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Preface

This volume contains the papers presented at the 12” International Conference on
Information Systems Security (ICISS 2016), held December 16-20, 2016, in Jaipur,
India. The conference was started in 2005 to cater to cyber security research in India.
Since then it has evolved into an attractive forum internationally for researchers in
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(Technische Universitdt Darmstadt), Rinku Dewri (University of Denver), and Jeremias
Sauceda (EnSoft Corp). We are very thankful to the invited speakers, who agreed to
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for their time and efforts.
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e-meeting of the PC for the paper selection was done through the EasyChair system.
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Best Paper Awards starting with this year’s conference. A special thanks to Alfred
Hofmann of Springer for not only readily agreeing to publish the conference pro-
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team and, in particular, Anna Kramer for preparing the proceedings meticulously and in
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An Attack Possibility on Time Synchronization
Protocols Secured with TESLA-Like Mechanisms

Kristof Teichel'®™) | Dieter Sibold!, and Stefan Milius?

! Physikalisch-Technische Bundesanstalt,
Bundesallee 100, 38116 Braunschweig, Germany
kristof.teichel@ptb.de
2 Chair for Theoretical Computer Science,
Friedrich-Alexander Universitdt Erlangen-Niirnberg,
Martensstr. 3, 91058 Erlangen, Germany

Abstract. In network-based broadcast time synchronization, an impor-
tant security goal is integrity protection linked with source authenti-
cation. One technique frequently used to achieve this goal is to secure
the communication by means of the TESLA protocol or one of its vari-
ants. This paper presents an attack vector usable for time synchroniza-
tion protocols that protect their broadcast or multicast messages in this
manner. The underlying vulnerability results from interactions between
timing and security that occur specifically for such protocols. We propose
possible countermeasures and evaluate their respective advantages. Fur-
thermore, we discuss our use of the UPPAAL model checker for security
analysis and quantification with regard to the attack and countermea-
sures described, and report on the results obtained. Lastly, we review
the susceptibility of three existing cryptographically protected time syn-
chronization protocols to the attack vector discovered.

Keywords: Security protocols + Broadcast - Time synchronization
protocols + TESLA - Security analysis - UPPAAL

1 Introduction

Time synchronization protocols based on broadcast or multicast play an impor-
tant role in distributed computer networks such as sensor networks [24]. In many
cases, protection of time synchronization packets is indispensable in order to
guarantee the integrity and authenticity of time information; this is especially
true in open environments like the internet. In general, the performance of time
synchronization protocols decreases due to latencies caused by computational
operations, in particular by cryptographic operations. This decrease in perfor-
mance needs to be considered in the design of security measures (see e.g. [16]).
The Timed Efficient Stream Loss-tolerant Authentication (TESLA) protocol and
its variants [8,10,17-19] rely on symmetric cryptography and use delayed disclo-
sure of keys to acquire the asymmetric properties that are desired for broadcast

© Springer International Publishing AG 2016
I. Ray et al. (Eds.): ICISS 2016, LNCS 10063, pp. 3-22, 2016.
DOI: 10.1007/978-3-319-49806-5_1
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communication. They thus fulfill the special security requirements for broad-
cast time synchronization and are employed by multiple time synchronization
protocols. The fact that delayed disclosure requires the participants to agree on
a schedule creates a challenging interaction between the security mechanisms
and the time synchronization process. In this paper, we discuss the security of
time synchronization broadcast associations secured via variants of the TESLA
protocol, particularly with respect to this interaction. We highlight a specific
attack vector that an adversary can follow to circumvent the security measures
of such associations and to deliver false timing information to a participant.
We give a generalized description of the attack vector and use it on a minimal
example protocol for illustration. We also discuss feasible countermeasures that
can either make the attack theoretically impossible (which requires a significant
effort, possibly requiring a change in the communication structure) or mitigate
the attack by making its execution practically impossible. Next we present a
model in UPPAAL [2] that allows the analysis of the behavior of the protocol
participants’ clocks during an attack; this model also allows the assessment of
the effectiveness of the countermeasures discussed. In addition, we investigate
the extent to which specific existing time synchronization protocol specifications
might be vulnerable to the attack vector discovered. One of the intentions of this
paper is to facilitate discussion about the attack vector, and to supply a basis
for possible further analysis.

The remainder of this paper is structured as follows: Sect.2 provides an
overview of the two main approaches to time synchronization (unicast-type
and broadcast-type communication) and of the usual security measures that
each approach entails. Section 3 defines the notation used throughout the paper,
discusses the underlying assumptions and defines a Minimal Example Proto-
col (MEP) for illustration in later sections. Section4 shows the attack vector
on broadcast-type time synchronization protocols that have been secured with
TESLA-like mechanisms, exemplified by means of the MEP. In Sect. 5, we dis-
cuss a selection of possible countermeasures against the attack vector shown.
Section 6 presents our automated analysis in UPPAAL and provides its results;
these concern, on the one hand, quantification of the parameters that allow
the attack to happen and, on the other hand, the effectiveness of some of the
countermeasures discussed in previous sections. Section 7 presents three exam-
ples in which TESLA-like mechanisms are employed to secure broadcast-type
time synchronization: Network Time Protocol (NTP) secured by Network Time
Security (NTS) [23], TinySeRSync [24], and Agile Secure Time Synchronization
(ASTS) [27]. This section gives an assessment on how robust those protocols are
against the attack vector under discussion. Finally, Sect.8 concludes the paper.

2 Time Synchronization Security

2.1 Main Synchronization Techniques

There are two general methods for time synchronization [26]: using one-way
time transfer and using two-way time transfer. Figure 1 depicts typical message
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One-Way Time Synchronization Exchange Two-Way Time Synchronization Exchange

Alice Bob Alice Bob

Fig. 1. Schematic depiction of typical message exchanges that are used for time syn-
chronization between Alice and Bob. The left diagram depicts one-way synchronization,
while the right diagram depicts two-way synchronization.

exchanges for these two kinds of transfer. Although there are exceptions, net-
work protocols for time synchronization typically use two-way transfer when
they employ unicast-type communication (one sender, one receiver), whereas
they use one-way transfer when they employ broadcast-type communication
(one sender, multiple receivers). The exchange of time synchronization proto-
col packets between the nodes involved is accompanied by a delivery delay ¢
whose characteristics depend on the underlying network. If one-way time trans-
fer is used (Fig. 1, left diagram), messages are transmitted only from the time
server to the time client. In this case, the delivery delay has to be estimated and
the estimate has to be applied to the time offset between server and client. If
two-way time transfer is used (Fig.1, right diagram), messages are exchanged
mutually between a client and a server. This offers more information on the
delay of the transfer messages (it is bounded by the round trip of the message
exchange), and allows elimination of the delay dynamically, under the assump-
tion that the network delay is symmetric for the two directions, i.e., that £ = 1/2
in the figure.

2.2 Securing Time Synchronization Protocols

Since, for the most part, the content of time synchronization protocol packets
is not secret, any form of confidentiality or secrecy is usually not considered a
goal for any part of the communication (except for key exchange messages). A
goal that is generally considered essential is packet integrity, linked with strong
source authentication. Reference [16] contains a discussion about security goals
in time synchronization contexts.

For securing unicast-type time synchronization content, most specifications
use symmetric key cryptography. Some of them use standard shared key proce-
dures, forcing the time server to keep an individual key for each client association.
An example of this is the symmetric-key authentication procedure of the NTP,
which was first defined for NTP Version 3 [13]. Other specifications mostly try
to circumvent the need for the server to memorize the shared key, either by
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enabling the server to regenerate the shared key [11,22] or by having the server
encrypt its full association state and distribute it to the appropriate client [5].
Besides symmetric key techniques, external security measures such as MACsec,
IPsec, and (D)TLS are candidates for securing time synchronization protocol
packets [6,16]. It is also possible to use asymmetric cryptography for the cre-
ation of signatures for time synchronization traffic, although this comes at the
cost of significant overhead and is therefore often excluded as a possibility [16].
In the remainder of this work, we forego further detail on securing unicast-type
time synchronization traffic, since our focus is on attacking a particular scheme
for securing broadcast-type time synchronization.

For securing broadcast-type time synchronization messages, the specifications
generally use different techniques than those used in the unicast case. Although
broadcast-type time synchronization might seem like an application for classical
asymmetric cryptography, the computational cost is often an essential argument
against it. Instead, specifications often apply the TESLA protocol [18] or one
of its variants [8,17]. This class of specifications (the entirety of which we call
“TESLA-like mechanisms”) achieves asymmetric properties while using purely
symmetric cryptography. They can be used for securing broadcast-type time
synchronization either natively for a newly specified protocol [24,27] or as an
addition to existing protocols [22]. Typically, the symmetric cryptographic mea-
sures are hash-based message authentication codes (MACs), which have a very
low computational cost. The asymmetric properties are achieved by using a pre-
defined schedule for usage and disclosure of keys: The sender attaches to each
packet a MAC generated with a key that has not yet been disclosed and is thus
known only to the sender itself at that point in time. A receiver buffers a packet
for later validation of the included MAC. At a later time, the sender discloses
the key, enabling the receivers to start the validation of the buffered MACs. For
the scheme to work, it a receiver must be sure that the key used to generate a
received packet has not been disclosed; otherwise, the MAC and therefore the
whole packet may have been generated by an adversary. To this end, a prede-
fined time schedule is used: time is partitioned into intervals in advance. Each
time interval is associated with a key which is obtained in reverse order from a
one-way key chain. For details on this, we recommend that the reader to either
consult Reference [18] or study the way that keys are generated in the Mini-
mal Example Protocol in Sect. 3. Because TESLA-like mechanisms are based on
releasing messages on a pre-determined schedule, they require the client to have
its clock loosely synchronized with the server’s in order to establish the required
security property. Loose synchronization is important as an initial requirement,
which is typically met by performing time synchronization exchanges during
the bootstrapping of the broadcast message stream. Such prior time synchro-
nization exchanges are usually secured by means of methods other than the
TESLA-like mechanism; these methods usually have a higher overhead, either
computationally or in terms of communication bandwidth. However, the security
of any TESLA-like scheme is based on the assumption that any client’s clock is
loosely synchronized to that of the server not only initially, but that it keeps the



Attacking Time Synchronization Secured with TESLA-Like Mechanisms 7

necessary degree of synchronization throughout the whole communication. At
the same time, the content of the messages that are secured directly influences
the degree of synchronization of a client’s clock to the server’s clock. This creates
a strong interdependency between clock synchronization and security, which is
the basis for the attack described in Sect. 4.

3 Minimal Example Protocol

In this section, we define the Minimal Example Protocol (MEP), which is used for
illustration in later sections. When correctly applied, it provides the clients with
guarantees for packet integrity, linked with strong source authentication. Before
we present the protocol’s steps, we supply some essential protocol notation.

The agent names Alice, Bob, and Mallory are representative of a client,
server, and attacker, respectively. In short form, the client, Alice, is denoted
as A, the server, Bob, is denoted as B, and the attacker, Mallory, is denoted
as M. The clock of a participant X is denoted by Cx and Cx(t) denotes the
value that clock reads at time ¢. Furthermore, the expression Adj(Cy, ) denotes
the process responsible for adjusting the clock C'x to compensate for a reported
offset of amount ¢ from a reliable time synchronization source. The binary oper-
ator || is used to represent the concatenation of messages. We assume that
there is a fixed cryptographic hash function A that all participants have agreed
on using. For a given key value K and message m, the expression MAC[K](m)
stands for the keyed hash message authentication code using the hash function h
mentioned above, computed over m and with K as the key.

Generation of key chain

- _ ___ ___ __ Geneatiomofkeychain
Ko<t <1 g T K
b Vv v
K ne1 K,
{ { { { i
I I I,

Course of time and key usage

Fig. 2. Depiction of the generation of the one-way key chain for TESLA-like mecha-
nisms.

Below, we present the protocol steps of the MEP, which help with the expla-
nation of the attack in Sect. 4, and also serve to illustrate possible countermea-
sures in Sect.5. We assume that Alice wants to synchronize her clock C4 to
Bob’s reference clock Cp. For simplification, we also assume that Bob’s refer-
ence clock is perfect, i.e., that for any absolute time value ¢t we have Cg(t) = .
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Additionally, we assume that for a chosen number n of intervals, Bob has gen-
erated a one-way key chain as follows (a graphic representation of this scheme
can be seen in Fig. 2):

1. He has generated a key K, randomly.

2. He has then applied a one-way function f to generate K; = f"~¢(K,), for all
values 7 with 0 <3 <n —1.

3. He has applied another one-way function f’ to generate a chain of MAC
keys K/ = f'(K;), for 1 <i <mn.

Furthermore, we assume that Alice has received the following set of TESLA
parameters in a way that guarantees that they are the same values that Bob
uses:

— the starting time s; of the first interval Iy,

— the uniform duration L of all time intervals,

— the disclosure delay d, denoting the number of intervals between the usage
and disclosure of a key in the chain,

— the base key K for the one-way key chain, and

— the one-way functions f and f’.

Additionally, we assume that there is a constant delay A for messages traveling
from Bob to Alice and that Alice has precisely estimated A.!

We define the MEP as follows: The time server, Bob, sends a broadcast-
type packet P; at the starting time s; of each interval I;. Such a packet is
constructed by defining P; =i || Cp(s;) || MAC[K![](Cp(s:)) || Ki—a, where for
all cases i — d < 0, a predefined “empty” value is used instead of K;_4.

When Alice receives P; at time r;, she first checks the timeliness of P;. In
the MEP, she does this by simply checking the inequality Cy(r;) — A < s;41, in
which C4(r;) — A represents the assumed sending time of P;. If Alice has verified
the timeliness of a packet P;, she saves P; together with the value C4(r;) of her
clock at the reception time of P;. An additional action that Alice takes upon
receipt of any packet P; is to check whether the disclosed key K; 4 is a valid
key (whenever it is not the empty value). She can do this by using the one-way
function f to check K;_4 against an already verified key, for example K (in this
example, she verifies the equality Ko = f*~%(K;_4)). When Alice has verified a
key K;_q, she can then use it to derive K _,. With this, she can try and verify the
integrity of P;_4 (recall that P;_g4, together with the timestamp value C4(r;—_q),
was stored beforehand, given that its timeliness was verified at reception time).
For the verification of a packet P;_4’s integrity, Alice simply verifies that her cal-
culation of the message authentication code MAC[K!_,](Cp(s;)) agrees with the
MAC value included in P;_4. If Alice has verified the integrity of a packet P;_4,
she calculates the difference d;—q = Ca(r;—q) — (Cp(s;—q) + A) and then starts
the process Adj(C4,d;—q). For the purpose of this minimal example protocol,
we assume that Adj(Ca,d;—q) simply sets the clock C4 back by J;_4.

! To model A as factually constant in the network simplifies the analysis. Assuming
that Alice treats it as constant makes sense because, as long as she only has one-way
time synchronization communication data available, she cannot reliably determine
or compensate for varying network delays.
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4 The Attack Vector

Before we go on to describe the attack, we first present the attacker model. We
assume that there is exactly one attacker? (Mallory) and that she complies with
the Dolev-Yao attacker model [4]. This gives her the following capabilities:

— She can overhear and intercept any message that is sent on the network. In
particular, she can prevent delivery of any message in its original form.

— She can synthesize messages by inventing new values (secret keys or nonces
are assumed to be unguessable), by assembling tuples from known values, by
disassembling known tuples into their components, and by using any operator
with any values (including keys) as long as they are in her knowledge.

— She can send messages to any agent on the network, pretending to possess
any identity she chooses. However, it is still possible to verify authorship of a
message by cryptographic means, through appropriate use of secrets.

— One possible combined application of the abilities mentioned above is that
Mallory can delay the delivery of a message by first preventing it from being
delivered and later replaying it. This possibility should be highlighted in the
context of time synchronization, since performing this technique (called “delay
attack” or “pulse delay attack”) can degrade the performance of time synchro-
nization and is very simple to perform [7,16].

It should be noted that the Dolev-Yao attacker model is very permissive,
much more so than attacker models used elsewhere, for example in the recent
work [3] about attacks on a specific implementation of the NTP protocol. The
attacker model was chosen to account for the generic applicability of the attack
vector, as well as to accommodate the fact that we intended to do a formal analy-
sis with a model checker such as UPPAAL [2]. Thus, our model is susceptible
to the well-known state-explosion problem; in our experience, modeling more
aspects of the network, to say nothing of cryptographic mechanisms, greatly
increases the state space size.

In order to successfully perform the attack, Mallory performs the following
phases. Phase 1 aims to cause enough of an offset between Alice’s and Bob’s
clocks that it is possible for Alice to believe that a key is still undisclosed, while
in reality, Bob has already disclosed it. Phase 1 comprises several steps:

1. Mallory starts by choosing an interval ; and by consistently delaying packets
from Bob’s TESLA-secured broadcast stream, starting with P;,. She delays
them by a delay d; such that Alice still accepts them as timely, i.e., such
that CA(5i1 + A+ dl) €.

2. Mallory continues this until the delaying of these packets has taken an effect
on Alice’s clock (this will take at least until the key for P;, has been disclosed
and this packet has been successfully verified). The expected effect is to set
Alice’s clock back by an additional delay ds > 0.

2 This assumption is made for simplification. The assumed situation is equivalent to
a situation where several attackers are cooperating, or to a situation where one
attacker is being helped by one or more dishonest protocol participants [25].
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3. After the effect of the first delay has appeared, Mallory delays another stream
of packets, beginning with P;,. Due to adjustments to Alice’s clock because
of the delay added to the time synchronization packets F;,, P, +1,...,Pi,—1,
the timeframe in which Alice will accept P;, as timely has increased by ds.
Hence, Mallory is able to delay the stream of packets beginning with P;, by
an amount d; + ds, which is strictly greater than d;.3

4. The procedure described in Step 3 is iterated further, resulting in ever larger
possible delays. These delays in turn lead to ever larger offsets between
Alice’s and Bob’s clocks, and therefore to ever larger timeframes during which
Alice still accepts packets as timely. At some point, the offset surpasses the
value (d — 1) - L, where L is the length of the time intervals, and d is the
disclosure delay as defined for the TESLA scheme.

When the offset between Alice’s and Bob’s clocks is larger than (d—1)-L, Phase 1
is finished, and Mallory switches to Phase 2 of the attack. There is now sufficient
time to intercept a packet using a disclosed key from Bob, to forge a packet based
on that key, and to relay the forged packet to Alice fast enough that Alice still
accepts it as timely. Using this technique, Mallory is now able to successfully
pretend to be Alice’s time server, Bob. The security gained by using the TESLA
protocol on the time synchronization traffic is therefore compromised.

We now go through the procedure of the attack, supplying specifics for an
application of it to the MEP, where d = 2 is chosen for simplicity. We start with
the steps for Phase 1 (see also Fig. 3 for an illustration).

— For Step 1, Mallory starts with the packet Py, delaying it by d; = % - L.

— For Step 2, she continues this for P, and P5. This triggers an effect upon the
arrival of Ps: Alice extracts K, successfully validates it, derives K7, and uses
it to successfully validate the MAC included in P;. As a consequence, she sets
her clock C'4 back by the amount do = di = % - L.

— For Step 3, Mallory delays the packets starting with P; by the increased
amount dy + dy = % - L. Tt should be noted that, because C'4 was set back,
Alice still accepts these packets as timely, even though they arrive more than
one interval length after their sending time.

— Step 4 is conveniently short in our given example, as the offset surpasses the
value (d — 1) L = L even after the arrival of Ps.

For Phase 2, Mallory can use the resulting overlap intervals in which Bob’s
and Alice’s clocks have an offset of more than one interval. She can intercept
all packets starting from P7, blocking them from being delivered. When Bob
sends Py (which includes K7), Alice still believes to be in time interval I7. At this
point, Mallory can read K7, derive K} and invent a bogus packet Q7, complete
with a valid MAC using K7 as its key. She has a timeframe of % - L to do this
and deliver Q7 to Alice, who will then still accept it as timely. If she keeps this
technique up for Py and Py, she can disclose the intercepted (correct) key K7

3 Note that the value of dy is unknown to Mallory. However, she is able to estimate it
from her knowledge of the time synchronization mechanism.
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Fig. 3. Schematic description of Phase 1 of the attack, with d = 2 chosen.

to Alice in a believable way. Alice will then validate the bogus packet Q7 and
adjust her clock according to the bogus time values that it might carry.

The attack relies purely on the interdependency of clocks and cryptography
that is specific to time synchronization protocols which are secured with TESLA-
like mechanisms. There are no weaknesses in the preparation stage needed for
the attack to work. In particular, it can be assumed that the client, Alice, and the
server, Bob, have clocks which are initially synchronized to a specified degree; the
attack works even if this initial synchronization is impossible to disrupt. Also,
it can be assumed that the broadcast schedule for a TESLA-like mechanism
(Reference [18] provides some detail) has been exchanged securely; the attack
works even if this exchange is impossible to disrupt.

Note that, in the MEP, we chose the mechanism of bluntly “hard-setting”
the absolute value for the actual adjustment of the clock mostly for its simplic-
ity of presentation. Many time synchronization protocols will use a more refined
mechanism. For example, the NTP will try to make clock adjustments using
only frequency corrections, using increased frequency if the clock is behind its
reference clock and decreased frequency if it is ahead. It will set the absolute
clock value only if the network communication implies large offsets persistently
for a long period of time [14,15]. In addition to the differences between how
protocol specifications describe clock adjustment, some specifications (such as
the one for PTP) only provide abstract concepts for reading and setting clocks,
leaving the technical details open. In such cases, the specific technical processes
for clock adjustment depend on the particular implementation. However, using
means of clock adjustment other than hard-setting or having restrictions on when
hard-setting may occur can only delay the effect of an attacker’s manipulation
for a certain amount of time. Eventually, even large offsets will always be cor-
rected if they are reported persistently (see Option 5 in Sect.5 and the related
discussions).
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5 Discussion of Countermeasures

We now look at methods which might mitigate or counter the attack described in
Sect. 4. Let us first consider techniques which do not change the protocol itself,
but some aspect of the channel(s) via which it is used.

Option 1: Alice can try to mitigate her vulnerability to the attack by select-
ing multiple channels via which she synchronizes her clock. The approaches
in this direction range from just picking multiple time servers [12] to using
multiple network paths in order to reach the same time server via different
channels [21].

A disadvantage of Option 1 is that Mallory “only” needs to perform the same
attack on all the channels via which Alice synchronizes her clock to a time
source. However, the difficulty of Mallory’s task is proportional to the number
of channels Alice uses; in practice, this might prevent Mallory from successfully
completing the attack. An advantage of Option 1 worth mentioning is that it
is very easy to implement in a modular fashion: the respective secured time
synchronization protocol simply needs to be instantiated multiple times and run
via the different channels.

Option 2: Another way of defending against the attack is to enforce the confi-
dentiality of the time synchronization traffic, e.g. by means of full encryption
of all packets (see, for example, Sect.5.8 of [16] for some discussion about
confidentiality in the context of time synchronization).

Ideally, if Mallory cannot identify the packets she needs to delay, she cannot
perform Phase 1 of the attack. Additionally, she may also not be able to execute
Phase 2 under perfect confidentiality, because she would be unable to extract
Bob’s disclosed keys. However, it should be noted that keeping time synchro-
nization traffic confidential is not as simple as merely encrypting the pack-
ets, as metadata already provides a great deal of information and Mallory can
mount attacks even with incomplete information. Additionally, confidentiality in
a broadcast setting would require either a group key solution or asymmetric cryp-
tography. A group key approach is ineffective if Mallory finds a way to join the
group. Asymmetric cryptography contradicts the requirement of low computa-
tional cost, which is the main advantage of employing TESLA-like mechanisms.

In contrast to Options 1 and 2, which work purely by changing the time syn-
chronization protocol’s underlying channel(s), the options below employ modi-
fications to the protocol message flow to defend against the attack.

Option 3: One way of employing changes to the protocol flow is to include a
cryptographically secured unicast exchange between Alice and Bob in order
for Alice to ask, explicitly or implicitly, whether a certain key from the TESLA
key chain has already been disclosed. We call this a timeliness confirmation
exchange.
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As a minimum, the exchange should be a two-way transmission initiated by Alice.
For an overview of how such an exchange might work, we consider the following
example: Alice’s timeliness confirmation request T'C'y consists of a value indicat-
ing that she wants to ask about the key K (in this case, she could just send i)
and Bob’s response T'C'p also consists of this value in the case where the key is
yet undisclosed and consists of a standard value of —1 otherwise. The desired
outcome here is that Alice gets a guarantee that, at a time later than t¢3, a given
key K; has not yet been disclosed. If this holds true, she can deduce that, at the
reception time to of P;, the key had also not yet been disclosed, meaning that the
packet arrived in a timely fashion. This example shows the main advantage of
the option discussed; including a timeliness confirmation exchange breaks down
the question of broadcast packet timeliness to a pure ordering of messages, which
can be judged by the client without additional assumptions. Thus, the timeliness
confirmation exchange enables the client to verify timeliness without even refer-
ring to a local clock. This prevents Phase 2 of the attack from being executable.
There are also disadvantages to such an exchange. In most contexts, adding a
secured unicast message exchange would defy the purpose of using a TESLA-like
mechanism in the first instance, because it removes one of the key advantages of
TESLA-like mechanisms — specifically, that a key exchange for each server-client
association is not required. However, as with Option 4, it should be mentioned
that specifications may already support secure unicast communication for other
purposes, in which case the addition of a unicast exchange would not be as costly.
Furthermore, the resulting message exchange pattern fits very well with some
existing time synchronization protocols, in particular with the Precision Time

Protocol (PTP) [9].

Option 4: Another way of changing the protocol flow as a defense is to regularly
request time synchronization from the server via alternative communication,
which has to be secured in order to provide additional reliability.

Such auxiliary time synchronization mitigates the effect of Phase 1 of the attack
because the gradually introduced offset is negated. Most specifications that rely
on TESLA-like mechanisms have some method of achieving initial time synchro-
nization, which can be applied as an alternative communication channel.

Option 5: In order to mitigate the attack, it also helps if regulations are enforced
for the clock adjustment mechanism that limit the amount of offset that can
be maliciously introduced during Phase 1. Plausibility checks can be used for
this purpose, as well as ignoring measured offsets that are above the specified
upper bounds.

By itself, this option can only delay the time by which Mallory is able to switch
from Phase 1 to Phase 2. It can, however, keep a TESLA-like mechanism prov-
ably secure over a certain period of time. This option can therefore also be used
to more efficiently utilize other options, namely Option 4 or 3, as it provides
better guidelines for the frequency in which these options need to be applied.
To explore this issue further, we introduce a parameter D,,,, which represents
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the maximum amount of offset that Mallory can additionally introduce over the
course of one interval by using delay attacks as described in Phase 1 of the
attack. This parameter is assumed to be simplified in the sense that it is already
adjusted for values like the existing offset between the participants’ clocks before
the interval in question (caused by Mallory or other influences), the frequency
error of Alice’s clock, and fluctuations in the network delay. Under this assump-
tion, we get inequalities 0 < Dpax < L.

A disadvantage of both Options 3 and 4 is that inserting auxiliary commu-
nication into a broadcast-based protocol might represent a significant change
to the communication model, making these options significantly more intricate
to adopt than Option 1 or 2. On the other hand, Options 3 and 4 have the
advantage that they can provide complete protection from Phase 2 of the attack
described in Sect. 4. For this purpose, it is necessary to additionally regulate the
configuration values (specifically the number of intervals and interval length of
the TESLA-like mechanism, as well as aspects of clock adjustment as discussed
under Option 5) of the employed protocol in such a way that it makes reaching
Phase 2 of the attack very difficult or even impossible.

For the automated analysis presented in Sect. 6, we have chosen to include
Options 3 and 5 in the model. The model could easily be adjusted to allow
Option 1 to be included as well, but we did not pursue this path because we
found the security gains for that option to be much harder to quantify, and
decided it was not worth the additional state space growth. Modeling Option 2
went against our decision to eliminate cryptographic aspects from the model.
Option 3 is not included in the model because, for the state space growth it
causes, its practical relevance is doubtful due to the fact that, if a protocol does
not already include a timeliness confirmation exchange, it takes a great deal of
effort to integrate it retroactively.

6 The UPPAAL Model

In this section, we present an automated analysis of the attack applied against
the MEP. The analysis was performed with UPPAAL [2], a model checker based
on the theory of timed automata. UPPAAL models a system as a network of
such automata running in parallel, with some additional features added to its
modeling language such as bounded integer variables that are part of the system
state. It enables users to check properties specified in a query language that is a
simplified version of TCTL (Timed Computation Tree Logic [1]). The obtained
results are, as of yet, available only for undesirably large ratios of small-step
delays to interval lengths (currently, a ratio of 1/9 was achievable on our main
machine). However, on the obtainable scale, the results support that the attack
is performable under the right parameters; they also support that a combination
of Options 4 and 5 from the possible countermeasures listed in Sect.5 does in
fact protect against the attack if the parameters are chosen carefully. Phase 1 of
the attack does not require the insertion of false or modified messages, nor does
it depend on the cryptography applied. Instead, it uses only timing-dependent
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attacks, enabling the attacker to circumvent cryptographic security completely in
Phase 2. This fact is one reason for the choice of UPPAAL as the automated tool
for the analysis: UPPAAL is highly able to deal with timing-related questions.
Furthermore, this fact is the justification for the use of a number of abstractions
and simplifications to specifically tailor the model to the attack described in
Sect. 4, focusing the analysis on the switch from Phase 1 to Phase 2. This was
done in order to keep the state space smaller. The first important resulting
simplification is that the model does not take Mallory’s capabilities of inserting
false messages into account. The second is the exclusion of any cryptographic
functions from the model. An additional simplification to the model is that the
client’s clock value is modeled as the drift from the server’s clock, so that its
range is not directly proportional to longer run times of the system.

Our UPPAAL model is a version of the MEP that is extended with measures
corresponding to countermeasure Options 3 and 5. The system models one server
and one client (the number of clients could easily be made configurable at the
expense of significant state space growth), as well as the attacker’s capability
of delaying a packet’s delivery. The model ignores all cryptographic aspects of
the MEP or its extensions, such as the one-way functions f and f’, as well as
the chain of keys K; and even the MAC function. It instead assumes that these
aspects work as described and only treats the other aspects, namely the par-
ticipants’ clocks Cp and C'4 (more accurately, the drift C4 — Cp is modeled),
the adjustment process Adj(C4,0) as well as a number of configurable parame-
ters. These parameters include the interval length L, the disclosure delay d, the
assumed constant network delay A, the maximum number ., of unicast rep-
etitions, the maximum number ny ., of broadcast repetitions between unicast
repetitions, and finally the parameter Dy,.x introduced in Sect.5. The model
is split into nine separate automata: a very simple one for advancing the clock
values, one for each of the participants’ clocks, one for each of the participants’
behavior models (in the server’s case there are two of these, one for broadcast
and one for unicast) and one for each of the three existing message types: unicast
time request, unicast time response, and the broadcast time message. To review
our UPPAAL model in detail, please download its source code®.

The first goal of the UPPAAL analysis was to show that there exist conditions
under which the attack is feasible against the MEP. The second goal was to
show that a combination of countermeasures (Options 4 and 5 in particular) can
protect the MEP from the attack. The main queries we evaluated for different
parameter sets were the following (where I(X) represents the number of the
interval that participant X believes themselves to be in and where j represents
the number of intervals that the protocol has been running for):

AD I(A) > 1(B) —d + 1, (1)

EQ j = (@-1-L/p,.. +dAI(A) <I(B) —d, 2)

* The UPPAAL source code is available for download here: http://www8.cs.fau.de/
~milius/UPPAAL%20Model%20( TESLA- Like%20Mechanisms).zip.


http://www8.cs.fau.de/{~}milius/UPPAAL%20Model%20(TESLA-Like%20Mechanisms).zip
http://www8.cs.fau.de/{~}milius/UPPAAL%20Model%20(TESLA-Like%20Mechanisms).zip

16 K. Teichel et al.

A0 j < @-1)-L/p, .. +d = I(A) >1(B) —d. (3)
Informally, the queries can be read as follows:

— Query 1: “The interval Alice believes herself to be in is always at most d — 1
behind that which Bob is in.”

— Query 2: “There is a state in which the interval that Alice believes herself to
be in is at least d behind that which Bob is in and this state happens after at
least (d—1)-L/p,,.. + d intervals have passed.”

— Query 3: “For all states in which less than (d-1)-L/p,... + d intervals have
passed, the interval that Alice believes herself to be in is at most d — 1 behind
that which Bob is in.”

For npmax < (d=1)-L/p,.. + d, Queries 1 and 3 were always affirmed if the
check was completed, while Query 2 was always (trivially) negated. For nmax >
(d=1)-L/D,... + d, on the other hand, Query 1 was always negated if the check
was completed, while Queries 2 and 3 were always affirmed. This implies that
Phase 1 of the attack can be completed in the model if and only if the protocol
runs for at least (d=1)-L/p,.. + d intervals and that this represents a sharp
bound. On the one hand, these results affirm that the attack is feasible against
the unmodified MEP. On the other hand, they also affirm that a combination
of countermeasures 4 and 5 can protect against the attack if the combination
of Nmax, L and Dy ax is chosen correctly.

The checks were performed on a computer running a 64-bit version of Win-
dows 7 on an Intel i5 dual core at 2.6 GHz, with 8 GB of RAM. To date, we have
only been able to run the command line verifier tool of UPPAAL under Win-
dows, where it can apparently use only 2 GB of RAM. Therefore, 2 GB of RAM
represents a bottleneck for our checks under the requirement of precise runtime
and memory usage logs. Under these conditions, the /9 ratio of Dyax to L was
the best that allowed all query checks to finish. Performance data can be seen
in Fig.4. The relevance of the analysis of the protocol to practical applications
will increase depending on how small the ratio of small-step delays to interval
lengths can be made. We are working on refining the model further in order to
obtain better results in this area; an attempt to also model the server’s clock to
be more independent from the overall run time of the system is among the next
measures to be tried in order to improve the ratio.

7 Evaluation of Existing Specifications

We discuss three specifications that use TESLA for securing broadcast-type
time synchronization traffic: NTS-secured NTP [23], TinySeRSync [24], and
ASTS [27]. Without providing detailed descriptions of these protocols, we pro-
vide a sketch of how TESLA-like mechanisms are employed and to what extent
they might be susceptible to the attack described in Sect. 4. For all three speci-
fications, we constructed scenarios with certain settings that make them robust
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Query|Ratio|Runtime in s{Memory Usage in MB
1 29.95 134
2 /6 27.14 244
3 29.14 271
1 211.37 713
2 /g 192.77 1,520
3 196.05 1,586
1 286.59 1,091
2 | Yo 236.97 Out of memory
3 233.14 Out of memory

Fig. 4. The performance data of our UPPAAL model on the computer used

against the attack in the sense that Phase 2 is completely excluded. For NTS-
secured NTP and for ASTS, we also constructed scenarios in which the specifi-
cations are vulnerable to the attack in the sense that Phase 2 can be executed
against them. The parameter spaces between the given scenarios are the subject
of future research. Note that our discussion of those scenarios represents only
initial assessments derived from the respective specification documents.

NTS-Secured NTP: The Network Time Security (NTS) specification aims to
secure time synchronization in packet-switched networks. The project is moti-
vated by the fact that neither of the predominant time synchronization proto-
cols — NTP and PTP — currently provide adequate security mechanisms (Refer-
ence [20], for example, provides an analysis of the weaknesses in NTP’s Autokey
protocol [11]). Currently, the NTS specification is still in the standardization
process at the IETF [22]. Here, we focus on the application of NTS to the NTP,
since this is already specified in an additional draft document [23]. Time synchro-
nization in NTP’s unicast mode is secured via a unique shared secret between
client and server, which is specified in such a way that the server is able to re-
generate it on request, thus preserving server-side statelessness. NTP’s broad-
cast mode is secured via TESLA [22, Sect. 5 and Appendix B of Version 08], [23,
Sects. 4.2, 5.1.2 and 5.2.2 of Version 00].

The fact that NTS-secured NTP offers secured unicast time synchronization
enables a defense against the attack in the sense of Option 4. The specifica-
tion mentions that secured unicast messages are used to set up the initial time
synchronization required for the TESLA-like mechanism, but does not mention
whether or how often unicast exchanges should be used after this initialization.
Since Draft Version 05, the NTS specification has mentioned “keycheck” mes-
sage exchanges for broadcast messages. These represent timeliness confirmation
exchanges as discussed in Option 3. It should also be noted that, for offsets
less than 128 ms, the NTP avoids setting the client’s clock but adjusts its fre-
quency in order to minimize the time offset [15]. Only if offsets of more than
128 ms are reported consistently for a period of over 15 min will the protocol set
the time of the client’s clock. This represents a countermeasure in accordance
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with Option 5. A combination of these countermeasures enables us to construct
sets of configuration values with which NTS-secured NTP is completely pro-
tected against Phase 2 of the attack. For the first scenario, we assume that Alice
performs a keycheck exchange after the receipt of each broadcast packet. This
implies that Phase 2 of the attack can never work, because Alice will not accept
a non-timely packet as eligible, independently of the offset between her clock and
Bob’s clock. However, this scenario contradicts the principle of broadcast com-
munication and is therefore not feasible in real-world applications. For the second
scenario, we assume the following set of parameters: d = 2, L = 64 s, and n = 14.
Furthermore, we assume that secure time synchronization via unicast message
exchanges is an inherent part of the re-initialization process of the TESLA-like
mechanism. Here, we make reference again to the regulation that discards any
offset over 128 ms unless it is reported consistently for over 15 min and note that,
with these values, the TESLA-like mechanism runs for 896's, which is just under
15 min. Therefore, all offsets over 128 ms will be ignored during the broadcast
synchronization, which yields Dp.x = 128 ms, even if all other circumstances
allow for a higher value of Dy,x. Under these conditions, an upper bound for
the malicious offset that Mallory can accomplish during Phase 1 of the attack
is 14 - 128 ms = 1792 ms, which is far below the value (d — 1) L = 64 s needed to
start Phase 2. This scenario therefore offers complete protection against Phase 2
of the attack, even without the use of keycheck message exchanges.

We also construct a scenario in which NT'S-secured NTP is vulnerable to the
attack. For this scenario, we choose d = 2, and then choose L = 512s and n =
100. We also assume Dy, = 0.75 and L = 384s. Under these conditions, any
offset that Mallory introduces for two consecutive broadcast messages is therefore
reported for 1024 s, which is over 15 min.

TinySeRSync: The TinySeRSync protocol [24] is intended as a secure and
resilient time synchronization subsystem, with particular application in net-
works of wireless sensors running TinyOS. The TinySeRSync protocol secures
time synchronization traffic via two tasks (its authors use the term “phases”)
running in parallel; each of them is run periodically, with no predefined interde-
pendence between their frequencies. The tasks start in order (task one first, task
two only after the completion of task one) and then run independently, without
communicating or synchronizing with each other directly. They only interact
by manipulating the same clock and network connections. The first task has
every pair of neighboring nodes in the assumed sensor network perform secure,
single-hop pairwise synchronization. This is a one-way, unicast-type time syn-
chronization that is secured by MACs (the specification uses the term “message
integrity code”). The MACs are generated with shared secret keys, requiring
every pair of neighbors to perform an appropriate secure key exchange as part
of the network preparations. The second task employs broadcast-type time syn-
chronization. This is secured via yTESLA [19, Sect. 5], a variant of TESLA
specifically designed to be slim enough to work in sensor networks. As already
mentioned, the two tasks are run in parallel and periodically. The unicast-type
messages from task one, which is run periodically, constitute a countermeasure
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against the attack in accordance with Option 4. Consequently, the transition
from Phase 1 to Phase 2 of the attack has to be reached between two execu-
tions of task one. However, it is stated that task one is typically run at a higher
frequency than task two [24, Sect. 7.1]. Therefore, the transition would have to
be made after, at most, one execution of task two, which is not possible. As
such, TinySeRSync can be expected to be immune against Phase 2 of the attack
described in Sect. 4, given that the configuration values, in particular for the
periodicity of the two tasks, follow the recommendations given in Reference [24].

ASTS: The authors of ASTS [27] compare their proposed protocol with Tiny-
SeRSync, highlighting its comparably higher accuracy as well as the fact that
ASTS is more lightweight than TinySeRSync. Both of these properties are
achieved by dropping the mechanisms of TinySeRSync’s first task, eliminat-
ing the secure single-hop pairwise synchronization. The requirement made by
pTESLA for initial time synchronization is fulfilled by using a global group key
mechanism (instead of yTESLA) for the first period of broadcast-type one-way
time synchronization. After this, ASTS employs yTESLA exclusively for secur-
ing the broadcast-type one-way time synchronization messages in subsequent
synchronization periods.

Disregarding the question of the extent to which the group key mechanism
might open the protocol up to internal attackers in the first period, we focus
on the usage of the TESLA-like mechanism after the first period. The authors
of ASTS suggest using an estimated value for packet propagation delay that is
negligible against the length of a yTESLA interval, as well as using this scheme
for a significant amount of intervals with low disclosure delay (parameters used
for the performance analysis environment are d = 2, interval length L = 60's for
a number of n = 10 intervals [27, Section 3.A]). These settings appear to enable
the attack described in Sect. 4 in principle, although its practical feasibility will
depend on data we could not obtain from the paper: the maximum introducible
delay < Dyhax (which depends on the chosen value for the propagation delay
estimate parameter, as well as on the point in an interval that the nodes send
out their packets and the details of the employed clock adjustment mechanism)
and, finally, the actions that are taken when yTESLA is re-initialized. We focus
on the last item and use it to construct a scenario wherein ASTS is vulnerable
to the attack. If re-initialization of yTESLA does not entail any communication
related to Options 4 or 3 (it appears from Reference [27] that it does not), then
we can treat this as if yTESLA is running for an unbounded number of intervals.
In this case, any measures related to Option 5 or Option 1 can at best provide
mitigation against the attack in the sense that it takes longer to switch from
Phase 1 to Phase 2, but such measures cannot prevent the attack indefinitely.

If, on the other hand, ASTS is configured to include time synchronization
via the global group key mechanism as part of re-initialization of pTESLA, then
this constitutes a countermeasure conforming to Option 4. In this case, Phase 2
of the attack has to be started during the course of one run of yTESLA. For this
to be possible even in principle, Mallory needs Dy ax > (dgi)l'L to hold, which

60

translates to Dpax > 58 = 6.6s in the performance analysis environment.
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Configuring Bob in such a way that he only sends broadcast packets after 55s
of an interval have passed, we then achieve Dy,,x < 5s. Thus, in this scenario,

ASTS is robust against the attack in the sense that Phase 2 of it is unreachable.

8 Conclusions

In this paper, we have demonstrated an attack vector that can be used by an
adversary in order to break the security of broadcast time synchronization pro-
tocols which are protected by TESLA-like mechanisms. The adversary makes
use of very specific interdependence between timing and security occuring under
such circumstances.

We have provided options for countermeasures and discussed their respective
merits. Furthermore, we have provided insight into how some of these options
can be combined to defend against the attack, in particular against its Phase 2.
We have performed an automated analysis by means of the UPPAAL model
checker. This analysis has confirmed the vulnerability of the unmodified MEP
model to the attack; it has also confirmed the effectiveness of a combination of
countermeasures. Next, we have evaluated three existing protocols and found
that all of them provide mechanisms that correspond to one or more of the
options presented and are suitable to defend against the attack. In all of the
cases, however, the protection achieved depends on how these mechanisms are
applied, specifically the exact configuration values that the protocol uses. It is
important for the developers and users of these protocols to be aware of the
attack vector so that it can be defended against in existing environments.

Our next goal is the refinement of our UPPAAL model to allow for better
ratios of maximum accepted offsets to interval length. Additionally, a project is
underway in which an implementation of either TinySeRSync, ASTS, or both
is to be subjected to an attack according to the attack vector discovered. This
attack is intended to be performed by a piece of attacker software either in a
controlled real network or in a simulated environment. The objective of this work
is to prove practical relevance for existing specifications, and further quantify the
vulnerability or security of implementations under given circumstances.

Future research should additionally include in-depth analyses with regard
to the attack outlined in this paper of any (current and upcoming) specifica-
tions which use TESLA-like mechanisms to secure broadcast-type time syn-
chronization communication. Potential applications include a finished version
of NTS-Secured NTP as well as the ongoing work in the area of adding security
mechanisms to the IEEE 1588 standard (PTP). A more remote, yet interesting
question that could be pursued is the extent to which an attacker can make use
of disturbances via delay attacks which only trigger frequency manipulation. Is
it possible to manipulate the frequency of a client’s clock with consequences as
severe as Phase 2 of the attack described in Sect. 47 Another question is whether
it is possible to find attack vectors which use delay attacks to break the security
of synchronization processes with unicast messages (as opposed to broadcast
messages).
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Abstract. The Controller Area Network (CAN) protocol has become
the primary choice for in-vehicle communications for passenger cars and
commercial vehicles. However, it is possible for malicious adversaries to
cause major damage by exploiting flaws in the CAN protocol design or
implementation. Researchers have shown that an attacker can remotely
inject malicious messages into the CAN network in order to disrupt
or alter normal vehicle behavior. Some of these attacks can lead to
catastrophic consequences for both the vehicle and the driver. Although
there are several defense techniques against CAN based attacks, attack
surfaces like physically and remotely controllable Electronic Control
Units (ECUs) can be used to launch attacks on protocols running on
top of the CAN network, such as the SAE J1939 protocol. Commercial
vehicles adhere to the SAE J1939 standards that make use of the CAN
protocol for physical communication and that are modeled in a manner
similar to that of the ISO/OSI 7 layer protocol stack. We posit that the
J1939 standards can be subjected to attacks similar to those that have
been launched successfully on the OSI layer protocols. Towards this end,
we demonstrate how such attacks can be performed on a test-bed having
3 J1939 speaking ECUs connected via a single high-speed CAN bus. Our
main goal is to show that the regular operations performed by the J1939
speaking ECUs can be disrupted by manipulating the packet exchange
protocols and specifications made by J1939 data-link layer standards.
The list of attacks documented in this paper is not comprehensive but
given the homogeneous and ubiquitous usage of J1939 standards in com-
mercial vehicles we believe these attacks, along with newer attacks intro-
duced in the future, can cause widespread damage in the heavy vehicle
industry, if not mitigated pro-actively.

Keywords: Security - Vulnerability - CAN - J1939 - Data-link + Denial-
of-Service

1 Introduction and Previous Efforts

Gone are the days when vehicles used to be driven solely by human-mechanical
interactions. Since the advent of the Controller Area Network (CAN) in the
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early 1980s vehicle manufacturers have adopted a more cyber-physical app-
roach to driving. Majority of the functions performed by vehicular mechanics
are now mediated through embedded devices referred to as Electronic Control
Units (ECUs). The ECUs help in executing critical (vehicle propagation, mainte-
nance etc.) as-well as less critical (driver comfort, entertainment etc.) vehicular
functions. While performing these functions, the ECUs interact with each other
using fixed-length packets over the CAN bus. The CAN protocol follows a set of
specifications [1] that enables it to support high-speed communications over a
2-wire serial broadcast bus. In addition, CAN allows assigning priorities to indi-
vidual messages, thereby permitting higher priority messages to pass through at
the time of contention. This not only allows ECUs to perform time critical func-
tions like throttle and brake control but also perform less important functions
like telematics and comfort management.

The CAN protocol facilitates in-vehicle message exchange. It does not how-
ever specify what messages are exchanged and how they are used by ECUs. It is
often the responsibility of the vehicle manufacturer to implement protocols and
standards which provide these functionalities. While passenger car manufactur-
ers opt for proprietary standards, commercial vehicle vendors adopt a common
set of standards specified by the SAE International. The standards are unified
under the common naming convention SAE J1939 [9]. SAE J1939 is modeled on
the ISO/OSI network protocol stack with the physical layer functionalities being
realized by the CAN protocol. Together, the CAN protocol and J1939 specifi-
cation sets help in accomplishing complex mechanical and electrical functions
within a commercial vehicle.

Like other frequently used communication protocols and standards, CAN and
J1939 are also accompanied by their fair share of security pitfalls. While attacks
on the CAN protocol have been researched extensively of late [4,6,8,12,13], secu-
rity aspects of the SAE J1939 specifications have been largely overlooked. More
recently, Burakova et al. [2] attempted to replicate consumer vehicle specific
attacks on their heavier counterparts by cleverly crafting, replaying and spoof-
ing J1939 messages. The authors were successful in manipulating both critical
(e.g. Engine RPM) and less critical features (e.g. Oil Pressure Gauge) to their
desired levels. However, their work did not exploit any specifications made by the
J1939 standards. In other words, these attacks are not specific to just trucks or
other vehicles complying J1939 communications. In fact, by altering specifics of
the attack vectors, similar attacks can be launched on consumer vehicles. Thus,
to the best of our knowledge, this is the first work focused on discussing weak-
nesses in the SAE J1939 specifications. SAE J1939 is a collection of standards
describing various functionalities at different layers. Currently, there are 17 such
standards and each standard is a collection of different protocols and specifica-
tions. Documenting all possible attacks on J1939 is a time-consuming process. In
order to scope our work, we limit our attacks to exploiting weaknesses in the the
data-link layer protocols specified in the SAE J1939-21 standard document [10].
The reader can view this work as a proof-of-concept aimed at establishing the
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fact that attackers can exploit the protocol specified in the SAE J1939 standards
to cause major damage.

Hoppe et al. [4] performed a practical security analysis of the CAN network
and identified the basic weaknesses in the CAN protocol which allow targeted
attacks to succeed. These weaknesses were modeled on the five central infor-
mation security concerns, namely, confidentiality, integrity, availability, authen-
ticity, and non-repudiation. After analyzing the majority of the current CAN
security literature, we conclude that physical damage can be caused to the vehi-
cle and the driver by exploiting the lack of integrity, availability, and authenticity
services offered in the CAN bus. Deceiving ECUs to perform unintended actions
(integrity and/or authenticity issues) or disabling the ability of the ECUs to
perform regular tasks (availability issues) can result in problematic or undesir-
able consequences. Since J1939 uses CAN services at the physical layer, it is also
susceptible to attacks launched by exploiting integrity, availability, and authen-
ticity deficiencies. For example, J1939 allows some ECUs to command other
ECUs to perform critical activities like transmission and torque/speed control.
Impersonating as the former can allow attackers to control/modulate these vehi-
cle critical functions. We refer to this as an injection attack. Similarly, attackers
can inhibit the functionalities offered by one or more ECUs by overwhelming
the performance capabilities of the ECUs or the bus. We refer to such an attack
as denial-of-service (DoS) attack as it adversely affects the services provided
by the ECUs or the CAN bus. Although both these attacks can lead to fatal
consequences, in this work we limit out exploration to DoS attacks on the SAE
J1939 data-link layer protocol. This is because injection attacks can be launched
straightforwardly by searching for command messages from the J1939 Digital
Annex [11] and injecting them into the CAN bus. On the contrary, DoS attacks
require studying the workflow of the SAE J1939 data-link layer protocols, find-
ing suitable attack vectors and drawing inferences by analytically observing of
the bus traffic. The scientific challenges involved in executing DoS attacks make
it more interesting from a research perspective compared to injection attacks.

Our goal in this paper is to demonstrate techniques by which the regular
work-flow of the J1939 data-link layer protocols can be disrupted. However, we
do not discuss the eventual effect of attack on the mechanical behavior of the
vehicle. This is because we assume that some normal vehicular functions depend
entirely on the seamless accomplishment of all the protocols involved in executing
them and any disparity observed in the protocol flow should cause some adverse
effect on the mechanical behavior of the vehicle. Documenting the exact effect
is beyond the scope of this work.

The rest of the paper is organized as follows. Section?2 provides a brief
overview of CAN protocol and J1939 standards with emphasis on the J1939
data-link layer [10]. Section 3 discusses our threat model, a concise categoriza-
tion of the attacks performed in this paper, and the experimental setup used.
Section4 documents and analyzes three separate DoS attacks. Each attack is
complemented with suggested mitigation techniques. Section5 concludes the
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paper with an overview of the results achieved and indicates the future direction
of advancements for both attack and defense strategies for the J1939 standards.

2 Background

Embedded communications in commercial vehicles are facilitated by the SAE
J1939 [9] standards. As shown in Fig. 1, J1939 is modeled on the ISO/OSI pro-
tocol stack. A J1939 packet is created at the applications layer. As a packet
moves down the layers it is optionally split up into two or more protocol data
units (PDUs) at the data-link layer. This is because the physical layer opera-
tions are guided by the CAN protocol which allows a maximum of 8 data bytes
in one CAN frame. Finally, the CAN frames are exchanged using CAN protocol
specifications.

2.1 The Physical (CAN) Layer

Functions at the lowermost layer the of the J1939 protocol stack are handled
by the CAN protocol [1]. The protocol handles transmission of J1939 packets
over a 2-wire multi-master serial bus. CAN is a broadcast protocol and does not
specify unicast message transfer. This means every node (ECU) on a CAN bus
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Identifier Data
Priority ~ EDP DP PF PS SA
3 hits 1 bit 1 bit 8 bits 8 bits 8 bits Variable size

Fig. 3. J1939 message format

can see messages transmitted by every other node. Protocols running on top of
the CAN bus, however, can implement functionalities to accomplish point-to-
point message transfer. J1939, as will be seen later in this section, uses source
and destination address fields to specify senders and receivers of CAN frames.
An example CAN network is shown in Fig.2. ECUs can transmit messages on
the bus following a CSMA/CD bus access method. This means the ECUs can
transmit messages on the bus only when it is free. If two ECUs transmit on a free
bus at the same time, the protocol arbitrates between the two messages using the
CAN message identifier. The CAN identifier is an additional 11 (standard) or
32 (extended) bit field prepended to an 8 byte CAN message. As it will be seen
later, J1939 recommends the 29 bit identifier, hence the extended CAN identifier
is used for arbitration purposes. Finally, in CAN bus terminology a 0 (dominant
bit) on the bus is considered to be of higher priority than 1 (a recessive bit).
This means, on the CAN bus, a message whose prefix is “000” overwrites the
one whose prefix is “001”.

2.2 J1939 Packet Formatting

The general format of the J1939 message is shown in Fig.3. A single J1939
message can be partitioned into a 29 bit identifier (ID) section and variable size
data section. Since the CAN protocol allows only 8 bytes of data in one frame,
the variable size data section is broken up into 8 byte packets and appended
with the identifier to form a J1939 PDU. At the physical layer, a few more CAN
specific bits are added to the J1939 PDU and transmitted on the bus as a CAN
frame.

Identifier Field. The J1939 identifier is divided into 6 sub-fields.

— Priority: The 3 bit priority field is used to as a base for the CAN arbitration
scheme. Priorities can vary from 0003 (019) to 1112 (710). The J1939 standard
assigns a default priority of 0112 (319) to vehicle control messages and 110z
(610) to all other messages. The priority is ultimately specified by the original
equipment manufacturer (OEM).

— Extended Data Page (EDP): Currently the EDP bit is set to 0z (019) for
all J1939 messages.
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Digital Annex Entry

PGN DefaultPriority ~ EDP DP  PF PS
32512 6 0 0 127 DA
Padding —_1 SA
000 110 0 0 01111111 00000000 11111001
N
18 7F 00 F9

Fig. 4. Generating a J1939 identifier from the digital annex

— Data Page (DP): The DP bit can be set to either 02 (019) or 13 (110). The
actual value of the DP bit for a particular message can be obtained from the
J1939 Digital Annex [11].

— PDU Format (PF) and PDU Specific (PS): In terms of message commu-
nication the PF and PS are the most significant bit fields. When put together
along with EDP and DP they evaluate to what is referred to as the Parameter
Group Number (PGN). PGNs are used to group J1939 messages according to
their functionality. For example, messages related to torque or speed control
are assigned the PGN 01 (00001¢6), whereas those related to tire sensor identi-
fication are assigned the PGN 325121 (7F'0016). When encoded hexadecimals,
the first ten bits of the PGN represent the PF and the last 8 bits represent
the PS. When PF values are less than 2401y (F06) the PS field is used to
specify the address of the intended receiver.

— Source Address (SA): The source address field is used to specify the address
of the sender. The source address field can be used to filter and process
messages at the hardware level to avoid overloading the ECU firmware with
unnecessary message processing. Source addresses can range from 000000005
(010/0016) to 111111112 (25510/FF16) The J1939 D1g1ta1 Annex [11] contains
a list of suggested source address assigned to various functional ECUs.

To summarize, Fig. 4 shows how a J1939 identifier is constructed from J1939
standard entries. An additional 3 bit padding is added to convert the identifier
into 32 bit CAN arbitration field. Since the PF is less than 240, the PS field
denotes the receiver of the message (0016) which in this case is the Engine#1
ECU. The SA field is used to denote the sender F'91g which is the off-board
diagnostic service tool.

Data Field. J1939 message data field is constructed using Suspect Parameter
Numbers (SPNs). Each PGN is associated with a set of SPNs. An SPN definition
determines how a message (encoded in bits) belonging to a particular PGN is
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converted into application readable information. For example, the first 2 least
significant bits in PGN 32512, data is assigned the SPN 695,¢. According to the
SPN definition, the 2 least significant bits denote the Engine Override Control
Mode and can assume any of 4 (22) states. The attacks demonstrated in this
paper do not make use of SPN numbers and hence we do not discuss this further.

2.3 Message Transmission Rates

J1939 recommends transmitting messages at various rates depending on the
PGN Transmission Rate specification available in the digital annex [11]. A broad
categorization of the transmission rates is presented below. The categorization
was done by thoroughly observing the Transmission Rate specification available
in the digital annex.

— Periodic: Transmitted at various time intervals (seconds or milliseconds) as
specified in the J1939 standards.

— On-Request: Transmitted on receiving a request.

— Event-Based: Transmitted at the occurrence of a specific event or interrupt.

— Manufacturer Defined: Transmission rates are defined by the manufacturer.

— Requirement Based: Transmitted only if required.

— Conditional: Dependent on ECU parameters like Engine Speed or other fac-
tors like state change.

— Unspecified: Transmission rates are not specified for these PGNs.

— Hybrid: Any combination of the above categories. For example, the time
interval of periodically transmitted messages can vary depending on condi-
tional factors.

2.4 J1939 Data-Link Layer

Figure 1 shows 4 layers in a J1939 protocol stack. Each of these layers has one
or more standard documentations associated with them. The documentations
can be found in SAE standards repository (http://www.sae.org). The attacks
documented in this paper employ extensive usage of the request message doc-
umented in the J1939-21 (data-link layer) [10] standard. The request message
(PGN 5990410/ EA0016) is used to request a particular PGN from a single or a
group of ECUs on the bus. Since the PF (23419/FE A;¢) for the request PGN is less
than 24019 (F016), the PS field is used to specify the address of the intended
receiver of this message. This address can be destination specific like Engine
(0016), Brake (0B1¢) or global broadcast (F'Fig). A destination specific request
is answered by the receiver with either the requested PGN or a negative acknowl-
edgment. Acknowledgment messages are assigned to the PGN 593921 (E8001¢).
As with the request PGN the acknowledgment can also be destination specific
or broadcast. The first byte in the data field of an acknowledgment messages is
the control byte. The mapping for the control byte values and the information
conveyed by the respective acknowledgment messages are shown below:
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Table 1. Frequently Used PGNs

Identifier Data Bytes
Label [Sub  |PGN|PF| PS [Default | 1 2 3 | 4] 5 [0 8
Label Priority ‘ ‘ ‘ ‘
Request N/A  |EAO00|EA |Dest- 6 Requested PGN in reverse N/A
Addr byte order
Connection |Request |EC00|EC|Dest- 7 10 Total number of |Total |Max Requested
Manage- to Addr bytes to be trans- [num- [number |[PGN in
ment Send ferred ber of|of pack-|reverse byte

pack- |ets to be|order
ets sent in
to be|response

sent |to 1
CTS:
FF for
any
Connection |Clear EC00|EC|Dest- 7 11 Number [Next se-| FF FF  |Requested
Man- to Addr of Pack-|quence PGN in
age- Send ets that|number reverse
ment can be|to send byte
send order
Data Trans-| N/A |EBO00|EB|Dest- 7 sequence Data

fer Addr number

— 019 (0016): Positive Acknowledgment (ACK).

110 (0116): Negative Acknowledgment (NACK).

210 (0216): Access denied.

— 310 (0316): Cannot respond.

— 419 (0416) — 255109 (F'F16): Reserved for SAE assignment.

Requested PGNs are transferred either as a single packet (with 8 bytes or
less of data) or multiple packets (with more than 8 bytes of data). In the sec-
ond case, SAE recommends implementing a connection oriented multi-packet
data transfer. A destination specific multi-packet data transfer (Fig.5) starts
by initiating a request (PGN 59904;0/FE A0016). The requested party attempts
to open a connection by sending a Request to Send (RTS) message (PGN
6041610/ EC0016). In response, the requester sends a Clear to Send (CTS)
message (PGN 6041619/FC00;6). Upon receiving the CTS the requested party
starts sending the data using the data transfer PGN (6016010/EB00:6). On
successful completion of the message transfer, the requester sends an End of
Message Acknowledgment (EndOfMsgACK) (PGN 6041619/EC0016). A sum-
mary of the PGNs used in our attacks (request, connection management and
destination specific data-transfer) is shown in Table 1.

3 Preliminaries

The contents of this section convey the preparatory information for the attacks
demonstrated in the next section. This includes the threat model under which
our attacks were performed, a concise categorization of our attacks, and the
experiment set-up we used to conduct the DoS attacks.
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Fig. 5. Requested Multi-packet PGN transfer

Table 2. Attack Categorization

Attack Name Type of Message Exploit
Request | Connection | Implementation | Specification
Management | Issues Issues
Request Overload Yes No No Yes
False RTS Yes Yes Yes Yes
Connection Exhaustion | Yes Yes No Yes

3.1 Threat Model

For the purpose of this work, we assume an active adversary with direct access
to the CAN bus. By active, we mean that the adversary is capable of inject-
ing any message into the CAN bus and disrupting the regular operations. The
capabilities of the adversary are however restrained by the computational power
of the device which is used to inject these messages. This device can be physi-
cally attached to the bus (a compromised Entertainment ECU or a pass through
device attached to the OBD-II port) or connected remotely to wireless interfaces
on the vehicle bus such as the telematics units, Tire Pressure Monitoring System
(TPMS) or Bluetooth unit [3]. The use of any of these attack surfaces constricts
the attackers resource significantly, either due to low computation power or con-
siderable network delay.
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Engine Control Module

Engine #1 Retarder - Engine Brake System Controller
SRC-ADDR : 00 SRC-ADDR : OF SRC-ADDR : 0B BB1 BB2

$ 250 Kbps #

Fig. 6. Experiment test-bed schematic

3.2 Attack Categorization

Three separate DoS attacks are demonstrated in Sect.4 of this paper. In this
subsection, we attempt to classify the attacks on the basis of a few factors: type
of message (PGN) used for attack and exploit (flaws in implementation and/or
specifications). The categorization is shown in Table 2. The leftmost column of
the table, lists the three attacks namely, Request Overload, False RTS and
Connection Exhaustion. The details about execution and findings from these
attacks are reported in the next Sect. 4.

3.3 Experiment Test-Bed

All attacks were conducted on a test-bed consisting of a single high-speed CAN
bus with a baud rate of 250 kbps. The normal bus load was measured at 14%-15%
using the canbusload utility from the can-utils [7] program built for SocketCAN
in Linux. A schematic of the test-bed is shown in Fig. 6. The test-bed consisted of
an Engine Control Module (ECM) and a standalone Brake Controller (0Bi¢).
The ECM includes an Engine-#1 ECU (SRC: 00;6) and a Retarder-Engine
ECU (SRC: 0F16)!. The make and model of the ECUs are not revealed to protect
vendor reputation.

Figure 6 also shows two BeagleBone Black (BB1 and BB2) devices with cus-
tom built heavy vehicle communication protocol transceivers. The BeagleBones
act as regular ECUs or other embedded devices connected to the bus. All
attacks were performed using these devices. Both the BeagleBones hosted 32
bit Ubuntu@Linux operating systems running on an ARM processor with 500
MB of RAM. Although we had can-utils [7] at our disposal we preferred to use
the python3 implementation? of the the SocketCAN driver [5] to conduct the
attacks. This is because SocketCAN offered much more flexibility in implement-
ing a morphed version of the J1939 data-link layer protocols for the purpose of
the attacks.

Ten different snapshots of the CAN bus traffic was taken for 10s each. It
was observed that the traffic pattern outlined in Table 3 was exactly same for

! The names of the ECUs are obtained from the J1939 Digital Annex Source Address
Tab.
2 http://python-can.readthedocs.io/en /latest /socketcan_native.html.
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Table 3. Test-bed traffic

Identifier | Priority | PGN | SRC | Count | Measured Matching
interval in ms Annexed Interval
in ms
0CF00300 | High 61443 1 00 | 200 50 50
0CF00400 | High 61444 /100 | 500 20 20
18EOFF00 | Low 57344 | 00 10 1000 1000
18EBFF00 | Low 60160 | 00 | 130 76.9230769231 | Prop
18EBFFOF | Low 60160 | OF 6 1666.6666666667 | Prop
18ECFF00 | Low 60416 | 00 12 833.3333333333 | Prop
18ECFFOF | Low 60416 | OF 2 5000 Prop
18F0000F | Low 61440 | OF | 100 100 100
18F00100 | Low 61441 /00 | 100 100 100
18F0010B | Low 61441 | 0B 99 100 100
18FD7CO00 | Low 64886 | 00 10 1000 Prop
18FDB300 | Low 64947 | 00 20 500 500
18FDB400 | Low 64948 | 00 20 500 500
18FEBDO0 | Low 65213 | 00 10 1000 1000
18FEBFOB | Low 65215 | 0B | 100 100 100
18FEC100 | Low 65217 | 00 10 1000 1000
18FEDFO00 | Low 65247 /100 | 500 20 Prop
18FEE000 | Low 65248 | 00 | 100 100 100
18FEE400 | Low 65252 | 00 10 1000 1000
18FEEEQ0 | Low 65262 | 00 10 1000 1000
18FEEFO00 | Low 65263 | 00 20 500 500
18FEF000 | Low 65264 | 00 | 100 100 100
18FEF100 | Low 65265 | 00 | 100 100 100
18FEF200 | Low 65266 | 00 | 100 100 100
18FEF500 | Low 65269 | 00 10 1000 1000
18FEF600 | Low 65270 | 00 20 500 500
18FEFT700 | Low 65271 | 00 10 1000 1000
18FEFFO00 | Low 65279 | 00 1 10000 10000

all 10 snapshots. Only two distinct priorities were observed on the bus: 0115/31
(0C16 with padding) and 1105/61¢ (1816 with padding). The Measured Intervals
were calculated by dividing 10000 ms (10s) by the individual message counts.
The Matching Annexed Intervals were obtained for each observed PGN from
the digital annex [11]. If the Matching Annexed Intervals did not match the
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Measured Intervals it was assumed that they were pre-programmed by the vendor
and marked “Prop”.

4 Attacks

In our pursuit to find weaknesses in the J1939 data-link layer specifications, we
performed three separate DoS attacks that were briefly introduced in Sect. 3.2.
We now present the details of the attacks. The documentation process for each
attack is subdivided into 5 components:

1. Background Theory: We begin by introducing the core J1939 concept
exploited for the attack.

2. Proposed Attack: An attack is proposed based on the background theory.

Execution: The attack is executed.

4. Observation and Analysis: The effect of the attack is evaluated by study-
ing the network traffic and optionally using fitting metrics and charts. If
required statistical significance testing is performed to gauge the truth value
(Success or Failure) of the attack.

5. Suggested Mitigation Techniques: Finally, we suggest some probable mit-
igation techniques for the described attack.

@

4.1 Request Overload

Background Theory. The J1939-21 standard suggests an algorithm to filter
received messages at the microprocessor level. The intended use of this algorithm
is to reduce the load on the application. For a destination specific request, the
filtering algorithm recommends queuing message bytes (for further processing)
if the destination address in the message identifier matches the device’s source
address. Once a request is queued, the ECU is expected to see if the PGN is
supported by it. If supported, the ECU should reply back with the PGN.

Proposed Attack. Sending a large volume of request messages for a supported
PGN should increase the computational load of the recipient ECU to an extent
where it might not be able to perform regular activities like transmitting periodic
messages.

Execution. We wrote a Python script to send repeated requests for ECU com-
ponent id (PGN 6525919/ EBF Ejg) to the Engine-#1 ECU (refer to Fig. 6). We
chose the Engine ECU as the target because we wanted to reduce the count of
high-priority messages on the bus and the normal bus traffic from Table 3 shows
that Engine-#1 is the only ECU transmitting high priority (0C1¢) messages. The
component id is a multi-packet (greater than 8 bytes) PGN. Responding to the
request thus requires the ECU to perform slightly more activity than responding
with a single-packet PGN.
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Our attack script expected three arguments (used as independent variables
for further analysis), namely, (1) number of concurrent threads, (2) injection time
interval and (3) source address. The first two arguments allowed us to strengthen
the magnitude of the attack. The final argument was varied to spoof the sender
of the injected message. Three values were chosen for the spoofed address: 0B¢
(Brake Controller), 0016 (Engine-#1) and F'9;6 (Off Board Diagnostic Service
Tool). The idea was to observe whether replies sent by the Engine-#1 to the
brake, to itself or to a non-existent ECU alters its behavior in any way.

Observation and Analysis. As seen from Fig.7 and Table4, performing the
attack caused regular messages on the bus to drop significantly. High Priority
message (blue curve) count dropped by an average of 46.64 % with the maximum
drop obtained at spoofed-SRC: F9, num-thread: 8, interval: 1.2. Low priority
message count, on the other hand, dropped significantly for both the Engine-
#1 (SRC: 0016) and the Retarder (SRC: 0F6) although the average drop was
almost equal (7 65 %) for both. The peak drops for Engine-#1 (SRC: 0016) and
Retarder were observed at the following points spoofed-SRC: 0B, num-thread:
8, interval: 1.2 and spoofed-SRC: F9, num-thread: 8, interval: 1.2 respectively.
The least amount of drop in count (for orange, red and blue lines from Fig.7)
was observed at the point spoofed-SRC: F9, num-thread: 4, interval: 0.4.

100 —_ High Priority - SRC 00
Low Priority SRC 00
"~ —— Low Priority - SRC 0B
~— Low Priority - SRC OF

g D9 M0 M0 %0, %, ., %., %., %., %. %, %

2., %2, 0. 09, 26, 6. 0,
22 70g 08 1o 0g 0 L2

%., %., %., %., %, %, %, %, %, "0, B, 9, B, R "

p
405705723705 ™05 72,50, 5050 500, 00570 570, 0570 %0, B0 B0 s R0 R0
Fig. 7. Request overload effect on normal traffic: percentage reduction in regular mes-

sage volume (Color figure online)

Pearson correlation coefficients for each independent variable (argument) and
the reduction percentages for high priority messages (high priority messages were
chosen for this purpose since they are hard to suppress on a CAN bus) are shown
below:

— Source: —0.01 (negative weak correlation). As the source address increases
from 00 to F9, reduction percentages drop [weakly].
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Table 4. Request overload effect on normal traffic: percentage reduction in regular

message volume [Raw Statistics]
Attack Parameters Average Message Count per Source Address

00 0B OF
Source | Thread | Interval | High P Low P Low P Low P
@ @ Count | Decrease | Count | Decrease | Count | Decrease | Count | Decrease
(%) (%) (%) (%)

0B 1 0.4 216 38.29 257 60.16 117 -17 23 56.6
0B 1 0.8 153 56.29 114 82.33 120 -20 12 77.36
0B 1 1.2 123 64.86 86 86.67 140 -40 8 84.91
0B 4 0.4 297 15.14 502 22.17 111 -11 40 24.53
0B 4 0.8 221 36.86 319 50.54 119 -19 28 47.17
0B 4 1.2 197 43.71 219 66.05 122 -22 17 67.92
0B 8 0.4 215 38.57 285 55.81 125 -25 21 60.38
0B 8 0.8 115 67.14 98 84.81 129 -29 5 90.57
0B 8 1.2 117 66.5 46 92.87 118 -18 8 84.91
F9 1 0.4 235 32.86 302 53.18 118 -18 27 49.06
F9 1 0.8 136 61.14 118 81.7 128 -28 6 88.6
F9 1 1.2 121 66.4 75 88.37 119 -19 5 90.6
F9 4 0.4 310 11.43 524 18.76 109 -9 45 15.09
F9 4 0.8 239 31.71 317 50.85 118 -18 29 45.28
F9 4 1.2 207 40.86 253 60.78 130 -30 20 62.26
F9 8 0.4 221 36.86 301 53.33 125 -25 21 60.38
F9 8 0.8 131 62.57 118 81.7 127 -27 8 84.91
F9 8 1.2 104 70.2 63 90.23 128 -28 6 88.7
00 1 0.4 223 36.29 309 52.09 129 -29 25 52.83
00 1 0.8 145 58.57 106 83.5 120 -20 86.7
00 1 1.2 116 66.86 100 84.5 130 -30 6 88.7
00 4 0.4 283 19.14 465 27.91 112 -12 41 22.64
00 4 0.8 235 32.86 229 53.64 121 -21 20 62.26
00 4 1.2 232 33.71 306 52.56 121 -21 31 41.51
00 8 0.4 215 38.57 314 51.32 109 -9 17 67.92
00 8 0.8 128 63.43 111 82.7 114 -14 5 90.5
00 8 1.2 110 68.5 70 89.1 140 -40 7 86.7

— Thread: 0.137 (weak positive correlation). As the number of threads increase

reduction percentages increase [weakly].

— Interval: 0.66 (strong correlation). As the interval increases reduction per-
centages increase [strongly].

Positive correlation for factors Thread and Interval explain the existence of
the lowest and highest count reduction percentages at points spoofed-SRC: F9,
num-thread: 8, interval: 1.2 and spoofed-SRC: F9, num-thread: 4, interval: 0.4

Finally, we performed a two-tailed Mann-Whitney U test to determine if our
attack succeeded. We compared the counts of Engine-#1 transmitted messages
on the bus before and after the attack were performed. The attack arguments
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Table 5. Non-parametric U-test samples

Identifier | Regular Count from Table | Attack count (F9,4,0.4)
0CF00300 |200 86
0CF00400 | 500 224
18EOFF00 10 4
18EBFF00 | 130 53
18ECFF00 | 12 4
18F00100 | 100 42
18FD7C00 | 10 4
18FDB300 | 20 6
18FDB400 | 20 9
18FEBDO00 | 10 5
18FEC100 | 10 4
18FEDFO00 | 500 203
18FEE000 | 100 36
18FEE400 | 10 5
18FEEEQ0 | 10

18FEEF00 | 20

18FEF000 | 100 45
18FEF100 | 100 35
18FEF200 | 100 40
18FEF500 10 4
18FEF600 | 20 9
18FEF700 10 3
18FEFF00 1 0

were chosen to be from the point which produced the lowest message count
reduction (spoofed-SRC: F9, num-thread: 4, interval: 0.4). The samples for the
U-test are shown in last two columns of Table5. After performing the non-
parametric test, we obtained a p-value of 0.01468 and thereby concluded our
attack produced significant differences (p < .05) in message count at a 5% con-
fidence interval. Since the positive reduction percentages were obtained for all
Engine-#1 message counts, we conclude that our attack was successful. Using
the worst results to perform the significance tests allowed us to have the best
notion about the performance of the attack.

It should be noted that this type of attack could be unintentional since third
party telematics units often request component information from ECUs. While
this is not an attack, a poorly programmed ECU on the network could have the
same effect as shown above.
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Suggested Mitigation Techniques. One approach to prevent such an over-
loading scenario can be to program the ECU such that it drops incoming request
packets if it has already responded to a request from the same source address
within a pre-defined time interval. This, however, requires ECUs to maintain
state information and can, in turn, lead to further resource exhaustion. Design-
ers or developers can, however, opt for indigenous techniques to defend against
this scenario. Another alternative can be to opt for proper intrusion detection
systems (IDSs) with capabilities of distinguishing such attack traffic from normal
traffic.

4.2 False Request to Send (RTS)

Background Theory. The J1939-21 standard specifies that if multiple RTS
messages are received from the same source address then the most recent RTS
shall be considered and previously received RTSs shall be discarded without
sending a notification to the sender of the RTS message.

Proposed Attack. Consider a connection in progress where the requester
receives an RTS from the recipient (Alice) of a request message. After receiving
the RTS, the requester allocates a buffer having size equal to that received in
bytes 2 and 3 of the data field in the RTS packet (refer to Table 1). The requester
then sends a CTS requesting for given number of packets starting from sequence
number 1. A clever attacker (Bob) can then send a crafted RTS packet (with a
reduced data size in bytes 2 and 3 of the data field) to the requester spoofing
the source address of the original recipient of the request. If the receiver of the
spoofed RTS reallocates the buffer and keeps receiving data (PGN: EB00;g)
packets from the original sender (Alice), the allocated buffer might overflow
causing the ECU firmware to crash.

Execution. To test this attack we used both BeagleBone Black devices con-
nected to our test-bed. On one device (BB1) we ran a faulty script to receive
multi-packet PGNs. The workflow of the program is shown below.

Send request;
In a separate thread:
Sniff for RTS;
On receiving RTS allocate/reallocate
buffer space (buffer size = as obtained
from bytes 2-3 of the RTS data field);
Send CTS;
Recieve data;

On the second BeagleBone Black device (BB2) we ran the attack script as
shown below:

Sniff bus for CTS from attack target;
Send crafted RTS with lesser data size;
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Observation and Analysis. We ran both the scripts on the two BeagleBones
for 10 consecutive occasions. It was observed that on all occasions the script
running on BB1 crashed. This can be fatal for an ECU because crashing the
firmware can render an ECU useless.

Suggested Mitigation Techniques. It is extremely hard to defend against
such attacks. If the ECU firmware developer decides to avoid re-allocating space
on receipt of the second RT'S, the attacker can spoof the first RTS and cause the
exact same damage. The success of this attack can be attributed to two factors:
the exploitable J1939 concept detailed as a part of the background theory and
insufficient programming logic. Thus, according to us, the best defense against
this attack is to avoid allocating space statically using the size specified in the
RTS message. The receiving side can incrementally allocate 7 bytes® as newer
packets arrive.

4.3 Connection Exhaustion

Background Theory. The J1939-21 standard restricts that each pair of ECUs
can have at most one connection at any given point of time. Moreover, J1939
allows requesters to keep connections open by sending CTS messages within a
specified time period.

Proposed Attack. The J1939 source address is an 8 byte field. This means
there can be at most 255 different ECUs connected to a bus. If a driving critical
ECU like a brake controller can support 255 different connections at the same
time, an attacker can open 255 separate connections to that ECU and keep the
connection open by sending periodic CTS messages. In such a case, no other ECU
can open connections to the brake controller. In practice, the actual number of
ECUs connected to the bus is most often much less than 255. This makes the
task easier for the attacker. The quick scan of the network traffic can reveal the
transmitting source addresses. The attacker can then spoof all available source
addresses and open a connection to other ECUs thereby creating a mesh network

of connections. In such a case no other ECU will be able connections to other
ECUs.

Execution. None of the ECUs on our test-bed attempted to make destination
specific connections to each other (refer to Table 3). However, for the purpose of
testing this attack, we programmed BB1 to act as the attacker controlled device
and BB2 to impersonate two different ECUs (Brake Controller (SRC: 0B16) and
Cruise Control (SRC 1114)) and attempt to make connection requests to the
Engine-#1 ECU. The BB1 device was programmed to create two connections
with the Engine-#1 ECU requesting for the Component ID PGN (FEEBjg).
BB1 was run slightly ahead oftime than BB2. This allowed BB1 to create the
two connections with the Engine-#1 ECU.

3 The first byte of a data packet is the sequence number.
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BB1->Engine-#1 request 00OEA0011  EB FE 00 00 00 00 00 00
Engine-#1->BB1 RTS 18EC1100 10 2C 00 07 FF EB FE 00
BB1->Engine-#1 CTS 00EC0011 11 07 01 FF FF EB FE 00
BB1->Engine-#1 request OOEAOOOB EB FE 00 00 00 00 00 00
Engine-#1->BB1 RTS 18ECOBOO 10 2C 00 07 FF EB FE 00
BB1->Engine-#1 CTS O0OECO00B 11 07 01 FF FF EB FE 00

Engine-#1->BB1 Data Transfer 18EB1100 01 43 4D 4D 4E 53 2A 36
Engine-#1->BB1 Data Transfer 18EB1100 02 43 20 75 30 37 44 30
Engine-#1->BB1 Data Transfer 18EB1100 03 38 33 30 30 30 30 30
Engine-#1->BB1 Data Transfer 18EB1100 04 30 30 2A 30 30 30 30
Engine-#1->BB1 Data Transfer 18EB1100 05 30 30 30 30 2A 78 30
Engine-#1->BB1 Data Transfer 18EB1100 06 36 42 42 42 42 42 42
Engine-#1->BB1 Data Transfer 18EB1100 07 42 2A FF FF FF FF FF
Engine-#1->BB1 Data Transfer 18EBOBOO 01 43 4D 4D 4E 53 2A 36
Engine-#1->BB1 Data Transfer 18EBOBOO 02 43 20 75 30 37 44 30
Engine-#1->BB1 Data Transfer 18EBOBOO 03 38 33 30 30 30 30 30
Engine-#1->BB1 Data Transfer 18EBOBOO 04 30 30 2A 30 30 30 30
Engine-#1->BB1 Data Transfer 18EBOBOO 05 30 30 30 30 2A 78 30
Engine-#1->BB1 Data Transfer 18EBOBOO 06 36 42 42 42 42 42 42
Engine-#1->BB1 Data Transfer 18EBOBOO 07 42 2A FF FF FF FF FF

BB2->Engine-#1 request 00EA0011  EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEAO0OOB  EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEA0O011  EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEAO00OB  EC FE 00 00 00 00 00 00
BB2->Engine-#1 request 0OEA0011  EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEAOOOB  EC FE 00 00 00 00 00 00
BB2->Engine-#1 request 00EA0011  EC FE 00 00 00 00 00 00
BB2->Engine-#1 request OOEAOOOB  EC FE 00 00 00 00 00 00
BB1->Engine-#1 CTS 00EC0011 11 07 01 FF FF EB FE 00
BB1->Engine-#1 CTS OOECO00B 11 07 01 FF FF EB FE 00

Fig. 8. Connection exhaustion network trace (without end of message ACK)

Observation and Analysis. Figure8 shows the network trace obtained from
the CAN bus during the runtime of the attack. It can be seen that BB1 makes
two connections in the beginning by sending a request, RTS and CTS packet for
source addresses 1114 and 0B14. The Engine-#1 ECU then transfers data to BB1.
After sometime BB2 attempts to make two connections to the Engine-#1 ECU.
For the purpose of this experiment, BB2 acts as the honest party(s). However,
BB2 never receives RT'S messages from the Engine ECU. At the end of the trace,
it can be seen that BB1 keeps its connection open by sending periodic CTSs.
As a result, any further connection attempts from BB2 would also be discarded
leaving BB2 (acting as the Brake controller and Cruise Control device) starving
for the required PGN.

Mitigation Techniques. The following attack can have serious consequences
on regular J1939 communications. This because, J1939 allows exchange of
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multi-packet proprietary messages. Disrupting exchange of all multi-packet mes-
sages can hamper proprietary message exchange. Authenticating the sending
ECU can help in preventing this type of a scenario from happening.

5 Conclusion and Future Work

The J1939 standards are used extensively in commercial vehicles and industrial
automation technology. The J1939 protocols run above the CAN bus. Although
multiple research efforts have focused on discussing vulnerabilities in the CAN
protocol, we believe this is the first work aimed at attacking the J1939 protocol
specifications. We illustrated how attacks similar to those performed on the
ISO/0OSI protocol stack can be performed by a malicious adversary on J1939
protocols. Specifically, we demonstrated three specific denial-of-service attacks
using the J1939 data-link layer request and connection management protocols.

Our future work includes uncovering new forms of attacks on the J1939
protocols. A major challenge is providing acceptable security solutions for such
attacks. The attacks and the mitigating security solutions will be tested out
in real-world scenarios to demonstrate their efficacy. We also plan to evaluate
various security solutions in terms of their efficacy, resource utilization, usability,
and cost. We will also explore trade-offs among proposed security solutions and
provide recommendations for best practices.
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Foundation under Grant No. 1619641 and Grant No. 1619690.
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Abstract. In a wireless sensor networks (WSNs), there is a need of
constant information access from the nodes, as the real-time data might
never again be accessed. Thus, users are allowed to access the nodes in
the real-time as and when required. The user authentication plays an
indispensable part in this communication. Recently, Farash et al. pro-
posed an efficient user authentication scheme for WSNs. Though their
scheme is very efficient, we identify that their scheme is vulnerable to
off-line password guessing attack, off-line identity guessing attack, stolen
smart card attack and user impersonation attack. As a result, we feel
that there is a great need to improve Farash et al.’s scheme to present a
secure communication protocol. In this paper, we propose a secure and
lightweight user authentication and key agreement scheme for distributed
WSN, which will also be handy in taking care of the Internet of Things
(IoT). The lightweight property of our proposed scheme can be useful
in resource-constrained architecture of WSNs. In addition, our scheme
has merit to change dynamically the user’s password locally without the
help of the base station or gateway node. Furthermore, our scheme sup-
ports dynamic nodes addition, after the initial deployment of nodes in
the existing sensor network. We prove the authentication property of
our scheme using Burrows-Abadi-Needham (BAN) logic. The simulation
results using the automated validation of internet security protocols and
applications (AVISPA) tool shows the security of the proposed scheme
against replay and man-in-the middle attacks.

Keywords: Wireless sensor networks + Authentication - Security -
Privacy

1 Introduction

Wireless sensor networks (WSNs) have been evolving during the last decade and
have become very popular. Various kinds of WSNs applications are now being
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used by the highly qualified organizations (e.g., military, health, environment,
etc.). In order to provide efficient and prompt service in WSNs by sensor nodes
to the users, the main goal of WSNs should be kept in view such as (i) monitoring
the data, (ii) collecting the data from a specific location and process the data and
(iii) delivering the data to the end users. Considering the way that information
gathered from the WSNs can be critical, it is pivotal that it is additionally secure.
Therefore, the security concern is becoming an important aspect and even more
crucial as the entire communication is done over public channel. A survey on
wireless sensor networks can be found in [1].

In the past decade, WSNs have increased incredible accomplishments both in
the scholarly circle and the industrial field. IoT is the current widely spreading
technology, where the remote authorizes users are allowed to access the desired
and reliable sensor nodes to incur the data and even more they are permitted
to broadcast commands to the nodes in WSNs. Two parts of this scene ought
to be viewed. On one hand, just genuine users like the registered ones can per-
form an action on the specific sensor nodes to acquire information. On the other
hand, the accessible sensor nodes are obliged to be confirmed as an honest to
goodness one. Keeping in mind the end goal to guarantee the over two points,
both the user and the sensor node is required to ensure the mutual authentica-
tion, which is a must in the protocol design. Until this date, numerous scholarly
works are presented by researchers on the security of WSNs [2,3,5]. Since a
WSNs consists of minor sensor nodes with low handling power, the equalization
of proficiency and security is vital, however once in a while hard to accomplish.
An extensive number of secret key sharing authentication based schemes have
issues in conveying and updating keys. In order to accomplish in accessing the
data by providing authorization and security, designing a protocol which pre-
serves mutual authentication and key agreement is an important and difficult
issue in WSNs.

These days, few gateway nodes-based authentication schemes were proposed
in the literature, which make conceivable possible that the mutual authentication
and key agreement protocol has both the components of security and lightweight.
The GWN assumes an imperative part in WSNs. In order to further reach the
specific sensor node, the remote users are obliged to achieve the GWN through
the internet at first. In contrary, sensing data from the sensor nodes firstly get
to the GWN and after that achieve the user end. Making the data available to
the remote users on demand over the network must assure the mutual authen-
tication between them before allowing the remote users to access the real-time
information inside WSNs.

The sensor nodes are responsible for sending the real-time data and forward
to the nearest gateway node directly, whereas the gateway nodes are responsible
for receiving and forwarding the relevant data to the user and sensor node. In
order to access the desired sensor node, the user can execute registration phase
to any one of the gateway nodes of our network model.

In 2006, based on symmetric encryption, Wong et al. [4] proposed a user
authentication scheme for WSNs. They designed a lightweight architecture using
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hash function computation. Later, vulnerabilities are identified against many
logged-in users with the same login-id attack and stolen verifier attack. Das [6]
improved the security of Wong et al.’s scheme using temporal credentials for ver-
ification. Das’s scheme is also vulnerable to denial-of-service and node capture
attacks. Huang et al. [7] and He et al. [8] proposed some improvements of Das’s
scheme. But, the presented schemes fail to overcome the security vulnerability
of Das’s scheme. In 2010, Khan and Alghathbar [9] presented an improvement
on Das’s scheme. They solved the problem of mutual authentication and unse-
cured password by introducing pre-shared keys and masked passwords. Later
on, Vaidya et al. [10] showed that Khan and Alghathbar’s scheme had several
security pitfalls.

Das et al.’s scheme [11] was produced for hierarchical WSNs, where the key
agreement executes among the user, cluster head, and base-station. However,
Xue et al. argue that such a model is inefficient because it runs the last two com-
munications, acknowledgment for the BS or GWN and the user, simultaneously.
However, since both communications have to be run, it is insignificant regarding
efficiency. In 2014, Turkanovic et al. [2] proposed a user authentication and key
agreement(AKA) model to overcome the security flaws of the earlier designs.
Farash et al. [3] shown that Turkanovic et al.’s scheme is insecure and inefficient
for various security drawbacks such as session key agreement, mutual authentica-
tion between all parties, traceability, preservation of user anonymity, privileged-
insider attack. Additionally, Farash et al. designed efficient user authentication
and key agreement scheme for WSNs, which can be tailored for the internet of
things environment.

2 Review of Farash et al.’s Scheme

This section briefly reviews Farash et al.’s scheme [3]. Farash et al.’s scheme
consists of six phases: pre-deployment, user registration and sensor node regis-
tration, login, authentication, password change and dynamic node addition.

2.1 Pre-deployment Phase

{SIDj, XGWN,SJ.} variables are stored in the memory of the sensor node before
deployment. GW N is predefined with its own secure password Xgw y in addition
to multiple shared passwords (passwords {Xgwn—s;|1 < j < m} shared with
the sensor nodes S;, whereby m represents the number of sensor nodes).

2.2 Registration Phase

The registration phase is divided into two sub-phases, namely, user registration
and sensor node registration.
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User Registration Phase. U; selects his identity ID;, password PW; and a
random number r;. U; computes M P; = h(r; ® PW;), and sends {ID;, M P;}
to GWN via a secure channel. GWN computes e; = h(MPB||ID;), d; =
h(IDi|Xewn), 95 = hMXewn) ® h(MPi|d;), and f; = di ® h(MPi|e;).
{€s, fi, gi } are stored in a smartcard, which is provided to U; via a secure channel.
U; inputs r; into the smart card.

Sensor Node Registration Phase. A sensor node S; is configured with
its identity SID; and S; secretly shared password Xgwn_s; with GWN. §;
selects a random nonce r; and computes MP; = h(Xawn_s,;||r;||SID;||T1)
and MN; = h(Xgwn-s;) © rj, where SID; is the sensor node’s iden-
tity, 77 is the current timestamp and Xgwn-s; is the secret shared key
between S; and GWN. S; sends {SID;, MN;, MP; T} to GWN. GWN
checks freshness of T7. GWN finds the right shared key of S; and computes
r; = MN; & MXgwn-—s,), verifies its own version of M P; with the received
one by the condition MP; = h(Xgwn-s,||7;[|SID;||T1). If the verification
does not hold, GWN rejects the request. Otherwise, GW N computes z; =
h(SID;|| Xewn), e = zj & Xawn—s;, dj = MXewn|[1) © M(Xewn—s,|T2)
and f; = h(Xewn_s,||7;]|d;||T2) using the received values. GWN sends the
response message {d;,e;, fj,To} to S;. S; checks |To — T,| < AT. If the verifi-
cation succeeds, S; computes z; = e; ® Xgw N-s;, and verifies its own version
of f; with the received one by the condition f; = hM(Xewn_s;|lz;lld;||T2). If
the verification does not hold, S; rejects the request. Otherwise, S; computes
hMXewnl|1) = dj ® h(Xewn—s,]|T2), and stores z; and h(Xgwn||1) into its
memory and deletes the secret kéy XewnN-—s; from its memory. S; sends a con-
firmation message to GW N, then GW N deletes its version of the shared key
along with S1D;.

2.3 Login and Authentication Phases

Login Phase. U, inputs I D] and PW/. SC computes M P] = h(PW/&r;). SC
verifies if e; = h(MP!||ID;}). If this holds, SC computes d; = f; @ h(MP/|e;),
h(XGWN) = g; D h(MPiIHdi), M, = ID; (&) h(h(XGWN)HTl) and My = K; &
h(d;||T1), where K; is the chosen random nonce and T} is the current timestamp.
Finally, the SC computes M3 = h(M || Mz || K;||T1) and sends { My, My, M3, T1}
to Sj.

Authentication Phase. S; verifies |T7 — Tb| < AT. If this verifica-
tion holds, S; selects a random nonce K; and computes ESID;, My, and
M5 as ESIDJ = SID] D h(h()(c;v[/]\[Hl)”]&)7 M4 = h(a:JHTlHTQ) D Kj
and My = h(SID;|My||T1||T2||K;). S; sends the authentication message
{My, Mz, M3, T1,T5, ESID;, My, M5} to GWN. Note that this message consists
of U;’s previously received values and S;’s currently computed values.

GW N verifies |Ty — T5| < AT. If this verification holds, GW N computes its
own version of SID} = ESID; & h(hM(Xown|1)||T2), 2 = h(SID}||Xcwn),
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K; = My ® h(2}||T1]|T2), and further verifies all these computed values by
the condition M = h(SID}||Ms||T1||T2||K}). GWN computes ID; = M; &
h(h(Xewn)|T1), d; = h(ID}|Xewn), K. = Ms ® h(d}||T1), and verifies
Ms = h(M;||M2||K[||T1). If this verification holds, GWN computes Mg =
K50n(di||Ts), M7 = Ki©h(2}||Ts), Ms = h(Ms||d;]|Ts) and Mg = h(Mz]|2||T5).
GW N sends {M6,M7,M8,M9,T3} to Sj.

S; first verifies |T5 — Ty| < AT. If this condition holds, S; verifies if
My = h(Mz|lz;||T5). If this condition holds, S; computes K = M; &
h(.’Ej”Tg), SK = h(K{ @KJ) and M10 = h(SK”MQ”Mg”T?)HTél) Sj submits
{MG,Mlo,Mg,T37T4} to Uz

U; verifies |Ty — T5| < AT. Then, U; verifies if Mg = h(Mg|d;||T5).
On the success of verification, U; computes K; = Mg @ h(d;[|T3), SK =
h(K; & K}), and finally verifies the legitimacy of S; by the condition Mo =
h(SK || Mg||Ms||T'3||T4). If this verification holds, U; uses the session key SK for

the future communications.

3 Cryptanalysis of Farash et al.’s Scheme

In this section, we show that Farash et al.’s scheme does not satisfy desirable
security attributes.

3.1 Off-Line Password Guessing Attack

Using the stolen smartcard of U;, adversary A can extract sensitive information
from the smartcard [14]. A manages to crack the smartcard and obtain the
stored information including e;, f;, g;, and r;. In order to guess U;’s password, A
computes d; and K, and then to verify Mjs. If the verification does not hold, A
keeps on trying using same process until he succeeds. The illustrated details are
as follows:

Step 1. A guesses a password PW and computes d* = f; @ h(h(r;|| PW)]le;)
as A knows €, fi; ;.

Step 2. A computes K* = My @ h(d||Ty), where My and T; are the captured
information from the transmitted messages.

Step 3. A verifies if M3 = h(M;||Ma||K#|Ty). If the verification holds, password
guessing succeeds. Otherwise, A repeats Steps 1, 2 and 3.

3.2 Off-Line Identity Guessing Attack

A uses stored information including e, f;, g;, and r; of lost/stolen smart card.
In order to guess ID;, A needs to guess the password correctly, which we have
already shown in Sect. 3.1. Once the password is guessed correctly, the adversary
A can compute M P = h(r;||PW/), where r; is the known parameter from the
smartcard and PWiA is the guessed correct password. Now A can verify the
condition e; = h(M P#||ID#), where e; is the stored parameter and ID{! is the
guessed identity of the user U;. If the verification holds, A guesses the original
identity ID; of the user U;. Otherwise, A repeats the steps.
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3.3 Stolen Smart Card Attack

According to Sects. 3.1 and 3.2, an adversary can extract all the stored sensitive
information from the smart card using lost/stolen smart card of U;. The attacker
can successfully guess correct password and identity of U;. Using these login
credentials, the adversary can login into the system and access the targeted
sensor nodes.

Remark: It is clear that Farash et al.’s scheme cannot be used for the practical
applications as an adversary is successfully able to login into the system and
able to access the targeted sensor nodes with the correct login credentials of a
user.

3.4 User Impersonation Attack

Using the lost/stolen smartcard, A can mount user impersonation attack as:

A generates a random number K7, computes d* = f; @ h(h(r;||PW})||e;) using
the guessed correct password PW/ in Sect. 3.1, M3' = KA@h(d3||T]), M3 =
h(My||MsH|KA||TY). A transmits message { My, M3', M$*, T{}, where T} is
the current timestamp.

S; first checks |17 — Tb| < AT, where T, is the time when S, receives
this message. Note that this condition is always satisfied. After that
S; computes some parameters and transmits the authentication message
{]\417 Mé4, Mé4, Tl/’ TQ, ESIDJ, M4, M5} to GWN.

GWN first checks the timestamp validity. After that GWN computes ID; =
M, & h(h(Xaw)|T]), i = h(ID}|Xawn), K = M# & h(d)|T) and
My = h(M;|M3}||K!||T}). GWN checks M3{* = Mj. If it matches, GW N
believes that the message comes from the valid user U;.

4 The Proposed Scheme

The proposed scheme consists of six phases: (i) pre-deployment phase, (ii) com-
bination of user registration phase and sensor node registration phase, (iii) login
phase, (iv) authentication and key agreement phase, (v) password change phase
and (vi) dynamic node addition phase. We use the current system timestamp in
order to protect the replay attack by an attacker in the network. For this pur-
pose, we assume that all the entities (sensor nodes, GWN and users) in WSNs
are synchronized with their clocks [12].

4.1 Pre-deployment Phase

As in Farash et al.’s scheme, this phase is executed in off-line by a network
administrator, where each sensor node S; in WSNs is configured with its unique
identity SID; and a unique secure 1024-bit key Xgw s, shared with GW N
prior to its deployment in a target field. Note that each S; has a distinct secure
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key Xgwn—s, shared with GW N. Both information are stored in the memory of
S;. GWN is also configured with its own secure 1024-bit key Xgw n in addition
to the multiple shared keys { Xgwn_s,|1 < j < m} shared with m sensor nodes
S; in WSNs. '

4.2 Registration Phase

In our proposed scheme, the registration phase is divided into two parts. First one
is the user registration phase and the second one is the sensor node’s registration
phase.

User Registration Phase

Step 1. A user U; is free to select his/her own identity ID;, password PW; and
a random number r; to initiate the registration phase.

Step 2. U; computes MI; = h(ID;||r;) and MP; = h(ID; & r; & PW;), and
transmits the registration request message { M I;, M P;} to GW N via a secure
channel.

Step 3. After the request is received from U;, GWN computes xz; =
h(MPZHMIz), d; = h(MIiHXGWN)7 e, = h(XG’WN) (&) h(MPludl), and
fi = d; ® h(MP;||e;). Finally, the credentials {e;, f;, z;, h(-)} are stored in a
smartcard SC and passes it on to the user U; via a secure channel.

Step 4. After receiving the smartcard SC, the user U; computes g; = r; @
h(ID;||PW;) and inputs the parameter g; into the smartcard and completes
the registration process.

Sensor Node Registration Phase. As described in the pre-deployment phase,
S; is pre-configured with its identity SID; and its secret shared password
Xewn—s; with GWN. Whenever the specific sensor node S; is deployed into
WSNs either during the pre-deployment or post-deployment dynamic node addi-
tion phase, it needs to register with GW N as follows.

Step 1. S; selects a random mnonce 7; and computes MP; =
h(XGWN—SjHTjHSIDj”TI) and MN; = h(XGWN—Sj (&) SID]) b rj, where
SIDj is S;’s identity, T1 the current timestamp and Xgwn-s; the secret
shared key between S; and GWN. S; sends message {SID;, MN;, MP;, T\ }
to GWN.

Step 2. GW N checks whether the received timestamp 7} is within the allowed
time interval AT or not by means of verifying the condition |17 — T,| <
AT. If the verification succeeds, GWN finds the right shared key of S;
and computes r; = MN; @ h(Xgwn-s, © SID;) and verifies whether
MP; = hMXgwn-s;|I75|SID;||T1) or not. If the verification does not
hold, GW N rejects the request. Otherwise, GW N continues to compute
the master key z; = M Xown-s,||Xewn), ¢ = ©; & Xagwn-s,, dj =
hMXewn ISID;)®h(Xew N -s, ITo), i = h(Xewn- s; 1251151 T2), where T
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the current timestamp at GWN. GW N stores h(Xgwn—s, ® SID;) against
to SID; in its database and sends the response message {d;,e;, f;, T2} to
S;.

Step 3. S; checks if the received timestamp 75 is within the allowed time inter-
val AT If the verification passes, S; computes z; = e; ® Xgwn-—s,, and
verifies if f; = h(Xawn—s,|lz;||d;[|T2). S; computes h(Xown|[SID;) =
dj ® h(Xewn—s,||T2) and stores x; and h(Xgwn | SIDj) into its memory.

4.3 Login and Authentication Phases

Login Phase. In this phase, the smartcard SC of a registered user U; needs to
verify the legitimacy of the user U;. This phase consists of the following steps:

Step 1. U; inputs his username I D] and password PW/.

Step 2. SC then computes r; = g; ® h(ID;||PW]), MP] = h(ID; & PW; & r})
and MI] = h(ID;||r}). SC verifies the condition x; = h(MP]||MI]). If this
holds, SC' accepts the user login request. SC' computes d; = f; ® h(M P |le;),
h(XGWN) =€ D h(MPZ/Hdz), M, = MI{ D h(h(XGWN)”Tl), My = K; ®
h(d;||T1), where K is the chosen random nonce and Tj the current timestamp
of SC.

Step 3. Finally, SC computes Ms = h(K;|| d;|| M| Mz| T1) and sends the
message {Mi, My, M3, T1} to S;.

Authentication and Key Agreement Phase. After mutual authentication
both the user and sensor node establish a secret session key as follows:

Step 1. §; verifies for the timestamp to avoid the replay attack by check-
ing the condition |Th — T.| < AT. If this verification does not hold, S,
rejects the login request message. Otherwise, S; selects a random nonce K
and computes NSID;, My, and Ms as NSID; = h(h(Xqwn||SID;)||T2),
M4 = h(JTJHTlnTQ)@KJ and M5 = h(M4||NSIDJHT1||T2”K]) Sj sends mes-
sage { My, Mo, M3,T1,T>, NSID;, My, M5} to GWN. Note that this message
also consists of U;’s previously received values and S;’s currently computed
values.

Step 2. GWN first checks |Tp — T.| < AT. If this verification holds, GW N
Computes NSID; = h(h(XGWNHSID])HTQ), x; = h(XGWN—SjHXGWN)a
K} = h(2}|TW||T2) ® My. GWN verifies M5 = h(My||NSID}|T1||T2| K7).
If this verification holds, GW N proceeds to check the legitimacy of the
U; by computing its own versions of MI/ = M; & h(h(Xewn)||T1),
di = h(MI}|Xewn), K] = My ® h(d}||Th). GWN then verifies Ms =
h(K!||d;|| M| Mz||Ty). If this verification does not hold, GW N rejects the
authentication message from .S;. Otherwise, GW N further proceeds to com-
pute Mg = K & h(d;[|T5]|K;), M7 = K; & h(h(Xewn||SID;)|} || K;|T3)
and sends the response message {Ms, M7, T3} to S; over an insecure channel.
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Step 3. On receiving the response message from GWN, S; first verifies the
timestamp T3 to avoid the replay attack by the condition |75 — T,.| < AT. If
this verification does not hold, S; rejects the response message. Otherwise,

S; computes K! = M7 @ h(h(Xewn|SID;)||z;||K;||T5), the session key
SK = hWMK]®K;)|T5||Ts), Mg = h(Mg||M7||SK||T3||T4), and then submits
the acknowledgment message { Mg, M7, Mg, T3, T4} to Uj;.

Step 4. U; first verifies for the timestamp T using |Ty — T.| < AT If this verifi-
cation does not hold, U; rejects this message. Otherwise, U; further computes
K} = Mg @ h(d;|| T3]/ K:), the same session key SK = h(h(K; @ KJ)||T3|Ty)
shared between the user U; and the accessed sensor node Sj;, and verifies
the legitimacy of S; by the condition Mg = h(Ms||M7||SK||T3||T4). If this
verification holds, both U; and S; use the computed session key SK for their
future communications. Otherwise, both U; and S; reject the communication
messages.

4.4 Password Change Phase

User can change the password without being interacted with any accessed sensor
node or GWN in WSNs as follows:

Step 1. U; inserts identity ID} and old password PW/. SC' checks the user
credentials (ID; and PW;) to verify whether the user U, is an actual user of
the smartcard.

Step 2. SC computes 7, = g; & h(ID;||PW]). SC computes M P/ = h(ID, &
PW! @ r}), MI = h(ID}||r}), and then checks x; =?h(MP!||MI}). If the
verification holds, U; is free to choose his/her new password PWcv.

Step 3. SC first computes d; = f; ® h(MP/|le;), h(Xewn) = e; & h(MP/||d;).
SC computes M P = h(ID; ® PW*" @ r}), 2 = h(M P || MI}),
erev = h(Xgwn) & MPe|d;), frev = d; & h(MPre®||erew). Finally,
SC computes g7 = r. @ h(ID;||PW]*"). Having computing all the new
parameters x erv, frev, and g*¢", SC replaces these parameters with

new
% EE ) ’

the previously stored values x;, e;, f;, and g;, respectively.

Thus, the smartcard SC currently holds {z'¢?, el'e?, flre¥ gl'**} and success-
fully completes the password change phase.

4.5 Dynamic Node Addition Phase

After initial deployment of the sensor nodes in WSNs, it may also happen for
adding a new sensor node over the target field. In order to add a new sensor
node, GW N performs the setup phase over the target region. After that the
deployed new sensor node needs to execute the sensor node registration phase.
In this way, GW N introduces a new sensor mode into the setup network model.
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5 Security Analysis of the Proposed Scheme

In this section, we first proof the mutual authentication using the widely-
accepted BAN logic. We then show that our scheme has the ability to resist
various known attacks including the sensor node capture attack.

5.1 Authentication Proof Using the BAN Logic

In this section, we provide a formal protocol analysis of our proposed scheme
using the widely-accepted BAN logic method [13]. The BAN logic is widely being
used to verify the correctness of the authentication protocol with key agreement.
The protocol correctness refers to the communication parties: a legal user U; and
an accessed sensor node S; who share a fresh shared session key with each other
after the protocol is executed. We first provide some notations of the BAN logic
as follows:

PE X: The principal P believes the announcement X.

P<X: P considers X, which means that a message containing X is received by P where X can be read by P.
P X: P sometime stated X, which means that P|= X as P once stated it in sometime.

PE X: P commands X, P has complete authority on X, and P considers X as trusted (Jurisdiction over X).
#(X): The message X is fresh, which means that no any entity sent a message containing X at whenever.

ahead of current round.

PEQ S p. P and Q use SK (shared key) to communicate with each other.

p K Q: P and @Q use SK as a shared secret between them.

<X >y: The formula X is combined with the formula Y.

(X): The formula X is hashed value.

(X,Y): The formulas X and Y are combined and then hashed.

(X, Y ) The formulas X and Y are combined and then hashed with the key k.

In order to describe logical postulates of BAN logic in formal terms [13], we
present the following rules:

k
Rule (1). Message meaning rule: For shared secret keys: W.

P is said to believe @, if P believes that k is shared with @ and P sees X is encrypted under k.

Rule (2). Nonce verification rule: %.

If P believes that X is expressed recently (freshness) and P believes that @ once said X, P believes that @ believes X.
Rule (3). Jurisdiction rule: PEQE?,’E#A

If P believes that @ has jurisdiction over X, and P believes that @Q believes a message X, P also believes X.

Rule (4). Freshness rule: %

If one part is known to be fresh, the entire formula must be fresh.

Rule (5). Belief rule: %.

If P believes @ believes the message set (X,Y’), P also believes @ believes the message X.

Prior to the formal analysis, we first idealize the communicated messages of our
proposed protocol to alleviate the analysis between U; and S;, which are as
follows:
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Message 1: U; <2+ GWN : (IDi, Ty, (Us <25 GWN))i(xamn)

Message 2: U; <i> GWN : (Ki, My, M2, Ty, (U; FLLN GWN), (U; N GWN))a,
Message 3: S — GWN : (SID;, T, (S; ot GWN))n(Xawn 1515,

Message 4: S; — GWN : (SID;, Kj, M4, Tv, T, (S P GWN), (S, K, GWN))z,

K I=K;

Message 5: GWN — S, : (My, Ty, (S; 222 GWN), (S; =5 gw ),

==
Message 6: U — §; « (K! = Ki, T, (S; 28 GWN),(8; =5 GWN), (Ui &5 8)),1 .,
K/=K
Message 7: GWN — Uy : (K} = K;, Mg, Ts, (Us <25 GWN), (Ui 4—" GWN))a,
K=K y

Message 8: S; — U; 1 (Ms, Mz, Ty, Ty, (Us <25 GWN), (Us <25 GWN), (U; 2=’ GWN), (U <5 8,))sx
According to the analytic procedures of the BAN logic, our proposed protocol
should satisfy the following goals:

Goal 1. UL|E (Ul ﬂg Sj); Goal 2. U7|E S]|E (Ul ﬂi Sj);

Goal 3. Sj|= (U; <25 8,); Goal 4. S;|= Uil= (U: <X s)).
Based on our proposed protocol, we make some initial state assumptions, which
are listed as follows:

Ali GWN‘E ﬁ(Tl); Az: GWN‘E ﬁ(Tg);
At S)|= 4(T0): Ay U= 4(Ta);
As: GWN|= #(K); Ag: GWN|= H(K;);
Az Sj|= (KD = Ki); As: Ui|= 4K = Kj);
Ag: Uil= (U; W=POLdXewn) Gy, Ag: GWN|= (U; =MLY ewN) Gy,
zj=h(XgwnN-s;IIXcwnN) z;=h(Xewn-s,; | XcwN)
An: SJ‘E (SJ GWN), A122 GWNlE (SJ — GWN),
Az GWN|= (U; "%V qw Ny, Avg: GWNI= (5; "% qw Ny,
As: GWN|= Uil= (Ui &5 GWN); Aws: GWN|= Ui|= (Us <25 GWN);
A GWN|= 85l= (5; 22 GWN); Aws: GWN|= Sjl= (U; <5 W),
K. K'=k;
Avo: 8= GWNI|= (5; 5 qw N, Ago: Ui|l= GWN|= (U; 2= GWN);
K!=K; Kj=K;
A21: SJ‘E UllE (U1 — S]), AQQZ Ul‘E S]‘E (U; — S])

Further, we demonstrate our proposed protocol based on the rules of the BAN
logic and the efficiency by showing U; and S; share a common session key SK
to ensure the secure communication by achieving the intended goals using the
initial assumptions. The inside information descriptions are as follows:
According to Steps 48, 47, 36, and 35, it is clear that our protocol successfully
achieves all the goals (Goals 1-4). Both U; and S; believe that they share a secure
session key SK = h((K;® K;)||T5||Tx) with each other. Hence, the proof follows.

5.2 Further Security Discussion

In this section, we show that our proposed protocol can meet various kinds of
functional features and withstand various kind of possible known attacks.

User Anonymity. As discussed in Sect.5.2, it is clear from our proposed
scheme that for an attacker it is a computationally hard problem to obtain
or guess the identity I D; of the user U; from the transmitted messages as it is
protected using the one way hash function. Hence, our scheme provides the user
anonymity property.
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Replay Attack. Suppose an attacker traps the previously transmitted messages
of the proposed scheme, and later on transmits the same messages without alter-
ing to the desired entities. As our proposed scheme uses the system timestamp
and checks transmission delay time, it always rejects the attacker’s replayed mes-

According to the message 1, we obtain:

Step 1: GWN < (IDy, Tr, (Ui 25 GW N)) h(x o n)-
From Step 1 and assumption Ai3, we apply the message meaning rule to get:
Step 2: GWN|= Us|~ (ID;, Th, (Ui <25 GWN)).
From assumption A, we apply the freshness conjuncatenation rule to get:
Step 3: GWN|= #(ID;, Th, (U; 25 GWN)).
From Steps 2 and 3, we apply the nonce-verification rule to obtain:
Step 4: GWN|= (IDy, T1, (U; <25 GWN)).
From Step 4, we apply the belief rule to obtain:
Step 5: GWN|= Uil= (U; £25 GWN).
From Step 5 and assumption Ag, we apply the jurisdiction rule to get:
Step 6: GWN|= (Ui <25 GWN).
According to the message 2, we obtain:
Step 7: GWN < (Ki, My, My, Ty, (U <25 GWN), (Ui <5 GWN))a,.
From Step 7 and assumption Aig, we apply the message meaning rule to get:
Step 8: GWN|= Us|~ (Ki, My, My, Tv, (Us <25 GWN), (U; &5 GWN)).
From assumptions Ay and As, we apply the freshness conjuncatenation rule to get:
Step 9: GWN|= #(K;, My, Mo, Ty, (Us <25 GWN), (Ui <5 GWN)).
From Steps 8 and 9, we apply the nonce-verification rule to obtain:
Step 10: GWN|= Us|= (K, My, Mo, Tv, (Us <25 GWN), (U &5 GWN)).
From Steps 5, 6 and 10, we apply the belief rule to obtain:
Step 11: GWN|= Ui|= (U; <<% GWN).
From Step 11 and assumption A5, we apply the jurisdiction rule to get:
Step 12: GWN|= (U; <<% GWN).
According to the message 3, we obtain:
SID;
Step 13: GWN < (SID;, Tz, (S; = GWN))n(X g lISID;)-
From Step 13 and assumption Ay4, we apply the message meaning rule to get:

Step 14: GWNI= S;|~ (SID;, Ts, (S; 24 GWN)).

From assumption Az, we apply the freshness conjuncatenation rule to get:
SID
Step 15: GWN|= #(SID;, Ts, (S; — GWN)).
From Steps 14 and 15, we apply the nonce-verification rule to obtain:
SID,
Step 16: GW N|= S;|= (SID;, Tz, (S; «— GWN)).
From Step 16, we apply the belief rule to obtain:
SID,;
Step 17: GWN|= S;|= (S; +— GWN).
From Step 17 and the assumption Ai7, we apply the jurisdiction rule to get:
SID;
Step 18: GWN|= (S; «—3 GWN).
According to the message 4, we obtain:
SID; K

Step 19: GWN < (SIDj, Kj, M4, T1, Ts, (S; +— GWN), (S; < GWN))z; .
From Step 19 and assumption A;2, we apply the message meaning rule to get:

SID K,
Step 20: GW N|= S|~ (SIDj, K;, M4, Ty, T3, (S; — GWN), (S; +—= GWN)).
From assumptions Az and Ag, we apply the freshness conjuncatenation rule to get:

SID, K;

Step 21: GWN|= #(SID;, K;, M4, Ty, Tz, (S; —— GWN), (S; <= GWN)).
From Steps 20 and 21, we apply the nonce-verification rule to obtain:

SID, K;
Step 22: GWN‘E SJ|E (SIDJ, Kj, ]\44,T27T1, (SJ 4—{ GWN)7 (SJ <—J> GWN))
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From Steps 17, 18 and 22, we apply the belief rule to obtain:
K
Step 23: GWN|= S;|= (S; <= GWN).
From Step 23 and assumption Aig, we apply the jurisdiction rule to get:
K
Step 24: GWN|= (S; <= GWN).
According to the message 5, we obtain:
. , SID; _ . K|=K; .
Step 25: Sj @ (M7,Ts,(S; — GWN),(S; <—"GWN))
From Step 25 and assumption Aj;, we apply the message meaning rule to get:

Step 26: S;|= GWN|~ (M, Ty, (S; d GWN), (S; =5 GWN)).

From assumptions Az and A7, we apply the freshness conjuncatenation rule to get:
s 1=K,

Step 27: Sj|= #(Mr, Ts, (S; 2 GWN), (S; =5 aw ).

From Steps 26 and 27, we apply the nonce-verification rule to obtain:

Step 28: S;|= GWN|= (Mx, Ty, (S; X GWN), (S; =5 GWN)).

From Steps 17, 18 and 28, we apply the belief rule to obtain:

Step 29: Sj|= GWN|= (S; Ry GWN).

From Step 29 and assumption A9, we apply the jurisdiction rule to get:

Step 30: Sj|= (S; "' GWN).

According to the message 6, we obtain:

2l =a;-

=K,

SID K, 3
Step 31: S; < (Ki = K;, Ts, (S; — GWN), (S; <" GWN), (U; 25 )
From Step 31 and assumption A1, we apply the message meaning rule to get:

2f=a;"

SID. CI=K; SK

Step 32: Sj|= Ui~ (K] = K, Ty, (S; 2% GWN), (S; "“=5" GWN), (Ui 25, 5,)).
From assumptions Az and A7, we apply the freshness conjuncatenation rule to get:

SID C!=K; ¢
Step 33: Sj|= #(K! = K:.Ts, (S; 2 GWN), (S; =57 aw), (U: 5 55)).
From Steps 26 and 27, we apply the nonce-verification rule to obtain:
Step 34: Sj|= Usl= (K! = Ki, Ts, (S 3 GWN), (S; "“=5° GWN), (U: £5, ).
From Steps 17, 18, 22, 29 and 34, we apply the belief rule to obtain:

Step 35: S;|= Uil= (U; <5 ;). (Goal 4)
From Step 30 and assumption Az and Goal 4, we apply the jurisdiction rule to get:
Step 36: Sj|= (U: &5 5)). (Goal 3)

According to the message 7, we obtain:
K=K,
Step 37: Us < (K} = K;, Mg, Ty, (Ui <25 GWN), (Ui 2= GWN))a,.
From Step 37 and assumption Ag, we apply the message meaning rule to get:
Kj=K
Step 38: Us|= GW N|~ (K} = K;, Ty, Mg, (Us <25 GWN), (U 2=’ GWN)).
From assumption Ag, we apply the freshness conjuncatenation rule to get:

Kj=K
Step 39: Ui|= §(K) = K;, Ts, Me, (Us £25 GWN), (U; 2= GWN)).
From Steps 38 and 39, we apply the nonce-verification rule to obtain:

K}=K;
Step 40: Us|= GWN|= (K} = K;, Ts, Mg, (Us <25 GWN), (U 2=’ GWN)).
From Steps 5, 6 and 40, we apply the belief rule to obtain:
Kj=K;

Step 41: U;j|= GWN|= (U; <—’ GWN).

From Step 41 and assumption Azo, we apply the jurisdiction rule to get:
K'=K.

Step 42: Ui|= (Ui &—" GWN).

According to the message 8, we obtain:

K'=K; -
Step 43: Us < (Ms, Mg, Ts, Ta, (Us <25 GWN), (Us <2 GWN), (Ui 2—’ GWN), (Ui <55 8;)) sk

From Step 43 and assumption Ag, we apply the message meaning rule to get:

) fl= IDi i _r ; Ki=Kj oo sK
Step 44: Uj|= S|~ (Ms, Mg, Ty, Ty, (U; <5 GWN), (U; <= GWN), (U; L=’ GWN), (U; &5 5))).
From assumptions A4 and As, we apply the freshness conjuncatenation rule to get:

K}=K.
Step 45: Ui|= §(Ms, Me, Ts, Ty, (Us <25 GWN), (U; <2 GWN), (U 2= GWN), (U <5 8))).
From Steps 44 and 45, we apply the nonce-verification rule to obtain:

d K!=K
Step 46: Us|= S;|= (Ms, Ms, T, Tn, (Us £25 GWN), (Us <45 GWN), (Us 27 GWN), (U; 25 ).
From Steps 5, 6, 41 and 46, we apply the belief rule to obtain:

Step 47: Us|= Sj|= (U; 25 ;). (Goal 2)
From Step 47 and assumption Ass and Goal 2, we apply the jurisdiction rule to get:
Step 48: Us|= (U; <5 ;). (Goal 1)
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sages due to the invalid transmission delay time. Therefore, our proposed scheme

resists the replay attack.

Privileged-Insider Attack. In practice, most of the users use identical pass-
words for login to the various remote servers. In our scheme, during the
user registration phase a legal user U; sends the registration request mes-
sage {M1;, MP;} to GWN via a secure channel, where MI; = h(ID;||r;) and
MP; = h(ID;®r; ®PW;). Suppose an insider of GW N being an attacker knows
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both MI; and M P;. Note that in the proposed scheme, the identity 1D; and
password PW; of U; are protected with one-way cryptographic hash function.
Further assume that the insider attack later has the stolen/lost smartcard SC of
U;. However, the secret information r; is not directly stored in SC. To compute
r; from the extracted g; = r; ® h(ID;||PW;), the insider attacker has to know
both ID; and PW;. Therefore, the insider attacker cannot extract PW; and I1.D;
due to the non-invertible property of the cryptographic one-way hash function.
Thus, the proposed scheme resists the insider attack.

User Impersonation Attack. An attacker can trap the login message
{M, M2, M5,T1} and the transmitted messages over the open channel during
the login and authentication phases of our scheme. After that the attacker tries
to generate another valid message which will be sent to the sensor node for
the authentication and thereby transmitted to GW N for authentication. For
doing that the attacker has to compute valid (K;,d;) parameters. However, the
attacker cannot compute M3 as the attacker does not have the knowledge of the
identity ID; and password PW,. Moreover, it is infeasible to guess the trapped
message within polynomial time by the attacker due to unknown parameters K;
and d;. It may be noted that the attacker cannot guess the secret key of GW N
within polynomial time as the secret keys of the sensor nodes and GW N are 1024
bits in length. Therefore, the attacker cannot generate any valid message within
polynomial time. Hence, our scheme resists the user impersonation attack.

Sensor Node Impersonation Attack. An attacker can intercept the trans-
mitted message {My, Ma, M3, Th,T>, NSID;, My, M5} during the login and
authentication phases of our scheme, and try to generate another valid message
which will be authenticated by GW N. However, the attacker cannot compute
the valid intercepted message without the knowledge of the parameters K; and
x;. The attacker may also intercept the message { Mg, M7, Mg, T3, T, }. But again
as the attacker does not have the knowledge about SK, K;, K;, and x;, he/she
is not able to generate a valid intercepted message. Hence, the attacker cannot
impersonate a sensor node inside WSNs.

Stolen-Smart Card, Off-Line Identity and Password guessing Attacks.
Assume that a legal user U]s smart card is stolen by an attacker. The attacker
can extract the information {e;, fi, g;,x;} stored in the smart card of U; by
using the power analysis attack [14], where x; = h(MP;|MI;),e; = h(Xewn) @
h(MPZHdZ), fz = di @h(MP,HEZ) and gi =T @h(IDZ”PW,L) Both ID, and PW,
are unknown to the attacker and these are well protected by the one way hash
function. So, it is a difficult problem for the attacker to guess the correct identity
ID; and password PW,; at the same time as it is computationally infeasible to
guess the two parameters at a time. Hence, the attacker in nowhere to update
the password PW; of the user U;. Therefore, the proposed scheme is free from
the stolen smart card attack. Furthermore, our scheme also resists the off-line
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identity guessing and password guessing attack using the fact that guessing the
exact ID; and password PW; at the same time is computationally infeasible at
a time. Therefore, our scheme has the ability to resist the stolen-smart card,
off-line identity and password guessing attacks.

Mutual Authentication and Key Agreement. During execution of our
protocol, GW N authenticates a sensor node S; and a user U; based on the login
message. U; authenticates S; and GW N. Once Uj is successful in authenticating
S, both S; and U; agree upon on a session key SK. With the help of the session
key SK both the parties S; and U; will be communicate securely. The details
are given below.

— U; initializes the execution process where he/she sends a login message
{M;, My, M3, Ty} to the opted sensor node S; over the public channel. Now,
S; has to delegate the authentication of U; to GW N.

— When the authentication message {Mi, My, M3, Ty, To, NSID;, My, Ms}
from S; is received, GW N verifies the legitimacy of S; and Us.

— GWN computes its own version of NSID’ = h(h(Xewn||SID;)|Tz) using
its master secret key Xgw N, and x; = h(Xgwn—s, || Xewn) using the master
secret key of GWN and secret key of S;. GWN verifies the condition M{ =
Ms by computing K. If this verification does not hold, GW N rejects the
authentication message from S;. Otherwise, it proceeds to check the legitimacy
of U; by verifying the condition M3 = Mjs using the precomputed values
MI!, d}, and K. In this way, GW N verifies the legitimacy of the user U; and
the sensor node S;.

— GWN sends the response message {Ms, M7, T3} to S; over an insecure
channel. S; computes K = M; @ h(h(Xewn||SID;)||z;||K;||T5) and Mg =
h(Mg||M7||SK||T5||T4) using a shared secret session key SK = h(h(K] @
K;)||T3||Tx), and submits the response message {Mg, M7, Mg, T5, T4} to U;
via the public channel.

— On receiving the response message from S;, U; further computes KJ’- =
Mg @ h(d;||T3||K;) and SK = h(h(K] @ K;)||T3||T4), and finally verifies the
legitimacy of S; by the condition Mg = h(Mg||M7||SK||T3|T4). If this verifi-
cation holds, U; uses the shared session key SK for the future communications
with S;. Otherwise, U; rejects the communication messages.

Therefore, it is clear that an attacker cannot tamper with any of the communicat-
ing messages. Hence, our proposed scheme provides secure mutual authentication
and key agreement.

Session Key Security. To provide the confidentiality of the subsequent mes-
sages after mutual authentication Sect. 5.2, U; and S; agree upon the session key
SK = h(h(K; ® K;)||T3||Tx). The session key is quite robust because it includes
the values of Ki,Kj,T3,T4 Where, Kz = M7 (S5 h(h(XGWNHSID])HZL‘j||KJ||T3)
and K; = Mg & h(d;||T5]|K;). The attacker cannot obtain the session key as
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he/she fails to compute K; and K; values from the transmitted messages. In
addition, the time stamps {75, T4} provide newness to the session key SK for
each session. As a result, no one except the legitimate users can compute the
session key. Therefore, our scheme provides secure session key.

Sensor Node Spoofing Attack. In order to masquerade as a legitimate sensor
S; and to cheat a user U;, an attacker needs to compute the response message
{Mﬁ, M7, Mg, T3, T4}, where M7 = Kz S5 h(h(XGWN”SIDJ)HIEJ||KJHT3), Mg =
h(Mg||M7||SK||T5]|T4). If the attacker needs to be successful in overcoming the
hurdle, he/she should be successful in computing the session key, which is not
possible as the secret information in computing the session key SK requires
both K; and K. The attacker thus fails in spoofing the sensor node S; as it
is computationally infeasible to extract the secret credentials from the hashed
values. Therefore, our scheme resists the sensor node spoofing attack.

6 Simulation for Formal Security Verification Using
AVISPA Tool

In this section, we simulate our scheme for the formal security verification using
the widely-accepted AVISPA (Automated Validation of Internet Security Pro-
tocols and Applications) tool.

AVISPA (Automated Validation of Internet Security Protocols and Appli-
cations) is a powerful modular and expressive formal language for specifying
protocols and their security properties, which integrates different back-ends
that implement a variety of state-of-the-art automatic analysis techniques [15].
AVISPA is a push-button tool for the automated validation of Internet security-
sensitive protocols and applications. In recent years, it becomes a widely-
accepted and popular tool for the formal security verification [15]. The four
back-ends supported in AVISPA are the On-the-fly Model-Checker (OFMC),
Constraint Logic based Attack Searcher (CL-AtSe), SAT-based Model-Checker
(SATMC) and Tree Automata based on Automatic Approximations for the
Analysis of Security Protocols (TA4SP). The detailed descriptions of these back-
ends can be found in [15].

6.1 Specifying the Protocol

In this section, we provide the descriptions of the specifications of various roles
in HLPSL for our scheme. Three basic roles for a user U;, GW N and an accessed
sensor node S; are implemented in HLPSL. Apart from these roles, we need to
specify the roles for the session, goal and environment in HLPSL. We have imple-
mented our scheme for the formal security verification during the registration
phase including the user and sensor node registration phases, login phase, and
authentication and key agreement phase.
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6.2 Simulation Results

We have simulated our scheme under the OFMC and CL-AtSe backends using
the Security Protocol ANimator for AVISPA (SPAN) [15]. The following verifi-
cations are executed in our scheme:

— FEzecutability check on non-trivial HLPSL specifications: Due to some model-
ing mistakes, it may be possible that the protocol model can not execute to
completion. As a result, it may be possible that the AVISPA backends can
not find an attack, if the protocol model can not reach to a state where that
attack can happen. An executability test is thus extremely essential [16]. Our
implementation shows that the protocol description is well matched with the
designed goals as specified in Figs. 1a and b for the executability test.

— Replay attack check: For the replay attack checking, the OFMC and CL-AtSe
back-ends verify whether the legitimate agents can execute the specified pro-
tocol by performing a search of a passive intruder. These back-ends provide
the intruder the knowledge of some normal sessions between the legitimate
agents. The test results shows in Figs. 1a and b indicate our scheme is secure
against the replay attack.

— Dolev-Yao model check: Finally, for the Dolev-Yao model checking, the OFMC
and CL-AtSe back-ends verify if there is any man-in-the-middle attack possible
by an intruder (¢). Under OFMC, 8,677 nodes are visited and the depth is
six, where the search time is 47.73 seconds. Under CL-AtSe, 10, 705 states are
analyzed and out of these 10,705 states are also reached, and the translation
and computation times are 0.09 seconds and 18.05 seconds, respectively. The
results reported in Figs.la and b clearly show that our scheme fulfills the
design properties and is secure.

% OFMC
% Version of 2006/02/13 SUMMARY
SUMMARY SAFE
SAFE DETAILS
DETAILS BOUNDED_NUMBER_OF_SESSIONS
BOUNDED_NUMBER_OF_SESSIONS TYPED_MODEL
PROTOCOL PROTOCOL
C:\progra~1\SPAN\testsuite C:\progra~I1\SPAN\testsuite
\results\auth_wsn.if \results\auth_wsn.if
GOAL GOAL
as_specified As Specified
BACKEND BACKEND
OFMC CL-AtSe
COMMENTS STATISTICS
STATIS_TTCS Analysed : 10705 states
parseTime: 0.00s . .
. Reachable : 10705 states
searchTime: 47.73s .
o . . Translation: 0.09 seconds
visitedNodes: 8677 nodes .
depth: 6 plies Computation: 18.05 seconds
(a) The result of the analysis us- (b) The result of the analysis using
ing OFMC backend CL-AtSe backend

Fig. 1. Simulation result for our proposed scheme.
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7 Performance Comparison with Related Schemes

In this section, we compare the performance and functionality features of our
proposed scheme with the related existing schemes proposed for the WSNs. This
evaluation gives an insight into the effectiveness of the proposed scheme.

7.1 Security Features Comparison

In Table a of Fig.2, we have compared the security features provided and pro-
tected by our scheme and existing related schemes, such as Vaidya et al.’s scheme
[10], Chen-Shin’s scheme [17], Yeh et al.’s scheme [18] Turkanovic-Holbi’s scheme
[19], Das et al.’s scheme [11], Xue et al.’s scheme [20], Turkanovic et al.’s scheme
[2] and Farash et al.’s scheme [3]. It is noted our scheme protects various known
attacks and also supports various good features as compared to those for other
related existing schemes.

7.2 Communication Overhead Comparison

In Table b of Fig. 2, we have compared the communication overheads required
during the login and authentication phases between our scheme and other

Security attributes [13] [14] [27] [17] [15] [4] [2] [3] Ours
Passwordguessingattack Vo ox VoV X X x X/
Privileged — insiderattack V X VoV X x
Useranonymity VoV X X X X X
Stolensmartcardattack X X X X X X X X/
Impersonationattack Voxoy W X X x o xy/
Replayattack X ox X x /X
Propermutualauthentication Vox oV oV X X x X/
Two — factorsecurity VoXooxX X X X X X/
Sessionkeyagreement x x vV v VAVIVY
Sensornodecaptureattack VX v VA A
Ef ficientpasswordchange V X X VAV VAV
(a) Security Features
Scheme Total number| Total number|
of r of bytes
Vaidya [13] 5 197
Chen-Shin [14] 4 235
Yeh et al. [27] 4 252
Turkanovic-Holbi [17] 3 220
Das et al. [15] 4 272
Xue et al. [4] 4 413
Turkanovic et al. [2] 4 489
Farash et al. [3] 4 434
Our scheme 4 394
(b) Communication Overhead
Scheme Gateway node/ Sensor node User
Cluster head
Vaidya [13] 5Ty + 2Tx0R 2T, +3Txor | 61n + Txor
Chen-Shin [14] 5Th + 1Txor 2T, ATy + 1Txor
Yeh et al. [27] 4Ty + 4Tecc 3T+ 2Tece | 1Th + 2Teco
Das etal. [15] 5T, +4Tg/p - 5Ty + 1Tx/p
Turkanovic-Holbi [17] 3Ty + 4Ts/p - 4Ty + 1Te/p
Xue etal. [4] 13Th + 6Txor 6Ty +3Txor | 10Tk +6Txor
Turkanovic et al. [2] TTh + 5Txor 5Th + 6Txor | TTh +6Tx0r
Farash et al. [3] 14T}, + 6Txor | 7Th +4Txor | 11T + 7Txor
Our scheme 12T, + 5Txonr 6T, +3Txor | 13Th +9Txor

(c) Computation Overhead

Fig. 2. Performance Comparison analysis for our proposed scheme.
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schemes. We assume that the output of the one-way hash function h(-) is 160 bits
(20 bytes), if we use SHA-1 hashing algorithm [21]. Further, we assume that each
timestamp, random nonce/random number, identity of user/sensor node is 152
bits in length (19 bytes). In addition, for Yeh et al.’s scheme [18] and Turkanovic-
Holbi’s scheme [19], we assume that the acknowledgment message requires 160
bits (20 bytes). In our scheme, during the login phase, the login request message
{Mi, My, M5, T1} requires 79 bytes. During the authentication and key agree-
ment phase, the messages {My, Mo, M3,Th,To, NSID;, My, M5}, {Mg, M7,T3}
and {Mg, M7, Mg, T5,T,} require 158 bytes, 59 bytes and 98 bytes, respectively.
As a result, during the login and authentication phases in our scheme, the total
communication overhead becomes (79+ 158 +59+98) = 394 bytes. On the other
hand, the communication overheads required during the login and authentica-
tion phases for Vaidya et al.’s scheme [10], Chen-Shin’s scheme [17], Yeh et al.’s
scheme [18], Turkanovic-Holbi’s scheme [19], Das et al.’s scheme [11], Xue et al.’s
scheme [20], Turkanovic et al.’s scheme [2] and Farash et al.’s scheme [3] are 197
bytes, 235 bytes, 252 bytes, 220 bytes, 272 bytes, 413 bytes, 489 bytes and
434 bytes, respectively. Note that our scheme performs better than Xue et al.’s
scheme [20], Turkanovic et al.’s scheme [2] and Farash et al.’s scheme [3]. How-
ever, our scheme requires more communication overhead as compared to that for
other schemes, such as Vaidya et al.’s scheme [10], Chen-Shin’s scheme [17], Yeh
et al.’s scheme [18], Turkanovic-Holbi’s scheme [19] and Das et al.’s scheme [11].
It is justified because our scheme offers better security and functionality features
as compared to those for other schemes as shown in Table a of Fig. 2.

7.3 Computational Overhead Comparison

Finally, in Table ¢ of Fig.2, we have compared the computational overhead
between our scheme and other schemes during the login and authentication
phases. In our scheme, during the login phase the computational overhead for
a user U; is 9Ty + TT'xoRr, whereas during the authentication phase the com-
putational overheads for GW N, a sensor node S; and U; are 12T}, + 5Tx0or,
67}, + 3Txor and 4Ty + 2TxoR, respectively. Due to the computational effi-
ciency of one-way hash function and bitwise XOR operation as compared to
ECC point multiplication, our scheme is very efficient. Note that the computa-
tional overhead for a sensor node in our scheme is 67}, + 37T xor. This means that
our scheme is also very suitable for the extremely resource-constrained sensor

nodes in WSNs.

8 Conclusion

This paper primarily reviews the recently proposed Farash et al.’s user AKA
protocol for WSNs and points out security pitfalls, such as off-line password
guessing attack, offline identity guessing attack, stolen smart card attack and
user impersonation attack. To overcome these security weaknesses, we have
designed a secure and lightweight user authentication and key agreement scheme
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for WSNs. The mutual authentication in the proposed scheme is verified using
BAN logic. The simulation for the formal security verification of the proposed
scheme is also carried out using AVISPA tool. To strengthen the security of
the proposed scheme, we have further presented the informal security analysis
to show the resilience to known attacks. The proposed scheme is not only effi-
cient in terms of the functionality features, but it also achieves efficient login
phase, user friendly password change phase, proper mutual authentication and
key agreement. In addition, dynamic node addition phase is executed more effi-
ciently. Higher security along with low communication and computational over-
heads, and extra functionality features provided by our scheme make it very
much applies to practical implementation in the WSNs environment.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Comput. Netw. 38(4), 393-422 (2002)

2. Turkanovié¢, M., Brumen, B., H6lbl, M.: A novel user authentication and key agree-
ment scheme for heterogeneous ad hoc wireless sensor networks, based on the inter-
net of things notion. Ad Hoc Netw. 20, 96-112 (2014)

3. Farash, M.S., Turkanovié¢, M., Kumari, S., Holbl, M.: An efficient user authentica-
tion and key agreement scheme for heterogeneous wireless sensor network tailored
for the internet of things environment. Ad Hoc Netw. 26(Pt. 1), 152-176 (2016)

4. Wong, K., Zheng, Y., Cao, J., Wang, S.: A dynamic user authentication scheme for
wireless sensor networks. In: IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing, vol. 1, pp. 1-8. IEEE (2006)

5. Mishra, D., Mukhopadhyay, S.: Cryptanalysis of pairing-free identity-based
authenticated key agreement protocols. In: Bagchi, A., Ray, I. (eds.) ICISS
2013. LNCS, vol. 8303, pp. 247-254. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-45204-8_19

6. Das, M.L.: Two-factor user authentication in wireless sensor networks. IEEE Trans.
Wireless Commun. 8(3), 1086-1090 (2009)

7. Huang, H.F., Chang, Y.F., Liu, C.H.: Enhancement of two-factor user authen-
tication in wireless sensor networks. In: 2010 Sixth International Conference on
Intelligent Information Hiding and Multimedia Signal Processing (ITH-MSP), pp.
27-30. IEEE (2010)

8. He, D., Gao, Y., Chan, S., Chen, C., Bu, J.: An enhanced two-factor user authen-
tication scheme in wireless sensor networks. Ad Hoc Sensor Wireless Netw. 10(4),
361-371 (2010)

9. Khan, M.K., Alghathbar, K.: Cryptanalysis and security improvements of two-
factor user authentication in wireless sensor networks. Sensors 10(3), 2450-2459
(2010)

10. Vaidya, B., Makrakis, D., Mouftah, H.T.: Improved two-factor user authentication
in wireless sensor networks. In: 2010 IEEE 6th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob), pp. 600-606.
IEEE (2010)

11. Das, A.K., Sharma, P., Chatterjee, S., Sing, J.K.: A dynamic password-based user
authentication scheme for hierarchical wireless sensor networks. J. Netw. Comput.
Appl. 35(5), 1646-1656 (2012)


http://dx.doi.org/10.1007/978-3-642-45204-8_19
http://dx.doi.org/10.1007/978-3-642-45204-8_19

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Secure Lightweight User Authentication and Key Agreement Scheme 65

Chang, C.C., Le, H.D.: A provably secure, efficient, and flexible authentication
scheme for ad hoc wireless sensor networks. IEEE Trans. Wireless Commun. 15(1),
357-366 (2016)

Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18-36 (1990)

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1_25

AVISPA: Automated Validation of Internet Security Protocols and Applications
http://www.avispa-project.org/. Accessed Jan 2015

von Oheimb, D.: The high-level protocol specification language hlpsl developed in
the eu project avispa. In: Proceedings of APPSEM 2005 Workshop (2005)

Chen, T.H., Shih, W.K.: A robust mutual authentication protocol for wireless
sensor networks. Etri J. 32(5), 704-712 (2010)

Yeh, H.L., Chen, T.H., Liu, P.C., Kim, T.H., Wei, H.-W.: A secured authentication
protocol for wireless sensor networks using elliptic curves cryptography. Sensors
11(5), 4767-4779 (2011)

Turkanovic, M., Holbl, M.: An improved dynamic password-based user authenti-
cation scheme for hierarchical wireless sensor networks. Elektronika ir Elektrotech-
nika 19(6), 109-116 (2013)

Xue, K., Ma, C., Hong, P., Ding, R.: A temporal-credential-based mutual authen-
tication and key agreement scheme for wireless sensor networks. J. Netw. Comput.
Appl. 36(1), 316-323 (2013)

Secure Hash Standard FIPS PUB 1801, National Institute of Standards and Tech-
nology (NIST), U.S. Department of Commerce. http://csrc.nist.gov/publications/
fips/fips180-2/fips180-2.pdf. Accessed July 2015


http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://www.avispa-project.org/
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

SPOSS: Secure Pin-Based-Authentication
Obviating Shoulder Surfing

Ankit Maheshwari and Samrat Mondal®9

Computer Science and Engineering Department,
Indian Institute of Technology Patna, Bihta, Patna, India
{ankit.mtcs14,samrat}@iitp.ac.in

Abstract. Classical PIN based authentication schemes are susceptible
to shoulder surfing attacks and hence attacker may obtain secret cre-
dentials of legitimate user very easily. Some of the existing schemes that
provide resistance against shoulder surfing attacks either require multi-
ple rounds for entering single digit or some have dependency on exter-
nal hardware or some of the schemes require complex computation to
be done mentally in order to enter the PIN. Another possible security
threat could be stealing the credentials if password file is compromised.
In this paper, we propose a new PIN entry mechanism known as SPOSS
which provides resilience against not only human-based shoulder surfing
but also against recording attack (for one session) in which attacker may
impose a recording device like camera to record the whole login session
for future reference. SPOSS also provides security against password file
compromise attack. Additionally, user authentication can be ensured by
single round only without doing any complex computation and without
any dependency of external hardware. Experimental analysis shows that
proposed scheme achieves a good balance between usability and security
parameters.

Keywords: Authentication + PIN - Shoulder surfing - Recording
attack - Honeyword

1 Introduction

Personal Identification Number (PIN) based authentication is used in vari-
ous applications involving financial transactions like Automatic Teller Machine
(ATM) and point of sales (POS) and in many other applications like mobile
devices and electronic door locks. Typically in the classical PIN entry mecha-
nism, user enters the PIN directly by pressing the corresponding digits on the
keypad. This makes traditional PIN entry mechanism vulnerable to shoulder
surfing attacks in which the attacker steals the PIN by simply looking over the
user’s shoulder or by recording the authentication session while user is entering
his PIN. The former category of shoulder surfing is known as Weak Shoulder
Surfing Attack [7,18] and latter is known as Strong Shoulder Surfing Attack
[2,24]. Weak shoulder surfing attack completely depends on attacker’s cognitive
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capabilities to remember the PIN entered by the user. Sometimes this attack is
also referred as cognitive shoulder surfing attack or human-based shoulder surf-
ing attacks. Throughout this paper we will refer these attacks as Human-based
Shoulder Surfing Attacks. On the other hand, in strong shoulder surfing attacks,
the attacker uses external devices like miniature cameras or video mobile phones
to record the entire session and can subsequently login with the observed cre-
dentials. We will refer these attacks as recording-based shoulder surfing attacks,
or simply Recording Attacks.

Most appropriate approach to overcome shoulder surfing attacks is using
Challenge-Response based protocol where verifier presents a challenge to the
user, and only legitimate user can respond correctly to the presented challenge.
Apart from challenge response based authentication mechanisms, there are var-
ious other authentication methodologies that provide resilience against shoulder
surfing attacks. These include biometric authentication, Gaze-based password
entry [13,14] and one-time keypad. These solutions are also not widely used
in public domain mainly because they either incur extra cost due to hard-
ware/software requirements or extra overhead of key and space management.
There may also exist specific kind of attacks on these authentication mech-
anisms. For instance fingerprint can be easily forged in commercial fingerprint
scanners [19]. Detailed discussion on these kind of attacks are out of scope of this
paper. Several challenge response based approaches are proposed [2,6,17,18,24]
to overcome shoulder surfing attacks but these schemes are either resistant to
only human-based shoulder surfing attack or require multiple rounds to provide
authentication which increases login time.

Password loss can occur at the system end also where the attacker may
impose hardware or software based key-loggers to steal the credentials or attacker
may steal the credential file itself where the user name and PIN of the legitimate
users are stored. Key-logging attacks may be resisted by using virtual keypads
but still they are vulnerable to shoulder surfing attacks. Database where cre-
dentials are stored can be shielded with various layers of technical security -
Encryption and Hashing. Hashing is considered as the most secure way of storing
password, but one of the latest security threat on password based authentication
is Inversion Attacks in which even the hashed value can be inverted by performing
brute force computation [15,22]. In recent past, some of the reputed web based
organizations have suffered Inversion Attacks [9,10]. Honeyword based frame-
work [11] can prevent inversion attack by making password cracking detectable.

In honeyword model, for any arbitrary user w; rather than storing single
password, the system maintains a list {W; = (w;1,w; 2, ....,w; )} of distinct
passwords (known as sweetwords), where k is an integer ranging from as low
as 2 to as large as 1000. Selection of the value of k is totally dependent on
the administrator. Each element of the list is known as Sweetword or Poten-
tial Password. Exactly one of these sweetwords is equal to the correct password
of the user w;. This correct sweetword is known as Sugarword and remaining
(k — 1) sweetwords are known as Honeywords. These are generated using honey-
word generating algorithms [11] in such a way that by simply looking over the
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list, one can not identify the correct password. Let ¢; be the index (not known
to attacker) of sugarword, then w; .(;y = pi.

The correct indexes of each user are stored in a separate file. If the password
file can be compromised on some system, then we are assuming that all other
files and information stored on that system can also be compromised. So this
model becomes useless if we store both the password file and index file on same
system. For this, secret information like above mentioned index file can be stored
in an auxiliary secure server known as Honeychecker. The computer system can
communicate with the honeychecker when login attempt is done or when user
changes his/her password. We assume that this communication is done through
the dedicated secure channel. Honeychecker must have the capability of raising
alarm signals to the administrator or some other party (depending on the policy
used) when someone tries to login using the honeywords.

In this paper, we present a new PIN based authentication mechanism, known
as SPOSS, that addresses the aforementioned security threats. SPOSS provides
resilience against key-loggers, human based shoulder surfing attacks and record-
ing attacks (assuming that only single session is recorded). Recording of multiple
sessions may reveal the secret credential. We also present a honeyword based
model for storing SPOSS credentials. Finally we will discuss how SPOSS is user-
friendly (not much mentally challenged and credentials are entered using single
round only) and cost efficient (don’t require extra hardware).

2 State-of-the-Art Techniques

In this section we would like to give a brief overview of existing shoulder surfing
resilient schemes and honeyword generation approaches.

2.1 Shoulder Surfing Resilient Authentication Techniques

Various challenge response based authentication schemes that provide resilience
against shoulder surfing attacks have been proposed. Some methodologies [17,18]
provide resilience against cognitive shoulder surfing attacks. Also various schemes
[2,24] provide resilience against recording-based shoulder surfing attacks but
they either take multiple rounds which increase the overall login time or need
mentally challenging computation from users.

Roth et al. [18] proposed a scheme with three variants to obviate shoulder
surfing attack. These variants are: Immediate Oracle Choices (IOC), Delayed
Oracle Choices (DOC) and probabilistic cognitive trapdoor game. In this scheme
the keypad is randomly partitioned into two sets. Numbers in first set are col-
ored black and the numbers in the other one are colored white. Out of the two
given buttons (black colored and white colored), user has to press the same
color button as the set to which the PIN digit belongs. The first two variants
provide resilience only against human-based shoulder surfing attacks and the
third variant provides partial resilience to recording attacks. It can prevent only
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one record of the login process. Also it takes multiple rounds to enter a single
digit.

Another challenge response based scheme that provides resistance against
shoulder surfing attacks is Shoulder Surfing Safe Login (SSSL) [17]. In this
scheme user needs a protected channel (e.g. earphones) to receive the challenge
(a random number between 1 and 9). A challenge table is constructed in such
a way that every digit (between 1 and 9) is an intermediate neighbour to other
8 digits. User has to visually locate the received challenge in this table and
then finally respond by clicking on the appropriate button that uniquely links
the secret challenge with the secret digit of the PIN. Major limitations of this
scheme are - need of a protected channel to receive challenge and PIN cannot
include digit 0 and not resistant to recording attacks.

De Luca et al. [14] introduced an authentication scheme where PIN is entered
using eye movements that are being monitored by an eye-tracking device. They
developed three possible interaction techniques: Dwell Time Method, Look and
Shoot and Gagze gestures. In Dwell Time method, user stares on a specific number
to trigger the action. In this variant user is unable to select two consecutive
numbers. To overcome this problem, they introduced Look and Shoot method
in which user has to hit a predefined button while looking at the number. This
method needs eye-hand coordination and also needs calibration. Also the point
where user is looking has to be accurate. The third variant is Gaze Gesture
where user has to perform a specific eye movement pattern in order to trigger
the action. This variant is vulnerable to shoulder surfing attack as there are
only ten gestures that can be performed. Above all, these techniques are not
much used in public place as they require a specific hardware and software to
be implemented.

PhoneLock [3] is another PIN entry scheme that provides resilience against
shoulder surfing attack. Phone Lock allows user to authenticate with the help of
audio or tactile cues. A secure channel is needed to capture audio cues. Various
graphical password schemes [1,4,8,12] also provide resilience against shoulder
surfing attacks. Though graphical passwords are easy to remember but they are
either more vulnerable to guessing attacks or have significant usability issues (in
time and efforts required to enter passwords).

2.2 Honeyword Generation Methods

Let the user u; provides password p; to the system while registering. The sys-
tem then generates k—1 honeywords which should look similar to the provided
password so that all honeywords appear to be equally probable. The process
of generating honeyword (or chaff) is known as Chaffing. Juels and Rivest [11]
proposed a method known as Chaffing by Tweaking in which the selected posi-
tions of the user provided passwords are tweaked to obtain the honeywords. Each
position is replaced by the random character of same type. So digits are replaced
by digits, letters are replaced by letters and special characters are replaced by
special characters. Some of the variants of chaffing by tweaking are - Chaffing-
by-tail-tweaking, Chaffing-by-tweaking-digits, Chaffing-by-random-positions.
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If this technique is used in PIN based authentication mechanism, it is possi-
ble for the adversary to guess the correct PIN because users generally tends to
select some patterns like YYYY, MMDD, palindrome etc. as their PIN.

Another approach mentioned in [5] is Chaffing with a Password Model where
user given password is parsed into sequence of tokens and honeywords are gener-
ated in the similar syntatic pattern as the user provided password. For example,
if the password provided by user is chair63jumped then it may be decomposed
as Ws|D2|Ws meaning a 5-letter word followed by a 2-digit number again fol-
lowed by another 6-letter word. Generated honeyword also belong to the same
model and might look like juicy56jackel. This technique is not feasible for PIN
based password.

In Take-a-tail method [11] the system changes the user password by append-
ing a fixed length random numeric tail to the password. User has to remember
the newly modified password as his secret credentials. For example if the pass-
word provided by the user is ‘ghbl@hj89g’ and the system appends ‘560’ as the
tail so user has to remember ‘ghbl@hj89g560° as his password. The generated
honeyword might look like ‘ghbl@hj89g267’. If the user password is 4-digit PIN
then this mechanism converts the PIN into 7-digit PIN which is difficult for user
to remember.

3 SPOSS - A New PIN Entry Mechanism

We assume that the verifier (e.g. ATM machine) is trusted and performs authen-
tication procedure correctly. We define the secret shared between the user and
verifier as a set of two tokens: a 4-digit PIN and a color from a set of six pre-
defined colors. Each digit of PIN is a number from set {0, 1,....,9}. For security
purpose, we restrict the user from registering the PIN in which all the dig-
its are same. A detailed reasoning for this restriction is shown in Sect.4.2.
Let the predefined set of colors be C and set of shapes be S. We assume
C = {Red,Yellow, Grey, Blue, Green, Cyan} and S = {A, O, 0}.

3.1 Basic Layout

SPOSS comprises of two user interfaces which we call as Challenge Interface and
Response Interface.

Challenge Interface: Challenge Interface consists of six labeled colors from
the set C and on each label a two-digit code is displayed. We call this code as
ColorCode.

Definition 1. ColorCode: It is a two digit code appearing on each color label
where each digit of ColorCode signifies the PIN position. Mathematically for a
4-digit PIN,

ColorCode = {zy|lz,y € {1,2,3,4}, <y}
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Fig. 1. Challenge and response interfaces (Color figure online)

So for a 4-digit PIN the set of possible ColorCode is {12, 13, 14, 23, 24,
34}. These six ColorCodes are randomly and uniquely assigned to colored labels
present in Challenge Interface. The ColorCode is used during PIN entry process.
Challenge Interface also consists of a keypad with 10 digits {0, 1,....,9}, corre-
sponding to each digit one shape from the set S is displayed. The selection of
shape is done uniformly i.e. two shapes will appear three times and remaining
one shape will appear four times in Challenge Interface.

Challenge Interface is designed smartly enough to ensure that multiple Col-
orCodes results in the same shape that user has to select. These ColorCodes
are selected in such a way that even if the attacker guesses the shape and the
PIN, he/she is unable to figure out the registered color. We elaborate more on
this in Sect.3. A detailed algorithm to build Challenge Interface is shown in
Algorithm 1.

Response Interface: Response Interface consists of a keypad depicting digits
{0, 1,....,9} and corresponding to each digit all the three shapes from set S are
displayed. Each shape is colored randomly and uniformly by the colors of set C.
By uniformly we mean that colors are equally distributed over the shapes. There
are ten occurrences of any shape, say circle. These ten circles need to be filled
uniformly using six colors. So any six occurrences (randomly selected) of circle
will be uniquely filled by six colors of set C and remaining four circles will be
filled uniquely by again randomly selecting any four colors from set C. Remaining
two shapes are also filled in similar fashion ensuring that color distribution is
uniform i.e. every color will appear exactly five times. Also Response Interface
is designed in such a way that all the three shapes corresponding to a particular
number are filled by different colors. A new Response Interface is built for all
digits of PIN.
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Algorithm 1. Build Challenge Interface

= =
W OO

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

43:
44:
45:
46:
47:
48:

: triangle_count < 3; circle_count < 3; square_count < 3; // initialize
S; = rand(S);
if (S; == A) then
triangle_count ++;
else
f (Si == Q) then
circle_count ++;
else
square_count ++;
end if

: end if
: for i+ 0to 9 do

assign < 0; // initialize
while (assign == 0) do
S; = rand(S); // return random shape
if (S; == A) then
if (triangle_count > 0) then
ShapeArrayli] = Si; assign — 1;
triangle_count — —;
else
continue;
end if
else
f (S; == Q) then
if (circle_count > 0) then
ShapeArrayli] = Si; assign «— 1;
circle_count — —;
else
continue;
end if
else
if (square_count > 0) then
ShapeArrayli] = Si; assign — 1;
square_count — —;
else
continue;
end if
end if
end if
end while
end for
Shuffle (ShapeArrayl)); // Shuffle ShapeArray|] such that at least three
ColorCodes result in correct shape
for all [ € Label do
Initialize CC « 0;
CC = rand(ColorCode);
Assign CC to [
Delete CC from ColorCode;
end for
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3.2 PIN Entry Mechanism

Let P, = P, - P - P;- Py be the PIN and C; be the color registered by any
arbitrary user u;. After entering the username to the system, Challenge Inter-
face is displayed. In Challenge Interface user has to remember the SessionShape
(defined below) computed according to the ColorCode zy corresponding to the
color C;. User has to remember this shape for the current session only.

Definition 2. SessionShape: It is the shape corresponding to the number D in
keypad of Challenge Interface where D is calculated (mentally) as:

D = abs(P, — P,)

where xy is the ColorCode present on the registered Color and abs() function
returns the absolute value.

Let X be the set that holds all the possible values of D for a particular PIN-
color pair and | X| denotes cardinality of X. Since all the ColorCodes may result
in a different value of D, | X |4 = 6 and since the PINs having all the four same
digits are restricted, | X|min = 2. In Challenge Interface, correct SessionShape
will appear corresponding to at least three different elements of the set X when
|X| > 3 and will appear corresponding to both the elements of set X when
|X| = 2. This is done to ensure that even if the attacker guesses the shape and
PIN, he/she is unable to figure out the registered color.

In Response Interface user has to enter the PIN in indirect fashion. For enter-
ing the digit Py user needs to press the color by which shape .S; corresponding
to number Py in keypad is filled. For each digit a different Response Interface
is shown. If user correctly presses all the four colors then he/she is allowed to
enter the system else the authentication is failed.

3.3 Example

For any arbitrary user, let registered secret PIN is 3921 and secret color is
Red. Let us consider the Challenge Interface and Response Interfaces shown
in Fig.1. The ColorCode corresponding to registered color Red is 24. So user
needs to mentally compute D = abs(P; — Py) where P, = 9 (second digit of
registered PIN) and Py = 1 (fourth digit of registered PIN). In simple words,
when ColorCode is equal to xy, user has to mentally compute the absolute
difference between zth digit and yth digit of registered PIN. After mentally
computing D = 8, user will look at the shape corresponding to number 8in the
keypad. So SessionShape for this session is (). It can be clearly seen in Challenge
Interface that the ColorCodes 12 (at Green), 13 (at Yellow) and 34 (at Blue)
also results in () as the SessionShape. User will enter into Response Interface
after pressing OK button.

In First Response Interface () corresponding to number 3(P;) in keypad is
filled with Blue color, so user will enter the first response by pressing Blue colored
Button. After pressing Blue button, Second Response Interface will be shown
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on the screen. In this interface O corresponding to 9(P) is colored with Green
color. So user will press Green button to enter the response for second digit.
Similarly O corresponding to 2(Ps) and 1(P4) in Third and Fourth Response
interface are colored with Blue and Red color. So user will press Blue and Red
color in order to enter the response. If all the four responses are correct, then
user will be successfully logged in.

3.4 Honeyword Based Model for SPOSS

Consider the system with n users uq, ug, us,....,u,; where u; is the username
for the ith user. Let p; denotes the correct legitimate PIN and ¢; denotes the
correct color of the user u;. We propose a honeyword based PIN storing model for
SPOSS: For each user rather than storing the single raw PIN-color combination
we will store a list {W; = (W; py c1s Wipg,cas s Wipg,cp ) Of distinet PIN-color
combinations corresponding to each username, where pj is possible PIN and ¢
is possible color. The value of k should be multiple of 6 because SPOSS has
six possible color options; for simplicity we take k = 6. For SPOSS, we redefine
the traditional Honeyword as HoneyCredential which consist of two elements -
HoneyPIN and HoneyColor. In a similar manner we define SweetCredential and
SugarCredential.

User defined passwords are generally not defined randomly. Users rarely
choose passwords that are both hard to guess and easy to remember [23]. It
has been noted that rather than randomly choosing any 4-digit PIN, users tend
to set the PIN in some pattern that is easy to remember. Table1 shows the
analysis of 4-digit PIN done in [21].

Table 1. PIN Analysis from leaked datasets

Pattern Example | Evolution model Leaked dataset

# of matched | % of all | # of matched | % of all the

PINs the PINs | PINs PINs
All 4-digit PINs - 10000 100.00% |3496008 100.00%
YYYY (1940-2016) | 1963, 2008 | 77 0.77% 993636 28.4%
MMDD 0406, 1230 | 365 3.65% 683923 19.56%
DDMM 0604, 3012 | 365 3.65% 734096 21.00%
Numpad Pattern 2580, 1357 | 68 0.68% 36346 1.04%
Sequential up/down | 1234, 9876 | 16 0.16% 158814 4.54%
Couplets 1616, 5353 | 90 0.90% 99960 2.86%
Palindrome 1221, 6886 | 100 1.00% 131439 3.76%
One digit repeated | 1111, 5555 | 10 0.10% 54174 1.55%

From Table 1, we can say that more than 80% of human chosen PIN falls in
the following pattern categories - YYYY, MMDD, DDMM, Numpad Pattern,
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Sequential up/down, Couplets and Palindrome. We are not considering ‘One
digit repeated’ category because we have restricted these kind of PINs from
SPOSS for security reasons (refer Sect. 4.2).

In our proposed model, HoneyPINs of above mentioned patterns are gener-
ated with Arbitrary Probability. Probability for selecting a pattern of HoneyPIN
is shown in Table2. Number of elements in the list W; is a multiple of 6. So
corresponding to each HoneyPIN, a HoneyColor is assigned with uniform distri-
bution. For example, let us take the length of list W; equal to 6 and let for any
user u;, p; = 3921 and ¢; = Red. List W; of user u; will look something like:

1987-Blue 8419-Grey  4040-Green
2001-Yellow 3921-Red 2306-C'yan

Table 2. Probability of selecting pattern while generating HoneyPIN

Pattern Probability
YYYY 0.29
MMDD 0.20
DDMM 0.21

Numpad Pattern 0.01
Sequential up/down | 0.05

Couplets 0.03
Palindrome 0.04
Random 0.17

We modify the algorithm to generate Response Interface. Shapes in the
Response Interface are filled with colors in such way that all the SweetCreden-
tials will respond in different color combination. A detailed algorithm to build
Response Interface is shown in Algorithm 2.

4 Security Analysis

SPOSS combines two independent tokens - color and a 4-digit PIN as the secret
credentials. In traditional PIN entry mechanism, weak PINs can be easily guessed
by the attackers but in SPOSS, even if any one token is compromised, the
attacker still has one more barrier to breach into the system. So, from secu-
rity point of view, adding another token is an obvious advantage. In the below
sections we will discuss SPOSS on various security parameters.
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Algorithm 2. Build Response Interface

1: Declare arrays triangle_color[10], circle_color[10], square_color[10], temp[4];
2: for i — 0 to 5 do

3 triangle_color|i] = Cj;

4:  circle_color(i] = Cj;

5:  square_color[i] = Cj;

6: end for

7: for i — 0 to 3 do

8:  x = rand(C); templ[i] = x; Remove x from C;
9: end for

10: for i — 6 to 9 do

11:  ¢riangle_color[i] = templi — 6];

12: end for

13: swap(templ0], first element of C);

14: swap(temp[1], second element of C);

15: for i <+ 6 to 9 do

16:  circle_color[i] = templi — 6];

17: end for

18: swap(templ[2], first element of C);

19: swap(templ[3], second element of C);

20: for ¢ < 6 to 9 do

21:  square_color(i] = templ[i — 6];
22: end for
23: Shuf fle(triangle_color||,circle_color[], square_color(]) // Shuffle

arrays such that Vi—otoo(triangle_color[i] # circle_color[i] # square_color|i]) and
all HoneyPINs will result in different set of color responses
24: return (triangle_color],circle_color]], square_color|));

4.1 Key-Logging Attacks

Traditional PIN entry mechanism is vulnerable to key logging attacks as the
attacker may easily intercept passwords or other secret credentials entered by
user. Keylogging attacks can be avoided by using Virtual keypads but they
increase vulnerability to shoulder surfing attacks. Another possible solution for
keylogging attacks is using One Time Password (OTP) but it has some serious
issues due to hardware dependency. It is not guaranteed that users will always
receive OTP. There may be issues with network in remote areas or mobile phone
might be discharged. Hence we cannot rely on OTPs. SPOSS is resistant to
key-logging attacks because of the fact that PIN is entered using mouse clicks.
So only thing that software based key-loggers can store is mouse clicks. Also
special hardware can be designed to record the click positions but the sequence
of colors that need to be pressed for successful login are changed randomly in
every session. Hence we can claim that SPOSS is secured against both software
and hardware based key-logging attacks.
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4.2 Shoulder Surfing Attacks

In this section we will show that SPOSS is resistant to human-based shoulder
surfing attack as well as to recording attacks. We assume that the attacker has
only one recorded session.

Human-Based Shoulder Surfing: According to Miller [16], limitation on
cognitive power of human beings is seven plus/minus two symbols. Vogel
et al. [20] improved it and showed that the short term memory of normal human
beings is limited to three or four symbols only. Some people with extraordinary
cognitive powers can remember upto five symbols. In Response Interface, there
is a combination of three shapes corresponding to each number and all of these
thirty shapes are randomly colored using six different colors. Remembering col-
ors of all the shapes corresponding to all the digits is out of the bounds of human
cognitive capabilities. So we can intuitively claim that SPOSS is secured against
human-based shoulder surfing attacks.

Recording-Based Shoulder Surfing: If the attacker records the whole login
procedure, he can limit the guess within the knowledge gathered from the
recorded session. Let the user presses C; colored button to enter the first digit.
The SessionShape is unknown to the attacker so he/she has to create knowl-
edge sets for all the three shapes separately by considering one shape at a
time and limiting his analysis to that shape only for the remaining three dig-
its. In Response Interface, each shape colored by C; color will appear either
one time or two times, hence for a 4-digit PIN and for a particular shape (say
ShapeGuessed), there will be minimum 1 (1 x 1 x 1 x 1) and maximum 16
(2 x 2 x 2 x 2) possible PINs. We call this set of PIN-shape combination as
Knowledge Set of shape ShapeGuessed. Thus Total Possible PIN (or TPP) can
be defined as below.

Definition 3. TPP: If knowledge set gemerated by considering shape s, is
denoted by K S, then Total Possible PIN (TPP) for SPOSS will be:

TPP =KSa UKSO U KSo

In Response Interface, corresponding to a particular digit, all the three shapes
are guaranteed to be colored with different colors. So we can claim that there
will be no PIN common to all the three knowledge sets. Mathematically,

KSAQKSO =, KSOQKSD =@ and KSHNKSA =10

Hence, TPP;n =1+ 1+1=3 and TPP,,,, = 164+ 16 + 16 = 48

For a particular PIN, in Challenge Interface, if at least three ColorCodes do
not result in the same shape for which attacker is checking, then that PIN can be
discarded from TPP (see Algorithm 3). There is a possibility that TP P, can
be reduced to a single PIN. But even if the attacker guesses the PIN and shape,
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Algorithm 3. DiscardPIN(PIN P, ShapeGuessed S, Shape|] ShapeArray)

1: P=PPPP,

2: Make Set X;

3: num_element = 0;

4: for i — 1 to 3 do

5.  for 7 «—(i+1) to 4 do

6: Compute d = abs(P; — Pj);
T if d present in X then
8: continue;

9: else

10: Insert d in set X;
11: num_element ++;
12: end if

13:  end for

14: end for

15: for all @ € X do
16:  if (ShapeArray[a] = S) then

17: count++;

18:  end if

19: end for

20: if (num_element == 2 and count >= 2) then

21:  return N; // Accept PIN
22: else

23:  if (count >= 3) then

24: return N; // Accept PIN
25:  else

26: return Y; // Discard PIN
27:  end if

28: end if

he will not be able to figure out the correct color because in Challenge Interface,
it is ensured that multiple ColorCodes result in correct shape. Note that user’s
secret is a PIN-color pair and one needs both tokens (PIN and Color) to login.
Also PIN entry response for a particular PIN is completely independent to PIN
entry response for some other PIN and the KS created for a particular response
can not be used for deducing any other PIN response. So we can say that even
if n people share their PIN with attacker, it is not possible for the attacker to
derive the PIN for the n+ 1 person by one time recording.

Definition 4. DangerPIN: It is the 4-digit PIN in which all the digits are same.
Out of 10000 total PINs, there are only 10 possible DangerPINs,

{1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 0000}

For DangerPINs, all the ColorCodes will result to the shape corresponding to
digit 0 and hence attacker can login without knowing the color. Though this case
of system breach is very rare (see Theorem 1), still we eliminate the possibility
of system breach by restricting the users from registering DangerPINs.
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Theorem 1. The probability of System Breach when DangerPIN is registered
by user and single session is recorded by attacker is approzimately equal to zero.

Proof. Let Dy be the event where user registers a DangerPIN with all the digits
of PIN equal to D. P(Dy) = ﬁ. For DangerPINs, SessionShape will always
be the shape corresponding to 0 irrespective of color C. There are three shapes
and all of them are equally likely to occur at the position corresponding to 0. Let
Z be the event where S be the shape corresponding to 0 in Challenge Interface,
P(Zy) = %

The Response Interface is built in such a way that there are exactly five
occurrences of any particular color distributed uniformly over three shapes.
Therefore, any one shape (A or () or O) colored with a particular color will
appear exactly one time and remaining shapes will have two occurrences of that
color in Response Interface. Let the response entered by user in Response Inter-
face is C1, Co, C3 and Cy. For first response, either A of Cy color will appear
exactly one time or () of C; color will appear exactly one time or [J of C; color
will appear exactly one time. Let E; be the event where shape S of color C
appears exactly one time in Response Interface and O; be the event where this
particular shape appears corresponding to digit D. Probability of occurrence of
event Fj is 1/3 and of event O; is 1/10. Since they are independent events,
P(01|Ey) = 55.

Let E5, Oz, E3, O3, E4 and O4 be the similar events for colors Cy, C3 and
Cy respectively, P(Oz|E3) = P(Os3|E3) = P(O4|Ey) = 55.
P(System Breach for DangerPIN) = P(Dy) x P(Zy) x P(O1|E1) x

P(02|E2) X P(03|E3) X P(O4|E4) = m =4.115 x 10711 = 0. O

Theorem 2. SPOSS is resilient to recording based observation attack for single
session for all PINs (except for the DangerPINs).

Proof. Consider the reduced set T PP generated after running Algorithm 3 for
all PINs. Also consider the set X generated in Algorithm 3 for each PIN and let
| X | denotes the cardinality of X. Let for any PIN P = P, P, P3 Py where P € K Sy,
function Dif(zy,lm) returns true if abs(P, — Py) # abs(P, — P,,) and function
Shape(zy, S) returns true if shape S appears corresponding to abs(P, — P,) in
Challenge Interface.

For all PINs in the set TPP, one of the below two cases always satisfies.

CASE 1: When |X| = 2, in Challenge Interface, shape S will appear corre-
sponding to both the elements of set X and at least three ColorCodes will result
in shape S.

CASE 2: When |X| > 3, in Challenge Interface, shape S will appear corre-
sponding to at least three elements of set X or in other words, at least three
ColorCodes will result in shape S.
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Matematically,

JabIcdIef | (ab,cd,ef) € ColorCode N
Shape(ab, S) N Shape(cd, S)
A Shape(ef,S) A Dif(ab, cd)
A Dif(cd,ef) A Dif(ef,ab)

Jab3Ied3ef | (ab, cd,ef) € ColorCode N
Shape(ab, S) A Shape(cd, S)
A Shape(ef,S) A (Dif(ab, cd)
V Dif(ed,ef) Vv Dif(ef,ab))

where| X | > 3
V(P, S) € TPP :

where| X | = 2

Hence, for all PINs in TPP, at least three color combinations are possible, so
Total Possible PIN-Color Combinations = 3 x |[T'PP|
= Total Possible PIN-Color Combinations > 1 o |TPP| > 1

Hence we can claim that SPOSS is resilient to recording based observation
attacks for single recorded sessions. For DangerPIN, we have already shown that
possibility of system breach is very rare, still we restrict user from registering
DangerPIN. a

4.3 Password File Compromise Attack

In this section we will investigate security aspects of the proposed honeyword
based credential storage model for SPOSS. In this attack, we assume that the
Credential File has been compromised and the attacker has list of HoneyCreden-
tial corresponding to each user. Since the index position of the SugarCredential
is assigned randomly and is stored in a secure system and all the generated Hon-
eyPIN belong to commonly known patterns, it is not possible for the attacker
to know the correct PIN simply by looking at the stolen file. If the attacker
makes a random guess then the probability of successful login is %, where k is
the size of the list W;. If the attacker makes a wrong attempt (HoneyPIN), the
system breach is detected and the attacker will be redirected to a fake account
where attacker will not know that he/she has been caught. The correct users
will be intimated about the security breach and advised to change the PIN. The
probability for detecting the breach is, P(Breach Detected) = %

Theoretically for k = 6, 12 and 18; probability for detecting system breach
is 83.33%, 91.66% and 94.44% respectively. We asked 15 voluntary participants
to share their not in use PIN and then we had created a list of SweetCredentials
(taking k = 6) using these PINs. We asked 10 different participants to act as
attacker and guess the correct PIN (SugarCredential) by simply looking over
this list. The detailed results can be seen in Fig. 2. In 85.33% cases the system
breach was detected.
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Fig. 2. Percentage of detected and undetected system breaches by 15 attackers

5 Usability Analysis and Comparison

SPOSS needs two tokens as secret credentials: 4-digit PIN which is same as the
traditional PIN and a color which is very easy to remember. User also needs
to mentally perform a subtraction operation between single digit numbers to
use SPOSS. Intuitively we can say that subtraction operation is a basic math-
ematical operation which users can perform very easily without much mental
efforts. As compared to traditional PIN entry mechanism, SPOSS offers high
level of security and users with average cognitive abilities can very easily per-
form the computation that SPOSS needs. As seen in many existing authentica-
tion schemes that provide resistance to shoulder surfing attacks, usually multiple
rounds are needed to enter the PIN. SPOSS offers resilience against recording
attacks in a single round only. User needs only five clicks to enter 4-digit PIN
securely.

5.1 Experiment

In order to evaluate usability of SPOSS, we have developed a working model
of SPOSS using JAVA and conducted a survey on a good mix of literate and
illiterate 30 participants of varying age groups and gender. At the beginning,
participants were given a short explanation of SPOSS followed by two training
sessions. In the first training session, participants entered any random color-PIN
combination and in second training session participants entered color-PIN com-
bination of their choice. After the training sessions, we conducted three hands-on
sessions where participants entered the PIN on SPOSS without any help.

Error Rate: Out of 90 attempts (30 participants x 3 test sessions), 81 attempts
were successful and 9 attempts were unsuccessful resulting in an average error
rate of 10.00%. It has to be noted that once the participants became familiar to
SPOSS the error rate had decreased gradually. The detailed result is presented
in Table 3. Session-wise successful and unsuccessful attempts are shown in Fig. 3.
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Table 3. Error Rates and Authentication time in various sessions for 30 users

Session 1 | Session 2 | Session 3 | Session 4 | Session 5 | Average
(Training)| (Training)| (Test) (Test) (Test) (Test)
No of 22 25 27 26 28 25.6
participants
successfully
logged in
Error Rate (in %) | 26.66 16.66 10.0 13.33 6.66 10.00
Average Login 22.49 19.95 14.94 13.66 11.28 13.29
Time (in seconds)

It can be clearly seen that successful attempts have increased and unsuccessful
attempts are decreasing.

N Sucess : 2’3;
i 2 A Max
. ey L
g % AA.: .‘. . v’p .:,v
10 : . v ERE R B A :
5| T i
O \(Trainng) 2(Traning) e a(rest) a(Test) ! Ueor k
Fig.3. Number of successful and Fig. 4. Average, Minimum and Maxi-
unsuccessful attempts by 30 users mum login time of 30 users

Authentication Time: Login times of all the sessions of users were recorded.
The minimum, maximum and average login times of all participants in three
test sessions are shown in Fig.4. The maximum time taken by any user was
21.26 s and minimum time was 7.93s. Also the average login time has decreased
after every session as shown in Table 3. This is a clear indication that once users
become familiar to SPOSS, it is fast and easy to use.

User Opinion: At the end of experiment, participants were asked to complete
a short questionnaire (Table 4) regarding SPOSS in which participants were sup-
posed to rate SPOSS on various parameters on a scale from 1(very difficult) to
5(very easy). All 30 participants were also asked if they would prefer to use
SPOSS in security critical situations or not. 26 participants said “Yes” they will
prefer SPOSS in security critical situations. 3 participants answered as “Can’t
Say” and only 1 participant responded “No”.
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Table 4. Questionnaire responses

Question Mean (out of 5) | Median (out of 5)
How easy is SPOSS to learn and use 4.16 4

How easy is it to remember the method to 4.53 5

enter the PIN

With practice, PIN can be entered quickly in |4.43 4

SPOSS

Give an overall rating for SPOSS on a scale of 5 | 4.33 4

5.2 Comparison with Existing Techniques

In this section we will compare SPOSS with various existing PIN based authenti-
cation schemes on various parameters which are summarized in Table 5. We have
compared SPOSS with traditional PIN entry mechanism, SSSL, PhoneLock, IOC
and EyePIN on various parameters.

Table 5. Comparison of various Authentication Schemes

Method # Rounds | # Clicks for | Resilient to External Implementable Average Login

m-digit PIN | Observation | Device in Smart Time (in
Attack® Phones seconds)

SPOSS 1 m+1 Fully No Yes 13.29

Direct PIN | 1 m No No Yes 2.79

SSSL 1 m Partial Earphone Yes 8.00

PhoneLock | 1 >m Partial Earphone Yes 14.80

10C 4 4xm Partial No Yes 23.228

EyePIN 1 0 Fully Eye-Tracker | No 54.00

(expensive)

# In fully observable environment

Traditional PIN entry scheme does not provide any resilience against shoul-
der surfing attack, whereas SSSL, PhoneLock and IOC provides resilience only
against human-based shoulder surfing attacks. Out of the mentioned schemes,
only SPOSS and EyePIN provide resilience against recording attacks. From the
table it is clearly seen that only IOC requires 4 rounds to enter the PIN and
rest of the schemes including SPOSS requires single round to enter the PIN but
SSSL, PhoneLock and EyePIN have hardware dependency. In SSSL and Phone-
Lock, user receives challenge through earphones which are not always guaranteed
to work properly. Efficiency of EyePIN depends on the accuracy of eye track-
ing device. Eye trackers with high accuracy are costly and it is not feasible to
use them in public domain where many devices need to be implemented. Using
SPOSS user can enter the PIN in single round only without using any external
support. It can also be noted from the table that for entering a m-digit PIN, tra-
ditional PIN entry mechanism and SSSL requires m clicks and SPOSS requires
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only one extra click. This click is of OK button of Challenge Interface after which
user enters the Response Interface. PhoneLock and IOC require more that one
click per digit. Though EyePIN does not require any click to enter the PIN but
it has usability issues with the eye gaze gestures that user needs to perform.

6 Conclusion and Future Work

In this paper, we presented a new PIN based authentication scheme known
as SPOSS that provides resilience against various observation attacks like key-
logging and shoulder surfing attacks and also against password file compromise
attacks where attacker may steal the credential file from database. We had shown
that SPOSS not only resists human-based shoulder surfing attack but is also
effective in obviating recording attacks where attacker can use external recording
devices like camera to record single login session. Unlike various existing PIN
entry mechanisms SPOSS is user-friendly (not mentally challenging) and cost-
efficient. We had also shown that the survey done for understanding the usability
aspects of the scheme is showing promising results.

There are many interesting aspects about SPOSS that needs to be addressed
in future. Firstly, since PIN entry is color dependent, it will be interesting to see
what possible improvements can be done in SPOSS in order to make it suitable
for people having color vision disabilities. Secondly, SPOSS can be extended for
arbitrary length PINs also. For n-digit PIN, there are (n—1)! possible Color-
Codes. We can randomly pick any six ColorCodes and use them in Challenge
Interface. A thorough usability study for longer PINs can be done in future.
Thirdly, since SPOSS is resilient against recording attack for single session only,
in future we would like to think of some improvements in SPOSS or any other
new authentication mechanism that could resist multiple recording attacks. And
lastly, the Honeyword based model to store the credentials can be addressed to
reduce storage cost.
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Abstract. The law of computer and freedoms specifies that the access
to personal data is a right that must be ensured. Indeed, this law pro-
vides sanctions when this right is violated. It is important to preserve
this access right because it allows people to verify the accuracy of their
personal data and thus, emit a rectification request or ask for the dele-
tion of this data if it is necessary. In this paper, we propose a formal
model which enables to extend security policies with right rules in order
to express access right. In our approach, we make a distinction between
access permission and access right and propose a semantics of a guar-
anteed right and means to detect violations. The model is based on the
situation calculus. It allows, through planning tools, to provide an off-
line policy analysis in order to detect in advance the situations which
prevent a right to be exercised. In addition to the concept of secure sys-
tem which is defined as a system that meets the requirements of access
control, we propose to introduce the concept of a fair system that meets
the requirements of the access right. We formalize this notion and give
a characteristic which enables to prove if a system specification is fair
with respect to right requirements.

1 Introduction

Personal data means any information relating to a natural person who is or
can be identified, directly or indirectly, by reference to an identification number
or to one or more factors specific to him. They are protected by various legal
instruments concerning the right to privacy. For example: the Act n°78 — 17
of 6 January 1978 on Data Processing, Data Files and Individual Liberties,
amended by the Act of 6 August 2004 relating to the protection of individuals
with regard to the processing of personal data®, the Directive 95/46/EC at
European level?, and the Convention n°108 for the Protection of Individuals with
regard to Automatic Processing of Personal Data3. Under these laws, several
factors are taken into account regarding the processing of these data as for
example the shelf life, the purpose of the processing concerned, the consent of
the concerned person of this treatment and the obligation of information. Many
countries now have authorities in charge of enforcing these laws. They often are

! http://www.cnil.fr/documentation /textes-fondateurs,/10i78-17 /# Articlel.

2 http://eur-lex.curopa.cu/legal-content /EN /TXT/?uri=URISERV %3A114012.
3 http://www.coe.int /en/web /conventions/full-list /- /conventions /treaty /108.
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independent administrative authorities and have the power of, advice, control
and administrative sanctions. Let us take as example the independent French
administrative authority CNIL (Commission National de l'informatique et des
libertés). This authority is responsible for ensuring that information technology
is at the service of citizens and it does not affect human identity, nor the rights
or privacy, or individual and public freedoms.

The CNIL informs peoples about their obligations and rights. For example,
it specifies that people have a right to ask directly the responsible of a file if
she holds information about them (website, shop, bank ...), and request that
she communicates to them the completeness of this data. The exercise of the
right of access enables to control data accuracy and, if necessary, people may
then send a written request to correct any error or to remove any non-essential
data. Therefore, the laws provide penalties when the right of access to personal
data is not respected. In the annual report issued by the CNIL in 2012, it spec-
ifies that there was 3682 right of access request and 6017 complaints in 2012.
The CNIL applied on the 24" May 2012 the pecuniary sanction of 10000 euros
to “Etablissement Equipements Nord Picardie” because this institution did not
respect the right of access. In the 29" January 2014, the CNIL applied the pecu-
niary sanction of 10000 euros to the association “ASSOCIATION JURICOM ET
ASSOCIES” as it did not respect the people’s right to opposition that their pro-
fessional data are posted on the association’s website. Thus, in order to have a
preventive approach, the CNIL quotes in a Guidebook* the measures to address
the risk on freedoms and privacy. In particular, it recommends to identify the
practical ways which can be implemented to enable the exercise of access rights
and ensure that access right may be always exercised. In order to do that, it
encourages to examine cases where the chosen practical means are no longer
operational and determine the appropriate solutions. The work we propose in
this paper falls within this framework. Obviously, it is clear that concerning per-
sonal data, we are not speaking about an access permission but an access right.
Therefore, we propose to enhance the security policies with right rules, detect
the violations of these rules, and provide means to analyze these policies in order
to identify in advance the situations where these rights could be prevented from
to be exercised.

Extending security policies with rights allows to express the interest of users
which must be protected to avoid violations. In this work, we propose a formal
model to express contextual rights. A contextual right means that a right to do
an action is associated with a context which corresponds to the set of conditions
that must hold in order to make the right active. Whenever a right is active,
the execution of the corresponding action should be possible (i.e., access must
be available), making the right ensured, otherwise there is a violation of right.
Notice that in our model, obligations and rights have one thing in common
insofar as both can lead to situations of violation and sanction [1-3]. But the
semantic we give to the violation of a right is different from that of obligation

4 http://www.cnil.fr/fileadmin/documents/Guides_pratiques/CNIL- Guide_securite_
avance_Mesures.pdf.
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with deadline. The violation of right is not associated with the fact that the
user does not perform the action before a deadline, but with the fact that there
are circumstances in a system or some users’ behaviors which made the action
impossible to be executed. Nevertheless making an action possible does not mean
that the action must be executed, while when an action must be executed (i.e.,
obligated), it must necessarily be possible. Otherwise, there is a conflict in the
feasibility of the obligation rule [4]. Thus, unlike obligations, it remains to the
user to choose to exercise its right or not.

Among the things that can prevent a right to be exercised, we identify what
we call a conflict between right and obligation. We say that there is a conflict
between an obligation rule and a right rule if fulfilling the obligation leads nec-
essary to the violation of the right. Consider the following right access rule:
Each employee has the right to look into her professional document, and the fol-
lowing obligation rule: In the case of compromised accounts, the server hosting
professional documents must be stopped. In the case of compromised accounts,
satisfying the obligation rule leads necessarily to the violation of right to access
professional documents. In this paper, we extend the model based on deontic
logic of actions and situation calculus proposed in [4] to specify right rules.

Our contributions

— The extended model allows to express formally rights and allows the detection
of right violation.

— We formally define a fair system. Intuitively, we mean by a fair system, a
system that guarantees all the rights specified by the policy. Then, we formally
specify the condition to prove that the system specification is fair with respect
to the right requirements.

— In a previous work [4], the planning [5] as defined in the situation calculus
was sufficient to detect conflict between obligations with deadline. Given a
goal formula, planning consists in finding a sequence of actions so that the
goal is satisfied after executing this sequence of actions. In order to detect a
conflict between obligations and rights, we define what we call preserved plan.
Given a goal formula, a preserved plan is a sequence of actions that causes no
violations of any right and leads to satisfy the goal. Indeed, a situation will
be conflicting if there is no preserved plan that lead to a situation where all
obligations can be fulfilled within their deadlines.

— We propose an algorithm for detection of conflict between obligations with
deadline and rights.

— We make an implementation of our approach and show how we can generate
in advance all conflicting situations

This paper is organized as follows. In Sect.2, we present an overview of the
situation calculus. Section 3 explains how to define security policies that include
rights. Section4 extends situation calculus to formally derive where a right is
effective. In Sect. 5, we formally define right violation. Section 6 shows how we
can use our model to build a fair system with respect to right requirements. In
this section, we also show how to detect the presence of conflict between rights
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and obligations. In Sect.7, we implement our model using the programming
language GOLOG [6]. In this section, we make assessment on different situations
that we build to simulate our model. Our right model is then compared to some
of existing work modeling rights in Sect. 8. Finally Sect. 9 concludes this paper.

2 Situation Calculus

The situation calculus [7] is a second-order logic language specially designed to
represent the change in dynamic worlds. The ontology and axiomatization of
the sequential situation calculus was extended to include time [8], concurrency,
and natural actions [9]. However, in all cases, the basic elements of language are
actions, situations, and fluents.

— All changes in the world are the results of actions execution. They are des-
ignated by terms of first-order logic. To represent the time in the situation
calculus, a time argument is added to all instantaneous actions which is used
to specify the exact time or time range in which the actions occur in world
history.

— A possible history of the world, which is a sequence of actions is represented by
the first-order terms denoted situation. The constant Sy is the initial situation.

— There is a binary function symbol Do; Do(«, o) denotes the situation resulting
from the execution of the action « in the situation o.

— Fluents describing the facts of a state. They are symbols of predicates which
take a term of type situation as the last argument, which their truth values
may vary from one situation to another.

— There are also symbols of predicates and functions (including constants)
denoting relations and functions independent of situations.

— A particular binary predicate symbol <, defines a strict order relation on
situations; o < ¢’ means that we can reach ¢’ by a sequence of actions starting
from o.

— A second particular binary predicate symbol Poss, defines when an action is
possible. Poss(a, o) means that the action a can be executed in the situation o.

The basic axioms for the situation calculus, as defined in [10,11] are as follows:
— The second-order induction axiom:
(VP).[P(So) A (Va,0)(P(a) — P(Do(a,0)))] — (Vo) P(0) (1)

The induction axiom says that to prove that property P is true in all situations,
it is sufficient to prove that P is true in the initial situation Sy (initialization
step) and for all actions a and situations o, if P is true in the situation o,
then P is still true in the situation do(a,o) (induction step). The axiom is
necessary to prove properties true in all situations [12].

— The unique name axioms for states:

So # do(a, o),

do(a,0) =do(d',0') wa=d" No =0’
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— The unique name axioms for actions:
For distinct action names a and o,

a(x) # d'(y).
Identical actions have identical arguments:
a(T1, ey Tp) = a(T1, ey Tp) = T1 =YL A e ATy = Yn
— Axioms that define an order relation < on situations:

-8 < Sy,
o < do(a,0’) < (Poss(a,0’) Ao < o).

In addition to the axioms described above, we need to describe a class of axioms
when we formalize an application domain:

— Action precondition axioms, one for each action:
Poss(A(z),0) « 6(,0),

where ¢(z, o) characterizes the preconditions of the action A, it is any first-
order formula with free variables among x, and whose only term of sort of
situation is o. Using predicate Poss(a), we can then recursively specify that a
given situation o is executable.

Executable(o) < [(Va,0’).do(a,o’) < o — Poss(a,d”)]

— Successor state arxioms, one for each fluent. These axioms characterize the
effects of actions on fluents and they embody a solution to the frame problem?®
for deterministic actions [11]. The syntactic form of successor state axiom for
a fluent F' is

[F(m’do(aa U)) A ’Y?T‘_(mv a, G) N (F(:I},O') N"Vg (:B,CL, U))]a

where v} (,a,0) and vz (x,a,0) indicate the conditions under which if the
action a is executed in situation o, F(x,do(a,o)) becomes true and false,
respectively. It is assumed that no action can turn F' to be both true and false
in a situation, i.e., ~30Jav} (z,a,0) A vy (2, a,0).

— Axioms describing the initial situation.

In the following, we denote Axioms = 3 U Ayps U Ayng U Ass U Aap U Ag,, where

- ¥ is axiomatic for < and < (see [11]).

— Auns is the set of unique names axioms for states.
— Ayna is the set of unique names axioms for actions.
— Ay 1s a set of successor state axioms.

5 The difficulty in logic of expressing the dynamics of a situation without explicitly
specifying everything that is not affected by the actions.
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— Aap is a set of action precondition axioms.

— Ag, is a set of initial situation axioms. Ag, is a set of sentences with the
property that Sy is the only term of sort situation mentioned by the fluents
of a sentence of Ag,. Thus, no fluent of a formula of Ag, mentions a variable
of sort situation or the function symbol do.

We denote Axioms F p the fact that the sentence p can be derived from the set of
axioms Azioms. This kind of domain theories provides us with various reasoning
capabilities, for instance planning [13]. Given a domain theory Azioms as above
and a goal formula G (o) with a single free-variable o, the planing task is to find
a sequence of actions @ such that

Axioms F Sy < do(@, Sp) A Executable(do(a@’, Sp)) A G(do(@, Sp)),

where do('@’, o) is an abbreviation for do(a,,,do(a,_1,...,do(a1,a)...)).

3 Policy Specification

The language we define to specify permissions, obligations with deadline and
rights in security policies is based on deontic logic of actions. We consider three
modalities: permissions, obligations with deadline and rights. They are called
normative modalities in the following. Normative modalities are represented as
dyadic conditional modalities. Permissions are specified using dyadic modality
P(a|p) where « is an action of A and p is the condition of the permission. The
condition is any formula built using fluents of # without situation. P(a|p) means
that the action « is permitted when condition p holds. Modality R(«|p) means
there is a right to do & when condition p holds. Obligations with deadline are
specified using modality O(a < d|p) which intuitively means that when formula
p starts to hold, there is an obligation to execute action « before the deadline
condition d starts to hold. The deadline condition is an atomic fluent predicate
of ¥. We call norm a formula corresponding to a conditional permission, a
conditional right or obligation with deadline. A security policy, P is a finite set
of norms.

We shall now use the situation calculus to formally define the semantics of
these different modalities.

4 Actual Norm Derivation

The objective of this section is to specify which actual permissions, rights and
obligations with deadline hold in a given situation. It is assumed that the security
policy P is fixed in the initial situation Sy. This means that we do not consider
actions that would change (create, delete, update) the norms that define the
security policy P.
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4.1 The Semantic of Actual Permission and Right

The situation calculus is extended with fluents Perm(a, o) (there is an actual
permission to do «) and Right(wo, o) (there is an actual right to do «) where
« is an action of A. We first extend the set of Axioms previously defined with
a permission definition axiom for every fluent predicate Perm(a,o), a € A.
For this purpose, let P, be the set of conditional permissions having the form
P(a|p). We denote ¢p, = p1 V...V p, where each p; for i € [1,...,n] corresponds
to the condition of a permission in P,. Using ¢ p, , we can define formally an
actual permission by the following succession state axiom:

Perm(c, Do(a, o)) < vipa (a,0) V (Perm(a,0) Ay, (a,0)) (2)
This axiom specifies that the permission to do an action becomes effective after
the action that activates the context of the permission rule is executed.
Ezample 1. Consider the following textual permission rule:

— Ry: “Fach identified employee on the server containing her professional docu-
ment has the permission to look into this document”.

This rule can be written as follows:
P(LookInto(u,d)|Employee(u) A Identified(u, s) A Professional Doc(d, u, s)
Here,

— Identified(u,s,o) is a fluent meaning an employee u is identified on server s
in the situation o.

— Employee(u, o) is a fluent meaning u is an employee in the situation o.

— ProfessionalDoc(d, u, s,o) is a fluent meaning that d is the professional doc-
ument of an employee u contained in the server s.

— LookInto(u,d) is an action meaning an employee u is looking into her profes-
sional document d.

For simplicity, we consider that Employee(u, o) and Professional Doc(d, u, s,0)
are static. This means that:

(Va) Employee(u, Do(a, c)) < Employee(u, Sp)

(Va)Professional Doc(d, u, s, Do(a,0)) < Professional Doc(d, u, s, Sp)
Thus to get where the rule R; is effective, we need just to express the succession
state axiom of the fluent Identified(u,s,o).

[Identified(u,s, Do(a,c)) <
((3l, p) RecordedCredential(u,l,p,s,0) A a = Logon(u,l,p,s)) V
(Identified(u,s,o) A =(a = Logout(u, s)))]

The axiom above specifies that an employee u is identified on a server s if she logs
on this server using the same credentials recorded by the system. The employee
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remains identified unless she logs out. Note that Logon(u,l,p,s) is an action
meaning an employee u logs on a server s using a login [ and a password p and
Logout(u, s) is an action meaning an employee u logs out a server s. Concerning
RecordedCredential(u,l,p,s,o) is a fluent meaning a user w is recorded on the
system and her corresponding login and password to access to a server s are
respectively [ and p. The corresponding succession state axiom will be given
later. Using the axiom 2, we can easily show that:

Poss(a,o0) —

[Perm(LookInto(u,d), Do(a, o)) <

Employee(u, o) A Professional Doc(d,u, s,0) A (3)
[((3, p)RecordedCredential(u,l,p, s,0) A a = Logon(u,l,p,s)) V
(Perm(LookInto(u,d), o) A —=(a = Logout(u, s)))]]

Actual right is similarly defined using R, which corresponds to the set of con-
ditional rights of # having the form R(«|p).

Right(c, Do(a,0)) < 'y;L'Ra (a,0) V (Right(a, o) A Von., (a,0)) (4)

This axiom specifies that a right becomes effective immediately after the exe-
cution of action that activates the condition associated with it. Then this right
will stay effective in all following situations unless an action which disables the
condition associated with it is executed.

Example 2. Let us consider the following textual right rule:
— Ry: “Each employee has the right to look into his professional document”.

In our language, this rule can be written as follows:
R(LookInto(u,d)|Employee(u) A (3s)Professional Doc(d, u, s)

The situations ¢ where this rule is effective are characterized by the following
formula:

(Vo) Right(LookInto(u,d),o) < (5)
Employee(u, So) A (Is)Professional Doc(d, u, s, Sp)

This right is never deactivated because, for simplicity, we are considering that
Employee(u, o) and ProfessionalDoc(d, u, s,o) are static. However, if we con-
sider that an employee can be firing off, then we must specify in the succession
state axiom of Employee(u, o) that the execution of the action FiringOf f(u)
turns Employee(u, o) to false. Therefore using the axiom 4, we can deduce that
the execution of the action FiringOf f(u) turns the right of an employee to look
into her professional document to false.
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4.2 The Semantic of Active Obligation

We extend the situation calculus with fluents Ob(ar < d) (the obligation to do
a before deadline d starts to be effective) where o is an action of A and d is a
fluent of F. As permissions, we need the obligation definition axiom for every
fluent predicate Ob(a < d), where a € A and d € F. Notice that since the
sets A and ¥ are finite, we have a finite set of successor state axioms to define
for Ob(a < d). We define O, q to be the set of conditional obligations with
deadline in P having the form O(o/ < d'|p) such that o = o' and d and d’
are logically equivalent. We say that two fluent predicates d and d’ are logically
equivalent with respect to a set of Azxioms if we can prove that d < d’ is an
integrity constraint of Azioms. We denote 1o, , = p1V ...V p, where each p; for
i € [1,...,n] corresponds to the condition of an obligation in Og 4. If Oy.q = 0,
then we assume that ¥, , = false. Using 1 p, , we can define formally an active
obligation

(Va, d,a,0)0b(a < d, Do(a,0)) < (6)
hj/s@a,d (a,0) A ﬁ,y:lr (a,0)V

(Ob(a < d,0) A =(a=a)A—y](a,0)A ﬁ%;oa,d (a,0))]

The axiom above says that the obligation to do a before deadline d is activated
when 1o, , starts to be true. This obligation is deactivated when it is fulfilled
(i.e. action «a is done) or it is violated (i.e. deadline d starts to be true) or con-
dition o, , ends to be true (i.e. it is no longer relevant to do «). Concerning
instantaneous obligations we consider them as a special case of obligations with
deadline, written as follows: O(«ap). As there is no deadline associated with
these obligations, we assume that: 'y;{(a,a) = v, (a,0) = false. Thus we can
derive the succession state axiom characterizing the situations when instanta-
neous obligations are active using axiom 6.

Poss(a,c) — (Ob(a,do(a, o)) « 'Yz—;oa (a,0)) (7)

This axiom says that the system obligation to do « is activated only in the
situations when 1o, starts to be true and they are deactivated immediately after.
Thus a system obligation should be fulfilled immediately after its activation.

Ezample 3. In this example, we show how to express an obligation with deadline
and an instantaneous obligation. We also show where these obligations are active.
Let us consider the following textual instantaneous obligation rule:

— Rj3: “Recorded user account must be removed in the case of compromised
accounts” .

This rule can be written as follows:

(Vu, 1, p)O(RemoveCredential(u, I, p)|(3s) RecordedCredential (u,l, p, s) A

CompromisedAccount(u,l, p))

Where,
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— RemoveCredential(u,l,p) is an action meaning removing the login [ and the
password p of the employee u.

— RecordedCredential(u,l, p, s, o) is a fluent meaning an employee u is recorded
on the system and her corresponding login and password to access to a server
s are respectively [ and p. The corresponding succession state axiom is as
follows:

[RecordedCredential(u,l, p, s, Do(a,o)) < (8)
(Employee(u, o) A a = AddCredential(u,l,p,s,0))
V(RecordedCredential(u,l,p, s,0) A =(a = RemoveCredential(u,l,p)))]

This axiom specifies that the credentials of an employee u to log on
a server s is recorded on the system where the action AddCredential
(u,l,p,s) is executed. These credentials remain recorded unless the
action RemoveCredential(u,l,p) is executed, in which case the fluent
RecordedCredential(u,l, p, s,o) turns to false.

— CompromisedAccount(u,l,p, o) is a fluent meaning an attack leading to com-
promise of the account of the employee u is detected on the system. The
corresponding succession state axiom can be specified as follows:

[Compromised Account(u,l, p, Do(a, o)) < (9)

a = DetectCompromise(u,l,p) V Compromised Account(u,l,p, o)]

In this axiom, we admit that the account of an employee w is considered
compromised when the action DetectCompromise(u,l,p) is executed. This
axiom specifies also that when an account is compromised, it remains in this
state forever.

In order to show when the rule Rj is activated, we apply the axiom 7 as follows:

[Ob(RemoveCredential(u,l,p), Do(a, o)) <
(CompromisedAccount(u,l,p,o) A (Is)a = AddCredential(u,l,p,s)) V(10)
(RecordedCredential(u,l,p, s,0) A a = DetectCompromise(u,l,p))]

Let us turn now to an example of obligation with deadline. Consider the following
textual rule:

— Ry: “The causes that led to the compromise of accounts must be identified
before updating the credentials”.

This rule can be written as follows:

O(IdentifyCompromiseCauses(u,l,p) <
(3s, ', p") RecordedCredential (u,l', p', s)|Compromised Account(u, 1, p)
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If we apply the axiom 6, then we can see that the situations where this rule
is activated are characterized by the following axiom:

Ob(Identi fyCompromiseCauses(u,l,p) <

(3, p', s)RecordedCredential(u,l’,p’, s), Do(a,c)) <

a = DetectCompromise(u, 1, p) V [Ob(Identi fyCompromiseCauses(u,l,p) < (11)
(3l',p', s)RecordedCredential(u,l’,p’, s) A

—(a = IdentifyCompromiseCauses(u,l,p)) A ~(a = AddCredential(u,l’,p’,s))]

The axiom above specifies that the obligation to identify the causes of
account compromise becomes active when the compromise is detected, i.e. the
action DetectCompromise(u,l,p) is executed. This obligation remains active
unless the action IdentifyCompromiseCauses(u,l,p) is executed or the cre-
dentials corresponding to the compromised account are changed, i.e. the action
AddCredential(u,l’,p, s) is executed.

5 Violation Detection

5.1 Obligation Fulfillment and Violation Detection

An obligation with deadline to do an action is considered satisfied, when the
action is executed while the obligation is still active, and before that the deadline
of the obligation becomes true. We characterize situations where the obligations
are fulfilled by using the fluent Fulfil(a < d,o) meaning the obligation to do
the action « before the deadline d is satisfied in the situation o. Formally, the
fulfilled obligations are characterized by the following axiom:

(Va,d,a,0)Ful fil(a < d, Do(a,0)) < (12)
[(Obla < d,o) Na=aA—](a,0))V Fulfilla < d,o)]

Ezample 4. In this example, we show where the obligation of rule R3 (resp. Ry4)
is fulfilled by applying the axiom 12.

[Ful fil(RemoveCredential(u,l,p), Do(a,0)) <
(Ob(RemoveCredential(u,l,p), o) A a = RemoveCredential(u,l,p)) V
Ful fil(RemoveCredential(u,l,p), o)]

The axiom above specifies that the obligation of rule Rz is fulfilled
when the action RemoveCredential(u,l,p) is executed while the obligation
is still active (i.e., Ob(RemoveCredential(u,l,p),o)). Similarly, the oblig-
ation of the rule R4y will be fulfilled after the execution of the action
IdentifyCompromiseCauses(u,l, p) in a situation where the obligation is still
active.
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Ful fil(Identi fyCompromiseCauses(u,l,p) <

(3, p', s)RecordedCredential(u,l’,p', s), Do(a,c)) <
[Ob(IdentifyCompromiseCauses(u,l,p) < (13)
(3, v, s) RecordedCredential (u,l',p', s),0) A

a = IdentifyCompromiseCauses(u,l,p) V

Ful fil(IdentifyCompromiseCauses(u,l,p) <

(3, p’, s)RecordedCredential (u,l’,p', s), o)

An obligation to do « is violated, when the associated deadline comes true when
it was still active, and it was never executed. We define a violated obligation using
fluent Violatedp(a < d, o), meaning the obligation to do the action « before
the deadline d is violated in situation ¢. Formally, the violated obligations are
defined using the following succession state axiom:

(Vay,d, a, 0)Violatedo (o < d, Do(a, o)) < (14)
[(Ob(a < d,0) Ay (a,0)) V Violatedo(a < d, o)]

5.2 Ensured Rights and Violation Detection

In our formalism, no action can prevent the enforcement of a granted right.
Otherwise there is a violation of right. The language is then extended by fluent
Ensured(a, o) meaning the right to do « is ensured in the situation o. In other
words, in all situations if the right to do an action is active the action must be
possible.

Definition 1. Ensured right
An ensured right Ensured(c, o) is formally defined as follows:

(Va, o) Ensured(o, o) o Right(o,0) A Poss(a, o)

Proposition 1. If the precondition aziom of « is written as: Poss(a,s) <
®a(0), then the ensured right definition axiom is equivalent to the following suc-
cession state axiom:

(Va, a,0)Ensured(a, Do(a, o)) < (15)
(Right(a,0) A 7(2'0 (a,0) A Vn (a,0))V
(8(0) Ay, (a,0) A=y (a,0)) V
(Ensured(a, o) A=y, (a,0) A=y, (a,0))
The violation of a right occurs in situations where the right is not ensured. The

violation of a right is captured by the fluent Violatedr(a, o), meaning the right
to do the action « is violated in the situation o.
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Definition 2. Right violation
The violated right Violatedr(a, o) is formally defined as follows:

(Va, o)Violatedg (o, o) ©f Right(o,0) AN ~Ensured(a, o)

Example 5. Let us see where the right of the rule Ry is ensured using the Propo-
sition 1. We admit that an employee can look into her professional document
if and only if it is possible for her to log on the server containing her pro-
fessional document. Thus, assuming that the precondition axiom of the action
Logon(u,l,p,s) is:
Poss(Logon(u,l,p,s,o) < (16)
Knows(u,l,p, s,0) A RecordedCredential(u,l, p, s,0)

We can deduce that the precondition axiom of the action LookInto(u,d) is as
follows:

Poss(LookInto(u,d, o) < (3s)Knows(u,l,p,s,0) A
RecordedCredential(u,l,p, s,o) A ProfessionalDoc(u,d, s,0)

where,

- Knows(u,l,p,s,o) is a fluent meaning the employee u knows her recorded
login [ and password p which allow her to access to the server s in the situation
0. The corresponding succession state axiom is as follows:

Poss(a,0) —

[Knows(u,l,p, s, Do(a, o)) <

(RecordedCredential(u,l,p,s,0) Aa = Send(u,l,p,s)) V (17)
(Knows(u,l,p, s,0) A =(a = RemoveCredential(u,l,p)))]

Now using the Proposition 1, we can give the following succession state axiom:

Ensured(LookInto(u,d), Do(a, o)) <

[Right(LookInto(u,d),c) A (3s,l, p)(Professional Doc(u,d, s,c) A
RecordedCredential(u,l,p,o) A a = Send(u,l,p, s))] v
[Ensured(LookInto(u,d), o) A (31, p, s)RecordedCredential (u,l,p, s) A
—(a = RemoveCredential(u,l,p))]

The axiom above specifies the following:

— If there is a professional document d concerning some employee u hosted on a
server s, and if this employee has a login [ and a password p recorded on the
system allowing her to access to the server s, then the right of the employee
u to look into her professional document d will be ensured immediately after
she becomes aware of her recorded credentials, i.e. the action Send(u,l,p,s)
is executed.
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— The right of an employee u to look into her professional document d
remains ensured unless her recorded credentials which allow her to access
on the server hosting her professional document are removed i.e. the action
RemoveCredential(u,l,p) is executed.

6 Using Our Model

6.1 Building a Fair System with Respect to Right Requirements

To build a fair system with respect to right rules, we first introduce the notion
of preserved situation.

Definition 3. Preserved situation
A preserved situation is a situation where there is no violation of any right.

Preserved(o) ¥ —(Ja)Violatedg(a, o)

Definition 4. Fuair system
The system specification represented by a given set of Axioms is fair with respect
to right requirements if and only if every executable situation is preserved.

Azioms - (Vo).[Executable(c) — Preserved(o)]

Theorem 1. If the initial situation Sy is a preserved situation and the precon-
dition axioms of all actions in A are in the form:

(Va,o)Poss(a, o) <
$a(0) A —(Ja)[Right(a, o) Ay (a,0)]

then, the specification represented by a given set of Axioms is fair with respect
to right requirements.

Proof. There is no violation of any right in the initial situation as it is preserved
by hypothetis. Let o be a preserved situation, a any action in A and suppose that
Do(a, o) is an executable situation. We have —(Ja)[Right(c, o) Ay, (a,0)] then,
the execution of the action a does not cause the violation of any active rights.
In Do(a, o), there is no violation of any old rights as o is a preserved situation.
Thus by applying axiom 1, we prove that (Vo).[Executable(o) — Preserved(o)].

Some rights may be in conflict, making impossible to build a fair system.
The detection of this type of conflict is presented later in this paper.
6.2 Conflict Detection Between Rights and Obligations with
Deadline

A conflict between obligation and right occurs when it is not possible to do an
obligation within its deadline without violating any right. Thus, we define the
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fluent LP-Enforceable(a < d, o) meaning that the obligation to do « is locally
enforceable before that the deadline d holds while preserving rights.

LP-Enforceable(a < d,o) <
(36").0" > o A Preserved(c’) A Ful fil(a < d,o")

Between o, where the obligation is active, and ¢’, where the obligation is fulfilled,
there is no violation of right. This is done through the recursive construction of
preserved situations. When an obligation is not locally enforceable while ensur-
ing rights in a given situation, we say that there is a locally conflict between
obligations and rights in the policy. It is possible that each active obligation in a
given situation is enforceable while preserving rights. However fulfilling all these
obligations together necessarily leads to a violation of a right. To characterize
this, we define the fluent G P-En forceable(o), meaning a situation o is globally
enforceable while preserving rights.

GP-Enforceable(c) < 3o',0" > o A (Va, d)
Ob(a < d,0) — Fulfil(a < d,0") A Preserved(c")

In the formula above, all active obligations in ¢ are fulfilled in ¢’. The fact that o’
is a preserved situation ensures that there is no violation of right between ¢ and
o'. The problem of searching the situation ¢’ is a planning problem. However the
planning as it is defined in the situation calculus can not meet our problematic.
Therefore, we introduce the following notion of preserved plan.

Definition 5. Preserved plan

A preserved plan is a sequence of actions that causes no violation of any cur-
rent right. Formally, let o be a variable-free situation term, and G(s) a formula
whose only free variable is the situation variable s. Then o is a preserved plan
for G if and only and if

Azioms E Preserved(o) A G(o)

Definition 6. Global conflict between obligations and rights

If a situation is not globally enforceable while preserving rights, we shall say
that there is a global conflict in the policy between obligations and rights in this
situation.

The Algorithm 1 detects a conflict between obligations and rights using recur-
sive search as defined in Algorithm 2. In this algorithm, we suppose that the
situation we check is preserved. Furthermore, if the set of actions and the set of
values are finite, we can estimate the maximum length of the plan, N, allowing
to achieve the goal. In our algorithm, we explore the tree of all possible worlds
that can be very large. Indeed, if we suppose that on average, there are k actions
which are possible to execute from a given situation, then the number of worlds
to explore is the order of k.
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Algorithm 1. ConflictDetection(o, N)

Require: o: the situation to check; N: the maximal depth
Ensure: No: if there is no conflict in the policy at situation o otherwise Yes.

O = {a € A such that Ob(a < d,0)} {set of active obligations in o}

o' « recursiveSearch(c, N, O)

if =(¢/ = NULL) then
return No {there is no conflict between obligations and rights in the policy at
o and ¢’ is the plan which leads to fulfill all the active obligations in o without
violating any right}

else
return Yes {there is a conflict between obligations and rights in the policy in
situation o}

end if

Algorithm 2. recursiveSearch(o, N, O)

Require: o: the current situation
N: the current depth (initially the given maximum depth)
O: set of active obligations in o
Ensure: Null: if the depth of the current path exceeds the given maximum depth or,
situation when all obligations in O are fulfilled if it exists otherwise,
the next situation to give to the next call for recursion
& — {a € A, ~(3a)Right(a,0) A, (a,0)} {the set of actions that can lead from o
to an eventual preserved situation}
while true do
if N <0 then
return NULL
end if
for all a € & do
o' «— Do(a, o)
N—N-1
if (Va,d € O)Fulfil(a < d,o’) then
return o’
end if
0" « recursiveSearch(o’, N,0)
if =(¢" = NULL) A (Yo, d € O)Fulfil(a < d,0")) then
return o”
end if
N« N-+1
end for
return NULL
end while
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7 Implementation

We implemented our model using the logic programming language Golog [6,8],
based on the situation calculus. To evaluate our approach, we make experiments
on a machine equipped with an Intel 32 bit, 2.60 GHz, x4 processor, and 3.8
GB RAM, running ECLIPSE 3.5.2 on ubuntu Linux(v.13.04). We made a test
on a policy containing one right rule, six rules of obligations with deadlines and
six constraints to specify that some of actions can not be executed in parallel.
We analyze this policy on situations of lengths 1, 2, 3 and 4. The Table 1 shows
the number of conflicting situations and the execution time. The execution time
increases exponentially with the length of the analyzed situations. This is due to
the fact that we make a first planning in order to seek all executable situations.
And for each executable situation, we make a second planning in order to check
if it is globally enforceable. Recall that this analysis is done at the moment of
the establishment of a security policy and before its implementation.

Table 1. Policy analysis assessment

Path depth | Number of conflicting situations | CPU time
1 1 0.20s

2 47 18.46's

3 738 3580s

4 3021 90677.95s

8 Related Work and Discussion

Security policies have been enriched with obligation rules and obligation with
deadline rules to specify other security requirements corresponding to usage con-
trol policies as the availability of information in its allotted time. Several models
have been proposed in the literature to analyze these policies [4,14-17]. How-
ever, we are not aware of any other work that uses right rules in security policies
in order to provide means to express and ensure availability requirements in an
information system. The principle of right violation and preserved right enables
us to detect other misuse situations (ex. situations where fulfilling obligations
necessarily leads to a unavailability in the system) which can not be detected
just by using obligation and permission rules.

In the context of legal system, Sartor in [18] formalizes the concept of pre-
serving permissions using directed obligations. Directed obligations means actions
that individuals must perform to ensure an interest of someone else. Then from
the directed obligations, Sartor defines obligation right. Indeed, when a person
J has an obligation toward a person K to ensure an interest of K, then it said
that K has an obligation right toward J. In our work, we express this kind of
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permissions using the right modality. In our conception of right, we can express
some aspect which is not possible to express using directed obligations. To show
this, consider an example concerning right of data rectification®: A user has the
right to send request to correct information concerning him. We admit that a
necessary condition to make a request to correct information is to have an avail-
able email address of the manager holding the information. Note that in the
context of video surveillance, the CNIL found that in 30 % of cases there is a
lack of informations about the person to contact in order that people exercise
the right of access to their images. Therefore, we consider that the right to send
request is ensured in the situations when the web-master has created the email
address of the manager holding the information and there is no deleting action
that has been applied on this email. We can then consider that the obligation
of the web-master to create an email address of the manager of data modifica-
tion ensured an interest of user to make a request for data rectification. Then,
this corresponds to the obligation right of the user toward the web-master to
create an email address of data manager. With this approach, it is not possible
to explicitly express the right of the user to make a request to change her data.
This is because it is her right to perform the action by herself and not someone
else. On the other side, if there is an obligation which requires for the manager
to respond to a request for modification of data transmitted by a user, in this
case it is an obligation right of the user toward manager to have an answer which
is certainly different from the right to issue the query.

9 Conclusion and Future Works

In this paper, we proposed a model based on deontic modalities and situation
calculus to specify security policies including rights. The model provides means
to detect the violation of rights. Furthermore, we show how we can build a fair
system and detect if there is a policy conflict between obligations with deadline
and rights using a preserved plan.

Notice that in this work, we are defining a persistent right, which must be
ensured at every moment (ex: read document). It is easy to extend this work
for expressing right with deadlines. We mean by a right with deadline, a right
to do an action before some condition holds. Unlike persistent right, it is not
necessary to ensure this right every time. It is sufficient to ensure it before that
the condition holds so the right can be exercised. For example, it is sufficient to
ensure the right of voting before the closing time.

Concerning the management of a conflict between obligations and rights, we
propose to negotiate a waiver of some rights against compensation. This is a
common solution in real life. For example, in a company, employees have a right
to get holidays. The employer may negotiate with the employee by asking her to
renounce to this right to meet the delivery deadline of a given project in exchange
of a monetary compensation. Certainly the fairness of a system depends on the
measurements taken for resolution of such conflict. In this sense, Sartor in [19]

5 http://www.cnil.fr /vos-droits/vos-droits/le-droit-de-rectification /.
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provides a solution based on teleological reasoning to evaluate the choices by
considering their effect on goal norms.
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Abstract. With the increasing popularity of collaborative systems like
social networks, the risk of data misuse has become even more critical
for users. As a consequence, there is a growing demand for solutions to
properly protect data created and used within these systems. Enabling
collaborative specification of permissions, while ensuring an appropri-
ate levels of control to the different parties involved, inherently leads to
decisions of some users being overruled by the policies of other users.
Users need to be aware that this is happening and why, otherwise they
may lose trust in the system, which can impact their willingness to col-
laborate. Enhancing user awareness requires that users know about and
understand the conflicts that occurred. In this paper, we propose an app-
roach to compute a justification for a decision in cases where conflicts
occur and, based on this, generate feedback that explains users why their
decision was not enforced.

1 Introduction

Recent years have witnessed an increasing popularity of collaborative systems
like social networks and shared editing platforms. These systems provide virtual
worlds in which their users can interact with each other and share information.
Within these virtual worlds, multiple users can be involved in the creation and
management of data, each of them retaining some level of authority over the data.
This has spurred the design of solutions for enabling collaborative specification
of permissions in which each user can specify its own authorization requirements
for the protection of the data under its control [3,12,13,26]. In particular, these
solutions aim to ensure an appropriate levels of control to the different parties
involved.

Every user expects its authorization requirements to be enforced by the
system. However, this is not always possible as users can specify conflicting
authorization requirements for the same resources. Most access control mecha-
nisms employ policy conflict resolution strategies [15,19,21-23] to automatically
determine how policy conflicts should be resolved based, for instance, on prior-
ities between decisions (e.g., permit-overrides) or the ordering of policies (e.g.,
first-applicable). Although their use is necessary to guarantee the proper func-
tioning of the system, these strategies make policy evaluation non-transparent
to users. In fact, access control mechanisms usually adopt a black-box approach
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whose aim is only to obtain a conclusive decision to be enforced. This black-box
approach results in users not being aware whether their policies have actually
been enforced. The lack of transparency in decision making can effect users’
experience and, consequently, their confidence in the system.

A few proposals [13,20] make a first step towards the design of transparent
access control mechanisms. In particular, Mahmudlu et al. [20] propose a feed-
back mechanism that identifies mismatches between the decision enforced by the
system and user policies and notifies users about them. Although this feedback
enhances user awareness about access decision making, it does not allow users to
understand why their policies have not been enforced. Without this knowledge,
users can feel that their data are not adequately protected and, thus, have a low
confidence in the system. (Security and protection of private data are important
factors for trust, especially for knowledgeable users [4,5]).

In this work, we make a step further towards the design of transparent access
control mechanisms by presenting an approach that not only notifies users about
policy conflicts but also provides them with a meaningful explanation of why
their decision has been overruled. The approach relies on the data governance
model presented in [20] to represent how the authorization requirements of the
users contributing to the creation and management of a data object are combined
to form a global policy, which is ultimately used to regulate the access to the
object. Based on the evaluation of the global policy, we identify the user policies
that were used to obtain the decision enforced by the authorization mechanism,
providing a justification for the decision.

Policies and decision preferences of users, however, can be sensitive them-
selves [27,29]. Thus, not all users are supposed to see the full explanation of a
decision. Instead, the feedback should give an appropriate level of detail, which
takes into account the relationship of users with the data as well as the visibility
preferences of the policy authors. To this end, we trim the explanation for a deci-
sion based on visibility restrictions, indicating which portion of the explanation
a user is allowed to see. It is of utmost importance that the feedback is under-
standable by users. Therefore, we show how the feedback can be formulated in
a human readable format, focusing on the relevant parts and customizing the
feedback to reflect the relationship of the user with the data.

The remainder of the paper is organized as follows. The next section provides
background on data governance and policy mismatch. Section 3 illustrates the
problem of transparency in access control through a typical scenario in social
network. Section 4 presents our approach to compute feedback concerning policy
and to express it in a way that is understandable by end-users. Section 5 discusses
related work. Finally, Sect.6 concludes the paper and presents directions for
future work.

2 Background

This section provides background on data governance and policy mismatch.
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2.1 Data Governance Model

In collaborative systems, several users can contribute to the creation, governance
and management of data. Each user can retain some authority on the data. In
this work, we adopt the data governance model proposed in [20] to represent and
reason on the governance of data controlled by multiple users. This model poses
its basis on the notion of archetype [6], which is used to capture the relations of
users with data objects, and uses an archetype hierarchy to represent and reason
on the level of authority that users have over the data based on their archetype.
An archetype hierarchy is defined as follows:

Definition 1. Let A be the set of archetypes for a data object o. An archetype
hierarchy H has the form:

H = SH | (SH,t, H)
SH =L |(L,®,SH) | (L&, SH)

L=al(olal,...,an))

An archetype hierarchy H is (recursively) built over sub-hierarchies (SH) and
levels (L) by concatenating them according to a given priority that can be total
(denoted by t), positive (denoted by @) or negative (denoted by ©). A level L
consists of an archetype a or a set of archetypes a1, ... ,a, € A that are combined
using intra-level aggregator o.

An archetype hierarchy is used to combine stakeholders’ authorization
requirements into a global policy, which regulates the access to data. In par-
ticular, the work in [20] supports the definition of the global policy for a data
object from stakeholders’ authorization requirements specified as XACML poli-
cies (hereafter called user policies). The combination of user policies in the global
policy reflects the level of authority that stakeholders have over the object as
defined in the archetype hierarchy. The underlying idea is to represent priori-
ties between levels and intra-level aggregators as policy combining algorithms.
Here, we do not impose any restriction on the combining algorithms that can be
used. The only requirement is that they can be implemented in XACML. Table 1
presents an overview of policy combining algorithms that have been proposed
for and/or adapted to XACML.!

For the sake of simplicity, in this work we abstract from the XACML specifi-
cation (e.g., target, rule, policy, policy set), while keeping full compatibility with
the standard. We represent (XACML) policies as trees where nodes are labeled
with a combining algorithm and leaf nodes are labeled with user policies. In par-
ticular, we represent policy trees either in graphical (see e.g. Fig. 1b) or textual
form where ca(4,...,A,) represents a node labeled with combining algorithm
ca and subtrees Aq,..., A4A,.

It is worth noting that our representation of policies accounts for user policies
as atomic elements regardless of whether they are composite policies themselves.

1 We assume the reader is familiar with conflict resolution strategies and, in particular,
with XACML policy combining algorithms.
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Table 1. Policy combining algorithms for XACML

Policy combination algorithm | Source
permit-overrides (pov) [15,22,23]
deny-overrides (dov) [15,22,23,25]
ordered-permit-overrides (opov) | [22,23]
ordered-deny-overrides (odov) | [22,23]
first-applicable (fa) [1,22,23,25]
only-one-applicable (o0oa) [22,23]
permit-unless-deny (pud) (23]
deny-unless-permit (dup) [23]
specificy-precedence (sp) [15,21,24,25]
weak-consensus (wc) [19]
strong-consensus (sc) [13,19]
weak-majority (wm) [19]
strong-majority (sm) [13,19]
super-majority-permit (smp) [13,19]

This is due to the fact that the feedback mechanism proposed in this work focuses
on the governance of data controlled by multiple users and, in particular, aims
to identify the users whose policies have overridden the policy of a given user.
Therefore, this level of granularity is adequate for our scope.

Below we present how the global policy is constructed from the archetype
hierarchy and user policies.

Definition 2. Given a data object o, let A be the set of archetypes for o, H the
archetype hierarchy built over A, U the set of user identifiers (or simply users) and
P the set of user policies where p,, € Py denotes the policy of user w € U. Let
UA C U x A be the user-archetype assignment, i.e. (u,a) € UA iff user u has
archetype a. We construct the global policy Py for H starting from the top of H :

Py = fa(Psu, Pr)
P.e,5m) = opov(Pr, Psg)
P(L,@,SH) = OdOV(PL7 PSH)
=cay(Pyyy...,Py,)
= caa(Puys- -+ Pu)

Plolar,an))

Py

where ca, 1s the combining algorithm realizing the intra-level aggregator o, cag
the combining algorithm associated with archetype a € A and py,, ..., DPu,, € Pu
where uy, ..., Uy, are the users such that (uy,a),. .., (um,a) are in UA.

For some objects and archetypes it is natural that there is only a single
user associated to a given archetype. In this case we use only-one-applicable as
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archetype combining algorithm ca,. This way the decision of the (only) user pol-
icy becomes the decision of the archetype and the presence of multiple decisions
would result in an error (Indeterminate).

The global policy for a data object is used to determine whether access
to the object should be granted or not. We use the following abstract
notation to represent the policy evaluation process: P denotes the set of
XACML policies, Q the set of access requests, and function [p] : Q@ —
{Permit, Deny, NotApplicable, Indeterminate} denotes policy evaluation, i.e. [p](q)
is the decision according to a policy p € P for an access request g € Q. In par-
ticular, Permit (P) denotes that access is granted, Deny (D) denotes that access
is denied, NotApplicable (NA) denotes that the policy is not applicable, and
Indeterminate (1) denotes that an error occurred during evaluation.

2.2 Policy Mismatch

Ideally, an authorization mechanism should enforce the authorization require-
ments of all users. However, this is not always possible. In fact, users can specify
conflicting authorization requirements, which results in conflicting policies. In
this work, we use the notion of policy mismatch introduced in [6,20] to cap-
ture that the decision yielded by a user policy differs from the one obtained by
evaluating the global policy.

Definition 3. Let py,...,p, be the policies of n users and p the global policy
obtained by combining such policies. Given an access request q, a user u (with

w€{1,...,n}) has a policy mismatch if [p.](¢) # [p](q)-

The notion of policy mismatch provides the baseline for enabling trans-
parency in access control. For instance, Mahmudlu et al. [20] show how to
augment SAFAX [16], an XACML-based architectural framework that offers
authorization as a service, with a transparency service that detects mismatches
between the decision enforced by the authorization mechanism and users’ autho-
rization requirements. Any mismatch found is reported to those users whose
decision was not enforced.

3 DMotivating Example

This section illustrates the motivation for this work using a FaceBook-like social
network augmented with a collaborative access control system in the style of [20].

Ezample 1. An online social network provides a collaborative environment in
which users can post messages and photos in their profile and share these objects
with other users. Users can also post messages and photos in the profile of other
users (if they have permission) and tag a data object to indicate the user(s) to
whom the object refers.

To regulate the access to data, the social network allows users to specify
their privacy settings. A user’s privacy settings govern the actions that users
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(or groups of users, e.g. Friends, Colleagues) in the social network can perform
on the objects (profile, posts, etc.) controlled by the user. The social network
also defines a default policy that is used to handle the situations in which users
do not specify their privacy settings.

Our scenario focuses on a user who posts a photo in the profile of another
user. The photo shows five individuals, who are registered to the social network.
These users are tagged and, thus, the photo is linked to their profile.

In the scenario above, we can identify four archetypes for the photo: Data
Subject (DS), Data Host (DH), Data Provider (DP) and Social Network (SN).
The Data Subject archetype is used to represent the individual(s) to whom the
(personal) data refer. In our scenario, this archetype denotes the users appearing
in the photo.? The Data Host archetype is used to represent the user owning
the profile in which the photo has been posted. The Data Provider archetype is
used to denote the user who posted the photo. Social networks usually define
default settings that are used if users do not specify custom settings. Given the
collaborative nature of our setting, we assume that default settings apply to the
collaboration (in contrast to single users) and, thus, they are only considered if no
other settings have been specified by any user. We capture these default settings
within the governance of the photo through the Social Network archetype.

The identified archetypes can be organized in a hierarchy (Fig.1la). We
assume that the Data Subject has the highest priority as it should be able to
influence the processing of its personal data [11]. The next level comprises the
Data Host, who is responsible for the contents posted in its profile, followed by a
level formed by the Data Provider. The lowest level is formed by the Social Net-
work. The first three levels are ordered using a negative priority (&), meaning
that the negative authorization requirements (i.e., requirements explicitly deny-
ing access to data) associated to the higher level take precedence; otherwise, the
access requirements defined by the stakeholders at the lower level should also be
evaluated. The default settings defined by the Social Network is overridden by
the settings of the other stakeholders. We capture this requirement using a total
priority (t) between the Social Network and higher levels.

The global policy p is obtained by instantiating the archetype hierarchy in
Fig. 1a with user policies. Let users A, B, C, D and E be the Data Subjects (i.e., the
users appearing in the photo), user F' the Data Host and user G the Data Provider.
Each of these users can define a (possibly empty) policy to regulate the access to
their data. Moreover, we use pgny to denote the default settings provided by the
social network. Textually, the global policy can be represented as follows:

p = fa(odov(sm(pa, pB, pc, Pp, PE), odov(ooa(pr ), 00a(pg))), 00a(psn))

2 Note that the problem of recognizing the subjects of a piece of information is orthog-
onal to the scope of this work. Here, we assume that tags are reliable, i.e. they link a
piece of information to the corresponding data subjects. Although it is not addressed
in this work, tag validation has been proven to be feasible and, for instance, several
algorithms have been proposed to automatically recognize people in contents such
as photos [13].
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Fig. 1. Data governance model and instantiation

A graphical representation of the global policy as a policy tree is shown in
Fig. 1b. Priorities in the archetype hierarchy are encoded as combining algo-
rithms in the global policy as defined in Definition 2. Levels and archetypes are
defined along with a combining algorithm that specifies how archetype policies
and user policies forming them should be combined respectively. Here, we assume
that the policies specified by data subjects are combined using the strong-majority
(sm) combining algorithm proposed in [19]. According to this combining algo-
rithm, access is granted if over half of all subpolicies allow it, and deny access
if over half deny it; otherwise, an indeterminate decision is returned. The other
archetypes (i.e., Data Host, Data Provider and Social Network) are associated
to only one user. As described in Sect. 2, we use only-one-applicable (ooa) as the
archetype combining algorithm for these archetypes. Similarly, all levels con-
sist of only one archetype. Accordingly, they are represented as the archetype
forming them (see Definition 1).

Ezample 1 (Cont.). Suppose a user u requests to view the photo. The autho-
rization system has to evaluate the access request ¢ made by u against the global
policy p in Fig. 1b. Assume user policies are evaluated as follows:

[pal(¢) =D [pel(¢) =D
[psl(q) =D [prl(q) =NA
[pcl(q) =P lpcl(q) =P
[[PD]](Q) =D [[I?SNH(Q) =P

Accordingly, the request is denied by the authorization mechanism, i.e.
[p)(q) = D.

We can observe that the authorization requirements of some users have not
been enforced. For instance, the requirements of users C and G allows the
requester to view the photo. The default policy pgny has also been overridden,
indicating that it may be too permissive for certain users. Moreover, we can
observe that some users (e.g., the data host F' in our scenario) might not have
specified any authorization requirement to handle certain access requests.

Every user expects its policies to be enforced by the authorization mecha-
nism; however, as shown in the example above, the policy of some users can be
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overridden by the policies of other users. Although the use of strategies that auto-
matically resolve policy conflicts is necessary to guarantee the proper functioning
of the system, users are often unaware whether their policies have actually been
enforced. The main problem is that most of the existing authorization mecha-
nisms only aim to obtain a conclusive decision to be enforced and do not identify
and/or record policy mismatches. We argue that this lack of transparency can
affect the collaboration among users and, in particular, their willingness of shar-
ing sensitive information.

A few works [13,20] propose feedback mechanisms that detect and notify the
user of policy conflicts. These solutions, for instance, would notify users C and G
that access has been denied despite their policies granting it. Although this feed-
back enhances user awareness about the access decision making process, it does
not allow users to understand why their policies have not been enforced. With-
out this knowledge, users can feel that their data are not adequately protected
and, thus, have a low confidence in the system. In this work, we investigate the
problem of designing fully transparent authorization mechanisms that are able
to explain to users why a certain access decision has been made.

Although it is crucial that users understand why their policies have been
overridden, the feedback generation should be separated from policy evaluation.
Certain systems like critical infrastructures require a fast response time and,
thus, any delay introduced by the feedback generation could compromise the
functioning of the system. To achieve this separation of concerns, we envision
transparency as a service. Similarly to [20], we decouple the feedback mechanism
from policy evaluation, thus relieving the burden of computing the user feedback
from the policy evaluation engine. This design choice has the added benefit
that authorization mechanisms already in place can easily be augmented with
transparency, thus facilitating the adoption of transparency in existing systems.
In the next section, we present a framework with a feedback mechanisms that
not, only notify users if a policy mismatch occurred but also provide them with
a justification of why their policies have not been enforced.

4 Approach

Upon receiving an access request, the authorization mechanism evaluates the
request against the global policy to determine the access decision to be enforced.
However, as shown in the previous section, the authorization requirements of
some users might have to be overridden in order for the authorization mechanism
to reach a conclusive decision. The goal of this work is to raise awareness of
users about the enforcement of their authorization requirements. This section
presents our approach to generating feedback which explains to users why their
authorization requirements have not been enforced. The approach, shown in
Fig. 2, consists of four main steps.

The first step is to find policy mismatches, i.e. those situations in which user
policies have been overridden (see Definition 3). To detect policy mismatches,
we employ the transparency service presented in [20]. This service identifies mis-
matches and users involved by comparing the decision for a request according
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to the global policy with the decision according to user policies evaluated indi-
vidually. The service also provides a feedback mechanism for mismatches which
notifies the users involved. We refer to [20] for details on the transparency service
for policy mismatch detection and notification.

Although this transparency service makes users aware of whether or not their
policies have been enforced, notifications should be extended to provide an expla-
nation of why a user’s policy was overridden in order to increase user awareness
in access decision making. To provide such explanations, we compute the deci-
sion annotated evaluation path, which provides a justification for the decision
enforced by the system (step 2). Intuitively, a decision annotated evaluation
path comprises a (minimal) set of user policies (along with their evaluation)
that allows the system to show why a certain decision was obtained.

A decision annotated evaluation path provides a “technical” explanation of
why a certain decision was reached. End-users know the archetype hierarchy but
may not be able to interpret explanations based on the global policy. Therefore,
we express feedback in terms of the archetype hierarchy, to give users the infor-
mation needed to understand the decision justification. Also, a decision anno-
tated evaluation path may reveal information about the policies of other users.
Policies themselves can be sensitive [27,29] and, thus, need to be protected. To
this end, we employ wvisibility policies to regulate the information disclosed in the
feedback (step 3). In particular, visibility policies are used to determine wvisibil-
ity restrictions on the justification, indicating which portion of the justification
should be visible to a user based on its place in the archetype hierarchy, and to
trim the justification accordingly. In this work we assume that users set the vis-
ibility policies of their own access control policies, whereas the visibility policies
of the other elements (e.g., archetypes, levels) are defined during the setting of
the collaboration along with the archetype hierarchy.

Note that we have separated the computation of the justifications for a deci-
sion from the computation of the feedback. An advantage of this separation is
that the feedback can be customized with respect to the relation of the user to be
notified with the data object. In particular, the granularity of the feedback given
to end-users can be tuned on the basis of the needs of the application domain
and visibility restrictions without modifying the procedure used to compute the
feedback.

It is important that the feedback is understandable by the users. In addi-
tion to relating it to terms they know (the archetype hierarchy) we show how
the feedback can be formulated into a human readable format (step 4). In
particular, we transform the justification for a decision trimmed with respect
to visibility restrictions into a textual description, focusing on the relevant
parts and customizing the feedback to reflects the user’s place in the archetype
hierarchy.

4.1 Computing Decision Justifications

As seen above, we use an (ordered) labeled tree to represent the global policy
where nodes are labeled with a combining algorithm and leaf nodes with user
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Fig. 2. Approach to enhance user awareness in access decision making

policies. Formally, an ordered tree is a set of nodes A/ with a partial order amongst
the nodes and a total order amongst the children of each node. A labeling of
a tree is a function from nodes to some domain of labels. A labeled tree is a
tree with one or more labellings. Recall that we use ca(4,...,A,,) to indicate
a node labeled with a combining algorithm ca and subtrees Aq,...,4,,. Note
that this notation defines both the tree structure and a labeling. Moreover, we
refer to a connected subgraph of a tree containing the root as a pruning of the
tree. Note that a pruning is itself a tree and the union of multiple prunings is
again a pruning.

We introduce an additional label to the global policy in order to capture
decisions reached.

Definition 4. Let N be the set of nodes in the global policy and Q the set of
access requests. The Decision labeling with respect to an access request g € Q is
a labeling D, : N' — {Permit, Deny, NotApplicable, Indeterminate}. A node n € N’
1s labeled with a decision according to the policy that the subtree of n represents:

— for n labeled with user policy p, Dy(n) is [p](q);
— for n labeled with combining algorithm ca, Dq(n) is the result of ca applied to
decision list Dg(n1),. .., Dg(nm) where nq,...,ny, are the children of n.

The Decision labeling denotes the outcome of policy evaluation with respect to a
given access request. For nodes labeled with a combining algorithm, the Decision
label is the result of applying that combining algorithm to the decision labels of
its children. Note that this is equivalent to evaluating the policy tree rooted in
n, i.e. D(n) = [ca(A1, ..., An)](q) with Aq,..., A,, the subtrees of n.

Example 2. The Decision labeling of the global policy in Fig. 1b, labeled accord-
ing to the decisions of user policies as given in Example 1, is:

fa:D(odov:D(sm:D(pa:D, pg:D, pc:P,pp:D, pr:D),

odov:P(0oa:NA(pr:NA), ooa:P(pg:P))), 00a:P(psn:P))

Note that, if only the decisions of the user policies are given, the other decisions
can be computed. Thus, without loss of information, we may as well write:

fa(odov(sm(pa:D, pp:D,pc:P,pp:D, pE:D),

odov(ooa(pr:NA), 00a(pg:P))),00a(psn:P))
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In order to compute the feedback to be sent to a user, we first need to identify
which user policies have been used to obtain a certain decision. To this end, we
introduce the notion of decision annotated evaluation path.

Definition 5. Given an access request ¢ € Q, let p be the global policy with
Decision labeling with respect to q. A decision annotated evaluation path for ¢
is a minimal pruning of p that justifies decision [p](q).

A decision annotated evaluation path can be seen as the set of (decision
annotated) user policies that allows the system to show how a certain decision
was obtained, thus representing a justification for the decision. A decision anno-
tated evaluation path is minimal, i.e. if any node is removed, it no longer forms a
justification for the decision. To prune the (decision annotated) global policy to
a decision annotated evaluation path we can start from the root and recursively,
for each node labeled with a combining algorithm ca, only include a minimal
subset of children that justify the decision label (according to ca). Note that the
pruning depends on the semantics of the combining algorithms with respect to
a given decision. For the sake of space, we omit the formal definition of minimal
pruning and only provide the intuition for a few algorithms.

deny-overrides returns Deny if and only if one of the subpolicies returns Deny.
Therefore, to show that a policy dov(4y,...,A,,) is evaluated Deny, it is
sufficient to show that one of the subpolicies evaluate Deny. In contrast, for
the other decisions (i.e., Permit, NotApplicable, Indeterminate) the decision
annotated evaluation path should provide all (decision annotated) subpolicies
as the system has to show that none of the subpolicies evaluate Deny.

ordered-deny-overrides is identical to deny-overrides with the exception that sub-
policies are considered in the order in which they are defined. Accordingly,
the decision annotated evaluation path will contain the first subpolicy that
evaluates Deny if any; otherwise, if no subpolicies evaluate Deny, all (deci-
sion annotated) subpolicies are included in the decision annotated evaluation
path.

first-applicable returns the decision of the first applicable policy. Accordingly, the
decision annotated evaluation path contains the policy used to make the deci-
sion together with the previous policies. In fact, the system should show that
none of these previous policies is applicable. Following the same intuition, if
none of the subpolicies are applicable, all subpolicies are given in the decision
annotated evaluation path.

strong-majority returns a conclusive decision, either Permit or Deny, if over half of
all subpolicies evaluate Permit and Deny respectively; otherwise, Indeterminate
is returned. Accordingly, it is sufficient for the system to only show that
over half of all subpolicies return Permit (Deny) to prove that the policy
is evaluated Permit (Deny). On the other hand, in case of Indeterminate, the
system has to show that a majority of either Permit or Deny cannot be reached.

Ezxample 3. Based on the evaluation of Example 1, the requester is not allowed
to view the photo. Analyzing the global policy, we can observe that access is
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denied because the majority of data subjects deny the access. In particular, four
data subjects out of five stated in their policies that access should be denied. To
show why a Deny decision was reached, the system has only to show that three
data subjects denied the access (i.e., the majority). Accordingly, the following
decision annotated evaluation path justifies the decision:

fa(odov(sm(pa:D,pp:D,pp:D)))

Figure 3 shows a graphical representation of this decision annotated evaluation
path. It is easy to observe from the figure that it is a minimal pruning of the
global policy in Fig.2 that justifies the decision obtained.

fa:D
/
odov:D
~
sm:D
SN

pa:D ps:D  pp:D

Fig. 3. Decision annotated evaluation path

4.2 Computing Feedback

In this section, we show how a decision annotated evaluation path can be used
to compute the feedback. First, we present how to link the global policy to the
archetype hierarchy. Then, we propose an approach to determine the granularity
at which a user can see the feedback based on its place in the archetype hierarchy.

Linking the Global Policy to the Archetype Hierarchy. A decision anno-
tated evaluation path represents how the decision for a given access request
has been reached. However, it only provides a purely “technical” explanation
in terms of partial decisions and combining algorithms. Feedback based on the
archetype hierarchy rather than on the details of its implementation will likely
be easier to understand by end-users.

To enable such a feedback we relate the global policy, and thus also any
decision annotated evaluation path, to the archetype hierarchy by introducing
an additional labeling of the global policy.

Definition 6. Let N be the set of nodes in the global policy, H the set of ele-
ments in the archetype hierarchy H (i.e., priorities, levels, archetypes) from
which the global policy is derived and U the set of user identifiers. The Element
labeling is a labeling E : N — H UU. A node n € N is labeled as follows:

— For n labeled with a combining algorithm modeling hierarchy element
(SH,t,H), E(n) is t;
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— For n labeled with a combining algorithm modeling hierarchy element
(L,®,SH), E(n) is ®;

— For n labeled with a combining algorithm modeling hierarchy element
(L,&,SH), E(n) is &;

— For n labeled with a combining algorithm modeling hierarchy element
(olaiy...,ay]), E(n) is £ where £ is the level identifier;

— For n labeled with a combining algorithm modeling an archetype a, E(n) is a;

— For n labeled with a policy p of user u, E(n) is u.

Labeling F annotates the global policy with the corresponding element in the
hierarchy and with the users contributing to its definition. Hereafter, we use
notation [] to represent Element labels, e.g. ple]:d denotes a node with policy
element label p, hierarchy element label e and decision label d.

The Element labeling provides us with the complete information about the
construction of the global policy, which is needed to provide users meaningful
feedback and to compute the visibility of the feedback as shown in the remainder
of the section.

Example 4. The decision annotated evaluation path of Example 3, annotated
with Element labeling, is: fa[t]:D(odov[©]:D(sm[DS]:D(pa[A]:D, pg[B]:D, pp[D]
:D))) (or in short notation: fa[t](odov[S](sm[DS)(pa[A]:D,ps[B]:D,pp[D]:D))))

Reasoning on Feedback Visibility. One can observe in Example 4 that the
justification for a decision can provide insights into the policies of other users.
While it may be reasonable for the collaborating data subjects (e.g., C' in our
scenario) to see the individual votes of the fellow data subjects, they may wish
to not reveal this information to other users (e.g., to the data provider G).
Policies and decision preferences of users might be sensitive; thus, not all users
are supposed to see the full explanation of a decision. Yet, they do need to get
informative feedback if their policies have not been enforced.

To determine at which granularity a user can see the justification for a deci-
sion, we annotate the global policy with a visibility policy, indicating which
portion of the decision annotated evaluation path is visible to users based on
their place in the archetype hierarchy, and show how the visibility policy can
be used to trim the justification. Visibility policies are expressed in terms of
visibility levels.

Definition 7. The visibility classification is a pair (V,>) where V =
{ User, Archetype, Level, Subhierarchy, Hierarchy, Decision} is the set of visibil-
ity levels and > is a total order on V such that:

User > Archetype > Level > Subhierarchy > Hierarchy > Decision

We extend this to V| by adding L (undefined) which is smaller than any level.
Given two wisibility levels v; and vj, we use v; Av; to denote the minimum and
v; V vy to denote the mazimum visibility level between v; and v; with respect to
>, i.e.



122 J. den Hartog and N. Zannone

v if v > v, v if v > v,
v; ANvj = J f vi .] v Vu; = i Wi J
v; otherwise v; otherwise

Moreover, v; >v; denotes that v; overrides vj, i.e.

Cifus AL
’UZ‘D’Uj:{,Ul val#

v; otherwise

Visibility levels define the granularity at which justifications can be seen in
terms of types of nodes. The finest level is User which allows seeing decisions of
users. Archetype instead only allows seeing the decision reached by the archetype
but not the users within the archetype (e.g., for DS we see the results of the ‘vote’
but not any of the votes themselves). Level abstracts a step further allowing
only the level decision to be seen (in our example each level consists of only one
archetype so this is not a mayor distinction, but in general a level may consist
of multiple archetypes [20]). Subhierachy allows seeing the decision of the sub-
hierarchies but not the levels themselves. Hierarchy abstracts a step further,
allowing only seeing the decision of total priorities. Decision only allows seeing
the end result and not how this decision was reached.

In general, not all users will be allowed to see a justification at the same
granularity. Instead, just like the access rights, ‘visibility’ rights depend on the
relation users have to the object considered. As such we assign an internal and
external visibility level to the different components of the hierarchy and combine
these to reach a visibility level for each mismatch that occurs.

Definition 8. Let N be the set of nodes in the global policy and (V,>) the
visibility classification. A visibility policy is a labeling V : N — V x V. For a
node n € N, the visibility policy label V (n) is a pair (e, i) where e is the external
visibility level and i is the internal visibility level of n.

A visibility policy determines whether only the decision or some detail of
the internal decision making structure is visible. Setting the visibility level of a
node lower than the type of the node it is assigned to, means only the decision
is visible. Setting a higher level allows some visibility of the decision making
structure but only up to the level given and only so far as the subtree allows
it. Setting the visibility level of a node equal to the type of the node will also
result in showing only the decision (as all subtrees will have a higher visibility
level so will not be visible) with the exception of priority nodes that can have
other priority nodes as a child node.

With a visibility policy in place we can determine which part of a justification
a user can see. Recall that a justification is an (annotated) pruning of the global
policy. The underlying idea for determining which nodes of the justification are
visible to a given user, is to take the shortest path from the user to the node
(i-e., up to the least upper bound and then down to the node) and take the
minimum visibility level encountered, where in each step the internal visibility
of the destination is used when moving up and its external visibility when moving
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down. When this minimum visibility is greater or equal to the type of the node,
then the node is visible to the user.

We formalize this process in two steps. First, we compute the visibility restric-
tion of the nodes in the global policy by moving up through the policy tree. Then,
we use the computed visibility restriction to trim a justification by moving down
through the policy tree. The visibility restriction captures the location of a user
compared to nodes by combining internal policies that apply to the user for that
node.

Definition 9. Let N be the set of nodes in the global policy, U the set of user
identifiers and V the set of visibility levels. The visibility restriction with respect
to a user u € U is a labeling VR, : N — V. The visibility restriction of a user
police node with respect to a given user u is:

VR, (plu)(- i) = { fu=u

1 otherwise

and if node n(-,i) has children ny,..., Ny, then:
VRu(n(-,4)) =i A (VRy,(n1) V...V VRy(nm))

We extend our label notation by writing calk](e,i)(...)|% for a node with
element label k, external policy label e, internal policy label ¢ and restriction z
with respect to user u. Moreover, we write A|" to indicate a policy tree A with
restriction labeling with respect to user u. Note that we only write the relevant
labels but still assume all labellings are present.

The visibility restriction is used to trim a tree, removing those parts that
should not be visible to a user.

Definition 10. The trimming T(A) of a global policy tree A with element, vis-
ibility policy and wvisibility restriction (with respect a user u) labellings is given
by: if T(k) > x then T(A[k]|Y) = (), otherwise T(py|Yger) = Puw and

x
T(ca(Ailer, )]z -5 Anlen, )z, )]z) = calT(Alz p@nen)s - T(Anlz, o @ren)))

where T is a function that returns the type of a node. (Recall that visibility levels
are expressed in terms of node types.)

The user is restricted from seeing a node (and its children) if the visibility
is lower than the type of the node. Otherwise, the user can see the node and, if
the node is labeled with a combining algorithm, we trim its subtrees but with
updated visibility labels. If the user is internal to a subtree 4;, then its restriction
(of its root) x; is not L and it will be used as visibility in this subtree. If the
user is external to this subtree then both the current visibility restriction and
the external visibility of the subtree apply which is captured by restriction x Ae;.
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Example 5. As shown in Example 1, users C', G and SN had a policy mismatch.
The justification for the decision is as given in Example 4:

A = fa[t](odov[8](sm[DS]|(pa[A]:D, ps[B]:D, pp[D]:D)))
Suppose the visibility policy requirements are:

— The identity of data subjects are only visible to fellow data subjects.
— The social network can only see the end decision.

These requirements can be captured by setting external visibility of DS to
Archetype and internal visibility of SN to Decision. All other policies are set
to the most liberal setting: User.

User C: As C is local to archetype DS, within its visibility restriction, DS will
have a local visibility restriction label User:

Al = fa[t](odov[©](sm[DS]{Archetype, -} (pa[A]:D, p5[B]:D, pp[D]:D)|Guer) | Goer) | Tuer
The presence of this local label prevents the sm[DS] external policy from begin
applied:

T(A[€) = fa[t](T (odov[S](sm[DS](Archetype, -) (pa[A]:D, p[B]:D, pp [D]:D)| e ) Foer)

— fa[t] (odov[S] (T(sm[DS](p4 [A]:D, p5 [BID. p [DID) G arenersne)))
fa[t] (odov[S] (T(sm[DS] (p 4 [A]:D, ps [BI:D, pp [D]:D)[5..,))
= falt] (odov[S] (sm[DS](pa [A]:D, i [B]:D, pp [D]:D)))

Therefore, C' is allowed to see the entire justification.

User G: User G’s visibility restriction initially allows seeing users:
A|¢ = fa[t](odov[E](sm[DS]( Archetype, -) (pa[A]:D, p5 [B]:D, pp[D]:D))| Fecr) | Fier

However, being external to archetype DS causes the archetype’s external policy
to apply hiding the decisions of users A through F:

(A1) = falt] (T (odov[E] (sm[DS](Archetype, ) (pal A]:D, pi[BJ:D, pp [D]:D)) %er))
= fa[t](odov[S](T(sm[DS](palA]:D, p5[B):D, pp[D]:D) S ehctype)))
= fa[t](odov[6](sm[DS]:D))
User SN: The social network has visibility restriction label Decision:
AN = fa[t] (odov[S)](sm[DS](Archetype, -) (pa[A]:D, ps[B]:D, pp [D]:D))) 5N ision

Therefore, SN will be allowed to see only the decision and an empty explanation:
T(APFY) = ()
4.3 Formulating Feedback

The feedback for a user computed by the visibility restricted evaluation path
technically captures the information available to that user. However, it still has
to be formulated in a way that it is understandable by end-users. This requires
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focusing on the relevant parts and customizing the feedback to reflects its place
in the archetype hierarchy in addition to translating the path into a human
readable format. In fact, although formal languages are very good to provide a
precise model, they are very bad at communicating such a model to end-users
who might not have a technical background [18].

In our example, the policy of each data subject provides an indication
whether the access should be granted to the requester while the node repre-
sented by archetype DS makes an actual decision (by counting votes, the nodes
above ‘simply pass up the decision’). We capture this notion of node making the
decision as the decision point.

Definition 11. Given a decision annotated evaluation path A, the decision
point of A, denoted dp(A), is the node in A where the final decision is made.
We call visible decision point for a user u the least ancestor of the decision point
that occurs in T(A|").

The decision point for a decision annotated evaluation path is recursively com-
puted from the root node on the basis of the combining algorithms used and
the decision made. We present the intuition for some combining algorithms in
Table 2.

Table 2. Decision point for sample combining algorithms

dov otherwise
dp(A;) if (A:P and A;:P) or (A:D and A;:D)

ooa otherwise

dp(dov(A1,...,An)) =

dp(ooa(A1,...,An)) =

dp(sm(Al, ey Am)) =sm

Anything below the decision point should be included in the formulation of
the explanation as ‘real’ decisions are being made. It is worth noting that users
should be able to understand their positions relative to the decision point. In
particular, we assume a user knows how its policy fits in the policy hierarchy.
Thus, any ancestor node of a user policy should be recognizable by the user.
To ensure the explanation is formulated from a point that is recognizable by
the user, we start from one such ancestor node. In particular, we start from the
least node (as we would like explanations to only give relevant information) that
satisfies both properties above, i.e. that is an ancestor of the user policy and
decision point. We call this node the evaluation point.

Definition 12. The evaluation point (for a user u) is the least node that is an
upper bound of both the visible decision point and of policy node nlu].

Note that the least element is well defined as there always exists one (the root)
and the set of upper bounds of a node (the decision point) is totally ordered.
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We formulate the feedback starting from the evaluation point. We define
functions msgy, which gives the description of a given node, and msgr, which
gives the description of a subtree starting from its root node. We assume that
each basic element e has a string representation, which we denote by e.name.
For a node, the description expresses the decision reached:

e.name denied if d = Deny
e.name permitted if d = Permit

msgn (nlel:d) = e.name failed to reach a decision if d = Indeterminate
e.name did not apply if d = NA

This generic text can be customized by considering the type of element and com-
bining algorithms involved. For instance, we can state: “e.name voted to deny”
for a node smle]:D rather than the more generic “e.name denied”. (For reasons
of space, we do not list all customizations considered.)

For a tree we start with the description of the root node and recursively add
the explanation of its subtrees. Note that visibility constraints could theoretically
give a situation in which some but not all of the children are visible to the
user and the visible children do not constitute an explanation (according to
the combining algorithm) of the decision reached by the node. As showing this
‘incomplete explanation’ would be confusing to the user, they are not included
in the textual explanation in this case. Specifically:

msgn (n)+ “because” if nq,...,n,, visible children
msgr(n)= +msgr(ni)+...+msgr(n,) of n explaining the decision
msgn(n) + “7 otherwise

Also here we can make customizations to further improve the readability of the
explanation. For example, for archetype node nla]:d with children ni:dy, ...,
N A, we can use short hand “("4wuy.name : di+ " + ... +uy.name : dy+ “)”
which simply lists the decisions of the user’s involved rather than using the generic
‘because’ format resulting in much more compact explanations.

With the description of a subtree in place, we can now define the textual
description given to the user, which captures the visible decision point (ng[z])
and evaluation point (n.), and a description of the subtree starting at n.:

msgu (nalx], ne) = “The decision of”+ z.name +“was followed: "+ msgr(n.)

As before we consider customizations that enhance specific (common) cases as
shown in Algorithm 1.

Example 6. Consider the justification computed in Example 5. The textual
explanation for the mismatch of user C' is:

Your archetype DS voted to deny (A:Deny, B:Deny, D:Deny).
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Algorithm 1. msgy(ng[z], ne)

if ng[z] is (within) an archetype of the user then
| “Your archetype” + msgr(ne)

else if ng[z] is (within) a level of the user then
| “Your level” + msgr(ne)

else if ng[x] is (within) a level higher than any level containing the user then
|  “Your decision was overruled by z.name:” + msgr(ne)

else if ng[z] is (within) a level lower than some level containing the user then
\ “You failed to overrule the decision of z.name:” + msgr(ne).

else
| 7The decision of’+ z.name +”was followed:” + msgr(n.).

For user G the textual explanation is:

Your decision was overruled by DS sub-hierarchy at level ¢; denied because
DS voted to deny.

User G’s explanation contains both the decision of DS and an explanation of
how this decision overwrites his choice; this happens at the point where ‘sub-
hierarchy at level ¢;’ denies.

Finally, social network SN does not get an explanation, only the decision.

5 Related Work

Recent years have seen an increasing interest in access control for collaborative
systems and, in particular, for social networks. This interest has resulted in sev-
eral access control solutions (e.g., [3,9,26]) that aim to regulate the exchange
of information between collaborative users. These solutions are complementary
to our work as they consider different aspects of collaborations. Within these
solutions access decisions are usually made based on the interpersonal relation-
ships between the resource owner and the resource requester, while assuming
that resources are owned by a single entity. Moreover, these solutions only focus
on the specification and enforcement of access control policies for collabora-
tive systems and do not address the problem of transparency of access decision
making.

Some social networks provides basic functionality for transparency. For
instance, Linkedin allows its users to view their profile from the perspective of
their connections and their public profile. Similarly, FaceBook provides a “View
As” functionality that allows users to visualize their profile from another user’s
perspective. This functionality, however, can provide users with a misleading
feeling of control over their information [7].

The detection of policy conflicts is largely addressed in the area of formal
policy analysis. For instance, change-impact analysis [8] aims to extract the dif-
ferences between two policies. Backes et al. [2] propose a notion of policy refine-
ment in which a policy refines another policy if, whenever the latter returns
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Permit (or Deny), the first policy returns the same decision. Hughes and Bul-
tan [14] present a stronger notion of policy refinement called policy subsump-
tion. In addition to impose constrains on Permit and Deny decisions as in policy
refinement, subsumption also imposes constraints on the Indeterminate decision.
Turkmen et al. [28] propose a formal framework for policy analysis based on
SMT. This framework allows the verification of XACML policies against a num-
ber of well-known security properties including change-impact, policy refinement
and subsumption. These frameworks, however, aims to support policy authors in
the definition of their policies and are not suitable for run-time analysis. More-
over, they only indicate if two policies are conflicting (possibly along with a
counterexample indicating the conflict), but do not provide a justification for
the conflict.

A few proposals address the problem of transparency in collaborative systems
by providing feedback about policy conflicts to the entities governing the data.
For instance, Hu et al. [13] present an authorization analysis tool for exam-
ining over-sharing and under-sharing of shared resources in social networks.
Mahahmudlu et al. [20] proposes a notification mechanism that determines at run
time the type of conflicts that occurred (e.g., DenyButPermit, PermitButDeny).
In particular, users can declare the type(s) of conflicts they are interested in
and only be notified about those conflicts. Although these solutions make a first
step towards user awareness, the feedback provided to users only indicates if
their policies have been overridden. This work makes a step further by providing
users with an explanation of why their policies have been overruled.

KNOW [17] and Cue [10] provide feedback suggesting a requester possible
alternatives to access the data (e.g., changing role). Similarly to our work, feed-
back is protected through the use of meta policies, thus ensuring that a desired
level of confidentiality is preserved. However, the goal of these frameworks is
orthogonal to our work. While KNOW and Cue aim to inform users why their
access requests have not been granted, we aim to explain users why their policies
have been overridden.

6 Conclusion

This paper presented an approach to enhance user understanding in the access
decision making process when policy mismatches occur. In particular, we pro-
posed an approach to compute justifications explaining users why their decisions
were overruled. To determine at which granularity a user can see the justification,
we use visibility restrictions that indicate the portion of the justification visible
to the user based on its place in the archetype hierarchy and visibility policies.
We also showed how the feedback can be formulated in a human readable for-
mat, focusing on the relevant parts and customizing the feedback to reflect the
relations of the user with the data.

As future work, we plan to integrate the feedback mechanism proposed in this
work into existing XACML-based authorization solutions. This requires extract-
ing the decision annotated evaluation path from an XACML response. We envi-
sion this can be done by exploiting the <ReturnPolicyIdList> element, which is



Collaborative Access Decisions: Why Has My Decision Not Been Enforced? 129

used to request an XACML policy decision point to return the list of applicable
policies and policysets that were used to obtain the decision [23]. Users policies
can be sensitive and, thus, not all users may be allowed to see the full explana-
tion of the decision. In this work, we addressed this problem by restricting the
visibility of the feedback disclosed to users, depending on their relation with the
data and visibility policies. However, also access requests, which eventually have
to be disclosed along with the feedback, might provide insights into the policies
of other users. Moreover, one might consider requests themselves to be ‘sensi-
tive’ (for privacy) irrespective of what they reveal about the policies. Thus, it is
desirable to give only a minimal amount of attributes that reveals the mismatch
rather than the actual request. To this end, we plan to extend visibility restric-
tions to access requests, thus preventing a user to learn information that policy
authors may wish to not reveal as well as to protect requester’s privacy as much
as possible. In this work we demonstrated the feedback mechanism through a
typical scenario in FaceBook-like social networks. User studies to evaluate its
impact on user awareness is left as future work.
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