE∧u 6 .= null∧0≤ i∧i≤ a.length

It should be noted that in the Proof Search Strategy settings Proof splitting must not
be set off. If proof splitting is deactivated, then the proof branches 12.8 and 12.9 will
be subsumed by one proof branch:

PRE∧a 6 .= null∧ (i < 0∨i≥ a.length)
⇒ 〈throw new ArrayIndexOutOfBoundsException();p〉 POST (12.10)

When generating a test from the proof branch 12.10, one test will be created satisfying
only one of the subconditions in (i < 0∨i≥ a.length). Hence, activating Proof
splitting is needed to ensure MC/DC coverage.

12.6.3 Infeasible Path Filtering

It is possible that some paths through a program cannot be taken, because the
conditions to execute the path may contradict each other. Consider for instance the
program:

if (x<y) {if (x>y) { s } }

The statement s cannot be executed because it is not possible that both conditions,
x< y and x> y, are satisfied. The path to s is an infeasible path (see Definition 12.3).
When constructing the proof tree and applying the if-rule twice, we obtain two
proof branches in which s is not reached and the following proof branch, where s is
reached:

PRE∧x < y∧x > y⇒ 〈s〉 POST
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If KeY continues proof tree construction, it will infer that x< y∧x> y is unsatisfiable
and create the proof branch:

PRE∧ false⇒ 〈s〉 POST

Since false appears in the assumption, the implication (sequent) is true and the proof
branch is immediately closed by KeY. During symbolic execution KeY detects most
of the infeasible paths and filters them out from further inspection. Since no state can
satisfy the test data constraint PRE∧ false no test will be generated for this path.

12.6.4 Using Loop Unwinding and Method Inlining

The simplest way of dealing with a loop is by unwinding it. Consider the sequent:

PRE⇒ 〈while (i<n) {i++;} p〉 POST

When the loopUnwind rule is applied once, then the following sequent is obtained:

PRE⇒ 〈if (i<n) {i++; while (i<n) {i++;}} p〉 POST (12.11)

The rule introduces an if-statement whose guard is the loop condition (here i<n).
Its branch consists of the loop body (i++;) followed by the original loop statement.
Application of the rule for the if-statement yields the two proof branches:

PRE∧i≥ n⇒ 〈p〉 POST (12.12)
PRE∧i < n⇒ 〈i++; while (i<n) {i++;} p〉 POST (12.13)

A test that is based on (12.12) satisfies the condition PRE∧ i ≥ n and triggers
program behavior where the loop is not entered. A test that derived from (12.13)
satisfies the condition PRE∧i < n which ensures that the loop is executed at least
once. After symbolic execution of the statement i++ the loopUnwind rule can be
applied again. When the loopUnwind rule is applied m times, proof branches are
generated with test data constraints which ensure that the loop iterates exactly
0,1,2, . . . ,m− 1 times, and the final test ensures that the loop iterates at least m
times. Loop unwinding is explained in detail in Section 3.6.4.

Loop unwinding can be activated in the Proof Search Strategy settings tab by
selecting Loop treatment to Expand. When using the play button of KeY, the num-
ber of loop unwindings is indirectly controlled by the maximum number of rule
applications. Another possibility is to explicitly set the number of loop unwindings
in the Test Suite Generation window and then use the TestGen strategy macro (see
Figure 12.2). The macro applies symbolic execution rules and limits the number of
rule applications of the loopUnwind rule. The limit of loop unwinding is applied to
each proof branch individually. For example, if the number of loop unwindings is
limited to 3 (default value) and the proof tree is fully expanded, then tests will be
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generated which execute 0, 1, or 2 loop iterations and some tests will iterate loops at
least 3 times.

Method inlining works in a similar fashion as loop unwinding, where method calls
are replaced by the body of the called method (see Section 3.6.5). When a method
call is replaced by its body, symbolic execution can continue until the next method
call is encountered and method inlining can be applied again. Each method that is
symbolically executed is then also executed by a test, if the path to the method is
feasible.

The advantage of using loop unwinding and method inlining is that no interaction
is required by the user. The problem is that the size of the proof tree can become
too large so that symbolic execution of the program may not finish. No coverage
guarantees can be given for program parts which were not symbolically executed.
Another problem is that the source code of methods (e.g., library methods) may not
be available.

12.6.5 Using Loop Invariants and Method Contracts

When finite unwinding of method calls and loops is used during symbolic execution,
the user does not have to provide method contracts or loop invariants. This technique
is also known as bounded symbolic execution. When using KeYTestGen as an
extension to verification (see Figure 12.3), method contracts and loop invariants
are typically available. Method contracts and loop invariants provide an alternative
approach to symbolically executing the body of a method or loop. Loosely speaking,
a method contract can replace a method call and a loop invariant can replace a loop
during symbolic execution. Furthermore, the proof tree generated by the verification
attempt can be directly reused for test case derivation. A short example of using a
method contract is shown in Section 12.4. For a detailed explanation of the method
contract and loop invariant rules, see Section 3.7.

Method contracts and loop invariants, hereafter contracts, can be used to create
test cases that are likely to be missed by bounded symbolic execution [Gladisch,
2008]. In some cases the latter requires an exhaustive inspection of all execution
paths which is impractical in the presence of complex methods and impossible in the
presence of loops, because loops and recursive methods may represent unboundedly
many paths.

Listings 12.2 and 12.3 show examples of programs for which branch coverage
is hard to achieve with bounded symbolic execution. In order to execute A() in
Listing 12.2, the loop body has to be entered at least 11 times, and in order to execute
C(), it has to be executed exactly 20 times. These numbers could be arbitrarily large
and the result of complex computations, hence requiring exhaustive inspection of
all paths in order to find the case where the branch guards are satisfied. A similar
situation occurs in Listing 12.3. Before symbolic execution can process the statement
if (i==20) { C(); } it must first symbolically execute the method call D().
When the method call is treated by method inlining an exhaustive inspection of D(),
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1 /*@ public normal_behavior
2 requires 0<=n;
3 ensures true;
4 @*/
5 public void foo1(int n) {
6 int i=0;
7 /*@ loop_invariant 0<=i && i<=n;
8 decreases n-i;
9 @*/

10 while(i < n) {
11 if (i==10) { A(); }
12 B();
13 i++;
14 }
15 if (i==20) { C(); }
16 }

Listing 12.2 First example where branch coverage is difficult to achieve

1 int i;
2 /*@ public normal_behavior
3 requires i<=n;
4 ensures i==n;
5 modifies i;
6 @*/
7 public void D(int n) {
8 while (i < n) { i++; A(); }
9 }

10

11 /*@ public normal_behavior
12 requires i<=n;
13 ensures i==n;
14 modifies i;
15 @*/
16 public void foo2(int n) {
17 D(n);
18 if (i==20) { C(); }
19 }

Listing 12.3 Second example where branch coverage is difficult to achieve

which consists of a loop, may be required to find a path such that after the execution
of D() the branch condition i==20 holds. Hence, achieving full feasible branch
coverage (Definition 12.5) is challenging.

When using the loop invariant and method contract rules during proof construction,
test data constraints can be derived from the proof tree solving the described problem.
If the contracts are strong enough, the test data constraints ensure the execution of
desired feasible paths (a) after loops and method calls or (b) within loops. Intuitively,
a loop invariant or a method contract is strong enough if it does not over-approximate
the behavior of the loop or method with regard to the program variables which are
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critical to enter a desired program position; details can be found in [Gladisch, 2011,
2008].

The loop invariant rule creates three proof branches with the following proof
obligations: (a) the loop invariant holds before the loop is entered, (b) the loop
invariant is preserved by the loop body, and (c) from the loop invariant and the
program after the loop the postcondition follows. When applying the loop invariant
rule in the analysis of Listing 12.2, then from (b), i.e.,

{i := 0}{i := i0}(
I︷ ︸︸ ︷

0≤ i∧ i≤ n∧i < n) ⇒ 〈if (i==10) {A();}...〉 I

the following proof obligation is derived (among other proof branches):

{i := 0}{i := i0}(
I︷ ︸︸ ︷

0≤ i∧ i≤ n∧i < n∧ i .= 10) ⇒ 〈A();...〉 I (12.14)

The first update {i := 0} stems from the assignment int i=0; before the loop and
the second update {i := i0} replaces the program variable i with a fresh symbol i0
because it can be modified by the loop and must be distinct from i. The constraint
0 ≤ i∧ i ≤ n is the loop invariant, followed by the loop guard i < n and the guard
i .= 10 of the if-statement if (i==10) {A();}. Simplification of 12.14 yields:

i0 < n∧ i0
.= 10⇒ 〈A();...〉 I

Therefore, the test data constraint for this path, as extracted by KeYTestGen, is
i0 < n∧ i0

.= 10, which implies that n > 10 must be satisfied before the loop in order
to execute the method call A() inside the loop.

From premiss (c) of the loop invariant rule with subsequent symbolic execution
of the conditional statement the following test data constraint is derived:

{i := 0}{i := isk}(
I︷ ︸︸ ︷

0≤ i∧ i≤ n∧i≥ n∧ i .= 20)

It simplifies to
(isk

.= n∧ isk
.= 20)

which implies that if n .= 20, then C() will be executed in Listing 12.2. Similarly,
test data constraints can be obtain in order to execute C() in Listing 12.3.

The programs shown in Listings 12.2 and 12.3 can be found in the example
directory coverage/. Since these examples do not use bounded expansion of loops
and methods, the user should not use the TestGen macro. Instead, the user should set
in the Proof Search Strategy tab, Loop treatment to Invariant and Method treatment to
Contract. When pressing the play button, the method foo1() or foo2(), respectively,
is verified and a closed proof tree is obtained. Using the Test Suite Generation window,
a test suite can be generated. However, the resulting tests will not be “correct”—
when executing the tests and monitoring the execution using, e.g., OpenJML, the
precondition will be violated. The reason is that using the standard settings of the
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model generator (Section 12.7) the test data constraints such as n > 10 or n .= 20
cannot be satisfied, because the model generator uses bounded integers. To generate
correct test cases it is necessary to set the Integer Bound of the model generator to 6
bits instead of the default 3 bits. The Integer Bound as well as other bounds can be
adjusted in Options→ SMT Solver Options→ General SMT Options (see Figure 12.5).

Verification-based test case generation is a flexible technique with respect to the
complexity of the test generation and the resulting quality of the tests. The quality
and number of the tests depends on the scope of the proof tree construction and on
the selection of test data constraints from the proof tree. For instance, the simplest
test is a random test that is generated when the test data is derived from a proof tree
which consists only of the root sequent. In this case, the test data constraint is empty,
i.e., true, and is satisfied by any generated test data. On the other end of the spectrum,
the most sophisticated kind of test is the one which is derived from an open proof
branch of a failed verification attempt. Open proof branches of a fully expanded
proof tree indicate cases with a high probability of a software fault with respect to the
MUT’s specification. In an extreme case a single very specific test may be generated
that reveals a fault. Closed proof branches, on the other hand, correspond to program
paths and conditions that have been already verified and are filtered out from test
generation. However, the user may choose to generate test cases also from closed
branches to get a high test coverage of the MUT (e.g., for testing the environment or
for regression testing).

The branches of the proof tree represent different test cases. Any formula in
the proof tree can be used as a test data constraint. However, depending on which
formulas are chosen for the test data constraints, different specification conditions,
program branches, or paths are tested.

Soundness of the verification system ensures that all paths through the MUT are
analyzed, except for parts where the user chooses to use abstraction, e.g., through
method contracts or loop invariants. Creating tests for proof branches that were cre-
ated using bounded symbolic execution ensures full feasible bounded path coverage
of the regarded program part of the MUT, i.e., all paths of the symbolically executed
program parts will be tested.

12.7 From Constraints to Test Input Data

After extracting the test data constraints from the proof tree, as shown in the previous
section, we need to find test data satisfying either constraint. The test data is used as
input to the method under test (MUT) in the test suite (see Section 12.5). In order
to find such inputs we search for models of the test data constraints. A model is a
first-order logic interpretation satisfying a formula. In terms of testing, the model
is an assignment of concrete values to object fields and parameters, that constitute
the initial state SD and input parameters PD, following Section 12.3. For example, if
a model is found for the path condition of an execution path p, and the program is
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Figure 12.5 SMT solver options. Settings of the bounded model generator that are used for counter
example generation as well as for test data generation.

executed using the input resulting from this model, path p will be executed. If no
model is found, then the path may be infeasible.

We currently use the third party SMT solver Z3 to find models for test data
constraints (see Section 12.2.1). Constraints are translated from KeY’s Java first-
order logic (JFOL, see Chapter 2) to the SMT-LIB 2 language which is supported by
most SMT solvers.

The translation from JFOL to SMT-LIB poses two main challenges. First, we need
to ensure that the models found by the SMT solver are also models for the original
JFOL formula. Second, we need to make sure that the SMT solver is able to find a
model within a reasonable amount of time. Unfortunately, the current state-of-the-art
does not allow us to fully address both objectives. For this reason we have decided
to use bounded data types, i.e., each data type can have only a bounded number of
instances. As a consequence, the SMT solver can find models a lot faster, but at the
same time some models may be missed because the bounds might be too small and
some models may be spurious for the same reason. For the missing models problem,
we would argue in favor of the small scope hypothesis [Jackson, 2002], claiming
that, in practice, most bugs in a program can be found by testing all inputs within
a small scope. As for the problem regarding the spurious models, it hardly occurs
when KeY is used within its normal use case of verifying Java code specified by JML.
Usually—but not necessarily—such cases occur if fixed constant values are used in
the MUT which cannot be represented by the bounded data type. An example of such
a case was shown in Listings 12.2 and 12.3. The user has the possibility to adjust
the bounds using the following menu item Options→ SMT Solver Options→ General
SMT Options which will open the window shown in Figure 12.5.
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The rest of this section presents some of the more interesting details of the
translation from JFOL to SMT-LIB. Where it is clear from the context we write
‘SMT’ as an abbreviation for ‘SMT-LIB language’. The model generator presented in
this section is largely based on KeY’s counterexample generator described in [Herda,
2014].

12.7.1 The Type System

The SMT-LIB language does not support subtyping, all declared SMT sorts represent
disjoint data type domains. This section explains how we specify in SMT the KeY
type hierarchy, which includes the Java type hierarchy. The KeY type hierarchy is
described in Section 2.4.1. It should be noted that the global program state that
constitutes also the initial state SD of the test input is stored in a logical constant8

of type Heap. Input parameters PD and all local program variables of the MUT are
stored as logical constants of type Any or subtypes of it.

In the SMT-LIB data language, types are called sorts. The KeY type system is
specified in SMT using the following eight SMT sorts: Bool, IntB, Heap, Object,
Field, LocSet, SeqB, and Any. All KeY reference types are translated to the sort
Object.

The KeYTestGen translation interprets the bit-vector values representing bounded
integers as signed integers with values ranging from −|IntB|/2 to (|IntB|/2)−1. In
the SMT Solver Options window (see Figure 12.5) the user can specify different bit
sizes for the IntB, Object, LocSet and SeqB sorts. The bit sizes for the Heap and
Field sorts are calculated by considering the number of constants of the respective
type in the proof obligation. The Field sort has to support all field names and also all
possible array positions determined by the size of the IntB sort. The bit size of the
Any sort is computed automatically and depends on the largest size of the other SMT
sorts.

For each SMT sort S (except Any, Heap, and Field) membership predicates and
cast functions are declared. The functions are used to check if an instance of Any is
of type S and the enable casts between S and Any. We declare the following functions
for each SMT sort S except Any:

1. isS : Any→ Bool
2. Any2S : Any→ S
3. S2Any : S→ Any

In order to specify Java reference types we define the following two predicates for
each reference type T :

1. instanceT : Object→ Bool
2. exactInstanceT : Object→ Bool

8 A logical constant is a function of arity 0. The value of a logical constant is given by its first-order
logic interpretation, which can change due to the dynamic nature of dynamic logic.
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For an Object o and a reference type T , instanceT (o) is true iff o is of type T
and exactInstanceT(o) is true iff o is of type T and neither a subtype of T nor null.
We also add the necessary assertions to the SMT translation to ensure that the SMT
specification models the Java type hierarchy while respecting the modularity principle
of KeY, i.e., existing proofs will not be affected if new class and interface declarations
are added to the program (see Section 9.1.3). For this, the SMT solver will take not
yet declared reference types into consideration when searching for models.

12.7.2 Preserving the Semantics of Interpreted Functions

JFOL defines several interpreted functions, i.e., functions that are axiomatized and,
therefore, have a fixed semantics (e.g., +). When talking about program states, two
important interpreted functions are store and select (see Section 2.4.1 and p. 527).
The function store is needed to store values to object fields on the heap and the
function select is needed to read values of object fields from the heap.

We need to preserve the semantics for all interpreted functions which appear in the
proof obligation, otherwise the SMT solver will make use of incorrect interpretations
when generating models. For example, if no semantics is specified for the store
function, the solver could generate a model in which the store function returns the
heap it received as an input, which would be incorrect.

We can translate the relevant KeY rules to SMT as follows. KeY already provides
a translation from taclets into JFOL (see Section 4.4). From there we translate into
SMT assertions. For assertions to be satisfiable the size of the Heap sort has to be
carefully set. It needs to be large enough to contain all possible heaps that may
result from the store function. We can consider the heap sort a two dimensional array
of size |Object|× |Field| which contains values of type Any. The number of heaps
|Heap| which we need to support is |Any||Object|·|Field|. This number is huge, even for
examples with few objects and fields, and would severely affect the performance of
the SMT solver.

But to obtain a correct model it is not always necessary to specify the semantics
of interpreted functions for all possible inputs. We can provide a specification merely
for those inputs that actually appear in the proof obligation. This is achieved by
syntactically replacing all interpreted function calls with their semantics. We call this
approach semantic blasting.

Semantic blasting of functions and predicates that are defined constructively,
i.e., not in terms of observer functions, is straightforward: they are replaced by
their definition. One example is the replacement the subset predicate by using (the
translation of) the subsetToElementOf rule (see Section 2.4.4).

The functions dealing with heaps, location sets, and sequences, however, do
not have a constructive (or inductive) definition. Their semantics is specified in
a co-inductive manner using observer functions such as select, elementO f , get,
and length. For these we can perform a straightforward replacement only if they
appear as an argument of an observer function. For example, for the store func-
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tion we can apply the selectOfStore rule only if we encounter a term of the form
select(store(h,o, f ,v),o′, f ′).

For the remaining case, when an interpreted function call f with a co-inductive
definition is not an argument of an observer function, semantic blasting is performed
in three steps:

1. The pullout taclet replaces an occurrence of f with a constant and adds a defining
equality to the antecedent., see Example 4.10.

2. A suitable extensionality rule (equalityToSelect for heaps, equalityToElementOf
for location sets, and equalityToSeqGetAndSeqLenRight for sequences) is ap-
plied to the equality added to the antecedent. The extensionality rule states that
two terms t1 and t2, both of type Heap, LocSet or Seq, respectively, are equal if for
all observer functions obs of that type and for all appropriate lists of parameters
P for the observer function obs the following holds: obs(t1,P) .= obs(t2,P).

3. On the right hand side of the defining equation f appears now as the argument
of an observer function and we proceed as above.

Example 12.7. Given the sequent⇒ p(store(h,o, f ,v)) the semantic blasting steps
are as follows:

1. Apply pullout:
c .= store(h,o, f ,v)⇒ p(c)

2. Apply the equalityToSelect:

∀o′∀ f ′ select(c,o′, f ′) .= select(store(h,o, f ,v).o′, f ′)⇒ p(c)

3. We can now apply selectOfStore:

∀o′∀ f ′ select(c,o′, f ′) .=
if (o .= o′∧ f .= f ′∧ f 6 .= created) v else select(h,o, f )

⇒ p(c)

12.7.3 Preventing Integer Overflows

When dealing with integer constraints, the solver may find models which are correct
under the semantics of bounded integers (with modulo arithmetic). Such a model
could be wrong when in KeY the default integer semantics of mathematical integers
was set. In such cases a spurious counter example or a false positive test would be
generated. To prevent this, we identify the terms which can cause an overflow and
generate new terms from them which have the same operator but the operands have
an increased bit-size. From a + b, if a and b are bit-vectors of size n, we generate
the term incr(a)+ incr(b), where the function incr takes a bit-vector of size n and
returns a bit-vector of size n+1 with identical lower n bits.

Additionally we add assertions ensuring that the result of the same arithmetic
operation on the increased bit-vectors is not greater than max_int or smaller than
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min_int . For the previous example we add the assertions incr(a)+ incr(b)≤max_int
and incr(a)+ incr(b)≥ min_int. The multiplication operation is handled similarly,
however, we double the bit-vector size of the operands instead of increasing it by
one.

12.7.4 Model Extraction

If the given path condition is satisfiable (under the bounded data type semantics),
then the SMT solver will provide a model of it, if no timeout occurs. In the case
of the Z3 solver, the model consists of function definitions. To initialize the test
inputs we extract the required test data from the model by using the get-value SMT
command. This command takes a ground term as an argument and returns the result
of its evaluation. If the SMT solver found a model, then KeY sends a sequence of
get-value queries to the solver and in this way determines the values of constants and
the contents of heaps, locations sets, and sequences in the model.

12.8 Specification-based Test Oracle Generation

The purpose of a test oracle is to decide whether a test case was successful or not (see
Section 12.3). It is executed right after the MUT and it inspects the return value R
and final state S f of the MUT. In KeY, the JML specification of the MUT determines
whether the tuple 〈R,S f 〉 is an error state or not. Hence, the specification which is
provided in a declarative form must be translated into an executable test oracle. For
this purpose two possibilities are supported by KeYTestGen. Section 12.8.1 describes
how KeYTestGen generates a test oracle from a JML specification. Section 12.8.2
describes the usage of a JML runtime assertion checker instead.

12.8.1 Generating a Test Oracle from the Postcondition

KeYTestGen generates an oracle when the option Use JUnit and test oracle is enabled
in the Test Suite Generation window (Figure 12.1). The test oracle is a Boolean
Java method which returns true if the test case satisfies the JML specification of
the MUT and false otherwise. It is generated from the postcondition and checks
whether the postcondition holds after the code under test was executed. We do not
generate the postcondition directly from JML, but rather from its JavaDL translation
in KeY (see Chapter 8). In this way we ascertain to maintain the exact semantics
of the postcondition as in KeY. For example, KeY may include class invariants and
termination conditions as part of the postcondition. The precondition does not need
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to be checked, because it is part of the test data constraint and is always satisfied by
the process of test input data generation (see Sections 12.6 and 12.7).

Each test suite contains only one oracle method which is used in all test cases. In
each test case, after running the MUT, we assert that the test oracle method returns
true by using the JUnit method assertTrue. Listing 12.4 shows an abridged version
of the test oracle generated for the arrCopy example presented in Listing 12.1. In the
full definition of the method, the parameters include all program variables evaluated
in the MUT’s final state of execution (e.g., a) as well as in the state before the
execution (e.g., _prea), the information whether an exception was thrown (exc), as
well as the sets of bounded data types (e.g., allInts). Method testOracle returns
true if the generated test data satisfies the postcondition of arrCopy in Listing 12.1
and false otherwise. The test oracle in this case checks whether all entries in arrays a
and b are equal, whether the implicit invariant for the self object holds and whether
an exception is thrown.

1 public boolean testOracle(int[] a, int[] _prea, ...){
2 return ((sub1(a, _prea, ...) &&
3 inv_javalangObject(self, a, _prea, ...) && (exc == null));
4 }
5

6 public boolean sub1(int[] a, int[] _prea, ...){
7 for(int i : allInts) {
8 if (!(!((0 <= i) && (i < a.length)) || (a[i] == b[i]))) {
9 return false;

10 }
11 }
12 return true;
13 }
14

15 public boolean inv_javalangObject(java.lang.Object o, ...) {
16 return true;
17 }

Listing 12.4 The test oracle generated for the example in Listing 12.1

Translating Simple Operators

Propositional and arithmetic operators in JavaDL are translated using Boolean and
arithmetic Java operators. For example, τ(F1∧F2) is translated as τ(F1) && τ(F2),
where τ denotes the translation function from JFOL to Java.
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Translating Quantified Formulas

Since the translation of test data constraints to SMT-LIB uses bounded data types
(see Section 12.7.1), the model returned by the SMT solver contains only a finite
number of instances of each type. We restrict the quantification domain of unbounded
quantifiers in the postcondition to these bounded domains. This approach is not
correct in general, as the result of a test case may be a false positive or a false
negative. However, it is a reasonable approach since evaluating quantified formulas
over arithmetic expressions in unbounded domains is not feasible.

Concretely, in the test preamble (see Section 12.5) we create a java.util.Set
for each of boolean, int, and Object. Then we add to each of these sets all
instances of the corresponding bounded data type to support bounded quantified
formulas over these three types. For each quantified formula we create an additional
Boolean Java method whose body contains a loop. This loop iterates over the set of
instances of the variable type. An example is the method sub1 in Listing 12.4, where
allInts is the bounded set of integers.

Translating Heap Terms

The global program state is modeled in KeY using a heap data type (see Sec-
tion 12.7.1). The heap can be thought of as a mapping from object fields to their
values. The JFOL functions select and store are used for reading and writing object
fields on the heap (see Section 2.4.1). In the postcondition no changes are made to the
heap, hence, we only need to concern ourselves with select function calls. Generally
we translate a select term of the form select(h,o, f ) simply as the Java expression
o. f except for the cases when f is an array field or when h is the initial heap. The
two latter cases are treated as follows:

• Array fields are modeled in KeY with the arr function, which takes an integer,
representing the index, and returns a field. The translation of a select function
call with an array field as an argument, τ(select(h,o,arr(i))) is then the Java
array expression o[τ(i)], where o is an object of array type and i a term of integer
type.

• The translation of select terms is handled differently when the heap argument is
the initial heap. In this case we need to evaluate the expression in the prestate.
This happens when a parameter9 or the JML keyword \old is used in the post-
condition. We store the prestate in the test preamble by creating and initializing
a duplicate instance of each object we would normally create. An example is
shown in Listing 12.5, where variables that store the initial state have the prefix
_pre. The duplicate objects form a structure isomorphic to the original object
structure in the initial state. The execution of the MUT affects the original objects
but it does not affect the duplicate objects. Thus, when we wish to evaluate an
expression in the initial state, we use these duplicates instead of the original

9 In JML method parameters are evaluated always in the prestate.
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object. If the expression is of reference type, the result will be one of the du-
plicate objects. To maintain the semantics we have to return the original object
associated with the isomorphic duplicate.

Translating Class Invariants

We translate the class invariants that are possibly included in the postcondition by
generating a Boolean Java method for each reference type T . This method takes
an argument of type T and returns true if the instance fulfills the class invariant
of that reference type and false otherwise. The body of the invariant method is the
translation of the JavaDL formula representing the class invariant of T . The same
translation is used as for the postcondition.

12.8.2 Using a Runtime Assertion Checker

As an alternative to generating a test oracle, KeYTestGen integrates a runtime asser-
tion checker supplied by OpenJML to check at runtime whether the postcondition
is fulfilled. In this case test cases consist only of the test preamble and MUT. The
generated code must be compiled and executed with OpenJML. For this purpose
we generate two bash scripts to be executed by the user. These scripts can be used
for compiling and running the tests on Linux systems. The scripts are created in the
same folder as the generated test suite. The first, compileWithOpenJML.sh does
not need any arguments. However, the paths to the OpenJML and Objenesis libraries
must be set as explained in Section 12.2.3. Running this script will compile the Java
files of the code under test and of the test suite in such a way to enable run time
assertion checking. The second script, executeWithOpenJML.sh must be called
with the name of the generated test suite class. The script runs all test cases and each
time a JML assertion is violated an error message is displayed.

Figure 12.6 shows the output OpenJML runtime assertion checker for the example
in Listing 12.1. (The exact output may vary, as it depends on the exact versions and
configurations of all tools in the tool chain.) The error messages show that the code
violates the normal behavior JML clause, meaning that the code under test throws an
exception.

12.9 Synthesizing Executable Test Cases

In this section we show how the output of KeYTestGen looks like. After generating
the test input data (see Section 12.7) we can use it to synthesize an executable test
driver for each test (see Section 12.5). A test driver consist of three parts:

1. Test preamble



446 12 Proof-based Test Case Generation

Figure 12.6 OpenJML output for example in Listing 12.1

2. Code under test
3. Test oracle

Generating the test oracle is optional. The user can use a runtime assertion checker
as explained in Section 12.8.2. The settings are described in Section 12.2.3.

Listing 12.5 shows one of the generated test cases for the example in Listing
12.1. The test preamble (lines 4–37) is generated from the model that is obtained by
SMT solving as described in Section 12.7. The model contains values for constants
along with the contents of all heaps which appear in the test data constraint (see
Section 12.6). The goal of the test preamble is to reproduce the initial state from the
model in the executable environment, so we focus on the contents of the initial heap
from the model.

In the first part (lines 4–12) of the test preamble all constants and objects of
the model are declared and initialized. The test driver is optimized in the sense
that only objects are created which are potentially reachable by the MUT and the
test oracle. Solving this reachability problem is possible because it is sufficient to
analyze a bounded number of concrete objects and the relations (field references)
between them. This optimization reduces the code size. Thus, it improves not only
the compile and execution times, but most importantly it improves readability of the
source code when using a program debugger (see Section 12.4). In the second part,
fields/components of the created objects/arrays are initialized with the values that
they have in the model (lines 13–25).

When objects must be created from classes without a default constructor, or when
private or protected fields must be initialized, the user can activate the option Use
reflection framework in the Test Suite Generation window (see Section 12.2). In this
case, object creation using the Java keyword ’new’ as well as expressions with read
and write access to fields are replaced by equivalent methods from RFL.java. This
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1 //Test Case for NodeNr: 917
2 @org.junit.Test
3 public void testcode1(){
4 //Test preamble: creating objects and intializing test data
5 java.lang.ArrayIndexOutOfBoundsException _o3 =
6 new java.lang.ArrayIndexOutOfBoundsException();
7 java.lang.ArrayIndexOutOfBoundsException _pre_o3 =
8 new java.lang.ArrayIndexOutOfBoundsException();
9 int[] _o2 = new int[1]; int[] _pre_o2 = new int[1];

10 int[] _o4 = new int[2]; int[] _pre_o4 = new int[2];
11 ArrayUtils _o1 = new ArrayUtils();
12 ArrayUtils _pre_o1 = new ArrayUtils();
13 /*@ nullable */ int[] a = (int[])_o4;
14 /*@ nullable */ int[] _prea = (int[])_pre_o4;
15 /*@ nullable */ int[] b = (int[])_o2;
16 /*@ nullable */ int[] _preb = (int[])_pre_o2;
17 boolean measuredByEmpty = (boolean)true;
18 /*@ nullable */ ArrayUtils self = (ArrayUtils)_o1;
19 /*@ nullable */ ArrayUtils _preself = (ArrayUtils)_pre_o1;
20 /*@ nullable */ java.lang.ArrayIndexOutOfBoundsException a_8 =
21 (java.lang.ArrayIndexOutOfBoundsException)_o3;
22 /*@ nullable */ java.lang.ArrayIndexOutOfBoundsException _prea_8 =
23 (java.lang.ArrayIndexOutOfBoundsException)_pre_o3;
24 _o2[0] = -4; _pre_o2[0] = -4;
25 _o4[0] = 0; _pre_o4[0] = 0; _o4[1] = 0; _pre_o4[1] = 0;
26 Map<Object,Object> old = new HashMap<Object,Object>();
27 old.put(_pre_o1,_o1); old.put(_pre_o3,_o3);
28 old.put(_pre_o2,_o2); old.put(_pre_o4,_o4);
29 Set<Boolean> allBools = new HashSet<Boolean>();
30 allBools.add(true); allBools.add(false);
31 Set<Integer> allInts = new HashSet<Integer>();
32 allInts.add(-4); allInts.add(-3); allInts.add(-2);
33 allInts.add(-1); allInts.add(0); allInts.add(1);
34 allInts.add(2); allInts.add(3);
35 Set<Object> allObjects= new HashSet<Object>();
36 allObjects.add(_o3); allObjects.add(_o2);
37 allObjects.add(_o1); allObjects.add(_o4);
38 //Other variables
39 /*@ nullable */ java.lang.Throwable exc = null;
40 /*@ nullable */ java.lang.Throwable _preexc = null;
41 //Calling the method under test
42 int[] _a = a; int[] _b = b;
43 {
44 exc=null;
45 try { self.arrCopy(_a,_b); }
46 catch (java.lang.Throwable e) { exc=e; }
47 }
48 //calling the test oracle
49 assertTrue(testOracle( exc, _preexc, self, _preself, a, _prea,
50 b, _preb, allBools, allInts, allObjects, old));
51 }

Listing 12.5 A test case generated for the example in Listing 12.1
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file is generated together with the test suite and provides wrapper methods for the
Java reflection framework and the Objenesis library.

In lines 29–37, some Java containers are created which are needed by the test
oracle to check quantified formulas (see paragraph Translating Quantified Formulas
in Section 12.8.1). For the Boolean, integer, and reference types a java.util.Set
is created containing all instances of these types that exist in the model. Also, as
described in Section 12.8.1, the test oracle may have to read the values of object
fields and program variables as they were in the prestate of the MUT while being
executed in the poststate of the MUT. For this purpose the test driver has duplicate
variables with the prefix _pre for every object. These objects have an isomorphic
structure to the original objects. The connection between the original and duplicate
objects is preserved by the map defined in lines 26–28.

The MUT and the code surrounding it (lines 41–47) is taken from the JavaDL
modality in KeY in the root node of the proof tree. Using the surrounding code, and
not just the invocation of the MUT, is important to ensure that actual execution of
the code has the same semantics as symbolic execution of the code. The surrounding
code typically consists of a try/catch block allowing the specification (or test oracle)
to decide what to do if an exception was thrown. Since the modality contains Java
code, we can usually simply copy it. However, the code may contain variables that
do not appear in the generated model (see Section 12.7). These variables are declared
and initialized in lines 38–40.

The test oracle is called in line 49 and is generated as explained in Section 12.8.1.

12.10 Perspectives and Related Work

Traditionally test data generation tools have been classified as black-box and white-
box generation tools, see for instance [Ammann and Offutt, 2008]. Black-box ap-
proaches base test data generation on noncode artifacts such as abstract execution
models or specifications, whereas white-box approaches base test data generation
on the code under test. Gray-box techniques combine these two approaches and use
both code and noncode artifacts. KeYTestGen is a gray-box approach because it uses
both the code and the JML specification for generating the tests. In a recent survey
by Galler and Aichernig [2014], several test case generation tools from industry and
academia are classified according to this distinction, and evaluated.

Another possible classification of test case generation approaches is by the tech-
nique used for the test data generation. In a survey by Anand et al. [2013], the
following techniques are identified:

1. Techniques using symbolic execution to obtain high coverage. The authors
identify the path explosion problem (i.e., the number of paths in the symbolic
execution tree grows too large) as the main obstacle for tools using this tech-
nique and present possible solutions for it. Dynamic symbolic execution, also
called concolic execution, which combines symbolic and dynamic execution,
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is a widespread approach adopted by numerous other tools. Techniques using
symbolic execution are considered to be part of the white-box category.

2. The model-based testing approach derives test cases from an executable model
representing an abstraction of the software. Different kinds of models can be
used, examples include finite state machines and labeled transition systems. In
a first phase abstract test cases are derived from the model and in the second
phase these test cases are concretized in order to make them applicable on the
original software. Online model-based testing techniques run each test case after
generating it and use the information from the result when generating the next
test cases. Offline model-based testing techniques generate the entire test suite
before running the test cases. Model-based testing is a black-box technique.

3. Combinatorial testing is a technique which is used for testing different con-
figurations of a software (for example parameters of a method, command line
parameters, or options on a graphical user interface). It focuses on finding bugs
that arise when a certain configuration is chosen by the user. To achieve full
coverage all combinations of all options need to be tested, which is usually
infeasible due to the large number of necessary test cases. Combinatorial testing
proposes the choosing of a limited number of sample values for each option and
then only tests all n-combinations of the options using the chosen values. The
goal is to provide satisfactory coverage with a limited test budget. For n = 2 the
approach is called all-pairs testing. This is also a black-box technique.

4. Adaptive random testing improves upon random resting, which is a test case
generation technique that generates the test data randomly. The empirically
founded assumption on which the adaptive random testing approach is based
says that inputs which do not cause a failure are contiguous, and consequently
the inputs causing a failure are contiguous as well. For this reason different
algorithms are used to spread the generated test data evenly on the input domain.
Thus, the chances of finding a failure-inducing input are higher than in the case
of random testing. (Adaptive) random testing is a black-box technique.

KeYTestGen falls in the category of tools based on symbolic execution. In the
rest of this section, we give a selection of tools using that technique. A survey of
popular test generation tools based on symbolic execution is described by Cadar et al.
[2011]. A recent evaluation of symbolic execution-based test generation tools is done
in [Cseppento and Micskei, 2015].

StaDy, a recent extension of a deductive verification tool with test generation
capabilities, is based on Frama-C [Petiot et al., 2014]. Frama-C is a platform for
analyzing C code specified with the ANSII C Specification Language (ACSL). Only
an executable subset of ACSL is supported for test generation. StaDy translates
the specified C code and adds code for checking errors, similarly to compiling
the specified Java code with OpenJML RAC (see 12.8.2). PathCrawler [Botella
et al., 2009], a concolic test case generator, is then used to generate inputs for the
instrumented code.

Symbolic PathFinder [Păsăreanu et al., 2013] also uses symbolic execution and
constraint solving to generate test cases for Java programs. It is an extension of
Java PathFinder, a model checker for Java, and uses its functionality to explore the
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paths of the symbolic execution tree. The advantage of this approach is that the
model checker can handle comparatively large symbolic execution trees and supports
advanced features of Java such as multithreading. Symbolic PathFinder supports only
simple assertions, without quantifiers.

KLEE [Cadar et al., 2008a] is a symbolic execution test generation tool for
C programs built on top of the LLVM framework. It is a redesign from scratch of
the EXE [Cadar et al., 2008b] tool, with the main goal of improved performance and
scalability. KLEE was able to generate tests for the GNU coreutils utility suite, which
contains the implementations of many utilities (e.g., cat, cp, ls) of UNIX-like
operating systems. It found bugs that were missed for as long as fifteen years. In
90 hours KLEE was able to generate a test suite with a higher statement coverage
than the developers’ own test suite which was written over a period of fifteen years.

Pex [Tillmann and de Halleux, 2008] uses dynamic symbolic execution to generate
unit tests for .NET programs. It supports simple assertions and assumptions without
quantifiers. Pex was used to generate tests for a core .NET component, and found
some serious bugs therein. Microsoft’s Visual Studio 2015 Enterprise Edition contains
a test case generation feature, IntelliTest, which is based on Pex.

CREST [Burnim and Sen, 2008] uses concolic execution to generate unit tests for
C programs. It provides some novel heuristics for exploring the symbolic execution
tree, achieving significantly higher branch coverage in the generated test suite than
traditional tools based on concolic execution when only a limited number of test
cases can be generated.

LCT [Kähkönen et al., 2011] is a concolic test case generator for Java programs.
Both test case generation and the execution of the test cases can be done in parallel,
thus increasing the scalability of the tool.

SAGE [Godefroid et al., 2012] uses dynamic symbolic execution for generating
test cases for x86 binaries. It is used at Microsoft for testing large programs such as
image processors or media players which are shipped with the Windows operating
system. A distinguishing feature of SAGE is the heuristics used for exploring the
symbolic execution tree, thus generating a high coverage test suite with a small
number of test cases.

MergePoint [Avgerinos et al., 2014] combines static and dynamic symbolic ex-
ecution in order to generate test cases for binaries. It has been used to test Debian
binaries.

12.11 Summary and Conclusion

KeYTestGen shows how KeY’s formal verification engine can be used for test case
generation. It demonstrates that proving and testing can be usefully combined. Prov-
ing and testing have a lot in common. Proving can be thought of as a virtual or
symbolic testing approach, where the tests are first-order logic interpretations. In
essence, KeYTestGen turns these interpretations into executable test cases which
execute the code under test in the same way as if it was symbolically executed.



12.11. Summary and Conclusion 451

Proving and testing are complementary techniques. Symbolic execution considers
infinitely many values for variables, such that one can prove that a program satisfies
a specification for an unbounded number of inputs. However, finding a proof is
generally difficult and if a proof attempt does not succeed due to a timeout or because
no more rules are applicable on a proof branch, one cannot conclude that a fault
exists in a program. Vice versa, during testing only a bounded number of program
behaviors can be considered. However, testing has many important advantages. It can
be fully automated, a target program and its entire runtime environment (including
hardware) are tested, and if a test fails we know that a fault exists. The user has
the possibility to follow the execution of a test using a program debugger, to obtain
intuition about why the program does not satisfy its specification. In contrast to
proofs, tests can be easily repeated for regression testing when the program under
test has been modified in a nontrivial way.

We discussed variations of the test generator with different features and options.
The main configuration options and features of KeYTestGen are:

• test generation for individual Java methods with JML specifications;
• support for JUnit;
• unwinding/inlining loops and methods, or utilizing abstractions in form of loop

invariants and method contracts;
• support for different coverage criteria such as full feasible bounded path coverage,

full feasible branch coverage, and Modified Condition/Decision Coverage;
• testing of implicit conditions and corner cases such as NullPointerExceptions,

ArrayIndexOutOfBoundsExceptions, and arithmetic under- and overflows;
• support for specifications with quantified formulas through bounded quantifica-

tion domain approximation;
• generation of a test oracle or using the third party runtime checker OpenJML;
• the possibility to create objects from classes without default constructor and

initialization of private and protected fields.

KeYTestGen provides a variety of ways how it can be used. A new user may start
with very simple test case generation, to then gradually add specifications and try out
the more sophisticated features of the tool. In this way, the approach allows a smooth
learning curve. Overall, KeYTestGen allows the software developer to profit from
the very powerful analysis KeY performs on source code, by letting it create good
test suites, in a highly automated fashion.



Chapter 13
Information Flow Analysis

Christoph Scheben and Simon Greiner

13.1 Introduction

Software systems are becoming increasingly trusted to handle sensitive information,
though they have the potential to abuse this trust with serious consequences. in
particular if they are connected to the internet. We allow web browsers to access our
bank accounts, but also allow them to send usage reports to the browser’s developers.
A mainstream smartphone application has permissions to read our digital photo
albums, contact lists and calendar, while at the same time it is free to use the phone’s
internet connection in every way possible. This chapter discusses how the KeY
System can be used to address the increasingly important question of information
flow control: does a program introduce information flows between resources in a way
which is in violation of our security policy?

As a concrete example consider an electronic voting system: an important property
of voting systems is the preservation of privacy of votes. Information on votes may
not be published directly nor indirectly.

for (int i = 0; i < votes.lengh; i++) {
publish(votes[i]);

}

Listing 13.1 Example for an explicit leak

In Listing 13.1, the secret value of a vote is directly written to the output channel
publish. Therefore, this kind of information leak is called explicit. In Listing 13.2,
the information is leaked indirectly via the control flow of the program. By observing
the output, it is possible to decide whether the first vote was cast for candidate 0 or
not. This is called an implicit leak. In complex programs, these leaks can be much
more subtle.

c© Springer International Publishing AG 2016
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if (votes[0] == candidates[0])
publish("The␣result␣is␣");
publish(calculateResult(votes, candidates));

} else {
publish("The␣outcome␣is␣");
publish(calculateResult(votes, candidates));

}

Listing 13.2 Example for an implicit leak

Information can also be leaked via side channels, such as execution time, power
consumption, heat generation, and others. These kinds of information flow are not
considered here. Instead, we focus on explicit and implicit leaks.

In order to verify a program for secure information flow, we need a general notion
on what secure information flow means. Intuitively, a program has this property, if
the observable output is not influenced by secret input, i.e., the observable output
does not depend on the secret input. This is obviously the case, if for all program
executions with the same nonsecret input, the public output is equal. Darvas et al.
[2005] phrase this for a program α the following way: A program α has secure
information flow if “Running two instances of α with equal low-security values and
arbitrary high-security values, the resulting low-security values are equal, too.” Here,
low-security values are values which can be observed by potential attackers whereas
all other values are called high-security values. This policy is called noninterference
[Lampson, 1973, Denning, 1976, Cohen, 1977, Goguen and Meseguer, 1982].

For instance, let the observable output be the variable l, while all other vari-
ables are not observable. Then, the program l = h + 1; is insecure: Two runs of
l = h + 1; with different values of h result in states with different values for l. If,
on the other hand, neither l nor h are observable, the program has secure informa-
tion flow. The program also has secure information flow, if h and l are observable.
The program l = 0; if (h) { l = 1; } is insecure if solely the value of l is
observable, because l has the value 0 if, and only if, h has the value false. The
program h = 0; if (l) { h = 1; } on the other hand has secure information
flow in thiscase. Indeed, l is not changed at all.

In the past, a variety of sophisticated information flow analysis techniques and
tools have been developed. As in functional verification, the proposed techniques
can be divided into lightweight (that is, automatic but approximate) and heavyweight
(that is, semiautomatic but precise approaches.

Popular lightweight approaches are security type systems (a prominent example
in this field is the Java Information Flow (JIF) system by Myers [1999]), the analysis
of program dependence graphs for graph-theoretical reachability properties [Hammer
et al., 2006], specialized approximate information flow calculi based on Hoare
like logics [Amtoft et al., 2006, Scheben, 2014] and the usage of abstraction and
ghost code for explicit tracking of dependencies [Bubel et al., 2009]. A popular
heavyweight approach is to state information flow properties by self-composition
[Barthe et al., 2004, Darvas et al., 2005] and use off-the-shelf software verification
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systems to check for them. An alternative is to formalize information flow properties
in higher-order logic and use higher-order theorem provers for the verification of
those properties, as presented for instance by Nanevski et al. [2011].

Lightweight approaches are usually efficient and scale well on large programs,
but do not have the necessary precision to express and verify complex information
flow-properties of programs with controlled release of information. An instance of
programs with controlled release of information are electronic voting systems. In
those systems, secrecy of votes is an important property which could not be proven
by approximate approaches so far. Heavyweight approaches on the other hand were,
until recently, applicable to artificially small examples only.

This chapter discusses deductive verification of complex information flow-
properties of open programs with controlled release of information. This approach
allows analysis of Java programs by comparing two symbolic executions of the pro-
gram, a variation of self-composition [Scheben and Schmitt, 2012, Scheben, 2014].
The feasibility of the approach has been proven by a case study on a simplified
electronic voting system (Chapter 18), carried out in cooperation with the research
group of Prof. Ralf Küsters from the University of Trier. The approach has also been
used in [Dörre and Klebanov, 2015] to analyze information flow in the Android
pseudo-random number generator.

In the following section we give an intuitive understanding of an information
flow specification and its relation to a possible attacker model. In Section 13.3 we
formally define noninterference. In Section 13.4, JML specifications for information
flow properties for Java programs are defined, and used in Section 13.5 to formalize
noninterference in JavaDL to gain proof obligations for the KeY prover. Directly
proving the resulting proof obligation with the KeY tool may not be feasible for
realistic programs, we therefore also present optimizations of the proof process
for information flow properties in KeY in this section. Finally, we conclude in
Section 13.6 and point to alternative approaches for verification of information flow
properties in KeY.

The presentation (including the introduction) is based on [Scheben and Schmitt,
2012, 2014, Scheben, 2014].

We assume the reader to be familiar with some topics presented in earlier chapters.
For understanding the details of the following presentation, it might be helpful to
read the chapters on JavaDL (Chapter 3), theories used in the KeY framework (Chap-
ter 5), specifications in JML (Chapter 7), and modular specification and verification
(Chapter 9) first.

13.2 Specification and the Attacker Model

Information flow is a property of a program, and thus can be analyzed and verified. In
order to verify the flow of information in a program, we need a specification describ-
ing the intended flow of information. The examples in the introduction separate the
input and output of a program into an observable and a secret part. The input is the
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state and the parameters before execution of the program, the output is the state after
execution and possibly the return value. The specification describes the observable
part of these states, and thus implicitly specifies the secret parts as everything else.

To describe the observable part of a state, we use observation expressions. In the
simplest case, an observation expression is a list (or sequence) of program variables.
The sequence 〈x,y〉 of program variables x and y, for instance, describes that x and
y are observable.

Restricting observation expressions to program variables is often too coarse-
grained. It may be necessary to specify that only parts of the information contained
in a program variable or the aggregation of several variables is observable. Therefore,
we allow arbitrary JavaDL terms or JML expressions to appear in observation expres-
sions. To specify, for example that only the last bit of x and the sum of y and z is
observable, the observation expression 〈 x%2, (y + z)〉 can be used.1 In general, it
is possible to combine two observations described by two observation expressions R1
and R2 of sequence type by concatenation. We denote their concatenation by R1;R2.
Since any observation expression R can be embedded into a singleton sequence, we
extend the concatenation of observation expressions to any type in the obvious way.

This very flexible way of specification has two major advantages. For one, it
allows us to express very precisely the information which actually may be seen by
a possible attacker. In Chapter 18, we present the verification of information flow
in an e-voting system. In this context, we specify that the result of an election may
be observable, while other information, for example who voted for which candidate
is not. Second, the approach allows a precise specification of method contracts and
loop invariants, which is helpful when a modular analysis for realistic programs is
necessary.

Typically in literature, information flow is used to verify the security of a program
with respect to an attacker. The attacker is able to see the low part of the input and
output of a program, which we call observations. It is counterintuitive to specify that
an attacker is able to observe only the last bit of a parameter or only some elements of
the heap but not others. Therefore we want to point out that the motivation behind our
approach for specification is mainly driven by a precise specification of information
flow, not by a realistic attacker model. Usually, an attacker is able to observe certain
outputs of a program, for example the return value of a method or calls to logging
methods. Observation expressions do not describe the ability of a realistic attacker,
but the parts of inputs and outputs of a program which may influence each other. A
program that has a specified information flow is secure against all attackers who are
able to see only a subset of the information described by observation expressions.

Given the specification of observable parts of states, we can now give a formal
definition of what it means for a program to have secure information flow.

1 For a precise definition of observation expressions see [Scheben, 2014].
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13.3 Formal Definition of Secure Information Flow

Intuitively, a program is noninterferent, i.e., it has secure information flow, if two
runs of the program with equal low-security input have equal low-security output.
Observation expressions describe the low part of states, while states are the input and
output of programs. We can formally define what it means for states to have equal
low-security values.

Definition 13.1 (Agreement of states). Let R be an observation expression.
Two states s and s′ agree on R, abbreviated by agree(R,s,s′), if and only if

evals(R) = evals′(R).

With the agreement of states we can define noninterference formally.

Definition 13.2 (Unconditional Noninterference). Let α be a program and R1, R2
observation expressions.

Program α allows information to flow only from R1 to R2, denoted by the predicate
flow(α,R1,R2), if and only if for all states s1,s′1,s2,s′2 such that evals1(α) = {s2}
and evals′1(α) = {s′2}, we have

if agree(R1,s1,s′1) then agree(R2,s2,s′2).

The observation expressions R1 and R2 describe the publicly available information
of a pre- and a poststate of the system respectively. For all states which agree on
the publicly available information, the states resulting from an execution of α agree
on the part of the state described by R2. Of course, this only holds if both runs of
α actually terminate. If one run does not terminate, its poststate is undefined and
therefore agree(R2,s2,s′2) is undefined. Therefore this notion of noninterference is
termination insensitive.

In the simplest case, Ri expresses explicit declarations of program variables
and fields which are considered low. In more sophisticated scenarios the Ri may
be inferred from a multi-level security lattice (see for instance [Scheben, 2014]).
Usually we will have R1 = R2. But, there are other cases: to declassify an expression
edecl , for instance, one would choose R1 = R2;edecl .

As seen in Chapter 9, method contracts are useful in order to provide abstract
knowledge about parts of a program, for example the states in which a method may
be called. We would like to have a notion of noninterference which also respects
knowledge about these states. In contract-based specifications, this condition is given
by the precondition. The following definition of conditional noninterference allows
us to use this knowledge.

Definition 13.3 (Conditional Noninterference). Let α be a program, R1, R2 obser-
vation expressions and φ a formula.

Program α allows information to flow only from R1 to R2 under condition φ ,
denoted by flow(α,R1,R2,φ), if and only if for all states s1,s′1,s2,s′2 such that
evals1(α) = {s2} and evals′1(α) = {s′2} we have

if s1 � φ , s′1 � φ and agree(R1,s1,s′1) then agree(R2,s2,s′2).
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The idea behind this generalization is that in many cases a method in isolation
has secure information flow only in case a precondition holds, for instance, if a
parameter is not null. In such a situation, it is necessary to use the precondition
within the information flow proof and show in a different proof that the precondition
holds whenever the method is called. For details about modular specification and
verification, please refer to Chapter 9.

Conditional noninterference enjoys the following compositionality property.

Lemma 13.4 (Compositionality of flow). Let α1, α2 be programs, and α1;α2 their
sequential composition. If flow(α1,R1,R2,φ1), flow(α2,R2,R3,φ2) and s1 � (φ1→
〈α1〉φ2) = true hold for all states s1, s2, s3 such that α1 started in s1 and terminates
in s2, and α2 started in s2 and terminates in s3, then flow(α1;α2,R1,R3,φ1) holds.

Now that conditional noninterference has been defined formally, we show how
it can be specified on program level with the help of JML. Finally, we present how
noninterference can be verified using the KeY System.

13.4 Specifying Information Flow in JML

In Chapter 7 JML was introduced as a specification language, mainly for functional
properties of Java programs. In this section, we want to show how JML can be
extended to allow the specification of noninterference properties for Java programs.
The presentation follows [Scheben and Schmitt, 2012] and [Scheben, 2014].

JML is built according to the design by contract (DBC) concept. To achieve a nat-
ural integration of information flow and functional specifications, the JML extension
uses DBC for the specification of noninterference as well. Conditional noninterfe-
rence with declassification is specified by information flow method contracts. Similar
to functional method contracts, which specify the functional behavior of methods,
information flow method contracts specify the information flow behavior of methods.

Information flow contracts augment functional JML contracts by determines
clauses. Each determines clause defines a restriction on the information flow.
The clause defines two lists of JML expressions, one expressing the observation
expression for the poststate, the other list expressing the observation expression for
the prestate. The determines clause
//@ determines l \by l;
void m();

specifies for the method m() that attackers may observe the value of the program
variable l before and after the execution of m().

It is possible to define different observation expressions for the pre- and the
poststate of a method:
//@ determines l \by l, x;
void m();
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specifies that the observation expression in the prestate of method m() contains
the locations l and x, while in the poststate, it contains l only. This is useful for
declassification as the method sum() in Figure 13.1 illustrates. The method calculates

class C {
private int[] values;

/*@ determines \result \by
@ (\sum int i; 0 <= i && i < values.length; values[i]);
@*/

int sum() {
int s = 0;
for (int value : values) {
s += value;

}
return s;

}
}

Figure 13.1 Program declassifying the sum of an array

the sum of the entries of the array values and returns the result. Accordingly, the
specification allows a declassification of the sum to the result.

A contract may contain several determines clauses. This is useful if a pro-
gram run is observed by different parties with different abilities. For instance,
there might be a party which may observe the unrestricted information stored in
the field unrestricted and another party which may observe the information in
unrestricted as well as the restricted information stored in the field restricted.
Both parties may not access the information in secret1 and secret2. This situation
can be specified naturally with the help of two determines clauses as shown in
Figure 13.2.

class C {
private int unrestricted, restricted, secret1;

/*@ determines unrestricted \by unrestricted;
@ determines unrestricted, restricted \by unrestricted,
@ restricted;
@*/

void m(int secret2) {
unrestricted++;
restricted = restricted + unrestricted;
secret1 = secret1 * (restricted + secret2);

}
}

Figure 13.2 Program with multiple information flow contracts
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The semantics of the determines clauses is defined with the help of conditional
noninterference (see Definition 13.3): Let Rpost be defined as the concatenation
of the expressions behind the determines keyword. Let Rpre be defined as the
concatenation of the expressions behind the \by keyword and the expressions behind
an optional \declassifies keyword. Let further φpre be the precondition of the
contract defined as usual by requires-clauses and class invariants. A method m
fulfills a determines clause if and only if flow(m,Rpre,Rpost,φpre) is valid.

Similar to method contracts, we extend JML loop invariants by determines
clauses. We omit a detailed presentation for loop invariants here, the interested reader
may refer to [Scheben, 2014] for a complete discussion.

13.5 Information Flow Verification with KeY

We have a formalization of information flow and a specification method as an
extension of JML. In this section we explain how these two parts can be translated into
JavaDL, providing us with a proof obligation which can naturally be verified in KeY.
Since performing proofs in KeY efficiently depends, among others, on the number
of branches a proof has, we also introduce an optimization which neither limits
expressiveness nor precision, but reduces the number of branches an information
flow proof consists of.

When considering information flow in object-oriented languages like Java, some
special cases arise when it comes to object creation. KeY makes the assumption that
the identity of an object created by calling a constructor is nondeterministic. This
means, for one, it is not guaranteed that two runs of a program with the same initial
heap generate the same object. And second, it is not possible to judge the order of
creation for two new objects. We do not discuss this special issue here, but refer
the interested reader to the related work [Beckert et al., 2014, Scheben, 2014]. The
implementation in the KeY system however does consider this.

First, we define the JavaDL equivalent for the semantic agree predicate.

Definition 13.5 (Observation Equivalence). The formulas x̄1, x̄2 and the heaps h1,
h2 are observationally equivalent with respect to observation expression R, written
obsEq(x̄1,h1, x̄2,h2,R), iff {heap := h1 || x̄ := x̄1}R

.= {heap := h2 || x̄ := x̄2}R
evaluates to true.

Observational equivalence and the agree predicate are indeed equivalent.

Lemma 13.6. Let s1, s2 be two states described by the formulas x̄1, h1 and x̄2, h2,
respectively. Let R be an observation expression.

The formula obsEq(x̄1,h1, x̄2,h2,R) is valid if and only if agree(R,s1,s2) holds.

Now we are ready to formulate conditional noninterference (Definition 13.3) in
JavaDL.

Lemma 13.7. Let α be a program with local variables x̄ of types X̄ , let R1, R2 be
observation expressions and let φ be a formula.
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The formula

Ψα,x̄,R1,R2,φ ≡ ∀Heaph1,h′1,h2,h′2 ∀X̄ x̄1, x̄′1, x̄2, x̄′2
{heap := h1 || x̄ := x̄1}(φ ∧〈α〉(heap

.= h2∧ x̄
.= x̄2))∧

{heap := h′1 || x̄ := x̄′1}(φ ∧〈α〉(heap
.= h′2∧ x̄

.= x̄′2))
→
(
obsEq(x̄1,h1, x̄′1,h

′
1,R1)→ obsEq(x̄2,h2, x̄′2,h

′
2,R2)

)
is valid if and only if flow(α,R1,R2,φ) holds.

The formula shown in Lemma 13.7 is a direct formalization of information flow
in JavaDL. This direct formalization expresses the intended property very precisely,
however, containing two modalities and requiring two symbolic program executions
comes at a price during verification. In the following we show some inefficiencies
of this approach and introduce some optimization of the proof process which takes
these inefficiencies into consideration and allows proving noninterference for larger
programs.

13.5.1 Efficient Double Symbolic Execution

We use the example in Figure 13.3 to show several points for improvement when
performing noninterference proofs.

The first point becomes obvious, when we have a closer look at the symbolic
execution of the program. In the proof obligation as defined in Lemma 13.7 the
program, which is executed first only differs in the name of the heap variable in the
update and some renaming of parameters and return values from the second execution.
Nevertheless, all rules necessary for symbolic execution are applied twice, once for
each modality containing the program. Especially for larger programs and more
complicated programs, this additional effort can become relevant. We can reduce
the costs of calculating the weakest precondition by performing this calculation only
once and then reuse the result for the noninterference proof.

Second, the poststate of one program execution is compared to all possible post-
states of the second program execution. If the program has n possible execution
paths, the symbolic execution yields n branches. Combining both program executions

/*@ public normal_behavior
@ determines l \by l;
@*/

public void m() {
l = l+h;
if (h!=0) {l = l-h;}
if (l>0) {l--;}

}

Figure 13.3 Example of a secure program
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Figure 13.4 Sketch of the control flow graphs of (a) the original program and (b) the program with
double symbolic execution

results in O(n2) branches for which the observation expressions have to be compared.
In contrast, specialized information flow calculi, which consider the program only
once, have to check only the outcome of the n paths through the program.

Let again α be the program as shown in Figure 13.3. The control flow graph of α

is sketched in Figure 13.4(a). After combining both executions we have to perform a
proof on the proof tree according to Figure 13.4(b).

In the following sections, we introduce optimizations, first regarding the calcula-
tion of the weakest precondition. This is followed by a discussion how the number of
comparisons can be reduced. Finally, we show how block contracts can be used to fur-
ther increase scalability and present how these optimizations can be used in the KeY
system. The following argumentations are based on Dynamic Logic. Readers which
are more familiar with weakest precondition calculi might prefer the presentation in
[Scheben and Schmitt, 2014].

13.5.1.1 Reducing the Cost for the Weakest Precondition Calculation

First, we show that it is possible to prove noninterference in our setting with the help
of only one symbolic execution of α .

Lemma 13.8. Let heap and x̄ be the program variables of α and let h1, x̄1, h2, x̄2,
h′1, x̄′1, h′2 and x̄′2 be variables of appropriate type.

There exist formulas ψ and ψ ′ without modalities, which replace {heap :=
h1 || x̄ := x̄1}〈α〉(heap

.= h2 ∧ x̄
.= x̄2) and {heap := h′1 || x̄ := x̄′1}〈α〉(heap

.=
h′2∧ x̄

.= x̄′2) in Lemma 13.7.
The formulas ψ and ψ ′ can be calculated with a single symbolic execution of α .
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(a) (b) (c)

Figure 13.5 Reducing the verification overhead by compositional reasoning

Proof. LetK be a Kripke structure, s a state and β a variable assignment. The main
step is finding a formula ψ—by symbolic execution of α—such that (K ,s,β ) �
{heap := h1 || x̄ := x̄1}〈α〉(heap

.= h2 ∧ x̄
.= x̄2) implies (Kext,s,β ) � ψ for an

extensionKext ofK by new Skolem symbols. (We need to consider extensions of
K , because the symbolic execution of α might introduce new Skolem symbols.)
Note that the application of the JavaDL calculus—which contains all necessary rules
for the symbolic execution of α—on {heap := h1 || x̄ := x̄1}〈α〉(heap

.= h2∧ x̄
.=

x̄2) does not deliver the desired implication: it approximates {heap := h1 || x̄ :=
x̄1}〈α〉(heap

.= h2∧ x̄
.= x̄2) in the wrong direction. We have to take an indirection.

Intuitively, the formula {heap := h1 || x̄ := x̄1}〈α〉(heap
.= h2∧ x̄

.= x̄2) is valid
in (K ,s,β ) if α started in state s1 : heap 7→ hβ

1 , x̄ 7→ x̄β

1 terminates in state s2 :
heap 7→ hβ

2 , x̄ 7→ x̄β

2 . We calculate a formula ψnot which is at most true if α started
in s1 : heap 7→ hβ

1 , x̄ 7→ x̄β

1 does not terminate in s2 : heap 7→ hβ

2 , x̄ 7→ x̄β

2 . Then ψ =
¬ψnot is at least true if α started in s1 terminates in s2. We obtain ψnot by symbolic
execution of {heap := h1 || x̄ := x̄1}〈α〉(heap 6

.= h2 ∨ x̄ 6
.= x̄2): application of the

JavaDL calculus on the sequent =⇒{heap := h1 || x̄ := x̄1}〈α〉(heap 6
.= h2∨ x̄ 6

.= x̄2)
results in a set of sequents Fseq, where each fseq ∈ Fseq does not contain modalities
any more. Let F be the set of meaning formulas for Fseq. We set ψnot =

∧
f∈F f .

Given ψ , we observe that we obtain a formula ψ ′ such that (K ,s,β ) � {heap :=
h′1 || x̄ := x̄′1}〈α〉(heap

.= h′2∧ x̄
.= x̄′2) implies (K ,s,β ) � ψ ′ by a simple renaming

of the variables h1, x̄1, h2, x̄2 to h′1, x̄′1, h′2, x̄′2 and by the renaming of the new Skolem
symbols c̄ to new primed Skolem symbols c̄′. The thus obtained formulas ψ and
ψ ′ can be used to replace {heap := h1 || x̄ := x̄1}〈α〉(heap

.= h2 ∧ x̄
.= x̄2) and

{heap := h′1 || x̄ := x̄′1}〈α〉(heap
.= h′2∧ x̄

.= x̄′2) in Lemma 13.7. Their calculation
involves only one symbolic execution.

The full correctness proof of the approach can by found in [Scheben, 2014].

13.5.1.2 Reducing the Number of Comparisons

The second problem, the quadratic growth of the number of necessary comparisons in
the number of program paths, can be tackled with the help of compositional reasoning
if the structure of the program allows for it. Reconsider the initial example:
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l = l + h;
if (h != 0) { l = l - h; }
if (l > 0) { l--; }

As discussed above, the first part above the dashed line, and the second part below
the line, are noninterferent on their own. Therefore, by Lemma 13.4 on composition-
ality of flow, the complete program is noninterferent. As illustrated in Figure 13.5,
checking the two parts independently from each other results in less verification
effort: When splitting the control flow graph of the entire program along the dashed
line (Figure 13.5(a)), each subprogram has only two paths as shown in (b). When
symbolically executing both of the subprograms twice, we gain four paths each (c
and d).

Thus, altogether only eight comparisons of post states have to be made to prove
noninterference of the complete program. Checking the complete program at once
would require (about) 12 comparisons.2 We summarize the above observation in the
following lemma.

Lemma 13.9. Let α be a program with m branching statements.
If α can be divided into m noninterferent blocks with at most one branching

statement per block, then noninterference of α can be shown with the help of double
symbolic execution with 3m comparisons.

Since a program with m branching statements has at least n = m + 1 paths,
Lemma 13.9 shows that the verification effort of double symbolic execution ap-
proaches can be reduced from O(n2) to O(n) comparisons, if the program under
consideration is compositional with respect to information flow. In the best case, a
program with m branching statements has Ω(2m) paths. In this case, the verifica-
tion effort reduces to O(log(n)) comparisons, if the program under consideration is
compositional with respect to information flow.

Unfortunately, the separation is not always as nice as in the example above.
Consider for instance the following program:
if (l > 0) { if (l % 2 == 1) { l--; } }

The program can be divided into blocks
b1 = if (l % 2 == 1) { l--; }

and
b2 = if (l > 0) { b1 }.
To conclude that b2 is noninterferent, it is necessary to use the fact that b1 is nonin-
terferent in the proof of b2. Unfortunately, the double execution approach does not
easily lend itself to such compositional verification. In the next section, the problem
of compositional reasoning will be discussed.

2 By symmetry, the number of comparisons can be reduced further in both cases: in the first case
2 · (2+1) = 6 comparisons are sufficient, in the second case 4+3+2+1 = 10 comparisons are
enough.
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13.5.1.3 Compositional Double Symbolic Execution

If a program α calls a block b, one (sometimes) does not want to look at its code but
rather use a software contract for b, a contract that had previously been established
by looking only at the code of b. This kind of compositionality can also be applied
to methods instead of blocks and is essential for the scalability of all deductive
software verification approaches. With double symbolic execution, the block b is not
only called in the first execution of α , but also in the second execution. This poses
the technical problem of somehow synchronizing the first and second call of b for
contract application.

In this paragraph, we show how software contracts can be applied in proofs using
double symbolic execution. An important feature of our approach is the seamless
integration of information flow and functional reasoning allowing us to take advan-
tage of the precision of functional contracts also for information flow contracts, if
necessary.

In the context of functional verification, compositionality is achieved through
method contracts. We extend this approach to the verification of information flow
properties. We define information flow contracts as a tuple of a precondition and
observation expressions for the pre- and the poststate.

Definition 13.10 (Information Flow Contract). An information flow contract (in
short: flow contract) to a block (or method) b with local variables x̄ := (x1, . . . ,xn) of
types Ā := (A1, . . . ,An) is a tuple Cb,x̄::Ā = (pre,R1,R2), where (1) pre is a formula
which represents a precondition and (2) R1, R2 are observation expressions which
represent the low expressions in the pre- and poststate.

A flow contract Cb,x̄::Ā = (pre,R1,R2) is valid if and only if the predicate
flow(b,R1,R2,pre) is valid.

The difficulty in the application of flow contracts arises from the fact that flow
contracts refer to two invocations of a block b in different contexts.

Example 13.11. Consider

Java
if (l>0) { l++; if (l%2 == 1) {l--;} }

Java

again, with blocks b1 = if (l%2 == 1) {l--;} and b2 = if (l>0) {l++; b1}.
Let Cb1,x̄::Ā = Cb2,x̄::Ā = (true,l,l) be flow contracts for b1 and b2. To prove Cb2,x̄::Ā
by double symbolic execution,

l .= l′→ (〈if (l>0) {l++; b1}; if (l′>0) {l′++; b1}〉l
.= l′)

has to be shown. (For presentation purposes, we ignore the heap in this example.)
Symbolic execution of the program, as far as possible, yields:
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l .= l′, l > 0
=⇒{l := l+1}

〈b1;
if(l′>0){
l′++;
b1

}
〉l .= l′

(13.1)

*apply-
Equality +
close l .= l′

l′ > 0
=⇒ l > 0,
{l′ := l′+1}
〈b′1〉l

.= l′

*
close

l .= l′

=⇒ l > 0,
l′ > 0,
l .= l′

... symbolic execution

=⇒ l .= l′→ (〈if (l>0) {l++; b1}; if (l′>0) {l′++; b′1}〉l
.= l′)

To close branch (13.1), Cb1,x̄::Ā needs to be used—but it is not obvious how this
can be done, because Cb1,x̄::Ā refers to the invocation of b1 in the first and the second
execution at the same time. A similar problem occurs if Cb2,x̄::Ā is proved with the
help of the optimizations discussed above.

The main idea of the solution is a coordinated delay of the application of flow
contracts. The solution is compatible with the optimizations discussed above and
additionally allows the combination of flow contracts with functional contracts.

Let b be a block with the functional contractFb,x̄::Ā = (pre,post,Mod) where (1)
the formula pre represents the precondition; (2) the formula post represents the post-
condition; and (3) the term Mod represents the assignable clause for b. In functional
verification, block contracts are applied by the rule useBlockContract, introduced
by Wacker [2012]. The rule is an adaptation of the rule useMethodContract from
Section 9.4.3 for blocks. For presentation purposes, we consider a simplified version
of the rule only:

useBlockContract

pre Γ =⇒{u}pre,∆
post Γ =⇒{u;uanon}(post→ [π ω]φ),∆

Γ =⇒{u}[π b; ω]φ ,∆

Here, u is an arbitrary update; uanon = (heap := anon(heap,Mod,h), x̄ := x̄′) is an
anonymizing update setting the locations of Mod (which might be modified by b)
and the local variables which might be modified to unknown values; h of type Heap
and x̄′ of appropriate types are fresh symbols. We require pre to entail equations
heappre

.= heap and x̄pre
.= x̄ which store the values of the program variables of the

initial state in program variables heappre and x̄pre such that the initial values can be
referred to in the postcondition. Additionally, we require that pre and post entail a
formula which expresses that the heap is well-formed.

The plan is to use an extended version of the rule useBlockContract during
symbolic execution—in many cases for the trivial functional contract Fb,x̄::Ā =
(true, true,allLocs)—which adds some extra information to the sequent allowing a
delayed application of information flow contracts. The extra information is encap-
sulated in a new two-state predicate Cb(x̄,h, x̄′,h′) with the intended meaning that b
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started in state s1 : heap 7→ h, x̄ 7→ x̄ and terminates in state s2 : heap 7→ h′, x̄ 7→ x̄′.
This predicate can be integrated into the rule useBlockContract as follows:

useBlockContract2

pre Γ =⇒{u}pre,∆
post Γ ,{u}Cb(x̄,heap, x̄′,h′),{u;uanon}(heap

.= h′∧ x̄ .= x̄′)
=⇒{u;uanon}(post→ [π ω]φ),∆

Γ =⇒{u}[π b; ω]φ ,∆

where h′ and x̄′ are fresh function symbols. By [Scheben, 2014], useBlockContract2
is sound. The introduction of Cb(x̄,h, x̄′,h′) to the post branch allows us to store
the initial and the final state of b for a delayed application of information flow
contracts: the two predicates Cb(x̄1,h1, x̄′1,h

′
1) and Cb(x̄2,h2, x̄′2,h

′
2) appearing on the

antecedent of a sequent can be approximated by an instantiation of a flow contract
Cb,x̄::Ā = (pre,R1,R2) for b by

{heap := h1 || x̄ := x̄1}pre∧{heap := h2 || x̄ := x̄2}pre
→
(
obsEq(x̄1,h1, x̄′1,h

′
1,R1)→ obsEq(x̄2,h2, x̄′2,h

′
2,R2)

)
.

This approximation is applied by the rule useFlowContract:

useFlowContract

Γ ,Cb(x̄1,h1, x̄′1,h
′
1),Cb(x̄2,h2, x̄′2,h

′
2),

{heap := h1 || x̄ := x̄1}pre∧{heap := h2 || x̄ := x̄2}pre
→
(
obsEq(x̄1,h1, x̄′1,h

′
1,R1)→ obsEq(x̄2,h2, x̄′2,h

′
2,R2)

)
=⇒ ∆

Γ ,Cb(x̄1,h1, x̄′1,h
′
1),Cb(x̄2,h2, x̄′2,h

′
2) =⇒ ∆

Formally, a flow contract Cb(x̄,h, x̄′,h′) is valid in a Kripke structure K and a
state s if and only if

{x̄ := x̄ || heap := h}〈b〉(heap .= h′∧ x̄ .= x̄′)

is valid in (K ,s). Note that the usage of the rule useBlockContract2 during symbolic
execution allows the application of arbitrary functional contracts in addition to flow
contracts. This allows for taking advantage of the precision of functional contracts
within information flow proofs, if necessary. The default, however, is using the trivial
functional contractFb,x̄::Ā = (true, true,allLocs) as in the presented example. The
soundness proof for the above approach can be found in [Scheben, 2014].

Example 13.12. LetFb1,x̄::Ā = (true, true,allLocs) be the trivial functional contract
for b1. Applied on the example from above, (13.1) can be simplified as shown
in Figure 13.6. For presentation purposes, all heap symbols have been removed
from the example. Therefore, Cb1 takes only two parameters and obsEq only three
parameters. Adding the heap results in essentially the same proof but with more
complex formulas.

The proof uses the following abbreviations of rule names:
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*
close

l .= l′, l > 0, Cb1 (l+1, `), `anon
.= `,

l′ > 0, Cb1 (l
′+1, `′), `′anon

.= `′,
`anon

.= `′anon
=⇒ `anon

.= `′anoneq +
simp l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0, Cb1 (l

′+1, `′), `′anon
.= `′,

l+1 .= l′+1→ `
.= `′

=⇒ `anon
.= `′anon

obsEq
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0, Cb1 (l

′+1, `′), `′anon
.= `′,

obsEq(l+1,l′+1,l .= l′)
→ obsEq(`,`′,l .= l′)

=⇒ `anon
.= `′anon

uFC
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0, Cb1 (l

′+1, `′), `′anon
.= `′

=⇒ `anon
.= `′anon

simp
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0,
{l := `anon}{l′ := l′+1}Cb1 (l

′, `′),
{l := `anon}{l′ := l′+1}{l := `′anon}l

.= `′

=⇒{l := `anon}{l′ := l′+1}{l := `′anon}l
.= l′

uBC2
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0

=⇒{l := `anon}{l′ := l′+1}〈b′1〉l
.= l′

++
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0

=⇒{l := `anon}〈l′++; b′1〉l
.= l′

simp
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
{l := `anon}l′ > 0

=⇒{l := `anon}〈l′++; b′1〉l
.= l′

*
close

l .= l′,
l > 0,
Cb1 (l+1, `),
`anon

.= `
=⇒ l > 0,

`anon
.= l′

eq
l .= l′,
l > 0,
Cb1 (l+1, `),
`anon

.= `
=⇒ l′ > 0,

`anon
.= l′

simp
l .= l′,
l > 0,
Cb1 (l+1, `),
`anon

.= `
=⇒{l := `anon}

l′ > 0,
{l := `anon}
l .= l′

if
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `
=⇒{l := `anon}〈if (l′>0) {l′++; b′1}〉l

.= l′
simp

l .= l′, l > 0, {l := l+1}Cb1 (l, `), {l := l+1}{l := `anon}l
.= `

=⇒{l := l+1}{l := `anon}〈if (l′>0) {l′++; b′1}〉l
.= l′

uBC2
l .= l′, l > 0

=⇒{l := l+1}〈b1; if (l′>0) {l′++; b′1}〉l
.= l′

Figure 13.6 Proof tree of Example 13.12.
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Abbreviation Full name Abbreviation Full name
uBC2 useBlockContract2 eq applyEquality
uFC useFlowContract if conditional
obsEq replaces obsEq(·) by its defi-

nition (Lemma 13.6)
simp combination of all update

simplification rules
++ plusPlus close close
eq+ simp repeated application of the

rules eq and simp

Firstly, the symbolic execution is continued by the rule useBlockContract2 and
(after several simplifications) by the rule conditional. The conditional rule splits
the proof into two branches. The right branch, which represents the case that the
condition l′ > 0 evaluates to false, can be closed after further simplifications and the
application of equalities. On the other branch, the remaining program is executed
symbolically by the rule plusPlus and another application of useBlockContract2,
now on the block b′1. After some further simplifications, we are in the position
to apply the flow contract for b1: the antecedent of the sequent contains the two
predicates Cb1(l+1, `) and Cb1(l

′+1, `′) on which the rule useFlowContract can
be applied. With the help of the guarantees from the flow contract for b1, the proof
closes after some final simplifications.

13.5.2 Using Efficient Double Symbolic Execution in KeY

In this section, we show how efficient double execution proofs can be performed in
the KeY system. Readers not familiar with the KeY system may find it helpful to read
Chapter 15 on using the KeY prover first.

Efficient double execution is implemented in KeY with the help of strategy macros.
The simplest way to use the optimizations is by application of the macro Full Informa-
tion Flow Auto Pilot. It can be selected by highlighting an arbitrary term, left-clicking,
choosing the menu item Strategy macros and then Full Information Flow Auto Pilot.
KeY should be able to prove most of the information flow examples delivered with
KeY (under examples→ firstTouch→ InformationFlow) automatically this way.

On complicated examples, the auto pilot might fail. In this case, we can gain better
control of the proof by application of the following steps.

As discussed in Section 13.5.1, double execution considers the same program
twice, but it suffices to calculate only one weakest precondition. Therefore we start a
side-proof for the weakest precondition calculation. This is done as follows:

1. We highlight an arbitrary term and left-click. We then choose the menu item
Strategy macros and in the upcoming menu the item Auxiliary Computation Auto
Pilot. A side proof opens and KeY tries to automatically calculate the weakest
precondition.
KeY succeeded in the calculation if the open goals of the side proof do not
contain modalities any more. If a goal still contains a modality, then one can
either simply try to increase the number of auto-mode steps or one can remove
the modalities by interactive steps.
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If one of the open goals contains an information flow proof obligation from a
block contract or from an information flow loop invariant, then this goal has to
be closed by going through steps (1) to (3) again before continuing with step (2).

2. We choose an open goal, highlight an arbitrary term in the sequent and left-
click. We choose the menu item Strategy macros and in the upcoming menu
the item Finish auxiliary computation. The side-proof closes and a new taclet
(rule) is introduced to the main proof. The new taclet is able to replace the
double execution term (the shortest term which contains both modalities) by two
instantiations of the calculated formula.

3. On simple examples, it suffices to activate the auto mode by choosing the menu
item Continue from the menu Proof. On more complex examples it is helpful
to run the strategy macro self-composition state expansion with inf flow contracts
first. The latter macro applies the new rule and afterwards tries to systematically
apply information flow contracts.

The macro Full Information Flow Auto Pilot applies steps (1)–(3) automatically.

13.6 Summary and Conclusion

We have presented how information flow properties can be specified in JML and
that KeY can analyze whether Java programs satisfy the specification. The approach
implemented in the KeY prover allows for a very precise specification of information
flows which is important especially in a real-world object-oriented programming
language. Information flow is represented in JavaDL directly by the semantic meaning
of the property: We directly compare two executions of a program only differing
in the secret input. While this allows for precise reasoning with KeY, the pairwise
comparison of all execution paths leads to quadratic growth of proof obligations.
Therefore, we also show how the proof process can be optimized such that verifying
real-world programs becomes feasible.

The approach as presented here was applied for the verification of a simplified
e-voting case study. Experiences of this work can be found in Chapter 18.

Another approach for precise information flow analysis has been developed
by Klebanov [2014]. The approach is based on symbolic execution in KeY, combined
with an external quantifier elimination procedure and a model counting procedure.
The method and tool chain not only identify information leaks in programs but
quantify them using a number of information-theoretical metrics.

Very popular enforcement methods for information flow properties in the litera-
ture are type systems. These approaches are usually less precise than the approach
presented here, however only a single execution of a program has to be considered
during analysis. So-called dependent types allow to further improve precision of type-
based analysis. Here, dependencies between variables and partial and aggregated
information is tracked during symbolic execution. Using theorem provers for the
analysis of programs with dependent types, it is possible to track the semantics of
information during a program run. An extension for KeY supporting a type-based
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reasoning of information flow in programs can be found in [Bubel et al., 2009, van
Delft and Bubel, 2015].



The main purpose of the KeY system is to ensure program correctness w.r.t. a formal
specification on the level of source code. However, a flawed(?) compiler may invali-
date correctness properties that have been formally verified for the program’s source
code. Hence, we additionally need to guarantee the correctness of the compilation
result w.r.t. its source code.

Compiler verification, as a widely used technique to prove the correctness of
compilers, has been a research topic for more than 40 years [McCarthy and Painter,
1967, Milner and Weyhrauch, 1972]. Previous works [Leroy, 2006, 2009, Leinenbach,
2008] have shown that compiler verification is an expensive task requiring nontrivial
user interactions in proof-assistants like Coq [Leroy, 2009]. Maintaining these proofs
for changes to the compiler back-end (e.g., support of new language features or
optimization techniques) is not yet counted into that effort.

In this chapter, instead of verifying a compiler, we use the verification engine of
KeY to prove a correct bytecode generation through a sound program transformation
approach. Thus program correctness on source code level is inherited to the bytecode
level. The presented approach guarantees that the behavior of the compiled program
coincides with that of the source program in the sense that both programs terminate
in states in which the values of a user specified region of the heap are equivalent.

Moreover, we often want the generated program to be more optimized than the
original program. If the source and the target programs are in the same language,
this program translation process is also known as program specialization or partial
evaluation.

The correctness of the source program (w.r.t. its specification) entails correctness
of the generated program. No further verification on the level of bytecode is needed,
though verification of Java programs on the bytecode level, even if interaction is
needed, is also possible using dynamic logic [Ulbrich, 2011, 2013].

When constructing the symbolic execution tree (see Section 11.2) the program is
analyzed by decomposing complex statements into a succession of simpler statements.
Information about the heap and local program variables is accumulated and added in
the form of formulas and/or updates. This information can be used to deem certain
execution paths as unfeasible.

Chapter 14
Program Transformation and Compilation
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c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 473–492, 2016
DOI: 10.1007/978-3-319-49812-6 14
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Technically, we implemented symbolic execution as part of the sequent calculus
(see Section 3.5.6), whose rules are applied analytically from bottom-to-up. For the
program generation part, the idea is to apply the sequent calculus rules reversely (i.e.,
top-down) and to generate the target program step-by-step.

This chapter is structured as follows: Section 14.1 introduces partial evaluation
and how it can be interleaved with symbolic execution to boost the performance of
automatic verification. We discuss how to achieve verified correct compilation in
Section 14.2 and discuss a prototypical implementation in Section 14.3.

14.1 Interleaving Symbolic Execution and Partial Evaluation

We first motivate the general idea for interleaving symbolic execution and partial
evaluation (Section 14.1.1). Then we show how to integrate a program transformer
soundly into a program calculus in Section 14.1.2 and conclude with a short evalua-
tion of the results.

14.1.1 General Idea

To motivate our approach of interleaving partial evaluation and symbolic execution,
we first take a look at the program shown in Figure 14.1(a). The program adapts
the value of variable y to a given threshold with an accuracy of eps by repeatedly
increasing or decreasing y as appropriate. The function abs(·) computes the absolute
value of an integer.

Symbolically executing the program results in the symbolic execution tree (intro-
duced in Section 11.2) shown in Figure 14.2, which is significantly more complex
than the program’s control flow graph (CFG) in Figure 14.1(b). The reason is that
symbolic execution unwinds the program’s CFG producing a tree structure. As a
consequence, identical code is repeated on many branches, however, under different
path conditions and in different symbolic states. Merging back different nodes of the
tree is usually not possible without approximation or abstraction [Bubel et al., 2009,
Weiß, 2009].

During symbolic execution, there are occasions in which fields or parameters have
a value which is fixed a priori, for instance, because certain values are fixed for some
call sites, the program is an instantiation of a product family or contracts exclude
certain program paths. In our case, the program from Figure 14.1(a) is run with a
fixed initial value (80) for y and the threshold is fixed to 100.

To exploit this knowledge about constant values and to derive more efficient
programs, partial evaluation has been used since the mid 1960s, for instance as part
of optimizing compilers. The first efforts were targeted towards Lisp. Due to the rise
in popularity of functional and logic programming languages, the 1980s saw a large
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y = 80;
threshold = 100;

if (y > threshold) {
decrease = true;

} else {
decrease = false;

}

while (abs(y-threshold) > eps) {
if (decrease) {

y = y-1;
} else {

y = y+1;
}

}

(a) Source code of control circuit

y=80

threshold=100

y>threshold ?

decrease=true decrease=false

abs(y-threshold) > eps ?

decrease ?

y=y-1 y=y+1

•
•

(b) Control flow graph of control circuit

Figure 14.1 A simple control circuit Java program and its control flow graph

threshold=100

y>100 ?

decrease=true decrease=false

abs(y-100)>eps ? abs(y-100)>eps ?

decrease ? decrease ?

y=y-1 y=y+1 y=y-1 y=y+1

abs(y-100)>eps? abs(y-100)>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

abs(y-100)>eps? abs(y-100)>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

Figure 14.2 Symbolic execution tree of the control circuit program

amount of research in partial evaluation of such languages. A seminal text on partial
evaluation is the book by Jones et al. [1993].

In contrast to symbolic execution, the result of a partial evaluator, also called
program specializer (or short mix), is not the symbolic value of output variables, but
another, equivalent program. The known fixed input is also called static input while
the part of the input that is not known at compile time is called dynamic input.

Partial evaluation traverses the CFG (e.g., the one of Figure 14.1(b)) with a partial
evaluator, while maintaining a table of concrete (i.e., constant) values for the program
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locations. In our example, that table is empty at first. After processing the two initial
assignments, it contains U = {y := 80 ||threshold := 100}.

Whenever a new constant value becomes known, the partial evaluator attempts to
propagate it throughout the current CFG. This constant propagation transforms the
CFG from Figure 14.1(b) into the one depicted in Figure 14.3(a). We can observe that
occurrences of y within the loop (incl. the loop guard) have not been replaced. The
reason for this is that the value of y at these occurrences is not static, because it might
be updated in the loop. Likewise, the value of decrease after the first conditional
is not static either. The check whether the value of a given program location can
be considered static with respect to a given node in the CFG is called binding time
analysis (BTA) in partial evaluation.

Partial evaluation of our example proceeds now to the guard of the first conditional.
This guard became the constant expression 80>100 which can be evaluated to false.
As a consequence, one can perform dead code elimination on the left branch of the
conditional. The result is depicted in Figure 14.3(b). Now the value of decrease is
static and can be propagated into the loop (note that decrease is not changed inside
the loop). After further dead code elimination, the final result of partial evaluation is
the CFG shown in Figure 14.3(c).

y=80

threshold=100

80>100 ?

decrease=true decrease=false

abs(y-100) > eps ?

decrease ?
y=y-1 y=y+1

•
•

(a) CFG after constant propagation
for threshold and y

y=80

threshold=100

decrease=false

abs(y-100) > eps ?

decrease ?
y=y-1 y=y+1

•
•

(b) CFG after evaluation of
constant expressions (and
dead code elimination)

y=80

threshold=100

decrease=false

abs(y-100) > eps ?

y=y+1

•
•

(c) Final CFG after addi-
tional constant propagation
and dead code elimination

Figure 14.3 Partial evaluation of a simple control circuit program

The hope with employing partial evaluation is that it is possible to factor out
common parts of computations in different branches by evaluating them partially
before symbolic execution takes place. The naïve approach, however, to first evaluate
partially and then perform symbolic execution fails miserably. The reason is that
for partial evaluation to work well, the input space dimension of a program must
be significantly reducible by identifying certain input variables to have static values
(i.e., fixed values at compile time).

Typical usage scenarios for symbolic execution like program verification are not
of this kind. For example, in the program shown in Figure 14.1, it is unrealistic to
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classify the value of y as static. If we redo the example without the initial assignment
y=80, then partial evaluation can only perform one trivial constant propagation.
The fact that input values for variables are not required to be static can even be
considered to be one of the main advantages of symbolic execution and is the source
of its generality: it is possible to cover all finite execution paths simultaneously,
and one can start execution at any given source code position without the need for
initialization code.

The central observation that makes partial evaluation work in this context is
that during symbolic execution, static values are accumulated continuously as path
conditions added to the current symbolic execution path. This suggests to perform
partial evaluation interleaved with symbolic execution.

To be specific, we reconsider the example shown in Figure 14.1(a), but we remove
the first statement, which assign y the value 80. As observed above, no noteworthy
simplification of the program’s CFG can be any longer achieved by partial evaluation.
The CFG’s structure after partial evaluation remains exactly the same and only the
occurrences of variable threshold are replaced by the constant value 100. If we
symbolically execute this program, then the resulting execution tree spanned by
unrolling the loop twice is shown in Figure 14.2. The first conditional divides the
execution tree in two subtrees. The left subtree deals with the case that the value of y
is too high and needs to be decreased, the right subtree with the complementary case.

threshold=100

y>100?

decrease=true decrease=false

|y-100|>eps? |y-100|>eps?

y=y-1 y=y+1

abs(y-100)>eps?

y=y-1

abs(y-100)>eps?

y=y+1

mix mix

mix

Figure 14.4 Symbolic execution with interleaved partial evaluation

All subsequent branches result from either the loop condition (omitted in Fig-
ure 14.2) or the conditional expression inside the loop body testing the value of
decrease. As decrease is not modified within the loop, some of these branches
are infeasible. For example the branch below the boxed occurrence of y=y+1 (filled
in red) is infeasible, because the value of decrease is true in that branch. Sym-
bolic execution will not continue on these infeasible branches, but abandon them by
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proving that the path condition is contradictory. Since the value of decrease is only
tested inside the loop, however, the loop must still be unwound first and the proof that
the current path condition is contradictory must be repeated. Partial evaluation can
replace this potentially expensive proof search by computation which is drastically
cheaper.

In the example, specializing the remaining program in each of the two subtrees
after the first assignment to decrease eliminates the inner-loop conditional, see
Figure 14.4 (the partial evaluation steps are labeled with mix). Hence, interleaving
symbolic execution and partial evaluation promises to achieve a significant speed-up
by removing redundancy from subsequent symbolic execution.

14.1.2 The Program Specialization Operator

We define a program specialization operator suitable for interleaving partial eval-
uation with symbolic execution in JavaDL. The operator implements a program
transformer which issues correctness conditions as side-proofs that are ‘easy’ to
proof directly and can thus be safely integrated into the sequent calculus. This ap-
proach avoids formalizing the partial evaluator in the program logic itself which
would be tedious and inefficient.

Definition 14.1 (Program Specialization Operator). Let Σ be a sufficiently large
signature containing countably infinitely many program variables and function sym-
bols for any type and arity. A program specialization operator

↓Σ : ProgramElement×UpdatesΣ ×ForΣ → ProgramElement

takes as arguments a (i) program statement or expression, (ii) an update and (iii) a
formula; and maps these to a program statement or expression.

The intention behind the above definition is that p ↓Σ (U ,φ) denotes a “simpler”
but semantically equivalent version of p under the assumption that both are exe-
cuted in a state which satisfies the constrained imposed by U and φ . The program
specialization operator may introduce new temporary variables or function symbols.

Interleaving partial evaluation and symbolic execution is achieved by introduction
rules for the specialization operator. Application of the program transformer is
triggered by application of the rule

introPE
Γ =⇒U [(p) ↓ (U , true)]φ ,∆

Γ =⇒U [p]φ ,∆

where (p) ↓ (U , true) returns a semantically equivalent program w.r.t. initial state
U and condition φ . The program transformer is usually defined recursively over the
program structure. We discuss a selection of program transformation rules that can
be used to define the specialization operator in the next section.
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14.1.3 Specific Specialization Actions

We instantiate the generic program specialization operator of Definition 14.1 with
some possible actions. In each case we derive soundness conditions.

Specialization Operator Propagation

The specialization operator needs to be propagated through the program as most of the
different specialization operations work locally on single statements or expressions.
During propagation of the operator, its knowledge base, the pair (U ,φ), needs to
be updated by additional knowledge learned from executed statements or by erasing
invalid knowledge about variables altered by the previous statement. Propagation of
the specialization operator as well as updating the knowledge base is realized by the
following program transformation (read p p′ as program p is transformed into
program p′)

(p;q) ↓ (U ,φ)  p ↓ (U ,φ); q ↓ (U ′,φ ′) .

This rule is unsound for arbitrary U ′, φ ′. Soundness is ensured under a number of
restrictions:

1. Let mod be a collection that contains all program locations possibly changed by
p including local variables. This can be proven similar to framing in case of loop
invariants (see Section 8.2.5).

2. Let Vmod be the anonymizing update for mod, which assigns each local program
variable contained in mod a new constant and performs the heap anonymization
using the anon function. By fixing U ′ :=U Vmod, we ensure that the program
state reached by executing p is covered by at least one interpretation and variable
assignment over the extended signature.

3. φ ′ must be chosen in such a way that |=U (φ → 〈p〉φ ′) holds. This ensures that
the postcondition of p is correctly represented by φ ′. Computation of such a
φ ′ can be arbitrarily complex. The actual complexity depends on the concrete
realization of the program specialization operator. Usually, φ ′ is a relatively
cheaply computed safe approximation (abstraction) of p’s postcondition.

Constant propagation

Constant propagation is one of the most basic operations in partial evaluation and
often a prerequisite for more complex rewrite operations. Constant propagation
entails that if the value of a variable v is known to have a constant value c within a
certain program region (typically, until the variable is potentially reassigned) then
usages of v can be replaced by c. The rewrite rule

(v)↓(U ,φ) c
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models the replacement operation. To ensure soundness the rather obvious condition
|=U (φ → v .= c) has to be proved where c is an interpreted constant (e.g., a compile-
time constant or literal).

Dead-Code Elimination

Constant propagation and constant expression evaluation often result in specializa-
tions where the guard of a conditional (or loop) becomes constant. In this case,
unreachable code in the current state and path condition can be easily located and
pruned.

A typical example for a specialization operation eliminating an infeasible symbolic
execution branch is the rule

(if (b) {p} else {q}) ↓ (U ,φ)  p ↓ (U ,φ) ,

which eliminates the else branch of a conditional, if the guard can be proved
true. The soundness condition of the rule is straightforward and self-explaining:
|=U (φ → b .= TRUE).

Another case is

(if (b) {p} else {q}) ↓ (U ,φ)  q ↓ (U ,φ)

where the soundness condition is: |=U (φ → b .= FALSE).

Safe Field Access

Partial evaluation can be used to mark expressions as safe that contain field accesses
or casts that may otherwise cause abrupt termination. We use the notation @(e) to
mark an expression e as safe, for example, if we can ensure that o 6= null, then we
can derive the annotation @(o.a) for any field a in the type of o. The advantage
of safe annotations is that symbolic execution can assume that safe expressions
terminate normally and needs not to spawn side proofs that ensure it. The rewrite
rule for safe field accesses is

o.a ↓ (U ,φ)  @(o.a) ↓ (U ,φ) .

Its soundness condition is |=U (φ →¬(o .= null)).

Type Inference

For deep type hierarchies dynamic dispatch of method invocations may cause serious
performance issues in symbolic execution, because a long cascade of method calls
is created by the method invocation rule (Section 3.7.1). To reduce the number of
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implementation candidates we use information from preceding symbolic execution to
narrow the static type of the callee as far as possible and to (safely) cast the reference
to that type. The method invocation rule can then determine the implementation
candidates more precisely:

res = o.m(a1, . . . ,an);↓ (U ,φ)  
res = @((Cl)o ↓ (U ,φ)).m(a1 ↓ (U ,φ), . . . ,an ↓ (U ,φ));

The accompanying soundness condition |=U (φ → instanceCl(x)
.= TRUE) ensures

that the type of o is compatible with Cl in any state specified by U , φ .
A note to the side conditions: The side conditions are in general full-blown first-

order proofs and the needed effort to discharge them could eliminate any positive
effects of the specialization. But in practice, these side conditions can be (i) proven
very easily as the accumulated information is already directly contained in the
formula φ without the need of full first-order reasoning; and (ii) the conditions can
be proven in separate side-proofs and hence, do not pollute the actual proof tree. This
results in a shorter and more human-readable proof object.

14.1.4 Example

As an application of interleaving symbolic execution and partial evaluation, consider
the verification of a GUI library. It includes standard visual elements such as Window,
Icon, Menu and Pointer. An element has different implementations for different
platforms or operating systems. Consider the following program snippet involving
dynamic method dispatch:

Java
framework.ui.Button button = radiobuttonX11;
button.paint();

Java

The element Button is implemented in one way for Max OS X while it is
implemented differently for the X Window System. The class Button, which is
extended by the classes CheckBox, Component, and Dialog, defines the method
paint(). Altogether, paint() is implemented in 16 different classes including
ButtonX11, ButtonMPC, RadioButtonX11, MenuItemX11, etc. The type hierarchy
is outlined in Figure 14.5. In the code fragment above, button is assigned an object
of type RadioButtonX11 which implements paint(). We want to prove that it
always terminates, and hence, the formula 〈gui〉true should be provable where gui
abbreviates the code above.

First, we employ symbolic execution alone to do the proof. During this process,
button.paint() is unfolded into 16 different cases by the method invocation rule
(see Section 3.6.5.5), each corresponding to a possible implementation of button
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Button

CheckBox Component
DialogButtonX11 ButtonAqua ButtonMFC

RadioButtonX11 MenuItemX11 ... ... ... ... ... ... ......... ......

Figure 14.5 Type hierarchy for the GUI example

in one of the subclasses of Button. The proof is constructed automatically using an
experimental version of KeY; the proof consists of 161 nodes on ten branches.

In a second experiment, we interleave symbolic execution and partial evalua-
tion to prove the same claim. The partial evaluator propagates with the help of the
TypeInference rule presented in the previous section the information that the run-
time type of button is RadioButtonX11 (known from the declared type of variable
radiobuttonX11 and the type hierarchy) and the only possible implementation
of button.paint() is RadioButtonX11.paint(). All other possible implemen-
tations are pruned. Only 24 nodes and two branches occur in the proof tree when
running KeY integrated with a partial evaluator.

The reduction in the size of the proof tree is in particular important for human
readability and increases the efficiency of the interactive proving process. A thorough
evaluation and more details can be found in Ji [2014].

14.2 Verified Correct Compilation

The previous section was concerned with the interleaving of partial evaluation and
symbolic execution. In this section, we go one step further and discuss how to employ
JavaDL and symbolic execution calculus to support more semantics-preserving
program transformations. One interesting use case is the compilation of a program
into a target language that the compiled program behaves verifiably equivalent w.r.t.
to its source code version. For ease of presentation, we describe the approach here for
a source-to-source transformation of a while language. But the presented approach
can be extended to all sorts of source and target languages. A detailed description
including bytecode compilation can be found in [Ji, 2014].

Equivalence checking between code and compilation result is important in com-
piler correctness checking. General equivalence checking of programs of the same
abstraction level is also an active field of research.

The simplified language for this presentation is a while-language (with a Java-like
syntax) that operates on integer variables and comes without intricacies like abrupt
termination. The verifiably correct output is a simplified (and possibly specialized)
variant of the original one.

Semantic equivalence is a relational property of the two compared programs. In
order to accommodate such relational problems on the syntactical level in JavaDL, a
new modality, called the weak bisimulation modality, is introduced that contains not
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one but two programs. The two programs in the modality are meant to be equivalent,
but need not reach fully equivalent poststates. A criterion can be given which decides
about the equivalence of states. This criterion is the set of observable variables obs
on which the termination states have to coincide.

Definition 14.2 (Weak bisimulation modality—syntax). Let p, q be two while-
language programs, obs,use⊆ ProgVSym sets of program variables and φ ∈DLFml
a first-order formula.

We extend the definition of JavaDL formulas: Under the above conditions [ p G
q ]@(obs,use)φ is also a JavaDL formula.

This modality is closely related to the relational Hoare calculus by Benton [2004],
the notion of product programs by Barthe et al. [2011] and similar to the two-
program weakest-precondition calculus in [Felsing et al., 2014, Kiefer et al., 2016].
The principle idea behind the modality is that [ p G q ]@(obs,use)φ holds if the
programs p,q behave equivalently w.r.t. the program variables in obs. The formula
φ is used as postcondition for program p such that the weak bisimulation modality
implies the ‘ordinary’ modality [p]φ . Initially, formula φ is chosen as true. Only when
handling loops, to increase precision by means of a loop invariant, other formulas
can appear for φ .

In the verification-based compilation process outlined in the following, the bisim-
ulation modality serves two purposes:

1. It guides the generation of compiled code after symbolic execution.
2. It allows the formal equivalence verification between source code and compila-

tion result afterwards.

Before looking at the formal semantics of the modality and stating the calculus
rules performing these tasks, we will give a brief overview over the compilation
process. The initial input is the source program p and the equivalence criterion obs;
this can, for example, be the set that only contains the variable holding the returned
value if the result-equivalence is the target property.

The process follows a two-step protocol. In the first step, the source program is
symbolically executed. This can be done using rules corresponding to ones of the
calculus presented in Chapter 3, in a fashion similar to the symbolic execution de-
bugger outlined in Section 11.2. It starts from the modality [ p G Q1 ]@(obs,U1)true
with Q1 and U1 placeholder meta variable symbols which have no impact in the first
phase. In the second phase, a compilation algorithm will fill these gaps starting from
the leaves of the symbolic execution tree such that every step is one for which the
calculus for the bisimulation modality has a rule.

The result is a closed proof tree with root [ p G q ]@(obs,use)true for some
program q synthesized during the second phase. The proof guarantees us that q is
equivalent to the input program p as far as the observations in obs are concerned.

To explain the meaning of the likewise synthesized use, we first introduce the
set usedVar(s,p,obs) capturing precisely those program variables whose value in-
fluences the final value of an observable location l ∈ obs after executing p in a
state s.
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Definition 14.3 (Used program variable). Let s be a (Kripke) state (see Sec-
tion 3.3.1).

A variable v ∈ ProgVSym is used by program p from s with respect to variable
set obs if there is a program variable l ∈ obs such that

s |= ∀vl ;
(
(〈p〉l .= vl)→∃v0;{v := v0}〈p〉l 6

.= vl
)

.

The set usedVar(s,p,obs) of used program variables is defined as the smallest set
containing all program variables in s by p with respect to obs.

A program variable v is used if and only if there is an interference with a location
contained in obs, i.e., the value of v influences at least the value of one observed
variable. Conversely, this means that if two states coincide on the variables in use,
then the result states after the execution of p coincide on the variables in obs.

If two states s,s′ coincide on the variables in a set set ⊆ ProgVSym, we write
s≈set s′.

Definition 14.4 (Weak bisimulation modality—semantics). Let p,q be while-
programs, obs,use ∈ ProgVSym, s a Kripke state. Then s |= [ p G q ]@(obs,use)φ if
and only if

1. s |= [p]φ
2. use⊇ usedVar(s,q,obs)
3. for all s≈use s′ and (s, t) ∈ ρ(p), (s′, t ′) ∈ ρ(q), we have t ≈obs t ′.

The formula [ p G q ]@(obs,use)φ holds if the behaviors of p and q are equivalent
w.r.t. the program variables contained in the set obs, and the set use contains all
program locations and variables that may influence the value of any program variable
or location contained in obs or the truth value of φ .

In the compilation scenario, p is the source program and q the created target
program, hence validity of the formula ensures that the compilation is correct w.r.t.
the equivalence criterion obs.

Bisimulation modalities can be embedded into sequents like Γ =⇒ U [ p G
q ]@(obs,use)φ ,∆ , and the sequent calculus rules for the bisimulation modality
are of the following form:

ruleName

Γ1 =⇒U1[ p1 G q1 ]@(obs1,use1)φ1,∆1
...

Γn =⇒Un[ pn G qn ]@(obsn,usen)φn,∆n

Γ =⇒U [ p G q ]@(obs,use)φ ,∆

As mentioned earlier, application of the bisimulation rules is a two step process:

Step 1: Symbolic execution of source program p as usual using rules obtained
from the ones in Chapter 3. The equivalence criterion obs is propagated from one
modality to its children in the proof tree. In every arising modality, the second
program parameter and the use set are filled with distinct meta-level placeholder
symbols. The observable location sets obsi are propagated and contain those
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variables on which the two programs have to coincide. Intuitively, the variables
mentioned here are protected in the sense that information about the value of
these variables must not be thrown away during the symbolic execution step as
the synthesized program will have to maintain their value.

Step 2: Synthesis of the target program q and used variable set use from qi and usei
by applying the rules in a leave-to-root manner. Thus the placeholder symbols are
instantiated. Starting with a leaf node, the program is generated until branching
node is reached where the generation stops. The synthesis continues in the same
fashion with the remaining leaves until programs for all subtrees of a branching
node have been generated. Then these programs are combined according to the
rule applied on the branching node.

For instance, in case of an if-then-else statement, first the then-branch and then
else-branch are generated before synthesizing the corresponding conditional state-
ment in the target program (see rule ifElse). Note that, in general, the order of
processing the different branches of a node matters, for instance, in case of the
loopInvariant the program for the branch that deals with program after the loop has
to be synthesized before the loop body (as the latter’s set of observable variable
depends on those used on the other branch).

We explain some of the rules in details.

emptyBox
Γ =⇒U φ ,∆

Γ =⇒U [ {} G {} ]@(obs,obs)φ ,∆

The emptyBox rule is the starting point of program transformation in each sequen-
tial block. The location set use is set to obs.

assignment

Γ =⇒U {l := r}[ ω G ω ]@(obs,use)φ ,∆(
Γ =⇒U [ l=r;ω G l=r;ω ]@(obs,use\{l}∪{r})φ ,∆ if l ∈ use
Γ =⇒U [ l=r;ω G ω ]@(obs,use)φ ,∆ otherwise

)
The assignment rule above comes in two variants. In the symbolic execution

phase (first step) both are identical. The difference between both comes to play in the
program synthesis phase (second step), i.e., when we instantiate the meta variables
for the program and the used variable set.

In the second step, we check if the program variable l is contained in the use set of
the premiss, i.e., the variable has been potentially read by the original program after
the assignment. If l is read later-on, then the assignment of the original program (left
compartment of the bisimulation modality) is generated for the specialized program.
Otherwise the assignment is not generated for the specialized program.

In addition, the used variable set has to be updated, if the assignment was generated.
The update used variable set removes first the variable on the left-hand side (l) as it
is assigned a new value, and hence, the old value of l is unimportant from that time
on. Thereafter, the variable r on the right-hand side is added to the used variable set
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(as we read from it) which ensures that the following program syntheses steps will
ensure that the correct value of r is computed. The order of the removal and addition
is of importance as can be seen for the assignment l=l; where the computed used
variable set must contain variable l.

ifElse

Γ ,U b =⇒U [ p;ω G p;ω ]@(obs,usep;ω)φ ,∆
Γ ,U ¬b =⇒U [ q;ω G q;ω ]@(obs,useq;ω)φ ,∆

Γ =⇒U [ if (b) {p} else {q} ω G
if (b) {p;ω} else {q;ω} ]@(obs,usep;ω ∪useq;ω ∪{b})φ ,∆

(with b Boolean variable)

On encountering a conditional statement, symbolic execution splits into two
branches, namely the then branch and else branch. The generation of the condi-
tional statement will result in a conditional. The guard is the same as used in the
original program, the then branch is the generated version of the source then branch
continued with the rest of the program after the conditional, and the else branch is
analogous to the then branch.

Note that the statements following the conditional statement are symbolically
executed on both branches. This leads to duplicated code in the generated program,
and, potentially to code size duplication at each occurrence of a conditional statement.
One note in advance: code duplication can be avoided when applying a similar
technique as presented later in connection with the loop translation rule. However, it
is noteworthy that the application of this rule might have also advantages: as discussed
in Section 14.1, symbolic execution and partial evaluation can be interleaved resulting
in (considerably) smaller execution traces. Interleaving symbolic execution and
partial evaluation is orthogonal to the approach presented here and can be combined
easily. In several cases this can lead to different and drastically specialized and
therefore smaller versions of the remainder program ω and ω . The use set is extended
canonically by joining the use sets of the different branches and the guard variable.

loopInvariant

Γ =⇒U inv,∆
Γ ,U Vmod(b∧ inv) =⇒U Vmod

[ p G p ]@(use1∪{b},use2)inv,∆
Γ ,U Vmod(¬b∧ inv) =⇒U Vmod[ ω G ω ]@(obs,use1)φ ,∆

Γ =⇒U [ while(b){p}ω G while(b){p}ω ]@(obs,use1∪use2∪{b})φ ,∆

(with b a Boolean program variable and inv a first-order formula)

The loop invariant rule has, as expected, three premises like in other appearances
in this book. Here we are interested in compilation of the analyzed program rather
than in proving its correctness. Therefore, it would be sufficient to use true as a
trivial loop invariant. In this case, the first premise ensuring that the loop invariant
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is initially valid contributes nothing to the program compilation process and can be
ignored (if true is used as invariant then it holds trivially).

Using a stronger loop variant allows the synthesis algorithm to be more precise
since the context on the sequent then contains more information which can be
exploited during program synthesis.

Two things are of importance: the third premise (use case) executes only the
program following the loop. Furthermore, this code fragment is not executed by
any of the other branches and, hence, we avoid unnecessary code duplication. The
second observation is that variables read by the program in the third premise may
be assigned in the loop body, but not read in the loop body. Obviously, we have to
prevent that the assignment rule discards those assignments when compiling the loop
body. Therefore, in the obs for the second premise (preserves), we must include
the used variables of the use case premise and, for similar reasons, the program
variable(s) read by the loop guard. In practice, this is achieved by first executing the
use case premise of the loop invariant rule and then including the resulting use1
set in the obs of the preserves premise. The work flow of the synthesizing loop is
shown in Figure 14.6.

. . .

while(b)

body rest

5 1

3

4
2

Figure 14.6 Work flow of synthesizing loop

Now we show the program transformation in action.

Example 14.5. Given observable locations obs={x}, we perform program transfor-
mation for the following program.

Java
y = y + z;
if (b) {
y = z++;
x = z;

} else {
z = 1;
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x = y + z;
y = x;
x = y + 2;

}

Java

In the first phase, we do symbolic execution using the extended sequent calculus
from above We use placeholders spi to denote the program to be generated, and
placeholders usei to denote the used variable set. To ease the presentation, we omit
postcondition φ , as well as the context formulas Γ and ∆ . The first active statement
is an assignment, so the assignment rule is applied. A conditional is encountered.
After the application of ifElse rule, the result is the symbolic execution tree shown in
Figure 14.7.

U1b =⇒U1[ y=z++; . . . G sp2 ]@({x},use2) U1¬b =⇒U1[ z=1; . . . G sp3 ]@({x},use3)

=⇒{y := y+z}[ if(b){...}else{...} G sp1 ]@({x},use1)

=⇒ [ y = y + z;... G sp0 ]@({x},use0)

Figure 14.7 Symbolic execution tree until conditional

Now the symbolic execution tree splits into two branches. U1 denotes the update
computed in the previous steps: {y := y+z}. We first concentrate on the then branch,
where the condition b is True. The first active statement y=z++; is a complex
statement. We decompose it into three simple statements using the postInc rule.
Then after a few applications of the assignment rule followed by the emptyBox rule,
the symbolic execution tree in this sequential block is shown in Figure 14.8.

U1b =⇒U1{t := z}{z := z+1}{y := t}{x := z}φ

U1b =⇒U1{t := z}{z := z+1}{y := t}{x := z}[ {} G sp8 ]@({x},use8)

U1b =⇒U1{t := z}{z := z+1}{y := t}[ x=z; G sp7 ]@({x},use7)

U1b =⇒U1{t := z}{z := z+1}[ y=t;... G sp6 ]@({x},use6)

U1b =⇒U1{t := z}[ z=z+1; y=t;... G sp5 ]@({x},use5)

U1b =⇒U1[ int t=z; z=z+1; y=t;... G sp4 ]@({x},use4)

U1b =⇒U1[ y=z++;... G sp2 ]@({x},use2)

Figure 14.8 Symbolic execution tree of then branch

Now the source program is empty, so we can start generating a program at
this node. By applying the emptyBox rule in the other direction, we get sp8 as {}
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(empty program) and use8={x}. The next rule application is assignment. Because
x ∈ use8, the assignment x = z; is generated and the used variable set is updated by
removing x but adding z. So we have sp7: x = z; and use7={z}. In the next step,
despite another assignment rule application, no statement is generated because y 6∈
use7, and sp6 and use6 are identical to sp7 and use7. Following 3 more assignment
rule applications, in the end we get sp2: z = z + 1; x = z; and use2={z}. So
z = z + 1; x = z; is the program synthesized for the then branch.

Analogous to this, we can generate the program for the else branch. After the
first phase of symbolic execution, the symbolic execution tree is built as shown
in Figure 14.9. In the second phase, the program is synthesized after applying a
sequence of assignment rules. The else branch is sp3:

z = 1; x = y + z; y = x; x = y + 2; ,

with use3={y}.

U1¬b =⇒U1{z := 1}{x := y+z}{y := x}{x := y+2}φ

U1¬b =⇒U1{z := 1}{x := y+z}{y := x}{x := y+2}[ {} G sp12 ]@({x},use12)

U1¬b =⇒U1{z := 1}{x := y+z}{y := x}[ x=y+2; G sp11 ]@({x},use11)

U1¬b =⇒U1{z := 1}{x := y+z}[ y=x;... G sp10 ]@({x},use10)

U1¬b =⇒U1{z := 1}[ x=y+z;... G sp9 ]@({x},use9)

U1¬b =⇒U1[ z=1;... G sp3 ]@({x},use3)

Figure 14.9 Symbolic execution tree of else branch

Now we have synthesized the program for both branches of the if-then-else
statement. Back to the symbolic execution tree shown in Figure 14.7, we can build a
conditional by applying the ifElse rule. The result is sp1:

if(b) { z=z+1; x=z; } else { z=1; x=y+z; y=x; x=y+2; } ,

and use1={b,z,y}. After a final assignment rule application, the program generated
is shown in Listing 14.1.

Remark 14.6. Our approach to program transformation will generate a program that
only consists of simple statements. The generated program is optimized to a certain
degree, because the used variable set avoids generating unnecessary statements. In
this sense, our program transformation framework can be considered as program
specialization. In fact, during the symbolic execution phase, we can interleave partial
evaluation actions, i.e., constant propagation, dead-code elimination, safe field access
and type inference (Section 14.1.2). It will result in a more optimized program.

Example 14.7. We specialize the program shown in Example 14.5. In the first phase,
symbolic execution is interleaved with simple partial evaluation actions.
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y = y + z;
if (b) {
z = z + 1;
x = z;

} else {
z = 1;
x = y + z;
y = x;
x = y + 2;

}

Listing 14.1 The generated program for Example 14.5

In the first two steps of symbolic execution until conditional, no partial evaluation
is involved. The resulting symbolic execution tree is identical to that shown in
Figure 14.7.

There are 2 branches in the symbolic execution tree. Symbolical execution of the
then branch is the same as in Example 14.5. It builds the same symbolic execution
tree (Figure 14.8).

Notice that after executing the statement t = z;, we did not propagate this
information to the statement y = t; and rewrite it to y = z;. The reason being z is
reassigned in the statement z = z + 1; before y = t;, thus z is not a “constant”
and we cannot apply constant propagation. In the program generation phase, we also
get sp2: z = z + 1; x = z; and use2={z} for this sequential block.

The first step of symbolic execution of the else branch is the application of
the assignment rule on z = 1;. Now we can perform constant propagation and
rewrite the following statement x = y + z; into x = y + 1;. The next step is
a normal application of the assignment rule on x = y + 1;. Now we apply the
assignment rule on y = x;. Since neither x nor y is reassigned before the statement
x = y + 2;, x is considered as a “constant” and we do another step of constant
propagation. The statement x = y + 2; is rewritten into x = x + 2;. After final
application of the assignment rule and emptyBox rule, we get the symbolic execution
tree:

U1¬b =⇒U1{z := 1}{x := y+1}{y := x}{x := x+2}@({x},_)

U1¬b =⇒U1{z := 1}{x := y+1}{y := x}{x := x+2}[ G sp12 ]@({x},use12)

U1¬b =⇒U1{z := 1}{x := y+1}{y := x}[ x=x+2; G sp11 ]@({x},use11)

U1¬b =⇒U1{z := 1}{x := y+1}[ y=x;... G sp10 ]@({x},use10)

U1¬b =⇒U1{z := 1}[ x=y+1;... G sp9 ]@({x},use9)

U1¬b =⇒U1[ z=1;... G sp3 ]@({x},use3)

In the second phase of program generation, after applying the emptyBox rule and
4 times assignment rules, we get sp3: x = y + 1; x = x + 2; and use3={y}.

Combining both branches, we finally get the specialized version of the original,
shown in Listing 14.2.
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y = y + z;
if (b) {
z = z + 1;
x = z;

}
else {
x = y + 1;
x = x + 2;

}

Listing 14.2 The generated program for Example 14.7

Compared to the result shown in Listing 14.1, we generated a more optimized
program by interleaving partial evaluation actions during symbolic execution phase.
Further optimizations can be achieved by involving updates during program genera-
tion, which are discussed in [Ji, 2014].

14.3 Implementation and Evaluation

We have a prototype implementation of the program transformation framework
named PE-KeY introduced in this chapter.

We applied our prototype partial evaluator also on some examples stemming
from the JSpec test suite [Schultz et al., 2003]. One of them is concerned with the
computation of the power of an arithmetic expression, as shown in Figure 14.10.

The interesting part is that the arithmetic expression is represented as an abstract
syntax tree (AST) structure. The abstract class Binary is the superclass of the two
concrete binary operators Add and Mult (the strategies). The Power class can be
used to apply a Binary operator op and a neutral value for y times to a base value
x, as illustrated by the following expression:

power = new Power(y, new op(), neutral).raise(x)

The actual computation for concrete values is performed on the AST representation.
To be more precise, the task was to specialize the program

power = new Power(y, new Mult(), 1).raise(x);

The ac under the assumption that the value of y is constant and equal to 16.
As input formula for PE-KeY we use:

y .= 16→
[power=new Power(y,new Mult(),1).raise(x); G spres ]@(obs,use)post

with post denoting an unspecified predicate which can neither be proven nor dis-
proved. PE-KeY then executes the program symbolically and extracts the special-
ized program spres as power = (...((x*x)*x)*...)*x; (or power = x16). The
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class Power extends Object{
int exp;
Binary op;
int neutral;

Power(int exp, Binary op,
int neutral) {

super();
this.exp = exp;
this.op = op;
this.neutral = neutral;

}

int raise(int base) {
int res = neutral;
for (int i=0; i<exp; i++) {
res = op.eval( base, res );

}
return res;

}
}

class Binary extends Object {
Binary() { super(); }
int eval(int x, int y) {

return this.eval(x, y);
}

}

class Add extends Binary {
Add() { super(); }
int eval(int x, int y) {

return x+y;
}

}

class Mult extends Binary {
Mult() { super(); }
int eval(int x, int y) {

return x*y;
}

}

Figure 14.10 Source code of the Power example as found in the JSpec suite

achieved result is a simple int-typed expression without the intermediate creation of
the abstract syntax tree and should provide a significantly better performance than
executing the original program.

14.4 Conclusion

In this chapter we described how symbolic execution and thus verification can benefit
from interleaving partial evaluation and symbolic execution steps. This interleaving
results in smaller, less redundant proof and symbolic execution trees making these
easier to comprehend. This is advantageous for both manual interaction with the
prover itself and for code reviews/debugging using the symbolic execution debugger
(see Chapter 11).

We also presented how to integrate verifiably correct compilation of programs
within our verification framework based on JavaDL. We showcased our application
along the implementation of a partial evaluator that produces verifiably correct
specialized programs. Our approach can make use of the full power of our verifier
and thus produce optimized [Ji, 2014] programs. [Ji and Hähnle, 2014] adapt the
approach to implement an information flow analysis.
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The KeY System in Action



Chapter 15
Using the KeY Prover

Wolfgang Ahrendt and Sarah Grebing

15.1 Introduction

This whole book is about the KeY approach and framework. This chapter now
focuses on the KeY prover, and that entirely from the user’s perspective. Naturally,
the graphical user interface (GUI) will play an important role here. However, the
chapter is not all about that. Via the GUI, the system and the user communicate, and
interactively manipulate, several artifacts of the framework, like formulas of the used
logic, proofs within the used calculus, elements of the used specification languages,
among others. Therefore, these artifacts are (in parts) very important when using
the system. Even if all of them have their own chapter/section in this book, they
will appear here as well, in a somewhat superficial manner, with pointers given to
in-depth discussions in other parts.

We aim at a largely self-contained presentation, allowing the reader to follow the
chapter, and to start using the KeY prover, without necessarily having to read other
chapters of the book before. The reader, however, can gain a better understanding
by following the references we give to other parts of the book. In any case, we do
recommend to read Chapter 1 beforehand, where the reader can get a picture of
what KeY is all about. The other chapters are not treated as prerequisites to this one,
which of course imposes limitations on how far we can go here. Had we built on the
knowledge and understanding provided by the other chapters, we would be able to
guide the user much further into the application of KeY to larger as well as more
difficult scenarios. However, this would raise the threshold for getting started with
the prover.

The KeY framework was designed from the beginning to be usable without having
to read a thick book first. Software verification is a difficult task anyhow. Neither
the system nor the used artifacts (like the logic) should add to that difficulty, and
are designed to instead lower the threshold for the user. The used logic, dynamic
logic (DL), features transparency w.r.t. the programs to be verified, such that the
code literally appears in the formulas, allowing the user to relate back to the program
when proving properties about it.

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 495–539, 2016
DOI: 10.1007/978-3-319-49812-6 15
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The taclet language for the declarative implementation of both, rules and lemmas,
is kept so simple that we can well use a rule’s declaration as a tooltip when the user
is about to select the rule. The calculus itself is, however, complicated, as it captures
the complicated semantics of Java. Still, most of these complications do not concern
the user, as they are handled in a fully automated way. Powerful strategies relieve
the user from tedious, time consuming tasks, particularly when performing symbolic
execution.

In spite of a high degree of automation, in many cases there are significant,
nontrivial tasks left for the user. It is the very purpose of the GUI to support those
tasks well.

Figure 15.1 Verification process using the KeY system

The general proof process using the KeY system is illustrated in Figure 15.1. The
user provides Java source code with annotations written in JML and passes them
to the KeY system, which translates these artifacts into a proof obligation in Java
Dynamic Logic. Now the user is left with the choice of trying to let the prover verify
the problem fully automatically or of starting interactively by applying calculus rules
to the proof obligation. If the user chooses to start the automated proof search strategy
offered by the prover, the result can be one of the two: either the prover succeeds
in finding a proof or the prover stops, because it was not able to apply more rules
automatically (either because the maximal number of proof steps has been reached
or the prover cannot find anymore applicable rules). This is the point in the proof
process, where the user gets involved. The user now has to decide whether to guide
the prover in finding a proof by applying certain rules (or proof steps) by hand or
whether the look for mistakes in the annotation or the corresponding source code,
which is one reason why the prover is not able to apply rules automatically anymore.
Observing a wrong program behavior or specification leads the user to the correction
of the mistake in the source code or annotation and to start the whole proof process
over again.

When proving a property which is too involved to be handled fully automatically,
certain steps need to be performed in an interactive manner. This is the case when
either the automated strategies are exhausted, or else when the user deliberately per-
forms a strategic step (like a case distinction) manually, before automated strategies
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are invoked (again). In the case of human-guided proof steps, the user is asked to
solve tasks like: selecting a proof rule to be applied, providing instantiations for the
proof rule’s schema variables, or providing instantiations for quantified variables of
the logic. The system, and its advanced GUI, are designed to support these steps well.
For instance, the selection of the right rule, out of over 1500(!), is greatly simplified
by allowing the user to highlight any syntactical subentity of the proof goal simply by
positioning the mouse. A dynamic context menu will offer only the few proof rules
which apply to this entity. Furthermore, these menus feature tooltips for each rule
pointed to. These tooltips will be described in 15.2.1. When it comes to interactive
variable instantiation, drag-and-drop mechanisms greatly simplify the usage of the
instantiation dialogues, and in some cases even allow to omit explicit rule selection.
Other supported forms of interaction in the context of proof construction are the
inspection of proof trees, the pruning of proof branches, and arbitrary undoing of
proof steps.

Performing interactive proof steps is, however, only one of the many functional-
ities offered by the KeY system. Also, these features play their role relatively late
in the process of verifying programs. Other functionalities are (we go backwards
in the verification process): controlling the automated strategies, customizing the
calculus (for instance by choosing either of the mathematical or the Java semantics
for integers), and generating proof obligations from specifications. Working with
the KeY system has therefore many aspects, and there are many ways to give an
introduction into those. In the following, we focus on the KeY prover only, taking an
‘inside out’ approach, describing how the prover and the user communicate which
artifacts for which purpose with each other. In addition hints for the user are provided
on how to proceed in the verification process interactively, when automation stops.

In general, we will discuss the usage of the system by means of rather (in some
cases extremely) simple examples. Thereby, we try to provide a good understanding
of the various ingredients before their combination (seemingly) complicates things.
Also, the usage of the prover will sometimes be illustrated by at first performing basic
steps manually, and demonstrating automation thereafter. Please note that the toy
examples used all over this chapter serve the purpose of a step by step introduction
of the concepts and usage of the KeY system. They are not suitable for giving any
indication of the capabilities of the system. (See Chapter 16 instead.)

Before we start, there is one last basic issue to discuss at this point. The evolution
of both, the KeY project in general, and the KeY system in particular, has been
very dynamic up to now, and will continue to be so. As far as the system and its
GUI is concerned, it has been constantly improved and will be modified in the
future as well. The author faces the difficult task of not letting the description of the
tool’s usage depend too much on its current appearance. The grouping of menus,
the visual placement of panes and tabs, the naming of operations or options, all
those can potentially change. Also, on the more conceptual level, things like the
configuration policy for strategies and rule sets, among others, cannot be assumed to
be frozen for all times. Even the theoretical grounds will develop further, as KeY is
indeed a research project. A lot of ongoing research does not yet show in the current
public release of the KeY system. The problem of describing a dynamic system
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is approached from three sides. First, we will continue to keep available the book
release of the system, 2.6, on the KeY book’s web page. Second, in order to not
restrict the reader to that release only, we will try to minimize the dependency of
the material on the current version of the system and its GUI. Third, whenever we
talk about the specific location of a pane, tab, or menu item, or about key/mouse
combinations, we stress the dynamic nature of such information in this way.

For instance, we might say that “one can trigger the run of the automated proof
search strategy which is restricted to a highlighted term/formula by Shift + click
on it.” There is a separate document shipped with the KeY system, the Quicktour1

which is updated more often and describes the current GUI and features of the KeY
system.

Menu navigation will be displayed by connecting the cascaded menu entries with
“→”, e.g., Options → SMT Solvers Options. Note that menu navigation is release
dependent as well. Most functionalities in the KeY system can also be activated by
keystrokes in order to be more efficient while performing proof tasks.

This chapter is meant for being read with the KeY system up and running. We
want to explore the system together with the reader, and reflect on whatever shows
up along the path. Downloads of KeY, particularly 2.6, the release version related
to this book, are available on the project page, www.key-project.org. The example
input files, which the reader frequently is asked to load, can be found on the web
page for this book, www.key-project.org/thebook2. The example files can also be
accessed via the File→ Load examples as well. However, for this chapter we assume
the reader to have downloaded the example files from the web-page and extracted
them to a folder in the reader’s system.

15.2 Exploring KeY Artifacts and Prover Simultaneously

Together with the reader, we want to open, for the first time, the KeY system, in order
to perform first steps and understand the basic structure of the interface. There are
two ways to start the stand-alone KeY prover. Either you download the archive of
KeY 2.6, unpack it, and in the key directory execute the key.jar file, in the standard
way .jar files are executed in your system and setup. Or you execute KeY directly
from your browser, by navigating to the webstart link of KeY 2.6, and simply click it.

In both cases, the KeY–Prover main window pops up. Like many window-based
GUIs, the main window offers several menus, a toolbar, and a few panes, partly
tabbed. Instead of enumerating those components one after another, we immediately
load an example to demonstrate some basic interaction with the prover. Please note
that most of the GUI components are labeled with tooltips, which are visible when
hovering over that component. They give useful information about the features of the
system.

1 Available from the Download pages at www.key-project.org.

http://www.key-project.org/
http://www.key-project.org/thebook2
http://www.key-project.org/
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15.2.1 Exploring Basic Notions And Usage:
Building A Propositional Proof

In general, the KeY prover is made for proving formulas in dynamic logic (DL), an
extension of first-order logic, which in turn is an extension of propositional logic.
We start with a very simple propositional formula, when introducing the usage of the
KeY prover, because a lot of key concepts can already be discussed when proving
the most simple theorem.

Loading the First Problem

The formula we prove first is contained in the file andCommutes.key. In general,
.key is the suffix for what we call problem files, which may, among other things,
contain a formula to be proven. (The general format of .key files is documented in
Appendix B.) For now, we look into the file andCommutes.key itself (using your
favorite text editor):

KeY Problem File
\predicates {

p;
q;

}
\problem {

(p & q) -> (q & p)
}

KeY Problem File

The \problem block contains the formula to be proven (with -> denoting the logical
implication and & denoting the logical and). In general, all functions, predicates, and
variables appearing in a problem formula are to be declared beforehand, which, in our
case here, is done in the \predicates block. We load this file by selecting File→
Load (or selecting in the tool bar) and navigating through the opened file browser.
The system not only loads the selected .key file, but also the whole calculus, i.e., its
rules, as well as locations referenced by the file. This includes the source folder and
its subdirectories.

Reading the Initial Sequent

Afterwards, we see the text ==> p & q -> q & p displayed in the Current Goal
pane. This seems to be merely the \problem formula, but actually, the arrow ==>
turns it into a sequent. KeY uses a sequent calculus, meaning that sequents are the
basic artifact on which the calculus operates. Sequents have the form

φ1, . . . ,φn =⇒ φn+1, . . . ,φm
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with φ1, . . . ,φn and φn+1, . . . ,φm being two (possibly empty) comma-separated lists of
formulas, distinguished by the sequent arrow =⇒ (written as ==> in both input and
output of the KeY system). The intuitive meaning of a sequent is: if we assume all for-
mulas φ1, . . . ,φn to hold, then at least one of the formulas φn+1, . . . ,φm holds. In our
particular calculus, the order of formulas within φ1, . . . ,φn and within φn+1, . . . ,φm
does not matter. Therefore, we can for instance write Γ =⇒ φ → ψ,∆ to refer to
sequents where any of the right-hand side formulas is an implication. Γ and ∆ are
both used to refer to arbitrary, and sometimes empty, lists of formulas. We refer to
Chapter 2, Section 2.2.2, for a proper introduction of a (simple first-order) sequent
calculus. The example used there is exactly the one we use here. We recommend to
double-check the following steps with the on paper proof given there.

We start proving the given sequent with the KeY system, however in a very
interactive manner, step by step introducing and explaining the different aspects of
the calculus and system. This purpose is really the only excuse to not let KeY prove
this automatically.

Even if we perform all steps manually for now, we want the system to minimize
interaction, e.g., by not asking the user for an instantiation if the system can find one
itself. For this, please make sure that the menu item Minimize interaction option (at
Options→ Minimize interaction ) is checked for the whole course of this chapter.

Applying the First Rule

The sequent ==> p & q -> q & p displayed in the Current Goal pane states that
the formula p & q -> q & p holds unconditionally (no formula left of ==>), and
without alternatives (no other formula right of ==>). This is an often encountered
pattern for proof obligations when starting a proof: sequents with empty left-hand
sides, and only the single formula we want to prove on the right-hand side. It is
the duty of the sequent calculus to take such formulas apart, step by step, while
collecting assumptions on the left-hand side, or alternatives on the right-hand side,
until the sheer shape of a sequent makes it trivially true, which is the case when
both sides have a formula in common2. (For instance, the sequent φ1,φ2 =⇒ φ3,φ1 is
trivially true. Assuming both, φ1 and φ2, indeed implies that “at least one of φ3 and
φ1” holds, namely φ1.) It is such primitive shapes which we aim at when proving.

‘Taking apart’ a formula refers to breaking it up at its top-level operator. The
displayed formula p & q -> q & p does not anymore show the brackets of the
formula in the problem file. Still, for identifying the leading operator it is not required
to memorize the built in operator precedences. Instead, the term structure gets clear
by moving the mouse pointer back and forth over the symbols in the formula area,
as the subformula (or subterm) under the symbol currently pointed at always gets
highlighted. In general to get the whole sequent highlighted, the user needs to point
to the sequent arrow ==>. To get the whole formula highlighted in our example, the

2 There are two more cases, which are covered in Section 15.2.2 on page 513.
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user needs to point to the implication symbol ->, so this is where we can break up
the formula.

Next we want to select a rule which is meant specifically to break up an implication
on the right-hand side. A left mouse-click on -> will open a context menu for rule
selection, offering several rules applicable to this sequent, among them impRight,
which in the usual text book presentation looks like this:

impRight
Γ ,φ =⇒ ψ,∆

Γ =⇒ φ → ψ,∆

The conclusion of the rule, Γ =⇒ φ → ψ,∆ , is not simply a sequent, but a sequent
schema. In particular, φ and ψ are schema variables for formulas, to be instantiated
with the two subformulas of the implication formula appearing on the right-hand
side of the current sequent. (Γ and ∆ denote the sets of all formulas on the left- and
right-hand side, respectively, which the rule is not concerned with. In this rule, Γ

are all formulas on the left-hand side, and ∆ are all formulas on the right-hand side
except the matching implication formula.)

As for any other rule, the logical meaning of this rule is downwards (concerning
validity): if a sequent matching the premiss Γ ,φ =⇒ ψ,∆ is valid, we can conclude
that the corresponding instance of the conclusion Γ =⇒ φ → ψ,∆ is valid as well.
On the other hand, the operational meaning during proof construction goes upwards:
the problem of proving a sequent which matches Γ =⇒ φ → ψ,∆ is reduced to
the problem of proving the corresponding instance of Γ ,φ =⇒ ψ,∆ . During proof
construction, a rule is therefore applicable only to situations where the current goal
matches the rule’s conclusion. The proof will then be extended by the new sequent
resulting from the rule’s premiss. (This will be generalized to rules with multiple
premisses later on.)

To see this in action, we click at impRight in order to apply the rule to the current
goal. This produces the new sequent p & q ==> q & p, which becomes the new
current goal. By goal, we mean a sequent to which no rule is yet applied. By current
goal we mean the goal in focus, to which rules can be applied currently (the node
selected in the proof tree in the Proof tab).

Inspecting the Emerging Proof

The user may have noticed the Proof tab as part of the tabbed pane in the lower left
corner. It displays the structure of the current (unfinished) proof as a tree. All nodes
of the current proof are numbered consecutively, and labeled either by the name of
the rule which was applied to that node, or by OPEN GOAL in case of a goal. The
selected and highlighted node is always the one which is detailed in the Current Goal
or inner node pane in the right part of the window. So far, this was always a goal,
such that the pane was called Current Goal. But if the user clicks at an inner node, in
our case on the one labeled with impRight, that node gets detailed in the right pane
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now called Inner Node. It can not only show the sequent of that node, but also, if the
checkbox Show taclet info is selected, the upcoming rule application.

Please observe that the (so far linear) proof tree displayed in the Proof tab has its
root on the top, and grows downwards, as it is common for trees displayed in GUIs.
On paper, however, the traditional way to depict sequent proofs is bottom-up, as is
done all over in this book. In that view, the structure of the current proof (with the
upper sequent being the current goal) is:

p∧q =⇒ q∧ p
=⇒ p∧q→ q∧ p

For the on-paper presentation of the proof to be developed, we refer to Chapter 2.

Understanding the First Taclet

With the inner node still highlighted in the Proof tab, we click onto the checkbox
Show taclet info (Inner Nodes only) in the left lower corner of the Proof tab. We now
obtain the rule information in the Inner Node pane, saying (simplified):

KeY Output
impRight {

\find ( ==> b -> c )
\replacewith ( b ==> c )
\heuristics ( alpha )

}
KeY Output

What we see here is what is called a taclet. Taclets are a domain specific language
for programming sequent calculus rules, developed as part of the KeY project. The
depicted taclet is the one which in the KeY system defines the rule impRight. In this
chapter, we give just a hands-on explanation of the few taclets we come across. For a
good introduction and discussion of the taclet framework, we refer to Chapter 4.

The taclet impRight corresponds to the traditional sequent calculus style presenta-
tion of impRight we gave earlier. The schema b -> c in the \find clause indicates
that the taclet is applicable to sequents if one of its formulas is an implication, with
b and c being schema variables matching the two subformulas of the implication.
Further down the Inner Node pane, we see that b and c are indeed of kind \formula:

KeY Output
\schemaVariables {

\formula b;
\formula c;

}
KeY Output
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The sequent arrow ==> in \find(==> b -> c) further restricts the applicability
of the taclet to the top-level3 of the sequent only. For this example the taclet is only
applicable to implications on the right-hand side of the sequent (as b -> c appears
right of ==>). The \replacewith clause describes how to construct the new sequent
from the current one: first the matching implication (here p & q -> q & p) gets
deleted, and then the subformulas matching b and c (here p & q and q & p) are
added to the sequent. To which side of the sequent p & q or q & p, respectively,
are added is indicated by the relative position of b and c w.r.t. ==> in the argument
of \replacewith. The result is the new sequent p & q ==> q & p. It is a very
special case here that \find(==> b -> c) matches the whole old sequent, and
\replacewith(b ==> c) matches the whole new sequent. Other formulas could
appear in the old sequent. Those would remain unchanged in the new sequent. In other
words, the Γ and ∆ traditionally appearing in on-paper presentations of sequent rules
are omitted in the taclet formalism. (Finally, with \heuristics clause the taclet
declares itself to be part of some heuristics, here the alpha heuristics which defines
the priority with which the rule is applied during the execution of the automated
strategies.) The discussed taclet is the complete definition of the impRight rule in
KeY, and all the system knows about the rule. The complete list of available taclets
can be viewed in the Info tab as part of the tabbed pane in the lower left corner,
within the Rules →Taclet Base folder. To test this, we click that folder and scroll
down the list of taclets, until impRight, on which we can click to be shown the same
taclet we have just discussed. It might feel scary to see the sheer mass of taclets
available. Please note, however, that the vast majority of taclets is never in the picture
when interactively applying a rule in any practical usage of the KeY system. Instead,
most taclets, especially those related to symbolic execution, are usually applied
automatically.

Backtracking the Proof

So far, we performed only one tiny little step in the proof. Our aim was, however,
to introduce some very basic elements of the framework and system. In fact, we
even go one step back, with the help of the system. For that, we make sure that the
OPEN GOAL is selected (by clicking on it in the Proof tab). We now undo the proof
step which led to this goal, by clicking at (Goal Back) in the task bar or using the
short cut Ctrl + Z . In this example, this action will put us back in the situation
we started in, which is confirmed by both the Current Goal pane and the Proof tab.
Please observe that Goal Back reverts always only the last rule application and not
for instance, all rules applied automatically by the proof search strategy.

3 Modulo leading updates, see Section 15.2.3.
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Viewing and Customizing Taclet Tooltips

Before performing the next steps in our proof, we take a closer look at the tooltips
for rule selection. (The reader may already have noticed those tooltips earlier.) If
we again click at the implication symbol -> appearing in the current goal, and
preselect the impRight rule in the opened context menu simply by placing the mouse
at impRight, without clicking yet, we get to see a tooltip, displaying something similar
to the impRight taclet discussed above.

The exact tooltip text depends on option settings which the user can configure.
Depending on those settings, what is shown in the tooltip is just the taclet as is, or
a certain ‘significant’ part of it. Note that, in either case, schema variables can be
already instantiated in what is shown in tooltips, also depending on the settings. For
this chapter we control the options actively here, and discuss the respective outcome.
We open the tooltip options window by View→ ToolTip options, and make sure that all
parts of taclets are displayed by making sure the pretty-print whole taclet . . . checkbox
is checked.

The effect of a taclet to the current proof situation is captured by tooltips where
the schema variables from the \find argument are already instantiated by their
respective matching formula or term. We achieve this by setting the Maximum size . . .
of tooltips . . . with schema variable instantiations displayed . . . to, say, 40 and have the
show uninstantiated taclet checkbox unchecked. When trying the tooltip for impRight
with this, we see something like the original taclet, however with b and c already
being instantiated with p & q and q & p, respectively:

Tooltip
impRight {

\find ( ==> p & q -> q & p )
\replacewith ( p & q ==> q & p )
\heuristics ( alpha )

}
Tooltip

This instantiated taclet-tooltip tells us the following: if we clicked on the rule name,
the formula p & q -> q & p, which we \find somewhere on the right-hand side
of the sequent (see the formula’s relative position compared to ==> in the \find
argument), would be \replace(d)with the two formulas p & q and q & p, where
the former would be added to the left-hand side, and the latter to the right-hand side
of the sequent (see their relative position compared to ==> in the \replacewith
argument). Please observe that, in this particular case, where the sequent only con-
tains the matched formula, the arguments of \find and \replacewith which are
displayed in the tooltip happen to be the entire old, respectively new, sequent. This is
not the case in general. The same tooltip would show up when preselecting impRight
on the sequent: r ==> p & q -> q & p, s.

A closer look at the tooltip text in its current form, reveals that the whole \find
clause actually is redundant information for the user, as it is essentially identical with
the anyhow highlighted text within the Current Goal pane. Also, the taclet’s name is
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already clear from the preselected rule name in the context menu. On top of that, the
\heuristics clause is actually irrelevant for the interactive selection of the rule. The
only nonredundant piece of information in this case is therefore the \replacewith
clause. Accordingly, the tooltips can be reduced to the minimum which is relevant
for supporting the selection of the appropriate rule by unchecking pretty-print whole
taclet . . . option again. The whole tooltip for impRight is the one-liner:

Tooltip
\replacewith ( p & q ==> q & p )

Tooltip

In general, the user might play around with different tooltip options in order to see
which settings are most helpful. However, for the course of this chapter, please open
again the View → ToolTip options again, set the “Maximum size . . . of tooltips . . .
with schema variable instantiations displayed . . . ” to 50 and check both checkboxes,
“pretty-print whole taclet . . . ” as well as “show uninstantiated taclet.” Nevertheless,
we will not print the \heuristics part of taclets in this text further on.

Splitting Up the Proof

We apply impRight and consider the new goal p & q ==> q & p. For further de-
composition we could break up the conjunctions on either sides of the sequent. By
first selecting q & p on the right-hand side, we are offered the rule andRight, among
others. The corresponding tooltip shows the following taclet:

Tooltip
andRight {

\find ( ==> b & c )
\replacewith ( ==> b );
\replacewith ( ==> c )

}
Tooltip

Here we see two \replacewiths, telling us that this taclet will construct two new
goals from the old one, meaning that this is a branching rule. Written as a sequent
calculus rule, it looks like this:

andRight
Γ =⇒ φ ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ψ,∆

We now generalize the earlier description of the meaning of rules, to also cover
branching rules. The logical meaning of a rule is downwards: if a certain instantiation
of the rule’s schema variables makes all premisses valid, then the corresponding
instantiation of the conclusion is valid as well. Accordingly, the operational meaning
during proof construction goes upwards. The problem of proving a goal which
matches the conclusion is reduced to the problem of proving all the (accordingly
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instantiated) premisses. If we apply andRight in the system, the Proof tab shows the
proof branching into two different Cases. In fact, both branches feature an OPEN
GOAL. At least one of them is currently visible in the Proof tab, and highlighted to
indicate that this is the new current goal, being detailed in the Current Goal pane
as usual. The other OPEN GOAL might be hidden in the Proof tab, as the branches
not leading to the current goal appear collapsed in the Proof tab by default. A
collapsed/expanded branch can however be expanded/collapsed by clicking on / .4

If we expand the yet collapsed branch, we see the full structure of the proof, with
both OPEN GOALs being displayed. We can even switch the current goal by clicking
on any of the OPEN GOALs.5

An on-paper presentation of the current proof would look like this:

p∧q =⇒ q p∧q =⇒ p
p∧q =⇒ q∧ p

=⇒ p∧q → q∧ p

The reader might compare this presentation with the proof presented in the Proof
tab by again clicking on the different nodes (or by clicking just anywhere within the
Proof tab, and browsing the proof using the arrow keys).

There are also several other mechanisms in the KeY system which help inspecting
the current proof state. Instead of expanding/collapsing whole branches, it is also
possible to hide intermediate proof steps in the current proof tree. This can be done
by right-clicking onto the proof tree in the Proof tab and selecting the context menu
entry Hide Intermediate Proofsteps. This results in a more top-level view on the proof
tree – only branching nodes, closed and open goals are displayed. Still, some proof
trees tend to get quite large with a lot of open and closed goals. For a better overview
over the open goals, there is also an option to hide closed goals in the Proof tab. It
can be accessed similar to the Hide Intermediate Proofsteps option. The KeY system
incorporates another feature supporting the comprehension of the proof, allowing for
textual comments to the proof nodes. This feature is accessible by right clicking onto
the proof node in the proof tree and choosing the menu entry Edit Notes. A dialog
appears in which the user can enter a note which is then attached to the chosen proof
node. This note can later be read when hovering with the mouse over the chosen
proof node.

Closing the First Branch

To continue, we select OPEN GOAL p & q ==> q again. Please recall that we want
to reach a sequent where identical formulas appear on both sides (as such sequents
are trivially true). We are already very close to that, just that p & q remains to be

4 Bulk expansion, and bulk collapsing, of proof branches is offered by a context menu via right
click on any node in the Proof tab.
5 Another way of getting an overview over the open goals, and switch the current goal, is offered by
the Goals tab.
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decomposed. Clicking at & offers the rule andLeft, as usual with the tooltip showing
the taclet, here:

Tooltip
andLeft {

\find ( b & c ==> )
\replacewith ( b, c ==> )

}

Tooltip

which corresponds to the sequent calculus rule:

andLeft
Γ ,φ ,ψ =⇒ ∆

Γ ,φ ∧ψ =⇒ ∆

We apply this rule, and arrive at the sequent p, q ==> q . We have arrived where
we wanted to be, at a goal which is trivially true by the plain fact that one formula
appears on both sides, regardless of how that formula looks like. (Of course, the
sequents we were coming across in this example were all trivially true in an intuitive
sense, but always only because of the particular form of the involved formulas.) In
the sequent calculus, sequents of the form Γ ,φ =⇒ φ ,∆ are considered valid without
any need of further reduction.

This argument is also represented by a rule, namely:

close
∗

Γ ,φ =⇒ φ ,∆

Rules with no premiss close the branch leading to the goal they are applied to, or, as
we say in short (and a little imprecise), close the goal they are applied to.

The representation of this rule as a taclet calls for two new keywords which we
have not seen so far. One is \closegoal, having the effect that taclet application
does not produce any new goal, but instead closes the current proof branch. The
other keyword is \assumes, which is meant for expressing assumptions on formulas
other than the one matching the \find clause. Note that, so far, the applicability
of rules always depended on one formula only. The applicability of close, however,
depends on two formulas (or, more precisely, on two formula occurrences). The
second formula is taken care of by the \assumes clause in the close taclet:

Taclet
close {

\assumes ( b ==> )
\find ( ==> b )
\closegoal

}

Taclet
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Note that this taclet is not symmetric (as opposed to the close sequent rule given
above). To apply it interactively on our Current Goal p, q ==> q, we have to put the
right-hand side q into focus (cf. \find(==> b)). But the \assumes clause makes
the taclet applicable only in the presence of further formulas, in this case the identical
formula on the left-hand side (cf. \assumes(b ==>)).

This discussion of the close sequent rule and the corresponding close taclet shows
that taclets are more fine grained than rules. They contain more information, and
consequently there is more than one way to represent a sequent rule as a taclet. To
see another way of representing the above sequent rule close by a taclet, the reader
might click on the q on the left-hand side of p, q ==> q , and preselect the taclet
close.

The tooltip will show the taclet:

Tooltip
closeAntec {

\assumes ( ==> b )
\find ( b ==> )
\closegoal

}

Tooltip

We, however, proceed by applying the taclet close on the right-hand side formula
q. After this step, the Proof pane tells us that the proof branch that has just been under
consideration is closed, which is indicated by that branch ending with a Closed goal
node colored green. The system has automatically changed focus to the next OPEN
GOAL, which is detailed in the Current Goal pane as the sequent p & q ==> p.

Pruning the Proof Tree

We apply andLeft to the & on the left, in the same fashion as we did on the other
branch. Afterwards, we could close the new goal p, q ==> p, but we refrain from
doing so. Instead, we compare the two branches, the closed and the open one, which
both have a node labeled with andLeft. When inspecting these two nodes again (by
simply clicking on them), we see that we broke up the same formula, the left-hand
side formula p & q, on both branches. It appears that we branched the proof too
early. Instead, we should have applied the (nonbranching) andLeft, once and for
all, before the (branching) andRight. In general it is a good strategy to delay proof
branching as much as possible and thereby avoiding double work on the different
branches. Without this strategy, more realistic examples with hundreds or thousands
of proof steps would become completely unfeasible.

In our tiny example here, it seems not to matter much, but it is instructive to
apply the late splitting also here. We want to redo the proof from the point where
we split too early. Instead of reloading the problem file, we can prune the proof at
the node labeled with andRight by right-click on that node, and selecting the context
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menu entry Prune Proof. As a result, large parts of the proof are pruned away, and the
second node, with the sequent p & q ==> q & p, becomes the Current Goal again.

Closing the First Proof

This time, we apply andLeft before we split the proof via andRight. We close the two
remaining goals, p, q ==> q and p, q ==> p by applying close to the right-hand
q and p, respectively. By closing all branches, we have actually closed the entire
proof, as we can see from the Proof closed window popping up now.

Altogether, we have proven the validity of the sequent at the root of the proof tree,
here ==> p & q -> q & p. As this sequent has only one formula, placed on the
right-hand side, we have actually proven validity of that formula p & q -> q & p,
the one stated as the \problem in the file we loaded.

Proving the Same Formula Automatically

As noted earlier, the reason for doing all the steps in the above proof manually was
that we wanted to learn about the system and the used artifacts. Of course, one would
otherwise prove such a formula automatically, which is what we do in the following.

Before loading the same problem again, we can choose whether we abandon the
current proof, or alternatively keep it in the system. Abandoning a proof would be
achieved via the main menu entry: Proof→ Abandon or the shortcut Ctrl + W . It
is however possible to keep several (finished or unfinished) proofs in the system, so
we suggest to start the new proof while keeping the old one. This will allow us to
compare the proofs more easily.

Loading the file andCommutes.key again can be done in the same fashion as
before or alternatively via the menu entry Reload, the toolbar button or the shortcut
Ctrl + R . Afterwards, we see a second ‘proof task’ being displayed in the Proofs

pane. One can even switch between the different tasks by clicking in that pane.
The newly opened proof shows the Current Goal ==> p & q -> q & p, just as last
time. For the automated proof process with KeY, we are able to set options in the
Proof Search Strategy tab. One option is the slider controlling the maximal number
of automated rule applications. It should be at least 1000, which will suffice for all
examples in this chapter.

By pressing the “Start/Stop automated proof search” button in the toolbar, we
start the automated proof search strategy. A complete proof is constructed immedi-
ately. Its shape (see Proof tab) depends heavily on the current implementation of the
proof search strategy and the use of the One Step Simplifier . One step simplification
in the KeY system means that the automated prover performs several simplification
rules applicable at once by a single rule application. One example for such a simplifi-
cation rule is the rule eq_and which simplifies the formula true & true to true.
Which rules the prover has used can be found in the proof tree in a node labeled
with One Step Simplification. This option comes in very handy when proofs tend to
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get large. Because of the summarization of simplification rules, the proof tree is
more readable. For the following examples we assume that the One Step Simplifier
is turned off (the toolbar icon is unselected) and we point out to the reader when
to toggle it to on. However, the automatically created proof will most likely look
different from the proof we constructed interactively before. For a comparison, we
switch between the tasks in the Proofs pane.

Rewrite Rules

With the current implementation of the proof search strategy, only the first steps
of the automatically constructed proof, impRight and andLeft, are identical with the
interactively constructed proof from above, leading to the sequent p, q ==> q & p.
After that, the proof does not branch, but instead uses the rule replace_known_left:

Taclet
replace_known_left {

\assumes ( b ==> )
\find ( b )
\sameUpdateLevel
\replacewith ( true )

}
Taclet

It has the effect that any formula (\find(b)) which has another appearance on
the left side of the sequent (\assumes(b ==> )) can be replaced by true. Note
that the \find clause does not contain ==>, and therefore does not specify where
the formula to be replaced shall appear. However, only one formula at a time gets
replaced.

Taclets with a \find clause not containing the sequent arrow ==> are called
rewrite taclets or rewrite rules. The argument of \find is a schema variable of
kind \formula or \term, matching formulas or terms, respectively, at arbitrary
positions, which may even be nested. The position can be further restricted. The
restriction \sameUpdateLevel in this taclet is however not relevant for the current
example. When we look at how the taclet was used in our proof, we see that indeed
the subformula p of the formula q & p has been rewritten to true, resulting in the
sequent p, q ==> true & p. The following rule application simplifies the true
away, after which close is applicable again.

Saving and Loading Proofs

Before we leave the discussion of the current example, we save the just accomplished
proof (admittedly for no other reason than practicing the saving of proofs). For that,
we either use the shortcut Ctrl + S , or select the main menu item File→ Save, or
the button in the toolbar. The opened file browser dialogue allows us to locate and
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name the proof file. A sensible name would be andCommutes.proof, but any name
would do, as long as the file extension is .proof. It is completely legal for a proof
file to have a different naming than the corresponding problem file. This way, it is
possible to save several proofs for the same problem. Proofs can actually be saved
regardless of whether they are finished or not. An unfinished proof can be continued
when loaded again. Loading a proof (finished or unfinished) is done in exactly the
same way as loading a problem file, with the only difference that a .proof file is
selected instead of a .key file.

15.2.2 Exploring Terms, Quantification, and Instantiation:
Building First-Order Proofs

After having looked at the basic usage of the KeY prover, we want to extend the
discussion to more advanced features of the logic. The example of the previous
section did only use propositional connectives. Here, we discuss the basic handling
of first-order formulas, containing terms, variables, quantifiers, and equality. As an
example, we prove a \problem which we load from the file projection.key:

KeY Problem File
\sorts {

s;
}
\functions {

s f(s);
s c;

}
\problem {

( \forall s x; f(f(x)) = f(x) ) -> f(c) = f(f(f(c)))
}

KeY Problem File

The file declares a function f (of type s→ s) and a constant c (of sort s). The first
part of the \problem formula, \forall s x; f(f(x)) = f(x), says that f is a
projection: For all x, applying f twice is the same as applying f once. The whole
\problem formula then states that f(c) and f(f(f(c))) are equal, given f is a
projection.

Instantiating Quantified Formulas

We prove this simple formula interactively, for now. After loading the problem file,
and applying impRight to the initial sequent, the Current Goal is:
\forall s x; f(f(x)) = f(x) ==> f(c) = f(f(f(c))).
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We proceed by deriving an additional assumption (i.e., left-hand side formula)
f(f(c)) = f(c), by instantiating x with c. For the interactive instantiation of
quantifiers, KeY supports drag and drop of terms over quantifiers (whenever the
instantiation is textually present in the current sequent). In the situation at hand, we
can drag any of the two c onto the quantifier \forall by clicking at c, holding and
moving the mouse, to release it over the \forall. As a result of this action, the new
Current Goal features the additional assumption f(f(c)) = f(c).

There is something special to this proof step: even if it was triggered interactively,
we have not been specific about which taclet to apply. The Proof pane, however, tells
us that we just applied the taclet instAll. To see the very taclet, we can click at the
previous proof node, marked with instAll. We then make sure, that the checkbox
Show taclet info (Inner Nodes only) at the bottom of the Proof tab is checked, such that
the Inner Node pane displays (simplified):

KeY Output
instAll {

\assumes ( \forall u; b ==> )
\find ( t )
\add ( {\subst u; t}b ==> )

}
KeY Output

{\subst u; t}b means that (the match of) u is substituted by (the match of) t in
(the match of) b, during taclet application.

Making Use of Equations

We can use the equation f(f(c)) = f(c) to simplify the term f(f(f(c))), mean-
ing we apply the equation to the f(f(c)) subterm of f(f(f(c))). This action can
again be performed via drag and drop, here by dragging the equation on the left
side of the sequent, and dropping it over the f(f(c)) subterm of f(f(f(c))).6 In
the current system, there opens a context menu, allowing to select a taclet with the
display name applyEq.7

Afterwards, the right-hand side equation has changed to f(c) = f(f(c)), which
looks almost like the left-hand side equation. We can proceed either by swapping
one equation, or by again applying the left-hand side equation on a right-hand side
term. It is instructive to discuss both alternatives here.

First, we select f(c) = f(f(c)), and apply eqSymm. The resulting goal has
two identical formulas on both sides of the sequent, so we could apply close. Just to
demonstrate the other possibility, we undo the last rule application using Goal Back ,
leading us back to the Current Goal f(f(c)) = f(c),...==> f(c) = f(f(c)).

6 More detailed, we move the mouse over the “=” symbol, such that the whole of f(f(c)) = f(c)
is highlighted. We click, hold, and move the mouse, over the second “f” in f(f(f(c))), such that
exactly the subterm f(f(c)) gets highlighted. Then, we release the mouse.
7 Possibly, there are more than one offered; for our example, it does not matter which one is selected.
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The other option is to apply the left-hand equation to f(f(c)) on the right
(via drag and drop). Afterwards, we have the tautology f(c) = f(c) on the right.
By selecting that formula, we get offered the taclet eqClose, which transforms the
equation into true. (If the reader’s system does not offer eqClose in the above step,
please make sure that One Step Simplification is unchecked in the Options menu, and
try again.)

Closing ‘by True’ and ‘by False’

So far, all goals we ever closed featured identical formulas on both sides of the
sequent. We have arrived at the second type of closable sequents: one with true on
the right side. We close it by highlighting true, and selecting the taclet closeTrue,
which is defined as:

Taclet
closeTrue {

\find ( ==> true )
\closegoal

}

Taclet

This finishes our proof.
Without giving an example, we mention here the third type of closable sequents,

namely those with false on the left side, to be closed by:

Taclet
closeFalse {

\find ( false ==> )
\closegoal

}

Taclet

This is actually a very important type of closable sequent. In many examples, a
sequent can be proven by showing that the assumptions (i.e., the left-hand side
formulas) are contradictory, meaning that false can be derived on the left side.

Using Taclet Instantiation Dialogues

In our previous proof, we used the “drag-and-drop” feature offered by the KeY prover
to instantiate schema variables needed to apply a rule. This kind of user interaction
can be seen as a shortcut to another kind of user interaction: the usage of taclet
instantiation dialogues. While the former is most convenient, the latter is more
general and should be familiar to each KeY user. Therefore, we reconstruct the (in
spirit) same proof, this time using such a dialogue explicitly.
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After again loading the problem file projection.key, we apply impRight to
the initial sequent, just like before. Next, to instantiate the quantified formula
\forall s x; f(f(x)) = f(x), we highlight that formula, and apply the taclet
allLeft, which is defined as:

Taclet
allLeft {

\find ( \forall u; b ==> )
\add ( {\subst u; t}b ==> )

}

Taclet

This opens a Choose Taclet Instantiation dialogue, allowing the user to choose the
(not yet determined) instantiations of the taclet’s schema variables. The taclet at
hand has three schema variables, b, u, and t. The instantiations of b and u are
already determined to be f(f(x)) = f(x) and x, respectively, just by matching
the highlighted sequent formula \forall s x; f(f(x)) = f(x) with the \find
argument \forall u; b. The instantiation of t is, however, left open, to be chosen
by the user. We can type c in the corresponding input field of the dialogue,8 and click
Apply. As a result, the f(f(c)) = f(c) is added to the left side of the sequent. The
rest of the proof goes exactly as discussed before. The reader may finish it herself.

Skolemizing Quantified Formulas

We will now consider a slight generalization of the theorem we have just proved.
Again assuming that f is a projection, instead of showing f(c) = f(f(f(c)))
for a particular c, we show f(y) = f(f(f(y))) for all y. For this we load
generalProjection.key, and apply impRight, which results in the sequent:

KeY Output
\forall s x; f(f(x)) = f(x) ==> \forall s y; f(y) = f(f(f(y)))

KeY Output

As in the previous proof, we will have to instantiate the quantified formula on the
left. But this time we also have to deal with the quantifier on the right. Luckily, that
quantifier can be eliminated altogether, by applying the rule allRight, which results
in:9

KeY Output
\forall s x; f(f(x)) = f(x) ==> f(y_0) = f(f(f(y_0)))

KeY Output

8 Alternatively, one can also drag and drop syntactic entities from the Current Goal pane into the
input fields of such a dialogue, and possibly edit them afterwards.
9 Note that the particular name y_0 can differ.
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We see that the quantifier disappeared, and the variable y got replaced. The replace-
ment, y_0, is a constant, which we can see from the fact that y_0 is not quantified.
Note that in our logic each logical variable appears in the scope of a quantifier binding
it. Therefore, y_0 can be nothing but a constant. Moreover, y_0 is a new symbol.

Eliminating quantifiers by introducing new constants is called Skolemization (after
the logician Thoralf Skolem). In a sequent calculus, universal quantifiers (\forall)
on the right, and existential quantifiers (\exists) on the left side, can be eliminated
this way, leading to sequents which are equivalent (concerning provability), but
simpler. This should not be confused with quantifier instantiation, which applies to
the complementary cases: (\exists) on the right, and (\forall) on the left, see our
discussion of allLeft above. (It is instructive to look at all four cases in combination,
see Chapter 2, Figure 2.1.)

Skolemization is a simple proof step, and is normally done fully automatically.
We only discuss it here to give the user some understanding about new constants that
might show up during proving.

To see the taclet we have just applied, we select the inner node labeled with
allRight. The Inner Node pane reveals the taclet:

KeY Output
allRight {

\find ( ==> \forall u; b )
\varcond ( \new(sk, \dependingOn(b)) )
\replacewith ( ==> {\subst u; sk}b )

}
KeY Output

It tells us that the rule removes the quantifier matching \forall u;, and that (the
match of) u is \substituted by the \newly generated Skolem constant sk in the
remaining formula (matching b).

The rest of our current proof goes exactly like for the previous problem formula.
Instead of further discussing it here, we simply run the proof search strategy to
resume and close the proof.

15.2.3 Exploring Programs in Formulas:
Building Dynamic Logic Proofs

Not first-order logic, and certainly not propositional logic, is the real target of the KeY
prover. Instead, the prover is designed to handle proof obligations formulated in a
substantial extension of first-order logic, dynamic logic (DL). What is dynamic about
this logic is the notion of the world, i.e., the interpretation (of function/predicate
symbols) in which formulas (and subformulas) are evaluated. In particular, a formula
and its subformulas can be interpreted in different worlds.

The other distinguished feature of DL is that descriptions of how to construct one
world from another are explicit in the logic, in the form of programs. Accordingly, the
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worlds represent computation states. (In the following, we take ‘state’ as a synonym
for ‘world’.) This allows us to, for instance, talk about the states both before and
after executing a certain program, within the same formula.

Compared to first-order logic, DL employs two additional (mixfix) operators: 〈 .〉 .
(diamond) and [ . ] . (box). In both cases, the first argument is a program, whereas the
second argument is another DL formula. With 〈p〉ϕ and [p]ϕ being DL formulas,
〈p〉 and [p] are called the modalities of the respective formula.

A formula 〈p〉ϕ is valid in a state if, from there, an execution of p terminates
normally and results in a state where ϕ is valid. As for the other operator, a formula
[p]ϕ is valid in a state from where execution of p does either not terminate normally
or results in a state where ϕ is valid.10 For our applications the diamond operator is
way more important than the box operator, so we restrict attention to that.

One frequent pattern of DL formulas is ϕ → 〈p〉ψ , stating that the program p,
when started from a state where ϕ is valid, terminates, with ψ being valid in the post
state. (Here, ϕ and ψ often are pure first-order formulas, but they can very well be
proper DL formulas, containing programs themselves.)

Each variant of DL has to commit to a formalism used to describe the programs
(i.e., the p) in the modalities. Unlike most other variants of DL, the KeY project’s
DL variant employs a real programming language, namely Java. Concretely, p is a
sequence of (zero, one, or more) Java statements. Accordingly, the logic is called
JavaDL.

The following is an example of a JavaDL formula:

x < y→ 〈t = x; x = y; y = t;〉 y < x (15.1)

It says that in each state where the program variable x has a value smaller than that
of the program variable y, the sequence of Java statements t = x; x = y; y = t;
terminates, and afterwards the value of y is smaller than that of x. It is important to
note that x and y are program variables, not to be confused with logical variables. In
our logic, there is a strict distinction between both. Logical variables must appear
in the scope of a quantifier binding them, whereas program variables cannot be
quantified over. This formula (15.1) has no quantifier because it does not contain any
logical variables.

As we will see in the following examples, both program variables and logical
variables can appear mixed in terms and formulas, also together with logical constants,
functions, and predicate symbols. However, inside the modalities, there can be
nothing but (sequents of) pure Java statements. For a more thorough discussion of
JavaDL, please refer to Chapter 3.

10 These descriptions have to be generalized when nondeterministic programs are considered, which
is not the case here.
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Feeding the Prover with a DL Problem File

The file exchange.key contains the JavaDL formula (15.1), in the concrete syntax
used in the KeY system:11

KeY Problem File
\programVariables { int x, y, t; }
\problem {

x < y
-> \<{ t=x;

x=y;
y=t;

}\> y < x
}

KeY Problem File

When comparing this syntax with the notation used in (15.1), we see that diamond
modality brackets 〈 and 〉 are written as \<{ and }\> within the KeY system. What
we can also observe from the file is that all program variables which are not de-
clared in the Java code inside the modality (like t here) must appear within a
\programVariables declaration of the file (like x and y here).

Instead of loading this file, and proving the problem, we try out other examples
first, which are meant to slowly introduce the principles of proving JavaDL formulas
with KeY.

Using the Prover as an Interpreter

We consider the file executeByProving.key:

KeY Problem File
\predicates { p(int,int); }
\programVariables { int i, j; }
\problem {

\<{ i=2;
j=(i=i+1)+4;

}\> p(i,j)
}

KeY Problem File

As the reader might guess, the \problem formula is not valid, as there are no
assumptions made about the predicate p. Anyhow, we let the system try to prove
this formula. By doing so, we will see that the KeY prover will essentially execute
our (rather obscure) program i=2; j=(i=i+1)+4;, which is possible because all

11 Here as in all .key files, line breaks and indentation do not matter other than supporting
readability.
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values the program deals with are concrete. The execution of Java programs is of
course not the purpose of the KeY prover, but it serves us here as a first step towards
the method for handling symbolic values, symbolic execution, to be discussed later.

We load the file executeByProving.key into the system. Then, we run the
automated JavaDL strategy (by clicking the play button ). The strategy stops with
==> p(3,7) being the (only) OPEN GOAL, see also the Proof tab. This means that
the proof could be closed if p(3,7) was provable, which it is not. But that is fine,
because all we wanted is letting the KeY system compute the values of i and j after
execution of i=2; j=(i=i+1)+4;. And indeed, the fact that proving p(3,7) would
be sufficient to prove the original formula tells us that 3 and 7 are the final values of
i and j.

We now want to inspect the (unfinished) proof itself. For this, we select the first
inner node, labeled with number 0:, which contains the original sequent. By using
the down-arrow key, we can scroll down the proof. The reader is encouraged to do so,
before reading on, all the way down to the OPEN GOAL, to get an impression on how
the calculus executes the Java statements at hand. This way, one can observe that one
of the main principles in building a proof for a DL formula is to perform program
transformation within the modality(s). In the current example, the complex second
assignment j=(i=i+1)+4; was transformed into a sequence of simpler assignments.
Once a leading assignment is simple enough, it moves out from the modality, into
other parts of the formula (see below). This process continues until the modality
is empty (\<{}\>). That empty modality gets eventually removed by the taclet
emptyModality.

Discovering Updates

Our next observation is that the formulas which appear in inner nodes of this proof
contain a syntactical element which is not yet covered by the above explanations of
DL. We see that already in the second inner node (number 1:), which looks like:

KeY Output
==>
{i:=2}

\<{ j=(i=i+1)+4;
}\> p(i,j)

KeY Output

The i:=2 within the curly brackets is an example of what is called updates. When
scrolling down the proof, we can see that leading assignments turn into updates
when they move out from the modality. The updates somehow accumulate, and
are simplified, in front of a “shrinking” modality. Finally, they get applied to the
remaining formula once the modality is gone.

Updates are part of the version of dynamic logic invented within the KeY project.
Their main intention is to represent the effect of some (Java) code they replace. This
effect can be accumulated, manipulated, simplified, and applied to other parts of the
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formula, in a way which is disentangled from the manipulation of the program in the
modality. This enables the calculus to perform symbolic execution in a natural way,
and has been very fruitful contribution of the KeY project. First of all, updates allow
proofs to symbolically execute programs in their natural direction, which is useful for
proof inspection and proof interaction. Moreover, the update mechanism is heavily
exploited when using the prover for other purposes, like test generation (Chapter 12),
symbolic debugging (Chapter 11), as well as various analyzes for security (Chapter
13) or runtime verification [Ahrendt et al., 2015], to name a few.

Elementary updates in essence are a restricted kind of assignment, where the
right-hand side must be a simple expression, which in particular is free of side effects.
Examples are i:=2, or i:=i + 1 (which we find further down in the proof). From
elementary updates, more complex updates can be constructed (see Definition 3.8,
Chapter 3). Here, we only mention the most important kind of compound updates,
parallel updates, an example of which is i:=3 || j:=7 further down in the proof.
Updates can further be considered as explicit substitutions that are yet to be applied.
This viewpoint will get clearer further-on.

Updates extend traditional DL in the following way: if ϕ is a DL formula and u
is an update, then {u}ϕ is also a DL formula. Note that this definition is recursive,
such that ϕ in turn may have the form {u′}ϕ ′, in which case the whole formula
looks like {u}{u′}ϕ ′. The strategies try to transform such subsequent updates into a
single parallel update. As a special case, ϕ may not contain any modality (i.e., it is
purely first-order). This situation occurs in the current proof in form of the sequent
==> {i:=3 || j:=7}p(i,j) (close to the OPEN GOAL, after the rule application
of emptyModality in the current proof). Now that the modality is gone, the update
{i:=3 || j:=7} is applied in form of a substitution, to the formula following the
update, p(i,j). The reader can follow this step when scrolling down the proof.
Altogether, this leads to a delayed turning of program assignments into substitutions
in the logic, as compared to other variants of DL (or of Hoare logic). We will return
to the generation, parallelization, and application of updates on page 524.

Employing Active Statements

We now focus on the connection between programs in modalities on the one hand,
and taclets on the other hand. For that, we load updates.key. When moving the
mouse around over the single formula of the Current Goal,
\<{ i=1;

j=3;
i=2;

}\> i = 2
we realize that, whenever the mouse points anywhere between (and including) “\<{”
and “}\>,” the whole formula gets highlighted. However, the first statement is
highlighted in a particular way, with a different color, regardless of which statement
we point to. This indicates that the system considers the first statement i=1; as the
active statement of this DL formula.
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Active statements are a central concept of the DL calculus used in KeY. They
control the application/applicability of taclets. Also, all rules which modify the pro-
gram inside of modalities operate on the active statement, by rewriting or removing
it. Intuitively, the active statement stands for the statement to be executed next. In the
current example, this simply translates to the first statement.

We click anywhere within the modality, and preselect (only) the taclet assignment,
just to view the actual taclet presented in the tooltip:

Tooltip
assignment {

\find (
\modality{#allmodal}{ ..

#loc=#se;
... }\endmodality post

)
\replacewith (
{#loc:=#se}

\modality{#allmodal}{ .. ... }\endmodality post
)

}

Tooltip

The \find clause tells us how this taclet matches the formula at hand. First of all,
the formula must contain a modality followed by a (not further constrained) formula
post. Then, the first argument of \modality tells which kinds of modalities can
be matched by this taclets, in this case all #allmodal, including 〈.〉. in particular.
And finally, the second argument of \modality, .. #loc=#se; ... specifies the
code which this taclet matches on. The convention is that everything between “..”
and “...” matches the active statement. Here, the active statement must have the
form #loc=#se;, i.e., a statement assigning a simple expression to a location, here
i=1;. The “...” refers to the rest of the program (here j=3;i=2;), and the match
of “..” is empty, in this particular example. Having understood the \find part, the
\replacewith part tells us that the active statement moves out into an update.

After applying the taclet, we point to the active statement j=3;, and again preselect
the assignment. The taclet in the tooltip is the same, but we note that it matches the
highlighted subformula, below the leading update. We suggest to finish the proof by
pressing the play button.

The reader might wonder why we talk about active rather than first statements.
The reason is that our calculus is designed in a way such that block statements are
not normally active. By block we mean both unlabeled and labeled Java blocks, as
well as try-catch blocks. If the first statement inside the modality is a block, then the
active statement is the first statement inside that block, if that is not a block again, and
so on. This concept prevents our logic from being bloated with control information.
Instead, the calculus works inside the blocks, until the whole block can be resolved,
because it is either empty, or an abrupt termination statement is active, like break,
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continue, throw, or return. The interested reader is invited to examine this by
loading the file activeStmt.key.

Afterwards, one can see that, as a first step in the proof, one can pull out the
assignment i=0;, even if that is nested within a labeled block and a try-catch block.
We suggest to perform this first step interactively, and prove the resulting goal
automatically, for inspecting the proof afterwards.

Now we are able to round up the explanation of the “..” and “...” notation
used in DL taclets. The “..” matches the opening of leading blocks, up to the first
nonblock (i.e., active) statement, whereas “...” matches the statements following
the active statement, plus the corresponding closings of the opened blocks.12

Executing Programs Symbolically

So far, all DL examples we have been trying the prover on in this chapter had in
common that they worked with concrete values. This is very untypical, but served the
purpose of focusing on certain aspects of the logic and calculus. However, it is time
to apply the prover on problems where (some of) the values are either completely
unknown, or only constrained by formulas typically having many solutions. After
all, it is the ability of handling symbolic values which makes theorem proving more
powerful than testing. It allows us to verify a program with respect to all legitimate
input values!

First, we load the problem symbolicExecution.key:

KeY Problem File
\predicates { p(int,int); }
\functions { int c; }
\programVariables { int i, j; }
\problem {

{i:=c}
\<{ j=(i=i+1)+3;
}\> p(i,j)

}

KeY Problem File

This problem is a variation of executeByProving.key (see above), the difference
being that the initial value of i is symbolic. The c is a logical constant (i.e., a function
without arguments), and thereby represents an unknown, but fixed value in the range
of int. The update {i:=c} is necessary because it would be illegal to have an
assignment i=c; inside the modality, as c is not an element of the Java language, not
even a program variable. This is another important purpose of updates in our logic:
to serve as an interface between logical terms and program variables.

The problem is of course as unprovable as executeByProving.key. All we
want this time is to let the prover compute the symbolic values of i and j, with

12 “..” and “...” correspond to π and ω , respectively, in the rules in Chapter 3.
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respect to c. We get those by clicking on the play button and therefore running KeY’s
proof search strategy on this problem which results in ==> p(1+c,4+c) being the
remaining OPEN GOAL. This tells us that 1+c and 4+c are the final values of i and j,
respectively. By further inspecting the proof, we can see how the strategy performed
symbolic computation (in a way which is typically very different from interactive
proof construction). That intertwined with the ‘execution by proving’ (see 15.2.3)
method discussed above forms the principle of symbolic execution, which lies at the
heart of the KeY prover.

Another example for this style of formulas is the \problem which we load from
postIncrement.key:

KeY Problem File
\functions { int c; }
\programVariables { int i; }
\problem {

{i:=c}
\<{ i=i*(i++);
}\> c * c = i

}
KeY Problem File

The validity of this formula is not completely obvious. But indeed, the obscure
assignment i=i*(i++); computes the square of the original value of i. The point
is the exact evaluation order within the assignment at hand. It is of course crucial
that the calculus emulates the evaluation order exactly as it is specified in the Java
language description by symbolic execution, and that the calculus does not allow any
other evaluation order. We prove this formula automatically here.

Quantifying over Values of Program Variables

A DL formula of the form 〈p〉ϕ , possibly preceded by updates, like {u}〈p〉ϕ , can
well be a subformula of a more complex DL formula. For instance in ψ → 〈p〉ϕ , the
diamond formula is below an implication (see also formula (15.1)). A DL subformula
can actually appear below arbitrary logical connectives, including quantifiers. The
following problem formula from quantifyProgVals.key is an example for that.

KeY Problem File
\programVariables { int i; }
\problem {

\forall int x;
{i := x}

\<{ i = i*(i++);
}\> x * x = i

}
KeY Problem File
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Please observe that it would be illegal to have an assignment i=x; inside the modality,
as x is not an element of the Java language, but rather a logical variable.

This formula literally says that, \forall initial values i, it holds that after the
assignment i contains the square of that value. Intuitively, this seems to be no
different from stating the same for an arbitrary but fixed initial value c, as we did
in postIncrement.key above. And indeed, if we load quantifyProgVals.key,
and as a first step apply the taclet allRight, then the Current Goal looks like this:

KeY Output
==>
{i:=x_0}

\<{ i=i*(i++);
}\> x_0 * x_0 = i

KeY Output

Note that x_0 cannot be a logical variable (as was x in the previous sequent), because
it is not bound by a quantifier. Instead, x_0 is a Skolem constant.

We see here that, after only one proof step, the sequent is essentially not different
from the initial sequent of postIncrement.key. This seems to indicate that quan-
tification over values of program variables is not necessary. That might be true here,
but is not the case in general. The important proof principle of induction applies to
quantified formulas only.

Proving DL Problems with Program Variables

So far, most DL \problem formulas explicitly talked about values, either concrete
ones (like 2) or symbolic ones (like the logical constant a and the logical variable x).
It is however also common to have DL formulas which do not talk about any (concrete
or symbolic) values explicitly, but instead only talk about program variables (and
thereby implicitly about their values). As an example, we use yet another variation of
the post increment problem, contained in postIncrNoUpdate.key:

KeY Problem File
\programVariables { int i, j; }
\problem {

\<{ j=i;
i=i*(i++);

}\> j * j = i
}

KeY Problem File

Here, instead of initially updating i with some symbolic value, we store the value of
i into some other program variable. The equation after the modality is a claim about
the relation between (the implicit values of) the program variables, in a state after
program execution. When proving this formula automatically with KeY, we see that
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the proof has no real surprise as compared to the other variants of post increment.
Please observe, however, that the entire proof does not make use of any symbolic
value, and only talks about program variables, some of which are introduced within
the proof.

Demonstrating the Update Mechanism

In typical applications of the KeY prover, the user is not concerned with the update
mechanism. Still, this issue is so fundamental for the KeY approach that we want
to put the reader in the position to understand its basic principles. We do this by
running an example in a much more interactive fashion than one would ever do for
other purposes. (For a theoretical treatment, please refer to Section 3.4).

Let us reconsider the formula

x < y→ 〈t = x; x = y; y = t;〉 y < x

and (re)load the corresponding problem file, exchange.key (see above 15.2.3) into
the system. Also, we make sure that the “One Step Simplifier” button in the toolbar
is unselected such that we can illustrate the update mechanism fully transparent.

The initial Current Goal looks like this:

KeY Output
==>

x < y
-> \<{ t=x;

x=y;
y=t;

}\> y < x
KeY Output

We prove this sequent interactively, just to get a better understanding of the basic
steps usually performed by automated strategies.

We first apply the impRight rule on the single formula of the sequent. Next, the
first assignment, t=x;, is simple enough to be moved out from the modality, into
an update. We can perform this step by pointing on that assignment, and applying
the assignment rule. In the resulting sequent, that assignment got removed and the
update {t:=x}13 appeared in front of the modality. We perform the same step on the
leading assignment x=y;. Afterwards, the sequent has the two subsequent updates
{t:=x}{x:=y} leading the formula.

This is the time to illustrate a very essential step in KeY-style symbolic execution,
which is update parallelization. A formula {u1}{u2}ϕ says that ϕ is true after the
sequential execution of u1 and u2. Update parallelization transforms the sequential
steps (u1 and u2) into a single, parallel step u1 ||u′2, leading to the formula {u1 ||u′2}ϕ ,

13 Strictly speaking, the curly brackets are not part of the update, but rather surround it. It is however
handy to ignore this syntactic subtlety when discussing examples.
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where u′2 is the result simplifying {u1} u2, i.e., applying u1 to the u2. This will get
clearer by continuing our proof in slow motion.

With the mouse over the curly bracket of the leading update, we select the rule
sequentialToParallel2. (Its tooltip tells the same story as the previous sentences.) The
resulting, parallel update is {t:=x || {t:=x}x:=y}. As t does not appear on the
right side of x:=y, the parallel update can be simplified to {t:=x || x:=y}. (Paral-
lelization is trivial for independent updates.) In the system, we select {t:=x}x:=y,
and apply simplifyUpdate3. Then, by using the assignment rule a third time, we arrive
at the nested updates {t:=x || x:=y}{y:=t} (followed by the empty modality).
Parallelizing them (application of the rule sequentialToParallel2) results in the single
parallel update {t:=x || x:=y || {t:=x || x:=y}y:=t}. Applying the rule
simplifyUpdate3 simplifies the rightmost of the three updates, {t:=x || x:=y}y:=t
and removes x:=y, as it has no effect on y:=t.

Only now, when processing the resulting update {t:=x}y:=t further, we are at
the heart of the update parallelization, the moment where updates turn from delayed
substitutions to real substitutions. The reader can see that by applying the rule ap-
plyOnElementary on {t:=x}y:=t, and then applyOnPV (apply on Program Variable)
on {t:=x}t. With that, our parallel update looks like {t:=x || x:=y || y:=x}.
Its first element is not important anymore, as t does not appear in the postcondition
x < y. It can therefore be dropped (simplifyUpdate2 on the leading curly bracket).
The reader may take a moment to consider the result of symbolic execution of the
original Java program, the final update {x:=y || y:=x}. It captures the effect of
the Java code t=x;x=y;y=t; (in so far as it is relevant for remainder for the proof)
in a single, parallel step. The right-hand sides of the updates x:=y and y:=x are
evaluated in the same state, and assigned to the left-hand sides at once.

With the empty modality highlighted in the OPEN GOAL, we can apply the rule
emptyModality. It deletes that modality, and results in the sequent x < y ==> {x:=y
|| y:=x}(y < x). When viewing the (parallel) update as a substitution on the
succeeding formula, it is clear that this sequent should be true. The reader is invited
to show this interactively, by using the rules applyOnRigidFormula, simplifyUpdate1
and applyOnPV a few times, followed by close.

Let us stress again that the above demonstration serves the single purpose of
gaining insight into the update mechanism. Never ever would we apply the aforemen-
tioned rules interactively otherwise. The reader can replay the proof automatically,
with the One Step Simplifier switched on or off, respectively. In either case, the
proof is quite a bit longer than ours, due to many normalization steps which help the
automation, but compromise the readability.

Using Classes and Objects

Even though the DL problem formulas discussed so far all contained real Java code,
we did not see either of the following central Java features: classes, objects, or
method calls. The following small example features all of them. We consider the file
methodCall.key:
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KeY Problem File (15.1)
\javaSource "methodExample/"; // location of class definitions
\programVariables { Person p; }
\problem {

\forall int x;
{p.age:=x} // assign initial value to "age"
( x >= 0
-> \<{ p.birthday();

}\> p.age > x)
}

KeY Problem File

The \javaSource declaration tells the prover where to look up the sources of classes
and interfaces used in the file. In particular, the Java source file Person.java is
contained in the directory methodExample/. The \problem formula states that a
Person is getting older at its birthday(). As a side note, this is an example where
an update does not immediately precede a modality, but a more general DL formula.

Before loading this problem file, we look at the source file Person.java in
methodExample/:

Java
public class Person {

private int age = 0;
public void setAge(int newAge) { this.age = newAge; }
public void birthday() { if (age >= 0) age++; }

}
Java

When loading the file into the KeY system, the reader may recognize a difference
between the proof obligation given in the problem file and the initial proof obligation
in the KeY system:

KeY Output (15.2)
==>
\forall int x;
{heap:=heap[p.age := x]}

( x >= 0
-> \<{ p.birthday();

}\> p.age > x)
KeY Output

Note that, in the display of the prover, the update {p.age:=x} from the problem
file is now written as {heap:=heap[p.age := x]}. Both updates are no different;
the first is an abbreviation of the second, using a syntax which is more familiar
to programmers. The expanded version, however, reveals the fact that this update,
whether abbreviated or not, changes the value of a variable named heap. We explain
this in the following, thereby introducing the representation of object states in KeY.
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In the context of object-oriented programming, the set of all objects—including
their internal state—is often referred to as the heap. This is an implicit data structure,
in so far as it cannot be directly accessed by the programmer. Instead, it is implicitly
given via the creation and manipulation of individual objects. However, in KeY’s
dynamic logic, the heap is an explicit data structure, and is stored in a variable called
heap (or a variant of that name).14 For the sake of clarity, we first discuss the abstract
data type of heaps in a classical algebraic notation, before turning to KeY’s concrete
syntax shortly. Let us assume two functions store and select with the following type
signature:

store : Heap×Object×Field×Any→ Heap

select : Heap×Object×Field→ Any

store models the writing of a value (of Any type) to a given field of a given object,
in a given heap. The result is a new heap. The function select looks up the value of
a given field of a given object, in a given heap. The following axioms describe the
interplay of store and select.

select(store(h,o, f ,x),o, f ) .= x

f 6= f ′∨o 6= o′ → select(store(h,o, f ,x),o′, f ′) .= select(h,o′, f ′)

Please observe that we deliberately simplified these axioms for presentation. The
real formalization has to distinguish select functions for different field types, has to
check type conformance of x, and take special care of object creation. Please refer to
Section 2.4.3 for a full account on this.

However, in the user interface of the KeY system, the above notation would give
unreadable output for real examples. In particular, we would get deeply nested store
terms during symbolic execution of a program (with one store per assignment to a
field). Therefore, KeY uses the following, shorter syntax. Instead of store(h,o, f ,x),
we write h[o.f:=x], denoting a heap which is identical to h everywhere but at o.f,
whose value is x. With that, a nested store like store(store(h,o1, f 1,x1),o2, f 2,x2)
becomes h[o1.f1:=x1][o2.f2:=x2], presenting the heap operations in their natu-
ral order. The select operation is also abbreviated. Instead of select(h,o, f ), we write
o.f@h, denoting the access to o.f in heap h. With that, the above axioms become

o.f@h[o.f:=x] = x (15.2)

f 6= f’∨o 6= o’ → o’.f’@h[o.f:=x] = o’.f’@h (15.3)

Please note that the symbol := in h[o.f:=x] does not denote an update. Instead,
it is part of the mix-fix presentation ␣[␣.␣:=␣] of store. In particular, h[o.f:=x]
does not, in itself, change h. Instead, it constructs a new heap that is (in most cases)
different from h. An actual change to h has to be done extra, in an update like

14 The object representation described here is implemented in KeY 2.0 onward, and significantly
differs from the earlier object representation which was described in the first book about KeY
[Beckert et al., 2007].
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h := h[o.f:=x]. Only after that, h has a new value, given by applying store to the
old value of h.

In proofs, during symbolic execution, KeY uses largely a specific heap variable
called exactly heap, which is constantly modified in updates (resulting from assign-
ments). There are some exceptions, however, where a proof node talks about more
than one heap, for instance to distinguish the heap before and after execution of
a method call. But as the one variable called heap dominates the picture, special
shorthand notations are offered for this case. The select expression o.f@heap can be
abbreviated by o.f, and the update heap := heap[o.f:=x] can be abbreviated by
o.f:=x. Note that these abbreviations only apply to the single variable called exactly
heap, not otherwise.

After this excursion on heap manipulation and presentation, let us look back to
the KeY problem file methodCall.key, and KeY’s presentation after loading the
problem, see (15.2 from above). We now know that, in methodCall.key, the up-
date p.age:=x abbreviates heap := heap[p.age:=x], and that the postcondition
p.age > x abbreviates p.age@heap > x. The first abbreviation was immediately
expanded by KeY when loading the file, whereas the second one will be expanded
later-on during the proof.

Calling Methods in Proofs

We now want to have a closer look at the way KeY handles method calls. We make
sure that methodCall.key is (still) loaded and set the option Arithmetic treatment in
the Proof Search Strategy tab to Basic and the option Method treatment to Contract or
Expand. The reader is encouraged to reflect on the validity of the problem formula a
little, before reading on.—Ready?—Luckily, we have a prover at hand to be certain,
so we press the play button.

The strategy stops with the a number of OPEN GOALs, one of them being
p = null, x_0 >= 0 ==> 15. There are different ways to read this goal, which
however are logically equivalent. One way of proving any sequent is to show that
its left-hand side is false. Here, it would be sufficient to show that p = null is
false. An alternative viewpoint is the following: in a sequent calculus, we always
get a logically equivalent sequent by throwing any formula to the respective other
side, but negated. Therefore, we can as well read the OPEN GOAL as if it was
x_0 >= 0 ==> p != null. Then, it would be sufficient to show that p != null
is true.

Whichever reading we choose, we cannot prove the sequent, because we have no
knowledge whatsoever about p being null or not. When looking back to our problem
formula, we see that indeed the formula is not valid, because the case where p is
null was forgotten. The postcondition p.age > x depends on the method body of
birthday() being executed, which it cannot in case p is null. Interpreting the Proof
pane leads to the same reading. The first split, triggered by the taclet methodCall,

15 Note that the particular index of the name x_0 can differ.
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leads to two unclosed proof branches. The shorter one, marked as Null Reference (p =
null), leads immediately to an OPEN GOAL where the strategy gets stuck.

The file methodCall2.key contains the patch of the problem formula. The
problem formula from above is preceded by p != null ->. We load that problem,
and let KeY prove it automatically without problems.

We now look at the first split in the proof (and click on the node before the split).
Like in the previous proof, the first split was triggered by the taclet methodCall. Then,
in the branch marked as Normal Execution (p != null), the first inner node looks like
this:

KeY Output (15.3)
x_0 >= 0
==>
p = null,
{heap:=heap[p.age:=x_0]}

\<{ p.birthday()@Person;
}\> p.age >= 1 + x_0

KeY Output

We should not let confuse ourselves by p = null being present here. Recall that
the comma on the right-hand side of a sequent essentially is a logical or. Also, as
stated above, we can always imagine a formula being thrown to the other side of the
sequent, but negated. Therefore, we essentially have p != null as an assumption
here. Another thing to comment on is the @Person notation in the method call. It
represents that the calculus has decided which implementation of birthday is to be
chosen (which, in the presence of inheritance and hiding, can be less trivial than here,
see Section 3.7.1).

At this point, the strategy was ready to apply methodBodyExpand.16 After that,
the code inside the modality looks like this:
method-frame(source=birthday()@Person,this=p): {

if (this.age >= 0) {
this.age++;

}
}

This method-frame is the only really substantial extension over Java which our
logic allows inside modalities. It models the execution stack, and can appear nested
in case of nested method calls. Apart from the class and the this reference, it can
also specify a return variable, in case of nonvoid methods. However, the user is
rarely concerned with this construction, and if so, only passively. We will not discuss
this construct further here, but refer to Section 3.6.5 instead. One interesting thing
to note here, however, is that method frames are considered as block statements in
the sense of our earlier discussion of active statements, meaning that method frames
are never active. For our sequent at hand, this means that the active statement is

16 This is the case even if Method treatment was chosen to be Contract instead of Expand. If
no contract is available, the Contract strategy will still expand the method body.
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if (this.age>=0) {this.age++;}. The rule methodBodyExpand has also intro-
duced the update heapBefore_birthday:=heap. This is necessary because, in
general, the formula succeeding the modality may refer to values that were stored in
the heap at the beginning of the method call. (An example for that is presented in
Section 15.3.) However, in the current proof, this update is simplified away in the
next step, because in the formula following the modality, there is no reference to
values in the heap from before calling the method.

Controlling Strategy Settings

The expansion of methods is among the more problematic steps in program verifica-
tion (together with the handling of loops). In place of recursion, an automated proof
strategy working with method expansion might not even terminate. Another issue is
that method expansion goes against the principle of modular verification, without
which even midsize examples become infeasible to verify. These are good reasons
for giving the user more control over this crucial proof step.

KeY therefore allows the user to configure the automated strategies such that
they refrain from expanding methods automatically.17 We try this out by loading
methodCall2.key again, and selecting None as the Method treatment option in the
Proof Search Strategy tab. Then we start the strategy, which now stops exactly at
the sequent which we discussed earlier (Figure 15.3). We can highlight the active
statement, apply first the taclet methodCall. After this step we could call method-
BodyExpand interactively. KeY would then only apply this very taclet, and stop
again.

Controlling Taclet Options

We draw out attention back to the proof of methodCall2.key. This proof has a
branch for the null case (Null Reference (p=null)), but that was closed after a few
steps, as p = null is already present, explicitly, on the right side of the sequent
(close). It is, however, untypical that absence of null references can be derived so
easily. Often, the “null branches” complicate proofs substantially.

In the KeY system the handling of null references and other runtime exceptions
can be adjusted by setting taclet options We open the taclet option dialogue, via the
main menu Options → Taclet options. Among the option categories, we select the
runtimeExceptions, observe that ban is chosen as default, and change that by selecting
allow instead. Even if the effect of this change on our very example is modest, we
try it out, to see what happens in principle.18. We then load methodCall.key and
push the play button. The proof search strategy stops with two open goals in the Null
Reference (p = null) branch. Allowing runtime exceptions in the KeY system results

17 For a discussion of loop treatment, please refer to Chapter 3 and Section 16.3.
18 Please note that changing back to default settings of KeY can be enforced by deleting the .key
directory in the user’s home directory and restarting KeY.
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in the treatment of these exceptions as specified in the Java language specification,
i.e., that exceptions are thrown if necessary and have to be considered. KeY is able
to not only consider explicit exceptions, such as throwing exceptions “by-hand,” it
is also able to map the behavior of the JVM, i.e., to treat implicit exceptions. The
proof tree branches at the point where the strategy reaches the method call p.birthday
in the modality. The branching of the proof tree results from the taclet methodCall.
One branch deals with the case, that the object on which the method is called is
nonnull and the other branch deals with the case that the object is null. Depending
on the setting of the taclet option runtimeException the null branch representing the
exceptional case in the proof looks different. At the moment we have set the option
for runtime exceptions to allow. Therefore, in the null branch the method call in
the modality is replaced by throw new java.lang.NullPointerException ().
So an exception is instantiated and thrown which allows the verified code to catch it
and to continue execution in the exceptional case. In this case the exception has to be
symbolically executed and it has to be proven that the postcondition also holds after
the exception had occurred in the program.

Loading the same file with setting the option runtimeException to ban results in a
proof stopping in the null-branch as well. If the user bans runtime exceptions in the
KeY system, KeY treats any occurrence of a runtime exception as an irrecoverable
program failure. The reader can reproduce this by comparing the node before the
branching of the proof—into Null Reference (p=null) and Normal Execution (p!=null)—
and the nodes after the split. In the node after the split the modality and the formula
succeeding the modality (postcondition) in the succedent is fully replaced by false.
This means that the program fails and therefore the postcondition will be false. If
the succedent has more formulas than the modality and the postcondition, it is still
possible to close the proof with the remaining parts of the sequent (in our case the
context). The formula is replaced by false for two reasons. The first reason is that
we do not want to take the runtime exceptions into account, therefore we replace
the modality as well as the postcondition by false. Now the prover can not consider
the case of an exception in a modality like it is the case in the option set to allow.
Secondly, it makes the verification easier because the user and the prover do not
have to deal with the symbolic execution of the implicit exception. For the remaining
examples we switch the option runtimeException to ban.

We briefly mention another very important taclet option, the intRules. Here, the
user can choose between different semantics of the primitive Java integer types byte,
short, int, long, and char. The options are: the mathematical integers (easy to use,
but not fully sound), mathematical integers with overflow check (sound, reasonably
easy to use, but unable to verify programs which depend on Java’s modulo semantics),
and the true modulo semantics of Java integers (sound, complete, but difficult to
use). This book contains a separate section on Java integers (Section 5.4), discussing
the different variants in the semantics and the calculus. Please note that KeY 2.6
comes with the mathematical integer semantics chosen as default option, to optimize
usability for beginners. However, for a sound treatment of integers, the user should
switch to either of the other semantics.
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15.3 Understanding Proof Situations

We have so far used simple toy examples to introduce the KeY system to the reader.
However, the application area of the KeY system is verification of real-world Java
programs, which are specified using the Java Modeling Language (JML). Proving the
correctness of larger programs with respect to their specification can be a nontrivial
task. s In spite of a high degree of automation, performing the remaining interactive
steps can become quite complex for the user.

In this section we give some hints for where to search for the necessary informa-
tion, and how to proceed the verification process.

We will introduce these hints on an example which will be described in more
detail in Chapter 16.

There are several potential reasons why the automated strategy stops in a state
where the proof is still open.

We first start with a simple case: the number of proof steps (adjustable in the slider
in the Proof Search Strategy pane) is reached. In this case, one may simply restart the
automated strategy by pressing the play button in the toolbar again and let the prover
continue with the proof search. Or alternatively, first increase the number of maximal
rule applications in the slider and then restart the strategy to try to continue with the
automated proof search. This can already lead to a closed proof.

However, if incrementing the number of proof steps does not lead to a successful
proof, one of the following reasons may be responsible for the automated strategy to
stop:

• there is a bug in the specification, e.g., an insufficient precondition,
• there is a bug in the program
• the automated proof search fails to find a proof and

– (some) rule applications have to be done manually,
– or automated strategies have to be adjusted,
– or both.

In the first two cases there is a mismatch between the source code and the specifi-
cation, and the automated proof search strategy is not able to find a proof because
there is none. Here the user has to review the source code and the specification in
order to fix the bug.

In the third case we are limited by the proof complexity of dynamic logic. Here
the user has to guide the prover by providing the right information, e.g., instantiations
of quantifiers, such that the prover can carry on.

We cannot give a nostrum that would allow the user to decide which of the
three cases is responsible for the prover to stop. (In fact, this case distinction is
undecidable.) We rather reach a point in the interactive proof process where the
user may have to understand aspects of the open goal in order to provide the right
information or to identify mistakes in the program or in the specification. In the
following, we give some hints for the comprehension of open goals.
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The first step in understanding what happened during the proof process is to have a
look at the proof tree. The user should start at the original proof obligation and follow
the proof tree to the open goal(s). The labels at the nodes in the proof tree already
give good hints what happened. The user may first draw the attention to the labels
which are highlighted light-blue. These indicate the nodes where taclets have been
applied that perform symbolic execution. Here the user gets an impression which
point in the control flow of the program is presented in the open goal. Moreover,
looking at branching points in the proof tree can give very useful insights. Looking
closer into the node before the proof branches may give good hints about what is
(supposed to be) proven in either of the branches.

Recall the example dealing with a method call (methodCall.key, KeY Problem
File (15.1), page 526), where the proof splits into two branches: the case where the
object on which the method is called is assumed to be not null (p!=null on the left
side of the sequent, or, equivalently, p=null on the right side of the sequent) and the
case where the object is assumed to be null (p = null on the left side of the sequent).
The labels as well as the taclet applied to the node directly before the proof split
give the information what has to be proven (i.e., in the mentioned example that the
postcondition holds in both cases, p being null and p being not null).

The next step in understanding the proof situation is to take a closer look at the
sequent of an open goal. First of all the sequent consists of a number of formulas.
Depending on the progress of the symbolic execution of the program during proof
construction and the original formula, there will also be a formula containing a modal
operator and Java statements.

A good strategy is to first finish the symbolic execution of the program by letting
the prover continue with the proof search on the branch with the open goal, such
that the modality is removed from the sequent. This strategy is also implemented
in the KeY system as so called macro proof step, which basically is a collection of
proof steps and strategies and accessible by right-clicking onto the sequent arrow
and selecting the context menu entry Auto Pilot→ Finish Symbolic Execution.

If this task is successful, we are often left with a formula in pure first-order logic
of which the validity has to be shown. However, this strategy does not always succeed.
If the user is left with a sequent still containing a modal operator, the reader should
be aware that the sequent remains in the prestate. This means that all formulas in
the sequent refer to the state before executing the program. (But please observe that
subformulas, following updates or modalities, are evaluated in different states.)

When directly looking at the sequent of an open goal the user should also keep in
mind the intuitive meaning of sequents: the left-hand side of the sequent is assumed
and one of the right-hand side formulas has to be proven. As a special case, a sequent
is valid if the left-hand side is contradictory, which may have to be exhibited by
further proof steps.

The user should also keep in mind that Γ ⇒ o = null,∆ is equivalent to Γ ,o 6=
null⇒ ∆ . This means that, instead of intuitively trying to prove o = null or ∆ , we
can think of proving ∆ under the assumption o 6= null, which is effectively the same.
The reader may again recall an example from methodCall.key, where this was
discussed earlier.
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When the user is left with a pure first-order logic formula, it may be the case that
parts of the invariants or the postcondition can not be proven. To identify those parts,
there is a strategy which in many cases helps to get further insights. This strategy is
also implemented as proof macro Full Auto Pilot and it is accessible by right-clicking
onto the sequent arrow and selecting the context menu entry Auto Pilot→ Full Auto
Pilot. We will first describe how this method basically works and apply this method
to an example afterwards.

After exhausting the automated strategy, the reader should split the proof interac-
tively doing case distinctions of each conjunct of the postcondition using for example
the taclet andRight or the cut rule. (This can also be achieved by using the proof
macro Propositional→ Propositional Expansions w splits.) After this case distinction
each branch contains only one conjunct of the postcondition. Now the user should try
to close each branch separately by either using the automated proof search strategy
on each open goal or by applying the proof macro Close provable goals below to the
node before the splits (right-clicking onto the node in the Proof pane in the proof tree
and selecting the proof macro) The branches which do not close may not be provable
and give hints on which part of the postcondition might be problematic.

For this we load the file PostIncMod.java, which is a slightly modified version
of the first example in Chapter 16. For demonstration purposes we have incorporated
a little mistake in the code or its specifications. For a detailed description of the
example we point the reader to Chapter 16.

Java + JML
public class PostIncMod{

public PostIncMod rec;
public int x,y;

/*@ public invariant rec.x >= 0 && rec.y>= 0; @*/

/*@ public normal_behavior
@ requires true;
@ ensures rec.x == \old(rec.y)+1 && rec.y == \old(rec.y)+1;
@*/

public void postInc(){
rec.x = rec.y++;

}
}

Java + JML

The special Java comments /*@ ... @*/ mark JML annotations in the Java
code. The keyword normal_behavior states that the method postInc() termi-
nates without throwing an exception. The method contract consists of a pre- and a
postcondition. The meaning of the contract is that if the caller of the method fulfills
the precondition, the callee guarantees the postcondition to hold after termination.
In this example the precondition is true and the postcondition says that after the
successful termination of the method the field rec.x is equal to the value of the field
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rec.y before the method call (indicated by the keyword \old) increased by one.
Similarly, the field rec.y is equal to the value of the field rec.y before the method
call increased by 1. For a more detailed description of JML we point the reader
to Chapter 7. The reader is encouraged to determine what the method postInc()
performs.

When loading this file, the Proof Management dialogue will open. In its Contract
Targets pane, we make sure that the folder PostIncMod (not PostInc) is expanded,
and therein select the method postInc() we want to verify. We are asked to select a
contract (in this case, there is only one), and press the Start Proof button. The reader
may make sure that the One Step Simplifier is turned on, and start the automated
proof search strategy. The prover will stop with one open goal where the modality is
already removed.

The reader may now search for the node where the empty modality is about to be
removed from the sequent (the last node on the open branch which is highlighted in
light blue and labeled with { }) and select that node. In the case at hand, the automated
strategy searched a little too far, so we undo some automated rule applications in
order to understand the case that could not be proved. For that we left-click on
the next node in the proof tree (where the empty modality is removed), and select
the context menu item Prune Proof. The open goal should now look similar to the
following:

KeY Output
wellFormed(heap),
self.<created> = TRUE,
PostIncMod::exactInstance(self) = TRUE,
measuredByEmpty,
self.rec.x >= 0,
self.rec.y >= 0
==>
self.rec = null,
self = null,
{heapAtPre:=heap || exc:=null ||
heap:=

heap[self.rec.y:= 1 + self.rec.y][self.rec.x:=self.rec.y]}
(self.rec.y = self.rec.x
& self.rec.y@heapAtPre = -1 + self.rec.y
& self.<inv>
& exc = null)

KeY Output

This is the point in the proof process where the prover has processed the entire
Java method postInc(). The effects of the method execution are accumulated in the
(parallel) update, which precedes the properties that must hold after postInc() (the
formulas connected with &). To determine which of the parts of the postcondition
does not hold (if any), we highlight the last formula of the sequent (by focusing
the leading { of the update), and apply the rule andRight, which splits one of the
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conjuncts. We repeat this step for as long as the is more than one conjuncts left.19

Now we have a closer look at the different sequents.
We start with the node whose last formula is:

KeY Output
{heapAtPre:=heap || exc:=null ||
heap:=heap[self.rec.y:=1+self.rec.y][self.rec.x:=self.rec.y]}
(self.rec.y@heapAtPre = -1 + self.rec.y)

KeY Output

Focusing on (the leading { of) this formula, we apply the rule One step Simplification.
This will basically apply, and thereby resolve, the parallel update as a substitution on
the equation self.rec.y@heapAtPre =-1 + self.rec.y(@heap). (Recall that
the field access self.rec.y, without @, abbreviates self.rec.y@heap). Therefore,
the last formula of the new sequent is

KeY Output
self.rec.y = -1 + self.rec.y@heap[self.rec.y:=1+self.rec.y]

[self.rec.x:=self.rec.y]
KeY Output

This formula states that the value of self.rec.y(@heap) is equal to -1 plus the
value self.rec.y on a heap that is constructed from heap through the two given
store operations. It can be instructive for the reader to try to understand whether,
and why, this formula is true. One way to do that is to, mentally, apply the axiom
(15.3) (page 527), which removes the [self.rec.x:=self.rec.y]. Then apply
the axiom (15.2), which turns self.rec.y@heap[self.rec.y:=1+self.rec.y]
into 1+self.rec.y. To prove this branch the reader may now left-click on the
sequent arrow and select the context menu entry Apply rules automatically here.

We now switch to the open goal with the following last formula:

KeY Output
{heapAtPre:=heap || exc:=null ||
heap:=heap[self.rec.y:=1+self.rec.y][self.rec.x:=self.rec.y]}
(self.rec.y = self.rec.x)

KeY Output

We again apply the rule One step Simplification onto the shown formula. The new last
formula is

KeY Output
self.rec.y@heap[self.rec.y:=1+self.rec.y]

[self.rec.x:=self.rec.y]
=

19 For postconditions with a lot of conjunctions this task can be tedious. Therefore, the KeY system
offers a proof macro called Propositional Expansions w/ splits which the user may apply
instead.
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self.rec.x@heap[self.rec.y:=1+self.rec.y]
[self.rec.x:=self.rec.y]

KeY Output

This formula says that, in a heap constructed from heap with the two given stores,
the values of self.rec.y and self.rec.x are the same. This is not true, however.
The user can see that by, again mentally, applying the axioms (15.3) and (15.2) to
the left side of the equation, resulting in 1 + self.rec.y, and axiom (15.2) to the
right side of the equation, resulting in self.rec.y.

With this technique we have encountered a mistake in our postcondition. We
should have stated rec.x==\old(rec.y) instead of rec.x==\old(rec.y)+1 in
the JML specification. The reason is that the postincrement expression (in the Java
implementation) returns the old value. A corrected version of the problem is included
in file PostIncCorrected.java. The reader is encouraged to load this file and use
the automated strategy to prove the problem. For further examples on using the KeY
system we point the reader to the tutorial chapter (Chapter 16).

15.4 Further Features

Besides the introduced features and mechanisms in this chapter, the KeY systems
employs a variety of different features. In the following we will give a glimpse into
some other useful features of KeY.

Employing External Decision Procedures

Apart from strategies, which apply taclets automatically, KeY also employs external
decision procedure tools for increasing the automation of proofs. If formulas contain
a lot of equations and inequations over terms that represent structures from different
theories it can be a good idea to use SMT solvers instead of a full theorem prover.
SMT solvers implement highly-efficient algorithms for deciding the satisfiability
of formulas over specific theories, in contrast to full theorem provers, which are
designed to work on many different domains. We refer to [Bradley and Manna, 2007]
and [Kroening and Strichman, 2008] for a more detailed introduction and description
of decision procedures and their applications.

The field of decision procedures is very dynamic, and so is the way in which
KeY makes use of them. The user can choose among the available decision proce-
dure tools by selecting the main menu item Options → SMT Solvers. We first load
generalProjection.key and then choose SMT solvers Options via the main menu
item Options. This opens the Settings for Decision Procedure dialogue. The user can
now adjust general SMT options as well as settings for individual solvers.

In the General SMT Options pane, we can choose for instance the timeout for
the SMT solvers. Timeouts are important when working with SMT solvers, as the
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search process can last very long, without necessarily leading anywhere. Here we
suggest using as a first step the default timeout settings. However, for more complex
problems, it can be useful to increase the timeout, to give the solver a better chance
to find a proof. For now we select the external decision procedure tool Z320 in the
menu on the left-hand side in the dialogue. Now we are able to adjust some settings
for the solver if needed, but for this example we leave the default settings and click
Okay. In the tool bar the Run Z3 button now appears and we can press it. This opens
a dialogue which shows the application of Z3 and whether it was successful. In this
case the dialogue says valid and the reader is now able to press the button Apply. This
closes the proof in one step(!), as the Proof tab is telling us. Decision procedures
can be very efficient on certain problems. On the down side, we sacrificed proof
transparency here.

In a more realistic setting, we use decision procedures towards the end of a
proof (branch), to close first-order goals which emerged from proving problems that
originally go beyond the scope of decision procedures.

Counterexample Generator

A feature that comes in handy when deciding whether a proof obligation is invalid
is the counter example generator in KeY. This feature is accessible by pressing the
toolbar button when a proof state is loaded. The mechanism translates the negation
of the given proof obligation to an SMT specification and uses an SMT solver to
decide the validity of this formula. To use this feature, the SMT solver Z3_CE has to
be configured in the SMT solver options dialogue.

Model Search

If a sequent contains a lot of (in)equations, the KeY system offers the possibility to
adjust the proof search strategy to systematically look for a model. This strategy is
accessible via the Proof Search Strategy tab. It is a support for nonlinear inequations
and model search. In addition, this strategy performs multiplication of inequations
with each other and systematic case distinctions (cuts).

The method is guaranteed to find counterexamples for invalid goals that only con-
tain polynomial (in)equations. Such counterexamples turn up as trivially unprovable
goals. It is also able to prove many more valid goals involving (in)equations, but will
in general not terminate on such goals.

20 To use an external SMT solver it has to be installed beforehand and the path to the executable of
the solver has to be set in the Settings for Decision Procedure dialogue.



15.5. What Next? 539

Test Case Generation

Another feature of KeY is the automated generation of test cases, achieving high code
coverage criteria by construction. This feature is called KeYTestGen. It constructs
and analyses a (partial) proof tree for a method under test, extracts path conditions,
generates test data, and synthesizes test code. This includes the generation of test ora-
cles, or alternatively the usage of the OpenJML runtime checker. Test case generation
is accessible by pressing the button right after starting a proof for the method under
test. The usage and underlying principles of test generation with KeY are described
in detail in Chapter 12. In particular, the ‘Quick Tutorial’ (Section 12.2) offers a
quick introduction into the usage of KeYTestGen to a new user.

15.5 What Next?

In this chapter, we introduced the usage of the KeY prover, in parallel to explaining
the basic artifacts used by KeY, the logic, the calculus, the reasoning principles, and
so on. As we did not assume the reader to be familiar with any of these concepts prior
to reading this text, we hope we have achieved a self contained exposition. Naturally,
this imposed limits on how far we could go. The examples were rather basic, and
discussed in depth. Demonstrating the usage of KeY in more realistic scenarios is
not within the scope of this chapter. However, this book contains the tutorial ‘Formal
Verification with KeY’ (Chapter 16), which lifts the usage of KeY to the next level. It
discusses more realistic examples, more involved usage of the tool, and solutions to
archetypal problems of verification. We therefore encourage the reader to not stop
here, but continue to learn more about how KeY can be used for program verification.



Chapter 16
Formal Verification with KeY: A Tutorial

Bernhard Beckert, Reiner Hähnle, Martin Hentschel, Peter H. Schmitt

16.1 Introduction

This chapter gives a systematic tutorial introduction on how to perform formal
program verification with the KeY system. It illustrates a number of complications
and pitfalls, notably programs with loops, and shows how to deal with them. After
working through this tutorial, you should be able to formally verify with KeY the
correctness of simple Java programs, such as standard sorting algorithms, gcd, etc.
This chapter is intended to be read with a computer at hand on which the KeY system
is up and running, so that every example can be tried out immediately. The KeY
system, specifically its version 2.6 used in this book, is available for download from
www.key-project.org. The example input files can be found on the web page for this
book, www.key-project.org/thebook2, as well as in the examples directory of your
KeY system’s installation.

In principle, this chapter can be read on its own, but one should be familiar with
basic usage of the KeY system and with some fundamental concepts of KeY’s program
logic. Working through Chapter 15 gives sufficient background. The difference
between Chapter 15 and the present chapter is that the former focuses on usage
and on interaction with the KeY system by systematically explaining the input and
output formats, as well as the possibilities for interaction with the system. It also uses
exclusively the KeY GUI (see Figure 1.1) and is concerned with problems formulated
in first-order logic or dynamic logic. Figure 15.1 on page 496 displays an overview
of the entire verification process.

In the present chapter we mainly look at JML annotated Java programs as inputs
and we target the verification process as a whole, as illustrated in Figure 16.1. It
shows the whole work flow, including specification annotations written in the Java
Modeling Language (JML), the selection of verification tasks, symbolic execution,
proving of first-order proof obligations, followed by a possible analysis of a failed
proof attempt. In addition, there is a section on how to perform verification using the
Eclipse integration of the KeY system.
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Figure 16.1 The KeY verification workflow

When the input to the KeY system is a .java rather than a .key file, then it
is assumed that the Java code has annotations in JML in the form of structured
comments of the source code. Chapter 7 provides a thorough introduction to JML.
We give sufficient explanations to understand the examples in this chapter to make
it self-contained (after all, JML is marketed as being easily understandable to Java
programmers), but we avoid or gloss over the finer points and dark corners of that
language.

The organization of the material in this chapter is as follows: In Section 16.2 we
illustrate the basic principles of program verification with KeY by way of a simple,
loop-free program: JML annotations, loading of problems, selection of proof tasks,
configuration of the prover, interactive verification, representation of the symbolic
heap. This is followed by Section 16.3 which gives a hands-on introduction into
the craft of designing adequate loop invariants and how they are used in KeY. Sec-
tions 16.4 and 16.5 walk you through a more complex example (selection sort on
arrays). We demonstrate advanced aspects of finding a proof: understanding interme-
diate states and open subgoals, specifying complex functional properties, working
with method contracts, working with model elements in specifications, using strategy
macros, guiding the prover when it cannot find a proof itself. Finally, Section 16.6
describes how the Eclipse integration of KeY can be used to automatically manage
proofs so that user interaction is only required if a proof is not automatically closable.
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16.2 A Program without Loops

1 public class PostInc{
2 public PostInc rec;
3 public int x,y;
4

5 /*@ public invariant
6 @ rec.x>=0 && rec.y>=0;
7 @*/
8

9 /*@ public normal_behavior
10 @ requires true;
11 @ ensures rec.x == \old(rec.y) &&
12 @ rec.y == \old(rec.y)+1;
13 @*/
14 public void postinc() {
15 rec.x = rec.y++;
16 }
17 }

Listing 16.1 First example: Postincrement

We start with a first simple Java program shown in Listing 16.1. The class
PostInc has two integer fields x and y declared in line 3. The only method in
the class, postinc(), declared in lines 14–15, sets x to y and increments y. To make
things a little more interesting these operations are not performed on the this object,
but on the object given by the field rec in line 2. The rest of the shown code are
JML comments. In lines 5–6 an invariant is declared. An invariant, as the name is
supposed to suggest, is—roughly—true in all states. The states during which the
variables contained in the invariant are manipulated have, e.g., to be excepted from
this requirement. The details of when invariants precisely are required to hold are
surprisingly thorny. Detailed explanations are contained in Section 7.4. For now it
suffices to understand that invariants may be assumed to hold at every method call
and have to be established after every method termination.

Lines 9–13 are filled with a JML method contract. A contract typically consists of
two clauses (we will later see more than two): a precondition signaled by the keyword
requires and a postcondition following the keyword ensures. As with real-life
contracts, there are two parties involved in a method contract. The user of a method
has to make sure that the precondition is true when the method is called and may
depend on the fact that the postcondition is true after termination of the method. The
second party, the method provider, has the liability to guarantee that after termination
of the method the postcondition is true, provided the precondition was met in the
calling state. In the example there is no precondition, more precisely the precondition
is the Boolean constant true that is true in any state. The postcondition in this case
is just the specification of the postincrement operator _++. We trust that the reader
has figured out that an JML expression of the form \old(exp) refers to the value of
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exp before the execution of the method. The postcondition in itself does not make
any claims on the termination of the method. It is a partial correctness assertion: if
the method terminates, then the postcondition will be true. In the specific example,
termination is asserted by the declaration of the specification case in line 9 as a
normal_behavior. When a normal behavior method is called in a state satisfying
its precondition, it will terminate and not throw an exception.

To see what KeY does with the annotated program from Figure 16.1, start the
KeY system as explained in the beginning of Section 15.2. The file PostInc.java
is loaded by File→ Load (or selecting in the tool bar) and navigating through the
opened file browser. This is the same as loading .key files as described in Chapter 15;
the result however is different. The Proof Management window will pop up. You will
notice that not only the file you selected has been loaded but also all other .java
files in the same directory. So, you could just as well have selected the directory
itself. You may now select in the Proof Management window a .java file, a method
and a contract. For this experiment we choose the contract JML normal_behavior
operation contract 0 for method postinc() in file PostInc.java and press
the Start Proof button. The verification task formalized in Dynamic Logic will now
show up in the Current Goal pane. Since we try to discharge it automatically we do
not pay attention to it. We rather look at the Proof Search Strategy tab in the lower
left-hand pane and press the Defaults button in its top right corner. You may slide the
maximal rule application selector down to 200 if you wish. All that needs to be done
is to press the Start button (to the left of the Defaults button or in the tool bar). A
pop-up window will inform you that the proof has been closed and give statistics on
the number and nature of rule applications. In the Proof tab of the original window
the proof can be inspected.

The fact that the invariant rec.x>=0 && rec.y>=0 can be assumed to be true
when the method postinc() is called did not contribute to establish the postcondi-
tion. But, the automatic proof did include a proof that after termination the invariant
is again true. You can convince yourself of this by investigating the proof tree. To do
this move the cursor in the Proof tab of the lower left-hand pane on the first node, or
any other node for that matter, of the proof tree and press the right mouse button. A
pop-up menu will appear. Select the Search entry. A search pane at the very bottom
of the Proof tab will show up. Enter inv in it. Press the button to the left of the text
field. The first hit, shown in the Goal pane, will be self.<inv> that corresponds to
the assumption of the invariant at the beginning. Another push on the button yields
the next hit of the form h[self.<inv>]. Here, h is a lengthy expression denoting
the heap after termination of the method. This is the formalization of the claim that
the invariant is true in the poststate. The green folder symbol shows that this claim
could be proved successfully. You can now save the proof by selecting File→ Save.
Let us agree that we accept the suggested file name PostInc.proof. We remark,
that you can also save a partial proof and later load it again to complete it.

There is one more topic that we want to discuss with the PostInc example at
hand: pretty printing. We start by loading the file PostInc.proof that contains the
finished proof for the verification task we have just gone through. After loading
finishes the tree of the closed proof can be inspected in the Proof tab. Click on proof
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node 13:exc=null;. The Inner Node pane now shows the sequent at this proof node.
We first focus on the second line self.<created> = TRUE. In the View menu the
option Use pretty syntax is checked in the standard setting. Uncheck it and let us
investigate what happened. Line 2 now reads

boolean::select(heap,self,java.lang.Object::<created>) = TRUE.

Here, boolean::select is the ASCII rendering of the function selectboolean. In
general A::select renders the functions selectA introduced in Figures 2.4 and 2.11.
In the same formula, <created> is expanded to java.lang.Object::<created>.
We thus first observe that pretty printing omits the typing of functions, predicates and
fields which in most cases is either fixed in the vocabulary or can be inferred from
the context. If nothing helps, you may have to resort to switching pretty printing off.
But, the important part is that pretty printing hides the dependence of evaluations on
the current heap which is modeled by the attribute heap. This parallels the habit that
most programmers omit most of the time to explicitly name the this object. For a
field f of type B in class A and a term t of static type A, the following abbreviation
will be used for pretty printing:

PP(B::select(heap,t,A::$f)) = PP(t).f

Note, that in the next line PostInc::exactInstance(self) = TRUE remains
unchanged by pretty printing since the functions exactInstanceA do not depend on
the heap.

When running a Java program all evaluations are done with respect to the current
heap. But, in verifying properties of programs we need to talk about evaluations
in different heaps. It is frequently the case that we want to compare the value of a
field before the program is run with its value in the terminating state. What does
pretty printing do in case evaluation is not with respect to the current heap? To see
an example we look at the line that contains the end \> of the ASCII version of the
diamond operator:

self.rec.y@heapAtPre = self.rec.x

Without pretty printing it looks

KeY Output
int::select(heapAtPre,

PostInc::select(heapAtPre,
self,
PostInc::$rec),

PostInc::$y)
=

int::select(heap,
PostInc::select(heap,self,PostInc::$rec),
PostInc::$x)

KeY Output

The general rule may be stated as
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PP(B::select(H,t,A::f)) = PP(t).f@H .

Applying this literally to the term at the right (upper) side of the above equation we
would obtain:

(self.rec@heapAtPre).y@heapAtPre

There is a second rule that allows the pretty printer to abbreviate (t0.t1@H).t2@H
by t0.t1.t2@H.

Another pretty printing feature, which does not occur in the current example but
will pop up in the next section, concerns array access. The pretty printed expression
a[pos2]@H stands for the full version int::select(H,a,arr(pos2)).

The heap independent function arr : Int → Field (see Figures 2.4 and 2.11)
associates with every integer i a field that stands for the access to the i-th en-
try in an array. Note, that JFOL is again more liberal than Java. We may write
A::select(h,a,arr(i)) even for i greater than the array length, for negative i, or
even when a is not of array type.

The general pretty printing rule is

PP(A::select(H,e,arr(a))) = PP(e)[PP(a)]@H

if the declared type of e is A[]. Furthermore, @H will be omitted if H equals heap.

16.3 A Brief Primer on Loop Invariants

16.3.1 Introduction

Finding suitable loop invariants is considered to be one of the most difficult tasks
in formal program verification and it is arguably the one that is least amenable to
automation. For the uninitiated user the ability to come up with loop invariants that
permit successful verification of nontrivial programs is bordering on black magic.
We show that, on the contrary, the development of loop invariants is a craft that can
be learned and applied in a systematic manner.

We highlight the main difficulties during development of loop invariants, such as
strengthening, generalization, weakening, introducing special cases, and we discuss
heuristics on how these issues can be attacked. Systematic development of loop
invariants also involves close interaction with a formal verification tool, because it
is otherwise too easy to overlook errors. To this end, we demonstrate a number of
typical interaction patterns with the KeY system.

This section has necessarily some amount of overlap with Section 3.7.2, but it
is written in a less formal manner and it concentrates on the pragmatics of loop
invariant rules rather than on their formal definition. It is assumed that you have
acquired a basic understanding of how the KeY prover works, for example, by reading
Chapter 15. Even though proving problems involving recursive methods share some
problems with proofs about loops, we concentrate here on the latter, because KeY
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uses somewhat different technical means to deal with recursion. Some information
on proving recursive programs is found in Chapter 9.

16.3.2 Why Are Loop Invariants Needed?

Students who start in Computer Science are often puzzled by the question why such
a complex and hard to grasp concept as loop invariants is required in the first place.
In the context of formal verification, however, their need is easily motivated. In
Chapter 3 it is explained how the calculus of JavaDL realizes a symbolic execution
engine for Java programs. When, during symbolic execution, a loop1 is encountered,
symbolic execution attempts to unwind the loop, using the rule from Section 3.6.4:

loopUnwind
=⇒ 〈π if (e) { p while (e) p } ω〉φ

=⇒ 〈π while (e) p ω〉φ

If the loop guard is evaluated to true in the current symbolic state, then the loop
body p is symbolically executed once and afterwards the program pointer is at the
beginning of the loop once again. Otherwise, symbolic execution continues with the
code ω following the loop.

Obviously, this works only well, when the number of iterations of the loop is
bounded by a small constant. This is not the case in general, however. A loop
guard might, for example, look like i < a.length, where a is an arbitrary array of
unknown length.

To reason about unbounded loops or even about loops whose body is executed very
often (for example, 0 <= i && i < Integer.MAX_VALUE), some kind of induc-
tion principle is necessary that permits to prove properties of unbounded structures
in a finite manner.

16.3.3 What Is A Loop Invariant?

First of all, a loop invariant always relates to some loop that occurs at a specific
location in a given program. In the following we assume it is clear which loop is
meant when we speak of “the loop.”

In the context of KeY, a loop invariant is a formula inv ∈ DLFml that holds in the
program state at the beginning of the loop and in the state immediately after each
execution of the loop body. If the loop terminates, this means that the invariant holds
also in the state where continuation of the given program after the loop commences.
As a consequence, if we manage to prove that a formula inv is a loop invariant, then

1 To avoid obscuring the essential points with technical complexities, we concentrate in this section
on while loops. Moreover, we assume that the loop body does not throw any exceptions and does
not contain break, continue, or return statements.
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it can be used during symbolic execution of the continuation after the loop. In this
way, loop invariants indeed allow us to reason about programs containing unbounded
loops.

The considerations in the previous paragraph can be formalized in a first attempt
at a loop invariant rule for JavaDL. To simplify things a little, we assume that the
program in the loop guard and loop body do not access the heap.

Γ =⇒{u}inv, ∆

inv, g .= TRUE =⇒ [p]inv

inv, g .= FALSE =⇒ [π ω]ϕ

(initially valid)
(preserved by body)

(use case)
loopInvariant1

Γ =⇒{u}[π while(g)p; ω]ϕ, ∆

The first premiss states that inv holds in the program state at beginning of the loop,
the second premiss states that if inv holds in any state that evaluates the loop guard
to true—i.e., the loop is entered—then it also holds in the final state after symbolic
execution of the loop body, provided that it terminates. Finally, the third premiss
permits to use the invariant plus the negated loop guard to prove correctness of the
continuation (use case).

Soundness of the loop invariant rule rests on an inductive argument that runs as
follows:

Induction Hypothesis: For any n ≥ 1 the invariant inv holds in the state at the
beginning of the n-th execution of the loop body.

Induction Base: The invariant inv holds in the state at the beginning of the first
execution of the loop body, i.e., in the state where symbolic execution of the loop
commences. This is exactly what the first premiss says.

Induction Step: If inv holds in the state at the beginning of the n-th execution of
the loop body, and if the loop is entered at least one more time, then inv holds
again after execution of the loop body, i.e., in the state at the beginning of the
n+1-st execution of the loop body.

The problem is that we do not know in which state we are at the beginning of the
n-th execution. This problem can be addressed by proving a somewhat more general
induction step which does not require that knowledge:

“For any program state, if inv holds in it at the beginning of the n-th execution of the loop
body, and if the loop is entered at least one more time, then inv holds again in the state after
execution of the loop body.”

The latter clearly implies the Induction Step above and it is exactly what is
expressed in the second premiss of the invariant rule. Observe that the contexts Γ , ∆ ,
and {u} were removed from the sequent to ensure that the induction step is indeed
valid in any program state.

Similarly, we don’t know in which state we are when the loop terminates, so the
context information is erased from the third premiss as well. This means that any
information from the context that might be needed in the proof of the continuation
must be part of the loop invariant. Obviously, this is not very practical and we will
come back to this issue. But now let us look at our first concrete loop invariant.
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16.3.4 Goal-Oriented Derivation of Loop Invariants

We start by the observation that any loop has the trivially valid invariant true. Indeed, a
glance at the invariant rule above shows that its first two premisses are straightforward
to prove whenever inv≡ true. But this trivial invariant is, of course, normally useless
to prove correctness of the continuation (i.e., the third premiss). In general, we need
to find a nontrivial formula to serve as loop invariant, but which?

Often, it is a good idea to think about what we would like to prove, i.e., to work in
a goal-oriented manner. Consider the following formula in .key file input syntax:2

KeY
n >= 0 & wellFormed(heap) ==>
{i := 0} \[{

while (i < n) {
i = i + 1;

}
}\](i = n)

KeY

Look at the postcondition i = n to be proven. What, in addition to the negated
guard i >= n, is needed to show it? Obviously, the formula i <= n is sufficient.
Therefore, let us take this formula as a candidate for our loop invariant. To establish
that inv≡ i≤ n is an invariant we must instantiate the loop invariant rule with inv as
above, Γ ≡ n≥ 0, u≡ i := 0, g≡ i< n, p≡ i = i + 1; and empty ∆ , π, ω . The
instantiated (initially valid) premiss becomes

n≥ 0 =⇒{i := 0}(i≤ n)

After update application the sequent’s succedent becomes 0≤ n, making the sequent
obviously provable. Instantiation of the second premiss (preserved by body) and
simplification of the guard expression yields:

i≤ n, i < n =⇒ [i = i + 1;](i≤ n)

The sequent’s succedent becomes after symbolic execution of the assignment and up-
date application i+1≤ n, which is clearly provable from the antecedent. Therefore,
inv≡ i≤ n is indeed a loop invariant that suffices to prove the postcondition at hand.

It is not always the case that a loop is the final statement before the postcondition.
In this case, it is necessary to infer the difference between the state after the loop and
the final state before the postcondition. For this reason, in the presence of multiple
loops it is a good idea

2 Even for programs that do not access the heap it is necessary to have the well-formedness
assumption in order to render the problem provable. This is to exclude initial states that cannot be
obtained in the Java runtime environment. We include the well-formedness constraint, because we
want to give actually provable examples, but we leave it out from the subsequent reasoning steps
for readability. The declaration of program variables, for example “int i, n;,” is omitted in the
following.
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• to develop the invariant of the loop that is closest to the end of the program first,
and

• to develop the invariant of the outermost loop first, in the case of nested loops.

16.3.5 Generalization

Let us look at a slightly more complex example, where x and y are program variables
of type integer and x0, y0 are first-order constants of the same type.

KeY
x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>
\[{

while (y > 0) {
x = x + 1;
y = y - 1;

}
}\] (x = x0 + y0)

KeY

Starting again from the postcondition, we see that the postcondition bears no
obvious relation to the guard. Hence, our first attempt at finding a loop invariant is
simply to use the postcondition itself: inv≡ x .= x0 + y0. This formula, however, is
clearly not valid at the beginning of the loop, and neither is it preserved by the loop
body.

A closer look at what happens in the loop body reveals that both x and y are
modified, but only the former is mentioned in the invariant. It is obvious that the
invariant must say something about the relation of x and y to be preserved by the
loop body. What could that be? The key observation is that in the loop body first x is
increased by one and then y is decreased by one. Therefore, the sum of x and y stays
invariant. Together with the observation that x initially has the value x0 and y the
value y0, we arrive at the invariant candidate inv≡ x+y .= x0 + y0, which is indeed
initially valid as well as preserved by the loop body.

Is this a good invariant? Not quite: the postcondition is not provable from x+y .=
x0 + y0 ∧ y≤ 0. It would be sufficient, if we knew that y≥ 0. And indeed, we have
not made use of the precondition y0 ≥ 0 which states that the initial value of y is
nonnegative. The loop guard ensures that y is positive when we enter the loop and in
the loop body it is decreased only by one, therefore, y≥ 0 is a loop invariant as well.
Using the combined invariant inv≡ x+y .= x0 + y0 ∧ y≥ 0 it is easy to prove the
example. In summary, for this example we made use of some important heuristics:

1. Generalize the postcondition into a relation about the variables modified in the
loop body that is preserved.

2. Look for unused information in the proof context that can be used to derive
additional invariants.
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3. Loop invariants are closed under conjunction: if inv1 and inv2 are loop invariants
of the same loop, then so is inv1 ∧ inv2.

16.3.6 Recovering the Context

Recall from Section 16.3.3 that our rule loopInvariant1 throws away the proof context
from the second and third premiss to ensure soundness. Let us look at an example
that illustrates the problem with this approach. Assume we want to prove something
about the following program, where a has type int[]:

Java + JML
int i = 0;
while(i < a.length) {
a[i] = 1;
i++;

}
Java + JML

Whatever property we are going to prove about the loop, we will need the precon-
dition a 6 .= null ∈ Γ to make sure that the array access does not throw a null pointer
exception. As we throw away the context, it will be necessary to add a 6 .= null to
any loop invariant. This may seem not so bad, but now assume that Γ contains a
complex class invariant that is needed during the proof of the continuation after the
loop. Again, this has to be added to the invariant. Loop invariants tend to become
impractically bulky when they are required to include relevant parts of the proof
context.

A closer look at the loop body of the program above shows that while the content
of the array a is updated, the object reference a itself is untouched and, therefore, a
precondition such as a 6 .= null ∈ Γ is an implicit invariant of the loop body. What
we would like to have is a mechanism that automatically includes all those parts of
the context into the invariant whose value is unmodified by the loop body.

As it is undecidable whether the value of a given program location is modified in
a loop body, this information must in general be supplied by the user. On the level
of JML annotations this is done with the directive “assignable l1, . . . , ln;”, where
the li are program locations or more general expressions of type \locset. These
may contain a wildcard “*” where an index or a field is expected to express that all
fields/entries of an object might get updated. For the loop above a correct specification
of its assignable locations would be “assignable i, a[*];.” KeY accepts that
assignable clause, but actually ignores the local variable i. Instead its loop invariant
rule checks the loop body and guard for any assignments to local variables and
adds these implicitly to the assignable clause. Hence, only heap locations need to be
specified as part of the assignable clause.

The intended effect of an assignable clause is that any knowledge in the proof
context that depends on the value of a location mentioned in that assignable clause
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is erased in the second and third premiss of the invariant rule. How is this realized
at the level of JavaDL? The main idea is to work with suitable updates. For value
types, such as i in the example above, it is sufficient to add an update of the form
{i := c}, where c is a fresh constant of the same type as i. Such an update assigning
fresh values to locations is called anonymizing update; details about their structure
are explained in Section 9.4.1. A context preserving invariant rule, based on the rule
LOOPINVARIANT1 above, therefore, looks as follows:

Γ =⇒{u}inv, ∆

Γ =⇒{u}{v}
(
inv∧g .= TRUE→ [p]inv

)
, ∆

Γ =⇒{u}{v}
(
inv∧g .= FALSE→ [π ω]ϕ

)
, ∆

(initially valid)
(preserved by body)

(use case)

Γ =⇒{u}[π while(g)p; ω]ϕ, ∆

where {v} is the anonymizing update for the assignable clause
assignable l1, . . . , ln;.

Observe that the proof context Γ , ∆ , {u} has been reinstated into the second and
third premiss. For object types (e.g., a[*]) more complex conditions about the heap
must be generated. KeY does this automatically for assignable clauses specified in
JML and we omit the gory details. The interested reader is referred to Section 8.2.5.

Assignable clauses should be as “tight” as possible, i.e., they should not contain
any location that cannot be modified by the loop they refer to. On the other hand,
assignable clauses must be sound: they must list all locations that possibly can be
modified. In Java care must be taken, because it is possible to modify locations even
in the guard expression. An unsound assignable clause renders the invariant rule
where it is used unsound as well. For this reason, KeY generates proof obligations
for all assignable clauses that ensure their soundness.3 The exception are local
variables where it is possible to compute a sound assignable clause by a simple
static analysis and KeY does that automatically, even when no assignable clause is
explicitly stated. Otherwise, the default declaration, when no assignable clause is
stated, is “assignable \everything;.” This should be avoided.

We close this subsection by stating the example from above with JML annotations
that are sufficient for KeY to prove it fully automatic:

Java + JML
public int[] a;
/*@ public normal_behavior
@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@ diverges true; // termination not proven
@*/

public void m() {
int i = 0;
/*@ loop_invariant

3 This proof obligation is part of the (preserved by body) branch. For ease of presentation it is not
included in the rule above.
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@ 0 <= i && i <= a.length &&
@ (\forall int x; 0<=x && x<i; a[x]==1);
@ assignable a[*];
@*/

while(i < a.length) {
a[i] = 1;
i++;

}
}

Java + JML

Observe that the local variable i is not listed in the assignable clause and that the
JML default a 6 .= null needs not to be stated in the invariant.

To maximize automation of KeY in the presence of loops, the setting Invariant
should be chosen in the Loop Treatment option of the Proof Search Strategy set-
tings (see Chapter 15). This causes the prover to look for loop_invariant and
assignable declarations in the input file and applies the loop invariant rules without
user interaction. In addition, it can be useful to set option Quantifier Treatment to
No Splits with Progs (which avoids splitting during symbolic execution) and, if the
program contains arithmetic operators * or /, to set option Arithmetic Treatment to
DefOps.

16.3.7 Proving Termination

Programs with loops may not terminate, but so far we have only looked at partial
correctness and at terminating programs. Consider, for example, the sequent:

=⇒ [i = 17; while (true) {}]i .= 42

Is it provable? It turns out that our formalism so far can correctly handle this example:
with the trivial invariant true and the declaration assignable \nothing; this is
proven automatically. Indeed, for the trivial invariant, the (initially valid) and (pre-
served by body) branches are always closable. The negated guard gives false and
from that anything is provable, including the stated postcondition. The initialization
in front of the loop is completely irrelevant and could have been left out.

On the other hand, to prove termination of a loop we need additional machinery.
In KeY we use well-founded orders, i.e. partial orders without infinite descending
chains. In this chapter we use only the natural numbers in their standard ordering
0 < 1 < 2 < · · · . The idea is to define an arithmetic expression d over program
variables that is proven to become strictly smaller, but not negative, in each loop
iteration. This is called decreasing term or variant. Since any natural number has
only a finite number of predecessors, it follows that a loop with a decreasing term
must terminate after a finite number of iterations.
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The principle is illustrated in Figure 16.2. Assume that, when we execute the loop
body the first time, the decreasing term d is evaluated to N ≥ 0. In the next iteration
it must be evaluated to a value smaller than N, and so on. After a finite number of
rounds 0 is reached. As d must be nonnegative, the loop must terminate then.

while (b) {
body

}

if (b) { body }1

...
if (b) { body }17
if (b) { body }42

Figure 16.2 Mapping loop execution into a well-founded order

The loop invariant rule for total correctness can now be derived from the version
for partial correctness in a straightforward manner, by simply adding the decreasing
term with the according proof obligations:

1. We must strengthen the invariant inv by stating that the decreasing term d stays
nonnegative, resulting in inv∧d ≥ 0.

2. The postcondition of the (preserved by body) branch must state that the value of
d is strictly less than it was at the beginning of the execution of the loop body.

The result is the following invariant rule with context preservation for termination:

Γ =⇒{u}inv, ∆

Γ =⇒{u}{v}
(
inv∧g .= TRUE∧d ≥ 0∧d′ .= d→ 〈p〉(inv∧d ≥ 0∧d > d′)

)
, ∆

Γ =⇒{u}{v}
(
inv∧g .= FALSE→ 〈π ω〉ϕ

)
, ∆

Γ =⇒{u}〈π while(g)p; ω〉ϕ, ∆

where {v} is the anonymizing update for the assignable clause
assignable l1, . . . , ln;. Moreover, d′ is a fresh integer constant.

At the level of JML, total correctness is achieved by

1. removing the partial correctness directive diverges true; from the surround-
ing contract and

2. adding a directive “decreasing d;,” where d is a decreasing term.
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This causes KeY to create suitable proof obligations with total correctness modali-
ties and to choose the terminating version of the invariant rule.

To prove that the loop in the example from the previous subsection terminates,
it is sufficient to remove the diverges true; directive and to add the directive
“decreasing a.length - i;” to the loop specification.

Sometimes a termination witnessing decreasing term of type integer is very
difficult or even impossible to find. JML and KeY support more general decreases
clauses working, e.g., with pairs or sequences. Details can be found in Section 9.1.4
on the verification of terminating recursive methods.

16.3.8 A More Complex Example

We use a slightly more complex example to illustrate a few more heuristics that can
be useful when developing loop invariants. Below is the JML specification and Java
implementation of method gcdHelp that computes the greatest common divisor (gcd)
of two integers _big and _small under the normalizing assumption that _big is at
least as large as _small which in turn is not negative. It can be used to implement a
method gcd for arbitrary numbers (not shown here).

Java + JML
public class Gcd {
/*@ public normal_behavior
@ requires _small >= 0 && _big >= _small;
@ ensures _big != 0 ==>
@ (_big % \result == 0 && _small % \result == 0 &&
@ (\forall int x;
@ x > 0 && _big % x == 0 && _small % x == 0;
@ \result % x == 0));
@ assignable \nothing;
@*/

private static int gcdHelp(int _big, int _small) {
int big = _big; int small = _small;
while (small != 0) {

final int t = big % small;
big = small;
small = t;
}

return big;
}

}
Java + JML

A result is only defined for the nontrivial case when _big is positive. In this case,
the returned value must be a common divisor of both _big and _small which is
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ensured by “_big % \result == 0 && _small % \result == 0.” In addition,
the returned value must be the greatest common divisor. This is expressed by the
quantified formula which states that any positive x that is a common divisor of _big
and _small must also be a divisor of the result and hence not greater.

The code above does not yet specify a loop invariant. We must supply a speci-
fication of the loop that allows us to prove the given contract. Obviously, the loop
doesn’t modify any location that is visible outside, therefore, we use assignable
\nothing;. The decreases term is also straightforward: small is initially nonneg-
ative and certainly it decreases whenever the loop is entered, therefore, we use
“decreasing small;.”

To develop the loop invariant we look first at the requires clause to see what could
be preserved. A quick check tells us that the properties of _big and _small also
hold for the variables big and small that are used in the loop (we introduced these
fresh names, because this results in a more readable invariant). Therefore, the first
part of our invariant is:

small >= 0 && big >= small

What else can we say about the boundaries of big and small? For example, can
big become zero? Certainly not in the loop body, because it is assigned the old value
of small which is ensured by the loop guard to be nonzero. However, it is admissible
to call the method with _big being zero, so big > 0 might not initially be valid.
Only when _big is non zero, we can assume big > 0 to be an invariant. Hence, we
add the relative invariant

_big != 0 ==> big != 0 . (16.1)

But what is the functional property that the loop preserves? In the end we need
to state something about all common divisors x of _big and _small. Which partial
result might have been achieved during execution of the loop? A natural conjecture is
to say something about the common divisors of big and small: in fact these should
be exactly the common divisors of _big and _small. Because, if not, we could run
in danger to “loose” one of the divisors during execution of the loop body. This
property is stated as(

\forall int x; x > 0; (_big % x == 0 && _small % x == 0)
<==> (big % x == 0 && small % x == 0)

)
;

We summarize the complete loop specification below. With it, KeY can prove total
correctness of gcdHelp fully automatically in a few seconds.

Java + JML
int big = _big; int small = _small;
/*@ loop_invariant small >= 0 && big >= small &&
@ (big == 0 ==> _big == 0) &&
@ (\forall int x; x > 0; (_big % x == 0 && _small % x == 0)
@ <==> (big % x == 0 && small % x == 0));
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@ decreases small;
@ assignable \nothing;
@*/

while (small != 0) {
final int t = big % small;
big = small;
small = t;

}
return big; // will be assigned to \result

Java + JML

Perhaps the reader wonders why the loop invariant is actually sufficient to achieve
the postcondition of the contract, specifically, why is it the case that the returned
value, i.e., the final value of big after the loop terminates, is a divisor of both _big
and _small? Now, this needs only to be shown when big is positive, because of
(16.1). In that case, the third part of the invariant can be instantiated with x/big.
Using that small == 0 (the negated loop guard) then completes the argument. This
kind of reasoning is easily within the first-order inference capabilities of KeY.

16.3.9 Invariants: Concluding Remarks

The discussion in this section hopefully demonstrated that loop invariants must be
systematically developed: they don’t come out of thin air or appear magically after
staring at a program for long enough. The process of loop invariant discovery is
comparable to bug finding: it is a cycle consisting of analysis of the target program,
generation of an informed conjecture and then confirmation or refutation of the
conjecture. If the latter happens, the reasons for failure must be analyzed and they
form the basis of the next attempt.

Good starting points for invariant candidates are the postcondition (what, in
addition to the negated loop guard is needed to achieve it?) and the precondition
of the problem’s contract. Another source is the result of symbolic execution of
one loop guard and body. But one such execution yields usually no invariant: it is
necessary to relate the state before and after symbolic execution of the loop body to
each other in the invariant. A good question to ask is: how can I express the partial
result computed by one execution of the loop body? Often, symbolic execution of a
few loop iterations can give good hints.

If a loop invariant that suffices to prove the problem at hand seems elusive, don’t
forget that your program or your specification of it might be buggy. Ask yourself
questions such as: does the postcondition really hold in each case? Are assumptions
missing from the precondition? Another possibility is that you attempt to use a
stronger loop invariant than is required. The Model Search feature of the KeY prover
(see Section 15.4) can be very useful to generate counter examples that give a hint,
in case some proof goal stays open.
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For complex loops, it is often the case that several rounds of strengthening and
weakening of the invariant candidate is required, before a suitable one is found.
In this case, it is a good idea to develop invariants incrementally. This is possible,
because invariants are closed under conjunction. Start with simple value bounds
and well-formedness assumptions. These may exhibit flaws in the target program
or specification already. It is also a good idea to work with relativized invariants
that can be tested separately. For example, it can be simpler to test cnd→ inv and
¬cnd→ inv separately than to work with inv directly.

Remember that there is no single loop invariant that is suitable to prove the
problem at hand, but there are typically many reformulations that do the trick. There
could be simpler formulations than the first one that comes to mind. In particular,
try to avoid quantified formulas as much as possible in invariants, because they are
detrimental to a high degree of automation in proof search.

It is recommended to use the KeY prover to confirm or to refute conjectures about
invariants, as symbolic execution by hand is slow and error-prone. If a loop occurs
within a complex context (for example, nested with/followed by other loops) it can
be useful to formulate the invariant as a separate contract and look at just that proof
obligation in isolation.

In this section we tried to give some practical hints on systematic development of
loop invariants. There is much more to say about this topic. For example, so as not
obscure the basic principles we left out the complications arising from heap access or
from abrupt termination of loop bodies. More information on how JavaDL handles
these issues can be found in Chapter 3. More complex examples of loop invariants
can be found in the subsequent section and in Part V of this book.

16.4 A Program with Loops

Listing 16.2 shows the code of a Java class Sort implementing the selection sort
algorithm. This is a simple, not very effective sorting algorithm, see e.g. [Knuth, 1998,
Pages 138—141 of Section 5.2.3]. The integer array to be sorted is stored in the field
int[] a of the class Sort. At every stage of the algorithm the initial segment a[0]
. . .a[pos-1] is sorted in decreasing order. The tail a[pos] . . .a[a.length-1]
is still unsorted but every entry a[i] in the tail is not greater than a[pos-1]. At
the beginning pos=0. On termination pos=a.length-1, which means that a[0]
. . .a[a.length-2] is sorted in decreasing order and a[a.length-1] is not greater
than a[a.length-2]. Thus the whole array is indeed sorted.

To proceed from one stage in the algorithm to the next, as long as pos is still strictly
less than a.length-1, an index idx is computed such that a[idx] is maximal
among a[pos] . . .a[a.length-1], the entries a[idx] and a[pos] are swapped
and pos is increased by one.

The main part of this algorithm is implemented in the method sort() in
lines 26 to 46 of Listing 16.2. The index of a maximal entry in the tail a[pos]
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1 public class Sort {
2 public int[] a;
3

4 /*@ public normal_behavior
5 @ requires a.length > 0 && 0<= start && start < a.length;
6 @ ensures (\forall int i; start<=i && i<a.length;a[\result] >= a[i]);
7 @ ensures start <= \result && \result < a.length;
8 @*/
9 int /*@ strictly_pure @*/ max(int start) {

10 int counter = start;
11 int idx = start;
12 /*@ loop_invariant start<=counter && counter<=a.length &&
13 @ start<=idx && idx<a.length && start<a.length &&
14 @ (\forall int x; x>=start && x<counter; a[idx]>=a[x]);
15 @ assignable \strictly_nothing;
16 @ decreases a.length - counter;
17 @*/
18 while (counter < a.length) {
19 if (a[counter] > a[idx])
20 idx = counter;
21 counter = counter+1;
22 }
23 return idx;
24 }
25

26 /*@ public normal_behavior
27 @ requires a.length > 0;
28 @ ensures (\forall int i; 0 <= i && i<a.length-1; a[i] >= a[i+1]);
29 @*/
30 void sort() {
31 int pos = 0;
32 int idx = 0;
33 /*@ loop_invariant 0<=pos && pos<=a.length && 0<=idx && idx<a.length
34 @ && (\forall int x; x>=0 && x<pos-1; a[x]>=a[x+1]) &&
35 @ (pos>0 ==>(\forall int y; y>=pos && y<a.length; a[pos-1]>=a[y]));
36 @ assignable a[*];
37 @ decreases a.length - pos;
38 @*/
39 while (pos < a.length-1) {
40 idx = max(pos);
41 int tmp = a[idx];
42 a[idx] = a[pos];
43 a[pos] = tmp;
44 pos = pos+1;
45 }
46 }
47 }

Listing 16.2 Second example: Sorting an array
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. . .a[a.length-1] of the array is returned by the method call max(pos). Method
max(int start) is given in lines 9–24 in Listing 16.2.

The specification of sort() says that this method terminates without an un-
caught exception (line 26) and upon termination array a is sorted in decreasing order
(line 28). The only precondition, a.length>0, required of method sort() is stated
in line 27. Inspection shows that the code would also handle the case a.length=0
correctly. But, the loop invariant would have to be rephrased. As it stands 0<=idx &&
idx<a.length would not be true at the beginning of the loop. There is no need to
also require that a is not the null object since JML tacitly takes this as the default.

The loop invariant starts in line 33 with the statement that the local variables pos
and idx stay within their bounds. The remaining two lines formalize the informal
description of the algorithm given a above: The formula in line 34 says that the initial
segment a[0] . . .a[pos-1] is sorted in decreasing order while line 35 contains the
formalization of the description that every entry a[i] for pos <= i < a.length+ is
not greater than a[pos-1]. This is not true for pos=0, so the condition pos>0 ==>
has to be prefixed. Line 31 specifies the locations that may at most be changed by the
loop body. See Section 16.3.6 for a general introduction of the use of assignable
clauses. Also pos and idx may be changed in the loop body, but the KeY system can
figure this out by itself. Only possible changes to heap locations need to be declared.

To allow the system to prove termination of the loop an integer expression is
needed that is never negative and strictly decreases in each loop iteration. The term
a.length-pos given in the decreases clause in line 37 serves this purpose. See
the previous Section 16.3.7 for a gentle introduction to termination proofs.

Let us now turn to the contract for method max. This method is declared to
be strictly_pure in line 9, which means that is does not change any field of
any existing object and also does not create new objects. The precondition, line 5,
requires the parameter start to be within the bounds of array a. The conjunctive
part a.length>0 is here for the same reason as in the precondition of sort. The
postcondition ensures that the returned index, denoted by the JML keyword result,
is taken from the tail segment start, . . .a.length-1, line 7, and that a[result]
is indeed maximal among a[start], . . .a[a.length-1], line 6.

The loop invariant begins in lines 12 – 13 with a declaration that the method
parameter start and the local variables counter and idx stay within their intended
ranges. In Section 16.3.9 it was proposed as a guideline for finding invariants to
look at the postcondition and the loop guard. This advice works very well in the
case at hand. In the end, i.e., when counter=a.length, we want a[idx] to be
maximal among a[start],. . . , a[a.length-1]. This suggests as an invariant that
a[idx] be maximal among a[start],. . . , a[counter-1]. This is formalized in
the formula in line 14. The frame condition in the assignable clause in line 15, and
the decreases clause in line 16 are self explanatory.

The KeY system verifies the contracts for both methods automatically with the
settings Java verif. std. Make sure that Max. Rule Applications is at least 6000. Let us
inspect the finished proof. For this open the Proof tab in the lower left-hand pane,
place the cursor over any node, activate the menu by a right mouse click and select the
Hide Intermediate Proofsteps entry. After opening some of the green folder symbols
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Figure 16.3 Condensed finished proof tree

the proof tree looks as in Figure 16.3 on the
left. The proof goals Use Axiom at the top
and Show Axiom Satisfiability at the
bottom of the first column refer to the type
or class invariant. This JML concepts was
already alluded to in Section 15.3. A type
invariant is a formula that is stipulated to be
true in any visible state. E.g., a type invari-
ant is assumed to be true at every method
call and must be verified to be true after
method termination, or as is the case in the
situation under study, the invariant axiom is

assumed to be true at the beginning of a while loop and has to be established after
its termination. For the class Sort the invariant a!=null is automatically generated
from the JML default. In general, the user may specify any invariant he believes to be
useful. To guard against the possibility that the chosen invariant is inconsistent, the
proof goal Show Axiom Satisfiability is generated and has to be discharged,
which is absolutely trivial in the present situation.

The three proof goals on the second vertical line in the screenshot 16.3 are gener-
ated when symbolic execution reaches the while loop. As explained in Section 16.3.2,
the new goals are Invariant Initially Valid, Body Preserves Invariant and Use Case.
The interesting branch is Body Preserves Invariant which has been unfolded three
times. We skip the next three columns in screenshot 16.3 and turn to the three goals
Post(max), Exceptional Post(max), and Pre(max). They are generated when
symbolic execution reaches the method call max. According to the proof settings the
method call to max is not symbolically executed, its contract is used instead. This
involves verifying that its precondition, Pre(max), is satisfied and continuing in case
max terminates exceptionally with the proof branch labeled Exceptional Post(max)
and in case of normal termination, Post(max), with the respective guarantees ensured
by the contract in both cases.

There is one more issue that can be demonstrated already with the small example
program under investigation. How precise should a postcondition be? There is the
notion of a strongest postcondition, but this is not always expressible in first-order
logic and may also be undesirably complicated. The postcondition of method max in
line 6 of Listing 16.2, e.g., is not the strongest possible. One could add that \result
is the least index of a maximal value among a[start] . . .a[a.length-1]:
(\forall int i; start <= i && i < \result; a[i]<\result)

But, that would complicate verification without being necessary in the present context.
Thus, how precise the postcondition should be may depend in what it is being used
for.



562 16 Formal Verification with KeY: A Tutorial

16.5 Data Type Properties of Programs

Listing 16.3 contains the same Java code as Listing 16.2. Also the contract for method
max is the same. The differences lie in the contract for method sort in lines 30–33
and in the declaration of model fields in lines 4–6. In the postcondition for method
sort in line 28 in Listing 16.2 an important assurance is missing: that the array a after
termination is a permutation of the array when the method was called. More precisely,
we want to say that there is a permutation σ of the integers 0, . . . ,a.length−1 such
that for all 0≤ i < a.length we have anew[i] = aold [σ(i)]. To formalize this statement
we introduce the abstract data type Seq of finite sequences. This data type is described
in detail in Section 5.2. For this tutorial it will suffice to think of a finite sequence
as mathematical function σ whose domain of definition is a finite initial segment of
the positive integers. In general the range of values of σ is quite liberal. Here, we
only encounter finite sequences of integers. A permutation is then defined as a finite
sequence that is a surjective, and thus also injective, function from its domain onto
its domain. The data type Seq contains a binary predicate seqPerm(s1,s2) with the
intended meaning, that sequence s1 is a permutation of s2. This is not to be confused
with the unary predicate seqNPerm(s) which says that s is a permutation, i.e., that
s is a bijective function from [0,seqLen(a)) onto [0,seqLen(a)), where predictably
seqLen(s) is the length of sequence s.

This seems to be the right time to point out a troubling obstacle to our idea to
use sequences and permutation to formulate the intended postcondition of method
sort: sequences and permutations do not occur anywhere in the Java code and Java
code is all JML allows us to talk about. As a solution JML offers the declaration of
model fields. In line 4 of Listing 16.3 a model field of class SortPerm named seqa
of type \seq is declared. Here, \seq simply is the JML name for the data type Seq. A
model field is a field that is only used for modeling purposes. Written as a special
comment, like all JML specifications, it is ignored by the Java compiler. Values to
model fields are assigned by the JML represents clause. In line 5 of Listing 16.3
seqa is assigned the sequence that corresponds to the field a. The transformation
from a state-dependent Java array to a state-independent object of data type Seq is
effected by the built-in function array2seq. The data type Seq and also the function
array2seq are not part of official JML. It belongs to our project specific extension
of JML, that we hope will at some time also be adopted in the official version. In
the meantime we will use the escape sequence \dl_ to signal to the JML parser
that the following item is not JML syntax and is to be passed unchanged on to the
translator from JML into our internal logic JavaDL. After these explanations we
see that line 32 in Listing 16.3 formalizes the postcondition we want: the sequence
corresponding to array a after method termination is a permutation of the sequence
corresponding to array a at method invocation. Since again seqPerm is not part of
official JML we have to use the escape \dl_seqPerm.

Now, that we understand the specification let us see how we can prove it. We start
with the taclet base configuration. To this end load any file containing JML annotated
Java code and select a contract target. This is necessary since the menu item we are
looking for, Taclet Options, is not active when no proof is loaded. Clicking on menu
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1 public class SortPerm {
2 public int[] a;
3

4 /*@ model \seq seqa;
5 @ represents seqa = \dl_array2seq(a);
6 @*/
7

8 /*@ public normal_behavior
9 @ requires a.length > 0 && 0<= start && start < a.length;

10 @ ensures (\forall int i;start<=i && i<a.length; a[\result] >= a[i]);
11 @ ensures start <= \result && \result < a.length;
12 @*/
13 int /*@ strictly_pure @*/ max(int start) {
14 int counter = start;
15 int idx = start;
16 /*@ loop_invariant start<=counter && counter<=a.length &&
17 @ start<=idx && idx<a.length && start<a.length &&
18 @ (\forall int x; x>=start && x<counter; a[idx]>=a[x]);
19 @ assignable \strictly_nothing;
20 @ decreases a.length - counter;
21 @*/
22 while (counter<a.length) {
23 if (a[counter] > a[idx])
24 idx=counter;
25 counter=counter+1;
26 }
27 return idx;
28 }
29

30 /*@ public normal_behavior
31 @ requires a.length > 0;
32 @ ensures \dl_seqPerm(seqa,\old(seqa));
33 @*/
34 void sort() {
35 int pos = 0;
36 int idx = 0;
37 /*@ loop_invariant 0<=pos && pos<=a.length && 0<=idx && idx<a.length
38 @ && \dl_seqPerm(seqa,\old(seqa));
39 @ assignable a[*];
40 @ decreases a.length - pos;
41 @*/
42 while (pos < a.length-1) {
43 idx = max(pos);
44 int tmp = a[idx];
45 a[idx] = a[pos];
46 a[pos] = tmp;
47 pos = pos+1;
48 }
49 }
50 }

Listing 16.3 Third example: Permutations



564 16 Formal Verification with KeY: A Tutorial

item Options, Taclet Options after a proof is loaded opens the Taclet Base Configura-
tion window. Somewhere in the middle of the list you see moreSeqRules. Clicking
on it shows the two options moreSeqRules:off and moreSeqRules:on. By default this
option is turned off, but we will need it to reason about permutations. After pushing
the OK button, the system will inform you that you have to instantiate a new proof for
the changes to take effect. Do this, now by loading the file SortPerm.java. Since
KeY loads all Java files in a directory we have to select in the Proof Management
window the file SortPerm and the method sort(). This proof will not close auto-
matically. The prover will need a little help from us. We want to keep interactions to
a minimum but at the same time have control over what the prover tries to do. This is
where strategy macros come into play.

Figure 16.4 Strategy macros

Placing the cursor over the sequent separation arrow ==> a click on the right mouse
button will display the list of strategy macros shown in the screenshot 16.4 above.
Alternatively, you can press the left mouse button and select the Strategy macros
menu. For now, we select the Full Auto Pilot which does the following:

1. Finish symbolic execution (another macro in itself)
2. Separate proof obligations
3. Expand invariant definitions
4. Close provable goals (another macro in itself)

Alternatively one could click on the left mouse button to obtain a selection of possible
next steps. Among them is one named Apply rules automatically here which starts the
proof search strategy only for the current goal/formula. This differs from the macro
Close provable goals below in that it runs till the maximal number of proof steps is
exhausted and may thus stop in a proof situation that is hard to figure out. So, let us
apply the Full Auto Pilot macro with the maximal number of rule applications set to
5000. One goal remains. Inspection of the proof tree shows that the open goal claims
that the loop invariant is preserved by an execution of the loop body. Above the
sequent separator ==> we find the assumption seqPerm(s1,t1), where s1 denotes
the model field seqa at the beginning of an arbitrary loop iteration and t1 stands for
seqa at the beginning of the loop. Below the sequent separator ==> we find the claim
seqPerm(s2,t2). Here t2 is a different representation for the same sequence as t1,
in which the represents clause for seqa has not yet been applied. Also s2 denotes
the value of seqa at the end of the arbitrary loop execution. Thus s2 is obtained
from s1 by swapping two entries. So we need to prove: if s1 is a permutation of
t1 (=t2) and s2 is a swap of s1, then also s2 is a permutation of t1 (=t2). There
is fortunately a taclet that provides exactly this argument. Place the cursor over the
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occurrence of seqPerm below the sequence separator, press the left mouse button
and select from the presented suggestions the taclet seqPermFromSwap. Since the
system cannot decide when it is useful to apply this taclet, i.e., when s2 is a swap of
s1, the heuristics of this taclet forbids automatic application. User interaction is thus
needed here.

Figure 16.5 After seqPermFromSwap

After rule application the lower (right) part of the sequent starts as shown in the
Snapshot 16.5. Remember that the right side of a sequent is a comma separated
disjunction. We may thus assume self.a != null and self != null and try to
prove the remaining conjunction. Place the cursor over the conjunction symbol &
and select the taclet andRight for the next step. This splits the previous conjunctive
goal into two goals, one for each conjunct. Applying the macro Close provable goals
below we see that KeY can prove both goals on its own. Make sure that Max. Rule
Applications is at least 10 000.

16.6 KeY and Eclipse

As we have seen in the previous sections the KeY system is powerful enough to
close a proof fully automatically in many situations. All that needs to be done is to
load the source code, select a contract and start the proof search strategy. After a
single contract has been proven successfully, the proof remains in the almost proven
state until the correctness of all applied contracts is shown as well. Our goal for this
section will be to achieve overall correctness, so we are interested in proving all
available proof obligations.

To achieve overall correctness is an arduous path and very likely we will not be
able to achieve it the first time. Some proofs might remain open caused by defective
method implementations or by too weak or wrong specifications. In such cases we
have to modify code or specifications. Previously unclosed proofs can then be retried
on the new code version. But also already closed proofs have to be redone since the
modification may have violated them.

Tool support for verification in such an ongoing software development process
requires the ability to react on source file changes and to store proofs consistently
with the sources. This can’t be achieved by the KeY system alone simply by the fact
that it operates on a specific version of source files. Modifications always have to be
done in a different tool which is typically an integrated development environment
(IDE) like Eclipse.
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In the following subsections we describe the usage of KeY’s Eclipse integration
[Hentschel et al., 2014c]. The main contribution is an automatic proof management
for all proof obligations in the whole project. After each change possibly outdated
proofs are determined and automatically redone. User interaction is only required if
a proof is not automatically closable.

16.6.1 Installation

The Eclipse integration of KeY and other Eclipse extensions provided by the KeY
project can be added to an existing Eclipse installation via an update-site. The
supported Eclipse versions and the concrete update-site URLs are available on the
KeY website (www.key-project.org). When reading the following sections for the
first time, we strongly recommend to have a running Eclipse installation with the
verification features at hand, so that they can be tried out immediately. We assume
that the reader is familiar with the Java perspective of the Eclipse IDE.

16.6.2 Proof Management with KeY Projects

Eclipse is a platform for different purposes including software development in differ-
ent programming languages. Source files are organized in projects of different kinds
associated with Builders that are automatically invoked when the project content
changes. A Java Project is used to develop Java applications and the associated Java
Builder automatically compiles the contained source code.

KeY’s Eclipse integration provides a new project kind named KeY Project which
is an extended Java project. The additional functionality is that the KeY Builder
automatically performs relevant proofs whenever source or proof files are modified.

To start we create an example KeY project which is automatically filled with
some content. All we have to do is to open the New Example wizard, select KeY/KeY
Project Example and finish the wizard. An empty KeY project can be created with
the help of the eponymous New Project wizard. Alternatively, it is possible to convert
an existing Java project into a KeY project via its context menu.

Performed proofs are automatically maintained in folder proofs as shown in
Figure 16.6. For each proof obligation a .proof file named after it exists.

The advantage of the maintained project structure is the compatibility with version
control systems. Thus a KeY Project can be directly shared and source files with
proofs are always committed and updated in a consistent way. Even a comparison
between different versions is possible.

http://www.key-project.org/
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Figure 16.6 KeY project with example content

16.6.3 Proof Results via Marker

Each time the KeY Builder completed a proof, the user is immediately informed
about the proof result. This is done directly in the source code as close as possible
to the proven proof obligation via so called Marker. As Figure 16.7 demonstrates,
markers are shown as icons next to the line number within the Java Editor. In this
example the method add is successfully proven ( information marker) whereas the
proof of method sub is still open ( warning marker).

The presence of warning and error markers can also be seen in view Package
Explorer. Whenever a Java source file contains a warning ( ) or error marker ( ), an
overlay image is added to the file icon. In case that a file contains both, warning
and error markers, only the more urgent error icon is shown. In addition, the most
urgent marker type is also delegated to parent folders and the project. This can be
seen in Figure 16.6 where the default package has an error overlay image, because
the error in class MultipleRecursion is more urgent than the warning in class
IntegerUtil.

To find out why the proof of method sub was not closed by the proof search
strategy all we have to do is to move the mouse over the marker icon. In general two
reasons are possible: First, the strategy could be not powerful enough to close it or
second, because the implementation or its specifications are defective.

Here, the implementation is obviously defective. We can easily fix it by replacing
return x + y with return x - y. When we save the file now, the KeY Builder
will be triggered. It performs the proofs again and updates the result marker. It
is also possible to inspect and to interactively continue proofs using the quick fix
functionality (i.e., left click on the marker icon). This opens the proof in the original
user interface of KeY as earlier discussed in this chapter. Alternatively, a proof can
be inspected using the Symbolic Execution Debugger (see Chapter 11). When an
interactively completed proof is saved back to its original location, the KeY Builder
will be triggered and in turn update the result marker.
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Figure 16.7 Closed and open proof marker

The Use Operation Contract rule requires to introduce another marker kind.
Whereas in general the applicability of rules depends only on the current sequent,
the application of method contracts requires a global correctness management to
avoid cyclic contract applications of all proofs shown in the same proof management
dialog. Such cycles are problematic because it allows one to prove everything, even
false. To avoid cyclic contract applications in the KeY system, the rule which would
cause a cycle is not applicable. The drawback is that other proofs and the order in
which they are done can influence the current proof result.

This approach does not work for a KeY Project, because we can finish a single
proof interactively without caring about other proofs. Consequently, the global
correctness check is performed as last step during a built. If a cycle is detected,
participating proofs are highlighted with an error marker ( ). An example is shown
in Figure 16.8 where methods a and b successfully prove false. Both proofs apply
the contract of the called method which forms a cycle indicated by the error marker.
The tooltip of such marker lists all participating proofs and it is our task to modify at
least one of them to break the cycle.

16.6.4 The Overall Verification Status

The view Verification Status is the best opportunity to inspect the overall verification
status. Figure 16.7 shows the status of the example project before fixing the defect in
method sub. The two progress bars at the top indicate how many proofs are already
successfully proven and how many methods are specified. Absolute numbers are
shown in the tooltips of the progress bars.
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Figure 16.8 Recursive specification marker

Figure 16.9 The overall verification status

The tree in the middle reflects the code and the specification structure. The
color of each item shows its verification result as specified by the legend below the
tree. The most problematic result is always delegated to ancestors. It is defined as
the minimal element in the following ordered list (worst to best): (i) cyclic proofs
(the usage of specifications forms a cycle; colored red), (ii) open proof (colored
orange), (iii) unspecified (no proof obligation available; colored gray), (iv) unproven
dependency (proof is closed, but an applied specification is not verified yet; colored
blue) and (v) closed proof (colored green). Here the only contract of method add
is successfully proven whereas the one of sub is still open. The default constructor
of class IntegerUtil is unspecified. The most problematic result below class
IntegerUtil is the open proof and consequently, it is colored with this result.
Finally, class MultipleRecursion contains proofs forming a cyclic specification
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use. As this is even more problematic, the result is also delegated to the package and
the project which are colored accordingly.

A warning or information icon on a contract indicates that unsound or incomplete
Taclet options are used. When we move the mouse over the contract of method add,
the opened tooltip will list the Taclet options in detail.

Finally, tab Report provides a clear HTML report of the verification status in-
cluding all the information discussed up to now. Additionally, the report lists all
assumptions made in the proofs which have to be proven outside of the current KeY
project. An example of such assumptions are for instance applied method contracts
of API methods for which the correctness is not proven within the current project.
Another example are method calls treated by inlining instead of a contract application.
In such a case KeY performs a case distinction over all possible method implementa-
tions. Consequently, we have to ensure that the overall system in which the code of
the current project is used does not influence the case distinction.



Chapter 17
KeY-Hoare

Richard Bubel and Reiner Hähnle

17.1 Introduction

In contrast to the other book chapters that focus on verification of real-world Java
program, here we introduce a program logic and a tool based on KeY that has been
designed solely for teaching purposes (see the discussion in Section 1.3.3). It is
targeted towards B.Sc. students who get in contact with formal program verification
for the first time. Hence, we focus on program verification itself, while treating
first-order reasoning as a black box. We aimed to keep this chapter self-contained so
that it can be given to students as reading material without requiring them to read
other chapters in this book. Even though most of the concepts discussed here are
identical to or simplified versions of those used by the KeY system for Java, there
are subtle differences such as the representation of arrays, which we point out when
appropriate.

Experience gained from teaching program verification using Hoare logic [Hoare,
1969] (or its sibling the weakest precondition (wp) calculus [Dijkstra, 1976]) as part
of introductory courses exposed certain short-comings when relying solely on text
books with pen-and-paper exercises:

• Using the original Hoare calculus requires to “guess” certain formulas, while
using the more algorithmic wp-calculus requires to reason backwards through
the target program, which is experienced as nonnatural by the students.

• Doing program verification proofs by hand is tedious and error-prone even for
experienced teachers. The reason is that trivial and often implicit assumptions
like bounds or definedness of values are easily forgotten. Hence, pen-and-paper
proofs often contain undiscovered minor bugs due to too weak or incomplete
specifications.

• First-order logic reasoning is typically not a part of an introduction to program
verification. But this is difficult to avoid in standard formulations of program
verification where the reduction of programs to first-order proof obligations and
first-order reasoning is interleaved.

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 571–589, 2016
DOI: 10.1007/978-3-319-49812-6 17
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KeY-Hoare mitigates the identified short-comings as follows: The first issue is
addressed by reusing the idea of symbolic state updates from JavaDL (see Chapter 3).
We designed a calculus to realize a symbolic execution style of reasoning in the same
spirit as the JavaDL calculus, but we stay close to the formalism used in a Hoare-style
calculus that extends standard Hoare triples to Hoare quadruples including symbolic
state updates. This is only a small change, which does not impede the students from
using standard text books (for example, [Tennent, 2002, Huth and Ryan, 2004]). Our
target programming language is a simple imperative while programming language
with scalar arrays. The remaining two issues have been solved by providing an easy-
to-use tool which implements our modified Hoare calculus on top of the powerful
first-order reasoning engine of KeY. Specifically, the discharge of first-order proof
obligations can be treated as a black box.

This chapter is an extended version of the paper [Hähnle and Bubel, 2008] adding
support for arrays, total correctness and worst-case execution time analysis.

17.2 The Programming Language

For KeY Hoare we focus on a simple imperative programming language whose
syntax is defined by the following grammar:
〈Program〉 ::=

(
〈Statement〉

)
?

〈Statement〉 ::= 〈EmptyStatement〉 | 〈AssignmentStatement〉 |
〈CompoundStatement〉 | 〈ConditionalStatement〉|
〈LoopStatement〉

〈EmptyStatement〉 ::= ’;’
〈AssignmentStatement〉 ::= 〈Location〉 = 〈Expression〉’;’
〈CompoundStatement〉 ::= 〈Statement〉〈Statement〉
〈ConditionalStatement〉 ::= if ’(’〈BoolExp〉’)’

’{’〈Statement〉’}’ else ’{’〈Statement〉’}’
〈LoopStatement〉 ::= while’(’〈BoolExp〉’)’ ’{’〈Statement〉’}’
〈Expression〉 ::= 〈BoolExp〉 | 〈IntExp〉
〈BoolExp〉 ::= 〈IntExp〉 〈CompOp〉 〈IntExp〉 | 〈IntExp〉 == 〈IntExp〉 |

〈BoolExp〉 〈BoolOp〉 〈BoolExp〉 | !〈BoolExp〉 |
〈Location〉 | true | false

〈IntExp〉 ::= 〈IntExp〉 〈IntOp〉 〈IntExp〉 | Z | 〈Location〉
〈CompOp〉::= < | <= | >= | > 〈BoolOp〉 ::= & | | | ==
〈IntOp〉::= * | / | % | + | - 〈Location〉 ::= IDENT | IDENT[〈IntExp〉]

The grammar used in the implementation is slightly more complex as it incorpo-
rates the usual precedence rules for operators and allows one to use parenthesized
expressions. We point out some important design decisions:

1. The programming language has only two incomparable types called boolean
and int, in particular, no array types exist. To simplify the semantics of arith-
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metic operations, the type int represents the mathematical integers Z and not a
finite integer type with overflow.

2. Program variables and arrays (referred to as 〈Locations〉 by the grammar) are
declared globally outside of the program, i.e., there are no local program variables
and arrays can only be manipulated, but not created at runtime. Arrays are
unbounded and their elements are uniquely indexed by any integer. This avoids
the need for checking boundaries when accessing array elements and to define
exceptional behavior in case an array access is out of bounds.

3. Locations are program variables or array access expressions, e.g., a[i] (with i
being an integer expression such as a program variable or number literal). Arrays
themselves are scalar arrays, referenced by name. They are neither locations nor
expressions. Let a and b denote two arrays of element type int then a == b is
not a valid comparison expression and a = b; is not a valid assignment state-
ment. On the other hand, a[7] == b[8] or a[i] = b[j]; are syntactically
valid. In addition, as a and b are different names, they denote different arrays.
This avoids the aliasing problem for arrays (that is present in Java), e.g., a[i]
and b[i] are never aliases in our language.

17.3 Background

17.3.1 First-Order Logic

Specifying a program means to express what a program is supposed to do in contrast
to how to do it. To be able to machine-check whether a given implementation
(which describes how to compute a function) adheres to its specification, we need to
define a formal language in which to write the specification as we needed one (the
programming language) to write the implementation.

The language of our choice is typed first-order logic as a small but well studied
formal language suitable to express state-based properties about the behavior of
programs. Terms and formulas are inductively defined as usual, but we also allow
expressions of the programming language as terms. This does not cause any problems,
as all expressions of our programming language are side effect free.

As usual the atomic formulas of our logic are either formulas of the form
P(t1, . . . , tn) with a (user-defined) predicate symbol P of arity n and terms t1, . . . , tn of
appropriate type or s .= t with the reserved equality symbol .= taking arbitrary terms
as arguments.

Program variables are not modeled as first-order variables but as constants (0-ary
functions). Therefore, it is not possible to quantify over program variables. This
modeling is identical to the one used by JavaDL (see Chapter 3). Program variables
are special constant symbols in the sense that they are nonrigid symbols. In contrast
to rigid symbols which are evaluated by a classical interpretation function and
variable assignment, nonrigid symbols (and hence program variables) are evaluated
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with respect to a (program) state. As a consequence the value of rigid symbols is
fixed and cannot be changed by a program, while nonrigid program variables can be
evaluated differently depending on the current execution state. A common usage of
rigid function symbols is to “store” the initial value of a program variable so that one
can refer to that value in a later execution state. In addition, built-in symbols with
a fixed semantics, such as equality .= and arithmetic operators of the programming
language, are rigid symbols.

In JavaDL the only nonrigid symbols are program variables, but for KeY-Hoare
it is useful to implement as well nonrigid unary function symbols f that map int
values to values of type int or boolean. They are used to model arrays. We permit
the notation f [i] instead of f (i) to resemble more closely the array syntax used in
programs.

Many program logics, including the original logic by Hoare [1969], model pro-
gram variables with first-order (rigid) variables. The disadvantage is that this requires
to introduce so called primed variables as in [Boute, 2006]. Each state change dur-
ing symbolic execution then causes the introduction of fresh primed variables. The
increase in the number of symbols required to specify and to prove a problem com-
promises the readability of proofs considerably. Readability, however, is a central
issue where interactive usability is concerned—not only for students at the beginner
level. A further point in favor of nonrigid symbols is to avoid confusion for students
who may just have gotten used to the static viewpoint of first-order logic.

Some useful conventions: program variables are typeset in typewriter font, logical
variables in italic. When we specify a program π we assume that all program variables
of π are contained in the first-order signature with their correct type. The semantics
of first-order formulas is interpreted over fixed domain models. Specifically, all
Boolean terms are interpreted over {true,false} and all integer terms over Z.
There are built-in function symbols for arithmetic including +, -, *, / and % and
integer comparison operators <=, <, > and >= with their standard meaning. For the
concrete formula syntax see Section 17.7.2. Apart from that, all semantic notions
such as satisfiability, model, validity, etc., are completely standard and as defined in
Chapter 2.

17.3.2 Hoare Calculus

Before we define our own version, we present a standard version of the Hoare
[1969] calculus (without arrays) to introduce some basic notions and to identify some
problematic design decisions that we avoid in our approach. As usual, the behavior
of programs is specified with Hoare triples:

{P}π {Q} (17.1)

Here, P and Q are closed first-order formulas and π is a program over locations
L = {l1, . . . , lm}. The meaning of a Hoare triple is as follows: for each first-order
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modelM = (D, I) and program state s of P, if π is started with initial values ik =
valM ,s,β (lk) (1≤ k≤m) and if π terminates with final values fk, thenM ,s f1,..., fm

l1,...,lm ,β
is a model of Q.

We can paraphrase this in a slightly more informal, but more intuitive, manner:
for a given program π over locations {l1, . . . , lm}, let us call an assignment of values
lk = vk (1≤ k ≤ m) a state s of π . What the Hoare triple then says is that if we start
π in any state satisfying the precondition P, if π terminates, then we end up in a final
state that satisfies postcondition Q.

The standard Hoare rules are displayed in Figure 17.1. We use the following
conventions for schematic variables occurring in the rules: e is an expression, b is a
Boolean expression, x is a program variable, s,s1,s2 are statements. P,Q,R, I are
closed first-order formulas. Here P{x/e} is the formula arising from P by replacing
every occurrence of the constant x by the expression e.

assignment
{P{x/e}}x=e;{P}

composition
{P}s1{R} {R}s2{Q}

{P}s1 s2{Q}
skip

{P};{P}

conditional
{P∧b .= true}s1{Q} {P∧b .= false}s2{Q}

{P}if(b){s1}else{s2}{Q}

loop
{I∧b .= true}s{I}

{I}while(b){s}{I∧b .= false}

weakeningLeft
P→ Q {Q}s{R}

{P}s{R}
weakeningRight

{P}s{Q} Q→ R
{P}s{R}

oracle
P

(P any valid first-order formula)

Figure 17.1 Rules of standard Hoare calculus.

17.4 Hoare Logic with Updates

The standard formulation of Hoare logic in Figure 17.1 has a number of drawbacks
in usability that are particularly problematic when used for teaching purposes:

• The assignment rule computes directly the weakest preconditions from a given
postcondition. Therefore the calculus requires to reason backwards through the
program. This is obviously unnatural as it requires the user to understand a
reached program state by “executing” the program in opposite direction to its
control flow.

• The compositional rule splits the proof into two subgoals and requires to provide
a formula describing the intermediate state reached in between both statements.
The standard formalization of the Hoare calculus requires this formula to be
guessed instead of being algorithmically inferred.
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• The rules for the conditional statement and loops require to apply an additional
weakening rule as preparatory step. As weakening is a purely first-order reason-
ing rule, it would be preferable to defer this step until the program is completely
eliminated and to hide it as part of the first-order reasoning process.

We overcome these issues by introducing an explicit notation that describes finite
parts of symbolic program states. This allows us to recast Hoare logic as forward
symbolic execution.

17.4.1 State Updates

State updates in our logic are almost identical to those introduced in Chapter 3. But
since we use scalar arrays and an implicit heap, the updates in this chapter are closer
to the original variant used in previous versions of the KeY system [Beckert et al.,
2007, Rümmer, 2006].

A (state) update is an expression of the form 〈Location〉 := 〈FOLTerm〉. Actually,
this is only the most simple form of an update, called elementary update. Com-
plex updates are defined inductively: if U and V are updates, then so are U , V
(sequential update), and U ‖V (parallel update) and U (V ) (update application).
Sequential updates as an explicit construct are available only in KeY-Hoare, but not
in JavaDL.

The most important kind of update is the parallel update. Consider a parallel
update of the form U = l1 := t1‖· · ·‖lm := tm. Let (D, I) be a first-order model with
domain D, interpretation I and let β denote a variable assignment. Assume a given
program state s. Then the update takes us into a state sU such that:

sU (x) =
{

tk if x = lk and l 6∈ {lk+1, . . . , lm}
s(x) if x 6∈ {l1, . . . , lm}

(17.2)

sU (a)(i) =
{

tk if k = max{ j ∈ {1 . . .m}|a[t ′] = l j ∧ valD,I,s,β (t ′) = i} exists
s(a)(i) otherwise

(17.3)
In words: the value of the locations occurring in U are overwritten with the

corresponding right-hand side. Equation (17.2) defines the case for program variables
and (17.3) for arrays. The condition l 6∈ {lk+1, . . . , lm} in (17.2) ensures that the right-
most update inU “wins” if the same location occurs more than once on the left-hand
side in U . Similarly, the max operator in the array case. Apart from that, all updates
are executed in parallel.

Updates are similar to a preamble or fixture as used in unit testing [Myers, 2004]:
a piece of code that gets you into a certain state. There is, however, a difference
between updates and code: the right-hand side of an update may contain a symbolic
first-order term, not merely a program expression. This feature is often used to
initialize a program with “arbitrary, but fixed” values.
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The significance of parallel updates lies in the following property, formally stated
in Lemma 17.1 below. Let us call two updates U and V equivalent if sU = sV for
any state s. Then for each update U there exists an equivalent parallel update V of
the form l1 := t1 ‖ · · · ‖ lm := tm.

17.4.2 Hoare Triples with Update

We extend the classical Hoare triple to a Hoare quadruple by placing an update
U in front of any program like this: [U ]π . If we are in state s the meaning is that
the program is started in state sU . Within Hoare logic we use updates as follows
(identical to JavaDL):

{P} [U ]π {Q} (17.4)

where, P, Q, and π are as above, and U is an update over the signature of P and
π . We enclose updates in square brackets to increase readability. Either one of U
and π can be empty. The meaning of this Hoare triple with update is as follows: if s
is any state satisfying the precondition P and we start π in sU , then, if π terminates,
we end up in a final state that satisfies postcondition Q. The Hoare triple with updates
is equivalent to the dynamic logic formula:

P→{U }[π]Q

17.4.3 Hoare Style Calculus with Updates

In Figure 17.2 we state the rules of a Hoare calculus with updates that has some new
features when compared to the Hoare calculus of Figure 17.1:

• Composition is turned into left-to-right symbolic execution. Thereby the inter-
mediate formula R is computed by rule application and needs not to be guessed.
While this is sufficient for completeness, it does not subsume the composition
rule as a whole as it lacks its implicit weakening.

• Weakening is delayed until after all program rules have been applied and becomes
part of first-order verification condition checking.

• We use updates for computing the result of assignments.

One advantage of weakest precondition calculation [Dijkstra, 1976] as well as
backward-execution style Hoare calculus is that an assignment can be computed
by simple substitution and no renaming of old variables is necessary. The price
to be paid for that is the not very intuitive backward-execution of programs. The
KeY program logic uses updates to achieve weakest precondition computation with
forward symbolic execution. In our eyes, this is a major pedagogical advantage:
not only follows program rule application the natural execution flow in imperative
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programs, but the whole proof process is compatible with established paradigms
such as symbolic debugging (see Chapter 11).

assignmentpv
{P} [U , x := e]s{Q}
{P} [U ]x=e;s{Q}

assignmentarr
{P} [U , a[i] := e]s{Q}
{P} [U ]a[i]=e;s{Q}

exit
` P→U (Q)
{P} [U ] {Q}

skip
{P} [U ]s{Q}
{P} [U ];s{Q}

conditional
{P∧U (b .= true)} [U ]s1;s{Q} {P∧U (b .= false)} [U ]s2;s{Q}

{P} [U ]if(b){s1}else{s2}s{Q}

loop
` P→U (I) {I∧b .= true} []s1{I} {I∧b .= false} []s{Q}

{P} [U ]while(b){s1}s{Q}

Figure 17.2 Rules of Hoare calculus with updates.

In the KeY logic as well as in the presented version of Hoare logic the rules have
a “local” flavor in the sense that each judgment (i.e., node) in the proof tree relates to
an elementary symbolic state transition during program execution.

We use the same conventions for schematic variables as above, but in addition, let
U be an update and s is either a statement or the empty string. The rules are depicted
in Figure 17.2. Let us briefly discuss each of them.

The assignment rules become easy as assignments are directly turned into updates.
We can turn the whole assignment into an update in a single step, because in our
simple language expressions have no side effects. Hence, we do not need to introduce
temporary variables to capture expression evaluation as in JavaDL. The same holds
for guards. Because we moved composition of substitutions into updates, we can
now evaluate programs left-to-right. The weakest precondition calculation is moved
into the update rules (see Figure 17.3 below).

There is one new rule called exit that is applied when a program is fully sym-
bolically executed. At this point, the update is applied which computes the weakest
precondition of the symbolic program state U with respect to the postcondition Q.
Then it is checked whether the given precondition implies the weakest precondition.
The premise of the exit rule (as well as the left-most premise of the loop rule) are
purely first-order verification conditions. This is indicated by a turnstile in order to
make clear that we left the language of Hoare triples.

The conditional rule simply adds the guard expression as a branch condition
to the precondition. Of course, we must evaluate the guard in the current state U .
As mentioned above, this requires expressions to have no side effects. It has the
advantage that path conditions can easily be read off each proof node.

The loop rule is a standard invariant rule. We exploit again that expressions have no
side effects, but also that we have no reference types. The chosen formulation stresses
the analogies to the conditional rule. The first premise says that the precondition
must be strong enough to ensure that the invariant holds after reaching the state at the
beginning of the loop. In the second premise we are not allowed to use P, because P
might have been affected by executingU . In addition, we must reset the update to the
empty one. In other words, started in any state where the loop invariant and condition
hold the invariant must hold again after execution of the loop body. In practice, one
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uses as a starting point for the invariant those parts of P that are unaffected by U .
In those parts that are modified, one typically generalizes a suitable term and adds
that to the invariant. More advice on how to choose a loop invariant can be found in
Section 16.3.

17.4.4 Rules for Updates

We still need rules that handle our explicit state updates. Specifically, we need to
(i) turn sequential into parallel updates (Section 17.4.1) and (ii) apply updates to
terms, formulas, and to other updates. For the first task we use a Lemma from
[Rümmer, 2006] (in specialized form):

Lemma 17.1. For any updates U , x := t and a[tidx] := t the updates

• U , x := t and U ‖x :=U (t) are equivalent;
• U , a[tidx] := t and U ‖a[U (tidx)] :=U (t) are equivalent.

The resulting rule is depicted together with the other update application rules in
Figure 17.3. These are rewrite rules that can be applied whenever they match. We use
the same schematic variables as before and, in addition, t, tidx are first-order terms,
P is a parallel update of the form l1 := t1‖· · ·‖lm := tm, y is a first-order variable, F
is a rigid n-ary function or predicate symbol, � is a propositional connective, and λ

is a quantifier.
U , x := t U ‖x :=U (t) U , a[tidx] := t U ‖a[U (tidx)] :=U (t)

P(x) 
{

tk if x = lk and l 6∈ {lk+1, . . . , lm}
x if x 6∈ {l1, . . . , lm}

U (y) y

P(a[tidx]) if P(tidx)
.= tidxik

then tik else . . . else if P(tidx)
.= tidxi1

then t1 else a[P(tidx)]
forP ↓a= (i1, . . . , ik)

U (F(t1, . . . , tn)) F(U (t1), . . . ,U (tn)) U (P�Q) U (P)�U (Q)

U (λy. P) λy.U (P), y 6∈ fv(U )

Figure 17.3 Rewrite rules for update computation.

The top row in Figure 17.3 contains the rules that turn sequential updates into
parallel updates. The second row contains rules for applying updates to program
and to first-order variables. There is a strong similarity between the first rule and
the semantics definition of an update (17.2) on p. 576, while first-order variables are
rigid and can never be changed by an update.

The third row shows the rule for applying a parallel update to an array access
term. This rewrite rule is more complex as we cannot syntactically decide whether
two array access expressions refer to the same location and we need in addition
to compare the indices for equality. This comparison manifests itself in a cascade
of conditional terms that check which (if any) elementary update of the parallel
update is applicable. The comparisons must be performed backwards, because of
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the last-one-wins semantics of updates (corresponding to the max operator in the
semantics definition of updates (17.3) on p. 576). In the rule we denote withP ↓a
the tuple (i1, . . . , ik) such that iz ∈P ↓a⇔ liz = a[tidxiz

] for some term tidxiz
and such

that from z1 < z2 it follows that iz1 < iz2 (with 0 < z1, z2 ≤ k). Intuitively, P ↓a
enumerates (order-preserving) all updates to array a by the parallel updateP .

Example 17.2. We demonstrate briefly how an application of a parallel update to an
array access term is rewritten. Given the parallel update

V := a[i] := 3 ‖ m := 5 ‖ a[j] := 4 ‖ b[m] := 10

The term V (a[m]) becomes

if V (m) .= j then 4 else if V (m) .= i then 3 else a[V (m)]

with V ↓a= (1,3), l1 = a[i] (tidx1 = i) and l3 = a[j] (tidx3 = j). Further applica-
tions of the update rewrite rules results in

if 5 .= j then 4 else if 5 .= i then 3 else a[5]

It can be easily seen that the resulting conditional term evaluates to 4, if for instance
i .= j .= V (m)(= 5) holds which is according to the last one-wins semantics.

The fourth and fifth row contain rules for complex terms and for formulas. These
are merely homomorphism rules propagating the update to the subterms/-formulas.
In quantified formulas, again, first-order variables cannot be affected, but as they
may occur in updates one has to ensure that no name clashes occur (fv(U ) returns
the set of first-order variables not bound in U ). Update application can be seen
as substitution of program variables with their new values with additional aliasing
checks in case of arrays.

There is no rule to apply updates to programs. Updates accumulate during the
reasoning process until symbolic execution of the target program terminates. Apply-
ing the update to the postcondition Q then computes its weakest precondition with
respect to the taken path condition.

17.5 Using KeY-Hoare

We illustrate how to prove correctness of a program using the KeY-Hoare tool along
a small example. Consider the program searchMax
max = a[0];
i = 1;
while (i < len) {

if (max < a[i]) {
max = a[i];

} else {}
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i = i + 1;
}

which retrieves the value of a maximal element of the first len elements of an array a.
The determined maximal value is stored in program variable max. We observe that
the intended functionality assumes implicitly that the value of program variable len
is at least one as otherwise no maximal element exists. Formalizing this natural
language specification yields the following initial Hoare triple with updates (where
the initial update is empty):

{len >= 1} []searchMax{\forall int j ( j >= 0∧ j < len→ max >= a[ j]); }

Such an initial Hoare triple can be easily specified in a text-based format (described
in Section 17.7.3) and loaded into the KeY-Hoare system as a proof obligation.

Moving the mouse pointer over the displayed Hoare triple allows the user to
apply the calculus rules described in Section 17.4.3 using a simple point-to-click
interface. After clicking on the highlighted program (incl. the preceding updates
for some rules) a popup menu with all applicable rules is shown (see screenshot
below). There is exactly one applicable rule for each program construct and the
system offers exactly this rule:1 by applying the program rules the user symboli-
cally executes the program step by step. The only nontrivial interaction is to pro-
vide the loop invariant for the loop rule. In the example entering the invariant
\forall int j ( j >= 0∧ j < i→ max >= a[ j]); suffices to close the proof.

Whenever first-order verification conditions are reached, the system offers a rule
Update Simplification that applies the update rules from Figure 17.3 automatically.
At this point, the user can opt to push the green Go button . Then the built-in first-
order theorem prover tries to establish validity automatically. For simple problems
discussed in the introductory courses, such as searchMax, this works quite well and
the reason that a proof could not be found is rarely rooted in insufficient reasoning
power of the underlying theorem prover. In the majority of cases an unclosable
proof points to a problem in the code or specification. It is worth to mention that the
problem is at least as often a too weak or wrong specification as it is a bug in the
code.

Inspecting open proof goals usually gives a good hint where to find the bug or
which (implicit) assumption is missing. The system allows the student to follow
the symbolic execution of the program and to concentrate on getting invariants and
specification right without needing to deal with first-order reasoning which is done
in the background by the system. It is possible to inspect and undo previous proof
steps as well as to save and load proofs.

1 The other rules displayed are propositional rules that can be applied anytime and they can be
ignored.
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17.6 Variants of the Hoare Logic with Updates

17.6.1 Total Correctness

The previous sections focused on partial correctness of programs, i.e., termination
was ignored and nonterminating programs satisfied their specification trivially. In
this section we explain the necessary changes to our calculus such that for the Hoare
triple

{P} [U ]π {Q}

to be valid, the program π must not only adhere to its functional specification but also
terminate when started in an initial state sU such that s satisfies P. In other words,
to establish the validity of a total correctness Hoare triple, we have to prove total
correctness of the program π . Total correctness is supported by our tool KeY-Hoare.

The calculus rules for total correctness are identical to those presented in Sec-
tion 17.4 except for the loop invariant rule. The new version of the loop invariant rule
is given in Figure 17.4. To ensure that a while loop terminates one has to provide a
term dec which decreases strictly monotonic after each execution of the loop body,
but stays nonnegative. The first branch of the while rule now ensures additionally that
the given term is initially greater or equal to zero. The second branch checks also that
after each loop iteration dec is strictly smaller than before, but still nonnegative. To
be able to access the old value of dec, the rule introduces a fresh (not yet used) rigid
function oldDec to capture the value of dec at the beginning of the loop iteration.

loopT

` P→U (I∧dec >= 0)
{I∧b .= true∧oldDec .= dec} []s1{I∧dec >= 0∧dec < oldDec}
{I∧b .= false} []s{Q}

{P} [U ]while(b){s1}s{Q}

where oldDec is a new function symbol of arity size(fv(dec)) (fv(dec) denotes the set of free
first-order variables in dec)

Figure 17.4 Loop invariant rule for total correctness.

The total correctness proof for the maximum search example of Section 17.5 is
almost identical for total correctness, except that when applying the loop invariant
rule the decreasing term dec has to be provided in addition to the loop invariant. For
the example, it suffices to instantiate dec with the expression len-i.

17.6.2 Worst-Case Execution Time

The most advanced variant of our Hoare logic with updates is concerned with
reasoning about simple properties about the worst-case execution time (WCET) of
a program [Harmon and Klefstad, 2007]. The calculus to reason about WCET is
presented in Figure 17.5.
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assignmentET
{P} [U , x := e,eT := eT +1]s{Q}

{P} [U ]x=e;s{Q}

skipET
{P} [U ,eT := eT +1]s{Q}

{P} [U ];s{Q}
exitET

` P→U (Q)
{P} [U ] {Q}

conditionalET

{P∧U (b .= true)} [U ,eT := eT +1]s1;s{Q}
{P∧U (b .= false)} [U ,eT := eT +1]s2;s{Q}

{P} [U ]if(b){s1}else{s2}s{Q}

loopET

` P→U (I∧dec >= 0)
{I∧b .= true∧oldDec .= dec}

[eT := eT +1]{s1}{I∧dec >= 0∧dec < oldDec}
{I∧b .= false} [eT := eT +1]s{Q}

{P} [U ]while(b){s1}s{Q}

where

• oldDec is a new function symbol of arity size(fv(dec)) as above
• eT stands for the reserved program variable executionTime which does not occur elsewhere

Figure 17.5 Loop invariant rule for execution time reasoning

The basic idea for the WCET-calculus is taken from [Hunt et al., 2006]. To
keep track of the number of executed instructions, an implicitly declared global
program variable executionTime is introduced. This program variable cannot be
directly accessed or modified by a program, but is increased implicitly as a side effect
when symbolically executing a statement. Standard statements like assignment cause
the counter to be increased by one, while in case of a branching statement like a
conditional or a loop the guard evaluation costs an additional unit.

Assume a program countdown which decreases the counter variable timer to
zero. A Hoare triple containing a WCET specification to be proven is shown in
Figure 17.6.

{ startVal >= 0 & executionTime = 0}

[timer := startVal]

while (timer>0) {
timer = timer -1;

}

{ timer = 0 & executionTime = 2*startVal + 1}

Figure 17.6 Worst-case execution time specification

The functional part of the specification states that if the program is started in
an initial state with program variable timer set to a nonnegative value then in its
final state the program variable timer has the value zero. We use a rigid constant
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symbol startVal to capture the initial value of timer so that we can refer to it in
the postcondition.

The WCET part of the specification is added to the pre- and postcondition as a
simple conjunction. The precondition states additional knowledge about the initial
value of the execution time counter. In most cases one requires that the initial value
of the executionTime counter is either equal to a fixed nonnegative but unknown
value, or as in this example, zero.

The postcondition can be used to specify either the exact number of execution
steps performed by the algorithm (as done here) or it can simply state an upper bound
for the expected execution time. The countdown algorithm is expected to require
2 ∗startVal+ 1 time units until completion. The justification for this number is
as follows: the timer is decreased by one in each loop iteration, hence, there are
startVal loop iterations where each iteration costs 2 time units (evaluation of the
loop guard plus decreasing the timer variable) plus one additional cost unit for the
final evaluation of the loop guard which terminates the loop.

Again the only nontrivial interaction is the application of the loop invariant rule.
Providing

timer>=0 & executionTime = 2*(startVal-timer)
as loop invariant and timer as decreasing term allows us to close the proof.

17.7 A Brief Reference Manual for KeY-Hoare

We conclude this chapter with a brief reference manual for KeY-Hoare to describe
the installation, input format and usage of the tool in detail.

17.7.1 Installation

The tool KeY-Hoare is available at www.key-project.org/download/hoare in three
versions: (i) a source code version, (ii) a bytecode version and as (iii) Java Web start
version which allows the user to install and start KeY-Hoare with a single click. We
describe here only the Web Start installation, detailed installation instructions for the
other options can be found on the website.

Java Web Start is included in all recent JDK and JRE distributions of Java. It
provides a simple way to run and install Java applications. If Java is installed, almost
all web browsers know how to handle Java Web Start URLs out-of-the-box; if not,
the file type jnlp needs to be associated with the application javaws. Otherwise a
click on the Web Start link on the mentioned website loads and starts KeY-Hoare.
We use a self-signed certificate, which is not trusted by a standard Java installation.
You need to accept our certificate as an exception in the dialog box that pops up.

Instead of using a browser Java Web Start can also be used from the command
line:

http://www.key-project.org/download/hoare/
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javaws http://www.key-project.org/download/hoare/download/webstart/KeY-Hoare.jnlp

After the first start no internet connection is required and KeY-Hoare can be
started in offline mode by executing javaws -viewer and selecting the KeY-Hoare
entry in the list of available applications.

17.7.2 Formula Syntax

The predicate symbols and function symbols >, >=, <, <= and = as well as +, -, *, /
and % are reserved symbols for which the usual infix notation and precedence rules
are in place.

These arithmetic relations and operations are supported with their canonical
signature and meaning. The modulo operation is defined as x%y := x− (x/y) ∗ y.
Consequently, the values of the terms 0%y and x%0 are undefined. As in JavaDL,
undefinedness is modeled by underspecification. This means that an integer value
specified as x/0 is a valid term/expression whose value is not specified a priori and
may be assigned a different integer value by different first-order interpretations.

The concrete syntax of propositional connectives is !, &, |, ->, <-> with their
obvious meaning. First-order quantified formulas are written as follows:
〈QuantifiedFormula〉 ::= 〈Quantifier〉 〈Type〉 〈LogicalVariable〉;〈FOLFormula〉
〈Quantifier〉 ::= \forall | \exists

Example 17.3. The following formula expresses that any common divisor x of the
integers a and b is as well a divisor of the integer r.
\forall int x; ((x > 0 & a % x = 0 & b % x = 0) -> r % x = 0))

17.7.3 Input File Format

Input files for KeY-Hoare must have .key or .proof as file extension. By convention
.key files contain only the problem specification, i.e., the Hoare triple to be proven
together with the necessary program variable, array and user-defined rigid function
declarations. In contrast, .proof files include in addition (partial) proofs for the
specified problem and are created when saving a proof.

The input file grammar is given in Figure 17.8. As an example the input file for the
example searchMax is shown in Figure 17.7. An input file consists of four sections:

1. The section starting with keyword \functions declares all required rigid func-
tion symbols used, for example, to assign input program variables to an arbitrary
but fixed value as described in Section 17.4.1. In Figure 17.7 this section is
empty.
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\functions {}

\arrays {
int[] a;

}

\programVariables {
int i;
int len;
int max;

}

\hoare {

{ len >=1 }

\[{
max = a[0];
i = 1;
while (i<len) {

if (max < a[i]) {
max = a[i];

} else {}
i = i + 1;

}
}\]

{ \forall int j; (j>=0 & j<len -> max >=a[j]) }

}

Figure 17.7 Input file for the searchMax example.

2. The next section starting with keyword \arrays declares the arrays that may be
used by the program or specification. In Figure 17.7 this section declares one
integer typed array a. In addition to integer typed arrays, Boolean typed arrays
are available.

3. The section starting with keyword \programVariables declares all program
variables used in the program. Local variable declarations within the program
are not allowed. Multiple declarations are permitted.

4. The section starting with keyword \hoare contains the Hoare triple with updates
to be proven valid, i.e., the program and its specification. If total correctness or
worst-case execution time of a program should be proven, the keyword \hoare
is replaced by the keyword \hoareTotal, respectively, \hoareET.
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〈InputFile〉 ::= 〈Functions〉? 〈ProgramVariables〉? 〈HoareTriple〉?

〈Functions〉 ::= \functions ’{’〈FunctionDeclaration〉∗’}’
〈FunctionDeclaration〉 ::= 〈Type〉 〈Name〉

(
’(’ 〈Type〉

(
’,’〈Type〉

)∗’)’)?’;’
〈Arrays〉 ::= \arrays ’{’〈ArrayDeclaration〉∗’}’
〈ArrayDeclaration〉 ::= 〈Type〉[] 〈Name〉

(
’,’ 〈Name〉

)∗’;’
〈ProgramVariables〉 ::= \programVariables ’{’〈ProgramVariableDeclaration〉∗’}’
〈ProgramVariableDeclaration〉 ::= 〈Type〉 〈Name〉

(
’,’ 〈Name〉

)∗’;’
〈HoareTriple〉 ::=

(
\hoare | \hoareTotal | \hoareET

)
’{’

〈PreCondition〉 〈Update〉 〈Program〉 〈PostCondition〉
’}’

〈PreCondition〉 ::= 〈FOLFormula〉

〈Update〉 ::= ’[’
(
〈AssignmentPair〉

(
\|〈AssignmentPair〉

)∗)? ’]’
〈AssignmentPair〉 ::= 〈Name〉 ’:=’ 〈FOLTerm〉

〈Program〉 ::= ’\[{’ 〈WhileProgram〉 ’}\]’
〈PostCondition〉 ::= 〈FOLFormula〉

〈Type〉 ::= int | boolean
〈Name〉 ::= character sequence not starting with a number

Figure 17.8 Input file grammar

17.7.4 Loading and Saving Problems and Proofs

After starting KeY-Hoare (see Section 17.7.1) the prover window becomes visible
(the screenshot on p. 580 is displayed in enlarged form in Figure 17.9). The prover
window consists of a menu- and toolbar, a status line and a central part split into a
left and a right pane. The upper left pane displays a list of all loaded problems. The
lower left pane offers different tabs for proof navigation or strategy settings. The
right pane displays the currently selected subgoal or an inner proof node.

Before we explain the various subpanes in more detail, the first task is to load
a problem file. This can be done either by selecting Load in the File menu or by
clicking on the icon in the toolbar ( reloads the most recently loaded problem).
In the file dialogue window that pops up the users can choose one of the examples
provided (e.g., searchMax.key) or their own files.

After the file has been loaded the right pane of the prover window displays the
Hoare triple as specified in the input file. The proof tab in the left pane should display
the proof tree consisting of a single node. The first time during a KeY-Hoare session
when a problem file is loaded the system loads a number of libraries which takes a
few seconds.
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(Partial) proofs can be saved at any time by selecting the menu item Save in the
File menu and entering a file name ending with the file extension .proof.

17.7.5 Proving

First a few words on the various parts of the prover window. The upper part of the
left pane displays all loaded problems. The lower part provides some useful tabs:

Figure 17.9 Screen shot of KeY-Hoare system

The Proof tab shows the constructed proof tree. A left click on a node updates the
right pane with the node’s content (a Hoare triple with updates). Using a right
click offers a number of actions like pruning, searching, etc.

The Goals tab lists all open goals, i.e., the leaves of the proof tree that remain to
be justified.

The Proof Search Strategy tab allows one to tune automated proof search. In case
of KeY-Hoare only the maximal number of rule applications before an interactive
step is required, and (de-)activation of the autoresume mode can be adjusted.

All other tabs are not of importance for KeY-Hoare.

The right pane displays the content of a proof node in two different modes
depending on whether the node is (a) an inner node or a leaf justified by an axiom or
(b) it represents an open proof goal.

(a) Inner Node View is used for inner nodes of the proof tree. It highlights the
formula which had been in focus at time of rule application as well as possible
necessary side formulas. The applied rule is listed on the bottom of the view.

(b) Goal View is used when an open goal is selected. This view shows the Hoare
triple to be proven and allows the user to apply rules. Moving the mouse cursor
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over the expressions within the node highlights the smallest enclosing term or
formula at the current position. A left click creates a popup window showing all
applicable rules for the currently highlighted formula or term.

17.7.6 Automation

A few remarks on automation: in our examples, the necessary interactive proof steps
consisted of manual application of program rules and invocations of the strategies to
simplify/prove first-order problems. To avoid having to start the automatic strategies
manually one can activate the autoresume mode. This will invoke the strategies on
all open goals after each manual rule application and simplify them as far as possible.
In standard mode they will not apply program rules.

For pedagogic reasons the application of the program rules which execute a
program symbolically are not performed automatically, but need to be applied inter-
actively. Except for the loop invariant rule which requires the user to provide a loop
invariant (and, if termination plays a role, a decreasing term) all other rules could be
applied automatically, because they are deterministic and require no input. To enable
automatic application of program rules (except loop) one can set the environment
variable TEACHER_MODE to an arbitrary value. With both options (autoresume and
teacher mode) activated the only required interaction in the examples above is the
application of the loop invariant.



Part V
Case Studies



18.1 Electronic Voting

Elections form a part of everyday life that has not (yet) been fully conquered by
computerized systems. This is partly due to the relatively high effort—elections
do not occur often—and partly due to little public trust in e-voting security. The
public discussion of this issue—in Germany at least—has revealed a high demand
for secure systems and in turn a projection of high costs to construct them that lead to
the introduction of electronic voting being suspended. Systems for electronic casting
and tallying of votes that are in the field in other countries (e.g., the Netherlands, the

Chapter 18
Functional Verification and Information Flow
Analysis of an Electronic Voting System

Daniel Grahl and Christoph Scheben

Electronic voting (e-voting) systems which are used in public elections need to fulfill
a broad range of strong requirements concerning both safety and security. Among
those requirements are reliability, robustness, privacy of votes, coercion resistance
and universal verifiability. Bugs in or manipulations of an e-voting system can have
considerable influence on society. Therefore, e-voting systems are an obvious target
for software verification. In addition, it makes an excellent target for a formal analysis
of secure information flow. While the individual ballots must remain confidential, the
public election result depends on these secrets. We will employ the precise analysis
technique introduced in Chapter 13, that readily includes support for this kind of
declassification.

We report on an implementation of an electronic voting system in Java. It is based
on the sElect system by Küsters et al. [2011], but reduced to its essential functionality.
Even though the actual components are clearly modularized, the challenge lies in the
fact that we need to prove a highly nonlocal property: After all voters have cast their
ballots, the server calculates the correct votes for each candidate w.r.t. the original
ballots. This case study proves the preservation of privacy of votes. Altogether the
considered code comprises 8 classes and 13 methods in about 150 lines of code of a
rich fragment of Java. The presentation in this chapter follows the works by Scheben
[2014] and Grahl [2015].

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 593–607, 2016
DOI: 10.1007/978-3-319-49812-6 18
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USA) are known to expose severe vulnerabilities. Apart from vote casting, computers
are actually used in other activities related to elections such as voter registration or
seat allocation.

A general goal is that electronic voting is at least as secure as voting with paper
ballots. This includes confidentiality of individual votes. In particular they must not
be attributable to a particular voter. But there is also an integrity issue: the final
election result must reproduce the original voter intention; no vote must be lost,
none must be manipulated. In paper-based elections, this mostly depends on trust
in the election authorities and observers. In electronic voting, the idea is to issue a
receipt to the voter, a so-called audit trail, for casting their ballot. After the votes
have been tallied, the voters can then check on a public bulletin board whether their
vote has actually been counted. This is called verifiability of the vote. To achieve
verifiability and confidentiality of individual ballots/votes at the same time appears
to be contradictory. The proposed solution is cryptography—that allows trails to be
readable only to the voter. Some electronic voting systems also try to rule out voter
coercion (by threatening or bribing). The idea is that trails and bulletin boards are
of a form such that an attacker cannot distinguish the votes even if a coerced voter
is trying to reveal his or her vote. This way, electronic voting may be even more
secure than voting using paper ballots.1 As it requires highest security guarantees,
electronic voting has been frequently designated as a natural target for verification,
e.g., by Clarkson, Chong, and Myers [2008].

18.2 Overview

We consider the sElect system implemented by Küsters et al., to be reduced to its
essential functionality. In this system, a remote voter can cast one single vote for some
candidate. This vote is sent through a secure channel to a tallying server. The secure
channel is used to guarantee that voter clients are properly identified and cannot cast
their vote twice. The server only publishes a result—the sum of all votes for each
candidate—once all voters have cast their vote. The main modification compared
to the original implementation by Küsters et al. is that messages are transmitted
synchronously instead of asynchronously.

As described by Beckert et al. [2012], the goal is to show that no confidential infor-
mation (i.e., votes) are leaked to the public. Obviously, the election result—a public
information—does depend on confidential information. This is a desired situation. In
order to allow this, the strong information flow property needs to be weakened, or
parts of the confidential information need to be declassified. Section 13.5 shows how
such a property can be formalized using Java Dynamic Logic and proven in the KeY
verification system.

1 An important practical aspect of elections is fairness. As argued by Bruns [2008], fairness requires
a profound understanding of verifiability and confidentiality not only to security experts, but to any
eligible voter. This issue is usually not considered with the present, complex systems.
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Secure declassification—in the sense that parts of the secret information is pur-
posely released (which is different from other uses of the term ‘declassification’
denoting the release of any information under certain constraints)—depends to a
certain extent on functional correctness. In an election, the public result is the sum of
the votes that result from secret ballots. In general, this cannot be dealt with using
lightweight static analyses, such as type systems or program dependency graphs,
which are still predominant in the information flow analysis world. Instead, the
problem demands for semantically precise information flow analyses as provided by
the direct formalization of noninterference in dynamic logic (Section 13.5).

18.2.1 Verification of Cryptographic Software

The sElect system uses cryptography and other security mechanisms. From a func-
tional point of view, cryptography is extremely complex and it seems largely infeasi-
ble to reason about it formally. In particular, the usual assumption in cryptography
that an attacker’s deductive power is polynomially bounded—this is called a Dolev/
Yao attacker [Dolev and Yao, 1983]—cannot be reasonably formalized. As a matter of
fact, even encrypted transmission does leak information and therefore strong secrecy
of votes—which can be expressed as noninterference—is not fulfilled: the messages
sent over the network depend on the votes and could theoretically be decrypted by
an adversary with unbounded computational power. As a consequence, information
flow analysis techniques—like the ones presented in Section 13.5—would classify
the sElect system insecure, although it is secure from a cryptographic point of view.

Küsters et al. [2011] proposed a solution to this problem: the authors showed
that the real encryption of the system can be replaced by an implementation of ideal
encryption. Ideal encryption completely decouples the sent message from the secret.
Even an adversary with unbounded computational power cannot decrypt the message.
The receiver can decrypt the message through some extra information sent over a
secret channel which is not observable by adversaries. Küsters et al. showed that
if—in the system with ideal encryption—votes do not interfere with the output to
the public channel, then the system with real encryption guarantees privacy of votes.
Therefore, it is sufficient to analyze the system with ideal encryption.

18.2.2 Verification Approach

Our approach combines functional verification and information flow verification, both
performed with KeY. The properties are specified using the Java Modeling Language
(see Chapter 7), including the extensions introduced in Section 13.4. All involved
components are completely verified for their functional behavior. Additionally, the
proof of confidentiality is based on a dynamic logic formalization of noninterference
and theorem proving as laid out by Scheben [2014, Chapter 9]. The functional
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verification lays a foundation for the confidentiality proofs as they use functional
method contracts.

In order to obtain an implementation of the system that is practically verifiable,
we have implemented a simplified system ourselves. In fact, we have implemented
several prototypes one after another, verified each of them, and refined it (and its
specification) to produce the next one. This chapter describes the final implementation
of this series, see [Grahl, 2015, Chap. 9] for the complete scene.

An alternative to the above approach is outlined in Section 18.4.1. It combines
functional correctness proofs in KeY with lightweight static information flow analysis
as proposed by Küsters et al. [2015]. The target program is transformed in such a
way that there is no declassification of information. We then prove in the KeY system
that this transformation preserves the original functional behavior. This allows the
static analyzer JOANA [Hammer, 2009, Graf et al., 2013]—which is sound, but
incomplete—to report the absence of information flow.

18.2.3 System Description

Figure 18.1 shows a UML class diagram of the considered e-voting system. The
implementation comprises, besides the clients (class Voter) and the server, an
interface to the environment and a setup. The main method of the setup models
the e-voting process itself. This is necessary because the security property—that
privacy of votes is preserved up to the result of the election—can only be formulated
with respect to a complete e-voting process rather than only the implementation of
the client and the server alone. This means that we do not have a composition of
distributed components, but a simulation of their interaction in a sequential program.

The basic protocol works as follows: First, voters register their respective client to
the server, obtaining a unique identifier. Then, they can send their vote along with
their identifier (once). Meanwhile, the server waits for a call to either receive one
message (containing a voter identifier and a vote) or to close the election and post the
result. In the former case, it fetches a message from the network. If the identifier is
invalid (i.e., it does not belong to a registered voter) or the (uniquely identified) voter
has already voted, it silently aborts the call. In any other case, the vote is counted for
the respective candidate. In the latter case, the server first checks whether a sufficient
condition to close the election holds,2 and only then a result (i.e., the number of votes
per candidate) is presented. This is illustrated in the sequence diagram in Figure 18.2.

This simplified representation hides many aspects essential to real systems. We
assume both a working identification and that identities cannot be forged. We assume
that the network does not leak any information about the ballot (i.e., voter identifier
and vote). This is meant to be assured through means of cryptography. The network
may leak—and probably will in practice—other information such as networking

2 In the present implementation, this is when all voters have voted.
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Setup
− numOfVoters : int {readOnly}
− numOfCandidates : int {readOnly}
− out : int[]

+main() : void
− publishResult() : void

Voter
− id : int {readOnly}
− vote : int {readOnly}

∼ Voter (id : int, vote : int)
+onSendBallot(server : Server) : void

numberOfVoters

1 Server
+numOfVoters : int {readOnly}
+numOfCandidates : int {readOnly}
− ballotCast : boolean[]
− votesForCandidates : int[]

∼ Server(int n, int m)
+onCollectBallot(msg : Message) : void
+onSendResult() : void
+resultReady() : boolean
+getResult() : int[]

1

1

Message
+id : int {readOnly}
+ballot : int {readOnly}

+Message(id : int, ballot : int)

�use�
�use�

NetworkClient

+send(message : byte[],
server : Server,
port : int) : void

�interface�
Environment

+untrustedOutput(x : int) : void
+untrustedInput() : int
+untrustedInput(x : int) : int

�use�

SMT

+send(msg : Message,
senderID : int,
server : Server) : void

�use�

�use�

�use�

�use�

SMTEnv

+send(messageLength : int,
senderID : int,
recipientID : int,
server : Server,
port : int) : byte[]

�use�

�use�

Figure 18.1 UML class diagram of the e-voting system

credentials. We do not need to assume that the network communication is loss-less
or must not produce spurious messages.

Listing 18.1 shows the implementation of Setup#main(). Essentially, the ad-
versary decides in the loop which client should send its vote next, until the server
signals that the result of the election is ready. More precisely, the adversary is mod-
eled through a call to the method Environment.untrustedInput(), that decides
which client should send its vote. When subsequently the method onSendBallot()
is called on the corresponding Voter object, the client sends its secret vote (stored in
the attribute vote) to the server (synchronously), with the help of ideal encryption. In
its onCollectBallot() method, the server immediately counts the vote—provided
that the voter did not vote before. Finally, the server is asked by a call to the method
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1 /*@ normal_behavior
2 @ requires (\forall int j; 0 <= j && j < numberOfVoters;
3 @ !server.ballotCast[j]);
4 @ requires (\forall int i; 0 <= i && i < numberOfCandidates;
5 @ server.votesForCandidates[i]==0);
6 @ ensures (\forall int i; 0 <= i && i < numberOfCandidates;
7 @ server.votesForCandidates[i] ==
8 @ (\num_of int j; 0 <= j && j < numberOfVoters;
9 @ voters[j].vote == i));

10 @ diverges true;
11 @*/
12 public void main () {
13 while ( !server.resultReady() ) { // possibly infinite loop
14 // let adversary decide send order
15 final int k = Environment.untrustedInput(voters.length);
16 final Voter v = voters[k];
17 v.onSendBallot(server);
18 }
19 publishResult();
20 }

Listing 18.1 Implementation and functional contract for the Setup#main() method

resultReady() whether the result of the election is ready. If so, the loop terminates
and the result is published by a call to the method publishResult().

18.3 Specification and Verification

The overall functional property to prove is that—after all votes have been cast (and
collected by the server)—the server posts the correct number of votes per candidate.
More precisely, the ‘correct number’ corresponds to the sum of votes for each
candidate as on the ballots filled in by the voters. The information flow property to
prove is that no information other than the election result is released.

18.3.1 Specification

The functional contract for the main method is shown in Listing 18.1. In the pre-
conditions, we assume that no voter has cast their vote yet (or more precisely, the
server has not yet marked the vote as cast) and all candidates have zero votes (in
the server). The postcondition states that the number of votes for each candidate
is exactly the number of voters who voted for them. This is expressed using the
generalized quantifier \num_of (see Section 7.2.2) in Line 8. The explicit diverges
clause allows this method to not terminate.
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The functional specification is augmented with an information flow contract in
Listing 18.2. The contract states that—under the condition that the server is initialized
correctly—

1. the state of the environment, abstracted by Environment.envState, depends
at most on its initial value as well as on the number of voters (Line 6);

2. The array out itself as well as each of its entries (containing the final result of
the election, Lines 8f.) depend at most on

• the number of candidates,
• the number of voters, and
• for each candidate—the correct sum of all votes for them (Lines 10ff.);

3. at most locations of the server, the environment and the result array are changed;
and

4. the election might not terminate (because the adversary might block votes of
voters forever, Line 16).

The \declassifies keyword is syntactic sugar (see Section 13.4), but stresses that
the array out only depends on a well-considered part of the secret—the correct result
of the election.

1 /*@ normal_behavior
2 @ requires (\forall int j; 0 <= j && j < numberOfVoters;
3 @ !server.ballotCast[j]);
4 @ requires (\forall int i; 0 <= i && i < numberOfCandidates;
5 @ server.votesForCandidates[i]==0);
6 @ determines Environment.envState
7 @ \by Environment.envState, numberOfVoters;
8 @ determines out, (\seq_def int i; 0; out.length; out[i])
9 @ \by numberOfCandidates, numberOfVoters

10 @ \declassifies (\seq_def int i; 0; numberOfCandidates;
11 @ (\num_of int j;
12 @ 0 <= j && j < numberOfVoters;
13 @ voters[j].vote == i));
14 @ assignable Environment.rep, out,
15 @ server.ballotCast[*], server.votesForCandidates[*];
16 @ diverges true;
17 @*/
18 public void main () { . . . }

Listing 18.2 Information flow contract for the main() method

In order to show that main() fulfills its contract, we need a loop invariant (List-
ing 18.3). In the loop invariant, we talk about a bounded sum (indicated by the
keyword \num_of in Line 4) that is defined through a nontrivial induction scheme:
the elements are not added linearly, but only under stuttering and permutation. This
makes it—at least the current machinery—impossible to prove the invariant au-
tomatically. The information flow part of the loop invariant in Lines 12ff. states
that

1. the knowledge of the environment (Environment.envState),
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1 /*@ maintaining \invariant_for(this);
2 @ maintaining (\forall int i; 0 <= i && i < numberOfCandidates;
3 @ server.votesForCandidates[i] ==
4 @ (\num_of int j; 0 <= j && j < numberOfVoters;
5 @ server.ballotCast[j]
6 @ && voters[j].vote == i));
7 @ maintaining resultReady
8 @ == (\forall int j; 0 <= j && j < numberOfVoters;
9 @ server.ballotCast[j]);

10 @ assignable Environment.rep,
11 @ server.ballotCast[*], server.votesForCandidates[*];
12 @ determines Environment.envState, resultReady, numberOfVoters,
13 @ (\seq_def int i; 0; numberOfVoters;
14 @ server.ballotCast[i])
15 @ \by \itself;
16 @*/

Listing 18.3 Loop invariant for the loop in Setup#main()

2. the fact whether the result of the election is ready,
3. the number of voters, and
4. the information which voter has already voted (stored in the cells of the array

Server#ballotCast)

depend at most on

(a) the initial knowledge of the environment,
(b) whether the result of the election initially was ready,
(c) the initial number of voters, and
(d) the initial information which voter has already voted.

As the field Setup.out is not modified by the loop, it does not need to be mentioned
explicitly in the loop invariant. The fact that the array Setup.out itself as well as
each of its entries depend at most on

• the number of candidates,
• the number of voters, and
• for each candidate the correct sum of all respective votes for them

can be derived from the contract of publishResult() (Listing 18.4) in combination
with the assurance of the loop invariant that the server calculates the result correctly.
Note that the functional knowledge that the server calculates the result correctly is
necessary for proving the declassification. Here, the tight integration of functional
and information flow-verification in our approach pays off.

The preservation of the loop invariant is proved with the help of contracts
for the methods untrustedInput(), onSendBallot() and resultReady().
The method untrustedInput() is declared in the interface Environment (List-
ing 18.5). This interface provides the connection to the environment which is con-
trolled by the attacker. It models all global sources and sinks. The state of the
environment is encapsulated in a (ghost) field of type sequence. As any computable
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/*@ normal_behavior
@ requires (\forall int i; 0 <= i && i < numberOfCandidates;
@ server.votesForCandidates[i] ==
@ (\num_of int j; 0 <= j && j < numberOfVoters;
@ voters[j].vote == i));
@ assignable out;
@ determines out, (\seq_def int i; 0; out.length; out[i])
@ \by numberOfCandidates, numberOfVoters,
@ server.votesForCandidates
@ \declassifies (\seq_def int i; 0; numberOfCandidates;
@ (\num_of int j;
@ 0 <= j && j < numberOfVoters;
@ voters[j].vote == i));
@*/

private void publishResult () { . . . }

Listing 18.4 Information flow contract of publishResult.

information can be encoded into a sequence of integers, this is a valid abstraction.
Each method of the Environment has a contract which, in essence, guarantees that
the environment cannot access any other part of the e-voting system. More precisely,
each method is required to meet the following restrictions: 1. The final state of the
environment depends at most on its initial state and the parameters of the method.
2. If the method has a result value, then also this result value depends at most on the
initial state of the environment and the parameters of the method. 3. At most the state
of the environment (represented by field envState) is modified. The untrusted input
from the environment needs to be sanitized, but still the main loop may not terminate
as voters are requested to cast their votes for an arbitrary number of times.

The specification of Environment in Listing 18.5 establishes evidence that the
information flow specification and verification approach presented in Chapter 13 can
be used for the specification and verification of interfaces and consequently also for
the specification and verification of open and interactive systems.

The method Voter#onSendBallot() generates a new message containing the
vote of the voter and sends it over the network as shown in Listing 18.6. The net-
work component is modeled by the classes NetworkClient and SMT (for ‘secure
message transfer’). In the implementation, they mainly encapsulate a single mes-
sage. Setup#onSendBallot() has two contracts. Both require that the invariant
of the server holds, and they ensure that the final state of the environment depends
at most on its initial value. They differ in the functional part: the first contract
additionally requires that the voter has not voted yet. In this case, the contract
ensures that the server counted the vote correctly by incrementing the value of
Server#votesForCandidates[vote]. The second contract requires that the voter
did already vote and guarantees in this case that the server does not count the vote
again.

The complete specification (for both functional correctness and information flow
security) of the system consists of approximately 270 lines of JML.
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public interface Environment {
//@ public static ghost \seq envState;

//@ public static model \locset rep;
//@ public static represents rep = \locset(envState);
//@ accessible rep : \locset(envState);

/*@ normal_behavior
@ ensures true;
@ assignable rep;
@ determines Environment.envState, \result
@ \by Environment.envState;
@*/

//@ helper
public static int untrustedInput();

/*@ normal_behavior
@ ensures true;
@ assignable rep;
@ determines Environment.envState
@ \by Environment.envState, x;
@*/

//@ helper
public static void untrustedOutput(int x);

/*@ normal_behavior
@ ensures 0 <= \result && \result < x;
@ assignable rep;
@ determines Environment.envState, \result
@ \by Environment.envState, x;
@*/

//@ helper
public static int untrustedInput(int x);

}

Listing 18.5 Declaration of the interface Environment.

18.3.2 Verification

For the functional verification of this implementation, there are 13 methods to be
considered, with a total of 150 lines of (executable) code and approximately 140 lines
of specification. The specification includes class invariants, method contracts, and
loop invariants. Given our overall experience in formal specification, a 1:1 ratio of
code against specification seems reasonable. Most method contracts can be proven
without much effort. For instance, the proof of the Voter#onSendBallot() method
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/*@ normal_behavior
@ requires ! server.ballotCast[id];
@ requires \invariant_for(server);
@ ensures server.votesForCandidates[vote]
@ == \old(server.votesForCandidates[vote])+1;
@ ensures server.ballotCast[id];
@ assignable server.votesForCandidates[vote],
@ server.ballotCast[id], Environment.rep;
@ determines Environment.envState \by \itself;
@ also normal_behavior
@ requires server.ballotCast[id];
@ requires \invariant_for(server);
@ ensures \old(server.votesForCandidates[vote])
@ == server.votesForCandidates[vote];
@ ensures \old(server.ballotCast[id])
@ == server.ballotCast[id];
@ assignable Environment.rep;
@ determines Environment.envState \by \itself;
@*/

public void onSendBallot(Server server) {
Message message = new Message(id, vote);
//@ set message.source = this;
SMT.send(message, id, server);

}

Listing 18.6 Contract of Voter#onSendBallot()

consists of 2,400 proof steps and takes 6s, performed by the KeY prover without
further interaction.3

Mostly due to its unconventional loop condition, the main() method could not
be verified automatically. To prove equality of sums, we had to apply the split_sum
rule several times interactively. This rule rewrites a sum comprehension into two
comprehensions over split ranges. In addition, we have added some rules representing
lemmas dealing with bounded sums to the rule base of KeY; and we have proven
their soundness. The proof for main() finally took about 63,000 proof steps, only
ten of which were applied by hand. The computation time for the automated parts of
the proofs was 580s.4

3 Time measurements have been taken on standard desktop computer (1 processor core, 1.5GHz,
4GiB RAM, Debian/Linux).
4 Please note that it is difficult to give figures for manual proofs. Firstly, the human interaction
is necessary and therefore cannot be compared against computation time. Secondly, the time for
the remaining automated rule application is not reliable as it may include time for rules applied
automatically, but reverted by the user.
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Information Flow Analysis

The subsequent verification of the information flow properties of the system took
about four days. The final information flow proof consists of 23 subproofs with about
7,800 proof steps including some user interactions. The optimizations described
in Section 13.5.1 have proven to be indispensable for the scalability of the self-
composition approach.

18.4 Discussion

In the course of this chapter, we presented an approach to verify a Java implemen-
tation of an electronic voting system. Analyses of such systems mostly target the
design or the system level. Even a system like the one presented here—which can be
considered small if measured in lines of code—poses a major challenge to formal
verification at code level. Therefore, it is not surprising that the proofs were laborious.

Actually, far more effort than in conducting the interactive proofs needed to be
put into understanding the system and developing an appropriate specification. Apart
from representing the high-level design, an appropriate specification needs to be
correct w.r.t. the program. This in turn requires early proof attempts with prototype
implementations. Our approach to first verify a very basic version and to refine it
later on turned out to be helpful in this regard. It provided clear, reachable milestones.

An interesting point is that the main complexity resides in the synthetic setup
that is used to model a deployed system and not in the components that are actually
used. It is well-known that tools intended for code verification do not perform well
at system level verification. As already noted by Woodcock et al. [2008], verifying
software that was not originally produced for the purpose of verification almost
always constitutes an ill-fated endeavor. While not of the size of system described by
Woodcock et al., we experienced this phenomenon in the (original) sElect system by
Küsters et al. The starting point of our verification was a final piece of software. In
particular, specifications had to be conceived by ourselves, using only the present
source code and informal descriptions of the components’ behavior. Although there
are no guidelines to produce well-verifiable programs, we believe that adherence
to common software engineering guidelines would render formal specification and
verification more feasible.

18.4.1 A Hybrid Approach to Information Flow Analysis

In order to perform an information flow analysis on a ‘more realistic’ implementation
of the sElect system, Küsters et al. [2015] describe a hybrid approach that combines
functional verification in KeY with a lightweight information flow analysis based on
program dependency graphs [Hammer, 2009]. In order to get the JOANA tool [Graf
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et al., 2013] to accept declassification, the original program is transformed such that
it does not have any illegal information flow by construction.

This technique is based on a simulation of noninterference in the Java code. The
secret here is only a single bit (stored in the static field Setup.secret). In the setup,
two arrays of voter objects are created according to the environment to simulate two
possible high inputs. The program aborts in case they yield nonequivalent results.
At this point in the program execution, both high inputs are incomparable modulo
the declassified property (i.e., the result of the election). Then one array is chosen,
depending on the secret, to be used in the main loop.

Since the functional property and the actual implementation did not change in
comparison to Section 18.3.2, there are only new verification targets, namely 1. the
Setup() constructor, that establishes the above described setup and 2. the so-called
‘conservative extension’ method, that is called after the election has terminated. The
extension effectively eliminates the declassification through overwriting the result,
as computed by the actual implementation, with a precomputed correct result. The
central goal was to prove that this extension is really ineffective (which is an even
stronger property than conservatism).

Both require significant interaction in proving, while having the automated prover
apply several thousands of rules in between each interactive step. Interestingly,
this is mainly due to the sheer size of the code under investigation, but not to any
particularly pattern that is hard to prove. After all, the proof for main() consists
of over 200,000 proof steps, of which some 100 were applied by hand. The labor
invested in verifying it approximately amounts to three weeks full time.

18.4.2 Related Work

To the best of our knowledge, this is the first time that preservation of privacy of votes
could be shown on the code level for a (simple) e-voting system. Systems like Bingo
Voting [Bohli et al., 2009] Civitas [Clarkson et al., 2008], Helios [Adida, 2008],
or Scantegrity [Chaum et al., 2009]—which are much more elaborate—provide
guarantees on the design level, but it is not clear whether their implementations
preserve these guarantees. Clarkson et al. [2008] mention that their Civitas system
has been checked for information flows with JIF [Myers, 1999], but it is not stated
clearly which properties have been checked.

Bär [2008] specified functional properties of a Java implementation of the Bingo
Voting system with the Java Modeling Language. These specifications have been
partially checked with the (unsound and incomplete) ESC/Java2 tool by Beck [2010].
Kiniry et al. [2006] report on the Dutch KOA remote voting system, that has been
used in the European Parliament election in 2004 for a small group of voters. In order
to specify the (offline) vote counting module with JML and subsequently analyze it
with ESC/Java2, they reimplemented the KOA system in Java.

While using ideal cryptographic functionality in code verification can be seen as
state of the art, there are other approaches that include formal reasoning about cryp-
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tographic guarantees [Stern, 2003]. Barthe, Grégoire, and Béguelin [2009] present
a framework in which adversaries can be modeled as probabilistic polynomially
bounded while programs. A probabilistic relational Hoare logic—extending Ben-
ton’s logic [2004]—allows one to formally reason about these adversaries, that is
implemented in the EasyCrypt system [Barthe et al., 2013b].

18.4.3 Conclusion

This case study clarified the boundaries to which verification scales with the KeY
prover. Going even further, we performed first experiments with replacing syn-
chronous by asynchronous message transfer. Again, the client and server components
can be verified with reasonable effort, but the setup is largely intractable.

Nevertheless, this case study serves as a benchmark and has pushed forward
several performance improvements in the KeY system. This includes both improve-
ments in the strategy (i.e., moving to a more tractable complexity class) and practical
implementation changes.

The e-voting case study shows that precise information flow verification tech-
niques as the ones presented in Chapter 13 are essential for the verification of
complex information flow properties, in particular for the verification of semantic
declassification. It also shows that the optimizations introduced in Section 13.5.1 are
indispensable for the feasibility of the self-composition approach.



19.1 Counting Sort and Radix Sort Implementation

Counting sort is a sorting algorithm based on addition and subtraction rather than
comparisons. Here we consider a version of Counting sort that takes as input an array

Chapter 19
Verification of Counting Sort and Radix Sort

Stijn de Gouw, Frank S. de Boer, Jurriaan Rot

Sorting is an important algorithmic task used in many applications. Two main as-
pects of sorting algorithms which have been studied extensively are complexity and
correctness. [Foley and Hoare, 1971] published the first formal correctness proof of
a sorting algorithm (Quicksort). While this is a handwritten proof, the development
and application of (semi)-automated theorem provers has since taken a huge flight.
The major sorting algorithms Insertion sort, Heapsort and Quicksort were proven
correct by Filliâtre and Magaud [1999] using the proof assistant Coq. Recently,
Sternagel [2013] formalized a proof of Mergesort within the interactive theorem
prover Isabelle/HOL.

In this chapter we discuss the formalization of the correctness of Counting sort
and Radix sort in KeY, based on the paper [de Gouw et al., 2014]. Counting sort is a
sorting algorithm based on arithmetic rather than comparisons. Radix sort is tailored
to sorting arrays of large numbers. It uses an auxiliary sorting algorithm, such as
Counting sort, to sort the digits of the large numbers one-by-one. The correctness
of Radix sort requires the stability of the auxiliary sorting algorithm. Stability here
means that the order between different occurrences of the same number is preserved.
To the best of our knowledge, stability has only been formalized in higher-order logic
[Sternagel, 2013].

We provide the first mechanized correctness proof of Counting sort and Radix
sort. Several industrial case studies have already been carried out in KeY [Ahrendt
et al., 2012, Mostowski, 2005, 2007]. In contrast to most industrial code, which is
large but relatively straightforward, Counting sort and Radix sort are two relatively
small but ingenious and nonstandard algorithms with inherently complex correctness
proofs.

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 609–618, 2016
DOI: 10.1007/978-3-319-49812-6 19
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a of large numbers in base-k and a column index m. Each large number is represented
by an array of digits with the least significant digit first, thus a is a two dimensional
array of nonnegative integers (i.e., a[1][0] is the least significant digit of the second
large number in a). It then sorts the large numbers in a based solely on the value
of their m+1-th digit. Listing 19.1 shows the Java implementation. The worst-case
time complexity is in O(n+ k), where n is the number of elements in a1.

1 public static int[][] countSort(int[][] a, int k, int m) {
2 int[] c = new int[k]; //initializes to zero
3 int[][] res = new int[a.length][];
4

5 for(int j=0; j<a.length; j++) {
6 c[a[j][m]]=c[a[j][m]]+1;
7 }
8 for(int j=1; j<k; j++) {
9 c[j]=c[j]+c[j-1];

10 }
11 for(int j=a.length-1; j>=0; j--) {
12 c[a[j][m]]=c[a[j][m]]-1;
13 res[c[a[j][m]]]=a[j];
14 }
15 return res;
16 }

Listing 19.1 Counting sort

Intuitively, the algorithm works as follows. After the first loop, for an arbitrary
value i ∈ [0 : k− 1], c[i] contains the number of times that i occurs in column m
of a. During the second loop, the partial sums of c are computed (i.e., c[i] = c[0]+
. . .+ c[i]), so that c[i] contains the number of elements in (column m of) a that are
less than or equal to i. At this moment, for every value i occurring in a, c[i] can
thus be interpreted as being the index in the sorted array before which the large
number with value i in column m should occur — if there are multiple such large
numbers, then these should be placed to the left. Indeed in the final loop, c is used
to place the elements of a in the resulting sorted array res by, for each element a[i],
first decreasing c[a[i][m]] by one and then placing a[i] at position c[a[i][m]]. Notice
that equal elements are thus inserted from right to left — so by starting at the last
element of a and counting down, the algorithm becomes stable. Thus, the order on
the previous digits is preserved.

Figure 19.1 shows an example execution of the last loop of a call to method
countSort(a, 3, 2), where the input array a contains respectively the arrays 1
0 2, 2 1 1 and 0 2 1 (representing the numbers 201, 112 and 120), with digits in
base k = 3; sorting is done based on column m = 2, which has the digits 2, 1 and 1
respectively. The far left shows the contents of res and C just before the first iteration
of the last loop. In the first iteration, the number 120 (the last number of the input

1 Note that this does not conflict with the well-known lower bound of nlg(n), since that holds for
sorting algorithms based on comparing array elements.
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Content of the array res:
null
null
null

=⇒
null
0 2 1
null

=⇒
2 1 1
0 2 1
null

=⇒
2 1 1
0 2 1
1 0 2

Content of the array C:
0 2 3 =⇒ 0 1 3 =⇒ 0 0 3 =⇒ 0 0 2

Figure 19.1 Iterations of the last loop in Counting sort with input arrays 1 0 2, 2 1 1 and 0 2 1.

1 0 2
0 2 1
2 1 1

=⇒
0 2 1
1 0 2
2 1 1

=⇒
1 0 2
2 1 1
0 2 1

=⇒
2 1 1
0 2 1
1 0 2

Figure 19.2 Successive iterations of the Radix sort loop, highlighting the column processed by
stableSort.

array) is placed at its sorted position in row 2, as indicated by the highlighted value 2
of that step in the C array.

Radix sort sorts an array of large numbers digit-by-digit, using an auxiliary stable
sorting algorithm stableSort to sort on each individual digit. This is reminiscent
of the typical way one sorts a list of words: letter by letter. A suitable candidate
for stableSort is the implementation of Counting sort given in Listing 19.1. An
implementation of Radix sort is given in Listing 19.2. We assume that all large
numbers in a have the same length (in particular, all of them have a[0].length digits).

1 public static int[][] radixSort(int[][] a, int k) {
2 for(int i=0; i<a[0].length; i++) {
3 a = stableSort(a,k,i);
4 }
5 return a;
6 }

Listing 19.2 Radix sort

The call to stableSort(a, k, i) sorts a by the i-th column. The array a is sorted
column by column, starting from the least significant digit at index 0 up to the most
significant digit at index a[0].length−1. Notice that it is essential for Radix sort that
this auxiliary algorithm is stable, so that the order induced by the earlier iterations is
preserved on equal elements in the i-th column.

Figure 19.2 illustrates an example run of the algorithm, showing the contents of
the array a after each loop iteration. The input array, representing the large numbers
201, 120 and 112 with digits in base k = 3, is shown on the far left and the sorted
output is shown on the far right.
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19.2 High-Level Correctness Proof

As we have seen in the previous section, the correctness of Radix sort depends on the
stability of the auxiliary sorting algorithm. In this section, we formalize the property
of being “stable” and give a high-level proof of the correctness and the stability of
Counting sort. Subsequently we prove the correctness of Radix sort. All contracts
and invariants are formalized in JML.

To avoid getting side-tracked by technicalities, and to simplify the presentation,
we assume in the high-level proof that all arrays have positive length, and there
are no “Array Index Out of Bounds Exceptions.” We drop these assumptions in the
mechanized proofs and show in Section 19.3 how this affects the specifications and
corresponding correctness proofs.

The following JML contract specifies a generic sorting algorithm that sorts a
two-dimensional array based solely on the numbers occurring in a given column m:
/*@ public normal_behavior
@ requires
@ k > 0 && 0 <= m && m < a[0].length
@ && (\forall int row; 0 <= row && row < a.length;
@ a[row].length == a[0].length)
@ && (\forall int row; 0 <= row && row < a.length;
@ 0 <= a[row][m] && a[row][m] < k);
@ ensures
@ \dl_seqPerm(\dl_array2seq(\old(a)),
@ \dl_array2seq(\result))
@ && (\forall int row;
@ 0 <= row && row < \result.length-1;
@ \result[row][m] <= \result[row+1][m]);
@*/

public static int[][] countSort(int[][] a, int k, int m);
Listing 19.3 Generic sorting contract

As explained in Section 8.1.2.9, the \dl_ prefix is an escape sequence that allows
referencing functions defined in JavaDL in JML specifications. The JavaDL function
array2seq converts an array into a sequence and the JavaDL predicate seqPerm is true
if the two sequences passed as parameters are permutations of each other. Chapter 5
has a precise definition of the predicate seqPerm .

The precondition, specified by the JML requires clause, states that all large
numbers have the same length a[0].length, and furthermore that all digits in the
m-th column are bounded by k. In the postcondition (ensures), the formula
seqPerm(array2seq(old(a)),array2seq(\result)) guarantees that the returned array
\result is a permutation of the input array a. The second conjunct of the postcondition
states that \result is sorted with respect to column m.

The above contract specifies correctness, but not stability. The contract below
formalizes stability, by ensuring that if two different large numbers have the same
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value for the m+1-th digit, then their original relative order from the input array is
preserved:
/*@ public normal_behavior
@ requires
@ 0 <= m && m < a[0].length
@ && (\forall int row; 0 <= row && row < a.length;
@ a[row].length == a[0].length);
@ ensures
@ (\forall int row; 0 <= row && row < \result.length-1;
@ \result[row][m] == \result[row+1][m]
@ ==> (\exists int i,j;
@ 0 <= i && i < j && j < a.length;
@ \result[row]==\old(a[i])
@ && \result[row+1]==\old(a[j])));
@*/

public static int[][] countSort(int[][] a, int k, int m);
Listing 19.4 Contract specifying stability

19.2.1 General Auxiliary Functions

For a human readable proof of Counting sort, and for both the specification and proof
of Radix sort, it is absolutely crucial to introduce suitable abstractions. We therefore
define the following auxiliary functions:

Name Meaning
val(b,r,d,a) ∑

d
i=0(a[r][i]∗bi)

cntEq(x,r,a,c) |{i | 0≤ i≤ r∧a[i][c] = x}|
cntLt(x,a,c) |{i | 0≤ i < a.length∧a[i][c] < x}|
pos(x,r,a,c) cntEq(x,r,a,c)+ cntLt(x,a,c)

Intuitively, val(b,r,d,a) is the large number represented in base b which is stored
in row r of the array of large numbers a (and d is the index of the last digit). The
function cntEq counts the number of elements in the array segment a[0 . . . r][c]
equal to x in some fixed column c. The function cntLt counts the number of elements
in the array segment a[0 . . . a.length− 1][c] smaller than x in the column c. As a
consequence of these definitions, pos(a[i][c], i,a,c)−1 is the position of a[i] in the
sorted version of a.

The function val can easily be implemented in JML using the built-in constructs
sum and product. The value of cntEq(x,r,a,c) (and similarly cntLt(x,a,c)) can be
represented in JML by:
\sum int i; 0<=i && i<=r; (x==a[i][c]) ? 1 : 0
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19.2.2 Counting Sort Proof

With the above definitions in place, we are ready to prove that the implementation of
Counting sort satisfies the contract in Listing 19.4. To this end, we devise the loop
invariants of Counting sort. The first loop (Listing 19.1, lines 4–5) sets c[i] to the
number of occurrences of the value i in a[0 . . . j−1][m]. Thus we use the invariant:

Java + JML
0 <= j && j <= a.length

&& \forall int i; c[i] == cntEq(i, j-1, a, m);
Java + JML

The second loop replaces each c[i] with its partial sum. We formalize this by the
following invariant:

Java + JML
1 <= j && j <= k

&& (\forall int i; 0 <= i && i <= j-1;
c[i] == cntEq(i, a.length-1, a, m) + cntLt(i, a, m))

&& (\forall int i; j <= i && i < k;
c[i] == cntEq(i, a.length-1, a, m));

Java + JML

The second conjunct ranges over the elements in c which have already been replaced
by their partial sum. The third conjunct ranges over the elements which have not
been processed yet (and hence, obey the postcondition of the first loop).

The invariant of the last loop is as follows:

Java + JML
-1 <= j && j < a.length

&& (\forall int i; 0 <= i && i < a.length;
c[a[i][m]] == pos(a[i][m], j, a, m))

&& (\forall int i; j+1 <= i && i < a.length;
res[pos(a[i][m], i, a, m)-1] == a[i]);

Java + JML

Recall that pos(a[i][m], i,a,m)− 1 is the position of a[i] in the sorted version of a.
Thus the second conjunct intuitively means that c[a[i][m]]−1 points to the position
in which a[i] should be stored in the sorted array. The assertion about res in the
third conjunct expresses that res is the sorted version of a. This invariant gives rise
to several proof obligations. We discuss the most interesting ones. For readability
we abbreviate the invariant by I. Furthermore, whenever it is clear from the context
we denote pos(x, i,a,m) by pos(x, i) and pos(a[i][m], i) by pos(i). Thus for example,
pos(i)−1 is the index of a[i] in the sorted version of a.

Our first proof obligation states that pos obeys a weak form of injectivity.

∀i ∈ [ j : a.length−1] : pos(i) = pos( j)→ a[ j] = a[i]
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This follows from the definitions of pos, cntEq and cntLt. The next verification
condition characterizes the behavior of pos.

∀i ∈ [0 : a.length−1] : a[i][m] = a[ j][m]→ pos(a[ j][m], j)−1 = pos(a[i][m], j−1)
∧ a[i][m] 6= a[ j][m]→ pos(a[i][m], j) = pos(a[i][m], j−1)

The truth of the first conjunct follows from the fact that cntEq(a[ j][m], j,a,m)−
1 = cntEq(a[ j][m], j−1,a,m). The second conjunct holds since cntEq(x, j,a,m) =
cntEq(x, j−1,a,m) whenever x 6= a[ j][m]. The next verification condition states that
after the execution of the loop (i.e., when j =−1), res must be sorted:

∀i ∈ [0 : a.length−2] : I∧ j =−1→ res[i][m]≤ res[i+1][m]

This is true since the invariant implies res[pos(i)−1] = a[i] for i ∈ [0 : a.length−1].
But as remarked above, pos(i)−1 is the position of a[i] in the sorted version of a,
hence res is sorted.

The final proof obligation concerns the proof of stability:

∀r ∈ [0 : a.length−2] : I∧ j =−1∧ res[r][m] = res[r +1][m]
→∃i, j(0≤ i < j < a.length) : res[r] = a[i]∧ res[r +1] = a[ j]

Fix some arbitrary r ∈ [0 : a.length−2]. We must show that I∧ j =−1∧ res[r][m] =
res[r + 1][m] implies ∃i, j(0 ≤ i < j < a.length) : res[r] = a[i]∧ res[r + 1] = a[ j].
Since the function i 7→ pos(i) is a bijection on [1 : a.length] we must have r =
pos(i)−1 and r +1 = pos( j)−1 for some i, j ∈ [0 : a.length−1]. Hence, only i < j
remains to show. This follows from the fact that pos(i) < pos( j), together with
the monotonicity property pos(x,n) ≤ pos(x,n + 1) for all n (which follows from
the earlier characterization of the behavior of pos). This proves the stability of our
Counting sort implementation.

19.2.3 Radix Sort Proof

The correctness of Radix sort relies on the correctness of the stable sorting algorithm
used in Radix sort. In the proof below, we assume only the contract of the generic sta-
ble sorting algorithm, instead of a particular implementation. This has the advantage
that instead of being tied to Counting sort, any stable algorithm can be used within
Radix sort, as long as it satisfies the contract of stableSort. Given the definitions
of the auxiliary functions, the specification of Radix sort is as follows:

Java + JML
/*@ public normal_behavior
@ requires
@ k > 0
@ && (\forall int j; 0 <= j && j < a.length;
@ a[j].length == a[0].length)
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@ && (\forall int j,m; 0 <= j && j < a.length
@ && 0 <= m && m < a[j].length;
@ 0 <= a[j][m] && a[j][m] < k);
@ ensures
@ \dl_seqPerm(\dl_array2seq(\old(a)),
@ \dl_array2seq(\result))
@ && (\forall int row; 0 <= row && row < a.length-1;
@ val(k,row,\old(a[0].length)-1,\result)
@ <= val(k,row+1,\old(a[0].length)-1,\result));
@*/

public static int[][] radixSort(int[][] a, int k);

Java + JML

The last conjunct in the precondition informally means that all digits that appear in a
are nonnegative and bounded by k. The formula \forall int row (...) in the
postcondition expresses that the large number in each row of the returned array is
smaller or equal to the number in the next row, when interpreted in base k.

The correctness proof of Radix sort is based on the following loop invariant I:

JML
0 <= i && i <= a[0].length && a != null

&& \dl_seqPerm(\dl_array2seq(a), \dl_array2seq(\old(a)))
&& (\forall int row; 0 <= row && row < a.length;

\val(k,row,i-1,a) <= \val(k,row+1,i-1,a));
JML

Intuitively, the formula \forall int row (...) states that a is sorted with re-
spect to the first i digits. When proving that the body of the loop preserves I, the
main verification condition that arises states that the invariant follows from the post-
condition of the procedure call, provided that the invariant was true initially. We refer
to the contents of a before the call by introducing a logical variable A in the contract
of stableSort as follows: we add A = a to the precondition and substitute A for
old(a) in the postcondition. Let post ′ be the resulting postcondition. Formally the
main verification condition is then as follows:

I[a :=A]∧ post ′[\result := a]→
∀row ∈ [0 : a.length−1] : val(k,row, i,a)≤ val(k,row+1, i,a)

To see why this formula is valid, consider an arbitrary row r ∈ [0 : a.length− 2].
Given the assumption I[a := A]∧ post ′[\result := a], we must prove val(k,r, i,a)≤
val(k,r+1, i,a). From post ′[\result := a] we infer a[r][i]≤ a[r+1][i]. We distinguish
two cases.

• a[r][i] < a[r + 1][i]. Then also a[r][i] ∗ ki < a[r + 1][i] ∗ ki. Clearly val(k,r, i−
1,a) < ki, since val(k,r, i− 1,a) is a number with i digits in base k, while ki

has i+1 digits in base k. But val(k,r, i,a) = val(k,r, i−1,a)+a[r][i]∗ ki, hence
val(k,r, i,a)≤ val(k,r +1, i,a).
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• a[r][i] = a[r +1][i]. Then it suffices to prove val(k,r, i−1,a)≤ val(k,r +1, i−
1,a). But post ′[\result := a] implies that a[r] = A[m] and a[r + 1] = A[n] for
some m,n (with 0≤m < n < a.length), so it suffices to prove val(k,m, i−1,A)≤
val(k,n, i−1,A). But the invariant implies val(k,r1, i−1,A)≤ val(k,r2, i−1,A)
if r1 < r2. Instantiating r1 with m and r2 with n gives the desired result.

This concludes the proof of Radix sort.

19.3 Experience Report

In this section we discuss our practical experience with KeY. The following table
summarizes some statistics of the proofs in KeY:

Counting Sort Radix Sort
Rule applications 96.260 114.309
User interactions 743 (0.8%) 762 (0.7%)

“Rule applications” serves as a measure for the length of the proofs: this row contains
the total number of proof rule applications used in the proofs, whereas “User interac-
tions” indicates the number of proof rule applications that were applied manually by
the authors (i.e., required creativity). The statistics show that the degree of automation
of KeY for both algorithms was over 99%.

The mechanized proofs are significantly larger than the high-level proofs, for
several reasons. First, we used the automatic proof strategies of KeY as much as
possible, but the strategies do not always find the shortest proofs. Second, in the
actual mechanized proofs we also showed termination. Fortunately this did not
require much creativity: the ranking functions (loop variants) are trivial to find and
prove since all loops that occur are for-loops. After appropriate ranking functions
were given, the proof of termination was automatic. A third reason for the large
proofs is that Java has several features that were ignored in the high-level proofs but
complicate the mechanized KeY proofs.

One such Java feature is the fact that arrays are bounded. For example, to ensure
that the assignment res[c[a[j]]] = a[j]; does not lead to index out-of-bounds
exceptions, KeY generates four proof obligations: j must be within the bounds of the
array a (this condition must be proven twice, since a[ j] occurs twice), and a[ j] and
c[a[ j]] must be within the array bounds of respectively C and res. This duplication of
proofs, caused by multiple references to the same array element, could be avoided by
changing the Java source to int tmp = a[j]; res[c[tmp]] = tmp;. KeY was
able to automatically prove that the array references to c in the first two loops did
not violate the array bounds, and similarly for a in the third loop. The references to
res and c in the third loop required some user interactions. In particular, it required
proving that 1≤ pos(i)≤ a.length. Still, overall, less than 5% of the rule applications
concerned array bounds.

The part of the proof by far responsible for the most rule applications (over 60%!)
surprisingly is unrelated to deriving validity of the verification conditions discussed
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in the previous section. Instead it concerns proving that the value of our auxiliary
functions cntEq, cntLt, pos and val is the same in different heaps that arise during
execution (despite using the tightest possible assignable clauses in all loops and
contracts). Note first that these functions indeed depend on the contents of the heap,
since their value depends on the contents of an array (the array object a passed as
a parameter), and arrays are allocated on the heap. Since the heap is represented
explicitly by a term in KeY, the actual KeY formalization of the definitions of these
functions contain an additional parameter Heap. In fact, since a is the only parameter
of the auxiliary functions which has a class type, the value of the auxiliary functions
depends only on the part of the heap containing a; other parts of the heap are simply
not visible. However, the program never changes the contents of a: only parts of the
heap irrelevant to the value of the auxiliary functions are changed. Unfortunately,
currently KeY cannot detect this, nor can the user specify it, without unrolling the
definition of the auxiliary functions. After unrolling, KeY could prove in most (but
not all) cases automatically that the heap was only changed in ways irrelevant to
the value of the auxiliary functions, though at the expense of a huge number of rule
applications due to the size of the involved heap terms. One partial workaround
for this is to surround any reference to the auxiliary functions by old in the loop
invariants. This seemingly small change, which causes all occurrences of auxiliary
functions to be evaluated in the same (old) heap, resulted in a reduction of the Radix
sort proof from 169.030 rule applications to a little over the current 114.309! This
change also reduced the number of manual user interactions by about 30%. A further
potential improvement would be to use model methods that return the value of the
auxiliary functions (instead of using the auxiliary functions directly), as the user can
specify an accessible clause for model methods (see Section 7.9.1).

One final discussion point concerns the permutation predicate seqPerm. The
detailed JavaDL formalization of this predicate and the sequence data type can be
found in Chapter 5. The sequence data type and corresponding permutation predicates
have been newly added to KeY 2.x but so far, little was known about the implications
regarding automation. The present case study provides some empirical results: about
20% of the total manual interactions concerned reasoning about sequences.



Part VI
Appendices



Appendix A
Java Modeling Language Reference

Daniel Grahl

This appendix serves as a comprehensive reference for the syntax and semantics
the dialect of the Java Modeling Language (JML) that is used in the KeY system,
version 2.6. The extensions for information flow introduced in Section 13.4 are
also included. Section A.1 presents the full syntax of JML as it is supported by the
KeY system. In Section A.2, the semantics of JML expressions is given through
a translation to JavaDL. Refer to Chapters 7ff. for in depth explanations and a
discussion on these items. Contract semantics are not covered here; they are treated
extensively in Section 8.2. We cover the issue of well-definedness in Section A.3.

A.1 JML Syntax

The syntax of JML is heavily intertwined with the syntax of the Java language.
The JML reference manual [Leavens et al., 2013] presents a complete grammar for
Java enriched with (standard) JML specifications. This includes every grammatical
feature—from lexical tokens to compilation units. Here, in this appendix, we take
on another approach in not reiterating the entire Java syntax, but indicating where
the given definitions would be injected into it. This section only describes syntax;
we assume that it is clear from the context how to produce expressions that are
well-typed; in doubt, refer to the JML reference manual [Leavens et al., 2013].

Since JML has been designed for other analysis approaches, not all constructs
that are introduced in the JML reference manual [Leavens et al., 2013]do make sense
for the KeY approach. We present only that part of the syntax for which we can give
a formal semantics. Please note that the targeted subset of Java does not include all
Java 5–8 features, such as autoboxing, generics, etc. We also omit the JML delimiters
//@ (end of line style) and /*@ @*/ (block style). We structure this section after the
different locations where JML specifications may appear.

The grammar is given in a Backus Naur style using the postfix operators ? (optional
occurrence), ∗ (any number of occurrences), and + (at least one occurrence).

621



622 A Java Modeling Language Reference

Table A.1 Additional class members in JML

JML Syntax

〈ClassElem〉 ::= 〈ClassSpec〉 | 〈MMthd〉
〈ClassSpec〉 ::= 〈Visibility〉?

(
〈ClassInv〉 | 〈FieldDecl〉 | 〈Represents〉 | 〈MAccess〉

)
;

〈ClassInv〉 ::= 〈StaticOrInstance〉? 〈ClassInvKw〉 〈BoolExpr〉
〈StaticOrInstance〉 ::= static | instance
〈ClassInvKw〉 ::= invariant | constraint | initially | axiom
〈FieldDecl〉 ::=

(
ghost | model

)
〈Type〉 〈Id〉+

〈Represents〉 ::= represents 〈Id〉 = 〈Expr〉 | represents 〈Id〉 \such_that 〈BoolExpr〉
〈MAccess〉 ::= accessible 〈Id〉 : 〈LocSetExpr〉 〈Mby〉?

〈MMthd〉 ::= 〈Contract〉
(

no_state | two_state
)? model 〈Type〉 〈Id〉 ( 〈Params〉 )

{ return 〈Expr〉; }

〈Params〉 ::=
(
〈Type〉 〈Id〉

(
, 〈Type〉 〈Id〉

)∗ )?

JML Syntax

In Table A.1, the rule 〈ClassElem〉 refers to elements which may additionally
appear as a Java class member (see [Gosling et al., 2013, Sect. 8.2]). Rule 〈Id〉 refers
to valid identifiers in Java (see ibid., Sect. 6) for types (i.e., classes or interfaces),
variables, fields, and methods.
Table A.2 Contract grammar in JML

JML Syntax

〈Contract〉 ::= also? 〈SpecCase〉
(

also 〈SpecCase〉
)∗

〈SpecCase〉 ::= 〈Visibility〉? 〈Behavior〉? 〈Clause〉∗
〈Visibility〉 ::= public | protected | private
〈Behavior〉 ::= normal_behavior | normal_behaviour |

exceptional_behavior | exceptional_behaviour
〈Clause〉 ::=

(
〈Requires〉 | 〈Ensures〉 | 〈Signals〉 | 〈SignalsOnly〉 | 〈Diverges〉 |

〈Determs〉 | 〈Assign〉 | 〈Acc〉 | 〈Mby〉
)
; | {| 〈Clause〉∗ |}

〈Requires〉 ::=
(
requires | pre

)
〈BoolExpr〉

〈Ensures〉 ::=
(
ensures | post

)
〈BoolExpr〉

〈Signals〉 ::=
(
signals | ensures

)
(〈Type〉 〈Id〉?) 〈BoolExpr〉

〈SignalsOnly〉 ::= 〈Type〉
(
, 〈Type〉

)∗ | \nothing | \everything
〈Diverges〉 ::= diverges 〈BoolExpr〉
〈Determs〉 ::= determines

(
〈Exprs〉 | \nothing

)
\by

(
〈Exprs〉 | \itself | \nothing

)(
\declassifies 〈Exprs〉 | erases 〈Exprs〉

)
?
(

\new_objects 〈Exprs〉
)

?

〈Assign〉 ::= 〈AssignKw〉
(
〈LocSetExpr〉

(
, 〈LocSetExpr〉

)∗ |
\nothing | \strictly_nothing | \everything

)
〈AssignKw〉 ::= assignable | modifiable | modifies
〈Acc〉 ::= accessible

(
〈LocSetExpr〉

(
, 〈LocSetExpr〉

)∗ | \nothing | \everything
)

〈Mby〉 ::= measured_by 〈Exprs〉
JML Syntax

Table A.2 shows the grammar used for method contracts. Contracts can appear
immediately before method declarations (modulo whitespace; see ibid., Sect. 8.4).
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The standard JML clauses interpreted by KeY are limited to requires, ensures,
signals, signals_only, diverges, assignable, accessible, measured_by.
For all of these, their synonyms are defined, too (not all are shown here). Other
clauses can still be parsed in KeY, but will be ignored. Additionally, the determines
clause (see Section 13.4) extends standard JML.

Table A.3 shows modifiers in addition to Java’s modifiers (see ibid., Sects. 8.1.1,
8.3.1, 8.4.3, 9.1.1). Note that, technically, the nullable and non_null are also
modifiers, but for more readable semantics we treat them as type information.

Table A.3 Modifiers in JML

JML Syntax

〈Mod〉 ::= pure | strictly_pure | helper | model | nullable_by_default

JML Syntax

Table A.4 shows annotations that may appear inside method bodies, such as
loop invariants, block contracts [Wacker, 2012], or ghost assignment statements. Set
statements may appear whenever the Java language expects a statement [Gosling
et al., 2013, Sect. 14.5], block contracts may appear immediately before a statement
block, and loop invariants must appear immediately before a loop statement (while,
(enhanced) for, or do loops; see ibid., Sects. 14.12ff.). As a technical restriction of
the implementation of KeY, any annotation statement must not be the last statement
in a statement block.
Table A.4 JML annotation grammar

JML Syntax

〈Annot〉 ::= 〈LoopInv〉 | 〈BlockCntr〉 | 〈SetStm〉 | 〈Assert〉 | unreachable;
〈LoopInv〉 ::=

(
〈LoopInvClause〉;

)+ (
〈VariantClause〉;

)
?
(
〈Assign〉;

)
?
(
〈Determs〉;

)
?

〈LoopInvClause〉 ::=
(
maintaining | loop_invariant

)
〈BoolExpr〉

〈VariantClause〉 ::=
(
decreasing | decreases

)
〈Exprs〉

〈BlockCntr〉 ::= also? 〈BSpecCase〉
(

also 〈BSpecCase〉
)∗

〈BSpecCase〉 ::= 〈BBehavior〉? 〈BClause〉∗
〈BBehavior〉 ::= behavior | normal_behavior | exceptional_behavior |

break_behavior | continue_behavior | return_behavior
〈BClause〉 ::= 〈Breaks〉; | 〈Returns〉;| 〈Clause〉
〈Breaks〉 ::=

(
breaks | continues

)
〈Id〉? 〈BoolExpr〉

〈Returns〉 ::= returns 〈BoolExpr〉
〈SetStm〉 ::= set 〈Loc〉 = 〈Expr〉;
〈Assert〉 ::= assert 〈BoolExpr〉;

JML Syntax

Table A.5 shows the grammar for expressions in JML. This treatment is complete;
all other Java expressions are not valid in JML and thus are rejected by KeY’s parser.
Rule 〈Literal〉 refers to (integer) literals of any type or numeral system (see ibid.,
Sect. 15.8.1).
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Table A.5 JML expression grammar

JML Syntax

〈Exprs〉 ::=
(
〈Expr〉,

)∗ 〈Expr〉
〈Expr〉 ::= 〈BoolExpr〉 | 〈IntExpr〉 | 〈LocSetExpr〉 | 〈SeqExpr〉 | this | null
〈BoolExpr〉 ::= !〈BoolExpr〉 | 〈BoolExpr〉〈BinaryBoolOp〉〈BoolExpr〉 |

〈Expr〉〈EqOp〉〈Expr〉 | 〈IntExpr〉〈CompareOp〉〈IntExpr〉 |
(〈Quant〉 〈Type〉 〈Id〉+;

(
〈BoolExpr〉;

)? 〈BoolExpr〉) |
\invariant_for(〈Expr〉) | \static_invariant_for(〈Type〉) |
\fresh(〈Expr〉) | \nonnullelements(〈Expr〉) |
\is_initialized(\type(〈Type〉) |
\reach(〈Id〉, 〈Expr〉, 〈Expr〉

(
, 〈IntExpr〉

)?) | 〈Expr〉 instanceof 〈Type〉 |
\typeof(〈Expr〉) 〈TypeOp〉 \type(〈Type〉) | \subset(〈SeqExpr〉, 〈SeqExpr〉) |
\disjoint(〈SeqExpr〉

(
, 〈SeqExpr〉

)+)| \new_elems_fresh(〈LocSetExpr〉) |
true | false | 〈GenExpr〉

〈BinaryBoolOp〉 ::= && | & | || | | | ==> | <== | <==> | <=!=> | ^
〈EqOp〉 ::= == | !=
〈CompareOp〉 ::= < | <= | > | >=
〈TypeOp〉 ::= == | <:
〈Quant〉 ::= \forall | \exists
〈IntExpr〉 ::= -〈IntExpr〉 | ~〈IntExpr〉 | 〈IntExpr〉〈BinaryIntOp〉〈IntExpr〉 |

〈IntExpr〉〈BinaryIntOpBitw〉〈IntExpr〉 | 〈Comprehension〉 | \index |
〈Expr〉.length | 〈Literal〉| 〈GenExpr〉

〈BinaryIntOp〉 ::= + | - | * | / | %
〈BinaryIntOpBitw〉 ::= << | >> | >>> | & | | | ^
〈Comprehension〉 ::= (〈ComprOp〉 〈Type〉 〈Id〉+;

(
〈BoolExpr〉;

)? 〈IntExpr〉) |
(\num_of 〈Type〉 〈Id〉+;

(
〈BoolExpr〉;

)? 〈IntExpr〉)
〈ComprOp〉 ::= \sum | \product | \max | \min
〈GenExpr〉 ::= 〈BoolExpr〉? 〈Expr〉: 〈Expr〉 | \result | \old(〈Expr〉) |

\pre(〈Expr〉) | (\lblneg 〈Id〉 〈Expr〉) | (\lblpos 〈Id〉 〈Expr〉) |
\dl_〈Id〉(〈Exprs〉?) | \exception |
(〈Type〉) 〈Expr〉 | 〈Loc〉 |

(
〈Expr〉.

)?〈Id〉(〈Exprs〉?) |
(〈Type〉) 〈SeqExpr〉[〈IntExpr〉] | (* 〈JavaDLTerm〉 *)

〈Loc〉 ::=
(
〈Expr〉.

)
?〈Id〉 | 〈Type〉.〈Id〉 | 〈Expr〉[〈IntExpr〉]

〈LocSetExpr〉 ::= 〈Expr〉.〈Id〉 | 〈Expr〉[〈IntExpr〉] | 〈Expr〉[〈IntExpr〉..〈IntExpr〉]|
〈Expr〉[*] | 〈Expr〉.* | \empty | \everything |
〈LocSetOp〉(〈LocSetExpr〉, 〈LocSetExpr〉) |
\infinite_union(〈Type〉 〈Id〉;

(
〈BoolExpr〉;

)
?〈LocSetExpr〉) |

\reachLocs(〈Id〉, 〈Expr〉
(
, 〈IntExpr〉

)?) | 〈GenExpr〉
〈LocSetOp〉 ::= \intersect | \set_union | \set_minus
〈SeqExpr〉 ::= \seq_empty | \seq_singleton(〈Expr〉) | \values |

\seq_concat(〈SeqExpr〉, 〈SeqExpr〉) |
〈SeqExpr〉[〈IntExpr〉..〈IntExpr〉] | 〈GenExpr〉
(\seq_def 〈Type〉 〈Id〉;〈IntExpr〉; 〈IntExpr〉; 〈Expr〉)

〈Type〉 ::= boolean | byte | char | short | int | long | \bigint | \seq |
\locset | 〈NullMod〉? 〈Id〉

(
[]
)∗

〈NullMod〉 ::= nullable | non_null

JML Syntax
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A.2 JML Expression Semantics

This section contains semantics for JML expressions, given as translations into
JavaDL. Tables A.6–A.8 contain translations for Boolean expressions (yielding
formulas). For some of the logical operators two or more alternatives with the same
semantics exist.1 All other tables contain translations to terms. See Section 8.1 for
details.
Table A.6 Translation of Boolean JML operators

e ∈ JExp (alternatives) JavaDL bec ∈ DLFml

!A ¬bAc
A && B A & B bAc∧bBc
A || B A | B bAc∨bBc
A ==> B B <== A bAc → bBc
A <==> B A == B bAc ↔ bBc
A <=!=> B A^B A != B ¬(bAc ↔ bBc)
(\forall T x1, . . . xn; A; B) ∀bTcx1; . . .∀bTcxn; (

∧n
i=1 inRangeT (xi)∧bAc → bBc)

(\exists T x1, . . . xn; A; B) ∃bTcx1; . . .∃bTcxn; (
∧n

i=1 inRangeT (xi)∧bAc∧bBc)

Table A.7 Translation of special Boolean JML operators

JML expression e JavaDL bec ∈ DLFml

\invariant_for(o) Object::inv(heap,boc)
\static_invariant_for(T) bTc::$inv(heap)
\fresh(o) selectboolean(heappre,boc,created) .= FALSE∧boc 6 .= null
\nonnullelements(a) bac 6 .= null∧∀i.(0≤ i < bac.length

→ selectObject(heap,bac,arr(i)) 6 .= null)
\is_initialized(\type(T)) bTc.<classInitialised> .= TRUE
\reach(f, o1, o2, n) reach(heap,allObjects(f),bo1c,bo2c,bnc)
\reach(f, o1, o2) ∃ int n; reach(heap,allObjects(f),bo1c,bo2c,n)
\typeof(x) == \type(T) exactInstancebTc(bxc)
x instanceof T instancebTc(bxc)

Table A.8 Predicates on location sets

JML expression e JavaDL bec ∈ DLFml

\subset(s,t) subset(bsc,btc)
\disjoint(s1, . . ., sn)

∧
1≤i< j≤n disjoint(bsic,bs jc)

\fresh(s) subset(bsc,unusedLocs(heappre))
\new_elems_fresh(s) subset(bsc,union({heap := heappre}bsc,unusedLocs(heappre)))
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Table A.12 Translation of special JML operators of arbitrary type

JML expression e JavaDL bec ∈ TrmAny

A? B: C if (bAc) then (bBc) else (bCc)
\result res
\old(A) {heap := heappre‖p1 := ppre

1 ‖ . . .‖pn := ppre
n }bAc (in loop invs.)

\old(A) {heap := heappre}bAc (in method contracts)
\pre(A) {heap := heappre}bAc
(\lblneg x A) bAc
(\lblpos x A) bAc
\dl_func(p1, . . ., pn) func(heap,bp1c, . . .bpnc)
(* term *) term
\index index

Table A.13 Reference expressions

e ∈ JExp bec ∈ TrmAny

self reference this self
local variable v v
field access o.f selectT ′ (heap,boc,C::f)
static field access C.f selectT ′ (heap,null,C::$f)
array access a[i] selectT ′ (heap,bac,arr(bic))
array length a.length length(bac)
pure method o.pm(p1, . . . , pn) C::pm(heap,boc,bp1c, . . . ,bpnc)
static pure method C.pm(p1, . . . , pn) C::pm(heap,null,bp1c, . . . ,bpnc)
model field o.mf C::m f (heap,boc)
static model field C.mf C::m f (heap,null)

A.3 JML Expression Well-Definedness

As explained in Section 8.1.4, in JML, validity depends on the absence of unde-
finedness. According to the JML reference manual [Leavens et al., 2013], a Boolean
expression is satisfied in a state if has the truth value true and “does not cause an
exception to be raised.” Our translation from JML to JavaDL above ignores this.

KeY can generate well-definedness proof obligations as shown in Section 8.3.3.
Table A.16 below gives the full definition of the well-definition operator ω , which
provides a formula ω(e) to every JML expression e, such that e is well-behaving in a
state s if and only if s � ω(e).

1 These operators may differ in the way well-definedness of expressions is evaluated, see Section A.3
below.
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Table A.14 JML location set expressions

JML expression e JavaDL bec ∈ TrmLocSet

o.f {(boc,f)}

\singleton(o.f)
{(boc,f)}

a[i] {(bac,arr(bic))}
a[i.. j] arrayRange(bac,bic,b jc)
a[*] allFields(bac)
o.* allFields(boc)

\empty
empty

\nothing
empty

\everything
setMinus(allLocs,unusedLocs(heap))

\intersect(s,t)
intersect(bsc,btc)

\set_union(s,t)
union(bsc,btc)

\set_minus(s,t)
setMinus(bsc,btc)

\infinite_union(T x; b; t)
infiniteUnion{bTc x}(

if (inRangeT (x)∧bbc) then (btc) else (empty) )

\reachLocs(f, o, n)

infiniteUnion{Object o′}(
if (reach(heap,allObjects( f ),boc,o′,bnc))
then (allFields(o′)) else (empty) )

\reachLocs(f, o)
infiniteUnion{Object o′}(

if (∃ int n; reach(heap,allObjects( f ),boc,o′,n))
then (allFields(o′)) else (empty) )

Table A.15 JML sequence expressions

JML expression e JavaDL bec ∈ TrmAny

\seq_concat(s1, s2) seqConcat(bs1c,bs2c)
\seq_empty seqEmpty
(T)s[i] seqGetT (bsc,bic)
s.length seqLen(bsc)
\seq_singleton(e) seqSingleton(bec)
s[i.. j] seqSub(bsc,bic,b jc)
(\seq_def \bigint x; i; j; t) seqDef{int x}(bic,b jc,btc)
\values values
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Table A.16 Definition of the well-definedness operator ω

JML expression JavaDL formula
e ∈ JExp ω(e) ∈ DLFml

x, this, super, true for x a literal or local variable
null, \result
◦A ω(A) ◦ ∈ {!,-,~}
A◦B ω(A)∧ω(B) ◦ ∈ {==,!=,<=,>=,<,>,+,

-,*,&,|,<==>,^,>>,<<,>>>}
\ f(A) ω(A) f ∈ {fresh,new_elems_fresh}

\ f(A, B) ω(A)∧ω(B) f ∈ {set_union,intersect,
set_minus,subset,disjoint}

A / B, A % B ω(A)∧ω(B)∧B 6 .= 0
A && B ω(A)∧ (bAc → ω(B))
A ==> B ω(A)∧ (bAc → ω(B))
A || B ω(A)∧ (¬bAc → ω(B))
A<== B ω(A)∧ (¬bAc → ω(B))
A ? B : C ω(A)∧ (bAc → ω(B))

∧ (¬bAc → ω(C))

o.f ω(o)∧o 6 .= null for an instance field f,
also if used as location

C.f true for a static field C.f,
also if used as location

o.m(a1, . . . ,an) ω(o)∧o 6 .= null∧∧n
i=1 ω(ai)∧

pre[ai/pi,o/self]
new C(a1, . . . ,an)

∧n
i=1 ω(ai)∧
pre[ai/pi,o/self]

a[i] ω(a)∧a 6 .= null∧ω(i)∧
0≤ i∧ i < length(a)

array access, sequence access
also if used as location.

a[i.. j] ω(a)∧a 6 .= null∧
ω(i)∧ω( j)∧
0≤ i∧ i≤ j∧ j < length(a)

array range (location set)

o[*], o.* ω(o)∧o 6 .= null
o.length ω(o)∧o 6 .= null for an array o

(\Q T v;A;B) ∀bTc v;
(
ω(A)∧ (bAc → ω(B))

)
Q ∈ {forall,exists,min,max
infinte_union,sum,product}

(\seq_def T v;A;B;C) ∀int v;(bAc ≤ v < bBc → ω(C))
∧ω(A)∧ω(B)

T ∈ {int,\bigint}

(T)t ω(t)∧ instancebTc(btc)
.= TRUE

t instanceof T ω(t)
\old(A) {heap := heappre}ω(A)
\invariant_for(A) ω(A)∧A 6 .= null
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Wojciech Mostowski and Richard Bubel

B.1 Predefined Operators in JavaDL

This appendix lists syntax and semantics of all predefined function and predicate
symbols of JavaDL.

B.1.1 Arithmetic Function Symbols

function symbol typing and informal semantics
+ int× int→ int

addition
− int× int→ int

subtraction
∗ int× int→ int

multiplication
/ int× int→ int

Euclidian division
% int× int→ int

remainder for /
− int→ int

unary minus
jdiv int× int→ int

division rounding towards 0
jmod int× int→ int

remainder for jdiv
shiftright int× int→ int

shift right for unbounded bitvectors
shiftleft int× int→ int

shift left for unbounded bitvectors

631
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function symbol typing and informal semantics
unsignedshift int× int× int→ int

unsigned shift for bitvectors of the size
specified as third argument

binaryAnd int× int→ int
binary ’and’ for unbounded bitvectors

binaryOr int× int→ int
binary ’or’ for unbounded bitvectors

binaryXOr int× int→ int
binary ’xor’ for unbounded bitvectors

. . . ,−1,0,1,2, . . . int
integer numbers

FALSE boolean
constant for truth value false

TRUE boolean
constant for truth value true

null Null
constant for null element

(A) (for any A ∈ TSym) Any→ A
cast to type A

max_byte int
max_short int
max_int int
max_long int
max_char int

maximum number of respective Java type
min_byte int
min_short int
min_int int
min_long int
min_char int

minimum number of respective Java type

B.1.2 Arithmetic Function Symbols with Modulo Semantics

These arithmetic functions realize Java’s modulo semantics faithfully. The bitvector
operations are defined for the bit sizes of their respective type (int 32-bit, long 64-bit).

function symbol typing and informal semantics
unaryMinusJint int
unaryMinusJlong int

unary minus
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function symbol typing and informal semantics
addJint int× int→ int
addJlong int× int→ int

addition
subJint int× int→ int
subJlong int× int→ int

subtraction
mulJint int× int→ int
mulJlong int× int→ int

multiplication
divJint int× int→ int
divJlong int× int→ int

division
modJint int× int→ int
modJlong int× int→ int

modulo
shiftrightJint int× int→ int
shiftrightJlong int× int→ int

binary shift-right
unsignedshiftrightJint int× int→ int
unsignedshiftrightJlong int× int→ int

unsigned binary shift-right
shiftleftJint int× int→ int
shiftleftJlong int× int→ int

binary shift-left
orJint int× int→ int
orJlong int× int→ int

binary or
xorJint int× int→ int
xorJlong int× int→ int

binary xor
andJint int× int→ int
andJlong int× int→ int

binary and
negJint int
negJlong int

binary negation
moduloByte int
moduloShort int
moduloInt int
moduloLong int
moduloChar int

computation of overflow
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B.1.3 Predicate Symbols for Arithmetics and Equality

predicate symbol typing and informal semantics
< int× int

less than
<= int× int

less than or equal
> int× int

greater than
>= int× int

greater than or equal
.= Any×Any

equality
6 .= Any×Any

inequality
arrayStoreValid Any×Any

holds iff an array store operation
is valid for the given arguments

B.1.4 Arithmetic Function Symbols whose Meaning Depends on
the Chosen Integer Semantics

These arithmetic functions depend on the chosen integer semantics (see Section 5.4).
They are usually introduced by the translation of JML or when symbolically executing
arithmetic expressions (and moving them into the sequent).

function symbol typing and informal semantics
javaUnaryMinusInt int→ int
javaUnaryMinusLong int→ int

translation of Java’s unary minus operator
for the promoted type int/long

javaBitwiseNegationInt int→ int
javaBitwiseNegationLong int→ int

translation of Java’s unary bitwise negation
operator for the promoted type int/long

javaAddInt int× int→ int
javaAddLong int× int→ int

translation of Java’s addition operator for
the promoted type int/long

javaSubInt int× int→ int
javaSubLong int× int→ int
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function symbol typing and informal semantics
translation of Java’s substraction operator

for the promoted type int/long
javaMulInt int× int→ int
javaMulLong int× int→ int

translation of Java’s multiplication opera-
tor for the promoted type int/long

javaMod int× int→ int
translation of Java’s remainder operator for

both promoted types int and long
javaDivInt int× int→ int
javaDivLong int× int→ int

translation of Java’s division operator for
the promoted type int/long

javaShiftRightInt int× int→ int
javaShiftRightLong int× int→ int

translation of Java’s shift right operator for
the promoted type int/long

javaShiftLeftInt int× int→ int
javaShiftLeftLong int× int→ int

translation of Java’s shift left operator for
the promoted typesint/long

javaUnsignedShiftRightInt int× int→ int
javaUnsignedShiftRightLong int× int→ int

translation of Java’s unsigned shift right
operator for the promoted type int/long

javaBitwiseOrInt int× int→ int
javaBitwiseOrLong int× int→ int

translation of Java’s bitwise-or operator for
the promoted type int/long

javaBitwiseAndInt int× int→ int
javaBitwiseAndLong int× int→ int

translation of Java’s bitwise-and operator
for the promoted type int/long

javaBitwiseXOrInt int× int→ int
javaBitwiseXOrLong int× int→ int

translation of Java’s bitwise-xor operator
for the promoted type int/long

javaCastByte int→ int
javaCastShort int→ int
javaCastInt int→ int
javaCastLong int→ int
javaCastChar int→ int

translation of Java’s cast operator to the
corresponding type
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B.1.5 Predicate Symbols Depending on the Chosen Integer
Semantics

predicate symbol typing and informal semantics
inByte int
inShort int
inInt int
inLong int
inChar int

holds iff argument in range
of respective Java Card type

B.1.6 Heap Related Function and Predicate Symbols

function symbol typing and informal semantics
create Heap×Object→ Heap

returns a new heap coinciding with the old one where
the specified object is created

A :: select Heap×Object×Field→ A
looks up the value at the given heap for the program

location specified by the 2nd and 3rd argument and casts
it to sort A

store Heap×Object×Field×any→ Heap
returns the heap resulting from updating the given

heap at program location specified by the second and
third argument to value specified as fourth argument

anon Heap×LocSet×Heap→ Heap
constructs a new heap from both given heaps; the

returned heap coincides with the first heap on i) the set
of created objects; ii) on all program locations of created
objects that are not in the set of locations given as second
argument. In all other cases the heap coincides with the
second heap.

memset Heap×LocSet×any→ Heap
returns a new heap coinciding with the given heap

except for the program locations in the given set of loca-
tions, which are set to the value given as third argument

length Object→ int
assigns each object an integer

null → Null
the null constant



B.1. Predefined Operators in JavaDL 637

predicate symbol typing and informal semantics
wellFormed Heap

characterizes valid Java heaps

B.1.7 Location Sets Related Function and Predicate Symbols

function symbol typing and informal semantics
empty → LocSet

\unique symbol for the empty set
allLocs → LocSet

\unique symbol for the set of all locations
singleton Object×Field→ LocSet

returns a location set containing only the location
given as argument

union LocSet×LocSet→ LocSet
returns the union of the location sets

intersect LocSet×LocSet→ LocSet
returns the intersection of the location sets

setMinus LocSet×LocSet→ LocSet
returns the set difference of the location sets

infiniteUnion{true} LocSet→ LocSet
variable binding function in the first argument;

returns the infinite union
⋃

x L(x) of the location sets
L(x)

allFields Object→ LocSet
returns the smallest location set of all locations

whose object component is the object given as argu-
ment

allObjects Field→ LocSet
returns the smallest location set of all locations

whose field component is the field given as argument
arrayRange Object× int× int→ LocSet

returns the location set of all array elements be-
tween the index given as second argument (incl.) and
the index given as third argument (incl.) of the array
given as first argument

freshLocs Heap→ LocSet
all locations of objects that are not created in the

given heap
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predicate symbol typing and informal semantics
elementOf Object×Field×LocSet

holds iff the location specified by the first two argu-
ments is an element of the location set given as third
argument

subset LocSet×LocSet
holds iff the first location set is a subset of (or equal

to) the second location set
disjoint LocSet×LocSet

holds iff both location sets are disjoint
createdInHeap LocSet×Heap

holds if the locations in the set are either static fields
or belong to objects that are created in the heap given as
second argument

B.1.8 Finite Sequence Related Function and Predicate Symbols

function symbol typing and informal semantics
seqEmpty → Seq

the empty sequence
seqSingleton any→ Seq

singleton sequence with exactly the
element given as argument

seqConcat Seq×Seq→ Seq
concatenates two sequences to a

single one
seqSub Seq× int× int→ Seq

returns the subsequence of the first
sequence ranging from the first argu-
ment (incl.) to the second argument
(excl.); if the second argument is less
or equal than the first one the empty
sequence is returned

seqReverse Seq→ Seq
reverses the sequence

seqDef{int x}( f alse, f alse, true) int× int×any→ Seq
the defining constructor for se-

quences (see Section 5.2)
seqSwap Seq× int× int→ Seq

swaps the two elements at the spec-
ified indexes
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function symbol typing and informal semantics
seqRemove Seq× int→ Seq

removes the element at the speci-
fied index

seqNPermInv Seq→ Seq

array2seq Heap×Object→ Seq
converts the array into a sequence

A :: seqGet Seq× int→ A
retrieves the element at the speci-

fied index and casts it to type A; if out
of bounds the element seqGetOutside
is returned

seqLen Seq→ int
returns the length of the sequence

seqIndexOf Seq×any→ int
returns the first index of the ele-

ment (second argument) in the given
sequence; otherwise unspecified

seqGetOutside → any
unspecified element returned when

trying to access an element outside a
sequence’s bounds

predicate symbol typing and informal semantics
seqPerm Seq×Seq

holds iff the first sequences is a permutation
of the other

seqNPerm Seq
holds if the sequence s is a permutation of the

integers 0, . . . ,seqLen(s)−1

B.1.9 Map Related Function and Predicate Symbols

function symbol typing and informal semantics
mapForeach{false, false, true} booleanany→Map

the defining constructor for maps
mapEmpty →Map

the empty map
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function symbol typing and informal semantics
mapSingleton any×any→Map

map with one entry where the
key is given as the first argument
and the value as second argument

mapUpdate Map×any→Map
concatenates two sequences to a

single one
mapRemove Map×any→Map

removes the entry whose key
equals the key given as second ar-
gument from the map

mapGet Map×any→ any
retrieves the value associated

with the key given as second argu-
ment; returns the unspecified ele-
ment mapUndef , if no such value is
found

mapUndef → any
unspecified unique element

predicate symbol typing and informal semantics
inDomain Map×any

holds iff the map contains the key given as
second argument

B.2 The KeY Syntax

The KeY system accepts different kinds of inputs related to JavaDL. From the user
point of view these inputs can be divided into the following categories:

• system rule files,
• user defined rule files,
• user problem files/proofs with optional user defined rules,
• JavaDL terms and formulas required by the interaction component of the KeY

system.

From the system’s perspective the division is similar, but on top of this, the distinction
between schematic mode and term (normal) mode is very important:

• in schematic mode schema variables can be defined and used (usually in defini-
tion of rules/taclets) and concrete terms or formulas are forbidden,
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• in normal mode schema variables and all other schematic constructs are forbid-
den, while concrete terms and formulas are allowed.

Additionally, most of terms and formulas constructs can appear in both schematic
and normal mode, but take slightly different form depending on the mode.

In either case, all inputs the KeY system accepts follow the same syntax—the KeY
syntax (or, as sometimes it is sometimes referred to, .key file syntax).

On the implementation level, the parsing of the KeY input is done on two levels.
One parser (called term, taclet, or problem parser) is used to parse all the input
up to modalities, and a second parser (schematic Java parser) is used to parse all
Java program blocks inside the modalities. Thus, on occasion, slightly different
conventions may apply when input material inside the modality is considered as
compared to input outside of the modality.

Finally, note that the syntax described here reflects the syntax of the KeY system
snapshot available before the book was printed. The KeY syntax undergoes minor
changes during system development, thus the publicly available KeY system may
differ slightly in its input syntax.

B.2.1 Notation, Keywords, Identifiers, Numbers, Strings

Expressions in the type-writer font are KeY syntax tokens or identifiers. Keywords
are annotated with bold type-writer font. In the KeY system the convention is to
use an escape character, backslash \, to mark (almost) all keywords, and some KeY
specific operators, like modalities. This is necessary to avoid collisions between KeY
system keywords/operators and possible Java identifiers/operators.

An identifier in the KeY system can be one of the following:

KeY Syntax
lettersdigits_# starts with a letter, can contain letters, digits,

underscore, and hash characters
identifier like the first one, an identifier

can start with a single dollar character
<letters> identifier enclosed in <>, used to annotate implicit

attributes, only letters allowed
\letters_ If not a reserved keyword, a sequence of letters and

underscores starting with a backslash is also
an identifier

singledigit In special cases, when used as a function symbol,
e.g., 1(...), a single digit is also an identifier

KeY Syntax

A keyword is a reserved identifier that starts with a backslash \ and contains only
letters and underscores. An exception from this rule are keywords true, false, and
modality symbols. Some examples of identifiers and the list of all keywords:
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KeY Syntax
Identifiers:
varName #varName operation@pre
<transient> \non_keyword_ident

Keywords and keyword-escaped symbols:
\include \includeLDTs \javaSource \withOptions
\optionsDecl \settings

\sorts \generic \proxy \extends \oneof \abstract
\locset \seq \bigint

\schemaVariables \schemaVar \modalOperator
\program \formula \term \update \variables \variable
\skolemTerm \skolemFormula \termlabel

\forall \exists \sub \subst \ifEx \if \then \else

\rules \find \add \assumes \replacewith \addrules \addprogvars
\heuristics \noninteractive \trigger \avoid
\sameUpdateLevel \inSequentState \closegoal
\antecedentPolarity \succedentPolarity
\displayname \helptext \lemma

\varcond \typeof \elemTypeOf \new \newLabel \not \same
\subsub \strict \staticMethodReference \notFreeIn
\static \final \isReferenceArray \isReference \dependingOn
\instantiateGeneric \inType \hasSort \isConstant \isEnumType
\isArray \isArrayLength \isStaticField \isLocalVariable
\isAbstractOrInterface \isInductVar \isObserver
\containsAssignment \containerType \applyUpdateOnRigid
\disjointModuloNull \simplifyIfThenElseUpdate
\dropEffectlessElementaries \dropEffectlessStores
\enumConstant \freeLabelIn \fieldType

\heuristicsDecl \programVariables \predicates \functions
\unique

\problem \proof \contracts \modifies \proofScript \invariants

\< \> \[ \] \[[ \]] \diamond \box \throughout
\diamond_transaction \box_transaction \throughout_transaction
\modality \endmodality
true false $lmtd

KeY Syntax
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An integer number in KeY can be given in a decimal or hexadecimal form with
infinite precision. An integer constant can have a negation sign:

KeY Syntax
Decimal integers:

1 2 -3 10 -20 12345678901234567890123456789
Hexadecimal integers:

0x01 -0xA 0xFFAABBCC0090ffaa
KeY Syntax

The KeY system can also recognize strings and character constants in its input.
Strings and characters in KeY are practically the same as strings and characters in
Java, with the same special characters and character quoting rules:

KeY Syntax
"A␣string␣with␣a␣line␣break␣at␣the␣end.\n"
’A’ ’0’ ’\t’ ’\r’ ’0x0020’

KeY Syntax

Finally, in the following expressions in 〈italics〉 represent parsing rules in regular
expression form with operators ::= (definition), | (alternative), ? (zero or one occur-
rence), ∗ (zero or more occurrences), + (one or more occurrences), and () grouping.
Whenever necessary, explanations are given to explain intuitive meaning of the
rules. Identifiers are denoted with 〈identifier〉, numbers with 〈number〉, strings and
characters with 〈string〉 and 〈character〉 respectively.

B.2.2 Terms and Formulas

We start with describing KeY’s syntax rules to construct a valid JavaDL term or
formula. On the syntax level, terms are hardly distinguishable from formulas, that
is, from the parser point of view, a formula is a term with a special top-level sort (a
“formula” sort). In general, many of the following syntax rules are only applicable if
the involved expressions have the right sort. On the implementation level, semantic
checks are performed next to syntax checks when expressions are parsed.

B.2.2.1 Logic Operators

The logic operators for building terms or formulas are the following:

KeY Syntax
〈formula〉 ::= 〈term〉
〈term〉 ::= 〈term1〉 ( <-> 〈term1〉 )∗
〈term1〉 ::= 〈term2〉 ( -> 〈term1〉 )?
〈term2〉 ::= 〈term3〉 ( | 〈term3〉 )∗
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〈term3〉 ::= 〈term4〉 ( & 〈term4〉 )∗
〈term4〉 ::= ! 〈term4〉

| 〈modalityTerm〉
| 〈quantifierTerm〉
| 〈equalityTerm〉

KeY Syntax

Intuitively, negation ! is the strongest operator and it is right associative, then
comes left associative conjunction &, then left associative disjunction |, then right
associative implication ->, and finally, left associative equivalence <->.

Possible modalities are the following:

KeY Syntax
〈modalityTerm〉 ::= 〈modalityBlock〉 〈term4〉

〈modalityBlock〉 ::=
\< 〈javaBlock〉 \> | \[ 〈javaBlock〉 \] | \[[ 〈javaBlock〉 \]]

| \diamond 〈javaBlock〉 \endmodality
| \box 〈javaBlock〉 \endmodality
| \throughout 〈javaBlock〉 \endmodality
| \diamond_transaction 〈javaBlock〉 \endmodality
| \box_transaction 〈javaBlock〉 \endmodality
| \throughout_transaction 〈javaBlock〉 \endmodality
| \modality{〈modalityName〉} 〈javaBlock〉 \endmodality

〈modalityName〉 ::= 〈identifier〉
KeY Syntax

In the last alternative, 〈modalityName〉 can be either a concrete modality (diamond,
box, diamond_trc, etc.), or a schema variable representing a set of modalities if the
expression is parsed in the schematic mode.

As mentioned earlier, Java blocks inside modalities are parsed separately, we
describe the corresponding syntax in Section B.2.5.

Next, a quantifier takes the following form:

KeY Syntax
〈quantifierTerm〉 ::=

\forall 〈variableBinding〉 〈term4〉
| \exists 〈variableBinding〉 〈term4〉

KeY Syntax

A variable binding takes the following form:

KeY Syntax
〈variableBinding〉 ::= 〈singleVariableBinding〉 | 〈multipleVariableBinding〉

KeY Syntax
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Then, depending on the parsing mode, variable binding can take the following forms,
in normal mode:

KeY Syntax
〈singleVariableBinding〉 ::= 〈sortExp〉 〈varName〉 ;

〈multipleVariableBinding〉 ::=
( 〈sortExp〉 〈varName〉 ( ; 〈sortExp〉 〈varName〉 )+ )

〈varName〉 ::= 〈identifier〉
KeY Syntax

And in the schematic mode:

KeY Syntax
〈singleVariableBinding〉 ::= 〈schemaVarName〉 ;

〈multipleVariableBinding〉 ::= ( 〈schemaVarName〉 ( ; 〈schemaVarName〉 )+ )

〈schemaVarName〉 ::= 〈identifier〉
KeY Syntax

In the former, 〈varName〉 is any valid KeY identifier and 〈sortExp〉 is a valid sort
name as explained shortly, in the latter 〈schemaVarName〉 is also any valid KeY
identifier associated with a proper schema variable. A sort expression takes the
following form:

KeY Syntax
〈sortExp〉 ::= 〈sortName〉 ( [] )∗

KeY Syntax

A sort name 〈sortName〉 is any valid KeY sort, including fully qualified sorts that
reflect Java types.

KeY Syntax
\forall (int i; int j) true
\exists java.lang.Object o_set; true

KeY Syntax

In the remainder of this appendix 〈variableBinding〉 and 〈sortExp〉 are going to be
referenced often.

Finally, an 〈equalityTerm〉 expresses (in-)equality between two atomic terms:

KeY Syntax
〈equalityTerm〉 ::=

〈atomicTerm1〉 ( = 〈atomicTerm1〉 )?
| 〈atomicTerm1〉 ( != 〈atomicTerm1〉 )?

KeY Syntax
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The inequality operator != is simply a syntactic sugar: a != b is the same as !a =
b (note that = binds stronger than !).

B.2.2.2 Atomic Terms

Atomic terms are build in the following way. The top-level atomic term is:

KeY Syntax
〈atomicTerm1〉 ::=
〈atomicTerm2〉 ( 〈intRelation〉 〈atomicTerm2〉 )? 〈termLabel〉?

〈intRelation〉 ::= < | <= | > | >=

〈termLabel〉 ::= << 〈label〉 ( , 〈label〉 )∗ >> )?

〈label〉 ::= 〈identifier〉 ( ( 〈string〉 ( , 〈string〉 )∗ ) )?
KeY Syntax

The rule 〈intRelation〉 represents a possible integer comparison relation in the infix
form. Of course, such relation can be only used if the sort of 〈atomicTerm2〉 permits
this. The infix relation expressions (as well as infix integer binary operators, like +, -,
*, etc., see below) are only a short hand notation for corresponding function symbols,
like lt, geq, add, or mul. Term labels can be attached to atomic terms. It is not yet
possible to declare supported term labels in input files; this must be done on the Java
level. Further definitions for atomic terms are the following:

KeY Syntax
〈atomicTerm2〉 ::=
〈atomicTerm3〉 ( 〈arithOp1〉 〈atomicTerm3〉 )∗

〈atomicTerm3〉 ::=
〈atomicTerm4〉 ( 〈arithOp2〉 〈atomicTerm4〉 )∗

〈atomicTerm4〉 ::=
- 〈atomicTerm4〉

| ( 〈sortExp〉 ) 〈atomicTerm4〉
| 〈atomicTerm5〉

〈arithOp1〉 ::= + | -

〈arithOp2〉 ::= * | / | %
KeY Syntax

Intuitively, all binary arithmetic operators are left associative, and *, /, % bind stronger
than + and -. Unary minus and sort casts (definition of 〈atomicTerm4〉) are strongest
and right associative. Next, the definition for 〈atomicTerm5〉 is the following:
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KeY Syntax
〈atomicTerm5〉 ::=

〈accessTerm〉
| 〈locsetTerm〉
| 〈substitutionTerm〉
| 〈updateTerm〉

KeY Syntax

Access terms are defined in the following way:

KeY Syntax
〈accessTerm〉 ::=
〈primitiveTerm〉 〈arrayAttributeQueryAccess〉∗

〈primitiveTerm〉 ::=
〈staticQuery〉

| 〈staticAttribute〉
| 〈functionPredicateTerm〉
| 〈variable〉
| 〈conditionalTerm〉
| 〈specialTerm〉
| 〈abbrTerm〉
| ( 〈term〉 )
| true
| false
| 〈number〉
| 〈character〉
| 〈string〉

〈arrayAttributeQueryAccess〉 ::=
〈arrayOrSequenceAccess〉 | 〈attributeAccess〉 | 〈queryAccess〉

〈arrayOrSequenceAccess〉 ::= [ 〈atomicTerm1〉 ]

〈attributeAccess〉 ::= . 〈attributeExp〉

〈queryAccess〉 ::= . 〈queryExp〉

〈staticAttribute〉 ::= 〈typeReference〉 . 〈attributeExp〉

〈staticQuery〉 ::= 〈typeReference〉 . 〈queryExp〉

〈attributeExp〉 ::= 〈attributeName〉 〈classLocator〉?

〈queryExp〉 ::= 〈queryName〉 〈classLocator〉? ( 〈argumentList〉? )
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〈classLocator〉 ::= @( 〈typeReference〉 )

〈argumentList〉 ::= ( 〈term〉 ( , 〈term〉 )∗ )

〈attributeName〉 ::= 〈identifier〉

〈queryName〉 ::= 〈identifier〉
KeY Syntax

Class locator expressions are used to resolve possible collisions between attribute
names when Java name shadowing occurs. Class locator expressions are obligatory
when such a collision takes place, otherwise they are optional. Class locators can only
occur in normal term parsing mode, not in the schematic mode. A 〈typeReference〉 is
a fully qualified Java type expression, for example:

KeY Syntax
java.lang.Object
int[]

KeY Syntax

The package qualifier can be skipped, if there are no ambiguities. An 〈attributeName〉
is either a concrete attribute name, or a schema variable representing one, again
depending on the parsing mode. 〈queryName〉 is similar to 〈attributeName〉, however
in the current version of the KeY system, query expressions can only appear in normal
parsing mode, thus 〈queryName〉 always represents a concrete method/query name.
The decision whether an access is an array access or a sequent access (A :: seqGet) is
resolved by semantic checks on the type of the accessed entity.

Before we describe what are the lowest level building blocks for terms, we first
go back to the definition of 〈substitutionTerm〉 and 〈updateTerm〉:

KeY Syntax
〈substitutionTerm〉 ::=
{ \subst 〈singleVariableBinding〉 〈atomicTerm1〉 } 〈term4〉

〈locsetTerm〉 ::=
{ (〈atomicTerm1〉,〈atomicTerm1〉) (, (〈atomicTerm1〉,〈atomicTerm1〉))∗ }

〈updateTerm〉 ::= { 〈parallelUpdate〉 } ( 〈term4〉 | ( 〈parallelUpdate〉 ) )

〈parallelUpdate〉 ::= 〈singleUpdate〉 ( || 〈singleUpdate〉 )∗

〈singleUpdate〉 ::= 〈atomicTerm1〉 := 〈atomicTerm1〉
KeY Syntax

The above definitions mean that, in particular, the following terms are going to be
parsed like this:
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KeY Syntax
{\subst int i; 2} i = i is parsed as ({\subst int i; 2} i) = i

{i := 1} i = i is parsed as ({i := 1} i) = i

{ i := 1 || {i := 1} (j := i+1)} j = 2

{ i := 1 || {i := 1} (j := i+1 || z := 3)} j = 2

Not parsable is the following
{ {i := 1} j := i + 1 } j = 2
because update on update applications must be parenthesized

KeY Syntax

Function and predicate expressions are constructed in the following way:

KeY Syntax
〈functionPredicateTerm〉 ::=
〈funcPredName〉 ( ( { 〈singleVariableBinding〉 })? ( 〈argumentList〉 ) )?

〈funcPredName〉 ::= 〈identifier〉
KeY Syntax

Simple variables, conditional terms, and abbreviations are defined as follows:

KeY Syntax
〈variable〉 ::= 〈identifier〉

〈abbrTerm〉 ::= @ 〈identifier〉

〈conditionalTerm〉 ::=
( \if | \ifEx 〈variableBinding〉 ) ( 〈formula〉 )

\then ( 〈term〉 ) \else ( 〈term〉 )
KeY Syntax

A variable can be a logic or a program variable (normal parsing mode), or a schema
variable (schematic mode). An abbreviation expression refers to an identifier that
contains a term abbreviation. A special term is built in the following way:

KeY Syntax
〈specialTerm〉 ::=

〈metaTerm〉
| \inType ( -? 〈schemaVariable〉

| 〈schemaVariable〉 〈arithOp〉 〈schemaVariable〉 )

〈metaTerm〉 ::= 〈metaOperator〉 ( ( 〈argumentList〉 ) )?
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〈arithOp〉 ::= + | - | * | / | %

〈schemaVariable〉 ::= 〈identifier〉

〈metaOperator〉 ::= 〈identifier〉
KeY Syntax

Special terms can only occur in the schematic mode. Meta-terms are used to construct
taclet meta-operator expressions. Currently, valid meta-operator identifiers are the
following:

KeY Syntax
#add #sub #mul #div #mod #pow #less #greater #leq #geq #eq
#ShiftLeft #ShiftRight #BinaryAnd #BinaryOr #BinaryXOr
#arrayBaseInstanceOf #constantvalue #enumconstantvalue
#divideMonomials #divideLCRMonomials
#introAtPreDefs #memberPVToField #addCast #ExpandQueries

KeY Syntax

Note that different meta-constructs are used inside modalities for schematic Java
code blocks.

Finally, the remaining term building blocks are number 〈number〉 constants, string
〈string〉 and character 〈character〉 constants, grouping with parenthesis (), and logic
constants true and false.

Here are some examples of properly built terms and formulas. In normal mode:

KeY Syntax
false -> true
\forall int i; (i + i = 2 * i & i - i = 0)
\forall int i; (add(i, i) = mul(2, i) & sub(i, i) = 0)
\exists java.lang.Object[] o; o != null
java.lang.Object::instance(o) = TRUE
\< {i = 1;} \> i = 1
sum{int x;}(low, upper, x*x)

KeY Syntax

And in schematic mode:

KeY Syntax
\forall #v; (#v + #v = 2 * #v & #v - #v = 0)
\exists #v; #v != null
any::instance(#v) = TRUE
#o.#a != #se0 + #se1
#add(#se0, #se1) = 0

KeY Syntax



B.2. The KeY Syntax 651

B.2.3 Rule Files

All rule files (system and user defined) are parsed only in schematic mode. On the
top level, a rule file has the following form:

KeY Syntax
〈ruleFile〉 ::= 〈libraryIncludeStatement〉∗ 〈ruleFileDeclarations〉∗ 〈ruleBlock〉∗

KeY Syntax

B.2.3.1 Library and File Inclusion

The KeY system supports file inclusion on two levels: (low) file level, and (high)
library level. File inclusion statements can appear anywhere in the KeY input, and
take the following form:

KeY Syntax
〈fileInclusion〉 ::= \includeFile " 〈fileName〉 ";

KeY Syntax

The effect of \includeFile is that KeY unconditionally redirects its input to the
indicated file 〈fileName〉. When the indicated file is read in, the parsing in the current
file continues. File inclusion nesting is allowed and its depth is not limited by the
KeY system itself.

Library file inclusion can be done with the following statements:

KeY Syntax
〈libraryIncludeStatement〉 ::= ( \include | \includeLDTs )

〈libraryFileName〉 ( , 〈libraryFileName〉 )∗ ;
KeY Syntax

The major feature of the library inclusion statements is that each library file is going
to be read in once, even if the same library is requested multiple times (for example,
because of circular dependencies). On the implementation level, when the library files
are read in \includeLDTs performs slightly different operations than \include.

B.2.3.2 Rule File Declarations

Each rule file can have the following declarations:

KeY Syntax
〈ruleFileDeclarations〉 ::=

〈ruleSetsDecl〉
| 〈optionsDecl〉
| 〈sortsDecls〉
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| 〈schemaVariablesDecl〉
| 〈functionsDecl〉
| 〈predicatesDecl〉

KeY Syntax

Rule sets and options are declared in the following way:

KeY Syntax
〈ruleSetsDecl〉 ::= \heuristicsDecl { ( 〈ruleSetName〉 ; )∗ }

〈optionsDecl〉 ::= \optionsDecl { ( 〈oneOptionDecl〉 ; )∗ }

〈oneOptionDecl〉 ::= 〈optionName〉 : { 〈optionValue〉 ( , 〈optionValue〉 )∗ }

〈ruleSetName〉 ::= 〈identifier〉 〈optionName〉 ::= 〈identifier〉
〈optionValue〉 ::= 〈identifier〉

KeY Syntax

Examples of valid rule set and option declarations are:

KeY Syntax
\heuristicsDecl {

simplify_int;
simplify_prog;

}

\optionsDecl {
programRules:{Java, None};
runtimeExceptions:{ban, allow, ignore};

}
KeY Syntax

Sorts are declared in the following way:

KeY Syntax
〈sortsDecl〉 ::= \sorts { ( 〈oneSortDecl〉 ; )∗ }

〈oneSortDecl〉 ::=
\object 〈sortNameList〉

| \generic 〈sortNameList〉
( \extends 〈sortNameList〉 )? ( \oneof { 〈sortNameList〉 } )?

| \proxy 〈sortNameList〉
| 〈sortName〉 \extends 〈sortNameList〉
| 〈sortNameList〉

〈sortNameList〉 ::= 〈sortName〉 ( , 〈sortName〉 )∗
KeY Syntax
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The definition of 〈sortName〉 has been given earlier. Note, that here 〈sortName〉 may
be (only in some places) required to be a simple 〈identifier〉, and cannot be a fully
qualified sort name. Schema variables are declared in the following way:

KeY Syntax
〈schemaVariablesDecl〉 ::=

\schemaVariables {
( 〈schemaVarDecl〉 ; )∗

}

〈schemaVarDecl〉 ::=
\modalOperator { 〈operatorList〉 } 〈variableList〉
| \formula 〈schemaModifiers〉? 〈variableList〉
| \function 〈schemaModifiers〉? 〈variableList〉
| \program 〈schemaModifiers〉? 〈programSchemaVarSort〉 〈variableList〉
| \term 〈schemaModifiers〉? 〈sortName〉 〈variableList〉
| \termlabel 〈schemaModifiers〉? 〈variableList〉
| \update 〈schemaModifiers〉? 〈variableList〉
| ( \variables | \variable ) 〈sortName〉 〈variableList〉
| \skolemTerm 〈sortName〉 〈variableList〉
| \skolemFormula 〈variableList〉

〈programSchemaVarSort〉 ::= 〈identifier〉

〈schemaModifiers〉 ::= [ 〈identifier〉 ( , 〈identifier〉 )∗ ]

〈variableList〉 ::= 〈identifier〉 ( , 〈identifier〉 )∗

〈operatorList〉 ::= 〈identifier〉 ( , 〈identifier〉 )∗
KeY Syntax

Schema variable modifiers can be list, rigid, or strict. The list of currently
defined program schema variable sorts is the following:

KeY Syntax
LeftHandSide Variable StaticVariable LocalVariable
Expression SimpleExpression NonSimpleExpression
NonSimpleExpressionNoClassReference
ConstantPrimitiveTypeVariable
ConstantStringVariable StringLiteral NonStringLiteral

SimpleJavaBooleanExpression SimpleStringExpression
SimpleNonStringObjectExpression
AnyJavaTypeExpression JavaBooleanExpression JavaByteExpression
JavaCharExpression JavaShortExpression JavaIntExpression
JavaLongExpression JavaByteShortExpression
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JavaByteShortIntExpression JavaShortIntLongExpression
JavaIntLongExpression JavaCharByteShortIntExpression
JavaBigintExpression AnyNumberTypeExpression

SimpleInstanceCreation NonSimpleInstanceCreation
InstanceCreation ArrayCreation ArrayInitializer
SpecialConstructorReference

Statement Switch
MultipleVariableDeclaration VariableInitializer
ArrayPostDeclaration ArrayLength
MethodBody NonModelMethodBody ProgramMethod ExecutionContext
NonSimpleMethodReference ForUpdates LoopInit Guard

Catch Label MethodName Type NonPrimitiveType ClassReference

KeY Syntax

Some examples of properly declared schema variables:

KeY Syntax
\schemaVariables {

\modalOperator {diamond, box, throughout} #puremodal;
\formula post, inv, post1;
\program Type #t, #t2 ;
\program[list] Catch #cs ;
\term[rigid,strict] H h;
\variables G x;

KeY Syntax

Function and predicate declarations are very similar to each other, the only difference
is that there is no result type specified for predicates:

KeY Syntax
〈functionsDecl〉 ::=

\functions 〈optionSpecs〉? {
( 〈oneFunctionDecl〉 ; )∗

}

〈predicatesDecl〉 ::=
\predicates 〈optionSpecs〉? {

( 〈onePredicateDecl〉 ; )∗
}

〈oneFunctionDecl〉 ::=
( \unique )? 〈sortExp〉 〈funcPredName〉 〈binder〉? 〈argumentSorts〉?
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〈binder〉 ::=
{ ( true | false ) ( , ( true | false ) )∗

〈onePredicateDecl〉 ::=
〈funcPredName〉 〈binder〉? ( 〈argumentSorts〉?

〈argumentSorts〉 ::= ( 〈sortExp〉 ( , 〈sortExp〉 )∗ )

〈optionSpecs〉 ::= ( 〈optionSpecList〉 )

〈optionSpecList〉 ::=
〈oneOptionSpec〉 ( , 〈oneOptionSpec〉 )∗

〈oneOptionSpec〉 ::= 〈optionName〉 : 〈optionValue〉
KeY Syntax

In the above the option specification tells the system that the declared functions or
predicates should only be visible when the specified option is active. Some function
and predicate declaration examples:

KeY Syntax
\functions(intRules:javaSemantics) {
int unaryMinusJint(int);
\unique Field <created>;
int sum{false, false, true}(int, int, int);

}

\predicates {
Acc(java.lang.Object, any);

}

KeY Syntax

The sum declaration states that sum binds a variable in the third argument, but not
in the two other arguments.
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B.2.3.3 Rules

Rules (taclets) are defined in \rules blocks this way:

KeY Syntax
〈ruleBlock〉 ::= \rules 〈optionSpecs〉? { ( 〈taclet〉 ; )∗ }

KeY Syntax

The option specification has the same meaning as for the function and predicate
declarations. Each taclet can have additional (per taclet) option specifications and
local schema variable declarations. The syntax for a taclet is:

KeY Syntax
〈taclet〉 ::= \axioms { ( 〈taclet〉 | 〈axiom〉 )∗ } |
〈identifier〉 〈optionSpecs〉? {

( \schemaVar 〈schemaVarDecl〉 ; )∗
〈contextAssumptions〉? 〈findPattern〉?
〈applicationRestriction〉? 〈variableConditions〉?
( 〈goalTemplateList〉 | \closegoal )
〈tacletModifiers〉∗ 〈trigger〉∗

}

〈axiom〉 ::= 〈identifier〉 { 〈formula〉 }

〈contextAssumptions〉 ::= \assumes ( 〈schematicSequent〉 )
〈findPattern〉 ::= \find ( 〈termOrSequent〉 )

〈applicationRestriction〉 ::= \inSequentState | \sameUpdateLevel
| \antecedentPolarity | \succedentPolarity

〈variableConditions〉 ::= \varcond ( 〈variableConditionList〉 )
〈variableConditionList〉 ::= 〈variableCondition〉 ( , 〈variableCondition〉 )∗

〈goalTemplateList〉 ::= 〈goalTemplate〉 ( ; 〈goalTemplate〉 )∗

〈schematicSequent〉 ::= 〈termList〉? ==> 〈termList〉?
〈termList〉 ::= 〈term〉 ( , 〈term〉 )∗
〈termOrSequent〉 ::= 〈term〉 | 〈schematicSequent〉

〈tacletModifiers〉 ::= \heuristics ( 〈identifierList〉 )
| \noninteractive | \displayname 〈string〉 | \helptext 〈string〉

〈trigger〉 ::= \trigger { 〈variable〉 } 〈term〉 ( \avoid 〈termList〉 )∗

〈identifierList〉 ::= 〈identifier〉 ( , 〈identifier〉 )∗
KeY Syntax



B.2. The KeY Syntax 657

A variable condition can be one of the following:

KeY Syntax
〈variableCondition〉 ::=

\new ( 〈variable〉 , 〈typeCondExp〉
| \dependingOn ( 〈variable〉 )
| \dependingOnMod ( 〈variable〉 )
)

| \newLabel ( 〈variable〉 )
| \applyUpdateOnRigid ( 〈variable〉 , 〈variable〉 , 〈variable〉 )
| \dropEffectlessElementaries (

〈variable〉, 〈variable〉, 〈variable〉 )
| \dropEffectlessStores (

〈variable〉 , 〈variable〉 , 〈variable〉, 〈variable〉 , 〈variable〉 )
| \simplifyIfThenElseUpdate (

〈variable〉, 〈variable〉 , 〈variable〉 , 〈variable〉, 〈variable〉 )
| \differentFields ( 〈variable〉 , 〈variable〉 )
| \fieldType ( 〈variable〉 , 〈sortExp〉 )
| \containsAssignment ( 〈variable〉 )
| \isEnumType ( 〈typeCondExp〉 )
| ( \different | \metaDisjoint ) ( 〈variable〉 , 〈variable〉 )
| \equalUnique ( 〈variable〉 , 〈variable〉, 〈variable〉 )
| \notFreeIn ( 〈variable〉 ( , 〈variable〉 )+ )
| \hasSort

( 〈variable〉 , ( 〈sortExp〉 | \elemSort ( 〈sortExp〉 ) ) )
| \isReference ( [non_null] )? ( 〈typeCondExp〉 )
| \isObserver ( 〈variable〉 ) | \enumConstant ( 〈variable〉 )
| \hasSubFormulas ( 〈variable〉 )
| \hasLabel ( 〈variable〉 , 〈identifier〉 )
| \not? \freeLabelIn ( 〈variable〉, 〈variable〉 )
| \not? \staticMethodReference (

〈variable〉 , 〈variable〉 , 〈variable〉 )
| \not? ( \isThisReference | \isReferenceArray ) ( 〈variable〉 )
| \not? ( \isArray | \isArrayLength ) ( 〈variable〉 )
| \not? ( \isConstant | \final | \static ) ( 〈variable〉 )
| \not? ( \isLocalVariable | \isStaticField ) ( 〈variable〉 )
| \not? \isAbstractOrInterface ( 〈typeCondExp〉 )
| \not? 〈typeComparison〉 ( 〈typeCondExp〉 , 〈typeCondExp〉 )

〈typeCondExp〉 ::= (\typeof | \containerType) ( 〈variable〉 ) | 〈sortExp〉

〈typeComparison〉 ::= \same | \disjointModuloNull | \strict? \sub
KeY Syntax
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The goal specification is defined as follows:

KeY Syntax
〈goalTemplate〉 ::=

〈optionSpecs〉 { 〈oneGoalTemplate〉 }
| 〈oneGoalTemplate〉

〈oneGoalTemplate〉 ::=
〈branchName〉?

〈replaceGoal〉 〈addGoal〉? 〈addRules〉? 〈addProgramVars〉?
| 〈addGoal〉 〈addRules〉?
| 〈addRules〉

〈branchName〉 ::= 〈string〉 :

〈replaceGoal〉 ::= \replacewith ( 〈termOrSequent〉 )

〈addGoal〉 ::= \add ( 〈schematicSequent〉 )

〈addRules〉 ::= \addrules ( 〈taclet〉 ( , 〈taclet〉 )∗ )

〈addProgramVars〉 ::= \addprogvars ( 〈variable〉 ( , 〈variable〉 )∗ )
KeY Syntax

Some examples of properly formed taclets:

KeY Syntax
eliminateVariableDeclaration {

\find (\<{.. #t #v0; ...}\> post)
\replacewith (\<{.. ...}\> post)
\addprogvars(#v0)
\heuristics(simplify_prog, simplify_prog_subset)
\displayname "eliminateVariableDeclaration"

};

makeInsertEq {
\find (sr = tr ==>)
\addrules ( insertEq { \find (sr) \replacewith (tr) } )
\heuristics (simplify)

};

cut {
"cut:␣#b␣TRUE": \add (#b ==>);
"cut:␣#b␣FALSE": \add (==> #b)

};
KeY Syntax
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B.2.4 User Problem and Proof Files

User problem and proof files are almost the same, the only difference is that the
problem file does not contain a \proof section. User problem and proof files have
some additional elements as compared to rules files, and all the elements of the rule
files can be present in a problem/proof file:

KeY Syntax
〈userProblemProofFile〉 ::=
〈proverSettings〉?
〈javaSource〉?
〈libraryIncludeStatement〉∗
〈tacletOptionActivation〉?
〈programVariablesDecl〉?
〈ruleFileDeclarations〉∗
〈contracts〉∗
〈ruleBlock〉∗
( 〈problem〉 | 〈proofobligation〉 ) 〈proof 〉? | 〈chooseContract〉

KeY Syntax

The following simple definitions cover most of the problem/proof file syntax:

KeY Syntax
〈proverSettings〉 ::= \settings { 〈string〉 }

〈javaSource〉 ::= \javaSource " 〈fileName〉 ";

〈tacletOptionActivation〉 ::= \withOptions 〈optionSpecList〉 ;

〈programVariablesDecl〉 ::= \programVariables { ( 〈progVarDecl〉 ; )∗ }

〈progVarDecl〉 ::= 〈typeReference〉 〈variableList〉

〈problem〉 ::= \problem { 〈formula〉 }

〈proofobligation〉 ::= \proofObligation { 〈string〉 }

〈proof 〉 ::= \proof { 〈proofTree〉 }

KeY Syntax



660 B KeY File Reference

The \programVariables section defines program variables local to the problem,
for example:

KeY Syntax
\programVariables { java.lang.Object o; }

\problem {
\< {o = new Object();} \> o != null

}
KeY Syntax

The parameter to \settings is a string containing the description of prover settings
in a category/property list form, similar to this:

KeY Syntax
\settings {
"#Proof-Settings-Config-File
#Wed␣Aug␣18␣17:49:41␣CEST␣2016
[StrategyProperty]VBT_PHASE=VBT_SYM_EX
[SMTSettings]useUninterpretedMultiplication=true
[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT
[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF
[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF
...
}

KeY Syntax

The \proof contains a proof tree in the form of Lisp-like nested lists. Since proof
trees are in principle not supposed to be edited by the user manually, we skip the
detailed description of the proof tree syntax. An example of a proof tree is the
following:

KeY Syntax
\proof {
(keyLog "0" (keyUser "woj" ) (keyVersion "0.2184"))

(branch "dummy␣ID"
(rule "concrete_and_1" (formula "1") (term "0")

(userinteraction "n"))
(rule "concrete_and_2" (formula "1") (term "1")

(userinteraction "n"))
(rule "concrete_eq_4" (formula "1") (userinteraction "n"))
(rule "concrete_not_2" (formula "1") (userinteraction "n"))
(rule "close_by_true" (formula "1") (userinteraction "n"))

)
}

KeY Syntax
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The \proofObligation contains the name of the proof-obligations to be proven:

KeY Syntax
\proofObligation "#Proof Obligation Settings
#Wed Aug 22 15:59:39 CEST 2012
name=Matrix22[Matrix22\\:\\:strassen(Matrix22,Matrix22)].

JML normal_behavior operation contract.0
contract=Matrix22[Matrix22\\:\\:strassen(Matrix22,Matrix22)].

JML normal_behavior operation contract.0
class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO
";

KeY Syntax

B.2.4.1 Method Contracts

Method contracts can be expressed directly in JavaDL and are specified in the
\contracts section of an input file using the following KeY syntax:

KeY Syntax
〈contracts〉 ::=

\contracts {
( 〈oneContract〉 ; )∗

}

〈oneContract〉 ::=
〈identifier〉 {
〈programVariablesDecl〉?
〈prePostFormula〉
\modifies 〈term〉
( \heuristics ( 〈identifierList〉 ) )?
( \displayname 〈string〉 )?

}

〈prePostFormula〉 ::=
〈formula〉 -> 〈modalityBlock〉 〈formula〉

KeY Syntax

Here program variables are declared locally for a contract. The contract formula
〈prePostFormula〉 has to be in special form (Hoare Triple)—the program blocks
appearing inside the modality are limited to single method body reference expression
and special exception catching constructs. The term provided after the \modifies
keyword has to be of type \locset.
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We conclude this subsection with an example of a contract written in JavaDL:

KeY Syntax
\contracts {
Demoney_setUndefined {

\programVariables {
byte b;
fr.trustedlogic.demo.demoney.Demoney demoney;

}
demoney.definedParamFlags != null ->
\<{
demoney.setUndefined(b)

@fr.trustedlogic.demo.demoney.Demoney;
}\> demoney.definedParamFlags != null
\modifies allFields(demoney.definedParamFlags)
\displayname "setUndefined"

};
}

KeY Syntax

B.2.5 Schematic Java Syntax

In principle, inside a JavaDL modality any valid Java code block can be placed, that
is, any Java code block that would be allowed in a Java method implementation. On
top of that, the KeY system allows extensions to the regular Java syntax. We are
not going to discuss the Java syntax, we assume that in this context it is common
knowledge. Similarly to terms, different rules for the code inside a modality apply
when the schematic mode is used for parsing the rule files, as explained below. Java
blocks that appear inside a modality have to be surrounded with a pair of braces {}.
In the following, Java keywords that appear in Java blocks are marked with bold.

B.2.5.1 Method Calls, Method Bodies, Method Frames

In normal parsing mode the following construct can be used to refer to method’s
body/implementation:

KeY Syntax
〈methodBody〉 ::=

( 〈resultLoc〉 = )?
〈staticClassOrObjectRef 〉 . 〈methodName〉
〈methodArguments〉 @ 〈classReference〉 ;

KeY Syntax
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The following are properly constructed method body references:

KeY Syntax
o.method()@MyClass;
result = pack.StaticClass.method(o, 2)@pack.StaticClass;

KeY Syntax

On the top level, any Java block can also be enclosed in a method frame to provide
the method execution context. A method frame expression takes the following form:

KeY Syntax
〈methodFrame〉 ::=
method-frame(result -> 〈resultLoc〉 ,

source = 〈methodName〉 〈methodArguments〉@〈classReference〉
( , this = 〈variable〉 )? ) : {

〈javaBlock〉
}

KeY Syntax

For example:

KeY Syntax
\<{ method-frame(result->j, source=m()@MyClass, this=c) : {

this.a=10;
return this.a;

}
}\> ...

KeY Syntax

B.2.5.2 Exception Catching in Contracts

When a JavaDL method contract is constructed a method body reference inside the
modality can be enclosed in an exception catching construct to allow exceptional
specification of a method. The syntax is the following:

KeY Syntax
〈contractExceptionCatch〉 ::=

#catchAll(〈classReference〉 〈variable〉) { 〈methodBody〉 }
KeY Syntax

For example:

KeY Syntax
#catchAll(Exception e) {
o.method()@MyClass;

}
KeY Syntax
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B.2.5.3 Inactive Java Block Prefix and Suffix

In the schematic mode several extensions to the Java syntax are available. First, the
inactive prefix and suffix of the Java block can be given with .. and ..., following
this syntax:

KeY Syntax
〈inactivePrefixSuffix〉 ::= .. 〈javaBlock〉 ...

KeY Syntax

The inactive prefix and suffix constructs can be seen as special cases of program
schema variables.

B.2.5.4 Program Schema Variables

Any program part inside the modality can be replaced with a corresponding schema
variable, provided a schema variable of a proper kind is provided to match the given
element in Java code. Additionally some elements of the inactive prefix can also be
matched with a schema variable to refer to the execution context data. For example,
the following are valid schematic Java blocks:

KeY Syntax
.. #loc = #se; ... Assignment
.#ex.. #lb: throw #se; ... Execution Context & Label
.. #t #v = #exp; ... Variable declaration
.. #se.#mn(#selist); Method call

KeY Syntax

B.2.5.5 Meta-Constructs

When in schematic mode, the KeY system offers a variety of meta-constructs to
perform local program transformations and new code introduction related to the
corresponding symbolic execution rules of Java code. Such meta-constructs can only
be used in the modalities that are part of the \replacewith or \add taclet goal
specifiers. For example the following meta-construct can be used to introduce proper
method body reference into the analyzed Java code:

KeY Syntax
.. #method-call(#se.#mn(#selist)); ...

KeY Syntax
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The full list of schematic Java meta-constructs is the following:

KeY Syntax
#unwind-loop #enhancedfor-elim #for-to-while #unpack
#switch-to-if #do-break #evaluate-arguments
#resolve-multiple-var-decl #typeof #length-reference

#method-call #expand-method-body
#constructor-call #special-constructor-call

#create-object #post-work
#array-post-declaration #init-array-creation

#static-initialization #isstatic #static-evaluate

KeY Syntax

B.2.5.6 Passive Access in Static Initialization

Finally, the static initialization rules extend Java syntax with the passive (or raw)
access operator:

KeY Syntax
〈passiveAccessExp〉 ::= @( 〈attributeVariableAccess〉 )

KeY Syntax

The passive access operator @ can be used both in normal (only when appropriate)
and schematic mode.
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\backup (JML) 368, 379
ban (exception handling) 74
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bsum (function) 36, 163, 248
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compiler optimization 5
completeness

relative 65, 167
rule 35
sequent calculus 34

conclusion of a rule 27
concrete (rule set) 131
conditional formula 25
confidentiality 594
conservative extension 269, 606
constant symbol 24
constraint (JML) 211, 217
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decreasing 236
decreasing term 553
defensive programming 199
definite assignment 53
defOfEmpty (rule) 153
defOfSeqConcat (rule) 153
defOfSeqNPermInv (rule) 153
defOfSeqRemove (rule) 153
defOfSeqReverse (rule) 153
defOfSeqSingleton (rule) 153
defOfSeqSub (rule) 153
defOfSeqSwap (rule) 153
dependency set 269, 278, 339
dependent types 470
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458
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\diamond (keyword) 641, 644
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\differentFields (keyword) 657
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\disjointModuloNull (keyword) 641
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\dl_ (JML) 252, 562, 628
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abstract 168
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sign 170

double 245
drag and drop 497
\dropEffectlessElementaries (key-

word) 641, 657
\dropEffectlessStores (keyword)

641, 657
dynamic dispatch 291, 315
dynamic frame 13, 322–328
dynamic logic 12, 49–105, 515, 544

E
e-voting 593–607
Eclipse 8, 15, 384, 401, 565
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\else (keyword) 641, 649
\empty (JML) 629
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eqRight (rule) 30
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application 512
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150
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Error 260
ESC/Java2 195, 240, 606
\everything (JML) 233, 251, 322, 629
exactInstance (function) 250
exc (program variable) 99
exception 208, 222, 260–262, 399

handling 74
runtime 531
unchecked 260, 261

exceptional behavior 222
exceptional_behavior (JML) 209,

223, 259
\exists (JML) 201, 625
\exists (keyword) 641, 644
exLeft (rule) 28
explicit heap model 40, 249, 354, 357,

376
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left-hand side 66
simple 66

exRight (rule) 28, 62
\extends (keyword) 641, 652

F
FALSE 39
false (keyword) 641, 647
fault injection 17
Field (type) 39, 51
field

access 73
implicit 87

\fieldType (keyword) 641, 657
file inclusion 651
\final (keyword) 657
final (Java) 53
finally (Java) 95–96
\find (keyword) 112, 124–125, 641
finite sequence 149
first-order logic 10
float 245
footprint 321
for

enhanced 237
\for (keyword) 641, 648

\forall (JML) 201, 247, 625
\forall (keyword) 641
formal verification 2
formula

atomic 25
closed 25
conditional 25
first-order 25
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JavaDL 54

with updates 58
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syntax 643–650
universally valid 34

\formula (keyword) 133, 145, 502, 641
frame 233, 274

dynamic see dynamic frame 322
of a method 321
problem 233

frame problem 290
framing condition 274
\freeLabelIn (keyword) 641, 657
\fresh (JML) 250, 323, 625
FSym 24
\function (keyword) 653
function symbol 24, 51

built-in 631–640
functional correctness 13
functional verification 2, 13, 16
\functions (keyword) 641
fv (function) 25, 54, 57

G
garbage collector (Java Card) 355
\generic (keyword) 641, 652
getOfSeqDef (rule) 150
ghost 229, 269

variable 229
goal template 129

H
Haskell 9
\hasLabel (keyword) 657
\hasSort (keyword) 641
\hasSubFormulas (keyword) 657
Heap (type) 39, 40, 51, 440
heap 40, 525
heap (program variable) 52, 99, 528, 545
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helper 211, 214
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Hoare triple 572, 577

I
identifier 641
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if (Java) 75
ifElse (rule) 76
ifElseSplit (rule) 75
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\ifEx (keyword) 641
ignore (exception handling) 74
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impRight (rule) 28, 61, 132, 142, 501
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induction 252, 548
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compositionality 458
control 453
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JML 458
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inheritance

specification 218
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initially (JML) 211, 216

static 218
inReachableState (rule set) 131
\inSequentState (keyword) 125, 641
instance (function) 39, 46
instance (JML) 218, 226
instance allocation (Java Card) 366
instanceCreation (rule) 89
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\instantiateGeneric (keyword) 641
instantiation 134
int (type) 38, 51
int 230

int_induction (rule) 39
integer 230, 245

axioms 39
overflow 51, 230
semantics 230
syntax 643

integrity 594
\inter (keyword) 645
interaction 11, 31, 69, 108, 171, 434, 473,

497, 519, 541
quantifier instantiation 511
taclet instantiation 513

interpretation 32
\intersect (JML) 251, 322, 629
\inType (keyword) 641, 649
invariant 211

inheritance 219
loop 234
semantics 215
static 258
strong 216

invariant (JML) 211, 341
\invariant_for (JML) 216, 266, 625
invariant rule 101–105
\invariants (keyword) 641
Isabelle/HOL 2, 10, 108
\isAbstractOrInterface (keyword)

641, 657
\isArray (keyword) 641, 657
\isArrayLength (keyword) 641, 657
\isConstant (keyword) 641, 657
\isEnumType (keyword) 641, 657
\isInductVar (keyword) 641
\isLocalVariable (keyword) 641, 657
\isObserver (keyword) 641
\isQuery (keyword) 657
\isReference (keyword) 641
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657
\isStaticField (keyword) 641, 657
\isThisReference (keyword) 657
iteration affine 188

J
Jack 353
Java 5, 6, 10, 12, 16, 18

concurrent 377
Java Card 5, 50, 353, 354

abortTransaction() 356
API 355
atomic transaction mechanism

353, 356
beginTransaction() 356
code samples 368
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garbage collector 355, 361
memory types 355, 361
nonatomic methods 357, 363, 370
taclets 364
transaction roll-back 358, 361
transaction statement rules 360
virtual machine 355

Java Development Tools 401
JavaDL 12, 49–105
Java Dynamic Logic see JavaDL 12
Java Project 566
\javaSource (keyword) 641, 659
JFOL structure 44
JIF 454, 606
JML 2, 11, 13, 14, 18, 193, 541

clause 196
clauses

contraction 262
comment 197
comparison 240
default clauses 259
escape to JavaDL see\dl_ (JML)

252
expression 197, 201, 244

generalized quantifier 203
operators 201
quantifier 201
well-defined 201

goals 193
implicit specifications 257
information flow 458
postcondition 197
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predicate

informal 252
semantics 195, 243, 244–287, 625
syntax 621
tools 239
translation function 244
well-definedness 280

JMLEclipse 239
JMLunitNG 239
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JUNIT 15

K
KeY
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framework 1, 16
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.key file 641
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keyword 641
KIV 239, 353
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L
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loading

problem file 499
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LocSet

axioms 44
LocSet (type) 38, 39, 43, 51
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\seq (JML type) 245
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logical theory 5
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loop
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invariant 101–105, 234, 271, 330,

386, 406, 546, 560, 614
generation 171
rule 436, 548, 552

specification 101, 171, 271, 330
termination 553, 560
unwinding 68, 76–77, 420, 433, 547
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Loop Treatment 553
loopInvariant (rule) 333
loop_invariant (JML) 236
loopUnwind (rule) 76, 77, 547

M
macro 532, 564

Close provable goals below 564
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method
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rule 340
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