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with Applications to Del Pezzo Surfaces

Christian Liedtke

Abstract We classify morphisms from proper varieties to Brauer–Severi vari-
eties, which generalizes the classical correspondence between morphisms to pro-
jective space and globally generated invertible sheaves. As an application, we study
del Pezzo surfaces of large degree with a view towards Brauer–Severi varieties, and
recover classical results on rational points, the Hasse principle, and weak approxi-
mation.
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1 Introduction

1.1 Overview

The goal of this article is the study of morphisms X → P from a proper variety X
over a field k to a Brauer–Severi variety P over k, i.e., P is isomorphic to projec-
tive space over the algebraic closure k of k, but not necessarily over k. If X has a
k-rational point, then so has P , and then, P is isomorphic to projective space already
over k. In this case, there exists a well-known description of morphisms X → P in
terms of globally generated invertible sheaves on X . However, if X has no k-rational
point, then we establish in this article a correspondence between globally generated
classes of Pic(X/k)(fppf)(k), whose obstruction to coming from an invertible sheaf
on X is measured by some class β in the Brauer group Br(k), and morphisms to
Brauer–Severi varieties of class β over k.

As an application of this correspondence, we study del Pezzo surfaces over k in
terms of Brauer–Severi varieties, and recover many known results about their geome-
try and their arithmetic. If k is a global field, then we obtain applications concerning
the Hasse principle and weak approximation. Our approach has the advantage of
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being elementary, self-contained, and that we sometimes obtain natural reasons for
the existence of k-rational points.

1.2 Morphisms to Brauer–Severi Varieties

Let X be a proper variety over a field k, and let k be the algebraic closure of k. When
studying invertible sheaves on X , there are inclusions and equalities of abelian groups

Pic(X) ⊆ Pic(X/k)(ét)(k) = Pic(X/k)(fppf)(k) ⊆ Pic(Xk).

On the left (resp. right), we have invertible sheaves on X (resp. Xk) up to isomorphism,
whereas in the middle, we have sections of the sheafified relative Picard functor over
k (with respect to the étale and fppf topology, respectively). Moreover, the first
inclusion is part of an exact sequence

0 → Pic(X) → Pic(X/k)(ét)(k)
δ−→ Br(k),

where Br(k) denotes the Brauer group of the field k, and we refer to Remark 3.3 for
explicit descriptions of δ. If X has a k-rational point, then δ is the zero map, i.e., the
first inclusion is a bijection.

By definition, a Brauer–Severi variety is a variety P over k, such that Pk
∼= P

N
k

for
some N , i.e., P is a twisted form of projective space. Associated to P , there exists a
Brauer class [P] ∈ Br(k) and by a theorem of Châtelet, P is trivial, i.e., isomorphic
to projective space over k, if and only if [P] = 0. This is also equivalent to P having
a k-rational point. In any case, we have a class OP(1) ∈ Pic(P/k)(fppf)(k), in general
not arising from an invertible sheaf on P , which becomes isomorphic to OPN (1) over
k, see Definition 2.17.

In this article, we extend the notion of a linear system to classes in Pic(X/k)(fppf)(k)
that do not necessarily come from invertible sheaves. More precisely, we extend the
notions of being globally generated, ample, and very ample to such classes, see
Definition 3.1. Then, we set up a dictionary between globally generated classes in
Pic(X/k)(fppf)(k) and morphisms from X to Brauer–Severi varieties over k. In case
X has a k-rational point, then we recover the well-known correspondence between
globally generated invertible sheaves and morphisms to projective space. Here is an
easy version of our correspondence and we refer to Theorem 3.4 and Remark 3.5 for
details.

Theorem 1.1 Let X be a proper variety over a field k.

(1) Let ϕ : X → P be a morphism to a Brauer–Severi variety P over k. If we set
L := ϕ∗OP(1) ∈ Pic(X/k)(fppf)(k), then L is a globally generated class and

δ(L) = [P] ∈ Br(k).
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(2) If L ∈ Pic(X/k)(fppf)(k) is globally generated, then L ⊗k k corresponds to a
unique invertible sheaf M on Xk and the morphism associated to the complete
linear system |M| descends to a morphism over k

|L| : X → P,

where P is a Brauer–Severi variety over k with δ(L) = [P].
We note that our result is inspired by a geometric construction of Brauer–Severi

varieties of Grothendieck, see [21, Sect. 5.4], and it seems that it is known to the
experts. As immediate corollaries, we recover two classical theorems about Brauer–
Severi varieties due to Châtelet and Kang, see Corollaries 3.6 and 3.8.

1.3 Del Pezzo Surfaces

In the second part, we apply this machinery to the geometry and arithmetic of
del Pezzo surfaces over arbitrary ground fields. I would like to stress that most, if not
all, of the results of this second part are well-known. To the best of my knowledge, I
have tried to give the original references. However, my organization of the material
and the hopefully more geometric approach to del Pezzo surfaces via morphisms to
Brauer–Severi varieties is new.

By definition, a del Pezzo surface is a smooth and proper surface X over a field k,
whose anti-canonical invertible sheaf ω−1

X is ample. The degree of a del Pezzo surface
is the self-intersection number of ωX . The classification of del Pezzo surfaces over k
is well-known: The degree d satisfies 1 ≤ d ≤ 9, and they are isomorphic either to
P

1 × P
1 or to the blow-up of P2 in (9 − d) points in general position.

As an application of Theorem 1.1, we obtain the following.

(1) If d = 8 and Xk
∼= P

1
k
× P

1
k
, then there exists an embedding

| − 1
2 K X | : X ↪→ P

into a Brauer–Severi threefold P . Moreover, X is either isomorphic to a product
of two Brauer–Severi curves or to a quadratic twist of the self-product of a
Brauer–Severi curve. We refer to Theorem 5.1 and Proposition 5.2 for details.

(2) If d ≥ 7 and Xk 
∼= P
1
k
× P

1
k
, then there exists a birational morphism

f : X → P

to a Brauer–Severi surface P over k that is the blow-up in a closed and zero-
dimensional subscheme of length (9 − d) over k. We refer to Theorem 6.1 for
details.
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(3) If d = 6, then there exist two finite field extensions k ⊆ K and k ⊆ L with
[K : k]|2 and [L : k]|3 such that there exists a birational morphism f : X → P
to a Brauer–Severi surface P over k that is the blow-up in a closed and zero-
dimensional subscheme of length 3 over k if and only k = K . On the other hand,
there exists a birational morphism X → Y onto a degree 8 del Pezzo surface Y
of product type if and only if k = L . We refer to Theorem 7.1 for details.

(4) For partial results if d ≤ 5, as well as birationality criteria for when a del Pezzo
surface is birationally equivalent to a Brauer–Severi surface, we refer to Sect. 8.

As further applications, we recover well-known results about rationality, unira-
tionality, existence of k-rational points, Galois cohomology, the Hasse principle, and
weak approximation for del Pezzo surfaces.

Notations and Conventions

In this article, k denotes an arbitrary field, k (resp. ksep) its algebraic (resp. separable)
closure, and Gk = Gal(ksep/k) its absolute Galois group. By a variety over k we
mean a scheme X that is of finite type, separated, and geometrically integral over k.
If K is a field extension of k, then we define X K := X ×Spec k Spec K .

2 Picard Functors and Brauer Groups

This section, we recall a couple of definitions and general results about the various
relative Picard functors, about Brauer groups of fields and schemes, as well as Brauer–
Severi varieties.

2.1 Relative Picard Functors

Let us first recall a couple of generalities about the several Picard functors. Our main
references are [22, 23], as well as the surveys [3, Chap. 8] and [30].

For a scheme X , we define its Picard group Pic(X) to be the abelian group of
invertible sheaves on X modulo isomorphism. If f : X → S is a separated morphism
of finite type over a Noetherian base scheme S, then we define the absolute Picard
functor to be the functor that associates to each Noetherian T → S the abelian group
PicX (T ) := Pic(XT ), where XT := X ×S T . Now, as explained, for example in [30,
Sect. 9.2], the absolute Picard functor is a separated presheaf for the Zariski, étale,
and the fppf topologies, but it is never a sheaf for the Zariski topology. In particular,
the absolute Picard functor is never representable by a scheme or by an algebraic
space. This leads to the introduction of the relative Picard functor PicX/S by setting
PicX/S(T ) := Pic(XT )/Pic(T ), and then, we have the associated sheaves for the
Zariski, étale, and fppf topologies

Pic(X/S)(zar), Pic(X/S)(ét), and Pic(X/S)(fppf).
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In many important cases, these sheaves are representable by schemes or algebraic
spaces over S. For our purposes, it suffices to work with the sheaves so that we
will not address representability questions here, but refer the interested reader to [3,
Chap. 8.2] and [30, Chap. 9.4] instead. Having introduced these sheaves, let us recall
the following easy facts, see, for example, [30, Exercise 9.2.3].

Proposition 2.1 Let X → S be a scheme that is separated and of finite type over a
Noetherian scheme S. Let L be a field with a morphism Spec L → S.

(1) Then, the following natural maps are isomorphisms:

PicX (L)
∼=−→ PicX/S(L)

∼=−→ Pic(X/S)(zar)(L).

(2) If L is algebraically closed, then also the following natural maps are isomor-
phisms:

PicX (L)
∼=−→ Pic(X/S)(ét)(L)

∼=−→ Pic(X/S)(fppf)(L).

It is important to note that if L is not algebraically closed, then the natural map
PicX (L) → Pic(X/S)(ét)(L) is usually not an isomorphism, i.e., not every section of
Pic(X/S)(ét) over L arises from an invertible sheaf on X L . The following example,
taken from [30, Exercise 9.2.4], is crucial to everything that follows and illustrates
this.

Example 2.2 Let X be the smooth plane conic over R defined by

X := { x2
0 + x2

1 + x2
2 = 0 } ⊂ P

2
R
.

Then, X is not isomorphic to P
1
R

since X (R) = ∅, but there exists an isomorphism
XC → P

1
C

. In particular, X is an example of a non-trivial Brauer–Severi variety (see
Definition 2.14).

Next, if x ∈ X is a closed point, then κ(x) ∼= C, that is, x is a zero-cycle of degree
2. Moreover, OX (x) generates PicX (R), for if there was an invertible sheaf of odd
degree on X , then there would exist an invertible sheaf of degree 1 on X and then,
Riemann–Roch would imply X (R) 
= ∅, a contradiction.

On the other hand, x splits on XC into two closed points, say x1 and x2. Since
OXC

(x1) and OXC
(x2) are isomorphic as invertible sheaves on XC, it follows that

OXC
(x1) descends from a class in Pic(X/R)(ét)(C) to a class in Pic(X/R)(ét)(R).

These observations show that the natural map PicX (R) → Pic(X/R)(ét)(R) is not
surjective.

In this example, we have X (R) = ∅, i.e., the structure morphism X → Spec R
has no section. Quite generally, we have the following comparison theorem for the
several relative Picard functors, and refer, for example, to [30, Theorem 9.2.5] for
details and proofs.
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Theorem 2.3 (Grothendieck) Let f : X → S be a scheme that is separated and

of finite type over a Noetherian scheme S, and assume that OS
∼=−→ f∗OX holds

universally.

(1) Then, the natural maps

PicX/S ↪→ Pic(X/S)(zar) ↪→ Pic(X/S)(ét) ↪→ Pic(X/S)(fppf)

are injections.
(2) If f has a section, then all three maps are isomorphisms. If f has a section locally

in the Zariski topology, then the latter two maps are isomorphisms, and if f has
a section locally in the étale topology, then the last map is an isomorphism.

To understand the obstruction to realizing a section of Pic(X/S)(ét) or Pic(X/S)(fppf)

over S by an invertible sheaf on X in case there is no section of X → S, we recall
the following definition.

Definition 2.4 For a scheme T , the étale cohomology group H 2
ét(T,Gm) is called the

cohomological Brauer group, and is denoted Br′(T ). The set of sheaves of Azumaya
algebras on T modulo Brauer equivalence also forms a group, the Brauer group of
T , and is denoted Br(T ).

We will not discuss sheaves of Azumaya algebras on schemes in the sequel, but
only remark that these generalize central simple algebras over fields (see Sect. 2.3
for the latter), and refer the interested reader to [20] and [37, Chap. IV] for details
and references, as well as to [41] for a survey.

Using that Gm is a smooth group scheme, Grothendieck [21] showed that the
natural map H 2

ét(T,Gm) → H 2
fppf(T,Gm) is an isomorphism, i.e., it does not matter

whether the cohomological Brauer group Br′(T ) is defined with respect to the étale
or the fppf topology. Next, there exists a natural injective group homomorphism
Br(T ) → Br′(T ), whose image is contained in the torsion subgroup of Br′(T ). If T
is the spectrum of a field k, then this injection is even an isomorphism, i.e., Br(k) =
Br′(k), see, for example, [18, 21], and [37, Chap. IV] for details and references.

The connection between Brauer groups, Proposition 2.1, and Theorem 2.3 is as
follows, see, for example [3, Chap. 8.1] or [30, Sect. 9.2].

Proposition 2.5 Let f : X → S be a scheme that is separated and of finite type over

a Noetherian scheme S, and assume that OS
∼=−→ f∗OX holds universally. Then, for

each S-scheme T there exists a canonical exact sequence

0 → Pic(T ) → Pic(XT ) → Pic(X/S)(fppf)(T )
δ−→ Br′(T ) → Br′(XT ) .

If f has a section, then δ is the zero-map. �
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2.2 Varieties and the Amitsur Subgroup

By our conventions above, a variety over a field k is a scheme X that is of finite
type, separated, and geometrically integral over k. In this situation, the conditions of
Proposition 2.5 are fulfilled, as the following remark shows.

Remark 2.6 If X is a proper variety over a field k, then

(1) the structure morphism f : X → Spec k is separated, of finite type, andOSpec k
∼=

f∗OX holds universally.
(2) The morphism f has sections locally in the étale topology (see, for example,

[18, Appendix A]).
(3) Since the base scheme is a field k, we have Br(k) = Br′(k).

In Remark 3.3, we will give an explicit description of δ in this case.

In Example 2.2, the obstruction to representing the class of L := ϕ∗OP
1
C
(1) in

Pic(X/R)(fppf)(R) by an invertible sheaf on X can be explained via δ, which maps L
to the non-zero element of Br(R) ∼= Z/2Z. In terms of Azumaya algebras (since the
base is Spec R, these are central simple R-algebras), this Brauer class corresponds
the R-algebra H of quaternions, but we will not pursue this point of view in the
sequel.

Proposition 2.7 Let X be a proper variety over a field k. Then, there exist natural
isomorphisms of abelian groups

PicX/k(k
sep)Gk

∼=−→ Pic(X/k)(ét)(k)
∼=−→ Pic(X/k)(fppf)(k),

where the −Gk denotes Galois invariants.

PROOF The first isomorphism follows from Galois theory and sheaf axioms and the
second isomorphism follows from Theorem 2.3 and Remark 2.6. �

The Brauer group Br(k) of a field k is an abelian torsion group, see, for exam-
ple, [18, Corollary 4.4.8]. Motivated by Proposition 2.5, we introduce the following
subgroup of Br(k) that measures the deviation between Pic(X/k)(fppf)(k) and Pic(X).

Definition 2.8 Let X be a proper variety over a field k. Then, the Amitsur subgroup
of X in Br(k) is the subgroup

Am(X) := δ(Pic(X/k)(fppf)(k)) ⊆ Br(k).

By the previous remarks, it is an abelian torsion group.

The following lemma gives bounds for the order of torsion in Am(X).

Lemma 2.9 Let X be a proper variety over a field k. If there exists a closed point
on X, whose residue field is of degree n over k, then every element of Am(X) has an
order dividing n.
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PROOF Let x ∈ X be a closed point, say, with residue field K/k that is of degree
n over k. Since X K has a K -rational point, the map δ of X K is identically zero
by Proposition 2.5. Thus, we have an inclusion Am(X) ⊆ Br(K |k) := ker(Br(k) →
Br(K )), where Br(k) → Br(K ) is the restriction homomorphism.

If K is separable over k, then Br(K |k) is contained in the n-torsion of Br(k),
which follows from the fact that the composition of restriction and corestriction is
multiplication by n, see [18, Proposition 4.2.10].

If K is a purely inseparable extension of k, generated by pr -th roots, then Br(K |k)
is pr -torsion (which yields even stronger bounds on the torsion than claimed), see
for example, Hochschild’s Theorem [18, Theorem 9.1.1] for an explicit description
for this group.

In general, we can factor the extension K/k into a separable and a purely insep-
arable extension, and by combining the previous two special cases, the statement
follows. �

Using Proposition 2.5, we can give two alternative definitions of Am(X). In fact,
the birational invariance of this group for Brauer–Severi varieties is a classical result
of Amitsur, probably known to Châtelet and Witt in some form or another, see also
Theorem 2.19 below.

Proposition 2.10 Let X be a smooth and proper variety over k. Then,

Am(X) = ker
(
Br(k) → Br′(X)

) = ker (Br(k) → Br(k(X))) .

In particular, Am(X) is a birational invariant of smooth and proper varieties over k.

PROOF The first equality follows from the exact sequence of Proposition 2.5. Since
X is smooth over k, the natural map Br′(X) → Br(k(X)) is injective, see, for exam-
ple, [37, Example III.2.22], and then, the second equality follows. From this last
description, it is clear that Am(X) is a birational invariant. �

Remark 2.11 In [10, Sect. 5], the kernel of Br(k) → Br(k(X)) was denoted
Br(k(X)/k). Thus, if X is smooth and proper over k, then this latter group coincides
with Am(X). However, this group should not be confused with Br(k(X))/Br(k),
which is related to another important birational invariant that we will introduce in
Sect. 4.2.

If X has a k-rational point, then Am(X) = 0 by Proposition 2.5. On the other hand,
there exist proper varieties X with trivial Amitsur subgroup without k-rational points
(some degree 8 del Pezzo surfaces of product type with ρ = 1 provide examples, see
Corollary 5.4). Let us recall that a zero-cycle on X is a formal finite sum

∑
i ni Zi ,

where the ni ∈ Z and where the Zi are closed points of X . It is called effective if
ni ≥ 0 for all i . The degree is defined to be deg(Z) := ∑

i ni [κ(Zi ) : k], where κ(Zi )
denotes the residue field of the point Zi .

Corollary 2.12 Let X be a proper variety over a field k. If there exists a zero cycle
of degree 1 on X, then Am(X) = 0. �
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If X is a projective variety over k, then Pic(X/k)(ét) and Pic(X/k)(fppf) are rep-
resentable by a group scheme PicX/k over k, the Picard scheme. The connected
component of the identity is denoted Pic0

X/k , and the quotient

NSX/k(k) := PicXk/k(k) / Pic0
Xk/k

(k),

the Néron–Severi group, is a finitely generated abelian group, whose rank is denoted
ρ(Xk). We refer to [3, Sect. 8.4] for further discussion. Moreover, if X is smooth
over k, then Pic0

X/k is of dimension 1
2 b1(X), where b1 denotes the first �-adic Betti

number.

Lemma 2.13 Let X be a smooth and projective variety over a field k with b1(X) = 0.
Then, Pic(X/k)(fppf)(k) is a finitely generated abelian group,

rank Pic(X) = rank Pic(X/k)(fppf)(k) ≤ ρ(Xk),

and Am(X) is a finite abelian group.

PROOF If b1(X) = 0, then, by the previous discussion, Pic(Xk) is a finitely generated
abelian group of rank ρ(Xk). Since Pic(X) and Pic(X/k)(fppf)(k) are contained in
Pic(Xk), they are also finitely generated of rank at most ρ(Xk). Since Am(X) =
δ(Pic(X/k)(fppf)(k)) is a torsion subgroup of Br(k), Proposition 2.5 implies the stated
equality of ranks. Moreover, being torsion and a finitely generated abelian group,
Am(X) is finite. �

2.3 Brauer–Severi Varieties

Next, we recall a couple of results about Brauer–Severi varieties, and refer the inter-
ested reader to [18, Chap. 5] and the surveys [27, 41] for details, proofs, and further
references.

Definition 2.14 A Brauer–Severi variety over a field k is a proper variety P over k,
such that there exists a finite field extension K of k and an isomorphism PK

∼= P
n
K

over K .

In case P is of dimension one (resp. two, resp. three), we will also refer to it as
a Brauer–Severi curve (resp. Brauer–Severi surface, resp. Brauer–Severi threefold).
Any field extension K of k such that PK is isomorphic to projective space over K is
called a splitting field for P , and P is said to split over K . By a theorem of Châtelet,
a Brauer–Severi variety P over k is trivial, i.e., splits over k, i.e., is k-isomorphic
to projective space over k, if and only if it possesses a k-rational point. Since a
geometrically integral variety over a field k always has points over ksep, it follows
that a Brauer–Severi variety can be split over a finite and separable extension of k,
which we may also assume to be Galois if we want.
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For a finite field extension K of k that is Galois with Galois group G, the set of all
Brauer–Severi varieties of dimension n over k that split over K , can be interpreted as
the set of all G-twisted forms of Pn

K , which is in bijection to the cohomology group
H 1(G, Aut(Pn

K )). Using Aut(Pn) ∼= PGLn+1, and taking cohomology in the short
exact sequence

1 → Gm → GLn+1 → PGLn+1 → 1,

the boundary map associates to the class of a Brauer–Severi variety P of dimension
n in H 1(G, PGLn+1(K )) a class in

Br(K |k) := ker (Br(k) → Br(K )) = ker
(
H 2

ét(k,Gm) → H 2
ét(K ,Gm)

)
.

Taking the limit over all finite Galois extensions of k, we obtain for every Brauer–
Severi variety P over k a class [P] ∈ Br(k). This cohomology class is torsion and
its order is called the period of P , denoted per(P). By a theorem of Châtelet, a
Brauer–Severi variety is trivial if and only if the class [P] ∈ Br(k) is zero, i.e., if and
only if per(P) = 1. We will say that two Brauer–Severi varieties over k are Brauer
equivalent if their associated classes in Br(k) are the same.

To say more about Brauer classes associated to Brauer–Severi varieties, we will
shortly digress on non-commutative k-algebras, and refer to [18, Sect. 2] and [26] for
details: We recall that a central simple k-algebra is a k-algebra A, whose center is
equal to k (i.e., A is central), and whose only two-sided ideals are (0) and A (i.e., A
is simple). If A is moreover finite-dimensional over k, then by theorems of Noether,
Köthe, and Wedderburn, there exists a finite and separable field extension k ⊆ K
that splits A, i.e., A ⊗k K ∼= Matn×n(K ). In particular, the dimension of A over k is
always a square, and we set the degree of A to be deg(A) := √

dimk(A). Two central
simple k-algebras A1 and A2 are said to be Brauer equivalent if there exist integers
a1, a2 ≥ 1 such that A1 ⊗k Mata1×a1(k) ∼= A2 ⊗k Mata2×a2(k).

The connection between central simple algebras and Brauer–Severi varieties is
the following dictionary, see [18, Theorem 2.4.3].

Theorem 2.15 Let k ⊆ K be a field extension that is Galois with Galois group G.
Then, there is a natural bijection of sets between

(1) Brauer–Severi varieties of dimension n over k that split over K ,
(2) H 1(G, PGLn+1(K )), and
(3) central simple k-algebras of degree n + 1 over k that split over K .

Under this bijection, Brauer equivalence of (1) and (3) coincide.

We also recall that a division algebra is a k-algebra in which every non-zero
element has a two-sided multiplicative inverse. For example, field extensions of k
are division algebras, and a non-commutative example is provided by the quaternions
overR. Given a simple and finite-dimensional k-algebra A, a theorem of Wedderburn
states that there exists a unique division algebra D over k and a unique integer m ≥ 1
and an isomorphism of k-algebras A ∼= Matm×m(D), see [18, Theorem 2.1.3].
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Corollary 2.16 If two Brauer–Severi varieties over k of the same dimension are
Brauer equivalent, then they are isomorphic as schemes over k.

PROOF By Theorem 2.15, it suffices to show that two Brauer equivalent central simple
k-algebras A1, A2 of the same dimension are isomorphic. By Wedderburn’s theorem,
there exist division algebras Di and integers mi ≥ 1 such that Ai

∼= Matmi ×mi (Di )
for i = 1, 2. By definition of Brauer-equivalence, there exist integers ai ≥ 1 and an
isomorphism of k-algebras

A1 ⊗k Mata1×a1(k) ∼= A2 ⊗k Mata2×a2(k).

Together with the k-algebras isomorphisms

Ai ⊗k Matai ×ai (k) ∼= Matmi ×mi (Di ) ⊗k Mata1×a1(k)
∼= Matai mi ×ai mi (Di )

and the uniqueness part in Wedderburn’s theorem, we conclude D1
∼= D2, as well as

a1 = a2, whence A1
∼= A2, see also [18, Remark 2.4.7]. �

For Brauer–Severi varieties over k that are of different dimension, we refer to
Châtelet’s theorem (Corollary 3.8) below. On the other hand, for Brauer–Severi vari-
eties over k that are of the same dimension, Amitsur conjectured that they are bira-
tionally equivalent if and only if their classes generate the same cyclic subgroup of
Br(k), see also Remark 2.20.

For projective space, the degree map deg : Pic(Pn
k ) → Z, which sends OP

n
k
(1)

to 1, is an isomorphism. Thus, if P is a Brauer–Severi variety over k and Gk :=
Gal(ksep/k), then there are isomorphisms

Pic(P/k)(fppf)(k) ∼= Pic(P/k)(ksep)Gk ∼= Pic(P/k)(ksep)

∼= Pic(Pdim(P)
ksep )

deg−→ Z.

The first isomorphism is Proposition 2.7, and the second follows from the fact that
the Gk-action must send the unique ample generator of Pic(P/k)(ksep) to an ample
generator, showing that Gk acts trivially. The third isomorphism follows from the
fact that P splits over a separable extension.

Definition 2.17 For a Brauer–Severi variety P over k, we denote the unique ample
generator of Pic(P/k)(fppf)(k) by OP(1).

We stress that OP(1) is a class in Pic(P/k)(fppf)(k) that usually does not come from
an invertible sheaf on P - in fact this happens if and only if P is a trivial Brauer–
Severi variety, i.e., split over k. For a Brauer–Severi variety, the short exact sequence
from Proposition 2.5 becomes the following.
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Theorem 2.18 (Lichtenbaum) Let P be a Brauer–Severi variety over k. Then, there
exists an exact sequence

0 → Pic(P) → Pic(P/k)(fppf)(k)
︸ ︷︷ ︸

∼=Z

δ−→ Br(k) → Br(k(P)) .

More precisely, we have

δ(OP(1)) = [P], and

Pic(P) = OP(per(P)) · Z.

Since ωP
∼= OP(− dim(P) − 1), the period per(P) divides dim(P) + 1.

Again, we refer to [18, Theorem 5.4.5] for details and proofs. Using Proposi-
tion 2.10, we immediately obtain the following classical result of Amitsur [1] as
corollary.

Theorem 2.19 (Amitsur) If P is a Brauer–Severi variety over k, then Am(P) ∼=
Z/per(P)Z. If two Brauer–Severi varieties are birationally equivalent over k, then
the have the same Amitsur subgroups inside Br(k) and in particular, the same
period. �

Remark 2.20 In general, it is not true that two Brauer–Severi varieties of the same
dimension and the same Amitsur subgroup are isomorphic. We refer to Remark 7.2
for an example arising from a Cremona transformation of Brauer–Severi surfaces.
However, Amitsur asked whether two Brauer–Severi varieties of the same dimension
with the same Amitsur subgroup are birationally equivalent.

In our applications to del Pezzo surfaces below, we will only need the following
easy and probably well-known corollary.

Corollary 2.21 Let P be a Brauer–Severi variety over k. If there exists a zero-cycle
on P, whose degree is prime to (dim(P) + 1), then P is is trivial.

PROOF Since Am(P) ∼= Z/per(P)Z and its order divides (dim(P) + 1), Lemma 2.9
and the assumptions imply Am(P) = 0. Thus, per(P) = 1, and then,
P is trivial. �

We end this section by mentioning another important invariant of a Brauer–Severi
variety P over k, namely, its index, denoted ind(P). We refer to [18, Chap. 4.5] for the
precise definition and note that it is equal to the smallest degree of a finite separable
field extension K/k such that PK is trivial, as well as to the greatest common divisor
of the degrees of all finite separable field extensions K/k such that PK is trivial.
By a theorem of Brauer, the period divides the index, and they have the same prime
factors, see [18, Proposition 4.5.13].
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3 Morphisms to Brauer–Severi Varieties

This section contains Theorem 3.4, the main observation of this article that describes
morphisms from a proper variety X over a field k to Brauer–Severi varieties in terms
of classes in of Pic(X/k)(fppf)(k). We start by extending classical notions for invertible
sheaves to such classes, and then, use these notions to phrase and prove Theorem 3.4.
As immediate corollaries, we obtain two classical results of Kang and Châtelet on
the geometry of Brauer–Severi varieties.

3.1 Splitting Fields, Globally Generated and Ample Classes

Before coming to the main result of this section, we introduce the following.

Definition 3.1 Let X be a proper variety over k and L ∈ Pic(X/k)(fppf)(k).

(1) A splitting field for L is a field extension K/k such that L ⊗k K lies in Pic(X K ),
i.e., arises from an invertible sheaf on X K .

(2) The class L is called globally generated (resp. ample, resp. very ample) if there
exists a splitting field K for L such that L ⊗k K is globally generated (resp.
ample, resp. very ample) as an invertible sheaf on X K .

From the short exact sequence in Proposition 2.5, it follows that if K is a splitting
field for the class L, then there exists precisely one invertible sheaf on X K up to
isomorphism that corresponds to this class. The following lemma shows that these
notions are independent of the choice of a splitting field of the class L.

Lemma 3.2 Let X be a proper variety over k and L ∈ Pic(X/k)(fppf)(k).

(1) There exists a splitting field for L that is a finite and separable extension k, and
it can also chosen to be Galois over k.

(2) Let K and K ′ be splitting fields for L. Then L ⊗k K ∈ Pic(X K ) is globally
generated (resp. ample, resp. very ample) if and only if L ⊗k K ′ ∈ Pic(X K ′) is
globally generated (resp. ample, resp. very ample).

PROOF To simplify notation in this proof, we set LK := L ⊗k K .
Let K be a finite and separable extension of k, such that δ(L) ∈ Br(k) lies in

Br(K |k), where δ is as in Proposition 2.5. Then, δ(LK ) = 0, i.e., LK comes from an
invertible sheaf on X K . In particular, K is a splitting field for L, which is a finite and
separable extension of k. Passing to the Galois closure of K/k, we obtain a splitting
field for L that is a finite Galois extension of k. This establishes claim (1).

Claim (2) is a well-known application of flat base change, but let us recall the argu-
ments for the reader’s convenience: By choosing a field extension of k that contains
both K and K ′, we reduce to the case k ⊆ K ⊆ K ′. We have H 0(X K ,LK ) ⊗K K ′ ∼=
H 0(X K ′ ,LK ′) by flat base change for cohomology, from which it is easy to see that
LK is globally generated if and only if LK ′ is so. Next, if LK is very ample, then its
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global sections give rise to a closed immersion X K → P
n
K for some n. After base

change to K ′, we obtain a closed embedding X K ′ → P
n
K ′ which corresponds to the

global sections of LK ′ , and so, also LK ′ is very ample. Conversely, if LK ′ is very
ample, then it is globally generated, and thus, LK is globally generated by what we
just established, and thus, gives rise to a morphism ϕK : X K → P

n
K . By assumption

and flat base change, ϕK ′ is a closed embedding, and thus, ϕK is a closed embed-
ding, and LK is very ample. From this, it also follows that LK is ample if and only if
LK ′ is. �

Remark 3.3 Let X be a proper variety over k and let

δ : Pic(X/k)(fppf)(k) −→ Br(k)

be as in Proposition 2.5. We are now in a position to describe δ explicitly.

(1) First, and more abstractly: given a class L ∈ Pic(X/k)(fppf)(k), we can choose a
splitting field K that is a finite extension k. Thus, Spec K → Spec k is an fppf
cover, the class L ⊗k K comes with an fppf descent datum, and it arises from an
invertible sheaf M on X K . The crucial point is that the descent datum is for a
class in Pic(X K ), where isomorphism classes of invertible sheaves are identified.
In order to turn this into a descent datum for the invertible sheaf M, we have
to choose isomorphisms, which are only unique up to a Gm = Aut(M)-action,
and we obtain a Gm-gerbe that is of class δ(L) ∈ H 2

fppf(Spec k,Gm) = Br(k).
This gerbe is neutral if and only if δ(L) = 0. This is equivalent to being able
to extend the descent datum for the class L ⊗k K to a descent datum for the
invertible sheaf M.

(2) Second, and more concretely: given a class L ∈ Pic(X/k)(fppf)(k), we can choose
a splitting field K that is a finite Galois extension of k, say with Galois group
G. Thus, the class L ⊗k K arises from an invertible sheaf M on X K and lies in
PicX (K )G and we can choose isomorphisms

ıg : g∗M ∼=−→ M,

which are unique up to a Gm-action. In particular, they may fail to form a Galois
descent datum for M, and the failure of turning {ıg}g∈G into a Galois descent
datum forM gives rise to a cohomology class δ(L) ∈ H 2

ét(Spec k,Gm) = Br(k).
More precisely, this class lies in the subgroup Br(K |k) of Br(k).

The following is an analog for Brauer–Severi varieties of the classical corre-
spondence between morphisms to projective space and globally generated invertible
sheaves as explained, for example, in [24, Theorem II.7.1], see also Remark 3.5 below.

Theorem 3.4 Let X be a proper variety over a field k.

(1) Let ϕ : X → P be a morphism to a Brauer–Severi variety P over k, and consider
the induced homomorphism of abelian groups
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ϕ∗ : Pic(P/k)(fppf)(k) → Pic(X/k)(fppf)(k).

Then, L := ϕ∗OP(1) is a globally generated class with

δ(L) = [P] ∈ Br(k),

where δ is as in Proposition2.5. If ϕ is a closed immersion, then L is very ample.
(2) Let L ∈ Pic(X/k)(fppf)(k) be a globally generated class. If K is a splitting field,

then the morphism to projective space over K associated to the complete linear
system |L ⊗k K | descends to morphism over k

|L| : X → P,

where P is a Brauer–Severi variety over k with δ(L) = [P]. If L is very ample,
then |L| is a closed immersion.

PROOF Let ϕ : X → P andL be as in (1). Then, we have δ(L) = δ(OP(1)) = [P] ∈
Br(k), where the first equality follows from functoriality of the exact sequence in
Proposition 2.5, and the second from Theorem 2.18. Let K be a splitting field for
L, and let M be the invertible sheaf corresponding to L ⊗k K on X K . Being an
invertible sheaf, we have δ(M) = 0 ∈ Br(K ), which implies that the morphism
ϕK : X K → PK maps to a Brauer–Severi variety of class [PK ] = δ(M) = 0, i.e.,
PK

∼= P
n
K . By definition and base change, we obtain M ∼= ϕ∗

K (OP
n
K
(1)). Thus, M is

globally generated (as an invertible sheaf), which implies that L ∈ Pic(X/k)(fppf)(k) is
globally generated in the sense of Definition 3.1. Moreover, ifϕ is a closed immersion,
then so is ϕK , which implies that M ∈ Pic(X K ) is very ample (as an invertible
sheaf), and thus, L ∈ Pic(X/k)(fppf)(k) is very ample in the sense of Definition 3.1.
This establishes claim (1).

To establish claim (2), let L ∈ Pic(X/k)(fppf)(k) be globally generated. By
Lemma 3.2, there exists a splitting field K ′ for L that is a finite Galois extension
of k, say with Galois group G. Thus, L ⊗k K ′ corresponds to an invertible sheaf M
on X K ′ , whose isomorphism class lies in PicX (K ′)G , see Proposition 2.7.

If f : X → Spec k is the structure morphism, then ( fK ′)∗M is a finite-dimensional
K ′-vector space. By our assumptions on global generation we obtain a morphism
over K ′

|M| : X K ′ → P(( fK ′)∗M).

As explained in Remark 3.3.(2), there exist isomorphisms {ıg : g∗M → M}g∈G that
are unique up to a Gm-action. In particular, we obtain a well-defined G-action on
P(( fK ′)∗M), and the morphism defined by |M| is G-equivariant. Taking the quotient
by G, we obtain a morphism over k

|L| : X → P.
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Since PK is isomorphic to P(( fK ′)∗M), we see that P is a Brauer–Severi variety
over k and, as observed by Grothendieck in [21, Sect. 5.4], we have δ(L) = [P] in
Br(k).

Finally, let K be an arbitrary splitting field forL. Let ϕ : X → P be the previously
constructed morphism and choose an extension field � of k that contains K and
K ′. Then, L ⊗k � is an invertible sheaf on X�, globally generated by Lemma 3.2,
and, since k ⊆ K ′ ⊆ �, the morphism associated to |L ⊗k �| is equal to ϕ� =
(ϕK ′)� : X� → P�. Since K is a splitting field for L, it is also a splitting field
for PK (see the argument in the proof of claim (1)), and in particular, PK ′ is a
trivial Brauer–Severi variety. We have L ⊗k � ∼= ϕ∗

�OP�
(1), from which we deduce

L ⊗k K ∼= ϕ∗
KOPK (1), as well as that ϕK is the morphism associated to |L ⊗k K |.

In particular, the morphism associated to |L ⊗k K | descends to ϕ : X → P , where
P is a Brauer–Severi variety of class δ(L). This establishes claim (2). �

Remark 3.5 Let us note the following.

(1) The construction of a Brauer–Severi variety over k from a globally generated
class in Pic(X/k)(fppf)(k) (in our terminology) is due to Grothendieck in [21,
Sect. 5.4].

(2) In Theorem 3.4.(2), we only considered complete linear systems. We leave
it to the reader to show the following generalization: Given a class L ∈
Pic(X/k)(fppf)(k), a splitting field K that is finite and Galois over k with Galois
group G, and V ⊆ H 0(X K ,L ⊗k K ) a G-stable K -linear subspace, whose
global sections generate L ⊗k K , we can descend the morphism X K → P(V )
to a morphism X → P ′, where P ′ is a Brauer–Severi variety over k of class
[P ′] = δ(L) ∈ Br(k).

(3) If X in Theorem 3.4 has a k-rational point, i.e., X (k) 
= ∅, then we recover
the well-known correspondence between morphisms to projective space and
globally generated invertible sheaves:

(a) Then, δ ≡ 0 and every class in Pic(X/k)(fppf)(k) comes from an invertible
sheaf on X by Proposition 2.5,

(b) and since every morphism ϕ : X → P gives rise to a k-rational point on P ,
i.e., P is a trivial Brauer–Severi variety.

3.2 Two Classical Results on Brauer–Severi Varieties

As our first corollary and application, we recover the following theorem of Kang [29],
see also [18, Theorem 5.2.2], which is a Brauer–Severi variety analog of Veronese
embeddings of projective spaces.

Corollary 3.6 (Kang) Let P be a Brauer–Severi variety of period per(P) over k.
Then, the class of OP(per(P)) arises from a very ample invertible sheaf on P and
gives rise to an embedding
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|OP(per(P))| : P → P
N
k , where N =

(
dim(P) + per(P)

per(P)

)
.

After base change to a splitting field K of P, this embedding becomes the per(P)-uple
Veronese embedding of Pdim(P)

K into P
N
K .

Proof If n ≥ 1, then OP(n) is very ample in the sense of Definition 3.1, and thus,
defines an embedding into a Brauer–Severi variety P ′ over k. Over a splitting field
of P , this embedding becomes the n-uple Veronese embedding. Since δ(OP(1)) =
[P] ∈ Br(k) and this element of order per(P), we see that if per(P) divides n, then
OP(n) is an invertible sheaf on P and P ′ is a trivial Brauer–Severi variety. �

Example 3.7 Let X be a smooth and proper variety of dimension one over k. If ω−1
X

is ample, then it is a curve of genus g(X) = h0(X,ωX ) = 0. Thus, X is isomorphic
to P

1 over k, i.e., X is a Brauer–Severi curve. There exists a unique class L ∈
Pic(X/k)(fppf)(k) with L⊗2 ∼= ω−1

X , and it gives rise to an isomorphism |L| : X → P ,
where P is a Brauer–Severi curve with δ(L) = [P] ∈ Br(k). Moreover, L⊗2 ∼= ω−1

X
is an invertible sheaf on X that defines an embedding |ω−1

X | : X → P
2
k as a plane

conic.

A subvariety X ⊆ P of a Brauer–Severi variety P over k is called twisted linear
if Xk is a linear subspace of Pk . As second application, we recover the following
theorem of Châtelet, see [18, Sect. 5.3], and it follows from a Brauer–Severi variety
analog of Segre embeddings of products of projective spaces.

Corollary 3.8 (Châtelet) Let P1 and P2 be two Brauer–Severi varieties over k of
dimension d1 and d2, respectively.

(1) If P1 is a twisted linear subvariety of P2, then [P1] = [P2] ∈ Br(k).
(2) If [P1] = [P2] ∈ Br(k), then there exists a Brauer–Severi variety P over k, such

that P1 and P2 can be embedded as twisted-linear subvarieties into P.

PROOF If ϕ : P1↪→P2 is a twisted-linear subvariety, then ϕ∗OP2(1) = OP1(1) ∈
Pic(P1/k)(fppf)(k). We find [P1] = δ(OP1(1)) = δ(OP2(1)) = [P2] by functoriality of
the exact sequence of Proposition 2.5, and (1) follows.

Next, we show (2). By Theorem 3.4, there exists an embedding ϕ of P1 × P
d2
k into a

Brauer–Severi variety P of dimension N := (d1 + 1)(d2 + 1) − 1 = d1d2 + d1 + d2

over k associated to the class OP1(1) � O
P

d2
k
(1). Over a splitting field of P1, this

embedding becomes the Segre embedding of Pd1 × P
d2 into P

N . If x is a k-rational
point of Pd2

k , then ϕ(P1 × {x}) realizes P1 as twisted-linear subvariety of P and we
have [P] = [P1] ∈ Br(k) by claim (1). Similarly, we obtain an embedding of P2 as
twisted-linear subvariety into a Brauer–Severi variety P ′ of dimension N over k of
class [P ′] = [P2] ∈ Br(k). Since [P] = [P ′] ∈ Br(k) and dim(P) = dim(P ′), we
find P ∼= P ′ by Corollary 2.16 and (2) follows. �
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4 Del Pezzo Surfaces

For the remainder of this article, we study del Pezzo surfaces with a view towards
Brauer–Severi varieties. Most, if not all, results of these sections are known in some
form or another to the experts. However, our more geometric approach, as well as
some of the proofs, are new.

Let us first recall some classical results about del Pezzo surfaces, and refer the
reader to [35, Chap. IV] or the surveys [7, 41, 47] for details, proofs, and references.
For more results about the classification of geometrically rational surfaces, see [25,
34].

Definition 4.1 A del Pezzo surface is a smooth and proper variety X of dimension
two over a field k such that ω−1

X is ample. The degree of a del Pezzo surface is the
self-intersection number of ωX .

In arbitrary dimension, smooth and proper varieties X over k with ample ω−1
X are

called Fano varieties. As discussed in Example 3.7, Fano varieties of dimension one
over k are the same as Brauer–Severi curves over k.

4.1 Geometry

The degree d of a del Pezzo surface X over a field k satisfies 1 ≤ d ≤ 9. Set X := Xk .
We will say that X is of product type if

X ∼= P
1
k
× P

1
k
,

in which case we have d = 8. If X is not of product type, then there exists a birational
morphism

f : X → P
2
k

that is a blow-up of (9 − d) closed points P1, ..., P9−d in general position, i.e., no 3
of them lie on a line, no 6 of them lie on a conic, and there is no cubic through all
these points having a double point in one of them. In particular, if d = 9, then f is
an isomorphism and X is a Brauer–Severi surface over k.

4.2 Arithmetic

By the previous discussion and Lemma 2.13, the Néron–Severi rank of a del Pezzo
surface X of degree d over k satisfies

1 ≤ ρ(X) := rank Pic(X) = rank Pic(X/k)(fppf)(k) ≤ 10 − d,
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and ρ(Xk) = 10 − d.
The following result about geometrically rational surfaces allows using methods

from Galois theory even if the ground field k is not perfect. This result is particularly
useful in proofs, see also the discussion in [47, Sect. 1.4]. In particular, it applies to
del Pezzo surfaces.

Theorem 4.2 (Coombes+ε) Let X be a smooth and proper variety over k such that
Xk is birational to P

2
k
. Then,

(1) Xksep is birationally equivalent to P
2
ksep via a sequence of blow-ups in points in

ksep-rational points and their inverses.
(2) The natural map PicX (ksep) → PicX (k) is an isomorphism.

PROOF Assertion (1) is the main result of [11]. Clearly, assertion (2) holds for projec-
tive space over any field. Next, let Y be a variety that is smooth and proper over ksep,
Ỹ → Y be the blow-up of a ksep-rational point, and let E ⊂ Ỹ be the exceptional divi-
sor. Then, PicỸ (K ) = PicY (K ) ⊕ Z · E for K = ksep, as well as for K = k. Using
(1) and these two observations, assertion (2) follows. �

We will also need the following useful observation, due to Lang [33] and
Nishimura [39], which implies that having a k-rational point is a birational invariant
of smooth and proper varieties over k. We refer to [47, Sect. 1.2] for details and proof.

Lemma 4.3 (Lang–Nishimura) Let X ��� Y be a rational map of varieties over k,
such that X is smooth over k, and such that Y is proper over k. If X has a k-rational
point, then so has Y . �

Moreover, we have already seen that a Brauer–Severi variety P over k is iso-
morphic to projective space over k if and only if P has a k-rational point, and we
refer the interested reader to [14] for an algorithm to decide whether a Brauer–Severi
surface has a k-rational point. In Definition 2.8, we defined the Amitsur group and
showed its birational invariance in Proposition 2.10. Using Iskovskih’s classification
[25] of geometrically rational surfaces, we obtain the following list and refer to [10,
Proposition 5.2] for details and proof.

Theorem 4.4 (Colliot-Thélène–Karpenko–Merkurjev) Let X be a smooth and
proper variety over a perfect field k such that Xk is birationally equivalent to P

2
k
.

Then, Am(X) is one of the following groups

0, Z/2Z, (Z/2Z)2, and Z/3Z.

We will see explicit examples of all these groups arising as Amitsur groups of
del Pezzo surfaces in the next sections.

We now introduce another important invariant. Namely, if Gk denotes the absolute
Galois group of k, and H ⊆ Gk is a closed subgroup, then we consider for a smooth
and projective variety X over k the group cohomology

H 1 (
H, PicX/k(k

sep)
)
,
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which is an abelian torsion group. If b1(X) = 0, then PicX/k(ksep) is finitely generated
by Lemma 2.13 and then, H 1(H, PicX/k(ksep)) is a finite abelian group. Moreover, if
Xksep is a rational surface, then Br′(Xksep) = 0 (see, for example, [35, Theorem 42.8]
or [36]) and an appropriate Hochschild–Serre spectral sequence yields an exact
sequence

0 → Br′(X)/Br(k)
α−→ H 1 (

Gk, PicX/k(k
sep)

) → H 3(Gk, (k
sep)×).

Moreover, if k is a global field, then the term on the right is zero by a theorem of Tate
(see, for example, [38, Chap. VIII.3]), thus, α is an isomorphism, and we obtain an
interpretation of this cohomology group in terms of Brauer groups, see [47, Sect. 3.4].

Lemma 4.5 If P is a Brauer–Severi variety over k, then

H 1 (
H, PicP/k(k

sep)
) = 0

for all closed subgroups H ⊆ Gk.

PROOF Since PicP/k(ksep) ∼= Z · OP(1) and since Gk acts trivially on the class
OP(1), the desired H 1 is isomorphic to Hom(H,Z), see [4, Chap. III.1, Exercise
2], for example. This is zero since H is a profinite group and the homomorphisms to
Z are required to be continuous. �

In Proposition 2.10, we established birational invariance of Am(X). The follow-
ing result of Manin [35, Sect. 1 of the Appendix] shows that also the above group
cohomology groups are a birational invariants.

Theorem 4.6 (Manin) For every closed subgroup H ⊆ Gk, the group

H 1 (
H, PicX/k(k

sep)
)

is a birational invariant of smooth and projective varieties over k. �

Remark 4.7 Every birational map between smooth and projective surfaces can be
factored into a sequence of blow-ups in closed points, see [35, Chap. III]. Using this,
one can give very explicit proofs of Proposition 2.10 and Theorem 4.6 in dimension 2.
(For such a proof of Theorem 4.6 in dimension 2, see the proof of [35, Theorem 29.1].)

4.3 Hasse Principle and Weak Approximation

For a global field K , i.e., a finite extension of Q or of Fp(t), we denote by �K the
set of its places, including the infinite ones if K is of characteristic zero. A class C
of varieties over K satisfies

(1) the Hasse principle, if for every X ∈ C we have X (K ) 
= ∅ if and only if
X (Kν) 
= ∅ for all ν ∈ �K . Moreover, C satisfies
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(2) weak approximation, if the diagonal embedding

X (K ) →
∏

ν∈�K

X (Kν)

is dense for the product of the ν-adic topologies.

If C satisfies weak approximation, then it obviously also satisfies the Hasse principle,
but the converse need not hold. For example, Brauer–Severi varieties over K satisfy
the Hasse principle by a theorem of Châtelet [5], as well as weak approximation.
However, both properties may fail for del Pezzo surfaces over K , and we refer to [47]
for an introduction to this topic. We end this section by noting that the obstruction
to a class Pic(X/K )(fppf)(K ) coming from PicX (K ) satisfies the Hasse principle.

Lemma 4.8 Let X a proper variety over a global field K and let L ∈ Pic(X/K )(fppf)

(K ). Then, the following are equivalent

(1) 0 = δ(L) ∈ Br(K ), and
(2) 0 = δ(L ⊗K Kν) ∈ Br(Kν) for all ν ∈ �K .

PROOF A class in Br(K ) is zero if and only if its image in Br(Kν) is zero for all
ν ∈ �K by the Hasse principle for the Brauer group. From this, and functoriality of
the exact sequence from Proposition 2.5, the assertion follows. �

For example, if X (Kν) 
= ∅ for all ν ∈ �X , then δ is the zero map by Proposi-
tion 2.5 and this lemma. In this case, every class in Pic(X/K )(fppf)(K ) comes from an
invertible sheaf on X .

5 Del Pezzo Surfaces of Product Type

In this section, we classify degree 8 del Pezzo surfaces of product type over k, i.e.,
surfaces X over k with Xk

∼= P
1
k
× P

1
k
, in terms of Brauer–Severi varieties.

First, for P1
k × P

1
k , the anti-canonical embedding can be written as composition

of Veronese- and Segre-maps as follows

| − KP
1
k×P

1
k
| : P1

k × P
1
k

ν2×ν2−→ P
2
k × P

2
k

σ−→ P
8
k .

Next, the invertible sheaf ω−1
P

1
k×P

1
k

is uniquely 2-divisible in the Picard group, and we
obtain an embedding as a smooth quadric

|− 1
2 KP

1
k×P

1
k
| : P1

k × P
1
k

σ−→ P
3
k .

Now, let X be a degree 8 del Pezzo surface of product type over k. Then, the anti-
canonical linear system yields an embedding of X as a surface of degree 8 into P

8
k .
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However, the “half-anti-canonical linear system” exists in general only as a morphism
to a Brauer–Severi threefold as the following result shows.

Theorem 5.1 Let X be a degree 8 del Pezzo surface of product type over a field
k. Then, there exist a unique class L ∈ Pic(X/k)(fppf)(k) with L⊗2 ∼= ω−1

X and an
embedding

|L| : X ↪→ P

into a Brauer–Severi threefold P over k with Brauer class

δ(L) = [P] ∈ Br(k),

and such that Xk is a smooth quadric in Pk
∼= P

3
k
. Moreover, X is rational if and only

if X has a k-rational point. In this case, we have P ∼= P
3
k .

PROOF To simplify notation, set L := ksep. We have X (L) 
= ∅, for example, by
[18, Proposition A.1.1], as well as Pic(X L) ∼= Pic(Xk)

∼= Z
2 by Theorem 4.2. The

classes (1, 0) and (0, 1) of Pic(X L) give rise to two morphisms X L → P
1
L , and

we obtain an isomorphism X L
∼= P

1
L × P

1
L . By abuse of notation, we re-define X

to be X L . Next, the absolute Galois group Gk acts trivially on the canonical class
(−2,−2), and thus, the Gk-action on Z(1, 1) ⊂ Z

2 is trivial. By Proposition 2.7,
we have PicX/k(K )Gk ∼= Pic(X/k)(fppf)(k), and, since (1, 1) ∈ Z

2 is Gk-invariant, the
unique invertible sheafLon X withL⊗2 ∼= ω−1

X
descends to a class in Pic(X/k)(fppf)(k).

Over L , the class L is very ample and defines an embedding of X as smooth quadric
surface into P

3
L . Thus, by Theorem 3.4, we obtain an embedding |L| : X ↪→P , where

P is a Brauer–Severi threefold over k with δ(L) = [P] ∈ Br(k).
Finally, if X is rational, then it has a k-rational point, and then, also P has a

k-rational point, i.e., P ∼= P
3
k . Conversely, if there exists a k-rational point x ∈ X ,

then X is a quadric in P
3
k , and projection away from x induces a birational map

X ��� P
2
k . �

Next, we establish an explicit classification of degree 8 del Pezzo surfaces of
product type in terms of the Néron–Severi rank ρ and Brauer–Severi curves. To
simplify notation in the sequel, let us recall the definition of contracted products. If a
finite group G acts on a scheme X from the right and it acts on a scheme Y from the
left and all schemes and actions are over Spec k for some field k, then we denote the
quotient of X ×Spec k Y by the diagonal G-action defined by (x, y) �→ (xg, g−1 y)
for all g ∈ G by

X ∧G Y := (X ×Spec k Y )/G.

We refer to [19, Chap. III.1.3] for details and applications.

Proposition 5.2 Let X and X ⊂ P be as in Theorem5.1.

(1) if ρ(X) = 2, then
X ∼= P ′ × P ′′,
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where P ′ and P ′′ are Brauer–Severi curves over k, whose Brauer classes satisfy
[P] = [P ′] + [P ′′] ∈ Br(k). In particular, P ∼= P

3
k if and only if P ′ ∼= P ′′.

(2) If ρ(X) = 1, then there exist a Brauer–Severi curve P ′ over k and a finite Galois
extension K/k with Galois group H := Z/2Z, such that X arises as twisted
self-product

X ∼= (P ′ × P ′)K /H = Spec K ∧H (P ′ × P ′),

where the H-action permutes the factors of P ′
K × P ′

K . Moreover, P ∼= P
3
k and

P ′ is a hyperplane section of X ⊂ P
3
k .

Proof We keep the notations and assumptions from the proof of Theorem 5.1. The
Gk-action fixes the class (1, 1). Since the Gk-action preserves the intersection pairing
on PicX/k(ksep), it follows that Gk acts onZ(1,−1) either trivially, or by sign changes.
We have ρ(X) = 2 in the first case, and ρ(X) = 1 in the latter.

First, assume that ρ(X) = 2. By Theorem 3.4, the classes (1, 0) and (0, 1)
give rise to morphisms to Brauer–Severi curves X → P ′ and X → P ′′ of class
[P ′] = δ((1, 0)) and [P ′′] = δ((0, 1)) in Br(k), respectively. Thus, we obtain a mor-
phism X → P ′ × P ′′, which is an isomorphism because it is an isomorphism over
ksep. Since δ is a homomorphism, we find [P] = δ(L) = δ((1, 1)) = δ((1, 0)) +
δ((0, 1)) = [P ′] + [P ′′]. Using that P ′ and P ′′ are of period 2, we find that P ∼= P

3
k

if and only if [P] = 0, i.e., if and only if [P ′] = [P ′′]. By Corollary 2.16, the latter
is equivalent to P ′ ∼= P ′′.

Second, assume that ρ(X) = 1. Then, the Gk-action permutes (0, 1) and (1, 0),
i.e., it permutes the factors of P

1
ksep × P

1
ksep . Thus, there exists a unique quadratic

Galois extension K/k, such that Gal(ksep/K ) acts trivially on PicX/k(ksep) and by the
previous analysis we have X K := Q′′ × Q′′′ for two Brauer–Severi curves Q′′, Q′′′
over K . Using these and the H := Gal(K/k)-action, we obtain a H -stable diagonal
embedding Q′ ⊂ X K of a Brauer–Severi curve over K , and then, the two projections
induce isomorphisms Q′ ∼= Q′′ and Q′ ∼= Q′′′ over K . Taking the quotient by H , we
obtain a Brauer–Severi curve P ′ := Q′/H ⊂ X over k. Clearly, P ′

K
∼= Q′ and we

obtain the description of X as twisted self-product. On X , the curve P ′ is a section
of the class (1, 1), which implies that this class comes from an invertible sheaf, and
thus, 0 = δ((1, 1)) ∈ Br(k) by Proposition 2.5. Since δ((1, 1)) = [P], we conclude
P ∼= P

3
k . �

Remark 5.3 In the case of quadrics in P
3, similar results were already established

in [9]. A related, but somewhat different view on degree 8 del Pezzo surfaces of
product type was taken in (the proof of) [10, Proposition 5.2]: If X is such a surface,
then there exists a quadratic Galois extension K/k and a Brauer–Severi curve C over
K , such that X ∼= ResK/kC , where ResK/k denotes Weil restriction, see also [41].

Corollary 5.4 Let X be as in Theorem5.1. Then,

H 1
(
H, PicX/k(k

sep)
) = 0

for all closed subgroups H ⊆ Gk, and
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Am(X) ∼=
⎧
⎨

⎩

0 if ρ = 1 or if X ∼= P
1
k × P

1
k,

(Z/2Z)2 if ρ = 2 andP1
k 
∼= P ′ 
∼= P ′′ 
∼= P

1
k,

(Z/2Z) in the remaining ρ = 2-cases.

PROOF Set H 1(H) := H 1(H, PicX/k(ksep)). If ρ = 2, then the Gk-action on
PicX/k(ksep) is trivial, and we find H 1(H) = 0 as in the proof of Lemma 4.5. More-
over, Am(X) is generated by δ((0, 1) and δ((1, 0)), i.e., by [P ′] and [P ′′] in Br(k).
From this, the assertions on Am(X) follow in case ρ = 2.

If ρ = 1, then there exists an isomorphism PicX/k(ksep) ∼= Z
2, such that the Gk-

action factors through a surjective homomorphism Gk → Z/2Z and acts on Z
2 via

(a, b) �→ (b, a). In particular, we find H 1(Z/2Z,Z2) = 0 with respect to this action,
see, for example, [4, Chap. III.1, Example 2]. From this, we deduce H 1(H) = 0 using
inflation maps. Moreover, Am(X) is generated by δ((1, 1)), which is zero, since (1, 1)
is the class of an invertible sheaf. �

Corollary 5.5 If X is as in Theorem5.1, then the following are equivalent

(1) X is birationally equivalent to a Brauer–Severi surface,
(2) X is rational,
(3) X has a k-rational point, and
(4) X is isomorphic to

X ∼= P
1
k × P

1
k or to X ∼= Spec K ∧ (P1

k × P
1
k).

PROOF The implications (2) ⇒ (1) and (2) ⇒ (3) are trivial, and we established
(3) ⇒ (2) in Theorem 5.1. Moreover, if X is birationally equivalent to a Brauer–
Severi surface P , then Am(P) = Am(X) is cyclic of order 1 or 3 by Lemma 4.5 and
Theorem 4.6. Together with Corollary 5.4, we conclude Am(P) = Am(X) = 0, i.e.,
P ∼= P

2
k , which establishes (1) ⇒ (2).

Since (4) ⇒ (3) is trivial, it remains to establish (3) ⇒ (4). Thus, we assume
X (k) 
= ∅. If ρ = 2, then X ∼= P ′ × P ′′ and both Brauer–Severi curves P ′ and P ′′
have k-rational points, i.e., X ∼= P

1
k × P

1
k . If ρ = 1, we have an embedding X ⊂ P

3
k

and X ∼= Spec K ∧ (P ′ × P ′). Since X (k) 
= ∅, we have X (K ) 
= ∅, which yields
P ′(K ) 
= ∅, and thus P ′

K
∼= P

1
K . A k-rational point on X gives rise to a K -rational

and Gal(K/k)-stable point on X K
∼= P

1
K × P

1
K . In particular, this point lies on some

diagonal P1
K ⊂ X K , and thus, lies on some diagonal P ′′ ⊆ X with X ∼= Spec K ∧

(P ′′ × P ′′). Since P ′′(k) 
= ∅, we find P ′′ ∼= P
1
k . �

We refer to Sect. 6.1 for more applications of these results to the arithmetic and
geometry of these surfaces.

6 Del Pezzo Surfaces of Large Degree

Let X be a del Pezzo surface of degree d over a field k that is not of product type.
Then, there exists a birational morphism
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f : X → P
2
k

that is a blow-up in (9 − d) closed points P1, ..., P9−d in general position. We set

H := f
∗OP

2
k
(1) and let Ei := f

−1
(Pi ) be the exceptional divisors of f . Then, there

exists an isomorphism of abelian groups

Pic(X) ∼= ZH ⊕ ⊕9−d
i=1 ZEi .

The (−1)-curves of X consist of the Ei , of preimages under f of lines through two
distinct points Pi , of preimages under f of quadrics through five distinct points Pi ,
etc., and we refer to [35, Theorem 26.2] for details. Let K X be the canonical divisor
class of X , and let Ẽ be the sum of all (−1)-curves on X . We leave it to the reader
to verify the following table.

d class of Ẽ in Pic(X) relations
9 0 3H = −K X
8 E1 3H = −K X + Ẽ
7 H H = Ẽ
6 3H − ∑3

i=1 Ei 0 = −K X - Ẽ
5 6H − 2

∑4
i=1 Ei 0 = −2K X - Ẽ

4 12H − 4
∑5

i=1 Ei 0 = −4K X - Ẽ
3 27H − 9

∑6
i=1 Ei 0 = −9K X - Ẽ

2 84H − 28
∑7

i=1 Ei 0 = −28K X - Ẽ
1 720H − 240

∑8
i=1 Ei 0 = −240K X - Ẽ

Together with Theorem 3.4, we obtain the following result.

Theorem 6.1 Let X be a del Pezzo surface of degree d ≥ 7 over a field k that is not
of product type. Then, f descends to a birational morphism

f : X → P

to a Brauer–Severi surface P over k, where

δ(H) = [P] ∈ Br(k) and Am(X) ∼= Z/per(P)Z.

Moreover, X is rational if and only if P ∼= P
2
k . This is equivalent to X having a

k-rational point.

Proof By Theorem 4.2, the invertible sheaf H on Xk defining f already lies in
PicX (ksep), i.e., f descends to ksep, and by abuse of notation, we re-define X to
be Xksep . Clearly, the canonical divisor class K X is Gk-invariant, and since Gk per-
mutes the (−1)-curves of X , also the class of Ẽ is Gk-invariant. In particular, K X
and Ẽ define classes in PicX/k(ksep)Gk ∼= Pic(X/k)(fppf)(k). If d ≥ 7, then the above
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table shows that there exist positive multiples of H that are integral linear combina-
tions of K X and Ẽ . Thus, H ∈ PicX/k(ksep) descends to a class in Pic(X/k)(fppf)(k).
By Theorem 3.4, f descends to a birational morphism f : X → P , where P is a
Brauer–Severi surface of class δ(H) ∈ Br(k). The assertion on Am(X) follows from
Proposition 2.10 and Theorem 2.19.

If X has a k-rational point, then so has P , and then P ∼= P
2
k . Since f is a birational

morphism, P ∼= P
2
k implies that X is rational. And if X is rational, then it has a

k-rational point by Lemma 4.3. �

As an immediate consequence, we obtain rationality and the existence of k-rational
points in some cases.

Corollary 6.2 Let X be as in Theorem6.1. If d ∈ {7, 8}, then X has a k-rational
point and f descends to a birational morphism f : X → P

2
k .

Proof By Theorem 6.1, there exists a birational morphism X → P that is a blow-up
in a closed subscheme Z ⊂ P of length (9 − d). By Corollary 2.21, we have P ∼= P

2
k

if 3 and (9 − d) are coprime. In particular, we have X (k) 
= ∅ in these cases by
Theorem 6.1 and Lemma 4.3. �

Since a del Pezzo surface of degree 9 is a Brauer–Severi surface, it has rational
points if and only if it is trivial. In particular, Corollary 6.2 does not hold for d = 9.

6.1 Applications to Arithmetic Geometry

We now give a couple of applications of the just established results. Again, we stress
that most if not all of these applications are well-known, and merely illustrate the
usefulness of studying varieties via Brauer–Severi varieties.

Corollary 6.3 If X is a del Pezzo surface of degree ≥ 7 over k, then

H 1
(
H, PicX/k(ksep)

) = 0.

for all closed subgroups H ⊆ Gk

PROOF If X is not of product type, then it is birationally equivalent to a Brauer–
Severi surface P by Theorem 6.1, and then the statement follows from Theorem 4.6
and Lemma 4.5. If X is of product type, then this is Corollary 5.4. �

For the next application, let us recall that a surface is called rational if it is
birationally equivalent toP2

k , and that it is called unirational if there exists a dominant
and rational map from P

2
k onto it. The following result is a special case of [35,

Theorem 29.4].
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Corollary 6.4 Let X be a del Pezzo surface of degree ≥7 over a field k. Then, the
following are equivalent:

(1) X is rational,
(2) X is unirational, and
(3) X has a k-rational point.

PROOF Clearly, we have (1) ⇒ (2) ⇒ (3), whereas (3) ⇒ (1) follows from Corol-
lary 5.5 and Theorem 6.1. �

This leads us to the question whether a del Pezzo surface necessarily has a k-
rational point. Over finite fields, this is true and follows from the Weil conjectures,
which we will recall in Theorem 8.1 below. By a theorem of Wedderburn, finite
fields have trivial Brauer groups, and thus, the following corollary gives existence of
k-rational points for more general fields.

Corollary 6.5 Let X be a del Pezzo surface of degree ≥7 over a field k with Br(k) =
0. Then, X has a k-rational point, and thus, is rational.

Proof If X is not of product type, then there exists a birational morphism f : X → P
to a Brauer–Severi surface by Theorem 6.1. Since Br(k) = 0, we have P ∼= P

2
k , and

Theorem 6.1 gives X (k) 
= ∅.
Thus, let X be of product type. By Proposition 5.2, X is a product of Brauer–Severi

curves (ρ = 2), or contains at least a Brauer–Severi curve (ρ = 1). Since Br(k) = 0,
all Brauer–Severi curves are isomorphic to P

1
k , and thus, contain k-rational points.

In particular, we find X (k) 
= ∅. �

In Sect. 4.3, we discussed the Hasse principle and weak approximation for varieties
over global fields. Here, we establish the following.

Corollary 6.6 Del Pezzo surfaces of degree ≥7 over global fields satisfy weak
approximation and the Hasse principle.

Proof If X is not of product type, then it is birationally equivalent to a Brauer–Severi
surface by Theorem 6.1, and since the two claimed properties are preserved under
birational maps and hold for Brauer–Severi varieties, the assertion follows in this
case.

If X is of product type, then there are two cases by Proposition 5.2. If ρ = 2, then
X is a product of two Brauer–Severi curves, and we conclude as before.

Thus, we may assume ρ = 1. Let us first establish the Hasse principle: there
exists a quadratic Galois extension L/K , such that ρ(X L) = 2. From X (Kν) 
= ∅
for all ν ∈ �K , we find X Lμ

∼= P
1
Lμ

× P
1
Lμ

for all μ ∈ �L , and thus, X L
∼= P

1
L × P

1
L

by the Hasse principle for Brauer–Severi curves. As in the proof of Corollary 5.5, we
exhibit X as twisted self-product of P1

k , which has a k-rational point and establishes
the Hasse principle. Thus, to establish weak approximation, we may assume that
X has a k-rational point. But then, X is rational by Corollary 5.5, and since weak
approximation is a birational invariant, the assertion follows. �
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7 Del Pezzo Surfaces of Degree 6

In the previous sections, we have seen a close connection between Brauer–Severi
varieties and del Pezzo surfaces of degree ≥7. In this section, we discuss del Pezzo
surfaces of degree 6, which are not so directly linked to Brauer–Severi varieties.

For the geometry and the arithmetic of these surfaces, we refer the interested
reader to [6, 35], and the survey [47, Sect. 2.4]. We keep the notation introduced in
Sect. 6: If X is a degree 6 del Pezzo surface over a field k, then there exists a blow-up
fk : X → P

2
k

in three points in general position with exceptional (−1)-curves E1, E2,
and E3. Then, there are six (−1)-curves on X , namely the three exceptional curves
Ei , i = 1, 2, 3 of f , as well as the three curves E ′

i := H − E j − Ek , i = 1, 2, 3
where { j, k} = {1, 2, 3}\{i} and where H = f

∗OP2(1) as in Sect. 6. These curves
intersect in a hexagon as follows.

E1

E ′
2

��
��

��
�

E ′
3

�������

E2 ��
��

��
�

E ′
1

E3

�������

The absolute Galois group Gk acts on these six (−1)-curves on Xksep , and associated
to this action, we have following field extensions of k.

(1) Since Gk acts on the two sets {E1, E2, E3} and {E ′
1, E ′

2, E ′
3}, there is a group

homomorphism
ϕ1 : Gk → S2

∼= Z/2Z.

The fixed field of either of the two sets is a finite separable extension k ⊆ K
with [K : k]|2, and k 
= K if and only if ϕ1 is surjective.

(2) Since Gk acts on the three sets {Ei , E ′
i }, i = 1, 2, 3, there is a group homomor-

phism
ϕ2 : Gk → S3.

There exists a finite separable extension k ⊆ L with [L : k]|3, unique up to
conjugation in ksep, over which at least one of these three sets is defined. We
have k 
= L if and only if 3 divides the order of ϕ2(Gk). Next, there exists a
finite and separable extension L ⊆ M with [M : L]|2, over which all three sets
are defined.

Combining ϕ1 and ϕ2, we obtain a group homomorphism

Gk
ϕ1×ϕ2−→ Z/2Z × S3

∼= D2·6,
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where D2·6 denotes the dihedral group of order 12, i.e., the automorphism group
of the hexagon. Using these field extensions, we obtain the following classification,
which uses and slightly extends a classical result of Manin from [35] in case (3).

Theorem 7.1 Let X be a del Pezzo surface of degree 6 over a field k.

(1) The morphism f descends to a birational morphism

f : X → P

to a Brauer–Severi surface P if and only if k = K . In this case, ρ(X) ≥ 2 and
Am(X) = Am(P).

(2) There exists a birational morphism X → Y onto a degree 8 del Pezzo surface Y
of product type if and only if k = L. In this case,

ρ(X) Y
k 
= M 3 Spec M ∧ (P1

k × P
1
k)

k = M 4 P
1
k × P

1
k

X has a k-rational point, and Am(X) = 0.
(3) If k 
= K and k 
= L, then ρ(X) = 1, Am(X) = 0, and the following are equiv-

alent.

(a) X is birationally equivalent to a Brauer–Severi surface,
(b) X is birationally equivalent to a product of two Brauer–Severi curves,
(c) X is rational, and
(d) X has a k-rational point.

PROOF Let us first show (1). If k = K , then F := E1 + E2 + E3 descends to a class in
Pic(Xksep)Gk = Pic(X/k)(fppf)(k) and we find ρ(X) ≥ 2. Thus, also H = 1

3 (−K X + F)
descends to a class in Pic(X/k)(fppf)(k), and by Theorem 3.4, we obtain a birational
morphism |H | : X → P to a Brauer–Severi surface, which coincides with f over k.
Conversely, if f descends to a birational morphism f : X → P , then the exceptional
divisor of f is of class F or E ′

1 + E ′
2 + E ′

3, and we find k = K . Moreover, we have
Am(X) = Am(P) by Theorem 4.6.

If k = L , then, say E1 + E ′
1, descends to a class in Pic(Xksep)Gk . Moreover, we

find that the classes 1
2 (−K X + E1 + E ′

1) = 2H − E2 − E3 as well as 1
2 (−K X −

E1 − E ′
1) = H − E1, and thus, the classes H , E1, and E ′

1 = H − E2 − E3 lie in
Pic(Xksep)Gk . The Gk-action is trivial on H and E1, whereas it is either trivial on
the set {E2, E3} (if k = M) or permutes the two (if k 
= M). Since the class of
E1 is Gk-invariant and there is a unique effective divisor in this linear system, we
find that P1

k
∼= E1 ⊂ X . In particular, X has a k-rational point and Am(X) = 0.

Using Theorem 3.4 and the fact that X has a k-rational point, we obtain a birational
morphism

|1

2
(−K X + E1 + E ′

1)| : X → Y ⊂ P
3
k
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onto a smooth quadric Y with a k-rational point. In particular, Y is a degree 8 del Pezzo
surface of product type. Over ksep, this morphism contracts E1 and E ′

1 and thus, we
find

Pic(Yksep) ∼=
(

ZH ⊕
3⊕

i=1

ZEi

)

/〈E1, E ′
1〉 ∼= ZE2 ⊕ ZE3.

The Gk-action on it is either trivial (k = M) or permutes the two summands (k 
= M).
Using Y (k) 
= ∅ and Corollary 5.5, we find ρ(X) = 4 and Y ∼= P

1
k × P

1
k in the first

case, and ρ(X) = 3 and Y ∼= Spec M ∧ (P1
k × P

1
k) in the latter. Conversely, if there

exists a birational morphism X → Y onto a degree 8 del Pezzo surface of product
type, then the exceptional divisor is of class Ei + E ′

i for some i , and thus, k = L .
This establishes (2).

Finally, assume that k 
= K and k 
= L . Then,ϕ1 is surjective, andϕ2(Gk) contains
all 3-cycles of S3. From this, it is not difficult to see that Pic(Xk)

Gk is of rank 1 and
generated by the class of K X . Since this latter class is an invertible sheaf, we find
Am(X) = 0. Thus, if X is birationally equivalent to a Brauer–Severi surface P ,
then Am(X) = 0 together with Lemma 4.5 and Theorem 4.6 implies that P ∼= P

2
k .

Similarly, if X is birationally equivalent to the product P ′ × P ′′ of two Brauer–
Severi curves, then P ′ ∼= P ′′ ∼= P

1
k . From this, we obtain the implications (a) ⇔

(b) ⇔ (c) ⇒ (d). The implication (d) ⇒ (c) is due to Manin [35, Theorem 29.4].
�

Remark 7.2 In case (1) of the above theorem it is important to note that P need not
be unique, but that Am(P) is well-defined. More precisely, if we set F := E1 + E2 +
E3 and F ′ = E ′

1 + E ′
2 + E ′

3, then Theorem 3.4 provides us with two morphisms to
Brauer–Severi surfaces P1 and P2

|H | = | 1
3 (−K X + F)| : X → P1

|H ′| := | 1
3 (−K X + F ′)| : X → P2

Since H + H ′ = −K X and δ(K X ) = 0, we find

[P1] = δ(H) = δ(−K X − H ′) = −δ(H ′) = −[P2] ∈ Br(k),

and thus, P1
∼= P2 if and only if both are isomorphic to P

2
k . On the other hand, P1

and P2 are birationally equivalent, since we have birational morphisms

P1
|H |←− X

|H ′|−→ P2 .

Over k, this becomes the blow-up of three closed points Z followed by the blow-
down of the three (−1)-curves that are the strict transforms of lines through any two
of the points in Z . This is an example of a Cremona transformation.
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We remark that a surface of case (3) and without k-rational points is neither
birationally equivalent to a Brauer–Severi surface nor to the product of two Brauer–
Severi curves. For finer and more detailed classification results for degree 6 del Pezzo
surfaces, we refer the interested reader to [2, 10, 13]. Finally, the sum Ẽ of all (−1)-
curves on Xksep is a Gk-invariant divisor, and thus, descends to a curve on X . By
[35, Theorem 30.3.1], the complement X\Ẽ is isomorphic to a torsor under a two-
dimensional torus over k, which can be used to study the arithmetic and geometry
of these surfaces, see also [43].

8 Del Pezzo Surfaces of Small Degree

For the remainder of this article, our results will be less complete and less self-
contained. We will circle around questions of birationality of a del Pezzo surface
X of degree ≤5 to Brauer–Severi surfaces, and about descending the morphism
f : X → P

2
k

to k.

8.1 Birationality to Brauer–Severi Surfaces

Let k = Fq be a finite field of characteristic p, and let X be a smooth and projective
surface over k such that Xk is birationally equivalent to P

2. Then, it follows from the
Weil conjectures (in this case already a theorem of Weil himself) that the number of
k-rational points is congruent to 1 modulo q, see [35, Chap. IV.27]. In particular, we
obtain that

Theorem 8.1 (Weil) If X is a del Pezzo surface over a finite field Fq , then X has a
Fq -rational point.

Since Br(Fq) = 0 by a theorem of Wedderburn, there are no non-trivial Brauer–
Severi varieties over Fq .

Remark 8.2 Let X be a del Pezzo surface of degree ≥5 over a field k. Manin [35,
Theorem 29.4] showed that X is rational if and only if it contains a k-rational point.
Even if X has no k-rational point, Manin [35, Theorem 29.3] showed that

H 1
(
H, Pic(X/k)(fppf)(k

sep)
) = 0

for all closed subgroups H ⊆ Gk . We refer to [8, Théorème 2.B.1] for a general
principle explaining this vanishing of cohomology.

In this section, we give a partial generalization to birational maps to Brauer–Severi
surfaces.



188 C. Liedtke

Lemma 8.3 Let X be a degree d del Pezzo surface over k. Then,

(1) There exists an effective zero-cycle Z of degree d on X. If d 
= 2 or if char(k) 
= 2,
then there exists such a zero-cycle Z, whose closed points have residue fields
that are separable over k.

(2) The abelian group Am(X) is finite and every element has an order dividing d.

PROOF If d ≥ 3, then ω−1
X is very ample, and |ω−1

X | embeds X as a surface of degree
d into P

d
k . Intersecting X with a linear subspace of codimension 2, we obtain an

effective zero-cycle Z of degree d on X . The closed points of Z have automatically
separable residue fields if k is finite. Otherwise, k is infinite, and then, the intersection
with a generic linear subspace of codimension 2 yields a Z that is smooth over k by
[28, Théorème I.6.3]. Thus, in any case, we obtain a Z , whose closed points have
residue fields that are separable over k. If d = 2, then |ω−1

X | defines a double cover
X → P

2
k , and the pre-image of a k-rational point yields an effective zero-cycle Z of

degree 2 on X . If char(k) 
= 2, then residue fields of closed points of Z are separable
over k. If d = 1, then | − K X | has a unique-base point, and in particular, X has a
k-rational point. This establishes (1). Since b1(X) = 0, the group Am(X) is finite by
Lemma 2.13. Then, assertion (2) follows from Lemma 2.9. �

Corollary 8.4 Let X be a del Pezzo surface of degree d over a field k.

(1) If d ∈ {1, 2, 4, 5, 7, 8} and X is birationally equivalent to a Brauer–Severi sur-
face P, then P ∼= P

2
k and X has a k-rational point.

(2) If d ∈ {1, 3, 5, 7, 9} and X is birationally equivalent to a product P ′ × P ′′ of
two Brauer–Severi curves, then P ′ ∼= P ′′ ∼= P

1
k and X has a k-rational point.

PROOF Let X and d be as in (1). Then, every element of Am(X) is of order dividing
d by Lemma 8.3, but also of order dividing 3 by Theorems 2.18 and 4.6. By our
assumptions on d, we find Am(P) = 0, and thus, P ∼= P

2
k . Since the latter has a

k-rational point, so has X by Lemma 4.3. This shows (1). The proof of (2) is similar
and we leave it to the reader. �

Combining this with a result of Coray [12], we obtain the following.

Theorem 8.5 Let X be a del Pezzo surface of degree d ∈ {5, 7, 8} over a perfect
field k. Then, the following are equivalent

(1) There exists a dominant and rational map P ��� X from a Brauer–Severi surface
P over k,

(2) X is birationally equivalent to a Brauer–Severi surface,
(3) X is rational, and
(4) X has a k-rational point.

PROOF The implications (3) ⇒ (2) ⇒ (1) are trivial.
Let ϕ : P ��� X be as in (1). By Lemma 8.3, there exists a zero-cycle of degree 9

on P , and another one of degree d on X . Using ϕ, we obtain a zero-cycle of degree
dividing 9 on X . By assumption, d is coprime to 9, and thus, there exists a zero-cycle
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of degree 1 on X . By [12], this implies that X has a k-rational point and establishes
(1) ⇒ (4).

The implication (4) ⇒ (3) is a result of Manin [35, Theorem 29.4]. �
Now, if a del Pezzo surface X over a field k is birationally equivalent to a Brauer–

Severi surface, then H 1(H, PicX/k(ksep)) = 0 for all closed subgroups H ⊆ Gk by
Theorem 4.6. Moreover, this vanishing holds for all del Pezzo surfaces of degree ≥5,
see Remark 8.2. However, for del Pezzo surfaces of degree ≤4, these cohomology
groups may be non-zero, see [35, Sect. 31], [32, 45, 46]. In particular, del Pezzo
surfaces of degree ≤4 are in general not birationally equivalent to Brauer–Severi
surfaces.

For further information concerning geometrically rational surfaces, unirationality,
central simple algebras, and connections with cohomological dimension, we refer
the interested reader to [10].

8.2 Del Pezzo Surfaces of Degree 5

In order to decide whether a birational map fk : Xk → P
2
k

as in Sect. 6 descends to
k for a degree 5 del Pezzo surface X over k, we introduce the following notion.

Definition 8.6 Let X be a del Pezzo surface over a field k. A conic on X is a
geometrically integral curve C on X with C2 = 0 and −K X · C = 2. An elementL ∈
Pic(X/k)(fppf)(k) is called a conic class if L ⊗k k ∼= OXk

(C) for some conic C on Xk .

The following is an analogue of Theorem 6.1 for degree 5 del Pezzo surfaces.

Theorem 8.7 Let X be a del Pezzo surface of degree 5 over a field k. Then, the
following are equivalent:

(1) There exists a birational morphism f : X → P to a Brauer–Severi surface, such
that fk is the blow-up of 4 points in general position.

(2) There exists a birational morphism f : X → P
2
k , such that fk is the blow-up of

4 points in general position.
(3) There exists a class F ∈ Pic(X/k)(fppf)(k) such that

Fk
∼= OX (E1 + E2 + E3 + E4),

where the Ei are disjoint (−1)-curves on X.
(4) There exists a conic class in Pic(X/k)(fppf)(k).

If these equivalent conditions hold, then X has a k-rational point.

PROOF If f is as in (1), then X has a k-rational point by Corollary 8.4. Thus, P ∼= P
2
k ,

and we obtain (1) ⇒ (2).
If f is as in (2), then the exceptional divisor of f is a class F as stated in (3), and

we obtain (2) ⇒ (3).
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If f is as in (3), then, using Theorem 3.4, there exists a birational morphism
| 1

3 (−K X − F)| : X → P to a Brauer–Severi surface P as in (1), which establishes
(3) ⇒ (1).

If f is as in (2), let Z ⊂ P
2
k be the degree 4 cycle blown up by f . Then

f ∗(OP
2
k
(2)(−Z)), i.e., the pullback of the pencil of conics through Z , is a conic

class on X and establishes (2) ⇒ (4).
Finally, if C is a conic class on X , then, using Theorem 3.4, there exists a birational

morphism | − K X + C | : X → P to a Brauer–Severi surface P as in (1), which
establishes (4) ⇒ (1). �

Remark 8.8 By theorems of Enriques, Swinnerton-Dyer, Skorobogatov, Shepherd-
Barron, Kollár, and Hassett (see [47, Theorem 2.5] for precise references and
overview), a degree 5 del Pezzo X over a field k always has a k-rational point.
Thus, X is rational by [35, Theorem 29.4], and we have

Am(X) = 0, as well as H 1(H, PicX/k(k
sep)) = 0

for every closed subgroup H ⊆ Gk by Corollary 2.12, Theorem 4.6, and Lemma 4.5.

8.3 Del Pezzo Surfaces of Degree 4

A classical theorem of Manin [35, Theorem 29.4] states that a del Pezzo surface of
degree 4 over a sufficiently large field k is unirational if and only if it contains a
k-rational point. Here, we have the following analogue in our setting.

Proposition 8.9 Let X be a del Pezzo surface of degree 4 over a perfect field k.
Then, the following are equivalent

(1) There exists a dominant rational map P ��� X from a Brauer–Severi surface P
over k.

(2) X is unirational,
(3) X has a k-rational point,

PROOF The implications (2) ⇒ (1) is trivial and (2) ⇒ (3) is Lemma 4.3.
The implication (3) ⇒ (2) is shown in [35, Theorem 29.4] and [35, Theorem 30.1]

if k has at least 23 elements and in [31, Theorem 2.1] and [40, Proposition 5.19] in
the remaining cases.

To show (1) ⇒ (3), we argue as in the proof of the implication (1) ⇒ (4)
of Theorem 8.5 by first exhibiting a degree 1 zero-cycle on X , and then, using
[12] to deduce the existence of a k-rational point on X . We leave the details to
the reader. �

If a field k is finite or perfect of characteristic 2, then a degree 4 del Pezzo
surface over k always has a k-rational point, see [35, Theorem 27.1] and [16]. In this
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case, we also have Am(X) = 0. From Lemma 8.3, we infer that Am(X) is at most 4-
torsion for degree 4 del Pezzo surfaces. For the possibilities of H 1(Gk, PicX/k(ksep)),
see [45].

The following is an analog of Theorem 6.1 for degree 4 del Pezzo surfaces.

Theorem 8.10 Let X be a del Pezzo surface of degree 4 over a field k. Then, the
following are equivalent:

(1) There exists a birational morphism f : X → P to a Brauer–Severi surface, such
that fk is the blow-up of 5 points in general position.

(2) There exists a birational morphism f : X → P
2
k , such that fk is the blow-up of

5 points in general position.
(3) There exists a curve P

1
k

∼= E ⊂ X with E2 = −1.
(4) There exists a class E ∈ Pic(X/k)(fppf)(k) with E2 = K X · E = −1.

If these equivalent conditions hold, then X has a k-rational point.

PROOF The implication (2) ⇒ (1) is trivial. If f is as in (1), then X has a k-rational
point by Corollary 8.4. Thus, P ∼= P

2
k , and we obtain (1) ⇒ (2).

If f is as in (2), let Z ⊂ P
2
k be the degree 5 cycle blown up by f . Then

f ∗(OP
2
k
(2)(−Z)), i.e., the pullback of the class of the unique conic through Z , is a

class E as stated in (4) on X and establishes (2) ⇒ (4).
If E is a class as in (4), then, using Theorem 3.4, there exists a birational morphism

| − K X − E | : X → P to a Brauer–Severi surface P as in (1), which establishes
(4) ⇒ (1).

The implication (3) ⇒ (4) is trivial, and if E is a class as in (4), then there
exists a unique section of the associated invertible sheaf on ksep. This is necessarily
Gk-invariant, thus, descends to a curve on X , and establishes (4) ⇒ (3). �

Remark 8.11 In [44], Skorobogatov called del Pezzo surfaces of degree 4 that sat-
isfy condition (3) above quasi-split.

Before proceeding, let us recall a couple of classical results on the geometry of
degree 4 del Pezzo surfaces, and refer the interested reader to [44] and [15, Chap. 8.6]
for details. The anti-canonical linear system embeds X as a complete intersection
of two quadrics in P

4
k , i.e., X is given by Q0 = Q1 = 0, where Q0 and Q1 are

two quadratic forms in five variables over k. The degeneracy locus of this pencil of
quadrics

DegX := { det(t0 Q0 + t1 Q1) = 0 } ⊂ P
1
k = Proj k[t0, t1]

is a zero-dimensional subscheme, which is étale and of length 5 over k. Over k, its
points correspond to the singular quadrics containing X , all of which are cones over
smooth quadric surfaces. Let ν2 : P1

k → P
2
k be the 2-uple Veronese embedding and

set
Z := ν2(DegX ) ⊂ C := ν2(P

1
k) ⊂ P

2
k .
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If X contains a k-rational (−1)-curve, i.e., if X is quasi-split, then X is the blow-up
of P2

k in Z , see Theorem 8.10 and [44, Theorem 2.3].

Proposition 8.12 Let X be a del Pezzo surface of degree 4 over a field k of charac-
teristic 
= 2 with at least 5 elements. Then, the following are equivalent:

(1) The degeneracy scheme DegX has a k-rational point.
(2) There exists a finite morphism ψ : X → S of degree 2, where S is a del Pezzo

surface of degree 8 of product type.

Moreover, if ψ is as in (2), then S is isomorphic to a quadric in P
3
k .

PROOF To show (1) ⇒ (2), assume that DegX has a k-rational point. Thus, there
exists degenerate quadric Q with X ⊂ Q ⊂ P

4
k . As explained in the proof of [15,

Theorem 8.6.8], Q is a cone over a smooth quadric surface, and the projection away
from its vertex P

4
k ��� P

3
k induces a morphism X → P

3
k that is finite of degree 2 onto

a smooth quadric surface S. In particular, S is a del Pezzo surface of degree 8 of
product type.

To show (2) ⇒ (1), let ψ : X → S be as in the statement. Then, we have a short
exact sequence (which even splits since char(k) 
= 2)

0 → OS → ψ∗OX → L−1 → 0,

where L is an invertible sheaf on S, which is of type (1, 1) on Sk
∼= P

1
k
× P

1
k
. In

particular, |L| defines an embedding ı : S → P
3
k as a quadric, and establishes the

final assertion. Now, ı ◦ ψ arises from a 4-dimensional subspace V inside the linear
system (ı ◦ ψ)∗OP

3
k
(1) ∼= ω−1

X . Thus, ı ◦ ψ is the composition of the anti-canonical
embedding X → P

4
k , followed by a projection P

4
k ��� P

3
k . As explained in the proof

of [15, Theorem 8.6.8], such a projection induces a degree 2 morphism onto a quadric
if and only if the point of projection is the vertex of a singular quadric inP4

k containing
X . In particular, this vertex and the corresponding quadric are defined over k, giving
rise to a k-rational point of DegX . �

In order to refine Proposition 8.12, we will use conic classes as introduced in
Definition 8.6.

Proposition 8.13 Let X be a del Pezzo surface of degree 4 over a field k. Then, the
following are equivalent:

(1) There exists a conic class in Pic(X/k)(fppf)(k).
(2) There exists a finite morphism ψ : X → P ′ × P ′′ of degree 2, where P ′ and P ′′

are a Brauer–Severi curves over k.

Moreover, if ψ is as in (2), then P ′ ∼= P ′′.

PROOF Let L ∈ Pic(X/k)(fppf)(k) be a conic class. By Theorem 3.4, there exist mor-
phisms |L| : X → P ′ and |ω−1

X ⊗ L−1| : X → P ′′, where P ′ and P ′′ are Brauer–
Severi curves over k. Combining them, we obtain a finite morphism X → P ′ × P ′′
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of degree 2. As in the proof of (2) ⇒ (1) of Proposition 8.12 we find that P ′ × P ′′
embeds into P

3, and thus, 0 = [P3
k] = [P ′] + [P ′′] ∈ Br(k) by Proposition 5.2. This

implies [P ′] = [P ′′] since these classes are 2-torsion, and thus, P ′ ∼= P ′′ by Corol-
lary 2.16. This establishes (1) ⇒ (2).

Conversely, let ψ : X → P ′ × P ′′ be as in (2). Then, ψ∗(OP ′(1) � OP ′′(1)) is a
conic class, and (1) follows. �

8.4 Del Pezzo Surfaces of Degree 3

For these surfaces, we have the following analogue of Theorem 6.1.

Theorem 8.14 Let X be a del Pezzo surface of degree 3 over a field k. Then, the
following are equivalent:

(1) There exists a birational morphism f : X → P to a Brauer–Severi surface, such
that fk is the blow-up of 6 points in general position.

(2) There exists a class F ∈ Pic(X/k)(fppf)(k) such that

Fk
∼= OX (E1 + E2 + E3 + E4 + E5 + E6),

where the Ei are disjoint (−1)-curves on X.

PROOF The proof is analogous to that of Theorem 8.7, and we leave the details to
the reader. �

Note that if the equivalent conditions of this theorem are fulfilled, then X is
not minimal. But the converse does not hold in general: If Y is a unirational, but not
rational del Pezzo surface of degree 4 over k, and y ∈ Y is a k-rational point not lying
on an exceptional curve, then the blow-up X → Y in y is a non-minimal degree 3
del Pezzo surface over k with k-rational points that is not birationally equivalent to
a Brauer–Severi surface over k.

By [35, Theorem 28.1], a degree 3 del Pezzo surface X is minimal if and only
if ρ(X) = 1, i.e., Pic(X/k)(fppf)(k) = Z · ωX . In this case, we have Am(X) = 0. In
particular, if such a surface is birationally equivalent to a Brauer–Severi surface P ,
then P ∼= P

2
k by Proposition 2.10 and Theorem 2.19. In particular, X is rational and

has a k-rational point in this case.

8.5 Del Pezzo Surfaces of Degree 2

Arguing as in the proof of Theorem 8.5, it follows that if there exists a dominant and
rational map P ��� X from a Brauer–Severi surface P onto a degree 2 del Pezzo
surface over a perfect field k, then X has a k-rational point, and thus Am(X) = 0.
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In particular, if X is birationally equivalent to a Brauer–Severi surface, then it is
rational, see also Corollary 8.4.

By work of Manin [35, Theorem 29.4], a degree 2 del Pezzo surface over a field k
is unirational if it has a k-rational point not lying on an exceptional curve. Together
with non-trivial refinements of [17, 42], such surfaces over finite fields are always
unirational.

By Lemma 8.3, we have that Am(X) is at most 2-torsion for degree 2 del Pezzo
surfaces. For the possibilities of H 1(Gk, PicX/k(ksep)), as well as further information
concerning arithmetic questions, we refer to [32].

8.6 Del Pezzo Surfaces of Degree 1

If X is a del Pezzo surface of degree 1, then it has a k-rational point, namely the unique
base point of | − K X |. Thus, we have Am(X) = 0, and there are no morphisms or
rational maps to non-trivial Brauer–Severi varieties.
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