
Max Celebrity Games
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Abstract. We introduce Max celebrity games a new variant of Celebrity
games defined in [4]. In both models players have weights and there is a
critical distance β as well as a link cost α. In the max celebrity model the
cost of a player depends on the cost of establishing links to other players
and on the maximum of the weights of those nodes that are farther away
than β (instead of the sum of weights as in celebrity games). The main
results for β > 1 are that: computing a best response for a player is NP-
hard; the optimal social cost of a celebrity game depends on the relation
between α and wmax; ne always exist and ne graphs are either connected
or a set of r ≥ 1 connected components where at most one of them is
not an isolated node; for the class of connected ne graphs we obtain a
general upper bound of 2β+2 for the diameter. We also analyze the price
of anarchy (PoA) of connected ne graphs and we show that there exist
games Γ such that PoA(Γ ) = Θ(n/β); modifying the cost of a player we
guarantee that all ne graphs are connected, but the diameter might be
n − 1. Finally, when β = 1, computing a best response for a player is
polynomial time solvable and the PoA = O(wmax/wmin).

1 Introduction

The increasing use of Internet and social networks, has motivated a great inter-
est to model theoretically their behavior. Fabrikant et al. [15] proposed a game-
theoretic model of network creation (NCG) as a simple tool to analyze the cre-
ation of Internet as a decentralized and non-cooperative communication network
among players (the network nodes).

In this model the goal of each player is to have, in the resulting network, all
the other nodes as close as possible paying a minimum cost. It is assumed that: all
the players have the same interest (all-to-all communication pattern with identical
weights); the cost of being disconnected is infinite; and the links to other nodes
paid by one node can be used by others. Formally, a game Γ in this seminal model
is defined as a tuple Γ = 〈V, α〉, where V is the set of n nodes and α the cost of
establishing a link. A strategy for player u ∈ V is a subset Su ⊆ V −{u}, the set of
players for which player u pays for establishing a link. The n players and their joint
strategy choices S = (Su)u∈V create an undirected graph G[S]. The cost function
for each node u under strategy S is defined by cu(S) = α|Su| + ∑

v∈V dG[S](u, v)
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where dG[S](u, v) is the distance between nodes u and v in graph G[S]. By changing
the cost function to cu(S) = α|su| + max{dG[S](u, v)|v ∈ V } as proposed in [13]
one obtains the max game model.

From here on several versions have been considered to make the model
a little more realistic. For different variants we refer the interested reader to
[1–3,6,9–14,16,17,19] among others.

In Internet as well as in social networks not all the nodes have the same
importance. It seems natural to consider nodes with different relevance weights.
In such a setting, the cost of being far (even if connected) from high-weight
nodes should be greater than the cost of being far from low-weight nodes. In
[4] we introduce celebrity games with the aim to study the combined effect of
having players with different weights that share a common distance bound.

In celebrity games the cost of a player has two components. The first one
is the cost of the links established by the node. The second one is the sum
of the weights of those nodes that are farther away than the critical distance.
Formally, a celebrity game is defined by Γ = 〈V, (wu)u∈V , α, β〉, where V is
a set of nodes with weights (wu)u∈V , α is the cost of establishing a link and
β establishes the desirable distance bound. The cost function for each node is
defined by cu(S) = α|Su| +

∑
{v|dG[S](u,v)>β} wv.

In this paper we extend the study initiated in [4]: we define a max version
of the celebrity games that we name max celebrity games and we analyze the
structure and quality of their Nash equilibria. From now on, let us refer to
celebrity games as sum celebrity games. In the max celebrity model the cost of
a player takes into account the maximum of the weights (worst-case) of those
nodes that are farther away than the critical distance, instead of the sum of
weights (average-case). The cost function is formally defined by cu(S) = α|Su|+
max{v|dG[S](u,v)>β} wv. Intuitively, the goal of each player in max celebrity games
is to buy as few links as possible in order to have the high-weighted nodes closer
to the given critical distance. Observe that if the cost of establishing links is
higher than the benefit of having close a node (or set of nodes), players might
rather prefer to stay either far or even disconnected from it.

Observe that the main feature of both, sum and max celebrity games, is the
combination of bounded distance with players having different weights. Even
though heterogeneous players have been considered in NCG under bilateral con-
tracting [5,18], and the notion of bounded distance has been studied in [8], to the
best of our knowledge sum celebrity games is the first model that studies how
a common critical distance, different weights, and a link cost, altogether affect
the individual preferences of the players. Furthermore, max celebrity games is
the first model that focuses on how the maximum weight of those nodes that are
farther than β affects the creation of graphs.

In this paper we analyze the structure of Nash equilibrium (ne) graphs of
max celebrity games and their quality with respect to the optimal strategies. To
do so we address the cases β > 1 and β = 1, separately. For β > 1, every player
u has to choose for each non-edge (u, v) between paying the maximum of the
weights of the nodes with distance to u greater than β, or buying the link (u, v)
and paying α for the link minus the maximum of the weights of those nodes
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whose distance to u will become less or equal than the critical distance β. While
for β = 1, each player u has to decide for every non-edge (u, v) of the graph to
pay either α for the link or at least wv (the weight of the non-adjacent node v).

For the general case β > 1 our results can be summarized as follows: comput-
ing a best response for a player is NP-hard; the optimal social cost of a celebrity
game Γ depends on the relation between α and the maximum weight wmax; ne
always exist and ne graphs are either connected or a set of r ≥ 1 connected
components where at most one of them is not an isolated node; for the class of
connected ne graphs we obtain a general upper bound of 2β+2 for the diameter;
we also analyze the quality of connected ne graphs and we show that there exist
max celebrity games such that PoA(Γ ) = Θ(n/β); we consider a variation of the
cost of the player in order to avoid non-connected ne graphs.

Finally, for the particular case β = 1, we show that computing a best response
for a player is polynomial time solvable and that the PoA = O(wmax/wmin).

The paper is organized as follows. In Sect. 2 we introduce the basic definitions
and the max celebrity model. In Sect. 3 we study the fundamental properties
of optimal graphs and ne graphs. Section 4 studies for β > 1 the quality of
connected ne graphs and considers a modification of the cost of a player in
order to guarantee connected ne graphs. In Sect. 5 we study the complexity of
the best response problem and the PoA for the case β = 1. Finally, in Sect. 6 we
give an outline of the main differences between max and sum celebrity models.

2 The Model

We use standard notation for graphs and strategic games. All the graphs in the
paper are undirected unless explicitly said otherwise. For a graph G = (V,E)
and u, v ∈ E, dG(u, v) denotes the distance, i.e. the length of a shortest path,
from u to v in G. The diameter of a vertex u ∈ V , diamG(u), is defined as
diamG(u) = maxv∈V {dG(u, v)} and the diameter of G, diam(G), is defined
as usual as diam(G) = maxv∈V {diamG(v)}. An orientation of an undirected
graph is an assignment of a direction to each edge, turning the initial graph into
a directed graph.

For a weighted set (V, (wu)u∈V ) we extend the weight function to subsets
in the following way. For U ⊆ V , w(U) = maxu∈U{wu}. Furthermore, we set
wmax = maxu∈V {wu} and wmin = minu∈V {wu}.

Definition 1. A max celebrity game Γ is defined by a tuple 〈V, (wu)u∈V , α, β〉
where: V = {1, . . . , n} is the set of players, for each player u ∈ V ; wu > 0 is the
weight of player u; α > 0 is the cost of establishing a link and β, 1 ≤ β ≤ n − 1,
is the critical distance.

A strategy for player u is a subset Su ⊆ V − {u} denoting the set of players
for which player u pays for establishing a direct link. A strategy profile for Γ is
a tuple S = (S1, S2, . . . , Sn) defining a strategy for each player. For a strategy
profile S, the associated outcome graph is the undirected graph G[S] which is
defined by G[S] = (V, {{u, v}|u ∈ Sv ∨ v ∈ Su}).
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For a strategy profile S = (S1, S2, . . . , Sn), the cost function of player u,
denoted by cu, is defined as cu(S) = α|Su| + Wu where Wu = max{v|dG[S]

(u,v)>β}{wv}. And as usual, the social cost of a strategy profile S in Γ is defined
as C(S) =

∑
u∈V cu(S). The social cost of a graph G in Γ is defined analogously

as C(G) = α|E(G)| +
∑

u∈V (G) Wu.

Observe that, even though a link might be established by only one player,
we consider the outcome graph as an undirected graph, assuming that once a
link is bought the link can be used in both directions. In our definition we have
considered a general case in which players may have different weights and defined
the cost function through properties of the undirected graph created by the
strategy profile. The player’s cost function takes into account two components:
the cost of establishing links and the maximum of the weights of the players that
are at a distance greater than the critical distance β.

In the remaining of the paper, we assume that, for Γ = 〈V, (wu)u∈V , α, β〉, the
parameters verify the required conditions. Furthermore, unless specifically stated,
we consider β > 1, the case β = 1 will be studied in Sect. 5. We use the following
notation, for a game Γ = 〈V, (wu)u∈V , α, β〉, n = |V |. We denote by S(u) the set
of strategies for player u and by S(Γ ) the set of strategy profiles of Γ .

As usual, for a strategy profile S and a strategy S′
u for player u, (S−u, S′

u)
represents the strategy profile in which Su is replaced by S′

u while the strategies
of the other players remain unchanged. The cost difference Δ(S−u, S′

u) is defined
as Δ(S−u, S′

u) = cu(S−u, S′
u) − cu(S). Observe that, if Δ(S−u, S′

u) < 0, player u
has an incentive to deviate from Su. A best response to S ∈ S(Γ ) for player u
is a strategy S′

u ∈ S(u) minimizing Δ(S−u, S′
u). Let us remind the definition of

Nash equilibrium.

Definition 2. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. A strategy
profile S = (S1, S2, . . . , Sn) is a Nash equilibria of Γ if no player has an incentive
to deviate from his strategy. Formally, for a player u and each strategy S′

u ∈ S(u),
Δ(S−u, S′

u) ≥ 0.

We denote by NE(Γ ) the set of Nash equilibria of a game Γ . We use the
term ne to refer to a strategy profile S ∈ NE(Γ ). We say that a graph G is a
ne graph if there is S ∈ NE(Γ ) so that G = G[S].

We denote by opt(Γ ) the minimum value of the social cost, i.e. opt(Γ ) =
minS∈S(Γ ) C(S). We denote by OPT(Γ ) the set of optimum strategy profiles of
Γ w.r.t. the social cost, that is, for S ∈ OPT(Γ ), C(S) = opt(Γ ). We use the
term opt strategy profile to refer to a S ∈ OPT(Γ ).

It is worth observing that: for S ∈ NE(Γ ), it never happens that v ∈ Su and
u ∈ Sv, for any u, v ∈ V ; a ne graph G can be the outcome of several strategy
profiles and not all the orientations of a ne graph G are ne.

In the following we make use of some particular outcome graphs on n vertices:
In, the independent set; and STn a star graph, i.e. a tree in which one of the
vertices, the central vertex, is connected to all the other n − 1 vertices.

We define the Price of Anarchy and the Price of Stability as usual.
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Definition 3. Let Γ be a max celebrity game. The Price of Anarchy of Γ is
defined as PoA(Γ ) = maxS∈NE(Γ ) C(S)/opt(Γ ) and the Price of Stability of Γ
is defined as PoS(Γ ) = minS∈NE(Γ ) C(S)/opt(Γ )

The explicit reference to Γ will be dropped whenever Γ is clear from the
context. We will refer to ne(Γ ), opt(Γ ), PoA(Γ ), and PoS(Γ ) by ne, opt, PoA
and PoS respectively.

Our first result shows that the computation of a best response in max
celebrity games is a NP-hard problem for β ≥ 2. The proof consists in a reduc-
tion from the Dominating Set problem. The problem becomes polynomial time
computable for β = 1 as we show in Sect. 5.

Proposition 1. Computing a best response for a player to a strategy profile in
a max celebrity game is NP-hard even when β = 2.

3 Social Optimum and Nash Equilibrium

In this section we analyze some properties of the opt and ne strategy profiles
in max celebrity games. We start by giving bounds for opt that depend on the
existence of one or more than one connected components.

Proposition 2. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. We have
that 2α(n − 1) ≥ opt(Γ ) ≥ min{α(n − 1), wmax(n − 1) + wmin}.
Proof. Let S ∈ OPT(Γ ) and let G = G[S]. Let G1, ..., Gr be the connected
components of G and let Vi = V (Gi), ki = |Vi|, and Wi = w(Vi), for 1 ≤ i ≤ r.
Assume w.l.o.g that W1 ≥ W2 ≥ ... ≥ Wr. Observe that the social cost of
a disconnected graph can be expressed as the sum of the social cost of the
connected components plus the additional contribution of the pairs of vertices
that lie in different components. Each connected component must be a tree of
diameter at most β, otherwise a strategy profile with smaller social cost could
be obtained by replacing the connections on Vi by such a tree. W.l.o.g we can
assume that, for 1 ≤ i ≤ r, the i−th connected component is a star graph STki

on ki vertices. Recall that C(STki
) = α(ki − 1), thus C(G) =

∑r
i=1 α(ki − 1) +∑r

i=1 ki (maxj �=i{Wj}) = α(n − r) + nW1 − k1(W1 − W2).
Notice that if for some i > 1, the i-th connected component is not an isolated

node, then the node with maximum weight in this connected component can be
moved to G1. By preserving the connectivity and structure (a star) of G1, the
social cost of the resulting graph is strictly smaller than the cost of the original
G. This implies that for every i > 1, ki = 1. Hence, C(G) = α(n − r) + (r −
1)W1 + (n − r + 1)W2.

If r = 1 then C(G) = α(n − 1) and we are done. Otherwise, if r > 1, then
we have the inequality C(STn) ≥ C(G). This implies that α ≥ 1

r−1 (W1(r − 1) +
W2(n − r + 1)) ≥ W1.

Then we get the following results. First: C(G) ≥ W1(n − r) + (r − 1)W1 +
(n − r + 1)W2 ≥ (n − 1)W1 + W2 ≥ (n − 1)wmax + wmin.

Secondly, using that r > 1: C(G) = α(n − r) + (r − 1)W1 + (n − r + 1)W2 ≤
α(n − r) + (r − 1)α + (n − r + 1)α ≤ 2α(n − 1).
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The relationship between α and wmax determines partially the topology of
the ne graphs. As one can expect, if α > wmax, no player has incentive to
establish a link then the independent set is the unique ne graph. Otherwise, any
ne graph can be connected or disconnected.

Proposition 3. Every max celebrity game Γ = 〈V, (wu)u∈V , α, β〉 has a ne.
Furthermore, when α ≤ wmax, STn is a ne graph, and when α ≥ wmax, In is a
ne graph. If α > wmax, then In is the unique ne graph.

Proof. When α ≤ wmax let us show that STn is a ne graph. Let umax a node
with maximum weight and we suppose that it is the central node of the star. If
Sumax

= ∅ and for every node v 
= umax, Sv = {umax}, then umax cannot improve
its actual cost since it is exactly 0. Moreover, the other nodes can only delete
the edge to umax. Since such deviation has a cost increment of −α + wmax ≥ 0,
then we are done.

When α ≥ wmax, let us show that In is a ne graph. Let S be the empty
strategy profile, In = G[S]. Notice that for any player u, if S′

u 
= ∅, then
Δ(S−u, S′

u) ≥ |S′
u|α − wmax ≥ (|S′

u| − 1)wmax ≥ 0. Finally, if α > wmax it
is easy to see that the unique ne graph is In. Let us suppose that there exist
u, v ∈ V such that v ∈ Su. If S′

u = Su −{v}, then Δ(S−u, S′
u) ≤ −α+wmax < 0.

Hence, if G 
= In, then G is not a ne graph.

Corollary 1. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. Then,
PoS(Γ ) = 1 for α ≤ wmax and PoS(Γ ) < 2 for α > wmax.

In particular, even in the case that α < wmax, it can be shown that there
exist max celebrity games where In is a ne graph. Indeed consider a game with
n ≥ 2 and weights defined as wi = (i − 1)α for i > 1 and w1 = α. Then, clearly
α < wmax and In is a ne graph.

Furthermore, for every integer 1 < r ≤ n, there exists non-connected max
celebrity games with exactly r different connected components. Moreover, the
only connected component that can have more than one node is the one that
contains a node with weight wmax.

Proposition 4. Any ne graph distinct from In has at most one non-trivial
connected component. Moreover, for every integer r ≥ 2 there exists a max
celebrity game having a ne graph with exactly r connected components.

Proof. (Sketch) For the first part, let G1, ..., Gr be the connected components of
a ne graph. Assume that a node with the maximum weight is in G1. If for some
i > 1, |Gi| > 1, then there exist u, v ∈ V (Gi) such that u ∈ Sv. In this case, v
can strictly decrease its cost deleting this edge because the node with maximum
weight is still at distance greater than β, contradicting the fact that G is a ne
graph.

For the second part we distinguish two cases: r ≥ 3 and r = 2. For the first
case, let n = r + 1, V = {v0, v1, ..., vr}, E = {{v0, v1}} with Sv1 = {v0}, Svi

= ∅
for i 
= 1, as depicted in the figure below. For the weights consider wv0 = w1 and
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wvi
= w2 for all i ≥ 1, with w1 > w2, w1−w2 = α and α ≥ w1/(n−1), w2/(n−2).

We have that this configuration is a ne.

v0 v1 v2 · · · vr

For the case r = 2 see the figure below. It is not hard to see that this
configuration is also a ne.

u1 u2 u3 u4 v

4 The Price of Anarchy

Observe that there exist max celebrity games Γ with α ≤ wmax having discon-
nected ne graphs with high social cost in comparison with the optimum. Indeed,
consider the example given in Proposition 4 with w2 = w1(n−2)

(n−1) . The cost of this

ne graph is w1(n − 1) + w1(n−2)
n−1 and combining it with opt ≤ 2α(n − 1), we get

the bound PoA(Γ ) ≥ (n − 1)/2. Hence, we focus on the study of the PoA for
connected ne graphs. Since the restriction α ≤ wmax by itself does not exclude
the possibility of having non-connected ne graphs, we study the PoA of con-
nected equilibria from two different perspectives: first, we analyze the worst case
among all connected ne graphs; second, we introduce a slight modification of
the player’s cost function in order to guarantee connectivity in the class of ne
graphs. Whenever we consider the class of connected ne graphs we compare
the social cost of such equilibria with the optimum value among the connected
graphs, opt(Γ ) = α(n − 1).

4.1 PoA and Diameter of Connected NE Graphs

In this subsection we analyze the quality and structure of equilibria in terms of
the parameters that define the max celebrity games. Our next result indicates
that the price to pay for the anarchy is low when α is close to wmax.

Proposition 5. For every max celebrity game Γ = 〈V, (wu)u∈V , α, β, 〉,
PoA(Γ ) ≤ 2(wmax/α).

Proof. Let S be a ne of Γ and let G = G[S] = (V,E). Then, no player has
an incentive to deviate from S. In particular, for each u ∈ V we have that
0 ≤ Δ(S−u, ∅) = −α|Su| + W ′

u − Wu where Wu = max{x|dG(u,x)>β} wx and
W ′

u = max{x|dG[(S−u,∅)](u,x)>β} wx. By adding for each u ∈ V the corresponding

inequalities, we have that 0 ≤ ∑
u∈V (−α|Su|+W ′

u−Wu) = −α|E|+∑
u∈V W ′

u−∑
u∈V Wu.
Therefore, C(G) = α|E| +

∑
u∈V Wu ≤ ∑

u∈V W ′
u ≤ nwmax and we can

conclude that PoA(Γ ) ≤ nwmax

α(n−1) ≤ 2wmax

α .

The diameter of ne graphs depends directly on the critical distance β.
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Proposition 6. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. In a ne
graph G for Γ , diam(G) ≤ 2β + 2.

Proof. Let S ∈ ne(Γ ) such that G = G[S] is connected. Assume that the node
u satisfies that dG(u, umax) > β and |Su| > 0. Then u has incentive to break
any of its bought links because after doing so, umax will still remain inside
the complementary of the ball of radius β centered at u. Next, assume that
diam(umax) ≥ β + 2. Let umax, u1, u2, ...., uβ+2 be a path. Then, either uβ+1 ∈
Suβ+2 or uβ+2 ∈ Suβ+1 . Therefore, since both uβ+1, uβ+2 are at distances greater
than β from umax, G cannot be a ne. This proves that diam(umax) ≤ β + 1 in
any connected ne and, as a consequence, that diam(G) ≤ 2β + 2.

Let us provide for a ne graph G, a bound on the contribution of the weight
component of the social cost of G, W (G, β) =

∑
{u∈V (G)} Wu. The following

lemma is a reformulation of a similar result that can be found in [4] using a
cleaner and simpler argument.

Lemma 1. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. In a ne graph
G for Γ , W (G, β) = O(αn2/β).

Proof. Let S be a ne and G = G[S] be a connected ne graph. Let
u ∈ V be any node in V . Consider the sets Ai(u) = {v | dG(u, v) = i}.
Define for i = 1, ..., k, Ci = {v ∈ V | (i − 1)(β − 1) ≤ dG(u, v) < i(β − 1)} =
∪(i−1)(β−1)≤j<i(β−1)Aj(u) with k such that ∪k

i=1Ci = V (G). By the pigeonhole
principle, for each i = 1, ..., k there exists at least one subindex, call it j(i),
for which (i − 1)(β − 1) ≤ j(i) < i(β − 1) and |Aj(i)(u)| ≤ |Ci|/(β − 1). In
this way, for any node v ∈ V (G), let S′

v = (Sv ∪k
i=1 Aj(i)(u)) − {v} and let

G′ = G[S−v, S′
v]. By construction, diamG′(v) ≤ β. Therefore, as S is a ne, we

have 0 ≤ Δ(S−v, S′
v) ≤ α

∑k
i=1

|Ci|
β−1 − Wv = α

(
n−1
β−1

)
− Wv.

Thus, W (G, β) ≤ n(n−1)α
β−1 = O

(
αn2

β

)
.

Using the same technique to provide a bound for the number of edges in
ne graphs for a sum celebrity games (Proof of Lemma 4 of [4]), we obtain the
following result.

Lemma 2. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. In a ne graph
G for Γ , |E(G)| ≤ n − 1 + 3n2

β .

Corollary 2. For every max celebrity game Γ = 〈V, (wu)u∈V , α, β, 〉, PoA(Γ ) =
O(n/β)

Proposition 7. For every n > β > 1, there exists a max celebrity game Γ =
〈V, (wu)u∈V , α, β, 〉 such that PoA(Γ ) = Ω(n/β).

Proof. Given n, let k and r be such that n−1 = k�β
+r, k ≥ 3 and 0 ≤ r < �β
.
Let V = {u} ∪ (∪k

i=1 {ui,j | 1 ≤ j ≤ �β
}) ∪ {uk+1,1, uk+1,2, ..., uk+1,r}. We then
define wu = W and wui,j

= w with W,w such that w = (k − 2)α and W > nα.
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In this way we consider the configuration S defined by the relations Su = ∅,
Sui,j

= {ui,j−1} for j ≥ 2 and Sui,1 = {u} for i = 1, ..., k + 1, as depicted in the
figure below. To prove that S ∈ ne(Γ ) we see that the cost difference associated
to any deviation is not negative.

u2,1

...

u2,�β�

u1,1

...

u1,�β�

· · ·

· · ·

· · ·

...

uk+1,1

uk+1,r

u

Clearly, u has no incentive of deviating his strategy because his cost is zero.
Let us prove that any other node ui,j has no incentive in deviating from its
current strategy. We say that a node v is covered with respect a node v′ if v is
at a distance at most β from v′. We have three cases:

1. The deviation is such that all nodes are covered with respect ui,j . In this
situation the cost difference is lα − w. Notice that every node uh,�β� with
h 
= i can be reached only when a link from ui,j to the path formed by
uh,1, uh,2, ..., uh,�β� is bought. Since initially ui,j has bought one link this
leads to the inequality l ≥ k − 2. Therefore lα −w ≥ (k − 2)α − (k − 2)α = 0.

2. The deviation is such that u is uncovered with respect ui,j . In this situation,
since W > nα, the cost difference is lα − w + W ≥ 0, for −1 ≤ l ≤ n − 1.

3. The deviation is such that u is covered with respect ui,j but there is at least one
node node of weight w uncovered with respect ui,j . Then the cost difference is
lα for some integer l. The only negative value that l can take is −1, but in such
case the configuration leaves u uncovered with respect ui,j , a contradiction.
Therefore, lα ≥ 0.

Hence, S ∈ ne(Γ ) and C(S) > (n − 1)w = (n − 1)(k − 2)α. Using the bound for
the social optimum opt(Γ ) ≤ 2α(n − 1) we have that PoA(Γ ) ≥ (k − 2)/2.

Theorem 1. For every n > β > 1, there exists a max celebrity game Γ =
〈V, (wu)u∈V , α, β, 〉 such that PoA(Γ ) = Θ(n/β).

4.2 The PoA When the Connectivity of the NE Graphs Is
Guaranteed

Let us consider a new cost function that excludes non-connected ne graphs.
We define a connected max celebrity game Γ con as a max celebrity game
Γ con = 〈V, (wu)u∈V , α, β, 〉, but now, the cost for each player u ∈ V in strategy
profile S is denoted by ccon

u (S) and it is defined as follows: ccon
u (S) = cu(S),

if diamG[S](u) ≤ n − 1; otherwise, ccon
u (S) = ∞. As usual, the social cost
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of a strategy profile S in Γ con is defined as Ccon(S) = Σu∈V ccon
u (S). Since

for any connected graph G, Ccon(G) = C(G) ≥ α(n − 1), then we have that
opt(Γ con) = α(n − 1). Notice that the same tuple 〈V, (wu)u∈V , α, β, 〉 can define
a max celebrity game as well as a connected max celebrity game. In order to
distinguish one from the other, we denote by Γ = Γ (〈V, (wu)u∈V , α, β, 〉) the
corresponding max celebrity game and by Γ con = Γ con(〈V, (wu)u∈V , α, β, 〉), the
corresponding connected max celebrity game.

Proposition 8. Let 〈V, (wu)u∈V , α, β〉 be a tuple defining Γ = Γ (〈V, (wu)u∈V ,
α, β〉) and Γ con = Γ con(〈V, (wu)u∈V , α, β〉). Then, ne(Γ ) � ne(Γ con) when we
consider ne(Γ ) restricted to connected graphs.

Proof. Let S ∈ ne(Γ ) be such that G = G[S] is connected. Let u be a
player, let S′

u be a deviation, and let G′ = G[(S−u, S′
u)]. Let Δ(S−u, S′

u) and
Δcon(S−u, S′

u) be the corresponding increments in the games Γ and Γ con, respec-
tively. We have that Δcon(S−u, S′

u) = Δ(S−u, S′
u), if G′ is connected. Otherwise,

Δcon(S−u, S′
u) = ∞, Δ(S−u, S′

u) < ∞. Therefore, Δcon(S−u, S′
u) ≥ Δ(S−u, S′

u)
and then, ne(Γ ) ⊆ ne(Γ con).

To see that the inclusion might be strict, let us consider that V = {u, v},
v ∈ Su, and Sv = ∅. If wv > α, S is not a ne for Γ . On the other hand,
independently of the weights of u, v, S is a ne for Γ con.

Proposition 9. There are connected max celebrity games that have ne graphs
with diameter equal to n − 1.

Proof. Let n = 2k + 1 be a positive integer and let V = {v, v1, v−1, v2, v−2,
. . . , vk, v−k}. Let S be the strategy profile defined by v1, v−1 ∈ Sv and vi+1 ∈
Svi

, v−(i+1) ∈ Sv−i
for i ≤ k − 1 (see the figure below). Setting the weights

wx ≤ α for all x ∈ V and for any β < (n − 1)/4 it is easy to see that the
corresponding graph is indeed a ne.

v0v−1· · ·v−k v1 · · · vk

The bounds on the PoA obtained for the class of connected ne graphs for
max celebrity games also hold for connected max celebrity games. The proofs
also work for this case.

Theorem 2. The PoA for the connected max celebrity games satisfies:

1. For every connected max celebrity game Γ con = Γ con(〈V, (wu)u∈V , α, β〉),
PoA(Γ con) = O(n/β)

2. For every n > β > 1, there exists a connected max celebrity game Γ con =
Γ con(〈V, (wu)u∈V , α, β〉) such that PoA(Γ con) = Θ(n/β).

5 Max Celebrity Games for β = 1

When β = 1, each player u has to decide for every non-edge (u, v) of the graph
to pay either α for the link, or at least wv. It is not difficult to show that the best
response of a player can be computed by sorting the weights of the non-adjacent
nodes and then, selecting the number of links to be added to the most weighted
non-adjacent nodes.
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Proposition 10. The problem of computing a best response of a player to a
strategy profile in max celebrity games is polynomial time solvable when β = 1.

In the next result we show that the price to pay for the anarchy is low when
wmin is close to wmax.

Theorem 3. Let Γ = 〈V, (wu)u∈V , α, 1〉 be a max celebrity game. Then,
PoA(Γ ) = O(wmax/wmin).

Proof. Let S ∈ opt(Γ ) and G = G[S] = (V,A). Let X =
{v ∈ V | deg(v) = n − 1} where deg(v) means the degree of v in the undi-
rected graph G. We have that C(G) ≥ 1

2α(n − 1)|X| + (n − |X|)wmin. Hence,
C(G) ≥ nwmin, if wmin ≤ (n−1)

2 α and C(G) ≥ (
n
2

)
α, otherwise. To prove the

result we distinguish three cases:
First we see that if wmin ≤ α(n − 1)/2, then PoA(Γ ) ≤ wmax/wmin. Indeed,

let S be a ne of Γ and let G = G[S] = (V,E). Using the same reasoning as
in Proposition 5 we have that C(G) =

∑
u∈V (|Su|α + max{x|d(u,x)>1}{wx}) ≤

nwmax. Therefore, if wmin ≤ α(n − 1)/2, then PoA(Γ ) ≤ wmax/wmin, as we
wanted to see.

Now, let us see that PoA(Γ ) = 1 for wmin > (n − 1)α. This is because if
G 
= Kn then there exists some v ∈ V with diamG(v) > 1. Then considering the
deviation for player v that consists in adding links to all the remaining nodes
from the graph we get a cost increment of kα−w for some k > 0 and w ≥ wmin.
Since k ≤ (n − 1) then kα − w ≤ (n − 1)α − wmin < 0, a contradiction for G
being a ne. Thus G = Kn and hence the result.

Finally, we see that for n−1
2 α < wmin ≤ (n − 1)α then PoA(Γ ) ≤ 3. Indeed,

let S be a ne and G = G[S] = (V,A). For a given u ∈ V such that diamG(u) > 1,
let v be such that wv = Wu. If wv > (n − 1)α then buying from u all the links
to the remaining nodes from V − {x | dG(u, x) ≤ 1} yields a cost increment of
at most (n − 1)α − wv < 0, a contradiction with G being a ne. Therefore
PoA(Γ ) ≤ (

(
n
2

)
α + n(n − 1)α)/

(
n
2

)
α = 3.

6 Max Celebrity Games Vs Sum Celebrity Games

The main differences between max and sum celebrity games are that: for β > 1,
in max model there exist other disconnected ne graphs than In; in connected
ne graphs, PoA = O(n/β) in both models, but this is tight for some max
games; for β = 1, PoA =O(wmax/wmin) in max, while in sum PoA ≤ 2.
Finally, max celebrity games are equivalent to the MaxBD games (see [7,8])
when α < wmin/(n − 1) as they are sum celebrity games when α < wmin. (See
the proof of Proposition 8 in [4] and replace α < wmin by α < wmin/(n − 1)).
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