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Preface

The 13th Workshop on Algorithms and Models for the Web Graph (WAW 2016) took
place at the Centre de Recherches Mathématiques, Montréal, Canada, December 14–15,
2016. This is an annual meeting, which is traditionally co-located with another, related,
conference. WAW 2016 was co-located with the 12th Conference on Web and Internet
Economics (WINE 2016). Co-location of the workshop and conference provided
opportunities for researchers in two different but interrelated areas to interact and to
exchange research ideas. It was an effective venue for the dissemination of new results and
for fostering research collaboration.

The World Wide Web has become part of our everyday life, and information retrieval
and data mining on the Web are now of enormous practical interest. The algorithms
supporting these activities combine the view of the Web as a text repository and as a
graph, induced in various ways by links among pages, hosts, and users. The aim of the
workshop was to further the understanding of graphs that arise from the Web and
various user activities on the Web, and stimulate the development of high-performance
algorithms and applications that exploit these graphs. The workshop gathered together
researchers who are working on graph-theoretic and algorithmic aspects of related
complex networks, including social networks, citation networks, biological networks,
molecular networks, and other networks arising from the Internet.

This volume contains the papers presented during the workshop. Each submission was
reviewed by Program Committee members. Papers were submitted and reviewed using
the EasyChair online system. The committee members decided to accept 13 papers.

December 2016 Anthony Bonato
Fan Chung Graham

Paweł Prałat
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An Upper Bound on the Burning Number
of Graphs

Max R. Land1 and Linyuan Lu2(B)

1 Dutch Fork High School, Irmo, SC 29063, USA
max.ruikang.land@gmail.com

2 University of South Carolina, Columbia, SC 29208, USA
lu@math.sc.edu

Abstract. The burning number b(G) of a graph G was introduced by
Bonato, Janssen, and Roshanbin [Lecture Notes in Computer Science
8882 (2014)] to measure the speed of the spread of contagion in a graph.
They proved for any connected graph G of order n, b(G) ≤ 2�√n� − 1,
and conjectured that b(G) ≤ �√n�. In this paper, we proved b(G) ≤
�−3+

√
24n+33
4

�, which is roughly
√
6
2

√
n. We also settled the following

conjecture of Bonato-Janssen-Roshanbin: b(G)b(Ḡ) ≤ n + 4 provided
both G and Ḡ are connected.

Keywords: Burning number · A-burnable · Graph · Tree

1 Introduction

The burning number of a graph was introduced by Bonato-Janssen-Roshanbin
[2,3,10]. It is related to contact processes on graphs such as the Firefighter prob-
lem [4,6,7]. In the paper [2,3], Bonato-Janssen-Roshanbin considered a graph
process which they called burning. At the beginning of the process, all vertices are
unburned. During each round, one may choose an unburned vertex and change its
status to burned. At the same time, each of the vertices that are already burned,
will remain burned and spread to all of its neighbors and change their status to
burned. A graph is called k-burnable if it can be burned in at most k steps. The
burning number of a graph G, denoted by b(G), is the minimum number of rounds
necessary to burn all vertices of the graph. For example, b(Kn) = 2 for n ≥ 2,
b(P4) = 2, and b(C5) = 3. In the paper [3], they proved b(Pn) = �n1/2�. Based
on this result, Bonato-Janssen-Roshanbin [3] made the following conjecture.

Conjecture 1: For any connected graph G of order n, b(G) ≤ �n1/2�.
Bonato-Janssen-Roshanbin [2,3] proved b(G) ≤ 2�n1/2� − 1. The previously

known bound is due to Bonato et al. [5]:

b(G) ≤
(√

32
19

+ o(1)

)
√
n.

In this paper, we improved the upper bound of b(G) as follows.

L. Lu—This author was supported in part by NSF grant DMS-1600811.

c© Springer International Publishing AG 2016
A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 1–8, 2016.
DOI: 10.1007/978-3-319-49787-7 1



2 M.R. Land and L. Lu

Theorem 1. If G is a connected graph of order n, then

b(G) ≤
⌈−3 +

√
24n + 33
4

⌉
.

In the paper [3], Bonato, Janssen, and Roshanbin also considered Nordhaus-
Gaddum Type problems on the burning number. Let Ḡ be the complement graph
of the graph G. In [3], they proved b(G)+b(Ḡ) ≤ n+2 and b(G)b(Ḡ) ≤ 2n. Both
bounds are tight and are achieved by the complete graph and its complement.
When both graphs G and Ḡ are connected, they proved b(G)+b(Ḡ) ≤ 3�n1/2�−1
and b(G)b(Ḡ) ≤ n+ 6 for all graph Gn of order n ≥ 6. The following conjecture
has been made in [3]:

Conjecture 2: If both G and Ḡ are connected graphs of order n, then
b(G)b(Ḡ) ≤ n + 4.

Using Theorem 1, we settled this conjecture positively.

Theorem 2. If both G and Ḡ are connected graphs of order n, then

b(G)b(Ḡ) ≤ n + 4.

The equality holds if and only if G = C5.

Recently, Mitsche, Pralat, and Roshanbin [8] found some general bounds on
the burning number of the Cartesian product and the strong product of graphs.
In another paper [9], they determined the burning number of Erdős-Renyi’s
random graph G(n, p).

The paper is organized as follows. In Sect. 2, we generalize k-burnable to
A-burnable, which is a key concept for induction. A tight result is proved for
A-burnable trees. The proofs of Theorems 1 and 2 are presented in Sect. 3.

2 Notations and Lemmas

For each positive integer k, let [k] denote the set {1, 2, . . . , k}. A graph G = (V,E)
consists of a set of vertices V and edges E. The order of G, denoted by |G|, is the
number of vertices in G. A graph G is called connected if for any two vertices there
is a path connecting them. In this paper, we always assume that G is a connected
graph. The distance between two vertices u and v, denoted by d(u, v), is the length
of a shortest path from u to v in graph G. The eccentricity of a vertex v is the max-
imum distance between v and any other vertex in G. The maximum eccentricity is
the diameterD(G) while the minimum eccentricity is the radius r(G). The center
of G is the set of vertices of eccentricity equal to the radius.

For any nonnegative integer k and a vertex u, the k-th closed neighborhood
of u is the set of vertices whose distance from u is at most k, and is denoted by
Nk[u]. From the definition, a graph G is k-burnable if there is a burning sequence
v1, . . . , vk of vertices such that
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V ⊆
k⋃

i=1

Nk−i[vi] (1)

∀i, j ∈ [k] : d(vi, vj) ≥ j − i. (2)

The burning number b(G) is the smallest integer k such that G is k-burnable.
It has been shown that Condition (2) is redundant for the definition of burning
number b(G) (see Lemma 1 of [5]). It is often convenient to rewrite Condition (1)
by relabeling the vertices in the burning sequence as follows:

V ⊆
k⋃

i=1

Ni−1[vi]. (3)

This leads to the following generalization, which is very useful for the purpose
of induction. For a set (or multiset) A of k positive integers a1, a2, . . . , ak (not
necessarily all distinct), we say a graph G is A-burnable, if there exist k vertices
v1, v2, . . . , vk such that G ⊆ ∪k

i=1Nai−1[vi]. Under this terminology, the burning
number b(G) is the least integer k such that G is [k]-burnable.

A tree is an acyclic connected graph. For any tree T , it is well-known that the
center of T consists of either one vertex or two vertices. If the center of T consists
of one vertex, then D(T ) = 2r(T ); otherwise, D(T ) = 2r(T ) − 1. (See [1].)

A rooted tree is a tree with one vertex r designated as the root. The height of a
rooted tree is the eccentricity of the root. In a rooted tree, the parent of a vertex
is the vertex connected to it on the path to the root. A child of a vertex v is a
vertex of which v is the parent. A descendent of any vertex v is any vertex which
is either the child of v or is (recursively) the descendent of any of the children of
v. A leaf vertex is a vertex with degree 1 but not equal to the root. The subtree
rooted at v is the induced subgraph on the set of v and its all descendents. The
important observation is that if a subtree rooted at v is pruned from the whole
tree, the remaining part (if non-empty) is still a tree. This observation is very
useful for induction.

A spanning tree of graph G is a subtree of G that covers all vertices of G. In
the papers [2,3], Bonato, Janssen, and Roshanbin proved

b(G) = min{b(T ) : T is a spanning subtree of G}. (4)

Thus, it is sufficient to only consider the burning number b(T ) for a tree T .
First, we prove a simple lemma which illustrates the idea of the induction.

Lemma 1. Let A = {a1, a2, . . . , ak} be a set of k nonnegative integers. If a tree
T has order at most

∑k
i=1 ai + max{ai : 1 ≤ i ≤ k} − 1, then T is A-burnable.

Proof. Without loss of generality, we can assume that a1 ≥ a2 ≥ · · · ≥ ak. We
will use induction on k. Initial case: k = 1, A = {a1}. We need to prove that if
a tree T has at most 2a1 − 1 vertices, then T is A-burnable. Note that

r(T ) ≤ D(T ) + 1
2

≤ |T |
2

≤ a1 − 1
2
.
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Since the radius r(T ) is an integer, we must have r(T ) ≤ a1 − 1. Thus, T is
{a1}-burnable.

Now we assume the statement holds for any set of k−1 integers. For any A of k
integers a1 ≥ a2 ≥ · · · ≥ ak > 0 and any tree T with at most 2a1+a2+· · ·+ak−1,
we will prove that T is A-burnable. Pick an arbitrary vertex r as the root of T .
Let h be the height of this rooted tree. If h ≤ a1 − 1, then V (T ) ⊆ Na1−1(r). So
T is {a1}-burnable, which implies that T is A-burnable.

Now we assume h ≥ a1. Select a leaf vertex u such that d(r, u) = h. Let vk
be the vertex on the ru-path such that the distance d(u, vk) = ak − 1. (This
is possible since h ≥ a1 > ak − 1. Let T1 be the subtree rooted at vk, and
T2 := T \ T1 be the remaining subtree. Notice that |T1| ≥ ak. Thus,

|T2| = |T | − |T1|
≤ 2a1 + a2 + · · · + ak − 1 − ak

= 2a1 + a2 + · · · + ak−1 − 1.

By inductive hypothesis, T2 is {a1, a2, . . . , ak−1}-burnable. Hence, there exists
k − 1 vertices v1, v2, . . . , vk−1 such that T2 ⊆ ∪k−1

i=1 Nai−1[vi]. Also, notice T1 ⊆
Nak−1[vk]. Therefore, T ⊆ ∪k

i=1Nai−1[vi]. The proof of the lemma is finished.

Remark 1. The bound in Lemma 1 is tight.

Proof. Consider the following example: for any positive integer a, let a1 = a2 =
· · · = ak = a, i.e. A is a multiset consisting of k a’s. Now we will construct a tree
T as following. First construct k + 1 disjoint paths P0, P1, . . . , Pk with each of
order a. Create tree T by connecting one endpoint of P1, P2, . . . , Pk to the same
endpoint of P0 (see figure below).

P0

P1

Pk

The tree T has order (k + 1)a, which is just one more than the amount
of vertices in Lemma 1. Now we show T is not A-burnable. Otherwise, there
exists v1, v2, . . . , vk such that T is covered by ∪k

i=1Na−1[vi]. By the Pigeon-hole
principle, one of the paths P0, P1, . . . , Pk will not contain v1, v2, . . . , vk, and a
leaf on this path will not be reached in at most a − 1 steps. Thus, T is not
A-burnable.

We have the following corollary.

Corollary 1. For any connected graph G, b(G) ≤ −3+
√
8n+17
2 ≈ √

2n − 3
2 .

Proof. Let A = {k, k− 1, · · · , 1}. By Lemma 1, any tree of order n ≤ (
∑k

i=1 i)+
k − 1 = k2+3k−2

2 is A-burnable. Solving for k, we get k ≤ −3+
√
8n+17
2 . Thus,

b(T ) ≤ −3+
√
8n+17
2 . By Eq. (4), the same bound holds true for b(G).
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3 Proof of Theorems 1 and 2

We have seen that Lemma 1 is sharp when all ai’s are equal. The improvement
can be made when ai’s are distinct. We first prove the following lemma.

Lemma 2. For any k − 1 distinct positive integers a1 < a2 < · · · < ak−1, there
exists an ai such that 2�k−1

3  ≤ ai ≤ ak−1 − �k−1
3 .

Proof. Let j = �k−1
3  and A = {a1, a2, . . . , ak−1}. Divide [1, ak−1] into 3

intervals:

[1, 2j − 1] ∪ [2j, ak−1 − j] ∪ [ak−1 − j + 1, ak−1].

There are at most 2j − 1 elements of A in the first interval. There are at most j
elements of A in the last interval. Since 3j − 1 < k − 1, there exists at least one
element of A in the middle interval. Call this element ai.

Lemma 3. For all integer k ≥ 1, we have

k∑
i=1

⌊
i − 1

3

⌋
=

⌊
k2 − 3k + 2

6

⌋
.

Proof. For k = 3s, we have

k∑
i=1

⌊
i − 1

3

⌋
= 3

s∑
j=1

(j − 1) =
3s(s − 1)

2
=

⌊
k2 − 3k + 2

6

⌋
.

For k = 3s + 1, we have

k∑
i=1

⌊
i − 1

3

⌋
= 3

s∑
j=1

(j − 1) + s =
3s(s − 1)

2
+ s =

⌊
k2 − 3k + 2

6

⌋
.

For k = 3s + 2, we have

k∑
i=1

⌊
i − 1

3

⌋
= 3

s∑
j=1

(j − 1) + 2s =
3s(s − 1)

2
+ 2s =

⌊
k2 − 3k + 2

6

⌋
.

Theorem 3. Let A be a set of k distinct positive integers a1 < a2 < · · · < ak.
If a tree T has order at most(

k∑
i=1

ai

)
+ ak − 1 +

⌊
k2 − 3k + 2

6

⌋
,

then T is A-burnable.
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Proof. Let f(k) := �k2−3k+2
6 . By Lemma 3, we have f(k) = f(k − 1) + �k−1

3 .
Now, we use induction on k.

Initial case k = 1: A = {a1}. By Lemma 1, if a tree T has order at most
2a1 − 1, then T is {a1}-burnable. The statement holds true for k = 1 since
f(1) = 0.

Now assume this statement holds true for any set of k − 1 distinct positive
integers. Consider the case A = {a1, a2, . . . , ak}. We need to prove that if a tree
T has order at most a1 + a2 + · · · + 2ak − 1 + f(k) then T is A-burnable.

Let j = �k−1
3 . By Lemma 2, there exists ai that satisfies 2j ≤ ai ≤ ak−1 − j.

Choose an arbitrary root r and view T as a rooted tree. Let u be the leaf vertex
which has the farthest distance away from the root r. If d(r, u) ≤ ak − 1, then
V (T ) ⊆ Nak−1(r); thus, T is A-burnable. So, we can assume d(r, u) ≥ ak. We
will name three vertices vi, t, vk on the ru-path such that d(u, vi) = ai − 1,
d(u, t) = ai − 1 + j, and d(u, vk) = ak−1 − 1. Let T1 be the subtree rooted at t.
There are two cases:

r

vk

t

w

vi

u

z

Case 1: T1 ⊆ Nai−1[vi]. Let T2 = T \ T1. Notice |T1| ≥ ai + j. Then,

|T2| = |T | − |T1|
≤ a1 + a2 + · · · + 2ak − 1 + f(k) − (ai + j)
= a1 + a2 + · · · + ai−1 + ai+1 + · · · + 2ak − 1 + f(k − 1).

By inductive hypothesis, T2 is (A \ {ai})-burnable. Thus, T is A-burnable.

Case 2: T1 �⊆ Nai−1[vi]. Then there is a vertex z ∈ T1, such that d(vi, z) ≥ ai.
Let w be the closest vertex on the path rt to z. Observe that w is not in the
subtree rooted at vi. Thus, w is between vi and t. We have

d(w, z) = d(vi, z) − d(vi, w) ≥ ai − d(w, vi) ≥ ai − d(vi, t) = ai − j ≥ j.

The last inequality uses Lemma 2 for the choice of ai.
Let T3 be the subtree rooted at vk and let T4 := T \ T3 be the remaining
subtree. We have that |T3| ≥ ak−1 + d(w, z) ≥ ak−1 + j. Then,

|T4| = |T | − |T3|
≤ a1 + a2 + · · · + 2ak − 1 + f(k) − (ak−1 + j)
= a1 + a2 + · · · + ak−2 + 2ak − 1 + f(k − 1).
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By inductive hypothesis, T4 is (A \ {ak−1})-burnable. Clearly, T3 is {ak−1}-
burnable. Therefore, T is A-burnable.

The inductive proof is finished.

Proof (Proof of Theorem 1). Let A = {1, 2, . . . , k}. Applying Theorem3, any tree
of n vertices is [k]-burnable if

n ≤ 1 + 2 + · · · + k + k − 1 +
⌊
k2 − 3k + 2

6

⌋
=

⌊
2k2 + 3k − 2

3

⌋
.

Note that
⌊
2k2+3k−2

3

⌋
equals to 2k2+3k−3

3 if k is divisible by 3; and equals to
2k2+3k−2

3 otherwise. In either case, G is [k]-burnable if n ≤ 2k2+3k−3
3 . Solving

for k, we have k ≥ −3+
√
24n+33
4 . Since k is an integer, we can take ceiling on the

bound of k. Thus for any tree T of n vertices,

b(T ) ≤
⌈−3 +

√
24n + 33
4

⌉
.

By Eq. (4), the same bound holds for all connected graphs G.

Lemma 4. If a graph G is connected and the radius satisfies r(G) ≥ 3, then the
complement graph Ḡ is also connected and r(Ḡ) ≤ 2.

Proof. Since r(G) ≥ 3, there exists a pair of vertex (u, v) with distance at least
3. Let S be the set of all neighbors of v in the graph G. For any vertex not
in S ∪ {v}, it is directly connected to v in the complement graph Ḡ. For any
vertex x in S, both xu and uv are edges of Ḡ. Thus, the complement graph Ḡ
has radius at most 2.

Proof (Proof of Theorem 2). By Lemma 4, either r(G) or r(Ḡ) is at most 2.
Without loss of generality, we can assume r(Ḡ) ≤ 2, which implies b(Ḡ) ≤ 3. We
have the following cases.

Case 1: n ≤ 4. Since both G and Ḡ are connected, the only graph G that can
exist is the path P4. In this case G = Ḡ = P4. Note, b(P4) = 2. This satisfies

b(G) · b(Ḡ) = 4 < n + 4.

Case 2: n ≥ 5. By Theorem 1, b(Gn) ≤
⌈

−3+
√
24n+33
4

⌉
.

b(G) · b(Ḡ) ≤ 3 ·
⌈−3 +

√
24n + 33
4

⌉
.

Now we show this bound is at most n+4. When n = 5, 6, 7, 8, �−3+
√
24n+33
4 � =

3, so 3 · 3 = 9 ≤ n + 4. It holds for n = 5, 6, 7, 8.
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Now we assume n ≥ 9, we use �−3+
√
24n+33
4 � ≤ −3+

√
24n+33
4 +1. It is sufficient

to show

3
(−3 +

√
24n + 33
4

+ 1
)

< n + 4.

A simple calculation yields 0 < n2 − 7n − 8. This true is for all n ≥ 9.

From the above argument, the equality holds only when n = 5 and b(G) =
b(Ḡ) = 3. Now assume n = 5. If G contains a vertex v of degree 3 or 4, then
b(G) ≤ 2 since N [v] can cover at least 4 vertices. Thus, all degrees of G are at
most 2. For the same reason, all degrees of Ḡ are at most 2. This implies that
all degrees in G and in Ḡ are exactly 2. Since both G and Ḡ are connected and
n = 5, the only possible case is G = Ḡ = C5.

Acknowledgment. We would like to thank the anonymous referees for their helpful
comments.
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Abstract. In this paper, we analyze assortativity of preferential attach-
ment models. We deal with a wide class of preferential attachment mod-
els (PA-class). It was previously shown that the degree distribution in
all models of the PA-class follows a power law. Also, the global and
the average local clustering coefficients were analyzed. We expand these
results by analyzing the assortativity property of the PA-class of models.
Namely, we analyze the behavior of dnn(d) which is the average degree
of a neighbor of a vertex of degree d.

Keywords: Networks · Random graphs · Preferential attachment ·
Assortativity · Average neighbor degree

1 Introduction

Nowadays, there is a great deal of interest in structure and dynamics of real-world
networks, from Internet and society networks [1,4,7] to biological networks [2].
The key problem is how to build a model which describes the properties of
a given network. Such models are used in physics, information retrieval, data
mining, bioinformatics, etc. [1,4,5,17].

Real-world networks have some common properties [12,19,20,22]. For exam-
ple, for the majority of studied networks, the degree distribution was observed
to follow the power law, which means that the portion of vertices with degree d
decreases as d−γ for some γ > 0 [3,4,8,11]. Another important property of com-
plex networks is high clustering coefficient [20] which, roughly speaking, measures
how likely two neighbors of a vertex are connected.

Another key metric in complex networks analysis is the assortativity coef-
ficient which was first introduced by Newman [18] as the Pearson’s correlation
coefficient for the pairs {(di, dj)|eij ∈ E}. In assortative graphs edges tend to
connect vertices of similar degrees, while in disassortative networks vertices of
low degree are more likely to be connected to vertices of high degree. Assortativ-
ity coefficient lies between −1 and 1; when this coefficient equals 1, the network
is said to have perfect assortative mixing patterns, when it equals 0, the network
is non-assortative, while at −1 the network is completely disassortative.
c© Springer International Publishing AG 2016
A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 9–21, 2016.
DOI: 10.1007/978-3-319-49787-7 2
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However, as discussed in [13,15], despite Pearson’s correlation coefficient is
most commonly used to measure assortativity of a network, this coefficient is
size-depend when the degree distribution has infinite variance. Another way to
analyze assortativity is to consider the behavior of dnn(d) — the average degree
of a neighbor of a vertex of degree d. A graph is called assortative if dnn(d)
is an increasing function of d, whereas it is referred to as disassortative when
dnn(d) is a decreasing function of d. We analyze dnn(d) instead of measuring the
correlation since the obtained function of d can give a deeper insight into the
network structure.

It was previously shown that in some real-world networks dnn(d) behaves as
dν for some ν, which can be positive (assortative networks) or negative (disas-
sortative networks) [4,10]. Interestingly, as we show in this paper, in a wide class
of preferential attachment models dnn(d) ∝ log(d) as d → ∞.

Assortativity has many applications, for instance, it can be used in the epi-
demiology. In social networks we usually observe assortative mixing, so diseases
targeting high degree individuals are likely to spread to other high degree nodes.
On the other hand, biological networks are usually disassortative, therefore vac-
cination strategies that specifically target the high degree vertices may quickly
destroy the epidemic network.

In this paper, we study the behavior of dnn(d) in the T-subclass of the PA-
class of models, which was first introduced in [21]. This class includes a lot
of well-known models based on the preferential attachment principle: LCD [6],
Buckley-Osthus [9], Holme-Kim [14], RAN [23], etc. Despite the fact that the
T-subclass generalizes many different models, we are able to analyze dnn(d) in
the whole class of models for γ > 3 (the case of finite variance). We prove that
the expectation of dnn(d) asymptotically behaves as log(d) (up to a constant
multiplier). However, this approximation works reasonably well only for very
large values of d and for d < 104 we observe a different behavior which may look
like dν for some ν > 0.

The remainder of the paper is organized as follows. In Sect. 2, we give a formal
definition of the PA-class and present some known results. Then, in Sect. 3, we
state new results on the behavior of dnn(d). In Sect. 4, we make some simulations
in order to illustrate our results for dnn(d). We prove all theorems in Sect. 5.

2 Generalized Preferential Attachment

2.1 Definition of the PA-Class

Let us formally define the PA-class of models which was first suggested in [21].
Let Gn

m (n ≥ n0) be a graph with n vertices {1, . . . , n} and mn edges obtained
as a result of the following process. We start at the time n0 from an arbitrary
graph Gn0

m with n0 vertices and mn0 edges. On the (n + 1)-th step (n ≥ n0),
we make the graph Gn+1

m from Gn
m by adding a new vertex n + 1 and m edges

connecting this vertex to some m vertices from the set {1, . . . , n, n + 1}. Denote
by dn

v the degree of a vertex v in Gn
m. If for some constants A and B the following

conditions are satisfied
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P
(
dn+1

v = dn
v | Gn

m

)
= 1 − A

dn
v

n
− B

1
n

+ O

(
(dn

v )2

n2

)
, 1 ≤ v ≤ n, (1)

P
(
dn+1

v = dn
v + 1 | Gn

m

)
= A

dn
v

n
+ B

1
n

+ O

(
(dn

v )2

n2

)
, 1 ≤ v ≤ n, (2)

P
(
dn+1

v = dn
v + j | Gn

m

)
= O

(
(dn

v )2

n2

)
, 2 ≤ j ≤ m, 1 ≤ v ≤ n, (3)

P(dn+1
n+1 = m + j) = O

(
1
n

)
, 1 ≤ j ≤ m, (4)

then the random graph process Gn
m is a model from the PA-class. Here, as in [21],

we require 2mA+B = m and 0 ≤ A ≤ 1. We further omit n in dn
j for simplicity

of notation.
As it is explained in [21], even fixing values of parameters A and m does

not specify a concrete procedure for constructing a network. There are a lot of
models possessing very different properties and satisfying the conditions (1–4),
e.g., LCD, Buckley–Osthus, Holme–Kim, and RAN models.

2.2 Power-Law Degree Distribution

Let Nn(d) be the number of vertices of degree d in Gn
m. The following theorems

on the expectation of Nn(d) and its concentration were proved in [21].

Theorem 1. For every model in PA-class and for every d = d(n) ≥ m

ENn(d) = c(m, d)
(
n + O

(
d2+

1
A

))
,

where

c(m, d) =
Γ

(
d + B

A

)
Γ

(
m + B+1

A

)
A Γ

(
d + B+A+1

A

)
Γ

(
m + B

A

) d→∞∼ Γ
(
m + B+1

A

)
d−1− 1

A

A Γ
(
m + B

A

)
and Γ(x) is the gamma function.

Theorem 2. For every model from the PA-class and for every d = d(n) we have

P
(|Nn(d) − ENn(d)| ≥ d

√
n log n

)
= O

(
n− log n

)
.

These two theorems mean that the degree distribution follows (asymptotically)
the power law with the parameter 1 + 1

A .
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2.3 Clustering Coefficient

A T-subclass of the PA-class was introduced in [21]. In this case, the following
additional condition is required:

P
(
dn+1

i = dn
i + 1, dn+1

j = dn
j + 1 | Gn

m

)
= eij

D

mn
+ O

(
dn

i dn
j

n2

)
, (5)

where 1 ≤ i, j ≤ n, eij is the number of edges between the vertices i and j in
Gn

m and D is a non-negative constant. Note that this property still does not
define the correlation between edges completely, but it is sufficient for studying
the clustering coefficients. Also, this subclass still covers all well-known models
mentioned above.

There are two well-known definitions of the clustering coefficient of a graph
G. The global clustering coefficient C1(G) is the ratio of three times the number
of triangles to the number of pairs of adjacent edges in G. The average local
clustering coefficient is defined as C2(G) = 1

n

∑n
i=1 C(i), where C(i) is the local

clustering coefficient for a vertex i: C(i) = T i

P i
2
, T i is the number of edges between

the neighbors of the vertex i and P i
2 is the number of pairs of neighbors.

The clustering coefficients for the T-subclass were analyzed in [16,21]. For
example, in [21] it was proven that in some cases (2A ≥ 1) the global clustering
coefficient C1(Gn

m) tends to zero as the number of vertices grows for all models
from the PA-class. Additionally, it was shown that the average local clustering
coefficient C2(Gn

m) does not tend to zero for the T-subclass with D > 0. In
[16] the local clustering coefficient averaged over the vertices of degree d was
analyzed. It was proven that this coefficient C(d) asymptotically decreases as
2D
Am · d−1 for A < 3

4 .

3 Assortativity

In this paper, we analyze the assortativity property in the T-subclass. One pos-
sible way to analyze the assortativity of an undirected graph G is to consider
the average degree of the neighbors of vertices with a given degree d:

dnn(d) =
1

Nn(d) · d

∑
i:di=d

∑
j:ij∈E(G)

dj , (6)

where E(G) is the set of edges of the graph G. If dnn(d) is an increasing function
of d, then the network is assortative. Vice-versa, in the disassortative case dnn(d)
decreases.

Let Sn(d) be the sum of the degrees of all neighbors of all vertices of degree
d. Then dnn(d) can be defined as dnn(d) = Sn(d)

dNn(d)
. Hence, in order to estimate

Ednn(d), we first estimate ESn(d) and then use Theorems 1 and 2 on the behavior
of Nn(d). Namely, we prove the following theorems.
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Theorem 3. Let Gn
m belong to the T-subclass with A < 1

2 . Then, for any ε > 0
and for every d = d(n) ≥ m

ESn(d) = M(d)
(
n + O

(
n2A+εd2+

1
A

))
,

where

M(d) = (Ad + B + 1)

[
X

Am + B + 1
+

d∑
i=m+1

Y (i)

]
· c(m, d),

X =
m

A(m − 1) + B + 1

[
B − D

m
+

(A(m − 1) + 2B + 1) · (Am + B + 1)
1 − 2A

]
,

Y (i) =
1

A(i − 1) + B + 1

[
(B − D/m)i
Ai + B + 1

+
(D/m) · (i − 1)
A(i − 1) + B

+ m

]
.

Asymptotically we have

M(d) d→∞∼ Am + B

A2
· Γ

(
m + B+1

A

)
Γ

(
m + B

A

) · log(d) · d− 1
A .

Theorem 4. Let Gn
m belong to the T-subclass of the PA-class with A < 1

2 . Then
for any ε > 0 and for every d = d(n) ≥ m

Ednn(d) =
M(d)

d c(m, d)

(
1 + O

(
n2A+εd2+

1
A

n
+

d2+
1
A log n√

n

))
.

Note that M(d)
d·c(m,d)

d→∞∼ Am+B
A · log(d).

Note that the restriction A < 1
2 is essential and for A ≥ 1

2 the result is
expected to be completely different. Indeed, when we analyze Sn(m) we have to
estimate the expected sum of the degrees of the neighbors of a new vertex i. If
A ≥ 1

2 , then this sum grows faster than linearly in i and our approximations do
not hold.

According to Theorem 4, all networks from the T-subclass with A < 1
2 are

assortative. However, Ednn(d) increases slowly, as log(d), unlike dν in real-world
networks. It is also worth noting that in Theorem4 we analyze only the average
value of dnn(d) and proving concentration is left for future research.

4 Experiments

In this section, we look at the behavior of dnn(d) in a three-parameter model
from the family of polynomial graph models defined in [21]. This model belongs
to the T-subclass and by varying the parameters we can analyze the effect of A
(or, equivalently, γ) on dnn(d). In all the experiments we generated polynomial
graphs with n = 106, m = 2, D = 0.3 and different values of A. In other words,
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(a) A = 0.2 (b) A = 0.4

Fig. 1. The behavior of dnn(d) for different A

we fixed the probability of a triangle formation and vary the parameter of the
power-law degree distribution. Detailed graph generation process is described
in [21].

First, let us illustrate our main result for Ednn(d) (see Theorem 4). We gen-
erated polynomial graphs for different A and compared the obtained values of
dnn(d) with their theoretical approximation M(d)

d·c(m,d) . We noticed that for A < 1
3

the theoretical value of Ednn(d) is extremely close to the experiment. However,
if A > 1

3 , then dnn(d) turn out to be consistently smaller than their theoretical
approximation. Figure 1 illustrates this observation and shows dnn(d) for A = 0.2
and A = 0.4. However, according to our additional experiments, the obtained
for A > 1

3 difference tends to zero as n → ∞, as expected. The possible reason

for such a slow convergence is the error term O
(

n3A

n2

)
appearing in the proof in

the case A > 1
3 .

We also compared the theoretical value of Ednn(d) (for A = 0.2) with the
asymptotic formula Am+B

A · log(d) (see Fig. 2). Interestingly, from Fig. 1 it may
seem that dnn(d) grows as dν for some ν (as it was observed in real-world net-
works). However, as d becomes large (d > 104), one can indeed observe the
logarithmic growth.

Fig. 2. Theoretical value of dnn(d) versus its asymptotic approximation
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5 Proofs

5.1 Proof of Theorem 3

In the proof we use the notation θ(·) for error terms. By θ(X) we denote an
arbitrary function such that |θ(X)| < X.

We need the following auxiliary theorem.

Theorem 5. Let Wn be the sum of the squares of the degrees of all vertices in
a model from the PA-class with A < 1

2 . Then for any ε > 0

EWn =
m

1 − 2A
(m + 4B + 1) n + O(n2A+ε).

Theorem 5 can easily be proved by induction on n. The proof is omitted due
to space constraints.

Now let us prove Theorem 3. It can be shown that a.a.s. the maximum degree
in Gn

m is less than nA+ϕ for any ϕ > 0. Also, ENn(d) = c(m, d)
(
n + O

(
d2+

1
A

))
.

Therefore, one can show that ESn(d) = c(m, d)
(
n + O

(
d2+

1
A

))
dO(nA+ϕ). As

a result, for n ≤ Q · d2 (for any constant Q) we have ESn(d) = O
(
d2nA+ϕ

)
=

M(d) · O
(
n2A+ε · d2+

1
A

)
for any ε > 0. This concludes the proof for n ≤ Qd2

for all d.
In order to prove Theorem3, we use induction on d and for each d we use

induction on n. Note that for each d we already have the basis for n ≤ Qd2.
Consider the case d = m. At each step we add a vertex n + 1 and m edges.

We have the following possibilities.

1. At least one edge hits a vertex of degree m, then Sn(m) is decreased by
the sum of the degrees of the neighbors of this vertex. This happens with
probability A m+B

n +O
(

1
n2

)
. Summing over all vertices of degree m we obtain

that ESn(m) is decreased by
(

Am+B
n + O

(
1

n2

)) · ESn(m) .
2. Exactly one edge hits a neighbor of a vertex of degree m and no edges hit the

vertex itself, then Sn(m) is increased by 1. The probability to hit a neighbor is
Adi+B

n +O
(

d2
i

n2

)
, where di is the degree of this neighbor. We have to subtract

the probability to hit both a vertex of degree m and its neighbor which is
D

mn + O
(

mdi

n2

)
. Summing over all neighbors of all vertices of degree m, we

obtain that ESn(m) is increased by:

AESn(m)
n

+
B − D/m

n
mENn(m) + O

⎛
⎝E

∑
i:i is a neighbor

of a vertex of degreem
d2i

n2

⎞
⎠

=
AESn(m)

n
+

B − D/m

n
mENn(m) + O

(
max(n, n3A)

n2

)
.
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Here we used the fact that:

E

( ∑
i:i is a neighbor

of a vertex of degreem

d2i

)
≤ E

⎛
⎝ ∑

i∈V (Gm
n )

d3i

⎞
⎠ = O

(
max(n, n3A)

)
.

3. If i > 1 edges hit a neighbor j of a vertex of degree m, which happens

with probability O
(

d2
j

n2

)
, and no edges hit the vertex itself, then Sn(m)

is increased by i. Reasoning as above, we obtain that ESn(m) is increased
by O

(
max(n,n3A)

n2

)
.

4. The vertex n + 1 hits some vertices, so Sn(m) is increased by the sum of
the degrees of these vertices. The probability to hit a vertex of degree di is
Adi+B

n +O
(

d2
i

n2

)
and after that this vertex will have a degree di +1. Summing

over i we obtain that ESn(m) is increased by:

E
∑

i∈V (Gm
n )

(di + 1)
(

Adi + B

n
+ O

(
d2i
n2

))

=
A

n
EWn + (2B + 1)m + O

(
max(n, n3A)

n2

)
.

Combining all the cases considered above, we get

ESn+1(m) = ESn(m) −
[
Am + B

n
+ O

(
1
n2

)]
ESn(m) +

AESn(m)
n

+
B − D/m

n
mENn(m) +

A

n
EWn + (2B + 1)m + O

(
max(n, n3A)

n2

)
.

We prove by induction on n that ESn(m) = M(m)
(
n + θ

(
Cn2A+εm2+ 1

A

))
for some constant C > 0, where

M(m) =
m · c(m,m)

A(m − 1) + B + 1

[
B − D

m
+

(A(m − 1) + 2B + 1) · (Am + B + 1)
1 − 2A

]
.

(7)
Assume that ESi(m) = M(m)

(
i + θ

(
Ci2A+ε · m2+ 1

A

))
for all i < n + 1 and

let us prove this result for i = n + 1:

ESn+1(m) =
[
1 − A(m − 1) + B

n
+ O

(
1
n2

)]
· M(m)

(
n + θ

(
Cn2A+εm2+ 1

A

))

+
B − D/m

n
m · c(m,m) [n + O(1)] +

A

n
· m

1 − 2A
(m + 4B + 1) n

+ O(n2A−1+ε) + (2B + 1)m + O

(
max(n, n3A)

n2

)
. (8)

Here we use that EWn = m
1−2A (m + 4B + 1) n + O(n2A+ε) and take ε < ε.
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Next, we use (7) and the fact that c(m,m) = 1/(Am + B + 1):

ESn+1(m) = M(m)(n + 1) +
[
1 − A(m − 1) + B

n

]
M(m)θ

(
Cn2A+εm2+ 1

A

)
+O

(
Cn2A−2+ε

)
+ O(n2A−1+ε).

To complete the proof for d = m we have to show that the obtained error
term is not greater than CM(m)m2+ 1

A (n + 1)2A+ε for some large enough C:

CM(m)m2+ 1
A (n + 1)2A+ε ≥

[
1 − A(m − 1) + B

n

]
M(m)Cn2A+εm2+ 1

A

+O
(
Cn2A−2+ε

)
+ O(n2A−1+ε).

This inequality holds for large enough C. This completes the proof for d = m.
Now, consider the case d > m, n > Qd2. Similarly to the previous case, once

we add a vertex n + 1 and m edges, we have the following possibilities.

1. At least one edge hits a vertex of degree d. In this case, ESn(d) is decreased
by

(
Ad+B

n + O
(

d2

n2

))
· ESn(d).

2. One edge hits a vertex of degree d − 1, so Sn(d) is increased by the sum of
the degrees of the neighbors of this vertex plus the degree of the new vertex.
We get (

A(d − 1) + B

n
+ O

(
d2

n2

))
· (ESn(d − 1) + m · ENn(d − 1)) .

Taking into account the case when, in addition, exactly one edge hits a neigh-
bor of this vertex, we get that ESn(d) is additionally increased by:

(d − 1)ENn(d − 1) · D

mn
+ O

(
(d − 1)ESn(d − 1)

n2

)
.

3. Exactly one edge hits a neighbor of a vertex of degree d and no edges hit the
vertex itself. In this case, ESn(d) is increased by:

AESn(d)
n

+
B − D/m

n
dENn(d) + O

(
max(n, n3A)

n2

)
+ O

(
d · ESn(d)

n2

)
.

4. All the cases with multiple edges affect ESn(d) by:

O

(
max(n, n3A)

n2

)
+ O

(
d2

n2

)
ESn(d) + O

(
d3

n2

)
ENn(d). (9)

Combining all the cases considered above, we get

ESn+1(d) = ESn(d)
[
1 − A(d − 1) + B

n

]
+

A(d − 1) + B

n
· ESn(d − 1)

+
(

D(d − 1)
mn

+ m
A(d − 1) + B

n

)
ENn(d − 1) +

(B − D/m)d
n

ENn(d)

+ O

(
d2

n2

)
ESn(d) + O

(
d3

n2

)
ENn(d) + O

(
max(n, n3A)

n2

)
.
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We prove by induction on d and n that ESn(d) = M(d)
(
n + θ

(
Cn2A+ε

d2+
1
A

))
for some constant C > 0. Assume that ESi(d̃) = M(d̃)

(
i + θ

(
Ci2A+ε

d̃2+
1
A

))
for d̃ < d and all i and for d̃ = d and i < n + 1. Then

ESn+1(d) =

[
1 − A(d − 1) + B

n

]
M(d)

[
n + θ

(
Cn2A+εd2+ 1

A

)]

+
A(d − 1) + B

n
M(d − 1)

[
n + θ

(
Cn2A+ε(d − 1)2+

1
A

)]

+

(
D(d − 1)

mn
+ m

A(d − 1) + B

n

)
c(m, d − 1)

[
n + O

(
d2+ 1

A

)]

+
(B − D/m)d

n
c(m, d)

[
n + O

(
d2+ 1

A

)]
+ O

(
d2

n2

)
M(d)

[
n + θ

(
Cn2A+εd2+ 1

A

)]

+ O

(
d3

n2

)
c(m, d)

[
n + O

(
d2+ 1

A

)]
+ O

(
max(n, n3A)

n2

)
.

Note that

M(d) =
A(d − 1) + B

A(d − 1) + B + 1
M(d − 1) +

(B − D/m)d
A(d − 1) + B + 1

c(m, d) (10)

+

(
D
m + Am

)
(d − 1) + Bm

A(d − 1) + B + 1
c(m, d − 1).

Therefore, we obtain:

ESn+1(d) = M(d)(n + 1) +

[
1 − A(d − 1) + B

n

]
M(d) θ

(
Cn2A+εd2+ 1

A

)

+
A(d − 1) + B

n
M(d − 1) θ

(
Cn2A+ε(d − 1)2+

1
A

)

+ O

(
C

d4 log(d) · n2A+ε

n2

)
+ O

(
C

d2− 1
A log(d)

n

)
+ O

(
max(n, n3A)

n2

)
+ O

(
d2

n

)
.

It remains to prove that for some large enough C

CM(d) · (n + 1)2A+εd2+ 1
A

≥ CM(d) · n2A+εd2+ 1
A − CM(d)

(
A(d − 1) + B

n

)
· n2A+εd2+ 1

A

+ CM(d − 1)

(
A(d − 1) + B

n

)
· n2A+ε(d − 1)2+

1
A

+ O

(
C

d4 log(d) · n2A+ε

n2

)
+ O

(
C

d2− 1
A log(d)

n

)
+ O

(
max(n, n3A)

n2

)
+ O

(
d2

n

)
.

(11)
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First, note that

CM(d) · (n + 1)2A+εd2+
1
A − CM(d) · n2A+εd2+

1
A

= CM(d) · n2A+ε · d2+
1
A

[
2A + ε

n
+ O

(
1
n2

)]
.

Second, one can show that

CM(d)
(

A(d − 1) + B

n

)
d2+

1
A − CM(d − 1)

(
A(d − 1) + B

n

)
(d − 1)2+

1
A ≥ 0

using Eq. (10) and the inequality (1 − 1
d )−(2+ 1

A ) ≥ 1 + 2A+1
Ad .

Therefore, Eq. (11) becomes:

CM(d) · n2A+ε · d2+
1
A

[
2A + ε

n
+ O

(
1
n2

)]
≥ O

(
C

d4 log(d) · n2A+ε

n2

)

+ O

(
C

d2− 1
A log(d)
n

)
+ O

(
max(n, n3A)

n2

)
+ O

(
d2

n

)
.

It is easy to see that for some large enough C and for n ≥ Q·d2 (for some large
enough Q) this inequality is satisfied. This concludes the proof of the theorem.

5.2 Proof of Theorem 4

Denote by Q the event {|Nn(d) − ENn(d)| < d
√

n log(n)}. According to
Theorem 2, P(Q) = 1 − O

(
n− log(n)

)
. Let us estimate Ednn(d):

Ednn(d) = E

(
Sn(d)

dNn(d)

)
= E

(
Sn(d)

dNn(d)

∣∣∣∣Q
)

P(Q) + E

(
Sn(d)

dNn(d)

∣∣∣∣Q̄
)

P(Q̄).

Let us estimate the first term:

E

(
Sn(d)

dNn(d)

∣∣∣∣Q
)

P(Q) =
E

(
Sn(d)

∣∣Q)
P(Q)

d (ENn(d) + O (d
√

n log(n)))

=
ESn(d) − E(Sn(d)

∣∣Q̄)P(Q̄)
d (ENn(d) + O (d

√
n log(n)))

=
ESn(d) + O

(
n2−log(n)

)
d (ENn(d) + O (d

√
n log(n)))

.

Here we used that Sn(d) = O(n2). The second term can be estimated as:

E

(
Sn(d)

dNn(d)

∣∣∣∣Q̄
)

P(Q̄) = O

(
n2

d

)
P(Q̄) = O

(
n2−log(n)

d

)
.

Finally,

Ednn(d) =
M(d)

(
n + O

(
n2A+ε · d2+

1
A

))
+ O

(
n2−log(n)

)
d

(
c(m, d)

(
n + O

(
d2+

1
A

))
+ O (d

√
n log(n))

) + O

(
n2−log(n)

d

)

=
M(d)

d c(m, d)

(
1 + O

(
n2A+ε · d2+

1
A

n
+

d2+
1
A log (n)√

n

))
.
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Abstract. We discuss a notion of clustering for directed graphs, which
describes how likely two followers of a node are to follow a common
target. The associated network motifs, called dicliques or bi-fans, have
been found to be key structural components in various real-world net-
works. We introduce a two-mode statistical network model consisting of
actors and auxiliary attributes, where an actor i decides to follow an
actor j whenever i demands an attribute supplied by j. We show that
the digraph admits nontrivial clustering properties of the aforementioned
type, as well as power-law indegree and outdegree distributions.

Keywords: Intersection graph · Two-mode network · Affiliation net-
work · Digraph · Diclique · Bi-fan · Complex network

1 Introduction

1.1 Clustering in Directed Networks

Many real networks display a tendency to cluster, that is, to form dense local
neighborhoods in a globally sparse graph. In an undirected social network this
may be phrased as: your friends are likely to be friends. This feature is typically
quantified in terms of local and global clustering coefficients measuring how likely
two neighbors of a node are neighbors [11,13,14,16]. In directed networks there
are many ways to define the concept of clustering, for example by considering the
thirteen different ways that a set of three nodes may form a weakly connected
directed graph [5].

In this paper we discuss a new type of clustering concept which is motivated
by directed online social networks, where a directed link i → j means that an
actor i follows actor j. In such networks a natural way to describe clustering is to
say that your followers are likely to follow common targets. When the topology
of the network is unknown and modeled as a random graph distributed according
to a probability measure P , the above statement can be expressed as

P (i2 → i4
∣∣ i1 → i3, i2 → i3, i1 → i4) > P (i2 → i4), (1)

where ‘you’ corresponds to actor i3. Interestingly, the conditional probability on
the left can stay bounded away from zero even for sparse random digraphs [9].
c© Springer International Publishing AG 2016
A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 22–33, 2016.
DOI: 10.1007/978-3-319-49787-7 3
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The associated subgraph (Fig. 1) is called a diclique. Earlier experimental studies
have observed that dicliques (a.k.a. bi-fans) constitute a key structural motif in
gene regulation networks [10], citation networks, and several types of online
social networks [17].

Fig. 1. Forming a diclique by adding a link i2 → i4.

Motivated by the above discussion, we define a global diclique clustering
coefficient of a finite directed graph D with an adjacency matrix (Dij) by

Cdi(D) =

∑
(i1,i2,i3,i4)

Di1,i3Di1,i4Di2,i3Di2,i4∑
(i1,i2,i3,i4)

Di1,i3Di1,i4Di2,i3

, (2)

where the sums are computed over all ordered quadruples of distinct nodes. It
provides an empirical counterpart to the conditional probability (1) in the sense
that the ratio in (2) defines the conditional probability

PD

(
I2 → I4

∣∣ I1 → I3, I1 → I4, I2 → I3
)
, (3)

where PD refers to the distribution of the random quadruple (I1, I2, I3, I4) sam-
pled uniformly at random among all ordered quadruples of distinct nodes in D.

To quantify diclique clustering among the followers of a selected actor i, we
may define a local diclique clustering coefficient by

Cdi(D, i) =

∑
(i1,i2,i4)

Di1,iDi1,i4Di2,iDi2,i4∑
(i1,i2,i4)

Di1,iDi1,i4Di2,i
, (4)

where the sums are computed over all ordered triples of distinct nodes excluding
i. We remark that Cdi(D, i) = PD

(
I2 → I4

∣∣ I1 → I3, I1 → I4, I2 → I3, I3 = i
)
.

Remark 1. By replacing → by ↔ in (3), we see that the analogue of the above
notion for undirected graphs corresponds to predicting how likely the endpoints
of the 3-path I2 ↔ I3 ↔ I1 ↔ I4 are linked together.

1.2 A Directed Random Graph Model

Our goal is to define a parsimonious yet powerful statistical model of a directed
social network which displays diclique clustering properties as discussed in the
previous section. Clustering properties in many social networks, such as movie
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actor networks or scientific collaboration networks, are explained by underlying
bipartite structures relating actors to movies and scientists to papers [7,12]. Such
networks are naturally modeled using directed or undirected random intersection
graphs [1,3,4,6,8].

A directed intersection graph on a node set V = {1, . . . , n} is constructed
with the help of an auxiliary set of attributes W = {w1, . . . , wm} and a directed
bipartite graph H with bipartition V ∪ W , which models how nodes (or actors)
relate to attributes. We say that actor i demands (or follows) attribute wk when
i → wk, and supplies it when i ← wk. The directed intersection graph D induced
by H is the directed graph on V such that i → j if and only if H contains a
path i → wk → j, or equivalently, i demands one or more attributes supplied by
j (see Fig. 2). For example, in a citation network the fact that an author i cites
a paper wk coauthored by j, corresponds to i → wk → j.

Fig. 2. Node 1 follows node 2, because 1 demands attribute w1 supplied by 2.

We consider a random bipartite digraph H where the pairs (i, wk), i ∈ V ,
wk ∈ W establish adjacency relations independently of each other. That is,
the bivariate binary random vectors (Ii→k, Ik→i), 1 ≤ i ≤ n, 1 ≤ k ≤ m, are
stochastically independent. Here Ii→k and Ik→i stand for the indicators of the
events that links i → wk and wk → i are present in H. We assume that every
pair (i, wk) is assigned a triple of probabilities

pik = P (i → wk), qik = P (wk → i), rik = P (i → wk, wk → i). (5)

Note that, by definition, rik satisfies the inequalities

max{pik + qik − 1, 0} ≤ rik ≤ min{pik, qik}. (6)

A collection of triples {(pik, qik, rik), 1 ≤ i ≤ n, 1 ≤ k ≤ m} defines the distri-
bution of a random bipartite digraph H.

We will focus on a fitness model where every node i is prescribed a pair of
weights xi, yi ≥ 0 modelling the demand and supply intensities of i. Similarly,
every attribute wk is prescribed a weight zk > 0 modelling its relative popularity.
Denoting a ∧ b = min{a, b} and letting

pik = (γxizk) ∧ 1 and qik = (γyizk) ∧ 1 i, k ≥ 1, (7)
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we obtain link probabilities proportional to respective weights. Furthermore, we
assume that

rik = r(xi, yi, zk, γ), i, k ≥ 1, (8)

for some function r ≥ 0 satisfying (6). Here γ > 0 is a parameter, defining the
link density in H, which generally depends on m and n. Note that r defines the
correlation between reciprocal links i → wk and wk → i. For example, by letting
r(x, y, z, γ) = (γxz ∧ 1)(γyz ∧ 1), we obtain a random bipartite digraph with
independent links.

We will consider weight sequences having desired statistical properties for
complex network modelling. For this purpose we assume that the node and
attributes weights are realizations of random sequences X = (Xi)i≥1, Y =
(Yi)i≥1, and Z = (Zk)k≥1, such that the sequences {(Xi, Yi), i ≥ 1} and
{Zk, k ≥ 1} are mutually independent and consist of independent and identically
distributed terms. (However, the attribute weights Xi and Yi of any given node
i are allowed to be correlated with each other.) The resulting random bipartite
digraph is denoted by H, and the resulting random intersection digraph by D.
We remark that D extends the random intersection digraph model introduced
in [1].

1.3 Degree Distributions

When γ = (mn)−1/2 and m,n → ∞, the random digraph D defined in Sect. 1.2
becomes sparse, having the number of links proportional to the number of nodes.
Theorem 1 below describes the class of limiting distributions of the outdegree of
a typical vertex i. We remark that for each n the outdegrees d+(1), . . . , d+(n)
are identically distributed.

To state the theorem, we let Λ1, Λ2, Λ3 be mixed-Poisson random variables
distributed according to

P (Λi = r) = E e−λi
λr

i

r!
, r ≥ 0,

where λ1 = X1β
1/2E Z1, λ2 = Z1β

−1/2E Y1, and λ3 = X1(E Y1)(E Z2
1 ). We also

denote by Λ∗
i a downshifted size-biased version of Λi, distributed according to

P (Λ∗
i = r) =

r + 1
E Λi

P (Λi = r + 1), r ≥ 0.

Below d−→ refers to convergence in distribution.

Theorem 1. Consider a model with n,m → ∞ and γ = (nm)−1/2, and assume
that E Y1, E Z2

1 < ∞.

(i) If m/n → 0 then d+(1) d−→ 0.
(ii) If m/n → β for some β ∈ (0,∞), then d+(1) d−→ ∑Λ1

j=1 Λ∗
2,j, where

Λ∗
2,1, Λ

∗
2,2, . . . are independent copies of Λ∗

2, and independent of Λ1.

(iii) If m/n → ∞, then d+(1) d−→ Λ3.
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Remark 2. By symmetry, the results of Theorem 1 extend to the indegree d−(1)
when we redefine λ1 = Y1β

1/2E Z1, λ2 = Z1β
−1/2E X1, and λ3 = Y1(E X1)

(E Z2
1 ).

Remark 3. The limiting distributions appearing in Theorem1: (ii)–(iii) admit
heavy tails. This random digraph model is rich enough to model power-law
indegree and outdegree distributions, or power-law indegree and light-tailed out-
degree distributions [2].

Remark 4. In Theorem 1: (i) it is sufficient to assume that E Z1 < ∞.

We note that a related result for simple (undirected) random intersection
graph has been shown in [2]. Theorem 1 extends the result of [2] to digraphs.

1.4 Diclique Clustering

We investigate clustering in the random digraph D defined in Sect. 1.2 by approx-
imating the (random) diclique clustering coefficient Cdi(D) defined in (2) by a
related nonrandom quantity

cdi := P (I2 → I4
∣∣ I1 → I3, I1 → I4, I2 → I3

)
,

where (I1, I2, I3, I4) is a random ordered quadruple of distinct nodes chosen
uniformly at random. Note that here P refers to two independent sources of
randomness: the random digraph generation mechanism and the sampling of the
nodes. Because the distribution of D is invariant with respect to a relabeling of
the nodes, the above quantity can also be written as

cdi = P
(
2 → 4

∣∣ 1 → 3, 1 → 4, 2 → 3
)
.

We believe that under mild regularity conditions Cdi(D) ≈ cdi, provided that m
and n are sufficiently large. Proving this is left for future work.

Theorem 2 below shows that the random digraph D admits a nonvanishing
clustering coefficient cdi when the intensity γ is inversely proportional to the
number of attributes. For example, by choosing γ = (nm)−1/2 and letting m,n →
∞ so that m/n → β > 0, we obtain a sparse random digraph with tunable
clustering coefficient cdi and limiting degree distributions defined by Theorem1
and Remark 2.

Theorem 2. Assume that m → ∞ and γm → α for some constant α ∈ (0,∞),
and that E X3

1 , E Y 3
1 , E Z4

1 < ∞. Then

cdi →
(

1 + α

(
E X2

1

E X1
+

E Y 2
1

E Y1

)
(E Z2

1 )(E Z3
1 )

E Z4
1

+ α2 E X2
1

E X1

E Y 2
1

E Y1

(E Z2
1 )3

E Z4
1

)−1

.

(9)

Remark 5. When E X4
1 , E Y 4

1 , E Z4
1 < ∞, the argument in the proof of

Theorem 2 allows to conclude that cdi → 0 when γm → ∞.
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To investigate clustering among the followers of a particular node i, we study
a theoretical analogue of the local diclique clustering coefficient Cdi(D, i) defined
in (4). By symmetry, we may relabel the nodes so that i = 3. We will consider
the weights of node 3 as known and analyze the conditional probability

cdi(X3, Y3) = PX3,Y3(2 → 4
∣∣ 1 → 3, 1 → 4, 2 → 3

)
,

where PX3,Y3 refers to the conditional probability given (X3, Y3). Actually, we
may replace PX3,Y3 by PY3 above, because all events appearing on the right are
independent of X3.

One may also be interested in analyzing the conditional probability

cdi(X,Y ) = PX,Y (2 → 4
∣∣ 1 → 3, 1 → 4, 2 → 3

)
,

where PX,Y refers to the conditional probability given the values of all node
weights X = (Xi) and Y = (Yi). Again, we may replace PX,Y by PX1,X2,Y3,Y4

above, because the events on the right are independent of the other nodes’
weights. More interestingly, cdi(X,Y ) turns out to be asymptotically indepen-
dent of X2 and Y4 as well in the sparse regime.

Below P−→ refers to convergence in probability.

Theorem 3. Assume that m → ∞ and γm → α for some constant α ∈ (0,∞).

(i) If E X3
1 , E Y 3

1 , E Z4
1 < ∞, then

cdi(X3, Y3)
P−→
(

1 + α

(
E X2

1

E X1
+ Y3

)
(E Z3

1 )(E Z2
1 )

E Z4
1

+ α2Y3
E X2

1

E X1

(E Z2
1 )3

E Z4
1

)−1

.

(ii) If E Z4
1 < ∞, then

cdi(X,Y ) P−→
(

1 + α(X1 + Y3)
(E Z3

1 )(E Z2
1 )

E Z4
1

+ α2X1Y3
(E Z2

1 )3

E Z4
1

)−1

.

Note that for large Y3, the clustering coefficient cdi(X3, Y3) = cdi(Y3) scales as
Y −1
3 . Similarly, for large X1 and Y3, the probability cdi(X,Y ) scales as X−1

1 Y −1
3 .

We remark that similar scaling of a related clustering coefficient in an undirected
random intersection graph has been observed in [4].

Remark 6. When all attribute weights are equal to a constant z > 0, the state-
ment in Theorem 3: (ii) simplifies into cdi(X,Y ) P−→ (

1 + αzX1

)−1(1 + αzY3

)−1,
a result reported in [9].

Remark 7. Theorems 1, 2, and 3 do not impose any restrictions on the correlation
structure of the supply and demand indicators defined by (8).
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1.5 Diclique Versus Transitivity Clustering

An interesting question is to compare the diclique clustering coefficient cdi with
the commonly used transitive closure clustering coefficient

ctr = P
(
2 → 4

∣∣ 2 → 3 → 4
)
,

see e.g. [5,15]. The next result illustrates that ctr depends heavily on the corre-
lation between the supply and demand indicators characterized by the function
r(x, y, z, γ) in (8). A similar finding for a related random intersection graph has
been discussed in [1].

Theorem 4. Let m,n → ∞. Assume that γ = (nm)−1/2 and m/n → β for
some β > 0. Suppose also that E X2

1 , E Y 2
1 , E Z3

1 < ∞.

(i) If r(x, y, z, γ) = (γxz ∧ 1)(γyz ∧ 1), then ctr → 0.
(ii) If r(x, y, z, γ) = ε(γxz ∧ γyz ∧ 1) for some 0 < ε ≤ 1 and E (X1 ∧ Y1) > 0,

then

ctr →
(

1 +
√

β

ε

E (X1Y1)
E (X1 ∧ Y1)

(E Z2
1 )2

E Z3
1

)−1

. (10)

The assumption in (i) means that the supply and demand indicators of any
particular node–attribute pair are conditionally independent given the weights.
In contrast, the assumption in (ii) forces a strong correlation between the supply
and demand indicators. We note that condition (6) is satisfied in case (ii) for all
i ≤ n and k ≤ m with high probability as n,m → ∞, because n−1/2 maxi≤n(Xi+

Yi)
P−→ 0 and m−1/2 maxk≤m Zk

P−→ 0 imply that γXiZk+γYiZk ≤ 1 for all i ≤ n
and k ≤ m with high probability.

We remark that in case (i), and in case (ii) with a very small ε, the transitive
closure clustering coefficient ctr becomes negligibly small, whereas the diclique
clustering coefficient cdi remains bounded away from zero. Hence, it makes sense
to consider the event {1 → 3, 1 → 4, 2 → 3} as a more robust predictor of the
link 2 → 4 than the event {2 → 3 → 4}. This conclusion has been empirically
confirmed for various real-world networks in [10,17].

2 Proofs

The proof of Theorem1 goes along similar lines as that of Theorem 1 in [2]. It is
omitted. We only give the proofs of Theorems 2 and 3. The proof of Theorem 4
is given in an extended version of the paper available from the authors.

We assume for notational convenience that γ = αm−1. Denote events A =
{1 → 3, 1 → 4, 2 → 3}, B = {2 → 4} and random variables

p̃ik = α
XiZk

m
, q̃ik = α

YiZk

m
.

By P̃ and Ẽ we denote the conditional probability and expectation given X,Y,Z.
Note that pik = P̃ (Ii→k = 1), qik = P̃ (Ik→i = 1), and

pik = 1 ∧ p̃ik, qik = 1 ∧ q̃ik. (11)
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Proof (of Theorem 2). We observe that A = ∪i∈[4]Ai, where

A1 =
⋃

k∈C1

A1.k, A1.k =
{
I1→kI2→kIk→3Ik→4 = 1

}
,

A2 =
⋃

(k,l)∈C2

A2.kl, A2.kl =
{
I1→kI2→lIk→3Ik→4Il→3 = 1

}
,

A3 =
⋃

(k,l)∈C3

A3.kl, A3.kl =
{
I1→kI1→lI2→kIk→3Il→4 = 1

}
,

A4 =
⋃

(j,k,l)∈C4

A4.jkl, A4.jkl =
{
I1→jI1→kI2→lIj→3Ik→4Il→3 = 1

}
.

Here C1 = [m], C2 = C3 = {(k, l) : k = l; k, l ∈ [m]}, and C4 = {(j, k, l) : j =
k = l = j; j, k, l ∈ [m]}. Hence, by inclusion–exclusion,∑

i∈[4]

P (Ai) −
∑

{i,j}⊂[4]

P (Ai ∩ Aj) ≤ P (A) ≤
∑
i∈[4]

P (Ai).

We prove the theorem in Claims 1–3 below. Claim 2 implies that P (A) =∑
i∈[4] P (Ai) + O(m−4). Claim 3 implies that P (A ∩ B) = P (A1) + O(m−4).

Finally, Claim 1 establishes the approximation (9) to the ratio Cdi = P (A ∩
B)/P (A).

Claim 1. We have

P (A1) = α4m−3A1(1 + o(1)), (12)
P (A2) = α5m−3A2(1 + o(1)), (13)
P (A3) = α5m−3A3(1 + o(1)), (14)
P (A4) = α6m−3A4(1 + o(1)). (15)

Here we denote

A1 = a2
1b

2
1h4, A2 = a2

1b1b2h2h3, A3 = a1a2b
2
1h2h3, A4 = a1a2b1b2h

3
2.

and ar = E Xr
1 , br = E Y r

1 , hr = E Zr
1 .

Claim 2. For 1 ≤ i < j ≤ 4 we have

P (Ai ∩ Aj) = O(m−4). (16)

Claim 3. We have
P (B ∩ A) = P (A1) + O(m−4). (17)

Proof of Claim 1. We estimate every P (Ar) using inclusion-exclusion I1 − I2 ≤
P (Ar) ≤ I1. Here

I1 = I1(r) =
∑
x∈Cr

P (Ar.x), I2 = I2(r) =
∑

{x,y}⊂Cr

P (Ar.x ∩ Ar.y).
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Now (12–15) follow from the approximations

I1(1) = α4m−3A1(1 + o(1)), I1(2) = α5m−3A2(1 + o(1)), (18)
I1(3) = α5m−3A3(1 + o(1)), I1(4) = α6m−3A4(1 + o(1))

and bounds I2(r) = o(m−3), for 1 ≤ r ≤ 4.
Firstly we show (18). We only prove the first relation. The remaining cases

are treated in much the same way. From the inequalities, see (11),

p̃1kp̃2k q̃3k q̃4k ≥ p1kp2kq3kq4k ≥ p̃1kp̃2k q̃3k q̃4kI
′
k ≥ p̃1kp̃2k q̃3k q̃4k − p̃1kp̃2kq̃3k q̃4kI

∗
k,

I
′
k = Ip̃1k≤1Ip̃2k≤1Iq̃3k≤1Iq̃4k≤1, I

∗
k = Ip̃1k>1 + Ip̃2k>1 + Iq̃3k>1 + Iq̃4k>1,

we obtain
P (A1.k) = E p1kp2kq3kq4k = E p̃1kp̃2k q̃3k q̃4k + R, (19)

where

E p̃1kp̃2k q̃3k q̃4k = α4m−4A1 and |R| ≤ E p̃1kp̃2k q̃3k q̃4kI
∗
k = o(m−4).

The latter limit follows by dominated convergence because I
∗
k is bounded by 4

and tends to zero a.s. as m → ∞. Hence I1(1) = mP (A1.k) = α4m−3A1(1+o(1)).
Secondly we show that I2(r) = o(m−3), for 1 ≤ r ≤ 4. For r = 1 the bound

I2(1) =
(
m
2

)
P (A1.k ∩ A1.l) = o(m−3) follows from the inequalities

P (A1.k ∩ A1.l) ≤ E p̃1kp̃2k q̃3k q̃4kp̃1lp̃2lq̃3lq̃4l = O(m−8).

For r = 2, 3 we split I2(r) = J1 + · · · + J5, where

J1 =
∑

{(k,l),(k,l′)}⊂Cr

P (Ar.kl ∩ Ar.kl′), J2 =
∑

{(k,l),(k′,l)}⊂Cr

P (Ar.kl ∩ Ar.k′l),

J3 =
∑

{(k,l),(k′,l′)}⊂Cr

P (Ar.kl ∩ Ar.k′l′), J4 =
∑

{(k,l),(k′,k)}⊂Cr, k′ 
=l

P (Ar.kl ∩ Ar.k′k),

J5 =
∑

(k,l)∈Cr

P (Ar.kl ∩ Ar.lk).

In the first (second) sum distinct pairs x = (k, l) and y = (k′, l′) share the first
(second) coordinate. In the third sum all coordinates of the pairs (k, l), (k′, l′)
are different. In the fourth sum the pairs (k, l), (k′, k) only share one common
element, but it appears in different coordinates. We show that each Ji = o(m−3).
Next we only consider the case of r = 2. The case of r = 3 is treated in a similar
way. We have

J1 = m

(
m − 1

2

)
P (A2.kl ∩ A2.kl′) ≤ m3E H1, H1 = p1kp2lp2l′q3kq4kq3lq3l′ ,

J2 = m

(
m − 1

2

)
P (A2.kl ∩ A2.k′l) ≤ m3E H2, H2 = p1kp1k′p2lq3kq4kq3k′q4k′q3l,
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J3 =

(
m

2

)(
m − 2

2

)
P (A2.kl ∩ A2.k′l′) ≤ m4E H3,

H3 = p1kp1k′p2lp2l′q3kq4kq3k′q4k′q3lq3l′ ,

J4 = m(m − 1)(m − 2)P (A2.kl ∩ A2.k′k) ≤ m3E H4,

H4 = p1kp1k′p2lp2kq3kq4kq3k′q4k′q3l,

J5 =

(
m

2

)
P (A2.kl ∩ A2.lk) ≤ m2E H5, H5 = p1kp1lp2lp2kq3kq3lq4kq4l.

For H1 we estimate the typical factors pij ≤ p̃ij and qij ≤ q̃ij , but

q3l ≤ q̃3lIY3≤√
m + IY3>

√
m ≤ αm−1/2Zl + IY3>

√
m. (20)

We obtain

E H1 ≤ α6m−6a1a2b1h2h3

(
b2h2αm−1/2 + h1E Y 2

3 IY3>
√

m

)
= o(m−6). (21)

Hence J1 = o(m−3). Similarly, we show that J2 = o(m−4). Furthermore, while
estimating H3 we apply (20) to q3l and q3l′ and apply pij ≤ p̃ij and qij ≤ q̃ij to
remaining factors. We obtain

H3 ≤ p̃1kp̃1k′ p̃2lp̃2l′ q̃3k q̃4kq̃3k′ q̃4k′(αm−1/2Zl + IY3>
√
m)(αm−1/2Zl′ + IY3>

√
m). (22)

Since the expected value of the product on the right is o(m−8), we conclude that
E H3 = o(m−8). Hence J3 = o(m−4). Proceeding in a similar way we establish
the bounds J4 = o(m−5) and J5 = O(m−6).

We explain the truncation step (20) in some more detail. A simple upper
bound for H1 is the product

p̃1kp̃2lp̃2l′ q̃3k q̃4k q̃3lq̃3l′ = α7m−7X1X
2
2Y 3

3 Y4Z
3
kZ2

l Z2
l′ .

It contains an undesirable high power Y 3
3 . Using (20) instead of the simple upper

bound q3l ≤ q̃3l we have reduced in (21) the power of Y3 down to 2. Similarly,
in (22) we have reduced the power of Y3 from 4 to 2.

Using the truncation argument we obtain the upper bound I2(4) = o(m−3)
under moment conditions E X3

1 , E Y 3
1 , E Z4

1 < ∞. The proof is similar to that
of the bound I2(2) = o(m−3) above. We omit routine, but tedious calculation.

Proof of Claim 2. We only prove that q := P (A3∩A4) = O(m−4). The remaining
cases are treated in a similar way. For x = (j, k, l) ∈ C4 and y = (r, t) ∈ C3 we
denote, for short, IA4.x = I

∗
x = I

∗
jkl and IA3.y = Iy = Irt. For q = E IA4IA3 , we

write, by symmetry,

q ≤ E
( ∑

x∈C4

I
∗
x

)
IA3 = m(m − 1)(m − 2)E I

∗
123IA3

and
E I

∗
123IA3 ≤ E I

∗
123

( ∑
y∈C3

Iy

)
= E I

∗
123(J1 + J2 + J3).



32 M. Bloznelis and L. Leskelä

Here

J1 =
∑

r,t∈[m]\[3], r 
=t

Irt, J2 =
∑

r∈[m]\[3]

∑
s∈[3]

(
Isr + Irs

)
, J3 =

∑
r,t∈[3], r 
=t

Irt.

Finally, we show that E I
∗
123Ji = O(m−7), i ∈ [3]. For i = 1 we have, by

symmetry,
E I

∗
123J1 = (m − 3)(m − 4)E I

∗
123I45. (23)

Invoking the inequalities

E I
∗
123I45 = E Ẽ I

∗
123I45 ≤ E p̃11p̃12p̃15p̃23p̃24q̃31q̃42q̃33q̃34q̃45 = O(m−10) (24)

we obtain E I
∗
123J1 = O(m−8).

The bound E I
∗
123J2 = O(m−7) is obtained from the identity (which follows

by symmetry)

E I
∗
123J2 = (m − 3)

∑
s∈[3]

(
E I

∗
123Is4 + E I

∗
123I4s

)
,

combined with the bounds E I
∗
123Is4 + E I

∗
123I4s = O(m−8), s ∈ [3]. We only

show the latter bound for s = 3. The cases s = 1, 2 are treated in a similar way.
We have

E I
∗
123I34 ≤ E p̃11p̃12p̃13p̃23q̃31q̃42q̃33q̃44 = O(m−8),

E I
∗
123I43 ≤ E p̃11p̃12p̃13p̃23p̃24q̃31q̃42q̃33q̃34q̃43 = O(m−10).

The proof of E I
∗
123J3 = O(m−7) is similar. It is omitted.

Proof of Claim 3. We use the notation IAj
= 1−IAj

for the indicator of the event
Aj complement to Aj . For 2 ≤ i ≤ 4 we denote Hi =

(Ai ∩ B) \ ∪1≤j≤i−1Aj .
We have

P (A ∩ B) = P (∪i∈[4]Ai ∩ B) = P (A1 ∩ B) + R, 0 ≤ R ≤ P (∪2≤i≤4Hi).

Note that P (A1 ∩ B) = P (A1). It remains to show that P (Hi) = O(m−4),
2 ≤ i ≤ 4.

We have, by symmetry,

P (H2) = E IA2IBIA1 ≤ E
∑
x∈C2

IA2.xIBIA1 = m(m − 1)E IA2.12IBIA1 . (25)

Furthermore, we have IA2.12IBIA1 ≤ IA2.12

(
I2→4 +

∑
3≤j≤m I2→jIj→4

)
and, by

symmetry,

E IA2.12IBIA1 ≤ E IA2.12I2→4 + (m − 2)E IA2.12I2→3I3→4.

A simple calculation shows that E IA2.12I2→4 ≤ E p̃11p̃22q̃31q̃41q̃32q̃42 = O(m−6).
Similarly, E IA2.12I2→3I3→4 = O(m−7). Therefore, E IA2.12IBIA1 = O(m−6).
Now (25) implies P (H2) = O(m−4). The bounds P (Hj) = O(m−4), j = 3, 4 are
obtained in a similar way.

Proof (of Theorem 3). The proof is the same as that of Theorem 2, but while
evaluating the probabilities of events A and A ∩ B we treat X1,X2, Y3, Y4 as
constants.
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Abstract. We propose two asynchronously distributed approaches for
graph-based semi-supervised learning. The first approach is based on
stochastic approximation, whereas the second approach is based on ran-
domized Kaczmarz algorithm. In addition to the possibility of distrib-
uted implementation, both approaches can be naturally applied online to
streaming data. We analyse both approaches theoretically and by experi-
ments. It appears that there is no clear winner and we provide indications
about cases of superiority for each approach.

1 Introduction

Semi-supervised learning (SSL) is a type of learning which uses both labelled and
unlabelled data for training [8]. In many practical cases, the amount of labelled
data is much less compared to the unlabelled data, making SSL a powerful
tool for processing massive data. The present work focuses on graph based SSL
[8,11,19,23,28,29]. Consider a (weighted) graph in which nodes belong to one of
K classes and the true class of a few nodes is given. An edge and its weight in the
graph indicate a similarity and similarity degree between two nodes, respectively.
Hence such a graph is called a similarity graph. SSL aims to estimate the class of
each of the unlabelled nodes by using the true class information of few labelled
nodes and the structure of the graph.

Being of practical importance [11,28], graph based SSL has been widely stud-
ied. Most though not all (see e.g., [13,20]) methods formulate SSL as a quadratic
optimization problem [2–4,25–27] for feature vectors and then solve it or the
associated stationary point equation iteratively. Iterative solutions become com-
putationally intensive because they involve matrix operations which grow in size
as a polynomial with the graph size, though the growth can be linear or quasi-
linear in case of sparse graphs. The data can be distributed over a network (as in
sensor networks [18] or in the internet of things) or can be stored and processed
in distributed manner as is the case in data centers. These motivate us to look for
distributed algorithms. There are a variety of algorithms that address this issue,
see, e.g., the classic text of [5] or a more recent comparative survey of [14]. We
apply variants of two of these for the solution of the stationary point equation for

c© Springer International Publishing AG 2016
A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 34–46, 2016.
DOI: 10.1007/978-3-319-49787-7 4
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the feature vectors and conduct a comparative analysis. The first, more original,
is based on gossip-type stochastic approximation, whereas the second is based
on the well known randomized Kaczmarz algorithm. The randomized Kaczmarz
algorithm has drawn much attention in recent years, beginning with the seminal
work of [22] - see [16,17,30] for some subsequent work ([30] is the closest in
spirit to ours). Both approaches are asynchronously distributed and can also be
applied online to streaming data (e.g., as in stream image classification tasks
[24]). There is no clear winner with respect to accuracy and we provide indica-
tions about cases of superiority for each approach. With respect to computational
efficiency, the stochastic approximation approach appears to be generally more
efficient than the randomized Kaczmarz approach on all our numerical examples.
In the case of online data processing, both approaches are simpler and compu-
tationally lighter than the method of [24] based on the Nyström approach which
is not distributed. We would also like to mention that the recent well perform-
ing SSL methods [19,23] use the Jacobi method which can be straightforwardly
distributed in synchronous manner. However, we would like to note that the
convergence conditions for the asynchronous version of the Jacobi method can
be more stringent than the convergence conditions for our approaches [5].

As shall be seen later, our only requirements are: global knowledge on the
number of classes and the ability of nodes to pass information to their immediate
neighbors. The adjacency matrix of the network is defined by the support of the
similarity matrix. Clearly, our approach will be particularly efficient when the
similarity matrix is sparse. Regarding mapping data points to agents, our basic
scenario is: each node corresponds to a different agent and needs to compute the
elements of the classification functions only corresponding to itself. For instance,
this is a natural setting in wireless sensor networks. Our approaches can be
extended in a straightforward way to the case when one agent is responsible
for several nodes. The computation at each node happens in an asynchronous
fashion and the information needs to be exchanged only among the neighbours.
This highlights the distributed nature of the approaches.

Rest of the article is organised as follows: the next section introduces the
problem formally. Section 3 introduces and analyses two distributed approaches
for graph-based SSL. Section 4 shows that a number of established SSL methods
can be mapped to our general methodology. Section 5 investigates and compares
the two approaches by numerical experiments.

2 Definitions and Problem Formulation

Consider a graph with (weighted) adjacency matrix A with N nodes, each
belonging to one of K classes. (We discuss online formulation of the problem
later.) The class information is given for some nodes, referred to as labelled
nodes. Define D as a diagonal matrix with Dii = d(i) for d(i) := the (weighted)
degree of node i. We also use the standard graph Laplacian L = D − A. Define
N × K matrix Y containing information about the labelled nodes by:

Yij =
{

1 if labelled node i belongs to class j,
0 otherwise.
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F = {Fik} is a N × K matrix with Fik representing the ‘belongingness’ of node
i to class k. The vector F∗k is referred to as ‘classification function’ or ‘feature
vector’. The aim of the SSL problem is to find F∗k such that it is close to the
labelling function and it varies smoothly over the graph. The class of node i
is calculated from F by assigning class k to node i if Fik > Fij , ∀ j �= k.
The optimization problem associated with the above stated requirements is to
minimize

Q(F ) =
K∑

k=1

FT
∗kAF∗k + μ

K∑
k=1

(F∗k − Y∗k)T B(F∗k − Y∗k), (1)

where A is the positive (semi-)definite graph kernel and B the cost of devi-
ation from the labels. Typically, the support of matrix A coincides with the
support of the adjacency matrix A and matrix B is diagonal. μ > 0 is the
regularization parameter. Majority of all existing graph-based semi-supervised
learning methods can be cast into the optimization formulation (1). A few impor-
tant examples are: Choosing A = Dσ−1LDσ−1 and B = D2σ−1 [2], we obtain
semi-supervised methods based on standard Laplacian (σ = 1) [26], normalized
Laplacian (σ = 1/2) [25], and PageRank (σ = 0) [1]. If A = L and B = I, we
retrieve the semi-supervised method based on the regularized Laplacian [3,9,21],
which can be viewed as a Lagrangian relaxation of the method based on har-
monic functions [27]. If A = γD − A and B = I, we obtain the method based
on the modified regularized Laplacian [15]. A good comparative overview of the
graph-based semi-supervised learning methods can be found in [11]. Nearly all
methods described in [11] can be represented in optimization formulation (1). In
[4,19,23] the authors discussed slightly different quadratic optimization formula-
tions of the semi-supervised learning methods with an additional quadratic extra
term. That additional term can be included in the first or second terms of (1).

Except for the harmonic functions method which puts zeros for diagonal
elements of B when labels are unavailable, we used zero as default label when
unavailable, a choice neutral to the classes. This gives a bias towards zero for
learned classification functions, but because we are interested only in their ordi-
nal comparison, the classification is robust to this choice.

The above problem is a convex quadratic optimization problem. Applying the
first order optimality condition and solving for F∗k gives the stationary point
equation: [

(A + AT ) + μ(B + BT )
]
F∗k = μ(B + BT )Y∗k. (2)

3 Distributed Approaches

In this section we describe two approaches for solution of (2) which can be natu-
rally distributed (in asynchronous fashion) and can also be applied in a scenario
with streaming data. We prove the convergence of the proposed approaches and
comment on their rate of convergence.
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3.1 Stochastic Approximation Approach

The first solution is based on Stochastic Approximation (SA-approach). Consider
the general problem of finding a unique solution x∗ of the system

x = G(x) = B̃x + Ỹ , (3)

where x, Ỹ ∈ Rd and B̃ = {b(i, j)} ∈ Rd×d is irreducible non-negative. In Sect. 4
we show that most semi-supervised learning methods can be written in this
form for appropriate B̃ and Ỹ ; see, e.g., (7), (9). Define H as a diagonal matrix
with elements as row sums of B̃, i.e., Hii =

∑
j B̃ij Define P as P = H−1B̃,

viewed as the transition probability matrix on the graph, and Q is its irreducible
counterpart as in the PageRank algorithm: Q = (1 − ε)P + ε/N E, where E is
an N × N matrix with all 1’s. Let Xt, t ≥ 0, be a Markov chain with transition
matrix Q and {ηt}t≥0 a positive step-size sequence satisfying

∑
t≥0 ηt = ∞ and∑

t≥0 η2
t < ∞. The stochastic approximation scheme to solve (3) is:

xt+1
i =xt

i + ηtI{Xt = i}P (i,Xt+1)
Q(i,Xt+1)

(
Hiix

t
Xt+1

− xt
i + Ỹi

)
. (4)

Convergence Analysis. In Eq. (3), if B̃ has its Perron-Frobenius eigenvalue
λ ∈ (0, 1) with the normalized positive eigenvector w = [w1, ...wd]T , then the
following hold. (Proofs will appear in the journal version of the paper.) Define
the weighted norm ‖x‖w = maxi |xj/wi|.

Lemma. Map G is a contraction w.r.t. ‖x‖w, i.e., ‖G(x)−G(y)‖w ≤ λ‖x−y‖w.

Using the above lemma, we can establish the following.

Theorem. Almost surely, xt → x∗ as t → ∞.

Convergence Rate. Section 4.2 of [6] gives results on sample complexity of
a synchronous stochastic approximation. The result broadly implies that, at
time n, the probability of remaining within a prescribed small neighborhood

of x∗ after n + τ iterates is greater than 1 − O

(
e
− C
∑

t≥n η2
t

)
, C > 0. For our

case where, ηt = Θ
(
1
t

)
, the decay of probability of ever escaping from this

neighborhood after n+ τ iterations is exponential. Here τ is a quantity specified
in terms of problem parameters.

We used Markov chain sampling of nodes above. For more general asyn-
chronous schemes, the following considerations apply. We can use the step size
ην(t,i) for the ith node where ν(t, i) = the number of updates node i has made
till time t i.e., its local clock. Also, ηt has to satisfy additional conditions as in
Chap. 7 of [6]. We then get a time scaled version of the same limiting O.D.E. in
the asynchronous case as the synchronous case and the asymptotic behavior of
the algorithm is the same as that for the synchronous case.
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3.2 Randomized Kaczmarz Approach

Another asynchronously distributed approach is to apply the randomized Kacz-
marz algorithm (RK-approach) to (2). We solve the linear system (2) of the form
Ax = b, where A = (A+AT )+μ(B+BT ) and b = μ(B+BT )Y . Let ai := the ith

row of A, âi := the unit normalized row ai and pi := the probability of sampling
it for the Kaczmarz update (e.g., pi = 1

N for uniform sampling). The update
rule at step t is given by

x(t + 1) = x(t) +
∑

i

I{ξ(t) = i}b(i) − 〈ai, x(t)〉
‖ai‖22

aT
i , (5)

where Prob(ξ(t) = i) = pi ∀ i ∈ {1, 2, ..., N}. Let λmin be the smallest non-
negative eigenvalue of the matrix

∑
i piâ

T
i âi. From [7], we have that for λmin ∈

(0, 1), x(t) − x∗ → 0 almost surely and E[‖x(t) − x∗‖2] → 0 exponentially with
rate (1 − λmin) where x∗ is such that Ax∗ = b.

The randomized Kaczmarz scheme is an inherently distributed and asyn-
chronous scheme because only one component (corresponding to a single node)
is being updated at a time, using local information from the node’s neighbours.
This sampling is done probabilistically in an i.i.d. fashion with probability vector
p = [p1, ..., pN ]T . We may drop the assumption of identical distribution sampling
and still retain exponential decay of mean square error as long as λmin remains
bounded away from 1 from above for time-varying p. In fact, one may drop the
independence assumption as well, replacing it with the above condition on the
conditional sampling probabilities given the history. The exponential decay rate
of mean square error then is 1 − λ∗, where λ∗ < 1 is the aforementioned upper
bound. For normal matrices, the condition number of a matrix M is given by
κ(M) =

∣∣∣λmax(M)
λmin(M)

∣∣∣, where λmin(M) and λmax(M) are its minimum and max-
imum eigenvalues, respectively. Hence a high condition number would imply a
very small λmin resulting in very slow convergence.

3.3 Comments on Implementation

For the asynchronous implementation of (4) and (5) we have a Poisson local
clock at each node. The node updates its classification function once the local
clock ticks. We simulate this by performing a coin toss at each instant of the
global clock. The coin has a low probability pH of turning up heads. The node
updates its classification function if it gets head at that time instant. There can
be multiple nodes updating at a given global instant while there can also be no
nodes updating at some other instant. This leads to the nodes updating their
classification function asynchronously.

We emphasize that both our approaches, SA and RK, require the information
only from the neighbors of the node. In fact, for any update, SA needs the
information only from one random neighbor. Updating each node independent
of the other nodes with only local information implies the distributed nature of
the updates. In theory, we can have different pH for each node and convergence is
assured if pH for all nodes is bounded away from zero. What we find particularly
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interesting is that the unlabelled nodes do not need to know the location of the
labelled nodes. The information from the labelled nodes propagates through the
network from neighbor to neighbor.

4 Application to Specific SSL Methods

We discuss the application of the two approaches to several well known SSL
methods.

4.1 Normalized Laplacian-Type Methods

For A = Dσ−1LDσ−1 and B = D2σ−1 in (2), we obtain the normalized Laplacian-
type methods [1,2,25,26] which yields the following equation on simplification:(

I − 1
1 + μ

D−σADσ−1

)
F∗k =

μ

1 + μ
Y∗k. (6)

This equation can be solved using RK-approach or can be recast to resemble (3)
as follows:

F∗k =
1

1 + μ
D−σADσ−1F∗k +

μ

1 + μ
Y∗k. (7)

In case of normalized Laplacian-type methods, B̃ = 1
1+μD−σADσ−1 is similar

to and a scaled version of the transition probability matrix D−1A. Hence its
top eigenvalue is less than 1. Thus a stochastic approximation of the form of (4)
written for (7) will converge to its solution.

4.2 Regularized Laplacian Method

A = L,B = I in (2) yield the regularized Laplacian method [3,9,21] which on
simplification gives:

(L + μI)F∗k = μY∗k. (8)

This can be solved using RK-approach or can be rewritten in a form similar to
Eq. (3) which leads to the stochastic approximation scheme:

F∗k = (D + μI)−1AF∗k + μ(D + μI)−1Y∗k. (9)

In case of regularized Laplacian, B̃ = (D+μI)−1A. Its row sums are <1, making
B̃ sub-stochastic with its top eigenvalue <1. Hence a stochastic approximation
for (9) of the form (4) will converge to its solution.

4.3 Harmonic Functions Method

Finally, substituting in (2) A = L and B = diag(I, 0), where the non-zero ele-
ments correspond to the labelled points, we get the harmonic functions method
[27] which on simplification gives:

(L + μdiag(I, 0))F∗k = μY∗k. (10)

A direct application of SA-approach may not be possible for this, but application
of the RK-approach is straightforward.
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5 Experiments

We test our distributed approaches on the three methods (normalized Laplacian
with σ = 1/2 [25], regularized Laplacian [3,9,21] and harmonic functions [27])
applied to synthetic as well as real world graphs. As performance metric, we
use classification error, i.e., the percentage of nodes wrongly classified. For all
the experiments we took μ = 0.5 as the regularization parameter (the results are
robust for reasonable values of μ). For comparison purposes, we take 1 iteration =
N steps, where N is the number of nodes in the graph and one step is defined as
one application of formula (5) for RK-approach and formula (4) for SA-approach,
respectively. In most experiments, a uniform distribution is used for sampling
rows in RK-approach. A decreasing step size for node i of 1

2+ν(t,i) where ν(t, i)
is the local clock at node i is used in (4).

5.1 WebKB Graph

We look at the classification of webpages of 4 universities - Cornell, Texas,
Washington and Wisconsin - corresponding to the popular WebKB dataset [10].
The graph formed by the hyperlinks connecting these pages is taken such that
only webpages with hyperlinks to webpages within the dataset are considered.
Self-links are removed. Clusters thus formed are: Cornell (676), Texas (590),
Washington (982) and Wisconsin (613). The highest degree node from each
class (university main web page) is labelled. Figure 1a shows the error evolu-
tion for the Kaczmarz implementation of the three SSL methods. Convergence
only occurs for normalized Laplacian for the number of iterations shown while
both other methods have a negative slope. Convergence occurs for regularized
Laplacian method after 200 iterations. All the methods seem to have the same
initial rate of convergence however they change drastically after around 3 itera-
tions. Theoretical Classification Error (TCE) for all the methods is almost the

(a) Comparison of Kaczmarz implemen-
tation of all the three methods. In dot-
ted is shown the theoretical classifica-
tion error (TCE).

(b) Comparison of Kaczmarz, power it-
eration, Jacobi and stochastic approx-
imation implementation of normalized
Laplacian.

Fig. 1. Performance on the WebKB graph
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same. Figure 1b shows the comparison of RK-approach, SA-approach, distrib-
uted Jacobi and power iteration for normalized Laplacian. Power iteration is
simply the repeated application of (7) with one iteration defined as multipli-
cation with 1

1+μD−1/2AD−1/2 once. RK-approach’s performance is better than
that of SA-approach for this graph in terms of error while convergence occurs
faster for the latter. Convergence is fastest for power iterations (PI) implemen-
tation since in each iteration, the classification function of all the nodes is being
updated and as a result, the update performed in the consequent iteration would
be with the updated classification functions of the neighbors. This is unlike SA
and RK approach where the update might use the non-updated classification
function of its neighbor.

Let a call be defined as the transfer of information to a node from its neigh-
bor. This information is used for updating the classification function. As Fig. 1b
shows, the number of iterations is almost the same for RK and SA. While updat-
ing the classification function of a node in one step of SA, only one of its neigh-
bors is called, whereas all neighbors are called in RK and Jacobi. As a result,
RK and Jacobi have more exchange of information and is computationally more
expensive than SA.

5.2 US Football Graph

We next see the classification in US college football network [12]. Nodes in the
graph represent colleges that participated in the Division 1 games for the 2000
season. Edges between nodes represent games between the two teams they con-
nect. The classes and the nodes corresponding to each class are known for this
graph. There are 12 classes with each class consisting of 8–12 teams. Teams
within the same class, called ‘conference’, tend to play more games with each
other than with teams from another conference. The highest degree node from
each class (conference) is labelled. Figure 2a shows the error evolution for the

(a) Comparison of Kaczmarz implemen-
tation of all the three methods. In dot-
ted is shown the theoretical classifica-
tion error (TCE).

(b) Comparison of Kaczmarz, power it-
eration, Jacobi and stochastic approx-
imation implementation of normalized
Laplacian.

Fig. 2. Performance on the US Football graph
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RK-approach implementation of the three methods. The convergence is fastest
for the normalized Laplacian while the error is less for regularized Laplacian and
harmonic functions methods. Figure 2b shows the comparison of RK-approach,
SA-approach, distributed Jacobi and power iteration for normalized Laplacian.
In this example, RK and Jacobi show similar behaviour. We recall again that RK
and Jacobi use more information and computationally more expensive than SA.

5.3 Gaussian Mixture Model Graph

A Gaussian mixture model graph of 10000 nodes with 3 classes was created
with the probability of a node belonging to either of the three classes being
equal. Each class was generated on a Gaussian kernel. Nodes within a given
radius of each other shared edges. Two nodes with the highest degree from each
class were labelled. Figure 3a compares the error evolution of RK-approach for
the three methods. Convergence only occurs for normalized Laplacian method
for the number of iterations shown, while the other methods have a negative
slope. All the methods seem to have the same initial rate of convergence which
changes drastically after a few iterations. Figure 3b compares the RK-approach,
SA-approach and power iteration for normalized Laplacian. The performance
of PI is best in terms of both error and rate of convergence. We would like to
emphasize that we sacrifice the rate of convergence for the distributed nature of
algorithms. However, the performance for RK and SA approaches for this graph
is different as compared to WebKB graph, Fig. 1b. RK-approach has a higher
error as well as convergence time as compared to SA-approach.

(a) Comparison of Kaczmarz implemen-
tation of all the three methods. In dot-
ted is shown the theoretical classifica-
tion error (TCE).

(b) Comparison of Kaczmarz, power it-
eration and stochastic approximation
implementation of normalized Lapla-
cian.

Fig. 3. Performance on Gaussian mixture model graph of 10000 nodes.

5.4 Online Learning

In the RK-approach as well as SA-approach, the classification function is updated
only for one or few nodes in one step. In other words, only local information is



Distributed and Asynchronous Methods for SSL 43

used each time while updating, allowing for natural application of our approaches
to dynamic setting with streaming data. To illustrate the performance of our
approaches in the dynamic setting, we consider a dynamic stochastic block model
graph in which nodes enter and leave the graph. Upon arrival, a node is connected
with another node of the same class with probability pin = 0.15 and node from
a different class with probability pout = 0.01; pin � pout. Nodes arrive into the
graph according to the Poisson process with rate λarr. The class of the arriving
node is chosen according to a pre-specified probability distribution. Each node
stays in the graph for a random time that is exponentially distributed with
mean 1/μdep, after which it leaves. The maximum number of nodes in the graph
is limited to K, i.e., nodes arriving when the number of nodes in the graph
is K do not become a part of the graph. This system can be modelled as an
M/M/K/K queue. As a result, irrespective of the number of nodes that the
graph has initially, the average of the number of nodes in the graph will reach
a steady state value given approximately by λarr

μdep
. In the considered example,

the graph has 3 classes and an incoming node could belong to either of the
classes with equal probability. We choose K = 1000, λarr = 1/(2 × 104) and
μdep = 1/107. Therefore, λarr

μdep
= 500. Two nodes with the maximum degree

from each class were chosen as the labelled nodes during initialization. In case
a labelled node left, then a random neighbor was labelled. In the plots, K steps
are considered as one iteration.

Figures 4a, b and c show the error evolution of the RK-approach implemen-
tation of normalized Laplacian, regularized Laplacian and harmonic functions
methods, respectively, for the dynamic stochastic block model graph. The vari-
ation of the graph size is also shown in the same figures. In terms of accuracy,
the performances of regularized Laplacian and harmonic function methods are
similar, being between 0–1.5 % during steady state. Interestingly, normalized
Laplacian method has a higher error compared to the other two, being close
to 3.5 %. Figure 5 shows a zoom of the error evolution from Figs. 4a, b and c.
From this figure, it can be seen that the convergence is faster for the normalized
Laplacian compared to the other two methods, both of which have almost the
same convergence time.

(a) Normalized Laplacian. (b) Regularized Laplacian. (c) Harmonic functions.

Fig. 4. Error evolution and graph size variation for a dynamic stochastic block model
graph for Kaczmarz implementation of various methods.
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Fig. 5. This plot shows the comparison of Kaczmarz implementation of different meth-
ods for a dynamic stochastic block model.

5.5 Faster Convergence for Normalized Laplacian

The convergence was faster for the normalized Laplacian method compared to
the regularized Laplacian and harmonic functions methods in all the cases of the
RK-approach application. This can be understood from the condition number
values for each method on different graphs as shown in Table 1 and invoking
theoretical observations from Sect. 3.2. The condition number is the smallest for
the normalized Laplacian method and the highest for the harmonic functions
method in all the cases. λmax being less than 1 for all the methods, the λmin

must be very small for the harmonic functions method as compared to normal-
ized Laplacian to explain the large condition number. This leads to their large
convergence times.

Table 1. Condition number values.

Normalized Regularized Harmonic

US Football 3.88 32.32 314.55

WebKB 5 300 5.6 × 1018

Gaussian 4.46 2.8 × 103 4.6 × 106

6 Conclusion

We proposed two asynchronously distributed approaches for graph-based semi-
supervised learning. The first approach is based on stochastic approximation,
whereas the second is based on the randomized Kaczmarz algorithm. We demon-
strated that both the approaches can be naturally applied online to streaming
data. Both were analysed theoretically and by experiments. Our main conclu-
sions: there is no clear winner in terms of accuracy but the SA-approach generally
outperformed the RK-approach in terms of operations count. In terms of accu-
racy, RK-approach performed better on real world datasets (US football and
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WebKB) while SA-approach performed better on the synthetic Gaussian mix-
ture model. When using RK-approach, normalized Laplacian method showed
much faster convergence as compared to regularized Laplacian and harmonic
functions owing to its low condition number.
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Labs.
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14. Gower, R.M., Richtárik, P.: Randomized iterative methods for linear systems.
SIAM J. Matrix Anal. Appl. 36(4), 1660–1690 (2015)

15. Ito, T., Shimbo, M., Kudo, T., Matsumoto, Y.: Application of kernels to link
analysis. In: Proceedings of ACM SIGKDD (2005)

16. Liu, J., Wright, S.J., Sridhar, S.: An asynchronous parallel randomized Kaczmarz
algorithm (2014). arXiv preprint: arXiv:1401.4780

http://arxiv.org/abs/1401.4780


46 K. Avrachenkov et al.

17. Needell, D., Ward, R., Srebro, N.: Stochastic gradient descent, weighted sampling,
and the randomized kaczmarz algorithm. In: Proceedings of NIPS (2014)

18. Pan, J.J., Pan, S.J., Yin, J., Ni, L.M., Yang, Q.: Tracking mobile users in wireless
networks via semi-supervised colocalization. IEEE Trans. Pattern Anal. Mach.
Intell. 34(3), 587–600 (2012)

19. Ravi, S., Diao, Q.: Large scale distributed semi-supervised learning using streaming
approximation. In: Proceedings of AISTATS (2016)

20. Shivanna, R., Chatterjee, B.K., Sankaran, R., Bhattacharyya, C., Bach, F.: Spec-
tral norm regularization of orthonormal representations for graph transduction. In:
Advances in Neural Information Processing Systems, pp. 2215–2223 (2015)

21. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B.,
Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45167-9 12

22. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential
convergence. J. Fourier Anal. Appl. 15(2), 262–278 (2009)

23. Talukdar, P.P., Crammer, K.: New regularized algorithms for transductive learn-
ing. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
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Abstract. Bootstrap percolation is a growth model inspired by cellular
automata. At the initial time t = 0, the bootstrap percolation process
starts from an initial random configuration of active vertices on a given
graph, and proceeds deterministically so that a node becomes active at
time t = 1, 2, . . . if sufficiently many of its neighbors are already active at
the previous time t−1. In the most basic model, all vertices have the same
initial probability of being active in the initial configuration. One of the
main questions is to determine the percolation threshold (if it exists) with
the property that all nodes in the given graph become active asymptoti-
cally almost surely (a.a.s.) for the initial probability above this threshold,
while this is not the case below the threshold. In this work, we study a
scenario where the nodes do not all receive the same probabilities, but
to keep the problem tractable, we impose conditions on the shape of the
graph and the initial probabilities. Specifically, we consider infinite peri-
odic trees, in which the degrees and initial probabilities of nodes on a path
from the root node are periodic, with a given periodicity. Instead of the
simple percolation threshold, we now obtain an entire region of possible
probabilities for which all nodes in the tree become a.a.s. active. We show:
(i) that the unit cube, as the support of the initial probabilities, can be
partitioned into two regions, denoted by W0 and W 0, such that the tree
becomes (does not become) a.a.s. fully active for any initial probability
vector that belongs to W 0 (resp. W0); (ii) for every node in the tree, we
provide the probability that the node becomes eventually active, for any
initial probability vector that belongs to W0; (iii) further, we specify the
boundary of W0 and show how it can be numerically computed.

1 Introduction

In classical percolation theory, nodes of a graph become active according to
certain probabilities to form a static configuration. Bootstrap percolation is a
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48 M. Bradonjić and S. Wagner

variant inspired by cellular automata that proceeds dynamically afterwards:
starting from an initial configuration (determined in the same way as in clas-
sical percolation), the process proceeds in discrete time-steps, where a node is
active at time t if it is or sufficiently many of its neighbors are already active at
time t − 1. It may thus happen that all nodes become eventually active, which
poses the natural question for the existence of a critical threshold probability
(assuming that all nodes have the same initial probability of being active) such
that all nodes (do not) become a.a.s. active if the initial probability is greater
(resp. smaller) than the threshold. There is a large body of work on bootstrap
percolation on different graph models: regular or irregular, discrete or random,
homogeneous or inhomogeneous, as well as in isotropic or anisotropic environ-
ment [1–13,15–25].

In this work, we study a scenario where the nodes do not all receive the same
probabilities, but to keep the problem tractable, we impose conditions on the
shape of the graph and the probabilities and activation thresholds. Specifically,
we consider infinite periodic trees, in which the degrees of nodes on a path
from the root node are periodic, and also impose a periodicity condition on the
probabilities. The existence of a percolation threshold for periodic trees has been
established in [14] in the case where the initial probability of being active and
the activation threshold are the same for all nodes.

In this work the initial probability and the activation threshold are functions
of the node itself, which is the main generalization of the model analyzed in [14].
As motivation, consider a dynamical process (e.g. advertisement, rumor, or viral
spread). It is usually the case that particles in the system become initially active
(e.g. obtain the initial piece of information or become infected) with different
probabilities, as well as that the activation threshold differs among particles
(e.g. the level required to convince a customer to buy a new product or for one
to become infected depends on the individual itself).

Hence in this work we consider the following object. A periodic tree corre-
sponding to a sequence d0, d1, . . . , d�−1 is an infinite tree with a root node such
that every vertex at distance i mod � from the root has degree di + 1. In addition
to the degrees, we specify activation thresholds θ0, θ1, . . . , θ�−1 (2 � θi � di − 1)
for the bootstrap percolation. This means that a node at distance i mod � from
the root will become active: either at the initial random phase t = 0, or once θi

of its neighbors are active at the previous time step. Finally, and this is the main
difference to all prior work, we allow the initial probabilities to be periodic as well
(rather than fixed throughout the tree): at time 0, a node at distance i mod � from
the root becomes active with probability pi. Note that the periods of di, θi and pi

do not a priori have to be equal, but we can assume so without loss of generality,
since we can otherwise replace � by the least common multiple of the periods.

In this work, we study bootstrap percolation on inhomogeneous periodic trees
with different initial probabilities. Instead of the simple percolation threshold, as
shown in [14], we now obtain an entire region of possible probabilities for which
all nodes in the tree become a.a.s. active. We show: (i) that the unit cube, as
the support of the initial probabilities p0, p1, . . . , p�−1, can be partitioned into
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two regions, denoted by W0 and W 0, such that: the tree becomes (does not
become) a.a.s. fully active for any initial probability vector that belongs to W 0

(resp. W0); (ii) for every node in the tree, we provide the probability that the
node becomes eventually active, for any initial probability vector that belongs to
W0; (iii) further, we specify the boundary of W0 and how it can be numerically
computed. In fact we derive the explicit system of equations from which one can
numerically compute the boundary of W0.

2 Definitions and Preliminaries

Formally, bootstrap percolation is a cellular automaton defined on an underly-
ing graph G with state space {0, 1}V (G) whose initial configuration is chosen
by a Bernoulli product measure. In other words, every node is in one of two
different states 0 or 1, inactive or active respectively, and a node v is active
with some initial probability pv, independently of other nodes, within the initial
configuration at t = 0. In this work the initial probability pv is a function of the
node itself. After drawing an initial configuration, a discrete time deterministic
process updates the configuration according to a local rule: an inactive node v
becomes active at time t + 1 if the number of its active neighbors at t is greater
than or equal to some specified activation parameter θv, which is a function of
the node v as well. Once an inactive node becomes active it remains active.
A configuration that does not change at the next time step is a stable configu-
ration. A configuration is fully active if all its nodes are active.

In this work we study the bootstrap percolation process on periodic trees
defined as follows.

Definition 1 (Periodic tree). Let �, d0, d1, . . . , d�−1 ∈ N. An �-periodic tree
Td0,d1,...,d�−1 is defined as follows. Consider a node v0, called root. The nodes at
distance i mod � from v0 have degree di + 1 for i ∈ N0. In particular, the root
has degree d0 + 1.

An infinite d-regular tree is a special case: a 1-periodic tree where each node has
degree d + 1.

We also need to define the following oriented tree.

Definition 2 (Oriented periodic tree). Let �, d0, d1, . . . , d�−1 ∈ N. An ori-
ented �-periodic tree �Td0,d1,...,d�−1 is defined as follows. Consider a node v0, called
root. The nodes at distance i mod � from v0 have in-degree di and out-degree 1
for i ∈ N0, except for the root, which has out-degree 0.

We note that an oriented �-periodic tree is a periodic tree with all edges
oriented towards the root, the exception being the root degree.

Definition 3. For �p = (p0, p1, . . . , p�−1) define

�p−i := (p0, p1, . . . , pi−1, pi+1 . . . , p�−1) (1)

to be a vector obtained by erasing the i-th coordinate from �p. Conversely, �p is
obtained by inserting pi at the i-th coordinate in �p−i, which we write as

�p ≡ (�p−i|pi) . (2)
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2.1 Notation

Throughout this work, given d0, d1, . . . , d�−1, we will usually use T (resp. �T) as
a shorthand for Td0,d1,...,d�−1 (resp. �Td0,d1,...,d�−1).

Given a tree T = Td0,d1,...,d�−1 , partition the node set V (T) into � classes
of nodes Vi, where Vi contains the nodes of T at distance i mod � from the
root with degree di + 1, activation threshold θi, and initial probability pi, for
i ∈ {0, 1, . . . , � − 1}.

In the following, all indices will be considered modulo �, e.g. x� = x0.

3 Bootstrap Percolation

This section is devoted to bootstrap percolation on periodic inhomogeneous
trees. The main result is given by Theorems 1 and 2, showing the regions of ini-
tial probabilities for which the tree �T, respectively T, become a.a.s. fully active.
Finally, we show that these two regions are identical.

Functions of the form

ϕd,p,θ(x) := p + (1 − p)
d∑

k=θ

(
d

k

)
xk(1 − x)d−k, (3)

where p ∈ [0, 1], will play a key role, as they capture one time step in bootstrap
percolation. Intuitively, the first term stands for the probability of a node to
be initially active, the sum in the second term for the probability of becoming
active because at least θ of its neighbors are. The following result appeared in
different forms in [11,17] and the proof is given in [14, Lemma 2.1].

Lemma 1. Given d, θ ∈ N such that 2 � θ � d − 1 and p ∈ [0, 1], there exists
pc ∈ (0, 1) such that for any p > pc we have ϕd,p,θ(x) > x for every x ∈ (0, 1),
and 1 is the only solution of ϕd,p,θ(x) = x in [0, 1]. For p < pc, there are two
solutions in [0, 1] other than 1, and for p = pc there is one other solution (of
multiplicity 2).

3.1 Bootstrap Percolation on an Oriented Tree �T

Following the methodology of [17], we first show the existence of a threshold
region for oriented trees, i.e. a region W0 of probabilities pi for which not all
nodes become active asymptotically almost surely (a.a.s), while for a choice of
probabilities in the complement W 0, all nodes become active a.a.s. Later we
show that the regions for oriented and unoriented periodic trees with the same
parameters are actually the same.

The dynamics must be defined in a slightly different way for bootstrap per-
colation, though (in other words, we need to define an oriented version of boot-
strap percolation): a node in class i becomes newly active if θi of its in-neighbors
(neighbors for which the orientation of the associated edge is towards the node)
are active in the previous step. For this slightly modified version, we obtain the
following result:
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Theorem 1. Consider bootstrap percolation on an oriented tree �T with parame-
ters (di, θi, pi)�−1

i=0 , where 2 � θi � di − 1. Let W0 be the set of probability vectors
�p ∈ [0, 1]� such that there exists a solution in [0, 1]� of the system

xi = pi + (1 − pi)
di∑

k=θi

(
di

k

)
xk

i+1(1 − xi+1)di−k (4)

that is strictly less than �1, i.e. xi < 1 for every i ∈ {0, 1, . . . , � − 1}. Then
(i) for every �p ∈ W0, �T does not become fully active a.a.s.; (ii) for every �p ∈
W 0 := [0, 1]� \ W0, �T becomes fully active a.a.s. Moreover, there exist constants
δ, σ ∈ (0, 1) such that W0 ⊃ [0, δ]� and W0 ⊂ [0, σ]�.

The dynamics of the bootstrap percolation process on �T are captured by
knowing the states of every node v ∈ Vi, in every class Vi, at every time t ∈ N0.
These states are denoted by �ζi,t(v) ∈ {0, 1}.

It is intuitive that the higher pi, the higher the probability that a node in
class i becomes eventually active. Also, if all pi are equal to 0, the system is
already in a state of equilibrium, where the state of every node in the tree is 0
(inactive). On the other hand, if all pi are equal to 1, the system is in yet another
equilibrium, where the state of every node in the tree is 1 (active).

3.2 Proof of Theorem1

The initial steps in the proof are analogous to those in [14,17]. However, the main
difference is that we consider different degrees di, different activation thresholds
θi and most importantly different initial probabilities pi.

For every class Vi, choose any node v ∈ Vi. Conditioning upon whether this
node v was active at time 0 or not (i.e., �ζi,0(v) = 0 or �ζi,0(v) = 1), the probability
that the node v is active at time t is given by

P

(
�ζi,t(v) = 1

)
= P

(
�ζi,0(v) = 1

)
+ P

(
�ζi,0(v) = 0

)
P

(∑
u�v

�ζi+1,t−1(u) � θi

)
,

where the symbol “�” indicates that u is a neighbor of v in the oriented tree �T
and the edge orientation is from u to v.

Given symmetry and the dynamical rules of the bootstrap percolation
process, the �ζi+1,t−1(u) in the equation above are independent Bernoulli ran-
dom variables with the same distribution; moreover, they are independent of
�ζi,0(v). Introducing �zi,t := P

(
�ζi,t(v) = 1

)
, we obtain the following system of

recurrence equations:

�zi,t = pi + (1 − pi)
di∑

k=θi

(
di

k

)
�zk

i+1,t−1 (1 − �zi+1,t−1)
di−k

, (5)

for i = 0, 1, . . . , � − 1.
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In order to simplify the notation, for given parameters (di, θi, pi)�−1
i=0 that

characterize a tree �T (as well as T), we define the auxiliary functions φi(x; pi) :=
ϕdi,pi,θi

(x) on [0, 1], i.e.

φi(x; pi) := pi + (1 − pi)
di∑

k=θi

(
di

k

)
xk(1 − x)di−k, (6)

and the binomial tail

Bi(x) :=
di∑

k=θi

(
di

k

)
xk(1 − x)di−k. (7)

Now, the recurrence system (5) can be rewritten as

�zi,t = φi(�zi+1,t−1; pi), (8)

for i = 0, 1, . . . , � − 1, and all �zi,t belong to [0, 1] since φi maps [0, 1] to [0, 1].

Claim. For every i, �zi,t is non-decreasing in t.

Proof. For t = 0, �zi,0 = pi. From (5) �zi,1 � pi, thus the claim holds for t = 0.
Assume that for some t and every i, �zi,t � �zi,t−1. Bi(x) is increasing in x. Thus

�zi,t+1 = φi(�zi+1,t; pi) = pi + (1 − pi)Bi(�zi+1,t) � pi + (1 − pi)Bi(�zi+1,t−1) = �zi,t,

and the statement follows by mathematical induction.

So the �zi,t are non-decreasing in t and belong to [0, 1], thus by the monotone
convergence theorem the limits �zi,∞ := limt→∞ �zi,t exist, and they lie in [0, 1].
By (8),

�zi,∞ = φi(�zi+1,∞; pi), (9)

for all i ∈ {0, 1, . . . �−1}. At this moment, we introduce the vector of the limiting
values for t → ∞:

�z∞ := (�z0,∞, �z1,∞, . . . , �z�−1,∞) (10)

as well as the original ones at time t = 0:

�p := (p0, p1, . . . , p�−1) = (�z0,0, �z1,0, . . . , �z�−1,0) . (11)

Applying (9) � times, for every i, we obtain the equations of one variable

�zi,∞ = φi (φi+1 (· · · (φi−1 (�zi,∞; pi−1) · · · ) ; pi+1) ; pi) = Fi(�zi,∞), (12)

where we define

Fi := φi ◦ φi+1 ◦ · · · ◦ φ�−1 ◦ φ0 ◦ · · · ◦ φi−1. (13)

Notice that by (5) and (9), �z∞ 	= �0 if and only if �p 	= 0. Next, we show that
there exists a non-empty hypercube [0, δ]� (δ > 0) such that for all �p ∈ [0, δ]�,
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the limiting vector satisfies �0 < �z∞ < �1. In order to do so, define d = max�−1
i=0 di

and θ = min�−1
i=0 θi � 2 and introduce the function φ(x; p) : [0, 1] → [0, 1] given

by

φ(x; p) := p + (1 − p)
d∑

k=θ

(
d

k

)
xk(1 − x)d−k. (14)

In view of Lemma 1, there exists pc ∈ (0, 1) such that 1 is the only solution in
[0, 1] of φ(x; p) = x for all p > pc. On the other hand there exist two solutions
in (0, 1) for p < pc, and one if p = pc. From stochastic dominance it follows that

P (Bin (di, pi) � θi) � P (Bin (d, pi) � θ) , (15)

so
φi(x; pi) � φ(x; pi) (16)

for all x. Choose 0 < δ < pc and consider the following mapping with �Z0 = δ:

�Zt = φ(�Zt−1; δ). (17)

The limit �Z∞ := limt→∞ �Zt exists and �Z∞ < 1 by the choice of δ, cf. [14]. Now
choosing all pi � δ, it inductively follows from (16) and (17) that

�zi,t = φi(�zi+1,t−1; pi) � φ(�zi+1,t−1; δ) � φ(�Zt−1; δ) = �Zt. (18)

Hence �zi,t � �Zt for every i and t, and �zi,∞ � �Z∞ < 1 for all i. This concludes
the first part of the proof and shows that [0, δ]� ⊂ W0.

By definition, for every �p 	∈ W0 it follows that �zi,∞ = 1 for some i, hence
�z∞ = �1, i.e. �T a.a.s. fully percolates for all �p ∈ W 0. This proves statement (ii).

Finally, we want to show that W0 is contained in some hypercube of volume
σ�, where σ > 0. In order to do so, for every �p−i ∈ [0, 1]�−1, define the critical
value hc(�p−i) as the infimum of the probability pi necessary such that �T fully
percolates a.a.s.:

hc(�p−i) = inf
{

s : �T a.a.s. fully percolates for probabilities �p = (�p−i|s)
}

. (19)

Taking pi = 1 will yield �z∞ = �1, so the critical value hc(�p−i) is well defined.
Next we want to show that hc is not trivially identical to 1 on the entire domain
[0, 1]�−1.

Lemma 2. There exists a constant σ ∈ (0, 1) such that for every vector of initial
probabilities �p ∈ [0, 1]� and every coordinate i ∈ {0, 1, . . . , � − 1}, the threshold
function satisfies hc(�p−i) � σ.

Proof. We have ϕd,p,θ(x) � ϕd,p,d−1(x) � ϕd,0,d−1(x) for every x ∈ [0, 1], so for
all i ∈ {0, 1, . . . , � − 1},

ϕdi,pi,θi
(x) � ϕdi,pi,di−1(x) � ϕdi,0,di−1(x) = dix

di−1 − (di − 1)xdi . (20)
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It is easy to show that dix
di−1 − (di − 1)xdi = x has always one real solution

in (0, 1), call it si, and that dix
di−1 − (di − 1)xdi > x for si < x < 1. Without

loss of generality, let s0 be the maximum among all si. Choose any σ such that
s0 < σ < 1, and consider the recurrence system given by:

�u0,t = ϕd0,σ,d0−1(�u1,t−1),
�ui,t = ϕdi,0,di−1(�ui+1,t−1),

i = 1, 2, . . . , � − 1, with initial value �u0 = (�u0,0, �u1,0, . . . , �u�−1,0) = (σ, 0, . . . , 0).
The limit �u∞ := limt→∞ (�u0,t, �u1,t, . . . , �u�−1,t) exists by the monotone conver-
gence theorem. Moreover, �ui,∞ � σ for all i by the choice of σ, which in turn
implies �ui,∞ = 1 for all i (using the aforementioned fact that ϕdi,p,di−1(x) �
dix

di−1 − (di − 1)xdi > x for si < x < 1). For every initial vector �p for
which p0 � σ, it follows from (20) that �zi,t � �ui,t for all i, t, hence �z∞ = �1.
Thus, for every �p, we have hc(�p−0) � σ < 1. In the same way, it follows that
hc(�p−i) � σ < 1 for all i.

If �p /∈ [0, σ]�, then pi > σ � hb(�p−i) for at least one i by Lemma 2. Hence �T
a.a.s. fully percolates by definition of hc. This means that W0 ⊂ [0, σ]�, which
concludes the proof of Theorem 1.

3.3 Region of Full Percolation

In the following lemma we provide better bounds on pi for full percolation.

Lemma 3. �T a.a.s. fully percolates for any initial vector of probabilities �p such
that for all i ∈ {0, 1, . . . , � − 1}, pi ∈ (1 − 1/βi, 1], where

βi := di

(
di − 1
θi − 1

) (
θi − 1
di − 1

)θi−1 (
di − θi

di − 1

)di−θi

. (21)

We remark that βi � 1, as will be shown below.

Proof. Consider again the function Fi(z), given by (13). The first derivative of
Fi(z) is

F ′
i (z) =

i−1 mod �∏
j=i

φ′
j (φj+1(. . . φi−1(z; pi−1) . . . pj+1); pj) . (22)

For every φi(x; pi), the first derivative is given by:

φ′
i(x; pi) = (1 − pi)di

(
di − 1
θi − 1

)
xθi−1(1 − x)di−θi , (23)

and by differentiating again one finds that the maximum of φ′
i(x; pi) is attained

at (θi − 1)/(di − 1):

max
x∈[0,1]

φ′
i(x; pi) = φ′

i

(
θi − 1
di − 1

; pi

)
= (1 − pi)βi (24)
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by the definition of βi. Note that βi is the maximum of B′
i(x), where Bi is given

by (7). Since Bi(0) = 0 and Bi(1) = 1, it follows from the mean value theorem
that βi � 1.

For pi ∈ (0, 1), the first derivative given in (23) is strictly greater than 0,
i.e. φ′

i(x; pi) > 0. For pi > 1 − 1/βi, the maximum of the first derivative is
strictly less than 1, i.e. max0�x�1 φ′

i(x; pi) < 1, see (24). Hence, for any vector
of probabilities that satisfies pi > 1−1/βi for all i, the convolution given in (22)
yields

F ′
i (z) − 1 < 0, (25)

for all i ∈ {0, 1, . . . , � − 1}. Thus the first derivative of the equation Fi(z) − z is
strictly negative on [0, 1]. Moreover F (0) > 0 and F (1) − 1 = 0, hence z = 1 is
the only solution of Fi(z) = z on [0, 1]. This implies that �z∞ = �1 for any �p that
satisfies the condition of the lemma. Also note that if at least one pi is 1, i.e.
�zi,0 = 1, then �zi,∞ = 1 for all i in view of (5), which concludes the proof.

3.4 Trajectory of �zt

In this section we analyze the trajectory of �zt over time t = 0, 1, . . . . More
precisely, we show necessary and sufficient conditions on �zt such that the initial
vector �p lies in W0.

To start, consider again a function of the form φ(x; s) defined by (cf. (3))

φ(x; s) := s + (1 − s)
d∑

k=θ

(
d

k

)
xk(1 − x)d−k (26)

for certain parameters d and θ. Let L(s) � R(s) be the real solutions of φ(x; s) =
x in (0, 1) if such solutions exist. We know that there exists some critical sc ∈
(0, 1), such that: (i) if s < sc, there are two real solutions L(s) < R(s) in (0, 1);
(ii) if s = sc, there is one solution L(s) = R(s) in (0, 1); (iii) if s > sc there are
no real solutions in (0, 1), see Lemma 1. It is easy to show the following.

Lemma 4. The limit of the sequence defined by the iteration xt+1 := φ(xt; p)
for t = 0, 1, . . . satisfies

lim
t→∞ xt =

⎧⎨
⎩

L(p), x0 ∈ [0, R(p)) and p � pc,
R(p), x0 = R(p) and p � pc,
1, otherwise.

We will write Li and Ri for the functions of Lemma4 associated with φi.

Lemma 5. We have �z∞ < �1 if and only if �zi,t � Ri−1(pi−1) for every i and
every t.

Proof. First, �zi,t = φi(�zi+1,t−1; pi). Iterating this equation � times it follows that

�zi,t+� = φi (φi+1 (· · · (φi−1 (�zi,t; pi−1) · · · ) ; pi+1) ; pi) . (27)
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Assume that there exists some i such that �zi,t > Ri−1(pi−1). Let b0 := �zi,t and
define bk := φi−1 (bk−1; pi−1) for k � 1. The composition

φi ◦ φi+1 ◦ · · · φ�−1 ◦ φ0 ◦ · · · ◦ φi−2

is increasing, as the convolution of increasing functions, hence from (27) we
obtain �zi,t+�·k � bk. From Lemma 4 it follows that limk→∞ bk = 1, so �zi,∞ = 1
and consequently �zj,∞ = 1 for all j. Conversely, if �zi,t � Ri−1(pi−1) for every i

and every t, then �zi,∞ � Ri−1(pi−1) < 1 for all i and thus �z∞ < �1.

Lemma 6. Let a be the index for which Rj(pj) is maximal, and set Rmax :=
Ra(pa). We have �z∞ < �1 if and only if �zi,t � Rmax for every i and t.

Proof. First, let us recall the following two facts: (1) �za,∞ < 1 if and only if
�z∞ < �1; (2) �za,∞ = 1 if and only if �z∞ = �1.

To prove sufficiency, assume that there exist i and t such that �zi,t > Rmax.
Then by Lemma 4 it follows that �zi,∞ = 1 for every i, thus �z∞ = �1.

To prove necessity, let �zi,t � Rmax for all i and t. It follows immediately that
�zi,∞ � Rmax < 1 for all i, completing the proof.

3.5 Bootstrap Percolation on an Unoriented Tree T

To determine the critical region for bootstrap percolation on T, we use the result
of Sect. 3.1 on oriented trees, as in [14]. Let zt be the probability that the root
is active at time t, and define the limiting probability z∞ := limt→∞ zt.

Theorem 2. The probability z∞ is given by

z∞ = p0 + (1 − p0)
d0+1∑
k=θ0

(
d0 + 1

k

)
�zk
1,∞(1 − �z1,∞)d0+1−k. (28)

Proof. As before, p0 simply stands for the probability that the root is initially
active, so we focus on the case that it is initially inactive, which happens with
probability 1 − p0. In this case, it can become active if at least θ0 of its d0 + 1
neighbors become active in the process. For the root activity, it is immaterial
whether or not a node can contribute to activating neighboring nodes that are
further away from the root, so we can consider the d0+1 root branches as oriented
trees (oriented towards the root) on which oriented bootstrap percolation is
performed. Thus we know that �z1,∞ is the limiting probability for a root neighbor
to become active (if the root is not initially), which proves the desired formula.

Theorem 3. The percolation regions on oriented tree �T and unoriented tree T

are the same and equal to W 0.

Proof. If the unoriented tree fully percolates a.a.s., then in particular z∞ = 1.
Note that z∞ = 1 by Theorem 2 if and only if �z1,∞ = 1 (the case p0 = 1 is
trivial). However, if �z1,∞ = 1, then also �zi,∞ = 1 for all i, which means that
even the oriented tree percolates a.a.s. The converse is clear as well.
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Fig. 1. Numerical evaluation of the boundary of the critical region W0 in dimen-
sion two for different values of degrees and activation thresholds. Concretely,
(d0, d1; θ0, θ1) takes the values (7, 8; 5, 3), (7, 8; 3, 3), (7, 8; 4, 4) in the upper and
(10, 4; 5, 3), (4, 10; 5, 3), (4, 10; 3, 3) in the lower diagram.
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4 Numerical Estimation of W0

For a given tree �T (as well as T by Theorem 2), the region W0 is determined in
Theorem 1. That is, W0 is the set of the initial probabilities (p0, p1, . . . , p�−1) ∈
[0, 1]� such that there exists a solution (x0, x1, . . . , x�−1) ∈ [0, 1)� (note: all xi <
1) of the system given by xi = φi(xi+1; pi), where i = 0, 1, . . . , �−1. At the same
time, this gives a criterion how one can decide whether (p0, p1, . . . , p�−1) ∈ [0, 1]�

belongs to W0.
In Fig. 1, we demonstrate results of this method. We present the

boundary that separates W0 and W 0 in dimension 2 for a few differ-
ent values of degrees d0, d1 and activation thresholds θ0, θ1. Specifically,
(d0, d1; θ0, θ1) takes the values (7, 8; 5, 3), (7, 8; 3, 3), (7, 8; 4, 4) in the upper
and (10, 4; 5, 3), (4, 10; 5, 3), (4, 10; 3, 3) in the lower diagram. One can observe
monotonicity of the boundary in (θ0, θ1). Looking at these diagrams, it is also
tempting to conjecture that W0 is always convex.

5 Conclusion

We examined and showed the existence of the region of critical probabilities in
bootstrap percolation on infinite inhomogeneous periodic trees. The main dif-
ference to prior work is that we allow the initial probabilities and activation
thresholds to be periodic, rather than fixed throughout the entire tree. We char-
acterized the entire region of possible probabilities for which all nodes in the tree
become a.a.s. active, as well as provided the probability that a node becomes
eventually active, for any initial probability vector that does not belong to this
region. Finally, the region is specified through a set of equations whose solution
gives the boundary of the region. We demonstrated how one can numerically
find this boundary and provided a few numerical examples in dimension two.
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Abstract. We provide a quasilinear time algorithm for the p-center
problem with an additive error less than or equal to 3 times the input
graph’s hyperbolic constant. Specifically, for the graph G = (V, E) with
n vertices, m edges and hyperbolic constant δ, we construct an algorithm
for p-centers in time O(p(δ+1)(n+m) log2(n)) with radius not exceeding
rp + δ when p ≤ 2 and rp + 3δ when p ≥ 3, where rp are the optimal
radii. Prior work identified p-centers with accuracy rp + δ but with time
complexity O((n3 log2 n + n2m) log2(diam(G))) which is impractical for
large graphs.

1 Introduction

The p-center algorithm is a discrete variant of arguably one of the most frequently
used clustering algorithms, the k-means clustering. The goal of the p-center
algorithm is to identify on a given graph a pre-specified number p of vertices or
centers, such that the maximum distance of any graph vertex to its nearest p-
center is minimized. For any given p, the algorithm naturally partitions a graph
into p clusters induced by the position of its p-centers. Clusters induced by the
p-centers are not necessarily balanced as these are determined strictly by the
metric properties of the graph. Thus p-center clustering is more appropriate
for distance-based partitioning or classification than other frameworks, such as
community detection. Unfortunately, as a clustering algorithm the complexity
of the p-center algorithm is generally prohibitive, O(np) for an n-node graph,
making it inapplicable to even moderate size graphs.

Proved nearly four decades ago, Shier’s minimax result for trees and metric
trees [15] leads to an exact algorithm with quasilinear time complexity (in the
number of vertices and edges of the graph) for determination of an optimal set
of p-centers by repeatedly finding diagonal pairs on the graph and carving out a
ball containing one end of the current diagonal pair. Hochbaum and Shmoys [10]
give a (multiplicative) 2-approximation algorithm for determining p-centers in
graphs satisfying the triangle inequality with running time O(m log2 m). Subse-
quently, Dyer and Frieze [4] improve this to a 2-approximation algorithm with
running time O(np). These algorithms are, in a sense, best possible as Hsu and
c© Springer International Publishing AG 2016
A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 60–73, 2016.
DOI: 10.1007/978-3-319-49787-7 6
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Nemhauser [11] show that determining an α-approximate solution to p-centers
is NP-hard whenever α < 2.

In an insightful paper [3], Chepoi and Estellon essentially apply the technique
of Shier [15] to graphs with small hyperbolic constant, δ. These are graphs whose
metric structure differs from the metric structure of a tree by a fixed constant (as
explained in Sect. 2 and, in particular, Sect. 2.2 and Fig. 1. For more details see
[1,3,9]). The algorithmic version of this scheme [2] gives rise to what is essen-
tially an O(n3) approximation for p-center on an n-vertex graph with hyperbolic
constant δ appearing both as a prefactor in the complexity expression and also
in the degree of approximation in terms of an additive constant to the radius of
the optimal p-center partition. Of course the polynomial time complexity O(n3)
is still impractical for graphs of hundreds of thousands to millions of nodes as
would be even a quadratic complexity approximation.

Since there is evidence that real-life networks extracted from social media,
co-authorship and collaboration, friendship and many other settings, have small
hyperbolic constants [13], it would be desirable to know if the cubic complexity
is tight or can be further reduced, at least by negotiating on the degree of the
approximation. In this paper we show that by giving up to 3δ in the (additive)
approximation, one can achieve a quasilinear time p-center approximation. As
such, this scheme is the first p-center approximation applicable to large graphs,
particularly when p is relatively small, for example in the range 10–104 and n is
large, for example, 105–109 vertices.

In the following sections we describe how the cubic complexity of [3] to qua-
silinear reduction is achieved without adding more than 3δ to the radius of the
optimal p-center clusters. In Sect. 2 we outline necessary definitions, in particu-
lar, for geodesic metric spaces (Sect. 2.1) and hyperbolicity (Sect. 2.2). We then
turn to a more formal discussion of p-centers, p-packings, and the dual problems
which take center stage in our discussion (Sect. 3). In Sect. 3.1 we focus on algo-
rithms for solving and approximating these problems on δ-hyperbolic graphs.
The formal statements of our main results are also found in Sect. 3.1. Section 4
contains the ingredients for the proofs of the main results. Due to space con-
straints, the details of these proofs are omitted and can be found in the full
version of this paper [5]. We finish in Sect. 5 with experimental validation of our
algorithms. The reader is invited to consult the full version of this paper which
contains all the details missing from this abstract [5].

2 Definitions and Notation

Let G = (V,E) be an undirected graph, with V the set of vertices and E the set
of edges. To each edge uv, we associate a line segment of length 1, so that we may
refer to any point on uv at distance t from u and 1 − t from v (0 ≤ t ≤ 1). This
(uncountably infinite) set of points of G is denoted A(G). We will use the notation
n = |V (G)| and m = |E(G)|. In this paper, the distance d(u, v) between any two
points u and v in A(G) is the length of a shortest path between them in G. When u
and v are vertices, we write [u, v] to refer to a shortest (also called geodesic) path.
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Note that shortest paths need not be unique. For a geodesic path P = [u, v] and
i ∈ [0, d(u, v)], the point P [i] is the one at distance i from u on P .

2.1 Geodesic Metric Spaces and Graphs

Let (X, d) be a metric space. If x, y are points in X, a geodesic segment [x, y],
when it exists, is a continuous curve parametrized by a line segment of length d =
d(x, y). That is, a map ρ : [0, d] → X with ρ(0) = x, ρ(d) = y and d(ρ(s), ρ(t)) =
|s − t| for each s, t ∈ [0, d]. A metric space is geodesic if there exists a geodesic
segment joining every pair of points. Note that geodesic segments need not be
unique, e.g. a diagonal pair of points on a cycle.

Any graph as we have defined above can be viewed as a geodesic metric space
(A(G), d). Such a metric space is called graphic and it will be convenient in what
follows to think of graphs in this way. In a graphic metric space, a geodesic [x, y]
is simply a shortest path from x to y regardless of x and y being in V (G) or in
A(G).

Let S ⊆ X be compact. The diameter diam(S) of is the maximum length of
a geodesic between two vertices in S. For u ∈ S, FS(u) is the set of points in
S whose distance from u is maximum. Two points u, v ∈ S are diametrical if
d(u, v) = diam(S). They are locally diametrical if u ∈ FS(v) and v ∈ FS(u). It
follows that d(u, v ∈ FS(u)) ≤ diam(S) and d(v, u ∈ FS(v)) ≤ diam(S).

If v is a point of A(G) and r ∈ R, we write Br(v) for the closed ball of
radius r about v, i.e. all points at distance at most r from v. For a geodesic path
P = [u, v] and for the length 0 ≤ θ < d(u, v), the point i = [u, v][θ] ∈ A(G) is
at distance θ from u on P . When there is no ambiguity, we identify the point
i = P [θ] with the length θ. Clearly the two points [u, v][i] and [v, u][i] do not
generally coincide.

2.2 Hyperbolicity

The concept of hyperbolicity of a metric space was introduced by Rips and
Gromov in [9]. There are several essentially equivalent definitions but in this
paper we will mainly use the δ-thin-triangle characterization.1 For points x, y, z
in X, we write Δ(x, y, z) to denote a geodesic triangle formed by x, y, z; that
is the union of three geodesics [x, y], [y, z], [x, z] (usually the choice of geodesics
won’t matter).

Given a geodesic triangle Δ ≡ Δ(x, y, z), let π be half the perimeter, π =
1
2 (d(x, y) + d(y, z) + d(x, z)) and define αx = π − d(y, z) and similarly αy = π −
d(x, z) and αz = π −d(x, y). Thus αx +αy = d(x, y) and so on. One can imagine
a triangle drawn in the Euclidean plane with side lengths d(x, y), d(x, z) and
d(y, z). Its inscribed circle would touch the triangle sides [x, y], [y, z] and [z, x]
at points mz,mx and my respectively. From elementary geometry, [x, y][αx] =
[y, x][αy] = mz and [y, z][αy] = [z, y][αz] = mx and [z, x][αz] = [x, z][αx] = my,
as illustrated in Fig. 1.

1 For a comprehensive treatment of δ-hyperbolicity see [1].
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Fig. 1. A geodesic triangle Δ(x, y, z) with internal points mx, my and mz and internal
distances αx, αy and αz labelled.

The points mx,my,mz are called the internal points and αx, αy, αz

the internal distances corresponding to x, y, z respectively in Δ. The
insize of the triangle Δ is the maximum of maxθ∈[0,αx] d([x, y][θ], [x, z][θ]),
maxθ∈[0,αy] d([y, x][θ], [y, z][θ]), and maxθ∈[0,αz] d([z, x][θ], [z, y][θ]).

Definition 1. Let (X, d) be a geodesic metric space, and δ ≥ 0. X is
δ-hyperbolic (equivalently, the hyperbolicity of X is δ) if the insize of every
geodesic triangle is at most δ. Let δ be minimum such that the insize of every
geodesic triangle is at most δ. We say that X is δ-hyperbolic (equivalently, the
hyperbolicity of X is δ).

If G is a graph whose associated graphic metric space is δ-hyperbolic then
we say G is δ-hyperbolic. The reader may verify that every tree is 0-hyperbolic.
Hyperbolicity is sometimes defined in terms of a four-point condition.

Lemma 1 (4-point condition, see Proposition 1.22 in [1]). Let (X, d) be
a δ-hyperbolic metric space. There is a constant δ4−point ≤ δ such that for any 4
points x, y, z, w ∈ X, their ordered set of sums of opposite sides, wlog d(x, y) +
d(w, z) ≥ d(x, z)+d(y, w) ≥ d(x,w)+d(y, z), satisfy d(x, y)+d(w, z)−d(x, z)−
d(y, w) ≤ 2δ4−point.

The fact that in a δ-hyperbolic metric space δ4−point is always less than or
equal to δ follows directly from the proof of Proposition 1.22 on page 411.

3 p-centers and p-packings

Let (X, d) be a geodesic metric space and S be a compact subset of X.
Throughout this paper we rely on two intimately related notions, p-centers and
p-packings.

Definition 2 (p-centers). A set C ⊂ X r-dominates S if for every point s ∈ S
there exists a point c ∈ C with d(s, c) ≤ r. The p-radius of S, denoted by rp(S),
is the minimum r such that there exists a set of at most p points Cp(S) that
r-dominates S. The points in Cp(S) are called p-centers of S.
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Definition 3 (p-packings). A set D ⊆ S is an r-dispersion in S if each pair
of points s, s′ ∈ D, s 	= s′, d(s, s′) ≥ r. The p-diameter of S, denoted by dp(S),
is the maximum r such that there exists a set of at least p points Dp(S) that is
an r-dispersion in S. The points in Dp(S) are called a p-packing.

Consider a set of p points C which r-dominate S. By definition, for any choice
of p + 1 points D, each d ∈ D is within r of some c ∈ C, and by the pigeonhole
principle, at least two, say a1 and a2, are within r of the same c ∈ C. Hence,

d(a1, a2) ≤ d(a1, c) + d(a2, c) ≤ 2r.

So, mini�=j d(ai, aj) ≤ 2r. Since this holds for all choices of C and D, we have
the following observation which first appeared in [15].

Observation 4. rp(S) ≥ 1
2dp+1(S).

It turns out that these two invariants are equal whenever S has a tree-metric.
Indeed, Shier showed the following.

Theorem 5 (Shier [15]). Let T be a tree. Then rp(T ) = 1
2dp+1(T ).

As discussed in Sect. 2.2, δ-hyperbolic spaces are treelike, by which we mean
that they possess a metric structure that differs from a tree metric by δ. There-
fore, it is logical to attempt to extend Shier’s result on p-center covering and
packing to such structures. Chepoi and Estellon [3] do exactly this by giving an
elegant extension of Shier’s theorem to δ-hyperbolic spaces.

Theorem 6 (Chepoi and Estellon [3]). Let X be a δ-hyperbolic metric space
and S a finite subset of X. Then

rp(S) ≤ 1
2dp+1(S) + δ

This relationship between rp(S) and dp+1(S) is a key element in algorithms for
approximating p-centers and p-packing.

3.1 Algorithms for p-centers and p-packings

The p-packing problem, sometimes referred to as the p-dispersion problem, has
received some attention in the literature. For example it is known to be NP-
hard [6]. Highly relevant to our work is the heuristic that iteratively adds each
of the p points by maximizing the points’ distance from previously chosen points
(see for example [7,14]). This heuristic is shown to be a 2-approximation algo-
rithm by Ravi et al. [14]. For more information, we refer the interested reader
to [8] that has an empirical comparison of ten p-dispersion heuristics.

To our knowledge, the previous best algorithm in terms of an additive
error not exceeding δ for the p-radius follows from the Chepoi-Estellon bound
(Theorem 6). Indeed, the proof in [3] leads to a polynomial algorithm to solve



Fast Approximation Algorithms for p-centers in Large δ-hyperbolic Graphs 65

p-centers in graphs with an additive error of δ on the p-radius.2 Specifically, in
time O((n3 log2 n + n2m) log2(diam(G))) the authors in [3] determine a set U
of p points such that U (rp + δ)-dominates V (G). Their algorithm involves find-
ing diametrical pairs of vertices in subsets of V (G) O(n log2(diam(G))) times.
Johnson’s algorithm [12] finds the diameter in time O(n2 log2 n+nm); hence the
running time in Chepoi-Estellon [3] follows.

As pointed out in the introduction, in this work we leverage the fact that
instead of finding diametrical pairs, one can just use locally diametrical pairs
(introduced in Sect. 2.1) with significant reduction in computational time with
only a small penalty in the p-radius. Our main result is the following.

Theorem 7. Let G be a δ-hyperbolic graph, p ≥ 3 an integer and rp(G) the
optimal radius of the p-center for V (G). There exists an algorithm to find a set
of p points that (rp + 3δ)-dominates V (G). Further, the algorithm runs in time
O(n log2 n + (m + n)((2p + 1)(
4 + 3δ + 2δ log2 n�) + (p + 1))) = O(p(δ + 1)(m +
n) log2 n).

Though the Chepoi-Estellon algorithm [3] achieves a better approximation
(an additive factor of δ instead of our 3δ), its running time is O((n3 log2 n +
n2m) log2(diam(G))). We first show below how to improve their running time
by a factor of n (Lemma 3), but this approach still remains infeasible for large
graphs. When p ∈ {1, 2} we can achieve the same Chepoi-Estellon p-radius
bound but in quasilinear time.

Theorem 8. Let (X, d) be a δ-hyperbolic metric space, S a finite subset of X
and p ∈ {1, 2}. There exists an algorithm to determine a set of p points that
(rp + δ)-dominate S. Further, the algorithm runs in time O((2δ + 1)tX), where
tX is the time required to find the set of points at maximum distance from a given
point in X. In particular in a δ-hyperbolic graph the running time is O((2δ +
1)(m + n)).

For p = 1, the previous best algorithm we know of is due to Chepoi et al. [2]:
the approximation error is ≤5δ, and the computation requires just two breadth-
first searches. In contrast, we require 2δ +1 breadth-first searches to achieve the
smaller additive factor of δ.

The remainder of this section is organized as follows. We start by showing
how to improve the time complexity of the Chepoi-Estellon algorithm by only
approximately finding diametrical pairs of vertices, that is via finding locally
diametrical pairs. In the proofs of our main results, we will repeatedly apply this
idea, showing that it is sufficient to solve the easier and computationally more
efficient approximate version of this expensive sub-problem. We then move on
to proofs of Theorems 7 and 8 in Sects. 4 and 4.1, respectively.

2 The cited result also gives rise to an algorithm for general δ-hyperbolic spaces whose
running time depends on the time to compute FS(x) for x ∈ X and S ⊆ X. Because
our interest is primarily in graphs, we direct the reader to [3] for details.
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Recall from Sect. 2.1 that a pair of vertices {u, v} is locally diametrical if there is
no vertex w such that d(u,w) > d(u, v) or d(v, w) > d(v, u). Clearly a diametrical
pair is locally diametrical but the converse is not true in general (e.g., a cycle with
handles). It turns out to be sufficient to find locally diametrical pairs in the main
lemma of [3]. Indeed, the following lemma is simply Lemma 1 from [3], but with
the requirement that u and v be diametrical replaced with the weaker property of
being locally diametrical.

Lemma 2. Let X be a δ-hyperbolic metric space and S ⊆ X be a compact set
and r ∈ R. Suppose that u and v are locally diametrical in S and let [u, v] be a
geodesic. Let c = [u, v][r]. Then B2r(u) ∩ S ⊆ Br+δ(c) ∩ S.

The proof of Lemma 1 in [3] works essentially unchanged to prove Lemma 2 by
replacing diametrical pairs with locally diametrical pairs. Since we will use a
refined version of the same argument that is needed for Lemma 2 in the proof
of Theorem 7, we skip the proof of Lemma 2. We prove below (Lemma 4) that
we can find a locally diametrical pair with at most 2δ +1 breadth-first searches.
Hence, we achieve the following significant reduction in the run time of the
Chepoi-Estellon algorithm.

Lemma 3. Let G be a δ-hyperbolic graph and p an integer. There exists an
algorithm to find a set of p points that (rp + δ)-dominates V (G) that runs in
time O(n2 log2(diam(G))(2δ + 1)).

It remains to show how to efficiently determine locally diametrical pairs.

Lemma 4. Given a δ-hyperbolic graph G and S ⊆ V (G). There is an algorithm
that finds a locally diametrical pair of vertices by performing at most 2δ + 1
breadth-first searches; that is, the running time is O((2δ + 1)(m + n)).

Proof. Choose a vertex u ∈ S arbitrarily and find a vertex v1 ∈ FS(u) by BFS.
Then, find v2 ∈ FS(v1). Next, find a vertex v3 ∈ FS(v2). If d(v2, v3) = d(v1, v2),
then let v = v1 and w = v2 and we have found a locally diametrical pair.
Otherwise d(v2, v3) > d(v1, v2) and continue the process until vk, vk+1 are found
such that d(vk, vk+1) = d(vk, FS(vk)) and d(vk, vk+1) = d(vk+1, FS(vk+1)). This
must happen for at most k ≤ diam(S). But by Proposition 3 in [2] d(v1, v2) ≥
diam(S)− 2δ4−point ≥ diam(S)− 2δ so k cannot exceed 2δ. This means no more
than (2δ + 1) BFS steps or no more than O(2δ + 1)(m + n) steps are needed for
finding a locally diametrical pair starting from u ∈ S. Then algorithm returns
the locally diametrical pair (vk, vk+1).

4 Approximating p-centers

In general, in searching for p-centers, first we approximately solve the dual prob-
lem, that is, we find D, a (p + 1)-packing, with |D| ≥ p + 1 such that

{max r | d(s, s′) ≥ r, ∀s 	= s′ ∈ D} ≤ dp+1(V ).
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This together with Observation 4 yields

1
2
{max r | d(s, s′) ≥ r, ∀s 	= s′ ∈ D} ≤ rp(V ). (1)

Given these (p + 1)-points we find a set of p-points C such that setting λ =
1
2{max r | d(s, s′) ≥ r, ∀s 	= s′ ∈ D},

1. C λ-dominates the points in D, and
2. for each a ∈ D there exists some a′ ∈ D and c ∈ C such that c is on a geodesic

between a and a′.

We prove later that these two properties together with δ-hyperbolicity allow us
to show that for a carefully-selected set D, the p points in C (λ + 3δ)-dominate
V , that is,

{min r | for each x ∈ V, ∃c ∈ C with d(x, c) ≤ r} ≤ λ + 3δ. (2)

Substituting the value of λ in (2) and applying (1) yields,

{min r | for each x ∈ V, ∃c ∈ C with d(x, c) ≤ r}
≤ 1

2
{max r | d(s, s′) ≥ r, ∀s 	= s′ ∈ D} + 3δ

≤ rp(V ) + 3δ.

It follows that C (rp(V ) + 3δ)-dominates V as desired.
We now apply this approach to find a 1-center of a graph.

Theorem 9. Let G be a δ-hyperbolic graph. There exists an algorithm to find
a point c that (r1 + δ)-dominates V (G). The algorithm requires time O((2δ +
1)(m + n)).

Proof. Let x, y be a locally diametrical pair of vertices and let [x, y] be a geodesic
segment. As described above, set λ = d(x,y)

2 and choose c = [x, y][λ]. Clearly,
C = {c} satisfies Properties 1 and 2 above. We now show that C = {c} (λ + δ)-
dominates V .

Let z be any point in V and consider the geodesic triangle Δ(x, y, z) as
depicted and labeled in Fig. 2. Without loss of generality, assume that d(y, z) ≤
d(x, z). Since (x, y) is locally diametrical, then

d(y, z) ≤ d(x, z) ≤ d(x, y)

which implies that

αz ≤ αy ≤ αx.

(This means that in the figure c lies to the right of mz, as shown.) Then

d(z, c) ≤ αz + δ + d(c,mz) ≤ αz + δ + λ − αy ≤ δ + λ.

As the claim holds for any z, c (λ + δ)-dominates V (G), and therefore, since
λ = 1

2d(x, y) ≤ 1
2d2(V ) ≤ r1(V ), the latter inequality by Observation 4, and

thus c (r1 + δ)-dominates V (G), as desired. To complete the proof, we note that
by Lemma 4, x and y can be found in time O((2δ + 1)(m + n)).
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z

αy

y x

mz

mx
my

c

Fig. 2. A geodesic triangle Δ(x, y, z) with internal points mx, my, mz and c labelled
as in the proof of Theorem 9. Dashed lines indicate a distance ≤ δ and the red line
indicates the upper estimate for d(z, c).

We note that in the course of the above prove we demonstrated the following
fact that we shall reuse.

Observation 10. Let z be any vertex in V (G), (x, y) a locally diametrical pair
of vertices, c ∈ A(G) the mid-point of [x, y] and λ = d(x,y)

2 . Then d(z, c) ≤ λ+δ.

In extending these proof techniques to the general case for p > 1, we run into
the following two difficulties, each costing us an additional δ in our approximation
error. First, Property 2 only guarantees that p of the

(
p+1
2

)
pairs of points in D

have a geodesics connecting them containing some point ci ∈ C. This will force
us use two geodesic triangles to bound the distance from some points in V to
their closest center in C. Second, in achieving the quasilinear runtime, we are
only able to find a (λ + 2δ)-approximation for the (p + 1)-packing problem. We
omit further details until Sect. 4.1.

To finish off this section, we prove that when p = 2 we can find a 2-center
solution which (r2 + δ)-dominates G. Like Theorem 9, this is stronger than our
general result (Theorem 7) and the proof does not use the machinery outlined
at the beginning of Sect. 4 that relies on Properties 1 and 2. Theorems 9 and 11
may be special cases of a general and stronger result than our main result, so
we include it.

Theorem 11. Let G be a δ-hyperbolic graph. There exists an algorithm to find
points c1, c2 that (r2 + δ)-dominate V (G). The algorithm requires time O((2δ +
1)(m + n)).

Proof. Let x, y be a locally diametrical pair of vertices and let [x, y] be a geodesic
segment. Choose z so that min{d(z, x), d(z, y)} is maximized (requires two BFS).
We let our 3-packing be D = {x, y, z}. Assume without loss of generality that
d(x, y) ≥ d(x, z) ≥ d(y, z), and so, λ = 1

2{max r | d(s, s′) > r, ∀s 	= s′ ∈ D} =
1
2d(y, z).
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We choose c1 = [x, y][λ] and c2 = [y, x][λ]. We claim that C = {c1, c2} satisfy
Eq. 2, with t = 1, and so, C (r2 + δ)-dominates G.

To prove the claim, let Δ1 = Δ(x, y, z) be a geodesic triangle. Let w be
any point of G and let Δ2 = Δ(x, y, w) be a geodesic triangle so that Δ1 and
Δ2 share the geodesic [x, y]. We will show that min{d(w, c1), d(w, c2)} ≤ λ + δ.
Take αx, αy, αw and mx,my,mw to denote the internal distances and points
in Δ2. Without loss of generality assume d(w, x) ≤ d(w, y) which implies that
d(w, x) ≤ d(y, z) = 2λ and αx ≤ αy. We distinguish two cases, as illustrated in
Fig. 3.
Case 1: λ < αx < d(x, y) − λ
From the choice of z, it follows that either d(w, x) ≤ d(y, z) = 2λ or d(w, y) ≤
2λ. Assume without loss of generality that d(w, x) = d(w,my) + d(mw, x) ≤
2λ. Therefore, d(w, c1) ≤ d(w,my) + d(my,mw) + d(mw, c1) ≤ d(w,my) + δ +
d(mw, x) − λ ≤ λ + δ.
Case 2: αx ≤ λ
In this case mw lies between x and c1 on the geodesic segment [x, y]. By the
local maximality of x and y, we have d(y, w) = αy +αw ≤ αy +αx = d(x, y) and
so d(w,my) = αw ≤ αx = d(x,mw). Then d(w, c1) ≤ d(w,my) + d(my,mw) +
d(mw, c1) ≤ d(x, c1) + δ = λ + δ.

To complete the proof, we need only show that c1, c2 can be found in O((2δ+
1)(m + n)) time. By Lemma 4, x and y can be found in time O((2δ + 1)(m +
n)) and the vertex z can be found by doing a breadth-first search rooted at
x and one rooted at y. Given D = {x, y, z}, the vertices c1 and c2 can then
be found by storing the last breadth-first search used in finding x and y and
λ = 1

2 min{d(x, x), d(y, z)}. The runtime now follows.

c2 y

z

x c1 mwλ

w

mxmy

αw

λ

z

c2x yλ

w
mx

mw c1

αw

my≤ δ
≤ δ

Fig. 3. Figure for Cases 1 and 2 in the proof of Theorem 11. The red lines indicate the
upper estimate for d(w, c1). Dashed lines indicate a distance ≤ δ.
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4.1 The General Algorithm

Our algorithm and proof follow the same three basic steps, though each step is
more involved. As a reminder these three steps are (1) approximately solving the
dual problem, or finding a (p + 1)-packing, (2) deriving p-points from this dual
solution that satisfy Properties 1 and 2, and (3) bounding the approximation
guarantee by showing Eq. 2.

It turns out the difficult part of these three steps is Step 1. For this step, we
need to extend the notion of a ‘locally diametrical pair’ to a ‘locally diametrical
set’ in such a way that i) it provides us with both the tools we need to satisfy
Properties 1 and 2 and ii) it can be determined efficiently. We find a set of (p+1)
vertices D = {v0, v1, . . . , vp} with

λ(D) := 1
2{max r | d(s, s′) ≥ r, ∀vi 	= vj ∈ D}

such that the following three properties hold

(a) (Vertex relabeling) d(v0, vi) = 2λ(D) for some vi ∈ D,
(b) (Extending locally diametrical pairs to locally diametrical sets) For each

vi ∈ D with d(vi, vj) = 2λ(D) for some vj , there exists no w ∈ V (G) with
d(w, vk) > 2λ(D),∀vk ∈ D \ {vi}, and

(c) (δ-hyperbolic version of locally diametrical sets) for each i ≥ 1, there exists
no vertex v ∈ V (G) with d(v0, v) > d(v0, vi) + 2δ and d(vi, v) ≤ 2λ(D) and
d(v, vj) > 2λ(D) for each j 	= i.

These three requirements provide us with what is needed to determine a set of
(p + 1) vertices satisfying Properties 1 and 2. Specifically, we prove

Lemma 5. Let G be a δ-hyperbolic graph and Λn = 
4 + 3δ + 2δ log2 n�. There
exists an algorithm to find a set D of p + 1 vertices satisfying (a), (b) and (c).
The algorithm runs in time O(n log2 n + (m + n)((2p + 1)Λn + (p + 1))).

Given a set of p+1 vertices satisfying Properties (a), (b) and (c) it is straight-
forward to find C = {c1, . . . , cp} satisfying Properties 1 and 2. For each 1 ≤ i ≤ p,
let ci be the vertex at distance λ from vi on the shortest path from vi to v0, i.e.
ci = [vi, v0][λ].

Lemma 6. Let G be a δ-hyperbolic graph. Suppose that D = {v0, v1, . . . , vp}
satisfy (a), (b) and (c). Then the set of p points C = {ci | ci = [vi, v0][λ]}
(λ + 3δ)-dominate G.

As described above (beginning of Sect. 4), such C (rp(V ) + 3δ)-dominates
V as desired. So, given the Lemmas 5 and 6, the proof of Theorem7 follows
once establishing the runtime, which we do now. First, determining the set D
takes O(n log2 n + (m + n)((2p + 1)Λn + (p + 1))). Given D, the set of vertices
{ci, 1 ≤ i ≤ p} can clearly be constructed by performing a breadth-first search
rooted at v0. Theorem 7 now follows.
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It remains to establish Lemmas 5 and 6. Lemma 5 is the more interesting of
the two proofs, and takes us deeper into the analysis of locally diametrical sets.
The proof of Lemma 6 is a sophistication of the ideas in Theorems 9 and 11. The
proof of that lemma appears in [5] Sect. 4.2.

A complete proof of Lemma 5 is found in [5] Sect. 4.3, but we now give a quick
outline of its ideas. The first step is to show that we can a find (p+1)-packing that
is within O(δ log2 n) of an optimal solution. To find this initial (p + 1)-packing,
we deduce from previously known results that in time O(n log2 n) we can find a
set P of p + 1 vertices that is a κ-dispersion, for some κ ≥ dp+1(G) − Λn. To do
so, we find a tree T which approximately preserves distances on our input graph
G. It turns out that exactly solving the (p + 1)-packings on trees can be done
efficiently, though in contrast to before, we solve the p-centers first and use this
to construct a dual solution in G. The fact that T is a good approximating tree
allows us to bound how close our (p + 1)-packing is to an optimal solution and
in turn helps us achieve the quasilinear running time.

Then, given this initial (p+1)-packing P, we iteratively improve the solution
whenever possible until we achieve Properties (a), (b), (c). Clearly, (a) can hold
for all solutions after relabelling, so the only difficulty is in ensuring both (b) and
(c) hold. In fact, it is not too hard to make either one of (b) or (c) hold by making
local improvements: simply scan the vertices in our set and if we find a vertex
witnessing that our desired property is false, we replace it. Using the 4-point
condition (Lemma 1), we show that with a bounded number of replacements we
obtain a set satisfying the property we are interested in. To satisfy (b) and (c)
simultaneously, we alternate applications of subroutines to satisfy (b) and (c)
until both properties hold. We use a potential function argument to show that
this process terminates after a number of replacements bounded by O(pδ log2 n),
and our running time follows.

5 Experimental Results

To demonstrate scalability, we have implemented the algorithms from Theorem 7
(p ≥ 3) and Theorem 8 (p ≤ 2). For comparison, we have also implemented the
algorithms of Chepoi et al. (abbreviated Ch.) [2] (p = 1) and Chepoi-Estellon
(abbreviated C-E) [3] (p ≥ 2). We also compared Theorems 7 and 8 to the fol-
lowing simple algorithm: Compute a distance approximating tree T as described
in Sect. 4 of [2] and return an exact solution to p-centres on T (such a tree has
vertex set V (G) and approximates pairwise distances in G to within O(δ log2 n)).

We ran the algorithms on four graphs extracted from real networks arising
from different types of data. All graphs are simple and have unit edge lengths and
each has a small hyperbolicity constant. Table 1 briefly summarizes the networks
we analyzed; more information about the data can be found in [13].3 In the case
3 The graphs p2p-gnutella25 and web-stanford are available publicly as part of the

Stanford Large Network Dataset Collection. The sn-medium graph is extracted from
the social network Facebook, and the sprintlink-1239 graph is an IP-layer network
from the Rocketfuel ISP.
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Table 1. Networks analyzed

Network Type |V | |E| Diameter Radius δ4−point

sprintlink-1239 Rocketfuel ISP network 8341 14025 13 7 3

p2p-gnutella25 Peer-to-peer network 22663 54693 11 7 3

sn-medium Social network 26567 226566 14 7 4

web-stanford Web network 255265 1941926 164 82 1.5 (est.)

Table 2. Comparison of estimates of the p-radius.

sprintlink-1239 p2p-gnutella25 sn-medium web-stanford
Thm 9 Ch. Tree Thm 9 Ch. Tree Thm 9 Ch. Tree Thm 9 Ch. Tree

p = 1 7 7 8 8 8 7 7 7 8 82
p = 2 7 7 7 8 8 7 7 8 8 59

Thm 8 C-E Tree Thm 8 C-E Tree Thm 8 C-E Tree Thm 8 C-E Tree
p = 3 5 6 6 7 7 7 7 7 8 47
p = 4 5 6 6 7 7 7 6 7 8 46
p = 5 4 5 6 7 6 7 6 7 8 44
p = 6 4 5 6 7 6 7 6 6 8 44
p = 7 4 5 5 6 6 7 6 6 8 44
p = 8 4 5 5 6 6 7 6 6 8 38
p = 9 4 5 5 6 6 7 6 6 7 29
p = 10 4 5 5 6 6 7 6 6 7 29
p = 15 4 4 5 6 5 7 5 6 7 22
p = 20 4 4 5 5 5 7 5 6 7 17

of the web-stanford graph, we have only an estimate of δ4−point obtained by
sampling since the graph is quite large. Table 2 contains a comparison of the
estimated p-radius rp of the three algorithms. We have run only our algorithm
from Sect. 4.1 on the largest network (web-stanford), since the running time of
Chepoi-Estellon is infeasible on a graph of this size.

Our experiments indicate that, as far as accuracy goes, our algorithm per-
forms similarly to that of Chepoi-Estellon despite the larger theoretical upper
bound on the error. In many cases our estimate is actually better than that
one. The p-radius estimated by Sect. 4.1 is always within 1 of their estimate
in our trials. Combined with the significant improvement in running time,
this makes our algorithm a preferable choice for solving p-centres in practice.
For comparison, our implementation of our algorithm terminated in under two
seconds on the sn-medium graph, while Chepoi-Estellon took about one minute.

While the tree-approximation heuristic is simple, and runs in quasilinear
time O(m + n), the approximation guarantee is only as good as the distance
approximation of T , hence the additive error could up to O(δ log n). However,
our experiments show that it seems to perform well in practice and may be a
good choice of heuristic in some applications.
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Abstract. The Chinese A-share Stock Market has been suffering from
massive volatility since the popping of a bubble on June 15, 2015. About
a third of the values of A-shares in Shanghai Stock Exchange was lost
within one month of the event. Although the Chinese government enacted
many measures to halt the fall, the turbulence of the Chinese Stock Mar-
ket continues in 2016. Motivated by the theory of graph limits, we apply
motif statistics, dual motif statistics, and cut distances to study the
correlation network structures of the Chinese A-share Stock Market in
the last two years. The changing patterns of our measures match the
major events of Chinese stock market. Our method extends the tradi-
tional motif-based method.

Keywords: Chinese A-share Market · Correlation network · Motif
statistics · Dual motif statistics · Cut distance

1 Introduction

Chinese A-shares are shares of the Renminbi currency that are purchased and
traded on the Shanghai and Shenzhen stock exchanges. A-shares are mainly
owned by Chinese citizens. Since China is now such a big force in the global
economy, the turmoil that the Chinese A-share Stock Market had experienced
in the past year has inevitably affected the rest of the world. The turbulence
of the Chinese A-share Stock Market began with the popping of a bubble on
June 15, 2015. About a third of the values of the A-shares on the Shanghai
Stock Exchange was lost within one month of the event. Although the Chinese
government enacted many measures to halt the crash of the stock market, the
turbulence continued to 2016. In January 2016 the Chinese A-share stock market
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experienced a steep sell-off and trading was halted on January 4 and 7 due to
the new adopted circuit breaker mechanism after the market fell 7 % within the
first 30 minutes. We collect the A-share data from the Shanghai Stock Exchange
(SSE) and the Shenzhen Stock Exchange (SZSE) using the Wind Financial Ter-
minal during the period from December 30, 2013 to April 29, 2016. The weekly
distributions of SSE Composite Index and SZSE Component Index are shown in
Fig. 1. The peak point occurs during the week of June 8–12, 2015, and is followed
by a sudden sharp drop in next 3 weeks. Another sharp drop occurs in January
2016. (See Sect. 4 for further discussion.)

SSE Composite Index

SZSE Component Index

Fig. 1. The weekly distributions of SSE composite index and SZSE compoent index
from December 30, 2013 to April 29, 2016.
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To better understand the fluctuation of the Chinese A-share Stock Market,
we will construct a sequence of correlation graphs out of raw stock data. Then we
will use graphon-inspired graph parameters, including classical subgraph/motif
counts, to analyze these graphs. Let us review relevant methods in the literature.

Network based analyses are common to study the relationships between finan-
cial entities. Mantegna [14] first applied network-based analysis on the DJIA
stocks (Dow Jones Industrial Average index) and the S&P-500 stocks (Standard
and Poor’s 500 index). Onnela, Kaski and Kertész [17] constructed the asset
graph on NYSE stocks (New York stock exchange). In this paper, we use the
correlation threshold method developed in [5,11,16]. Huang, Zhuang and Yao
[11] studied many graph properties of the correlation graph about the Chinese
Stock Market, including degree distribution, cluster coefficients, connected com-
ponents, cliques, etc.

Subgraph counting (also known as network motif statistics) are often used
to study the structure and function of biological and online social networks. In
2002, Milo et al. [15] defined network motifs to be patterns of inter-connections
occurring in complex networks at numbers that are significantly higher than
those in randomized networks. Sporns and Kötter [19] studied motifs in Brain
Networks. Alon [1] studied motifs for various biological networks, including sig-
naling and neuronal networks. Juszczyszyn et al. [12] used motifs to study social
networks. Onnela et al. [18] studied motifs in weighted complex networks and
applied them to financial and metabolic networks. Efficient sampling methods
used for estimating motif statistics are studied by Bhuiyan et al. [3], Birmelé [4],
and Wang et al. [20], etc.

The theory of graph limits (i.e. graphons) have been developed by Borgs,
Chayes, Lovász, Sós, Vestztergombi, and others, rapidly in the last decade. It has
many important theoretical applications including quasi-random graphs, Turán
density, statistical physics, etc. Motivated by the theory of graph limits, we
suggest a set of additional graph parameters so called “dual motif statistics” to
study the stock market. The paper is organized as follows: In Sect. 2, we review
the background of graph limits. In Sect. 3, we give some theoretical results on the
efficiency of simple sampling algorithm. Finally, in Sect. 4, we compute several
motif and dual motif statistics for the correlation stock networks.

2 Graph Limits

To understand how graphs fluctuate, it is necessary to know when a graph
sequence converges. This is exactly the scope of the theory of graph limits.
Here, we only focus on the dense graphs.

A graph G = (V,E) consists of a vertex set V and an edge set E (Loops
are allowed here). The number of vertices of G is denoted by v(G) (or by |G|)
while the number of edges of G is denoted by e(G). Given two graphs H and
G, a graph homomorphism from H into G is a map f : V (H) → V (G) keeping
the edges, i.e., f(u)f(v) ∈ E(G) whenever uv ∈ E(H). Let hom(H,G) be the
number of homomorphisms from H into G, inj(H,G) the number of injective
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homomorphisms of H into G, and ind(H,G) the number of embeddings of H
into G as induced subgraphs.

The homomorphism density is defined by

t(G,H) =
hom(G,H)
v(H)v(G)

,

which is the probability that a random map f from V (G) to V (H) is a graph
homomorphism. Assuming v(G) = n > k = v(H), the subgraph density is
defined by

tinj(H,G) =
inj(H,G)

(n)k
.

Here (n)k = n(n − 1) . . . (n − k + 1) is the k-th falling power of n. Similarly, the
induced subgraph density is defined by

tind(H,G) =
ind(H,G)

(n)k
.

Let {Gn} be a sequence of dense graphs. The following three definitions of
the convergence of {Gn} were proved to be equivalent by Borgs-Chayes-Lovász-
Sós-Vesztergombi [6–8] (also see Lovász’s book [13]).

Convergence from Left: For any fixed graph F , limn→∞ t(F,Gn) exists.
Convergence from Right: For any fixed graph F , limn→∞ t(Gn, F ) exists.
Convergence under cut-distance: Under the cut-distance norm (defined

later), {Gn} form a Cauchy sequence.

Note that in the first item “Convergence from Left”, one can also replace
t(F,Gn) by tinj(F,Gn) or tind(F,Gn). The connections among t(F,Gn),
tinj(F,Gn), and tind(F,Gn) are described in the following equations:

t(F,G) ≈ tinj(F,G) when |F | is small and G is large;

tinj(F,G) =
∑
F ′⊆F

tind(F ′, G).

The limit objects are called graphons, which are symmetric measurable func-
tions from [0, 1]2 to [0, 1] modulo certain equivalence relationship. Graphons can
be visually described as pixel maps on the unit square. A pixel map of a graph
G is a visual representation of its adjacency matrix where 1 is represent by a
black square and 0 is represented by a white square. For example, Fig. 2 is the
pixel map of the 5-cycle C5.

The classical Erdős-Renyi random graph model, G(n, p), is the random graph
G on n vertices so that each pair of vertices is an edge of G with probability
p independently. For a fixed constant p, the limit object of {G(n, p)}, denoted
by G(∞, p), is a constant function which takes value p over all the unit square.
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⎡
⎢⎢⎢⎢⎣

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎤
⎥⎥⎥⎥⎦

Fig. 2. Graph C5, its adjacency matrix, and the pixel map.

Fig. 3. The pixel maps of a random graph G(100, 0.5) and the graphon G(∞, 0.5).

In Fig. 3, here are the pixel maps of G(100, 0.5) and the graphon G(∞, 0.5)
respectively.

Let A be an n × n matrix. The cut norm of A, introduced by Frieze and
Kannan [10], is defined by

‖A‖� =
1
n2

max
S,T⊆[n]

∣∣∣∣∣∣
∑

i∈S,j∈T

Aij

∣∣∣∣∣∣ .

For two graphs G and G′ with a common vertex set [n], their cut distance is
defined by

d�(G,G′) = ‖AG − AG′‖�,

where AG and AG′ are the adjacency matrix of G and the adjacency matrix of G′

respectively. The definition of the cut distance between two graphs with different
set of vertices (or a different number of vertices) is irrelevant to this paper and
will be omitted here. For interested readers, please read Chap. 8 of [13].

3 Efficient Sampling Algorithm

Observe that computing tind(F,G) is the same as subgraph counting (or motif
statistics). These parameters have been widely used for various complex graphs
[1,3,4,12,15,19,20]. Here we suggest another set of parameters t(G,F ), where G
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is the target graph and F is a small fixed graph. Since the theory of graph limits
applies to sequences of graphs of increasing size, we cannot say that two family
of parameters {t(G,F ) : F is small} and {tind(F,G) : F is small} are equivalent.
Nevertheless, t(G,F ) seems to be another interesting graph parameters which
we refer to as dual motif statistics.

By definition, the exact value of t(G,F ) is the average of |F ||G| 0–1 terms.
Under the assumption that |G| is large and |F | is small, this is difficult to com-
pute the exact value. In comparison, computing tind(F,G) only requires at most
|G||F | steps, which is polynomial time in |G| given a fixed size |F |. So sampling
algorithm is needed here.

The law of large numbers states for the case where X1, X2, . . ., is an infi-
nite sequence of i.i.d. Lebesgue integrable random variables with expected value
E(X1) = E(X2) = · · · = μ, then the sample average

X̄n =
1
n

(X1 + · · · + Xn)

converges to the expected value

X̄n → μ for n → ∞.

To apply the law of large numbers, let X be an indicator random variable
that a random mapping f : V (G) → V (F ) is a graph homomorphism. Then the
expectation of X is simply E(X) = t(G,F ). The following result states how
many times of sampling is needed for required accuracy.

Theorem 1. For any ε > 0, for any 0–1 random variable X, with probability
at least 1 − ε, the sample average X̄n satisfies

|X̄n − E(X)| ≤
√

2 log(2/ε)
n

.

Proof. We use the following version of Chernoff’s inequality [9]. Let Sn = X1 +
· · · + Xn be the sum of independent non-negative random variables. Then,

Pr(Sn − E(Sn) < −λ) < e− λ2
2E(Sn) .

Choose λ =
√

2n log(2/ε) and note that E(Sn) = nE(X) ≤ n. We conclude with

Pr(Sn − E(Sn) < −λ) <
ε

2
.

Now we apply the same argument to n − Sn =
∑n

i=1(1 − Xi), which is still the
sum of n independent non-negative random variables. We get

Pr(Sn − E(Sn) > λ) = Pr((n − Sn) − E(n − Sn) < −λ) <
ε

2
.

Thus, with probability at least 1 − ε, we have

|Sn − E(Sn)| ≤ λ.
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Equivalently, with probability at least 1 − ε, we have

|X̄n − t(G,F )| ≤ λ

n
=

√
2 log(2/ε)

n
.

Remark: When applying this theorem to estimate t(G,F ), we observe that the
number of sampling required only depends on the accuracy, and is independent
of the sizes of |G| and |F |. Thus, t(G,F ) can be estimated efficiently, just as the
motif statistics tind(F,G).

4 Analysis on Correlation Networks of the Chinese
A-Share Stocks

Here we briefly review the correlation threshold method to construct the stock
correlation graph. Let Pi(t) be the price of stock i at time t. Then the return of
the price at a time interval (t − Δt, t) is defined as

ri(t) = lnPi(t) − ln Pi(t − Δt).

We will take Δt as one day so that ri(t) = ln(1 + pi) where pi is the percentage
of the price changing of the i-th stock.

For a given time interval [a, b], let ri be the vector so that the index t runs
from a to b. We view ri as the incidences of a random variable, which is also
denoted by ri. The cross-correlations between the i-th stock and the j-th stock
are given by:

cij =
coVar(ri, rj)√
Var(ri)Var(rj)

. (1)

Then cij can vary between [−1, 1], where 1 (or −1) means that two stocks i
and j are completely correlated (anti-correlated). To construct a graph from
this matrix, one may use the threshold method. For a given threshold τ < 1,
adding edge ij to a graph G if |cij | ≥ τ . This graph is called the correlation
stock network at time [a, b] with the threshold τ .

In other literatures the time interval was chosen rather long (for example,
several years), so they got long-term statistical properties of the stock market.
Unlike those papers, we will focus on the fluctuation of the market rather than
the long-term statistical properties, which might be more valuable for some short
term investors. We choose the time interval to be one week so we get one corre-
lation stock network per week.

We use the data of A-shares collected from SSE and SZSE for the period from
December 30, 2013 to April 29, 2016. In total, there are 2832 A-share stocks in
SSE and SZSE. The return for each stock is computed daily. To generate the cor-
relation network, we set the time interval to be one week. Normally, each vector ri
has 5 entries corresponding to 5 trading days. Some weeks have significantly less
trading days due to the Chinese holidays. To be consistent, we simply do not use
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the data in those weeks: 2/3/2014–2/7/2014, 4/28/2014–5/2/2014, 9/29/2014–
10/3/2014, 10/6/2014–10/10/2014, 12/29/2014–1/2/2015, 2/16/2015–2/20/20
15, 2/23/2015–2/27/2015, 8/31/2015–9/4/2015, 9/28/2015–10/2/2015, 10/5/20
15–10/9/2015, and 2/8/2016–2/12/2016.

It should be noticed that the CSI 300 index (China Securities Index 300)
has slumped 7 % from the previous day and has triggered the circuit breaker
mechanism to halt the market twice in 1/4/2016 and 1/7/2016 respectively. So
the data in the week 1/4/2016–1/8/2016 was also excluded.

The threshold we used in this paper is τ = 0.9. If stock i has no transaction
during a week, then it has 0 correlation coefficient to other stocks.

There are 122 weeks from December 30, 2013 to April 29, 2016. After discard-
ing the 12 weeks containing holidays and the circuit breaker, there are 110 weeks
left (which are listed in Table 1 in Appendix), and we get 110 correlation stock
networks G1, G2, . . . , G110. Each graph Gi has 2832 vertices. The distribution of
the number of edges in Gi is shown in Fig. 4.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16
x 10

5 # of edges

Fig. 4. The distribution of edges in the correlation networks of Chinese A-share Stock
Market.

4.1 Some Motif Statistics

To illustrate how these graphs {Gi} differ from each other, we first compute
tind(F,Gi) for all small graphs F over three vertices up to graph isomorphism.
There are 4 of them: F0, F1, F2, and F3 (shown in Fig. 5).

Fig. 5. Four non-isomorphic graphs on three vertices.

Here are the distributions of tind(F,Gi) for various F listed in items 1–4.
(See Fig. 6.)
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tind(F2, Gj) for j = 1, . . . , 110.
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Fig. 6. The distributions of tind(Fi, Gj) for i = 0, 1, 2, 3 and j = 1, 2, . . . , 110. Here the
vertical axis stands for the value of density tind(Fi, Gj) and the horizontal axis stands
for the graph index j.

From Fig. 6, we observe, tind(F0, Gj) reaches (relatively large) local mini-
mum at j = 80, 82, 98, 102; tind(F1, Gj) reaches (relatively small) local maximum
at j = 72, 76, 80, 82, 85, 98, 101, 102; tind(F2, Gj) (relatively small) reaches local
maximum at j = 80, 82, 85, 98, 102; tind(F3, Gj) (relatively small) reaches local
maximum at j = 72, 82, 98, 101, 102. We will discuss the stock market near these
weeks later.

4.2 Some Dual Motif Statistics

Now we will study t(G,F ) for some small graph F . Since G is quite dense, almost
all values of t(G,F ) are trivial (either 0 or 1) unless |F | is large enough. To ensure
non-trivial values, we consider the following variant of dual motif statistics: Let
F be a small graph with loops on s vertices together with a partition of integer
|G| = n1 + · · · + ns. Consider a random partition π of V (G) = V1 ∪ · · · ∪ Vs such
that |Vi| = ni for 1 ≤ i ≤ s. Now we associate to π a map f : V (G) → V (F )
so that f−1(i) = Vi. Let X be the indicator random variable so this map is a
graph homomorphism. Finally, we define t′(G,F ) = E(X). Note that Theorem 1
on sampling still works for t′(G,F ). We consider three such dual motifs F4, F5,
and F6 as specified in Fig. 7.

In Fig. 8, t′(Gj , F4) takes values very close to zero at j = 48, 51, 71, 72, 73,
76, 77, 79, 80, 82, 85, 90, 96, 97, 98, 101, 102, 104, 109; t′(Gj , F5) takes values
very close to zero at j = 71, 72, 73, 76, 79, 80, 82, 85, 96, 97, 98, 101, 102, 104,
109; t′(Gj , F6) takes values very close to zero at j = 71, 72, 80, 82, 85, 90, 96, 97,
98, 99, 100, 101, 102, 104, 106, 109. Note that the value close to zero suggests
the big fluctuation of the market in the same period.



Graphon-Inspired Analysis on Chinese Stock Market 83

Fig. 7. Three dual motifs F4, F5, and F6.
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Fig. 8. The distributions of t′(Gj , Fi) for dual motif F4, F5, F6 and j = 1, 2, . . . , 110.
Here the vertical axis stands for the density t′(Gj , Fi) and the horizontal axis stands
for the graph index j.

4.3 Cut Distances

Another way to capture the weekly changes of these correlation stock networks
is using cut-distances. Computing the cut-distance between two graphs is NP-
hard but can be approximated by a polynomial algorithm. More precisely, Alon
and Naor [2] proved that the problem of appoximating the cut-norm of a given
real matrix is MAX SNP hard and they presented an efficient approximation
algorithm with approximation ratio ρ > 0.56. Their algorithm uses semi-definite
programming and Grothendieck’s inequality, but takes still non-trivial comput-
ing time for our purpose. Instead, we use a very simple heuristic algorithm
to approximate the cut distance: first we randomly sample a partition of the
vertex set; then run a greedy algorithm until a local maximum is found. We
repeated these processes many times. Heuristically we found that the com-
puted values converge very quickly. The drawback is that we do not have any
theoretical results to guarantee the approximate ration like Alon-Naor’s algo-
rithm does. The approximated cut-distance between two consecutive graphs are
shown in Fig. 9. The bigger the distance between the two consecutive graphs,
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the more change there is. The distance d�(Gj , Gj+1) is relatively bigger when
j = 70, 71, 72, 79, 80, 81, 82, 84, 85, 95, 97, 98, 100, 101, 102, 103, 104. It reflects the
dramatic changes on the Chinese Stock Market from June 2015. Thus in roughly
saying, the cut-distance is also effective for detecting the sudden changes of the
Chinese A-share Stock Market.
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Fig. 9. The cut distance between two stock correlation networks in consecutive weeks.

4.4 Further Discussion

We observe four obvious big changes as shown in Figs. 6, 8 and 9.

1. From tind(F,G46) to tind(F,G51) (December 8, 2014 to January 23, 2015).
2. From tind(F,G71) to tind(F,G73) (June 22, 2015 to July 10, 2015).
3. From tind(F,G80) to tind(F,G85) (August 24, 2015 to October 23, 2015).
4. From tind(F,G98) to tind(F,G104) (January 25, 2016 to March 18, 2016).

There are two reasons that caused the changes in the first window. First,
there are only three trading days from December 29, 2014 to January 2, 2015,
since January 1 and 2, 2015 are holidays in China. Hence, that week is excluded
as described in the beginning of this section. By the historical experiences, the
benchmark indexes such as the SSE Composite Index or the SZSE Component
Index usually fluctuate around some ‘big’ holidays, especially New Year’s Day.
Second, both indexes trend to be horizontal in the last three weeks (January 5,
2015 – January 23, 2015) after a steady increasing in previous weeks (see Fig. 1),
which triggers the downfall in the following week. So the parameters capture the
important moments in the stock market.

During the second window of big changes, the benchmark SSE Composite
Index kept slumping in the first two weeks, but gained 5.18% in the last week
and closed at 3877.80 points on July 10, 2015 (See Fig. 1). From June 15, 2015,
both the SSE Composite Index and the SZSE Component Index started plum-
meting, and many investors’ confidences had been deeply beaten. Most of the
investors sold their shares at an even lower price than their cost, which made
the benchmark indexes drop even faster. In June 26, a rare thing happened
that more than two thousand shares’ prices hit the down-limit (−10%). In fact,
the SSE Composite Index dropped 23.37% from June 23, 2015 (4576.49 points)
to July 8, 2015 (3507.19 points). Meanwhile, the Chinese central government
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and the CSRC (China Securities Regulatory Commission) strained almost every
nerve to rescue the stock market. Many regulation clauses and positive policies
aiming to take the market back to the bull phase were released. For instance,
short selling through future trading were restricted. Although it did not seem to
work at first, the market slowly recovered from July 9. That day, the Ministry
of Public Security of the People’s Republic of China joined the rescue project.
They stationed in the CSRC to investigate and deal with illegal transactions.
The SSE Composite Index gained 5.76% and closed at 3709.33 points in July 9,
2015 and kept going up until July 10, 2015.

There are two reasons in the third window. First, in 2015, there are only
three trading days from August 31 to September 4, only three from Septem-
ber 28 to October 2, and only two from October 5 to 9. Since, September 3
is the Anti-Japanese War Victory Day of China and October 1 is the National
Day of China, the whole week was a holiday. The data from three weeks men-
tioned above are excluded from graphs. Second, after slumping from June 15, the
SSE Composite Index reached the valley of 2015 in August 26 (2850.71 points)
and recovered. The SZSE Component Index also rebounded after hitting the
rock bottom (9259.65 points) on September 15. In September, both the SSE
Composite Index and the SZSE Component Index almost went flat. The SSE
Composite Index gained 15.66% from October 8 (3143.36 points) to November
26 (3635.55 points). The SZSE Component Index gained 22.83% from October
8 (10394.73 points) to November 26 (12767.51 points).

For the last window, there are two causes. First, in the first week of 2016, the
circuit breaker mechanism was triggered to halt the market on January 4 and 7,
and shook the investors’ confidences. During that week, the SSE Composite Index
and the SZSE Component Index slumped for 9.97% and 14.02%, respectively (see
Fig. 1). The tumble lasted until the end of January 2016. In January 27, the SSE
Composite Index and the SZSE Component Index hit new rock bottom at 2638.30
points and 8986.52 points, respectively. Second, the Chinese Spring Festival is dur-
ing the week of February 8 to 12, 2016, so the market was closed. The fluctua-
tion occurred around the ‘biggest’ holiday of China again. On February 25, more
than one thousand shares went to the down-limit (−10%); the SSE Composite
Index and the SZSE Component Index fell 6.41% to 2741.25 points and 7.34% to
9551.08 points, respectively. On February 29, the SSE Composite Index and the
SZSE Component Index tumbled to 2638.96 points and 9000.89 points, respec-
tively, which are very close to the values on January 27. These two close valleys
imply a revival and the big change in Fig. 6 also provides a sign. From Fig. 1, we
see that the SSE Composite Index gained 9.53% from March 11 (2810.31 points)
to April 15 (3078.12 points), and the SZSE Component Index gained 14.63% from
March 11 (9363.41 points) to April 15 (10733.64 points).

5 Conclusion and Future Work

In summary, we computed some motif statistics, dual motif statistics, and the
cut-distances for the correlation stock networks over the Chinese A-share Stocks.
These measurements are motivated from the theory of graph limits. When a
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sequence of graphs {Gi} converges, then all these (sequences of) quantities con-
verge. In contraposition, the fluctuation of these quantities can be used to mea-
sure the fluctuation of the graphs. We observed significant changes on all three
measures when the Chinese A-share Stocks changed dramatically.

In the future, we hope to establish a graphon-inspired real-time system to
predict the future dramatic changes in the stock market. For example, we may
set Δt to be one minute instead of one day and set the time intervals by 10 or
20 minutes. Of course, such tasks put a heavy burden on the computing, so fast
sampling results like Theorem 1 are useful to estimate these measurements.

Acknowledgments. We would like to thank the referees for their helpful comments.

Appendix

There are 122 weeks between December 30, 2013 and April 29, 2016. The irregular
data during 12 weeks are excluded due to Chinese holidays. Therefore, only 110
weekly correlation graphs were constructed. Here are the list of those 110 weeks.

Table 1. List of the weeks

1 2 3 4 5 6 7 8

12/30/2013
– 01/03/2014

01/06/2014
– 01/10/2014

01/13/2014
– 01/17/2014

01/20/2014
– 01/24/2014

01/27/2014
– 01/31/2014

02/10/2014
– 02/14/2014

02/17/2014
– 02/21/2014

02/24/2014
– 02/28/2014

9 10 11 12 13 14 15 16

03/03/2014
– 03/07/2014

03/10/2014
– 03/14/2014

03/17/2014
– 03/21/2014

03/24/2014
– 03/28/2014

03/31/2014
– 04/04/2014

04/07/2014
– 04/11/2014

04/14/2014
– 04/18/2014

04/21/2014
– 04/25/2014

17 18 19 20 21 22 23 24

05/05/2014
– 05/09/2014

05/12/2014
– 05/16/2014

05/19/2014
– 05/23/2014

05/26/2014
– 05/30/2014

06/02/2014
– 06/06/2014

06/09/2014
– 06/13/2014

06/16/2014
– 06/20/2014

06/23/2014
– 06/27/2014

25 26 27 28 29 30 31 32

06/30/2014
– 07/04/2014

07/07/2014
– 07/11/2014

07/14/2014
– 07/18/2014

07/21/2014
– 07/25/2014

07/28/2014
– 08/01/2014

08/04/2014
– 08/08/2014

08/11/2014
– 08/15/2014

08/18/2014
– 08/22/2014

33 34 35 36 37 38 39 40

08/25/2014
– 08/29/2014

09/01/2014
– 09/05/2014

09/08/2014
– 09/12/2014

09/15/2014
– 09/19/2014

09/22/2014
– 09/26/2014

10/13/2014
– 10/17/2014

10/20/2014
– 10/24/2014

10/27/2014
– 10/31/2014

41 42 43 44 45 46 47 48

11/03/2014
– 11/07/2014

11/10/2014
– 11/14/2014

11/17/2014
– 11/21/2014

11/24/2014
– 11/28/2014

12/01/2014
– 12/05/2014

12/08/2014
– 12/12/2014

12/15/2014
– 12/19/2014

12/22/2014
– 12/26/2014

49 50 51 52 53 54 55 56

01/05/2015
– 01/09/2015

01/12/2015
– 01/16/2015

01/19/2015
– 01/23/2015

01/26/2015
– 01/30/2015

02/02/2015
– 02/06/2015

02/09/2015
– 02/13/2015

03/02/2015
– 03/06/2015

03/09/2015
– 03/13/2015

57 58 59 60 61 62 63 64

03/16/2015
– 03/20/2015

03/23/2015
– 03/27/2015

03/30/2015
– 04/03/2015

04/06/2015
– 04/10/2015

04/13/2015
– 04/17/2015

04/20/2015
– 04/24/2015

04/27/2015
– 05/01/2015

05/04/2015
– 05/08/2015

65 66 67 68 69 70 71 72

05/11/2015
– 05/15/2015

05/18/2015
– 05/22/2015

05/25/2015
– 05/29/2015

06/01/2015
– 06/05/2015

06/08/2015
– 06/12/2015

06/15/2015
– 06/19/2015

06/22/2015
– 06/26/2015

06/29/2015
– 07/03/2015

73 74 75 76 77 78 79 80

07/06/2015
– 07/10/2015

07/13/2015
– 07/17/2015

07/20/2015
– 07/24/2015

07/27/2015
– 07/31/2015

08/03/2015
– 08/07/2015

08/10/2015
– 08/14/2015

08/17/2015
– 08/21/2015

08/24/2015
– 08/28/2015

81 82 83 84 85 86 87 88

09/07/2015
– 09/11/2015

09/14/2015
– 09/18/2015

09/21/2015
– 09/25/2015

10/12/2015
– 10/16/2015

10/19/2015
– 10/23/2015

10/26/2015
– 10/30/2015

11/02/2015
– 11/06/2015

11/09/2015
– 11/13/2015

89 90 91 92 93 94 95 96

11/16/2015
– 11/20/2015

11/23/2015
– 11/27/2015

11/30/2015
– 12/04/2015

12/07/2015
– 12/11/2015

12/14/2015
– 12/18/2015

12/21/2015
– 12/25/2015

12/28/2015
– 01/01/2016

01/11/2016
– 01/15/2016

97 98 99 100 101 102 103 104

01/18/2016
– 01/22/2016

01/25/2016
– 01/29/2016

02/01/2016
– 02/05/2016

02/15/2016
– 02/19/2016

02/22/2016
– 02/26/2016

02/29/2016
– 03/04/2016

03/07/2016
– 03/11/2016

03/14/2016
– 03/18/2016

105 106 107 108 109 110

03/21/2016
– 03/25/2016

03/28/2016
– 04/01/2016

04/04/2016
– 04/08/2016

04/11/2016
– 04/15/2016

04/18/2016
– 04/22/2016

04/25/2016
– 04/29/2016
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18. Onnela, J.-P., Saramäki, J., Kertész, J., Kaski, K.: Intensity and coherence of
motifs in weighted complex networks. Phys. Rev. E 71, 065103(R) (2005)

19. Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biol. 2(11), e:369, 1910–
1918 (2004)

20. Wang, P., Lui, J.C.S., Ribeiro, B., Towsley, D., Zhao, J., Guan, X.: Efficiently
estimating motif statistics of large networks. ACM Trans. Knowl. Discov. Data
(TKDD) 9(2), article 8 (2014)
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Abstract. We introduce Max celebrity games a new variant of Celebrity
games defined in [4]. In both models players have weights and there is a
critical distance β as well as a link cost α. In the max celebrity model the
cost of a player depends on the cost of establishing links to other players
and on the maximum of the weights of those nodes that are farther away
than β (instead of the sum of weights as in celebrity games). The main
results for β > 1 are that: computing a best response for a player is NP-
hard; the optimal social cost of a celebrity game depends on the relation
between α and wmax; ne always exist and ne graphs are either connected
or a set of r ≥ 1 connected components where at most one of them is
not an isolated node; for the class of connected ne graphs we obtain a
general upper bound of 2β+2 for the diameter. We also analyze the price
of anarchy (PoA) of connected ne graphs and we show that there exist
games Γ such that PoA(Γ ) = Θ(n/β); modifying the cost of a player we
guarantee that all ne graphs are connected, but the diameter might be
n − 1. Finally, when β = 1, computing a best response for a player is
polynomial time solvable and the PoA = O(wmax/wmin).

1 Introduction

The increasing use of Internet and social networks, has motivated a great inter-
est to model theoretically their behavior. Fabrikant et al. [15] proposed a game-
theoretic model of network creation (NCG) as a simple tool to analyze the cre-
ation of Internet as a decentralized and non-cooperative communication network
among players (the network nodes).

In this model the goal of each player is to have, in the resulting network, all
the other nodes as close as possible paying a minimum cost. It is assumed that: all
the players have the same interest (all-to-all communication pattern with identical
weights); the cost of being disconnected is infinite; and the links to other nodes
paid by one node can be used by others. Formally, a game Γ in this seminal model
is defined as a tuple Γ = 〈V, α〉, where V is the set of n nodes and α the cost of
establishing a link. A strategy for player u ∈ V is a subset Su ⊆ V −{u}, the set of
players for which player u pays for establishing a link. The n players and their joint
strategy choices S = (Su)u∈V create an undirected graph G[S]. The cost function
for each node u under strategy S is defined by cu(S) = α|Su| + ∑

v∈V dG[S](u, v)

c© Springer International Publishing AG 2016
A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 88–99, 2016.
DOI: 10.1007/978-3-319-49787-7 8
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where dG[S](u, v) is the distance between nodes u and v in graph G[S]. By changing
the cost function to cu(S) = α|su| + max{dG[S](u, v)|v ∈ V } as proposed in [13]
one obtains the max game model.

From here on several versions have been considered to make the model
a little more realistic. For different variants we refer the interested reader to
[1–3,6,9–14,16,17,19] among others.

In Internet as well as in social networks not all the nodes have the same
importance. It seems natural to consider nodes with different relevance weights.
In such a setting, the cost of being far (even if connected) from high-weight
nodes should be greater than the cost of being far from low-weight nodes. In
[4] we introduce celebrity games with the aim to study the combined effect of
having players with different weights that share a common distance bound.

In celebrity games the cost of a player has two components. The first one
is the cost of the links established by the node. The second one is the sum
of the weights of those nodes that are farther away than the critical distance.
Formally, a celebrity game is defined by Γ = 〈V, (wu)u∈V , α, β〉, where V is
a set of nodes with weights (wu)u∈V , α is the cost of establishing a link and
β establishes the desirable distance bound. The cost function for each node is
defined by cu(S) = α|Su| +

∑
{v|dG[S](u,v)>β} wv.

In this paper we extend the study initiated in [4]: we define a max version
of the celebrity games that we name max celebrity games and we analyze the
structure and quality of their Nash equilibria. From now on, let us refer to
celebrity games as sum celebrity games. In the max celebrity model the cost of
a player takes into account the maximum of the weights (worst-case) of those
nodes that are farther away than the critical distance, instead of the sum of
weights (average-case). The cost function is formally defined by cu(S) = α|Su|+
max{v|dG[S](u,v)>β} wv. Intuitively, the goal of each player in max celebrity games
is to buy as few links as possible in order to have the high-weighted nodes closer
to the given critical distance. Observe that if the cost of establishing links is
higher than the benefit of having close a node (or set of nodes), players might
rather prefer to stay either far or even disconnected from it.

Observe that the main feature of both, sum and max celebrity games, is the
combination of bounded distance with players having different weights. Even
though heterogeneous players have been considered in NCG under bilateral con-
tracting [5,18], and the notion of bounded distance has been studied in [8], to the
best of our knowledge sum celebrity games is the first model that studies how
a common critical distance, different weights, and a link cost, altogether affect
the individual preferences of the players. Furthermore, max celebrity games is
the first model that focuses on how the maximum weight of those nodes that are
farther than β affects the creation of graphs.

In this paper we analyze the structure of Nash equilibrium (ne) graphs of
max celebrity games and their quality with respect to the optimal strategies. To
do so we address the cases β > 1 and β = 1, separately. For β > 1, every player
u has to choose for each non-edge (u, v) between paying the maximum of the
weights of the nodes with distance to u greater than β, or buying the link (u, v)
and paying α for the link minus the maximum of the weights of those nodes



90 C. Àlvarez and A. Messeguè

whose distance to u will become less or equal than the critical distance β. While
for β = 1, each player u has to decide for every non-edge (u, v) of the graph to
pay either α for the link or at least wv (the weight of the non-adjacent node v).

For the general case β > 1 our results can be summarized as follows: comput-
ing a best response for a player is NP-hard; the optimal social cost of a celebrity
game Γ depends on the relation between α and the maximum weight wmax; ne
always exist and ne graphs are either connected or a set of r ≥ 1 connected
components where at most one of them is not an isolated node; for the class of
connected ne graphs we obtain a general upper bound of 2β+2 for the diameter;
we also analyze the quality of connected ne graphs and we show that there exist
max celebrity games such that PoA(Γ ) = Θ(n/β); we consider a variation of the
cost of the player in order to avoid non-connected ne graphs.

Finally, for the particular case β = 1, we show that computing a best response
for a player is polynomial time solvable and that the PoA = O(wmax/wmin).

The paper is organized as follows. In Sect. 2 we introduce the basic definitions
and the max celebrity model. In Sect. 3 we study the fundamental properties
of optimal graphs and ne graphs. Section 4 studies for β > 1 the quality of
connected ne graphs and considers a modification of the cost of a player in
order to guarantee connected ne graphs. In Sect. 5 we study the complexity of
the best response problem and the PoA for the case β = 1. Finally, in Sect. 6 we
give an outline of the main differences between max and sum celebrity models.

2 The Model

We use standard notation for graphs and strategic games. All the graphs in the
paper are undirected unless explicitly said otherwise. For a graph G = (V,E)
and u, v ∈ E, dG(u, v) denotes the distance, i.e. the length of a shortest path,
from u to v in G. The diameter of a vertex u ∈ V , diamG(u), is defined as
diamG(u) = maxv∈V {dG(u, v)} and the diameter of G, diam(G), is defined
as usual as diam(G) = maxv∈V {diamG(v)}. An orientation of an undirected
graph is an assignment of a direction to each edge, turning the initial graph into
a directed graph.

For a weighted set (V, (wu)u∈V ) we extend the weight function to subsets
in the following way. For U ⊆ V , w(U) = maxu∈U{wu}. Furthermore, we set
wmax = maxu∈V {wu} and wmin = minu∈V {wu}.

Definition 1. A max celebrity game Γ is defined by a tuple 〈V, (wu)u∈V , α, β〉
where: V = {1, . . . , n} is the set of players, for each player u ∈ V ; wu > 0 is the
weight of player u; α > 0 is the cost of establishing a link and β, 1 ≤ β ≤ n − 1,
is the critical distance.

A strategy for player u is a subset Su ⊆ V − {u} denoting the set of players
for which player u pays for establishing a direct link. A strategy profile for Γ is
a tuple S = (S1, S2, . . . , Sn) defining a strategy for each player. For a strategy
profile S, the associated outcome graph is the undirected graph G[S] which is
defined by G[S] = (V, {{u, v}|u ∈ Sv ∨ v ∈ Su}).
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For a strategy profile S = (S1, S2, . . . , Sn), the cost function of player u,
denoted by cu, is defined as cu(S) = α|Su| + Wu where Wu = max{v|dG[S]

(u,v)>β}{wv}. And as usual, the social cost of a strategy profile S in Γ is defined
as C(S) =

∑
u∈V cu(S). The social cost of a graph G in Γ is defined analogously

as C(G) = α|E(G)| +
∑

u∈V (G) Wu.

Observe that, even though a link might be established by only one player,
we consider the outcome graph as an undirected graph, assuming that once a
link is bought the link can be used in both directions. In our definition we have
considered a general case in which players may have different weights and defined
the cost function through properties of the undirected graph created by the
strategy profile. The player’s cost function takes into account two components:
the cost of establishing links and the maximum of the weights of the players that
are at a distance greater than the critical distance β.

In the remaining of the paper, we assume that, for Γ = 〈V, (wu)u∈V , α, β〉, the
parameters verify the required conditions. Furthermore, unless specifically stated,
we consider β > 1, the case β = 1 will be studied in Sect. 5. We use the following
notation, for a game Γ = 〈V, (wu)u∈V , α, β〉, n = |V |. We denote by S(u) the set
of strategies for player u and by S(Γ ) the set of strategy profiles of Γ .

As usual, for a strategy profile S and a strategy S′
u for player u, (S−u, S′

u)
represents the strategy profile in which Su is replaced by S′

u while the strategies
of the other players remain unchanged. The cost difference Δ(S−u, S′

u) is defined
as Δ(S−u, S′

u) = cu(S−u, S′
u) − cu(S). Observe that, if Δ(S−u, S′

u) < 0, player u
has an incentive to deviate from Su. A best response to S ∈ S(Γ ) for player u
is a strategy S′

u ∈ S(u) minimizing Δ(S−u, S′
u). Let us remind the definition of

Nash equilibrium.

Definition 2. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. A strategy
profile S = (S1, S2, . . . , Sn) is a Nash equilibria of Γ if no player has an incentive
to deviate from his strategy. Formally, for a player u and each strategy S′

u ∈ S(u),
Δ(S−u, S′

u) ≥ 0.

We denote by NE(Γ ) the set of Nash equilibria of a game Γ . We use the
term ne to refer to a strategy profile S ∈ NE(Γ ). We say that a graph G is a
ne graph if there is S ∈ NE(Γ ) so that G = G[S].

We denote by opt(Γ ) the minimum value of the social cost, i.e. opt(Γ ) =
minS∈S(Γ ) C(S). We denote by OPT(Γ ) the set of optimum strategy profiles of
Γ w.r.t. the social cost, that is, for S ∈ OPT(Γ ), C(S) = opt(Γ ). We use the
term opt strategy profile to refer to a S ∈ OPT(Γ ).

It is worth observing that: for S ∈ NE(Γ ), it never happens that v ∈ Su and
u ∈ Sv, for any u, v ∈ V ; a ne graph G can be the outcome of several strategy
profiles and not all the orientations of a ne graph G are ne.

In the following we make use of some particular outcome graphs on n vertices:
In, the independent set; and STn a star graph, i.e. a tree in which one of the
vertices, the central vertex, is connected to all the other n − 1 vertices.

We define the Price of Anarchy and the Price of Stability as usual.
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Definition 3. Let Γ be a max celebrity game. The Price of Anarchy of Γ is
defined as PoA(Γ ) = maxS∈NE(Γ ) C(S)/opt(Γ ) and the Price of Stability of Γ
is defined as PoS(Γ ) = minS∈NE(Γ ) C(S)/opt(Γ )

The explicit reference to Γ will be dropped whenever Γ is clear from the
context. We will refer to ne(Γ ), opt(Γ ), PoA(Γ ), and PoS(Γ ) by ne, opt, PoA
and PoS respectively.

Our first result shows that the computation of a best response in max
celebrity games is a NP-hard problem for β ≥ 2. The proof consists in a reduc-
tion from the Dominating Set problem. The problem becomes polynomial time
computable for β = 1 as we show in Sect. 5.

Proposition 1. Computing a best response for a player to a strategy profile in
a max celebrity game is NP-hard even when β = 2.

3 Social Optimum and Nash Equilibrium

In this section we analyze some properties of the opt and ne strategy profiles
in max celebrity games. We start by giving bounds for opt that depend on the
existence of one or more than one connected components.

Proposition 2. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. We have
that 2α(n − 1) ≥ opt(Γ ) ≥ min{α(n − 1), wmax(n − 1) + wmin}.
Proof. Let S ∈ OPT(Γ ) and let G = G[S]. Let G1, ..., Gr be the connected
components of G and let Vi = V (Gi), ki = |Vi|, and Wi = w(Vi), for 1 ≤ i ≤ r.
Assume w.l.o.g that W1 ≥ W2 ≥ ... ≥ Wr. Observe that the social cost of
a disconnected graph can be expressed as the sum of the social cost of the
connected components plus the additional contribution of the pairs of vertices
that lie in different components. Each connected component must be a tree of
diameter at most β, otherwise a strategy profile with smaller social cost could
be obtained by replacing the connections on Vi by such a tree. W.l.o.g we can
assume that, for 1 ≤ i ≤ r, the i−th connected component is a star graph STki

on ki vertices. Recall that C(STki
) = α(ki − 1), thus C(G) =

∑r
i=1 α(ki − 1) +∑r

i=1 ki (maxj �=i{Wj}) = α(n − r) + nW1 − k1(W1 − W2).
Notice that if for some i > 1, the i-th connected component is not an isolated

node, then the node with maximum weight in this connected component can be
moved to G1. By preserving the connectivity and structure (a star) of G1, the
social cost of the resulting graph is strictly smaller than the cost of the original
G. This implies that for every i > 1, ki = 1. Hence, C(G) = α(n − r) + (r −
1)W1 + (n − r + 1)W2.

If r = 1 then C(G) = α(n − 1) and we are done. Otherwise, if r > 1, then
we have the inequality C(STn) ≥ C(G). This implies that α ≥ 1

r−1 (W1(r − 1) +
W2(n − r + 1)) ≥ W1.

Then we get the following results. First: C(G) ≥ W1(n − r) + (r − 1)W1 +
(n − r + 1)W2 ≥ (n − 1)W1 + W2 ≥ (n − 1)wmax + wmin.

Secondly, using that r > 1: C(G) = α(n − r) + (r − 1)W1 + (n − r + 1)W2 ≤
α(n − r) + (r − 1)α + (n − r + 1)α ≤ 2α(n − 1).
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The relationship between α and wmax determines partially the topology of
the ne graphs. As one can expect, if α > wmax, no player has incentive to
establish a link then the independent set is the unique ne graph. Otherwise, any
ne graph can be connected or disconnected.

Proposition 3. Every max celebrity game Γ = 〈V, (wu)u∈V , α, β〉 has a ne.
Furthermore, when α ≤ wmax, STn is a ne graph, and when α ≥ wmax, In is a
ne graph. If α > wmax, then In is the unique ne graph.

Proof. When α ≤ wmax let us show that STn is a ne graph. Let umax a node
with maximum weight and we suppose that it is the central node of the star. If
Sumax

= ∅ and for every node v 
= umax, Sv = {umax}, then umax cannot improve
its actual cost since it is exactly 0. Moreover, the other nodes can only delete
the edge to umax. Since such deviation has a cost increment of −α + wmax ≥ 0,
then we are done.

When α ≥ wmax, let us show that In is a ne graph. Let S be the empty
strategy profile, In = G[S]. Notice that for any player u, if S′

u 
= ∅, then
Δ(S−u, S′

u) ≥ |S′
u|α − wmax ≥ (|S′

u| − 1)wmax ≥ 0. Finally, if α > wmax it
is easy to see that the unique ne graph is In. Let us suppose that there exist
u, v ∈ V such that v ∈ Su. If S′

u = Su −{v}, then Δ(S−u, S′
u) ≤ −α+wmax < 0.

Hence, if G 
= In, then G is not a ne graph.

Corollary 1. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. Then,
PoS(Γ ) = 1 for α ≤ wmax and PoS(Γ ) < 2 for α > wmax.

In particular, even in the case that α < wmax, it can be shown that there
exist max celebrity games where In is a ne graph. Indeed consider a game with
n ≥ 2 and weights defined as wi = (i − 1)α for i > 1 and w1 = α. Then, clearly
α < wmax and In is a ne graph.

Furthermore, for every integer 1 < r ≤ n, there exists non-connected max
celebrity games with exactly r different connected components. Moreover, the
only connected component that can have more than one node is the one that
contains a node with weight wmax.

Proposition 4. Any ne graph distinct from In has at most one non-trivial
connected component. Moreover, for every integer r ≥ 2 there exists a max
celebrity game having a ne graph with exactly r connected components.

Proof. (Sketch) For the first part, let G1, ..., Gr be the connected components of
a ne graph. Assume that a node with the maximum weight is in G1. If for some
i > 1, |Gi| > 1, then there exist u, v ∈ V (Gi) such that u ∈ Sv. In this case, v
can strictly decrease its cost deleting this edge because the node with maximum
weight is still at distance greater than β, contradicting the fact that G is a ne
graph.

For the second part we distinguish two cases: r ≥ 3 and r = 2. For the first
case, let n = r + 1, V = {v0, v1, ..., vr}, E = {{v0, v1}} with Sv1 = {v0}, Svi

= ∅
for i 
= 1, as depicted in the figure below. For the weights consider wv0 = w1 and
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wvi
= w2 for all i ≥ 1, with w1 > w2, w1−w2 = α and α ≥ w1/(n−1), w2/(n−2).

We have that this configuration is a ne.

v0 v1 v2 · · · vr

For the case r = 2 see the figure below. It is not hard to see that this
configuration is also a ne.

u1 u2 u3 u4 v

4 The Price of Anarchy

Observe that there exist max celebrity games Γ with α ≤ wmax having discon-
nected ne graphs with high social cost in comparison with the optimum. Indeed,
consider the example given in Proposition 4 with w2 = w1(n−2)

(n−1) . The cost of this

ne graph is w1(n − 1) + w1(n−2)
n−1 and combining it with opt ≤ 2α(n − 1), we get

the bound PoA(Γ ) ≥ (n − 1)/2. Hence, we focus on the study of the PoA for
connected ne graphs. Since the restriction α ≤ wmax by itself does not exclude
the possibility of having non-connected ne graphs, we study the PoA of con-
nected equilibria from two different perspectives: first, we analyze the worst case
among all connected ne graphs; second, we introduce a slight modification of
the player’s cost function in order to guarantee connectivity in the class of ne
graphs. Whenever we consider the class of connected ne graphs we compare
the social cost of such equilibria with the optimum value among the connected
graphs, opt(Γ ) = α(n − 1).

4.1 PoA and Diameter of Connected NE Graphs

In this subsection we analyze the quality and structure of equilibria in terms of
the parameters that define the max celebrity games. Our next result indicates
that the price to pay for the anarchy is low when α is close to wmax.

Proposition 5. For every max celebrity game Γ = 〈V, (wu)u∈V , α, β, 〉,
PoA(Γ ) ≤ 2(wmax/α).

Proof. Let S be a ne of Γ and let G = G[S] = (V,E). Then, no player has
an incentive to deviate from S. In particular, for each u ∈ V we have that
0 ≤ Δ(S−u, ∅) = −α|Su| + W ′

u − Wu where Wu = max{x|dG(u,x)>β} wx and
W ′

u = max{x|dG[(S−u,∅)](u,x)>β} wx. By adding for each u ∈ V the corresponding

inequalities, we have that 0 ≤ ∑
u∈V (−α|Su|+W ′

u−Wu) = −α|E|+∑
u∈V W ′

u−∑
u∈V Wu.
Therefore, C(G) = α|E| +

∑
u∈V Wu ≤ ∑

u∈V W ′
u ≤ nwmax and we can

conclude that PoA(Γ ) ≤ nwmax

α(n−1) ≤ 2wmax

α .

The diameter of ne graphs depends directly on the critical distance β.
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Proposition 6. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. In a ne
graph G for Γ , diam(G) ≤ 2β + 2.

Proof. Let S ∈ ne(Γ ) such that G = G[S] is connected. Assume that the node
u satisfies that dG(u, umax) > β and |Su| > 0. Then u has incentive to break
any of its bought links because after doing so, umax will still remain inside
the complementary of the ball of radius β centered at u. Next, assume that
diam(umax) ≥ β + 2. Let umax, u1, u2, ...., uβ+2 be a path. Then, either uβ+1 ∈
Suβ+2 or uβ+2 ∈ Suβ+1 . Therefore, since both uβ+1, uβ+2 are at distances greater
than β from umax, G cannot be a ne. This proves that diam(umax) ≤ β + 1 in
any connected ne and, as a consequence, that diam(G) ≤ 2β + 2.

Let us provide for a ne graph G, a bound on the contribution of the weight
component of the social cost of G, W (G, β) =

∑
{u∈V (G)} Wu. The following

lemma is a reformulation of a similar result that can be found in [4] using a
cleaner and simpler argument.

Lemma 1. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. In a ne graph
G for Γ , W (G, β) = O(αn2/β).

Proof. Let S be a ne and G = G[S] be a connected ne graph. Let
u ∈ V be any node in V . Consider the sets Ai(u) = {v | dG(u, v) = i}.
Define for i = 1, ..., k, Ci = {v ∈ V | (i − 1)(β − 1) ≤ dG(u, v) < i(β − 1)} =
∪(i−1)(β−1)≤j<i(β−1)Aj(u) with k such that ∪k

i=1Ci = V (G). By the pigeonhole
principle, for each i = 1, ..., k there exists at least one subindex, call it j(i),
for which (i − 1)(β − 1) ≤ j(i) < i(β − 1) and |Aj(i)(u)| ≤ |Ci|/(β − 1). In
this way, for any node v ∈ V (G), let S′

v = (Sv ∪k
i=1 Aj(i)(u)) − {v} and let

G′ = G[S−v, S′
v]. By construction, diamG′(v) ≤ β. Therefore, as S is a ne, we

have 0 ≤ Δ(S−v, S′
v) ≤ α

∑k
i=1

|Ci|
β−1 − Wv = α

(
n−1
β−1

)
− Wv.

Thus, W (G, β) ≤ n(n−1)α
β−1 = O

(
αn2

β

)
.

Using the same technique to provide a bound for the number of edges in
ne graphs for a sum celebrity games (Proof of Lemma 4 of [4]), we obtain the
following result.

Lemma 2. Let Γ = 〈V, (wu)u∈V , α, β〉 be a max celebrity game. In a ne graph
G for Γ , |E(G)| ≤ n − 1 + 3n2

β .

Corollary 2. For every max celebrity game Γ = 〈V, (wu)u∈V , α, β, 〉, PoA(Γ ) =
O(n/β)

Proposition 7. For every n > β > 1, there exists a max celebrity game Γ =
〈V, (wu)u∈V , α, β, 〉 such that PoA(Γ ) = Ω(n/β).

Proof. Given n, let k and r be such that n−1 = k�β+r, k ≥ 3 and 0 ≤ r < �β.
Let V = {u} ∪ (∪k

i=1 {ui,j | 1 ≤ j ≤ �β}) ∪ {uk+1,1, uk+1,2, ..., uk+1,r}. We then
define wu = W and wui,j

= w with W,w such that w = (k − 2)α and W > nα.
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In this way we consider the configuration S defined by the relations Su = ∅,
Sui,j

= {ui,j−1} for j ≥ 2 and Sui,1 = {u} for i = 1, ..., k + 1, as depicted in the
figure below. To prove that S ∈ ne(Γ ) we see that the cost difference associated
to any deviation is not negative.

u2,1

...

u2,�β�

u1,1

...

u1,�β�

· · ·

· · ·

· · ·

...

uk+1,1

uk+1,r

u

Clearly, u has no incentive of deviating his strategy because his cost is zero.
Let us prove that any other node ui,j has no incentive in deviating from its
current strategy. We say that a node v is covered with respect a node v′ if v is
at a distance at most β from v′. We have three cases:

1. The deviation is such that all nodes are covered with respect ui,j . In this
situation the cost difference is lα − w. Notice that every node uh,�β� with
h 
= i can be reached only when a link from ui,j to the path formed by
uh,1, uh,2, ..., uh,�β� is bought. Since initially ui,j has bought one link this
leads to the inequality l ≥ k − 2. Therefore lα −w ≥ (k − 2)α − (k − 2)α = 0.

2. The deviation is such that u is uncovered with respect ui,j . In this situation,
since W > nα, the cost difference is lα − w + W ≥ 0, for −1 ≤ l ≤ n − 1.

3. The deviation is such that u is covered with respect ui,j but there is at least one
node node of weight w uncovered with respect ui,j . Then the cost difference is
lα for some integer l. The only negative value that l can take is −1, but in such
case the configuration leaves u uncovered with respect ui,j , a contradiction.
Therefore, lα ≥ 0.

Hence, S ∈ ne(Γ ) and C(S) > (n − 1)w = (n − 1)(k − 2)α. Using the bound for
the social optimum opt(Γ ) ≤ 2α(n − 1) we have that PoA(Γ ) ≥ (k − 2)/2.

Theorem 1. For every n > β > 1, there exists a max celebrity game Γ =
〈V, (wu)u∈V , α, β, 〉 such that PoA(Γ ) = Θ(n/β).

4.2 The PoA When the Connectivity of the NE Graphs Is
Guaranteed

Let us consider a new cost function that excludes non-connected ne graphs.
We define a connected max celebrity game Γ con as a max celebrity game
Γ con = 〈V, (wu)u∈V , α, β, 〉, but now, the cost for each player u ∈ V in strategy
profile S is denoted by ccon

u (S) and it is defined as follows: ccon
u (S) = cu(S),

if diamG[S](u) ≤ n − 1; otherwise, ccon
u (S) = ∞. As usual, the social cost
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of a strategy profile S in Γ con is defined as Ccon(S) = Σu∈V ccon
u (S). Since

for any connected graph G, Ccon(G) = C(G) ≥ α(n − 1), then we have that
opt(Γ con) = α(n − 1). Notice that the same tuple 〈V, (wu)u∈V , α, β, 〉 can define
a max celebrity game as well as a connected max celebrity game. In order to
distinguish one from the other, we denote by Γ = Γ (〈V, (wu)u∈V , α, β, 〉) the
corresponding max celebrity game and by Γ con = Γ con(〈V, (wu)u∈V , α, β, 〉), the
corresponding connected max celebrity game.

Proposition 8. Let 〈V, (wu)u∈V , α, β〉 be a tuple defining Γ = Γ (〈V, (wu)u∈V ,
α, β〉) and Γ con = Γ con(〈V, (wu)u∈V , α, β〉). Then, ne(Γ ) � ne(Γ con) when we
consider ne(Γ ) restricted to connected graphs.

Proof. Let S ∈ ne(Γ ) be such that G = G[S] is connected. Let u be a
player, let S′

u be a deviation, and let G′ = G[(S−u, S′
u)]. Let Δ(S−u, S′

u) and
Δcon(S−u, S′

u) be the corresponding increments in the games Γ and Γ con, respec-
tively. We have that Δcon(S−u, S′

u) = Δ(S−u, S′
u), if G′ is connected. Otherwise,

Δcon(S−u, S′
u) = ∞, Δ(S−u, S′

u) < ∞. Therefore, Δcon(S−u, S′
u) ≥ Δ(S−u, S′

u)
and then, ne(Γ ) ⊆ ne(Γ con).

To see that the inclusion might be strict, let us consider that V = {u, v},
v ∈ Su, and Sv = ∅. If wv > α, S is not a ne for Γ . On the other hand,
independently of the weights of u, v, S is a ne for Γ con.

Proposition 9. There are connected max celebrity games that have ne graphs
with diameter equal to n − 1.

Proof. Let n = 2k + 1 be a positive integer and let V = {v, v1, v−1, v2, v−2,
. . . , vk, v−k}. Let S be the strategy profile defined by v1, v−1 ∈ Sv and vi+1 ∈
Svi

, v−(i+1) ∈ Sv−i
for i ≤ k − 1 (see the figure below). Setting the weights

wx ≤ α for all x ∈ V and for any β < (n − 1)/4 it is easy to see that the
corresponding graph is indeed a ne.

v0v−1· · ·v−k v1 · · · vk

The bounds on the PoA obtained for the class of connected ne graphs for
max celebrity games also hold for connected max celebrity games. The proofs
also work for this case.

Theorem 2. The PoA for the connected max celebrity games satisfies:

1. For every connected max celebrity game Γ con = Γ con(〈V, (wu)u∈V , α, β〉),
PoA(Γ con) = O(n/β)

2. For every n > β > 1, there exists a connected max celebrity game Γ con =
Γ con(〈V, (wu)u∈V , α, β〉) such that PoA(Γ con) = Θ(n/β).

5 Max Celebrity Games for β = 1

When β = 1, each player u has to decide for every non-edge (u, v) of the graph
to pay either α for the link, or at least wv. It is not difficult to show that the best
response of a player can be computed by sorting the weights of the non-adjacent
nodes and then, selecting the number of links to be added to the most weighted
non-adjacent nodes.
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Proposition 10. The problem of computing a best response of a player to a
strategy profile in max celebrity games is polynomial time solvable when β = 1.

In the next result we show that the price to pay for the anarchy is low when
wmin is close to wmax.

Theorem 3. Let Γ = 〈V, (wu)u∈V , α, 1〉 be a max celebrity game. Then,
PoA(Γ ) = O(wmax/wmin).

Proof. Let S ∈ opt(Γ ) and G = G[S] = (V,A). Let X =
{v ∈ V | deg(v) = n − 1} where deg(v) means the degree of v in the undi-
rected graph G. We have that C(G) ≥ 1

2α(n − 1)|X| + (n − |X|)wmin. Hence,
C(G) ≥ nwmin, if wmin ≤ (n−1)

2 α and C(G) ≥ (
n
2

)
α, otherwise. To prove the

result we distinguish three cases:
First we see that if wmin ≤ α(n − 1)/2, then PoA(Γ ) ≤ wmax/wmin. Indeed,

let S be a ne of Γ and let G = G[S] = (V,E). Using the same reasoning as
in Proposition 5 we have that C(G) =

∑
u∈V (|Su|α + max{x|d(u,x)>1}{wx}) ≤

nwmax. Therefore, if wmin ≤ α(n − 1)/2, then PoA(Γ ) ≤ wmax/wmin, as we
wanted to see.

Now, let us see that PoA(Γ ) = 1 for wmin > (n − 1)α. This is because if
G 
= Kn then there exists some v ∈ V with diamG(v) > 1. Then considering the
deviation for player v that consists in adding links to all the remaining nodes
from the graph we get a cost increment of kα−w for some k > 0 and w ≥ wmin.
Since k ≤ (n − 1) then kα − w ≤ (n − 1)α − wmin < 0, a contradiction for G
being a ne. Thus G = Kn and hence the result.

Finally, we see that for n−1
2 α < wmin ≤ (n − 1)α then PoA(Γ ) ≤ 3. Indeed,

let S be a ne and G = G[S] = (V,A). For a given u ∈ V such that diamG(u) > 1,
let v be such that wv = Wu. If wv > (n − 1)α then buying from u all the links
to the remaining nodes from V − {x | dG(u, x) ≤ 1} yields a cost increment of
at most (n − 1)α − wv < 0, a contradiction with G being a ne. Therefore
PoA(Γ ) ≤ (

(
n
2

)
α + n(n − 1)α)/

(
n
2

)
α = 3.

6 Max Celebrity Games Vs Sum Celebrity Games

The main differences between max and sum celebrity games are that: for β > 1,
in max model there exist other disconnected ne graphs than In; in connected
ne graphs, PoA = O(n/β) in both models, but this is tight for some max
games; for β = 1, PoA =O(wmax/wmin) in max, while in sum PoA ≤ 2.
Finally, max celebrity games are equivalent to the MaxBD games (see [7,8])
when α < wmin/(n − 1) as they are sum celebrity games when α < wmin. (See
the proof of Proposition 8 in [4] and replace α < wmin by α < wmin/(n − 1)).
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8. Bilò, D., Gualà, L., Proietti, G.: Bounded-distance network creation games. ACM
Trans. Econ. Comput. 3(3), 16 (2015b)

9. Brandes, U., Hoefer, M., Nick, B.: Network creation games with disconnected equi-
libria. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp.
394–401. Springer, Heidelberg (2008)

10. Corbo, J., Parkes, D.C.: The price of selfish behavior in bilateral network formation.
PODC 2005, 99–107 (2005)

11. Cord-Landwehr, A., Lenzner, P.: Network creation games: think global – act local.
In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9235, pp. 248–260. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48054-0 21

12. Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Zadimoghaddam, M.: The price
of anarchy in cooperative network creation games. ACM SIGecom Exch. 8(2), 2
(2009)

13. Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Zadimoghaddam, M.: The price of
anarchy in network creation games. ACM Trans. Algorithms 8(2), 13 (2012)

14. Ehsani, S., Fadaee, S.S., Fazli, M., Mehrabian, A., Sadeghabad, S.S., Safari, M.,
Saghafian, M.: A bounded budget network creation game. ACM Trans. Algorithms
11(4), 34 (2015)

15. Fabrikant, A., Luthra, A., Maneva, E.N., Papadimitriou, C.H., Shenker, S.: On a
network creation game. PODC 2003, 347–351 (2003)

16. Lenzner, P.: On dynamics in basic network creation games. In: Persiano, G. (ed.)
SAGT 2011. LNCS, vol. 6982, pp. 254–265. Springer, Heidelberg (2011)

17. Leonardi, S., Sankowski, P.: Network formation games with local coalitions. PODC
2007, 299–305 (2007)

18. Meirom, E.A., Mannor, S., Orda, A.: Network formation games with heterogeneous
players and the internet structure. EC 2014, 735–752 (2014)

19. Nikoletseas, S.E., Panagopoulou, P.N., Raptopoulos, C., Spirakis, P.G.: On the
structure of equilibria in basic network formation. Theor. Comput. Sci. 590(C),
96–105 (2015)

http://dx.doi.org/10.1007/978-3-662-48054-0_21


Mining and Modeling Character Networks

Anthony Bonato1(B), David Ryan D’Angelo1,
Ethan R. Elenberg2, David F. Gleich3, and Yangyang Hou3

1 Ryerson University, Toronto, Canada
2 University of Texas at Austin, Austin, USA

elenberg@utexas.edu
3 Purdue University, West Lafayette, USA

Abstract. We investigate social networks of characters found in cultural
works such as novels and films. These character networks exhibit many
of the properties of complex networks such as skewed degree distribution
and community structure, but may be of relatively small order with a
high multiplicity of edges. Building on recent work of Beveridge and Shan
[4], we consider graph extraction, visualization, and network statistics
for three novels: Twilight by Stephanie Meyer, Steven King’s The Stand,
and J.K. Rowling’s Harry Potter and the Goblet of Fire. Coupling with
800 character networks from films found in the http://moviegalaxies.
com/ database, we compare the data sets to simulations from various
stochastic complex networks models including random graphs with given
expected degrees (also known as the Chung-Lu model), the configuration
model, and the preferential attachment model. Using machine learning
techniques based on motif (or small subgraph) counts, we determine that
the Chung-Lu model best fits character networks and we conjecture why
this may be the case.

1 Introduction

Complex networks lie at the intersection of several disciplines and have found
broad application within the study of social networks. In social networks, nodes
represents agents, and edges correspond to some kind of social interaction such
as friendship or following. For more on complex networks and on-line social
networks, the reader is directed to the book [5] and the survey [6].

In the present paper, we consider social networks arising in the context of
cultural works such as novels or movies. In these character networks, nodes rep-
resent characters in a specified fictional or non-fictional work such as a novel,
script, biography, or story, with edges between characters determined by their
interaction within the work. We also consider character networks as weighted
graphs, where the weights are positive integers specifying the co-appearance or
co-occurrence of character names within a specified range of the text or scenes

Research supported by grants from NSERC and Ryerson University; Gleich and
Hou’s work were supported by NSF CAREER Award CCF-1149756, IIS-1546488,
CCF-093937, and DARPA SIMPLEX.

c© Springer International Publishing AG 2016
A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 100–114, 2016.
DOI: 10.1007/978-3-319-49787-7 9

http://moviegalaxies.com/
http://moviegalaxies.com/


Mining and Modeling Character Networks 101

(such as being within fifteen words of each other; see [4]). Not surprisingly, char-
acter networks are typically of smaller order than many other types of complex
networks. Nevertheless, they still exhibit many of the interesting features of com-
plex networks including clearly defined community structure, with communities
centered on the various protagonists of the story, skewed degree distributions,
focused on the most important characters, and dynamics. Character networks
defined over larger fictional universes, such as the Marvel Universe, even grow
to over 10,000 nodes [1,12].

There is an emerging approach using the tools of graph theory and big data
to mine and model character networks. This new topic reflects the ease of access
of cultural works in electronic formats, and the efficacy of big data-theoretic
algorithms. Our approach in this work is study new networks with these tools
to replicate some of the findings as well as study network models of these data.

First, we wish to study the complexity of these character networks through
graph mining. Our approach here is more a microscopic view of an individual
work’s network. We focus on three well known novels: Twilight by Stephanie
Meyer, Steven King’s The Stand, and J.K. Rowling’s Harry Potter and the Gob-
let of Fire. Various complex network statistics, such as diameter and clustering
coefficient, are presented along with centrality metrics (such as PageRank and
betweenness, paralleling the approach of [4]) that predict the major characters
within each book. See Sect. 2 for the methodology used, and Sect. 3 has a sum-
mary of our results.

The second part of our approach is to compare and contrast the character
networks with several well known stochastic network models. Hence, in this
approach, we take a broader, macroscopic view of the structure of a larger sample
of character networks. Using motifs (that is, small subgraph counts), eigenvalues,
and machine learning techniques, we develop an approach for model selection
for character networks. The models considered were the configuration model,
preferential attachment model, the Chung-Lu model for random graphs with
given expected degree sequences, and the binomial random graph (as a control).
The parameters of the models were chosen as to equal the number of nodes
and average degree of the character network data sets. Model selection was
conducted for the three novels described above, and also for a set of 800 networks
arising from movies in the http://moviegalaxies.com/ database [15]. Our results
show consistent selection of the Chung-Lu model as the most realistic, with a
clear separation between the models. We will discuss possible interpretations
and implications of our results in the final section.

We consider undirected graphs throughout the paper. For background on
graph theory, the reader is directed to [22]. Additional background on machine
learning can be found in [13,20].

1.1 Previous Work

Quantitative methods have now emerged as a modern tool for literary analysis.
Literary theories are now supported, debated, and refuted based on data [10]. In
recent work, Reagan et al. [17] implement data mining techniques inspired by Kurt

http://moviegalaxies.com/
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Vonnegut’s theory of the shape of stories. Vonnegut suggested graphing fictional
works based on the fortune of the main character’s experiences over the passage
of time in the story. Using text sentiment analysis, Reagan et al. scored the emo-
tional content over the course of a novel based on the occurrence of select words in
the labMT data set for 1,737 books from the Project Gutenberg database. They
found the majority of emotional arcs resided in six classes. In a study of 60 nov-
els, including Jane Austin’s Pride and Prejudice, Dames et al. [10] determined
that the type of narrative is a good predictor for social network structure among
characters.

In [4], Beveridge and Shan applied network algorithms on the social network
they generated from A Storm of Swords, the third novel in George R.R. Martin’s
A Song of Ice and Fire series (which is the literary origin of the HBO drama Game
of Thrones). Metrics such as PageRank, closeness, betweenness centrality, and
modularity provided an empirical approach to determine communities and key
characters within the network. Work done by Ribeiro et al. [18] focuses on exam-
ining structural properties, such as assortivity and transitivity, of communities
in the social network of J.R.R. Tolkien’s The Lord of the Rings (which included
that unabridged novel, along with text from The Hobbit and The Silmarillion).
Beyond static networks, Agarwal et al. [2] analyze the dynamic network for Alice
in Wonderland, defined by the mining of the ten chapters independently of each
other. Such analysis may be important in determining characters with low global
importance metrics who are significantly important for part of the story. Deviat-
ing from the extraction of character networks, Sack [19] provides a social network
generation model for narratives through the concept of structural balance theory
using signed edges between characters.

2 Experimental Design and Methods

The twin goals of our experiments are to highlight some of the complexities
present in character networks via their network properties and to determine a
possible synthetic model of the character networks.

2.1 Network Properties

We use the Gephi open source software package to extract communities and
compute various network statistics from character networks. These analyses
are all done on weighted, undirected, graphs. For community analysis, we use
modularity and the Louvain method. Centrality measures are a classic tool in
social network analysis to determine the important individuals. They have been
found to also serve the same role in character networks. We consider weighted
degree, closeness, betweenness, eigencentrality, and PageRank centrality. We
briefly review these methods; see [5] for more background on complex network
properties. The closeness of a node u is the average distance between u and all
other nodes (here distance is the standard shortest path metric in graph theory).
The betweenness of u is the proportion of shortest paths that transit through an u
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as an intermediate node. The eigencentrality of u is its corresponding coordinate
in the largest eigenvector of the weighted adjacency matrix. PageRank centrality
is based on the stationary distribution of a random walk on the network that
periodically teleports to a node chosen uniformly at random.

2.2 Model Selection

The goal of our model selection experiments is to determine a random graph
model that matches empirically observed properties of character networks. Our
methodology is to create a compact summary of the network statistics that is
invariant to the labeling of the nodes of the network. In other words, we would
derive the same statistics if we permuted the adjacency matrix. The summaries
we use are the 3-profile, 4-profile, and eigenvalue histogram. The k-profile of a
graph G counts the number of times each graph on k nodes appears as an induced
subgraph of G; see [8]. An eigenvalue histogram is a histogram of the eigenvalues
of the normalized Laplacian matrix, which all lie between 0 and 2, with equally
spaced bins. These techniques are well established in model selection for various
types of biological and social networks [6,14].

In contrast to the previous section we use undirected, unweighted graphs for
this experiment. This choice reflects our goal to model the connectivity of the
networks, rather than their joint connectivity and weight structure.

We use the algorithm in [9] to compute a global graph 4-profile for each
character network. This is a generalization of graphlets [16,21], a similar method
of motif counting for connected subgraphs. One difference is that the 4-profile
includes disconnected graphs as well. We use standard algorithms for comput-
ing all eigenvalues of the normalized Laplacian where we treat the normalized
Laplacian as a dense matrix. We compute a histogram based on five equally
spaced bins.

We examine the following random graph models on n nodes, with parameters
chosen to match those of the original character network:

1. Preferential Attachment (PA). In the PA model, at each step, a node is added
to the graph and m edges are placed from the new node to existing nodes.
These edges are chosen with probability proportional to the degree of each
node before the new node arrived. If m is chosen such that

2
n

+ 2m =
2|E|
n

,

then the number of edges will match that of the original graph in expectation.
2. The Binomial Random Graph G(n, p), or Erdős -Rényi (ER) model. Each

of the
(
n
2

)
edges is connected according to an independent binomial random

variable with probability p proportional to the expected average degree. We
use p = |E|/(n2) to match the average degree of the original network.

3. The Chung-Lu (CL) model. The CL model generalizes the binomial random
graph model to non-uniform edge probabilities. Graphs in this model are para-
meterized by an expected degree distribution (the character network’s true
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degree distribution) rather than a scalar average degree. Each edge is con-
nected with probability proportional to the product of the expected degrees
wi of its endpoints:

pij =
1
C

wiwj .

4. The Configuration Model (CFG). In the CFG model, we select a graph uni-
formly from the set of graphs which exactly match the target degree distrib-
ution. In practice, the degree distribution may vary slightly from the target
since we disregard self loops and multi-edges created during this process.

Our method to determine the best random graph model fitting the data is to
generate samples and train a machine learning algorithm to identify each model.
We then ask the algorithm to classify the real graph. First, 100 random graphs
from each model are used to train a machine learning classifier. Then in the test
step, the classifier predicts a class label for the original character network. This
provides a measure of which random graph model best fits the character network.
We study the following machine learning algorithms: two variants of linear classi-
fiers (SVMs) and two ensemble methods based on decision trees (Random Forests
and Boosted Decision Trees). For more about these models, see [13].

1. Support Vector Machines (SVM). The SVM algorithm is a simple way to
classify points in Euclidean space. Geometrically, the binary SVM classifier is
defined by a hyperplane w that maximally separates points from both classes
on either side. This problem can be formulated as a quadratic program with
either �1 or �2 regularization. Since our application involves more than two
classes, a “one-versus-the-rest” classifier is trained for each random graph
model. Then we select the model corresponding to the highest confidence
score during classification.

2. Random Forest. In this algorithm, classifiers combine many weaker decision
trees, each working on a random subset of the feature space, to reduce variance
and increase robustness. The output is simply a sum of the scores given by
each tree.

3. Boosted Decision Trees. This algorithm gives another approach to combine
several weak learners. We use a popular boosting algorithm called AdaBoost
[11] in which new trees are constructed sequentially to correct mistakes made
by the previous trees. As before, the final prediction is decided by summing
across trees.

2.3 Data

Novels: Our method for extracting character networks from novels begins with
the tokenization of an input of text. Character names and aliases are then gath-
ered by the parser, coupled with manual addition and subtraction as needed.
Names and aliases representing one character are assigned to its main name.
The main names represent the nodes in the network. The parser runs through
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the text recording the occurrence of two names within a certain number of words
apart. For our results, we set the distance parameter to 15 words apart. In the
instance where two names share the same keystone and are both within the
specified distance along with another name, the parser will record one occur-
rence between the unique key names. The number of occurrences between two
key names represents the weighted edge between the corresponding nodes in the
character graph. The node and adjacency lists are recorded via two separate
CSV files, which are imported to Gephi, an open source software platform for
network analysis and visualization.

The following books were selected for the experiment: Twilight by Stephanie
Meyer, Harry Potter and the Goblet of Fire by J.K. Rowlings, and The Stand by
Stephen King. We summarize basic network statistics for the novels in Table 1.
The results support the view of character networks as complex networks that
are dense and small world.

Table 1. Global metrics of character networks from the novels.

Novel # Nodes Avg. Avg. weighted Diameter Edge Avg. Clust.

degree degree density distance coeff.

The Stand 39 14.36 335.33 3 0.378 1.66 0.718

Goblet 62 18.55 305.29 2 0.304 1.69 0.746

Twilight 27 9.11 76.37 4 0.35 1.74 0.783

Moviegalaxies: The website http://moviegalaxies.com/ has assembled a large
number of character networks based on movie scripts. There are over 800 net-
works available. Each network is weighted, although we discard the weights as
we only use this for the model selection problem. Some of the properties of these
networks are shown in Fig. 1.
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Fig. 1. Number of characters versus number of edges in the Moviegalaxies network
data. The color shows how many graphs (according to the color bar) lie at the same
(nodes, edges) bin.

http://moviegalaxies.com/
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3 Results

3.1 Analysis of Novel Character Networks

Main characters from each of the novels analyzed scored consistently high in
each of the six centrality measures. We present the centrality measures for the
top twelve characters from the novel character networks in the figures below.
Characters are ranked by increasing PageRank. For example, Harry, Ron and
Hermione are identified as the top characters in Harry Potter and the Goblet of
Fire. Further, our methods accurately predict the community structure for each
of the three novels. Visualizations of the character networks and their community
in the novels is found below.

For Harry Potter and the Goblet of Fire the communities were: Hogwarts,
the Dursleys, the Weasleys, Sytherin, and the inseparable friends Seamus and
Dean. See Fig. 2.
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Roberts

Ron Snape
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Winky

Fig. 2. The character network for Harry Potter and the Goblet of Fire. Each community
is represented by a distinct color. The thickness of an edge is scaled to its weight, and
the size of a name is scaled to the Pagerank score. (Color figure online)
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Fig. 3. Centrality measures for Harry Potter and the Goblet of Fire.

For Twilight, the three communities can be labeled as: vampires, high school
students, and characters close to Charlie. See Fig. 4.

For The Stand, the government and the evil Las Vegas group emerged as
separate communities. The free zone society was divided into three groups based
on their relation to the main characters, Stu, Larry, and Nick. See Fig. 6.

3.2 Model Selection Results

Hyperparameters for each classifier were selected using stratified, 5-fold cross
validation. All features were normalized to have zero mean and unit variance
before training. First, the random graph data was split into half training and
half holdout. Classification performance on the holdout set verified both the
choice of hyperparameters and the separability of classes in our chosen feature
space. All classifiers achieved nearly perfect classification on the holdout set,
with over 0.98 precision and recall in nearly all cases (often exactly 1). The F1
score was at least 0.97. Thus, our four random graph models represent distinct
classes.

Table 2 shows model selection scores for the setup described in Sect. 2.2 (we
train on the entire random graph data, and test on the original character
network). These scores were calculated differently depending on the classifier.
For the SVM algorithms, distance to the separating hyperplane was used. For
AdaBoost, we use the final decision function, and soft decision probabilities were
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Snow
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Fig. 4. The character network for Twilight.

used for the random forests; see Fig. 8. For all classifiers, a more positive (neg-
ative) score indicates more confidence the original graph does (not) belong to
the model. Clearly, CL is the best random graph model for all three novels, with
each remaining model taking a distant second place in at least one case.

Figure 9 shows our naming convention for the motifs used in our graph profile
features. The most important features for the CL SVM hyperplanes were pre-
dominantly cliques: induced subgraphs H3, F5, F9, and F10. For the tree-based
classifiers, the most important motifs for distinguishing among graph models
include some disconnected subgraphs: H0, H2, F2, F5, and F10. The eigenvalue
histograms generally had low importance for all machine learning classifiers.
Thus, similar results were obtained using only graph profile features. See Table 3.
Figure 10 shows similar aggregate results for the 800 character networks in the
Moviegalaxies data set, with CL as the best random graph model for the over-
whelming number of character networks.

4 Discussion and Future Work

We presented a comparative and quantitative analysis of character networks aris-
ing from various novels and films. In particular, we analyzed the weighted social
networks from the novels Twilight The Stand, and Harry Potter and the Goblet of
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Fig. 5. Centrality measures for Twilight.
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Fig. 6. The character network for The Stand.
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Fig. 7. Centrality measures for The Stand.

Table 2. Model selection scores for random graph models using graph profiles and
eigenvalue histograms as features. CL is selected by all machine learning classifiers as
the best model.

Novel Classifier PA CL ER CFG

Goblet SVM-�2 2.78 4.59 −1.10 −10.65

SVM-�1 −0.66 3.81 −1.55 −10.80

Forest 0.00 0.91 0.094 0.0011

AdaBoost −47.2 47.4 25.5 −25.7

Twilight SVM-�2 −0.671 4.49 −2.98 −9.39

SVM-�1 −3.08 5.19 −2.06 −12.21

Forest 0.00083 0.800 0.0248 0.175

AdaBoost −43.06 32.30 10.74 0.0205

The Stand SVM-�2 −1.52 2.65 −1.24 −3.87

SVM-�1 −2.32 2.87 −1.14 −4.97

Forest 0.00 0.946 0.00 0.0544

AdaBoost −47.04 50.03 37.83 −40.82
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Table 3. Model selection scores for random graph models using graph profiles alone
as features. Once again, CL is selected by all machine learning classifiers as the best
model.

Novel Classifier PA CL ER CFG

Goblet SVM-�2 3.18 4.44 −1.15 −10.64

SVM-�1 −0.68 3.81 −1.53 −10.81

Forest 0.000 0.998 0.002 0.000

AdaBoost −47.2 47.4 25.5 −25.7

Twilight SVM-�2 −0.54 5.51 −2.73 −9.52

SVM-�1 −2.78 5.25 −2.02 −12.24

Forest 0.00 1.00 0.00 0.00

AdaBoost −39.72 34.51 −7.44 12.66

The Stand SVM-�2 −1.18 2.58 −1.33 −4.02

SVM-�1 −2.35 2.86 −1.14 −4.99

Forest 0.00 0.94 0.00 0.06

AdaBoost −46.49 50.32 38.36 −42.19

H_2 <= -0.2586
entropy = 2.0
samples = 400

value = [100, 100, 100, 100]

H_0 <= 0.7696
entropy = 1.0
samples = 200

value = [0, 0, 100, 100]

True

F_0 <= -0.9193
entropy = 1.0
samples = 200

value = [100, 100, 0, 0]

False

entropy = 0.0
samples = 100

value = [0, 0, 0, 100]

entropy = 0.0
samples = 100

value = [0, 0, 100, 0]

entropy = 0.0
samples = 100

value = [0, 100, 0, 0]

entropy = 0.0
samples = 100

value = [100, 0, 0, 0]

Fig. 8. Example decision tree for the Goblet graph.

Fire, along with social networks from 800 films catalogued by [15]. For each of the
character networks from the three novels, we extracted the social network from
co-occurrence of character names. Community structure was extracted for each
network, and statistics such as PageRank and various centrality measures were
computed for the characters. In each case, our methodology extracts accurate
literary conclusions from the data sets, and successfully identifies the influential
characters and the constellations of lesser characters in the books. As pointed
out first in [4], the analysis provided of these texts was done algorithmically,
without resort to conventional literary analysis.
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H0 H1 H2 H3

(a)

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

(b)

Fig. 9. (a) The four non-isomorphic graphs on 3 nodes that comprise the graph
3-profile. (b) The eleven non-isomorphic graphs on 4 nodes that comprise the graph
4-profile.
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Fig. 10. Summary of Moviegalaxies model selection using graph profiles and eigenvalue
histograms as features.

For both the novel and http://moviegalaxies.com/ data sets, we employed
machine learning techniques to compare and contrast the models against simu-
lated data from popular complex network models. The models considered were
the Chung-Lu (CL) model, the configuration model, the PA model, and bino-
mial random graphs. Our methodology used small subgraph counts or motifs as
classifiers for the Support Vector Machine (SVM) and other machine learning
algorithms. For all the data sets, SVM and the other algorithms clearly sepa-
rated the models, and indicated that the CL model provided the best alignment
with the data.

There are various explanations for the conclusions derived from the model
selection experiments. As the character networks we consider have relatively few
nodes, they are less likely to exhibit various properties such as power law degree
distributions or dimensionality found in various on-line social networks such
as Facebook. Hence, preferential attachment (an early and successful adopted

http://moviegalaxies.com/
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model for complex networks) or geometric models may be less relevant for char-
acter networks. The CL model has a number of properties amenable to modeling
character networks. From a literary perspective, an author may intuit a hierarchy
of character influence (separated by the degrees of the nodes representing char-
acters), then randomly generate the social ties in the fictional work to complete
the network. For instance, Rowlings may have decided in the Harry Potter series
that the main triad was Harry, Hermione and Ron, and then gradually added
lesser characters revolving around this triad. In terms of the various models, the
CL model has 4-node subgraph counts that more accurately model character
networks. This is likely due to the property of CL graphs that they have a more
diverse set of dense subgraph structures that are more closely related to those
that appear in character networks. We plan to continue investigating this finding
that CL graphs are good matches for character networks.

In future work, we plan on expanding our analysis of literary works using
Project Gutenberg and other sources. We will also explore other models such
as random geometric graphs and Kronecker graphs. More broadly, our approach
and those of other recent works [2,4,17,18], represents a trend towards the algo-
rithmic and big data-theoretic analysis of cultural works. Such a direction may
lead to new models for the evolution and construction of character networks,
and a broader view of such networks as complex and evolving.
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Abstract. Modularity is designed to measure the strength of division
of a network into clusters (known also as communities). Networks with
high modularity have dense connections between the vertices within clus-
ters but sparse connections between vertices of different clusters. As a
result, modularity is often used in optimization methods for detecting
community structure in networks, and so it is an important graph para-
meter from practical point of view. Unfortunately, many existing non-
spatial models of complex networks do not generate graphs with high
modularity; on the other hand, spatial models naturally create clusters.
We investigate this phenomenon by considering a few examples from
both sub-classes. We prove precise theoretical results for the classical
model of random d-regular graphs as well as the preferential attachment
model, and contrast these results with the ones for the spatial preferen-
tial attachment (SPA) model that is a model for complex networks in
which vertices are embedded in a metric space, and each vertex has a
sphere of influence whose size increases if the vertex gains an in-link, and
otherwise decreases with time.

1 Introduction and Definitions

Many social, biological, and information systems can be represented by networks,
whose vertices are items and links are relations between these items [2,4,6,12].
That is why the evolution of complex networks attracted a lot of attention in
recent years and there has been a great deal of interest in modeling of these net-
works [9,17,30]. The hyperlinked structure of the Web, citation patterns, friend-
ship relationships, infectious disease spread, these are seemingly disparate linked
data sets which have fundamentally very similar natures. Indeed, it turns out
that many real-world networks have some typical properties: power-law degree
distribution, small diameter, high clustering coefficient, and others [27,29,33].
Such properties are well-studied both in real-world networks and in many theo-
retical models.
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Another important property of complex networks is their community struc-
ture, that is, the organization of vertices in clusters, with many edges joining
vertices of the same cluster and comparatively few edges joining vertices of dif-
ferent clusters [14,18]. In social networks communities may represent groups by
interest, in citation networks they correspond to related papers, in the Web
communities are formed by pages on related topics, etc. Being able to iden-
tify communities in a network could help us to exploit this network more
effectively. For example, clusters in citation graphs may help to find similar
scientific papers, discovering users with similar interests is important for tar-
geted advertisement, clustering can also be used for network compression and
visualization.

The key ingredient for many clustering algorithms is modularity, which is
at the same time a global criterion to define communities, a quality function of
community detection algorithms, and a way to measure the presence of commu-
nity structure in a network. Modularity was introduced by Newman and Girvan
[31] and it is based on the comparison between the actual density of edges inside
a community and the density one would expect to have if the vertices of the
graph were attached at random, regardless of community structure.

Unfortunately, modularity is not a well studied parameter for the exist-
ing random graph models, at least from a rigorous, theoretical point of view.
We are only aware about results for binomial random graphs G(n, p) and ran-
dom d-regular graphs (see Sect. 2.3 for more details). In this paper, we continue
investigating random d-regular graphs and obtain new upper bounds for their
modularity. Then we move to the preferential attachment model, introduced by
Barabási and Albert [5], which is probably the most well-studied model of com-
plex networks. For this model no results on modularity are known and we obtain
some preliminary results, both lower and upper bounds, and will investigate
this model more in the journal version of this paper. In fact, the lower bound
we present holds for all graphs with average degree d and sublinear maximum
degree.

As expected, the models discussed above, as well as many others, have a
common weakness of low modularity. One family of models which overcomes this
deficiency is the family of spatial (or geometric) models, wherein the vertices are
embedded in a metric space such that similar vertices are closer to each other
than dissimilar ones. The underlying geometry of spatial models naturally leads
to the emergence of clusters. We prove this statement rigorously for one example
of a geometric model, the Spatial Preferential Attachment model introduced
in [1].

The paper is structured as follows. In the next section, we formally define
modularity, discuss several random graph models and present known results on
modularity in these models. In Sects. 3, 4 and 5 we analyze modularity in random
d-regular graphs, preferential attachment and SPA models, respectively.

Due to the space limitations, proofs of our results are omitted in this short
proceeding version but will be included in the longer journal one.
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2 Preliminaries

2.1 Modularity

The definition of modularity was first introduced by Newman and Girvan in [31].
Since then, many popular and applied algorithms used to find clusters in large
data-sets are based on finding partitions with high modularity [16,22,28]. The
modularity function favors partitions in which a large proportion of the edges
falls entirely within the parts and biases against having too few or too unequally
sized parts. Formally, for a given partition A = {A1, . . . , Ak} of the vertex set
V (G), let

qA =
∑
A∈A

(
e(A)

|E(G)| − (
∑

v∈A deg(v))2

4|E(G)|2
)

, (1)

where e(A) = |{uv ∈ E(G) : u, v ∈ A}| is the number of edges in the graph
induced by the set A. The first term,

∑
A∈A

e(A)
|E(G)| , is called the edge contribution,

whereas the second one,
∑

A∈A
(
∑

v∈A deg(v))2

4|E(G)|2 , is called the degree tax. It is easy
to see that qA is always smaller than one. Also, if A = {V (G)}, then qA = 0.

The modularity q∗(G) is defined as the maximum of qA over all possible
partitions A of V (G); that is,

q∗(G) = max
A

qA(G).

In order to maximize qA(G) one wants to find a partition with large edge contri-
bution subject to small degree tax. If q∗(G) approaches 1 (which is the maximum
possible value), we observe a strong community structure; conversely, if q∗(G) is
close to zero, we are given a graph with no community structure.

2.2 Random Graph Models

Classical Models. Let us recall two classical models of random graphs that are
extensively studied in the literature. The binomial random graph G(n, p) is the
random graph G with the vertex set [n] := {1, 2, . . . , n} in which every pair
{i, j} ∈ (

[n]
2

)
appears independently as an edge in G with probability p. Note

that p = p(n) may (and usually does) tend to zero as n tends to infinity.
However, in this paper we concentrate on another probability space, the prob-

ability space of random d-regular graphs with uniform probability distribution.
This space is denoted Gn,d, and asymptotics are for n → ∞ with d ≥ 2 fixed,
and n even if d is odd.

We say that an event in a probability space holds asymptotically almost surely
(or a.a.s.) if the probability that it holds tends to 1 as n goes to infinity. Since
we aim for results that hold a.a.s., we will always assume that n is large enough.
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Preferential Attachment. The Preferential Attachment (PA) model, introduced
by Barabási and Albert [5], was an early stochastic model of complex networks.
We will use the following precise definition of the model, as considered by Bol-
lobás and Riordan in [10] as well as Bollobás et al. [11].

Let G0
1 be the null graph with no vertices (or let G1

1 be the graph with
one vertex, v1, and one loop). The random graph process (Gt

1)t≥0 is defined
inductively as follows. Given Gt−1

1 , we form Gt
1 by adding a vertex vt together

with a single edge between vt and vi, where i is selected randomly with the
following probability distribution:

P(i = s) =

{
deg(vs, t − 1)/(2t − 1) 1 ≤ s ≤ t − 1,

1/(2t − 1) s = t,

where deg(vs, t−1) denotes the degree of vs in Gt−1
1 . In other words, we send an

edge e from vt to a random vertex vi, where the probability that a vertex is chosen
is proportional to its degree at the time, counting e as already contributing one
to the degree of vt.

For m ∈ N \ {1}, the process (Gt
m)t≥0 is defined similarly with the only

difference that m edges are added to Gt−1
m to form Gt

m (one at a time), counting
previous edges as already contributing to the degree distribution. Equivalently,
one can define the process (Gt

m)t≥0 by considering the process (Gt
1)t≥0 on a

sequence v′
1, v

′
2, . . . of vertices; the graph Gt

m is formed from Gtm
1 by identifying

vertices v′
1, v

′
2, . . . , v

′
m to form v1, identifying vertices v′

m+1, v
′
m+2, . . . , v

′
2m to

form v2, and so on. Note that in this model Gt
m is in general a multigraph,

possibly with multiple edges between two vertices (if m ≥ 2) and self-loops.
It was shown in [11] that for any m ∈ N a.a.s. the degree distribution of Gn

m

follows a power law: the number of vertices with degree at least k falls off as
(1 + o(1))ck−2n for some explicit constant c = c(m) and large k ≤ n1/15. Also,
in the case m = 1, Gn

1 is a forest. Each vertex sends an edge either to itself or to
an earlier vertex, so the graph consists of components which are trees, each with
a loop attached. The expected number of components is then

∑n
t=1 1/(2t− 1) ∼

(1/2) log n and, since events are independent, we derive that a.a.s. there are
(1/2 + o(1)) log n components in Gn

1 by Chernoff’s bound. Moreover, Pittel [32]
essentially showed that a.a.s. the largest distance between two vertices in the
same component of Gn

1 is (γ−1+o(1)) log n, where γ is the solution of γe1+γ = 1.
In contrast, for the case m ≥ 2 it is known that a.a.s. Gn

m is connected and its
diameter is (1 + o(1)) log n/ log log n [10].

Spatial Preferential Attachment. The Spatial Preferential Attachment (SPA)
model [1], designed as a model for the World Wide Web, combines geometry
and preferential attachment, as its name suggests. Setting the SPA model apart
is the incorporation of ‘spheres of influence’ to accomplish preferential attach-
ment: the greater the degree of a vertex, the larger its sphere of influence, and
hence the higher the likelihood of the vertex gaining more neighbors.

We now give a precise description of the SPA model. Let S = [0, 1]m be the
unit hypercube in R

m, equipped with the torus metric derived from any of the
Lp norms. This means that for any two points x and y in S,
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d(x, y) = min
{||x − y + u||p : u ∈ {−1, 0, 1}m

}
.

The torus metric thus ‘wraps around’ the boundaries of the unit square; this
metric was chosen to eliminate boundary effects. The parameters of the model
consist of the link probability p ∈ [0, 1], and two positive constants A1 and A2,
which, in order to avoid the resulting graph becoming too dense, must be chosen
so that pA1 < 1. The SPA model generates stochastic sequences of directed
graphs (Gt : t ≥ 0), where Gt = (Vt, Et), and Vt ⊆ S. Let deg−(v, t) be the in-
degree of the vertex v in Gt, and deg+(v, t) its out-degree. We define the sphere
of influence S(v, t) of the vertex v at time t ≥ 1 to be the ball centered at v
with volume |S(v, t)| defined as follows:

|S(v, t)| =
A1deg−(v, t) + A2

t
, (2)

or S(v, t) = S and |S(v, t)| = 1 if the right-hand-side of (2) is greater than 1.
The process begins at t = 0, with G0 being the null graph. Time-step t, t ≥ 1,

is defined to be the transition between Gt−1 and Gt. At the beginning of each
time-step t, a new vertex vt is chosen uniformly at random from S, and added
to Vt−1 to create Vt. Next, independently, for each vertex u ∈ Vt−1 such that
vt ∈ S(u, t − 1), a directed link (vt, u) is created with probability p. Thus, the
probability that a link (vt, u) is added in time-step t equals p |S(u, t − 1)|.

The SPA model produces scale-free networks, which exhibit many of the
characteristics of real-life networks (see [1,13]). In [19], it was shown that the
SPA model gave the best fit, in terms of graph structure, for a series of social
networks derived from Facebook. In [20], some properties of common neighbors
were used to explore the underlying geometry of the SPA model and quantify
vertex similarity based on distance in the space. However, the distribution of
vertices in space was assumed to be uniform [20] and so in [21] non-uniform
distributions were investigated which is clearly a more realistic setting.

2.3 Previous Results on Modularity

In this section we discuss known bounds for modularity in different random
graph models.

The isoperimetric number of a graph G is defined as

i(G) = min
V (G)=V1∪V2

e(V1, V2)
min{|V1|, V2|} ,

where e(V1, V2) = |{uv ∈ E(G) : u ∈ V1, v ∈ V2}| is the number of edges between
the sets V1 and V2. The following result was shown by McDiarmid and Skerman
in [23]. Let G be any d-regular graph on n vertices. As mentioned in [23], the
following useful upper bound on the modularity is almost immediate:

q∗(G) ≤ max{1 − i(G)/d, 3/4}. (3)
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Turning to random d-regular graphs, Bollobás in [8] showed that a.a.s. i(Gn,d) ≥
(1 − η)d/2, where 0 < η < 1 is such that 24/d < (1 − η)1−η(1 + η)1+η and so
a.a.s.

q∗(Gn,d) ≤ U1 = U1(d) := max{1/2 + η/2, 3/4}.

As a result, we get the first non-trivial upper bounds for q∗(Gn,d) presented in
Table 1 that hold a.a.s.

In [23], the bound (3) was slightly improved when the maximum size of parts
in our partition is restricted. Formally, given δ > 0, for a graph G with n ≥ 1/δ
vertices, they define qδ(G) to be the maximum modularity of all partitions for
G such that each part has size at most δn. They show that for any ε > 0 there
exists δ > 0 such that any d-regular graph with at least 1/δ vertices satisfies

qδ(G) ≤ 1 − 2i(G)/d + ε.

Again, using the result of Bollobás we get that there exists δ > 0 such that

U2 = U2(d) := η + ε

serves as an upper bound that holds a.a.s. for qδ(Gn,d); again, see Table 1 for
numerical values for small values of d. It is straightforward to see that i(G) ≥
d/2 − √

(log 2)d (see, for example, [8]) and so, in particular, U2 can be made
arbitrarily small by taking d large enough (and δ small enough). However, let
us note that these upper bounds for qδ(Gn,d), while useful, cannot be directly
translated into any bound for q∗(Gn,d).

Table 1. Upper bounds for q∗(Gn,d) and for qδ(Gn,d) (U2)

d U1 U2 U3

3 0.9386 0.8771 0.8038

4 0.8900 0.7800 0.6834

5 0.8539 0.7078 0.6024

6 0.8261 0.6521 0.5435

7 0.8038 0.6076 0.4984

8 0.7855 0.5710 0.4624

9 0.7702 0.5403 0.4330

10 0.7570 0.5140 0.4083

Investigating random d-regular graphs continues in [24], a very recent paper.
In fact, some of our results for this model mentioned below are obtained inde-
pendently there. Moreover, they investigate the class of graphs whose product
of treewidth and maximum degree is much less than the number of edges. This
shows, for example, that random planar graphs typically have modularity close
to 1, which is another indication that clusters naturally emerge where geometry
is included.
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3 Random d-regular Graphs

3.1 Lower Bound

For completeness, let us briefly discuss the following known lower bound for
the modularity of Gn,d. It is known that a.a.s. for any d ∈ N \ {1, 2}, Gn,d is
Hamiltonian. As pointed out in [23], one can use this fact to partition the graph
such that it breaks the cycle into 	√n� paths of length at most 	√n�. For this
particular partition the edge contribution is 2/d − O(1/

√
n) and the degree tax

is O(1/
√

n). It follows then that a.a.s.

q∗(Gn,d) ≥ 2
d

− O(1/
√

n) =
2 + o(1)

d
.

(Our more general lower bound that holds for graphs with average degree d
implies the same—see Theorem 4 for more.) Whereas this trivial lower bound
could be sharp for d = 3 it is definitely not the case for large d. As pointed out
in [24], there exists a universal constant c > 0 such that a.a.s. q∗(Gn,d) ≥ c/

√
d.

3.2 Slightly Improved, Numerical Upper Bound

Let us consider the following, natural, approach that already improves slightly
an upper bound for q∗(Gn,d). Consider any d-regular graph with n vertices. For
a given partition A = {A1, . . . , Ak} of the vertex set V (G), let xi = |Ai|/n and
yi = 2|E(Ai)|/|Ai|; that is, set Ai has xin vertices and induces yixin/2 edges.
Then (1) can be simplified to

qA =
k∑

i=1

xi

(yi

d
− xi

)
. (4)

As it is simply a weighted average, qA ≥ U would imply that there exists some
set of size xn that induces yxn/2 edges, and y/d − x ≥ U . Using the pairing
model [7], we will show that a.a.s. it is not the case (for some carefully chosen
U = U(d)) and, as a result, it will yield an upper bound for q∗(Gn,d) that holds
a.a.s.

For a given d ∈ N \ {1, 2}, let

f(x,y, d) := x(y/2 − 1) log(x) + (1 − x)(d − 1) log(1 − x) + d log(d)/2 (5)
− xy log(y)/2 − x(d − y) log(d − y) − (d − 2xd + xy) log(d − 2xd + xy)/2.

It will be clear once we establish the connection between the function f and
random d-regular graphs, but it is straightforward to see that for any x ∈ (0, 1)
we have f(x, d, d) < 0 and f(x, y, d) > 0 for some y ∈ (0, d). Indeed, for example
note that for a fixed x ∈ (0, 1/2], f(x, y, d) is strictly concave in y ∈ (0, d) as

d2f(x, y, d)
dy2

=
−(d(1 − 2x) + y)dx

2(d(1 − 2x) + xy)(d − y)y
< 0.
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Let y3 = y3(x, d) be the largest value of y ∈ (0, 1) such that f(x, y, d) = 0; in
particular, f(x, y, d) ≤ 0 for any y ∈ (y3, d). Finally, let

U3 = U3(d) := sup
x∈(0,1)

(
y3(x, d)

d
− x

)
.

As usual, see Table 1 for numerical values for small values of d. The promised
upper bound follows immediately from the following theorem.

Theorem 1. Let d ∈ N \ {1, 2} and ε > 0 be an arbitrarily small constant. The
following property holds a.a.s. for Gn,d. No set A of size xn (for any x = x(n) ∈
(0, 1)) induces a graph with yxn/2 edges, where y3(x, d)+ε ≤ y ≤ d and y3(x, d)
is defined as above. In particular, this implies that

q∗(Gn,d) ≤ U3 + ε/d,

where U3 = U3(d) is defined as above.

3.3 Explicit but Weaker Upper Bound

Theorem 1 provides an upper bound that can be easily numerically computed
for a given d ∈ N \ {1, 2}. Next, we present a slightly weaker but an explicit
bound that can be obtained using the expansion properties of random d-regular
graphs that follow from their eigenvalues. In particular, it will imply that a.a.s.
q∗(Gn,d) = O(1/

√
d) and so q∗(Gn,d) → 0 as d → ∞.

Theorem 2. Let d ∈ N \ {1, 2} and ε > 0 be an arbitrarily small constant. The
following property holds a.a.s. for Gn,d. No set A of size xn induces a graph with
more than yxn/2 edges, where y = dx+λ(1−x). In particular, this implies that
a.a.s.

q∗(Gn,d) ≤ λ

d
≤ 2

√
d − 1 + ε

d
≤ 2√

d
.

4 The Preferential Attachment Model

4.1 Constant Average Degree Graphs

In order to obtain a lower bound for modularity of Preferential Attachment
graphs, we first analyze graphs with constant average degree in general. In this
section, we extend the results of [26] and we start with the analysis of trees. It
was proven in [26] that trees with maximum degree Δ = o( 5

√
n) have asymptotic

modularity 1. We generalize this result in two ways: first, we relax the condition
on maximum degree; second, we allow our graphs to be disconnected, that is,
we consider forests instead of trees. We prove the following theorem.

Theorem 3. Let {Fn} be a sequence of forests, Fn is a forest on n vertices with

no isolated ones and Δ = Δ(Fn) = o(n). Then q∗(Fn) ≥ 1−O
(√

Δ
n

)
= 1−o(1)

as n → ∞.
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Note that it is also known that the asymptotic modularity of trees with
maximum degree Δ = Ω(n) is strictly less than 1 [26]. Hence, the assumption
Δ = o(n) cannot be eliminated. Now we can use the previous theorem to get
the following result for graphs of bounded average degree.

Theorem 4. Let {Gn} be a sequence graphs, Gn is a connected graph on n

vertices with the average degree 2|E(Gn)|
n ≤ D for some constant D, and Δ =

Δ(Gn) = o(n). Then q∗(Gn) ≥ 2
D − O

(√
Δ
n

)
= 2

D − o(1).

4.2 Lower Bound

The following theorem easily follows from the above result.

Theorem 5. For any ε > 0 a.a.s.

q∗(Gn
m) ≥ 1

m
− O

(
n−1/4+ε

)
=

1
m

− o(1).

As in the case of random d-regular graphs, it is natural to conjecture that
the above lower bound is not sharp. Let c ∈ (0, 1) and consider the follow-
ing partition: A1 = {v1, . . . , vcn}, A2 = V (Gn

m) \ A1 = {vcn+1, . . . , vn}. Using
martingales, it is possible to show that a.a.s.

∑
v∈A1

deg(v, n) ∼ 2mn
√

c (and
so

∑
v∈A2

deg(v, n) ∼ 2mn(1 − √
c)). Clearly, e(A1) = mcn and so a.a.s.

e(A1, A2) ∼ 2mn(
√

c − c) and e(A2) ∼ mn(1 + c − 2
√

c). The edge contribution
and the degree tax are then both asymptotic to 1 + 2c − 2

√
c. Not surprisingly,

such partition cannot be used to get a non-trivial lower bound for the modular-
ity but, similarly to the situation for random d-regular graphs, we may try to
use it as a starting point to get slightly better partition. The basic idea is very
simple: one can start with a given partition (or partition the vertices randomly
into two classes), and if a vertex has more neighbors in the other class than in
its own, then we randomly decide whether to shift it to the other class or leave
it where it is. This approach proved to be useful to get a bound for the bisection
width in random d-regular graphs [3] which, in turn, yields a lower bound for
the modularity [24]. We plan to investigate it further in the journal version of
this paper.

4.3 Upper Bound

The edge expansion ρ = ρ(G) of a graph G is defined as follows:

ρ = min
S⊂V (G),|S|≤|V |/2

e(S, V \ S)
|S| .

In [25] it was shown that a.a.s. ρ(Gn
m) ≥ α, provided that 2(m−1)−4α−1 > 0.

In other words, for any ε > 0 we have that a.a.s.

ρ(Gn
m) ≥ m

2
− 3 + ε

4
.
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Using this observation one can easily obtain a non-trivial upper bound for
q∗(Gn

m).
Let ε > 0 be an arbitrary small constant. Consider any partition A =

{A1, . . . , Ak} of the vertex set V (Gn
m). If |Ai| > n/2 for some i, then the degree

tax is at least
(
∑

v∈Ai
deg(v, n))2

4|E(Gn
m)| ≥ (m|Ai|)2

4(mn)2
=

1
16

.

On the other hand, if |Ai| ≤ n/2 for all i, then a.a.s. the number of edges between
parts is equal to

1
2

k∑
i=1

e(Ai, V \ Ai) ≥ 1
2

k∑
i=1

ρ|Ai| =
ρn

2
≥

(
m

4
− 3 + ε

8

)
n,

and so the edge contribution is a.a.s. at most

1 −
(

1
4

− 3 + ε

8m

)
=

3
4

+
3 + ε

8m
≤ 15 + ε

16
,

for any m ≥ 2. The following result holds.

Theorem 6. For any ε > 0 a.a.s.

q∗(Gn
2 ) ≤ 15 + ε

16
.

Moreover, for any m ≥ 3 a.a.s.

q∗(Gn
m) ≤ 15

16
.

Much stronger expansion property was recently obtained in [15]. We are
currently working on using this property to obtain general upper bound for
q∗(Gn

m) that holds for any integer m as well as specific stronger bounds for small
values of m. Details will be provided in the journal version of this paper.

5 The Spatial Preferential Attachment Model

Consider Gn = (Vn, En), a graph generated by the SPA model. As the modularity
is defined for undirected graphs, we consider Ĝn that is a graph obtained from
Gn by replacing each directed edge (u, v) by undirected edge uv. (As edges in Gn

are always from ‘younger’ to ‘older’ vertices, there is no problem with generating
multigraph; Ĝn is a simple graph.) Let us recall that Vn ⊆ S where S is the
unit hypercube [0, 1]m. We use the geometry of the model to obtain a suitable
partition that yields high modularity of Gn. The following properties (proved
many times; see, for example, [1,13]) are the only properties of the model that
are used in the proof: a.a.s. for every pair i, t such that 1 ≤ i ≤ t ≤ n we have
that
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deg−(vi, t) = O
(
(t/i)pA1 log2 n

)
, (6)

deg+(vi, t) = O
(

log2 n
)
, (7)

and |E(Gn)| = Θ(n). Now, we are ready to state our result for the SPA model.

Theorem 7. Let p ∈ (0, 1], A1, A2 > 0, and suppose that pA1 < 1. Then, the
following holds a.a.s.:

q∗(Ĝn) = 1 − O
(
nmax{−1/m,−1+pA1}/2 log9/2 n

)
= 1 − o(1).
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Abstract. We consider pairwise Markov random fields which have a
number of important applications in statistical physics, image processing
and machine learning such as Ising model and labeling problem to name
a couple. Our own motivation comes from the need to produce synthetic
models for social networks with attributes. First, we give conditions for
rapid mixing of the associated Glauber dynamics and consider inter-
esting particular cases. Then, for pairwise Markov random fields with
submodular energy functions we construct monotone perfect simulation.

1 Introduction

Pairwise Markov random fields or Markov random fields with nonzero potential
functions only for cliques of size two have a large number of applications in sta-
tistical physics, image processing and machine learning. Let us mention just a
few very important particular cases and applications. Ising [9], Potts [13] and
Solid-on-Solid (SOS) [12,16] models are the basic models in statistical physics.
Metric Markov random fields and the generalized Potts model are very success-
fully applied in image processing [5,6,18]. Pairwise Markov random fields are
also extensively used in the study of classification and labeling problems, see
e.g. [4,8,10].

Our own motivation to study pairwise Markov random fields comes from the
need to model the distribution of attributes in social networks such as age, gen-
der, interests. The fact that friends or acquaintances in social networks share
common characteristics is widely observed in real networks and is referred to
as homophily. The property of homophily implies that we expect that the more
clustered social network members are, the more likely they are to share same
attribute. Nowadays social networks are intensively researched by both sociolo-
gists and computer scientists. However, if one wants to check some hypotheses
about social networks or to test some algorithm such as a sampling method, one
needs a lot of social network examples to consider and to test. In [3] a model
of synthetic social network with attributes has been proposed to test subsam-
pling chain-referral methods on many network instances with various properties.
The synthetic network model of [3] is similar in spirit to the SOS model and
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A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 127–139, 2016.
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well represents the distribution of ordinal attributes such as age. Here we study
much more general model which could be used to model ordinal as well as non-
ordinal attributes’ distribution in social networks. Of course, we hope that the
results will also be of interest to researchers from statistical physics and machine
learning communities.

Specifically, in the present work we consider a general pairwise Markov ran-
dom field and provide conditions for rapid mixing of the associated Glauber
dynamics. Rapid mixing guarantees that we can quickly generate many con-
figurations of attributes corresponding to a given Gibbs distribution or energy
function. In the important particular case of submodular energy functions, we go
a step further and construct a perfect simulation which samples quickly without
bias from the target distribution. Our results significantly generalize the corre-
sponding results for the Ising model, see e.g. [11]. The proof in [11] relies on the
particular size and values of the interaction matrix.

Finally, we would like to note that even though our model has some common
features with the exponential random graph model (see e.g., [15]), there are
important differences between these two models. The exponential random graph
model generates the graph, whereas our model assumes that the graph is given
and generates a configuration of attributes over the graph.

2 Model

Let a graph G = (V,E), |V | = n, be given. In addition, each vertex v has an
attribute which takes a value from the finite set M = {1, ...,m}. We denote by
σ ∈ Ω = Mn a configuration, where each vertex v ∈ V takes its own certain
value σ(v) ∈ M of the attribute. In the present work we restrict ourselves to the
model with one attribute. Now we introduce symmetric interaction matrix V of
size m × m, and say, that the energy of configuration σ is given by

ε(σ) =
∑

{v1,v2}∈E

V(σ(v1), σ(v2)).

Let us call |V| the maximum absolute value of matrix V elements. Next we
consider Gibbs distribution with respect to the introduced energy:

π∗(σ) =
e−βε(σ)∑

τ∈MG

e−βε(τ)
= Z−1(β)e−βε(σ),

where β = 1
T is some parameter, the inverse temperature of the system, and

Z(β) is the normalizing constant or, in statistical physics terminology, the parti-
tion function. This distribution describes the pairwise Markov random field over
graph G. We shall also refer to this distribution as network attribute distribution.

We would like to sample configurations from the distribution π∗(σ) to test
various algorithms on a series of network realisations. However, the main prob-
lem is that the probability space is enormous and it is impossible to sample from
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Gibbs distribution without additional techniques. One such technique is Glauber
dynamics, described just below and another technique is monotone perfect sim-
ulations described in detail in Sect. 5.

Let N (v) be the set of neighbours of vertex v. Then, we define the local
energy εi(σ, v) for vertex v with respect to value i in configuration σ as follows:

εi(σ, v) =
∑

u∈N (v)

V(i, σ(u)).

This formula calculates energy in the neighbourhood of v provided that the value
of the attribute for v was updated to i. Then, we call the local distribution for
vertex v in configuration σ the probability distribution on set {1, 2, ...,m} with
respect to the local energy:

pi(σ, v) = P(σ(v) → i) :=
e−βεi(σ,v)∑

k∈M

e−βεk(σ,v)
= Z−1(σ, v, β) · e−βεi(σ,v),

which is the probability to update value in v to i.
The Glauber dynamics is defined as follows:

1. Choose arbitrary starting distribution π0 and then choose values for vertices
according to π0;

2. Choose uniformly random vertex v;
3. Update value for v according to the local distribution;
4. Go to step 2.

Let us denote by X = {Xt, t � 0} the Markov chain associated with the
Glauber dynamics, with starting distribution π0 and transition matrix P =
{Pσ,τ}σ,τ∈Ω , Pσ,τ = P{Xt+1 = τ |Xt = σ}, which is associated with steps 2–3.
If steps 2–3 are repeated t times, πt will stand for the distribution on space of
configurations at time moment t. Sometimes we shall also use P t

σ(·) to denote
the probability distribution of X on Ω at time moment t to emphasize that X
starts from certain configuration σ.

Before we proceed further, let us notice that the introduced model implies
some well-known particular cases. For example,

V =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎠

corresponds to the Potts model. If m = 2, then the Potts model becomes the
Ising model. If now we take V(i, j) = f(|i − j|) with some convex function
f(·), we obtain the metric Markov random field model extensively used in image
processing. In [3], the Markov random field with quadratic f(·) was used to model
social networks with ordinal attributes. The case V(i, j) = |i− j| corresponds to
the SOS model.
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3 Preliminaries

Here we give several background results, which we will use in sequel. It is well-
known, see e.g., [7,11], that the Markov chain X corresponding to the Glauber
dynamics is reversible with the stationary distribution π∗.

Lemma 1. Markov chain X is time-reversible with the stationary distribution
given by π∗(σ) = Z−1(β)e−βε(σ). In other words,

π∗(σ) · Pσ,τ = π∗(τ) · Pτ,σ,

for all σ, τ ∈ Ω.

For two distributions π1, π2 on state space Ω we define the total variation
distance between them as

||π1 − π2||TV =
1
2

∑
σ∈Ω

|π1(σ) − π2(σ)|.

Let μ and ν be two distributions on the same state space Ω. Pair of random
variables (Xμ,Xν) forms coupling, if it is distributed such that marginal distrib-
ution of Xμ is μ and marginal distribution of Xν is ν. The main motivation for
introducing such term is the following lemma [7].

Lemma 2. Let ν and μ be two probability distributions on Ω. Then

||μ − ν||TV = inf{P(Xμ �= Xν) | (Xμ,Xν) is a coupling of μ and ν}.

This lemma is very useful, because a comparison between distributions is reduced
to comparison between random variables.

Here is one more lemma, which shows how the total variation distance from
the stationary distribution can be estimated [7,11].

Lemma 3. Let σ and τ be initial configurations from state space Ω. Then

||πt − π∗||TV � max
σ,τ∈Ω

||P t
σ(·) − P t

τ (·)||TV .

Now we introduce metric on configuration space Ω. Let ρ(·, ·) by definition be
equal to

ρ(σ, τ) =
∑
v∈V

|σ(v) − τ(v)|.

Lemma 4. Let α be such that for every two neighbor configurations σ,
τ(ρ(σ, τ) = 1) corresponding random values X1

σ and X1
τ satisfy an inequality

Eρ(X1
σ,X1

τ ) � e−α.

Then
∀t ∈ N, ∀σ, τ ∈ Ω → E(ρ(Xt

σ,Xt
τ )) � diam(Ω) · e−αt.
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Lemma 4 shows how the introduced property can be generalized from neighbor
configurations to the whole space Ω for an arbitrary time moment.

For some ε > 0, the mixing time is defined as follows:

tmix(ε) = min(t ∈ N | ||πt − π||TV < ε).

Next lemma is based on Lemma 4 and it provides an upped bound for the mixing
time with respect to α.

Lemma 5. Suppose α > 0 is such that E(ρ(X1
σ,X1

τ )) � e−α for all neighbour
configurations σ, τ . Then

tmix �
⌈

1
α

[ln(diam(Ω)) + ln(1/ε)]
⌉

.

Lemmas 4 and 5 are borrowed from [11]. Actually, for our following results it
would be enough to refer only to Lemma 5. But we mention here intermediate
steps to help a reader to better understand the proof of our main result.

4 Main Results

We can now formulate the main result of this article which says that under
certain conditions the Glauber dynamics corresponding to the general pairwise
Markov random fields mixes rapidly.

Theorem 1. Let � be the maximum degree of graph G = (V,E), |V | = n and
V be the interaction matrix. Let also β be the inverse temperature and M =
{1, 2, ...,m} be the set of attribute values. If

β <
1

4|V| ln
(

1 +
1

�m

)
,

then

tmix �
⌈

n(ln(n) + ln(m − 1) + ln(1ε ))
1 − �m(e4β|V| − 1)

⌉
.

We would like to notice that independently from temperature the mixing time
is at least of order n ln(n). It is so, because achieving stationary distribution by
iterating means that every vertex of the graph has to be updated at least once.
As n grows to infinity, we must do order n ln(n) Markov chain steps to make the
probability of updating each vertex at least once tending to 1. More details on
various lower bounds can be found in [11].

Before we proceed to prove the theorem, let us also notice that it claims that
the upper bound is of order n log n. The corresponding result for the Ising model
has been shown in e.g., [11]. The present extension is not straightforward, since
the proof in [11] is based on the particular form of the interaction matrix V.
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Proof. Let us choose two arbitrary configurations σ and τ at time 0 and say that
random vectors Xt

σ and Xt
τ have distributions P t

σ(·) and P t
τ (·), respectively. Then

define prefk(σ,w), k � m, as the prefix sum of probabilities to label w with one
of the first k attribute values at the next step, namely,

prefk(σ,w) =
k∑

i=1

pi(σ,w).

Let us consider the following probability distribution of pair (Xt
σ,Xt

τ ): first we
uniformly at random choose a vertex w to update (common for both configura-
tions) and then we choose uniformly at random a value U from [0, 1]. Then we
set new configurations Xt

φ(U,w), φ ∈ {σ, τ} at time t by the relation

Xt
φ(U,w)(w) =

{
φ(w) w �= w

min(k|prefk(φ,w) � U) w = w
. (1)

where function X1
φ : [0, 1] × V → Ω becomes a random vector, if U and w are

random variables.
It is easy to see that distribution of pair (Xt

σ(U,w),Xt
τ (U,w)) is coupling for

P t
σ(·) and P t

τ (·).
Then, we are going to find an α > 0 from Lemma 4 for two neighbor configu-

rations. Let σ, τ be two neighbor configurations with unique difference in vertex
v, i.e., |σ(v) − τ(v)| = 1. Let also w be a uniformly chosen random vertex. If
w = v, then

ρ(X1
σ(U,w),X1

τ (U,w)) = 0.

If w /∈ N (v) ∪ {v}, then

ρ(X1
σ(U,w),X1

τ (U,w)) = |σ(v) − τ(v)| = 1.

It is so, because in both cases local distributions for w are the same for both
configurations. And if w ∈ N (v), then

ρ(X1
σ(U,w),X1

τ (U,w)) = |σ(v) − τ(v)| + |X1
σ(U,w)(w) − X1

τ (U,w)(w)|.
According to probabilities of each case, we can write

Eρ(X1
σ(U,w),X1

τ (U,w)) = 1− 1
n

+
1
n

·
∑

w∈N (v)

E|X1
σ(U,w)(w)−X1

τ (U,w)(w)|. (2)

Thus, an upper bound for the sum in (2) is needed. The following lemma helps
to achieve the result and is the key element of this work.

Lemma 6. For arbitrary σ, τ ∈ Ω and for all w ∈ V the following equation
holds

E|X1
σ(U,w)(w) − X1

τ (U,w)(w)| =
m∑

i=1

|prefi(σ,w) − prefi(τ, w)|. (3)
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Proof. The expectation in (3) is based on uniform random variable U distributed
on [0, 1]. Let us place on segment [0, 1] precisely m red points that correspond
to prefi(σ,w) and m blue points that correspond to prefi(τ, w), 1 � i � m.
Since prefm(σ,w) = prefm(τ, w) = 1, we have 2m−1 disjoint (with no common
internal points) subsegments with red or blue endpoints (some subsegments may
have length 0), they form a set {lk}2m−1

k=1 . Let subsegment lk have a value hσ,k, if
hσ,k satisfies lk ⊂ [prefhσ,k−1(σ, v), prefhσ,k

(σ,w)]. Thus, by definition the mean
of |X1

σ(U,w)(w) − X1
τ (U,w)(w)| is

E|X1
σ(U,w)(w) − X1

τ (U,w)(w)| =
2m−1∑
k=1

length(lk) · |hσ,k − hτ,k|.

In other words, the length of lk appears in the expectation as many times as the
difference between the values of the attribute for updates in σ and τ . Therefore,
we now calculate the number of times that the length of each subsegment is
added to the result in the right hand side of the above equality. Towards this
goal, for the moment let us fix k and let hσ,k = a, hτ,k = b and without loss of
generality b � a. Thus, the following series of inequalities hold⎧⎪⎪⎪⎨

⎪⎪⎪⎩
prefa(σ,w) � prefa(τ, w),
prefa+1(σ,w) � prefa+1(τ, w),
...

prefb(σ,w) � prefb(τ, w).

Let us identify terms |prefi(σ,w) − prefi(τ, w)| in (3) which contain the con-
tribution from the subsegment lk. The length of lk is added for the first time
in the right hand side of (3) for i = a, because according to the definition of
a the minimum i such that segment [0, prefi(σ,w)] contains lk is i = a, mean-
time prefa(τ, w) does not contain this subsegment. Second time it is added for
i = a + 1 and so on, the last time it is added for i = b − 1, which comes from
definition of b. Hence, lk is added exactly b−a times. This establishes equivalence
between the sums and completes the proof of the lemma. �

Actually, this lemma will be used only for neighbor configurations σ, τ , as it
was mentioned before Lemma 6. Recall that Lemma 4 and then Lemma 5 give
us an upper bound on the mixing time, but to apply them we need to obtain
the corresponding inequalities on neighbour configurations. Therefore, we give a
uniform upper bound for (3). For convenience we introduce

Si =
∑

u∈N (w)\{v}
V(i, σ(u)) =

∑
u∈N (w)\{v}

V(i, τ(u)),

ai = exp

⎛
⎝−β

∑
u∈N (w)

V(i, σ(u))

⎞
⎠ = exp (−β(Si + V(i, σ(v)))) ,
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bi = exp

⎛
⎝−β

∑
u∈N (w)

V(i, τ(u))

⎞
⎠ = exp (−β(Si + V(i, τ(v)))) .

Thus, {
pi(σ,w) = ai

a1+ ... am

pi(τ, w) = bi

b1+ ... +bm

.

The following inequality will be useful:

aibk

akbi
= exp(−β(V(i, σ(v)) + V(k, τ(v)) − V(k, σ(v)) − V(i, τ(v))) � e4β|V|. (4)

Then, the upper bound for (3) can be derived as follows:

m∑
k=1

|prefk(σ,w) − prefk(τ, w)| �
m∑

k=1

k∑
i=1

|pi(σ,w) − pi(τ, w)|

� m

m∑
i=1

|pi(σ,w) − pi(τ, w)| = m

m∑
i=1

∣∣∣∣ ai

a1 + ... + am
− bi

b1 + ... + bm

∣∣∣∣
� m

(a1 + ... + am)(b1 + ... + bm)

m∑
i=1

|ai(b1 + ... + bm) − bi(a1 + ... + am)|

� m

(a1 + ... + am)(b1 + ... + bm)

m∑
i=1

m∑
j=1

|aibj − ajbi|

� m

(a1 + ... + am)(b1 + ... + bm)

m∑
i=1

m∑
j=1

ajbi

∣∣∣e4β|V| − 1
∣∣∣ � m

(
e4β|V| − 1

)
.(5)

And now collecting together (2), (3) and (5), we obtain

Eρ(X1
σ,X1

τ ) � 1 − 1 − �me4β|V|

n
� exp

(
−1 − �m(e4β|V| − 1)

n

)
. (6)

Indeed, the diameter of Ω is equal to n(m−1) and it corresponds to the distance
between configurations 1̂ = (1, 1, ..., 1) and m̂ = (m,m, ...,m). Now invoking
Lemma 5 with α provided by (6), we obtain the upper bound for tmix(ε) given
in the theorem statement. �

Once we proved the theorem, we can think about modifications of the inter-
action matrix V and their influence on the model. It is easy to see from the
definition of the Gibbs distribution that if we consider matrix cV, where each
element of matrix V is multiplied by a factor c, we obtain a new probability
distribution on the configuration space Ω which is actually equal to the Gibbs
distribution for the pair V and c · β. Moreover, if we add some constant d to all
elements of matrix V, then the distribution will not change at all. Now we notice
that |V| is mentioned in Theorem 1 and we can diminish it to some extent. This
results in the following refinement.
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Corollary 1. Let � be the maximum degree of graph G = (V,E), |V | = n and
V be the interaction matrix. Let also β be the inverse temperature and M =
{1, 2, ...,m} be the set of attribute values. Let also

K =
max
x,y

V(x, y) − min
x,y

V(x, y)

2
.

If

β <
1

4K
ln

(
1 +

1
�m

)
,

then

tmix �
⌈

n(ln(n) + ln(m − 1) + ln(1ε ))
1 − �m(e4βK − 1)

⌉
.

This refinement gives a slightly better bound for the mixing time. However,
we prefer to keep both formulations since the first variant could be just more
notationally convenient in some setting.

In the case of quadratic dependencies in V we obtain even better upper
bound.

Theorem 2. If V(x, y) = (x − y)2, and

β <
1

2(m − 1)
ln

(
1 +

1
�m

)
,

then

tmix �
⌈

n(ln(n) + ln(m − 1) + ln(1ε ))
1 − �m(e2β(m−1) − 1)

⌉
.

In this particular case |V| = (m−1)2 and the above mentioned result is obviously
more efficient than the one which can be obtained from Corollary 1.

Proof. The only difference in the proof of this theorem with respect to the pre-
vious results is in inequality (4). Recall that we use that inequality only for
neighbour configurations σ and τ , which means that there is a vertex v such
that σ and τ agree everywhere but in vertex v, and for that vertex it holds that
|σ(v) − τ(v)| = 1. Since V(x, y) = (x − y)2, we can rewrite the right hand side
of inequality (4) in the following way:

aibk

akbi
= exp(−β((i − σ(v))2 + (k − τ(v))2 − (k − σ(v))2 − (k − τ(v))2)),

Now, without loss of generality σ(v) + 1 = τ(v), and then

aibk

akbi
= exp(2β(k − i)) � exp(2β(m − 1)). (7)

The latter provides us α for Lemma 5 and leads to the proof of the theorem. �
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Remark. All three results mentioned above show that there is fast mixing
with respect to some condition on the temperature of the system. Actually, it is
impossible to proof fast mixing in general case independently of the temperature.
It is already shown for the Ising model, and we can generalize that fact and can
demonstrate that for arbitrary m and m × m matrix V, where not all elements
are equal, there exists a temperature and a graph such that mixing time has
exponential order in terms of graph size. Moreover, we believe, that for every m
and V there exists an example of a graph such that mixing is fast independently
of the temperature. This is a good question to address in future research.

5 Simulations

5.1 Monotone Perfect Markov Chain Monte Carlo

In this section we are about to compare theoretical result with real simulations.
Of course, for simulation one can just run the Glauber dynamics and use the
bounds on the mixing time from Theorem 1 or Corollary 1 to indicate the simu-
lation stopping time. However, if matrix V has some structure, it appears to be
possible to construct a monotone perfect Markov Chain Monte Carlo (MCMC)
simulation which produces perfect sampling and has a natural stopping rule. Our
construction is based on the general recommendations given in [14]. Towards this
end, under coupling described by Eq. (1), we need to show that for any two con-
figurations σ and τ , such that σ 	 τ , we have Xt

σ(U,w) 	 Xt
τ (U,w), where the

order 	 means that for all vertices v ∈ V it holds that σ(v) � τ(v). Unfortu-
nately, this is true not for any matrix V and here, unlike in Theorem 1, we have
to impose additional restrictions on V.

Let us call matrix V submodular if for all i < j, k < l it holds that

V(i, k) + V(j, l) � V(i, l) + V(j, k).

For example, matrix V(x, y) = f(x − y) is submodular, when f is a convex
function (in particular, the matrix V in Theorem 2 is submodular).

Lemma 7. Let σ 	 τ and there is a coupling defined by equality (1) for submod-
ular matrix V. Then

Xt
σ(U,w) 	 Xt

τ (U,w).

Proof. Suppose t = 1. Since the introduced order is transitive, we can limit
consideration to neighbor configurations. So, let σ(u) = τ(u) for all u ∈ V \ {v}
and σ(v) + 1 = τ(v). Let some vertex w be chosen for update. If w /∈ N (v)
then the neighborhood of w is the same for both configurations and it holds that
X1

σ(U,w)(w) = X1
τ (U,w)(w). Then, consider w ∈ N(v). It will be enough to

prove that for all k � m the following inequality holds

prefk(σ,w) � prefk(τ, w)

to be sure that

X1
σ(U, w)(w) = min(k|prefk(σ, w) � U) � min(k|prefk(τ, w) � U) = X1

τ (U, w)(w).
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Here we will use notations of Lemma 6.

prefk(σ,w) − prefk(τ, w) =
k∑

i=0

pi(σ,w) −
k∑

i=0

pi(τ, w)

=
k∑

i=0

ai

a0 + ... + am
−

k∑
i=0

bi

b0 + ... + bm

=
(a0 + ... + ak) · (b0 + ... + bm) − (a0 + ... + am) · (b0 + ... + bk)

(a0 + ... + am)(b0 + ... + bm)

=
(a0 + ... + ak) · (bk+1 + ... + bm) − (ak+1 + ... + am) · (b0 + ... + bk)

(a0 + ... + am)(b0 + ... + bm)

=
1

(a0 + ... + am)(b0 + ... + bm)

m∑
i�k<j

(aibj − ajbi) � 0.

The last inequality holds since each summand is at most zero: it is provided
by Eq. (4), submodular property of matrix V and the fact that summation is
performed with i < j. By induction argument the proof immediately extends for
arbitrary t. �

Now we can propose the following algorithm:

Algorithm 1. Monotone perfect MCMC
Ut ← random uniform variables from the segment [0,1]
wt ← random uniform variables from the set V
T ← 1
repeat

upper ← m̂
lower ← 1̂
for t = −T . . . − 1 do

upper ← X1
upper(Ut, wt)

lower ← X1
lower(Ut, wt)

T ← 2T
until upper = lower
return upper, T

It is needed to say that the algorithm uses the same random pair (Ut, wt) at
the same t, that is why we initialize them only once during the first call. The
required number of steps for this algorithm is upper bounded by 4T∗, where T∗
is the smallest T such that upper and lower values converge. In this case T∗ is
a random value depending on Ut and wt. Having found T such that T < T∗ �
2T one can make a binary search to find out the accurate value of T∗. This
calculation has asymptotic complexity of order T∗ ln T∗.

According to [14], we have:

ET∗ � 2tmix · (1 + lnn + lnm).
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This gives an idea that the Glauber dynamics and Monotone perfect MCMC are
comparable in terms of computational requirements. Of course, the advantage
of the monotone perfect MCMC is that it produces sampling from the exact
stationary distribution.

5.2 Numerical Example with Real Network

Let us consider well-known social network with attributes AddHealth [1]. For our
experiments, we take as attribute the grade (class) of a pupil at school. It is an
ordinal attribute in the interval between 7 and 12. It seems natural that this
network has cluster structure based on class attribute, because the probability
of friendship between two pupils is bigger if their classes are not so far apart
in time. For this purpose, as in [3], we have chosen 6 × 6 interaction matrix
V(x, y) = (x−y)2. Since V is submodular, we can use monotone perfect MCMC.
We have taken publically available AddHealth graph [2] with the number of
vertices n = 1996 and with the maximum degree � = 36. In this case Theorem 2
provides fast mixing for β < 0.000461895, or equivalently, for the temperature
>2165.

If we choose β = 0.0002, Theorem 2 gives the upper bound 27000 on the
mixing time while perfect MCMC algorithm makes about 20000–25000 running
steps. Moreover, if we choose β bigger than provided by Theorem 2, e.g., about
0.04, the perfect MCMC is still fast enough finishing approximately after 200000
steps. Since we have a relation between the expectation of the number of steps
in perfect MCMC and the mixing time, we realize that, on the one hand, our
theorem is in agreement with experiment and, on the other hand, on that par-
ticular graph there is fast mixing on broader set of parameters. The question if
it is possible to obtain a tighter mixing time estimate is an interesting direction
for future research.

We have also tried to fit the value of β for the AddHealth data using a
variation of the method of moments (see e.g., [17]). Specifically, we tried to
fit the simulated energy to the energy of the AddHealth data, which is equal
to 12328. The perfect simulation algorithm converges in acceptable time for β
as high as 0.125, which gives the energy level around 15000. We think it is
a reasonable match. It is interesting that AddHealth social network is on the
boundary of rapid mixing. This might not be a coincidence as a social network
can self-organize to find a balance between sufficiently rapid mixing and division
into communities.
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Abstract. Myriad problems can be described in hypergraph terms.
However, the theory and tools are not sufficiently developed to allow
most problems to be tackled directly within this context. The main pur-
pose of this paper is to increase the awareness of this important gap and
to encourage the development of this formal theory, in conjunction with
the consideration of concrete applications. As a starting point, we con-
centrate on the problem of finding (small) subhypergraphs in a (large)
hypergraph. Many existing algorithms reduce this problem to the known
territory of graph theory by considering the 2-section graph. We argue
that this is not the right approach, neither from a theoretical point of
view (by considering a generalization of the classic model of binomial
random graphs to hypergraphs) nor from a practical one (by performing
experiments on two datasets).
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1 Introduction

Myriad problems can be described in hypergraph terms. However, the theory
and tools are not sufficiently developed to allow most problems to be tackled
directly within this context. Hypergraphs are of particular interest in the field of
knowledge discovery, where most problems currently modelled as graphs would
be more accurately modelled as hypergraphs. Researchers in the knowledge dis-
covery field are particularly interested in the generalization of the concepts of
modularity and diffusion to hypergraphs. Such generalizations require a firm
theoretical basis on which to develop these concepts. Unfortunately, although
hypergraphs were formally defined in the 1960s (and various realizations of
hypergraphs were studied long before that), the general formal theory is not
as mature as required for the applications of interest to many industry partners
or governments. The main purpose of this paper is to increase the awareness of
this important gap and to encourage the development of this formal theory, in
conjunction with the consideration of concrete applications.
c© Springer International Publishing AG 2016
A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 140–151, 2016.
DOI: 10.1007/978-3-319-49787-7 12



Subgraphs in Non-uniform Random Hypergraphs 141

In order to illustrate the issue, let us consider the following “toy exam-
ple.” Consider the coauthorship hypergraph in which vertices correspond to
researchers and each hyperedge consists of the set of authors listed on a sci-
entific paper. We have two goals for this dataset. As a first goal, we would like
to determine the Erdős number of every researcher (zero for Erdős, one for coau-
thors of Erdős, two for coauthors of coauthors of Erdős, etc.). Our second goal
is to find a minimum set of authors who between them cover all the papers in
the subhypergraph consisting only of the seminal papers in a particular field.

Often even though a dataset is naturally represented as a hypergraph we do
not work directly on the hypergraph. Instead we reduce the hypergraph to its
2-section graph (the 2-section graph of a hypergraph is obtained by making each
hyperedge a clique; see Sect. 2 for a formal definition) or a weighted version of
the 2-section. Taking a 2-section of a hypergraph loses some of the information
about hyperedges of size greater than 2. Sometimes losing this information does
not affect our ability to answer the questions of interest. For example, the Erdős
number of an author is the minimum distance between the author’s vertex and
Erdős’ vertex in the hypergraph and this distance is not changed by taking the
2-section. Other times the information lost when taking the 2-section prevents us
answering the question of interest. This is the case for our second goal of finding
a minimum set of authors that cover a set of papers. In the hypergraph this goal
means finding a minimum set of vertices that are incident with every hyperedge
of interest. However, taking the 2-section of the hypergraph loses the information
about the set of papers that a particular author covers. In fact, the 2-section
does not even retain how many papers exist. Basically, if the composition of the
hyperedges of size greater than 2 is important in solving a problem, then solving
the problem in the 2-section is going to be difficult or impossible.

Besides the information loss, there is another potential downside to working
with the 2-section of a hypergraph. Namely, that the 2-section can be much
denser than the hypergraph since a single hyperedge of size k implies

(
k
2

)
edges

in the 2-section. Depending on the dataset and algorithm being executed the
increased density of the 2-section can have a significant detrimental effect on the
runtime.

In this paper, we shall be interested in finding subhypergraphs in hyper-
graphs. While the composition of the hyperedges of size greater than 2 matters
when answering this question, it is natural to ask whether 2-section graphs can
be used to help answer the question. That is, when determining whether or not
a hypergraph H contains H1 as a subhypergraph, is it useful to look for GH1 ,
the 2-section of H1, in GH , the 2-section of H? Clearly there are many ways
that GH1 could appear in GH without H1 appearing in H. An obvious tech-
nique would be to use the existing graph theoretical tools to find all copies of
GH1 in GH and then simply inspect them, one by one, in the original hyper-
graph. So perhaps reducing the hypergraph to its 2-section can be used to solve
the problem. Maybe in most networks that are considered in practice, any two
subhypergraphs inducing the same graph in the 2-section occur with the same
probability? This would be desirable, as it would mean that the above technique
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does not waste a lot of time dealing with subhypergraphs that we are not inter-
ested in finding. Of course, even if the 2-section can be used in this way for
finding subhypergraphs, the increased density of the 2-section may lead to the
graph theoretical tools used being quite inefficient.

In order to deal with the question of the false positive rate of GH1 in GH ,
we introduce a natural generalization of Erdős-Rényi (binomial) random graphs
to non-uniform random hypergraphs. We study (rigorously, via theorems with
proofs) occurrences of a given hypergraph in the random hypergraph. One of the
implications of our work is that two hypergraphs H1,H2 that induce the same
subgraph in the 2-section can have drastically different thresholds for appear-
ance. This suggests that the answer to the latest question is “no,” and that we
have lost something by considering only the 2-section. Assuming that hyperedges
in the network we try to analyze occur randomly, our theorems imply that there
might be very few (if any) copies of H1 (the hypergraph we are looking for in the
network) but plenty of copies of H2 (the hypergraph we do not care about). So
the algorithm discovers a lot of potential candidates but none of them is what
we are looking for!

We investigate two real-world networks: an email hypergraph and the coau-
thorship hypergraph that was already mentioned. Not surprisingly, we confirm
that hypergraphs that are not distinguishable in the 2-section graph occur with
different probabilities (as predicted by the model). Hence we feel that using
existing graph algorithms on the 2-section can be and often is lacking and that
the research community needs to develop more algorithms that deal with hyper-
graphs directly.

While non-uniform random hypergraphs might serve as the very first model
of the real-world hypergraphs, the assumption that events that occur in the
network are independent is likely not reasonable. Perhaps of particular impor-
tance is a notion of clustering coefficient; there have been a number of proposals
for generalizing clustering coefficient from graphs to hypergraphs, for instance
[1,5,11,14,15]. In the longer journal version of this paper we compute the hyper-
graph clustering coefficient of [15] for our random hypergraph model and the two
real networks we are investigating. With the knowledge and experience we gath-
ered, we feel that we are better prepared to propose a probabilistic model that
is more suitable. However, it is left for the forthcoming papers.

Due to space limitation, all proofs and details of a set of experiments we
performed in this project are omitted in this proceedings version but will be
included in the journal version of this paper.

2 Definitions and Conventions

2.1 Random Graphs and Random Hypergraphs

First, let us recall a classic model of random graphs. The binomial random graph
G (n, p) is the random graph G with vertex set [n] := {1, 2, . . . , n} in which every
pair {i, j} ∈ (

[n]
2

)
appears independently as an edge in G with probability p.

Note that p = p(n) may (and usually does) tend to zero as n tends to infinity.
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In this paper, we are concerned with more general combinatorial objects:
hypergraphs. A hypergraph H is an ordered pair H = (V,E), where V is a finite
set (the vertex set) and E is a family of distinct subsets of V (the hyperedge
set). A hypergraph H = (V,E) is r-uniform if all hyperedges of H are of size
r. For a given r ∈ N, the random r-uniform hypergraph Hr(n, p) has n labelled
vertices from a vertex set V = [n], in which every subset e ⊆ V of size |e| = r is
chosen to be a hyperedge of H randomly and independently with probability p.
For r = 2, this model reduces to the model G (n, p).

The binomial random graph model is well known and thoroughly studied
(e.g. [3,10,12]). Random hypergraphs are much less understood and, unfortu-
nately, most of the existing papers deal with uniform hypergraphs. For example,
Hamilton cycles (both tight ones and loose ones) were recently studied in [7–9];
perfect matchings were investigated in [13] (for a few more examples see the
recent book on random graphs [10]).

In this paper, we are concerned with a natural generalization of this model
that produces non-uniform hypergraphs. Let p = (pr)r≥1 be any sequence of
numbers such that 0 ≤ pr = pr(n) ≤ 1 for each r ≥ 1. The random hypergraph
H (n,p) has n labelled vertices from a vertex set V = [n], in which every
subset e ⊆ V of size |e| = r is chosen to be a hyperedge of H randomly and
independently with probability pr. In other words, H (n,p) =

⋃
r≥1 Hr(n, pr)

is a union of independent uniform hypergraphs.
Let us mention that there are several natural generalizations that might be

worth exploring, depending on a specific application in mind. One possible gen-
eralization would be to allow hyperedges to contain repeated vertices (multiset-
hyperedge hypergraphs). Another one would be to allow the hyperedges to be
chosen with possible repetitions, to get parallel hyperedges.

A vertex of a hypergraph is isolated if it is contained in no edge. (In particular,
a vertex of degree 1 that belongs only to an edge of size 1 is not isolated.) The
2-section of a hypergraph H, denoted [H]2, is the graph on the same vertex set
as H and an edge uv if (and only if) u and v are contained in some edge of H.
In other words, it is obtained by making each hyperedge of H a clique in [H]2.

2.2 Subgraphs

In this paper, we are concerned with occurrences of a given substructure in hyper-
graphs. However, there are at least two natural generalizations of “subgraph”
for hypergraphs.

A hypergraph H ′ = (V ′, E′) is a strong subhypergraph (called hypersubgraph
by Bahmanian and Sajna [2] and partial hypergraph by Duchet [6]) of H = (V,E)
if V ′ ⊆ V and E′ ⊆ E; that is, each hyperedge of H ′ is also an hyperedge of H.
We write H ′ ⊆s H when H ′ is a strong subhypergraph of H. For H = (V,E)
and V ′ ⊆ V , the strong subhypergraph of H induced by V ′, denoted Hs[V ′], has
vertex set V ′ and hyperedge set E′ = {e ∈ E : e ⊆ V ′}.

The hypergraph H ′ is a weak subhypergraph of H (called subhypergraph by
Bahmanian and Sajna) if V ′ ⊆ V and E′ ⊆ {e ∩ V ′ : e ∈ E}; that is, each
hyperedge of H ′ can be extended to one of H by adding vertices of V \ V ′ to it.
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For V ′ ⊆ V , the weak subhypergraph induced by V ′, denoted Hw[V ′], has vertex
set V ′ and hyperedge set E′ = {e∩V ′ : e ∈ E}. For this paper however, since we
desire our hypergraphs to never contain the empty hyperedge, we tacitly replace
E′ by E′ \ {∅}. For now, weak subgraphs are assumed not to have multiple
hyperedges (E′ is a set, not a multiset).

Note that when G is an ordinary (i.e. 2-uniform) graph, strong subhyper-
graphs are the usual notion of subgraph, and weak subhypergraphs are subgraphs
together with possible hyperedges of size 1. Note that each strong subhypergraph
is also a weak subhypergraph but not vice versa.

Given hypergraphs H1 and H2, a weak (resp. strong) copy of H1 in H2 is a
weak (resp. strong) subhypergraph of H2 isomorphic to H1. Most of this paper
is concerned with determining the existence of strong or weak copies of a fixed
H in H (n,p). With a mild abuse of terminology, we will often say that H
contains H as a weak (strong) subhypergraph when we actually mean that H
contains a weak (strong) copy of H. The precise meaning will always be clear
from the context (Fig. 1).

Fig. 1. The hypergraph H1 appears as a weak subhypergraph of H2 (induced by the
dashed vertex subset), but not as a strong subhypergraph.

3 Small Subgraphs in H (n, p)

We are interested in answering questions about the existence of subgraphs within
H (n,p). This question was addressed for G (n, p) by Bollobás in [4]. We are going
to generalize his result to hypergraphs but first we need a few more definitions.
Let H = (V,E) be a hypergraph. Denote by v(H) = |V | and by e(H) = |E|
the number of vertices and edges of H, respectively. For any r ≥ 1, we will use
er(H) = |{e ∈ E : |e| = r}| to denote the number of edges of H of size r.

Define
μs(H) = nv(H)

∏
r≥1

per(H)
r . (1)

Now we are ready to state our result for the appearance of strong subgraphs of
H (n,p). We adopt the convention that 00 = 1 and assume all our hypergraphs
have nonempty vertex set.

Theorem 1. Let H be an arbitrary fixed hypergraph. Let p = (pr)r≥1 be any
sequence such that 0 ≤ pr = pr(n) ≤ 1 for each r ≥ 1. Let J denote the family
of all strong subgraphs of H.
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(a) If for some H ′ ∈ J we have μs(H ′) → 0 (as n → ∞), then a.a.s. H (n,p)
does not contain H as a strong subgraph.

(b) If for all H ′ ∈ J we have μs(H ′) → ∞ (as n → ∞), then a.a.s. H (n,p)
contains H as a strong subgraph.

Let us mention that the result also holds for the multiset setting: that is, when
vertices are allowed to be repeated in each hyperedge with some multiplicity.
Moreover, if additionally there exists ε > 0 such that pr ≤ 1 − ε, for all r, then
the same conditions (that is, conditions (a) and (b) of Theorem1) determine
whether or not H appears as an induced strong subgraph.

In view of Theorem 1, we emphasize that the existence of strong copies of H
in H (n,p) cannot be determined by translating to graphs via 2-sections. For
instance, consider the three hypergraphs H1, H2 and H3 from Fig. 2. Each of
these has H1 as its 2-section. However, the expected number of strong copies
of H1, H2 and H3 in H (n,p) is, respectively, of order n4p52, n4p22p3, and n4p23.
So if, say, p3 = n−5/2 and p2 = n−3/4, then we expect many copies of H1, a
constant number of copies of H2, and o(1) copies of H3. Moreover, by testing the
conditions of Theorem1 for all the strong subgraphs of H1,H2,H3, we obtain
that a.a.s. H (n,p) contains H1 but not H3 as a strong subgraph (and the
theorem is inconclusive for H2).

Fig. 2. These three hypergraphs have the same 2-section, which is precisely H1, but
their behaviour as potential strong subgraphs of H (n,p) is different.

Now we move to our result for the appearance of weak subgraphs of H (n,p).
For technical reasons, we restrict ourselves to hypergraphs with bounded edge
sizes. Formally, for a given M ∈ N, we say that H = (V,E) is an M -bounded
hypergraph if |e| ≤ M for all e ∈ E. Similarly, p = (pr)r≥1 is an M -bounded
sequence if pr = 0 for r > M . We will use p = (pr)Mr=1 for an M -bounded
sequence instead of an infinite sequence p = (pr)r≥1 with a bounded number of
non-zero values. Clearly, if p is M -bounded, then so is H (n,p) (with probability
1). For r ∈ [M ], let

p′
r = pr + npr+1 + n2pr+2 + · · · + nM−rpM , (2)

and, given any fixed hypergraph H, define

μw(H) = nv(H)
M∏
r=1

(p′
r)

er(H), (3)

which will play an analogous role to μs(H).
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Theorem 2. Let H be an arbitrary fixed hypergraph, and let J be the collection
of all strong subgraphs of H. Let p = (pr)Mr=1 be an M -bounded sequence.

(a) If for some H ′ ∈ J we have μw(H ′) → 0 (as n → ∞), then a.a.s. H (n,p)
does not contain H as a weak subgraph.

(b) If for all H ′ ∈ J we have μw(H ′) → ∞ (as n → ∞), then a.a.s. H (n,p)
contains H as a weak subgraph.

Fig. 3. A hypergraph J and an induced weak hypergraph H with different thresholds
for appearance as strong subgraphs.

We shall discuss a few relevant points concerning Theorem 2. First, it is
possible that a.a.s. some graph occurs as a weak subgraph but not as a strong
one. For example, if

p1 = n−0.6, p2 = n−0.9, p3 = n−1.7, and p4 = n−3.1, (4)

then a.a.s. H (n,p) does not contain graph H (presented on Fig. 3) as a strong
subgraph but a.a.s. it contains J (also presented on Fig. 3) and so a.a.s. it con-
tains H as a weak subgraph.

Next, observe that if we replace J in the statement of Theorem 2 by the
collection Jw of all weak subgraphs of H, the theorem remains valid. This is
trivially true for part (b), since Jw ⊇ J . For part (a), a few easy modifications
in the proof are necessary which will be mentioned in the journal version of this
paper.

Finally, let us comment on the definition of p′
r, and introduce related para-

meters p′′
r and p′′′

r , which will play a role later on. Our particular choice of p′
r

in (3) and thus in the statement of Theorem 2 is the simplest function from the
equivalence class of all functions of the same order. However, the following one
is more natural (as argued below). For r ∈ [M ], let

p′′
r = pr + npr+1 +

(
n

2

)
pr+2 + · · · +

(
n

M − r

)
pM . (5)

Note that p′
r and p′′

r are of the same order. More precisely,

(1 + o(1))
p′
r

(M − r)!
≤ p′′

r ≤ p′
r.
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Hence, p′
r can be replaced in (3) by the more natural (but less simple) p′′

r , and
Theorem 2 remains valid. It is worth noting that both p′

r and p′′
r can be greater

than one or even tend to infinity as n → ∞. Indeed, p′′
r is not a probability but

rather is asymptotic to the expected number of edges to which a given set of size
r belongs. In contrast, the probability that such a set belongs to some edge is

p′′′
r = 1 − (1 − pr)(1 − pr+1)n−r(1 − pr+2)(

n−r
2 ) · · · (1 − pM )(

n−r
M−r). (6)

Observe that, if p′
r = o(1) (or equivalently p′′

r = o(1)), then p′′
r , p′′

r+1, . . . , p
′′
M =

o(1), and therefore

p′′′
r = 1 − exp

(
−(1 + o(1))

(
pr + npr+1 +

(
n

2

)
pr+2 + · · · +

(
n

M − r

)
pM

))
= 1 − exp (−(1 + o(1))p′′

r ) ∼ p′′
r , (7)

so p′′
r and p′′′

r asymptotically coincide.

4 Induced Weak Subgraphs

Let us discuss how one can use Theorem 2 to determine whether H appears as an
induced weak subgraph of H (n,p). This seems to be more complex than in the
case of strong subgraphs: the non-edges of H play a crucial role in determining
the existence of induced weak copies. Indeed, a weak subgraph H of H (n,p) is
induced provided that, for every set e of vertices of H that do not form an edge,
e cannot be extended to an edge of H (n,p) by adding vertices not in H.

First, we will give some conditions that forbid a.a.s. the existence of weak
induced copies of H in H (n,p) (even if H does appear as a weak subgraph).

Proposition 1. Let H be an arbitrary fixed hypergraph on k vertices with a
non-edge of size r (1 ≤ r ≤ k). Suppose p′′

r ≥ (k + ε) log n for some constant
ε > 0. Then, a.a.s. H does not occur as an induced weak subgraph of H (n,p).

As a result, the condition p′′
r ≥ (k + ε) log n implies that, if H is an induced

weak subgraph of H (n,p) of order k, then H must contain all possible edges
of size r. Coming back to our example with H from Fig. 3 and pi’s from (4),
note that p′′

1 ∼ (
n
2

)
p3 ∼ n0.3/2. Thus, a.a.s. H will not occur as an induced weak

subgraph of H (n,p), as not every vertex of H belongs to an edge of size 1.
On the other hand, suppose that r ≥ 1 is the size of the smallest non-edge

of H and assume that

max{p′′′
r , p′′′

r+1, . . . , p
′′′
M} ≤ 1 − ε (8)

for some constant ε > 0. Then any given weak copy of H in H (n,p) is also
induced with probability bounded away from zero. In that case, the same calcu-
lations in the proof of Theorem2 (that is omitted in this version) are still valid
with an extra Θ(1) factor, and thus the conclusions of that theorem extend to
induced weak subgraphs. Since verifying condition (8) may sometimes be slightly
unwieldy, we will give a simpler sufficient condition.
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Proposition 2. Let H be an arbitrary fixed hypergraph, and let r be the size
of its smallest non-edge. Suppose that pr ≤ 1 − ε for some constant ε > 0 and
that p′

r = O(1) (and, as a result, p′′
r = O(1) too). If the conditions in part (b)

of Theorem 2 are satisfied, then a.a.s. H (n,p) contains H as an induced weak
subgraph.

Let us come back to our example from Fig. 3 and (4) for the last time. Note
that p′′

2 ∼ np3 = n−0.7 = o(1). Hence, if the “missing” edges of size 1 are added
to H, then a.a.s. the resulting graph would occur as an induced weak subgraph
of H (n,p).

5 The 2-section of H (n, p)

We first consider the question of whether a given (2-uniform) graph G appears
as a subgraph of the 2-section of H (n,p). We again may assume that G has no
isolated vertices.

Let us start with some general observations that apply for any host hyper-
graph H , not necessarily H (n,p). Observe that G ⊆ [H ]2 if and only if there
is a weak subhypergraph H of H such that G is a spanning subgraph of [H]2.
So we may test for G ⊆ [H ]2 by finding every hypergraph H with G a spanning
subgraph of [H]2 and applying Theorem2 to each. We can reduce the number
of hypergraphs that need to be tested: if H1 is a weak subhypergraph of H2 and
H2 is a weak subhypergraph of H , then H1 is also a weak subhypergraph of
H . Note too that a spanning weak subhypergraph is actually a strong subhy-
pergraph. So it suffices to check only the hypergraphs H that are minimal—with
respect to the (strong) subhypergraph relation—that have G as a spanning sub-
graph of their 2-section.

In H (n,p), one can reduce the number of hypergraphs H to be tested even
further. A subedge system of a hypergraph H is a hypergraph obtained from H
by taking a subset of each edge of H and taking a (strong) subhypergraph of the
result. Let H1 be a subedge system of H2 and let H2 be a weak subhypergraph
of H. It is not necessarily true that H1 is a weak subhypergraph of H, but it is
true a.a.s. for H = H (n,p).

Proposition 3. Let H1 and H2 be fixed hypergraphs with H1 a spanning subedge
system of H2, and let p be M -bounded. Let J1 and J2 denote the set of all strong
subgraphs of H1 and H2, respectively. If every H ′

2 ∈ J2 satisfies μw(H ′
2) → ∞,

then every H ′
1 ∈ J1 also satisfies μw(H ′

1) → ∞.

Corollary 1. Fix a (2-uniform) graph G without isolated vertices. Let F denote
the family of minimal—with respect to the subedge system relation—hypergraphs
containing G in their 2-section. Let p be M -bounded.

(a) If for every H ∈ F there is some strong subgraph H ′ ⊆s H with μw(H ′) → 0,
then a.a.s. G is not a subgraph of [H (n,p)]2.

(b) If for some H ∈ F every strong subgraph H ′ ⊆s H satisfies μw(H ′) → ∞,
then a.a.s. G is a subgraph of [H (n,p)]2.
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We next consider the following problem. Suppose that a copy of G is found
in [H (n,p)]2. We would like to estimate the probability that this copy comes
from a given weak subhypergraph of H (n,p).

Let G be a fixed 2-uniform graph with no isolated vertices. Let F denote
the family of hypergraphs H on the same vertex set as G such that G � [H]2.
Then, G appears as an induced subgraph of [H (n,p)]2 if and only if some
H ∈ F appears as an induced weak subhypergraph of H (n,p). More precisely,
for every set of vertices S inducing a copy of G in [H (n,p)]2, there is exactly
one H ∈ F such that S induces a weak copy of H in H (n,p). We say in that
case that hypergraph H originates that particular copy of G. As a result we
have the following proposition.

Proposition 4. Let p = (pr)Mr=1 be an M -bounded sequence. For r ∈ [M ], let
p′′′
r be defined as in (6). Then, given a copy of G in [H (n,p)]2, the probability

that it originates from a given H ∈ F is

(1 + o(1))
aut(H)

∏M
r=1(p

′′′
r )er(H)(1 − p′′′

r )(
v(G)

r )−er(H)∑
H′∈F aut(H ′)

∏M
r=1(p′′′

r )er(H′)(1 − p′′′
r )(

v(G)
r )−er(H′)

.

Instead of determining which specific H ∈ F originates a copy of G in
the 2-section of H (n,p), we may take equivalence classes in F given their
r-edge counts. To that end, define the signature of H ∈ F as the vector
e(H) = (e1(H), e2(H), . . . , ek(H)), where k = v(G) (and hence also k = v(H)).
Let e(F) = {e(H) : H ∈ F}. For a given signature e ∈ e(F), let Fe ⊆ F be the
family of hypergraphs in F with signature e. Notice that {Fe : e ∈ e(F)} is a
partition of F . Then, the following useful result holds.

Corollary 2. Let p = (pr)Mr=1 be an M -bounded sequence. For r ∈ [M ], let p′′′
r

be defined as in (6). Then, given a copy of G in [H (n,p)]2, the probability that
it originates from a hypergraph with a given signature e = (m1,m2, . . . ,mk) ∈
e(F) is

(1 + o(1))

∑
H∈Fe

aut(H)
∏k

r=1(p
′′′
r )mr (1 − p′′′

r )(
v(G)

r )−mr∑
H′∈F aut(H ′)

∏k
r=1(p′′′

r )er(H′)(1 − p′′′
r )(

v(G)
r )−er(H′)

.

The following example illustrates how, under natural assumptions on p,
Corollary 2 implies that a copy of G in [H (n,p)]2 “typically” originates from a
hypergraph H ∈ F with few but large edges rather than many but small edges.
Let G = Kk (i.e. the clique of order k) for a fixed k ≥ 2, and suppose that p
is an M -bounded sequence satisfying

(
n
j

)
pj = O(n) for all j ∈ [M ]. The latter

condition is equivalent to assuming that the expected number of edges of each
given size is at most linear in the number of vertices, which is a fairly reasonable
assumption for many relevant models of hypergraph networks. Suppose addi-
tionally that for some r with k ≤ r ≤ M we also have

(
n
r

)
pr = Ω(n). From (7),

we obtain that p′′′
j = O(1/nj−1) for every j ∈ [M ] and p′′′

k = Θ(1/nk−1). Con-
sider the signature ê = (0, . . . , 0, 1) corresponding to the hypergraph Ĥ on k
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vertices with one single edge of size k. A straightforward inductive argument
reveals that, for any signature e = (m1,m2, . . . ,mk) ∈ e(F),

k∏
r=1

(p′′′
r )mr (1 − p′′′

r )(
k
r)−mr =

{
(1 + o(1))p′′′

k = Θ(1/nk−1) if e = ê
o(1/nk−1) if e = ê.

As a result, applying Corollary 2 to all signatures different from ê, we conclude
that, for a given copy of G in [H (n,p)]2, a.a.s. it must originate from Ĥ.

6 Experiments

We performed a number of experiments on two real-world datasets that are
naturally represented as a hypergraph network. Our goal was to compare the
results with the corresponding theoretical predictions. Due to space limitation,
the details are omitted in this version but will be included in the journal version
of this paper.

The experiments we performed confirmed the intuition that the fact that
some set of vertices S forms a hyperedge should increase the probability that
some proper subset of S belongs to some other hyperedge. Moreover, in many
instances, the correlation seems to be so strong that not only having one hyper-
edge increases substantially the probability that another hyperedge intersects it
but it is more likely that there will be another hyperedge intersecting it than
not. Of course, such behaviour is not present in our theoretical model in which
events are independent. In order to understand the behaviour we experience,
some notion of “clustering coefficient” has to be introduced in the hypergraph
setting. Again, the details are omitted here but will be included in the journal
version of this paper.

7 Conclusions and Future Work

The goal of the larger project behind this paper is to propose a reasonable
model for complex networks using hypergraphs, as they seem more suitable for
many existing networks and associated applications. Whereas there are many
models using graphs (classic ones such as G (n, p), random d-regular graphs,
and PA model, as well as spatial ones such as random geometric graphs and
SPA model), there are very few using hypergraphs. In order to better under-
stand micro-processes that shape macro-properties that are observed in these
networks, we introduced the random hypergraphs and investigated some prop-
erties of it in order to compare them with two real-world networks. These results
are interesting from a pure random graph theory perspective but, of course, we
did not expect such models to work well in practice; we did it to learn why they
do not work. As is common in this field, such an exercise taught us a lot, and we
feel that we are now better prepared to design a more suitable model, probably
combining both geometry and the “rich get richer” paradigm. However, it is left
for the forthcoming papers.
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Abstract. The Prisoner’s Dilemma Process on a graph is an iterative
process where each vertex, with a fixed strategy (cooperate or defect),
plays the game with each of its neighbours. At the end of a round each
vertex may change its strategy to that of its neighbour with the highest
pay-off. Here we study the spread of cooperative and selfish behaviours
on a toroidal grid, where each vertex is initially a cooperator with prob-
ability p. When vertices are permitted to change their strategies via a
randomized asynchronous update scheme, we find that for some values
of p the limiting ratio of cooperators may be modelled as a polynomial
in p. Theoretical bounds for this ratio are confirmed via simulation.

1 Introduction and Preliminaries

The particular topology of a network has a dramatic impact on discrete processes
that model competitive interactions in communities [6]. For example, spread of
a particular attitude or belief is less likely to propagate completely in Erdös-
Renyi graphs, than on small-world networks [2]. Studies of cellular automata
indicate that the particular updating scheme impacts the limiting configuration
of randomly seeded cellular automaton [8]. Here we combine these two paradigms
to study a discrete-time process that may be modelled as a cellular automaton
with a particular updating scheme.

The Prisoner’s Dilemma, a staple of classical game theory, is a 2-player game
in which each of the two players simultaneously make a decision to either coop-
erate or defect. Each of the players receives a pay-off whose amount takes into
account the decisions of both players. Classically the game is played in a single
round. However by considering the game as being played in a series of rounds,
the Prisoner’s Dilemma may be used to model a variety of scenarios in many
disciplines, including evolutionary biology [3], economics [5] and sociology [9].

Here we consider the iterated Prisoner’s Dilemma as a game played between
neighbours on a graph. In each round each vertex plays, with a fixed strategy
(cooperate or defect), the game with each of its neighbours. The score for each
vertex is the sum of the pay-offs its receives in each game. At the end of each
round, vertices are given the opportunity to update their strategy to that of
their most successful neighbour. A survey of the literature in this area reveals
a multitude of experimental results on a variety of graphs with a variety of

c© Springer International Publishing AG 2016
A. Bonato et al. (Eds.): WAW 2016, LNCS 10088, pp. 152–163, 2016.
DOI: 10.1007/978-3-319-49787-7 13
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update schemes [7,11]. Here we discuss an updating scheme that considers the
set of vertices envious of their neighbours and updates them in a random order,
playing a round of the game after each individual vertex has updated. This
update scheme behaves similarly to the random independent model for updating
cellular automata [8]; however, it provides necessary structure to facilitate proofs
of observed behaviours. As such we provide theoretical results for the survival
rates of cooperators in toroidal grids seeded with random initial strategies. More
broadly, the Prisoner’s Dilemma on graphs fits in the context of evolutionary
games on graphs. A survey of methods and research in this area is given in [10].

Let G = (V,E) be a graph. A configuration, C, is function that assigns a
strategy to each vertex of G. Formally, C : V → {0, 1}, where 0 corresponds to
defector and 1 corresponds to cooperator. The pay-off function, f , assigns the
score for the first player to an ordered pair that represents the strategies of the
first and second player. The pay-off function f : {0, 1} × {0, 1} → {0, 1, T} is
given by

C(v1), C(v2) f(C(v1), C(v2))

(0, 0) 0

(1, 0) 0

(0, 1) T

(1, 1) 1

where T > 1 is a fixed constant. We refer to T as the cheating advantage.
Let C be fixed and let v ∈ V (G). The score of v with respect to C is given by

s(v) =
∑

x∈N(v)

f(C(v), C(x)).

When the context is clear we refer to the score of v. The most successful neigh-
bours of v are the vertices in the closed neighbourhood of v (denoted N [v]) that
have the greatest score. We may choose T so that each of the most successful
neighbours have the same strategy. Let u be a most successful neighbour of v.
The vertex v is called weak with respect to C if C(v) �= C(u). Otherwise, we
say that v is strong. We are interested in the change in the configuration with
respect to time; we use Ct to denote the configuration at time t and st to denote
the score at time t.

The configuration, D, resulting from updating v with respect to C is given by

D(x) =

⎧⎪⎨
⎪⎩

C(x), x �= v, or
C(x), x is strong, or
1 − C(x), x is weak.

Note that when we update v with respect to C it is only the strategy of v and
the scores in its closed neighbourhood that possibly change.
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We call a maximal connected proper subgraph of vertices with the same
strategy a k-cluster. We say that a 1-cluster is an isolated vertex. The k-cluster
H ≤ G has a border of width b if for all h ∈ V (H) and all v ∈ V (G − H) such
that C(h) = C(v), then d(h, v) ≥ b.

Given a graph G and some T > 1, our process is initialised with C0, some
configuration of the vertices. The process proceeds as follows. Let Wt be the
set of weak vertices with respect to Ct. If Wt = ∅, then the process terminates.
In this case we say that Ct is a stable configuration. Otherwise, we select with
uniform probability a permutation, σ, of the elements of Wt. Considering the
permutation as a sequence of the elements of Wt, we proceed through |Wt|
subrounds. At the kth subround we update the kth vertex of the sequence, vk,
with respect to the current configuration (i,e., the configuration resulting from
the (k − 1)th subround). We refer to the process as the Prisoner’s Dilemma
process on G with randomised asynchronous updating. Though, for brevity we
refer to this process as the PD process on G.

As we are interested in the spread of the cooperative strategy, for any config-
uration we may consider the ratio of cooperators. For configuration Ct, let rt be
the ratio of cooperators to |V (G)|. If Ct is stable configuration, then we define
the final ratio, denoted rf , to be rt.

Consider the following example on the 6×6 grid to highlight how the choice of
T for the process and the updating permutation in a particular round affect the
spread of strategies. Consider the configuration given in Fig. 1a. In our figures
we use white squares for cooperators and grey squares for defectors.

If T = 5
3 each of the cooperators have score 2 and each of the labelled

defectors have score 5
3 . All unlabelled vertices have score 0, as they are defectors

with no cooperator neighbours. Observe that W0 = {v1, v2, . . . , v8}. Figure 1b
gives the resulting configurations after applying σ1 = (v2, v3, v6, v7, v1, v4, v5, v8)
to C0 and alternatively applying σ2 = (v2, v4, v6, v8, v1, v3, v5, v7) to C0. In the
first case, after subround 4, v1 is no longer a weak vertex, and so does not
change strategy. The resulting configuration has no weak vertices. However, in
the second case v1 is a weak vertex after subround 4, and so does change from
being a cooperator to a defector. Here the resulting configuration has 8 weak
vertices.

u1 u2

u4 u3

v1 v2

v3

v4

v5v6

v7

v8

(a) C0

u1 u2

u4 u3

v1 v2

v3

v4

v5v6

v7

v8 u1 u2

u4 u3

v1 v2

v3

v4

v5v6

v7

v8

(b) T = 5
3

u1 u2

u4 u3

v1 v2

v3

v4

v5v6

v7

v8

(c) T = 8
3

Fig. 1. The PD Process on the 6 × 6 grid with varying values of T .
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For T = 8
3 , each of the cooperators have score 2, and each of the labelled

defectors have score 8
3 . All unlabelled vertices have score 0, as they are defectors

with no cooperator neighbours. Observe that W0 = {u1, u2, u3, u4}. Regardless
of the choice σ, Fig. 1c is the resulting configuration after round 0.

A configuration Ct is called forced if Ct+1 will be the configuration regardless
of the choice of σ at time t. For a sequence C0, C1, . . . of configurations, we call
the sequence resulting from removing the forced configurations and re-indexing
the forced sequence. We use the notation C ′

0, C
′
1, . . . to refer a forced sequence.

Our example shows that value of T influences the spread of strategies. In
a 4-regular graph if 1 < T < 4

3 , then most successful neighbour of v is the
vertex in the closed neighbourhood of v with the most cooperator neighbours,
with defectors taking precedence in the case of a draw. For the remainder of
this paper we consider only the case 1 < T < 4

3 as we restrict our study to the
toroidal grid. We use the notation T = 1 + ε to refer to T in this range. We say
that a defector with k cooperator neighbours has score k + ε.

In this paper we study the resulting behaviour of the PD process on toroidal
grids where for each vertex of the grid, v, C0(v) = 1 with probability p ∈
[0, 1]. Figure 2 gives examples of starting and the resulting stable configurations
for various values of p. Here we notice that though the initial configuration is
randomised, the resulting stable configuration exhibits a surprising amount of
structure. Though the update process introduces uncertainty through the choice
of the permutation of the weak vertices, we find that for some values of p, we may
predict rt as t → ∞. In Sect. 2 we consider the growth of small clusters existing
in infinite grids. We use the results from Sect. 2 in Sect. 3 to derive probabilistic

(a) C0, p = 0.1. (b) C0, p = 0.5. (c) C0, p = 0.9.

(d) Cf , p = 0.1. (e) Cf , p = 0.5. (f) Cf , p = 0.9.

Fig. 2. Initial and resulting configurations on the 50 × 50 toroidal grid for random
initial configurations and varying values of p.
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bounds on rf on the n × n toroidal grid for a fixed value of p, and for p as a
function of n.

2 Evolution of Clusters of Cooperators and Defectors in
Infinite Grids

Observe that a k-cluster situated in a grid is a fixed polyomino of order k. For
k > 0 let αk be the number of polyominoes of order k. From [1] we get the
following initial terms for the sequence {αk}k≥1: 1, 2, 6, 19, 63 . . . . In this section
we consider the evolution of small clusters situated in infinite grids. We apply
these results in Sect. 3 to study the behaviour of rt in the n × n toroidal grid.

Up to rotation and reflection of the infinite grid, there is a single 1-cluster of
defectors and a single 2-cluster of defectors. A configuration of a single defector
in an infinite grid of cooperators has exactly four weak vertices – the neighbours
of the single defector. By examining the number of cooperator neighbours, we see
that when one of these weak vertices has changed to a cooperator the resulting
configuration is stable. Therefore a 1-cluster of defectors in a field of cooperators
evolves to a 2-cluster of defectors, which is a stable configuration. To show that
the spread of a k-cluster of defectors in an infinite grid of cooperators is bounded,
we require the following results.

Proposition 1. If Ct is the configuration of the toroidal grid at time t, then for
all t > 0 there is no isolated defector in Ct.

Proof. If Ct contains an isolated defector v, then v /∈ Wt and N(v) ⊂ Wt. At least
one element of N(v) will be a defector in Ct+1 and so v will not be an isolated
defector in Ct+1. No isolated defector can be created in the tth round, as such
an isolated defector would be a cooperator with four cooperator neighbours in
subround in which it changes. However, such a vertex is strong. 
�

For a configuration Ci, we say that a cooperator v is a persistent cooperator
after time i if Ct(v) = 1 for all t ≥ i.

Proposition 2. If Ct is the configuration of the toroidal grid at time t > 1 and
st(v) = 4, then v is a persistent cooperator at time t.

Proof. By Proposition 1, st(u) ≤ 4 for all t > 0 and all u ∈ V , as cooperators
have score at most 4 and non-isolated defectors have score no more than 3+ ε. If
st(v) = 4, then v is a cooperator with four cooperator neighbours. This implies
that each vertex of N [v] is strong. Therefore if st(v) = 4, then st+1(v) = 4. 
�
Corollary 3. If s0(v) = 4 and v has no isolated defector at distance 2 in C0,
then v is a persistent cooperator at time 0.

If v is a persistent cooperator at time 0, then we say that v is a initial
persistent cooperator.
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Corollary 4. If C0 is the configuration of the infinite grid consisting of a k-
cluster of defectors in a field of cooperators such that the k-cluster is contained
within an rectangle of length � and width w (�, w ∈ N), then there exists a
rectangle of length � + 4 and width w + 4 so that the growth of the defector
strategy is contained within this rectangle.

Proof. Every cooperator at distance 2 from the cluster of defectors is an initial
persistent cooperator. 
�

As we consider the evolution of k-clusters of cooperators in a field of defectors
we encounter some cases for which there are no surviving cooperators. In this
case, we say that the particular cluster evolves to an empty cluster.

Up to rotation and reflection, there is a single 1-cluster and a single 2-cluster.
When placed in a sufficiently large grid of defectors, each of these clusters evolve
to an empty cluster after at most two time steps.

Up to rotation and reflection there are two species of 3-clusters: 3-lines and
3-corners. When placed in a sufficiently field of defectors 3-lines evolve to a
stable configuration containing a 5-cluster with probability 1. 3-corners evolve
to a stable configuration containing a 5-cluster with probability 1

2 and to an
empty cluster with probability 1

2 . The evolution of these clusters is given in
Fig. 3a. Note that weak vertices are indicated with a circle.

Up to rotation and reflection there are 5 species of 4-clusters: 4-lines,
4-corners, 4-hats, 4-turns, and 4-squares (See Fig. 3). A 4-hat stabilises to a
stable 5-cluster with probability 1. However, for each of the other configurations
there is non-zero probability of large growth. The evolution of these clusters
through a small number of iterations is given in Fig. 3.

(a) 3-lines and 3-corners

(b) 4-corner (c) 4-line

(d) 4-hat
(e) 4-square

(f) 4-turn

Fig. 3. Evolution of 3-clusters and 4-clusters.
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We wish to show that a 4-cluster in an infinite grid of defectors will eventually
evolve to a stable configuration. Though the growth such clusters pass through
many different configurations, we show that every configuration in the sequence
of forced configurations where C0 is a 4-cluster of cooperators an infinite field of
defectors can be classified in to one of 8 types. We consider these types equivalent
under rotation and reflection. The width parameter of each type tells the number
of columns that contain collaborators, whereas the height parameter tells us how
many collaborators are in the column with the greatest amount of collaborators.

A stable cluster of width w and height h (h ≡ 1 mod 2) consists of cooperators
in w columns. The first column (starting from the left) contains a single cooper-
ator. The number of cooperators increase by 2 in each subsequent column, until
the maximum h is reached. After the maximum is reached, columns of height
h may repeat an arbitrary number of times. The heights of the columns then
decrease by 2 in each subsequent column until there is a column with a single
cooperator. An example is given in Fig. 4a. Observe that such a configuration is

stable when placed in a field of defectors. We use the symbol w,h to denote a
stable cluster of width w and height h.

A square cluster of height h and width w (h ≡ 0 mod 2) is a cluster consisting
of cooperators in w columns. The first column cooperator contains two coopera-
tors. The number of cooperators increase by 2 in each subsequent column, until
the maximum h is reached. After the maximum is reached, columns of height
h may repeat an arbitrary number of times. The heights of the columns then
decrease by 2 in each subsequent column until there is a column with a two

cooperators. An example is given in Fig. 4b. We use the symbol w,h to denote

(a) 9,9 (b) 8,8 (c) 8,7 (d) 8,8

(e) 8,8,2 (f) 9,8,2 (g) 9,8,3 (h) 9,9,2

Fig. 4. Examples of configurations
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a square cluster of height h and width w. Observe that w,h has 8 weak vertices
when placed in a field of defectors.

A 2-opposite cluster of height h and width w (h ≡ 1 mod 2) is a cluster of
cooperators in w columns. The first column cooperator contains one cooperator.
The number of cooperators increases by 2 in each subsequent column, until h
is reached. This is followed by at least one column containing h cooperators.
The heights of the columns then decrease by 2 in each subsequent column until
there is a column with a single cooperator. An example is given in Fig. 4c. We

use the symbol w,h to denote an 2-opposite cluster of height h and width w.

Observe that w,h has 4 weak vertices when placed in a field of defectors.
A 2-adjacent cluster of height h and width w (h ≡ 0 mod 2) is a cluster of

cooperators in w columns. The first column cooperator contains two cooperators.
The number of cooperators increase by 2 in each subsequent column, until h− 1
is reached. This is followed by an arbitrary number of columns of height h. The
heights of the columns then decrease by 2 in each subsequent column until there
is a column with a single cooperator. An example is given in Fig. 4d. We use the

symbol w,h to denote an 2-adjacent cluster of height h and width w. Observe

that w,h has 4 weak vertices when placed in a field of defectors.
A 1-opposite cluster of width w, height h and length � (� < h/2) is formed

from a 2-opposite cluster of height h and width w by changing one of the four
weak defectors to be cooperators when � = 1; or formed from a 1-opposite cluster
of height h and width w and length � − 1 by changing the single weak defector
with no weak defector neighbours to be a cooperator when � ≥ 2. We use the

symbol w,h,� to denote a 1-opposite cluster of width w, height h and length �.

See Fig. 4e for an example. Observe that w,h,� has 3 weak vertices when placed
in a field of defectors.

A 1-adjacent cluster of width w, height h and length � of type A (� < h/2) is
formed from a 2-adjacent cluster of height h and width w by changing the lower
of the two leftmost weak defectors to be a cooperator when � = 1; or formed from
a 1-adjacent cluster of width w, height h and length �− 1 of type A by changing
the single weak defector with no weak defector neighbours to be a cooperator

when � ≥ 2. We use the symbol w,h,� to denote a 1-adjacent cluster of width
w, height h and length � of type A. See Fig. 4g for an example. Observe that

w,h,� has 3 weak vertices when placed in a field of defectors.
A 1-adjacent cluster of width w, height h and length � of type B (� < h/2)

is formed from a 2-adjacent cluster of height h and width w by changing the
upper of the two left most weak defectors to be a cooperator when � = 1; or
formed from a 1-adjacent cluster of width w, height h and length �−1 of type B
by changing the single weak defector with no weak defector neighbours to be a

cooperator when � ≥ 2. We use the symbol w,h,� to denote a 1-adjacent cluster
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Fig. 5. Evolution of 8,7

of width w, height h and length � of type B. See Fig. 4f for an example. Observe

that w,h,� has 3 weak vertices when placed in a field of defectors.
A 1-adjacent cluster of width w, height h and length � of type C (� < h/2 ) is

a cluster consisting of cooperators in w columns. When � = 1, the first column
cooperator contains a single cooperator. The number of cooperators increase by
2 in each subsequent column, until h − 1 is reached. This is followed by one
column with h cooperators. The amount of cooperators then decrease by 2 in
subsequent columns, until there is a column with a single cooperator. When
� ≥ 2, it is formed from a 1-adjacent cluster of width w, height h and length
� − 1 of type C by changing the single weak defector with no weak defector

neighbours to be a cooperator. We use the symbol w,h,� to denote a 1-adjacent
cluster of width w, height h and length � of type C. See Fig. 4h for an example.

Observe that w,h,� has 3 weak vertices when placed in a field of defectors.
Let D be the set of these configurations. Consider the sequences of config-

urations given in Fig. 5. Though C0 = D0 = E0 = 8,7, the choice of σ gives
three distinct possibilities for the following configuration. Up to symmetry, C1

and D1 each occur with probability 1
4 , and E1 occurs with probability 1

2 . After
proceeding through the forced iterations, we see that in each case we arrive at an

element of D. In particular, 8,7 transitions to with probability 1
4 , to 8,9

with probability 1
4 and to 9,8,3 with probability 1

2 .
By examining the other cases when C ′

i ∈ D, we may observe that if C ′
i ∈ D,

then C ′
i+1 ∈ D. Figure 6 gives the transitions that do not depend in the w and h.
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Fig. 6. Transition diagram of D for transitions that do not depend on h and w.

Lemma 5. If C ′
i ∈ D, then with probability at most 1

8 either C ′
i+1 = or

C ′
i+2 = or C ′

i+3 = .

Proposition 6. If C0 is a 4-cluster of cooperators in an infinite grid of defec-
tors, then the PD process terminates with probability 1.

Proof. If C0 is not an element of D, then C1 ∈ D with w = 4 and h = 3. The
result now follows from Lemma 5. 
�

3 Growth in the Toroidal Grid

We now consider the behaviour of rt for various regimes of p on the n × n
toroidal grid. In particular we examine two cases. Firstly, we consider p to be a
fixed constant. Then we consider p as a function of n.

Theorem 7. Consider the PD process on the n×n toroidal grid where C0(v) = 1
with fixed probability p ∈ (0, 1) for all v ∈ V (G). With high probability rt > p13

for all t ≥ 0.

Proof. By Corollary 3, if there exists at least m initial persistent cooperators,
then rt > m

n2 for all t ≥ 0. Let p′ be the probability that a vertex is an initial per-
sistent cooperator. We proceed using Chebyshev’s inequality, letting ε = p′− p13.

Lemma 8. Consider the PD process on an n × n toroidal grid where C0(v) = 1
with probability p = f(n). Let k be a positive integer and K be a k-cluster of
cooperators. If p  n− 2

k and p(n) → 0 as n → ∞, then the number of copies of
K in C0 is n2pk(1 + o(1)) with high probability.
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Proof. Let K be a k-cluster of cooperators. Observe that the probability of a
particular vertex being the lower left cooperator of a copy of K in C0 is pk(1−p)c,
where c is a positive integer constant depending on the shape of K. Observe that
(1 − p)c ∼ 1. We proceed using Chebyshev’s inequality, letting ε = q

1
4 .

Theorem 9. Consider the Prisoner’s Dilemma process on an n × n toroidal
grid where C0(v) = 1 with probability p = f(n).

1. If p � n− 2
3 , then with high probability rf = 0;

2. if n− 2
3 � p � n− 1

2 , then with high probability rf = 20p3(1 + o(1));
3. if n− 2

3 � p � n− 2
5 , then with high probability rf ≤ 20p3(1 + o(1)) +

19log4(n)p4(1 + o(1));
4. if 1 − n−1 � p � 1 − n−2, then with high probability rf = (2p − 1)(1 + o(1));

and
5. if 1 − n−2 � p, then with high probability rf = 1.

Proof. Note that if p � n− 2
k then with high probability there are no k′-clusters

of cooperators for any k′ ≥ k. By applying Markov’s inequality we may show
that any cluster of cooperators (defectors) in C0 has a border of width sufficient
to contain its growth. As such we may treat each cluster as if it is situated in
an infinite field of defectors (cooperators). Using the results from Sect. 2 and
Lemma 8 we find the given bounds for rf .

Fig. 7. Experimental results



The Spread of Cooperative Strategies 163

3.1 Results of Simulation

Fig. 7 gives plots of the results of simulation on the 1000×1000 toroidal grid and
the 400×400 toroidal grid. For the 1000×1000 toroidal grid we simulate the PD
process for p ∈ {0.001, 0.002, . . . , 0.07} and p ∈ {0.920, 0.921, . . . , 0.999}. For the
400×400 toroidal grid we simulate the PD process for p ∈ {0.01, 0.02, . . . , 0.99}.
For each graph and each value of p, there were 10 simulations. The data points
shown give the mean of rf over the 10 simulations. The results agree with the
conclusions drawn in Theorem 9. On the 400 × 400 toroidal grid, for very small
values of p the curve appears to be cubic, and for very large values of p the
curve appears to be linear, as expected. It appears that other regimes do exist.
However exploring these regimes further using similar methods would require
greater computing resources. Code, datasets and full details available at [4].
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