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Abstract We define the Kobayashi quotient of a complex variety by identifying
points with vanishing Kobayashi pseudodistance between them and show that if a
complex projective manifold has an automorphism whose order is infinite, then the
fibers of this quotient map are nontrivial. We prove that the Kobayashi quotients
associated to ergodic complex structures on a compact manifold are isomorphic. We
also give a proof of Kobayashi’s conjecture on the vanishing of the pseudodistance
for hyperkähler manifolds having Lagrangian fibrations without multiple fibers in
codimension one. For a hyperbolic automorphism of a hyperkähler manifold, we
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prove that its cohomology eigenvalues are determined by its Hodge numbers, com-
pute its dynamical degree and show that its cohomological trace grows exponentially,
giving estimates on the number of its periodic points.

1 Introduction

Kobayashi conjectured that a compact Kähler manifold with semipositive Ricci cur-
vature has vanishing Kobayashi pseudometric. In a previous paper [16] Kamenova–
Lu–Verbitsky have proved the conjecture for all K3 surfaces and for certain hyper-
kähler manifolds that are deformation equivalent to Lagrangian fibrations. Here we
give an alternative proof of this conjecture for hyperkähler Lagrangian fibrations
without multiple fibers in codimension one, see Sect. 3.

Theorem 1.1 Let f : M −→ B = CP
n be a hyperkähler Lagrangian fibration with-

out multiple fibers in codimension one over B. Then the Kobayashi pseudometric
dM vanishes identically on M and the Royden–Kobayashi pseudonorm | |M vanishes
identically on a Zariski open subset of M .

In Sect. 4, we explore compact complex manifolds M having an automorphism
of infinite order. If such a manifold is projective, we show that the Kobayashi
pseudometric is everywhere degenerate. For each point x ∈ M we define the subset
Mx ⊂ M of points in M whose pseudo-distance to x is zero. Define the relation
x ∼ y on M given by dM(x, y) = 0. There is a well defined set-theoretic quotient
map � : M −→ S = M/∼, called the Kobayashi quotient map. We say that | |M

is Voisin-degenerate at a point x ∈ M if there is a sequence of holomorphic maps
ϕn : Drn → M such that ϕn(0) → x, |ϕ′

n(0)|h = 1 and rn → ∞.

Theorem 1.2 Let M be a complex projective manifold with an automorphism f of
infinite order. Then the Kobayashi pseudo-metric dM is everywhere degenerate in
the sense that Mx �= {x} for all x ∈ M . The Royden–Kobayashi pseudo-norm | |M

is everywhere Voisin-degenerate. Moreover, every fiber of the map � : M −→ S
constructed above contains a Brody curve and is connected.

Define the Kobayashi quotient MK of M to be the space of all equivalence
classes {x ∼ y | dM(x, y) = 0} equipped with the metric induced from dM .

In Sect. 5, we show that the Kobayashi quotients for ergodic complex structures
are isometric, equipped with the natural quotient pseudometric. This generalizes the
key technical result of [16] for the identical vanishing of dM for ergodic complex
structures on hyperkähler manifolds.

Theorem 1.3 Let (M, I ) be a compact complex manifold, and (M, J ) its defor-
mation. Assume that the complex structures I and J are both ergodic. Then the
corresponding Kobayashi quotients are isometric.
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Finally in Sect. 6, we prove that the cohomology eigenvalues of a hyperbolic
automorphism of a hyperkähler manifold are determined by its Hodge numbers. We
compute its dynamical degree in the even cases and give an upper bound in the odd
cases.

Theorem 1.4 Let (M, I ) be a hyperkähler manifold, and T a hyperbolic automor-
phism acting on cohomology as γ. Denote by α the eigenvalue of γ on H 2(M,R)
with |α| > 1. Then all eigenvalues of γ have absolute value which is a power of α1/2.
Moreover, the maximal of these eigenvalues on even cohomology H 2d(M) is equal
to αd , and finally, on odd cohomology H 2d+1(M) the maximal eigenvalue of γ is
strictly less than α

2d+1
2 .

As a corollary we obtain that the trace Tr(γN ) grows asymptotically as αnN . We
also show that the number of k-periodic points grows as αnk .

The work on this paper started during the Simons Symposium “Geometry over
nonclosed fields” held in March, 2015. The authors are grateful to the Simons Foun-
dation for providing excellent research conditions.

2 Preliminaries

Definition 2.1 A hyperkähler (or irreducible holomorphic symplectic) manifold M
is a compact complex Kähler manifold with π1(M) = 0 and H 2,0(M) = Cσ where
σ is everywhere non-degenerate.

Recall that a fibration is a connected surjective holomorphic map. On a
hyperkähler manifold the structure of a fibration, if one exists, is limited by Mat-
sushita’s theorem.

Theorem 2.2 (Matsushita, [21]) Let M be a hyperkählermanifold and f : M −→ B
a fibration with 0 < dim B < dim M . Then dim B = 1

2 dim M and the general fiber
of f is a Lagrangian abelian variety. The base B has at worstQ-factorial log-terminal
singularities, has Picard number ρ(B) = 1 and −K B is ample.

Remark 2.3 B is smooth in all of the known examples. It is conjectured that B is
always smooth.

Theorem 2.4 (Hwang [15]) In the settings above, if B is smooth then B is isomor-
phic to CPn , where dimC M = 2n.

Definition 2.5 Given a hyperkähler manifold M , there is a non-degenerate integral
quadratic form q on H 2(M,Z), called the Beauville–Bogomolov–Fujiki form (BBK
form for short), of signature (3, b2 − 3) and satisfying the Fujiki relation

∫
M

α2n = c · q(α)n for α ∈ H 2(M,Z),
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with c > 0 a constant depending on the topological type of M . This form generalizes
the intersection pairing on K3 surfaces. For a detailed description of the form we
refer the reader to [2, 6, 13].

Remark 2.6 Given f : M −→ CP
n , h the hyperplane class on CPn , and α = f ∗h,

then α is nef and q(α) = 0.

Conjecture 2.7 [SYZ] If L is a nontrivial nef line bundle on M with q(L) = 0, then
L induces a Lagrangian fibration, given as above.

Remark 2.8 This conjecture is known for deformations ofHilbert schemes of points
on K3 surfaces (Bayer–Macrì [1]; Markman [20]), and for deformations of the gen-
eralized Kummer varieties Kn(A) (Yoshioka [36]).

Definition 2.9 The Kobayashi pseudometric on M is the maximal pseudometric
dM such that all holomorphic maps f : (D, ρ) −→ (M, dM) are distance decreasing,
where (D, ρ) is the unit disk with the Poincaré metric.

Definition 2.10 Amanifold M is Kobayashi hyperbolic if dM is a metric, otherwise
it is called Kobayashi non-hyperbolic.

Remark 2.11 In [17], it is asked whether a compact Kähler manifold M of semi-
positive Ricci curvature has identically vanishing pseudometric, which we denote
by dM ≡ 0. The question applies to hyperkähler manifolds but was unknown even
for the case of surfaces outside the projective case. But Kamenova–Lu–Verbitsky
(in [16]) have recently resolved completely the case of surfaces with the following
affirmative results.

Theorem 2.12 [16] Let S be a K3 surface. Then dS ≡ 0.

Remark 2.13 A birational version of a conjecture of Kobayashi [17] would state
that a compact hyperbolic manifold be of general type if its Kobayashi pseudometric
is nondegenerate somewhere (i.e. nondegenerate on some open set). This was open
for surfaces but now resolved outside surfaces of class VII.

Theorem 2.14 [16] Let M be a hyperkähler manifold of non-maximal Picard rank
and deformation equivalent to a Lagrangian fibration. Then dM ≡ 0.

Theorem 2.15 [16] Let M be a hyperkähler manifold with b2(M) ≥ 7 (expected to
always hold) and with maximal Picard rank ρ = b2 − 2. Assume the SYZ conjecture
for deformations of M . Then dM ≡ 0.

Remark 2.16 Except for the proof of Theorem2.15, we indicate briefly a proof
of these theorems below. Theorem2.15 is proved in [16] using the existence of
double Lagrangian fibrations on certain deformations of M . Here we give a different
proof of vanishing of theKobayashi pseudometric for certain hyperkähler Lagrangian
fibrations without using double fibrations.
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Definition 2.17 Let M be a compact complexmanifold andDiff0(M) the connected
component to identity of its diffeomorphism group. Denote by Comp the space
of complex structures on M , equipped with a structure of Fréchet manifold. The
Teichmüller space of M is the quotient Teich := Comp /Diff0(M). The Teichmüller
space is finite-dimensional for M Calabi–Yau [11]. Let Diff+(M) be the group of
orientable diffeomorphisms of a complex manifold M . The mapping class group
� := Diff+(M)/Diff0(M) acts on Teich. An element I ∈ Teich is called ergodic if
the orbit � · I is dense in Teich, where

� · I = {I ′ ∈ Teich : (M, I ) ∼ (M, I ′)}.

Theorem 2.18 (Verbitsky, [32]) If M is hyperkähler and I ∈ Teich, then I is ergodic
if and only if ρ(M, I ) < b2 − 2.

Remark 2.19 For a K3 surface (M, I ) not satisfying the above condition on the
Picard rank ρ, it is easily seen to admit Lagrangian (elliptic) fibrations over CP1

without multiple fibers, and it is projective. Then d(M,J ) ≡ 0 by Theorem3.2 below,
for example.

Proposition 2.20 Let (M, J ) be a compact complex manifold with d(M,J ) ≡ 0.
Let I ∈ Teich be an ergodic complex structure deformation equivalent to J . Then
d(M,I ) ≡ 0.

Proof Here we shall reproduce the proof from [16]. Consider the diameter function
diam : Teich −→ R�0, the maximal distance between two points. It is upper semi-
continuous (Corollary1.23 in [16]). Since the complex structure J is in the limit
set of the orbit of the ergodic structure I , by upper semi-continuity 0 � diam(I ) �
diam(J ) = 0. �

3 (Royden–)Kobayashi Pseudometric on Abelian
Fibrations

The following lemma is a generalization of Lemma3.8 in [8] to the case of abelian
fibrations. The generalization is given for example in the Appendix of [16]. Recall
that an abelian fibration is a connected locally projective surjective Kähler morphism
with abelian varieties as fibers.

Lemma 3.1 Let π : T −→ C be an abelian fibration over a non-compact complex
curve C which locally has sections and such that not all components of the fibers are
multiple. Then T has an analytic section over C . This is the case if π has no multiple
fibers.

Proof There is a Neron model N for T and a short exact sequence

0 −→ F −→ O(L) −→ O(N ) −→ 0
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where L is a vector bundle, F is a sheaf of groups Z2n with degenerations, i.e., sheaf
of discrete subgroups with generically maximal rank, andO(N ) is the sheaf of local
sections of N (whose general fibers are abelian varieties). Thus T corresponds to
an element θ in H 1(C,O(N )). There is an induced exact sequence of cohomolo-
gies: H 1(C,O(L)) −→ H 1(C,O(N )) −→ H 2(C, F). Note that H 1(C,O(L)) = 0
since C is Stein, and H 2(C, F) = 0 since it is topologically one-dimensional. Thus
θ = 0 and hence there is an analytic section. The last part of the lemma is given by
Proposition4.1 of [16]. �

Theorem 3.2 Let f : M −→ B = CP
n be a hyperkähler Lagrangian fibration with-

out multiple fibers in codimension one over B. Then dM ≡ 0 and | |M vanishes on a
nonempty Zariski open subset of M .

Proof The fibers of f are projective, and furthermore, there is a canonical polar-
ization on them (see [25, 26], respectively). This also follows from [31], Theorem
1.10, which implies that the given fibration is diffeomorphic to another fibration
f : M ′ −→ B with holomorphically the same fibers and the same base, but with
projective total space M ′. Standard argument (via the integral lattice in the “local”
Neron–Severi group) now shows that f is locally projective.

By assumption, there are nomultiple fibers outside a codimension 2 subset S ⊂ B
whose complement U contains at most the smooth codimension-one part D0 of the
discriminant locus of f where multiplicity of fibers are defined locally generically.
Since the pseudometric is unchanged after removing codimension 2 subsets [18], it
is enough to restrict the fibration to that over U .

LetC = P
1 be a line in B = P

n contained inU (and intersecting D0 transversely).
Then f restricts to an abelian fibration X = f −1(C) over C without multiple fibers
and so Lemma3.1 applies to give a section over the affine line A1 = C \ (∞).

As S is codimension two or higher, we can connect any two general points in
U by a chain of such A1’s in U . One can thus connect two general points x and y
on M by a chain consisting of fibers and sections over the above A1’s. Since the
Kobayashi pseudometric vanishes on each fiber and each such section, the triangle
inequality implies dM(x, y) = 0. Therefore dM vanishes on a dense open subset of
M and hence dM ≡ 0 by the continuity of dM .

The same argument gives the vanishing statement of | |M via TheoremA.2
of [16]. �

Remark 3.3 In the theorem above, it is sufficient to assume that B is nonsingular
and that dB ≡ 0, true if B is rationally connected. In fact, if one assumes further
the vanishing of | |B on a nonempty Zariski open, then the same is true for | |M ,
generalizing the corresponding theorems in [16]. The reader should have no difficulty
to see these by the obvious modifications of the above proof.
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4 Automorphisms of Infinite Order

We first sketch the proof of Kobayashi’s theorem that Kobayashi hyperbolic mani-
folds have only finite order automorphisms (Theorem9.5 in [17]).

Theorem 4.1 Let M be a Kobayashi hyperbolic manifold. Then its group of bira-
tional transformations is finite.

Proof First, notice that a birational self-map is a composition of a blow-up, an
automorphism and a blow-down. Since M contains no rational curves, any birational
self-map is holomorphic, and we need to prove the finiteness of the automorphism
group.

Observe that the automorphisms of a hyperbolic manifold are isometries of the
Kobayashi metric. Also the group of isometries of a compact metric space is com-
pact with respect to the compact open topology by a theorem of Dantzig and Van
der Waerden, see for example [18, Theorem 5.4.1]. On the other hand, compact
Kobayashi hyperbolic manifolds have no holomorphic vector fields, because each
such vector field gives an orbit which is an entire curve. This means that the group of
holomorphic automorphisms Aut(M) of M is discrete as it is a complex Lie group in
the compact open topology acting holomorphically on M by the work of Bochner–
Montgomery [4, 5]. Since Aut(M) is discrete and compact, this means it is finite.
�

Consider the pseudo-distance function dM : M × M −→ R, defined by the
Kobayashi pseudo-distance dM(x, y) on pairs (x, y). It is a symmetric continuous
function which is bounded for compact M . Since it is symmetric, we can consider
dM as a function on the symmetric product Sym2 M with dM = 0 on the diagonal.

Lemma 4.2 There is a compact space S with a continuous map � : M −→ S and
there is a distance function dS on S making S into a compact metric space such that
dM = dS ◦ ψ, where ψ : Sym2 M −→ Sym2 S is the map induced by �.

Proof The subset Mx ⊂ M of points y ∈ M with dM(x, y) = 0 is compact and con-
nected. The relation x ∼ y on M given by dM(x, y) = 0 is symmetric and transitive
so that Mx = My if and only if x ∼ y. So there is a well defined set-theoretic quo-
tient map� : M −→ S = M/∼. Note that the set S is equippedwith a natural metric
induced from dM . Indeed, dM(x ′, y′) is the same for any points x ′ ∈ Mx , y′ ∈ My ,
and hence dM induces a metric dS on S. This metric provides a topology on S, and
since the set Ux,ε = {y ∈ M | dM(x, y) < ε} is open, the map � : M −→ S is con-
tinuous. Thus the metric space S is also compact. This completes the proof of the
lemma. �

Remark 4.3 The natural quotient considered above was already proposed in [17]
albeit little seems to be known about its possible structure. In particular, it is known
that even when M is compact, S may not have the structure of a complex variety
[14]. As we note in Remark4.12, Campana conjectured that the Kobayashi metric
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quotient of a Kähler manifold has birational general type, and hence, a dense subset
of the metric quotient should carry a complex (even quasi-projective) structure for
such manifolds.

Remark 4.4 If there is a holomorphic family of varieties Xt smooth over a parameter
space T of say dimension 1, then the relative construction also works by considering
the problem via that of the total space over small disks in T . In particular, there is a
monodromy action on the resulting family of compact metric spaces St by isometries
over T , c.f. Sect. 5.

Let M be a complex manifold and h a hermitian metric on M with its associated
norm | |h .

Recall that a theorem of Royden says that the Kobayashi pseudo-metric dM can
be obtained by taking the infimum of path-integrals of the infinitesimal pseudonorm
| |M , where

|v|M = inf

{
1

R
| f : DR → M holomorphic, R > 0, f ′(0) = v

}
.

Here DR is the disk of radius R centred at the origin. Recall also that | |M is upper-
semicontinuous [29].

Definition 4.5 We say that | |M is Voisin-degenerate at a point x ∈ M if there is a
sequence of holomorphic maps ϕn : Drn → M such that

ϕn(0) → x, |ϕ′
n(0)|h = 1 and rn → ∞.

Observe that the locus Z M of M consisting of points where | |M is Voisin-
degenerate is a closed set.

Remark 4.6 If (x, v) ∈ Tx M is a point in the tangent bundle of M at x which
is Voisin-degenerate, then it does not necessarily follow that |v|M = 0, because the
Kobayashi pseudometric is semicontinuous but might not be continuous at that point.
However, the other implication is true: by upper semicontinuity, if |v|M = 0, then
for any sequence (xn, vn) −→ (x, v) we have |vn|M −→ 0, i.e., the point x is Voisin
degenerate in a strong sense.

The following theorem is essentially [35, Proposition 1.19].

Theorem 4.7 Consider the equivalence relation x ∼ y on M given by dM(x, y) = 0
where dM is the Kobayashi pseudo-metric on M . Then every non-trivial orbit (that
is, a non-singleton equivalence class) of this relation consists of Voisin-degenerate
points, and the union of such orbits is a closed set. If, further, M is compact, then
each nontrivial orbit contains the image of a nontrivial holomorphic map C → M .

We also need the following theorem.
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Theorem 4.8 Assume M is compact. Then each orbit of the equivalence relation
given above is connected.

Proof Let Mx be the orbit passing through x as before and

Mx (n) =
{

y ∈ X
∣∣ dX (x, y) � 1

n

}
.

Then each Mx (n) is compact and connected and Mx = ∩n Mx (n). If Mx is not con-
nected, then there are disjoint open sets U, V in M separating Mx leading to the
contradiction

∅ = (U ∪ V )c ∩ Mx = ∩n[(U ∪ V )c ∩ Mx (n)] �= ∅,

each (U ∪ V )c ∩ Mx (n) being nonempty compact as Mx (n) is connected. �
We want to exploit the existence of an automorphism of an infinite order for the

analysis of Kobayashi metric. The following conjecture provides with a necessary
argument for a projective manifold.

The rest of this section contains several arguments which suggest a possible strat-
egy to study the vanishing locus of Kobayashi metric on a projective manifold in
the presence of an infinite order automorphism. We label them as “conjectures” to
distinguish these suggestive arguments from the fully rigorous proofs. We plan to
put rigour to these heuristic arguments at some later date.

Conjecture 4.9 Let X be a complex projective manifold and [C] an ample class of
curves on X . Let U be an open domain in X and wh the volume form of a Kähler
metric h on X . Then for a sufficently big n there is a curve C1 ∈ [nC] such that
Volh(C ∩ U ) � (wh(U )/wh(X) − ε)Volh(C) for arbitrary small ε.

Sketch of a possible proof of this result: The result evidently holds for Pn and
Fubini-Study metric on Pn since Pn is homogeneous with respect to the Fubini-
Study metric. In this case it follows from the integral volume formula for the family
of projective lines, parametrized by the Grassmanian which surjects onto Pn . It
immediately implies the existence of lines which satisfy the inequality.

Similar formula holds for the family of algebraic curves of any given degree. In
particular we obtain an infinitesimal version of the formula which therefore holds
for any metric on projective space. Using a finite map of an n-dimensional projective
manifold X onto CPn we can derive the same formula for the Kähler pseudometrics
induced from CPn and then use its local nature for any X . �
Conjecture 4.10 Let f be an automorphismof infinite order on a complex projective
manifold X of dimension n. Assume that there is a domain U in X , a smooth Kähler
metric g on X and positive constants c, c′ such that cg � ( f m)∗g � c′g on U for all
powers f m of f . Then f is an isometry of (X, h) for some Kähler metric h on X
and hence some power of f is contained in a connected component of the group of
complex isometries of (X, h). In particular, X has a faithful holomorphic action by
an abelian variety.
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Sketch of a possible proof of this result: Let h be the pull back of the Fubini-
Study metric on X of the embedding corresponding to a very ample line bundle
L on X . Note that we can assume that ag � ( f m)∗h � a′g on Ū for some positive
constants a, a′ which are independent of the parameter m. Note that

∫
X ( f m)∗hn does

not depend on m since the class of the volume hn maps into itself. Therefore, we
have

μ′
∫

X
hn <

∫
Ū
( f m)∗hn < μ

∫
X

hn (4.1)

for some μ and μ′ independent of m. Let c be a class of ample (i.e., very movable)
curves. Then, for a sufficiently bigmultiple Nc of the class c, there are curvesC ∈ Nc
with

∫
C

⋂
Ū h > ν(h, c), and similarlywehave

∫
C

⋂
Ū ( f m)∗h > ν(( f m)∗h, c), where

(h, c) is a pairing of the homology class c and the class of kahler metric h. Since

a
∫

C
⋂

Ū
g <

∫
C

⋂
Ū
( f m)∗h < a′

∫
C

⋂
Ū

g,

we obtain that (( f m)∗h, c) is bounded from above by a′(g, c) and from below by
by a(g, c) for any ample class. Since ample classes generate the dual N1(X)R of
NS(X) ⊗ R we obtain that ( f m)∗h as linear functional on N1(X) ⊗ R is contained
in a bounded subset.

A slightly more direct argument for this last boundedness is as follows. Since each
f m∗h represents a Kähler class, it is sufficient to bound them from above as linear
functionals on ample classes c of curves. Note that the first inequality in Eq.4.1 says
that w f m∗h(U ) > μ′wh(X) with μ′ independent of m. By the previous lemma, one
can therefore choose Cm ∈ c such that

(( f m)∗h, c) = Vol( f m )∗h(Cm) � δ

∫
Cm

⋂
Ū
( f m)∗h < δa′

∫
Cm

⋂
Ū

g � γ(g, c),

where δ is independent of m and γ = δa′.
Since there are only a finite number of integral classes in any bounded set in

NS(X)R, it follows that f m0 leaves invariant the Káhler class of h for some m0 �= 0
and we may therefore assume that f itself leaves it invariant. In the case of Ricci-
flat X , f must therefore be an isometry with respect to the unique Ricci-flat metric
in the Kähler class given by Yau’s solution to the Calabi conjecture. In general,
if H 1(X, C) = 0, then f is induced from a projective action on P N under a map
X → P N . If H 1(X, C) �= 0, then we have a map from X × Pic0(X) to a projective
family of projective spaces {P(H 0(Lt )

∨), t ∈ Pic0(X)} over Pic0(X) and Lt defines
a very ample invariant invertible sheaf on X × Pic0(X) over Pic0(X). Hence, f has
to be a complex isometry on X which completes the argument. �

Conjecture 4.11 Let M be a projective manifold with an automorphism f of infi-
nite order. Then the Kobayashi pseudo-metric dM is everywhere degenerate in the
sense that Mx �= {x} for all x ∈ M . Also the Kobayashi–Royden pseudo-norm | |M
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is everywhere Voisin-degenerate. Moreover, every fiber of the map � : M −→ S
constructed above contains a Brody curve and is connected.

Sketch of a possible proof of this result: The map f : M −→ M commutes with
the projection onto S, and hence, induces an isometry on S. Since the action of f has
infinite order on S, there is a sequence of powers f Ni which converges to the identity
on S by the compactness of the group Isom(S) of isometries of S (in the compact
open topology) and by setting Ni = ni − ni−1 for a convergent subsequence f ni in
Isom(S). We assume arguing by contradiction that dM is non-degenerate at a point
x ∈ M . Let U be the maximal subset in M where � is a local isomorphism. Since
the subsets Mx are connected, thenU is exactly the subset where� is an embedding.
The set U is invariant under f and is open by Theorem4.7. Hence, f Ni converges
to the trivial action on U . The boundary ∂U of U is a compact subset in M with
∂U �= Ū and dM(x, ∂U ) > 0 for any point x ∈ U . Thus, a compact subsetUε which
consists of points x ∈ U with dM(x, ∂U ) � ε is f -invariant and the restriction of dM

on Uε is a metric. It is also invariant under the action of f and by theorem of Royden
([28, Theorem2]) we know that there are smooth Kähler metrics g, g′ on X with the
property that g′ > dM � g on Uε. Applying Conjecture4.10 we obtain that f is an
isometry on M with respect to some Kähler metric. Thus, either M has a nontrivial
action of a connected algebraic group, and hence, trivial Kobayshi pseudometric, or
f is of finite order which contradicts our assumption. Thus, we obtain a contradiction
also with our initial assertion that dM is metric on some open subset in M .

Note that a limit of Brody curves is again a nontrivial Brody curve by Brody’s
classical argument. By Theorem4.7, this implies that the map� : M −→ S is every-
where degenerate, as it is degenerate in the complement of an everywhere dense open
subset. �

Remark 4.12 In [9, Conjecture9.16], F. Campana conjectured that the Kobayashi
quotient map of a complex projective manifold M should coincide (in the birational
category) with the “core map” of M , with fibers which are “special” and the base
which is a “general type” orbifold. Then Conjecture4.11 would just follow, because
the automorphism group of a general type variety is finite. Then a general fiber
of the Kobayashi quotient map contains infinitely many points, hence its fibers are
positively dimensional.

Remark 4.13 Note that both conditions of Conjecture4.10 are sharp. It was shown
by McMullen [23] that there are Kahler non-projective K3 surfaces with automor-
phisms of infinite order which contain invariant domains isomorphic to the two-
dimensional ball. There are also examples by Bedford and Kim [3] of rational pro-
jective surfaces X with automorphisms of infinite order which contain an invariant
ball. In this case there are no invariant volume forms on the variety X .
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5 Metric Geometry of Kobayashi Quotients

Definition 5.1 Let M be a complex manifold, and dM its Kobayashi pseudometric.
Define the Kobayashi quotient MK of M as the space of all equivalence classes
{x ∼ y | dM(x, y) = 0} equipped with the metric induced from dM .

The main result of this section is the following theorem.

Theorem 5.2 Let (M, I ) be a compact complex manifold, and (M, J ) its defor-
mation. Assume that the complex structures I and J are both ergodic. Then the
corresponding Kobayashi quotients are isometric.

Proof Consider the limit lim νi (I ) = J , where νi is a sequence of diffeomorphisms
of M . For each point x ∈ (M, I ), choose a limiting point ν(x) ∈ (M, J ) of the
sequence νi (x). Fix a dense countable subset M0 ⊂ M and replace the sequence
νi by its subsequence in such a way that ν(m) := lim νi (m) is well defined for all
m ∈ M0.

By the upper-semicontinuity of the Kobayashi pseudometric, we have

d(M,J )(ν(x), ν(y)) � d(M,I )(x, y). (5.1)

Let C0 be the union of all ν(x) for all x ∈ M0. Define a map ψ : C0 −→ (M, I )
mapping z = ν(x) to x (if there are several choices of such x , choose one in arbitrary
way). By (5.1), the mapψ is 1-Lipschitz with respect to the Kobayashi pseudometric.
We extend it to a Lipschitz map on the closure C of C0. For any x ∈ (M, J ), the
Kobayashi distance between x and ψ(ν(x)) is equal zero, also by (5.1). Therefore, ψ
defines a surjectivemap onKobayashi quotients:� : CK −→ (M, I )K . Exchanging
I and J , we obtain a 1-Lipshitz surjective map � : C ′

K −→ (M, J )K , where C ′
K is

a subset of (M, I )K . Taking a composition of � and �, we obtain a 1-Lipschitz,
surjective map from a subset of (M, I )K to (M, I )K . The following proposition
shows that such a map is always an isometry, finishing the proof of Theorem5.2. �

Proposition 5.3 Let M be a compact metric space, C ⊂ M a subset, and f :
C −→ M a surjective 1-Lipschitz map. Then C = M and f is an isometry.

Proposition5.3 is implied by the following three lemmas, some which are exer-
cises found in [7].

Lemma 5.4 Let M be a compact metric space, C ⊂ M a subset, and f : C −→ M
a surjective 1-Lipschitz map. Then M is the closure of C .

Proof Suppose that M is not the closure C̄ ofC . Takeq ∈ M\C̄ , and let ε = d(q, C̄).
Define pi inductively, p0 = q, f (pi+1) = pi . Let p ∈ C̄ be any limit point of
the sequence {pi }, with limi pni = p. Since f m(pn) ∈ C for any m < n, one has
f m(p) ∈ C̄ .
Clearly, f ni (pni ) = q. Take ni such that d(p, pni ) < ε. Then d( f ni (p), q) < ε.

This is a contradiction, because f n(p) ∈ C̄ and ε = d(q, C̄). �
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Lemma 5.5 Let M be a compact metric space, and f : M −→ M an isometric
embedding. Then f is bijective.

Proof Follows from Lemma5.4 directly. �

Lemma 5.6 Let M be a compact metric space, and f : M −→ M a 1-Lipschitz,
surjective map. Then f is an isometry.

Proof Let d be the diameter of M , and let K be the space of all 1-Lipschitz functions
μ : M −→ [0, d]with the sup-metric. By the Arzela–Ascoli theorem, K is compact.
Now, f ∗ defines an isometry from K to itself, μ −→ μ ◦ f . For any z ∈ M , the func-
tion dz(x) = d(x, z) belongs to K . However, d f (z) does not belong to the image of f ∗
unless d(z, x) = d( f (z), f (x)) for all x , because if d(z, x) < d( f (z), f (x)), one
has ( f ∗)−1(d f (z))( f (x)) = d(z, x) > d( f (z), f (x)), hence ( f ∗)−1(d f (z)) cannot be
Lipschitz. This is impossible by Lemma5.5, because an isometry from K to itself
must be bijective. Therefore, the map f : M −→ M is an isometry. �

The proof of Proposition5.3 easily follows from Lemmas5.6 and 5.4. Indeed, by
Lemma5.4, f is a surjective, 1-Lipschitz map from M to itself, and by Lemma5.6
it is an isometry. �

6 Eigenvalues and Periodic Points of Hyperbolic
Automorphisms

The following proposition follows from a simple linear-algebraic observation.

Proposition 6.1 Let T be a holomorphic automorphism of a hyperkähler manifold
(M, I ), and γ : H 2(M) −→ H 2(M) the corresponding isometry of H 2(M). Then
γ has at most 1 eigenvalue α with |α| > 1, and such α is real.

Proof Since T is holomorphic, γ preserves the Hodge decomposition

H 2(M,R) = H (2,0)+(0,2)(M,R) ⊕ H 1,1(M,R).

Since theBBF form is invariant under γ and is positive definite on H (2,0)+(0,2)(M,R),
the eigenvalues of γ are |αi | = 1 on this space. On H 1,1(M,R), the BBF form has
signature (+,−,−, ...,−), hence γ can be considered as an element of O(1, n).
However, it is well known that any element of SO(1, n) has at most 1 eigenvalue α
with |α| > 1, and such α is real. �

Definition 6.2 An automorphism of a hyperkähler manifold (M, I ) or an automor-
phism of its cohomology algebra preserving the Hodge type is called hyperbolic if
it acts with an eigenvalue α, |α| > 1 on H 2(M,R).
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In holomorphic dynamics, there are many uses for the d-th dynamical degree
of an automorphism, which is defined as follows. Given an automorphism T of a
manifold M , we consider the corresponding action on H d(M,R), and d-th dynamical
degree is logarithm of the maximal absolute value of its eigenvalues. In [27], K.
Oguiso has shown that the dynamical degree of a hyperbolic automorphism is positive
for all even d, and computed it explicitly for automorphisms of Hilbert schemes of
K3 which come from automorphisms of K3. For 3-dimensional Kähler manifolds,
dynamical degree was computed by F. Lo Bianco [19].

We compute the dynamical degree and the maximal eigenvalue of the automor-
phism action on cohomology for all even d and give an upper bound for odd ones.
We also compute asymptotical growth of the trace of the action of T N in cohomol-
ogy, which could allow one to prove that the number of quasi-periodic points grows
polynomially as the period grows. One needs to be careful here, because there could
be periodic and fixed subvarieties, and their contribution to the Lefschetz fixed point
formula should be calculated separately.

Theorem 6.3 Let (M, I ) be a hyperkähler manifold, and T a hyperbolic automor-
phism acting on cohomology as γ. Denote by α the eigenvalue of γ on H 2(M,R)
with |α| > 1. Then all eigenvalues of γ have absolute value which is a power of α1/2.
Moreover, the maximal of these eigenvalues on even cohomology H 2d(M) is equal
to αd , and finally, on odd cohomology H 2d+1(M) the maximal eigenvalue of γ is
strictly less than α

2d+1
2 .

Remark 6.4 Since the Kähler cone of M is fixed by γ, α is positive; see e.g. [10].

Remark 6.5 From Theorem6.3, it follows immediately that Tr(γN ) grows asymp-
totically as αnN .

We prove Theorem6.3 at the end of this section.
Recall that the Hodge decomposition defines multiplicative action of U (1) on

cohomology H∗(M), with t ∈ U (1) ⊂ C acting on H p,q(M) as t p−q . In [34], the
group generated by U (1) for all complex structures on a hyperkähler manifold was
computed explicitly, and it was found that it is isomorphicG = Spin+(H 2(M,R), q)
(with center acting trivially on even-dimensional forms andas−1onodd-dimensional
forms; see [33]). Here Spin+ denotes the connected component.

In [30], it was shown that the connected component of the group of automorphisms
of H∗(M) is mapped to G surjectively and with compact kernel ([30, Theorem3.5]).
Therefore, to study the eigenvalues of automorphisms of H∗(M), we may always
assume that they belong to G.

Now, the eigenvalues of g ∈ G on its irreducible representations can always be
computed using the Weyl character formula. The computation is time-consuming,
and insteadof usingWeyl character formula,weuse the following simple observation.

Claim 6.6 Let G be a group, and V its representation. Then the eigenvalues of g
and xgx−1 are equal for all x, g ∈ G. �



On the Kobayashi Pseudometric, Complex … 15

To proveTheorem6.3,we replace one-parametric group containing the hyperbolic
automorphism by another one-parametric group adjoint to it in G, and describe this
second one-parametric group in terms of the Hodge decomposition.

Proposition 6.7 Let (M, I ) be a hyperkähler manifold, and γ an automorphism of
the ring H∗(M). Assume that γ acts on H 2(M) with an eigenvalue α > 1. Then
all eigenvalues of γ have absolute value which is a power of α1/2. Moreover, the
maximal of these eigenvalues on even cohomology H 2d(M) is equal to αd (with
eigenspace of dimension 1), and on odd cohomology H 2d+1(M) it is strictly less
than α

2d+1
2 .

Proof Denote by G the group of automorphisms of H∗(M). As shown above, its
Lie algebra is (so)(3, b2(M) − 3), hence the connected component of G is a simple
Lie group.

Write the polar decomposition γ = γ1 ◦ β, where γ1 ∈ G has eigenvalues
α,α−1, 1, 1, ..., 1, β belongs to the maximal compact subgroup, and they commute.
Clearly, the eigenvalues of β on V are of absolute value 1, and absolute values of
eigenvalues of γ and γ1 are equal. Therefore, we can without restricting generality
assume that γ = γ1 has eigenvalues α,α−1, 1, 1, ..., 1.

Consider now the following one-parametric subgroup of the complexification
GC ⊂ Aut(H∗(M,C)): ρ(t) acts on H p,q as t p−q , t ∈ R. The corresponding ele-
ment of the Lie algebra has only two non-zero real eigenvalues in adjoint action.
Clearly, all one-parametric subgroups of GC = Spin(H 2(M,C)) with this property
are conjugate. This implies that γ is conjugate to an element ρ(α).

By Claim6.6, γ and ρ(α) have the same eigenvalues, and ρ(α) clearly has eigen-
values α

d−i
2 ,α

d−i−1
2 , ...α

i−d
2 on H d(M). �

Corollary 6.8

lim
n −→ ∞

log Tr( f n)
∣∣

H∗(M)

n
= d logα,

where 2d = dimC M . In particular, the number of k-periodic points grows as αnk ,
assuming that they are isolated. �

Remark 6.9 The case when f admits non-isolated periodic points is treated in [12],
who prove that the number of isolated k-periodic points still grows no faster than
αnk ; the lower bound is still unknown.

The same argument as in Proposition6.7 also proves the following theorem.

Theorem 6.10 Let M be a hyperkähler manifold, and γ ∈ Aut(H∗(M)) an auto-
morphism of cohomology algebra preserving the Hodge decomposition and acting
on H 1,1(M) hyperbolically. Denote by α the eigenvalue of γ on H 2(M,R) with
|α| > 1. Replacing γ by γ2 if necessary, we may assume that α > 1. Then all eigen-
values of γ have absolute value which is a power of α1/2. Moreover, the eigenspace
of eigenvalue αk/2 on H d(M) is isomorphic to H

(d+k)
2 , (d−k)

2 (M). �
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