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Preface

Geometry Over Nonclosed Fields is a reference to an active area at the interface of
classical algebraic geometry and arithmetic geometry. In recent years, there has
been a rapid exchange of ideas between these domains: many questions concerning
integral or rational solutions of Diophantine equations become accessible via
complex or even symplectic geometric techniques. On the other hand, deep prob-
lems such as the rationality problem in algebraic geometry are now understood to
be related to arithmetic properties of function fields.

The papers in this proceedings volume of a Simons Symposium that took place
in 2015 are concerned with different aspects of this interaction.

The joint work of Bogomolov, Kamenova, Lu, and Verbitsky is devoted to the
study of the Kobayashi metric on compact hyperkähler manifolds. This metric is
defined via holomorphic maps of complex one-dimensional discs with standard
metric into the manifold. For any compact complex manifold, the Kobayashi metric
defines a unique compact metric space with a metric-continuous surjection of the
manifold to that space which induces the Kobayashi metric. Conjecturally, this
metric is trivial for compact hyperkähler manifolds. This would follow immediately
from a version of the SYZ conjecture for such manifolds, i.e., from the existence of
a smooth complex deformation to a hyperkähler manifold with a Lagrangian
fibration. However, this is not yet known for all manifolds of this type. In this
paper, the authors establish a partial result. Namely, they show that a compact
hyperkähler manifold with an automorphism of infinite order has everywhere
degenerate Kobayashi metric, i.e., the fibers of the projection to the compact metric
space have positive dimension.

The article of Debarre, Laface, and Roulleau is devoted to a classical problem of
describing lines on a cubic hypersurface. It is a well-known fact that a smooth cubic
surface has exactly 27 lines. This also holds for cubic surfaces over arbitrary
algebraically closed fields. However, there are examples of cubic surfaces over
nonclosed fields without lines, in particular, over arbitrarily large finite fields. Here,
the authors consider the following question: “Over which finite fields does every
smooth cubic hypersurface of dimension at least three contain at least one line?”
Their answer is close to optimal: they show that in dimension three a line exists
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when the finite field contains at least 11 elements and that there exist smooth cubic
threefolds without lines for fields with 2, 3, 4 or 5 elements. For fields with 7, 8, and
9 elements, the situation is still unclear. Cubic fourfolds contain lines over fields
with 2 or at least 5 elements, while there exist counterexamples over fields with
3 and 4 elements. All smooth cubics of dimension ≥ 5 contain lines.

Harder, Katzarkov, and Liu use long-standing rationality problems as an impetus
to develop a theory of perverse sheaves of categories, inspired by recent progress in
mathematical physics. This offers the prospect of connecting cohomological and
cycle-theoretic techniques (like decomposition of the diagonal) with geometric
structures arising from homological mirror symmetry, e.g., derived categories of
coherent sheaves and Lagrangian fibrations. These connections are fleshed out in
key examples like Fano threefolds and cubic hypersurfaces.

The contribution of de Jong and Starr is motivated by a desire to understand
Kontsevich moduli spaces of genus zero stable maps to smooth projective varieties.
These can have many irreducible components of varying dimensions but never-
theless carry a virtual fundamental class. When the moduli space happens to be
irreducible of the expected dimension, it is important to understand its place in the
Kodaira classification. Higher-order notions like rational simple connectedness
hinge on the rational connectedness of the moduli spaces, which often holds when
they admit negative canonical classes. This paper develops “virtual canonical
classes”, i.e., formulas in terms of tautological divisors that make sense even when
the moduli space is not integral.

Lieblich and Olsson explore modern formulations of the Torelli theorem for K3
surfaces. The original formulation states that two complex K3 surfaces with
isomorphic Hodge structures are in fact isomorphic. But if only the transcendental
cohomologies are isomorphic, then the K3 surfaces have equivalent derived cate-
gories of coherent sheaves. The notion of derived equivalence makes sense over
more general algebraically closed fields. Lieblich and Olsson explore these, iso-
lating a class of derived equivalences, strongly filtered equivalences, that suffice to
recover isomorphism classes of K3 surfaces. This builds on dramatic recent pro-
gress on the Tate conjecture for K3 surfaces.

Liedtke’s manuscript explores the observation that Galois-invariant globally
generated line bundles are associated with morphisms to Brauer–Severi varieties.
He considers this over arbitrary fields and carefully analyzes the associated
homomorphisms of Picard groups. He also revisits the classification of del Pezzo
surfaces from the perspective of morphisms to Brauer–Severi varieties.

Várilly–Alvarado’s article provides a survey of results and conjectures in the
arithmetic of K3 surfaces. The first topic concerns the structure and the computation
of Picard groups of K3 surfaces defined over arithmetic fields and their behavior
under reduction modulo primes. The second topic is Brauer groups of K3 surfaces
over arithmetic fields, their relation to the Hasse principle and Brauer–Manin
obstruction to the existence of rational points, and possible effective bounds on
the transcendental parts of Brauer groups. The last problem is analogous to the
Mazur–Merel theorem concerning effective uniform bounds for torsion of elliptic
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curves. An abundance of explicit examples will make this a great reference for
researchers working in this area.

Zarhin considers the odd-dimensional étale cohomology of an algebraic variety,
twisted by tensoring with a power of roots of unity. He generalizes a result of Serre:
if an abelian variety defined over K contains a point of order precisely m over K,
then K contains roots of unity of order m. This result follows from the existence of a
non-degenerate pairing on the one-dimensional cohomology group of an abelian
variety, modulo m, with values in the multiplicative group of m-th roots of unity.
Zarhin found a similar pairing for arbitrary twisted odd-dimensional cohomology.
Thus if the variety is defined over K and the Galois action on such cohomology
modulo m is trivial, then K contains roots of unity of order m.

New York, USA Fedor Bogomolov
Providence, USA Brendan Hassett
New York, USA Yuri Tschinkel
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On the Kobayashi Pseudometric, Complex
Automorphisms and Hyperkähler Manifolds

Fedor Bogomolov, Ljudmila Kamenova, Steven Lu
and Misha Verbitsky

Abstract We define the Kobayashi quotient of a complex variety by identifying
points with vanishing Kobayashi pseudodistance between them and show that if a
complex projective manifold has an automorphism whose order is infinite, then the
fibers of this quotient map are nontrivial. We prove that the Kobayashi quotients
associated to ergodic complex structures on a compact manifold are isomorphic. We
also give a proof of Kobayashi’s conjecture on the vanishing of the pseudodistance
for hyperkähler manifolds having Lagrangian fibrations without multiple fibers in
codimension one. For a hyperbolic automorphism of a hyperkähler manifold, we

Fedor Bogomolov–Partially supported by Simons Travel grant
Ljudmila Kamenova–Partially supported by NSF DMS-1502154
Steven Lu–Partially supported by an NSERC discovery grant
Misha Verbitsky–Partially supported by RScF grant, project 14-21-00053, 11.08.14.

F. Bogomolov (B)
Department of Mathematics, Courant Institute, NYU,
251 Mercer Street, New York, NY 10012, USA
e-mail: bogomolov@cims.nyu.edu

F. Bogomolov
Higher School of Economics, National Research University, Moscow, Russia

L. Kamenova
Department of Mathematics, 3-115, Stony Brook University,
Stony Brook, NY 11794-3651, USA
e-mail: kamenova@math.sunysb.edu

S. Lu
Départment de Mathématiques, PK-5151, Université du Québec à Montréal (UQAM),
C.P. 8888 Succersale Centreville H3C 3P8, Montreal, QC, Canada
e-mail: lu.steven@uqam.ca

M. Verbitsky
Laboratory of Algebraic Geometry, Faculty of Mathematics, National Research
University Higher School of Economics, 7 Vavilova Str., Moscow, Russia
e-mail: verbit@mccme.ru

M. Verbitsky
Département de Mathématique, Université Libre de Bruxelles, Campus de la Plaine,
C.P. 218/01, Boulevard du Triomphe, 1050 Brussels, Belgium

© Springer International Publishing AG 2017
F. Bogomolov et al. (eds.), Geometry Over Nonclosed Fields,
Simons Symposia, DOI 10.1007/978-3-319-49763-1_1

1



2 F. Bogomolov et al.

prove that its cohomology eigenvalues are determined by its Hodge numbers, com-
pute its dynamical degree and show that its cohomological trace grows exponentially,
giving estimates on the number of its periodic points.

1 Introduction

Kobayashi conjectured that a compact Kähler manifold with semipositive Ricci cur-
vature has vanishing Kobayashi pseudometric. In a previous paper [16] Kamenova–
Lu–Verbitsky have proved the conjecture for all K3 surfaces and for certain hyper-
kähler manifolds that are deformation equivalent to Lagrangian fibrations. Here we
give an alternative proof of this conjecture for hyperkähler Lagrangian fibrations
without multiple fibers in codimension one, see Sect. 3.

Theorem 1.1 Let f : M −→ B = CP
n be a hyperkähler Lagrangian fibration with-

out multiple fibers in codimension one over B. Then the Kobayashi pseudometric
dM vanishes identically on M and the Royden–Kobayashi pseudonorm | |M vanishes
identically on a Zariski open subset of M .

In Sect. 4, we explore compact complex manifolds M having an automorphism
of infinite order. If such a manifold is projective, we show that the Kobayashi
pseudometric is everywhere degenerate. For each point x ∈ M we define the subset
Mx ⊂ M of points in M whose pseudo-distance to x is zero. Define the relation
x ∼ y on M given by dM(x, y) = 0. There is a well defined set-theoretic quotient
map � : M −→ S = M/∼, called the Kobayashi quotient map. We say that | |M

is Voisin-degenerate at a point x ∈ M if there is a sequence of holomorphic maps
ϕn : Drn → M such that ϕn(0) → x, |ϕ′

n(0)|h = 1 and rn → ∞.

Theorem 1.2 Let M be a complex projective manifold with an automorphism f of
infinite order. Then the Kobayashi pseudo-metric dM is everywhere degenerate in
the sense that Mx �= {x} for all x ∈ M . The Royden–Kobayashi pseudo-norm | |M

is everywhere Voisin-degenerate. Moreover, every fiber of the map � : M −→ S
constructed above contains a Brody curve and is connected.

Define the Kobayashi quotient MK of M to be the space of all equivalence
classes {x ∼ y | dM(x, y) = 0} equipped with the metric induced from dM .

In Sect. 5, we show that the Kobayashi quotients for ergodic complex structures
are isometric, equipped with the natural quotient pseudometric. This generalizes the
key technical result of [16] for the identical vanishing of dM for ergodic complex
structures on hyperkähler manifolds.

Theorem 1.3 Let (M, I ) be a compact complex manifold, and (M, J ) its defor-
mation. Assume that the complex structures I and J are both ergodic. Then the
corresponding Kobayashi quotients are isometric.
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Finally in Sect. 6, we prove that the cohomology eigenvalues of a hyperbolic
automorphism of a hyperkähler manifold are determined by its Hodge numbers. We
compute its dynamical degree in the even cases and give an upper bound in the odd
cases.

Theorem 1.4 Let (M, I ) be a hyperkähler manifold, and T a hyperbolic automor-
phism acting on cohomology as γ. Denote by α the eigenvalue of γ on H 2(M,R)
with |α| > 1. Then all eigenvalues of γ have absolute value which is a power of α1/2.
Moreover, the maximal of these eigenvalues on even cohomology H 2d(M) is equal
to αd , and finally, on odd cohomology H 2d+1(M) the maximal eigenvalue of γ is
strictly less than α

2d+1
2 .

As a corollary we obtain that the trace Tr(γN ) grows asymptotically as αnN . We
also show that the number of k-periodic points grows as αnk .

The work on this paper started during the Simons Symposium “Geometry over
nonclosed fields” held in March, 2015. The authors are grateful to the Simons Foun-
dation for providing excellent research conditions.

2 Preliminaries

Definition 2.1 A hyperkähler (or irreducible holomorphic symplectic) manifold M
is a compact complex Kähler manifold with π1(M) = 0 and H 2,0(M) = Cσ where
σ is everywhere non-degenerate.

Recall that a fibration is a connected surjective holomorphic map. On a
hyperkähler manifold the structure of a fibration, if one exists, is limited by Mat-
sushita’s theorem.

Theorem 2.2 (Matsushita, [21]) Let M be a hyperkählermanifold and f : M −→ B
a fibration with 0 < dim B < dim M . Then dim B = 1

2 dim M and the general fiber
of f is a Lagrangian abelian variety. The base B has at worstQ-factorial log-terminal
singularities, has Picard number ρ(B) = 1 and −K B is ample.

Remark 2.3 B is smooth in all of the known examples. It is conjectured that B is
always smooth.

Theorem 2.4 (Hwang [15]) In the settings above, if B is smooth then B is isomor-
phic to CPn , where dimC M = 2n.

Definition 2.5 Given a hyperkähler manifold M , there is a non-degenerate integral
quadratic form q on H 2(M,Z), called the Beauville–Bogomolov–Fujiki form (BBK
form for short), of signature (3, b2 − 3) and satisfying the Fujiki relation

∫
M

α2n = c · q(α)n for α ∈ H 2(M,Z),
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with c > 0 a constant depending on the topological type of M . This form generalizes
the intersection pairing on K3 surfaces. For a detailed description of the form we
refer the reader to [2, 6, 13].

Remark 2.6 Given f : M −→ CP
n , h the hyperplane class on CPn , and α = f ∗h,

then α is nef and q(α) = 0.

Conjecture 2.7 [SYZ] If L is a nontrivial nef line bundle on M with q(L) = 0, then
L induces a Lagrangian fibration, given as above.

Remark 2.8 This conjecture is known for deformations ofHilbert schemes of points
on K3 surfaces (Bayer–Macrì [1]; Markman [20]), and for deformations of the gen-
eralized Kummer varieties Kn(A) (Yoshioka [36]).

Definition 2.9 The Kobayashi pseudometric on M is the maximal pseudometric
dM such that all holomorphic maps f : (D, ρ) −→ (M, dM) are distance decreasing,
where (D, ρ) is the unit disk with the Poincaré metric.

Definition 2.10 Amanifold M is Kobayashi hyperbolic if dM is a metric, otherwise
it is called Kobayashi non-hyperbolic.

Remark 2.11 In [17], it is asked whether a compact Kähler manifold M of semi-
positive Ricci curvature has identically vanishing pseudometric, which we denote
by dM ≡ 0. The question applies to hyperkähler manifolds but was unknown even
for the case of surfaces outside the projective case. But Kamenova–Lu–Verbitsky
(in [16]) have recently resolved completely the case of surfaces with the following
affirmative results.

Theorem 2.12 [16] Let S be a K3 surface. Then dS ≡ 0.

Remark 2.13 A birational version of a conjecture of Kobayashi [17] would state
that a compact hyperbolic manifold be of general type if its Kobayashi pseudometric
is nondegenerate somewhere (i.e. nondegenerate on some open set). This was open
for surfaces but now resolved outside surfaces of class VII.

Theorem 2.14 [16] Let M be a hyperkähler manifold of non-maximal Picard rank
and deformation equivalent to a Lagrangian fibration. Then dM ≡ 0.

Theorem 2.15 [16] Let M be a hyperkähler manifold with b2(M) ≥ 7 (expected to
always hold) and with maximal Picard rank ρ = b2 − 2. Assume the SYZ conjecture
for deformations of M . Then dM ≡ 0.

Remark 2.16 Except for the proof of Theorem2.15, we indicate briefly a proof
of these theorems below. Theorem2.15 is proved in [16] using the existence of
double Lagrangian fibrations on certain deformations of M . Here we give a different
proof of vanishing of theKobayashi pseudometric for certain hyperkähler Lagrangian
fibrations without using double fibrations.
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Definition 2.17 Let M be a compact complexmanifold andDiff0(M) the connected
component to identity of its diffeomorphism group. Denote by Comp the space
of complex structures on M , equipped with a structure of Fréchet manifold. The
Teichmüller space of M is the quotient Teich := Comp /Diff0(M). The Teichmüller
space is finite-dimensional for M Calabi–Yau [11]. Let Diff+(M) be the group of
orientable diffeomorphisms of a complex manifold M . The mapping class group
� := Diff+(M)/Diff0(M) acts on Teich. An element I ∈ Teich is called ergodic if
the orbit � · I is dense in Teich, where

� · I = {I ′ ∈ Teich : (M, I ) ∼ (M, I ′)}.

Theorem 2.18 (Verbitsky, [32]) If M is hyperkähler and I ∈ Teich, then I is ergodic
if and only if ρ(M, I ) < b2 − 2.

Remark 2.19 For a K3 surface (M, I ) not satisfying the above condition on the
Picard rank ρ, it is easily seen to admit Lagrangian (elliptic) fibrations over CP1

without multiple fibers, and it is projective. Then d(M,J ) ≡ 0 by Theorem3.2 below,
for example.

Proposition 2.20 Let (M, J ) be a compact complex manifold with d(M,J ) ≡ 0.
Let I ∈ Teich be an ergodic complex structure deformation equivalent to J . Then
d(M,I ) ≡ 0.

Proof Here we shall reproduce the proof from [16]. Consider the diameter function
diam : Teich −→ R�0, the maximal distance between two points. It is upper semi-
continuous (Corollary1.23 in [16]). Since the complex structure J is in the limit
set of the orbit of the ergodic structure I , by upper semi-continuity 0 � diam(I ) �
diam(J ) = 0. �

3 (Royden–)Kobayashi Pseudometric on Abelian
Fibrations

The following lemma is a generalization of Lemma3.8 in [8] to the case of abelian
fibrations. The generalization is given for example in the Appendix of [16]. Recall
that an abelian fibration is a connected locally projective surjective Kähler morphism
with abelian varieties as fibers.

Lemma 3.1 Let π : T −→ C be an abelian fibration over a non-compact complex
curve C which locally has sections and such that not all components of the fibers are
multiple. Then T has an analytic section over C . This is the case if π has no multiple
fibers.

Proof There is a Neron model N for T and a short exact sequence

0 −→ F −→ O(L) −→ O(N ) −→ 0
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where L is a vector bundle, F is a sheaf of groups Z2n with degenerations, i.e., sheaf
of discrete subgroups with generically maximal rank, andO(N ) is the sheaf of local
sections of N (whose general fibers are abelian varieties). Thus T corresponds to
an element θ in H 1(C,O(N )). There is an induced exact sequence of cohomolo-
gies: H 1(C,O(L)) −→ H 1(C,O(N )) −→ H 2(C, F). Note that H 1(C,O(L)) = 0
since C is Stein, and H 2(C, F) = 0 since it is topologically one-dimensional. Thus
θ = 0 and hence there is an analytic section. The last part of the lemma is given by
Proposition4.1 of [16]. �

Theorem 3.2 Let f : M −→ B = CP
n be a hyperkähler Lagrangian fibration with-

out multiple fibers in codimension one over B. Then dM ≡ 0 and | |M vanishes on a
nonempty Zariski open subset of M .

Proof The fibers of f are projective, and furthermore, there is a canonical polar-
ization on them (see [25, 26], respectively). This also follows from [31], Theorem
1.10, which implies that the given fibration is diffeomorphic to another fibration
f : M ′ −→ B with holomorphically the same fibers and the same base, but with
projective total space M ′. Standard argument (via the integral lattice in the “local”
Neron–Severi group) now shows that f is locally projective.

By assumption, there are nomultiple fibers outside a codimension 2 subset S ⊂ B
whose complement U contains at most the smooth codimension-one part D0 of the
discriminant locus of f where multiplicity of fibers are defined locally generically.
Since the pseudometric is unchanged after removing codimension 2 subsets [18], it
is enough to restrict the fibration to that over U .

LetC = P
1 be a line in B = P

n contained inU (and intersecting D0 transversely).
Then f restricts to an abelian fibration X = f −1(C) over C without multiple fibers
and so Lemma3.1 applies to give a section over the affine line A1 = C \ (∞).

As S is codimension two or higher, we can connect any two general points in
U by a chain of such A1’s in U . One can thus connect two general points x and y
on M by a chain consisting of fibers and sections over the above A1’s. Since the
Kobayashi pseudometric vanishes on each fiber and each such section, the triangle
inequality implies dM(x, y) = 0. Therefore dM vanishes on a dense open subset of
M and hence dM ≡ 0 by the continuity of dM .

The same argument gives the vanishing statement of | |M via TheoremA.2
of [16]. �

Remark 3.3 In the theorem above, it is sufficient to assume that B is nonsingular
and that dB ≡ 0, true if B is rationally connected. In fact, if one assumes further
the vanishing of | |B on a nonempty Zariski open, then the same is true for | |M ,
generalizing the corresponding theorems in [16]. The reader should have no difficulty
to see these by the obvious modifications of the above proof.
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4 Automorphisms of Infinite Order

We first sketch the proof of Kobayashi’s theorem that Kobayashi hyperbolic mani-
folds have only finite order automorphisms (Theorem9.5 in [17]).

Theorem 4.1 Let M be a Kobayashi hyperbolic manifold. Then its group of bira-
tional transformations is finite.

Proof First, notice that a birational self-map is a composition of a blow-up, an
automorphism and a blow-down. Since M contains no rational curves, any birational
self-map is holomorphic, and we need to prove the finiteness of the automorphism
group.

Observe that the automorphisms of a hyperbolic manifold are isometries of the
Kobayashi metric. Also the group of isometries of a compact metric space is com-
pact with respect to the compact open topology by a theorem of Dantzig and Van
der Waerden, see for example [18, Theorem 5.4.1]. On the other hand, compact
Kobayashi hyperbolic manifolds have no holomorphic vector fields, because each
such vector field gives an orbit which is an entire curve. This means that the group of
holomorphic automorphisms Aut(M) of M is discrete as it is a complex Lie group in
the compact open topology acting holomorphically on M by the work of Bochner–
Montgomery [4, 5]. Since Aut(M) is discrete and compact, this means it is finite.
�

Consider the pseudo-distance function dM : M × M −→ R, defined by the
Kobayashi pseudo-distance dM(x, y) on pairs (x, y). It is a symmetric continuous
function which is bounded for compact M . Since it is symmetric, we can consider
dM as a function on the symmetric product Sym2 M with dM = 0 on the diagonal.

Lemma 4.2 There is a compact space S with a continuous map � : M −→ S and
there is a distance function dS on S making S into a compact metric space such that
dM = dS ◦ ψ, where ψ : Sym2 M −→ Sym2 S is the map induced by �.

Proof The subset Mx ⊂ M of points y ∈ M with dM(x, y) = 0 is compact and con-
nected. The relation x ∼ y on M given by dM(x, y) = 0 is symmetric and transitive
so that Mx = My if and only if x ∼ y. So there is a well defined set-theoretic quo-
tient map� : M −→ S = M/∼. Note that the set S is equippedwith a natural metric
induced from dM . Indeed, dM(x ′, y′) is the same for any points x ′ ∈ Mx , y′ ∈ My ,
and hence dM induces a metric dS on S. This metric provides a topology on S, and
since the set Ux,ε = {y ∈ M | dM(x, y) < ε} is open, the map � : M −→ S is con-
tinuous. Thus the metric space S is also compact. This completes the proof of the
lemma. �

Remark 4.3 The natural quotient considered above was already proposed in [17]
albeit little seems to be known about its possible structure. In particular, it is known
that even when M is compact, S may not have the structure of a complex variety
[14]. As we note in Remark4.12, Campana conjectured that the Kobayashi metric
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quotient of a Kähler manifold has birational general type, and hence, a dense subset
of the metric quotient should carry a complex (even quasi-projective) structure for
such manifolds.

Remark 4.4 If there is a holomorphic family of varieties Xt smooth over a parameter
space T of say dimension 1, then the relative construction also works by considering
the problem via that of the total space over small disks in T . In particular, there is a
monodromy action on the resulting family of compact metric spaces St by isometries
over T , c.f. Sect. 5.

Let M be a complex manifold and h a hermitian metric on M with its associated
norm | |h .

Recall that a theorem of Royden says that the Kobayashi pseudo-metric dM can
be obtained by taking the infimum of path-integrals of the infinitesimal pseudonorm
| |M , where

|v|M = inf

{
1

R
| f : DR → M holomorphic, R > 0, f ′(0) = v

}
.

Here DR is the disk of radius R centred at the origin. Recall also that | |M is upper-
semicontinuous [29].

Definition 4.5 We say that | |M is Voisin-degenerate at a point x ∈ M if there is a
sequence of holomorphic maps ϕn : Drn → M such that

ϕn(0) → x, |ϕ′
n(0)|h = 1 and rn → ∞.

Observe that the locus Z M of M consisting of points where | |M is Voisin-
degenerate is a closed set.

Remark 4.6 If (x, v) ∈ Tx M is a point in the tangent bundle of M at x which
is Voisin-degenerate, then it does not necessarily follow that |v|M = 0, because the
Kobayashi pseudometric is semicontinuous but might not be continuous at that point.
However, the other implication is true: by upper semicontinuity, if |v|M = 0, then
for any sequence (xn, vn) −→ (x, v) we have |vn|M −→ 0, i.e., the point x is Voisin
degenerate in a strong sense.

The following theorem is essentially [35, Proposition 1.19].

Theorem 4.7 Consider the equivalence relation x ∼ y on M given by dM(x, y) = 0
where dM is the Kobayashi pseudo-metric on M . Then every non-trivial orbit (that
is, a non-singleton equivalence class) of this relation consists of Voisin-degenerate
points, and the union of such orbits is a closed set. If, further, M is compact, then
each nontrivial orbit contains the image of a nontrivial holomorphic map C → M .

We also need the following theorem.
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Theorem 4.8 Assume M is compact. Then each orbit of the equivalence relation
given above is connected.

Proof Let Mx be the orbit passing through x as before and

Mx (n) =
{

y ∈ X
∣∣ dX (x, y) � 1

n

}
.

Then each Mx (n) is compact and connected and Mx = ∩n Mx (n). If Mx is not con-
nected, then there are disjoint open sets U, V in M separating Mx leading to the
contradiction

∅ = (U ∪ V )c ∩ Mx = ∩n[(U ∪ V )c ∩ Mx (n)] �= ∅,

each (U ∪ V )c ∩ Mx (n) being nonempty compact as Mx (n) is connected. �
We want to exploit the existence of an automorphism of an infinite order for the

analysis of Kobayashi metric. The following conjecture provides with a necessary
argument for a projective manifold.

The rest of this section contains several arguments which suggest a possible strat-
egy to study the vanishing locus of Kobayashi metric on a projective manifold in
the presence of an infinite order automorphism. We label them as “conjectures” to
distinguish these suggestive arguments from the fully rigorous proofs. We plan to
put rigour to these heuristic arguments at some later date.

Conjecture 4.9 Let X be a complex projective manifold and [C] an ample class of
curves on X . Let U be an open domain in X and wh the volume form of a Kähler
metric h on X . Then for a sufficently big n there is a curve C1 ∈ [nC] such that
Volh(C ∩ U ) � (wh(U )/wh(X) − ε)Volh(C) for arbitrary small ε.

Sketch of a possible proof of this result: The result evidently holds for Pn and
Fubini-Study metric on Pn since Pn is homogeneous with respect to the Fubini-
Study metric. In this case it follows from the integral volume formula for the family
of projective lines, parametrized by the Grassmanian which surjects onto Pn . It
immediately implies the existence of lines which satisfy the inequality.

Similar formula holds for the family of algebraic curves of any given degree. In
particular we obtain an infinitesimal version of the formula which therefore holds
for any metric on projective space. Using a finite map of an n-dimensional projective
manifold X onto CPn we can derive the same formula for the Kähler pseudometrics
induced from CPn and then use its local nature for any X . �
Conjecture 4.10 Let f be an automorphismof infinite order on a complex projective
manifold X of dimension n. Assume that there is a domain U in X , a smooth Kähler
metric g on X and positive constants c, c′ such that cg � ( f m)∗g � c′g on U for all
powers f m of f . Then f is an isometry of (X, h) for some Kähler metric h on X
and hence some power of f is contained in a connected component of the group of
complex isometries of (X, h). In particular, X has a faithful holomorphic action by
an abelian variety.
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Sketch of a possible proof of this result: Let h be the pull back of the Fubini-
Study metric on X of the embedding corresponding to a very ample line bundle
L on X . Note that we can assume that ag � ( f m)∗h � a′g on Ū for some positive
constants a, a′ which are independent of the parameter m. Note that

∫
X ( f m)∗hn does

not depend on m since the class of the volume hn maps into itself. Therefore, we
have

μ′
∫

X
hn <

∫
Ū
( f m)∗hn < μ

∫
X

hn (4.1)

for some μ and μ′ independent of m. Let c be a class of ample (i.e., very movable)
curves. Then, for a sufficiently bigmultiple Nc of the class c, there are curvesC ∈ Nc
with

∫
C

⋂
Ū h > ν(h, c), and similarlywehave

∫
C

⋂
Ū ( f m)∗h > ν(( f m)∗h, c), where

(h, c) is a pairing of the homology class c and the class of kahler metric h. Since

a
∫

C
⋂

Ū
g <

∫
C

⋂
Ū
( f m)∗h < a′

∫
C

⋂
Ū

g,

we obtain that (( f m)∗h, c) is bounded from above by a′(g, c) and from below by
by a(g, c) for any ample class. Since ample classes generate the dual N1(X)R of
NS(X) ⊗ R we obtain that ( f m)∗h as linear functional on N1(X) ⊗ R is contained
in a bounded subset.

A slightly more direct argument for this last boundedness is as follows. Since each
f m∗h represents a Kähler class, it is sufficient to bound them from above as linear
functionals on ample classes c of curves. Note that the first inequality in Eq.4.1 says
that w f m∗h(U ) > μ′wh(X) with μ′ independent of m. By the previous lemma, one
can therefore choose Cm ∈ c such that

(( f m)∗h, c) = Vol( f m )∗h(Cm) � δ

∫
Cm

⋂
Ū
( f m)∗h < δa′

∫
Cm

⋂
Ū

g � γ(g, c),

where δ is independent of m and γ = δa′.
Since there are only a finite number of integral classes in any bounded set in

NS(X)R, it follows that f m0 leaves invariant the Káhler class of h for some m0 �= 0
and we may therefore assume that f itself leaves it invariant. In the case of Ricci-
flat X , f must therefore be an isometry with respect to the unique Ricci-flat metric
in the Kähler class given by Yau’s solution to the Calabi conjecture. In general,
if H 1(X, C) = 0, then f is induced from a projective action on P N under a map
X → P N . If H 1(X, C) �= 0, then we have a map from X × Pic0(X) to a projective
family of projective spaces {P(H 0(Lt )

∨), t ∈ Pic0(X)} over Pic0(X) and Lt defines
a very ample invariant invertible sheaf on X × Pic0(X) over Pic0(X). Hence, f has
to be a complex isometry on X which completes the argument. �

Conjecture 4.11 Let M be a projective manifold with an automorphism f of infi-
nite order. Then the Kobayashi pseudo-metric dM is everywhere degenerate in the
sense that Mx �= {x} for all x ∈ M . Also the Kobayashi–Royden pseudo-norm | |M
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is everywhere Voisin-degenerate. Moreover, every fiber of the map � : M −→ S
constructed above contains a Brody curve and is connected.

Sketch of a possible proof of this result: The map f : M −→ M commutes with
the projection onto S, and hence, induces an isometry on S. Since the action of f has
infinite order on S, there is a sequence of powers f Ni which converges to the identity
on S by the compactness of the group Isom(S) of isometries of S (in the compact
open topology) and by setting Ni = ni − ni−1 for a convergent subsequence f ni in
Isom(S). We assume arguing by contradiction that dM is non-degenerate at a point
x ∈ M . Let U be the maximal subset in M where � is a local isomorphism. Since
the subsets Mx are connected, thenU is exactly the subset where� is an embedding.
The set U is invariant under f and is open by Theorem4.7. Hence, f Ni converges
to the trivial action on U . The boundary ∂U of U is a compact subset in M with
∂U �= Ū and dM(x, ∂U ) > 0 for any point x ∈ U . Thus, a compact subsetUε which
consists of points x ∈ U with dM(x, ∂U ) � ε is f -invariant and the restriction of dM

on Uε is a metric. It is also invariant under the action of f and by theorem of Royden
([28, Theorem2]) we know that there are smooth Kähler metrics g, g′ on X with the
property that g′ > dM � g on Uε. Applying Conjecture4.10 we obtain that f is an
isometry on M with respect to some Kähler metric. Thus, either M has a nontrivial
action of a connected algebraic group, and hence, trivial Kobayshi pseudometric, or
f is of finite order which contradicts our assumption. Thus, we obtain a contradiction
also with our initial assertion that dM is metric on some open subset in M .

Note that a limit of Brody curves is again a nontrivial Brody curve by Brody’s
classical argument. By Theorem4.7, this implies that the map� : M −→ S is every-
where degenerate, as it is degenerate in the complement of an everywhere dense open
subset. �

Remark 4.12 In [9, Conjecture9.16], F. Campana conjectured that the Kobayashi
quotient map of a complex projective manifold M should coincide (in the birational
category) with the “core map” of M , with fibers which are “special” and the base
which is a “general type” orbifold. Then Conjecture4.11 would just follow, because
the automorphism group of a general type variety is finite. Then a general fiber
of the Kobayashi quotient map contains infinitely many points, hence its fibers are
positively dimensional.

Remark 4.13 Note that both conditions of Conjecture4.10 are sharp. It was shown
by McMullen [23] that there are Kahler non-projective K3 surfaces with automor-
phisms of infinite order which contain invariant domains isomorphic to the two-
dimensional ball. There are also examples by Bedford and Kim [3] of rational pro-
jective surfaces X with automorphisms of infinite order which contain an invariant
ball. In this case there are no invariant volume forms on the variety X .
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5 Metric Geometry of Kobayashi Quotients

Definition 5.1 Let M be a complex manifold, and dM its Kobayashi pseudometric.
Define the Kobayashi quotient MK of M as the space of all equivalence classes
{x ∼ y | dM(x, y) = 0} equipped with the metric induced from dM .

The main result of this section is the following theorem.

Theorem 5.2 Let (M, I ) be a compact complex manifold, and (M, J ) its defor-
mation. Assume that the complex structures I and J are both ergodic. Then the
corresponding Kobayashi quotients are isometric.

Proof Consider the limit lim νi (I ) = J , where νi is a sequence of diffeomorphisms
of M . For each point x ∈ (M, I ), choose a limiting point ν(x) ∈ (M, J ) of the
sequence νi (x). Fix a dense countable subset M0 ⊂ M and replace the sequence
νi by its subsequence in such a way that ν(m) := lim νi (m) is well defined for all
m ∈ M0.

By the upper-semicontinuity of the Kobayashi pseudometric, we have

d(M,J )(ν(x), ν(y)) � d(M,I )(x, y). (5.1)

Let C0 be the union of all ν(x) for all x ∈ M0. Define a map ψ : C0 −→ (M, I )
mapping z = ν(x) to x (if there are several choices of such x , choose one in arbitrary
way). By (5.1), the mapψ is 1-Lipschitz with respect to the Kobayashi pseudometric.
We extend it to a Lipschitz map on the closure C of C0. For any x ∈ (M, J ), the
Kobayashi distance between x and ψ(ν(x)) is equal zero, also by (5.1). Therefore, ψ
defines a surjectivemap onKobayashi quotients:� : CK −→ (M, I )K . Exchanging
I and J , we obtain a 1-Lipshitz surjective map � : C ′

K −→ (M, J )K , where C ′
K is

a subset of (M, I )K . Taking a composition of � and �, we obtain a 1-Lipschitz,
surjective map from a subset of (M, I )K to (M, I )K . The following proposition
shows that such a map is always an isometry, finishing the proof of Theorem5.2. �

Proposition 5.3 Let M be a compact metric space, C ⊂ M a subset, and f :
C −→ M a surjective 1-Lipschitz map. Then C = M and f is an isometry.

Proposition5.3 is implied by the following three lemmas, some which are exer-
cises found in [7].

Lemma 5.4 Let M be a compact metric space, C ⊂ M a subset, and f : C −→ M
a surjective 1-Lipschitz map. Then M is the closure of C .

Proof Suppose that M is not the closure C̄ ofC . Takeq ∈ M\C̄ , and let ε = d(q, C̄).
Define pi inductively, p0 = q, f (pi+1) = pi . Let p ∈ C̄ be any limit point of
the sequence {pi }, with limi pni = p. Since f m(pn) ∈ C for any m < n, one has
f m(p) ∈ C̄ .
Clearly, f ni (pni ) = q. Take ni such that d(p, pni ) < ε. Then d( f ni (p), q) < ε.

This is a contradiction, because f n(p) ∈ C̄ and ε = d(q, C̄). �
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Lemma 5.5 Let M be a compact metric space, and f : M −→ M an isometric
embedding. Then f is bijective.

Proof Follows from Lemma5.4 directly. �

Lemma 5.6 Let M be a compact metric space, and f : M −→ M a 1-Lipschitz,
surjective map. Then f is an isometry.

Proof Let d be the diameter of M , and let K be the space of all 1-Lipschitz functions
μ : M −→ [0, d]with the sup-metric. By the Arzela–Ascoli theorem, K is compact.
Now, f ∗ defines an isometry from K to itself, μ −→ μ ◦ f . For any z ∈ M , the func-
tion dz(x) = d(x, z) belongs to K . However, d f (z) does not belong to the image of f ∗
unless d(z, x) = d( f (z), f (x)) for all x , because if d(z, x) < d( f (z), f (x)), one
has ( f ∗)−1(d f (z))( f (x)) = d(z, x) > d( f (z), f (x)), hence ( f ∗)−1(d f (z)) cannot be
Lipschitz. This is impossible by Lemma5.5, because an isometry from K to itself
must be bijective. Therefore, the map f : M −→ M is an isometry. �

The proof of Proposition5.3 easily follows from Lemmas5.6 and 5.4. Indeed, by
Lemma5.4, f is a surjective, 1-Lipschitz map from M to itself, and by Lemma5.6
it is an isometry. �

6 Eigenvalues and Periodic Points of Hyperbolic
Automorphisms

The following proposition follows from a simple linear-algebraic observation.

Proposition 6.1 Let T be a holomorphic automorphism of a hyperkähler manifold
(M, I ), and γ : H 2(M) −→ H 2(M) the corresponding isometry of H 2(M). Then
γ has at most 1 eigenvalue α with |α| > 1, and such α is real.

Proof Since T is holomorphic, γ preserves the Hodge decomposition

H 2(M,R) = H (2,0)+(0,2)(M,R) ⊕ H 1,1(M,R).

Since theBBF form is invariant under γ and is positive definite on H (2,0)+(0,2)(M,R),
the eigenvalues of γ are |αi | = 1 on this space. On H 1,1(M,R), the BBF form has
signature (+,−,−, ...,−), hence γ can be considered as an element of O(1, n).
However, it is well known that any element of SO(1, n) has at most 1 eigenvalue α
with |α| > 1, and such α is real. �

Definition 6.2 An automorphism of a hyperkähler manifold (M, I ) or an automor-
phism of its cohomology algebra preserving the Hodge type is called hyperbolic if
it acts with an eigenvalue α, |α| > 1 on H 2(M,R).
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In holomorphic dynamics, there are many uses for the d-th dynamical degree
of an automorphism, which is defined as follows. Given an automorphism T of a
manifold M , we consider the corresponding action on H d(M,R), and d-th dynamical
degree is logarithm of the maximal absolute value of its eigenvalues. In [27], K.
Oguiso has shown that the dynamical degree of a hyperbolic automorphism is positive
for all even d, and computed it explicitly for automorphisms of Hilbert schemes of
K3 which come from automorphisms of K3. For 3-dimensional Kähler manifolds,
dynamical degree was computed by F. Lo Bianco [19].

We compute the dynamical degree and the maximal eigenvalue of the automor-
phism action on cohomology for all even d and give an upper bound for odd ones.
We also compute asymptotical growth of the trace of the action of T N in cohomol-
ogy, which could allow one to prove that the number of quasi-periodic points grows
polynomially as the period grows. One needs to be careful here, because there could
be periodic and fixed subvarieties, and their contribution to the Lefschetz fixed point
formula should be calculated separately.

Theorem 6.3 Let (M, I ) be a hyperkähler manifold, and T a hyperbolic automor-
phism acting on cohomology as γ. Denote by α the eigenvalue of γ on H 2(M,R)
with |α| > 1. Then all eigenvalues of γ have absolute value which is a power of α1/2.
Moreover, the maximal of these eigenvalues on even cohomology H 2d(M) is equal
to αd , and finally, on odd cohomology H 2d+1(M) the maximal eigenvalue of γ is
strictly less than α

2d+1
2 .

Remark 6.4 Since the Kähler cone of M is fixed by γ, α is positive; see e.g. [10].

Remark 6.5 From Theorem6.3, it follows immediately that Tr(γN ) grows asymp-
totically as αnN .

We prove Theorem6.3 at the end of this section.
Recall that the Hodge decomposition defines multiplicative action of U (1) on

cohomology H∗(M), with t ∈ U (1) ⊂ C acting on H p,q(M) as t p−q . In [34], the
group generated by U (1) for all complex structures on a hyperkähler manifold was
computed explicitly, and it was found that it is isomorphicG = Spin+(H 2(M,R), q)
(with center acting trivially on even-dimensional forms andas−1onodd-dimensional
forms; see [33]). Here Spin+ denotes the connected component.

In [30], it was shown that the connected component of the group of automorphisms
of H∗(M) is mapped to G surjectively and with compact kernel ([30, Theorem3.5]).
Therefore, to study the eigenvalues of automorphisms of H∗(M), we may always
assume that they belong to G.

Now, the eigenvalues of g ∈ G on its irreducible representations can always be
computed using the Weyl character formula. The computation is time-consuming,
and insteadof usingWeyl character formula,weuse the following simple observation.

Claim 6.6 Let G be a group, and V its representation. Then the eigenvalues of g
and xgx−1 are equal for all x, g ∈ G. �
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To proveTheorem6.3,we replace one-parametric group containing the hyperbolic
automorphism by another one-parametric group adjoint to it in G, and describe this
second one-parametric group in terms of the Hodge decomposition.

Proposition 6.7 Let (M, I ) be a hyperkähler manifold, and γ an automorphism of
the ring H∗(M). Assume that γ acts on H 2(M) with an eigenvalue α > 1. Then
all eigenvalues of γ have absolute value which is a power of α1/2. Moreover, the
maximal of these eigenvalues on even cohomology H 2d(M) is equal to αd (with
eigenspace of dimension 1), and on odd cohomology H 2d+1(M) it is strictly less
than α

2d+1
2 .

Proof Denote by G the group of automorphisms of H∗(M). As shown above, its
Lie algebra is (so)(3, b2(M) − 3), hence the connected component of G is a simple
Lie group.

Write the polar decomposition γ = γ1 ◦ β, where γ1 ∈ G has eigenvalues
α,α−1, 1, 1, ..., 1, β belongs to the maximal compact subgroup, and they commute.
Clearly, the eigenvalues of β on V are of absolute value 1, and absolute values of
eigenvalues of γ and γ1 are equal. Therefore, we can without restricting generality
assume that γ = γ1 has eigenvalues α,α−1, 1, 1, ..., 1.

Consider now the following one-parametric subgroup of the complexification
GC ⊂ Aut(H∗(M,C)): ρ(t) acts on H p,q as t p−q , t ∈ R. The corresponding ele-
ment of the Lie algebra has only two non-zero real eigenvalues in adjoint action.
Clearly, all one-parametric subgroups of GC = Spin(H 2(M,C)) with this property
are conjugate. This implies that γ is conjugate to an element ρ(α).

By Claim6.6, γ and ρ(α) have the same eigenvalues, and ρ(α) clearly has eigen-
values α

d−i
2 ,α

d−i−1
2 , ...α

i−d
2 on H d(M). �

Corollary 6.8

lim
n −→ ∞

log Tr( f n)
∣∣

H∗(M)

n
= d logα,

where 2d = dimC M . In particular, the number of k-periodic points grows as αnk ,
assuming that they are isolated. �

Remark 6.9 The case when f admits non-isolated periodic points is treated in [12],
who prove that the number of isolated k-periodic points still grows no faster than
αnk ; the lower bound is still unknown.

The same argument as in Proposition6.7 also proves the following theorem.

Theorem 6.10 Let M be a hyperkähler manifold, and γ ∈ Aut(H∗(M)) an auto-
morphism of cohomology algebra preserving the Hodge decomposition and acting
on H 1,1(M) hyperbolically. Denote by α the eigenvalue of γ on H 2(M,R) with
|α| > 1. Replacing γ by γ2 if necessary, we may assume that α > 1. Then all eigen-
values of γ have absolute value which is a power of α1/2. Moreover, the eigenspace
of eigenvalue αk/2 on H d(M) is isomorphic to H

(d+k)
2 , (d−k)

2 (M). �
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• n ≥ 5.
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1 Introduction

The study of rational points on hypersurfaces in the projective space defined over a
finite field has a long history.Moreover, ifX ⊂ Pn+1 is a (smooth) cubic hypersurface,
the (smooth) variety F(X) parametrizing lines contained in X is an essential tool for
the study of the geometry of X. Therefore, it seems natural to investigate F(X) when
X is a cubic hypersurface defined over a finite field Fq and the first question to ask is
whether X contains a line defined over Fq.

One easily finds smooth cubic surfaces defined over Fq containing no Fq-lines,
with q arbitrarily large. On the other hand, if dim(X) ≥ 5, the variety F(X), when
smooth, has ample anticanonical bundle, and it follows from powerful theorems of
Esnault and Fakhruddin–Rajan that X always contains an Fq-line (Sect. 6). So the
interesting cases are when dim(X) = 3 or 4.

When X is a smooth cubic threefold, F(X) is a smooth surface of general type.
Using a recent formula of Galkin–Shinder which relates the number of Fq-points on
F(X)with the number ofFq- andFq2 -points onX (Sect. 2.3), we find the zeta function
of F(X) (Theorem 4.1). Using the Weil conjectures, we obtain that a smooth X
always contains Fq-lines when q ≥ 11 (Theorem 4.4). Fq-lines using a computer, we
produce examples of smooth cubic threefolds containing no lines for q ∈ {2, 3, 4, 5}
(Sect. 4.5.4), leaving only the cases where q ∈ {7, 8, 9} open, at least when X is
smooth.

Theorem 4.1 can also be used for explicit computations of the zeta function of
F(X). For that, one needs to know the number of Fqr -points of X for sufficiently
many r. Direct computations are possible for small q or when X has symmetries (see
Sect. 4.5.1 for Fermat hypersurfaces, Sect. 4.5.2 for the Klein threefold, and [19]
for cyclic cubic threefolds). If X contains an Fq-line, it is in general faster to use
the structure of conic bundle on X induced by projection from this line, a method
initiated by Bombieri and Swinnerton-Dyer in 1967 (Sect. 4.3). This is illustrated by
an example in Sect. 4.5.3, where we compute the zeta function of a cubic X and of
its Fano surface F(X) in characteristics up to 31. In all these examples, once one
knows the zeta function of F(X), the Tate conjecture (known for Fano surfaces, see
Remark 4.2) gives its Picard number. It is also easy to determine whether its 5-
dimensional Albanese variety A(F(X)) is simple, ordinary, supersingular...

Singular cubics tend to contain more lines (Example 4.17). When X is a cubic
threefold with a single node, the geometry of F(X) is closely related to that of a
smooth genus-4 curve ([9, 20]; see also [14, Example 5.8]). Using the results of [16]
on pointless curves of genus 4, we prove that X always contains Fq-lines when q ≥ 4
(Corollary 4.8) and produce examples for q ∈ {2, 3} where X contains no Fq-lines
(Sect. 4.5.5).

When X is a smooth cubic fourfold, F(X) is a smooth fourfold with trivial canon-
ical class. Using again the Galkin–Shinder formula, we compute the zeta function of
F(X) (Theorem 5.1) and deduce from theWeil conjectures that X contains an Fq-line
when q ≥ 5 (Theorem 5.2). Since the cohomology of OF(X) is very simple (it was
determined by Altman and Kleiman; see Proposition 5.3), we apply the Katz trace
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formula and obtain that X still contains an Fq-line when q = 2 (Corollary 5.4). This
leaves the cases where q ∈ {3, 4} open, at least when X is smooth. We suspect that
any cubic fourfold defined over Fq should contain an Fq-line.

2 Definitions and Tools

2.1 The Weil and Tate Conjectures

Let Fq be a finite field with q elements and let � be a prime number prime to q.
Let Y be a projective variety of dimension n defined over Fq. For every integer

r ≥ 1, set
Nr(Y) := Card

(
Y(Fqr )

)

and define the zeta function

Z(Y ,T) := exp
(∑
r≥1

Nr(Y)
Tr

r

)
.

Let Fq be an algebraic closure of Fq and let Y be the variety obtained from Y
by extension of scalars from Fq to Fq. The Frobenius morphism F : Y → Y acts on
the étale cohomology H•(Y ,Q�) by a Q�-linear map which we denote by F∗. We
have Grothendieck’s Lefschetz Trace formula ([22, Theorem 13.4, p. 292]): for all
integers r ≥ 1,

Nr(Y) =
∑

0≤i≤2n

(−1)i Tr
(
F∗r,Hi(Y ,Q�)

)
. (1)

If Y is moreover smooth, the Weil conjectures proved by Deligne in [10, Théorème
(1.6)] say that for each i, the (monic) characteristic polynomial

Qi(Y ,T) := det
(
T Id−F∗,Hi(Y ,Q�)

)

has integral coefficients and is independent of �; in particular, so is its degree bi(Y) :=
hi(Y ,Q�), called the i-th Betti number ofY . All the conjugates of its complex rootsωij

have modulus qi/2. Poincaré duality implies b2n−i(Y) = bi(Y) and ω2n−i,j = qn/ωij

for all 1 ≤ j ≤ bi(Y).
We can rewrite the trace formula (1) as

Nr(Y) =
∑

0≤i≤2n

(−1)i
bi(Y)∑
j=1

ωr
ij (2)

or
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Z(Y ,T) =
∏

0≤i≤2n

Pi(Y ,T)(−1)i+1
. (3)

Finally, it is customary to introduce the polynomials

Pi(Y ,T) := det
(
Id−TF∗,Hi(Y ,Q�)

) = Tbi(Y)Qi

(
Y ,

1

T

)
=

bi(Y)∏
j=1

(1 − ωijT). (4)

Whenever i is odd, the real roots of Qi(Y ,T) have even multiplicities ([11, Theo-
rem 1.1.(b)]), hence bi(Y) is even. We can therefore assume ωi,j+bi(Y)/2 = ω̄ij for all
1 ≤ j ≤ bi(Y)/2, or Tbi(Y)Qi(Y , qi/T) = qibi(Y)/2Qi(Y ,T). Ifm := b1(Y)/2, we will
write

Q1(Y ,T) = T 2m + a1T
2m−1 + · · · + amT

m + qamT
m+1 + · · · + qm−1a1T + qm.

(5)

The Tate conjecture for divisors on Y states that the Q�-vector space in
H2

(
Y ,Q�(1)

)
generated by classes ofFq-divisors is equal to the space ofGal(Fq/Fq)-

invariants classes and that its dimension is equal to the multiplicity of q as a root of
the polynomial Q2(Y ,T) ([29, Conjecture 2, p. 104]).

2.2 The Katz Trace Formula

Let Y be a proper scheme of dimension n over Fq. The endomorphism f �→ f q ofOY

induces an Fq-linear endomorphism Fq of the Fq-vector spaceH•(Y ,OY ) and for all
r ≥ 1, one has ([18], Corollaire 3.2)

Nr(Y) · 1Fq ≡
n∑

j=0

(−1)j Tr
(
Fr
q,H

j(Y ,OY )
)

in Fq. (6)

In particular, the right side, which is a priori in Fq, is actually in the prime subfield
of Fq.

2.3 The Galkin–Shinder Formulas

Let X ⊂ Pn+1
Fq

be a reduced cubic hypersurface defined over Fq, with singular set
Sing(X).

We let F(X) ⊂ Gr(1,Pn+1
Fq

) be the scheme of lines contained in X, also
defined over Fq. When n ≥ 3 and Sing(X) is finite, F(X) is a local complete
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intersection of dimension 2n − 4, smooth if X is smooth, and geometrically con-
nected ([2, Theorem1.3 and Corollary1.12]).

In the Grothendieck ring of varieties over Fq, one has the relation
([14, Theorem 5.1])

L
2[F(X)] = [X(2)] − (1 + L

n)[X] + L
n[Sing(X)], (7)

where X(2) := X2/S2 is the symmetric square of X and, as usual, L denotes the class
of the affine line. Together with the relation [14, (2.5)], it implies that, for all r ≥ 1,
we have ([14, Corollary 5.2.3)])

Nr
(
F(X)

) = Nr(X)2 − 2(1 + qnr)Nr(X) + N2r(X)

2q2r
+ q(n−2)rNr

(
Sing(X)

)
. (8)

2.4 Abelian Varieties Over Finite Fields

Let A be an abelian variety of dimension n defined over a finite field Fq of charac-
teristic p and let � be a prime number prime to p. The Z�-module H1(A,Z�) is free
of rank 2n and there is an isomorphism

∧•H1(A,Q�)
∼→H•(A,Q�) (9)

of Gal(Fq/Fq)-modules.
An elliptic curve E defined over Fq is supersingular if its only p-torsion point is 0.

All supersingular elliptic curves are isogenous. The abelian varietyA is supersingular
if AFq

is isogenous to En, where E is a supersingular elliptic curve (in particular, any

two supersingular abelian varieties are isogenous over Fq). The following conditions
are equivalent ([15, Theorems 110, 111, and 112])

(i) A is supersingular;
(ii) Q1(AFqr ,T) = (T ± qr/2)2n for some r ≥ 1;
(iii) Card

(
A(Fqr )

) = (qr/2 ± 1)2n for some r ≥ 1;
(iv) each complex root of Q1(A,T) is

√
q times a root of unity;

(v) in the notation of (5), if q = pr , one has p�rj/2
 | aj for all j ∈ {1, . . . , n}.
If condition (ii) is satisfied, one has Q2(AFqr ,T) = (T − qr)n(2n−1) and the Tate con-
jecture, which holds for divisors on abelian varieties, implies that the Picard number
of AFqr , hence also the geometric Picard number of A, is n(2n − 1), the maximal pos-
sible value. Conversely, when n > 1, if AFqr has maximal Picard number for some r,
the abelian variety A is supersingular.

The abelian variety A is ordinary if it contains pn (the maximal possible number)
p-torsion Fq-points. This is equivalent to the coefficient an of Tn in Q1(A,T) being



24 O. Debarre et al.

prime to p; if this is the case, A is simple (over Fq) if and only if the polynomial
Q1(A,T) is irreducible (see [17, Sect. 2]).

3 Cubic Surfaces

There exist smooth cubic surfaces defined over Fq containing no Fq-lines, with q
arbitrarily large. This is the case for example for the diagonal cubics defined by

x31 + x32 + x33 + ax34 = 0,

where a ∈ Fq is not a cube. If q ≡ 1 (mod 3), there is such an a, since there are
elements of order 3 in F×

q , hence the morphism F×
q → F×

q , x �→ x3 is not injective,
hence not surjective.

4 Cubic Threefolds

4.1 The Zeta Function of the Surface of Lines

Let X ⊂ P4
Fq

be a smooth cubic hypersurface defined over Fq. Its Betti numbers are
1, 0, 1, 10, 1, 0, 1, and the eigenvalues of the Frobenius morphism acting on the
10-dimensional vector space H3(X,Q�) are all divisible by q as algebraic integers
([18, Remark 5.1]). We can therefore write (1) as

Nr(X) = 1 + qr + q2r + q3r − qr
10∑
j=1

ωr
j ,

where, by the Weil conjectures proved by Deligne (Sect. 2.1), the complex algebraic
integers ωj (and all their conjugates) have modulus

√
q. The trace formula (3) reads

Z(X,T) = P3(X,T)

(1 − T)(1 − qT)(1 − q2T)(1 − q3T)
,

where P3(X,T) = ∏10
j=1(1 − qωjT). If we set

Mr(X) := 1

qr
(
Nr(X) − (1 + qr + q2r + q3r)

) = −
10∑
j=1

ωr
j , (10)

we obtain
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P3(X,T) = exp
(∑
r≥1

Mr(X)
(qT)r

r

)
. (11)

We will show in Sect. 4.3 that the numbers Mr(X) have geometric significance.

Theorem 4.1 Let X ⊂ P4
Fq

be a smooth cubic hypersurface defined over Fq and let
F(X) be the smooth surface of lines contained in X. With the notation (4), we have

P1(F(X),T) = P3(X,T/q) =:
∏

1≤j≤10

(1 − ωjT),

P2(F(X),T) =
∏

1≤j<k≤10

(1 − ωjωkT),

P3(F(X),T) = P3(X,T) =
∏

1≤j≤10

(1 − qωjT),

where the complex numbers ω1, . . . ,ω10 have modulus
√
q. In particular,

Z(F(X),T) =
∏

1≤j≤10(1 − ωjT)
∏

1≤j≤10(1 − qωjT)

(1 − T)(1 − q2T)
∏

1≤j<k≤10(1 − ωjωkT)
. (12)

Proof There are several ways to prove this statement. The first is to prove that there
are isomorphisms

H3(X,Q�)
∼→H1(F(X),Q�(−1)

)
and

∧2H1(F(X),Q�)
∼→H2(F(X),Q�)

of Gal(Fq/Fq)-modules. The first isomorphism holds with Z�-coefficients: if we
introduce the incidence variety I = {(L, x) ∈ F(X) × X | x ∈ L}with its projections
pr1 : I → F(X) and pr2 : I → X, it is given by pr1∗ pr∗2 ([8, p. 256]). The second
isomorphism follows, by standard arguments using smooth and proper base change,
from the analogous statement in singular cohomology, over C, which is proven in
[25, Proposition 4].

These isomorphisms (and Poincaré duality) then imply the formulas for the poly-
nomials Pi(F(X),T) given in the theorem.

Alternatively, simply substituting in the definition of Z(F(X),T) the values for
Nr(F(X)) given by the Galkin–Shinder formula (8) directly gives (12), from which
one deduces the formulas for the polynomials Pi(F(X),T). �

Remark 4.2 (The Tate conjecture for F(X)) The Tate conjecture for the surface
F(X) (see Sect. 2.1) was proved in [25] over any field k of finite type over the prime
field, of characteristic other than 2.This last restriction can in fact be lifted as follows:
the proof in [25] rests on the following two facts

(a) F(X) maps to its (5-dimensional) Albanese variety A(F(X)) onto a surface with
class a multiple of θ3, where θ is a principal polarization on A(F(X));
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(b) b2(A(F(X))) = b2(F(X)).

Item (a) is proved (in characteristic �= 2) via the theory of Prym varieties ([4,
Proposition 7]). For item (b), we have dim(A(F(X))) = h1(F(X),OF(X)) = 5 ([2,
Proposition (1.15)]), hence b2(A(F(X))) = (2 dim(A(X))

2

) = 45, whereas b2(F(X)) =
deg

(
P2(F(X),T)

) = 45 by Theorem 4.1.
To extend (a) to all characteristics, we consider X as the reduction modulo the

maximal idealm of a smooth cubicX defined over a valuation ring of characteristic
zero. There is a “difference morphism” δF(X) : F(X) × F(X) → A(F(X)), defined
overk, which is the reductionmodulom of the analogousmorphism δF(X ) : F(X ) ×
F(X ) → A

(
F(X )

)
. By [4, Proposition 5], the image of δF(X ) is a divisor which

defines a principal polarization ϑ on A
(
F(X )

)
, hence the image of δF(X) is also a

principal polarization on A(F(X)), defined over k.
Since the validity of the Tate conjecture is not affected by passing to a finite

extension of k, we may assume that F(X) has a k-point, which we lift to F(X ). We
can then define Albanese morphisms, and aF(X) : F(X) → A(F(X )) is the reduction
modulo m of aF(X ) : F(X ) → A(F(X )). The image of aX has class ϑ3/3! ([4,
Proposition 7]), hence the image of aF(X) also has class (ϑ|A(X))

3/3! (this class is
not divisible in H6(A(X),Z�), hence aF(X) is generically injective). This proves (a),
hence the Tate conjecture for F(X), in all characteristics.

Going back to the case where k is finite, Theorem 4.1 implies the equality
Q2(F(X),T) = Q2(A(F(X)),T). Since the Tate conjecture holds for divisors on
abelian varieties, this proves that F(X) and A(F(X)) have the same Picard num-
bers, whose maximal possible value is 45.

Corollary 4.3 Let 2m± be the multiplicity of the root ±√
q of Q1(F(X),T) and

let m1, . . . ,mc be the multiplicities of the pairs of non-real conjugate roots of
Q1(F(X),T), so that m+ + m− + ∑c

i=1 mi = 5. The Picard number of F(X) is then

ρ(F(X)) = m+(2m+ − 1) + m−(2m− − 1) +
c∑

i=1

m2
i .

We have ρ(F(X)) ≥ 5, with equality if and only if Q1(F(X),T) has no multiple roots.
If q is not a square, the possible Picard numbers are all odd numbers between 5

and 13, 17, and 25.
If q is a square, the possible Picard numbers are all odd numbers between 5 and

21, 25, 29, and 45. We have ρ(F(X)) = 45 if and only if Q1(F(X),T) = (T ± √
q)10.

Proof The Tate conjecture holds for divisors on F(X) (Remark 4.2). As explained at
the end of Sect. 2.1, it says that the rank of the Picard group is the multiplicity of q
as a root of Q2(F(X),T). The remaining statements then follow from Theorem 4.1
by inspection of all possible cases for the values of m+,m−,m1, . . . ,mc. �
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4.2 Existence of Lines on Smooth Cubic Threefolds Over
Large Finite Fields

We can now bound the number of Fq-lines on a smooth cubic threefold defined
over Fq.

Theorem 4.4 Let X be a smooth cubic threefold defined over Fq and let N1(F(X))
be the number of Fq-lines contained in X. We have

N1(F(X)) ≥

⎧⎪⎨
⎪⎩
1 + 45q + q2 − 10(q + 1)

√
q if q ≥ 64;

1 + 13q + q2 − 6(q + 1)
√
q if 16 ≤ q ≤ 61;

1 − 3q + q2 − 2(q + 1)
√
q if q ≤ 13.

In particular, X contains at least 10 Fq-lines if q ≥ 11.
Moreover, for all q,

N1(F(X)) ≤ 1 + 45q + q2 + 10(q + 1)
√
q.

Proof As we saw in Sect. 2.1, we can write the roots of Q1(F(X),T) as ω1, . . . ,ω5,
ω1, . . . ,ω5. The rj := ωj + ωj are then real numbers in [−2

√
q, 2

√
q] and, by (2)

and Theorem 4.1, we have

N1
(
F(X)

) = 1 −
∑

1≤j≤5

rj + 5q +
∑

1≤j<k≤5

(ωjωk + ωjωk + ωjωk + ωjωk) −
∑

1≤j≤5

qrj + q2

= 1 + 5q + q2 − (q + 1)
∑

1≤j≤5

rj +
∑

1≤j<k≤5

rjrk

=: Fq(r1, . . . , r5).

Since the real function Fq : [−2
√
q, 2

√
q]5 → R is linear in each variable, its

extrema are reached on the boundary of its domain, i.e., at one of the points
2
√
q (±1, . . . ,±1). At such a point rl (with l positive coordinates), we have

Fq(rl) = 1 + 5q + q2 − 2(2l − 5)(q + 1)
√
q + 1

2

(
4q(2l − 5)2 − 20q

)
.

The minimum is obviously reached for l ∈ {3, 4, 5}, the maximum for l = 0, and the
rest is easy. �

4.3 Computing Techniques: The Bombieri–Swinnerton-Dyer
Method

By Theorem 4.1, the zeta function of the surface F(X) of lines contained in a smooth
cubic threefold X ⊂ P4

Fq
defined over Fq is completely determined by the roots
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qω1, . . . , qω10 of the degree-10 characteristic polynomial of the Frobeniusmorphism
acting onH3(X,Q�). If one knows the numbers of points of X over sufficiently many
finite extensions of Fq, these roots can be computed from the relations

exp
(∑
r≥1

Mr(X)
Tr

r

)
= P3(X,T/q) = P1(F(X),T) =

∏
1≤j≤10

(1 − ωjT),

where Mr(X) = 1
qr

(
Nr(X) − (1 + qr + q2r + q3r)

)
was defined in (10).

The reciprocity relation (5) implies that the polynomialP1(F(X),T) is determined
by the coefficients of 1,T , . . . ,T 5, hence by the numbers N1(X), . . . ,N5(X). The
direct computation of these numbers is possible (with a computer) when q is small
(see Sect. 4.5 for examples), but the amount of calculations quickly becomes very
large.

Wewill explain amethod for computing directly the numbersM1(X), . . . ,M5(X).
It was first introduced in [5] and uses a classical geometric construction which
expresses the blow up of X along a line as a conic bundle. It is valid only in charac-
teristics �= 2 and requires X to contain an Fq-line L.

Let X̃ → X be the blow up of L. Projecting from L induces a morphism πL : X̃ →
P2
Fq

which is a conic bundle and we denote by �L ⊂ P2
Fq

its discriminant curve,
defined over Fq. Assume from now on that q is odd; the curve �L is then a nodal
plane quintic curve and the associated double cover ρ : �̃L → �L is admissible in
the sense of [3, Définition 0.3.1] (the curve �̃L is nodal and the fixed points of the
involution associated with ρ are exactly the nodes of �̃L; [5, Lemma 2]).1

One can then define the Prym variety associated with ρ and it is isomorphic to
the Albanese variety of the surface F(X) ([24, Theorem 7] when �L is smooth). The
following is [5, Formula (18)].

Proposition 4.5 Let X ⊂ P4
Fq

be a smooth cubic threefold defined over Fq, with q
odd, and assume that X contains an Fq-line L. With the notation (10), we have, for
all r ≥ 1,

Mr(X) = Nr(�̃L) − Nr(�L).

Proof We will go quickly through the proof of [5] because it is the basis of our
algorithm. A point x ∈ P2(Fq) corresponds to an Fq-plane Px ⊃ L and the fiber
π−1
L (x) is isomorphic to the conic Cx such that X ∩ Px = L + Cx. We have four

cases:

(i) eitherCx is geometrically irreducible, i.e., x /∈ �L(Fq), inwhich caseπ−1
L (x)(Fq)

consists of q + 1 points;
(ii) or Cx is the union of two different Fq-lines, i.e., x is smooth on �L and the 2

points of ρ−1(x) are in �̃L(Fq), in which case π−1
L (x)(Fq) consists of 2q + 1

points;

1In characteristic 2, the curves �L and �̃L might not be nodal (see Lemma 4.13).
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(iii) or Cx is the union of two different conjugate Fq2 -lines, i.e., x is smooth on �L

and the 2 points of ρ−1(x) are not in �̃L(Fq), in which case π−1
L (x)(Fq) consists

of 1 point;
(iv) or Cx is twice an Fq-line, i.e., x is singular on �L, in which case π−1

L (x)(Fq)
consists of q + 1 points.

The total number of points of �̃L(Fq) lying on a degenerate conic Cx is therefore
qN1(�̃L) + N1(�L) and we obtain

N1(X̃) = (q + 1)
(
N1(P2

Fq
) − N1(�L)

) + qN1(�̃L) + N1(�L).

Finally, since each point on L ⊂ X is replaced by a P1
Fq

on X̃, we have

N1(X̃) = N1(X) − (q + 1) + (q + 1)2,

thus N1(X) = q3 + q2 + q + 1 + q
(
N1(�̃L) − N1(�L)

)
. Since the same conclusion

holds upon replacing q with qr , this proves the proposition. �

Let x ∈ �L(Fq). In order to compute the numbers N1(�L) − N1(�̃L), we need to
understand when the points of ρ−1(x) are defined over Fq.

We follow [5, p. 6]. Take homogenous Fq-coordinates x1, . . . , x5 on P4 so that L
is given by the equations x1 = x2 = x3 = 0. The equation of the cubic X can then be
written as

f + 2q1x4 + 2q2x5 + �1x
2
4 + 2�2x4x5 + �3x

2
5 = 0,

where f is a cubic form, q1, q2 are quadratic forms, and �1, �2, �3 are linear forms in
the variables x1, x2, x3. We choose the plane P2

Fq
⊂ P4

Fq
defined by x4 = x5 = 0. If

x = (x1, x2, x3, 0, 0) ∈ P2
Fq
, the conicCx considered above is defined by the equation

fy21 + 2q1y1y2 + 2q2y1y3 + �1y
2
2 + 2�2y2y3 + �3y

2
3 = 0

and the quintic �L ⊂ P2
Fq

is defined by the equation det(ML) = 0, where

ML :=
⎛
⎝ f q1 q2
q1 �1 �2
q2 �2 �3

⎞
⎠ . (13)

For each i ∈ {1, 2, 3}, let δi ∈ H0
(
�L,O(ai)

)
, where ai = 2, 4, or 4, be the determi-

nant of the submatrix of ML obtained by deleting its ith row and ith column. The
−δi are transition functions of an invertible sheafL on �L such thatL ⊗2 = ω�L (a
theta characteristic). It defines the double cover ρ : �̃L → �L.

A point x ∈ P2
Fq
is singular on �L if and only if δ1(x) = δ2(x) = δ3(x) = 0. These

points do not contribute toMr since the only point of ρ−1(x) is defined over the field
of definition of x. This is the reason why we may assume that x is smooth in the next
proposition.
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Proposition 4.6 Let x be a smooth Fq-point of �L. The curve �̃L has two Fq-points
over x ∈ �L(Fq) if and only if either−δ1(x) ∈ (F×

q )2, or δ1(x) = 0 and either−δ2(x)
or −δ3(x) is in (F×

q )2.

Proof With the notation above, the line L = V (y1) ⊂ P2
Fq

meets the conic Cx ⊂ P2
Fq

at the points (0, y2, y3) such that

�1y
2
2 + 2�2y2y3 + �3y

2
3 = 0.

Therefore, if−δ1(x) = �22(x) − �1(x)�3(x) is non-zero, the curve �̃L has two rational
points over x ∈ �L(Fq) if and only if −δ1(x) ∈ (F×

q )2.
When δ1(x) = 0, we have Cx = L1 + L2, where L1 and L2 are lines meeting in an

Fq-point z of L which we assume to be (0, 0, 1). This means that there is no y3 term
in the equation of Cx, hence �2(x) = �3(x) = q2(x) = 0. The conic Cx is defined by
the equation

�1(x)y
2
2 + 2q1(x)y1y2 + f (x)y21 = 0

and the two lines L1 and L2 are defined over Fq if and only if −δ3(x) = q21(x) −
�1(x)f (x) ∈ (F×

q )2 (since δ1(x) = δ2(x) = 0, this is necessarily non-zero because x
is smooth on �L).

For the general case: if y3(z) �= 0, wemake a linear change of coordinates y1 = y′
1,

y2 = y′
2 + ty′

3, y3 = y′
3 in order to obtain y′

2(z) = 0, and we check that −δ3(x) is
unchanged; if z = (0, 1, 0), we obtain as above δ1(x) = δ3(x) = 0 and L1 and L2 are
defined over Fq if and only if −δ2(x) ∈ (F×

q )2. This proves the proposition. �

We can now describe our algorithm for the computation of the numbersMr(X) =
Nr(�̃L) − Nr(�L).

The input data is a cubic threefold X over Fq containing an Fq-line L. We choose
coordinates as above and construct the matrix ML of (13) whose determinant is
the equation of the quintic �L ⊂ P2

Fq
. We compute Mr with the following simple

algorithm.
Input: (X,L, r)
Output: Mr

Compute the matrixML , the three minors δ1, δ2, δ3 and the curve �L ;
Mr := 0;
while p ∈ {p : p ∈ �L(Fqr ) | �L is smooth at p} do

if −δ1(p) ∈ (F×
qr )

2 or (δ1(p) = 0 and (−δ2(p) ∈ (F×
qr )

2 or − δ3(p) ∈ (F×
qr )

2)) then
Mr := Mr + 1;

else
Mr := Mr − 1;

end
end
return Mr ;

Algorithm 1: Computing Mr
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4.4 Lines on Mildly Singular Cubic Threefolds

Wedescribe amethod based on results of Clemens–Griffiths andKouvidakis–van der
Geer which reduces the computation of the number of Fq-lines on a cubic threefold
with a single singular point, of type A1 or A2,2 to the computation of the number
of points on a smooth curve of genus 4. One consequence is that there is always an
Fq-line when q > 3.

Let C be a smooth non-hyperelliptic curve of genus 4 defined over a perfect field
F. We denote by g13 and h13 = KC − g13 the (possibly equal) degree-3 pencils on C.
The canonical curve φKC (C) ⊂ P3

F is contained in a unique geometrically integral
quadric surface Q whose rulings cut out the degree-3 pencils on C; more precisely,

• either Q � P1
F × P1

F and the two rulings of Q cut out distinct degree-3 pencils g13
and h13 = KC − g13 on C which are defined over F;

• or Q is smooth but its two rulings are defined over a quadratic extension of F and
are exchanged by the Galois action, and so are g13 and h13;• or Q is singular and its ruling cuts out a degree-3 pencil g13 on C which is defined
over F and satisfies KC = 2g13.

Let ρ : P3
F ��� P4

F be the rational map defined by the linear system of cubics con-
taining φKC (C). The image of ρ is a cubic threefold X defined over F; it has a single
singular point, ρ(Q), which is of type A1 if Q is smooth, and of type A2 otherwise.
Conversely, every cubic threefold X ⊂ P4

F defined over Fwith a single singular point
x, of type A1 or A2, is obtained in this fashion: the curve C is TX,x ∩ X and parame-
trizes the lines in X through x ([7, Corollary 3.3]).

The surface F(X) is isomorphic to the non-normal surface obtained by gluing
the images Cg and Ch of the morphisms C → C(2) defined by p �→ g13 − p and p �→
h13 − p (when Q is singular, F(X) has a cusp singularity along the curve Cg = Ch).
This was proved in [9, Theorem 7.8] over C and in [20, Proposition 2.1] in general.

Proposition 4.7 Let X ⊂ P4
Fq

be a cubic threefold defined over Fq with a single
singular point, of type A1 or A2. Let C be the associated curve of genus 4, with
degree-3 pencils g13 and h13. For any r ≥ 1, set nr := Card(C(Fqr )). We have

Card
(
F(X)(Fq)

) =

⎧⎪⎨
⎪⎩

1
2 (n21 − 2n1 + n2) if g13 and h13 are distinct and defined over Fq;
1
2 (n21 + 2n1 + n2) if g13 and h13 are not defined over Fq;
1
2 (n21 + n2) if g13 = h13.

2A hypersurface singularity is of type Aj if it is, locally analytically, given by an equation xj+1
1 +

x22 + · · · + x2n+1 = 0. Type A1 is also called a node.
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Proof Points of C(2)(Fq) correspond to

• the 1
2 (n

2
1 − n1) pairs of distinct points of C(Fq),

• the n1 Fq-points on the diagonal,
• the 1

2 (n2 − n1) pairs of distinct conjugate points of C(Fq2),

for a total of 1
2 (n

2
1 + n2) points (compare with [14, (2.5)]). When g13 and h13 are

distinct and defined over Fq, the gluing process eliminates n1 Fq-points. When g13
and h13 are not defined over Fq, the curves Cg and Ch contain no pairs of conjugate
points, and the gluing process creates n1 new Fq-points. Finally, when g13 = h13, the
map C(2)(Fq) → F(X)(Fq) is a bijection. �

Corollary 4.8 When q ≥ 4, any cubic threefold X ⊂ P4
Fq

defined over Fq with a
single singular point, of type A1 or A2, contains an Fq-line.

For q ∈ {2, 3}, we produce in Sect. 4.5.5 explicit examples of cubic threefolds
with a single singular point, of type A1, but containing no Fq-lines: the bound in the
corollary is the best possible.

Proof Assume that X contains no Fq-lines. Proposition 4.7 then implies that either
n1 = n2 = 0, or n1 = n2 = 1 and g13 and h13 are distinct and defined over Fq. The
latter case cannot in fact occur: if C(Fq) = {x}, we write g13 ≡ x + x′ + x′′. Since
g13 is defined over Fq, so is x′ + x′′, hence x′ and x′′ are both defined over Fq2 . But
C(Fq2) = {x}, hence x′ = x′′ = x and g13 ≡ 3x. We can do the same reasoning with
h13 to obtain h13 ≡ 3x ≡ g13, a contradiction.

Therefore, we have n1 = n2 = 0. According to [16, Theorem 1.2], every genus-4
curve over Fq with q > 49 has an Fq-point so we obtain q ≤ 7.

Because of the reciprocity relation (5), there is a monic degree-4 polynomial H
with integral coefficients that satisfies Q1(C,T) = T 4H(T + q/T). If ω1, . . . ,ω4,
ω̄1, . . . , ω̄4 are the roots of Q1(C,T) (see Sect. 2.4), with |ωj| = √

q, the roots of H
are the rj := ωj + ω̄j, and

q + 1 − n1 =
∑
1≤j≤4

rj , q2 + 1 − n2 =
∑
1≤j≤4

(ω2
j + ω̄2

j ) =
∑
1≤j≤4

(r2j − 2q).

Since n1 = n2 = 0, we obtain
∑

1≤j≤4 rj = q + 1 and
∑

1≤j≤4 r
2
j = q2 + 8q + 1, so

that
∑

1≤i<j≤4 rirj = −3q; we can therefore write

H(T) = T 4 − (q + 1)T 3 − 3qT 2 + aT + b. (14)

Finally, since |rj| ≤ 2
√
q for each j, we also have |b| = |r1r2r3r4| ≤ 16q2 and

|a| = |∑4
j=1 b/rj| ≤ 32q3/2. A computer search done with these bounds shows that

polynomials of the form (14) with four real roots and q ∈ {2, 3, 4, 5, 7} only exist
for q ≤ 3, which proves the corollary. �
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Remark 4.9 For q ∈ {2, 3}, the computer gives a list of all possible polynomials

(q = 2) H(T) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T4−3T3−6T2+24T−16
T4−3T3−6T2+24T−15 (�)

T4−3T3−6T2+23T−13
T4−3T3−6T2+22T−10 (�)

T4−3T3−6T2+21T−7
T4−3T3−6T2+18T+1 (�)

, (q = 3) H(T) =

⎧⎪⎨
⎪⎩

T4−4T3−9T2+48T−36 (?)
T4−4T3−9T2+47T−32 (�)

T4−4T3−9T2+46T−29 (�)

T4−4T3−9T2+44T−22 (?)

.

The nodal cubics of Sect. 4.5.5, defined overF2 andF3, correspond to the polynomials
T 4 − 3T 3 − 6T 2 + 24T − 15 and T 4 − 4T 3 − 9T 2 + 47T − 32, respectively. Over
F2, it is possible to list all genus-4 canonical curves and one obtains that only the
polynomials marked with (�) actually occur (all three are irreducible).

Over F3, our computer searches show that the two polynomials marked with
(�) actually occur (both are irreducible). We do not know whether the other two,
T 4 − 4T 3 − 9T 2 + 48T − 36 = (T − 1)(T − 3)(T 2 − 12) and T 4 − 4T 3 − 9T 2 +
44T − 22 = (T 2 − 4T + 2)(T 2 − 11) (marked with (?)), actually occur.

4.5 Examples of Cubic Threefolds

In this section, we present some of our calculations and illustrate our techniques
for some cubic threefolds. We begin with Fermat cubics (Sect. 4.5.1), which have
good reduction in all characteristics but 3. The case of general Fermat hypersurfaces
was worked out by Weil in [30] (and was an inspiration for his famous conjectures
discussed in Sect. 2.1). We explain howWeil’s calculations apply to the zeta function
of Fermat cubics (Theorem 4.11) and we compute, in dimension 3, the zeta function
of their surface of lines (Corollary 4.12).

The Fermat cubic threefold contains the line L := 〈(1,−1, 0, 0, 0), (0, 0, 1,
−1, 0)〉 and we compute the discriminant quintic �L ⊂ P2 defined in Sect. 4.3,
exhibiting strange behavior in characteristic 2.

In Sect. 4.5.2, we turn our attention to the Klein cubic, which has good reduction
in all characteristics but 11. It also contains an “obvious” line L′ and we compute the
discriminant quintic �L′ ⊂ P2, again exhibiting strange behavior in characteristic 2.
Using the Bombieri–Swinnerton-Dyer method, we determine the zeta function of
F(X) over Fp, for p ≤ 13. We also compute the geometric Picard numbers of the
reduction of F(X) modulo any prime, using the existence of an isogeny between
A(F(X)) and the self-product of an elliptic curve.

In Sect. 4.5.3, we compute, using the same method, the zeta function of F(X) of
a “random” cubic threefold X containing a line, over the fields F5, F7, F23, F29, and
F31. Note that existing programs are usually unable to perform calculations in such
high characteristics.

In Sect. 4.5.4, we present examples, found by computer searches, of smooth cubic
threefolds defined over F2, F3, F4, or F5 with no lines. We were unable to find
examples over Fq for the remaining values q ∈ {7, 8, 9} (by Theorem 4.4, there
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are always Fq-lines for q ≥ 11). For the example over F2, we compute directly the
number of points over small extensions and deduce the polynomial P1 for the Fano
surface F(X). For the example over F3, we obtain again the polynomial P1 for the
Fano surface F(X) by applying the Bombieri–Swinnerton-Dyer method over F9.

Finally, in Sect. 4.5.5, we exhibit cubic threefolds with one node but no lines,
defined over F2 or F3, thereby proving that the bound in Corollary 4.8 is optimal.

4.5.1 Fermat Cubics

The n-dimensional Fermat cubic Xn ⊂ Pn+1
Z is defined by the equation

x31 + · · · + x3n+2 = 0. (15)

It has good reduction at every prime p �= 3.

Remark 4.10 In general, if q ≡ 2 (mod 3) andX ⊂ Pn+1
Fq

is a cyclic cubic hypersur-

face defined by the equation f (x1, . . . , xn+1) + x3n+2 = 0, the projection π : X → Pn
Fq

defined by (x1, . . . , xn+2) �→ (x1, . . . , xn+1) induces a bijection X(Fq) → Pn(Fq),
because the map x �→ x3 is a bijection of Fq ([19, Observation 1.7.2]).

The remark gives in particular Card
(
Xn(F2)

) = Card
(
Pn(F2)

) = 2n+1 − 1. For
the number of points of Xn(F4), observe that the cyclic cover π is 3-to-1 outside
its branch divisor V (f ). Let (x1, . . . , xn+1) ∈ Pn(F4). Since x3 ∈ {0, 1} for any x ∈
F4, either x31 + · · · + x3n+1 = 0 and the inverse image by π has one F4-point, or
x31 + · · · + x3n+1 = 1 and the inverse image by π has three F4-points. One obtains the
inductive formula

Card
(
Xn(F4)

) = Card
(
Xn−1(F4)

) + 3
(
Card

(
Pn(F4)

) − Card
(
Xn−1(F4)

))
.

Since Card
(
X0(F4)

) = 3, we get

Card
(
Xn(F4)

) = 1

3

(
22n+3 − (−2)n+1 − 1

)
.

Using (8), we see that the number of F2-lines on Xn
F2

is

(2n+1 − 1)2 − 2(1 + 2n)(2n+1 − 1) + 1
3 (22n+3 − (−2)n+1 − 1)

8
= 22n + 1 + ((−1)n − 9)2n−2

3
.

For example, the 15 F2-lines contained in X3
F2

are the line LF2 and its images by
permutations of the coordinates.

In fact, general results are available in the literature on the zeta function of Fermat
hypersurfaces over finite fields (starting with [30]; see also [26, Sect. 3]), although
they do not seem to have been spelled out for cubics. Let us first define
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P0
n(X

n
Fp

,T) =
⎧⎨
⎩
Pn(Xn

Fp
,T) if n is odd,

Pn(Xn
Fp ,T)

1−pn/2T if n is even

(this is the reciprocal characteristic polynomial of the Frobenius morphism acting
on the primitive cohomology of Xn

Fp
) and set b0n(X

n) := deg(P0
n); this is bn(X

n) if n
is odd, and bn(Xn) − 1 if n is even.

Theorem 4.11 (Weil) Let Xn ⊂ Pn+1
Z be the Fermat cubic hypersurface. Let p be a

prime number other than 3.

• If p ≡ 2 (mod 3), we have

P0
n(X

n
Fp

,T) = (1 − (−p)nT 2)b
0
n(X

n)/2.

• If p ≡ 1 (mod 3), one can write uniquely 4p = a2 + 27b2 with a ≡ 1 (mod 3)
and b > 0, and

P0
n(X

n
Fp

,T) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + aT + pT 2 when n = 1,

(1 − pT)6 when n = 2,

(1 + apT + p3T 2)5 when n = 3,

(1 + (2p − a2)T + p2T 2)(1 − p2T)20 when n = 4,

(1 + ap2T + p5T 2)21 when n = 5.

As will become clear from the proof, it would be possible to write down (com-
plicated) formulas for all n in the case p ≡ 1 (mod 3). We leave that exercise to the
interested reader and restrict ourselves to the lower-dimensional cases.

Proof Assume first p ≡ 2 (mod 3). It follows from Remark 4.10 that the polyno-
mial P0

n(X
n
Fp

,T) is even (this is explained by (19) and (20) when n = 4). It is there-

fore equivalent to prove P0
n(X

n
Fp2

,T) = (1 − (−p)nT)b
0
n(X

n). We follow the geometric
argument of [26].

It is well known that P1(X1
Fp

,T) = 1 + pT 2, hence P1(X1
Fp2

,T) = (1 + pT)2. In

otherwords, theFrobeniusmorphismofFp2 acts on themiddle cohomologyofX1
Fp2

by

multiplication by −p. By the Künneth formula, it acts by multiplication by (−p)2 on
the middle cohomology of X1

Fp2
× X1

Fp2
. The proof by induction on n of [26, Theorem

2.10] then applies and gives that the Frobenius morphism acts by multiplication by
(−p)n on the middle cohomology of Xn

Fp2
.

Assume now p ≡ 1 (mod 3). The number of points of X1(Fp) was computed
by Gauss ([28, Theorem 4.2]): writing 4p = a2 + 27b2 as in the theorem, one
has Card(X1(Fp)) = p + 1 + a, i.e., P1(X1

Fp
,T) = 1 + aT + pT 2 =: (1 − ωT)(1 −

ω̄T). In other words, the eigenvalues of the Frobenius morphism of Fp acting on the
first cohomology group are ω and ω̄. They are therefore the Jacobi sums denoted by
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j(1, 2) and j(2, 1) in [26, (3.1)], and also the generators of the prime ideals p and p̄
in Z[ζ] (ζ = exp(2iπ/3)) such that (p) = pp̄.

The eigenvalues of the Frobenius morphism acting on the primitive middle coho-
mology of Xn

Fp
are denoted j(α) by Weil, where α runs over the set

Un = {(α0, . . . ,αn+1) ∈ {1, 2}n+2 | α0 + · · · + αn+1 ≡ 0 (mod 3)}.

The ideal (j(α)) in Z[ζ] is invariant under permutations of the αi and its decompo-
sition is computed by Stickelberger (see [26, (3.10)]):

(j(α)) = pA(α)p̄A(ᾱ),

with A(α) = ⌊∑n+1
j=1

αj

3

⌋
and ᾱj = 3 − αj.

The elements of U1 are (1, 1, 1) and (2, 2, 2), and the corresponding values of A
are 0 and 1. The eigenvalues are therefore (up to multiplication by a unit of Z[ζ]), ω
and ω̄. By Gauss’ theorem, we know they are exactly ω and ω̄. By induction on n, it
then follows from the embeddings [26, (2.17)] that

j(α) = ωA(α)ω̄A(ᾱ).

The elements of U2 are (up to permutations) (1, 1, 2, 2) and the corresponding
value of A is 1. The only eigenvalue is therefore ωω̄ = p, with multiplicity

(4
2

)
.

The elements of U3 are (up to permutations) (1, 1, 1, 1, 2) and (1, 2, 2, 2, 2), and
the corresponding values of A are 1 and 2. The eigenvalues are therefore ω2ω̄ = pω
and pω̄, with multiplicity 5.

The elements of U4 are (up to permutations) (1, 1, 1, 1, 1, 1), (1, 1, 1, 2, 2, 2),
and (2, 2, 2, 2, 2, 2), and the corresponding values of A are 1, 2, and 3. The eigen-
values are therefore pω2 and pω̄2, with multiplicity 1, and p2, with multiplicity

(6
3

)
.

The elements of U5 are (up to permutations) (1, 1, 1, 1, 1, 2, 2) and (1, 1, 2, 2,
2, 2, 2), and the corresponding values of A are 2 and 3. The eigenvalues are therefore
p2ω and p2ω̄, with multiplicity

(7
2

)
. This finishes the proof of the theorem. �

Corollary 4.12 Let X ⊂ P4
Z be the Fermat cubic threefold defined by the equation

x31 + · · · + x35 = 0 and let F(X) be its surface of lines. Let p be a prime number other
than 3.

The Albanese variety A(F(X))Fp is isogenous to E
5
Fp
, where E is the Fermat plane

cubic curve. Moreover,

• if p ≡ 2 (mod 3), we have

Z(F(X)Fp ,T) = (1 + pT 2)5(1 + p3T 2)5

(1 − T)(1 − p2T)(1 + pT)20(1 − pT)25
,

the Picard number of F(X)Fp is 25 and that of F(X)Fp2
is 45, and the abelian

variety A(F(X))Fp is supersingular;
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• if p ≡ 1 (mod 3), we have (with the notation of Theorem 4.11)

Z(F(X)Fp ,T) = (1 + aT + pT 2)5(1 + apT + p3T 2)5

(1 − T)(1 − p2T)(1 + (2p − a2)T + p2T 2)10(1 − pT)25
,

the Picard and absolute Picard numbers of F(X)Fp are 25, and the abelian variety
A(F(X))Fp is ordinary.

Proof Theorems 4.1 and 4.11 imply that the characteristic polynomials of the Frobe-
nius morphisms acting on H1 are the same for the abelian varieties A(F(X))Fp and
E5
Fp
; they are therefore isogenous ([23, Appendix I, Theorem 2]). The statements

about A(F(X))Fp being supersingular or ordinary follow from the analogous state-
ments about EFp .

The values of the zeta functions also follow from Theorems4.1 and 4.11, and the
statements about the Picard numbers from Corollary 4.3. �

We now restrict ourselves to the Fermat cubic threefold X ⊂ P4
Z (n = 3). We

parametrize planes containing the line L := 〈(1,−1, 0, 0, 0), (0, 0, 1,−1, 0)〉 ⊂ X
by theP2 definedby the equations x1 = x3 = 0 anddetermine the discriminant quintic
�L ⊂ P2 (see Sect. 4.3).

Lemma 4.13 In the coordinates x2, x4, x5, an equation of the discriminant quintic
�L ⊂ P2 is x2x4(x32 + x34 + 4x35) = 0. Therefore,

• in characteristics other than 2 and 3, it is a nodal quintic which is the union of
two lines and an elliptic curve, all defined over the prime field;

• in characteristic 2, it is the union of 5 lines meeting at the point (0, 0, 1); 3 of them
are defined over F2, the other 2 over F4.

Proof We use the notation of the proof of Proposition 4.5 (although the choice of
coordinates is different). If x = (0, x2, 0, x4, x5) ∈ P2, the residual conicCx is defined
by the equation

1

y1

(
y32 + (x2y1 − y2)

3 + y33 + (x4y1 − y3)
3 + y31x

3
5
) = y21(x22 + x24 + x25) − 3x22y1y2 − 3x24y1y3 + 3x2y

2
2 + 3x4y

2
3

in the coordinates (y1, y2, y3). In characteristics other than 2 and 3, an equation of
�L is therefore given by

∣∣∣∣∣
x32+x34+x35 − 3

2 x
2
2 − 3

2 x
2
4

− 3
2 x

2
2 3x2 0

− 3
2 x

2
4 0 3x4

∣∣∣∣∣ = 9

4
x2x4

∣∣∣∣∣
4(x32+x34+x35) 3x2 3x4

x22 1 0
x24 0 1

∣∣∣∣∣ = 9

4
x2x4(x

3
2 + x34 + 4x35) = 0.

In characteristic 2, the Jacobian criterion says that the singular points of Cx must
satisfy y1 = 0 and x2y22 + x4y23 = x22y2 + x24y3 = 0. The curve�L is therefore defined

by
∣∣∣ x1/22 x1/24

x22 x24

∣∣∣ = 0, or x2x4(x32 + x34) = 0. It is therefore the “same” equation reduced

modulo 2. �
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4.5.2 The Klein Threefold

This is the cubic threefold X ⊂ P4
Z defined by the equation

x21x2 + x22x3 + x23x4 + x24x5 + x25x1 = 0. (16)

It has good reduction at every prime p �= 11.
It contains the line L′ = 〈(1, 0, 0, 0, 0), (0, 0, 1, 0, 0)〉 and we parametrize planes

containing L′ by the P2 defined by x1 = x3 = 0.

Lemma 4.14 In the coordinates x2, x4, x5, an equation of the discriminant quintic
�L′ ⊂ P2 is x52 + x4x45 − 4x2x34x5 = 0. Therefore,

• in characteristics other than 2 and 11, it is a geometrically irreducible quintic
with a single singular point, (0, 1, 0), which is a node;

• in characteristic 2, it is a geometrically irreducible rational quintic with a single
singular point of multiplicity 4, (0, 1, 0).

Proof We proceed as in the proof of Lemma 4.13. If x = (0, x2, 0, x4, x5) ∈ P2, an
equation of the residual conic Cx is

1

y1

(
y22x2y1 + x22y

2
1y3 + y23x4y1 + x24y

2
1x5y1 + x25y

2
1y2

) = y22x2 + x22y1y3 + y23x4 + x24y
2
1x5 + x25y1y2

in the coordinates (y1, y2, y3). In characteristic other than 2, an equation of �L′ is
therefore ∣∣∣∣∣∣

x24x5
1
2x

2
5

1
2x

2
2

1
2x

2
5 x2 0

1
2x

2
2 0 x4

∣∣∣∣∣∣ = 1

4
(x52 + x4x

4
5 − 4x2x

3
4x5) = 0.

In characteristic 2, one checks that �L′ is defined by the equation x52 + x4x45 = 0. In
both cases, the singularities are easily determined. �

In characteristic 11, XF11 has a unique singular point, (1, 3, 32, 33, 34), which
has type A2. The quintic �L′ ⊂ P2 is still geometrically irreducible, with a node at
(0, 1, 0) and an ordinary cusp (type A2) at (5, 1, 3).

In characteristic 2, the isomorphism (x1, . . . , x5) �→ (x1 + x5, x2 + x5, x3 + x5,
x4 + x5, x1 + x2 + x3 + x4 + x5) maps XF2 to the cyclic cubic defined by x

3
5 + (x1 +

x2 + x3 + x4)3 + x21x2 + x22x3 + x23x4 = 0. ThusM2m+1(XF2) = 0 for anym ≥ 0 (rea-
soning as in Sect. 4.5.1). The computer gives M2(XF2) = M4(XF2) = 0. Using (8),
we find that XF2 contains 5 F2-lines; they are the line L′ and its images by the cyclic
permutations of the coordinates.

By the reciprocity property (5), we obtain

P1(F(X)F2 ,T) = P3(XF2 ,T/2) = 1 + 25T 10.
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Since this polynomial has simple roots, the Picard number of F(X)F2 is 5 (Corollary
4.3). The eigenvalues of the Frobenius morphism F are ω exp(2ikπ/10), for k ∈
{0, . . . , 9}, where ω10 = −25; hence F10 acts by multiplication by−25. This implies
P1(F(X)F210

,T) = (1 + 25T)10. It follows that F(X)F210
has maximal Picard number

45 (Corollary 4.3) and that A(F(X)) is isogenous to E5 over F210 , where E is the
Fermat plane cubic defined in Sect. 4.5.1.

We also get P2(F(X)F2 ,T) = (1 − 25T 5)(1 − 210T 10)4 = (1 − 25T 5)5

(1 + 25T 5)4 and

Z(F(X)F2 ,T) = (1 + 25T 10)(1 + 215T 10)

(1 − T)(1 − 4T)(1 − 25T 5)5(1 + 25T 5)4
.

Over other small fields, we find, using the Bombieri–Swinnerton-Dyer method
(Proposition 4.5) and a computer,

P1(F(X)F3 ,T) = 1 + 31T 5 + 35T 10

P1(F(X)F5 ,T) = 1 − 57T 5 + 55T 10

P1(F(X)F7 ,T) = 1 + 75T 10

P1(F(X)F13 ,T) = 1 + 135T 10.

Note that A(F(X)) is ordinary in the first two cases and supersingular with maximal
Picard number in the other two cases. One can easily compute the Picard numbers and
write down the corresponding zeta functions if desired. We compute the geometric
Picard numbers by a different method. Note that −11 is a square modulo 3 or 5, but
not modulo 7 or 13.

Proposition 4.15 Let X ⊂ P4
Z be theKlein cubic threefoldwith Eq. (16) and let F(X)

be its surface of lines. Suppose p �= 2. If −11 is a square modulo p, the reduction
modulo p of F(X) has geometric Picard number 25, otherwise it has geometric Picard
number 45.

Proof Set ν := −1+√−11
2 and E′

C := C/Z[ν]. By [1, Corollary 4, p. 138], A(F(X))C
is isomorphic to (E′

C)5. By [27, Appendix A3], the elliptic curve E′
C has a model

defined by the equations

y2 + y = x3 − x2 − 7x + 10 = 0

over Q, which we denote by E′. Since A(F(X))C and E′5
C are isomorphic, A(F(X))

and E′5 are isomorphic over some number field ([23, Appendix I, p. 240]).
We use Deuring’s criterion [21, Chapter13, Theorem12)]: for odd p �= 11, the

reduction of E′ modulo p is supersingular if and only if p is inert or ramified in Z[ν].
By classical results in number theory, an odd prime p �= 11 is inert or ramified in
Z[ν] if and only if −11 is not a square modulo p. The geometric Picard number of
the reduction modulo p of A(F(X)) is therefore 45 if −11 is not a square modulo p,
and 25 otherwise. �
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4.5.3 An Implementation of Our Algorithm

We use the notation of Sect. 4.3. Let X ⊂ P4
Z be the cubic threefold defined by the

equation
f + 2q1x4 + 2q2x5 + x1x

2
4 + 2x2x4x5 + x3x

2
5 = 0,

where

f = x22x3 − (x31 + 4x1x
2
3 + 2x33),

q1 = x21 + 2x22 + x2x3 + x23,

q2 = x1x2 + 4x2x3 + x23 .

It contains the line L defined by the equations x1 = x2 = x3 = 0.
In characteristics ≤ 31, the cubic X is smooth except in characteristics 2 or 3 and

the plane quintic curve �L is smooth except in characteristics 2 or 5.
We implemented inSage the algorithm described in Algorithm 1 (see [31]). Over

F5, we get

P1(F(X)F5 ,T) = (1 + 5T 2)(1 + 2T 2 + 8T 3 − 6T 4 + 40T 5 + 50T 6 + 625T 8).

It follows thatA(F(X)F5) is not ordinary and not simple (it contains an elliptic curve).
Over the field F7, we compute that P1(F(X)F7 ,T) is equal to

1 + 4T + 15T2 + 46T3 + 159T4 + 460 T5 + 1 113T6 + 2 254 T7 + 5 145T8 + 9 604 T9 + 16 807T10.

This polynomial is irreducible over Q; it follows that A(F(X)F7) is ordinary and
simple (Sect. 2.4). We can even get more by using a nice criterion from [17].

Proposition 4.16 The abelian variety A(F(X)F7) is absolutely simple, i.e., it remains
simple over any field extension.

Proof We want to apply the criterion [17, Proposition 3 (1)] to the abelian variety
A := A(F(X)F7). Let d > 1. Since the characteristic polynomial Q1(A,T) (which
is also the minimal polynomial) of the Frobenius morphism F is not in Z[Td], it
is enough to check that, for any d > 1, there are no dth roots of unity ζ such that
Q(Fd) � Q(F) andQ(Fd, ζ) = Q(F). If this is the case,Q(ζ) is contained inQ(F),
hence φ(d) (where φ is the Euler totient function) divides deg

(
Q1(A,T)

) = 10. This
implies d ∈ {2, 3, 4, 6, 11, 22}. But for these values of d, one computes that the
characteristic polynomial Q1(AF7d

,T) of Fd is irreducible (of degree 10), and this
contradicts Q(Fd) � Q(F). Thus A is absolutely simple. �
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Here are some more computations in “high” characteristics:

P1(F(X)F23 ,T) = 1+21T2−35T3+759T4−890 T5+17 457T6−18 515T7+255 507T8+6 436 343T10,

P1(F(X)F29 ,T) = 1+3T+5T2+15T3+352 T4+2 828T5+10 208T6+12 615T7+121 945T8+2 121 843T9+20 511 149T10,

P1(F(X)F31 ,T) = 1+2 T+2 T2+72 T3+117T4−812 T5+3 627T6+69 192 T7+59 582 T8+1 847 042 T9+28 629 151T10 .

4.5.4 Smooth Cubic Threefolds over F2, F3, F4, or F5 with No Lines

Using a computer, it is easy to findmany smooth cubic threefolds defined overF2 with
no F2-lines (see Example 4.17). For example, the cubic threefold X ⊂ P4

F2
defined

by the equation

x31 + x32 + x33 + x21x2 + x22x3 + x23x1 + x1x2x3 + x1x
2
4 + x21x4 + x2x

2
5 + x22x5 + x24x5 = 0

contains no F2-lines. We also have3

N1(X) = 9,N2(X) = 81,N3(X) = 657,N4(X) = 4 225,N5(X) = 34 049,

hence (see (10) for the definition ofMr(X))

M1(X) = −3,M2(X) = −1,M3(X) = 9,M4(X) = −9,M5(X) = 7.

The polynomial P1(F(X),T) = P3(X,T/2) = ∏10
j=1(1 − ωjT) is then given by

exp
( 5∑
r=1

Mr(X)
Tr

r

)
+ O(T 6) = 1 − 3T + 4T 2 − 10T 4 + 20T 5 + O(T 6).

Using the reciprocity property (5), we obtain

P1(F(X),T) = 1 − 3T + 4T2 − 10T4 + 20T5 − 10 · 2T6 + 4 · 23T8 − 3 · 24T9 + 25T10.

Since this polynomial has no multiple roots, the Picard number of F(X) is 5
(Corollary 4.3).

We found by random computer search the smooth cubic threefold X ′ ⊂ P4
F3

defined by the equation

2x31 + 2x32 + x1x
2
3 + x22x4 + 2x23x4 + x21x5 + x2x3x5 + 2x1x4x5 + 2x2x4x5 + 2x24x5 + 2x4x

2
5 + x35 = 0.

3Among smooth cubics in P4
F2

with no F2-lines, the computer found examples whose number of
F2-points is any odd number between 3 and 13.
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It contains no F3-lines and 25 F3-points. Computing directly the number of points on
extensions of F3, as we did above for F2, takes too much time, and it is quicker to use
the Bombieri–Swinnerton-Dyer method (Proposition 4.5) on X ′

F9
, which contains an

F9-line. The result is that P1(F(X ′)F9 ,T) is equal to

1 − 5T + 8T2 + 10T3 − 124T4 + 515T5 − 1 116T6 + 810T7 + 5 832T8 − 32 805T9 + 59 049T10.

Using the fact that X ′ has 25 F3-points and that the roots of P1(F(X ′)F3 ,T) are square
roots of the roots of P1(F(X ′)F9 ,T), one finds

P1(F(X ′)F3 , T) = 1 − 5T + 10T2 − 2T3 − 36T4 + 95T5 − 108T6 − 18T7 + 270T8 − 405T9 + 243T10,

and the numbers of F3r -lines in X ′
F3r

, for r ∈ {1, . . . , 5}, are 0, 40, 1 455, 5 740,
72 800, respectively.

Similarly, the smooth cubic threefold in P4
F4

defined by the equation

x31 + x21x2 + x32 + x21x3 + ux1x
2
3 + ux2x

2
3 + u2x1x2x4 + x22x4 + ux34 + x22x5 + ux2x3x5 + x23x5 + x3x

2
5 + x35 = 0,

where u2 + u + 1 = 0, contains no F4-lines and 61 F4-points.
Finally, the smooth cubic threefold in P4

F5
defined by the equation

x31 + 2x32 + x22x3 + 3x1x
2
3 + x21x4 + x1x2x4 + x1x3x4 + 3x2x3x4 + 4x23x4 + x2x

2
4

+ 4x3x
2
4 + 3x22x5 + x1x3x5 + 3x2x3x5 + 3x1x4x5 + 3x24x5 + x2x

2
5 + 3x35 = 0

contains no F5-lines and 126 F5-points.
We were unable to find smooth cubic threefolds defined over Fq with no Fq-lines

for the remaining values q ∈ {7, 8, 9} (by Theorem 4.4, there are always Fq-lines for
q ≥ 11).

4.5.5 Nodal Cubic Threefolds over F2 or F3 with No Lines

Regarding cubic threefolds with one node and no lines, we found the following
examples.

The unique singular point of the cubic in P4
F2

defined by the equation

x32 + x22x3 + x33 + x1x2x4 + x23x4 + x34 + x21x5 + x1x3x5 + x2x4x5 = 0

is an ordinary double point at x := (0, 1, 0, 0, 1) and this cubic contains no F2-lines.
As we saw during the proof of Corollary 4.8, the base of the cone TX,x ∩ X is a
smooth genus-4 curve defined over F2 with no F4-points. The pencils g13 and h13 are
defined over F2.
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The unique singular point of the cubic in P4
F3

defined by the equation

2x31 + 2x21x2 + x1x
2
2 + 2x2x

2
3 + 2x1x2x4 + x2x3x4

+ x1x
2
4 + 2x34 + x2x3x5 + 2x23x5 + x2x

2
5 + x35 = 0

is an ordinary double point at x := (1, 0, 0, 0, 1) and this cubic contains no F3-lines.
Again, the base of the cone TX,x ∩ X is a smooth genus-4 curve defined over F3 with
no F9-points, and the pencils g13 and h13 are defined over F3.

4.6 Average Number of Lines

Consider theGrassmannianG := Gr(1,Pn+1
Fq

), the parameter spaceP = P
(
H0

(
Pn+1
Fq

,

OPn+1
Fq

(d)
))

for all degree-d hypersurfaces in Pn+1
Fq

, and the incidence variety I =
{(L,X) ∈ G × P | L ⊂ X}. The first projection I → G is a projective bundle, hence
it is easy to compute the number of Fq-points of I . The fibers of the second projection
I → P are the varieties of lines. The average number of lines (on all degree-d n-folds)
is therefore

Card
(
G(Fq)

)
(qdim(P)−d − 1)

qdim(P)+1 − 1
∼ Card

(
G(Fq)

)
qdim(P)−d−1. (17)

Recall that Card
(
G(Fq)

) = ∑
0≤i<j≤n+1 q

i+j−1. For cubic 3-folds, the right side of
(17) is

q2 + q + 2 + 2q−1 + 2q−2 + q−3 + q−4.

For q = 2, the average number of lines on a cubic threefold is therefore ∼9.688
(compare with Example 4.17 below).

Example 4.17 (Computer experiments) For a random sample of 5 · 104 cubic three-
folds defined over F2, we computed for each the number of F2-lines.

The average number of lines in this sample is ∼9.651.
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Smooth cubic threefolds contain less lines: here is the distribution of the numbers
of F2-lines for a random sample of 5 · 104 smooth cubic threefolds defined over F2.

The average number of lines in this sample is ∼6.963.

5 Cubic Fourfolds

We now examine cubic fourfolds over Fq. We expect them to contain “more” lines
than cubic threefolds (indeed, all the examples we computed do contain Fq-lines).
Unfortunately, we cannot just takeFq-hyperplane sections and apply our results from
Sect. 4, because these results only concernmildly singular cubic threefolds, and there
is no a priori reason why there would exist a hyperplane section defined over Fq with
these suitable singularities.

We follow the same path as in Sect. 4. Recall that for any field k, the scheme F(X)
of lines contained in a cubic fourfoldX ⊂ P5

k with finite singular set is a geometrically
connected local complete intersection fourfold (Sect. 2.3) with trivial canonical sheaf
([2, Proposition (1.8)]).

5.1 The Zeta Function of the Fourfold of Lines

Let X ⊂ P5
Fq

be a smooth cubic hypersurface defined over Fq. Its Betti numbers are
1, 0, 1, 0, 23, 0, 1, 0, 1, and the eigenvalues of the Frobenius morphism acting on
H4(X,Q�) are all divisible by q as algebraic integers ([18, Remark 5.1]). We write

Nr(X) = 1 + qr + q3r + q4r + qr
23∑
j=1

ωr
j ,
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where the complex algebraic integers ωj (and all their conjugates) have modulus
q, with ω23 = q (it corresponds to the part of the cohomology that comes from
H4(P5

Fq
,Q�)). The trace formula (3) reads

Z(X,T) = 1

(1 − T)(1 − qT)(1 − q2T)(1 − q3T)(1 − q4T)P0
4(X,T)

,

where

P0
4(X,T) := P4(X,T)

1 − q2T
=

22∏
j=1

(1 − qωjT). (18)

If we set

Mr(X) := 1

qr
(
Nr(X) − (1 + qr + q2r + q3r + q4r)

) =
22∑
j=1

ωr
j , (19)

we obtain

P0
4(X,T) = exp

(∑
r≥1

Mr(X)
(qT)r

r

)
. (20)

Theorem 5.1 Let X ⊂ P5
Fq

be a smooth cubic hypersurface defined over Fq and let
F(X) be the smooth fourfold of lines contained in X. With the notation above, we
have Pi(F(X),T) = 0 for i odd and

P2(F(X),T) = P6(F(X),T/q2) = P4(X,T/q) =
∏

1≤j≤23

(1 − ωjT)

P4(F(X),T) =
∏

1≤j≤k≤23

(1 − ωjωkT),

where the complex numbers ω1, . . . ,ω22 have modulus q and ω23 = q, and

Z(F(X), T) = 1

(1 − T)(1 − q4T)
∏

1≤j≤23
(
(1 − ωjT)(1 − q2ωjT)

) ∏
1≤j≤k≤23(1 − ωjωkT)

. (21)

Proof The various methods of proof described in the proof of Theorem 4.1 are still
valid here. For example, one may deduce the theorem from the isomorphisms

H4(X,Q�)
∼→H2

(
F(X),Q�(1)

)
and Sym2 H2(F(X),Q�)

∼→H4(F(X),Q�)

obtained from the Galkin–Shinder relation (7) ([14, Example 6.4]) or the analogous
(known) statements in characteristic 0. We leave the details to the reader. �
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5.2 Existence of Lines over Large Finite Fields

As we did for cubic threefolds, we use the Deligne–Weil estimates to find a lower
bound for the number of Fq-lines on a smooth cubic fourfold defined over Fq.

Theorem 5.2 Let X be a smooth cubic fourfold defined over Fq and let N1(F(X))
be the number of Fq-lines contained in X. For q ≥ 23, we have

N1(F(X)) ≥ q4 − 21q3 + 210q2 − 21q + 1

and, for smaller values of q,

q 5 7 8 9 11 13 16 17 19

N1(F(X)) ≥ 26 638 1 337 2 350 5 930 12 338 29 937 38 438 61 010

In particular, X always contains an Fq-line when q ≥ 5.

When q = 2, wewill see in Corollary 5.4 thatX always contains anF2-line. These
leaves only the cases q = 3 or 4 open (see Sect. 5.4.3).

Proof Write the roots ofQ2(F(X),T) as q (withmultiplicitya),−q (withmultiplicity
b), ω1, . . . ,ωc,ω1, . . . ,ωc, with a + b + 2c = 23. The rj := ωj + ωj are then real
numbers in [−2q, 2q] and, by (2) and Theorem 5.1, we have

N1
(
F(X)

) = 1 + q4 +
∑

1≤j≤k≤23

ωjωk + (1 + q2)
∑

1≤j≤23

ωj

= 1 + q4 +
(1
2

(
a(a + 1) + b(b + 1)

) − ab
)
q2 + (a − b)q

∑
1≤j≤c

rj

+ cq2 +
∑

1≤j<k≤c

rjrk + (1 + q2)
(
(a − b)q +

∑
1≤j≤c

rj
)

= 1 + q4 + 1

2

(
(a − b)2 + 23

)
q2 + (1 + q2)(a − b)q

+
∑

1≤j<k≤c

rjrk + (
1 + q2 + (a − b)q

) ∑
1≤j≤c

rj.

Since a + b = 23 − 2c is odd, it is enough to study the cases a = 1 and b = 0, or
a = 0 and b = 1, since we can always consider pairs q, q, or −q,−q, as ω,ω. We
then have c = 22 and we set ε := a − b ∈ {−1, 1}.

As in the proof of Theorem 4.4, we note that this last expression Gε
q(r) is linear

in each variable, hence its minimum is reached at a point on the boundary, when the
rj are all equal to ±2q. At such a point rl (with l positive coordinates), we compute

Gε
q(rl) = 1 + q4 + 12q2 + εq(1 + q2) + 2q2((2l − 11)2 − 11) + 2(2l − 11)q(1 + q2 + εq).
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Since q is always an eigenvalue, we must have ε = 1 when l = 0. As a function of l,
the minimum is reached for 2l − 11 = − 1+q2+εq

2q . For q ≥ 23, the allowable values

for which Gε
q(rl) is smallest are l = 0 and ε = 1, and the minimum is q4 − 21q3 +

210q2 − 21q + 1 > 0.
For q ≤ 19, the numbers in the table follow from a longish comparison of the

various functions Gε
q. �

5.3 Existence of Lines over Some Finite Fields

The cohomology of the structure sheaf of the fourfold F(X) is particularly simple
and this can be used to prove congruences for its number of Fq-points by using the
Katz formula (6).

Proposition 5.3 (Altman–Kleiman) Let X ⊂ P5
k be a cubic hypersurface defined

over a field k, with finite singular set. We have

h0(F(X),OF(X)) = h2(F(X),OF(X)) = h4(F(X),OF(X)) = 1

h1(F(X),OF(X)) = h3(F(X),OF(X)) = 0.

Proof The scheme F(X) is the zero scheme of a section of the rank-4 vector bundle
E ∨ := Sym3S ∨ on G := Gr(1,P5

k) and the Koszul complex

0 → ∧4E → ∧3E → ∧2E → E → OG → OF(X) → 0 (22)

is exact. By [2, Theorem (5.1)], the only non-zero cohomology groups of
∧

rE are

H8(G,
∧4E ) � H4(G,

∧2E ) � k.

Chasing through the cohomology sequences associated with (22), we obtain
H1(F(X),OF(X)) = H3(F(X),OF(X)) = 0 and

H0(F(X),OF(X)) � H0(G,OG),

H2(F(X),OF(X)) � H4(G,
∧2E ),

H4(F(X),OF(X)) � H8(G,
∧4E ).

This proves the proposition. �

Since ωF(X) is trivial, the multiplication product

H2(F(X),OF(X)) ⊗ H2(F(X),OF(X)) → H4(F(X),OF(X)) (23)

is the Serre duality pairing. It is therefore an isomorphism.
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Corollary 5.4 Let X ⊂ P5
Fq

be a cubic hypersurface with finite singular set, defined
over Fq. If q ≡ 2 (mod 3), the hypersurface X contains an Fq-line.

Proof The Fq-linear map Fq defined in Sect. 2.2 acts on the one-dimensional Fq-
vector space H2(F(X),OF(X)) (Proposition 5.3) by multiplication by some λ ∈ Fq;
since (23) is an isomorphism, Fq acts on H4(F(X),OF(X)) by multiplication by λ2.
It then follows from the Katz formula (6) that we have

N1(F(X)) · 1Fq = 1 + λ + λ2 in Fq.

If 1 + λ + λ2 = 0Fq , we have λ3 = 1Fq . Since 3 � q − 1, there are no elements of
order 3 in F×

q , hence the morphism F×
q → F×

q , x �→ x3 is injective. Therefore, λ =
1Fq , hence 3 · 1Fq = 1Fq , but this contradicts our hypothesis.

We thus have 1 + λ + λ2 �= 0Fq , hence N1(F(X)) is not divisible by the charac-
teristic of Fq and the corollary is proved. �

5.4 Examples of Cubic Fourfolds

5.4.1 Fermat Cubics

If X ⊂ P5
Fp

is the Fermat fourfold, it is a simple exercise to write down the zeta
function of F(X) using Theorems4.11 and 5.1, as we did in dimension 3 in
Corollary 4.12.

5.4.2 Cubic Fourfolds over F2 with only One Line

Smooth cubic fourfolds defined over F2 always contain an F2-line by Corollary 5.4.
Random computer searches produce examples with exactly oneF2-line: for example,
the only F2-line contained in the smooth cubic fourfold defined by the equation

x31 + x32 + x33 + x21x2 + x22x1 + x23x1 + x1x2x3 + x1x
2
4 + x21x4 + x2x

2
5 + x22x5

+ x24x5 + x4x
2
5 + x3x

2
6 + x23x6 + x24x6 + x4x

2
6 + x25x6 + x5x

2
6 + x4x5x6 = 0

is the line 〈(0, 0, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1)〉; the fourfold contains 13 F2-points.

5.4.3 Cubic Fourfolds over F3 or F4

Our results say nothing about the existence of lines in smooth cubic fourfolds defined
over F3 or F4. Our computer searches only produced fourfolds containing lines (and
over F3, both cases N1(F(X)) ≡ 0 or 1 (mod 3) do occur), leading us to suspect that
all (smooth) cubic fourfolds defined over F3 or F4 should contain lines.
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6 Cubics of Dimensions 5 or More

In higher dimensions, the existence of lines is easy to settle.

Theorem 6.1 Any cubic hypersurface X ⊂ Pn+1
Fq

of dimension n ≥ 6 defined over
Fq contains Fq-points and through any such point, there is an Fq-line contained in X.

Proof This is an immediate consequence of the Chevalley–Warning theorem: X(Fq)
is non-empty because n + 2 > 3 and given x ∈ X(Fq), lines through x and contained
in X are parametrized by a subscheme of Pn

Fq
defined by equations of degrees 1, 2,

and 3 and coefficients in Fq. Since n + 1 > 1 + 2 + 3, this subscheme contains an
Fq-point. �

TheChevalley–Warning theorem impliesN1(X) ≥ qn−1−1
q−1 .When n ≥ 6,we obtain

from the theorem N1(F(X)) ≥ qn−1−1
q2−1 ; when X (hence also F(X)) is smooth, the

Deligne–Weil estimates for F(X) provide better bounds.
When n ≥ 5, we may also use the fact that the scheme of lines contained in a

smooth cubic hypersurface is a Fano variety (its anticanonical bundle O(4 − n) is
ample).

Theorem 6.2 Assume n ≥ 5 and let X ⊂ Pn+1
Fq

be any cubic hypersurface defined
over Fq. The number of Fq-lines contained in X is ≡ 1 (mod q).

Proof When X is smooth, the variety F(X) is also smooth, connected, and a Fano
variety. The result then follows from [12, Corollary 1.3].

To prove the result in general, we consider as in Sect. 4.6 the parameter space P
for all cubic hypersurfaces in Pn+1

Fq
and the incidence variety I = {(L,X) ∈ G × P |

L ⊂ X}. The latter is smooth and geometrically irreducible; the projection pr : I → P
is dominant and its geometric generic fiber is a (smooth connected) Fano variety
([2, Theorem (3.3)(ii), Proposition (1.8), Corollary (1.12), Theorem (1.16)(i)]). It
follows from [13, Corollary 1.2] that for any x ∈ P(Fq) (corresponding to a cubic
hypersurfaceX ⊂ Pn+1

Fq
definedoverFq), one hasCard

(
pr−1(x)

) ≡ 1 (mod q). Since

pr−1(x) = F(X), this proves the theorem. �
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Perverse Sheaves of Categories
and Non-rationality

Andrew Harder, Ludmil Katzarkov and Yijia Liu

1 Introduction

In this paper we take a new look at the classical notions of rationality and stable
rationality from the perspective of sheaves of categories.

Our approach is based on three recent developments:

(1) The new striking approach to stable rationality introduced by Voisin and devel-
oped later by Colliot-Thélène and Pirutka, Totaro, Hassett, Kresch and Tschinkel.

(2) Recent breakthroughs made by Haiden, Katzarkov, Kontsevich, Pandit [15], who
introduced an additional, to the Harder–Narasimhan, filtration on the semistable
but not polystable objects.

(3) The theory of categorical linear systems and sheaves of categories developed by
Katzarkov and Liu, [27]. The main outcome of this paper was a proposal of a
new perverse category of sheaves analog of unramified cohomology.

An important part of our approach is the analogy between the theory of Higgs
bundles and the theory of perverse sheaves of categories (PSC) initiated in [26,
27]. In the same way as the moduli spaces of Higgs bundles record the homotopy
type of projective and quasi-projective varieties, sheaves of categories should record
the information of the rationality of projective and quasi-projective varieties. It was
demonstrated in [28, 30] that there is a correspondence between harmonic maps to
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Table 1 Higgs bundles ↔ Perverse sheaves of categories

Func(Π1 (X, s),Vect)

groupoid category of
vector spaces

Func(Π ∞(X, s),dg Cat)

2 category dg
category

Higgs bundles Perverse sheaves of categories

Complex var. Hodge structures Classical LG models

buildings and their singularities with stable networks and limiting stability conditions
for degenerated categories, degenerated sheaves of categories. In this paper we take
this correspondence further. We have described this correspondence in Table 1.

In this paper we describe a technology for finding such “good” flat families of
perverse sheaves of categories. This is done by deforming LG models as sheaves of
categories. The main geometric outcomes of our work are:

Classical Categorical
W = P equality for tropical varieties “W = P” for perverse sheaves of categories

Voisin theory of deformations Good flat deformations of PSC
Canonical deformations and compactification HN and additional filtrations of perverse

of moduli spaces sheaves of categories

We will briefly discuss our procedure. We start with a perverse sheaf of categories
(we will say more precisely what we mean by perverse sheaf of categories in the
next section) F over P1 (P2, etc.). We then use a graph � (cell complex) in P

1 (P2,
etc.) to construct a semistable singular Lagrangian L:

•
•

•

P1

P2

P3

F
Ft

F0 × A3

HereFt are the fiber categories and Pi are categories equipped with spherical functors
to Ft . A global section in F defines a semistable object in the category of global
sections of this PSC, which is analogous to the Lagrangian L shown in the following
diagram.
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Here, the fiber category is the category A1 ⊕ A1 and the categories P1, . . . , P3 are
the category A1 with the diagonal embedding into A1 ⊕ A1 being the associated
spherical functor. Observe that this object in the category of global sections can
depend on the initial category or its degeneration. For most of the paper L will be a
generator. We proceed with a correspondence:

PSC and degenerations Deformations of categories
generators −

graphs with sections

Semistable objects

Flow

volumes of necks

Filtration on semistable generators

The filtration above is a refinement of the Harder–Narasimhan filtration. It will
be defined in Sect. 5.

We formulate the main conjecture of the paper.

Conjecture 1.1 (The main conjecture).
The weights of semistable generators are birational invariants.

We will confirm this conjecture on some examples. We indicate that our technique
contains Voisin’s technique which uses CH0-groups of degenerations. On the A side,
these weights produce symplectic invariants.

We briefly summarize our technique. We start with a perverse sheaf of categories
(PSC) or its deformation. This produces a representation:

ρ : π1(P
1/pts) → Aut(Ft ).

Observe that this gives us more possibilities than in the classical case, where only
cohomology groups are acted upon,

ρ : π1(P
1/pts) → GL(⊕ H∗).

Our semistable objects (e.g. L) correspond to global sections such as
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←→ ρ : π1(P1/pts) → Aut(Ft).

Observe that our filtration contains the filtrations

(1) Coming from degenerations of cohomologies. (Clemens’ approach)
(2) Degenerations and nontrivial Brauer groups. (Voisin’s approach)

We propose that our categorical method generalizes the methods of both Clemens
and Voisin.

Filtrations

Clemens

Voisin

⊂

⊂

In a very general sense our filtration is a generalization of classical Hodge theory.
There should be an analogy between nilpotent representations of Z (which corre-
spond to degenerations over the punctured disc with nilpotent monodromy) and their
associated weight filtrations and the filtrations on an Artinian category A obtained
from a central charge Y : K0(A) → R,

{ρ : π1(Z) → Nil} an Artinian category with
Y : K0(A) → R

Artinian category of
nilpotent representations

{any Artinian category}

Based on this observation and based on many examples explained in this paper,
we propose a correspondence:

Classical Categorical
Unramified cohomologies Hybrid models with filtrations

The paper is organized as follows:
In Sect. 2, we introduce briefly the theory of perverse sheaves of categories and

their deformations. In Sect. 3, we give examples of deformations of categories. In
Sect. 4, we show how our approach relates to Voisin’s approach. In Sect. 5, we intro-
duce hybrid models and explain how the examples given in this paper support our
main conjecture. A more detailed treatment will appear in another paper.

This paper outlines a new approach. More details, examples and calculations will
appear elsewhere.
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2 Perverse Sheaves of Categories

2.1 Definitions

In this section we develop the theory of sheaves of categories and their deformations.
First, we will explain what we mean when we talk about perverse sheaves of cate-
gories. Let M be a manifold with stratification S. Let K be a singular Lagrangian
subspace of M so that each Ki = K ∩ Si is a deformation retract of Si . Furthermore,
assume that the functor R which assigns to each perverse sheaf F on (M, S) a con-
structible sheaf on K with singularities in SK := K ∩ S the sheaf Hdim M

K (M,F) is
faithful. Then a perverse sheaf of categories on M with singularities in K will be a
constructible sheaf of categories on (M, S) is a constructible sheaf of categories on
(K , SK ) which satisfies some appropriate conditions.

Such conditions are not known in general, and depend upon the singularities of
K , but the general idea is that one should find appropriate translations of conditions
which define the image of R into the language of pretriangulated dg categories. The
most basic form of this condition is found in work of Kapranov–Schectman [25].
If one takes the stratified space (C, 0), then an appropriate skeleton K is the non-
negative real line. The restriction functor expresses each perverse sheaf on (C, 0) as
a constructible sheaf on the line K which has generic fiber a vector space ψ at any
point on the positive real line and fiber φ at 0. There are two natural maps v : φ → ψ
and u : ψ → φ which satisfy the condition that Idψ − vu is an automorphism, or
equivalently Idφ − uv is invertible.

If we replace the vector spaces φ and ψ with pretriangulated dg categories � and
� then the map v becomes a functor F : � → �. The condition that the map v exists
and that Idφ − uv is an automorphism is analogous to claiming that F is spherical.
The difference of morphisms becomes the cone of the unit RF → Id� , which is the
twist of F . The sheaf � should be thought of as the “category of vanishing cycles”
at 0, and � should be thought of as the “category of nearby cycles”.

A rough definition of perverse sheaf of categories is as follows.

Definition 2.1 A perverse sheaf of categories on (M, S) is a constructible sheaf of
categories on an appropriate skeleton (K , SK ) so that there are functors between
stalks of this constructible sheaf which have properties which emulate the structure
of R(F) for F a perverse sheaf on (M, S).

We start with a definition. We shuffle our definition in order to study deformations
of perverse sheaf of categories. We localize (K , SK ) and several smaller skeleta
Sch(A,A1, . . . ,An). Our definition now looks like:

Definition 2.2 (Sheaves of categories over Sch(A,A1, . . . ,An)).
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•

A1

•

A2

A C
A - local sheaf of categories
Ai - sheaf of vanishing cycles

A, Ai - 2 categories
F , G - 2 functors
n, m - 2 natural transformations

•A1

•A2

•
β1 •

βF1

F2
G1

G2

TG1 = β1 IdG1 −m1n1

F1 G1

n1

m1

nearby vanishing cycles

Theorem 2.3 The deformations of Sch(A,A1, . . . ,An) are described by:

(1) Adding a new category β;
(2) Changes in natural transformations ni , m j .

We give some examples.

Example 2.4 We start with a simple example T 2 × T 2 - the product of two
2-dimensional tori.

T 2 × T 2
surgery

Thurston 4-fold

Kodaira surface

HMS

In [3] the following theorem is proven.

Theorem 2.5 The following categories are equivalent:

Db(T 2 × T 2,Gerbe) ∼= Fuk(Thurston) ∼= Db(Kodaira).

Example 2.6 We generalize this construction to the case of LGmodels. The addition
of gerbes should be an operation that is captured by perverse sheaves of categories
and LG models, as described in the following example.
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LG model Dolg2,3 surface

•
•

•
•

Gerbe on the
sheaf of categories

Log 2

2

Log 3

3

Recall: Dolg2,3 is the Dolgachev surface with multiple fibers of multiplicities 2 and

3, and is obtained from the rational elliptic surface P̂2
p1,...,p9 by applying 2 surgeries

with order 2, 3.

The mirror of the surgery transforming the rational elliptic surface into the Dol-
gachev surface should be the addition of new fibers to the LG model of the mirror to
the rational elliptic surface. The rational elliptic surface has mirror which is a rational
elliptic surface with one smooth fiber removed and potential w the natural elliptic
fibration over C.

Theorem 2.7 The mirror of Dolg2,3 is obtained from the LG model of P̂2
p1,...,p9 by

adding a gerbe G on it corresponding to a log transform. In other words:

Db(Dolg2,3) = FS(LG(P̂2
p1,...,p9),G). (2.1)

We indicate the proof of the theorem in the following diagram.

· · ·

LG(P2
p1,...,p9)

12

· · ·

P2
p1,...,p9

12 fibers

· · ·

LG(C2,Gerbe)

12

|
log tr

|
log tr

2.2 Some More Examples

Consider a fibration F f−→ C with a multiple n-fiber over 0.
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E × C
n:1−−−−−→

(×l,×E)
F f−→ C

C

Z
n

nl = 0, En = 1

The idea is that the addition of smooth fibers with multiplicity greater than 1 (by
surgery) into an elliptic fibration over C should introduce quasi-phantoms into the
Fukaya–Seidel category of the associated elliptic fibration. This is summarized in
the following theorem.

Theorem 2.8 MF(F f−→ C) contains a quasi-phantom.

Proof Indeed H∗(F , vanishing cycles) = 0, since vanishing cycles are the elliptic
curve E and H∗(E, L) = 0, for any L - nontrivial rank 1 local system.

Also K(MF(F −→ C)) = Zn . �

One expects that phantom and quasi-phantom categories should be detectable via
moduli spaces of objects. The following proposition provides evidence for this.

Proposition 2.9 There exists a moduli space of stable objects on MF(F −→ C).

Proof Indeed these are the Zn-equivalent objects on E × C. For example, we have
M stab = E ′, E ′ - multiple fiber. �

In the next section, we consider more examples of deformations of perverse
sheaves of categories.

3 Deformations of Perverse Sheaves of Categories
and Poisson Deformations

Recall that deformations of perverse sheaves of categories are determined by three
different types of deformations,

1. Deformations of the Stasheff polytope,
2. Deformations of the fiber categories,
3. Deformation of natural transformations.

Here we will give several examples of deformations of sheaves of categories which
come from the second piece of data. We will show that noncommutative deformations
ofP2 andP3 may be obtained as globalization of a deformation of perverse sheaves of
categories. We will describe an explicit realization of the following correspondence.

{
Deformation of

natural transformations

}
←→

{
Quantization of

Poisson deformations

}
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In our case, we will recover quantizations of Poisson deformations for the simple
reason that the deformation of perverse sheaves of categories that we produce comes
with a deformation of the fiber category.

The results described below will appear in forthcoming work of the first two
named authors [18].

3.1 Warmup: Deformations of P2

As a warmup we can analyze the case of P2. Here we will recover the classical non-
commutative deformations ofP2 as the deformations of a perverse sheaf of categories
which is obtained by deforming the spherical functors and fixing the fiber category.

Recall that the following data determines a noncommutative deformation of P2.
Let E be a smooth curve of genus 0, L be a line bundle on E of degree 3 and σ a
translation automorphism of E . Then, according to Artin–Tate–van den Bergh [6],
the twisted coordinate ring of E associated to (E,L ,σ) is the coordinate ring of
a noncommutative deformation P

2
μ of P2. Under the identification between

∧2 TP2

and −KP2 = OP2(3), these deformations are associated to the choice of section of
OP2(3) which vanishes on the canonical image of E associated to L .

The same data can be used to build a perverse schober on the disc � with three
critical points p1, p2, p3. This perverse schober can be used to reconstruct the derived
category of the associated noncommutative deformation of P2. This fact was essen-
tially noticed by Bondal–Polishchuk [7], but of course not in the language of perverse
schobers.

We note that any line bundle L on E corresponds to a spherical functor SL :
Db(k) −→ Db(coh E), and in particular, given the triple (E,L ,σ), we can construct
three spherical functors S0, SL , Sσ corresponding to line bundles OE ,L and σ∗L 2

respectively. If σ = id then this triple is precisely what one gets by restricting the
strong exceptional collection OP2 ,OP2(1),OP2(2) on P

2 to the image of E under the
embedding associated to L .

We will let S(E,L ,σ) be the perverse schober on the disc with three critical
points associated to the spherical functors S0, SL and Sσ .

Proposition 3.1 (Harder–Katzarkov [18]). The category of global sections of the
perverse schoberS(E,L ,σ) is Db(coh P2

μ)where P
2
μ is the noncommutative defor-

mation of P2 associated to the triple (E,L ,σ).

The fact that makes this possible is that we can deform spherical objects on an
elliptic curve. By definition, if S is a spherical object on E , then Ext1(S, S) = C.
These infinitesimal deformations are obtained by pullback along an automorphism
of E , though of course, deformation may be obstructed. Whether the corresponding
perverse schober recovers P2 or not can be detected using the “monodromy at infin-
ity”. In essence, the action of spherical functors S0, SL , Sσ should be interpreted
as monodromy around the degenerate fibers of the perverse sheaf of categories at
points p1, p2 and p3. The composition of the three monodromy functors should be
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interpreted as monodromy around the loop encompassing all three degenerate points.
We have the following proposition.

Proposition 3.2 The global sections of the perverse schoberS(E,L ,σ) is Db(coh
P

2) if and only if S0 · SL · Sσ is the spherical twist associated to the line bundleL 3.

3.2 Noncommutative Deformations of P3

Here we exhibit noncommutative deformations of P3 as coming from the deforma-
tions of a perverse sheaf of categories over a 1-dimensional base by deforming the
structure of the category of nearby cycles, or in terms of a PSC over a 2-dimensional
base by deforming the sheaves of vanishing cycles.

Polishchuk shows [39] that there exist Poisson structures on P
3 so that there are

Poisson divisors which look like

1. A normal crossings union of two quadrics
2. A normal crossings union of a hyperplane and a cubic.

Thus we should be able to perform the construction of noncommutative deformations
of P2 by replacing the smooth elliptic curve by either a normal crossings pair of
quadrics X2,2 or a normal crossings union of a hyperplane and a cubic surface, denoted
X1,3. For the sake of notation, we will only look at the case of X2,2 in what follows,
but all results hold for X1,3 as well. We then obtain a schober over the disc with four
singular points whose general fiber is Perf(X2,2). We then deform the schober, not by
deforming the spherical functors S0, S1, S2, S3 and keeping Perf(X2,2) constant, but
by taking non-commutative deformations of Perf(X2,2) which deform the spherical
functors S0, S1, S2, S3.

Proposition 3.3 (Harder–Katzarkov [18]). One may construct noncommutative
deformations X2,2,μ of X2,2 which preserve the spherical functors Si for i = 1, . . . , 4
corresponding to the data (E,M , τ ) where, as before, E is a smooth curve of genus
1 and τ is an automorphism of E, but nowM is an ample line bundle on E of degree
2. There is a corresponding perverse schober over the disc with four singularities
called T(E,M , τ ). This deformation has coordinate ring given by a quantization
of the Sklyanin algebra of degree 4.

The category Perf(X2,2) itself appears as global sections of a constructible sheaf
of categories on a 2-dimensional complex as well. Taking E to be the elliptic curve
that forms the singular locus of the union of smooth quadrics X2,2, we take the
skeleton KX2,2 of � with singularities in eight points,

p1 p2 p3 p4 q1 q2 q3 q4

To an edge of the skeleton above we take a dg extension of Db(coh E). There is then
a standard semiorthogonal decomposition of Db(coh Q) for Q a generic quadric,
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〈OQ,OQ(1, 0),OQ(0, 1),OQ(1, 1)〉

where the bundles above are determined by the natural identification of Q with
P

1 × P
1. If we let Q1 and Q2 be the two quadrics so that X2,2 = Q1 ∪ Q2, then there

are spherical functors Si,( j,k) associated to the pullback ofOQi ( j, k) to E = Q1 ∩ Q2.
To the strata p1 and q4, we associate categories 〈OQ1〉 and 〈OQ2(1, 1)〉 with the
appropriate spherical functors to Db(coh E). To the remaining 0-dimensional strata
of the skeleton KX2,2 , the appropriate categories are a bit less obvious. If D(k) is a
dg extension of Db(k−mod) and D(coh E) is a dg extension of Db(coh E), then we
can define D(k) ×Si ,( j,k) D(coh E) to be the gluing of D(k) to D(coh E) along the
dg bimodule which assigns

(A, B) ∈ Ob(D(coh E)) × Ob(D(k)) �→ HomD(coh E)(A, Si,( j,k)(B)).

(see [32] for definitions). To p2, p3 and p4 we assign the categories D(k) ×Si,( j,k)
D(coh E) for i = 1 and ( j, k) equal to (1, 0), (0, 1) and (1, 1) respectively. Descrip-
tions of appropriate functors will be given in [18].

Proposition 3.4 The dg category of global sections of the constructible sheaf of
categories of SX2,2 on KX2,2 is equivalent to a dg extension of Perf(X2,2).

Therefore, we have that there is a constructible sheaf of categories whose sheaf
of global sections gives the generic fiber of the constructible sheaf of categories
which reconstructs Db(coh P3). This suggests that perhaps there is a perverse sheaf
of categories over � × � whose sheaf of global sections is Db(coh P3). It is a
somewhat remarkable fact that such a perverse sheaf of categories is provided by
mirror symmetry.

Recall that the Landau–Ginzburg mirror of P3 is given by the pair ((C×)3,w)
where w is the Laurent polynomial

w = x + y + z + 1

xyz
.

Each monomial in this expression corresponds to a boundary divisor in P
3, and the

sum of these divisors is −KP3 . The decomposition of −KP3 into a union of smooth
quadrics then informally can be traced to a decomposition of this potential into the
sum of a pair of functions,

w1 = x + y, w2 = z + 1

xyz

This pair of functions give a map from (C×)3 to C
2. The generic fiber of this map is

a punctured elliptic curve, and this elliptic curve degenerates along the curve Cdeg

w1w2(w2
1w

2
2 − 16) = 0



64 A. Harder et al.

The composition of the map (x, y, z) ∈ (C×)3 �→ (w1,w2) ∈ C
2 with the map

(w1,w2) ∈ C
2 �→ w1 + w2 ∈ C recovers the map w. The map w has critical points

over 4
√−1

i
for i = 0, 1, 2, 3. We state the following theorem. Details will appear

in [18].

Theorem 3.5 (Harder–Katzarkov [18]). There is a singular (real) two dimensional
skeleton K2 of C2 whose singularities lie in Cdeg which maps to a skeleton K of C

with singularities at 4
√−1

i
for i = 0, 1, 2, 3 under the map (w1,w2) �→ w1 + w2.

On this skeleton, there is a constructible sheaf of categories whose category of global
sections is a dg extension of Db(coh P3).

The skeleton K is the skeleton associated to a perverse schober on C with four
singular points. The structure of the skeleton K2 is determined completely by the
braid monodromy of the projection of the curve Cdeg to C induced by the map
(w1,w2) �→ w1 + w2. Finally, the following theorem holds.

Theorem 3.6 (Harder–Katzarkov [18]). There are deformations of the constructible
sheaf of categories in Theorem 3.5, and these deformations correspond to quantiza-
tions of the Poisson deformations of Db(coh P3) for which X2,2 is a Poisson divisor.

A similar theorem holds for the Poisson deformations ofP3 for which X1,3 remains
a Poisson divisor – their quantizations may be recovered from deformations of a
natural two-dimensional constructible sheaf of categories on a skeleton of C2 with
singularities in a curve Ddeg, which is distinct from Cdeg.

3.3 Perverse Sheaves of Categories and Elliptic Curves

Here we describe 2-dimensional perverse sheaves of categories associated to the
LG model whose Fukaya–Seidel category is equivalent to Db(cohE). This approach
should generalize to allow us to compute the derived category of an arbitrary curve in
P

1 × P
1. Let us take a curve of degree (2, n) in P

1 × P
1, then we build the following

LG model

w = x1 + x2
2

x1
+ x3 + xn2

x3

which is a map (C×)3. The associated potential can be thought of as the composition
of two maps. The first map sends (x1, x2, x3) �→ (x2,w) and the second is a projection
onto the second coordinate. Therefore, w is a fibration over C whose fibers are LG
models of P1 × P

1 except the fiber over 0. The map (x2,w) is a fibration over C2

with generic fiber a punctured elliptic curve. This can be partially compactified to
an elliptic fibration written in Weierstrass form written as

Y 2 = X3 − (2w2
1 − w2

2)X
2 + 4(w2 − w1)(w1 + w2)w

2
1X + 4w4

1(2w2
1 + w2

2).
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This fibration degenerates along the curve

(w2 − 4w1)(4w1 + w2)w2w1 = 0.

Blow up the base of this fibration at (0, 0) and call the resultC∈. We can pull back the
above elliptic fibration to get a fibration over C̃2 with exceptional divisor E . We can
resolve singularities of this fibration over C̃2 to obtain a smooth elliptic fibration Y .
We can choose a chart C1 = C

2 on C̃2 so that the map onto C is given by a quadratic
map given in coordinates (t, s) as the function ts. Restricting the fibration of Y over
C̃2 to the chart C1 and calling this elliptic fibration Y1. This is written in Weierstrass
form as

Y 2 = X3 − (2t2 − 4t + 1) − 4t (t − 2)(t − 1)2X + 4(t − 1)4(2t2 − 4t + 3).

The discriminant curve of this fibration is given by the equation

(4t − 5)(4t − 3)(t − 1) = 0

in terms of coordinates (t, s). The manifold Y1 is then a smooth Calabi–Yau partial
compactification of the LG model of the elliptic curve in P

1 × P
1 whose Fukaya–

Seidel category should be equivalent to Db(cohE).
We can build a natural complex on C

2 near the fiber ts = 0 and equip it with a
perverse sheaf of categories whose global sections category should be Db(cohE).
All of the data involved in this perverse sheaf of categories comes from the elliptic
fibration above. This complex is built as follows. Take a straight path γ in a disc
around 0 in C going from the boundary to 0. Fibers over points q in this path are
smooth conics if q �= 0, and a pair of copies of C meeting in a single point if q = 0.
In each fiber over a point in γ, we can draw a skeleton Kq , and over the point 0
with singularities in the intersection of the discriminant curve in C

2 with the fiber
over q, we draw the skeleton K0, which has singularities at (0, 0) as well as at the
intersection of the fiber over 0 with the discriminant curve. These skeleta are drawn
as in the following diagram

Kq K0
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Putting all of these fiberwise complexes into a two-dimensional complex, we get a
complex which looks as follows –

v1

v2

v3

v4

f1

f2

f3

e1

e2

e3

e4

e5

e6

e7

The constructible sheaf of categories on this complex is given by a set of categories
assigned to each vertex, edge and face, and a sequence of functors Fs→t : Cs → Ct

for pairs of strata t and s so that s ⊆ t which satisfy the natural relations, i.e. that
Ft→q · Fs→t = Fs→q . Our categories are:

C f1 = C f2 = C f3 = Cv1 = D(cohE)

Ce4 = Ce5 = Ce6 = Ce7 = Cv2 = Cv3 = Cv4 = 0

Ce3 = Ck−dgm

Ce1 = Ck−dgm ×�2 D(cohE)

Ce2 = A ×�1 D(cohE)

Here, D(cohE) is a pretriangulated dg extension of Db(cohE). If we have a func-
tor � : C → D(cohE), then the category C ×� D(cohE) is the dg category of
pairs (A, B,μ) where A ∈ C and B ∈ D(cohE) and μ ∈ Hom0

D(cohE)(�2(A), B)
and closed (see Kuznetsov–Lunts [32] for definition). There are functors �0,�1 and
�2 given as follows. There’s a semiorthogonal decomposition

Db(cohP1 × P
1) = 〈O,A,O(1, 1)〉

thus there are spherical functors

φ0 : Db(k) −→ Db(cohE)

φ1 :A −→ Db(cohE)

φ2 : Db(k) −→ Db(cohE)

which have dg lifts of these functors

�0 :Ck−dgm −→ D(cohE)

�1 :A −→ D(cohE)
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�2 :Ck−dgm −→ D(cohE).

There are two well-defined functors fromA ×� D(cohE) toD(cohE) then there are
two functors F+ and F−, given by the map sending (A, B,μ) to B and Cone(μ)[1]
respectively. The functor Fei→ fi is given by the corresponding functor F− for
i = 1, 2, the functor Fei→ fi+1 is the corresponding functor F+ for i = 1, 2. The
functor Fe3→ f3 is the functor �0. The category Fv1→ f1 is the identity functor. It’s
easy to check that the global sections of this sheaf of categories is D(cohE).

The restriction of this perverse sheaf of categories to the 1-dimensional skeleton
Kq in each fiber for q �= 0 has global sections category which is a dg extension
of Db(cohP1 × P

1) [18], which is equivalent to the Fukaya–Seidel category of the
Landau–Ginzburg model associated to each fiber of w over q �= 0.

Remark 3.7 (Cubic fourfolds with two planes and K3 surfaces). A similar struc-
ture should arise in the case of the cubic fourfold containing a pair of planes. It is
well known that the cubic containing two planes is P

4 blown up at the transversal
intersection S of a cubic and a quadric hypersurface.

According to mirror symmetry, there should be a pair of potentials w1 and w2 on
the LG model of this cubic (defined on some open subset of the relatively compactified
LG model) corresponding to the divisor classes D1 and D2 of the cubic and quadrics
in P

4 containing S. This gives rise to a fibration over C2 which can then be viewed
as the composition of a fibration over C2 blown up at (0, 0) and the contraction of
the exceptional divisor. This fibration over the blown up plane should have relative
dimension 2 and the fibers over a general point should be a K3 surface mirror to
the intersection of a cubic and a quadric in P

4. Furthermore, the fibers over the
exceptional divisor should be generically smooth, as should the fibers over the locus
w1 + w2 = 0.

Associated to this fibration, there should be a perverse sheaf of Fukaya categories
over the blown-up plane. Near the intersection of the exceptional divisor and the
proper transform of w1 + w2 = 0, this perverse sheaf of Fukaya categories should
localize along a skeleton to look exactly like the construction above, except instead of
having generic fibers the Fukaya category of an elliptic curve, we should have generic
fibers the Fukaya category of the mirror to the complete intersection in P

4 of a cubic
and a quadric. The global section of this constructible sheaf of categories should
have category of global sections equal to the derived category of the intersection of
the cubic and the quadric in P

4, which is reflected in the fact that the cubic fourfold
containing two planes has, as a semiorthogonal summand of its derived category the
derived category of the complete intersection of the cubic and the quadric in P

4.

4 Landau–Ginzburg Model Computations for Threefolds

In this section we connect our program to birational geometry and the theory of LG
models. The main goal of this section is to emphasize our program is connected to
Voisin’s approach. In terms of deformations of perverse sheaves of categories, the
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LG model gives a PSC whose global sections recover the derived category of a Fano
variety. We will degenerate one of the categories of vanishing cycles of this PSC in
order to produce a category which has nontrivial “Brauer group”. The approach to
degeneration that we take is standard in symplectic geometry and goes back at least
to Seidel [40], and involves removing closed subvarieties.

We recall some inspiration from birational geometry stemming from the work of
Voisin [41], Colliot-Thélène and Pirutka [8]. A variety X is called stably non-rational
if X × P

n is non-rational for all n. It is known that if a variety over C is stably
rational then for any field L containing C, the Chow group CH0(XL) is isomorphic
to Z. Under this condition, CH0(X) is said to be universally trivial. Voisin has shown
that universal nontriviality of CH0(X) can be detected by deformation arguments,
in particular [41, Theorem 1.1] says that if we have a smooth variety X fibered over
a smooth curve B so that a special fiber X0 has only mild singularities and a very
general fiber X := Xb has universally trivial CH0(X) then so does any projective
model of X0. If V is a threefold, then one can detect failure of universal CH0(X)-
triviality by showing that there exists torsion in H 3(V,Z) (i.e. there exists torsion
in the Brauer group). As an example, we may look at the classical Artin–Mumford
example [5] which takes a degeneration of a quartic double solid to a variety which
is a double cover of P3 ramified along a quartic with ten nodes. It is then proven in
[5] that the resolution of singularities of this particular quartic double solid V has a
Z/2 in H 3(V,Z). Voisin uses this to conclude that a general quartic double solid is
not stably rational, whereas Artin and Mumford could only conclude from this that
their specific quartic double solid is not rational.

The main idea that we explore in this section is that the approach of Voisin to
stable non-rationality should have a generalization to deformations or degenerations
of Db(coh X). Via mirror symmetry, this should translate to a question about defor-
mations or degenerations of sheaves of categories associated to the corresponding
LG model of X . Mirror symmetry for Fano threefolds should exchange

H even(X,Z) ∼= H odd(LG(X), S;Z)

H odd(X,Z) ∼= H even(LG(X), S;Z)

where S is a smooth generic fiber of the LG model of X . See [29] for some justification
for this relationship. This is analogous to the case where X is a Calabi–Yau threefold
(see [11, 12]). The degenerations of the sheaf of categories associated to LG(X)
that we will produce are not necessarily degenerations of LG models in the usual
geometric sense, but they are produced by blowing up or excising subvarieties from
X , as described in Sect. 3. We then show that we find torsion in H 2(U, S;Z) for U
our topologically modified LG model. We propose that this torsion is mirror dual to
torsion in the K0 of some deformation of the corresponding category. By the relation
above, the torsion groups appearing in the following subsections should be mirror
categorical obstructions to stable rationality of the quartic double solid and the cubic
threefold.
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4.1 The LG Model of a Quartic Double Solid

Here we review a description of the LG models of several Fano threefolds in their
broad strokes. We begin with the following situation. Let X be a Fano threefold of
one of the following types. Recall that V7 denotes the blow-up of P3 at a single point.

(1) X is a quartic double solid.
(2) X is a divisor in P

2 × P
2 of bidegree (2, 2).

(3) X is a double cover of V7 with branch locus an anticanonical divisor.
(4) X is a double cover of P1 × P

1 × P
1 with ramification locus of degree (2, 2, 2).

Then the singular fibers of the LG model of X take a specific form which is inde-
pendent of X . The construction described here appears in [9] for the case of quartic
double solids. There are several fibers of each LG model which are simply nodal
K3 surfaces, and there is one fiber which is a more complicated. We assume the
complicated fiber is the fiber over 0 in C and we will denote it Y0. Monodromy about
this complicated fiber has order 2, and the fiber itself has a single smooth rational
component with multiplicity 2 and a number of rational components with multiplic-
ity 1. We will henceforward denote the LG model by Y , and it will be equipped with
a regular function w.

A natural way to understand Y0 is to take base-change along the map t = s2

where s is a parameter on the base Ct of the original LG model Y . Performing this
base-change and taking normalization, we obtain a (possibly) singular family of K3
surfaces Ŷ with a map ŵ : Ŷ → Cs . The (possible) singularities of Ŷ are contained
in the fiber ŵ−1(0) = Ŷ0, which is a K3 surface with several A1 singularities.

Furthermore, there is an involution ι on Ŷ from which we may recover the original
LG model Y . This quotient map sends no fiber to itself except for Ŷ0. On this fiber,
the automorphism ι acts as a non-symplectic involution on Ŷ0 and fixes a number of
rational curves.

In the Landau–Ginzburg model Y , given as the resolved quotient of Ŷ/ι, the
fiber Y0 is described as follows. In the quotient Ŷ/ι, the fiber over 0 is scheme-
theoretically 2 times the preimage of 0 under the natural map. Furthermore, there are
a number of curves of cA1 singularities. We resolve these singularities by blowing
up along these loci in sequence, since there is nontrivial intersection between them.
This blow-up procedure succeeds in resolving the singularities of Ŷ/ι and that the
relative canonical bundle of the resolved threefold is trivial. Let E1, . . . , En denote
the exceptional divisors obtained in Y under this resolution of singularities.

4.2 Torsion in Cohomology of the LG Model

We will now denote by U the manifold obtained from Y by removing components of
Y0 with multiplicity 1, in other words, U = Y \ (∪n

i=1Ei ) where E1, . . . , En are the
exceptional divisors described in the previous paragraph. Another way to describe
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this threefold is as follows. Take the threefold Ŷ described above, and excise the
fixed locus of ι, calling the resulting threefold Û . Note that this is the complement
of a union of smooth codimension 2 subvarieties. The automorphism ι extends to a
fixed-point free involution on Û and the quotient Û/ι is U . Let us denote by wU the
restriction of w to U . Our goal is to show that if S is a generic smooth fiber of wU ,
then there is Z/2 torsion in H 2(U, S;Z).

The group H 2(U, S;Z) should be part of the K -theory of some quotient cate-
gory of the Fukaya–Seidel category of LG(X) equipped with an appropriate integral
structure.

Proposition 4.1 The manifold Û is simply connected.

Proof First, let Ỹ be a small analytic resolution of singularities of Ŷ and let w̃ be
the natural map w̃ : Ỹ → A

1
s . Then, since the fixed curves of ι contain the singular

points of Ŷ , the variety Û can be written as the complement in Ỹ of the union of the
exceptional curves of the resolution Ỹ → Ŷ and the proper transform of the fixed

locus of the involution ι on Ŷ . This is all to say that Û is the complement of a
codimension 2 subvariety of the smooth variety Ỹ . Thus it follows by general theory
that π1(Û ) = π1(Ŷ ), and so it is enough to show that π1(Ŷ ) is simply connected.

At this point, we may carefully apply the van Kampen theorem and the fact that
ADE singular K3 surfaces are simply connected to prove that Ỹ is simply connected.
Begin with a covering {Vi }mi=1 of A1 so that the following holds:

(1) Each Vi is contractible,
(2) Each w̃−1(Vi ) contains at most one singular fiber of w̃,
(3) For each pair of indices i, j , the intersection Vi ∩ Vj is contractible, connected,
(4) For each triple of indices i, j, k, the intersection Vi ∩ Vj ∩ Vk is empty.

(it is easy to check that such a covering can be found). Then the Clemens contraction
theorem tells us that Yi := w̃−1(Vi ) is homotopic to the unique singular fiber (if
Vi contains no critical point, then Yi is homotopic to a smooth K3 surface). Since
ADE singular K3 surfaces are simply connected, then Yi is simply connected. The
condition that Vi ∩ Vj is connected then allows us to use the Seifert–van Kampen
theorem to conclude that Ỹ is simply connected. �

As a corollary to this proposition, we have that

Corollary 4.2 The free quotient U = Û/ι has fundamental group Z/2 and hence
H 2(U,Z) = Z/2 ⊕ Z

n for some positive integer n.

Now, finally, we show that this implies that there is torsionZ/2 in the cohomology
group H 2(U, S;Z).

Theorem 4.3 Wehave an isomorphism H 2(U, S;Z) ∼= Z/2 ⊕ Z
m for some positive

integer m.

Proof We compute using the long exact sequence in relative cohomology,

· · · → H 1(S,Z) → H 2(U, S;Z) → H 2(U,Z) → H 2(S,Z) → . . .
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Since S is a smooth K3 surface, we know that H 1(S,Z) = 0, and that the subgroup
Z/2 of H 2(U,Z) must be in the kernel of the restriction map H 2(U,Z) → H 2(S,Z).
Thus it follows that there is a copy of Z/2 in H 2(U, S;Z), and furthermore, that
H 2(U, S;Z) ∼= Z/2 ⊕ Z

m for some integer m. �

4.3 The Cubic Threefold

A very similar construction can be performed in the case of the LG model of the
cubic threefold with some minor modifications. The details of the construction of
the LG model of the cubic threefold that are relevant are contained in [14].1 There is
a smooth log Calabi–Yau LG model of the cubic threefold, which we denote (Y,w)
with the following properties:

(1) The generic fiber is a K3 surface with Picard lattice M6 = E2
8 ⊕U ⊕ 〈−6〉.

(2) There are three fibers with nodes.
(3) The fiber over 0 which is a union of 6 rational surfaces whose configuration is

described in [14]. Monodromy around this fiber is of order 3.

By taking base change of Y along the map g : C → C which assigns λ to μ3, and
resolving g∗Y , we obtain a threefold Ŷ which is K3 fibered over C, but now has
only 6 singular fibers, each with only a node. This means that there is a birational
automorphism ι on Ŷ of order 3 so that Ŷ/ι is birational to Y . Explicitly, in [14] it
is shown that the automorphism ι is undefined on nine pairs of rational curves, each
pair intersecting in a single point and all of these pairs of curves are in the fiber of Ŷ
over 0. We can contract these A2 configurations of rational curves to get a threefold Ỹ
on which ι acts as an automorphism, but which is singular. The automorphism ι fixes
six rational curves in the fiber of Ỹ over 0. After blowing up sequentially along these
six rational curves to get Ỹ ′, the automorphism ι continues to act biholomorphically,
and no longer has fixed curves. The quotient Ỹ ′/ι is smooth, according to [14], and
there are seven components, the image of the six exceptional divisors, and a single
component R ∼= P

1 × P
1 of multiplicity three. The rational surfaces coming from

exceptional divisors meet R along three vertical and three horizontal curves. The
divisor R can be contracted onto either one of its P1 factors. Performing one of these
two contractions, we recover Y .

Now let U = (Ỹ ′/ι) \ {S1, . . . , S6}. Note that this can be obtained by blowing
up Y in the curve which is the intersection of three components of the central fiber
and removing all of the other components. Then a proof almost identical to that of
Theorem 4.3 shows that, if S is a generic fiber of w, then

Theorem 4.4 There is an isomorphism H 2(U, S;Z) ∼= Z/3 ⊕ Z
m for some positive

integer m.

1In the most recent versions of [14], these details have been removed, so we direct the reader to
versions 1 and 2 of [14] on the arXiv.
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Therefore, if X is the cubic threefold, then there should exist a non-commutative
deformation of Db(coh X) with torsion in its periodic cyclic cohomology obstructing
stable rationality of X .

4.4 The Quartic Double Fourfold

Here we will look at the LG models of the quartic double fourfold. There is an
analogy between the LG model of the quartic double fourfold and the LG model of
the cubic threefold.

Here we will give a model which describes the LG model of the quartic double
fourfold, which we call X . Recall that we may write such a variety as a hypersurface
in WP(1, 1, 1, 1, 1, 2) of degree 4. Therefore, following the method of Givental, we
may write the LG model of X as a hypersurface in (C×)5 cut out by the equation

x4 + x5 + 1

x1x2x3x4x2
5

= 1

equipped with a superpotential

w = x1 + x2 + x3.

Call this hypersurface Y 0. We may write this superpotential as the sum of three
superpotentials,

wi = xi for i = 1, 2, 3.

There’s then a map from LG(X) to C
3 given by the restriction of the projection

(x1, x2, x3, x4, x5) �→ (x1, x2, x3).

The fibers of this projection map are open elliptic curves which can be compactified
in C

2 to
w1w2w3x4x

2
5 (x4 + x5 − 1) + 1 = 0

We may then write this threefold in Weierstrass form as

y2 = x(x2 + w2
1w

2
2w

2
3x + 16w3

1w
3
2w

3
3)

This elliptic fibration over C3 has smooth fibers away from the coordinate axes. We
will resolve this threefold to get an appropriate smooth resolution of Y 0. We do this
by blowing up the base of the elliptic fibration and pulling back until we can resolve
singularities by blowing up the resulting fourfold in fibers.

First, we blow up C
3 at (0, 0, 0), and we call the resulting divisor E0. Then we

blow up the resulting threefold base at the intersection of E0 and the strict transforms
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of {wi = 0}, calling the resulting exceptional divisors Ei,0. We then blow up the inter-
sections of the strict transforms of wi = w j = 0 five times (in appropriate sequence)
and call the resulting divisors Ei j,k, k = 1, . . . , 5. There is now a naturally defined
elliptic fibration over this blown-up threefold. Over an open piece in each divisor in
the base, the fibers of this elliptic fibration and their resolutions can be described by
Kodaira’s classification. Identifying E0 and Ei,0 with their proper transforms in R,
we have:

• Fibers of type III over points in E0.
• Fibers of type III∗ over points in {wi = 0}.
• Fibers of type I∗0 over points in Ei j,3.
• Fibers of type III over Ei j,2 and Ei j,4

• Fibers of type I1 along some divisor which does not intersect any other divisor in
the set above.

and smooth fibers everywhere else. We may now simply blow up appropriately to
resolve most singularities in the resulting elliptic fourfold over R. We are left with
singularities in fibers over Ei j,2 ∩ Ei j,3 and Ei j,4 ∩ Ei j,3. These singularities admit
a small resolution by work of Miranda. Thus we obtain a smooth resolution of our
elliptic fourfold.

We will call this resolved fourfold LG(X). The map w can be extended to a
morphism from LG(X) to C by simply composing the elliptic fibration map from
LG(X) to R with the contraction map from R onto C and the map (w1,w2,w3) �→
w1 + w2 + w3. The fiber over any point in C away from 0 is irreducible, and the
fiber over 0 is composed of the preimages of E0 and Ei,0 in the elliptic fibration,
along with the strict transform of the preimage of w1 + w2 + w3 = 0 in Y 0, which
is simply a smooth elliptically fibered threefold.

Therefore, the fiber over 0 is composed of 6 divisors with multiplicity 1. However,
this is not normal crossings, since the preimage of E0 in the elliptic fibration on
LG(X) is a pair of divisors which intersect with multiplicity 2 in the fiber over each
point in E0.

4.5 Base Change and Torsion

Just as in the case of the cubic threefold, we may blow-up the LG model (Y,w) of the
quartic double fourfold to get a fibration over A1 which we call (Ỹ , w̃) and remove
divisors from w̃−1(0) to get a fibration over A1 which we denote (Ynp,wnp) so that
there is torsion in H 2(Ynp,w−1

np (s);Z) for s a regular value of w.
We outline this construction, ignoring possible birational maps which are isomor-

phisms in codimension 1. We note that over the fibration E0 in the LG model (Y,w)
expressed as an elliptic fourfold over a blow-up of C3 as described in the previous
section is a fibration by degenerate elliptic curves of Kodaira type III. Each fiber then,
over a Zariski open subset of E0 is a pair of rational curves meeting tangentially in
a single point. The preimage of E0 in Y is then a pair of divisors D1 and D2 in Y
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which intersect with multiplicity 4 along a surface. Blowing up Y in this surface of
intersection of D1 and D2 which is isomorphic to E0 produces a rational threefold
D′ in the blow up (which we call Ỹ ), whose multiplicity in the fiber over 0 of the
inherited fibration over C is four.

Taking base change of Ỹ along the map t �→ s4 is the same as taking the fourfold
cover of Ỹ ramified along the fiber over 0. After doing this, the multiplicity of the
preimage of D′ is 1 and all components of the fiber over 0 except for the preimage
of D′ can be smoothly contracted to produce a fibration (Y ′,w′) over C.

The upshot of this all is that Y ′ admits a birational automorphism σ of order 4 so
that Y ′/σ is birational to Ỹ . In fact, if we excise the (codimension ≥ 2) fixed locus
of σ and take the quotient, calling the resulting threefold Ynp, then Ynp is just Ỹ with
all components of the fiber over 0 which are not equal to D′ removed. The fibration
map on Ynp over C will be called wnp, and we claim that H 2(Ynp,w−1

np (s);Z) has
order four torsion. To do this, one uses arguments identical to those used in the case
of the quartic double solid.

Proposition 4.5 Letting Ynp and wnp be as above, and let s be a regular value of w.
Then

H 2(Ynp,w−1
np (s);Z) ∼= Z/4 ⊕ Z

a

for some positive integer a.

Therefore, the deformation of the Fukaya–Seidel category of (Ỹ ,w) obtained by
removing cycles passing through the components of w̃−1(0) of multiplicity 1 should
have 4-torsion in its K0. This torsion class, under mirror symmetry should be an
obstruction to the rationality of the quartic double fourfold.

4.6 Cubic Fourfolds and Their Mirrors

This section does not relate directly to deformations of perverse sheaves of categories,
though it continues to explore the relationship between rationality and symplectic
invariants of corresponding LG models.

In this section, we will look at the LG models of cubic fourfolds and cubic fourfolds
containing one or two planes. Since cubic fourfolds containing one or two planes
are still topologically equivalent to a generic cubic fourfold, this is a somewhat
subtle problem which we avoid by instead obtaining LG models for cubic fourfolds
containing planes which are blown up in the relevant copies of P2.

It is known (see [31]) that a general cubic has bounded derived category of coherent
sheaves Db(X) which admits a semi-orthogonal decomposition

〈AX ,OX (1),OX (2),OX (3)〉.

When X contains a plane, AX = Db(S,β) is the bounded derived category of β
twisted sheaves on a K3 surface S for β an order 2 Brauer class. It is known
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[21, Lemma 4.5] that the lattice T in H 4(X,Z) orthogonal to the cycles [H ]2 and
[P] where H is the hyperplane class and P is the plane contained in X , is isomorphic
to

E2
8 ⊕U ⊕

⎛
⎝−2 −1 −1

−1 2 1
−1 1 2

⎞
⎠

which is not the transcendental lattice of any K3 surface. It is expected that such
cubic fourfolds are non-rational. When X contains two planes, it is known that X
is then rational. According to Kuznetsov [31], we then have that the category A is
the derived category of a K3 surface S, and by work of Hassett [21], we have that
the orthogonal complement of the classes [H ]2, [P1], [P2] where P1 and P2 are the
planes contained in X is isomorphic to

U ⊕ E2
8 ⊕

(−2 1
1 2

)
,

which is the transcendental lattice of a K3 surface S, and genericallyAX = Db(coh S)
and S[2] is the Fano variety of lines in X .

Our goal in this section is to describe the mirror side of this story. In particular, we
want to observe in the three cases above, how rationality and non-rationality can be
detected using symplectic characteristics of LG models. We will construct smooth
models of smooth models of

(1) The LG model of a cubic fourfold (which we call Z0).
(2) The LG model of a cubic fourfold containing a plane P blown up in P (which

we call Z1).
(3) The LG model of a cubic fourfold containing a pair of disjoint planes P1 and P2

blown up in P1 ∪ P2 (which we call Z2).

According to a theorem of Orlov [37], the bounded derived categories of Z1 and
Z2 admit semi-orthogonal decompositions with summands equal to the underlying
cubics. Therefore, homological mirror symmetry predicts that the derived categories
of coherent sheaves of the underlying cubics should be visible in the Fukaya–Seidel
(or directed Fukaya) categories of the LG models of Z1 and Z2. In particular, we
should be able to see Db(coh S,β) in the Fukaya–Seidel category of LG(Z1) and
Db(coh Z2) in the Fukaya–Seidel category of LG(Z2).

It is conjectured by Kuznetsov [31] that a cubic fourfold X is rational if and only
if AX is the bounded derived category of a geometric K3 surface, thus in the case
where X contains a single plane, the gerbe β is an obstruction to rationality of X .
Such gerbes arise naturally in mirror symmetry quite commonly. If we have a special
Lagrangian fibration on a manifold M over a base B, and assume that there is a
special Lagrangian multisection of π and no special Lagrangian section, then mirror
symmetry is expected assign to a pair (L ,∇) in the Fukaya category of M a complex
of α-twisted sheaves on the mirror for α some nontrivial gerbe. We will see this
structure clearly in the LG models of Z0, Z1 and Z2.
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4.7 The General Cubic Fourfold

Let us now describe the LG model of the general cubic fourfold in a such a way
that a nice smooth resolution becomes possible. Givental [10] gives a description of
constructions of mirrors of toric complete intersections. A more direct description
of Givental’s construction is described in [17].

We begin with the polytope � corresponding to P
5 given by

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠ .

Using Givental’s construction, we get a LG model with total space

Y 0 = {z + w + u = 1} ⊆ (C×)5

equipped with the function

w(x, y, z, w, u) = x + y + 1

xyzwu
.

We will express Y 0 as a fibration over C3 by elliptic curves. Then we will use work of
Miranda [33] to resolve singularities of this fibration and thus obtain a smooth model
of Y 0. This is necessary, since there are singularities “at infinity” in the LG model
provided by Givental. A more uniform construction of smooth compactifications of
the LG models constructed by Givental can be found in [16, Chap. 3].

To carry do this, we decompose w into three different functions

w1 = x, w2 = y, w3 = 1

xyzwu
.

Then Y 0 is birational to a variety fibered by affine curves written as

w1w2w3zw(z + w − 1) − 1 = 0

where w1,w2,w3 are treated as coordinates on C
3. This is can be rearranged into

Weierstrass form as

y2 = x3 + w2
2w

2
1w

2
3x

2 + 8w3
3w

3
2w

3
1x + 16w4

1w
4
2w

4
3.

The discriminant locus of this fibration over C
3 has four components, and for a

generic point in each component we can give a description of the structure of the
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resolution of singularities over that point in terms of Kodaira’s classification of the
singular fibers of elliptic fibrations.

• Singular fibers of type IV∗ along {wi = 0} for i = 1, 2, 3,
• Singular fibers of type I1 along the divisor cut out by the equation w1w2w3 −

27 = 0.

The loci wi = 0 intersect each other of course, but DI1 does not intersect any {wi =
0}, thus we must only worry about singularities at (0, 0, 0) and wi = w j = 0 for
i, j = 1, 2, 3 and i �= j . We blow up sequentially at these loci and describe the fibers
over the exceptional divisors. We will use Kodaira’s conventions for describing the
minimal resolution of singular fibers of an elliptic fibration.

• Blow up the base C
3 at (0, 0, 0). Call the associated blow-up map f1 : T1 → C

3

and call the exceptional divisor Q. As before, if π1 is the induced elliptic fibration
on T1, then on Q there are just smooth fibers away from the intersection of the
strict transform of {wi = 0}.

• Blow up the intersections {wi = w j = 0} for i, j = 1, 2, 3 and i �= j . Call the
associated map f2 : T2 → T1 and call the exceptional divisors Ei, j . Let π2 be the
induced elliptic fibration on T2. The fibration π2 has fibers with resolutions of type
IV over Ri j .

• Blow up at the intersections of Ri j and the strict transforms of {wi = 0} and
{w j = 0}. Call the associated map f3 : T3 → T2 and call the exceptional divisors
Ri j,i and Ri j, j respectively. Let π3 be the induced elliptic fibration over T3, then
the fibration π3 has smooth fibers over the divisors Ri j,i and Ri j, j .

Thus we have a fibration over T3 with discriminant locus a union of divisors, and
none of these divisors intersect one another. Thus we may resolve singularities of
the resulting Weierstrass form elliptic fourfold by simply blowing up repeatedly the
singularities along these loci. Call this fourfold LG(Z0). By composing the elliptic
fibration π3 of LG(Z0) over T3 with the contraction of T3 onto C

3 we get a map
which we call w1 + w2 + w2 from LG(Z0) to C

3. We will describe explicitly the
fibers over points of w1 + w2 + w3.

• If p is a point in the complement of the strict transform of

{w1 = 0} ∪ {w2 = 0} ∪ {w3 = 0} ∪ {w1w2w3 − 27 = 0}

then the fiber over p is smooth.
• If p is in {w1 = 0}, {w2 = 0}, or {w3 = 0}, then the fiber over p is of type IV∗. If

p is a point in {w1w2w3 − 27 = 0}, then the fiber over p is a nodal elliptic curve.
• If p ∈ {w1 = w2 = 0}, {w1 = w3 = 0} or {w2 = w3 = 0}, then the fiber over p is

of dimension 2.
• If p = (0, 0, 0), then the fiber is a threefold. This threefold is precisely the restric-

tion of the fibration π3 to the strict transform of the exceptional P2 obtained by
blowing up (0, 0, 0).
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Now we will let LG(Z0) be the smooth resolution of the elliptically fibered three-
fold over T3 described above. We compose the fibration map π3 with the map
(z1, z2, z3) �→ z1 + z2 + z3 from C

3 to C, then we recover the map w on the open set
that LG(Z0) and Y 0 have in common. Then we obtain a nice description of the fiber in
LG(Z0) of w over 0 as a union of two elliptically fibered threefolds, one component
being the threefold fiber over (0, 0, 0) in Y , and the other being the natural elliptically
fibered threefold obtained by taking the preimage of the line w1 + w2 + w3 = 0 in
LG(Z0) under the elliptic fibration map. These two threefolds intersect along a sur-
face S which is naturally elliptically fibered. This surface can be described by taking
the subvariety of the exceptional divisor Q = P

2 given by a the natural fibration over
a hyperplane in P

2. This is an elliptically fibered surface over P2 with three singular
fibers of type IV∗ and a order 3 torsion section.

Proposition 4.6 The smooth K3 surface S of Picard rank 20 with transcendental
lattice isomorphic to the (positive definite) root lattice A2, which has Gram matrix

(
2 1
1 2

)
.

This can be proved using the techniques described in [19].

4.8 Cubic Fourfolds Blown up in a Plane

We will apply a similar approach to describe the LG model of the cubic fourfold
blown up in a plane. We start by expressing this as a toric hypersurface. Blowing up
P

5 in the intersection of three coordinate hyperplanes is again a smooth toric Fano
variety P� which is determined by the polytope � with vertices given by points
ρ1, . . . , ρ7 given by the columns of the matrix

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 −1 1
0 1 0 0 0 −1 1
0 0 1 0 0 −1 1
0 0 0 1 0 −1 0
0 0 0 0 1 −1 0

⎞
⎟⎟⎟⎟⎠ .

The vertices of this polytope (determined by the columns of the above matrix) deter-
mine torus invariant Cartier divisors in P�, and the cubic blown up in a plane is
linearly equivalent to Dρ3 + Dρ4 + Dρ5 . Thus, following the prescription of Givental
[10] (or more precisely, [17]), one obtains the Landau–Ginzburg model with

Y 0 =
{
z + w + u + a

xyz
= 1

}
⊆ (C×)5

equipped with potential given by restriction of
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w(x, y, z, w, u) = x + y + 1

xyzwu

to Y 0. We may decompose w into the three potentials

w1 = x, w2 = y, w3 = 1

xyzwu
.

so that w = w1 + w2 + w3. Therefore, if we take the map π : Y 0 → C
3 given by

(w1,w2,w3), this can be compactified to a family of elliptic curves with fiber

w1w2w3zw(z + w − 1) + 1 + aw3w = 0.

This can be written as a family of elliptic curves in Weierstrass form as

y2 = x3 + w1w2
2w3(w1w3 − 4a)x2 + 8w3

1w
3
2w

3
3x + 16w4

1w
4
2w

4
3.

Away from (0, 0, 0), the singularities of this fibration can be resolved.

• I∗1 along w1 = 0 and w2 = 0
• IV∗ along w3 = 0
• I1 along

(aw2
1w

2
2w

2
3 − 8a2w1w2w2

3 + w2
1w

2
2w3 + 16a3w2

3 − 36aw1w2w3 − 27w1w2) = 0

We first blow up the base C
3 at (0, 0, 0) to obtain a fibration with smooth fibers

over the exceptional divisor. We cannot yet resolve singularities of this fibration,
since the fibers over the intersection of any two coordinate hyperplanes do not have
known resolutions. Following work of Miranda [33], we may blow up the base of this
fibration again several times in order to produce a fibration over a threefold which
has a fiber-wise blow-up which resolves singularities.

We blow up the base along the lines Ri j = {wi = w j = 0} to get three exceptional
surfaces Ri j over which there are singular fibers generically of type IV. Blowing up
again in all lines of intersection between Ri j and w j = 0 and Ri j and wi = 0, calling
the resulting exceptional divisors Ri j, j and Ri j,i , we get an elliptic fibration over this
blown up threefold so that:

• I∗1 along w1 = 0 and w2 = 0
• IV∗ along w3 = 0
• IV along Ri j .
• I0 (i.e. smooth) along Ri j, j and Ri j,i .
• I1 along some divisor which does not intersectw1 = 0,w2 = 0,w3 = 0 or Ri j = 0.

Therefore, one may simply resolve singularities of this fibration in the same way as
one would in the case of surfaces – blowing up repeatedly in sections over divisors
in the discriminant locus. Let us refer to this elliptically fibered fourfold as LG(Z1).
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There is an induced map from LG(Z1) to C which we call w essentially comes from
the composition of the fibration on LG(Z1) by elliptic curves with its contraction
onto C

3 along with the addition map (z1, z2, z3) �→ z1 + z2 + z3 from C
3 to C. This

is the superpotential on LG(Z1), and LG(Z1) is a partially compactified version of
the Landau–Ginzburg model of the cubic fourfold blown up in a plane.

The fiber of w over 0 is the union of two elliptically fibered smooth threefolds,
one being the induced elliptic fibration over the proper transform of the exceptional
divisor obtained when we blew up (0, 0, 0) in C

3. The other is the proper transform
in LG(Z1) of the induced elliptic fibration over the surface z1 + z2 + z3 = 0 in C

3.
These two threefolds meet transversally along a smooth K3 surface S. This K3

surface is equipped naturally with an elliptic fibration structure over P1 and inherits
two singular fibers of type I∗1, a singular fiber of type IV∗ and two singular fibers of
type I1.

Proposition 4.7 The orthogonal complement of the Picard lattice in H 2(S,Z) is
isomorphic to ⎛

⎝−2 −1 −1
−1 2 1
−1 1 2

⎞
⎠ ,

for a generic K3 surface S appearing as in the computations above.

To prove this, one uses a concrete model of S and shows that there is another
elliptic fibration on S so that the techniques in [19] can be applied to show that there
is a lattice polarization on a generic such S by the lattice

E2
8 ⊕

⎛
⎝2 1 1

1 −2 −1
1 −1 −2

⎞
⎠ . (4.1)

Then one shows that the complex structure on the surface S varies nontrivially as
the parameter a varies, thus a generic such S has Picard lattice equal to exactly the
lattice in Eq. (4.1). Then applying standard results of Nikulin [36], one obtains the
proposition.

4.9 Cubic Threefolds Blown up in Two Planes

Here we begin with the toric variety P
5 blown up at two disjoint planes, which is

determined by the polytope � with vertices at the columns ρ1, . . . , ρ8 of the matrix
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⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 −1 1 −1
0 1 0 0 0 −1 1 −1
0 0 1 0 0 −1 1 −1
0 0 0 1 0 −1 0 0
0 0 0 0 1 −1 0 0

⎞
⎟⎟⎟⎟⎠ .

The cubic blown up along two disjoint planes is then linearly equivalent to the torus
invariant divisor Dρ3 + Dρ4 + Dρ5 + Dρ7 , therefore, by the prescription of Givental,
we may write the associated LG model as

Y 0 =
{
z + w + u + a

xyz

}
⊆ (C×)5

equipped with the function

w(x, y, z, w, u) = x + y + 1

xyzwu
+ bxyz.

We split this into the sum of three functions,

w1 = x + bxyz, w2 = y, w3 = 1

xyzwu
.

The fibers of the map (w1,w2,w3) from Y to C
3 are written as a family of affine

cubics
(z + w − 1)w1w2w3zw + (1 + bw2z)(1 + aw3w) = 0

which are open elliptic curves. We may write this in Weierstrass form and use Tate’s
algorithm to show that, the singular fibers of this fibration are of types:

• I∗1 along w3 = 0 and w2 = 0
• I5 along w1 = 0
• I1 along a divisor determined by a complicated equation in w1,w2 and w3.

Elsewhere, the fibers of this map can be compactified to smooth elliptic curves.
In order to obtain a smooth model of this fibration, we will first blow up C

3 at
(0, 0, 0). The induced elliptic fibration is generically smooth over this exceptional
divisor, which we call Q. In order to obtain a model of this elliptic fibration which we
may resolve by sequentially blowing up in singular fibers, we must now blow up along
the line w2 = w3 = 0. We will call the exceptional surface under this blow-up R23.
We obtain a singular elliptically fibered fourfold over this new threefold base so that
the fibers over the divisor R23 are generically of Kodaira type IV. Blowing up again at
the intersections of R23 andw2 = 0 and at the intersection of R23 andw3 = 0 (calling
the exceptional divisors R23,2 and R23,3 respectively) we obtain a fibration which can
be resolved by blowing up curves of divisors in the fibers over R23,w1 = 0,w2 = 0
and w3 = 0, and by taking resolution over curves in w1 = w2 = 0 and w1 = w3 = 0



82 A. Harder et al.

(following [33, Table 14.1]). Call the resulting fibration LG(Z2) and let π be the
fibration map onto the blown up threefold. We have singular fibers of types:

• I∗1 along w3 = 0 and w2 = 0
• I5 along w1 = 0
• IV along R23

• Fibers over w1 = w2 = 0 and w1 = w3 = 0 of the type determined by Miranda
[33] and described explicitly in [33, Table 14.1].

• I1 along a complicated divisor which does not intersect any of the divisors above.

and smooth fibers otherwise.
The variety LG(Z2) admits a non-proper elliptic fibration over C3 obtained by

composing π with the blow-up maps described above. Then the fiber in LG(Z2) over
(0, 0, 0) is an elliptic threefold over a blown-up P

2 base. Composing this non-proper
elliptic fibration with the map (w1,w2,w3) �→ w1 + w2 + w3 fromC

3 toC recovers
the potentialw. The fiber over 0 of the mapw from LG(Z2) toC has two components,
each an elliptically fibered threefold meeting along a smooth K3 surface. This K3
surface, which we call S, admits an elliptic fibration over P1 canonically with two
singular fibers of type I∗1, a singular fiber of type I5 and five singular fibers of type I1.

Proposition 4.8 The orthogonal complement of the Picard lattice in H 2(S,Z) is
isomorphic to ⎛

⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 −2 1
0 0 1 2

⎞
⎟⎟⎠ ,

for a generic K3 surface S appearing as in the computations above.

Again, this result is obtained by finding an appropriate alternative elliptic fibration
on S and demonstrating that an appropriate lattice embeds into its Picard lattice, then
combining results of Nikulin [36] and the fact that there is a non-trivial 2-dimensional
deformation of S obtained by letting the parameters a and b vary to see that indeed,
this is the transcendental lattice of a generic such S.

Remark 4.9 In the last three sections, we have glossed over the issue of providing
an appropriate relative compactification of our LG models with respect to w. Indeed,
one wants to produce a relatively compact partial compactification of the LG models
above whose total space is smooth and has at least trivial canonical class. In the cases
that we have described above, this can be done by taking a relative compactification of
C

3 with respect to the map (w1,w2,w3) �→ w1 + w2 + w3 and writing LG(Zi ) as an
elliptically fibered fourfold over this variety. Performing the same procedure as above
(blowing up the base of this fibration until a global resolution can be obtained) and
then simply blowing up in fibers or taking small resolutions as described by Miranda
[33], one can produce a partial compactification of LG(Zi ) so that the fibers of w are
compact. Using the canonical bundle formula in [33], one can then show that this
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compactification is indeed appropriate. We note that, strictly speaking, Miranda’s
work only applies to three dimensional elliptic fibrations. However, since we do not
have to deal with intersections of more than two divisors in our discriminant locus,
and all of our intersections are transverse, the arguments of [33] still may be applied.

4.10 Special Lagrangian Fibrations

In the case of hyperkähler surfaces, special Lagrangian fibrations can be constructed
with relatively little difficulty. The procedure is outlined in work of Gross and Wilson
[13]. We review their work in the following section and apply it to our examples.

Definition 4.10 AK3 surface S is lattice polarized by a lattice L if there is a primitive
embedding of L into Pic(S) whose image contains a pseudo-ample class.

For a given lattice L of signature (1, ρ − 1) for ρ ≤ 20 which may be embedded
primitively into H 2(S,Z) for a K3 surface, there is a (20 − ρ)-dimensional space
of complex structures on S corresponding to K3 surfaces which admit polarization
by L . A generic L-polarized K3 surface will then be a general enough choice of
complex structure in this space.

We will follow the notation of Gross and Wilson [13] from here on. We choose I to
be a complex structure on a K3 surface S and let g be a compatible Kähler–Einstein
metric. Since S is hyperkähler, there is an S2 of complex structures on S which
are compatible with g. We will denote by I, J and K the complex structures from
which all of these complex structures are obtained. The complex 2-form associated
to the complex structure I is written as �(u, v) = g(J (u), v) + ig(K (u), v) for u
and v sections of TS . The associated Kähler form is given, as usual, by ω(u, v) =
g(I (u), v). Similarly, one may give formulas for the holomorphic 2-form and Kähler
forms associated to the complex structures J and K easily in terms of the real and
imaginary parts of � and ω as described in [13, pp. 510].

A useful result that Gross and Wilson attribute to Harvey and Lawson [20, pp.
154] is:

Proposition 4.11 ([13, Proposition 1.2]). A two-dimensional submanifold Y of S is
a special Lagrangian submanifold of S with respect to the complex structure I if and
only if it is a complex submanifold with respect to the complex structure K .

Using the same notation as in [13], we will let SK be the complex K3 surface with
complex structure K , which then has holomorphic 2-form given by �K = Im� + iω
where ω and � are as before. If this vanishes when restricted to a submanifold E
of S, then we must have ω|E = 0 as well. If ω is chosen generically enough in the
Kähler cone of S (so that ω ∩ L = 0) then this forces E to be in L⊥. One can show
that a complex elliptic curve E on a K3 surface satisfies [E]2 = 0 therefore, since
L⊥ has no isotropic elements, SK cannot contain any complex elliptic curves and
thus S has no special Lagrangian fibration. Therefore, we have proven that:
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Proposition 4.12 If L is a lattice so that L⊥ contains no isotropic element, then a
generic L-polarized K3 surface with a generic choice of Kähler–Einstein metric g
has no special Lagrangian fibration.

We will use this to prove a theorem regarding K3 surfaces which appeared in
the previous sections. Let us recall that the transcendental lattices of the K3 surface
appearing as the intersection of the pair of divisors in LG(Z0), LG(Z1) and LG(Z2)
are

(
2 1
1 2

)
,

⎛
⎝−2 −1 −1

−1 2 1
−1 1 2

⎞
⎠ ,

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 −2 1
0 0 1 2

⎞
⎟⎟⎠

In the first case, it is clear that the lattice is positive definite, therefore it cannot
represent 0, and thus Proposition 4.12 shows that in this case there is no special
Lagrangian fibration on this specific K3 surface. In the third case, we can use [13,
Proposition 1.3] to see that there is a special Lagrangian fibration with numerical
special Lagrangian section for a generic choice of Kähler–Einstein metric g.

In the second case, the discriminant of the lattice (which we will call M) is −8, and
its discriminant group, which is just M∨/M , is isomorphic to Z/8 and has generator
with square 3/8. Using a result of Nikulin [36], it follows that this is not equivalent
to the lattice 〈−8〉 ⊕U . At the same time, one can conclude that this is not the lattice
〈−2〉 ⊕U (2), and therefore, we cannot directly apply [13, Proposition 1.3] to obtain
a special Lagrangian fibration on such a K3 surface.

However, applying the method used in the proofs of [13, Proposition 1.1] and [13,
Proposition 1.3], one obtains a special Lagrangian fibration on S for a generic choice
of g so that there is no special Lagrangian section, but there is a numerical special
Lagrangian 2-section. To do this, we use the fact that (1,−1, 1) is isotropic in this
lattice.

Putting all of this together, we obtain the following theorem:

Theorem 4.13 Let S be a generic K3 surface appearing as the intersection of the
two components of the fiber over 0 of the LG models of a generic cubic Z0, a cubic
blown up in a plane Z1, and a cubic blown up in two disjoint planes Z2. Let ω be a
generic Kähler class on S and� the corresponding holomorphic 2-form on S. Then:

(1) In the case where S ⊆ LG(Z0), then S admits no special Lagrangian torus
fibration.

(2) In the case where S ⊆ LG(Z1), then S admits a special Lagrangian torus fibra-
tion with no Lagrangian section but a (numerical) Lagrangian 2-section.

(3) In the case where S ⊆ LG(Z2), then S admits a special Lagrangian torus fibra-
tion with a (numerical) Lagrangian section.

The first statement in Theorem 4.13 is mirror dual to the fact that the subcategory
AX of Db(coh X) for X a generic cubic fourfold is not the derived category of a K3
surface. The second statement corresponds to the fact that AX

∼= Db(S,β) for β an
order 2 Brauer class on S for X a general cubic fourfold containing a plane. The third
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case corresponds to the fact that when X contains two disjoint planes, AX
∼= Db(S)

for S a K3 surface.
According to [1, Corollary 7.8], there is an embedding of the (derived) Fukaya

category of the K3 surface S appearing in Theorem 4.13 as a subcategory of the
derived version of the Fukaya–Seidel category of the LG model of Z0, Z1 and Z2

respectively. The objects in the Fukaya–Seidel category of an LG model are so-called
admissible Lagrangians, which are, roughly, Lagrangian submanifolds L of the LG
model with (possible) boundary in a fiber V of w. In the case where w is a Lefschetz
fibration, it is well-known (see [40]) that such Lagrangians (so-called Lagrangian
thimbles) can be produced by taking appropriate paths between V and p for p a
critical value of w and tracing the image of the vanishing cycle at w−1(p) along this
path.

This embedding works as follows. The central fiber of our degeneration is simply a
union of two smooth varieties meeting transversally in a K3 surface, so the vanishing
cycle is simply an S1 bundle over the critical locus of the degenerate fiber. In our
case, this is simply an S1 bundle over a K3 surface, which is then homotopic to
S1 × K3. Thus, along any straight path approaching 0 in C, we have a vanishing
thimble homotopic to D2 × K3 where D2 is the two-dimensional disc. This, of
course, cannot be a Lagrangian in LG(Zi ) for dimension reasons, but if instead we
take all points in D2 × K3 which converge to a Lagrangian � in the K3 surface (in
some appropriate sense), then there exists a Lagrangian thimble L� whose restriction
to w−1(0) is �. In this way, Lagrangians in S extend to admissible Lagrangians in
LG(X) and in particular induce a faithful A∞-functor from the Fukaya category of S
into the Fukaya–Seidel category of LG(Zi ), both with appropriate symplectic forms.
In particular, we have that

(1) There is no admissible Lagrangian L in LG(Z0) so that L |w−1(0) is a special
Lagrangian torus.

(2) There is no pair of admissible Lagrangians L1 and L2 in LG(Z1) so that
(L1)|w−1(0) is a special Lagrangian torus and (L2)|w−1(0) is a special Lagrangian
section of a special Lagrangian fibration on S.

These statements should be viewed as interpretations of Theorem 4.13 in terms of the
Fukaya–Seidel category of Z0, Z1 and Z2. As claimed in Sect. 3, the non-existence
of a family appropriate Lagrangians in the LG models of Z0 and Z1 therefore corre-
sponds to the conjectural fact that Z0 and Z1 are non-rational.

5 Hybrid Models and Filtrations

In this section, we introduce a perverse sheaf of categories analog of unramified coho-
mology - hybrid models [38]. We will associate with this hybrid model a Hodge type
filtration - this is the invariant discussed in the main conjecture. Our consideration
can be considered as generalizations of classical degenerations in Hodge theory.
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5.1 Filtration

Let A be an Artinian category and Y : K0(A) → R an additive homomorphism.

Theorem 5.1 For any object E in A, there exists a filtration Fλ with the following
properties:

(1)
⋂

λ∈R F�λ = 0;
(2)

⋃
λ∈R F�λ = E;

(3) Fλ+1/Fλ = ⊕
Gα is semisimple and splits for every λ.

Example 5.2

(1) (A3) Ob = C[x]/x3.

•
−1

•
0

•
1

The filtration here is −1, 0, 1.
(2) (A7) The filtration here is −3,−2,−1, 0, 1, 2, 3.

The above filtrations can be given the following interpretation by parabolic struc-
tures.

Semistable bundles on X X × A
1/μn parabolic structure

•
μpq

•
•

pts•
1
p

•
1
q

weights

•

The multiplicity of the divisor over 0 is equal to the common multiple of all
denominators. The points on this divisor determine the jumps of the filtration. This
geometric interpretation suggests:

Theorem 5.3 Let Cone(a
ϕ−→ b) be the cone of a and b with respect to the functor

ϕ, then Filt(Cone(a
ϕ−→ b)) = superposition(Filt a, Filt b).

One example with such filtration is the symplectic Lefschetz pencils.

•

We have a symplectic pencil (X, [ω]) for X a four dimensional compact symplectic
manifold. Here [ω] is the symplectic form on the pencil. A symplectic Lefschetz
pencil is defined by a word in the mapping class group.

μ : π1(P
1/{p1, . . . , pv}) → Map(g)
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Here Map(g) is the mapping class group of Riemann surfaces of genus g.
We consider a symplectic Lefschetz pencil as a perverse sheaf of categories over

P
1. An object in the Fukaya category of this symplectic pencil gives a graph � in

the base along with a choice of singular Lagrangian in each smooth fiber over �. For
example:

• •
paths

• •

limit

•

•
•

Filtration

The asymptotic behavior of the above semistable Lagrangian under the mean curva-
ture flow determines a filtration.

Veronese
maps

(Standard weights)
Veronese

(Invariants - weights)

Intersection form on H2

The asymptotic behavior of semistable Lagrangians added after the Veronese
embedding reduces standard weights and does not affect initial symplectic invariants.

Conjecture 5.4 The intersection form on H2(X) determines the filtration.

genus 2 fibrations

•

deformation
surgery

(σ1, . . . , σ5)24 = 1 (σ1, . . . , σ6)20 = 1

Each equation determines a semistable Lagrangian. The filtrations associated with
the two words in the mapping class group are different. This suggests that the above
genus 2 Lefschetz pencils are not symplectomorphic. This is the A side application
of our construction.

Our filtrations share many properties with classical weight filtrations. In particular
we have the following strictness property.
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Theorem 5.5

X X

Consider a fully faithful functor

F : FS(X ′) → FS(X ′′)

so that the induced map Ext1(o′) → Ext1(o′′) is injective. Here o′ and o′′ are semi-
stable objects in FS(X ′) and FS(X ′′). Then we have a compatibility of filtrations
under the functor F . (Here FS(X ′), FS(X ′′) are 1-dimensional FS categories.)

Corollary 5.6 The filtration of FS(X ′) determines the filtration of FS(LP).

As a consequence of Theorem 5.5, we can define a filtration for any generator of
a category. In fact, we can associate a filtration with a generator corresponding to an
element in the Orlov spectrum of a category.

For generator α, Cone(α
F−→ T ) −→ sequence of filtrations on α.

α1 αn

Orlov Spec −
−

Filtr.

−−
−

−
−−
−−
−

−
−−
−−
−

−
Filtr.

−−
−

Question 5.7 Does this sequence of filtrations determine a categorical invariant?

Now we consider a B side example, [34, 35]. Let X be a smooth projective variety
and D a divisor on it. Following [34, 35], we define an object in Db(X), Fkωx (∗D).

j : U = X/D ↪→ X

Fkωx (∗D) = ωx (k + 1)D ⊗ Ik(D) ∀k >> 0.

This is an example of filtrations discussed above.

Theorem 5.8 The above filtration satisfies the cone and functoriality properties.

Indeed let H ⊂ X be a hypersurface. So Ik(DH ) ≤ Ik(D)·OH . We also have the
cone property:

Ik(D1 + D2) ⊆
∑
i+ j=k

Ii (D1)I j (D2)·OX (− j D1 − j D2).
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5.2 Hybrid Models

In this section, we take a brief look at the results of Pirutka [38]. Our considerations
suggest that there are two new ways of constructing filtrations. Classically we can
use the degenerations of cohomologies in order to obtain filtrations.

•
•

• ρ : π1(P1/p1,...,pk
) → GL(H3)

Nilpotent degenerations produce classical filtrations.
The examples of previous section suggest that we can extend the applications of

this method from
ρ : π1(P

1/p1,...,pk ) → GL(H3)

to
ρ : π1(P

1/p1,...,pk ) → Aut(Db(Ft )).

We propose a new possible way to create “interesting filtrations”. We generalize
the procedure suggested by A. Pirutka [38].

L1

L2
L3

In her approach, Pirutka expresses the existence of nontrivial Brauer group via the
combinatorics of the base of the nontrivial Del Pezzo fibration.

Our considerations in Sect. 4 suggests the following:

Proposition 5.9 The Pirutka condition can be represented as a filtration on semi-
stable objects.

Now we will look at 4-dimensional quadric bundles. We have a base:

with trivial nonramified cohomology. On the fiber we have a perverse sheaf of coho-
mology groups (see Sect. 3).

•

P1

P2

P3

P4

A4⊗Fuk(E)

Fuk(E)
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According to Sect. 3, noncommutative deformations can be determined by chang-
ing spherical functors. One way of approaching rationality of quadric bundles could
be to take a noncommutative deformation of the quadric bundle and compute its
invariants. To deform a quadric bundle, one might consider a noncommutative
deformation of the quadrics themselves, as described in Sect. 4. We can then try to
understand what the unramified cohomology of such an object looks like to deduce
non-rationality of the original quadric bundle.

Question 5.10 Can we find an example of sheaf of noncommutative quadrics such
that

(1) Pirutka’s invariant (unramified cohomology) is trivial;
(2) We have nontrivial filtrations on some semistable generator.

There are two important cases where this approach might bear fruit. These cases
correspond to cubics containing extra algebraic cycles, for instance the quadric con-
taining a plane described in Sect. 4.4.

(1) Sheaves of quadrics over P2.

•

Question 5.11 Can we find a deformation of Db(Ft ) so that non-abelian Pirutka
invariant is nontrivial?

(2) Sheaves of Del Pezzo surfaces.

•

We get a hybrid model overP2 with fiber Db(Ft ) - category of Del Pezzo surfaces.

Question 5.12 Can we find a deformation of Db(Ft ) so a noncommutative version
of Pirutka’s invariant is nontrivial?

5.3 Artin–Mumford Example

We can also look at the Artin–Mumford example [5] from the perspective of perverse
sheaves of categories.
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Recall that the classical Artin–Mumford example is a conic bundle over P2 with
curves of degeneration C = E1 ∪ E2, where E1 and E2 are smooth degree 3 curves.

l

E2 E1

Let l be a line in P
2. Over l we have a conic bundle. This conic bundle itself

defines a perverse sheaf of categories as described below.

( )
•

••
ACY 2

2

A1

Fuk(C∗)

=

Torsion
Sheaves
on C

∗

The spherical functors are functors from A1 to Fuk(C∗), which is just the category
of torsion sheaves on C

∗.

A1

Torsion
Sheaves

In terms of representations, we have classically:

ρ : π1(P
1/ pts) → GL H1(C∗).

Categorically, our sets of spherical functors give

ρ : π1(P
1/ pts) → Aut Fuk(C∗).

The second representation, along with the braid group representation of mon-
odromy of the curve of degeneration of the Artin–Mumford threefold contains a
wealth of information regarding the topology of the Artin–Mumford threefold. Since
it is the topology of this threefold which determines its non-rationality, we should
be able to recover the main theorem of [5] from this perverse sheaf of categories.

This gives us possibilities for non-commutative deformations. We start with:
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(1) Classical Artin–Mumford example.

The Pirutka type configuration leads to nontrivial torsion in H3, [38] (see also [4,
22–24]). Artin–Mumford’s construction can be reproduced using the technique
of PSC. Instead of the classical monodromy, we use the spherical functors in the
PSC to construct a cycle with linking number 1

2 . Here ACY2
3 are 2-dimensional

CY categories constructed in (	).

ACY 2
3 + ACY 2

3

t6 −−
−−
−−t1

This amounts to a semistable Lagrangian with strictly quasi-unipotent mon-
odromy (asymptotics).

(2) Smooth cubic, compared with 4.3. In this case we start with the hybrid model
described below:

ACY 2
3 + ACY 2

2

t5 −−
−−
−t1

The conic bundle has a curve of degeneration consisting of a quadric and a cubic
in P

2. The linking number is 0. So the monodromy is strictly unipotent.
(3) Let us consider now the PSC ACY2

2 associated with a conic.

•P2

•P1

We deform this PSC so that the spherical functor in P
2 does not belong to

GL(H1). In such a way we produce a strictly non-unipotent filtration for the
noncommutative deformation of the PSC associated with the quadric. This leads
to a nontrivial torsion in H3, compared with 4.3.
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5.4 Conclusions

In conclusion, we can say the following: the construction of hybrid models gives
new directions of deforming PSC.

(1) (Monodromy 1) Deforming PSC of the fiber of hybrid model, see Sect. 3.

•
•• P

•
•• P

(2) (Monodromy 2) Changing the monodromy of hybrid models, see Sect. 4.

We have a categorical version of unramified cohomology - hybrid models with
monodromies and filtrations. The main conjecture states that these filtrations produce
new birational invariants. More details will be given elsewhere.

5.5 Final Example

We give one more example. It is known, see [2], that Fwrap(C
∗) = Db(C∗). The object

C(t)/(t − a)n corresponds to a loop with holonomy:

0 1
0 1
n 0

⎛
⎜⎝

⎞
⎟⎠

On the B side we have a quiver with a relation ln = 1:

•

The flow of (E, h) creates a filtration of E .

•
L = na

Here E = H0(na) and the filtration on E is coming from the action of
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⎛
⎝0 1

1
0

⎞
⎠ .

On the A side we have

• HF(L,L )=H(na)

with holonomy ⎛
⎝0 1

1
0

⎞
⎠ .

The above cycle

•

ln = 1
,S =

0 1
1

0

⎛
⎜⎝

⎞
⎟⎠

can be seen as a vanishing cycle of the base change of perverse sheaf of categories.

•A1 •A1
2:1

• •S

Instead of the vanishing cycle A1, we have a vanishing cycle S.
Based on that we propose now a hybrid model associated with the construction

in 4.4 - 4-dimensional cubic containing a plane.

(1) We degenerate the sextic in P
2 to the union of two elliptic curves E1 ∪ E2.

E1 E2
degEi = 3

(2) We put a sheaf of categories over P2. Over a point on Ei we put the following
category:

•S •S

Db(C∗)

and over generic point we put the following:

•S

•A1

•A1Db(C∗)
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It is rather clear that the hybrid model above produces nontrivial filtration. It is
an intriguing question to use Artin–Mumford’s idea in the case of the above hybrid
model in order to prove the non-rationality of 4-dim cubics.
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Divisor Classes and the Virtual Canonical
Bundle for Genus 0 Maps

A.J. de Jong and Jason Starr

Abstract We prove divisor class relations for families of genus 0 curves and used
them to compute the divisor class of the “virtual” canonical bundle of the Kontsevich
space of genus 0 maps to a smooth target. This agrees with the canonical bundle in
good cases. This work generalizes Pandharipande’s results in the special case that
the target is projective space, [7] (Pandharipande, Trans. Am. Math. Soc. 351(4),
1481–1505, 1999), [8] (Pandharipande, Trans. Am. Math. Soc. 351(4), 1481–1505,
1999). Our method is completely different from Pandharipande’s.

1 Statement of Results

Muchgeometry of a higher-dimensional complex variety X is captured by the rational
curves in X . For uniruled and rationally connected varieties the parameter spaces for
rational curves in X are also interesting. These parameter spaces are rarely compact,
but there are natural compactifications: the Chow variety, the Hilbert scheme and the
Kontsevichmoduli space. Of these, themostmanageable is theKontsevich space. For
every integer r ≥ 0, and for every curve class β on X , i.e., for every homomorphism
of Abelian groups,

〈−,β〉 : Pic(X) → Z, D �→ 〈D,β〉,

the moduli space M0,r (X,β) parametrizes all data (C, p1, . . . , pr , f ) of a proper,
connected, at-worst-nodal, arithmetic genus 0 curve C , a collection p1, . . . , pr of
distinct, smooth points ofC , and amorphism f : C → X with degC( f ∗D) = 〈D,β〉
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for all D ∈ Pic(X), i.e., f∗[C] equals β, satisfying a natural stability condition:
Aut(C, p1, . . . , pr , f ) is finite.

One advantage of the Kontsevich space is that it has several natural invertible
sheaves together with specified global section (a “pseudodivisor” a la Fulton). The
union of the supports of these pseudodivisions is the “boundary” of the Kontse-
vich space, and each pseudodivisor has a description in terms of Kontsevich spaces
with smaller curve classes or a smaller number of marked points. This boundary
decomposition provides the basis for several induction arguments. Precisely, for
every ordered pair ((β′, A), (β′′, B)) of curve classes (β′,β′′) such that β′ + β′′ = β
and a partition {1, . . . , r} = A 
 B such that for r ′ = #A, r ′′ = #B, both (β′, r ′) and
(β′′, r ′′) equal neither (0, 0) nor (0, 1), there is an invertible sheaf O(�(β′,A),(β′′,B))

onM0,r (X,β) and there is a global section ofO(�(β′,A),(β′′,B)) whose zero scheme,
denoted �(β′,A),(β′′,B) (slight abuse of notation), equals the image of an everywhere
unramified morphism

M0,r ′+1(X,β′) ×X M0,r ′′+1(X,β′′) → M0,r (X,β),

that associates to every pair of stable maps (C ′, (pi )i∈A, q ′, f ′) and (C ′′, (p j ) j∈B,

q ′′, f ′′) with f ′(q ′) = f ′′(q ′′) the stable map with C = C ′ ∪q ′∼q ′′ C ′′ and with f the
unique morphism whose restriction to C ′ equals f ′, resp. to C ′′ equals f ′′. Please
note that the image �(β′,A),(β′′,B) equals �(β′′,B),(β′,A), and indeed, there are canoni-
cal isomorphisms of the invertible sheavesO(�(β′,A),(β′′,B)) ∼= O(�(β′′,B),(β′,A)) that
identify the canonical global sections. For this reason, the invertible sheaf and global
section are associated to the “unordered” pair {(β′, A), (β′′, B)}. A key step in the
proofs is the simple observation that each of these invertible sheaves and pseudodivi-
sors can be defined on an Artin stack of all proper, flat families of prestable pointed
curves, i.e., connected, at-worst-nodal, arithmetic genus 0 curves with an ordered
r -tuple of smooth points with no stability hypothesis.

For every unordered pair {β′,β′′} with β′ + β′′ = β and β′ 
= 0, resp., β′′ 
= 0,
denote byO(�β′,β′′) the tensor product over the finitely many partitions {1, . . . , r} =
A 
 B of the invertible sheaf O(�(β′,A),(β′′,B)). The tensor product of the canonical
global sections is a canonical global sectionwhose zero schemehas underlying closed
set equal to the union of all of the closed sets �(β′,A),(β′′,B) as (A, B) varies over all
partitions. Similarly, for r ≥ 1, for every partition {1, . . . , r} = A 
 B, denote by
O(�(A,B)) the tensor product over the finitely many pairs (β′,β′′) of effective curve
classes with β′ + β′′ = β and with (β′, r ′) 
= (0, 0), (β′′, r ′′) 
= (0, 0) of the invert-
ible sheaf O(�(β′,A),(β′′,B)). The tensor product of the canonical global sections is
a canonical global section whose zero scheme has underlying closed set equal to
the union of all of the closed sets �(β′,A),(β′′,B) as (β′,β′′) varies over all partitions.
Every partition is automatically ordered; there is a unique partition set that contains
the element 1. We usually denote this partition set by A and denote by B the com-
plementary partition set. Many sums occuring in divisor class relations are indexed
by all unordered pairs {β′,β′′} as above with β′ + β′′ = β. Some other sums are
indexed by all partitions (A, B) of {1, . . . , r}.
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Another advantage of the Kontsevich space is that the universal curve over
M0,r (X,β) is canonically identified with M0,r+1(X,β) with the forgetful mor-
phism π : M0,r+1(X,β) → M0,r (X,β) that forgets the last marked point. With
this identification, the universal map f from the universal curve is the same as the
evaluation morphism M0,r+1(X,β) → X that evaluates a stable map at the final
marked point. In particular, for a pair (β′,β′′) of curve classes with β′ + β′′ = β and
with β′,β′′ 
= 0, the pseudodivisor �(β′,{1}),(β′′,∅) in M0,1(X,β) is identified with
a pseudodivisor �̃β′,β′′ on the universal curve over M0,0(X,β); this pseudodivisor
will be defined later in a more general context.

A final advantage of the Kontsevich space is the existence of a perfect obstruc-
tion theory and associated virtual fundamental cycle, cf. [2]. Briefly, the perfect
obstruction theory on M = M0,r (X,β) is a complex E• of OM -modules (for the
étale topology) and a morphism in the derived category φ : E• → L•

M , where L•
M

is the cotangent complex. The complex E• is required to be perfect of amplitude
[−1, 0], i.e., everywhere locally quasi-isomorphic to a 2-term complex with locally
free terms Fi that are nonzero only in degrees 0 and −1. For the functor h0, resp.
h−1, of cohomology sheaves in degree 0, resp. degree −1, h0(φ) is required to be an
isomorphism, resp. h−1(φ) is required to be surjective. The virtual dimension of M is
the (locally) constant function that equals the difference in the ranks of F0 and F−1.
This is a lower bound on the dimension of every component of M , cf. [6, Theorems
II.1.2, II.1.7], and it equals

〈C1(TX ),β〉 + dim(X) + r − 3.

Because E• is perfect, via the det-div formalism of [5], there is an associated invert-
ible sheaf det(E•) on M that is locally isomorphic to det(F0) ⊗ det(F−1)∨. This
invertible sheaf is the virtual canonical bundle.

When M0,r (X,β) is integral and when the dimension equals the virtual dimen-
sion, then M is locally a complete intersection, and φ determines a unique isomor-
phism from the virtual canonical bundle to the usual canonical bundle det(L•

M). The
perfect obstruction theory is amenable to computation, even in those cases when
M is not “transverse”. In the transverse case, we can ask more refined questions
about the geometry ofM0,r (X,β) and its canonical bundle, e.g., what is the Kodaira
dimension? The first step in answering this and other questions is understanding the
virtual canonical bundle.

In this article we give a formula for the virtual canonical bundle of M0,r (X,β)

as a linear combination of more elementary tautological divisor classes. More-
over, we prove a number of divisor class relations among natural divisor classes
onM0,r (X,β).

Theorem 1.1 Assume that e := 〈C1(TX ),β〉 
= 0. For M0,0(X,β), the virtual
canonical bundle equals
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1

2e
[2eπ∗ f ∗C2(TX ) − (e + 1)π∗ f ∗C1(TX )2+

∑
{β′,β′′},β′+β′′=β

(〈 f ∗C1(TX ),β′〉〈 f ∗C1(TX ),β′′〉 − 4e)�β′,β′′ ].

For M0,1(X,β), the virtual canonical bundle equals

1

2e
[2eπ∗ f ∗C2(TX ) − (e + 1)π∗ f ∗C1(TX )2+

∑
{β′,β′′},β′+β′′=β

(〈 f ∗C1(TX ),β′〉〈 f ∗C1(TX ),β′′〉 − 4e)�β′,β′′ ] + ψ1.

Finally, for r ≥ 2, the virtual canonical bundle of M0,r (X,β) equals

1

2e
[2eπ∗ f ∗C2(TX ) − (e + 1)π∗ f ∗C1(TX )2+

∑
{β′,β′′},β′+β′′=β

(〈 f ∗C1(TX ),β′〉〈 f ∗C1(TX ),β′′〉 − 4e)�β′,β′′ ]+

1

r − 1

∑
(A,B),1∈A

#B(r − #B)�(A,B).

In order to prove these formulas, we need to prove some divisor class relations for
families of genus 0 curves. These relations are of some independent interest.

Proposition 1.2 Let π : C → M be a proper, flat family of connected, at-worst-
nodal, arithmetic genus 0 curves over a quasi-projective variety M or over a
Deligne–Mumford stack M with quasi-projective coarse moduli space. Let D be
a Q-Cartier divisor class on C.
(i) There is an equality of Q-divisor classes on M

π∗(D · D) + 〈D,β〉π∗(D · C1(ωπ)) =
∑

{β′,β′′},β′+β′′=β

〈D,β′〉〈D,β′′〉�β′,β′′ .

(ii) Also, there is an equality of Q-divisor classes on C

2〈D,β〉D − π∗π∗(D · D) + 〈D,β〉2C1(ωπ) =
∑

(β′,β′′)

〈D,β′′〉2�̃β′,β′′ .

The pseudodivisors �, resp. �̃, constructed in Sect. 2, are the pseudodivisors on the
Artin stack of prestable curves whose restriction to the Kontsevich stack of stable
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curves is the “usual” boundary pseudodivisor. The invertible sheaf ωπ on C is the
relative dualizing sheaf of π. Finally the bundle ψi on M is the pullback of ωπ by the
“i th marked point” section.

One motivating problem is to extend these results to the case that the target X is
allowed to be singular but with a specified perfect obstruction theory, e.g., X is itself
a Kontsevich space. One result in this direction is the following, cf. [4].

Proposition 1.3 ([4, Lemma 2.2]) Let C be a projective Cohen-Macaulay curve,
let B ⊂ C be a divisor along which C is smooth, and let f : C → M0,r (X,β) be
a 1-morphism. Assume that every generic point of C parametrizes a smooth, free
curve in X. Then for Y = M0,r (X,β)

dim[ f ]Hom(C,Y ; f |B) ≥ 〈−Kvirt
Y , f∗[C]〉 + dimvirt(Y )(1 − pa(C) − deg(B)).

1.1 Outline of the Article

There is a universal family of stable maps over M0,r (X,β)

(π : C → M0,r (X,β), (σ1 : M0,r (X,β) → C)i=1,...,r , f : C → X).

The Behrend-Fantechi obstruction theory is defined in terms of total derived push-
forwards under π of the relative cotangent sheaf of π and the pullback under f of
the cotangent bundle of X . Thus the Grothendieck–Riemann–Roch theorem gives
a formula for the virtual canonical bundle. Unfortunately it is not a very useful
formula. For instance, using this formula it is difficult to determine whether the
virtual canonical bundle is NEF, ample, etc. But combined with Proposition 1.2,
Grothendieck–Riemann–Roch gives the formula from Theorem 1.1. The main work
in this article is proving Proposition 1.2.

The proof reduces to local computations for the universal family over the Artin
stack of all prestable curves of genus 0, cf. Sect. 4. Because of this, most results are
stated for Artin stacks. This leads to one ad hoc construction: since there is as yet no
theory of cycle class groups for Artin stacks admitting Chern classes for all perfect
complexes of bounded amplitude, a Riemann–Roch theorem for all perfect mor-
phisms relatively representable by proper algebraic spaces, and arbitrary pullbacks
for all cycles coming from Chern classes, a stand-in Qπ is used, cf. Sect. 3. (Also by
avoiding Riemann–Roch, this allows some relations to be proved “integrally” rather
than “modulo torsion”).

In the special case X = P
n
k , Pandharipande proved both Theorem 1.1 and Proposi-

tion 1.2 in [7, 8]. Pandharipande’s work was certainly our inspiration. But our proofs
are completely different, yield a more general virtual canonical bundle formula, and
hold modulo torsion (and sometimes “integrally”) rather than modulo numerical
equivalence.
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2 Notation for Moduli Spaces and Boundary
Divisor Classes

The Relative Picard of the Universal Family of Genus 0 Curves. Denote byM0,0

the category whose objects are proper, flat families ρ : C → M of connected, at-
worst-nodal, arithmetic genus 0 curves, andwhosemorphisms areCartesian diagrams
of such families. This category is a smooth Artin stack over Spec Z (with the flat
topology), cf. [1]. Denote by U2 ⊂ M0,0 the open substack parameterizing families
for which ρ is everywhere smooth. Denote by � ⊂ M0,0 the closed complement of
U2 with its reduced structure. Checking on a smooth atlas, � is everywhere locally
a reduced normal crossings divisor in M0,0. Denote by �′ the singular locus in �,
and denote by U1 ⊂ M0,0 the open complement of �′.

Denote byπ : C → M0,0 the universal family. This is a proper, flat, locally finitely
presented 1-morphism of Artin stacks, representable by algebraic spaces. Moreover,
π is perfect of Tor dimension [0, 1]. Thus, for every object ρ : C → M ofM0,0, for
every perfect complex F• of amplitude [a, b], also Rρ∗F• is perfect of amplitude
[a, b + 1]; in particular Rρ∗L is perfect of amplitude [0, 1] for every invertible
sheaf L on C . For each perfect complex of bounded amplitude on M , there is a
corresponding determinant invertible sheaf, and this is compatible with arbitrary
base change of M , cf. [5].

Denote by Picπ the stack parameterizing proper, flat families of connected, at-
worst-nodal, arithmetic genus 0 curves together with a section of the relative Picard
functor of the family. This is also an Artin stack, and the natural 1-morphism
Picπ → M0,0 is representable by (highly nonseparated) étale group schemes, cf.
[9, Proposition 9.3.1].

The stack Picπ is a countable union of connected open and closed substacks
Piceπ ⊂ Picπ where e is the degree of L on fibers of ρ. By Riemann–Roch, Rρ∗L has
virtual rank h0 − h1 equal to e + 1. In particular, the subgroup object Pic0π ⊂ Picπ

is quasi-compact over M0,0, and each Piceπ → M0,0 is a torsor for Pic0π . Moreover,
tensoring by ωπ defines an isomorphism of torsors, Piceπ → Pice−2

π . Thus every Piceπ
is either naturally equivalent to Pic0π , or it is naturally equivalent to Pic−1

π .

An Involution of the Relative Picard. The group inverse restricts to an involution
ε0 of Pic0π that associates to every 1-morphism M → Pic0π coming from a degree 0
invertible sheaf L on C the 1-morphism corresponding to L∨. More generally, for
every integer e there is an involution εe of Piceπ that associates to every 1-morphism of
an invertible sheafL the 1-morphismof the invertible sheafω−e

ρ ⊗ L∨. The involution
εe is compatible with ε0 for the action of Pic0π on Piceπ , and it is compatible with the
“twisting byωπ” isomorphismsPiceπ → Pice−2

π of Pic0π-torsors. In particular, on Pic
−1
π

the involution ε−1 associates to every invertible sheaf L′ the Serre dual invertible
sheaf L′′ = ωπ ⊗ (L′)∨. Since Picπ is the disjoint union of the components Piceπ,
there exists a unique involution εPic of Picπ that restricts to εe on each Piceπ .
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AUniversal Invertible Sheaf of Degree Zero. Because a (local) “universal” invert-
ible sheaf is only unique up to tensoring by the pullback of an invertible sheaf A
from the base, there is no universal invertible sheaf on Pic−1

π ×M0,0 C. Nonetheless,
for every invertible sheaf A on Pic0π, relative to the projection

pr1 : Pic0π ×M0,0 C → Pic0π,

there exists a unique invertible sheaf L inducing the universal section of the relative
Picard and such that det(Rpr1,∗L) equals A. Indeed, for every invertible sheaf L of
degree 0, since det(Rpr1,∗(L ⊗ pr∗1A)) equals det(Rpr1,∗L) ⊗ A, this allows us to
normalize the universal invertible sheaf.

To calibrate the universal invertible sheaf further, observe that pr1 is representable,
fppf, and, therefore, also universally open. There is a unique choice of universal
invertible sheafO(D) of relative degree 0 on Pic0π ×M0,0 C that comes from an effec-
tive Cartier divisorDwhose open complementW has open image pr1(W ) containing
the open substack Pic0π ×M0,0 U1, i.e., D contains no fiber of C over Pic0π ×M0,0 U1

(it does contain fibers over some generic points of �′).

A Basis for the Relative Picard. For every algebraically closed field k and for
every at-worst-nodal genus 0 k-curve C , Pic(C) is a free Abelian group with a
finite basis. There is an open substack of Picπ that gives such a basis for every
geometric point of M0,0 as above. Denote by ι′ : M̃0,0 ⊂ Picπ the open substack
with the following universal property. For every object ρ : C → M ofM0,0, for every
invertible sheaf L′ on C and the associated 1-morphism M → Picπ , denoting by L′′

the Serre dual invertible sheaf, ωρ ⊗ (L′)∨, the inverse image of M̃0,0 is the maximal
open subscheme of M on which each of the following coherentOM -modules is zero:
R1ρ∗(L′), R1ρ∗(L′′), and R1ρ∗(L′′ ⊗ (L′)∨). Similarly, denote by ι′′ : M̃0,0 → Picπ

the 1-morphism that is Serre dual to ι′, i.e., coming from L′′ instead of L′. By
Riemann–Roch and the classification of invertible sheaves on P

1
k , both L′ and L′′ are

invertible sheaves of relative degree −1, i.e., both ι′ and ι′′ factor through Pic−1
π .

Compatibility with ε−1 over U1. Please note, even if the ordered pair of Serre dual
invertible sheaves (L′,L′′) satisfies the H 1-vanishing hypothesis above, typically the
ordered pair (L′′,L′) does not satisfy the H 1-vanishing hypothesis. However, this
does hold over the open substack Ũ1 = M̃0,0 ×M0,0 U1, and the involution ε−1 above
restricts to an involution ε on Ũ1 pulling back (L′,L′′) to (L′′,L′) up to tensoring by
pullbacks of invertible sheaves from the base. For the inverse image Ũ2 ofU2 in M̃0,0,
the projection Ũ2 → U2 is an isomorphism, so we identify these two stacks. Since
M̃0,0 is an open substack of Picπ , which is itself étale overM0,0, also M̃0,0 → M0,0

is representable and étale (although highly non-separated). For every 1-morphism
T → M0,0, denote by T̃ → M̃0,0 the 2-fibered product of T with M̃0,0 over M0,0.

In particular, denote by π̃ : C̃ → M̃0,0 the base change of π : C → M0,0. Similarly,

denote by �̃, the base change to M̃0,0 of�. The representable 1-morphism Ũ1 → U1

is the universal categorical quotient by the associated action ε ofS2. The involution
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ε does not extend over �′. The 1-morphism Ũ1 ∩ � → U1 ∩ � is finite and flat of
degree 2, an S2-torsor for the free action of ε.

Relation to Components of Fibers of π. The smooth locus of the universal curve
gives a smooth atlas of M̃0,0 as follows. Denote by Co the open substack of C that
is the smooth locus of the 1-morphism π. Denote by πo : Co → M0,0 the restriction
of π. The diagonal 1-morphism �o

π : Co → Co ×M0,0 C is representable by closed
immersions. The corresponding ideal sheaf I is an invertible sheaf that fits into a
short exact sequence

0 −−−−→ I −−−−→ OCo×M0,0C
−−−−→ �∗OCo −−−−→ 0.

Applying the long exact sequence of higher direct images and relative duality, all
of R1pr1,∗I, R1pr1,∗(ωπ ⊗ I∨), and R1pr1,∗(ωπ ⊗ (I∨)⊗2) equal zero. Thus, for the

invertible sheaf I, there is an associated 1-morphism ζ̃ : Co → M̃0,0 compatible
with the given 1-morphisms to M0,0 (each of these morphisms is representable by
algebraic spaces, so the compatibility is strict). By Lemma 2.5, ζ̃ is smooth and
faithfully flat, locally constant on geometric fibers of πo, distinguishing distinct
connected components of geometric fibers. Thus, M̃0,0 ⊂ Picπ is a “basis” for Picπ

as a group scheme over M0,0. The 1-morphisms ι′ and ι′′, in particular, define two
sections of P̃icπ = Picπ̃ , and thus define a morphism of locally finitely presented,
étale, commutative group objects over M̃0,0,

(ι′, ι′′) : (Z⊕2) × M̃0,0 → Picπ̃.

The section corresponding to (1, 0) ∈ Z
⊕2 is ι′, and the section corresponding to

(0, 1) is ι′′. Thus, for example, the section corresponding to (1, 1) comes from the
invertible sheaf ωπ , and thus is the base change to M̃0,0 of a section of Picπ → M0,0.
In particular, for integers (e′, e′′), the section corresponding to (−e′,−e′′) is the base
change of a section of Picπ if and only if e′′ equals e′.

SmoothAtlases for SomeOpens. There are smooth atlases for Ũ1,U1, andU2 as fol-
lows. ForU2, the family π : P

1
Z

→ Spec Z defines a 1-morphism ζ2 : Spec Z → U2.
The 1-morphism ζ2 is representable, smooth, and surjective. The 2-fibered product

Spec Z ×ζ2,U2,ζ2 Spec Z = Aut(P1
Z
)

is the group scheme PGL2 with its natural action on P
1
Z
. ThusU2 is isomorphic to the

quotient stack [Spec Z/PGL2]. For this atlas, the unique lift to M̃0,0 comes from the
pair (L′,L′′) = (OP

1
Z

(−1),OP
1
Z

(−1)). There is no compatible PGL2-linearization

ofOP
1
Z

(−1), so that there is no invertible sheaf of relative degree −1 on Ũ2 ×M0,0 C.

There is a similar atlas forU1 and Ũ1. Let V = Z{e0, e1} be a free module of rank
2. Choose dual coordinates y0, y1 for V ∨. Let P

1
Z

= P(V ) be the projective space
with homogeneous coordinates y0, y1. Let A

1
Z
be the affine space with coordinate x .
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Denote by Z ⊂ A
1
Z

× P
1
Z
the closed subschemeV(x, y1), i.e., the image of the section

(0, [1, 0]). Let ν : C → A
1
Z

× P
1
Z
be the blowing-up along Z . Denote by E ⊂ C the

exceptional divisor. Define π : C → A
1
Z
to be prÅ1 ◦ ν. This family defines a 1-

morphism ζ1 : A
1
Z

→ U1. This 1-morphism is representable, smooth, and surjective.
The 2-fibered product

A
1
Z

×ζ1,U1,ζ1 A
1
Z

= IsomA
2
Z

(pr∗1C, pr∗2C)

restricted over the open Gm × Gm ⊂ A
1
Z

× A
1
Z
is the group scheme PGL2 × (Gm ×

Gm). The restriction of the 2-fibered product over the origin Spec Z ⊂ A
1
Z

× A
1
Z
is

the wreath product G0 := (B × B) � S2. Here B ⊂ PGL2 is a Borel subgroup, i.e.,
the stabilizer of a point in P

1, and S2 acts by interchanging the two components of
C0. Thus the stack U1 ∩ � is isomorphic to the quotient stack [Spec Z/G0]. Note
that the invertible sheaf L′ = ν∗pr∗

P
1
Z

OP
1
Z

(−1) and its Serre dual invertible sheaf

L′′ = ωπ ⊗ (L′)∨ ∼= L′(E) have H 1(C,L′), H 1(C,L′′), and H 1(C,L′′ ⊗ (L′)∨) all
equal to zero. Up to isomorphism, the only ordered pairs of Serre dual invertible
sheaves with this property are (L′,L′′) and (L′′,L′). The action of S2 interchanges
these pairs.

The lifted 1-morphism ζ̃1 : A
1
Z

→ Ũ1 is again representable, smooth, and surjec-
tive. The 2-fibered product for ζ̃1 agrees with the 2-fibered product of ζ1 over Gm ×
Gm , yet the restriction over the origin is the normal subgroup B × B of G0. Thus the

stack Ũ1 ∩ � is isomorphic to the quotient stack [Spec Z/(B × B)]. Although we
shall never use this, in fact Ũ1 is a global quotient stack [P̂GL2/(PGL2 × PGL2)],
where P̂GL2 is the wonderful compactification, i.e., P3

Z
, and PGL2 × PGL2 acts by

both left and right multiplication. The “matrix adjugate” (which happens to be homo-
geneous of degree 1 for 2 × 2 matrices) defines an involution ε : P̂GL2 → P̂GL2

extending the involution a �→ a−1 on PGL2. This involution induces an action on
P̂GL2 of the wreath product (PGL2 × PGL2) � S2. The stack U1 ∩ � is the quo-
tient stack associated to this action restricted to the boundary divisor of P̂GL2.

Description of the Relative Picard over Ũ1. Although there is no universal invert-
ible sheaf of degree −1 on U2 ×M0,0 C, nonetheless, there is an isomorphism of
Picπ ×M0,0 U2 with the group object Z ×U2 (the constant étale group object with
fiber groupZ). We normalize this isomorphism so that the section 1 ofZ corresponds
to the 1-morphism ι′ : U2 → Pic−1

π .
Using the atlas, the group object Picπ ×M0,0 (U1 ∩ �) over U1 ∩ � pulls back to

the rank 2 group object (Z⊕2) × Spec Z over Spec Z, but with a nontrivial action of
the wreath product G0 = (B × B) � S2 on Z

⊕2 whereS2 sends (e′, e′′) to (e′′, e′).
In particular, the pullback to Ũ1 ∩ � is a constant group object, and the 1-morphism

(ι′, ι′′) : (Z⊕2) × Ũ1 ∩ � → Picπ̃
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is an isomorphism of relative group schemes over Ũ1 ∩ �. In particular, for every pair
of integers (e′, e′′), the image �e′,e′′ of the section (ι′, ι′′)(−e′,−e′′) is an effective
Cartier divisor in Piceπ̃ ×

M̃0,0
Ũ2 for e = e′ + e′′.

Descriptionof the Involution εe over Ũ1. The involution εon Ũ1 and the involution εe
on Piceπ are compatible as follows, for every pair of integers (e′, e′′)with e′ + e′′ = e,
for the 1-morphism (ι′, ι′′)(−e′,−e′′) : Ũ1 → Piceπ over M0,0, all of the following
1-morphisms over M0,0 are equal,

(ι′, ι′′)(−e′, −e′′) ◦ ε = (ι′′, ι′)(−e′,−e′′) = (ι′, ι′′)(−e′′,−e′) = εe ◦ (ι′, ι′′)(−e′,−e′′).

Thus, both ε × Id and Id × εe define the same involution ε̃e of Piceπ ×M0,0 Ũ1 =
Piceπ̃ ×

M̃0,0
Ũ1 that commutes bothwith ε via pr1 andwith εe via pr2. Since Picπ̃ ×

M̃0,0

Ũ1 is the disjoint union of the components Piceπ̃ ×
M̃0,0

Ũ1, there is a unique involution
ε̃Pic restricting to ε̃e on every component. In particular, the restriction Piceπ̃ ×

M̃0,0

Ũ1 ∩ � → Piceπ ×M0,0 (U1 ∩ �) is an S2-torsor for the action of ε × Id.

Extending and Descending Cartier Divisors. Since Piceπ , resp. Pic
e
π̃ , is a smooth

Artin stack, and since the complement of U1, resp. Ũ1, has codimension 2, every
effective Cartier divisor on Piceπ ×M0,0 U1, resp. on Piceπ̃ ×

M̃0,0
Ũ1, extends uniquely

to a Cartier divisor on all of Piceπ, resp. on all of Piceπ̃ . Thus each of the effective
divisors �e′,e′′ extends to an effective Cartier divisor on all of Piceπ̃ , also denoted by
�e

e′,e′′ . Since Piceπ̃ is an open and closed substack of Picπ̃ , this is also an effective
Cartier divisor on Picπ̃ that is trivial on every Picdπ̃ with d 
= e. Also, an effective
Cartier divisor onPicπ̃ is the pullback of an effectiveCartier divisor onPicπ if and only
if the restriction of the divisor to Picπ̃ ×

M̃0,0
Ũ1 is the pullback of an effective Cartier

divisor on Picπ ×M0,0 U1. Since Picπ ×M0,0 U1 is the quotient of Picπ̃ ×
M̃0,0

Ũ1 by
the S2-action, a Cartier divisor is a pullback if and only if it is invariant under this
action.

The Tautological Boundary Divisors. The collection of Cartier divisors (�e′,e′′) for
(e′, e′′) ∈ Z

⊕2 is locally finite: every quasi-compact open subset of Picπ̃ intersects
the support of only finitely many of these divisors. Thus, for every function,

g : Z
⊕2 → Z,

there is a well-defined Cartier divisor

∑
(e′,e′′)∈Z⊕2

g(e′, e′′)�e′,e′′

on Picπ̃ . The pullback of this divisor under ε̃Pic equals
∑

(e′,e′′) g(e′′, e′)�e′,e′′ . Thus
the divisor equals the pullback of a divisor on Picπ if and only if g(e′′, e′) equals
g(e′, e′′) for every (e′, e′′) ∈ Z

⊕2.
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Concretely, for every object ρ : C → M , for every invertible sheaf L′ = L defin-
ing a 1-morphism to M̃0,0, for the Serre dual invertible sheaf L′′ = ωρ ⊗ L∨, and for
every invertible sheaf N on C defining a morphism M → Picπ̃, the inverse image
in M of �e′,e′′ is a pseudo-divisor whose support is the locus in � over which N
is isomorphic to (L′)⊗−e′ ⊗ (L′′)⊗−e′′

up to pullback of an invertible sheaf from M ,
i.e., the degree of N distributes as (e′, e′′) over the two connected subcurves of the
fiber of ρ whose union equals the fiber and that intersect in a single node of the fiber.

TheUniversalBoundaryDivisor on M̃0,0 ×M0,0 C. The 1-morphism (ι′, ι′′)(1,−1) :
M̃0,0 → Pic0π associates to every invertible sheaf L′ of relative degree −1 the invert-
ible sheaf (L′′ ⊗ (L′)∨)∨ = ω∨

π ⊗ (L′)⊗2 of relative degree 0. The 2-fiber product

of this 1-morphism with IdC is a 1-morphism M̃0,0 ×M0,0 C → Pic0π ×M0,0 C. In
particular, the universal invertible sheaf O(D) and the associated Cartier divisor D
on Pic0π ×M0,0 C pulls back via this 1-morphism to an invertible sheaf O(D′) and a

Cartier divisorD′ on M̃0,0 ×M0,0 C of relative degree 0 over M̃0,0, resp. with support
contained in �̃ ×M0,0 C. Similarly, the pullback by the 1-morphism (ι′, ι′′)(−1, 1)
gives aCartier divisorD′′ with support contained in �̃ ×M0,0 C. In particular,D′ + D′′

equals �̃ ×M0,0 C as effective Cartier divisors on M̃0,0 ×M0,0 C.

Ordered Tuples of Divisors. All of these constructions extend to r -tuples of divisor
classes. For every integer r ≥ 0, denote by�r (Picπ), resp. by�r (Picπ̃), the r -fold 2-
fibered product of Picπ overM0,0, resp. the r -fold 2-fibered product of Picπ̃ with itself

over M̃0,0. Equivalently,�r (Picπ), resp.�r (Picπ̃), is the stack of families of genus 0
curves, and an ordered r -tuple of sections of the relative Picard functor of the family,
resp., this data together with a lifting ζ̃ of the 1-morphism ζ : M → M0,0 to M̃0,0.
For every r -tuple of integers (e1, . . . , er ), there is an open and closed substack of
�r (Picπ) that is the r -fold 2-fibered product of Pice1π , . . . ,Picerπ . The homomorphism

(ι′, ι′′) defines a morphism of representable group objects over M̃0,0,

(ι′, ι′′, . . . , ι′, ι′′) : Z
⊕2r × M̃0,0 → �r (Picπ̃),

that maps (−e′
1, e

′′
1, . . . , e

′
r , e

′′
r ) to the component with (e1, . . . , er ) = (e′

1 + e′′
1, . . . ,

e′
r + e′′

r ). The involution εPic induces an involution of�r (Picπ̃) that corresponds to the
involution ofZ

⊕2r by (e′
1, e

′′
1, . . . , e

′
r , e

′′
r ) �→ (e′′

1, e
′
1, . . . , e

′′
r , e

′
r ). With respect to this

involution,�r (Picπ) ×M0,0 U1 is the universal geometric quotient of�r (Picπ̃) ×
M̃0,0

Ũ1, and the 1-morphism�r (Picπ̃) ×
M̃0,0

Ũ1 ∩ � → �r (Picπ) ×M0,0 (U1 ∩ �) is an
S2-torsor under this involution.

For every (e′
1, e

′′
1 , . . . , e

′
r , e

′′
r ) inZ

⊕2r define�(e′
1,e

′′
1 ,...,e

′
r ,e

′′
r )
to be the iterated 2-fiber

product
�(e′

1,e
′′
1 ,...,e

′
r ,e

′′
r )

:= �(e′
1,e

′′
1 )

×
M̃0,0

· · · ×
M̃0,0

�(e′
r ,e

′′
r )

as an effective Cartier divisor in �r (Picπ̃) contained in the component of (e′
1 +

e′′
1, . . . , e

′
r + e′′

r ). As above, for every function,
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g : Z
⊕2r → Z,

there is a well-defined Cartier divisor

∑
(e′

1,e
′′
1 ,...,e

′
r ,e

′′
r )∈Z⊕2r

g(e′
1, e

′′
1 , . . . , e

′
r , e

′′
r )�(e′

1,e
′′
1 ,...,e

′
r ,e

′′
r )

on �r (Picπ̃). Also, this is the pullback of a Cartier divisor on �r (Picπ) if and
only if g is invariant under the involution induced by εPic, (e′

1, e
′′
1, . . . , e

′
r , e

′′
r ) �→

(e′′
1, e

′
1, . . . , e

′′
r , e

′
r ). When g is invariant, denote by

∑
(e′

1,e
′′
1 ,...,e

′
r ,e

′′
r )

′
g(e′

1, e
′′
1, . . . , e

′
r , e

′′
r )�(e′

1,e
′′
1 ,...,e

′
r ,e

′′
r )
,

the corresponding divisor on �r (Picπ).
Now letρ : C → M be aflat 1-morphism representable by proper algebraic spaces

whose geometric fibers are connected, at-worst-nodal curves of arithmetic genus 0,
and assume that M is connected. This defines a 1-morphism ξ0 : M → M0,0. For
every invertible sheaf L on C , Rρ∗L is a perfect complex of amplitude [0, 1] whose
virtual rankh0 − h1 equals an integer denoted1 + 〈c1(L),β〉. The1-morphismM →
Picπ associated to L has image in Piceπ for e = 〈c1(L),β〉. The rule L �→ 〈c1(L),β〉
is a group homomorphism

β : Pic(C) → Z,

i.e., it is a curve class on C . The pullback by ξ0 of the Cartier divisor � is a pseudo-
divisor ξ∗

0� on M whose support equals the image under ρ of the singular locus of
ρ. For every connected component of the support, say (ξ∗

0�) j , there is an associ-
ated pseudodivisor, particularly an associated invertible sheaf ξ∗

0O(�) j on M . Let

ξ̃0 : M → M̃0,0 be a lift of ξ0. The inverse image ξ̃∗
0(D′) is a pseudodivisor on C

that is contained in ρ∗ξ∗
0�. For every connected component (ξ∗

0�) j , there is an
associated connected component ξ̃∗

0(D′) j (since D′ has connected fibers over �̃).
As above Rρ∗(L ⊗ O(ξ̃∗

0(−D′) j )) is a perfect complex whose virtual rank is an
integer 〈c1(L),β〉 − 〈c1(L),β′

j 〉 = e − e′ for a unique integer e′, also denoted by
〈c1(L),β′〉. Denote e − e′ by e′′. Locally near (ξ∗

0�) j , the 1-morphism M → Piceπ
associated to L factors as the composition of ξ̃0 and the section (ι′, ι′′)(−e′,−e′′).
The rule L �→ 〈c1(L),β′

j 〉 is again a group homomorphism, i.e., it is a curve class
β′
j . Denote the curve class β − β′

j by β′′
j . For every pair of curve classes (β′,β′′)with

β′ + β′′ = β, denote by�β′,β′′ the pseudodivisor on M that is the sum of the pseudo-
divisors (ξ∗

0�) j over precisely those connected components such that (β′
j ,β

′′
j ) equals

(β′,β′′). The collection of pseudodivisors (�β′,β′′) as (β′,β′′) varies over all pairs
of curve classes is locally finite. The pseudodivisor �β′,β′′ depends on the choice
of lift ξ̃0; for a different lift, (ξ∗

0�) j may become part of �β′′,β′ rather than �β′,β′′ .
However, if β′′ equals β′, then �β′,β′ is independent of the choice of lift. Similarly,
the sum of the two pseudodivisors �β′,β′′ + �β′′,β′ is also independent of the choice
of lift.
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Let D1, . . . , Dr be Cartier divisor classes on C (equivalently, invertible sheaves
O(D1), . . . ,O(Dr ) on C). For i = 1, . . . , r , denote 〈Di ,β〉 by ei . The r -tuple
(D1, . . . , Dr ) defines a 1-morphism ξ : M → �r (Picπ) with image in the con-
nected component with multidegree (e1, . . . , er ). The lifting ξ̃0 defines a lifting
ξ̃ : M → �r (Picπ̃) of ξ. Let g(e′

1, e
′′
1, . . . , e

′
r , e

′′
r ) be a function on Z

⊕2r with val-
ues in Z, resp. Q.

Notation 2.1 Denote by

∑
(β′,β′′)

g(〈D1,β
′〉, 〈D1,β

′′〉, . . . , 〈Dr ,β
′〉, 〈Dr ,β

′′〉)�β′,β′′

the Cartier divisor class, resp. Q-Cartier divisor class, that is the pullback by ξ̃ of the
Cartier divisor class, resp. Q-Cartier divisor class,

∑
(e′

1,e
′′
1 ,...,e

′
r ,e

′′
r )

g(e′
1, e

′′
1, . . . , e

′
r , e

′′
r )�(e′

1,e
′′
1 ,...,e

′
r ,e

′′
r )
,

the summation over all sequences (e′
1, e

′′
1, . . . , e

′
r , e

′′
r ) in Z

⊕2r . If g is invariant under
the involution (e′

1, e
′′
1, . . . , e

′
r , e

′′
r ) �→ (e′′

1, e
′
1, . . . , e

′′
r , e

′
r ), then denote by

∑
(β′,β′′)

′
g(〈D1,β

′〉, 〈D1,β
′′〉, . . . , 〈Dr ,β

′〉, 〈Dr ,β
′′〉)�β′,β′′

the pullback by ξ of,

∑
(e′

1,e
′′
1 ,...,e

′
r ,e

′′
r )

′
g(e′

1, e
′′
1, . . . , e

′
r , e

′′
r )�(e′

1,e
′′
1 ,...,e

′
r ,e

′′
r )
,

where the summation is over all orbits of sequences (e′
1, e

′′
1 , . . . , e

′
r , e

′′
r ) in Z

⊕2r for
the involution. This is independent of the choice of lift ξ̃0.

Example 2.2 (Boundary Divisor of a Partition of Marked Points) Let n ≥ 0 be an
integer and let (A, B) be a partition of {1, . . . , n}. For the universal family overM0,n ,
denote by s1, . . . , sn the universal sections. Then

∑
(β′,β′′)

∏
i∈A

〈Image(si ),β
′〉 ·

∏
j∈B

〈Image(s j ),β
′′〉�β′,β′′

is the Cartier divisor of the boundary divisor �(A,B). The corresponding invariant
function is

g(e′
1, e

′′
1, . . . , e

′
n, e

′′
n) =

(∏
i∈A

e′
i

) ⎛
⎝∏

j∈B
e′′
j

⎞
⎠ +

(∏
i∈A

e′′
i

)⎛
⎝∏

j∈B
e′
j

⎞
⎠ .
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Example 2.3 (The Qπ-Divisor Associated to a Degree 0 Divisor) Restrict now over
the open substack Pic0π̃ so that e′ + e′′ equals 0, i.e., e′′ = −e′. Recall that there
exists a unique effective Cartier divisorD on Pic0π ×M0,0 C representing the universal
invertible sheaf and whose open complement W has image in Pic0π containing the
open Pic0π ×M0,0 U1. There is an associated effective divisor on Pic0π ,

Q =
∑

(e′,e′′)

′ − e′e′′�(e′,e′′) =
∑

(β′,β′′)

′ − 〈D,β′〉〈D,β′′〉�β′,β′′

coming from the invariant function g(e′, e′′) = −e′e′′. In this case, invariance also
implies that the effective Cartier divisor Q pulls back to itself under the involution
ε0 of Pic0π .

Example 2.4 (Closed Image of the Degree 0 Divisor) For the proper 1-morphism
pr1 : Pic0π ×M0,0 C → Pic0π , the closed image pr1(D) is the minimal effective Cartier
divisor supported on � and whose inverse image in Pic0π ×M0,0 C contains D. This
divisor is

pr1(D) =
∑

(e′,e′′)

′|e′|�(e′,e′′) =
∑

(β′,β′′)

′|〈D,β′〉|�β′,β′′ ,

coming from the invariant function g(e′, e′′) = √−e′e′′, which also happens to equal
the asymmetric expression |e′| = |e′′| since e′ = −e′′. For the associated involution
ε0 × IdC of Pic0π ×M0,0 C,D + (ε0 × IdC)∗D equals pr∗1(pr1(D)) as effective Cartier
divisors on Pic0π ×M0,0 C.

The following lemma clarifies M̃0,0. Since we could not find an explicit reference,
we go through the argument in some detail.

Lemma 2.5 The 1-morphism ζ̃ : Co → M̃0,0 is smooth and faithfully flat. The 1-
morphism is constant on connected components of geometric fibers of πo, and it
identifies M̃0,0 → M0,0 with the étale (highly non-separated) 1-morphism of con-
nected components of fibers of πo.

Proof Since M̃0,0 is an open substack of Picπ , and since Picπ is étale over M0,0,

also M̃0,0 is étale overM0,0. Thus, since Co is smooth overM0,0, also Co is smooth

over M̃0,0. On the level of geometric points, i.e., for an invertible sheaf L on a curve
Ck over an algebraically closed field k, it is straightforward that the isomorphism
class of L is uniquely determined by the data of the degree of L on each irreducible
componentCi ofCk . Thus ζ̃ is constant on connected components of geometric fibers
of πo, and it does distinguish distinct irreducible components.

Since ζ̃ is smooth, it is flat. Thus, to prove that ζ̃ is faithfully flat, it suffices to prove
that it is surjective on geometric points. Because M̃0,0 is étale overM0,0, and because

M0,0 is smooth over Spec (Z)with dense openU2, every geometric point of M̃0,0 is a
specialization of a point ofU2 that is “transversal” to the boundary�.More precisely,
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for every geometric point ζ ′
k : Spec(k) → M̃0,0, there exists a strictlyHenselianDVR

R with residue field k, and there exists a 1-morphism Spec (R) → M0,0 extending
the morphism on Spec(k) and corresponding to a morphism ρ : C → Spec (R) with
C regular and with smooth generic fiber. Moreover, there exists an invertible sheaf
L′ on C with Serre dual L′ = ωρ ⊗ (L′)∨ such that all of the following sheaves
are zero, and such that L′ induces the 1-morphism ζ ′

k : R
1ρ∗(L′), R1ρ∗(L′′), and

R1ρ∗(L′′ ⊗ (L′)∨). From a deformation theory perspective, this holds because there
is an effective versal deformation of Ck , and the versal deformation space is the
(formal completion of the) product of smooth 1-dimensional factors corresponding
to the deformation spaces of each node. For every deformation over a DVR R such
that the induced morphism from Spec(R) to each deformation space of a node is
formally unramified, the corresponding morphism ρ : C → Spec (R) has C regular
and has smooth generic fiber. Similarly, there is no obstruction to deforming the
invertible sheaf L′

k to an invertible sheaf on all of C .
The goal is to prove that there exists a section s : Spec (R) → Co of ρo such that

the ideal sheaf of the image is isomorphic to L′. By the classification of invertible
sheaves on P

1, the vanishing conditions on h1 of L′ and L′′ imply that the invertible
sheaf L′

η on the smooth generic fiber Cη has degree −1. Thus H 0(Cη, (L′
η)

∨) is
2-dimensional as a vector space over the fraction field, and the zero scheme of every
nonzero global section is the image of a section of ρη. If the fiber Ck is smooth, the
closure of this section is a section of ρ, and the ideal sheaf of this section differs
from L′ by twisting by a multiple of the closed fiber Ck . Since the closed fiber Ck

is principal in C , it follows that L′ is isomorphic to the ideal sheaf of a section of ρ.
Thus the lemma is proved when Ck is smooth.

Therefore, without loss of generality, assume that Ck is singular, i.e., reducible.
Then Ck is a tree of smooth, genus 0 curves. The remainder of the proof proceeds by
induction on the number of irreducible components of Ck . The key induction step is
the analysis of the restriction of L to a “leaf of the tree”.

Because Ck is a tree of smooth, genus 0 curves, it has at least two irreducible
components Ci such that Ci ∩ C \ Ci consists of a single (disconnecting) node, i.e.,
Ci is a leaf of the tree. In particular, ωρ|Ci is an invertible sheaf of degree −1. For
every invertible sheaf K on C , there is a short exact sequence of OC -modules,

0 −−−−→ K(−Ci ) −−−−→ K −−−−→ K|Ci −−−−→ 0.

In particular, if H 1(C,K) is zero, then also H 1(Ci ,K|Ci ) is zero. Since H
1(C,L′) and

H 1(C,L′′) are both zero, it follows that L′|Ci has degree d
′ = 0 or degree d ′ = −1.

When d ′ equals 0, resp. when d ′ equals −1, then L′′|Ci has degree d
′′ equal to −1,

resp. d ′′ = 0. When (d ′, d ′′) equals (0,−1), resp. when (d ′, d ′′) equals (−1, 0), then
L′ := L′, resp.L′ := L′(−Ci ), restricts to a trivial invertible sheaf onCi , as does the

invertible sheaf L′′ := ωρ ⊗ (L′
)∨(−Ci ). By Castelnuovo’s contractibility criterion,

there exists a morphism of R-schemes,

ν : C → Ĉ,
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such that ρ̂ : Ĉ → Spec (R) is an object of M0,0 satisfying the same hypotheses as
ρ, and such that ν is equivalent to the blowing up of Ĉ at a smooth k-point q of
Ĉk . In particular, the number of irreducible components of Ck is one greater than
the number of irreducible components of Ĉk . Since L′|Ci is trivial, L̂′ := ν∗L′

is an
invertible sheaf on Ĉ such that the natural OC -module homomorphism ν∗L̂′ → L′

is an isomorphism of invertible sheaves on C . By adjunction, ωρ is isomorphic to

ν∗ωρ̂(Ci ). Thus, denoting by L̂′′ = ωρ̂ ⊗ (L̂′)∨ the Serre dual of L̂′, the sheaf L′′

with degree 0 on Ci is isomorphic to ν∗(L̂′′).
The key to the induction step is proving that the invertible sheaves L̂′ and L̂′′ on

Ĉ satisfying the same H 1-vanishing hypotheses as do L′ and L′′ on C . For every
invertible sheaf K̂ on Ĉ with pullback K = ν∗K̂, observe that both of the following
natural maps are isomorphisms,

H 1(Ĉ, K̂) → H 1(C,K) → H 1(C,K(Ci )).

Thus one of these three equals zero if and only if all of them equal zero. Also, for
the natural short exact sequence of invertible sheaves on C ,

0 −−−−→ K(−Ci ) −−−−→ K −−−−→ K|Ci −−−−→ 0,

the third termK|Ci is an invertible sheaf of degree 0 onCi , hence it has vanishing H 1.
Thus, by the long exact sequence of cohomology, if H 1(C,K(−Ci )) equals zero, then
also H 1(C,K) equals zero, so that also H 1(Ĉ, K̂) equals zero. In the first case that
(d ′, d ′′) equals (0,−1), then L′ equals ν∗L̂′, L′′ equals ν∗L̂′′(Ci ), and L′′ ⊗ (L′)∨
equals ν∗(L̂′′ ⊗ (L̂′)∨)(Ci ). Thus, in this case, the H 1-vanishing hypotheses for L′
and L′′ on C is equivalent to the H 1-vanishing hypotheses for L̂′ and L̂′′ on Ĉ . In the
second case that (d ′, d ′′) equals (−1, 0), then L′ equals ν∗L̂′(Ci ), L′′ equals ν∗L̂′′,
and L′′ ⊗ (L′)∨ equals ν∗(L̂′′ ⊗ (L̂′)∨)(−Ci ). Thus the H 1-vanishing hypotheses
for L′ and L′′ on C imply H 1-vanishing hypotheses for L̂′ and L̂′′ on Ĉ (but they are
not always equivalent hypotheses). Thus, since L′ and L′′ satisfy the H 1-vanishing
hypotheses, so do L̂′ and L̂′′. Since Ĉk has fewer irreducible components thanCk , by
the induction hypothesis, L̂′ is the ideal sheaf of a section of ρ̂. Moving this section
in its linear equivalence class, L̂′ is the ideal sheaf of a section ŝ of ρ̂ whose image
is disjoint from q. Thus the total transform s of ŝ is a section of ρ whose image is
disjoint from Ci and such that ν∗L̂′ is the ideal sheaf of s. In case (d ′, d ′′) equals
(0,−1) for some leafCi ofCk , this proves thatL is the ideal sheaf of a section s of ρ.

Finally, by way of contradiction, assume that L′|Ci has degree −1 for every leaf
Ci of Ck , i.e., L′ equals ν∗L(Ci ) for the ideal sheaf L of a section s. Since this
sheaf has degree −1 on every leaf of Ck , it follows that there is precisely one leaf
other than Ci , this leaf is the unique irreducible component of Ck that intersects s,
and this leaf does not intersect Ci . Thus, Ck is a chain of genus 0 curves with at
least 3 irreducible components and precisely two leaves. For the unique irreducible
component C j of Ck intersecting Ci and that is different from Ci , L′|C j has degree
1, so that L′′ has degree −1. Thus the invertible sheaf L′′ ⊗ (L′)∨ has degree −2.
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Since H 1(C j ,L′′ ⊗ (L′)∨|C j ) is nonzero, also H 1(C,L′′ ⊗ (L′)∨) is nonzero, con-
tradicting the hypothesis. Therefore, by way of contradiction, there exists at least
one leaf of Ck on which L′ has degree 0. So L′ is the ideal sheaf of a section s
of ρ. Therefore the lemma is proved by induction on the number of irreducible
components of Ck . �

3 The Functor Qπ

Let M be an Artin stack, and let π : C → M be a flat 1-morphism, relatively rep-
resentable by proper algebraic spaces whose geometric fibers are connected, at-
worst-nodal curves of arithmetic genus 0. There exists an invertible dualizing sheaf
ωπ , and the relative trace map, Trπ : Rπ∗ωπ[1] → OM , is a quasi-isomorphism.
In particular, Ext1OC

(ωπ,OC ) is canonically isomorphic to H 0(M,OM). Therefore
1 ∈ H 0(M,OM) determines an extension class, i.e., a short exact sequence,

0 −−−−→ ωπ −−−−→ Eπ −−−−→ OC −−−−→ 0.

Themorphism π is perfect, so for every complex F• perfect of bounded amplitude on
C , Rπ∗F• is a perfect complex of bounded amplitude on M . By [5], the determinant
of a perfect complex of bounded amplitude is defined.

Definition 3.1 For every complex F• perfect of bounded amplitude on C , define
Qπ(F•) = det(Rπ∗Eπ ⊗ F•).

There is another interpretation of Qπ(F•).

Lemma 3.2 For every complex F• perfect of bounded amplitude on C,

Qπ(F
•) ∼= det(Rπ∗(F•)) ⊗ det(Rπ∗((F•)∨))∨.

Proof By the short exact sequence for Eπ , Qπ(F•) ∼= det(Rπ∗(F•))
⊗ det(Rπ∗(ωπ ⊗ F•)). The lemma follows by duality. �

It is straightforward to compute F• whenever there exist cycle class groups for C
and M such that Chern classes are defined for all perfect complexes of bounded
amplitude and such that Grothendieck–Riemann–Roch holds for π.

Lemma 3.3 If there exist cycle class groups for C and M such that Chern classes
exist for all perfect complexes of bounded amplitude and such that Grothendieck–
Riemann–Roch holds for π, then modulo 2-power torsion, the first Chern class of
Qπ(F•) is π∗(C1(F•)2 − 2C2(F•)).

Proof Denote the Todd class of π by τ = 1 + τ1 + τ2 + . . . . Of course 2τ1 =
−C1(ωπ). By GRR, ch(Rπ∗OC) = π∗(τ ). The canonical map OM → Rπ∗OC is
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a quasi-isomorphism. Therefore π∗(τ2) = 0, modulo 2-power torsion. By additivity
of the Chern character, ch(Eπ) = 2 + C1(ωπ) + 1

2C1(ωπ)
2 + . . . . Therefore,

ch(Eπ) · τ = 2 + 2τ2 + . . .

So for any complex F• perfect of bounded amplitude,

ch(Eπ ⊗ F•) · τ = ch(F•) · ch(Eπ) · τ =
(rk(F•) + C1(F•) + 1

2 (C1(F•)2 − 2C2(F•)) + . . . )(2 + 2τ2 + . . . ).

Applying π∗ gives,

2π∗(C1(F
•)) + π∗(C1(F

•)2 − 2C2(F
•)) + . . .

Therefore the first Chern class of det(Rπ∗(Eπ ⊗ F•)) is π∗(C1(F•)2 − 2C2(F•)),
modulo 2-power torsion. �

Remark 3.4 The point is this. In every reasonable case, Qπ is just π∗(C2
1 − 2C2).

Moreover Qπ is compatible with base-change by arbitrary 1-morphisms. This allows
to reduce certain computations to the Artin stack of all genus 0 curves. As far as
we are aware, no one has written a definition of cycle class groups for all locally
finitely presented Artin stacks that has Chern classes for all perfect complexes of
bounded amplitude, has pushforward maps and Grothendieck–Riemann–Roch for
perfect 1-morphisms representable by proper algebraic spaces, and has pullback
maps by arbitrary 1-morphisms for cycles coming from Chern classes. Doubtless
such a theory exists; whatever it is, Qπ = π∗(C2

1 − 2C2).

Let the following diagram be 2-Cartesian,

C ′ ζC−−−−→ C

π′
⏐⏐�

⏐⏐�π

M ′ ζM−−−−→ M

together with a 2-equivalence θ : π ◦ ζC ⇒ ζM ◦ π′.

Lemma 3.5 For every complex F• perfect of bounded amplitude on C, ζ∗
MQπ(F•)

is canonically isomorphic to Qπ′(ζ∗
C F

•).

Proof Of course ζ∗
C Eπ is canonically isomorphic to Eπ′ since ζ∗

Cωπ is canonically
isomorphic to ωπ′ . Also ζ∗

M Rπ∗ is canonically equivalent to R(π′)∗ζ∗
C for perfect

complexes of bounded amplitude. Therefore we have the chain of equivalences,

ζ∗
MQπ(F

•) = det(ζ∗
M Rπ∗(Eπ ⊗ F•)) = det(R(π′)∗ζ∗

C(Eπ ⊗ F•)) =
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det(R(π′)∗Eπ′ ⊗ ζ∗
C F

•) = Qπ′(ζ∗
C F

•).

�

Lemma 3.6 Let L be an invertible sheaf on C of relative degree e over M.
For every invertible sheaf L ′ on M, Qπ(L ⊗ π∗L ′) is canonically isomorphic to
Qπ(L) ⊗ (L ′)2e. In particular, if e = 0, then Qπ(L ⊗ π∗L ′) is canonically isomor-
phic to Qπ(L) so that Qπ induces a well-defined map Pic0π(M) → Pic(M).

Proof To compute the rank of Rπ∗(Eπ ⊗ F•) over any connected component of
M , it suffices to base-change to the spectrum of a field mapping to that component.
Then, by Grothendieck–Riemann–Roch, the rank is 2deg(C1(F•)). In particular,
Rπ∗(Eπ ⊗ L) has rank 2e.

By the projection formula, Rπ∗(Eπ ⊗ L ⊗ π∗L ′) ∼= Rπ∗(Eπ ⊗ L) ⊗ L ′. Thus,
also det(Rπ∗(Eπ ⊗ L) ⊗ L ′) equals Qπ(L) ⊗ (L ′)rank. This follows from the unique-
ness of det; for any invertible sheaf L ′ the association F• �→ det(F• ⊗ L ′) ⊗
(L ′)−rank(F•) also satisfies the axioms for a determinant function, and, hence, it
is canonically isomorphic to det(F•). Therefore Qπ(L ⊗ π∗L ′) equals Qπ(L) ⊗
(L ′)2e. In particular, when e equals 0, this gives a canonical isomorphism of
Qπ(L ⊗ π∗L ′) with Qπ(L). Since also Qπ is compatible with pullback, for every
element of Pic0π(M) that is étale locally represented by an invertible sheaf in Pic(C),
Qπ of these invertible sheaves satisfies the descent condition for an invertible sheaf
on M relative to this étale cover. �

4 Local Computations

This section contains two computations:Qπ(ωπ) andQπ(L) for every invertible sheaf
onC of relative degree 0. Because of Lemma 3.5 the first computation reduces to the
universal case over M0,0. Because of Lemmas 3.5 and 3.6, the second computation
reduces to the universal case over Pic0π .

4.1 Computation of Qπ(ωπ)

Associated to πC : C → M , there is a 1-morphism ζM : M → M0,0, a 1-morphism
ζC : C → C, and a 2-equivalence θ : πC ◦ ζC ⇒ ζM ◦ πC such that the following
diagram is 2-Cartesian,

C
ζC−−−−→ C

πC

⏐⏐�
⏐⏐�πC

M
ζM−−−−→ M0,0
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Of course ωπC is isomorphic to ζ∗
CωπC . By Lemma 3.5, QπC (ωπC )

∼= ζ∗
MQπC (ωπC ).

So the computation of QπC (ωπC ) is reduced to the universal family π : C → M0,0.
In what follows, denote by j : U2 → U1 the open immersion.

Proposition 4.1 (i) Over the open substack U1, ω∨
π is π-relatively ample.

(ii) Over U1, R1π∗ω∨
π |U1 = (0) and π∗ω∨

π |U1 is locally free of rank 3.
(iii) Over U2, there is a canonical isomorphism i : det(π∗ω∨

π |U2) → OU2 .
(iv) The image of the homomorphism of quasi-coherent sheaves det(π∗ω∨

π |U1) →
j∗det(π∗ω∨

π |U2)
i−→ j∗OU2 equals the image of the canonical homomorphism of

quasi-coherent sheaves OU1(−�) ↪→ OU1 ↪→ j∗OU2 .
(v) Over U1, Qπ(ωπ)|U1

∼= OU1(−�). Therefore on all of M0,0, Qπ(ωπ) ∼=
OM0,0(−�).

Proof Recall the 1-morphism ζ1 : A
1
Z

→ U1 from Sect. 2. Because ζ1 is smooth and
surjective, (i) and (ii) can be checked after base-change by ζ1. Also (iv) will reduce
to a computation over A

1
Z
after base-change by ζ1.

(i) and (ii): Denote by P
2
Z
the projective space with coordinates u0, u1, u2. There is

a rational transformation f : A
1
Z

× P
1
Z

��� A
1
Z

× P
2
Z
by

f ∗x = x,
f ∗u0 = xy20 ,
f ∗u1 = y0y1,
f ∗u2 = y21 .

By local computation, this extends to a morphism f : C → A
1
Z

× P
2
Z
that is a closed

immersion and whose image is V(u0u2 − xu21). By the adjunction formula, ωπ

is the pullback of OP2(−1). In particular, ω∨
π is very ample. Moreover, because

H 1(P2
Z
,OP2(1)) = H 2(P2

Z
,OP2(−1)) = (0), also H 1(C,ω∨

π ) = (0). By cohomol-
ogy and base-change results, R1π∗(ω∨

π ) = (0) and π∗(ω∨
π ) is locally free of rank 3.

(iii): The curve P
1
Z

= P(V ) determines a morphism η : Spec (Z) → U2. This is
smooth and surjective on geometric points. Moreover it gives a realization of U2 as
the classifying stack of the group scheme Aut(P(V )) = PGL(V ). Taking the exte-
rior power of the Euler exact sequence, ωP(V )/Z = ∧2

(V ∨) ⊗ OP(V )(−2). Therefore
H 0(P(V ),ω∨

P(V )/Z
) equals

∧2
(V ) ⊗ Sym2(V ∨) as a representation of GL(V ). The

determinant of this representation is the trivial character ofGL(V ). Therefore it is the
trivial character of PGL(V ). This gives an isomorphism of det(π∗ωπ|U2) with OU2 .

(iv): This can be checked after pulling back by ζ1. The pullback ofU2 is Gm,Z ⊂ A
1
Z
.

The pullback of i comes from the determinant of H 0(Gm,Z × P
1
Z
,ω∨

π ) = ∧2
(V ) ⊗

Sym2(V ∨) ⊗ OGm . By the adjunction formula, ωC/A1 = ν∗ωA1×P1/A1(E). Hence
ν∗ω∨

C/A1 = IZωA1×P1/A1 . Therefore the canonical map,

H 0(C,ω∨
C/A1) → H 0(A1

Z
× P

1
Z
,ω∨

A1×P1/A1),
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is given by,
OA1{f0, f1, f2} → ∧2

(V ) ⊗ Sym2(V ∨) ⊗ OA1 ,

f0 �→ x · (e0 ∧ e1) ⊗ y20 ,
f1 �→ (e0 ∧ e1) ⊗ y0y1,
f2 �→ (e0 ∧ e1) ⊗ y21

It follows that det(π∗ω∨
π ) → OGm has image 〈x〉OA1 , i.e., ζ∗

1OU1(−�).

(v): By the short exact sequence for Eπ , Qπ(ωπ) = det(Rπ∗ωπ) ⊗ det(Rπ∗ω2
π).

Because the trace map is a quasi-isomorphism, det(Rπ∗ωπ) = OU1 . By (ii) and dual-
ity,

det(Rπ∗ω2
π)

∼= det(R1π∗ω2
π)

∨ ∼= det(π∗ω∨
π ).

By (iv), this is OU1(−�). Therefore Qπ(ωπ) ∼= OU1(−�) on U1. Because M0,0 is
regular, and because the complement of U1 has codimension 2, this isomorphism of
invertible sheaves extends to all of M0,0. �

The sheaf of relative differentials �π is a pure coherent sheaf on C of rank 1, flat
over M0,0 and is quasi-isomorphic to a perfect complex of amplitude [−1, 0].
Lemma 4.2 The perfect complex Rπ∗�π has rank −1 and determinant ∼= OM0,0

(−�). The perfect complex Rπ∗RHomOC (�π,OC) has rank 3 and determinant ∼=
OM0,0(−2�).

Proof There is a canonical injective sheaf homomorphism�π → ωπ and the support
of the cokernel, Z ⊂ C, is a closed substack that is smooth and such that π : Z →
M0,0 is unramified and is the normalization of �. Over U1, the lemma immediately
follows from this and the arguments in the proof of Proposition 4.1. As in that case,
it suffices to establish the lemma over U1. �

4.2 Computation of Qπ(L) for Invertible Sheaves of Degree 0

LetM be anArtin stack, letπ : C → M be aflat 1-morphism, relatively representable
by proper algebraic spaces whose geometric fibers are connected, at-worst-nodal
curves of arithmetic genus 0. Let L be an invertible sheaf on C of relative degree 0
over M . This determines a 1-morphism to the relative Picard of the universal family
over M0,0,

ζM : M → Pic0π.

The pullback of the universal family C is equivalent to C and the pullback of the
universal bundle OC(D) differs from L by π∗L ′ for an invertible sheaf L ′ on M . By
Lemmas 3.5 and 3.6, Qπ(L) ∼= ζ∗

MQπ(OC(D)).



118 A.J. de Jong and J. Starr

Proposition 4.3 Over Pic0π , π∗Eπ(D) = (0) and R1π∗Eπ(D) is a sheaf supported
on the inverse image of �. The stalk of R1π∗Eπ(D) at the generic point of �(a,−a) is
a torsion sheaf of length a2. The filtration by order of vanishing at the generic point
has associated graded pieces of length 2a − 1, 2a − 3, . . . , 3, 1.

Proof Over the open complement of �, the divisor D is 0. So the first part of
the proposition reduces to the statement that Rπ∗Eπ is quasi-isomorphic to 0. By
definition of Eπ , there is an exact triangle,

Rπ∗Eπ −−−−→ Rπ∗OC
δ−−−−→ Rπ∗ωπ[1] −−−−→ Rπ∗Eπ[1].

Of course the bundle Eπ and the canonical isomorphism Rπ∗OC ∼= OM were defined
so that the composition of δ with the trace map, which is a quasi-isomorphism in
this case, would be the identity. Therefore δ is a quasi-isomorphism, so Rπ∗Eπ is
quasi-isomorphic to 0.

The second part can be proved (and perhaps only makes sense) after smooth base-
change to a scheme. Let P

1
s be a copy of P

1 with homogeneous coordinates S0, S1.
Let P

1
x be a copy of P

1 with homogeneous coordinates X0, X1. Let P
1
y be a copy of

P
1 with homogeneous coordinates Y0,Y1. Denote by C ⊂ P

1
s × P

1
x × P

1
y the divisor

with defining equation F = S0X0Y0 − S1X1Y1. The projection prs : C → P
1
s is a

proper, flat morphism whose geometric fibers are connected, at-worst-nodal curves
of arithmetic genus 0. Denote by ζ0 : P

1
s → M0,0 the associated 1-morphism. The

restriction L′ to C of the invertible sheaf pr∗xOP1
x
(−1) defines a lifting ζ̃0 : P

1
s →

M̃0,0. Denote by L the invertible sheaf on C that is the restriction of pr∗xOP1
x
(a) ⊗

pr∗yOP1
y
(−a). This is an invertible sheaf of relative degree 0. Therefore there is an

induced 1-morphism ζ : P
1
s → Pic0π, and a lift ζ̃ : P

1
s → Pic0π̃ over ζ̃0 and ζ.

It is straightforward to check smoothness of ζ0, and hence also ζ̃0, ζ, and ζ̃. The
image of ζ̃ intersects �(b,−b) if and only if b equals ±a. The divisor ζ̃∗(�(a,−a) +
�(−a,a)) if a 
= 0, resp. ζ̃∗(�(0,0)) if a = 0, equals the Cartier divisor V(S0S1) ⊂ P

1
s .

There is an obvious involution i : P
1
s → P

1
s by i(S0, S1) = (S1, S0), and ζ ◦ i is 2-

equivalent to ζ. Therefore the total length of the torsion sheaf R1prs,∗Eprs ⊗ L is
2 times the length of the stalk of R1π∗Eπ(D) at the generic point of the image of
�(a,−a). More precisely, the length of the stalk at each of (1, 0), (0, 1) ∈ P

1
s is the

length of the stalk at the image of �(a,−a). Similarly for the lengths of the associated
graded pieces of the filtration by vanishing order.

Because Eprs is the extension class of the trace mapping, R1prs,∗Eprs ⊗ L is the
cokernel of the OP1

s
-homomorphisms,

γ : prs,∗(L) → HomO
P
1
s
(prs,∗(L

∨),OP1
s
),

induced via adjointness from the multiplication map,

prs,∗(L) ⊗ prs,∗(L
∨) → prs,∗(OC) = OP1

s
.
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On P
1
s × P

1
x × P

1
y there is a locally free resolution of the push-forward of L , resp.

L∨,

0 → OP1
s
(−1) � OP1

x
(a − 1) � OP1

y
(−a − 1)

F−→ OP1
s
(0) � OP1

x
(a) � OP1

y
(−a) → L → 0,

0 → OP1
s
(−1) � OP1

x
(−a − 1) � OP1

y
(a − 1)

F−→ OP1
s
(0) � OP1

x
(−a) � OP1

y
(a) → L∨ → 0

Hence Rprs,∗L is the complex,

OP1
s
(−1) ⊗k H

0(P1
x ,OP1

x
(a − 1)) ⊗k H

1(P1
y,OP1

y
(−a − 1))

F−→ OP1
s
⊗k H

0(P1
x ,OP1

x
(a)) ⊗k H

1(P1
y,OP1

y
(−a)).

A similar result holds for Rprs,∗L∨. It is possible to write out this map explicitly in
terms of bases for H 0 and H 1, but for themain statement just observe the complex has
rank 1 and degree −a2. A similar result holds for Rprs,∗L∨. Therefore R1π∗Eπ(L)

is a torsion sheaf of length 2a2. Because it is equivariant for i , the localization at
each of (0, 1) and (1, 0) has length a2.

The lengths of the associated graded pieces of the filtration by order of vanishing
at V(S0S1) can be computed from the complexes for Rprs,∗L and Rprs,∗L∨. This is
left to the reader. �

Corollary 4.4 In the universal case, Qπ(D) = −∑
a≥0 a

2�a. Therefore in the gen-
eral case of π : C → M and an invertible sheaf L of relative degree 0,

Qπ(L) =
∑
β′,β′′

′〈C1(L),β′〉〈C1(L),β′′〉�β′,β′′ .

5 Proof of Proposition 1.2

As usual, let M be an Artin stack and let π : C → M be a flat 1-morphism, relatively
representable by proper algebraic spaces whose geometric fibers are connected, at-
worst-nodal curves of genus 0.

Hypothesis 5.1 There are cycle class groups for C and M admitting Chern classes
for locally free sheaves, and such that Grothendieck–Riemann–Roch holds for π. In
particular, this holds if M is a Deligne–Mumford stack whose coarse moduli space
is quasi-projective.

Proof of Proposition 1.2(i). Define D′ = 2D + 〈D,β〉C1(ωπ). This is a Cartier divi-
sor class of relative degree 0. By Corollary 4.4,

Qπ(D
′) =

∑
β′,β′′

′
(〈2D,β′〉 − 〈D,β〉)(〈2D,β′′〉 − 〈D,β〉)�β′,β′′ .
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By Lemma 3.3 this is,

4π∗(D · D) + 4〈D,β〉π∗(D · C1(ωπ) + (〈D,β〉)2Qπ(C1(ωπ)) =∑
β′,β′′

′
(4〈D,β′〉〈D,β′′〉 − (〈D,β〉)2)�β′,β′′ .

By Proposition 4.1, Qπ(ωπ) = −∑
β′,β′′

′
�β′,β′′ . Substituting this into the equation,

simplifying, and dividing by 4 gives the relation. �

Lemma 5.2 For every pair, D1, D2, of Cartier divisor classes on C of relative
degrees 〈D1,β〉, resp. 〈D2,β〉, modulo 2-power torsion,

2π∗(D1 · D2) + 〈D1,β〉π∗(D2 · C1(ωπ)) + 〈D2,β〉π∗(D1 · C1(ωπ)) =
∑

β′,β′′
′
(〈D1,β

′〉〈D2,β
′′〉 + 〈D2,β

′〉〈D1,β
′′〉)�β′,β′′ .

Proof This follows fromProposition 1.2(i) and the polarization identity for quadratic
forms. �

Lemma 5.3 For every section of π, s : M → C, whose image is contained in the
smooth locus of π,

s(M) · s(M) + s(M) · C1(ωπ) = 0.

Proof This follows by adjunction since the relative dualizing sheaf of s(M) → M
is trivial. �

Lemma 5.4 For every section of π, s : M → C, whose image is contained in the
smooth locus of π and for every Cartier divisor class D on C of relative degree
〈D,β〉 over M, modulo 2-power torsion,

2〈D,β〉s∗D − π∗(D · D) − 〈D,β〉2π∗(s(M) · s(M)) =
∑

β′,β′′
′
(〈D,β′〉2〈s(M),β′′〉 + 〈D,β′′〉2〈s(M),β′〉)�β′,β′′ .

Proof By Lemma 5.2, with D1 = s(M) and with D2 = D,

2s∗D + π∗(D · C1(ωπ)) + 〈D,β〉π∗(s(M) · C1(ωπ)) =
∑′

(〈D,β′〉〈s(M),β′′〉 + 〈D,β′′〉〈s(M),β′〉)�β′,β′′ .

Multiplying both sides by 〈D,β〉, we obtain,

2〈D,β〉s∗D + 〈D,β〉π∗(D · C1(ωπ)) + 〈D,β〉2π∗(s(M) · C1(ωπ)) =
∑′

(〈D,β〉〈D,β′〉〈s(M),β′′〉 + 〈D,β〉〈D,β′′〉〈s(M),β′〉)�β′,β′′ .
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First of all, byLemma5.3, 〈D,β〉2π∗(s(M) · C1(ωπ)) = −〈D,β〉2π∗(s(M) · s(M)).
Next, by Proposition 1.2(i),

〈D,β〉π∗(D · C1(ωπ)) = −π∗(D · D) +
∑′〈D,β′〉〈D,β′′〉�β′,β′′ .

Finally,

〈D,β〉〈D,β′〉〈s(M),β′′〉 + 〈D,β〉〈D,β′′〉〈s(M),β′〉 =

(〈D,β′〉 + 〈D,β′′〉)〈D,β′〉〈s(M),β′′〉 + (〈D,β′〉 + 〈D,β′′〉)〈D,β′′〉〈s(M),β′〉 =

〈D,β′〉2〈s(M),β′′〉 + 〈D, β′′〉2〈s(M),β′〉 + 〈D,β′〉〈D,β′′〉(〈s(M),β′〉 + 〈s(M),β′′〉) =

〈D,β′〉2〈s(M),β′′〉 + 〈D,β′′〉2〈s(M),β′〉 + 〈D,β′〉〈D,β′′〉.

Plugging in these 3 identities and simplifying gives the relation. �

Proof of Proposition 1.2(ii). Let π : C → M0,0 denote the universal family. Let
Csmooth denote the smooth locus of π. The 2-fibered product pr1 : Csmooth ×M0,0 C →
Csmooth together with the diagonal � : Csmooth → Csmooth ×M0,0 C determine a 1-
morphism Csmooth → M0,1. This extends to a 1-morphism C → M0,1. The pull-
back of the universal curve is a 1-morphism π′ : C′ → C that factors through
pr1 : C ×M0,0 C → C. Denote the pullback of the universal section by s : C → C′.
Now C is regular, and the complement of Csmooth has codimension 2. Therefore
s∗OC′(s(C)) can be computed on Csmooth. But the restriction to Csmooth is clearly ω∨

π .
Therefore s∗OC′(s(C)) ∼= ω∨

π on all of C.
Pulling this back by ζC : C → C gives a 1-morphism π′ : C ′ → C that factors

through pr1 : C ×M C → C . The induced morphism C ′ → C ×M C is Let D be a
Cartier divisor class on C and consider the pullback to C ′ of pr∗2D on C ×M C . This
is a Cartier divisor class D′ on C ′. Of course s∗D′ = D. Moreover, by the projection
formula, sinceC ′ → C ×M C is birational, the pushforward toC ×M C of D′ · D′ is
pr∗2(D · D). Therefore (π′)∗(D′ · D′) is (pr1)∗pr∗2(D · D), i.e., π∗π∗(D · D). Finally,
denote by, ∑

β′,β′′
〈D,β′′〉2�̃β′,β′′ ,

the divisor class on C ,

∑
β′,β′′

′
(〈D′,β′′〉2〈s(C),β′〉 + 〈D′,β′〉2〈s(C),β′′〉)�β′,β′′ .

The point is this: if π is smooth over every generic point of M , then the divisor class
�̃β′,β′′ is the irreducible component of π−1(�β′,β′′) corresponding to the vertex v′,
i.e., the irreducible component with “curve class” β′. Therefore Proposition 1.2(ii)
follows from Lemma 5.4. �
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Remark 5.5 If 〈D,β〉 
= 0 then, at least up to torsion, Proposition 1.2(i) follows
from Proposition 1.2(ii) by intersecting both sides of the relation by D and then
applying π∗. This was pointed out by Pandharipande, who also proved Lemma 5.4
up to numerical equivalence in [8, Lemma 2.2.2] (by a very different method).

Lemma 5.6 Let s, s ′ : M → C be sections with image in the smooth locus of π such
that s(M) and s ′(M) are disjoint. Then,

π∗(s(M) · s(M)) + π∗(s ′(M) · s ′(M)) = −
∑
β′,β′′

〈s(M),β′〉〈s ′(M),β′′〉�β′,β′′ .

Proof Apply Lemma 5.2 and use s(M) · s ′(M) = 0 and Lemma 5.3. �

Lemma 5.7 Let r ≥ 2 and s1, . . . , sr : M → C be sectionswith image in the smooth
locus of π and which are pairwise disjoint. Then,

−
r∑

i=1

π∗(si (M) · si (M)) = (r − 2)π∗(s1(M) · s1(M)) +
∑
β′,β′′

〈s1(M),β′〉〈s2(M)

+ · · · + sr (M),β′′〉�β′,β′′ .

Proof This follows from Lemma 5.6 by induction. �

Lemma 5.8 Let r ≥ 2 and let s1, . . . , sr : M → C be sections with image in the
smooth locus of π and which are pairwise disjoint. Then,

−
r∑

i=1

π∗(si (M) · si (M)) = r(r − 2)π∗(s1(M) · s1(M)) +
∑
β′,β′′

〈s1(M),β′〉〈s2(M)

+ · · · + sr (M),β′′〉2�β′,β′′ .

Combined with Lemma 5.7 this gives,

(r − 1)(r − 2)π∗(s1(M) · s1(M)) = −
∑
β′,β′′

〈s1(M),β′〉〈s2(M)

+ · · · + sr (M),β′′〉(〈s2(M) + · · · + sr (M),β′′〉 − 1)�β′,β′′ ,

which in turn gives,

−(r − 1)
∑r

i=1 π∗(si (M) · si (M)) = ∑
β′,β′′ 〈s1(M),β′〉〈s2(M)

+ · · · + sr (M),β′′〉(r − 〈s2(M) + · · · + sr (M),β′′〉)�β′,β′′ .
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In the notation of Example 2.2, this is,

−(r − 1)(r − 2)π∗(s1(M) · s1(M)) =
∑

(A,B), 1∈A

#B(#B − 1)�(A,B),

and

−(r − 1)
r∑

i=1

π∗(si (M) · si (M)) =
∑

(A,B), 1∈A

#B(r − #B)�(A,B).

Proof Denote D = ∑r
i=2 si (M). Apply Lemma 5.4 to get,

2(r − 1) · 0 − ∑r
i=2 π∗(si (M) · si (M)) − (r − 1)2π∗(s1(M) · s1(M)) =

∑
β′,β′′ 〈s1(M),β′〉〈s2(M) + · · · + sr (M),β′′〉2�β′,β′′ .

Simplifying,

−
r∑
j=1

π∗(si (M) · si (M)) = r(r − 2)π∗(s1(M) · s1(M)) +
∑

〈s1(M),β′〉〈s2(M)

+ · · · + sr (M),β′′〉2�β′,β′′ .

Subtracting from the relation in Lemma 5.7 gives the relation for (r − 1)(r −
2)π∗(s1(M) · s1(M)).Multiplying the first relation by (r − 1), plugging in the second
relation and simplifying gives the third relation. �

Lemma 5.9 Let r ≥ 2, and let s1, . . . , sr : M → C be everywhere disjoint sections
with image in the smooth locus. For every 1 ≤ i < j ≤ r , using the notation from
Example 2.2,

∑
(A,B), i∈A

#B(r − #B)�(A,B) =
∑

(A′,B ′), j∈A′
#B ′(r − #B ′)�(A′,B ′).

Proof This follows from Lemma 5.8 by permuting the roles of 1 with i and j . �

Lemma 5.10 Let r ≥ 2, and let s1, . . . , sr : M → C be everywhere disjoint sections
with image in the smooth locus ofπ. For every Cartier divisor class D onC of relative
degree 〈D,β〉,

2(r − 1)(r − 2)〈D,β〉s∗
1D = (r − 1)(r − 2)π∗(D · D)

+
∑
β′,β′′

〈s1(M),β′〉a(D,β′′)�β′,β′′ ,
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where,

a(D,β′′) = (r − 1)(r − 2)〈D,β′′〉2 − 〈D,β〉2〈s2(M)

+ · · · + sr (M),β′′〉(〈s2(M) + · · · + sr (M),β′′〉 − 1).

In particular, if r ≥ 3, then modulo torsion s∗
i D is in the span of π∗(D · D) and

boundary divisors for every i = 1, . . . , r .

Proof This follows from Lemmas 5.4 and 5.8. �

Lemma 5.11 Let s1, . . . , sr : M → C be everywhere disjoint sections with image in
the smooth locus of π, possibly with r = 0 (i.e., no sections specified). Consider the
sheaf E = �π(s1(M) + · · · + sr (M)). The perfect complex Rπ∗RHomOC (E,OC )

has rank 3 − r and the first Chern class of the determinant is−2� − ∑r
i=1 π∗(si (M)

· si (M)). In particular, if r ≥ 2, up to torsion,

C1(detRπ∗RHomOC (�π(s1(M) + · · · + sr (M)),OC)) =

−2� + 1
r−1

∑
(A,B), 1∈A #B(r − #B)�(A,B).

Proof There is a short exact sequence,

0 −−−−→ �π −−−−→ �π(s1(M) + · · · + sr (M)) −−−−→ ⊕r
i=1(si )∗OM −−−−→ 0.

Combining this with Lemmas 4.2, and 5.8, and chasing through exact sequences
gives the lemma. �

6 Proof of Theorem 1.1

Let k be a field, let X be a connected, smooth algebraic space over k of dimension n,
let M be an Artin stack over k, let π : C → M be a flat 1-morphism, representable
by proper algebraic spaces whose geometric fibers are connected, at-worst-nodal
curves of arithmetic genus 0, let s1, . . . , sr : M → C be pairwise disjoint sections
with image contained in the smooth locus of π (possibly r = 0, i.e., there are no
sections), and let f : C → X be a 1-morphism of k-stacks. In this setting, Behrend
and Fantechi introduced a perfect complex E• on M of amplitude [−1, 1] and a
morphism to the cotangent complex, φ : E• → L•

M , [3]. If char(k) = 0 and M is
the Deligne–Mumford stack of stable maps to X , Behrend and Fantechi prove E•
has amplitude [−1, 0], h0(φ) is an isomorphism and h−1(φ) is surjective. In many
interesting cases, φ is a quasi-isomorphism. Then det(E•) is an invertible dualizing
sheaf for M . Because of this, det(E•) is called the virtual canonical bundle. In this
section the relations from Sect. 5 are used to give a formula for the divisor class of
the virtual canonical bundle. Assume that Hypothesis 5.1 holds for π.
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Denote by L(π, f ) the cotangent complex of the morphism (π, f ) : C → M × X .
This is a perfect complex of amplitude [−1, 0]. There is a distinguished triangle,

Lπ −−−−→ L(π, f ) −−−−→ f ∗�X [1] −−−−→ Lπ[1].

There is a slight variation L(π, f,s) taking into account the sections which fits into a
distinguished triangle,

Lπ(s1(M) + · · · + sr (M)) −−−−→ L(π, f,s) −−−−→ f ∗�X [1] −−−−→ Lπ(s1(M)

+ · · · + sr (M))[1].
The complex E• is defined to be (Rπ∗(L∨

(π, f,s))[1])∨, where (F•)∨ is RHom(F•,O).
In particular, det(E•) is the determinant of Rπ∗(L∨

(π, f,s)). From the distinguished
triangle, det(E•) is

det(Rπ∗RHomOC (�π(s1(M) + · · · + sr (M)),OC)) ⊗ det(Rπ∗ f ∗TX )∨.

By Lemma 5.11, the first term is known. The second term follows easily from
Grothendieck–Riemann–Roch.

Lemma 6.1 Assume that the relative degree of f ∗C1(�X ) is nonzero. Then Rπ∗ f ∗
TX [−1] has rank 〈− f ∗C1(�X ),β〉 + n, and up to torsion the first Chern class of the
determinant is,

1
2〈− f ∗C1(�X ),β〉 [2〈− f ∗C1(�X ),β〉π∗ f ∗C2(�X )

−(〈− f ∗C1(�X ),β〉 + 1)π∗ f ∗C1(�X )2+
∑′〈− f ∗C1(�X ),β′〉〈− f ∗C1(�X ),β′′〉�β′,β′′

]
.

Proof The Todd class τπ of π is 1 − 1
2C1(ωπ) + τ2 + . . . , where π∗τ2 = 0. The

Chern character of f ∗TX is,

n − f ∗C1(�X ) + 1

2
( f ∗C1(�X )2 − 2 f ∗C2(�X )) + . . .

Therefore ch( f ∗TX ) · τπ equals,

n −
[
f ∗C1(�X ) + n

2
C1(�π)

]
+ 1

2

[
f ∗C1(�X )2 − 2 f ∗C2(�X )

+ f ∗C1(�X ) · C1(ωπ)
] + nτ2 + . . .
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Applying π∗ and using that π∗τ2 = 0, the rank is n + 〈− f ∗C1(�X ),β〉, and the
determinant has first Chern class,

1

2
π∗

[
f ∗C1(�X )2 − 2 f ∗C2(�X )

] + 1

2
π∗( f ∗C1(�X ) · C1(ωπ)).

Applying Proposition 1.2 and simplifying gives the relation. �

Putting the two terms together gives the formulas in Theorem 1.1.
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A Stronger Derived Torelli Theorem
for K3 Surfaces

Max Lieblich and Martin Olsson

Abstract In an earlier paper the notion of a filtered derived equivalence was
introduced, and it was shown that if two K3 surfaces admit such an equivalence,
then they are isomorphic. In this paper we study more refined aspects of filtered
derived equivalences related to the action on the cohomological realizations of the
Mukai motive. It is shown that if a filtered derived equivalence between K3 surfaces
also preserves ample cones then one can find an isomorphism that induces the same
map as the equivalence on the cohomological realizations.

1 Introduction

1.1 Let k be an algebraically closed field of odd positive characteristic and let X
and Y be K3 surfaces over k. Let

� : D(X) → D(Y )

be an equivalence between their bounded triangulated categories of coherent sheaves
givenby aFourier–Mukai kernel P ∈ D(X × Y ), so� is the functor givenby sending
M ∈ D(X) to

Rpr2∗(Lpr
∗
1M ⊗L P).

As discussed in [16, 2.9] the kernel P also induces an isomorphism on rational Chow
groups modulo numerical equivalence

�A∗
P : A∗(X)num,Q → A∗(Y )num,Q.
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We can consider how a given equivalence � interacts with the codimension fil-
tration on A∗, or how it acts on the ample cone of X inside A1(X). The underlying
philosophy of this work is that tracking filtrations and ample cones (in ways we
will make precise in Sect. 2) gives a semi-linear algebraic gadget that behaves a lot
like a Hodge structure. In Sect. 2 we will define a notion of strongly filtered for an
equivalence � that imposes conditions reminiscent of the classical Torelli theorem
for K3 surfaces.

With this in mind, the purpose of this paper is to prove the following result.

Theorem 1.2 If �P : D(X) → D(Y ) is a strongly filtered equivalence, then there
exists an isomorphism σ : X → Y such that the maps on the crystalline and étale
realizations of the Mukai motive induced by �P and σ agree.

For the definition of the realizations of the Mukai motive see [16, Sect. 2]. In [16,
Proof of 6.2] it is shown that any filtered equivalence can be modified to be strongly
filtered. As a consequence, we get a new proof of the following result.

Theorem 1.3 ([16, 6.1]). If�A∗
P preserves the codimensionfiltrations on A∗(X)num,Q

and A∗(Y )num,Q then X and Y are isomorphic.

Whereas the original proof of Theorem 1.3 relied heavily on liftings to charac-
teristic 0 and Hodge theory, the proof presented here works primarily in positive
characteristic using algebraic methods.

In Sect. 8 we present a proof of Theorem 1.2 using certain results about “Kulikov
models” in positive characteristic (see Sect. 5). This argument implicitly uses Hodge
theory which is an ingredient in the proof of Theorem 5.3. In Sect. 9 we discuss a
characteristic 0 variant of Theorem 1.2, and finally in the last Sect. 10 we explain
how to bypass the use of the Hodge theory ingredient of Theorem 5.3. This makes the
argument entirely algebraic, except for the Hodge theory aspects of the proof of the
Tate conjecture. This also gives a different algebraic perspective on the statement that
any Fourier–Mukai partner of a K3 surface is a moduli space of sheaves, essentially
inverting the methods of [16].

The bulk of this paper is devoted to proving Theorem 1.2. The basic idea is to
consider a certain moduli stack Sd classifying data ((X,λ),Y, P) consisting of
a primitively polarized K3 surface (X,λ) with polarization of some degree d, a
second K3 surface Y , and a complex P ∈ D(X × Y ) defining a strongly filtered
Fourier–Mukai equivalence �P : D(X) → D(Y ). The precise definition is given in
Sect. 3, where it is shown thatSd is an algebraic stack which is naturally aGm-gerbe
over a Deligne–Mumford stack S d étale over the stack Md classifying primitively
polarized K3 surfaces of degree d. The map S d → Md is induced by the map
sending a collection ((X,λ),Y, P) to (X,λ). We then study the locus of points
in Sd where Theorem 1.2 holds showing that it is stable under both generization
and specialization. From this it follows that it suffices to consider the case when
X and Y are supersingular where we can use Ogus’ crystalline Torelli theorem
[24, Theorem I].
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Remark 1.4 Our restriction to odd characteristic is because we appeal to the Tate
conjecture for K3 surfaces, proven in odd characteristics by Charles, Maulik, and
Madapusi Pera [7, 21, 26], which at present is not known in characteristic 2.
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a grant from The Simons Foundation. Olsson is grateful to F. Charles for inspiring
conversations at the Simons Symposium “Geometry Over Nonclosed Fields” which
led to results of this paper. We also thank E. Macrì, D. Maulik, A. Cǎldǎraru, and
K. Madapusi Pera for useful correspondence, as well as the referee for a number of
helpful comments. Finally, we thank D. Bragg, T. Srivastava, and S. Tirabassi for
pointing out errors in an earlier version of this paper and suggesting corrections.

2 Strongly Filtered Equivalences

2.1 Let X and Y be K3 surfaces over an algebraically closed field k and let P ∈
D(X × Y ) be an object defining an equivalence

�P : D(X) → D(Y ),

and let
�

A∗
num,Q

P : A∗(X)num,Q → A∗(Y )num,Q

denote the inducedmap onChowgroupsmodulo numerical equivalence and tensored

with Q. We say that �P is filtered (resp. strongly filtered, resp. Torelli) if �
A∗
num,Q

P
preserves the codimension filtration (resp. is filtered, sends (1, 0, 0) to (1, 0, 0), and
sends the ample cone of X to plus or minus the ample cone of Y ; resp. is filtered,
sends (1, 0, 0) to ±(1, 0, 0), and sends the ample cone of X to the ample cone of Y ).

Remark 2.2 Note that if P is strongly filtered then either P or P[1] is Torelli. If P
is Torelli then either P or P[1] is strongly filtered.
Remark 2.3 Note that A1(X) is the orthogonal complement of A0(X) ⊕ A2(X) and
similarly for Y . This implies that if �P is filtered and sends (1, 0, 0) to ±(1, 0, 0)
then �P(A1(X)num,Q) ⊂ A1(Y )num,Q.

Remark 2.4 It is shown in [16, 6.2] that if �P : D(X) → D(Y ) is a filtered equiv-
alence, then there exists a strongly filtered equivalence � : D(X) → D(Y ). In fact
it is shown there that � can be obtained from �P by composing with a sequence of
shifts, twists by line bundles, and spherical twists along (−2)-curves.

2.5 As noted in [16, 2.11] an equivalence �P is filtered if and only if the induced
map on Chow groups

�
A∗
num,Q

P : A∗(X)num,Q → A∗(Y )num,Q
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sends A2(X)num,Q to A2(X)num,Q.

Lemma 2.6 Let � be a prime invertible in k, let H̃(X,Q�) (resp. H̃(Y,Q�)) denote
theQ�-realization of the Mukai motive of X (resp. Y ) as defined in [16, 2.4], and let

� ét
P : H̃(X,Q�) → H̃(Y,Q�)

denote the isomorphism defined by P. Then�P is filtered if and only if� ét
P preserves

the filtrations by degree on H̃(X,Q�) and H̃(Y,Q�).

Proof By the same reasoning as in [16, 2.4] the map � ét
P is filtered if and only if

� ét
P (H 4(X,Q�)) = H 4(Y,Q�).

Since the cycle class maps

A2(X)num,Q ⊗Q Q� → H 4(X,Q�), A2(Y )num,Q ⊗Q Q� → H 4(Y,Q�)

are isomorphisms and the maps�P and� ét
P are compatible in the sense of [16, 2.10]

it follows that if�P is filtered then so is� ét
P . Conversely if� ét

P is filtered then since
the cycle class maps

A∗(X)num,Q → H̃(X,Q�), A∗(Y )num,Q → H̃(Y,Q�)

are injective it follows that �P is also filtered. �
Remark 2.7 The same proof as in Lemma 2.6 gives variant results for crystalline
cohomology and in characteristic 0 de Rham cohomology.

The condition that �P takes the ample cone to plus or minus the ample cone
appears more subtle. A useful observation in this regard is the following.

Lemma 2.8 Let P ∈ D(X × Y ) be an object defining a filtered equivalence �P :
D(X) → D(Y ) such that �

A∗
num

P sends (1, 0, 0) to (1, 0, 0). Then �P is strongly

filtered if and only if for some ample invertible sheaf L on X the class �
A∗
num

P (L) ∈
NS(Y )Q is plus or minus an ample class.

Proof Following [24, p. 366] define

VX := {x ∈ NS(X)R|x2 > 0, and 〈x, δ〉 
= 0 for all δ ∈ NS(X) with δ2 = −2},

and define VY similarly. Since �
A∗
num

P is an isometry it induces an isomorphism

σ : VX → VY .

By [24, Proposition 1.10 andRemark 1.10.9] the ample coneCX (resp.CY ) of X (resp.
Y ) is a connected component of VX (resp. VY ) and therefore either σ(CX ) ∩ CY = ∅
or σ(CX ) = CY , and similarly σ(−CX ) ∩ CY = ∅ or σ(−CX ) = CY . �
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Proposition 2.9 Let X and Y be K3-surfaces over a scheme S and let P ∈ D(X ×S

Y ) be a relatively perfect complex. Assume that X/S is projective. Then the set of
points s ∈ S for which the induced transformation on the derived category of the
geometric fibers

�Ps̄ : D(Xs̄) → D(Ys̄)

is a strongly filtered equivalence is an open subset of S.

Proof By a standard reduction we may assume that S is of finite type over Z.
First note that the condition that�Ps̄ is an equivalence is an open condition. Indeed

by [12, 5.9] if P∨ denotesRHom(P,OX×SY ) and Q denotes P∨[2], then for every
s ∈ S the functor �Qs̄ is both left and right adjoint to �Ps̄ , and the adjunction maps
are induced by morphisms of complexes

Rp13∗(Lp∗
12P ⊗L Lp∗

23Q) → �X∗OX , Rq13∗(Lq∗
12Q ⊗ Lq∗

23P) → �Y∗OY ,

where we write pi j (resp. qi j ) for the projection from X ×S Y ×S X
(resp. Y ×S X ×S Y ) to the product of the i-th and j-th factor. Since the condi-
tion that these adjunction maps are quasi-isomorphisms is clearly an open condition
on S it follows that the condition that �Ps̄ is an equivalence is open.

Replacing S by an open set we may therefore assume that �Ps̄ is an equivalence
in every fiber.

Nextwe show that the condition that�P is filtered is an open and closed condition.
For this we may assume we have a prime � invertible in S. Let fX : X → S (resp.
fY : Y → S) be the structure morphism. Define H̃X/S to be the lisse Q�-sheaf on S
given by

H̃X/S := (R0 fX∗Q�(−1)) ⊕ (R2 fX∗Q�) ⊕ (R4 fX∗Q�)(1),

and define H̃Y/S similarly. The kernel P then induces a morphism of lisse sheaves

� ét ,�
P/S : H̃X/S → H̃Y/S

whose restriction to each geometric fiber is the map on the Q�-realization of the
Mukai motive as in [16, 2.4]. In particular, � ét ,�

P/S is an isomorphism. By Lemma
2.6 for every geometric point s̄ → S the map �Ps̄ is filtered if and only if the stalk
� ét ,�

P/S,s̄ preserves the filtrations on H̃X/S and H̃Y/S . In particular this is an open and
closed condition on S. Shrinking on S if necessary we may therefore further assume
that �Ps̄ is filtered for every geometric point s̄ → S.

It remains to show that in this case the set of points s for which �P takes the
ample cone CXs̄ of Xs̄ to ±CYs̄ is an open subset of S. For this we can choose, by
our assumption that X/S is projective, a relatively ample invertible sheaf L on X .
Define

M := det(Rpr2∗(Lpr
∗
1(L) ⊗ P)),
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an invertible sheaf on Y . Then by Lemma 2.8 for a point s ∈ S the transformation
�Ps̄ is strongly filtered if and only if the restriction of M to the fiber Ys̄ is plus or
minus the class of an ample divisor. By openness of the ample locus [9, III, 4.7.1]
we get that being strongly filtered is an open condition. �

3 Moduli Spaces of K3 Surfaces

3.1 For an integer d invertible in k let Md denote the stack over k whose fiber
over a scheme T is the groupoid of pairs (X,λ) where X/T is a proper smooth
algebraic space all of whose geometric fibers are K3 surfaces and λ : T → PicX/T

is a morphism to the relative Picard functor such that in every geometric fiber λ
is given by a primitive ample line bundle Lλ whose self-intersection is 2d. The
following theorem summarizes the properties of the stack Md that we will need
(see [17, 2.10] for a more detailed discussion considering also the case when the
characteristic of k divides d).

Theorem 3.2 (i)Md is a Deligne–Mumford stack, smooth over k of relative dimen-
sion 19.

(ii) The geometric fiber ofMd is irreducible (here we use that d is invertible in k).
(iii) The locus Md,∞ ⊂ Md classifying supersingular K3 surfaces is closed of

dimension ≥ 9.

Proof A review of (i) and (iii) can be found in [23, p. 1]. Statement (ii) can be found
in [17, 2.10 (3)]. �

Remark 3.3 The stack Md is defined over Z, and it follows from (ii) that the geo-
metric generic fiber ofMd is irreducible (this follows also from the Torelli theorem
over C and the resulting description of Md,C as a period space). Furthermore over
Z[1/d] the stack Md is smooth. In what follows we denote this stack over Z[1/d]
byMd,Z[1/d] and reserve the notation Md for its reduction to k.

Remark 3.4 Note that in the definition ofMd we consider ample invertible sheaves,
and don’t allow contractions in the corresponding morphism to projective space.

3.5 Let Sd denote the fibered category over k whose fiber over a scheme S is the
groupoid of collections of data

((X,λ),Y, P), (3.5.1)

where (X,λ) ∈ Md(S) is a polarized K3 surface, Y/S is a second K3 surface over
S, and P ∈ D(X ×S Y ) is an S-perfect complex such that for every geometric point
s̄ → S the induced functor

�Ps̄ : D(Xs̄) → D(Ys̄)
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is strongly filtered.

Theorem 3.6 The fibered category Sd is an algebraic stack locally of finite type
over k.

Proof By fppf descent for algebraic spaces we have descent for both polarized and
unpolarized K3 surfaces.

To verify descent for the kernels P , consider an object (3.5.1) over a scheme S. Let
P∨ denoteRHom(P,OX ). Since P is a perfect complex we haveRHom(P, P) �
P∨ ⊗ P . By [15, 2.1.10] it suffices to show that for all geometric points s̄ → S we
have Hi (Xs̄ × Ys̄, P∨

s̄ ⊗ Ps̄) = 0 for i < 0. This follows from the following result
(we discuss Hochschild cohomology further in Sect. 4 below):

Lemma 3.7 ([28, 5.6], [11, 5.1.8]). Let X andY beK3 surfaces over analgebraically
closed field k, and let P ∈ D(X × Y ) be a complex defining a Fourier–Mukai equiv-
alence �P : D(X) → D(Y ). Denote by HH∗(X) the Hochschild cohomology of X
defined as

RHomX×X (�∗OX ,�∗OX ).

(i) There is a canonical isomorphism Ext∗X×Y (P, P) � HH∗(X).
(ii) ExtiX×Y (P, P) = 0 for i < 0 and i = 1.
(iii) The natural map k → Ext0X×Y (P, P) is an isomorphism.

Proof Statement (i) is [28, 5.6]. Statements (ii) and (iii) follow immediately from
this, since HH 1(X) = 0 for a K3 surface. �

Next we show that for an object (3.5.1) the polarization λ on X induces a polar-
ization λY on Y . To define λY we may work étale locally on S so may assume there
exists an ample invertible sheaf L on X defining λ. The complex

�P(L) := Rpr2∗(pr
∗
1L ⊗L P)

is S-perfect, and therefore a perfect complex on Y . Let M denote the determinant
of �P(L), so M is an invertible sheaf on Y . By our assumption that �Ps is strongly
filtered for all s ∈ S, the restriction of M to any fiber is either ample or antiample. It
follows that either M or M∨ is a relatively ample invertible sheaf and we define λY

to be the resulting polarization on Y . Note that this does not depend on the choice of
line bundle L representing λ and therefore by descent λY is defined even when no
such L exists.

The degree of λY is equal to d. Indeed if s ∈ S is a point then since�Ps is strongly
filtered the induced map NS(Xs̄) → NS(Ys̄) is compatible with the intersection
pairings and therefore λ2

Y = λ2 = 2d.
From this we deduce that Sd is algebraic as follows. We have a morphism

Sd → Md × Md , ((X,λ),Y, P) �→ ((X,λ), (Y,λY )), (3.7.1)
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andMd × Md is an algebraic stack. LetX (resp. Y ) denote the pullback toMd ×
Md of the universal family over the first factor (resp. second factor). Sending a triple
((X,λ),Y, P) to P then realizesSd as an open substack of the stack overMd × Md

of simple universally gluable complexes on X ×Md×Md Y (see for example [16,
Sect. 5]). �

3.8 Observe that for any object ((X,λ),Y, P) ∈ Sd over a scheme S there is an
inclusion

Gm ↪→ AutSd
((X,λ),Y, P)

giving by scalar multiplication by P . We can therefore form the rigidification ofSd

with respect to Gm (see for example [2, Sect. 5]) to get a morphism

g : Sd → S d

realizingSd as aGm-gerbe over another algebraic stackS d . By the universal prop-
erty of rigidification the mapSd → Md sending ((X,λ),Y, P) to (X,λ) induces a
morphism

π : S d → Md . (3.8.1)

Theorem 3.9 The stack S d is Deligne–Mumford and the map (3.8.1) is étale.

Proof Consider the map (3.7.1). By the universal property of rigidification this
induces a morphism

q : S d → Md × Md .

Since Md × Md is Deligne–Mumford, to prove that S d is a Deligne–Mumford
stack it suffices to show that q is representable. This follows from Lemma 3.7 (iii)
which implies that for any object ((X,λ),Y, P) over a scheme S the automorphisms
of this object which map under q to the identity are given by scalar multiplication
on P by elements of O∗

S .
It remains to show that the map (3.8.1) is étale, and for this it suffices to show that

it is formally étale.
Let A → A0 be a surjective map of artinian local rings with kernel I annhilated

by the maximal ideal of A, and let k denote the residue field of A0 so I can be
viewed as a k-vector space. Let ((X0,λ0),Y0, P0) ∈ Sd(A0) be an object and let
(X,λ) ∈ Md(A) be a lifting of (X0,λ0) so we have a commutative diagram of solid
arrows

Spec (A0)� �

i

��

x0 �� Sd

��
S d

��
Spec (A)

x̄

���
�

�
�

�

x

���
�

�
�

�
�

�
�

� y �� Md .
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Since Sd is a Gm-gerbe over S d , the obstruction to lifting a map x̄ as indicated to
a morphism x is given by a class in H 2(Spec (A), Ĩ ) = 0, and therefore any such
map x̄ can be lifted to a map x . Furthermore, the set of isomorphism classes of such
liftings x of x̄ is given by H 1(Spec (A), Ĩ ) = 0 so in fact the lifting x is unique up to
isomorphism. The isomorphism is not unique but determined up to the action of

Ker(A∗ → A∗
0) � I.

From this it follows that it suffices to show the following:

(i) The lifting (X,λ) of (X0,λ0) can be extended to a lifting ((X,λ),Y, P) of
((X0,λ0),Y0, P0).

(ii) This extension ((X,λ),Y, P) of (X,λ) is unique up to isomorphism.
(iii) The automorphisms of the triple ((X,λ),Y, P)which are the identity on (X,λ)

and reduce to the identity over A0 are all given by scalar multiplication on P
by elements of 1 + I ⊂ A∗.

Statement (i) is shown in [16, 6.3].
Next we prove the uniqueness statements in (ii) and (iii). Following the notation

of [16, Discussion preceding 5.2], let sDX/A denote the stack of simple, universally
gluable, relatively perfect complexes on X , and let sDX/A denote its rigidification
with respect to the Gm-action given by scalar multiplication. The complex P0 on
X0 ×A0 Y0 defines a morphism

Y0 → sDX/A ⊗A A0

which by [16, 5.2 (ii)] is an open imbedding. Any extension of (X,λ) to a lifting
((X,λ),Y, P) defines an open imbedding Y ↪→ sDX/A. This implies that Y , viewed
as a deformation of Y0 for which there exists a lifting P of P0 to X ×A Y , is unique
up to unique isomorphism.

Let Y denote the unique lifting of Y0 to an open subspace of sDX/A. By [15, 3.1.1
(2)] the set of isomorphism classes of liftings of P0 to X ×A Y is a torsor under

Ext1Xk×Yk (Pk, Pk) ⊗ I,

which is 0 by Lemma 3.7 (ii). From this it follows that P is unique up to isomorphism,
and also by Lemma 3.7 (iii) we get the statement that the only infinitesimal automor-
phisms of the triple ((X,λ),Y, P) are given by scalar multiplication by elements of
1 + I . �

3.10 There is an automorphism

σ : Sd → Sd
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satisfying σ2 = id. This automorphism is defined by sending a triple ((X,λ),Y, P)
to ((Y,λY ), X, P∨[2]). This automorphism induces an involution σ̄ : S d → S d

over the involution γ : Md × Md → Md × Md switching the factors.

Remark 3.11 In fact the stackSd is defined over Z[1/d] and Theorems 3.6 and 3.9
also hold over Z[1/d]. In what follows we writeSd,Z[1/d] for this stack over Z[1/d].

4 Deformations of Autoequivalences

In this section, we describe the obstructions to deforming Fourier–Mukai equiva-
lences. The requisite technical machinery for this is worked out in [13, 14]. The
results of this section will play a crucial role in Sect. 6.

Throughout this section let k be a perfect field of positive characteristic p and
ring of Witt vectors W . For an integer n let Rn denote the ring k[t]/(tn+1), and let R
denote the ring k[[t]].
4.1 Let Xn+1/Rn+1 be a smooth proper scheme over Rn+1 with reduction
Xn to Rn . We then have the associated relative Kodaira–Spencer class,
defined in [13, p. 486], which is the morphism in D(Xn)

κXn/Xn+1 : �1
Xn/Rn

→ OXn [1]

defined as the morphism corresponding to the short exact sequence

0 �� OXn

·dt �� �1
Xn+1/k

|Xn
�� �1

Xn/Rn
�� 0.

4.2 We also have the relative universal Atiyah class which is a morphism

αn : O�n → in∗�1
Xn/Rn

[1]

in D(Xn ×Rn Xn), where in : Xn → Xn ×Rn Xn is the diagonal morphism and O�n

denotes in∗OXn .
This map αn is given by the class of the short exact sequence

0 → I/I 2 → OXn×Rn Xn/I
2 → O�n → 0,

where I ⊂ OXn×Rn Xn is the ideal of the diagonal. Note that to get the morphism αn

we need to make a choice of isomorphism I/I 2 � �1
Xn/Rn

, which implies that the
relative universal Atiyah class is not invariant under the map switching the factors,
but rather changes by −1.

4.3 Define the relative Hochschild cohomology of Xn/Rn by

HH∗(Xn/Rn) := Ext∗Xn×Rn Xn
(O�n ,O�n ).
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The composition

O�n

αn �� in∗�1
Xn/Rn

[1] in∗κXn /Xn+1 �� O�n [2]

is a class
νXn/Xn+1 ∈ HH 2(Xn/Rn).

4.4 Suppose now that Yn/Rn is a second smooth proper scheme with a smooth
lifting Yn+1/Rn+1 and that En ∈ D(Xn ×Rn Yn) is a Rn-perfect complex.

Consider the class

ν := νXn×Rn Yn/Xn+1×Rn+1Yn+1 : O�n,Xn×Rn Yn
→ O�n,Xn×Rn Yn

[2].

Viewing this is a morphism of Fourier–Mukai kernels

D(Xn ×Rn Yn) → D(Xn ×Rn Yn)

and applying it to En we get a class

ω(En) ∈ Ext2Xn×Rn Yn
(En, En).

In the case when
Ext1X0×Y0(E0, E0) = 0,

whichwill hold in the cases of interest in this paper, we know by [13, Lemma 3.2] that
the class ω(En) is 0 if and only if En lifts to a perfect complex on Xn+1 ×Rn+1 Yn+1.

4.5 To analyze the class ω(En) it is useful to translate it into a statement about
classes in HH 2(Yn/Rn). This is done using Toda’s argument [28, Proof of 5.6].
Denote by pi j the various projections from Xn ×Rn Xn ×Rn Yn , and let

En◦ : D(Xn ×Rn Xn) → D(Xn ×Rn Yn)

denote the Fourier–Mukai functor defined by the pushforward of p∗
23En along the

morphism

idXn × �Xn × idYn : Xn ×Rn ×Xn ×Rn Yn → (Xn ×Rn Xn) ×Rn (Xn ×Rn Yn).

So for an object K ∈ D(Xn ×Rn Xn) the complex En ◦ K ∈ D(Xn ×Rn Yn) repre-
sents the Fourier–Mukai transform�En ◦ �K , and is given explicitly by the complex

p13∗(p∗
12K ⊗ p∗

23En).

As in loc. cit. the diagram
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D(Xn)

in∗
��

p∗
1 (−)⊗En

���������������

D(Xn ×Rn Xn)
En◦ �� D(Xn ×Rn Yn)

commutes.
In particular we get a morphism

η∗
X : HH∗(Xn/Rn) → Ext∗Xn×Rn Yn

(En, En).

Now assume that both Xn and Yn have relative dimension d over Rn and that
the relative canonical sheaves of Xn and Yn over Rn are trivial. Let E∨

n denote
RHom(En,OXn×Rn Yn ) viewed as an object of D(Yn ×Rn Xn). In this case the functor

�E∨
n [d] : D(Yn) → D(Xn)

is both a right and left adjoint of �En [4, 4.5]. By the same argument, the functor

◦E∨
n [d] : D(Xn ×Rn Yn) → D(Yn ×Rn Yn),

defined in the same manner as En◦ has left and right adjoint given by

◦En : D(Yn ×Rn Yn) → D(Xn ×Rn Yn).

Composing with the adjunction maps

α : id → ◦En ◦ E∨
n [d], β : ◦En ◦ E∨

n [d] → id (4.5.1)

applied to the diagonal O�Yn
we get a morphism

ηY∗ : Ext∗Xn×Rn Yn
(En, En) → HH∗(Yn/Rn).

We denote the composition

ηY∗η∗
X : HH∗(Xn/Rn) → HH∗(Yn/Rn)

by �HH∗
En

. In the case when En defines a Fourier–Mukai equivalence this agrees with
the standard definition (see for example [28]).

4.6 Evaluating the adjunction maps (4.5.1) on O�Yn
we get a morphism

O�Yn

α �� O�Yn
◦ En ◦ E∨

n [d] β �� O�Yn
. (4.6.1)

We say that En is admissible if this composition is the identity map.
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If En is a Fourier–Mukai equivalence, then it is clear that En is admissible.Another
example is if there exists a lifting (X ,Y ,E ) of (Xn,Yn, En) to R, whereX andY
are smooth proper R-schemes with trivial relative canonical bundles and E is a R-
perfect complex onX ×R Y , such that the restriction E to the generic fiber defines
a Fourier–Mukai equivalence. Indeed in this case the map (4.6.1) is the reduction of
the corresponding map O�Y → O�Y defined over R, which in turn is determined
by its restriction to the generic fiber.

4.7 Consider Hochschild homology

HHi (Xn/Rn) := H−i (Xn, Li
∗
nO�n ).

As explained for example in [5, Sect. 5] we also get a map

�HH∗
En

: HH∗(Xn/Rn) → HH∗(Yn/Rn).

Hochschild homology is a module over Hochschild cohomology, and an exercise
(that we do not write out here) shows that the following diagram

HH∗(Xn/Rn) × HH∗(Xn/Rn)
�HH∗

En
×�HH∗

En ��

mult
��

HH∗(Yn/Rn) × HH∗(Yn/Rn)

mult
��

HH∗(Xn/Rn)
�HH∗

En �� HH∗(Yn/Rn)

commutes.

Remark 4.8 We thank the referee for pointing out that the necessary functoriality
of Hochschild homology was settled by Keller, Swan, andWeibel by the mid-1990s.
See for example [10], [30, 9.8.19], and [27]. The Ref. [5] provides a very readable
account of the results we need here.

4.9 Using this we can describe the obstruction ω(En) in a different way, assuming
that En is admissible. First note that viewing the relative Atiyah class of Xn ×Rn Yn
as a morphism of Fourier–Mukai kernels we get the Atiyah class of En which is a
morphism

A(En) : En → En ⊗ �1
Xn×Rn Yn/Rn

[1]

in D(Xn ×Rn Yn). There is a natural decomposition

�1
Xn×Rn Yn/Rn

� p∗
1�

1
Xn/Rn

⊕ p∗
2�

1
Yn/Rn

,

so we can write A(En) as a sum of two maps

A(En)X : En → En ⊗ p∗
1�

1
Xn/Rn

[1], A(En)Y : En → En ⊗ p∗
2�

1
Yn/Rn

[1].
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Similarly the Kodaira–Spencer class of Xn ×Rn Yn can be written as the sum of the
two pullbacks

p∗
1κXn/Xn+1 : p∗

1�
1
Xn/Rn

→ p∗
1OXn [1], p∗

2κYn/Yn+1 : p∗
2�

1
Yn/Rn

→ p∗
2OYn [1].

It follows that the obstruction ω(En) can be written as a sum

ω(En) = (p∗
1κXn/Xn+1 ◦ A(En)X ) + (p∗

2κ(Yn/Yn+1) ◦ A(En)Y ).

Now by construction we have

η∗
Xn

(νXn/Xn+1) = p∗
1κXn/Xn+1 ◦ A(En)X ,

and
ηYn∗(p

∗
2κ(Yn/Yn+1) ◦ A(En)Y ) = −νYn/Yn+1 ,

the sign coming from the asymmetry in the definition of the relative Atiyah class (it
is in the verification of this second formula that we use the assumption that En is
admissible). Summarizing we find the formula

ηYn∗(ω(En)) = �HH∗
En

(νXn/Xn+1) − νYn/Yn+1 . (4.9.1)

In the case when �En is an equivalence the maps ηYn∗ and η∗
Xn

are isomorphisms,
so the obstruction ω(En) vanishes if and only if we have

�HH∗
En

(νXn/Xn+1) − νYn/Yn+1 = 0.

Remark 4.10 By [13, Remark 2.3 (iii)], the functor �En is an equivalence if and
only if �E0 : D(X0) → D(Y0) is an equivalence.

Corollary 4.11 Suppose Fn ∈ D(Xn ×Rn Yn) defines aFourier–Mukai equivalence,
and that En ∈ D(Xn ×Rn Yn) is another admissible Rn-perfect complex such that
�HH∗

Fn
= �HH∗

En
. If En lifts to a Rn+1-perfect complex En+1 ∈ D(Xn+1 ×Rn+1 Yn+1)

then so does Fn.

Proof Indeed the condition that �HH∗
Fn

= �HH∗
En

ensures that

ηYn∗(ω(En)) = ηYn∗(ω(Fn)),

and since ω(En) = 0 we conclude that ω(Fn) = 0. �

4.12 The next step is to understand the relationship between �HH∗
En

and the action
of �En on the cohomological realizations of the Mukai motive.

Assuming that the characteristic p is bigger than the dimension of X0 (which in
our case will be a K3 surface so we just need p > 2) we can exponentiate the relative
Atiyah class to get a map
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exp(αn) : O�n → ⊕i in∗�i
Xn/Rn

which by adjunction defines a morphism

Li∗nO�n → ⊕i�
i
Xn/Rn

(4.12.1)

in D(Xn). By [1, Theorem 0.7], which also holds in positive characteristic sub-
ject to the bounds on dimension, this map is an isomorphism. We therefore get an
isomorphism

I HK R : HH∗(Xn/Rn) → HT ∗(Xn/Rn),

where we write

HT ∗(Xn/Rn) := ⊕p+q=∗H p(Xn,

q∧
TXn/Rn ).

We write
I KXn

: HH∗(Xn/Rn) → HT ∗(Xn/Rn)

for the composition of I HK R with multiplication by the inverse square root of the
Todd class of Xn/Rn , as in [6, 1.7].

The isomorphism (4.12.1) also defines an isomorphism

IHK R : HH∗(Xn/Rn) → H�∗(Xn/Rn),

where
H�∗(Xn/Rn) := ⊕q−p=∗H p(Xn,�

q
Xn/Rn

).

We write
I Xn
K : HH∗(Xn/Rn) → H�∗(Xn/Rn)

for the composition of IHK R with multiplication by the square root of the Todd class
of Xn/Rn .

We will consider the following condition (�) on a Rn-perfect complex En ∈
D(Xn ×Rn Yn):

(�) The diagram

HH∗(Xn/Rn)
�HH∗

En ��

I XnK

��

HH∗(Yn/Rn)

I YnK
��

H�∗(Xn/Rn)
�H�∗

En �� H�∗(Yn/Rn)

commutes.



142 M. Lieblich and M. Olsson

Remark 4.13 We expect this condition to hold in general. Over a field of character-
istic 0 this is shown in [19, 1.2]. We expect that a careful analysis of denominators
occurring of their proof will verify (�) quite generally with some conditions on the
characteristic relative to the dimension of the schemes. However, we will not discuss
this further in this paper.

4.14 There are two cases we will consider in this paper were (�) is known to hold:

(i) If En = O�n is the structure sheaf of the graph of an isomorphism γn : Xn → Yn .
In this case the induced maps on Hochschild cohomology and H�∗ are simply
given by pushforward γn∗ and condition (�) immediately holds.

(ii) Suppose B → Rn is a morphism from an integral domain B which is flat over
W and that there exists a lifting (X ,Y ,E ) of (Xn,Yn, En) to B, where X
and Y are proper and smooth over B and E ∈ D(X ×B Y ) is a B-perfect
complex pulling back to En . Suppose further that the groups HH∗(X /B) and
HH∗(Y /B) are flat over B and their formation commutes with base change
(this holds for example ifX and Y are K3 surfaces). Then (�) holds. Indeed it
suffices to verify the commutativity of the corresponding diagram over B, and
this in turn can be verified after passing to the field of fractions of B. In this case
the result holds by [19, 1.2].

Lemma 4.15 Let En, Fn ∈ D(Xn ×Rn Yn) be two Rn-perfect complexes satisfying
condition (�). Suppose further that themaps�

crys
E0

and�
crys
F0

on the crystalline realiza-

tions H̃(X0/W ) → H̃(Y0/W ) of the Mukai motive are equal. Then the maps �HH∗
En

and �HH∗
Fn

are also equal. Furthermore if the maps on the crystalline realizations

are isomorphisms then �HH∗
En

and �HH∗
Fn

are also isomorphisms.

Proof Since H�∗(Xn/Rn) (resp. H�∗(Yn/Rn)) is obtained from the de Rham real-
ization H̃dR(Xn/Rn) (resp. H̃dR(Xn/Rn)) of theMukaimotiveof Xn/Rn (resp.Yn/Rn)
by passing to the associated graded, it suffices to show that the two maps

�dR
En

,�dR
Fn : H̃dR(Xn/Rn) → H̃dR(Yn/Rn)

are equal, and isomorphisms when the crystalline realizations are isomorphisms. By
the comparison between crystalline and de Rham cohomology it suffices in turn to
show that the two maps on the crystalline realizations

�
crys
En

,�
crys
Fn

: H̃crys(Xn/W [t]/(tn+1)) → H̃crys(Yn/W [t]/(tn+1))

are equal. Via the Berthelot-Ogus isomorphism [3, 2.2], which is compatible with
Chern classes, these maps are identified after tensoring with Q with the two maps
obtained by base change from

�
crys
E0

,�
crys
F0

: H̃crys(X0/W ) → H̃crys(Y0/W ).

The result follows. �
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4.16 In the case when Xn and Yn are K3 surfaces the action of HH∗(Xn/Rn) on
HH∗(Xn/Rn) is faithful. Therefore from Lemma 4.15 we obtain the following.

Corollary 4.17 Assume that Xn andYn areK3 surfaces and that En, Fn ∈ D(Xn ×Rn

Yn) are two Rn-perfect complexes satisfying condition (�). Suppose further that�crys
E0

and �
crys
F0

are equal on the crystalline realizations of the Mukai motives of the reduc-
tions. Then �HH∗

En
and �HH∗

Fn
are equal.

Proof Indeed since homology is a faithful module over cohomology the maps�HH∗
En

and �HH∗
Fn

are determined by the maps on Hochschild homology which are equal by
Lemma 4.15. �

Corollary 4.18 Let Xn+1 and Yn+1 be K3 surfaces over Rn+1 and assume given an
admissible Rn+1-perfect complex En+1 on Xn+1 ×Rn+1 Yn+1 such that En satisfies
condition (�). Assume given an isomorphism σn : Xn → Yn over Rn such that the
induced map σ0 : X0 → Y0 defines the same map on crystalline realizations of the
Mukai motive as E0. Then σn lifts to an isomorphism σn+1 : Xn+1 → Yn+1.

Proof Indeed by (4.9.1) and the fact that �HH∗
En

and �HH∗
�σn

are equal by Corollary
4.17, we see that the obstruction to lifting σn is equal to the obstruction to lifting En ,
which is zero by assumption. �

Corollary 4.19 Assume the hypotheses of Corollary 4.18 with the following excep-
tion: �E0 is strongly filtered and σ0 and �E0 are only assumed to induce the same
map

H 2
crys(X0/W ) → H 2

crys(Y0/W ).

(In other words, we do not require the same action on all crystalline cohomology,
just on the middle.) Then the same conclusion holds: σn lifts to some σn+1.

Proof The assumption that �E0 is strongly filtered implies that the map
I KYn ◦ �HH∗

En
◦ (I KXn

)−1 sends H 1(Xn, TXn ) to H 1(Yn, TYn ). By construction we have
I KXn

(νXn/Xn+1) ∈ H 1(Xn, TXn ); in fact, this class is given by the relative Kodaira-
Spencer class multiplied by the square root of the Todd class. Now by looking at the
module structure of H�∗ over HT ∗ one sees that the map
H 1(Xn, TXn ) → H 1(Yn, TYn ) is determined by the action on H 2

crys. From this the
conclusion follows. �

Remark 4.20 Applying the argument of Corollary 4.19 with En[1] we see that if
σ0 induces ±�E0 on H 2

crys then σn can be lifted to Rn+1.
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5 A Remark on Reduction Types

5.1 In the proof of Theorem 1.2 we need the following Theorem 5.3, whose proof
relies on known characteristic 0 results obtained from Hodge theory. In Sect. 10
below we give a different algebraic argument for Theorem 5.3 in a special case
which suffices for the proof of Theorem 1.2.

5.2 Let V be a complete discrete valuation ring with field of fractions K and residue
field k. Let X/V be a projective K3 surface with generic fiber XK , and let YK be
a second K3 surface over K such that the geometric fibers XK and YK are derived
equivalent.

Theorem 5.3 Under these assumptions the K3 surface YK has potentially good
reduction.

Remark 5.4 Here potentially good reduction means that after possibly replacing V
be a finite extension there exists a K3 surface Y/V whose generic fiber is YK .

Proof of Theorem 5.3 We use [16, 1.1 (1)] which implies that after replacing V by a
finite extension YK is isomorphic to a moduli space of sheaves on XK .

After replacing V by a finite extension we may assume that we have a complex
P ∈ D(X × Y ) defining an equivalence

�P : D(XK ) → D(YK ).

Let E ∈ D(Y × X) be the complex defining the inverse equivalence

�E : D(YK ) → D(XK )

to �P . Let ν := �E (0, 0, 1) ∈ A∗(XK )num,Q be the Mukai vector of a fiber of E at
a closed point y ∈ YK and write

ν = (r, [LX ], s) ∈ A0(XK )num,Q ⊕ A1(XK )num,Q ⊕ A2(XK )num,Q.

By [16, 8.1] we may after possibly changing our choice of P , which may involve
another extension of V , assume that r is prime to p and that LX is very ample.Making
another extension of V we may assume that ν is defined over K , and therefore by
specialization also defines an element, which we denote by the same letter,

ν = (r, [LX ], s) ∈ Z ⊕ Pic(X) ⊕ Z.

This class has the property that r is prime to p and that there exists another class ν ′
such that 〈ν, ν ′〉 = 1. This implies in particular that ν restricts to a primitive class on
the closed fiber. Fix an ample class h on X , and letMh(ν) denote the moduli space of
semistable sheaves on X withMukai vector ν. By [16, 3.16] the stackMh(ν) is a μr -
gerbe over a relative K3 surface Mh(ν)/V , and by [16, 8.2] we have YK � Mh(ν)K .
In particular, Y has potentially good reduction. �
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Remark 5.5 As discussed in [18, p. 2], to obtain Theorem 5.3 it suffices to know
that every K3 surface ZK over K has potentially semistable reduction and this would
follow from standard conjectures on resolution of singularities and toroidization of
morphisms in mixed and positive characteristic. In the setting of Theorem 5.3, once
we know that YK has potentially semistable reduction then by [18, Theorem on
bottom of p. 2] we obtain that YK has good reduction since the Galois representa-
tion H 2(YK ,Q�) is unramified being isomorphic to direct summand of the �-adic
realization H̃(XK ,Q�) of the Mukai motive of XK .

5.6 One can also consider the problem of extending YK over a higher dimensional
base. Let B denote a normal finite type k-scheme with a point s ∈ B(k) and let X/B
be a projective family of K3 surfaces. Let K be the function field of B and let YK be
a second K3 surface over K Fourier–Mukai equivalent to XK . Dominating OB,s by
a suitable complete discrete valuation ring V we can find a morphism

ρ : Spec (V ) → B

sending the closed point of Spec (V ) to s and an extension YV of ρ∗YK to a smooth
projective K3 surface over V . In particular, after replacing B by its normalization
in a finite extension of K we can find a primitive polarization λK on YK of degree
prime to the characteristic such that ρ∗λK extends to a polarization on YV . We then
have a commutative diagram of solid arrows

Spec (Frac(V ))� �

��

�� Spec (K )� �

��

��

Spec (V )

��

�� B

���
�

�
�

�

Md

for a suitable integer d. Base changing to a suitable étale neighborhood U → Md

of the image of the closed point of Spec (V ), withU an affine scheme, we can after
shrinking and possibly replacing B by an alteration find a commutative diagram

Spec (Frac(V ))� �

��

�� Spec (K )� �

�� 		
Spec (V ) 

�� B

������������ U� �

j

��
U ,
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where j is a dense open imbedding and U is projective over k. It follows that the
image of s inU in fact lands inU which gives an extension of YK to a neighborhood
of s. This discussion implies the following:

Corollary 5.7 In the setup of Paragraph 5.6, we can, after replacing (B, s) by a
neighborhood of a point in the preimage of s in an alteration of B, find an extension
of YK to a K3 surface over B.

6 Supersingular Reduction

6.1 Let B be a normal scheme of finite type over an algebraically closed field k
of characteristic p at least 5, and let W denote the ring of Witt vectors of k. Let K
denote the function field of B and let s ∈ B be a closed point. Let f : X → B be a
projective K3 surface over B and let YK /K be a second K3 surface over K such that
there exists a strongly filtered Fourier–Mukai equivalence

�P : D(XK ) → D(YK )

defined by an object P ∈ D(XK ×K YK ). Assume further that the fiber Xs of X over
s is a supersingular K3 surface.

6.2 Using Corollary 5.7 we can, after possibly replacing B by a neighborhood of a
point over s in an alteration, assume that we have a smoothK3 surface Y/B extending
YK and an extension of the complex P to a B-perfect complex P on X ×B Y , and
furthermore that the complex Q defining the inverse of�P also extends to a complex
Q on X ×B Y . Let fX : X → B (resp. fY : Y → B) be the structure morphism,
and let H i

crys(X/B) (resp. H i
crys(Y/B)) denote the F-crystal Ri fX ∗OX /W (resp.

Ri fY ∗OY /W ) on B/W obtained by forming the i-th higher direct image of the
structure sheaf on the crystalline site ofX /W (resp.Y /W ). Because�P is strongly
filtered, it induces an isomorphism of F-crystals

�
crys,i
P : H i

crys(X/B) → H i
crys(Y/B)

for all i , with inverse defined by �Q. Note that since we are working here with K3
surfaces these morphisms are defined integrally.

We also have the de Rham realizationsH i
dR(X/B) andH i

dR(Y/B) which are fil-
tered modules with integrable connection on B equipped with filtered isomorphisms
compatible with the connections

�dR,i
P : H i

dR(X/B) → H i
dR(Y/B). (6.2.1)

as well as étale realizationsH i
ét (X/B) andH i

ét (Y/B) equipped with isomorphisms

� ét ,i
P : H i

ét (X/B) → H i
ét (Y/B). (6.2.2)
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6.3 Let Hi
crys(Xs/W ) (resp. Hi

crys(Ys/W )) denote the crystalline cohomology of the

fibers over s. The isomorphism �
crys,2
P induces an isomorphism

θ2 : H 2
crys(Xs/W ) → H 2

crys(Ys/W )

of F-crystals. By [24, Theorem I] this implies that Xs and Ys are isomorphic. How-
ever, wemay not necessarily have an isomorphismwhich induces θ2 on cohomology.

6.4 Recall that as discussed in [12, 10.9 (iii)] if C ⊂ XK is a (−2)-curve then we
can perform a spherical twist

TOC : D(XK ) → D(XK )

whose action on NS(XK ) is the reflection

rC(a) := a + 〈a,C〉C.

Proposition 6.5 After possibly changing our choice of model Y for YK , replacing
(B, s) by a neighborhood of a point in an alteration over s, and composing with a
sequence of spherical twists TOC along (−2)-curves in the generic fiber YK , there
exists an isomorphism σ : Xs → Ys inducing ±θ2 on the second crystalline coho-
mology group. If θ2 preserves the ample cone of the generic fiber then we can find
an isomorphism σ inducing θ2.

Proof By [25, 4.4 and 4.5] there exists an isomorphism θ0 : NS(Xs) → NS(Ys)
compatible with θ2 in the sense that the diagram

NS(Xs)
θ0 ��

c1

��

NS(Ys)

c1

��
H 2

crys(Xs/W )
θ2 �� H 2

crys(Ys/W )

(6.5.1)

commutes. Note that as discussed in [17, 4.8] the map θ0 determines θ2 by the Tate
conjecture for K3 surfaces, proven by Charles, Maulik, and Pera [7, 21, 26]. In
particular, if we have an isomorphism σ : Xs → Ys inducing ±θ0 on Néron-Severi
groups then σ also induces ±θ2 on crystalline cohomology. We therefore have to
study the problem of finding an isomorphism σ compatible with θ0.

Ogus shows in [24, Theorem II] that there exists such an isomorphism σ if and
only if the map θ0 takes the ample cone to the ample cone. So our problem is to
choose a model of Y in such a way that ±θ0 preserves ample cones. Set

VXs := {x ∈ NS(Xs)R|x2 > 0 and 〈x, δ〉 
= 0 for all δ ∈ NS(Xs) with δ2 = −2},

and define VYs similarly. Being an isometry the map θ0 then induces an isomorphism
VXs → VYs , whichwe again denote by θ0. Let RYs denote the group of automorphisms
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of VYs generated by reflections in (−2)-curves and multiplication by −1. By [24,
Proposition 1.10 and Remark 1.10.9] the ample cone of Ys is a connected component
of VYs and the group RYs acts simply transitively on the set of connected components
of VYs .

Let us show how to change model to account for reflections by (−2)-curves
in Ys . We show that after replacing (P,Y ) by a new pair (P ′,Y ′) consisting of
the complex P ∈ D(XK ×K YK ) obtained by composing �P with a sequence of
spherical twists along (−2)-curves in YK and replacing Y by a new model Y ′ there
exists an isomorphism γ : Y ′

s → Ys such that the composition

NS(Xs)
θ0 �� NS(Ys)

rC �� NS(Ys)
γ∗

�� NS(Y ′
s)

is equal to the map θ′
0 defined as for θ0 but using the model Y ′.

Let C ⊂ Ys be a (−2)-curve, and let

rC : NS(Ys) → NS(Ys)

be the reflection in the (−2)-curve. IfC lifts to a curve in the family Y we get a (−2)-
curve in the generic fiber and so by replacing our P by the complex P ′ obtained by
composition with the spherical twist by this curve in YK (see [12, 10.9 (iii)]) and
setting Y ′ = Y we get the desired new pair. If C does not lift to Y , then we take
P ′ = P but now replace Y by the flop of Y along C as explained in [24, 2.8].

Thus after making a sequence of replacements (P,Y ) �→ (P ′,Y ′)we can arrange
that θ0 sends the ample cone of Xs to plus orminus the ample cone ofYs , and therefore
we get our desired isomorphism σ.

To see the last statement, note that we have modified the generic fiber by compos-
ing with reflections along (−2)-curves. Therefore if λ is an ample class on X with
restriction λK to XK , and for a general ample divisor H we have 〈�P(λ), H〉 > 0,
then the same holds on the closed fiber. This implies that the ample cone of Xs gets
sent to the ample cone of Ys and not its negative. �

Remark 6.6 One can also consider étale or deRhamcohomology in Proposition6.5.
Assume we have applied suitable spherical twists and chosen a model Y such that
we have an isomorphism σ : Xs → Ys inducing ±θ0. We claim that the maps

θdR : Hi
dR(Xs/k) → Hi

dR(Ys/k), θ ét : Hi
ét (Xs,Q�) → Hi

ét (Ys,Q�)

induced by the maps (6.2.1) and (6.2.2) also agree with the maps defined by ±σ. For
deRhamcohomology this is clear using the comparisonwith crystalline cohomology,
and for the étale cohomology it follows from compatibility with the cycle class map.

6.7 With notation and assumptions as in Proposition 6.5 assume further that B is a
curve or a complete discrete valuation ring, and that we have chosen a model Y such
that each of the reductions satisfies the condition (�) of Paragraph 4.12 and such that
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the map θ0 in (6.5.1) preserves plus or minus the ample cones. Let σ : Xs → Ys be
an isomorphism inducing ±θ0.

Lemma 6.8 The isomorphism σ lifts to an isomorphism σ̃ : X → Y over the com-
pletion B̂ at s inducing the maps defined by ±�

crys,i
P .

Proof By Remark 4.20 σ lifts uniquely to each infinitesimal neighborhood of s in
B, and therefore by the Grothendieck existence theorem we get a lifting σ̃ over B̂.
That the realization of σ̃ on cohomology agrees with ±�

crys,i
P can be verified on the

closed fiber where it holds by assumption. �

Lemma 6.9 With notation and assumptions as in Lemma 6.8 the map �
A∗
num,Q

P pre-
serves the ample cones of the generic fibers.

Proof The statement can be verified after making a field extension of the function
field of B. If �P does not preserve the ample cone, then by Lemma 6.8 we get an
isomorphism σ : XK → YK over some field extension K of k(B) such that σ∗ ◦ �P

acts by idH 0

⊕−idH 2

⊕
idH 4 on any cohomological realization. Lifting the associ-

ated derived equivalence to characteristic 0 (for example, using Deligne’s liftability
theorem [8] and Theorem 3.9) and applying [13, 4.1] we get a contradiction. �

Remark 6.10 In the case when the original �P preserves the ample cones of the
geometric generic fibers, no reflections along (−2)–curves in the generic fiber are
needed. Indeed, by the above argument we get an isomorphism σK : XK → YK such
that the induced map on crystalline and étale cohomology agrees with �P ◦ α for
some sequence α of spherical twists along (−2)-curves in XK (also using Lemma
6.9). Since both σ and �P preserve ample cones it follows that α also preserves
the ample cone of XK . By [24, 1.10] it follows that α acts trivially on the Néron-
Severi group of XK . We claim that this implies that α also acts trivially on any of
the cohomological realizations. We give the proof in the case of étale cohomology
H 2(XK ,Q�) (for a prime � invertible in k) leaving slight modifications for the other
cohomology theories to the reader. Let R̃X denote the subgroup ofGL(H 2(XK ,Q�))
generated by −1 and the action induced by spherical twists along (−2)-curves in
XK , and consider the inclusion of Q�-vector spaces with inner products

NS(XK )Q�
↪→ H 2(XK ,Q�).

By [12, Lemma 8.12] the action of the spherical twists along (−2)-curves in XK on
H 2(XK ,Q�) is by reflection across classes in the image of NS(XK )Q�

. From this
(and Gram-Schmidt!) it follows that the the group R̃X preserves NS(XK )Q�

, acts
trivially on the quotient of H 2(XK ,Q�) by NS(XK )Q�

, and that the restriction map

R̃X → GL(NS(XK )Q�
)

is injective. In particular, if an element α ∈ R̃X acts trivially on NS(XK ) then it also
acts trivially on étale cohomology. It follows that σ and �P induce the same map on
realizations.
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7 Specialization

7.1 We consider again the setup of Paragraph 6.1, but now we don’t assume that the
closed fiber Xs is supersingular. Further we restrict attention to the case when B is a
smooth curve, and assume we are given a smooth model Y/B of YK and a B-perfect
complex P ∈ D(X ×B Y ) such that for all geometric points z̄ → B the induced
complex Pz̄ on Xz̄ × Yz̄ defines a strongly filtered equivalence D(Xz̄) → D(Yz̄).

LetH i (X/B) (resp.H i (Y/B)) denote eitherH i
ét (X/B) (resp.H i

ét (Y/B)) for
some prime � 
= p or H i

crys(X/B) (resp. H i
crys(Y/B)). Assume further given an

isomorphism
σK : XK → YK

inducing the map given by restricting

�i
P : H i (X/B) → H i (Y/B)

to the generic point.

Remark 7.2 If we work with étale cohomology in this setup we could also consider
the spectrum of a complete discrete valuation ring instead of B, and in particular also
a mixed characteristic discrete valuation ring.

Proposition 7.3 The isomorphism σK extends to an isomorphism σ : X → Y .

Proof We give the argument here for étale cohomology in the case when B is the
spectrum of a discrete valuation ring. The other cases require minor modifications
which we do not include here.

Let Z ⊂ X ×B Y be the closure of the graph of σK , so Z is an irreducible flat
V -scheme of dimension 3 and we have a correspondence

Z
p

����
��

��
�

q

���
��

��
��

X Y.

Fix an ample line bundle L on X and consider the line bundle M := det(Rq∗ p∗L) on
Y . The restriction of M to YK is simply σK∗L , and in particular the étale cohomology
class of M is equal to the class of �P(L). By our assumption that �P is strongly
filtered in the fibers the line bundleM is ample onY . Note also that by our assumption
that �P is strongly filtered in every fiber we have

�P(L⊗n) � �P(L)⊗n.

In particular we can choose L very ample in such a way that M is also very ample.
The result then follows from Matsusaka-Mumford [20, Theorem 2]. �
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Remark 7.4 One can also prove a variant of Proposition7.3 when k has characteris-
tic 0 using deRham cohomology instead of étale cohomology and similar techniques.
However, we will not discuss this further here.

8 Proof of Theorem 1.2

In this section we prove Theorem 1.2 when the characteristic is ≥ 5. Characteristic
3 is treated in Remark 8.5

8.1 Let K be an algebraically closed field extension of k and let X and Y be K3 sur-
faces over K equipped with a complex P ∈ D(X ×K Y ) defining a strongly filtered
Fourier–Mukai equivalence

�P : D(X) → D(Y ).

We can then choose a primitive polarization λ on X of degree prime to p such that
the triple ((X,λ),Y, P) defines a K -point of Sd . In this way the proof of Theorem
1.2 is reformulated into showing the following: For any algebraically closed field
K and point ((X,λ),Y, P) ∈ Sd(K ) there exists an isomorphism σ : X → Y such
that the maps on crystalline and étale realizations defined by σ and �P agree.

8.2 To prove this it suffices to show that there exists such an isomorphism after
replacing K by a field extension. To see this let I denote the scheme of isomorphisms
between X and Y , which is a locally closed subscheme of the Hilbert scheme of
X ×K Y , and is thus locally of finite type over K . Over I we have a tautological
isomorphism σu : XI → YI . The condition that the induced action on �-adic étale
cohomology agrees with �P is an open and closed condition on I . It follows that
there exists a locally closed subscheme I ′ ⊂ I classifying isomorphisms σ as in the
theorem, and this I ′ is thus also locally of finite type over K . This implies that if we
can find an isomorphism σ over a field extension of K then such an isomorphism
also exists over K , since K is algebraically closed and any scheme locally of finite
type over such a field K has a K -point if and only if it is nonempty (i.e., has a point
over some extension of K ).

8.3 By Proposition 7.3 it suffices to show that the result holds for each generic
point ofSd . By Theorem 3.9 any such generic point maps to a generic point ofMd

which by Theorem 3.2 admits a specialization to a supersingular point x ∈ Md(k)
given by a family (XR,λR)/R, where R is a complete discrete valuation ring over k
with residue field�, for some algebraically closed field�. By Theorem 5.3 the point
(Y,λY ) ∈ Md(K ) also has a limit y ∈ Md(�) given by a second family (YR,λR)/R.
Let P ′ be the complex on X × Y giving the composition of �P with suitable twists
by (−2)-curves such that after replacing YR by a sequence of flops the map �P ′

induces an isomorphism on crystalline cohomology on the closed fiber preserving
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plus or minus the ample cone. By the Cohen structure theorem we have R � �[[t]],
and ((X,λ),Y, P ′) defines a point of Sd(�((t))).

Let B denote the completion of the strict henselization ofMZ[1/d] × MZ[1/d] at the
point (x, y). So B is a regular complete local ring with residue field�. Let B ′ denote
the formal completion of the strict henselization of S d,Z[1/d] at the �((t))-point
given by ((X,λ),Y, P ′). So we obtain a commutative diagram

B ��

��

�[[t]]

��
B ′ �� �((t)).

(8.3.1)

Over B we have a universal familiesXB andYB , and over the base changes to B ′ we
have, after trivializing the pullback of the gerbe Sd,Z[1/d] → S d,Z[1/d], a complex
P ′

B ′ on XB ′ ×B ′ YB ′ , which reduces to the triple (X,Y, P ′) over �((t)). The map
B → B ′ is a filtering direct limit of étale morphisms. We can therefore replace B ′
by a finite type étale B-subalgebra over which all the data is defined and we still
have the diagram (8.3.1). Let B denote the integral closure of B in B ′ so we have a
commutative diagram

Spec (B ′) � �



											 Spec (B)

��
Spec (B),

where B is flat over Z[1/d] and normal. Let Y → Spec (B) be an alteration with Y
regular and flat over Z[1/d], and let Y ′ ⊂ Y be the preimage of Spec (B ′). Lifting
the map B → �[[t]] to a map Spec (R̃) → Y for some finite extension of complete
discrete valuation rings R̃/R and letting C denote the completion of the local ring
of Y at the image of the closed point of Spec (R̃) we obtain a commutative diagram

C ��

��

�[[t]]

��
C ′ �� �((t)),

where C → C ′ is a localization, we have K3-surfaces XC and YC over C and a
perfect complex P ′

C ′ on XC ′ ×C ′ YC ′ defining a Fourier–Mukai equivalence and
the triple (XC ′ ,YC ′ ,P ′

C ′) reducing to (X,Y, P) over �((t)). By [29, 5.2.2] we can
extend the complex P ′

C ′ to a C-perfect complex P ′
C on XC ×C YC (here we use

that C is regular). It follows that the base change (X�[[t]],Y�[[t]], P ′
�[[t]]) gives an

extension of (X,Y, P) to �[[t]] all of whose reductions satisfy our condition (�) of
Paragraph 4.12.
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This puts us in the setting of Lemma 6.8, and we conclude that there exists an
isomorphism σ : X → Y (over �((t)), but as noted above we are allowed to make a
field extension of K ) such that the induced map on crystalline and étale cohomology
agrees with �P ◦ α for some sequence α of spherical twists along (−2)-curves in
X (using also Lemma 6.9). By the same argument as in Remark 6.10 it follows
that σ and �P induce the same map on realizations which concludes the proof of
Theorem 1.2. �

Remark 8.4 One consequence of the proof is that in fact any strongly filtered equiv-
alence automatically takes the ample cone to the ample cone, and not its negative.
This is closely related to [13, 4.1].

Remark 8.5 Given (X,Y, P) as in Theorem 1.2 and an isomorphism σ : X → Y
inducing the same action as P on the �-adic realization of the Mukai motive for a
fixed prime � invertible in k, we have that in fact σ and P define the same action on
all the étale and crystalline realizations. This follows from the same specialization
argument to supersingular K3s and [25, 3.20].

This observation can be used, in particular, to prove Theorem 1.2 in characteristic
3: With notation as in Theorem 1.2 fix a prime � 
= 3 and lift the triple (X,Y, P) to
a triple (X ,Y ,P) over a finite extension of Z3. By the specialization argument of
Sect. 7 it then suffices to exhibit an isomorphism between the generic fibers inducing
the same map as P on the �-adic realizations. This reduces the result in characteristic
3 to the characteristic 0 result proven in Theorem 9.1 below.

9 Characteristic 0

From our discussion of positive characteristic results one can also deduce the fol-
lowing result in characteristic 0.

Theorem 9.1 Let K be an algebraically closed field of characteristic 0, let X and Y
be K3 surfaces over K , and let �P : D(X) → D(Y ) be a strongly filtered Fourier–
Mukai equivalence defined by an object P ∈ D(X × Y ). Then there exists an iso-
morphism σ : X → Y whose action on �-adic and de Rham cohomology agrees with
the action of �P .

Proof It suffices to show that we can find an isomorphism σ which induces the same
map on �-adic cohomology as �P for a single prime �. For then by compatibility of
the comparison isomorphisms with �P , discussed in [16, Sect. 2], it follows that σ
and �P also define the same action on the other realizations of the Mukai motive.

Furthermore as in Paragraph 8.2 it suffices to prove the existence ofσ aftermaking
a field extension of K .

As in Paragraph 8.2 let I ′ denote the scheme of isomorphisms σ : X → Y as in
the theorem. Note that since the action of such σ on the ample cone is fixed, the
scheme I ′ is in fact of finite type.
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Since X , Y , and P are all locally finitely presented over K we can find a finite
type integral Z-algebra A, K3 surfaces XA and YA over A, and an A-perfect complex
PA ∈ D(XA ×A YA) defining a strongly filtered Fourier–Mukai equivalence in every
fiber, and such that (X,Y, P) is obtained from (XA,YA, PA) by base change along
a map A → K . The scheme I ′ then also extends to a finite type A-scheme I ′

A over
A. Since I ′ is of finite type over A to prove that I ′ is nonempty it suffices to show
that I ′

A has nonempty fiber over Fp for infinitely many primes p. This holds by
Theorem 1.2. �

10 Bypassing Hodge Theory

10.1 The appeal to analytic techniques implicit in the results of Sect. 5, where
characteristic 0 results based on Hodge theory are used to deduce Theorem 5.3, can
be bypassed in the following way using results of [18, 21].

10.2 Let R be a complete discrete valuation ring of equicharacteristic p > 0 with
residue field k and fraction field K . Let X/R be a smooth K3 surface with supersin-
gular closed fiber. Let YK be a K3 surface over K and PK ∈ D(XK × YK ) a perfect
complex defining a Fourier–Mukai equivalence �PK : D(XK ) → D(YK ).

Theorem 10.3 Assume that X admits an ample invertible sheaf L such that p >
L2 + 4. Then after replacing R by a finite extension there exists a smooth projective
K3 surface Y/R with generic fiber YK .

Proof Changing our choice of Fourier–Mukai equivalence PK , we may assume that
PK is strongly filtered. Setting MK equal to det(�PK (L)) or its dual, depending on
whether �PK preserves ample cones, we get an ample invertible sheaf on YK of
degree L2. By [18, 2.2], building on Maulik’s work [21, Discussion preceding 4.9]
we get a smooth K3 surface Y/R with Y an algebraic space. Now after replacing PK

by the composition with twists along (−2)-curves and the model Y by a sequence
of flops, we can arrange that the map on crystalline cohomology of the closed fibers
induced by �PK preserves ample cones. Let P ∈ D(X ×R Y ) be an extension of PK

and let M denote det(�P(L)). Then M is a line bundle on Y whose reduction is
ample on the closed fiber. It follows that M is also ample on Y so Y is a projective
scheme. �

10.4 Weuse this to proveTheorem1.2 in the case of étale realization in the following
way. First observe that using the same argument as in Sect. 8, but now replacing the
appeal to Theorem 5.3 by the above Theorem 10.3, we get Theorem 1.2 under the
additional assumption that X admits an ample invertible sheaf L with p > L2 + 4.
By the argument of Sect. 9 this suffices to get Theorem 1.2 in characteristic 0, and
by the specialization argument of Sect. 7 we then get also the result in arbitrary
characteristic.
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Morphisms to Brauer–Severi Varieties,
with Applications to Del Pezzo Surfaces

Christian Liedtke

Abstract We classify morphisms from proper varieties to Brauer–Severi vari-
eties, which generalizes the classical correspondence between morphisms to pro-
jective space and globally generated invertible sheaves. As an application, we study
del Pezzo surfaces of large degree with a view towards Brauer–Severi varieties, and
recover classical results on rational points, the Hasse principle, and weak approxi-
mation.

1991 Mathematics Subject Classification 14F22 · 14A10 · 14J45 · 14G27

1 Introduction

1.1 Overview

The goal of this article is the study of morphisms X → P from a proper variety X
over a field k to a Brauer–Severi variety P over k, i.e., P is isomorphic to projec-
tive space over the algebraic closure k of k, but not necessarily over k. If X has a
k-rational point, then so has P , and then, P is isomorphic to projective space already
over k. In this case, there exists a well-known description of morphisms X → P in
terms of globally generated invertible sheaves on X . However, if X has no k-rational
point, then we establish in this article a correspondence between globally generated
classes of Pic(X/k)(fppf)(k), whose obstruction to coming from an invertible sheaf
on X is measured by some class β in the Brauer group Br(k), and morphisms to
Brauer–Severi varieties of class β over k.

As an application of this correspondence, we study del Pezzo surfaces over k in
terms of Brauer–Severi varieties, and recover many known results about their geome-
try and their arithmetic. If k is a global field, then we obtain applications concerning
the Hasse principle and weak approximation. Our approach has the advantage of
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being elementary, self-contained, and that we sometimes obtain natural reasons for
the existence of k-rational points.

1.2 Morphisms to Brauer–Severi Varieties

Let X be a proper variety over a field k, and let k be the algebraic closure of k. When
studying invertible sheaves on X , there are inclusions and equalities of abelian groups

Pic(X) ⊆ Pic(X/k)(ét)(k) = Pic(X/k)(fppf)(k) ⊆ Pic(Xk).

On the left (resp. right), we have invertible sheaves on X (resp. Xk) up to isomorphism,
whereas in the middle, we have sections of the sheafified relative Picard functor over
k (with respect to the étale and fppf topology, respectively). Moreover, the first
inclusion is part of an exact sequence

0 → Pic(X) → Pic(X/k)(ét)(k)
δ−→ Br(k),

where Br(k) denotes the Brauer group of the field k, and we refer to Remark 3.3 for
explicit descriptions of δ. If X has a k-rational point, then δ is the zero map, i.e., the
first inclusion is a bijection.

By definition, a Brauer–Severi variety is a variety P over k, such that Pk
∼= P

N
k

for
some N , i.e., P is a twisted form of projective space. Associated to P , there exists a
Brauer class [P] ∈ Br(k) and by a theorem of Châtelet, P is trivial, i.e., isomorphic
to projective space over k, if and only if [P] = 0. This is also equivalent to P having
a k-rational point. In any case, we have a class OP(1) ∈ Pic(P/k)(fppf)(k), in general
not arising from an invertible sheaf on P , which becomes isomorphic to OPN (1) over
k, see Definition 2.17.

In this article, we extend the notion of a linear system to classes in Pic(X/k)(fppf)(k)
that do not necessarily come from invertible sheaves. More precisely, we extend the
notions of being globally generated, ample, and very ample to such classes, see
Definition 3.1. Then, we set up a dictionary between globally generated classes in
Pic(X/k)(fppf)(k) and morphisms from X to Brauer–Severi varieties over k. In case
X has a k-rational point, then we recover the well-known correspondence between
globally generated invertible sheaves and morphisms to projective space. Here is an
easy version of our correspondence and we refer to Theorem 3.4 and Remark 3.5 for
details.

Theorem 1.1 Let X be a proper variety over a field k.

(1) Let ϕ : X → P be a morphism to a Brauer–Severi variety P over k. If we set
L := ϕ∗OP(1) ∈ Pic(X/k)(fppf)(k), then L is a globally generated class and

δ(L) = [P] ∈ Br(k).
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(2) If L ∈ Pic(X/k)(fppf)(k) is globally generated, then L ⊗k k corresponds to a
unique invertible sheaf M on Xk and the morphism associated to the complete
linear system |M| descends to a morphism over k

|L| : X → P,

where P is a Brauer–Severi variety over k with δ(L) = [P].
We note that our result is inspired by a geometric construction of Brauer–Severi

varieties of Grothendieck, see [21, Sect. 5.4], and it seems that it is known to the
experts. As immediate corollaries, we recover two classical theorems about Brauer–
Severi varieties due to Châtelet and Kang, see Corollaries 3.6 and 3.8.

1.3 Del Pezzo Surfaces

In the second part, we apply this machinery to the geometry and arithmetic of
del Pezzo surfaces over arbitrary ground fields. I would like to stress that most, if not
all, of the results of this second part are well-known. To the best of my knowledge, I
have tried to give the original references. However, my organization of the material
and the hopefully more geometric approach to del Pezzo surfaces via morphisms to
Brauer–Severi varieties is new.

By definition, a del Pezzo surface is a smooth and proper surface X over a field k,
whose anti-canonical invertible sheaf ω−1

X is ample. The degree of a del Pezzo surface
is the self-intersection number of ωX . The classification of del Pezzo surfaces over k
is well-known: The degree d satisfies 1 ≤ d ≤ 9, and they are isomorphic either to
P

1 × P
1 or to the blow-up of P2 in (9 − d) points in general position.

As an application of Theorem 1.1, we obtain the following.

(1) If d = 8 and Xk
∼= P

1
k
× P

1
k
, then there exists an embedding

| − 1
2 K X | : X ↪→ P

into a Brauer–Severi threefold P . Moreover, X is either isomorphic to a product
of two Brauer–Severi curves or to a quadratic twist of the self-product of a
Brauer–Severi curve. We refer to Theorem 5.1 and Proposition 5.2 for details.

(2) If d ≥ 7 and Xk 
∼= P
1
k
× P

1
k
, then there exists a birational morphism

f : X → P

to a Brauer–Severi surface P over k that is the blow-up in a closed and zero-
dimensional subscheme of length (9 − d) over k. We refer to Theorem 6.1 for
details.
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(3) If d = 6, then there exist two finite field extensions k ⊆ K and k ⊆ L with
[K : k]|2 and [L : k]|3 such that there exists a birational morphism f : X → P
to a Brauer–Severi surface P over k that is the blow-up in a closed and zero-
dimensional subscheme of length 3 over k if and only k = K . On the other hand,
there exists a birational morphism X → Y onto a degree 8 del Pezzo surface Y
of product type if and only if k = L . We refer to Theorem 7.1 for details.

(4) For partial results if d ≤ 5, as well as birationality criteria for when a del Pezzo
surface is birationally equivalent to a Brauer–Severi surface, we refer to Sect. 8.

As further applications, we recover well-known results about rationality, unira-
tionality, existence of k-rational points, Galois cohomology, the Hasse principle, and
weak approximation for del Pezzo surfaces.

Notations and Conventions

In this article, k denotes an arbitrary field, k (resp. ksep) its algebraic (resp. separable)
closure, and Gk = Gal(ksep/k) its absolute Galois group. By a variety over k we
mean a scheme X that is of finite type, separated, and geometrically integral over k.
If K is a field extension of k, then we define X K := X ×Spec k Spec K .

2 Picard Functors and Brauer Groups

This section, we recall a couple of definitions and general results about the various
relative Picard functors, about Brauer groups of fields and schemes, as well as Brauer–
Severi varieties.

2.1 Relative Picard Functors

Let us first recall a couple of generalities about the several Picard functors. Our main
references are [22, 23], as well as the surveys [3, Chap. 8] and [30].

For a scheme X , we define its Picard group Pic(X) to be the abelian group of
invertible sheaves on X modulo isomorphism. If f : X → S is a separated morphism
of finite type over a Noetherian base scheme S, then we define the absolute Picard
functor to be the functor that associates to each Noetherian T → S the abelian group
PicX (T ) := Pic(XT ), where XT := X ×S T . Now, as explained, for example in [30,
Sect. 9.2], the absolute Picard functor is a separated presheaf for the Zariski, étale,
and the fppf topologies, but it is never a sheaf for the Zariski topology. In particular,
the absolute Picard functor is never representable by a scheme or by an algebraic
space. This leads to the introduction of the relative Picard functor PicX/S by setting
PicX/S(T ) := Pic(XT )/Pic(T ), and then, we have the associated sheaves for the
Zariski, étale, and fppf topologies

Pic(X/S)(zar), Pic(X/S)(ét), and Pic(X/S)(fppf).
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In many important cases, these sheaves are representable by schemes or algebraic
spaces over S. For our purposes, it suffices to work with the sheaves so that we
will not address representability questions here, but refer the interested reader to [3,
Chap. 8.2] and [30, Chap. 9.4] instead. Having introduced these sheaves, let us recall
the following easy facts, see, for example, [30, Exercise 9.2.3].

Proposition 2.1 Let X → S be a scheme that is separated and of finite type over a
Noetherian scheme S. Let L be a field with a morphism Spec L → S.

(1) Then, the following natural maps are isomorphisms:

PicX (L)
∼=−→ PicX/S(L)

∼=−→ Pic(X/S)(zar)(L).

(2) If L is algebraically closed, then also the following natural maps are isomor-
phisms:

PicX (L)
∼=−→ Pic(X/S)(ét)(L)

∼=−→ Pic(X/S)(fppf)(L).

It is important to note that if L is not algebraically closed, then the natural map
PicX (L) → Pic(X/S)(ét)(L) is usually not an isomorphism, i.e., not every section of
Pic(X/S)(ét) over L arises from an invertible sheaf on X L . The following example,
taken from [30, Exercise 9.2.4], is crucial to everything that follows and illustrates
this.

Example 2.2 Let X be the smooth plane conic over R defined by

X := { x2
0 + x2

1 + x2
2 = 0 } ⊂ P

2
R
.

Then, X is not isomorphic to P
1
R

since X (R) = ∅, but there exists an isomorphism
XC → P

1
C

. In particular, X is an example of a non-trivial Brauer–Severi variety (see
Definition 2.14).

Next, if x ∈ X is a closed point, then κ(x) ∼= C, that is, x is a zero-cycle of degree
2. Moreover, OX (x) generates PicX (R), for if there was an invertible sheaf of odd
degree on X , then there would exist an invertible sheaf of degree 1 on X and then,
Riemann–Roch would imply X (R) 
= ∅, a contradiction.

On the other hand, x splits on XC into two closed points, say x1 and x2. Since
OXC

(x1) and OXC
(x2) are isomorphic as invertible sheaves on XC, it follows that

OXC
(x1) descends from a class in Pic(X/R)(ét)(C) to a class in Pic(X/R)(ét)(R).

These observations show that the natural map PicX (R) → Pic(X/R)(ét)(R) is not
surjective.

In this example, we have X (R) = ∅, i.e., the structure morphism X → Spec R
has no section. Quite generally, we have the following comparison theorem for the
several relative Picard functors, and refer, for example, to [30, Theorem 9.2.5] for
details and proofs.
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Theorem 2.3 (Grothendieck) Let f : X → S be a scheme that is separated and

of finite type over a Noetherian scheme S, and assume that OS
∼=−→ f∗OX holds

universally.

(1) Then, the natural maps

PicX/S ↪→ Pic(X/S)(zar) ↪→ Pic(X/S)(ét) ↪→ Pic(X/S)(fppf)

are injections.
(2) If f has a section, then all three maps are isomorphisms. If f has a section locally

in the Zariski topology, then the latter two maps are isomorphisms, and if f has
a section locally in the étale topology, then the last map is an isomorphism.

To understand the obstruction to realizing a section of Pic(X/S)(ét) or Pic(X/S)(fppf)

over S by an invertible sheaf on X in case there is no section of X → S, we recall
the following definition.

Definition 2.4 For a scheme T , the étale cohomology group H 2
ét(T,Gm) is called the

cohomological Brauer group, and is denoted Br′(T ). The set of sheaves of Azumaya
algebras on T modulo Brauer equivalence also forms a group, the Brauer group of
T , and is denoted Br(T ).

We will not discuss sheaves of Azumaya algebras on schemes in the sequel, but
only remark that these generalize central simple algebras over fields (see Sect. 2.3
for the latter), and refer the interested reader to [20] and [37, Chap. IV] for details
and references, as well as to [41] for a survey.

Using that Gm is a smooth group scheme, Grothendieck [21] showed that the
natural map H 2

ét(T,Gm) → H 2
fppf(T,Gm) is an isomorphism, i.e., it does not matter

whether the cohomological Brauer group Br′(T ) is defined with respect to the étale
or the fppf topology. Next, there exists a natural injective group homomorphism
Br(T ) → Br′(T ), whose image is contained in the torsion subgroup of Br′(T ). If T
is the spectrum of a field k, then this injection is even an isomorphism, i.e., Br(k) =
Br′(k), see, for example, [18, 21], and [37, Chap. IV] for details and references.

The connection between Brauer groups, Proposition 2.1, and Theorem 2.3 is as
follows, see, for example [3, Chap. 8.1] or [30, Sect. 9.2].

Proposition 2.5 Let f : X → S be a scheme that is separated and of finite type over

a Noetherian scheme S, and assume that OS
∼=−→ f∗OX holds universally. Then, for

each S-scheme T there exists a canonical exact sequence

0 → Pic(T ) → Pic(XT ) → Pic(X/S)(fppf)(T )
δ−→ Br′(T ) → Br′(XT ) .

If f has a section, then δ is the zero-map. �
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2.2 Varieties and the Amitsur Subgroup

By our conventions above, a variety over a field k is a scheme X that is of finite
type, separated, and geometrically integral over k. In this situation, the conditions of
Proposition 2.5 are fulfilled, as the following remark shows.

Remark 2.6 If X is a proper variety over a field k, then

(1) the structure morphism f : X → Spec k is separated, of finite type, andOSpec k
∼=

f∗OX holds universally.
(2) The morphism f has sections locally in the étale topology (see, for example,

[18, Appendix A]).
(3) Since the base scheme is a field k, we have Br(k) = Br′(k).

In Remark 3.3, we will give an explicit description of δ in this case.

In Example 2.2, the obstruction to representing the class of L := ϕ∗OP
1
C

(1) in
Pic(X/R)(fppf)(R) by an invertible sheaf on X can be explained via δ, which maps L
to the non-zero element of Br(R) ∼= Z/2Z. In terms of Azumaya algebras (since the
base is Spec R, these are central simple R-algebras), this Brauer class corresponds
the R-algebra H of quaternions, but we will not pursue this point of view in the
sequel.

Proposition 2.7 Let X be a proper variety over a field k. Then, there exist natural
isomorphisms of abelian groups

PicX/k(k
sep)Gk

∼=−→ Pic(X/k)(ét)(k)
∼=−→ Pic(X/k)(fppf)(k),

where the −Gk denotes Galois invariants.

PROOF The first isomorphism follows from Galois theory and sheaf axioms and the
second isomorphism follows from Theorem 2.3 and Remark 2.6. �

The Brauer group Br(k) of a field k is an abelian torsion group, see, for exam-
ple, [18, Corollary 4.4.8]. Motivated by Proposition 2.5, we introduce the following
subgroup of Br(k) that measures the deviation between Pic(X/k)(fppf)(k) and Pic(X).

Definition 2.8 Let X be a proper variety over a field k. Then, the Amitsur subgroup
of X in Br(k) is the subgroup

Am(X) := δ(Pic(X/k)(fppf)(k)) ⊆ Br(k).

By the previous remarks, it is an abelian torsion group.

The following lemma gives bounds for the order of torsion in Am(X).

Lemma 2.9 Let X be a proper variety over a field k. If there exists a closed point
on X, whose residue field is of degree n over k, then every element of Am(X) has an
order dividing n.
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PROOF Let x ∈ X be a closed point, say, with residue field K/k that is of degree
n over k. Since X K has a K -rational point, the map δ of X K is identically zero
by Proposition 2.5. Thus, we have an inclusion Am(X) ⊆ Br(K |k) := ker(Br(k) →
Br(K )), where Br(k) → Br(K ) is the restriction homomorphism.

If K is separable over k, then Br(K |k) is contained in the n-torsion of Br(k),
which follows from the fact that the composition of restriction and corestriction is
multiplication by n, see [18, Proposition 4.2.10].

If K is a purely inseparable extension of k, generated by pr -th roots, then Br(K |k)
is pr -torsion (which yields even stronger bounds on the torsion than claimed), see
for example, Hochschild’s Theorem [18, Theorem 9.1.1] for an explicit description
for this group.

In general, we can factor the extension K/k into a separable and a purely insep-
arable extension, and by combining the previous two special cases, the statement
follows. �

Using Proposition 2.5, we can give two alternative definitions of Am(X). In fact,
the birational invariance of this group for Brauer–Severi varieties is a classical result
of Amitsur, probably known to Châtelet and Witt in some form or another, see also
Theorem 2.19 below.

Proposition 2.10 Let X be a smooth and proper variety over k. Then,

Am(X) = ker
(
Br(k) → Br′(X)

) = ker (Br(k) → Br(k(X))) .

In particular, Am(X) is a birational invariant of smooth and proper varieties over k.

PROOF The first equality follows from the exact sequence of Proposition 2.5. Since
X is smooth over k, the natural map Br′(X) → Br(k(X)) is injective, see, for exam-
ple, [37, Example III.2.22], and then, the second equality follows. From this last
description, it is clear that Am(X) is a birational invariant. �

Remark 2.11 In [10, Sect. 5], the kernel of Br(k) → Br(k(X)) was denoted
Br(k(X)/k). Thus, if X is smooth and proper over k, then this latter group coincides
with Am(X). However, this group should not be confused with Br(k(X))/Br(k),
which is related to another important birational invariant that we will introduce in
Sect. 4.2.

If X has a k-rational point, then Am(X) = 0 by Proposition 2.5. On the other hand,
there exist proper varieties X with trivial Amitsur subgroup without k-rational points
(some degree 8 del Pezzo surfaces of product type with ρ = 1 provide examples, see
Corollary 5.4). Let us recall that a zero-cycle on X is a formal finite sum

∑
i ni Zi ,

where the ni ∈ Z and where the Zi are closed points of X . It is called effective if
ni ≥ 0 for all i . The degree is defined to be deg(Z) := ∑

i ni [κ(Zi ) : k], where κ(Zi )
denotes the residue field of the point Zi .

Corollary 2.12 Let X be a proper variety over a field k. If there exists a zero cycle
of degree 1 on X, then Am(X) = 0. �
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If X is a projective variety over k, then Pic(X/k)(ét) and Pic(X/k)(fppf) are rep-
resentable by a group scheme PicX/k over k, the Picard scheme. The connected
component of the identity is denoted Pic0

X/k , and the quotient

NSX/k(k) := PicXk/k(k) / Pic0
Xk/k

(k),

the Néron–Severi group, is a finitely generated abelian group, whose rank is denoted
ρ(Xk). We refer to [3, Sect. 8.4] for further discussion. Moreover, if X is smooth
over k, then Pic0

X/k is of dimension 1
2 b1(X), where b1 denotes the first �-adic Betti

number.

Lemma 2.13 Let X be a smooth and projective variety over a field k with b1(X) = 0.
Then, Pic(X/k)(fppf)(k) is a finitely generated abelian group,

rank Pic(X) = rank Pic(X/k)(fppf)(k) ≤ ρ(Xk),

and Am(X) is a finite abelian group.

PROOF If b1(X) = 0, then, by the previous discussion, Pic(Xk) is a finitely generated
abelian group of rank ρ(Xk). Since Pic(X) and Pic(X/k)(fppf)(k) are contained in
Pic(Xk), they are also finitely generated of rank at most ρ(Xk). Since Am(X) =
δ(Pic(X/k)(fppf)(k)) is a torsion subgroup of Br(k), Proposition 2.5 implies the stated
equality of ranks. Moreover, being torsion and a finitely generated abelian group,
Am(X) is finite. �

2.3 Brauer–Severi Varieties

Next, we recall a couple of results about Brauer–Severi varieties, and refer the inter-
ested reader to [18, Chap. 5] and the surveys [27, 41] for details, proofs, and further
references.

Definition 2.14 A Brauer–Severi variety over a field k is a proper variety P over k,
such that there exists a finite field extension K of k and an isomorphism PK

∼= P
n
K

over K .

In case P is of dimension one (resp. two, resp. three), we will also refer to it as
a Brauer–Severi curve (resp. Brauer–Severi surface, resp. Brauer–Severi threefold).
Any field extension K of k such that PK is isomorphic to projective space over K is
called a splitting field for P , and P is said to split over K . By a theorem of Châtelet,
a Brauer–Severi variety P over k is trivial, i.e., splits over k, i.e., is k-isomorphic
to projective space over k, if and only if it possesses a k-rational point. Since a
geometrically integral variety over a field k always has points over ksep, it follows
that a Brauer–Severi variety can be split over a finite and separable extension of k,
which we may also assume to be Galois if we want.
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For a finite field extension K of k that is Galois with Galois group G, the set of all
Brauer–Severi varieties of dimension n over k that split over K , can be interpreted as
the set of all G-twisted forms of Pn

K , which is in bijection to the cohomology group
H 1(G, Aut(Pn

K )). Using Aut(Pn) ∼= PGLn+1, and taking cohomology in the short
exact sequence

1 → Gm → GLn+1 → PGLn+1 → 1,

the boundary map associates to the class of a Brauer–Severi variety P of dimension
n in H 1(G, PGLn+1(K )) a class in

Br(K |k) := ker (Br(k) → Br(K )) = ker
(
H 2

ét(k,Gm) → H 2
ét(K ,Gm)

)
.

Taking the limit over all finite Galois extensions of k, we obtain for every Brauer–
Severi variety P over k a class [P] ∈ Br(k). This cohomology class is torsion and
its order is called the period of P , denoted per(P). By a theorem of Châtelet, a
Brauer–Severi variety is trivial if and only if the class [P] ∈ Br(k) is zero, i.e., if and
only if per(P) = 1. We will say that two Brauer–Severi varieties over k are Brauer
equivalent if their associated classes in Br(k) are the same.

To say more about Brauer classes associated to Brauer–Severi varieties, we will
shortly digress on non-commutative k-algebras, and refer to [18, Sect. 2] and [26] for
details: We recall that a central simple k-algebra is a k-algebra A, whose center is
equal to k (i.e., A is central), and whose only two-sided ideals are (0) and A (i.e., A
is simple). If A is moreover finite-dimensional over k, then by theorems of Noether,
Köthe, and Wedderburn, there exists a finite and separable field extension k ⊆ K
that splits A, i.e., A ⊗k K ∼= Matn×n(K ). In particular, the dimension of A over k is
always a square, and we set the degree of A to be deg(A) := √

dimk(A). Two central
simple k-algebras A1 and A2 are said to be Brauer equivalent if there exist integers
a1, a2 ≥ 1 such that A1 ⊗k Mata1×a1(k) ∼= A2 ⊗k Mata2×a2(k).

The connection between central simple algebras and Brauer–Severi varieties is
the following dictionary, see [18, Theorem 2.4.3].

Theorem 2.15 Let k ⊆ K be a field extension that is Galois with Galois group G.
Then, there is a natural bijection of sets between

(1) Brauer–Severi varieties of dimension n over k that split over K ,
(2) H 1(G, PGLn+1(K )), and
(3) central simple k-algebras of degree n + 1 over k that split over K .

Under this bijection, Brauer equivalence of (1) and (3) coincide.

We also recall that a division algebra is a k-algebra in which every non-zero
element has a two-sided multiplicative inverse. For example, field extensions of k
are division algebras, and a non-commutative example is provided by the quaternions
overR. Given a simple and finite-dimensional k-algebra A, a theorem of Wedderburn
states that there exists a unique division algebra D over k and a unique integer m ≥ 1
and an isomorphism of k-algebras A ∼= Matm×m(D), see [18, Theorem 2.1.3].
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Corollary 2.16 If two Brauer–Severi varieties over k of the same dimension are
Brauer equivalent, then they are isomorphic as schemes over k.

PROOF By Theorem 2.15, it suffices to show that two Brauer equivalent central simple
k-algebras A1, A2 of the same dimension are isomorphic. By Wedderburn’s theorem,
there exist division algebras Di and integers mi ≥ 1 such that Ai

∼= Matmi ×mi (Di )
for i = 1, 2. By definition of Brauer-equivalence, there exist integers ai ≥ 1 and an
isomorphism of k-algebras

A1 ⊗k Mata1×a1(k) ∼= A2 ⊗k Mata2×a2(k).

Together with the k-algebras isomorphisms

Ai ⊗k Matai ×ai (k) ∼= Matmi ×mi (Di ) ⊗k Mata1×a1(k)
∼= Matai mi ×ai mi (Di )

and the uniqueness part in Wedderburn’s theorem, we conclude D1
∼= D2, as well as

a1 = a2, whence A1
∼= A2, see also [18, Remark 2.4.7]. �

For Brauer–Severi varieties over k that are of different dimension, we refer to
Châtelet’s theorem (Corollary 3.8) below. On the other hand, for Brauer–Severi vari-
eties over k that are of the same dimension, Amitsur conjectured that they are bira-
tionally equivalent if and only if their classes generate the same cyclic subgroup of
Br(k), see also Remark 2.20.

For projective space, the degree map deg : Pic(Pn
k ) → Z, which sends OP

n
k
(1)

to 1, is an isomorphism. Thus, if P is a Brauer–Severi variety over k and Gk :=
Gal(ksep/k), then there are isomorphisms

Pic(P/k)(fppf)(k) ∼= Pic(P/k)(ksep)Gk ∼= Pic(P/k)(ksep)

∼= Pic(Pdim(P)
ksep )

deg−→ Z.

The first isomorphism is Proposition 2.7, and the second follows from the fact that
the Gk-action must send the unique ample generator of Pic(P/k)(ksep) to an ample
generator, showing that Gk acts trivially. The third isomorphism follows from the
fact that P splits over a separable extension.

Definition 2.17 For a Brauer–Severi variety P over k, we denote the unique ample
generator of Pic(P/k)(fppf)(k) by OP(1).

We stress that OP(1) is a class in Pic(P/k)(fppf)(k) that usually does not come from
an invertible sheaf on P - in fact this happens if and only if P is a trivial Brauer–
Severi variety, i.e., split over k. For a Brauer–Severi variety, the short exact sequence
from Proposition 2.5 becomes the following.
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Theorem 2.18 (Lichtenbaum) Let P be a Brauer–Severi variety over k. Then, there
exists an exact sequence

0 → Pic(P) → Pic(P/k)(fppf)(k)︸ ︷︷ ︸
∼=Z

δ−→ Br(k) → Br(k(P)) .

More precisely, we have

δ(OP(1)) = [P], and

Pic(P) = OP(per(P)) · Z.

Since ωP
∼= OP(− dim(P) − 1), the period per(P) divides dim(P) + 1.

Again, we refer to [18, Theorem 5.4.5] for details and proofs. Using Proposi-
tion 2.10, we immediately obtain the following classical result of Amitsur [1] as
corollary.

Theorem 2.19 (Amitsur) If P is a Brauer–Severi variety over k, then Am(P) ∼=
Z/per(P)Z. If two Brauer–Severi varieties are birationally equivalent over k, then
the have the same Amitsur subgroups inside Br(k) and in particular, the same
period. �

Remark 2.20 In general, it is not true that two Brauer–Severi varieties of the same
dimension and the same Amitsur subgroup are isomorphic. We refer to Remark 7.2
for an example arising from a Cremona transformation of Brauer–Severi surfaces.
However, Amitsur asked whether two Brauer–Severi varieties of the same dimension
with the same Amitsur subgroup are birationally equivalent.

In our applications to del Pezzo surfaces below, we will only need the following
easy and probably well-known corollary.

Corollary 2.21 Let P be a Brauer–Severi variety over k. If there exists a zero-cycle
on P, whose degree is prime to (dim(P) + 1), then P is is trivial.

PROOF Since Am(P) ∼= Z/per(P)Z and its order divides (dim(P) + 1), Lemma 2.9
and the assumptions imply Am(P) = 0. Thus, per(P) = 1, and then,
P is trivial. �

We end this section by mentioning another important invariant of a Brauer–Severi
variety P over k, namely, its index, denoted ind(P). We refer to [18, Chap. 4.5] for the
precise definition and note that it is equal to the smallest degree of a finite separable
field extension K/k such that PK is trivial, as well as to the greatest common divisor
of the degrees of all finite separable field extensions K/k such that PK is trivial.
By a theorem of Brauer, the period divides the index, and they have the same prime
factors, see [18, Proposition 4.5.13].
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3 Morphisms to Brauer–Severi Varieties

This section contains Theorem 3.4, the main observation of this article that describes
morphisms from a proper variety X over a field k to Brauer–Severi varieties in terms
of classes in of Pic(X/k)(fppf)(k). We start by extending classical notions for invertible
sheaves to such classes, and then, use these notions to phrase and prove Theorem 3.4.
As immediate corollaries, we obtain two classical results of Kang and Châtelet on
the geometry of Brauer–Severi varieties.

3.1 Splitting Fields, Globally Generated and Ample Classes

Before coming to the main result of this section, we introduce the following.

Definition 3.1 Let X be a proper variety over k and L ∈ Pic(X/k)(fppf)(k).

(1) A splitting field for L is a field extension K/k such that L ⊗k K lies in Pic(X K ),
i.e., arises from an invertible sheaf on X K .

(2) The class L is called globally generated (resp. ample, resp. very ample) if there
exists a splitting field K for L such that L ⊗k K is globally generated (resp.
ample, resp. very ample) as an invertible sheaf on X K .

From the short exact sequence in Proposition 2.5, it follows that if K is a splitting
field for the class L, then there exists precisely one invertible sheaf on X K up to
isomorphism that corresponds to this class. The following lemma shows that these
notions are independent of the choice of a splitting field of the class L.

Lemma 3.2 Let X be a proper variety over k and L ∈ Pic(X/k)(fppf)(k).

(1) There exists a splitting field for L that is a finite and separable extension k, and
it can also chosen to be Galois over k.

(2) Let K and K ′ be splitting fields for L. Then L ⊗k K ∈ Pic(X K ) is globally
generated (resp. ample, resp. very ample) if and only if L ⊗k K ′ ∈ Pic(X K ′) is
globally generated (resp. ample, resp. very ample).

PROOF To simplify notation in this proof, we set LK := L ⊗k K .
Let K be a finite and separable extension of k, such that δ(L) ∈ Br(k) lies in

Br(K |k), where δ is as in Proposition 2.5. Then, δ(LK ) = 0, i.e., LK comes from an
invertible sheaf on X K . In particular, K is a splitting field for L, which is a finite and
separable extension of k. Passing to the Galois closure of K/k, we obtain a splitting
field for L that is a finite Galois extension of k. This establishes claim (1).

Claim (2) is a well-known application of flat base change, but let us recall the argu-
ments for the reader’s convenience: By choosing a field extension of k that contains
both K and K ′, we reduce to the case k ⊆ K ⊆ K ′. We have H 0(X K ,LK ) ⊗K K ′ ∼=
H 0(X K ′ ,LK ′) by flat base change for cohomology, from which it is easy to see that
LK is globally generated if and only if LK ′ is so. Next, if LK is very ample, then its
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global sections give rise to a closed immersion X K → P
n
K for some n. After base

change to K ′, we obtain a closed embedding X K ′ → P
n
K ′ which corresponds to the

global sections of LK ′ , and so, also LK ′ is very ample. Conversely, if LK ′ is very
ample, then it is globally generated, and thus, LK is globally generated by what we
just established, and thus, gives rise to a morphism ϕK : X K → P

n
K . By assumption

and flat base change, ϕK ′ is a closed embedding, and thus, ϕK is a closed embed-
ding, and LK is very ample. From this, it also follows that LK is ample if and only if
LK ′ is. �

Remark 3.3 Let X be a proper variety over k and let

δ : Pic(X/k)(fppf)(k) −→ Br(k)

be as in Proposition 2.5. We are now in a position to describe δ explicitly.

(1) First, and more abstractly: given a class L ∈ Pic(X/k)(fppf)(k), we can choose a
splitting field K that is a finite extension k. Thus, Spec K → Spec k is an fppf
cover, the class L ⊗k K comes with an fppf descent datum, and it arises from an
invertible sheaf M on X K . The crucial point is that the descent datum is for a
class in Pic(X K ), where isomorphism classes of invertible sheaves are identified.
In order to turn this into a descent datum for the invertible sheaf M, we have
to choose isomorphisms, which are only unique up to a Gm = Aut(M)-action,
and we obtain a Gm-gerbe that is of class δ(L) ∈ H 2

fppf(Spec k,Gm) = Br(k).
This gerbe is neutral if and only if δ(L) = 0. This is equivalent to being able
to extend the descent datum for the class L ⊗k K to a descent datum for the
invertible sheaf M.

(2) Second, and more concretely: given a class L ∈ Pic(X/k)(fppf)(k), we can choose
a splitting field K that is a finite Galois extension of k, say with Galois group
G. Thus, the class L ⊗k K arises from an invertible sheaf M on X K and lies in
PicX (K )G and we can choose isomorphisms

ıg : g∗M ∼=−→ M,

which are unique up to a Gm-action. In particular, they may fail to form a Galois
descent datum for M, and the failure of turning {ıg}g∈G into a Galois descent
datum forM gives rise to a cohomology class δ(L) ∈ H 2

ét(Spec k,Gm) = Br(k).
More precisely, this class lies in the subgroup Br(K |k) of Br(k).

The following is an analog for Brauer–Severi varieties of the classical corre-
spondence between morphisms to projective space and globally generated invertible
sheaves as explained, for example, in [24, Theorem II.7.1], see also Remark 3.5 below.

Theorem 3.4 Let X be a proper variety over a field k.

(1) Let ϕ : X → P be a morphism to a Brauer–Severi variety P over k, and consider
the induced homomorphism of abelian groups
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ϕ∗ : Pic(P/k)(fppf)(k) → Pic(X/k)(fppf)(k).

Then, L := ϕ∗OP(1) is a globally generated class with

δ(L) = [P] ∈ Br(k),

where δ is as in Proposition2.5. If ϕ is a closed immersion, then L is very ample.
(2) Let L ∈ Pic(X/k)(fppf)(k) be a globally generated class. If K is a splitting field,

then the morphism to projective space over K associated to the complete linear
system |L ⊗k K | descends to morphism over k

|L| : X → P,

where P is a Brauer–Severi variety over k with δ(L) = [P]. If L is very ample,
then |L| is a closed immersion.

PROOF Let ϕ : X → P andL be as in (1). Then, we have δ(L) = δ(OP(1)) = [P] ∈
Br(k), where the first equality follows from functoriality of the exact sequence in
Proposition 2.5, and the second from Theorem 2.18. Let K be a splitting field for
L, and let M be the invertible sheaf corresponding to L ⊗k K on X K . Being an
invertible sheaf, we have δ(M) = 0 ∈ Br(K ), which implies that the morphism
ϕK : X K → PK maps to a Brauer–Severi variety of class [PK ] = δ(M) = 0, i.e.,
PK

∼= P
n
K . By definition and base change, we obtain M ∼= ϕ∗

K (OP
n
K
(1)). Thus, M is

globally generated (as an invertible sheaf), which implies that L ∈ Pic(X/k)(fppf)(k) is
globally generated in the sense of Definition 3.1. Moreover, ifϕ is a closed immersion,
then so is ϕK , which implies that M ∈ Pic(X K ) is very ample (as an invertible
sheaf), and thus, L ∈ Pic(X/k)(fppf)(k) is very ample in the sense of Definition 3.1.
This establishes claim (1).

To establish claim (2), let L ∈ Pic(X/k)(fppf)(k) be globally generated. By
Lemma 3.2, there exists a splitting field K ′ for L that is a finite Galois extension
of k, say with Galois group G. Thus, L ⊗k K ′ corresponds to an invertible sheaf M
on X K ′ , whose isomorphism class lies in PicX (K ′)G , see Proposition 2.7.

If f : X → Spec k is the structure morphism, then ( fK ′)∗M is a finite-dimensional
K ′-vector space. By our assumptions on global generation we obtain a morphism
over K ′

|M| : X K ′ → P(( fK ′)∗M).

As explained in Remark 3.3.(2), there exist isomorphisms {ıg : g∗M → M}g∈G that
are unique up to a Gm-action. In particular, we obtain a well-defined G-action on
P(( fK ′)∗M), and the morphism defined by |M| is G-equivariant. Taking the quotient
by G, we obtain a morphism over k

|L| : X → P.
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Since PK is isomorphic to P(( fK ′)∗M), we see that P is a Brauer–Severi variety
over k and, as observed by Grothendieck in [21, Sect. 5.4], we have δ(L) = [P] in
Br(k).

Finally, let K be an arbitrary splitting field forL. Let ϕ : X → P be the previously
constructed morphism and choose an extension field � of k that contains K and
K ′. Then, L ⊗k � is an invertible sheaf on X�, globally generated by Lemma 3.2,
and, since k ⊆ K ′ ⊆ �, the morphism associated to |L ⊗k �| is equal to ϕ� =
(ϕK ′)� : X� → P�. Since K is a splitting field for L, it is also a splitting field
for PK (see the argument in the proof of claim (1)), and in particular, PK ′ is a
trivial Brauer–Severi variety. We have L ⊗k � ∼= ϕ∗

�OP�
(1), from which we deduce

L ⊗k K ∼= ϕ∗
KOPK (1), as well as that ϕK is the morphism associated to |L ⊗k K |.

In particular, the morphism associated to |L ⊗k K | descends to ϕ : X → P , where
P is a Brauer–Severi variety of class δ(L). This establishes claim (2). �

Remark 3.5 Let us note the following.

(1) The construction of a Brauer–Severi variety over k from a globally generated
class in Pic(X/k)(fppf)(k) (in our terminology) is due to Grothendieck in [21,
Sect. 5.4].

(2) In Theorem 3.4.(2), we only considered complete linear systems. We leave
it to the reader to show the following generalization: Given a class L ∈
Pic(X/k)(fppf)(k), a splitting field K that is finite and Galois over k with Galois
group G, and V ⊆ H 0(X K ,L ⊗k K ) a G-stable K -linear subspace, whose
global sections generate L ⊗k K , we can descend the morphism X K → P(V )
to a morphism X → P ′, where P ′ is a Brauer–Severi variety over k of class
[P ′] = δ(L) ∈ Br(k).

(3) If X in Theorem 3.4 has a k-rational point, i.e., X (k) 
= ∅, then we recover
the well-known correspondence between morphisms to projective space and
globally generated invertible sheaves:

(a) Then, δ ≡ 0 and every class in Pic(X/k)(fppf)(k) comes from an invertible
sheaf on X by Proposition 2.5,

(b) and since every morphism ϕ : X → P gives rise to a k-rational point on P ,
i.e., P is a trivial Brauer–Severi variety.

3.2 Two Classical Results on Brauer–Severi Varieties

As our first corollary and application, we recover the following theorem of Kang [29],
see also [18, Theorem 5.2.2], which is a Brauer–Severi variety analog of Veronese
embeddings of projective spaces.

Corollary 3.6 (Kang) Let P be a Brauer–Severi variety of period per(P) over k.
Then, the class of OP(per(P)) arises from a very ample invertible sheaf on P and
gives rise to an embedding
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|OP(per(P))| : P → P
N
k , where N =

(
dim(P) + per(P)

per(P)

)
.

After base change to a splitting field K of P, this embedding becomes the per(P)-uple
Veronese embedding of Pdim(P)

K into P
N
K .

Proof If n ≥ 1, then OP(n) is very ample in the sense of Definition 3.1, and thus,
defines an embedding into a Brauer–Severi variety P ′ over k. Over a splitting field
of P , this embedding becomes the n-uple Veronese embedding. Since δ(OP(1)) =
[P] ∈ Br(k) and this element of order per(P), we see that if per(P) divides n, then
OP(n) is an invertible sheaf on P and P ′ is a trivial Brauer–Severi variety. �

Example 3.7 Let X be a smooth and proper variety of dimension one over k. If ω−1
X

is ample, then it is a curve of genus g(X) = h0(X,ωX ) = 0. Thus, X is isomorphic
to P

1 over k, i.e., X is a Brauer–Severi curve. There exists a unique class L ∈
Pic(X/k)(fppf)(k) with L⊗2 ∼= ω−1

X , and it gives rise to an isomorphism |L| : X → P ,
where P is a Brauer–Severi curve with δ(L) = [P] ∈ Br(k). Moreover, L⊗2 ∼= ω−1

X
is an invertible sheaf on X that defines an embedding |ω−1

X | : X → P
2
k as a plane

conic.

A subvariety X ⊆ P of a Brauer–Severi variety P over k is called twisted linear
if Xk is a linear subspace of Pk . As second application, we recover the following
theorem of Châtelet, see [18, Sect. 5.3], and it follows from a Brauer–Severi variety
analog of Segre embeddings of products of projective spaces.

Corollary 3.8 (Châtelet) Let P1 and P2 be two Brauer–Severi varieties over k of
dimension d1 and d2, respectively.

(1) If P1 is a twisted linear subvariety of P2, then [P1] = [P2] ∈ Br(k).
(2) If [P1] = [P2] ∈ Br(k), then there exists a Brauer–Severi variety P over k, such

that P1 and P2 can be embedded as twisted-linear subvarieties into P.

PROOF If ϕ : P1↪→P2 is a twisted-linear subvariety, then ϕ∗OP2(1) = OP1(1) ∈
Pic(P1/k)(fppf)(k). We find [P1] = δ(OP1(1)) = δ(OP2(1)) = [P2] by functoriality of
the exact sequence of Proposition 2.5, and (1) follows.

Next, we show (2). By Theorem 3.4, there exists an embedding ϕ of P1 × P
d2
k into a

Brauer–Severi variety P of dimension N := (d1 + 1)(d2 + 1) − 1 = d1d2 + d1 + d2

over k associated to the class OP1(1) � O
P

d2
k
(1). Over a splitting field of P1, this

embedding becomes the Segre embedding of Pd1 × P
d2 into P

N . If x is a k-rational
point of Pd2

k , then ϕ(P1 × {x}) realizes P1 as twisted-linear subvariety of P and we
have [P] = [P1] ∈ Br(k) by claim (1). Similarly, we obtain an embedding of P2 as
twisted-linear subvariety into a Brauer–Severi variety P ′ of dimension N over k of
class [P ′] = [P2] ∈ Br(k). Since [P] = [P ′] ∈ Br(k) and dim(P) = dim(P ′), we
find P ∼= P ′ by Corollary 2.16 and (2) follows. �



174 C. Liedtke

4 Del Pezzo Surfaces

For the remainder of this article, we study del Pezzo surfaces with a view towards
Brauer–Severi varieties. Most, if not all, results of these sections are known in some
form or another to the experts. However, our more geometric approach, as well as
some of the proofs, are new.

Let us first recall some classical results about del Pezzo surfaces, and refer the
reader to [35, Chap. IV] or the surveys [7, 41, 47] for details, proofs, and references.
For more results about the classification of geometrically rational surfaces, see [25,
34].

Definition 4.1 A del Pezzo surface is a smooth and proper variety X of dimension
two over a field k such that ω−1

X is ample. The degree of a del Pezzo surface is the
self-intersection number of ωX .

In arbitrary dimension, smooth and proper varieties X over k with ample ω−1
X are

called Fano varieties. As discussed in Example 3.7, Fano varieties of dimension one
over k are the same as Brauer–Severi curves over k.

4.1 Geometry

The degree d of a del Pezzo surface X over a field k satisfies 1 ≤ d ≤ 9. Set X := Xk .
We will say that X is of product type if

X ∼= P
1
k
× P

1
k
,

in which case we have d = 8. If X is not of product type, then there exists a birational
morphism

f : X → P
2
k

that is a blow-up of (9 − d) closed points P1, ..., P9−d in general position, i.e., no 3
of them lie on a line, no 6 of them lie on a conic, and there is no cubic through all
these points having a double point in one of them. In particular, if d = 9, then f is
an isomorphism and X is a Brauer–Severi surface over k.

4.2 Arithmetic

By the previous discussion and Lemma 2.13, the Néron–Severi rank of a del Pezzo
surface X of degree d over k satisfies

1 ≤ ρ(X) := rank Pic(X) = rank Pic(X/k)(fppf)(k) ≤ 10 − d,
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and ρ(Xk) = 10 − d.
The following result about geometrically rational surfaces allows using methods

from Galois theory even if the ground field k is not perfect. This result is particularly
useful in proofs, see also the discussion in [47, Sect. 1.4]. In particular, it applies to
del Pezzo surfaces.

Theorem 4.2 (Coombes+ε) Let X be a smooth and proper variety over k such that
Xk is birational to P

2
k
. Then,

(1) Xksep is birationally equivalent to P
2
ksep via a sequence of blow-ups in points in

ksep-rational points and their inverses.
(2) The natural map PicX (ksep) → PicX (k) is an isomorphism.

PROOF Assertion (1) is the main result of [11]. Clearly, assertion (2) holds for projec-
tive space over any field. Next, let Y be a variety that is smooth and proper over ksep,
Ỹ → Y be the blow-up of a ksep-rational point, and let E ⊂ Ỹ be the exceptional divi-
sor. Then, PicỸ (K ) = PicY (K ) ⊕ Z · E for K = ksep, as well as for K = k. Using
(1) and these two observations, assertion (2) follows. �

We will also need the following useful observation, due to Lang [33] and
Nishimura [39], which implies that having a k-rational point is a birational invariant
of smooth and proper varieties over k. We refer to [47, Sect. 1.2] for details and proof.

Lemma 4.3 (Lang–Nishimura) Let X ��� Y be a rational map of varieties over k,
such that X is smooth over k, and such that Y is proper over k. If X has a k-rational
point, then so has Y . �

Moreover, we have already seen that a Brauer–Severi variety P over k is iso-
morphic to projective space over k if and only if P has a k-rational point, and we
refer the interested reader to [14] for an algorithm to decide whether a Brauer–Severi
surface has a k-rational point. In Definition 2.8, we defined the Amitsur group and
showed its birational invariance in Proposition 2.10. Using Iskovskih’s classification
[25] of geometrically rational surfaces, we obtain the following list and refer to [10,
Proposition 5.2] for details and proof.

Theorem 4.4 (Colliot-Thélène–Karpenko–Merkurjev) Let X be a smooth and
proper variety over a perfect field k such that Xk is birationally equivalent to P

2
k
.

Then, Am(X) is one of the following groups

0, Z/2Z, (Z/2Z)2, and Z/3Z.

We will see explicit examples of all these groups arising as Amitsur groups of
del Pezzo surfaces in the next sections.

We now introduce another important invariant. Namely, if Gk denotes the absolute
Galois group of k, and H ⊆ Gk is a closed subgroup, then we consider for a smooth
and projective variety X over k the group cohomology

H 1 (
H, PicX/k(k

sep)
)
,
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which is an abelian torsion group. If b1(X) = 0, then PicX/k(ksep) is finitely generated
by Lemma 2.13 and then, H 1(H, PicX/k(ksep)) is a finite abelian group. Moreover, if
Xksep is a rational surface, then Br′(Xksep) = 0 (see, for example, [35, Theorem 42.8]
or [36]) and an appropriate Hochschild–Serre spectral sequence yields an exact
sequence

0 → Br′(X)/Br(k)
α−→ H 1 (

Gk, PicX/k(k
sep)

) → H 3(Gk, (k
sep)×).

Moreover, if k is a global field, then the term on the right is zero by a theorem of Tate
(see, for example, [38, Chap. VIII.3]), thus, α is an isomorphism, and we obtain an
interpretation of this cohomology group in terms of Brauer groups, see [47, Sect. 3.4].

Lemma 4.5 If P is a Brauer–Severi variety over k, then

H 1 (
H, PicP/k(k

sep)
) = 0

for all closed subgroups H ⊆ Gk.

PROOF Since PicP/k(ksep) ∼= Z · OP(1) and since Gk acts trivially on the class
OP(1), the desired H 1 is isomorphic to Hom(H,Z), see [4, Chap. III.1, Exercise
2], for example. This is zero since H is a profinite group and the homomorphisms to
Z are required to be continuous. �

In Proposition 2.10, we established birational invariance of Am(X). The follow-
ing result of Manin [35, Sect. 1 of the Appendix] shows that also the above group
cohomology groups are a birational invariants.

Theorem 4.6 (Manin) For every closed subgroup H ⊆ Gk, the group

H 1 (
H, PicX/k(k

sep)
)

is a birational invariant of smooth and projective varieties over k. �

Remark 4.7 Every birational map between smooth and projective surfaces can be
factored into a sequence of blow-ups in closed points, see [35, Chap. III]. Using this,
one can give very explicit proofs of Proposition 2.10 and Theorem 4.6 in dimension 2.
(For such a proof of Theorem 4.6 in dimension 2, see the proof of [35, Theorem 29.1].)

4.3 Hasse Principle and Weak Approximation

For a global field K , i.e., a finite extension of Q or of Fp(t), we denote by �K the
set of its places, including the infinite ones if K is of characteristic zero. A class C
of varieties over K satisfies

(1) the Hasse principle, if for every X ∈ C we have X (K ) 
= ∅ if and only if
X (Kν) 
= ∅ for all ν ∈ �K . Moreover, C satisfies
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(2) weak approximation, if the diagonal embedding

X (K ) →
∏

ν∈�K

X (Kν)

is dense for the product of the ν-adic topologies.

If C satisfies weak approximation, then it obviously also satisfies the Hasse principle,
but the converse need not hold. For example, Brauer–Severi varieties over K satisfy
the Hasse principle by a theorem of Châtelet [5], as well as weak approximation.
However, both properties may fail for del Pezzo surfaces over K , and we refer to [47]
for an introduction to this topic. We end this section by noting that the obstruction
to a class Pic(X/K )(fppf)(K ) coming from PicX (K ) satisfies the Hasse principle.

Lemma 4.8 Let X a proper variety over a global field K and let L ∈ Pic(X/K )(fppf)

(K ). Then, the following are equivalent

(1) 0 = δ(L) ∈ Br(K ), and
(2) 0 = δ(L ⊗K Kν) ∈ Br(Kν) for all ν ∈ �K .

PROOF A class in Br(K ) is zero if and only if its image in Br(Kν) is zero for all
ν ∈ �K by the Hasse principle for the Brauer group. From this, and functoriality of
the exact sequence from Proposition 2.5, the assertion follows. �

For example, if X (Kν) 
= ∅ for all ν ∈ �X , then δ is the zero map by Proposi-
tion 2.5 and this lemma. In this case, every class in Pic(X/K )(fppf)(K ) comes from an
invertible sheaf on X .

5 Del Pezzo Surfaces of Product Type

In this section, we classify degree 8 del Pezzo surfaces of product type over k, i.e.,
surfaces X over k with Xk

∼= P
1
k
× P

1
k
, in terms of Brauer–Severi varieties.

First, for P1
k × P

1
k , the anti-canonical embedding can be written as composition

of Veronese- and Segre-maps as follows

| − KP
1
k×P

1
k
| : P1

k × P
1
k

ν2×ν2−→ P
2
k × P

2
k

σ−→ P
8
k .

Next, the invertible sheaf ω−1
P

1
k×P

1
k

is uniquely 2-divisible in the Picard group, and we
obtain an embedding as a smooth quadric

|− 1
2 KP

1
k×P

1
k
| : P1

k × P
1
k

σ−→ P
3
k .

Now, let X be a degree 8 del Pezzo surface of product type over k. Then, the anti-
canonical linear system yields an embedding of X as a surface of degree 8 into P

8
k .
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However, the “half-anti-canonical linear system” exists in general only as a morphism
to a Brauer–Severi threefold as the following result shows.

Theorem 5.1 Let X be a degree 8 del Pezzo surface of product type over a field
k. Then, there exist a unique class L ∈ Pic(X/k)(fppf)(k) with L⊗2 ∼= ω−1

X and an
embedding

|L| : X ↪→ P

into a Brauer–Severi threefold P over k with Brauer class

δ(L) = [P] ∈ Br(k),

and such that Xk is a smooth quadric in Pk
∼= P

3
k
. Moreover, X is rational if and only

if X has a k-rational point. In this case, we have P ∼= P
3
k .

PROOF To simplify notation, set L := ksep. We have X (L) 
= ∅, for example, by
[18, Proposition A.1.1], as well as Pic(X L) ∼= Pic(Xk)

∼= Z
2 by Theorem 4.2. The

classes (1, 0) and (0, 1) of Pic(X L) give rise to two morphisms X L → P
1
L , and

we obtain an isomorphism X L
∼= P

1
L × P

1
L . By abuse of notation, we re-define X

to be X L . Next, the absolute Galois group Gk acts trivially on the canonical class
(−2,−2), and thus, the Gk-action on Z(1, 1) ⊂ Z

2 is trivial. By Proposition 2.7,
we have PicX/k(K )Gk ∼= Pic(X/k)(fppf)(k), and, since (1, 1) ∈ Z

2 is Gk-invariant, the
unique invertible sheafLon X withL⊗2 ∼= ω−1

X
descends to a class in Pic(X/k)(fppf)(k).

Over L , the class L is very ample and defines an embedding of X as smooth quadric
surface into P

3
L . Thus, by Theorem 3.4, we obtain an embedding |L| : X ↪→P , where

P is a Brauer–Severi threefold over k with δ(L) = [P] ∈ Br(k).
Finally, if X is rational, then it has a k-rational point, and then, also P has a

k-rational point, i.e., P ∼= P
3
k . Conversely, if there exists a k-rational point x ∈ X ,

then X is a quadric in P
3
k , and projection away from x induces a birational map

X ��� P
2
k . �

Next, we establish an explicit classification of degree 8 del Pezzo surfaces of
product type in terms of the Néron–Severi rank ρ and Brauer–Severi curves. To
simplify notation in the sequel, let us recall the definition of contracted products. If a
finite group G acts on a scheme X from the right and it acts on a scheme Y from the
left and all schemes and actions are over Spec k for some field k, then we denote the
quotient of X ×Spec k Y by the diagonal G-action defined by (x, y) �→ (xg, g−1 y)
for all g ∈ G by

X ∧G Y := (X ×Spec k Y )/G.

We refer to [19, Chap. III.1.3] for details and applications.

Proposition 5.2 Let X and X ⊂ P be as in Theorem5.1.

(1) if ρ(X) = 2, then
X ∼= P ′ × P ′′,
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where P ′ and P ′′ are Brauer–Severi curves over k, whose Brauer classes satisfy
[P] = [P ′] + [P ′′] ∈ Br(k). In particular, P ∼= P

3
k if and only if P ′ ∼= P ′′.

(2) If ρ(X) = 1, then there exist a Brauer–Severi curve P ′ over k and a finite Galois
extension K/k with Galois group H := Z/2Z, such that X arises as twisted
self-product

X ∼= (P ′ × P ′)K /H = Spec K ∧H (P ′ × P ′),

where the H-action permutes the factors of P ′
K × P ′

K . Moreover, P ∼= P
3
k and

P ′ is a hyperplane section of X ⊂ P
3
k .

Proof We keep the notations and assumptions from the proof of Theorem 5.1. The
Gk-action fixes the class (1, 1). Since the Gk-action preserves the intersection pairing
on PicX/k(ksep), it follows that Gk acts onZ(1,−1) either trivially, or by sign changes.
We have ρ(X) = 2 in the first case, and ρ(X) = 1 in the latter.

First, assume that ρ(X) = 2. By Theorem 3.4, the classes (1, 0) and (0, 1)
give rise to morphisms to Brauer–Severi curves X → P ′ and X → P ′′ of class
[P ′] = δ((1, 0)) and [P ′′] = δ((0, 1)) in Br(k), respectively. Thus, we obtain a mor-
phism X → P ′ × P ′′, which is an isomorphism because it is an isomorphism over
ksep. Since δ is a homomorphism, we find [P] = δ(L) = δ((1, 1)) = δ((1, 0)) +
δ((0, 1)) = [P ′] + [P ′′]. Using that P ′ and P ′′ are of period 2, we find that P ∼= P

3
k

if and only if [P] = 0, i.e., if and only if [P ′] = [P ′′]. By Corollary 2.16, the latter
is equivalent to P ′ ∼= P ′′.

Second, assume that ρ(X) = 1. Then, the Gk-action permutes (0, 1) and (1, 0),
i.e., it permutes the factors of P

1
ksep × P

1
ksep . Thus, there exists a unique quadratic

Galois extension K/k, such that Gal(ksep/K ) acts trivially on PicX/k(ksep) and by the
previous analysis we have X K := Q′′ × Q′′′ for two Brauer–Severi curves Q′′, Q′′′
over K . Using these and the H := Gal(K/k)-action, we obtain a H -stable diagonal
embedding Q′ ⊂ X K of a Brauer–Severi curve over K , and then, the two projections
induce isomorphisms Q′ ∼= Q′′ and Q′ ∼= Q′′′ over K . Taking the quotient by H , we
obtain a Brauer–Severi curve P ′ := Q′/H ⊂ X over k. Clearly, P ′

K
∼= Q′ and we

obtain the description of X as twisted self-product. On X , the curve P ′ is a section
of the class (1, 1), which implies that this class comes from an invertible sheaf, and
thus, 0 = δ((1, 1)) ∈ Br(k) by Proposition 2.5. Since δ((1, 1)) = [P], we conclude
P ∼= P

3
k . �

Remark 5.3 In the case of quadrics in P
3, similar results were already established

in [9]. A related, but somewhat different view on degree 8 del Pezzo surfaces of
product type was taken in (the proof of) [10, Proposition 5.2]: If X is such a surface,
then there exists a quadratic Galois extension K/k and a Brauer–Severi curve C over
K , such that X ∼= ResK/kC , where ResK/k denotes Weil restriction, see also [41].

Corollary 5.4 Let X be as in Theorem5.1. Then,

H 1
(
H, PicX/k(k

sep)
) = 0

for all closed subgroups H ⊆ Gk, and
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Am(X) ∼=
⎧⎨
⎩

0 if ρ = 1 or if X ∼= P
1
k × P

1
k,

(Z/2Z)2 if ρ = 2 andP1
k 
∼= P ′ 
∼= P ′′ 
∼= P

1
k,

(Z/2Z) in the remaining ρ = 2-cases.

PROOF Set H 1(H) := H 1(H, PicX/k(ksep)). If ρ = 2, then the Gk-action on
PicX/k(ksep) is trivial, and we find H 1(H) = 0 as in the proof of Lemma 4.5. More-
over, Am(X) is generated by δ((0, 1) and δ((1, 0)), i.e., by [P ′] and [P ′′] in Br(k).
From this, the assertions on Am(X) follow in case ρ = 2.

If ρ = 1, then there exists an isomorphism PicX/k(ksep) ∼= Z
2, such that the Gk-

action factors through a surjective homomorphism Gk → Z/2Z and acts on Z
2 via

(a, b) �→ (b, a). In particular, we find H 1(Z/2Z,Z2) = 0 with respect to this action,
see, for example, [4, Chap. III.1, Example 2]. From this, we deduce H 1(H) = 0 using
inflation maps. Moreover, Am(X) is generated by δ((1, 1)), which is zero, since (1, 1)
is the class of an invertible sheaf. �

Corollary 5.5 If X is as in Theorem5.1, then the following are equivalent

(1) X is birationally equivalent to a Brauer–Severi surface,
(2) X is rational,
(3) X has a k-rational point, and
(4) X is isomorphic to

X ∼= P
1
k × P

1
k or to X ∼= Spec K ∧ (P1

k × P
1
k).

PROOF The implications (2) ⇒ (1) and (2) ⇒ (3) are trivial, and we established
(3) ⇒ (2) in Theorem 5.1. Moreover, if X is birationally equivalent to a Brauer–
Severi surface P , then Am(P) = Am(X) is cyclic of order 1 or 3 by Lemma 4.5 and
Theorem 4.6. Together with Corollary 5.4, we conclude Am(P) = Am(X) = 0, i.e.,
P ∼= P

2
k , which establishes (1) ⇒ (2).

Since (4) ⇒ (3) is trivial, it remains to establish (3) ⇒ (4). Thus, we assume
X (k) 
= ∅. If ρ = 2, then X ∼= P ′ × P ′′ and both Brauer–Severi curves P ′ and P ′′
have k-rational points, i.e., X ∼= P

1
k × P

1
k . If ρ = 1, we have an embedding X ⊂ P

3
k

and X ∼= Spec K ∧ (P ′ × P ′). Since X (k) 
= ∅, we have X (K ) 
= ∅, which yields
P ′(K ) 
= ∅, and thus P ′

K
∼= P

1
K . A k-rational point on X gives rise to a K -rational

and Gal(K/k)-stable point on X K
∼= P

1
K × P

1
K . In particular, this point lies on some

diagonal P1
K ⊂ X K , and thus, lies on some diagonal P ′′ ⊆ X with X ∼= Spec K ∧

(P ′′ × P ′′). Since P ′′(k) 
= ∅, we find P ′′ ∼= P
1
k . �

We refer to Sect. 6.1 for more applications of these results to the arithmetic and
geometry of these surfaces.

6 Del Pezzo Surfaces of Large Degree

Let X be a del Pezzo surface of degree d over a field k that is not of product type.
Then, there exists a birational morphism
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f : X → P
2
k

that is a blow-up in (9 − d) closed points P1, ..., P9−d in general position. We set

H := f
∗OP

2
k
(1) and let Ei := f

−1
(Pi ) be the exceptional divisors of f . Then, there

exists an isomorphism of abelian groups

Pic(X) ∼= ZH ⊕ ⊕9−d
i=1 ZEi .

The (−1)-curves of X consist of the Ei , of preimages under f of lines through two
distinct points Pi , of preimages under f of quadrics through five distinct points Pi ,
etc., and we refer to [35, Theorem 26.2] for details. Let K X be the canonical divisor
class of X , and let Ẽ be the sum of all (−1)-curves on X . We leave it to the reader
to verify the following table.

d class of Ẽ in Pic(X) relations
9 0 3H = −K X
8 E1 3H = −K X + Ẽ
7 H H = Ẽ
6 3H − ∑3

i=1 Ei 0 = −K X - Ẽ
5 6H − 2

∑4
i=1 Ei 0 = −2K X - Ẽ

4 12H − 4
∑5

i=1 Ei 0 = −4K X - Ẽ
3 27H − 9

∑6
i=1 Ei 0 = −9K X - Ẽ

2 84H − 28
∑7

i=1 Ei 0 = −28K X - Ẽ
1 720H − 240

∑8
i=1 Ei 0 = −240K X - Ẽ

Together with Theorem 3.4, we obtain the following result.

Theorem 6.1 Let X be a del Pezzo surface of degree d ≥ 7 over a field k that is not
of product type. Then, f descends to a birational morphism

f : X → P

to a Brauer–Severi surface P over k, where

δ(H) = [P] ∈ Br(k) and Am(X) ∼= Z/per(P)Z.

Moreover, X is rational if and only if P ∼= P
2
k . This is equivalent to X having a

k-rational point.

Proof By Theorem 4.2, the invertible sheaf H on Xk defining f already lies in
PicX (ksep), i.e., f descends to ksep, and by abuse of notation, we re-define X to
be Xksep . Clearly, the canonical divisor class K X is Gk-invariant, and since Gk per-
mutes the (−1)-curves of X , also the class of Ẽ is Gk-invariant. In particular, K X
and Ẽ define classes in PicX/k(ksep)Gk ∼= Pic(X/k)(fppf)(k). If d ≥ 7, then the above
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table shows that there exist positive multiples of H that are integral linear combina-
tions of K X and Ẽ . Thus, H ∈ PicX/k(ksep) descends to a class in Pic(X/k)(fppf)(k).
By Theorem 3.4, f descends to a birational morphism f : X → P , where P is a
Brauer–Severi surface of class δ(H) ∈ Br(k). The assertion on Am(X) follows from
Proposition 2.10 and Theorem 2.19.

If X has a k-rational point, then so has P , and then P ∼= P
2
k . Since f is a birational

morphism, P ∼= P
2
k implies that X is rational. And if X is rational, then it has a

k-rational point by Lemma 4.3. �

As an immediate consequence, we obtain rationality and the existence of k-rational
points in some cases.

Corollary 6.2 Let X be as in Theorem6.1. If d ∈ {7, 8}, then X has a k-rational
point and f descends to a birational morphism f : X → P

2
k .

Proof By Theorem 6.1, there exists a birational morphism X → P that is a blow-up
in a closed subscheme Z ⊂ P of length (9 − d). By Corollary 2.21, we have P ∼= P

2
k

if 3 and (9 − d) are coprime. In particular, we have X (k) 
= ∅ in these cases by
Theorem 6.1 and Lemma 4.3. �

Since a del Pezzo surface of degree 9 is a Brauer–Severi surface, it has rational
points if and only if it is trivial. In particular, Corollary 6.2 does not hold for d = 9.

6.1 Applications to Arithmetic Geometry

We now give a couple of applications of the just established results. Again, we stress
that most if not all of these applications are well-known, and merely illustrate the
usefulness of studying varieties via Brauer–Severi varieties.

Corollary 6.3 If X is a del Pezzo surface of degree ≥ 7 over k, then

H 1
(
H, PicX/k(ksep)

) = 0.

for all closed subgroups H ⊆ Gk

PROOF If X is not of product type, then it is birationally equivalent to a Brauer–
Severi surface P by Theorem 6.1, and then the statement follows from Theorem 4.6
and Lemma 4.5. If X is of product type, then this is Corollary 5.4. �

For the next application, let us recall that a surface is called rational if it is
birationally equivalent toP2

k , and that it is called unirational if there exists a dominant
and rational map from P

2
k onto it. The following result is a special case of [35,

Theorem 29.4].
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Corollary 6.4 Let X be a del Pezzo surface of degree ≥7 over a field k. Then, the
following are equivalent:

(1) X is rational,
(2) X is unirational, and
(3) X has a k-rational point.

PROOF Clearly, we have (1) ⇒ (2) ⇒ (3), whereas (3) ⇒ (1) follows from Corol-
lary 5.5 and Theorem 6.1. �

This leads us to the question whether a del Pezzo surface necessarily has a k-
rational point. Over finite fields, this is true and follows from the Weil conjectures,
which we will recall in Theorem 8.1 below. By a theorem of Wedderburn, finite
fields have trivial Brauer groups, and thus, the following corollary gives existence of
k-rational points for more general fields.

Corollary 6.5 Let X be a del Pezzo surface of degree ≥7 over a field k with Br(k) =
0. Then, X has a k-rational point, and thus, is rational.

Proof If X is not of product type, then there exists a birational morphism f : X → P
to a Brauer–Severi surface by Theorem 6.1. Since Br(k) = 0, we have P ∼= P

2
k , and

Theorem 6.1 gives X (k) 
= ∅.
Thus, let X be of product type. By Proposition 5.2, X is a product of Brauer–Severi

curves (ρ = 2), or contains at least a Brauer–Severi curve (ρ = 1). Since Br(k) = 0,
all Brauer–Severi curves are isomorphic to P

1
k , and thus, contain k-rational points.

In particular, we find X (k) 
= ∅. �

In Sect. 4.3, we discussed the Hasse principle and weak approximation for varieties
over global fields. Here, we establish the following.

Corollary 6.6 Del Pezzo surfaces of degree ≥7 over global fields satisfy weak
approximation and the Hasse principle.

Proof If X is not of product type, then it is birationally equivalent to a Brauer–Severi
surface by Theorem 6.1, and since the two claimed properties are preserved under
birational maps and hold for Brauer–Severi varieties, the assertion follows in this
case.

If X is of product type, then there are two cases by Proposition 5.2. If ρ = 2, then
X is a product of two Brauer–Severi curves, and we conclude as before.

Thus, we may assume ρ = 1. Let us first establish the Hasse principle: there
exists a quadratic Galois extension L/K , such that ρ(X L) = 2. From X (Kν) 
= ∅
for all ν ∈ �K , we find X Lμ

∼= P
1
Lμ

× P
1
Lμ

for all μ ∈ �L , and thus, X L
∼= P

1
L × P

1
L

by the Hasse principle for Brauer–Severi curves. As in the proof of Corollary 5.5, we
exhibit X as twisted self-product of P1

k , which has a k-rational point and establishes
the Hasse principle. Thus, to establish weak approximation, we may assume that
X has a k-rational point. But then, X is rational by Corollary 5.5, and since weak
approximation is a birational invariant, the assertion follows. �
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7 Del Pezzo Surfaces of Degree 6

In the previous sections, we have seen a close connection between Brauer–Severi
varieties and del Pezzo surfaces of degree ≥7. In this section, we discuss del Pezzo
surfaces of degree 6, which are not so directly linked to Brauer–Severi varieties.

For the geometry and the arithmetic of these surfaces, we refer the interested
reader to [6, 35], and the survey [47, Sect. 2.4]. We keep the notation introduced in
Sect. 6: If X is a degree 6 del Pezzo surface over a field k, then there exists a blow-up
fk : X → P

2
k

in three points in general position with exceptional (−1)-curves E1, E2,
and E3. Then, there are six (−1)-curves on X , namely the three exceptional curves
Ei , i = 1, 2, 3 of f , as well as the three curves E ′

i := H − E j − Ek , i = 1, 2, 3
where { j, k} = {1, 2, 3}\{i} and where H = f

∗OP2(1) as in Sect. 6. These curves
intersect in a hexagon as follows.

E1

E ′
2

��
��

��
�

E ′
3

�������

E2 ��
��

��
�

E ′
1

E3

�������

The absolute Galois group Gk acts on these six (−1)-curves on Xksep , and associated
to this action, we have following field extensions of k.

(1) Since Gk acts on the two sets {E1, E2, E3} and {E ′
1, E ′

2, E ′
3}, there is a group

homomorphism
ϕ1 : Gk → S2

∼= Z/2Z.

The fixed field of either of the two sets is a finite separable extension k ⊆ K
with [K : k]|2, and k 
= K if and only if ϕ1 is surjective.

(2) Since Gk acts on the three sets {Ei , E ′
i }, i = 1, 2, 3, there is a group homomor-

phism
ϕ2 : Gk → S3.

There exists a finite separable extension k ⊆ L with [L : k]|3, unique up to
conjugation in ksep, over which at least one of these three sets is defined. We
have k 
= L if and only if 3 divides the order of ϕ2(Gk). Next, there exists a
finite and separable extension L ⊆ M with [M : L]|2, over which all three sets
are defined.

Combining ϕ1 and ϕ2, we obtain a group homomorphism

Gk
ϕ1×ϕ2−→ Z/2Z × S3

∼= D2·6,
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where D2·6 denotes the dihedral group of order 12, i.e., the automorphism group
of the hexagon. Using these field extensions, we obtain the following classification,
which uses and slightly extends a classical result of Manin from [35] in case (3).

Theorem 7.1 Let X be a del Pezzo surface of degree 6 over a field k.

(1) The morphism f descends to a birational morphism

f : X → P

to a Brauer–Severi surface P if and only if k = K . In this case, ρ(X) ≥ 2 and
Am(X) = Am(P).

(2) There exists a birational morphism X → Y onto a degree 8 del Pezzo surface Y
of product type if and only if k = L. In this case,

ρ(X) Y
k 
= M 3 Spec M ∧ (P1

k × P
1
k)

k = M 4 P
1
k × P

1
k

X has a k-rational point, and Am(X) = 0.
(3) If k 
= K and k 
= L, then ρ(X) = 1, Am(X) = 0, and the following are equiv-

alent.

(a) X is birationally equivalent to a Brauer–Severi surface,
(b) X is birationally equivalent to a product of two Brauer–Severi curves,
(c) X is rational, and
(d) X has a k-rational point.

PROOF Let us first show (1). If k = K , then F := E1 + E2 + E3 descends to a class in
Pic(Xksep)Gk = Pic(X/k)(fppf)(k) and we find ρ(X) ≥ 2. Thus, also H = 1

3 (−K X + F)
descends to a class in Pic(X/k)(fppf)(k), and by Theorem 3.4, we obtain a birational
morphism |H | : X → P to a Brauer–Severi surface, which coincides with f over k.
Conversely, if f descends to a birational morphism f : X → P , then the exceptional
divisor of f is of class F or E ′

1 + E ′
2 + E ′

3, and we find k = K . Moreover, we have
Am(X) = Am(P) by Theorem 4.6.

If k = L , then, say E1 + E ′
1, descends to a class in Pic(Xksep)Gk . Moreover, we

find that the classes 1
2 (−K X + E1 + E ′

1) = 2H − E2 − E3 as well as 1
2 (−K X −

E1 − E ′
1) = H − E1, and thus, the classes H , E1, and E ′

1 = H − E2 − E3 lie in
Pic(Xksep)Gk . The Gk-action is trivial on H and E1, whereas it is either trivial on
the set {E2, E3} (if k = M) or permutes the two (if k 
= M). Since the class of
E1 is Gk-invariant and there is a unique effective divisor in this linear system, we
find that P1

k
∼= E1 ⊂ X . In particular, X has a k-rational point and Am(X) = 0.

Using Theorem 3.4 and the fact that X has a k-rational point, we obtain a birational
morphism

|1

2
(−K X + E1 + E ′

1)| : X → Y ⊂ P
3
k
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onto a smooth quadric Y with a k-rational point. In particular, Y is a degree 8 del Pezzo
surface of product type. Over ksep, this morphism contracts E1 and E ′

1 and thus, we
find

Pic(Yksep) ∼=
(
ZH ⊕

3⊕
i=1

ZEi

)
/〈E1, E ′

1〉 ∼= ZE2 ⊕ ZE3.

The Gk-action on it is either trivial (k = M) or permutes the two summands (k 
= M).
Using Y (k) 
= ∅ and Corollary 5.5, we find ρ(X) = 4 and Y ∼= P

1
k × P

1
k in the first

case, and ρ(X) = 3 and Y ∼= Spec M ∧ (P1
k × P

1
k) in the latter. Conversely, if there

exists a birational morphism X → Y onto a degree 8 del Pezzo surface of product
type, then the exceptional divisor is of class Ei + E ′

i for some i , and thus, k = L .
This establishes (2).

Finally, assume that k 
= K and k 
= L . Then,ϕ1 is surjective, andϕ2(Gk) contains
all 3-cycles of S3. From this, it is not difficult to see that Pic(Xk)

Gk is of rank 1 and
generated by the class of K X . Since this latter class is an invertible sheaf, we find
Am(X) = 0. Thus, if X is birationally equivalent to a Brauer–Severi surface P ,
then Am(X) = 0 together with Lemma 4.5 and Theorem 4.6 implies that P ∼= P

2
k .

Similarly, if X is birationally equivalent to the product P ′ × P ′′ of two Brauer–
Severi curves, then P ′ ∼= P ′′ ∼= P

1
k . From this, we obtain the implications (a) ⇔

(b) ⇔ (c) ⇒ (d). The implication (d) ⇒ (c) is due to Manin [35, Theorem 29.4].
�

Remark 7.2 In case (1) of the above theorem it is important to note that P need not
be unique, but that Am(P) is well-defined. More precisely, if we set F := E1 + E2 +
E3 and F ′ = E ′

1 + E ′
2 + E ′

3, then Theorem 3.4 provides us with two morphisms to
Brauer–Severi surfaces P1 and P2

|H | = | 1
3 (−K X + F)| : X → P1

|H ′| := | 1
3 (−K X + F ′)| : X → P2

Since H + H ′ = −K X and δ(K X ) = 0, we find

[P1] = δ(H) = δ(−K X − H ′) = −δ(H ′) = −[P2] ∈ Br(k),

and thus, P1
∼= P2 if and only if both are isomorphic to P

2
k . On the other hand, P1

and P2 are birationally equivalent, since we have birational morphisms

P1
|H |←− X

|H ′|−→ P2 .

Over k, this becomes the blow-up of three closed points Z followed by the blow-
down of the three (−1)-curves that are the strict transforms of lines through any two
of the points in Z . This is an example of a Cremona transformation.
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We remark that a surface of case (3) and without k-rational points is neither
birationally equivalent to a Brauer–Severi surface nor to the product of two Brauer–
Severi curves. For finer and more detailed classification results for degree 6 del Pezzo
surfaces, we refer the interested reader to [2, 10, 13]. Finally, the sum Ẽ of all (−1)-
curves on Xksep is a Gk-invariant divisor, and thus, descends to a curve on X . By
[35, Theorem 30.3.1], the complement X\Ẽ is isomorphic to a torsor under a two-
dimensional torus over k, which can be used to study the arithmetic and geometry
of these surfaces, see also [43].

8 Del Pezzo Surfaces of Small Degree

For the remainder of this article, our results will be less complete and less self-
contained. We will circle around questions of birationality of a del Pezzo surface
X of degree ≤5 to Brauer–Severi surfaces, and about descending the morphism
f : X → P

2
k

to k.

8.1 Birationality to Brauer–Severi Surfaces

Let k = Fq be a finite field of characteristic p, and let X be a smooth and projective
surface over k such that Xk is birationally equivalent to P

2. Then, it follows from the
Weil conjectures (in this case already a theorem of Weil himself) that the number of
k-rational points is congruent to 1 modulo q, see [35, Chap. IV.27]. In particular, we
obtain that

Theorem 8.1 (Weil) If X is a del Pezzo surface over a finite field Fq , then X has a
Fq -rational point.

Since Br(Fq) = 0 by a theorem of Wedderburn, there are no non-trivial Brauer–
Severi varieties over Fq .

Remark 8.2 Let X be a del Pezzo surface of degree ≥5 over a field k. Manin [35,
Theorem 29.4] showed that X is rational if and only if it contains a k-rational point.
Even if X has no k-rational point, Manin [35, Theorem 29.3] showed that

H 1
(
H, Pic(X/k)(fppf)(k

sep)
) = 0

for all closed subgroups H ⊆ Gk . We refer to [8, Théorème 2.B.1] for a general
principle explaining this vanishing of cohomology.

In this section, we give a partial generalization to birational maps to Brauer–Severi
surfaces.
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Lemma 8.3 Let X be a degree d del Pezzo surface over k. Then,

(1) There exists an effective zero-cycle Z of degree d on X. If d 
= 2 or if char(k) 
= 2,
then there exists such a zero-cycle Z, whose closed points have residue fields
that are separable over k.

(2) The abelian group Am(X) is finite and every element has an order dividing d.

PROOF If d ≥ 3, then ω−1
X is very ample, and |ω−1

X | embeds X as a surface of degree
d into P

d
k . Intersecting X with a linear subspace of codimension 2, we obtain an

effective zero-cycle Z of degree d on X . The closed points of Z have automatically
separable residue fields if k is finite. Otherwise, k is infinite, and then, the intersection
with a generic linear subspace of codimension 2 yields a Z that is smooth over k by
[28, Théorème I.6.3]. Thus, in any case, we obtain a Z , whose closed points have
residue fields that are separable over k. If d = 2, then |ω−1

X | defines a double cover
X → P

2
k , and the pre-image of a k-rational point yields an effective zero-cycle Z of

degree 2 on X . If char(k) 
= 2, then residue fields of closed points of Z are separable
over k. If d = 1, then | − K X | has a unique-base point, and in particular, X has a
k-rational point. This establishes (1). Since b1(X) = 0, the group Am(X) is finite by
Lemma 2.13. Then, assertion (2) follows from Lemma 2.9. �

Corollary 8.4 Let X be a del Pezzo surface of degree d over a field k.

(1) If d ∈ {1, 2, 4, 5, 7, 8} and X is birationally equivalent to a Brauer–Severi sur-
face P, then P ∼= P

2
k and X has a k-rational point.

(2) If d ∈ {1, 3, 5, 7, 9} and X is birationally equivalent to a product P ′ × P ′′ of
two Brauer–Severi curves, then P ′ ∼= P ′′ ∼= P

1
k and X has a k-rational point.

PROOF Let X and d be as in (1). Then, every element of Am(X) is of order dividing
d by Lemma 8.3, but also of order dividing 3 by Theorems 2.18 and 4.6. By our
assumptions on d, we find Am(P) = 0, and thus, P ∼= P

2
k . Since the latter has a

k-rational point, so has X by Lemma 4.3. This shows (1). The proof of (2) is similar
and we leave it to the reader. �

Combining this with a result of Coray [12], we obtain the following.

Theorem 8.5 Let X be a del Pezzo surface of degree d ∈ {5, 7, 8} over a perfect
field k. Then, the following are equivalent

(1) There exists a dominant and rational map P ��� X from a Brauer–Severi surface
P over k,

(2) X is birationally equivalent to a Brauer–Severi surface,
(3) X is rational, and
(4) X has a k-rational point.

PROOF The implications (3) ⇒ (2) ⇒ (1) are trivial.
Let ϕ : P ��� X be as in (1). By Lemma 8.3, there exists a zero-cycle of degree 9

on P , and another one of degree d on X . Using ϕ, we obtain a zero-cycle of degree
dividing 9 on X . By assumption, d is coprime to 9, and thus, there exists a zero-cycle



Morphisms to Brauer–Severi Varieties, with Applications to Del Pezzo Surfaces 189

of degree 1 on X . By [12], this implies that X has a k-rational point and establishes
(1) ⇒ (4).

The implication (4) ⇒ (3) is a result of Manin [35, Theorem 29.4]. �
Now, if a del Pezzo surface X over a field k is birationally equivalent to a Brauer–

Severi surface, then H 1(H, PicX/k(ksep)) = 0 for all closed subgroups H ⊆ Gk by
Theorem 4.6. Moreover, this vanishing holds for all del Pezzo surfaces of degree ≥5,
see Remark 8.2. However, for del Pezzo surfaces of degree ≤4, these cohomology
groups may be non-zero, see [35, Sect. 31], [32, 45, 46]. In particular, del Pezzo
surfaces of degree ≤4 are in general not birationally equivalent to Brauer–Severi
surfaces.

For further information concerning geometrically rational surfaces, unirationality,
central simple algebras, and connections with cohomological dimension, we refer
the interested reader to [10].

8.2 Del Pezzo Surfaces of Degree 5

In order to decide whether a birational map fk : Xk → P
2
k

as in Sect. 6 descends to
k for a degree 5 del Pezzo surface X over k, we introduce the following notion.

Definition 8.6 Let X be a del Pezzo surface over a field k. A conic on X is a
geometrically integral curve C on X with C2 = 0 and −K X · C = 2. An elementL ∈
Pic(X/k)(fppf)(k) is called a conic class if L ⊗k k ∼= OXk

(C) for some conic C on Xk .

The following is an analogue of Theorem 6.1 for degree 5 del Pezzo surfaces.

Theorem 8.7 Let X be a del Pezzo surface of degree 5 over a field k. Then, the
following are equivalent:

(1) There exists a birational morphism f : X → P to a Brauer–Severi surface, such
that fk is the blow-up of 4 points in general position.

(2) There exists a birational morphism f : X → P
2
k , such that fk is the blow-up of

4 points in general position.
(3) There exists a class F ∈ Pic(X/k)(fppf)(k) such that

Fk
∼= OX (E1 + E2 + E3 + E4),

where the Ei are disjoint (−1)-curves on X.
(4) There exists a conic class in Pic(X/k)(fppf)(k).

If these equivalent conditions hold, then X has a k-rational point.

PROOF If f is as in (1), then X has a k-rational point by Corollary 8.4. Thus, P ∼= P
2
k ,

and we obtain (1) ⇒ (2).
If f is as in (2), then the exceptional divisor of f is a class F as stated in (3), and

we obtain (2) ⇒ (3).
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If f is as in (3), then, using Theorem 3.4, there exists a birational morphism
| 1

3 (−K X − F)| : X → P to a Brauer–Severi surface P as in (1), which establishes
(3) ⇒ (1).

If f is as in (2), let Z ⊂ P
2
k be the degree 4 cycle blown up by f . Then

f ∗(OP
2
k
(2)(−Z)), i.e., the pullback of the pencil of conics through Z , is a conic

class on X and establishes (2) ⇒ (4).
Finally, if C is a conic class on X , then, using Theorem 3.4, there exists a birational

morphism | − K X + C | : X → P to a Brauer–Severi surface P as in (1), which
establishes (4) ⇒ (1). �

Remark 8.8 By theorems of Enriques, Swinnerton-Dyer, Skorobogatov, Shepherd-
Barron, Kollár, and Hassett (see [47, Theorem 2.5] for precise references and
overview), a degree 5 del Pezzo X over a field k always has a k-rational point.
Thus, X is rational by [35, Theorem 29.4], and we have

Am(X) = 0, as well as H 1(H, PicX/k(k
sep)) = 0

for every closed subgroup H ⊆ Gk by Corollary 2.12, Theorem 4.6, and Lemma 4.5.

8.3 Del Pezzo Surfaces of Degree 4

A classical theorem of Manin [35, Theorem 29.4] states that a del Pezzo surface of
degree 4 over a sufficiently large field k is unirational if and only if it contains a
k-rational point. Here, we have the following analogue in our setting.

Proposition 8.9 Let X be a del Pezzo surface of degree 4 over a perfect field k.
Then, the following are equivalent

(1) There exists a dominant rational map P ��� X from a Brauer–Severi surface P
over k.

(2) X is unirational,
(3) X has a k-rational point,

PROOF The implications (2) ⇒ (1) is trivial and (2) ⇒ (3) is Lemma 4.3.
The implication (3) ⇒ (2) is shown in [35, Theorem 29.4] and [35, Theorem 30.1]

if k has at least 23 elements and in [31, Theorem 2.1] and [40, Proposition 5.19] in
the remaining cases.

To show (1) ⇒ (3), we argue as in the proof of the implication (1) ⇒ (4)
of Theorem 8.5 by first exhibiting a degree 1 zero-cycle on X , and then, using
[12] to deduce the existence of a k-rational point on X . We leave the details to
the reader. �

If a field k is finite or perfect of characteristic 2, then a degree 4 del Pezzo
surface over k always has a k-rational point, see [35, Theorem 27.1] and [16]. In this
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case, we also have Am(X) = 0. From Lemma 8.3, we infer that Am(X) is at most 4-
torsion for degree 4 del Pezzo surfaces. For the possibilities of H 1(Gk, PicX/k(ksep)),
see [45].

The following is an analog of Theorem 6.1 for degree 4 del Pezzo surfaces.

Theorem 8.10 Let X be a del Pezzo surface of degree 4 over a field k. Then, the
following are equivalent:

(1) There exists a birational morphism f : X → P to a Brauer–Severi surface, such
that fk is the blow-up of 5 points in general position.

(2) There exists a birational morphism f : X → P
2
k , such that fk is the blow-up of

5 points in general position.
(3) There exists a curve P

1
k

∼= E ⊂ X with E2 = −1.
(4) There exists a class E ∈ Pic(X/k)(fppf)(k) with E2 = K X · E = −1.

If these equivalent conditions hold, then X has a k-rational point.

PROOF The implication (2) ⇒ (1) is trivial. If f is as in (1), then X has a k-rational
point by Corollary 8.4. Thus, P ∼= P

2
k , and we obtain (1) ⇒ (2).

If f is as in (2), let Z ⊂ P
2
k be the degree 5 cycle blown up by f . Then

f ∗(OP
2
k
(2)(−Z)), i.e., the pullback of the class of the unique conic through Z , is a

class E as stated in (4) on X and establishes (2) ⇒ (4).
If E is a class as in (4), then, using Theorem 3.4, there exists a birational morphism

| − K X − E | : X → P to a Brauer–Severi surface P as in (1), which establishes
(4) ⇒ (1).

The implication (3) ⇒ (4) is trivial, and if E is a class as in (4), then there
exists a unique section of the associated invertible sheaf on ksep. This is necessarily
Gk-invariant, thus, descends to a curve on X , and establishes (4) ⇒ (3). �

Remark 8.11 In [44], Skorobogatov called del Pezzo surfaces of degree 4 that sat-
isfy condition (3) above quasi-split.

Before proceeding, let us recall a couple of classical results on the geometry of
degree 4 del Pezzo surfaces, and refer the interested reader to [44] and [15, Chap. 8.6]
for details. The anti-canonical linear system embeds X as a complete intersection
of two quadrics in P

4
k , i.e., X is given by Q0 = Q1 = 0, where Q0 and Q1 are

two quadratic forms in five variables over k. The degeneracy locus of this pencil of
quadrics

DegX := { det(t0 Q0 + t1 Q1) = 0 } ⊂ P
1
k = Proj k[t0, t1]

is a zero-dimensional subscheme, which is étale and of length 5 over k. Over k, its
points correspond to the singular quadrics containing X , all of which are cones over
smooth quadric surfaces. Let ν2 : P1

k → P
2
k be the 2-uple Veronese embedding and

set
Z := ν2(DegX ) ⊂ C := ν2(P

1
k) ⊂ P

2
k .
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If X contains a k-rational (−1)-curve, i.e., if X is quasi-split, then X is the blow-up
of P2

k in Z , see Theorem 8.10 and [44, Theorem 2.3].

Proposition 8.12 Let X be a del Pezzo surface of degree 4 over a field k of charac-
teristic 
= 2 with at least 5 elements. Then, the following are equivalent:

(1) The degeneracy scheme DegX has a k-rational point.
(2) There exists a finite morphism ψ : X → S of degree 2, where S is a del Pezzo

surface of degree 8 of product type.

Moreover, if ψ is as in (2), then S is isomorphic to a quadric in P
3
k .

PROOF To show (1) ⇒ (2), assume that DegX has a k-rational point. Thus, there
exists degenerate quadric Q with X ⊂ Q ⊂ P

4
k . As explained in the proof of [15,

Theorem 8.6.8], Q is a cone over a smooth quadric surface, and the projection away
from its vertex P

4
k ��� P

3
k induces a morphism X → P

3
k that is finite of degree 2 onto

a smooth quadric surface S. In particular, S is a del Pezzo surface of degree 8 of
product type.

To show (2) ⇒ (1), let ψ : X → S be as in the statement. Then, we have a short
exact sequence (which even splits since char(k) 
= 2)

0 → OS → ψ∗OX → L−1 → 0,

where L is an invertible sheaf on S, which is of type (1, 1) on Sk
∼= P

1
k
× P

1
k
. In

particular, |L| defines an embedding ı : S → P
3
k as a quadric, and establishes the

final assertion. Now, ı ◦ ψ arises from a 4-dimensional subspace V inside the linear
system (ı ◦ ψ)∗OP

3
k
(1) ∼= ω−1

X . Thus, ı ◦ ψ is the composition of the anti-canonical
embedding X → P

4
k , followed by a projection P

4
k ��� P

3
k . As explained in the proof

of [15, Theorem 8.6.8], such a projection induces a degree 2 morphism onto a quadric
if and only if the point of projection is the vertex of a singular quadric inP4

k containing
X . In particular, this vertex and the corresponding quadric are defined over k, giving
rise to a k-rational point of DegX . �

In order to refine Proposition 8.12, we will use conic classes as introduced in
Definition 8.6.

Proposition 8.13 Let X be a del Pezzo surface of degree 4 over a field k. Then, the
following are equivalent:

(1) There exists a conic class in Pic(X/k)(fppf)(k).
(2) There exists a finite morphism ψ : X → P ′ × P ′′ of degree 2, where P ′ and P ′′

are a Brauer–Severi curves over k.

Moreover, if ψ is as in (2), then P ′ ∼= P ′′.

PROOF Let L ∈ Pic(X/k)(fppf)(k) be a conic class. By Theorem 3.4, there exist mor-
phisms |L| : X → P ′ and |ω−1

X ⊗ L−1| : X → P ′′, where P ′ and P ′′ are Brauer–
Severi curves over k. Combining them, we obtain a finite morphism X → P ′ × P ′′
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of degree 2. As in the proof of (2) ⇒ (1) of Proposition 8.12 we find that P ′ × P ′′
embeds into P

3, and thus, 0 = [P3
k] = [P ′] + [P ′′] ∈ Br(k) by Proposition 5.2. This

implies [P ′] = [P ′′] since these classes are 2-torsion, and thus, P ′ ∼= P ′′ by Corol-
lary 2.16. This establishes (1) ⇒ (2).

Conversely, let ψ : X → P ′ × P ′′ be as in (2). Then, ψ∗(OP ′(1) � OP ′′(1)) is a
conic class, and (1) follows. �

8.4 Del Pezzo Surfaces of Degree 3

For these surfaces, we have the following analogue of Theorem 6.1.

Theorem 8.14 Let X be a del Pezzo surface of degree 3 over a field k. Then, the
following are equivalent:

(1) There exists a birational morphism f : X → P to a Brauer–Severi surface, such
that fk is the blow-up of 6 points in general position.

(2) There exists a class F ∈ Pic(X/k)(fppf)(k) such that

Fk
∼= OX (E1 + E2 + E3 + E4 + E5 + E6),

where the Ei are disjoint (−1)-curves on X.

PROOF The proof is analogous to that of Theorem 8.7, and we leave the details to
the reader. �

Note that if the equivalent conditions of this theorem are fulfilled, then X is
not minimal. But the converse does not hold in general: If Y is a unirational, but not
rational del Pezzo surface of degree 4 over k, and y ∈ Y is a k-rational point not lying
on an exceptional curve, then the blow-up X → Y in y is a non-minimal degree 3
del Pezzo surface over k with k-rational points that is not birationally equivalent to
a Brauer–Severi surface over k.

By [35, Theorem 28.1], a degree 3 del Pezzo surface X is minimal if and only
if ρ(X) = 1, i.e., Pic(X/k)(fppf)(k) = Z · ωX . In this case, we have Am(X) = 0. In
particular, if such a surface is birationally equivalent to a Brauer–Severi surface P ,
then P ∼= P

2
k by Proposition 2.10 and Theorem 2.19. In particular, X is rational and

has a k-rational point in this case.

8.5 Del Pezzo Surfaces of Degree 2

Arguing as in the proof of Theorem 8.5, it follows that if there exists a dominant and
rational map P ��� X from a Brauer–Severi surface P onto a degree 2 del Pezzo
surface over a perfect field k, then X has a k-rational point, and thus Am(X) = 0.
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In particular, if X is birationally equivalent to a Brauer–Severi surface, then it is
rational, see also Corollary 8.4.

By work of Manin [35, Theorem 29.4], a degree 2 del Pezzo surface over a field k
is unirational if it has a k-rational point not lying on an exceptional curve. Together
with non-trivial refinements of [17, 42], such surfaces over finite fields are always
unirational.

By Lemma 8.3, we have that Am(X) is at most 2-torsion for degree 2 del Pezzo
surfaces. For the possibilities of H 1(Gk, PicX/k(ksep)), as well as further information
concerning arithmetic questions, we refer to [32].

8.6 Del Pezzo Surfaces of Degree 1

If X is a del Pezzo surface of degree 1, then it has a k-rational point, namely the unique
base point of | − K X |. Thus, we have Am(X) = 0, and there are no morphisms or
rational maps to non-trivial Brauer–Severi varieties.
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Arithmetic of K3 Surfaces

Anthony Várilly-Alvarado

1 Introduction

Being surfaces of intermediate type, i.e., neither geometrically rational or ruled, nor
of general type, K3 surfaces have a rich yet accessible arithmetic theory, which has
started to come into focus over the last fifteen years or so. These notes, written to
accompany a 4-hour lecture series at the 2015 Arizona Winter School, survey some
of these developments, with an emphasis on explicit methods and examples. They
are mostly expository, though I have included at the end two admittedly optimistic
conjectures on uniform boundedness of Brauer groups (modulo constants) for lattice
polarized K3 surfaces over number fields, which to my knowledge have not appeared
in print before (Conjectures 5.5 and 5.6). The topics treated in these notes are as
follows.
Geometry of K3 surfaces. We start with a crash course, light on proofs, on the
geometry of K3 surfaces: topological properties, including the lattice structure of
H2(X, Z) and simple connectivity; the period point of K3 surface, the Torelli theorem
and surjectivity of the period map.
Picard groups. Over a number field k, the geometric Picard group Pic(X) of a
projective K3 surface X/k is a free Z-module of rank 1 ≤ ρ(X) ≤ 20. Determining
ρ(X) for a given K3 surface is a difficult task; we explain how work of van Luijk,
Kloosterman, Elsenhans-Jahnel and Charles [16, 29, 60, 109] solves this problem.
Brauer groups. The Galois module structure of Pic(X) allows one to compute an
important piece of the Brauer group Br(X) = H2(X ét, Gm) of a locally solvable
K3 surface X , consisting of the classes of Br(X) that are killed by passage to an
algebraic closure, modulo Brauer classes coming from the ground field. These alge-
braic classes can be used to construct counter-examples to the Hasse principle on
K3 surfaces via Brauer–Manin obstructions.
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For surfaces of negative Kodaira dimension (e.g., cubic surfaces) the Brauer
group consists entirely of algebraic classes. In contrast, for K3 surfaces we know
that Br(X (C)) ∼= (Q/Z)22−ρ. However, a remarkable theorem of Skorobogatov and
Zarhin [102] says that over a number field the quotient of Br(X) by the subgroup of
constant classes is finite. We explain work by several authors on the computation of
the transcendental Brauer classes on K3 surfaces, and their impact on the arithmetic
of such surfaces [43, 44, 72].
Uniform boundedness questions. Finally, we explain in broad strokes an analogy
between Brauer classes on K3 surfaces and torsion points on elliptic curves; the later
are known to be uniformly bounded over a fixed number field, by work of Merel [73].
It is our hope that analogous statements could be true for K3 surfaces.
Results from AWS. As part of the Arizona Winter School, a number of students were
assigned to work on projects related to material of these notes. The experience was
successful beyond reasonable expectations, and several members of the resulting
three group projects continued working together long after the school. We briefly
report on their findings.

I omitted several active research topics due to time constraints, notably rational
curves on K3 surfaces, modularity questions, and Mordell-Weil ranks of elliptic K3
surfaces over number fields. I have resisted the temptation to add these topics so that
the notes remain a faithful, detailed transcription of the four lectures that gave rise
to them.1

Prerequisites. The departure point for these notes is working knowledge of the core
chapters of Hartshorne’s text [39, I-III], as well as a certain familiarity with the
basic theory of algebraic surfaces, as presented in [39, V Sects. 1, 3, 5] or [8]. I also
assume the reader is familiar with basic algebraic number theory (including group
cohomology and Brauer groups of fields), and basic algebraic topology, at the level
usually covered in first-year graduate courses in the United States. More advanced
parts of the notes use étale cohomology as a tool; Milne’s excellent book [75] will
come in handy as a reference. Many of the topics treated here have not percolated
to advanced textbooks yet. For this reason, I provide detailed references throughout
for readers seeking more depth on particular topics.

2 Geometry of K3 Surfaces

References: [7, 47, 64, 76].

Huybrechts’ notes [47] are quite detailed and superbly written, and will soon appear
in book form. Our presentation of the material in this section owes a lot to them.

1Videos of the lectures can be found at http://swc.math.arizona.edu/aws/2015/index.html.

http://swc.math.arizona.edu/aws/2015/index.html
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2.1 Examples of K3 Surfaces

By a variety X over an arbitrary field k we mean a separated scheme of finite type over
k. Unless otherwise stated, we shall assume varieties to be geometrically integral.
For a smooth variety, we write ωX for the canonical sheaf of X and KX for its class
in Pic X .

Definition 2.1 An algebraic K3 surface is a smooth projective 2-dimensional variety
over a field k such that ωX � OX and H1(X,OX ) = 0. A polarized K3 surface is a
pair (X, h), where X is an algebraic K3 surface and h ∈ H2(X, Z) is an ample class.
The degree of a polarized K3 surface is the self-intersection h2.

Example 2.2 (K3 surfaces of degrees 4, 6, and 8). Let X be a smooth complete
intersection of type (d1, . . . , dr ) in P

n
k , i.e., X ⊆ P

n has codimension r and X =
H1 ∩ · · · ∩ Hr , where Hi is a hypersurface of degree di ≥ 1 for i = 1, . . . , r . Then
ωX � OX (

∑
di − n − 1) [39, Exercise II.8.4]. To be a K3 surface, such an X must

satisfy r = n − 2 and
∑

di = n + 1. It does not hurt to assume that di ≥ 2 for each i .
This leaves only a few possibilities for X (check this!):

(1) n = 3 and (d1) = (4), i.e., X is a smooth quartic surface in P
3
k .

(2) n = 4 and (d1, d2) = (2, 3), i.e., X is a smooth complete intersection of a quadric
and a cubic in P

4
k .

(3) n = 5 and (d1, d2, d3) = (2, 2, 2), i.e., X is a smooth complete intersection of
three quadrics in P

5
k .

In each case, taking h to be the restriction to X of a hyperplane class in the ambient
projective space, we obtain a polarized K3 surface whose degree coincides with the
degree of X as a variety embedded in projective space.

Exercise 2.3 For each of the three types X of complete intersections in Example 2.2
prove that H1(X,OX ) = 0.

Example 2.4 (K3 surfaces of degree 2). Suppose for simplicity that char k 	= 2.
Let π : X → P

2
k be a double cover branched along a smooth sextic curve C ⊆ P

2
k .

Note that X is smooth if and only if C is smooth. By the Hurwitz formula [7, I.17.1],
we have ωX � π∗(ωP

2
k
⊗ OP

2
k
(6)⊗1/2) � OX , and since π∗OX � OP

2
k
⊕ OP

2
k
(−3), we

deduce that H1(X,OX ) = 0; see [24, Chap. 0, Sect. 1] for details. Hence X is a K3
surface if it is smooth. Letting h = π∗(�) be the pull-back of a line, we obtain a
polarized K3 surface of degree 2.

Example 2.5 (Kummer surfaces). Let A be an abelian surface over a field k of
characteristic 	= 2. The involution ι : A → A given by x �→ −x has sixteen k-fixed
points (the 2-torsion points of A). Let Ã → A be the blow-up of A along the k-
scheme defined by these fixed points. The involution ι lifts to an involution ι̃ : Ã →
Ã; the quotient π : Ã → Ã/ι̃ =: X is a double cover ramified along the geometric
components of the exceptional divisors of the blow-up E1, . . . , E16. Let Ei be the
image of Ei in X , for i = 1, . . . , 16.
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We have ω Ã � O Ã(
∑

Ei ), and the Hurwitz formula implies that ω Ã � π∗ωX ⊗
O Ã(

∑
Ei ). Hence O Ã � π∗ωX . The projection formula [39, Exercise II.5.1] then

gives
ωX ⊗ π∗O Ã � π∗O Ã. (1)

Since π∗O Ã � OX ⊕ L⊗−1, where L is the square root ofOX (
∑

Ei ), taking determi-
nants of both sides of (1) gives ω⊗2

X � OX . We conclude that KX ∈ Pic X is numeri-
cally trivial (i.e., its image in Num X is zero—see Sect. 2.3), and thus h0(X,ωX ) = 0
if ωX 	� OX . Suppose this is the case. Then since h0(X,π∗O Ã) = 1, (1) implies that
h0(X,ωX ⊗ π∗O Ã) = 1, and hence h0(X,ωX ⊗ L⊗−1) = 1. Fix an ample divisor A
on X ; our discussion above implies that (A, KX − [L])X > 0, where ( , )X denotes
the intersection pairing on X . On the other hand, L ∼ 1

2

∑
Ei , so (A, [L])X > 0.

But then (A, KX ) > 0, which contradicts the numerical triviality of KX . Hence we
must have ωX � OX .

Exercise 2.6 Prove that H1(X,OX ) = 0 for the surfaces in Example 2.5.

2.2 Euler Characteristic

If X is an algebraic K3 surface, then by definition we have h0(X,OX ) = 1 and
h1(X,OX ) = 0. Serre duality then gives h2(X,OX ) = h0(X,OX ) = 1, so

X an algebraic K3 surface =⇒ χ(X,OX ) = 2.

2.3 Linear, Algebraic, and Numerical Equivalence

Let X be a smooth surface over a field k, and write Div X for its group of Weil
divisors. Let ( , )X : Div X × Div X → Z denote the intersection pairing on X [39,
Sect. V.1]. Recall three basic equivalence relations one can put on Div X :

(1) Linear equivalence: C , D ∈ Div X are linearly equivalent ifC = D + div( f )
for some f ∈ k(X) (the function field of X ).

(2) Algebraic equivalence: C , D ∈ Div X are algebraically equivalent if there is
a connected curve T , two closed points 0 and 1 ∈ T , and a divisor E in X × T ,
flat over T , such that E |X×{0} − E |X×{1} = C − D.

(3) Numerical equivalence: C , D ∈ Div X are numerically equivalent if
(C, E)X = (D, E)X for all E ∈ Div X .

These relations obey the following hierarchy:

Linear equivalence =⇒ Algebraic equivalence =⇒ Numerical equivalence.
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Briefly, here is why these implications hold. For the first implication: if C =
D + div( f ), then we can take T = P

1
k = Proj k[t, u] and E = div(t f − u) in X × P

1
k

to see that C and D are algebraically equivalent. For the second implication: suppose
that an algebraically equivalence between C and D is witnessed by E ⊆ X × T . Let
H be a very ample divisor on X , and let X ↪→ P

n
k be the embedding induced by H .

This allows us to embed X × T (and hence E) in P
n
T . The Hilbert polynomials of the

fibers of E → T above closed points are constant, by flatness (and connectedness of
T ). Since (C, H)X is the degree of C in the embedding induced by H , we conclude
that (C, H)X = (D, H)X . Now use the fact that any divisor on X can be written as a
difference of ample divisors [39, p. 359]—this decomposition need not happen over
the ground field of course, but intersection numbers are preserved by base extension
of the ground field, so we may work over an algebraically closed field to begin with.

Write, as usual, Pic X for the quotient of Div X by the linear equivalence relation;
let Picτ X ⊆ Pic X be the set of numerically trivial classes, i.e.,

Picτ X = {L ∈ Pic X : (L , L ′)X = 0 for all L ′ ∈ Pic X}.

Finally, let Pic0 X ⊆ Picτ X be the set of classes algebraically equivalent to zero.
Let NS X = Pic X/ Pic0 X be the Néron-Severi group of X , and let Num X =
Pic X/ Picτ X .

Lemma 2.7 Let X be an algebraic K3 surface, and let L ∈ Pic X. Then

χ(X, L) = L2

2
+ 2.

Proof This is just the Riemann–Roch theorem for surfaces [39, Theorem V.1.6],
taking into account that KX = 0 and χ(X,OX ) = 2. �

Proposition 2.8 Let X be an algebraic K3 surface over a field. Then the natural
surjections

Pic X → NS X → Num X

are isomorphisms.

Proof Since X is projective, there is an ample sheaf L ′ on X . If L ∈ ker(Pic X →
Num X), then (L , L ′)X = 0, and thus if L 	= OX then H0(X, L) = 0. Serre duality
implies that H2(X, L) � H0(X, L⊗−1)∨ = 0. Hence χ(X, L) ≤ 0; on the other hand,
by Lemma 2.7 we have χ(X, L) = 1

2 L
2 + 2, and hence L2 < 0, which means L

cannot be numerically trivial. �
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2.4 Complex K3 Surfaces

Over k = C, there is a notion of K3 surfaces as complex manifolds that includes
algebraic K3 surfaces over C, although most complex K3 surfaces are not projective.
This more flexible theory is crucial in proving important results for K3 surfaces,
such as the Torelli Theorem [12, 64, 84]. It also allows us to study K3 surfaces via
singular cohomology.

Definition 2.9 A complex K3 surface is a compact connected 2-dimensional com-
plex manifold X such that ωX := �2

X � OX and H1(X,OX ) = 0.

Let us explain the sense in which an algebraic K3 surface is also a complex K3
surface. To a separated scheme X locally of finite type over C one can associate a
complex space X an, whose underlying space consists of X (C), and a map φ : X an →
X of locally ringed spaces in C-algebras. For a ringed space Y , let Coh(Y ) denote
the category of coherent sheaves on Y . To F ∈ Coh(X) one can then associate
F an := φ∗F ∈ Coh(X an); we have �an

X/C � �X an . If X is a projective variety, then
the functor

� : Coh(X) → Coh(X an) F → F an

is an equivalence of abelian categories. This is known as Serre’s GAGA princi-
ple [94]. In the course of proving this equivalence, Serre shows that forF ∈ Coh(X),
certain functorial maps

ε : Hq(X,F ) → Hq(X an,F an)

are bijective for all q ≥ 0 [94, Théorème 1]. Hence:

Proposition 2.10 Let X be an algebraic K3 surface over k = C. Then X an is a
complex K3 surface. �

2.5 Singular Cohomology of Complex K3 Surfaces

In this section X denotes a complex K3 surface, e(·) is the topological Euler char-
acteristic of a space, and ci (X) is the i-th Chern class of (the tangent bundle of) X
for i = 1 and 2. As in Sect. 2.2, one can show that χ(X,OX ) = 2. Noether’s formula
states that

χ(X,OX ) = 1

12
(c1(X)2 + c2(X));

see [7, Theorem I.5.5] and the references cited therein. Since ωX � OX , we have
c1(X)2 = 0, and hence e(X) = c2(X) = 24.
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For the singular cohomology groups of X , we have

H0(X, Z) ∼= Z because X is connected, and

H4(X, Z) ∼= Z because X is oriented.

The exponential sequence

0 → Z → OX → O×
X → 0

gives rise to a long exact sequence in sheaf cohomology

0 → H0(X, Z) → H0(X,OX ) → H0(X,O×
X ) → H1(X, Z) → H1(X,OX ) →

→ H1(X,O×
X )

c1−→ H2(X, Z) → H2(X,OX ) → H2(X,O×
X ) → H3(X, Z)

(2)
Since H0(X,OX ) → H0(X,O×

X ) is surjective and H1(X,OX ) = 0, we have
H1(X, Z) = 0. Poincaré duality then gives

0 = rk H1(X, Z) = rk H1(X, Z)
PD= rk H3(X, Z),

so H3(X, Z) is a torsion abelian group, and H3(X, Z)tors
∼= H1(X, Z)tors. The univer-

sal coefficients short exact sequence

0 → Ext1(H1(X, Z), Z) → H2(X, Z) → Hom(H2(X, Z), Z) → 0

shows that H1(X, Z)tors is dual to H2(X, Z)tors (fill in the details!).

Proposition 2.11 Let X be a complex K3 surface. Then H1(X, Z)tors = 0.

Proof An element of order n in H1(X, Z)tors gives a surjection H1(X, Z) � Z/nZ,
hence a surjection π1(X, x) � Z/nZ, which corresponds to an unramified cover
Y → X of degree n, and we must have e(Y ) = ne(X) = 24n. The Hurwitz formula
tells us that ωY � π∗ωX , so ωY � OY , which implies h2(Y,OY ) = h0(Y,ωY ) = 1.
Noether’s formula tells us that χ(Y,OY ) = 1

12 (c1(Y )2 + c2(Y )). So 2 − h1(OY ) =
1

12 · 24n and hence h1(OY ) = 2 − 2n. We conclude that n = 1. �

Proposition 2.11 and the discussion preceding it shows that H3(X, Z) = 0 and
H2(X, Z) is a free abelian group. Since e(X) = 24, we deduce that rk H2(X, Z) =
24 − 1 − 1 = 22. Poincaré duality thus tells us that the cup product induces a perfect
bilinear pairing:

B : H2(X, Z) × H2(X, Z) → Z.

Proposition 2.12 ([7, VIII.3.1]). The pairing B is even, i.e., B(x, x) ∈ 2Z for all
x ∈ H2(X, Z). �
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The bilinear form B thus gives rise to an even integral quadratic form

q : H2(X, Z) → Z, x �→ B(x, x).

Extend q by R-linearity to a form qR : H2(X, Z) ⊗ R → R, and let b+ (resp.
b−) denote the number of positive (resp. negative) eigenvalues of q. The Thom–
Hirzebruch index theorem [45, p. 86] says that

b+ − b− = 1

3
(c1(X)2 − 2c2(X)) = −16.

On the other hand, we know that

b+ + b− = 22,

so we conclude that b+ = 3 and b− = 19. In sum, H2(X, Z) equipped with the cup-
product is an indefinite even integral lattice of signature (3, 19). Perfectness of the
pairing B tells us that the lattice H2(X, Z) is unimodular, i.e., the absolute value of
the determinant of a Gram matrix is 1. This is enough information to pin down the
lattice H2(X, Z), up to isometry. To state a precise theorem, recall that the hyperbolic
plane U is the rank 2 lattice, which under a suitable choice of Z-basis has Gram
matrix (

0 1
1 0

)
,

and E8(−1) denotes the rank 8 lattice, which under a suitable choice of Z-basis has
Gram matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 2.13 ([95, Sect. V.2.2]). Let L be a an even indefinite unimodular lattice
of signature (r, s), and suppose that s − r ≥ 0. Then r ∼= s mod 8 and L is isometric
to

U⊕r ⊕ E8(−1)⊕(s−r)/8. �

The above discussion can thus be summarized in the following theorem.



Arithmetic of K3 Surfaces 205

Theorem 2.14 Let X be a complex K3 surface. The singular cohomology group
H2(X, Z), equipped with the cup-product, is an even indefinite unimodular lattice of
signature (3, 19), isometric to the K3 lattice

�K3 := U⊕3 ⊕ E8(−1)⊕2. �

2.6 Complex K3 Surfaces Are Simply Connected

Theorem 2.15 Every complex K3 surface is simply connected.

Sketch of the proof: The key ingredient is that all complex K3 surfaces are dif-
feomorphic to each other [7, VIII Corollary 8.6]; this theorem takes a fair amount of
work: first, (complex) Kummer surfaces are diffeomorphic, because any two 2-tori
are isomorphic as real Lie groups. Second, there is an open set in the period domain
around the period point of a K3 surface where the K3 surface can be deformed. Third,
projective Kummer surfaces are dense in the period domain. Putting these three ideas
together shows all complex K3 surfaces are diffeomorphic. It thus suffices to com-
pute π1(X, x) for a single K3 surface. We will pick X a smooth quartic in P

3
C

and
apply the following proposition.

Proposition 2.16 Any smooth quartic in P
3
C
is simply connected.

Proof Let ν : P
3
C

→ P
34
C

be the 4-uple embedding. Any smooth quartic X ⊂ P
3
C

is
embedded under ν as ν(P3

C
) ∩ H for some hyperplane H ⊂ P

34
C

. By the Lefschetz
hyperplane theorem π1(ν(P3) ∩ H) is isomorphic to π1(ν(P3)) = π1(P

3) = 0. �

2.7 Differential Geometry of Complex K3 Surfaces

A theorem of Siu [97] (see also [7, Sect. IV.3]) asserts that complex K3 surfaces are
Kähler; thus there is a Hodge decomposition on Hk(X, C) � Hn

dR(X)R ⊗R C (here
Hn

dR(X)R denotes de Rham cohomology on the underlying real manifold X ):

Hk(X, C) =
⊕
p+q=k

Hp,q(X), (3)

where Hp,q(X) denotes the Dolbeault cohomology group of complex differential
forms of type (p, q) (isomorphic by Dolbeaut’s theorem to Hq(X,�

p
X )), which sat-

isfy:
Hp,q(X) = Hq,p(X) and

∑
p+q=k

h p,q(X) = bk,
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where h p,q(X) = dimC Hp,q(X), and bk = rk(Hk(X, Z)) = dimC Hk(X, C) denotes
the k-th Betti number of X ; see [115, Chap. 6].

Proposition 2.17 Let X be a complex K3 surface. The Hodge diamond of X is given
by

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
0 0

1 20 1
0 0

1

Proof From H1(X, Z) = H3(X, Z) = 0 and the Hodge decomposition (3) applied
to the complexification of these groups for k = 1 and 3 we get the vanishing of
the second and fourth rows. We have h0,0 = h0(X,OX ) = 1, and from ωX � OX

we get h2,0 = 1. Serre duality and ωX � OX together give h0,2 = h0,0 = h2,2. Since
b2 = h2,0 + h1,1 + h0,2 = 22 we obtain h1,1 = 20. Finally, the h p,q “outside” this
diamond vanish by Serre duality and dimension reasons. �

The lattice H2(X, Z) can be endowed with a Hodge structure of weight 2. We
review what this means; for more details see [47, Chap. 3] and [115, Chap. 7]

Definition 2.18 Let HZ be a free abelian group of finite rank. An integral Hodge
structure of weight n on HZ is a decomposition, called the Hodge decomposition,

HC := HZ ⊗Z C =
⊕
p+q=n

Hp,q

such that Hp,q = Hq,p and Hp,q = 0 for p < 0.

When X is a complex K3 surface, the middle cohomology decomposes as

H2(X, C) ∼= H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X),

and the outer pieces are 1-dimensional. The cup product on H2(X, Z) extends to
a symmetric pairing on H2(X, C), equal to the bilinear form (α,β) �→ ∫

X α ∧ β.
Write H2,0(X) = CωX . Then the Hodge–Riemann relations assert that

(1) (ωX ,ωX ) = 0;
(2) (ωX ,ωX ) > 0;
(3) V := H2,0(X) ⊕ H0,2(X) is orthogonal to H1,1(X).

Exercise 2.19 Check the Hodge–Riemann relations above.

Thus CωX = H2,0(X) determines the Hodge decomposition on H2(X, C). Let

VR = {v ∈ V : v = v} = R · {ωX + ωX , i(ωX − ωX )},
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so that V := VR ⊗R C. The intersection form restricted to VR is positive definite and
diagonal on the basis given above. Hence, the cup product restricted to H1,1(X) ∩
H2(X, R) has signature (1, 19).

2.8 The Néron-Severi Lattice of a Complex K3 Surface

For a complex K3 surface, the long exact sequence (2) associated to the exponential
sequence and the vanishing H1(X,OX ) = 0 give an injection

c1 : Pic(X) ∼= H1(X,O∗
X ) ↪→ H2(X, Z).

which is also called the first Chern class. Let i∗ : H2(X, Z) → H2(X, C) be the
canonical map. The Lefschetz (1,1)-theorem says that the image of i∗ ◦ c1 is
H1,1(X) ∩ i∗H2(X, Z). It is called the Néron-Severi lattice NS X . When X is an
algebraic K3 surface, this lattice coincides with the Néron-Severi group previously
defined in Sect. 2.3 by Proposition 2.8 and the GAGA principle [94, Proposition 18
and the remarks that follow].

In words, the Néron-Severi lattice consists of the integral classes in H2(X, Z)
that are closed (1,1)-forms. In particular, the Picard number ρ(X) = rk NS(X) =
rk Pic(X) is at most the dimension of H1,1(X).

Proposition 2.20 Let X be a complex K3 surface. Then 0 ≤ ρ(X) ≤ 20. If X is
algebraic, then the signature of NS X ⊗ R is (1, ρ(X) − 1). �

2.9 The Torelli Theorem

A marking on a complex K3 surface X is an isometry, i.e., an isomorphism of lattices,

� : H2(X, Z)
∼→ �K3.

A marked complex K3 surface is a pair (X,�) as above. We denote the complexifi-
cation of � by �C. The period point of (X,�) is �C(CωX ) ∈ P(�K3 ⊗ C). By the
Hodge–Riemann relations, the period point lies in an open subset � (in the complex
topology) of a 20-dimensional quadric inside P(�K3 ⊗ C):

� = {x ∈ P(�K3 ⊗ C) : (x, x) = 0, (x, x) > 0};

here ( , ) denotes the bilinear form on �K3 ⊗ C. We call � the period domain of
complex K3 surfaces.

Exercise 2.21 Check that � is indeed an open subset of a quadric in P(�K3 ⊗ C) �
P

21
C

.
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Theorem 2.22 (Weak Torelli theorem [12, 64, 84]). Two complex K3 surfaces X
and X ′ are isomorphic if and only if there are markings

� : H2(X, Z)
∼→ �K3

∼← H2(X ′, Z) : �′

whose period points in � coincide. �

The weak Torelli theorem follows from the strong Torelli theorem. We briefly
explain the statement of the latter. Since the intersection form on H1,1(X) ∩ H2(X, R)
is indefinite, the set {x ∈ H1,1(X) ∩ H2(X, R) : (x, x) > 0} has two connected com-
ponents. Exactly one of these components contains Kähler classes2; we call this
component the positive cone. A class x ∈ NS X is effective if there is an effective
divisor D on X such that x = i∗ ◦ c1 (OX (D)).

Theorem 2.23 (Strong Torelli Theorem). Let (X,�) and (X ′,�′) be marked com-
plex K3 surfaces whose period points on � coincide. Suppose that

f ∗ = (�′)−1 ◦ � : H2(X, Z) → H2(X ′, Z)

takes the positive cone of X to the positive cone of X ′, and induces a bijection
between the respective sets of effective classes. Then there is a unique isomorphism
f : X ′ → X inducing f ∗. �

2.10 Surjectivity of the Period Map

A point ω ∈ P(�K3 ⊗ C) gives a 1-dimensional C-linear subspace H2,0 ⊆ �K3 ⊗ C.

Let H0,2 = H2,0 ⊆ �K3 ⊗ C be the conjugate linear subspace, and let H1,1 be the
orthogonal complement of H2,0 ⊕ H0,2, with respect to the C-linear extension of the
bilinear form on �K3. We say H2,0 ⊕ H1,1 ⊕ H0,2 is a decomposition of K3 type
for �K3 ⊗ C.

Theorem 2.24 (Surjectivity of the period map [107]). Given a pointω ∈ � inducing
a decomposition�K3 ⊗ C = H2,0 ⊕ H1,1 ⊕ H0,2 ofK3 type there exists a complexK3
surface X and a marking � : H2(X, Z)

∼→ �K3 whose C-linear extension preserves
Hodge decompositions. �

2A Kähler class h ∈ H2(X,R) is a class that can be represented by a real (1, 1)-form which in
local coordinates (z1, z2) can be written as i

∑
αi j zi ∧ z j , where the hermitian matrix (αi j (p)) is

positive definite for every p ∈ X .
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2.11 Lattices and Discriminant Groups

To give an application of the above results, we need a few facts about lattices; the
objects introduced here will also play a decisive role in identifying nontrivial elements
of the Brauer group of a complex K3 surface.

Although we have already been using the concept of lattice in previous sections,
we start here from scratch, for the sake of clarity and completeness. A lattice L is a
free abelian group of finite rank endowed with a symmetric nondegenerate integral
bilinear form

〈 , 〉 : L × L → Z.

We say L is even if 〈x, x〉 ∈ 2Z for all x ∈ L . We may extend 〈 , 〉 Q-linearly to
L ⊗ Q, and define the dual abelian group

L∨ := Hom(L , Z) � {x ∈ L ⊗ Q : 〈x, y〉 ∈ Z for all y ∈ L}.

There is an injective map of abelian groups L → L∨ sending x to φx : y �→ 〈x, y〉.
The discriminant group is L∨/L , which is finite since 〈 , 〉 is nondegenerate. Its
order is the absolute value of the discriminant of L . For an even lattice L we define
the discriminant form by

qL : L∨/L → Q/2Z x + L �→ 〈x, x〉 mod 2Z.

Let �(L) be the minimal number of generators of L∨/L as an abelian group.

Theorem 2.25 ([80, Corollary 1.13.3]). If a lattice L is even and indefinite (when
tensored with R), and rk L ≥ �(L) + 2 then L is determined up to isometry by its
rank, signature and its discriminant form. �

An embedding of lattices L ↪→ M is primitive if it has saturated image, i.e., if
the cokernel M/L is torsion-free.

Exercise 2.26 Let L ↪→ M be an embedding of lattices, and write let L⊥ = {x ∈
M : 〈x, y〉 = 0 for all y ∈ L}.
(1) Show that L⊥ is a primitive sublattice of M .
(2) Show that if L is primitive, then (L⊥)⊥ = L .

Theorem 2.27 ([80, Corollary 1.12.3]). There exists a primitive embedding L ↪→
�K3 of an even lattice L of rank r and signature (p, r − p) into the K3 lattice �K3

if p ≤ 3, r − p ≤ 19, and �(L) ≤ 22 − r . �

2.12 K3 Surfaces Out of Lattices

We conclude our discussion of the geometry of complex K3 surfaces with an appli-
cation of the foregoing results, in the spirit of [76, Sect. 12].
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Question: Is there a complex K3 surface X with Pic X a rank 2 lattice with the
following intersection form?

H C
H 4 8
C 8 4

(A better question would be: does there exist a smooth quartic surface X ⊂ P
3 con-

taining a smooth curve C of genus 3 and degree 8? Such a surface would contain the
above lattice in its Picard group. The answer to this question is yes, but it would take
a little more technology than we’ve developed to answer this better question.)

Let L = ZH + ZC , with an intersection pairing given by the above Gram matrix.
By Theorem 2.27, we know there is a primitive embedding L ↪→ �K3; fix such an
embedding. Our next move is to construct a Hodge structure of weight two on �K3

�K3 ⊗ C = H2,0 ⊕ H1,1 ⊕ H0,2

such that H1,1 ∩ �K3 = L . For this, choose ω ∈ �K3 ⊗ C satisfying (ω,ω) = 0,
(ω,ω) > 0, in such a way that L⊥ ⊗ Q is the smallest Q-vector space of �K3 ⊗ Q

whose complexification contains ω. Essentially, this means that we want to set ω =∑
αi xi where {xi } is a basis for L⊥ ⊗ Q and the αi are algebraically independent

transcendental numbers except for the conditions imposed by the relation (ω,ω) = 0.
Then:

H1,1 ∩ (�K3 ⊗ Q) = (L⊥)⊥ ⊗ Q = L ⊗ Q,

which by the saturatedness of L implies that H1,1 ∩ �K3 = L . By Theorem 2.24,
there exists a K3 surface X and a marking � : H2(X, Z)

∼−→ �K3 such that NS(X) ∼=
L . Using stronger versions of Theorem 2.24 (e.g. [76, p. 70]), one can show that
h = �−1(H) is ample. Furthermore, Reider’s method can be used to show that h is
very ample.

3 Picard Numbers of K3 Surfaces

References: [16, 26–30, 41, 60, 86, 92, 93, 106, 109]

In this section, all K3 surfaces considered are algebraic. Let X be a K3 surface over
a field K . Fix an algebraic closure K of K , and let X = X ×K K . Let ρ(X) denote
the rank of the Néron-Severi group NS X of X . The goal of this section is to give an
account of the explicit computation of ρ(X) in the case when K is a number field. One
of the key tools is reduction modulo a finite prime p of K . We will see that whenever X
has good reduction atp, there is an injective specialization homomorphism NS X ↪→
NS Xp. For a prime � different from the residue characteristic of p there is in turn an
injective cycle class map NS Xp ⊗ Q� ↪→ H2

ét(Xp, Q�(1)) of Galois modules. The
basic idea is to use the composition of these two maps (after tensoring the first one by
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Q�) for several finite primes p to establish tight upper bounds on ρ(X). We begin by
explaining what good reduction means, and where the two maps above come from.

3.1 Good Reduction

Definition 3.1 Let R be a Dedekind domain, set K = Frac R, and let p ⊆ R be
a nonzero prime ideal. Let X be a smooth proper K -variety. We say X has good
reduction at p if X has a smooth proper Rp-model, i.e., if there exists a smooth
proper morphism X → Spec Rp, such that X ×Rp

K � X as K -schemes.

Remark 3.2 Let k = Rp/pRp be the residue field at p. The special fiber X ×Rp
k is

a smooth proper k-scheme.

Remark 3.3 The ring Rp is always a discrete valuation ring [5, Theorem 9.3].

Example 3.4 Let p be a rational prime and let

R = Z(p) = {
m/n ∈ Q : m ∈ Z, n ∈ Z \ {0} and p � n

}
.

Set p = pZ(p). In this case K = Q and Rp = R. Let X ⊆ P
3 = Proj Q[x, y, z, w]

be the K3 surface over Q given by

x4 + 2y4 = z4 + 4w4.

Let X = Proj Z(p)[x, y, z, w]/(x4 + 2y4 − z4 − 4w4). Note that if p 	= 2, then X
is smooth and proper over R, and X ×R Q � X . Hence X has good reduction at
primes p 	= 2.

Exercise 3.5 Prove that the conic X := Proj Q[x, y, z]/(xy − 19z2)has good reduc-
tion at p = 19. Naively, we might think that p is not a prime of good reduction if
reducing the equations of X mod p gives a singular variety over the residue field.
This example is meant to illustrate that this intuition can be wrong.

3.2 Specialization

In this section, we follow the exposition in [70, Sect. 3]; the reader is urged to consult
this paper and the references contained therein for a more in-depth treatment of
specialization of Néron-Severi groups.

Let R be a discrete valuation ring with fraction field K and residue field k. Fix
an algebraic closure K of K , and let R be the integral closure of R in K . Choose
a nonzero prime p ∈ R so that k = R/p is an algebraic closure of k. For each finite
extension L/K contained in K , we let RL be the integral closure of R in L . This is
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a Dedekind domain, and thus the localization of RL at p ∩ RL is a discrete valuation
ring R′

L ; call its residue field k ′.
Let X be a smooth proper R-scheme. Restriction of Weil divisors, for example,

gives natural group homomorphisms

PicXL ← PicXR′
L

→ PicXk ′, (4)

and the map PicXR′
L

→ PicXL is an isomorphism (see the proof of [9, Sect. 8.4
Theorem 3]). If X → Spec R has relative dimension 2, then the induced map3

PicXL → PicXk ′ preserves the intersection product on surfaces [33, Corollary 20.3].
Taking the direct limit over L of the maps (4) gives a homomorphism

PicXK → PicXk

that preserves intersection products of surfaces when X → Spec R has relative
dimension 2.

Proposition 3.6 With notation as above, if X → Spec R is a proper, smooth mor-
phism of relative dimension 2, then ρ(XK ) ≤ ρ(Xk).

Proof Since the map PicXK → PicXk preserves intersection products, it induces
an injection

PicXK / Picτ XK ↪→ PicXk/ Picτ Xk .

The claim now follows from the isomorphism Pic Y/ Picτ Y � NS Y/(NS Y )tors [105,
p. 98], applied to Y = XK and Xk . �

Remark 3.7 The hypothesis that X → Spec R has relative dimension 2 in Proposi-
tion 3.6 is not necessary, but it simplifies the exposition. See [33, Example 20.3.6].

We can do a little better than Proposition 3.6. Indeed, without any assumption
on the relative dimension of X → Spec R, the map PicXK → PicXk gives rise to a
specialization homomorphism

spK ,k : NSXK → NSXk;

see [70, Proposition 3.3].

Theorem 3.8 With notation as above, if char k = p > 0, then the map

spK ,k ⊗Z idZ[1/p] : NSXK ⊗Z Z[1/p] → NSXk ⊗Z Z[1/p]

is injective and has torsion-free cokernel.

3This map has a simple description at the level of cycles: given a prime divisor on XL , take its
Zariski closure in XR′

L
and restrict to Xk′ . This operation respects linear equivalence and can be

linearly extended to PicXL .
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Proof See [70, Proposition 3.6]. �

Remark 3.9 If Y is a K3 surface over a field then NS Y � Pic Y (Proposition 2.8),
so spK ,k is the map we already know, and it is already injective before tensoring with
Z[1/p].

The moral of the story so far (Proposition 3.6) is that if X is a smooth projective
surface over a number field, then we can use information at a prime of good reduction
for X to bound ρ(X). The key tool is the cycle class map, which we turn to next;
this map is the algebraic version of the connecting homomorphism in the long exact
sequence in cohomology associated to the exponential sequence.

3.3 The Cycle Class Map

In this section we let X be a smooth projective geometrically integral variety over a
finite field Fq with q = pr elements (p prime). Write Fq for a fixed algebraic closure
of Fq , and let σ ∈ Gal(Fq/Fq) denote the Frobenius automorphism x �→ xq . Let
X ét denote the (small) étale site of X := X ×Fq Fq , and let � 	= p be a prime. For
an integer m ≥ 1, the Tate twist (Z/�nZ)(m) is the sheaf μ⊗m

�n on X ét. For a fixed
m there is a natural surjection (Z/�n+1

Z)(m) → (Z/�nZ)(m); putting these maps
together, we define

H2
ét(X , Z�(m)) := lim←−

n

H2
ét(X , (Z/�nZ)(m)),

H2
ét(X , Q�(m)) := H2

ét(X , Z�(m)) ⊗Z�
Q�.

Since � 	= p, the Kummer sequence

0 → μ�n → Gm
[�n ]−−→ Gm → 0

is an exact sequence of sheaves on X ét [75, p. 66], so the long exact sequence in étale
cohomology gives a boundary map

δn : H1
ét(X , Gm) → H2

ét(X ,μ�n ). (5)

Since H1
ét(X , Gm) � Pic X [75, III.4.9], taking the inverse limit of (5) with respect

to the �-th power maps {μ�n+1 → μ�n } we obtain a homomorphism

Pic X → H2
ét(X , Z�(1)). (6)

The kernel of this map is the group Picτ X of divisors numerically equivalent to
zero [105, pp. 97–98], and since Pic X/ Picτ X � NS X/(NS X)tors, tensoring (6)
with Q� gives an injection
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c : NS X ⊗ Q� ↪→ H2
ét(X , Q�(1)). (7)

The map c is compatible with the action of Gal(Fq/Fq), and moreover, there is an
isomorphism of Gal(Fq/Fq)-modules

H2
ét(X , Q�(1)) �

(
lim←−
n

H2
ét(X , Z/�nZ) ⊗Z�

Q�

)

︸ ︷︷ ︸
=: H2

ét(X , Q�)

⊗Z�

(
Q� ⊗Z�

lim←−μ�n

)
, (8)

where Gal(Fq/Fq) acts on Q� ⊗Z�
lim←−μ�n according to the usual action

of Gal(Fq/Fq) on μ�n ⊂ Fq . In particular, the Frobenius automorphism σ acts as
multiplication by q on Q� ⊗Z�

lim←−μ�n : indeed, we are regarding μ�n ⊂ Fq as a
Z/�nZ-module via the multiplication m · ζ := ζm .

Proposition 3.10 Let X be a smooth proper scheme over a finite field Fq of cardi-
nality q = pr with p prime. Write σ ∈ Gal(Fq/Fq) for the Frobenius automorphism
x �→ xq . Let � 	= p be a prime and let σ∗(0) denote the automorphism of H2

ét(X , Q�)

induced by σ. Then ρ(X) is bounded above by the number of eigenvalues of σ∗(0),
counted with multiplicity, of the form ζ/q, where ζ is a root of unity.

Proof Write σ∗ for the automorphisms of NS X induced by σ. The divisor classes
generating NS X are defined over a finite extension of k, so some power of σ∗ acts
as the identity on NS X . Hence, all eigenvalues of σ∗ are roots of unity. Using the
injection (7), we deduce that ρ(X) is bounded above by the number of eigenvalues of
σ∗(1) operating on H2

ét(Xk, Q�(1)) that are roots of unity. The isomorphism (8) shows
that this number is in turn equal to the number of eigenvalues of σ∗(0) operating on
H2

ét(Xk, Q�) of the form ζ/q, where ζ is a root of unity. �

Remark 3.11 Let F ⊆ Fq be a finite extension of Fq . The Tate conjecture [105, p. 98]
implies that

c(NS XF ⊗ Q�) = H2
ét(X , Q�(1))Gal(Fq/F).

One can deduce that the upper bound in Proposition 3.10 is sharp (exercise!). This
conjecture has now been established for K3 surfaces X when q is odd [15, 66, 69,
81, 82], and also for q even if the geometric Picard rank of the surface is ≥ 2 [17].

Proposition 3.10 implies that knowledge of the characteristic polynomial of σ∗
acting on H2

ét(X , Q�) gives an upper bound for ρ(X). It turns out that it is easier to
calculate the characteristic polynomial of (σ∗)−1, because we can relate this problem
to point counts for X over a finite number of finite extensions of Fq . To this end, we
take a moment to understand what (σ∗)−1 looks like.
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3.3.1 Absolute Frobenius

For a scheme Z over a finite field Fq (with q = pr ), we let FZ : Z → Z be the
absolute Frobenius map: this map is the identity on points, and x �→ x p on
the structure sheaf; it is not a morphism of Fq -schemes. Set �Z = Fr

Z ; the map
�Z × 1 : Z × Fq → Z × Fq induces a linear transformation �∗

Z : H2
ét(Z , Q�) →

H2
ét(Z , Q�). The action of FZ on Z ét is (naturally equivalent to) the identity [75, VI

Lemma 13.2], and since Fr
Z

= Fr
Z × Fr

k
= �Z × σ, the maps �∗

Z and σ∗(0) operate

as each other’s inverses on H2
ét(Z , Q�). Using the notation of Proposition 3.10, we

conclude that the number of eigenvalues of σ∗(0) operating on H2
ét(X , Q�) of the

form ζ/q is equal to the number of eigenvalues of �∗
X operating on H2

ét(X , Q�) of
the form qζ, where ζ is a root of unity.

3.4 Upper Bounds I: Putting Everything Together

Theorem 3.12 Let R be a discrete valuation ring of a number field K , with residue
field k � Fq . Fix an algebraic closure K of K , and let R be the integral closure of
R in K . Choose a nonzero prime p ∈ R so that k = R/p is an algebraic closure of
k. Let � 	= char k be a prime number.

Let X → R be a smooth proper morphism of relative dimension 2, and assume
that the surfaces XK and Xk are geometrically integral. There are natural injective
homomorphisms of Q�-inner product spaces

NSXK ⊗ Q� ↪→ NSXk ⊗ Q� ↪→ H2
ét(Xk, Q�(1))

and the second map is compatible with Gal(k/k)-actions. Consequently, ρ(XK ) is
bounded above by the number of eigenvalues of �∗

Xk
operating on H2

ét(Xk, Q�),
counted with multiplicity, of the form qζ, where ζ is a root of unity. �
Convention 3.13 We will apply Theorem 3.12 to K3 surfaces X over a number field
K . In such cases, we will speak of a finite prime p ⊆ OK of good reduction for X .
The modelX → Spec R with R = (OK )p satisfying the hypotheses of Theorem 3.12
will be implicit, and we will write X for the (K -isomorphic) scheme XK , and Xp for
Xk .

Keep the notation of Theorem 3.12. The number of eigenvalues of �∗
Xk

of the form
qζ can be read off from the characteristic polynomial ψq(x) of this linear operator.
To compute this characteristic polynomial, we use two ideas. First, the characteristic
polynomial of a linear operator on a finite dimensional vector space can be recovered
from knowing traces of sufficiently many powers of the linear operator, as follows.

Theorem 3.14 (Newton’s identities). Let T be a linear operator on a vector space
V of finite dimension n. Write ti for the trace of the i-fold composition T i of T , and
define
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a1 := −t1 and ak := −1

k

⎛
⎝tk +

k−1∑
j=1

a j tk− j

⎞
⎠ for k = 2, . . . , n.

Then the characteristic polynomial of T is equal to

det (x · Id − T ) = xn + a1x
n−1 + · · · + an−1x + an.

Second, the traces of powers of �∗
Xk

operating on H2
ét(Xk, Q�) can be recovered

from the Lefschetz trace formula

Tr
(
(�∗

Xk
)i

) = #Xk(Fqi ) − 1 − q2i ;

see [68, Sect. 27] for a proof of this formula in the surface case. When Xk is a K3
surface, we have n = 22, so at first glance we have to count points over Fqi for
i = 1, . . . , 22. However, the characteristic polynomial of �∗

Xk
happens to satisfy a

functional equation, coming from the Weil conjectures (which have all been proved):

q22ψq(x) = ±x22ψq(q
2/x).

If we are lucky, counting points over Fqi for i = 1, . . . , 11 will be enough to deter-
mine the sign of the functional equation, and thus allow us to compute ψq(x). If we
are unlucky, one can always compute two possible characteristic polynomials, one
for each possible sign in the functional equation, and discard the polynomial whose
roots provably have absolute value different from q (i.e., absolute value distinct from
that predicted by the Weil conjectures). In practice, if we already know a few explicit
divisor classes on Xk , we can cut down the amount of point counting required to
determine ψq(x). For example, knowing that the hyperplane class is fixed by Galois
tells us that (x − q) divides ψq(x); this information can be used to get away with
point count counts for i = 1, . . . , 10 only. More generally, if one already knows an
explicit submodule M ⊆ NSXk as a Galois module, then the characteristic polyno-
mial ψM(x) of Frobenius acting on M can be computed, and since ψM(x) | ψq(x),
one can compute ψq(x) with only a few point counts, depending on the rank of M .

Exercise 3.15 Show that if M has rank r then counting points on Xk(Fqi ) for i =
1, . . . , �(22 − r)/2� suffices to determine the two possible polynomials ψq(x) (one
for each possible sign in the functional equation).

Example 3.16 ([43, Sect. 5.3]). In the polynomial ring F3[x, y, z, w], give weights
1, 1, 1 and 3, respectively, to the variables x , y, z and w, and let PF3(1, 1, 1, 3) =
Proj F3[x, y, z, w] be the corresponding weighted projective plane. We choose a
polynomial p5(x, y, z) ∈ F3[x, y, z]5 so that the hypersurface X given by

w2 = 2y2(x2 + 2xy + 2y2)2 + (2x + z)p5(x, y, z) (9)

is smooth, hence a K3 surface (of degree 2).
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For example, take

p5(x, y, z) = x5 + x4y + x3yz + x2y3 + x2y2z + 2x2z3

+ xy4 + 2xy3z + xy2z2 + y5 + 2y4z + 2y3z2 + 2z5.

The projection π : P(1, 1, 1, 3) ��� Proj F3[x, y, z] restricts to a double cover mor-
phism π : X → P

2
F3

, branched along the vanishing of the right hand side of (9).
Let Ni := #X (F3i ); counting points we find

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

7 79 703 6607 60427 532711 4792690 43068511 387466417 3486842479
.

Applying the procedure described above, this is enough information to determine
the characteristic polynomial ψ3(x). The sign of the functional equation for ψ3(x) is
negative—a positive sign gives rise to roots of absolute value 	= 3. Setting ψ̃(x) =
3−22ψ3(3x), we obtain a factorization into irreducible factors as follows:

ψ̃(x) = 1

3
(x − 1)(x + 1)(3x20 + 3x19 + 5x18 + 5x17 + 6x16 + 2x15 + 2x14

− 3x13 − 4x12 − 8x11 − 6x10 − 8x9 − 4x8

− 3x7 + 2x6 + 2x5 + 6x4 + 5x3 + 5x2 + 3x + 3).

The roots of the degree 20 factor of ψ(x) are not integral, so they are not roots of
unity. We conclude that ρ(X) ≤ 2.

On the other hand, inspecting the right hand side of (9), we see that the line
2x + z = 0 on P

2 is a tritangent line to the branch curve of the double cover morphism
π. The components of the pullback of this line intersect according to the following
Gram matrix (−2 3

3 −2

)

which has determinant −5 	= 0, and thus they generate a rank 2 sublattice L of NS X .
We conclude that ρ(X) = 2. Since the determinant of the lattice L is not divisible by
a square, the lattice L must be saturated in NS X , so NS X = L .

By Theorem 3.12, any K3 surface over Q whose reduction at p = 3 is isomorphic
to X has geometric Picard rank at most 2.

3.5 Upper Bounds II

Keep the notation of Theorem 3.12. It is natural to wonder how good the upper bound
furnished by Theorem 3.12 really is, at least for K3 surfaces, which are the varieties
that concern us. The Weil conjectures tell us that the eigenvalues of �∗

Xk
operating
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on H2
ét(Xk, Q�) have absolute value4 q. Since the characteristic polynomial of �∗

Xk

lies in Q[x], the eigenvalues not of form qζ must come in complex conjugate pairs.
In particular, the total number of eigenvalues that are of the form qζ must have the
same parity as the �-adic Betti number b2 = dimQ�

H2
ét(Xk, Q�). For a K3 surface,

b2 = 22 because the l-adic Betti numbers coincide with the usual Betti numbers (use
[75, Theorem 3.12]).

We conclude, for example, that Theorem 3.12 by itself cannot be used to construct
a projective K3 surface over a number field of geometric Picard rank 1. This was a
distressing state of affairs, since it is a classical fact that outside a countable union
of divisors, the points in the coarse moduli space K2d of complex K3 surfaces of
degree 2d represent K3 surfaces of geometric Picard rank 1. The complement of
these divisors is not empty (by the Baire category theorem!), but since number fields
are countable, it was conceivable that there did not exist K3 surfaces over number
fields of geometric Picard rank 1. Terasoma and Ellenberg showed that such surfaces
do exist [26, 106], and van Luijk constructed the first explicit examples [109].

3.5.1 van Luijk’s Method

The idea behind van Luijk’s method [109] is beautiful in its simplicity: use informa-
tion at two primes of good reduction. See Convention 3.13 to understand the notation
below.

Proposition 3.17 Let X be a K3 surface over a number field K , and let p and p′
be two finite places of good reduction. Suppose that NS Xp � Z

n and NS Xp′ � Z
n,

and that the discriminantsDisc
(
NS Xp

)
andDisc

(
NS Xp′

)
are different inQ

×/Q
×2.

Then ρ(X) ≤ n − 1.

Proof By Theorem 3.12, we know that ρ(X) ≤ n. If ρ(X) = n, then NS X is a full
rank sublattice of both NS Xp and NS Xp′ . This implies that Disc NS(X) is equal to
both Disc

(
NS Xp

)
and Disc

(
NS Xp′

)
as elements of Q

×/Q
×2, so the discriminants

of the reductions are equal in Q
×/Q

×2. This is a contradiction. �

Example 3.18 ([109, Sect. 3]). The following is van Luijk’s original example. Set

f = x3 − x2y − x2z + x2w − xy2 − xyz + 2xyw + xz2 + 2xzw

+ y3 + y2z − y2w + yz2 + yzw − yw2 + z2w + zw2 + 2w3,

and let X be the quartic surface in P
3
Q

= Proj Q[x, y, z, w] given by

w f + 2z(xy2 + xyz − xz2 − yz2 + z3) − 3(z2 + xy + yz)(z2 + xy) = 0.

4When we say absolute value here we mean any archimedean absolute value of the field obtained
by adjoining to K the eigenvalues of �∗

Xk
.
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One can check (using the Jacobian criterion), that X is smooth, and that X has
good reduction at p = 2 and 3. Let ψp(x) denote the characteristic polynomial of
Frobenius acting on H2

ét(X p, Q�), and let ψ̃p(x) = p−22ψp(px). Proceeding as in
Example 3.16, we use point counts to compute

ψ̃2(x) = 1

2
(x − 1)2(2x20 + x19 − x18 + x16 + x14 + x11 + 2x10 + x9 + x6 + x4 − x2 + x + 2)

ψ̃3(x) = 1

3
(x − 1)2(3x20 + x19 − 3x18 + x17 + 6x16 − 6x14 + x13 + 6x12 − x11 − 7x10 − x9

+ 6x8 + x7 − 6x6 + 6x4 + x3 − 3x2 + x + 3)

The roots of the degree 20 factors of ψ̃p(x) are not integral for p = 2 and 3, so they
are not roots of unity. We conclude that ρ(X2) and ρ(X3) are both less than or equal
to 2.

Next, we compute Disc(NS X p) for p = 2 and 3 by finding explicit generators
for NS X p. For p = 2 note that, besides the hyperplane section H (i.e., the pullback
of OP3(1) to X2), the surface X2 contains the conic

C : w = z2 + xy = 0.

We have H 2 = 4 (it’s the degree of X2 in P
3), andC · H = degC = 2. Finally, by the

adjunction formula C2 = −2 because C has genus 0 and the canonical class on X2

is trivial. All told, we have produced a rank two sublattice of NS X2 of discriminant

det

(
4 2
2 −2

)
= −12.

We conclude that Disc(NS X2) = −3 ∈ Q
×/Q

×2.
For p = 3, the surface X3 contains the hyperplane class H and the line L : w =

z = 0, giving a rank two sublattice of NS X3 of discriminant

det

(
4 1
1 −2

)
= −9.

Thus Disc(NS X3) = −1 ∈ Q
×/Q

×2. Proposition 3.17 implies that ρ(X) ≤ 1, and
since NS X contains the hyperplane class, we conclude that ρ(X) = 1.

3.6 Further Techniques

In Examples 3.16 and 3.18 above, we computed the discriminant of the Néron-Severi
lattice for some K3 surfaces by exhibiting explicit generators. What if we don’t have
explicit generators? In [60] Kloosterman gets around this problem by using that
Artin–Tate conjecture, which states that for a K3 surface X over a finite field Fq the
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Brauer group Br X := H2
ét(X, Gm)tors of X is finite and

lim
x→q

ψq(x)

(x − q)ρ(X)
= q21−ρ(X)# Br X | Disc(NS X)|, (10)

where ρ(X) = rk(NS X). The Artin–Tate conjecture follows from the Tate conjecture
when 2 � q [74], and the Tate conjecture is now known to hold in odd characteristic;
see Remark 3.11. Assume then that q is odd. Pass to the finite extension of the ground
field so that NS X = NS X . Since the Artin–Tate conjecture holds, so in particular
Br X is finite, a theorem of Lorenzini, Liu and Raynaud states that the quantity # Br X
is a square [63]. Hence (10) can be used to compute | Disc(NS X)| as an element of
Q

×/Q
×2.

Elsenhans and Jahnel have made several contributions to the computation of
Néron-Severi groups of K3 surfaces. For example, in [28], they explain that one can
use the Galois module structures of Néron-Severi groups to refine Proposition 3.17.
Let X be a K3 surface over a number field K , and let p be a finite place of good
reduction for X , with residue field k (see Convention 3.13). The specialization map

spK ,k ⊗ id : NS X ⊗Z Q → NS Xp ⊗Z Q

is an injective homomorphism. The Q-vector space NS Xp ⊗Z Q is a Gal(k/k)-
representation, while the Q-vector space NS X ⊗Z Q is a Gal(K/K )-representation.
Let L denote the kernel of the latter representation.

Exercise 3.19 Show that the field extension L/K is finite and unramified at p.

Exercise 3.19 shows that, after choosing a prime q in L lying above p, there is
a unique lift of Frobenius to L , which together with the specialization map, makes
NS X ⊗Z Q a Gal(k/k)-submodule of NS Xk ⊗Z Q. By understanding the Gal(k/k)-
submodules of NS Xk ⊗Z Q as we vary over several primes of good reduction, we
can find restrictions on the structure of NS X ⊗Z Q, and often compute ρ(X).

The main tool is the characteristic polynomial χFrob of Frobenius as an endo-
morphism of NS Xp ⊗Z Q. If χFrob has simple roots, then Gal(k/k)-submodules of
NS Xp ⊗Z Q are in bijection with the monic polynomials dividing χFrob.

Recall that NS Xp ⊗Z Q� is a Gal(k/k)-submodule of H2
ét(Xp, Q�(1)) via the

cycle class map, so χFrob divides the characteristic polynomial ψ̃p of Frobenius acting
on H2

ét(Xk, Q�(1)), and we have seen that the roots of χFrob are roots of unity (because
some power of Frobenius acts as the identity). Therefore, χFrob divides the product of
the cyclotomic polynomials that divide ψ̃p. The Tate conjecture implies that χFrob is
in fact equal to this product. So let VTate denote the highest dimensional Q�-subspace
of H2

ét(Xp, Q�(1)) on which all the eigenvalues of Frobenius are roots of unity. Let
L ⊂ NS Xp be a sublattice; typically, L will be generated by the classes of explicit
divisors we are aware of on Xp. If we are lucky, there are very few possibilities for
Gal(k/k)-submodules of the quotient VTate/(L ⊗Z Q�), which we compare as we
vary over finite places of good reduction. This is best explained through an example.
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Example 3.20 ([28, Sect. 5]). The following is an example of a K3 surface X over
Q with good reduction at p = 3 and 5, such that ρ(X3) = 4 and ρ(X5) = 14, for
which we can show that ρ(X) = 1 using only information at these two primes. Let X
be the subscheme of P(1, 1, 1, 3) = Proj Z(15)[x, y, z, w] given by w2 = f6(x, y, z),
where

f6(x, y, z) ≡ 2x6 + x4y2 + 2x3y2z + x2y2z2 + x2yz3 + 2x2z4

+ xy4z + xy3z2 + xy2z3 + 2xz5 + 2y6 + y4z2 + y3z3 mod 3,

f6(x, y, z) ≡ y6 + x4y2 + 3x2y4 + 2x5z + 3xz5 + z6 mod 5.

Set X = XQ. Counting the elements of XF3(F3n ) for n = 1, . . . , 10, we compute the
characteristic polynomial of Frobenius on H2

ét(XF3
, Q�(1)) (here � 	= 3 is a prime)

and we get

φ̃3(x) = 1

3
(x − 1)2(x2 + x + 1)

(3x18 + 5x17 + 7x16 + 10x15 + 11x14 + 11x13 + 11x12 + 10x11 + 9x10

+ 9x9 + 9x8 + 10x7 + 11x6 + 11x5 + 11x4 + 10x3 + 7x2 + 5x + 1)

Let L ⊂ NSX
F3

be the rank 1 sublattice generated by the pullback of the class of a
line for the projection XF3 → P

2
F3

(i.e., the “hyperplane class”). The characteristic
polynomial of Frobenius acting on VTate/(L ⊗Z Q�) is (x − 1)(x2 + x + 1), which
has simple roots. We conclude that, for each dimension 1, 2, 3, and 4, there is at most
one Gal(F3/F3)-invariant vector subspace of NSX

F3
that contains L .

Repeating this procedure5 at p = 5, we find that the characteristic polynomial of
Frobenius acting on H2

ét(XF5
, Q�(1)) is

φ̃5(x) = 1

5
(x − 1)2(x4 + x3 + x2 + x + 1)(x8 − x7 + x5 − x4 + x3 − x + 1)

(5x8 − 5x7 − 2x6 + 3x5 − x4 + 3x3 − 2x2 − 5x + 5)

Again, let L ⊂ NSX
F5

be the rank 1 sublattice generated by the pullback of the class
of a line for the projection XF5 → P

2
F5

. The characteristic polynomial of Frobenius
acting on VTate/(L ⊗Z Q�) is

(x − 1)(x4 + x3 + x2 + x + 1)(x8 − x7 + x5 − x4 + x3 − x + 1)

5In the interest of transparency, one should add that brute-force point counting of F5n -points of XF5

is usually not feasible for n ≥ 8. However, the defining equation for XF5 contains no monomials
involving both y and z. This “decoupling” allows for extra tricks that allow a refined brute-force
approach to work. See [27, Algorithm 17]. Alternatively, one can find several divisors on X

F5
, given

by irreducible components of the pullbacks of lines tritangent to the curve f6(x, y, z) = 0 in P
2
F5

,

and thus compute a large degree divisor of φ̃5(x); see the discussion after Theorem 3.14.
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which has simple roots. Thus, for each dimension 1, 2, 5, 6, 9, 10, 13, and 14 there
is at most one Gal(F5/F5)-invariant vector subspace of NSX

F5
that contains L .

Since NS X ⊗Z Q is a Gal(Fp/Fp)-invariant subspace of NSX
Fp

for p = 3 and

5, we already see that ρ(X) = 1 or 2. If ρ(X) = 2, then the discriminants of the
Gal(Fp/Fp)-invariant subspaces of NSX

Fp
of rank 2 for p = 3 and 5 must be equal

in Q
×/Q

×2. These classes modulo squares of these discriminants can be calculated
using the Artin–Tate formula (10), and they are, respectively −489 and −5. Hence
ρ(X) = 1.

Unless one uses p-adic cohomology methods to count points of a K3 surface
over a finite field (e.g. [1, 25]), the slowest step in computing geometric Picard
numbers using the above techniques is point counting. One is restricted to using
small characteristics, typically 2, 3 and (sometimes) 5, and in practice, it can be
difficult to write a model of a surface over a number field with good reduction at
these small primes. Remarkably, Elsenhans and Jahnel proved a theorem that requires
point counting in only one characteristic. Their result is quite general; we explain
below how to use it in a concrete situation.

Theorem 3.21 ([29, Theorem 1.4]). Let R be a discrete valuation ring with quotient
field K of characteristic zero and perfect residue field k of characteristic p > 0.Write
v for the valuation of R, and assume that v(p) < p − 1. Let π : X → Spec R be a
smooth proper morphism. Then the cokernel of the specialization homomorphism

sp : Pic XK → Pic Xk

is torsion-free. �

Recall that for a K3 surface the Picard group and the Néron-Severi group coincide
(Proposition 2.8).

Example 3.22 Let R = Z(3), so that K = Q and k = F3. Let X be the K3 surface
in P(1, 1, 1, 3) = Proj Z(3)[x, y, z, w] given by

w2 = 2y2(x2 + 2xy + 2y2)2 + (2x + z)p5(x, y, z) + 3p6(x, y, z),

where p5(x, y, z) is the same polynomial as in Example 3.16, and p6(x, y, z) ∈
Z(3)[x, y, z]6 is a polynomial of degree 6 such that X is smooth as a Z(3)-scheme.
We saw in Example 3.16 that NS X

F3
= Pic X

F3
has rank 2 and is generated by the

pullbacks C and C ′ for X
F3

→ P
2
F3

of the tritangent line 2x + z = 0. Theorem 3.21

tell us that if NS X
Q

has rank 2, then C and C ′ lift to classes C̃ and C̃ ′, respectively,
in NS X

Q
. The Riemann-Roch theorem shows that C̃ and C̃ ′ are effective, and an

intersection number computation shows that C̃ and C̃ ′ must be components of the
pullback of a line tritangent to the branch curve of the projection X

Q
→ P

2
Q

. But
now the presence of p6(x, y, z) could wreck havoc here, and there may not be a line
that is tritangent to the branch curve in characteristic zero!
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For a particular p6(x, y, z), how does one look for a line tritangent to the curve

2y2(x2 + 2xy + 2y2)2 + (2x + z)p5(x, y, z) + 3p6(x, y, z) = 0

in P
2
Q

? One can use Gröbner bases and [27, Algorithm 8] to carry out this task (on
a computer!). Alternatively, one could use a different prime p of good reduction for
XQ and look for tritangent lines to the branch curve of the projection X

Fp
→ P

2
Fp

,

still using [27, Algorithm 8], hoping of course that there is no such line. No point
counting is needed in this second approach, but the Gröbner bases computations over
finite fields that take place under the hood are much simpler than the corresponding
computations over Q.

Exercise 3.23 Fill in the details in the Example 3.22 to show that C̃ and C̃ ′ must be
components of the pullback of a line tritangent to the branch curve of the projection
X
Q

→ P
2
Q

.

Exercise 3.24 Implement [27, Algorithm 8] in your favorite platform, and use it to
write down a specific homogeneous polynomial p6(x, y, z) of degree 6 for which
you can prove that the surface XQ of Example 3.22 has geometric Picard rank 1.

3.7 More on the Specialization Map

Let X be a K3 surface over a number field K , and let p be a finite place of good
reduction for X (see Convention 3.13). We have used the injectivity of the spe-
cialization map spK ,k : NS X → NS Xp to glean information about the geometric
Picard number ρ(X) of X . On the other hand, we also know that ρ(Xp) is even,
whereas ρ(X) can be odd, so the specialization map need not be surjective. In [30],
Elsenhans and Jahnel asked if there is always a finite place p of good reduction such
that ρ(Xp) − ρ(X) ≤ 1.

Using Hodge theory, Charles answers this question in [16]. Although the answer
to the original question is “no”, Charles’ investigation yields sharp bounds for the
difference ρ(Xp) − ρ(X). We introduce some notation to explain his results.

Let TQ be the orthogonal complement of NS XC inside the singular cohomology
group H2(XC, Q) with respect to the cup product pairing; TQ is a sub-Hodge structure
of H2(XC, Q). Write E for the endomorphism algebra of TQ. It is known that E is
either a totally real field or a CM field6; see [117].

Theorem 3.25 ([16, Theorem 1]). Let X, TQ and E be as above.

(1) If E is aCMfield or if the dimension of TQ as an E-vector space is even, then there
exist infinitely many places p of good reduction for X such that ρ(Xp) = ρ(X).

6Recall a CM field K is a totally imaginary quadratic extension of a totally real number field.
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(2) If E is a totally real field and the dimension of TQ as an E-vector space is odd,
and if p is a finite place of good reduction for X of residue characteristic ≥ 5,
then

ρ(Xp) ≥ ρ(X) + [E : Q].

Equality holds for infinitely many places of good reduction.

Theorem 3.25 gives a theoretical algorithm for computing the geometric Picard
number of a K3 surface X defined over a number field, provided the Hodge conjecture
for codimension 2 cycles holds for X × X . The idea is to run three processes in
parallel; see [16, Sect. 5] for details.

(1) Find divisors on X however you can (worst case scenario: start ploughing through
Hilbert schemes of curves in the projective space where X is embedded and check
whether the curves you see lie on X ). Use the intersection pairing to compute
the rank of the span of the divisors you find. This will give a lower bound ρ′(X)
for ρ(X).

(2) If the Hodge conjecture holds for X × X , then elements of E are induced by
codimension 2 cycles. Find codimension 2 cycles on X × X (again, worst case
scenario one can use Hilbert schemes of surfaces on a projective space where
X × X is embedded to look for surfaces that lie on X × X ). Use these cycles to
compute the degree [E : Q].

(3) Systematically compute ρ(Xp) at places of good reduction.

After a finite amount of computation, Theorem 3.25 guarantees we will have com-
puted ρ(X): Suppose that after a finite number of steps in the first process we have
computed a lower bound ρ′(X) that is sharp, i.e., ρ′(X) = ρ(X), but say we can’t yet
justify this equality. If E is a CM field or if the dimension of TQ as an E-vector space
is even, then Theorem 3.25 (1) guarantees that eventually ρ′(X) = ρ(Xp) for some
prime p of good reduction. The third process will allow us to conclude ρ(X) = ρ′(X)
in this case. If E is a totally real field and the dimension of TQ as an E-vector space
is odd, then the second process allows us to compute [E : Q], and the third process
will eventually give a prime p of good reduction such that ρ(Xp) = ρ′(X) + [E : Q],
proving that ρ(X) = ρ′(X) in this case as well, using Theorem 3.25 (2). Of course,
we should keep running the first process in the meantime in case the lower bound
ρ′(X) is not yet sharp! But eventually it will be, and we will have computed ρ(X).

This algorithm is not really practical, but it shows that the problem can be solved,
in principle. Recent work of Poonen, Testa, and van Luijk shows that there is an
unconditional algorithm to compute NS X , as a Galois module, for a K3 surface
X defined over a finitely generated field of characteristic 	= 2 [86, Sect. 8]. For K3
surfaces of degree 2 over a number field, there is also work by Hassett, Kresch and
Tschinkel on this problem [41].
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4 Brauer Groups of K3 Surfaces

4.1 Generalities

References: [18, 19, 22, 98, 111]

Through this section, k denotes a number field. Call a smooth, projective geometri-
cally integral variety over k a nice k-variety. Let X be a nice k-variety; is X (k) 	= ∅?
There appears to be no algorithm that could answer this question in this level of gen-
erality.7 On the other hand, the Lang–Nishimura Lemma8 assures us that if X and Y
are nice k-varieties, k-birational to each other, then

X (k) 	= ∅ ⇐⇒ Y (k) 	= ∅.

This suggests we narrow down the scope of the original question by fixing some
k-birational invariants of X (like dimension). It also suggests we look at birational
invariants of X that have some hope of capturing arithmetic. The Brauer group
Br X := H2

ét(X, Gm) is precisely such an invariant [36, Corollaire 7.3].
Let kv denote the completion of k at a place v of k. Since k ↪→ kv , an obvious

necessary condition for X (k) 	= ∅ is X (kv ) 	= ∅ for all places v . Detecting if X (kv ) 	=
∅ is a relatively easy task, thanks to the Weil conjectures and Hensel’s lemma (at
least for finite places of good reduction and large enough residue field—see Sect. 5 of
Viray’s Arizona Winter School notes, for example [113]). That these weak necessary
conditions are not sufficient has been known for decades [62, 88]; see [18] for a
beautiful, historical introduction to this topic.

Let Ak denote the ring of adeles of k. A nice k-variety such that X (Ak) =∏
v X (kv ) 	= ∅ and X (k) = ∅ is called a counterexample to the Hasse princi-

ple.9 In 1970 Manin observed that the Brauer group of a variety could be used to
explain several of the known counterexamples to the Hasse principle. More precisely,
for any subset S ⊆ Br X , Manin constructed an obstruction set X (Ak)

S satisfying

X (k) ⊆ X (Ak)
S ⊆ X (Ak),

and he observed that it was possible to have X (Ak) 	= ∅, yet X (Ak)
S = ∅, and thus

X (k) = ∅. Whenever this happens, we say there is a Brauer–Manin obstruction to
the Hasse principle. We will not define the sets X (Ak)

S here; the focus of these notes
is on trying to write down, in a convenient way, the input necessary to compute the
sets X (Ak)

S , namely elements of Br X expressed, for example, as central simple

7Hilbert’s tenth problem over k asks for such an algorithm. The problem is open even for k = Q,
but it is known that no such algorithm exists for large subrings of Q [85].
8See [89, Proposition A.6] for a short proof of this result due to Kollár and Szabó.
9The equality X (Ak) = ∏

v X (kv ) follows from projectivity of X , because X (Ok) = X (k) in this
case; here Ok denotes the ring of integers of k.
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algebras over the function field k(X). For details on how to define X (Ak)
S , see [98,

Sect. 5.2], [111, Sect. 3] and [20, 113].

4.2 Flavors of Brauer Elements

For a map of schemes X → Y , étale cohomology furnishes a map of Brauer groups
Br Y → Br X ; it also recovers Galois cohomology when X = Spec K for a field K .
In fact,

Br Spec(K ) = H2
ét(Spec K , Gm) � H2

(
Gal(K/K ), K

×)
= Br K ,

where K is a separable closure of K , and Br K is the (cohomological) Brauer group
of K .

For a nice k-variety X , write X for X ×Spec k Spec k, where k is a separable closure
of k. There is a filtration of the Brauer group

Br0 X ⊆ Br1 X ⊆ Br X,

where

Br0 X := im (Br k → Br X) , arising from the structure morphism X → Spec k, and
Br1 X := ker

(
Br X → Br X

)
, arising from extension of scalars X → X.

Elements in Br0 X are called constant; class field theory shows that if S ⊆ Br0 X ,
then X (A)S = X (A), so these elements cannot obstruct the Hasse principle. Ele-
ments in Br1 X are called algebraic; the remaining elements of the Brauer group
are transcendental.

The Leray spectral sequence for X → Spec k and Gm

E p,q
2 := Hp

(
Gal(k/k), Hq

ét(X , Gm)
) ⇒ Hp+q

ét (X, Gm)

gives rise to an exact sequence of low-degree terms, which yields an isomorphism

Br1 X/ Br0 X
∼−→ H1(Gal(k/k), Pic X). (11)

Exercise 4.1 Fill in the necessary details to prove the map in (11) is indeed an
isomorphism. You will need the vanishing of H3(Gal(k/k), (k)×) for a number field
k, due to Tate; see [78, 8.3.11(iv)].

Roughly speaking, the isomorphism (11) tells us that the Galois action on Pic X
determines the algebraic part of the Brauer group. There are whole classes of varieties
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for which Br X = Br1 X , e.g., curves [36, Corollaire 5.8] or rational varieties, by the
birational invariance of the Brauer group and the following exercise.

Exercise 4.2 Show that Br P
n
k

= 0. Hint: use the Kummer sequence in étale coho-
mology to show that Br P

n
k
[�] = 0 for every prime �, and the inclusion Br P

n
k

↪→
Br k(Pn

k
) coming from the generic point of P

n
k

to see that Br P
n
k

is torsion (see Sect. 4.3
below).

Exercise 4.3 Let X be a nice k-variety of dimension 2. Show that if the Kodaira
dimension of X is negative then Br X = Br1 X .

4.3 Computing Algebraic Brauer–Manin Obstructions

On a nice k-variety X with function field k(X), the inclusion Spec k(X) → X gives
rise to a map Br X → Br k(X) via functoriality of étale cohomology. This map is
injective; see [75, Example III.2.22]. When trying to compute the obstruction sets
X (Ak)

S , at least when S ⊆ Br1 X , one often tries to compute the right hand side
of (11); one then tries to invert the map (11) and embed Br1(X) into Br k(X), thus
representing elements of Br1 X as central simple algebras over k(X). This kind of
representation is convenient for the computation of the obstruction sets X (Ak)

S . See,
for example, [98, p. 145] and [20, 57, 58, 113] for some explicit calculations along
these lines, and [57], [110, Sect. 3] and [111, Sect. 3.5] for ideas on how to invert the
isomorphism (11).

4.4 Colliot–Thélène’s Conjecture

Before moving on to K3 surfaces, we mention a conjecture of Colliot-Thélène [19],
whose origins date back to work of Colliot-Thélène and Sansuc in the case of sur-
faces [21, Question k1]. Recall a rationally connected variety Y over an alge-
braically closed field K is a smooth projective integral variety such that any two
closed points lie in the image of some morphism P

1
K → Y . For surfaces, rational

connectedness is equivalent to rationality.

Conjecture 4.4 (Colliot-Thélène). Let X be a nice variety over a number field k.
Suppose that X is geometrically rationally connected. Then X (Ak)

Br X 	= ∅ =⇒
X (k) 	= ∅.

Conjecture 4.4 remains wide open even for geometrically rational surfaces, includ-
ing, for example, cubic surfaces. See Colliot–Thélène’s Arizona Winter School
notes [20] for more on this conjecture, including evidence for it and progress
towards it.
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4.5 Skorobogatov’s Conjecture

Based on growing evidence [23, 38, 49, 101], Skorobogatov has put forth [99] the
following conjecture.

Conjecture 4.5 (Skorobogatov). Let X be a projective K3 surface over a number
field k. Then X (Ak)

Br X 	= ∅ =⇒ X (k) 	= ∅.
Remark 4.6 The analogous conjecture for other surfaces of Kodaira dimension 0
is false: Skorobogatov has constructed counter examples of bi-elliptic surfaces for
which X (Q) = ∅ while X (AQ)Br X 	= ∅. Using [112] as a starting point, Balestrieri,
Berg, Manes, Park and Viray constructed an Enriques surface over Q satisfying the
analogous conclusion [6].

4.6 Transcendental Brauer Elements on K3 Surfaces:
An Introduction

References: [48, 49, 51, 79, 87, 102, 103, 116]

We have seen that there are no transcendental elements of the Brauer group for
curves and surfaces of negative Kodaira dimension. The first place we might see
such elements is on surfaces of Kodaira dimension zero. K3 surfaces fit this profile.
In fact, if X is an algebraic K3 surface over a number field, the group Br X is quite
large: there is an exact sequence

0 → (Q/Z)22−ρ → Br X →
⊕

� prime

H3
ét(X , Z�(1))tors → 0,

where ρ = ρ(X) is the geometric Picard number of X ; see [36, (8.7) and (8.9)].
Moreover, since X is a surface, [36, (8.10) and (8.11)] gives, for each prime �, a
perfect pairing of finite abelian groups

(
Br X/(Q/Z)22−ρ

) {�} × NS X{�} → Q�/Z�,

where A{�} denotes the �-primary torsion of A. Since NS X is torsion-free (by Propo-
sition 2.8 and the fact that Num X is torsion free, essentially by definition), we
conclude that Br X � (Q/Z)22−ρ. (Alternatively, one can embed k ↪→ C, and use
the vanishing of the singular cohomology group H3(XC, Z) and comparison Theo-
rems [75, III.3.12].)

This result doesn’t necessarily imply that Br X has infinitely many transcendental
elements, because it’s possible that most elements of Br X might not descend to the
ground field. This is indeed the case, as shown by the following remarkable theorem
of Skorobogatov and Zarhin.
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Theorem 4.7 ([102, Theorem 1.2]). If X is an algebraic K3 surface over a number
field k, then the group Br X/ Br0 X is finite. �

It is natural to ask what the possible isomorphism types of Br X/ Br0 X are (or
for that matter Br X/ Br1 X ), at least at first as abstract abelian groups. A related
question is: what prime numbers can divide the order of elements of Br X/ Br0 X?
These kinds of questions have prompted much recent work on Brauer groups of
K3 surfaces (e.g., [49, 51, 79, 103]), particularly on surfaces with high geometric
Picard rank. Two recent striking results [49, 79] on the transcendental odd-torsion
of the Brauer group are the following (for a finite abelian group A, write Aodd for its
subgroup of odd order elements).

Theorem 4.8 ([49, 50]). Let X [a,b,c,d] be a smooth quartic in P
3
Q
given by

ax4 + by4 = cz4 + dw4.

Then

(
Br X[a,b,c,d]/ Br0 X[a,b,c,d]

)
odd = (Br X [a,b,c,d])Gal(Q/Q)

odd �

⎧⎪⎨
⎪⎩
Z/3Z if −3abcd ∈ 〈−4〉Q×4,

Z/5Z if 53abcd ∈ 〈−4〉Q×4,

0 otherwise.

Furthermore, transcendental elements of odd order on X [a,b,c,d] never obstruct the
Hasse principle, but they can obstruct weak approximation.

This work builds on earlier work by Bright, Ieronymou, Skorobogatov, and Zarhin
[11, 51, 103]. Curiously, transcendental elements of order 5 on surfaces of the form
X [a,b,c,d] always obstruct weak approximation (density of X (k) in X (Ak) for the
product topology of the v-adic topologies); it is also possible for transcendental
elements of order 3 to obstruct weak approximation. The first example of such an
obstruction was found by Preu [87] on the surface X [1,3,4,9]. See [50, Theorem 2.3]
for precise conditions detailing when such obstructions arise.

Newton [79] has found a similar statement for K3 surfaces that are Kummer for
the abelian surface E × E , where E is an elliptic curve with complex multiplication.

Theorem 4.9 ([79]). Let E/Q be an elliptic curve with complex multiplication by
the full ring of integers of an imaginary quadratic field. Let X be the Kummer K3
surface associated to the abelian surface E × E. Suppose that (Br X/ Br1 X)odd 	= 0.
Then Br1 X = Br Q and

Br X/ Br Q � Z/3Z.

Moreover X (AQ)Br X
� X (AQ); consequently, there is always a Brauer–Manin

obstruction to weak approximation on X.

The surfaces of Theorem 4.9 always have rational points by their construction, but
it would be interesting to understand the situation for the Hasse principle on torsors
for these surfaces; it seems likely that Newton’s method will also show that the Hasse
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principle cannot be obstructed by odd order transcendental Brauer elements for such
torsors.

So far, no collection of odd order elements of the Brauer group has been shown
to obstruct the Hasse principle on a K3 surface.

Question 4.10 ([49]). Does there exist a K3 surface X over a number field k with
X (Ak) 	= ∅ such that X (Ak)

(Br X)odd = ∅?

As for transcendental Brauer elements of even order, Hassett and the author
showed that they can indeed obstruct the Hasse principle on a K3 surface. We looked
at the other end of the Néron-Severi spectrum, i.e., at K3 surfaces of geometric
Picard rank one (in fact, we used the technology developed in Sect. 3 to compute
Picard numbers!).

Theorem 4.11 ([43]). Let X be a K3 surface of degree 2 over a number field k, with
function field k(X), given as a sextic in the weighted projective space P(1, 1, 1, 3) =
Proj k[x, y, z, w] of the form

w2 = −1

2
· det

⎛
⎝2A B C

B 2D E
C E 2F

⎞
⎠ , (12)

where A, . . . , F ∈ k[x, y, z] are homogeneous quadratic polynomials. Then the
classA of the quaternion algebra (B2 − 4AD, A) inBr(k(X)) extends to an element
of Br(X).

When k = Q, there exist polynomials A, . . . , F ∈ Z[x, y, z] such that X has geo-
metric Picard rank 1 andA gives rise to a transcendental Brauer–Manin obstruction
to the Hasse principle on X.

For the second part of Theorem 4.11, one can take

A = −7x2 − 16xy + 16xz − 24y2 + 8yz − 16z2,

B = 3x2 + 2xz + 2y2 − 4yz + 4z2,

C = 10x2 + 4xy + 4xz + 4y2 − 2yz + z2,

D = −16x2 + 8xy − 23y2 + 8yz − 40z2,

E = 4x2 − 4xz + 11y2 − 4yz + 6z2,

F = −40x2 + 32xy − 40y2 − 8yz − 23z2.

(13)

The reason to look at K3 surfaces with very low Picard rank is that these surfaces
have little structure, e.g., they don’t have elliptic fibrations or Kummer structures
that one can use to construct or control transcendental Brauer elements [31, 37, 48,
49, 79, 87, 101, 116]. Our hope was to give a way to construct Brauer classes that
did not depend on extra structure, that could be systematized for large classes of K3
surfaces. So far, we have been able to construct all the possible kinds of 2-torsion
elements on K3 surfaces of degree 2 [43, 44, 72]; see Sect. 4.9 below.
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Exercise 4.12 Let X be an algebraic K3 surface over C. Prove that if ρ(X) ≥ 5 then
there is a map φ : X → P

1
C

whose general fiber is a smooth curve of genus 1. Hint:
use the Hasse-Minkowski theorem to show there is class C ∈ Pic X with C2 = 0.
Use the linear system of this class (or a similar class of square zero) to produce the
desired fibration.

4.7 Transcendental Brauer Elements on K3 Surfaces:
Hodge Theory

References: [13, 43, 44, 53, 72, 77, 100, 108]

The idea behind the construction of transcendental Brauer elements in [43, 44,
72] goes back to work of van Geemen [108], and is most easily explained using
sheaf cohomology on complex K3 surfaces; most of this section can be properly
rewritten using Kummer sequences for étale cohomology and comparison theorems,
e.g., see [91, Proposition 1.3]. The analytic point of view is a little easier to digest.

Let X be a complex K3 surface. Let Br′ X = H2(X,O×
X )tors. Since H3(X, Z) = 0,

the long exact sequence in sheaf cohomology associated to the exponential sequence
gives

0 → H2(X, Z)/c1(NS X) → H2(X,OX ) → H2(X,O×
X ) → 0

We apply the functor TorZ• ( · , Q/Z) to this short exact sequence of abelian groups.
Note that TorZ1 (H2(X,OX ), Q/Z) = H2(X,OX )tors = 0 and that H2(X,OX ) ⊗
Q/Z = 0 since Q/Z is torsion and H2(X,OX ) is divisible. Hence

Br′ X � (
H2(X, Z)/c1(NS X)

) ⊗ Q/Z. (14)

Let TX be the orthogonal complement in H2(X, Z) of NS X with respect to cup
product. We call TX the transcendental lattice of X . Write T ∨

X = Hom(TX , Z) for
the dual of TX .

Lemma 4.13 The map

φ : H2(X, Z)/c1(NS X) → T ∨
X

v + NS X �→ [t �→ 〈v, t〉]

is an isomorphism of lattices.

Proof First, observe that both NS X and TX are primitive sublattices of H2(X, Z):
for the former lattice, note that H2(X, Z)/c1(NS X) injects into H2(X,OX ), which is
torsion-free, and that c1 is an injective map, because H1(X,OX ) = 0, by definition
of a K3 surface. For the latter, use Exercise 2.26(1).
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Since NS X is a primitive sublattice of H2(X, Z), we have T⊥
X = NS X , by Exer-

cise 2.26(2). Injectivity of the map φ follows: if φ(v + NS X) = 0, then v ∈ T⊥
X =

NS X , so v + NS X is the trivial class in H2(X, Z)/c1(NS X).
Consider the short exact sequence of abelian groups

0 → TX → H2(X, Z) → H2(X, Z)/TX → 0.

Apply the functor Ext•
Z
( ·, Z). Since H2(X, Z)/TX is torsion free, we have

Ext1
Z

(
H2(X, Z)/TX , Z

) = 0

so the natural map
HomZ(H2(X, Z), Z) → T ∨

X

is surjective. Since H2(X, Z) is unimodular, and hence self dual, this means that
every element of T ∨

X has the form v �→ 〈λ, v〉 for some λ ∈ H2(X, Z). This gives
surjectivity of φ. �

Proposition 4.14 Let X be a complexK3 surface. There are isomorphisms of abelian
groups

Br X � T ∨
X ⊗ Q/Z � HomZ(TX , Q/Z).

Proof This follows from (14) and Lemma 4.13. �

Informally, Proposition 4.14 tells us there are bijections

{cyclic subgroups of Br′ X of order n}
1−1←→ {surjections TX � Z/nZ}
1−1←→ {sublattices � ⊆ TX of index n with cyclic quotient and generator}

(15)

where the last bijection comes from

(−→) taking the kernel of the surjection TX � Z/nZ.
(←−) taking the cokernel of the inclusion � ⊆ TX .

In what follows, we will focus on the case wheren = p is a prime number, in which
case (15) tells us that subgroups of order p of Br′ X are in one-to-one correspondence
with sublattices of index p of TX . Since we are working over a ground field that is
already algebraically closed, this discussion asserts that sublattices of TX contain
information about the transcendental classes of K3 surfaces!
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4.8 First Examples: Work of van Geemen [108, Sect. 9]

Let’s implement the above idea in the simplest possible case. Consider an complex
algebraic K3 surface X with NS X � Zh, h2 = 2. We will study sublattices of index
2 in TX , up to isometry, corresponding by (15) to elements of order 2 in Br′ X .

First, a primitive embedding

NS X = 〈h〉 ↪→ �K3 = U⊕3 ⊕ E8(−1)⊕2

exists by Theorem 2.27. Let {e, f } be a basis for the first summand of �K3 equal to
the hyperbolic plane U , with intersection matrix

(
0 1
1 0

)
,

A primitive embedding 〈h〉 ↪→ �K3 is also unique up to isometry by [80, Theo-
rem 1.14.4], so we may assume that h = e + f . Let v = e − f ; we have v2 = −2,
〈h, v〉 = 0, and

TX � 〈v〉 ⊕ �′, where �′ = U⊕2 ⊕ E8(−1)⊕2.

The lattice�′ is unimodular (hence equal to its dual lattice), so everyφ ∈ Hom(�′, Z)
is of the form

φλ : �′ → Z, v �→ 〈v,λ〉.

for some λ ∈ �′. In other words, the map

�′ → Hom(�′, Z), λ �→ φλ

is an isomorphism. Tensoring with Z/2Z we get an isomorphism

�′/2�′ → Hom(�′, Z/2Z), λ + 2�′ �→ φλ ⊗ idZ/2Z

Hence, a surjection TX → Z/2Z has the form

α : TX → Z/2Z

nv + λ′ �→ aαn + 〈λ′,λα〉 mod 2,
(16)

for some λα ∈ �′, determined only up to an element of 2�′, and some aα ∈ {0, 1}.
We classify these surjections by studying their kernels (see (15)). These kernels are
lattices which, by Theorem 2.25, are determined up to isomorphism by their rank,
signature, and discriminant quadratic forms. Recall that the discriminant quadratic
form of a lattice (L , 〈 , 〉) is



234 A. Várilly-Alvarado

qL : L∨/L → Q/2Z x + L �→ 〈x, x〉 mod 2Z.

Proposition 4.15 ([108, Proposition 9.2]). Let X be a complex algebraic K3 surface
with NS X � Zh, h2 = 2. Let α : TX → Z/2Z be a surjective map as above, and put
�α = ker α. Then

(1) If aα = 0 then �∨
α/�α � (Z/2Z)3. There are 220 − 1 such lattices �α, all iso-

morphic to each other.
(2) If aα = 1 then �∨

α/�α � Z/8Z. There are 220 such lattices �α, sorted out into
two isomorphism classes by their discriminant forms as follows:

(a) The even class, where 1
2 〈λα,λα〉 ≡ 0 mod 2. There are 29(210 + 1) such

lattices.
(b) The odd class, where 1

2 〈λα,λα〉 ≡ 1 mod 2. There are 29(210 − 1) such
lattices.

Proof In all cases, the order of the discriminant group �∨
α/�α is disc(�α) =

22 disc(TX ) = 8, because �α has index 2 in TX . If aα = 0, then �α has an orthogonal
direct sum decomposition

�α = 〈v〉 ⊕ (�α ∩ �′),

and we obtain a decomposition of the discriminant group

�∨
α/�α = 〈v〉∨/〈v〉 ⊕ (�α ∩ �′)∨/(�α ∩ �′) � Z/2Z ⊕ (�α ∩ �′)∨/(�α ∩ �′).

The discriminant group (�α ∩ �′)∨/(�α ∩ �′) has order 4. Let μ ∈ �′ satisfy
〈μ,λα〉 = 1. One verifies that {λ/2,μ} generates a subgroup of order 4 in (�α ∩
�′)∨/(�α ∩ �′), isomorphic to (Z/2Z)2 (do this!). The discriminant quadratic form
is also determined up to isometry (check this!), so all the lattices �α with aα = 0 are
isometric. There are 220 − 1 choices for λα, parametrized by elements in �′/2�′,
except for the zero vector, which would give �α = TX .

For the case aα = 1, we check that w := 1
4 (−v + 2λα) is in �∨

α . The vector 4w
is not in �α (it is in TX , but it is not in the kernel of the map α), but 8w ∈ �α, so w
has order 8 in the discriminant group, which is therefore isomorphic to Z/8Z. The
discriminant form qα of �α is determined by its value on w, which is

q(w) = 〈w,w〉 = −2 + 4〈λα,λα〉
16

= −1 + 2〈λα,λα〉
8

mod 2Z

Two lattices �α and �α′ of this form, with discriminant groups generated by w and
w′, respectively, are therefore equivalent if and only if there exists an integer x such
that qα(xw) = qα′(w′). In other words, if and only if

x2 · −1 + 2〈λα,λα〉
8

≡ −1 + 2〈λα′ ,λα′ 〉
8

mod 2Z
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On the other hand, a vector λα is determined only up to elements of 2�′ and thus can
always be modified (check!) to satisfy 〈λα,λα〉 = 0 or 2; we assume a normalization
like this. If 〈λα,λα〉 = 〈λα′ ,λα′ 〉, then x = 1 will show two lattices are isomorphic.
If 〈λα,λα〉 	= 〈λα′ ,λα′ 〉, then we are looking for an integer x such that

x2 · −1

8
≡ −1 + 4

8
mod 2Z

i.e., for an integer x such that x2 ≡ 13 mod 16. No such integer exists. We conclude
there are two isomorphism classes of lattices �α with aα = 1, depending on the parity
of 1

2 〈λα,λα〉, as claimed. The count of the number of lattices of each type is left as
an exercise. �
Exercise 4.16 Formulate and prove the analogue of Proposition 4.15 for complex
algebraic K3 surfaces with NS X � Zh, h2 = 2d (see [72]). Can you do the case
when NS X � U? Such K3 surfaces are endowed with elliptic fibrations (see Exer-
cise 4.12). What about the case when ρ(X) = 19?

4.9 From Lattices to Geometry

Proposition 4.15 is nice, but how are we supposed to extract central simple algebras
over the function field of a complex K3 surface from it? The hope here is that the lat-
tices �α of Proposition 4.15 are themselves isomorphic to a piece of the cohomology
of a different algebraic variety, and that the isomorphism is really a shadow of some
geometric correspondence that could shed light on the mysterious transcendental
Brauer classes.

For example, in the notation of Sect. 4.8, an obvious sublattice of index 2 of TX =
〈v〉 ⊕ �′ is � := 〈2v〉 ⊕ �′. This lattice is in the even class of Propososition 4.15(2).
Note that ωX ∈ TX ⊗ C, so ωX ∈ � ⊗ C as well. If we can re-embed � primitively
in �K3, say by a map ι : � ↪→ �K3, then ιC(ωX ) will give a period point in the
period domain �, and by the surjectivity of the period map (Theorem 2.24) there
will exist a K3 surface Y with10 ωY = ιC(ωX ) and TY � ι(�). Discriminant and rank
considerations imply that NS Y � Zh′, h′2 = 8, i.e., Y is a K3 surface of degree 8,
with Picard rank 1.

Exercise 4.17 Show that there is indeed a primitive embedding ι : � ↪→ �K3. Hint:
what would ι(�)⊥ have to look like as a lattice (including its discriminant form)?
Could you apply Theorem 2.27 and [80, Corollary 1.14.4] to this orthogonal com-
plement instead?

Our discussion suggests there is a correspondence, up to isomorphism, between
pairs (X,α) consisting of a K3 surface X of degree 2 and Picard rank 1 together

10Note the importance of primitivity of ι : � ↪→ �K3 here: TY must be a primitive sublattice of
H2(Y,Z); see the proof of Lemma 4.13.
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with an even class α ∈ Br′ X , and K3 surfaces of degree 8 and Picard rank 1. This is
indeed the case; Mukai had already observed this in [77, Example 0.9]. Starting with
a K3 surface Y of degree 8 with NS Y � Zh′, Mukai notes that the moduli space of
stable sheaves E (with respect to h′) of rank 2, determinant algebraically equivalent
to h′, and Euler characteristic 4, is birational to a K3 surface X of degree 2. The
moduli space is in general not fine, and the obstruction to the existence of a universal
sheaf is an element α ∈ Br′ X [2]. See [13, 72] for accounts of this phenomenon. Let
πX : X × Y → X be the projection onto the first factor. In modern lingo, any π−1

X α-
twisted universal sheaf on X × Y induces a Fourier-Mukai equivalence of bounded
derived categories Db(X,α) � Db(Y ).

Before we explain a more geometric approach to the correspondence (X,α) ←→
Y , we pause to identify the varieties encoded by the remaining isomorphism classes
of lattices from Proposition 4.15.

Proposition 4.18 Let X be a complex algebraic K3 surface with NS X � Zh, h2 =
2. Let�α be the kernel of a surjectionα : TX → Z/2Z. Let�α(−1) denote the lattice
�α with its bilinear form scaled by −1.

(1) If �∨
α/� � (Z/2Z)3, then there is an isometry

�α(−1) � 〈h2
1, h1h2, h

2
2〉⊥ ⊆ H4(Y, Z),

where Y → P
2 × P

2 is a double cover branched along a smooth divisor of
type (2, 2) in P

2 × P
2 and hi is the pullback of OP2(1) along the projection

πi : Y → P
2 for i = 1, 2.

(2) If �∨
α/� � (Z/8Z), then

(a) if �α belongs to the even class, then there is an isometry

�α � TY ⊆ H2(Y, Z),

where TY is the transcendental lattice of a K3 surface of degree 8.
(b) if �α belongs to the odd class, then there is an isometry

�α(−1) � 〈H 2, P〉⊥ ⊆ H4(Y, Z),

where Y ⊆ P
5 is a cubic fourfold containing a plane P, with hyperplane

section H.

Proof We have discussed the case (2)(a). However, all the statements can be deduced
from Theorem 2.25 (see also [108, Sects. 9.6–9.8]). For example, let Y ⊆ P

5 be a
cubic fourfold, and write H for a hyperplane section of Y . By the Hodge–Riemann
relations, the lattice H4(Y, Z) has signature (21, 2); it is unimodular by Poincaré
duality, and it is odd (i.e. not even), because 〈H 2, H 2〉 = 3. By the analogue of
Theorem 2.13 for odd indefinite unimodular lattices [95, Sect. V.2.2], we have
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H4(Y, Z) � 〈+1〉⊕21 ⊕ 〈−1〉⊕2 If Y contains a plane P , then the Gram matrix for
〈H 2, P〉 is (

3 1
1 3

)

(see [40, Sect. 4.1] for the calculation of 〈P, P〉.). One checks that the rank, signature
and discriminant form of 〈H 2, P〉⊥ matches that of �α. Applying Theorem 2.25
finishes the proof in this case. The other cases are left as exercises. �

Exercise 4.19 Let Y → P
2 × P

2 be a double cover branched along a smooth divisor
of type (2, 2) in P

2 × P
2.

(1) Compute the structure of the lattice H4(Y, Z).
(2) For i = 1, 2, let hi be the pullback of OP2(1) along the projection πi : Y → P

2.
Compute the Gram matrix of the lattice 〈h2

1, h1h2, h2
2〉.

(3) Compute the rank, signature and discriminant quadratic form of 〈h2
1, h1h2, h2

2〉⊥.
Use this to establish Proposition 4.18(1).

Remark 4.20 The connection between cubic fourfolds containing a plane and K3
surfaces of degree 2 goes back at least to Voisin’s proof of the Torelli theorem for
cubic fourfolds [114]. See also Hassett’s work on this subject [40]. Fans of derived
categories should consult [65].

The proof of Proposition 4.18 might make it seem like a numerical coincidence,
but the discussion of the case (2)(a) before the Proposition suggests something deeper
is going on. Let us describe the geometry that connects a pair (X,α) to the auxiliary
variety Y .

Theorem 4.21 Let Y be either

(1) a K3 surface of degree 8 with NS Y � Z, or,
(2) a smooth cubic fourfold containing a plane P such that H4(Y, Z)alg � 〈H 2, P〉,

where H denotes a hyperplane section, or
(3) a smooth double cover of P2 × P

2 branched over a smooth divisor of type (2, 2)
such thatH4(Y, Z)alg � 〈h2

1, h1h2, h2
2〉, where h1, h2 are the respective pullbacks

to Y of OP2(1) along the two projections π1,π2 : Y → P
2.

Then there is a quadric fibration π : Y ′ → P
2 associated to Y such that, for general

Y , the discriminant locus � ⊆ P
2 of π is a smooth curve of degree 6, and the Stein

factorization for the relative variety of maximal isotropic subspaces W → P
2 has

the form
W → X → P

2,

where X is a double cover of P
2 branched along �, and W → X is a smooth P

n-
bundle for the analytic topology for some n ∈ {1, 3}.

So there it is! The surface X is a K3 surface of degree 2, and W → X is a Severi-
Brauer bundle representing a class α ∈ Br′ X [2]. The bundle W → X can be turned



238 A. Várilly-Alvarado

Fig. 1 Pictorial representation of Theorem 4.21. Each point of W represents a linear subspace of
maximal dimension in a fiber of the quadric bundle Y ′ → P

2

into a central simple algebra over the function field k(X) that is suitable for the
computation of Brauer–Manin obstructions; see [43, 44, 72] for details. Figure 1
illustrates this idea.
Proof of Theorem 4.21 We explain how to construct the quadric bundles Y ′ → P

2.
The rest of the theorem can be deduced from [44, Proposition 3.3]; see also [44,
Theorem 5.1] in the case of cubic fourfolds, [43, Theorem 3.2] for double covers of
P

2 × P
2, and [72, Lemmas 13 and 14] for K3 surfaces of degree 8.

If Y is a K3 surface of degree 8 with NS Y � Z, then it is a complete intersection
of three quadrics V (Q0, Q1, Q2) in P

5 = Proj C[x0, . . . , x5]; see [8, Chap. VIII,
Exercise 11] or [52, Proposition 3.8]. There is a net of quadrics

Y ′ = {
([x, y, z], [x0, . . . , x5]) ∈ P

2 × P
5 : xQ0 + yQ1 + zQ2 = 0

} ⊆ P
2 × P

5,

and the projection to the first factor gives the desired bundle of quadrics Y ′ → P
2.

For a general K3 surface Y , the singular fibers of Y ′ → P
2 will have rank 5, and thus

the discriminant locus on P
2 will be a smooth sextic curve.

If Y is a smooth cubic fourfold containing a plane P , then blowing up and pro-
jecting away from P gives a fibration into quadrics Y ′ → P

2. The discriminant locus
on P

2 where the fibers of the map drop rank is smooth already because Y does not
contain another plane intersecting P along a line [114, §Lemme 2], by hypothesis.

Finally, if Y → P
2 × P

2 is a double cover branched along a type (2, 2)-divisor,
then the projections πi : Y → P

2 give fibrations into quadrics. Smoothness of the
discriminant loci is discussed in [43, Lemma 3.1]. �
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Remark 4.22 If Y is defined over a number field, then so is the output data W → P
2

of the above construction. This gives a way of writing down transcendental Brauer
classes on X defined over a number field(!), provided one uses Y as the starting data.
The difficulty here is that one might like to use X as the starting data (over a number
field), and compute all the possible Y over number fields that fit into the above recipe.

Remark 4.23 The results developed in [53, 100] contain as special cases extensions
of Proposition 4.18 and Theorem 4.21 to K3 surfaces of degree 2 without restrictions
on their Néron-Severi groups.

5 Uniform Boundedness and K3 Surfaces: Some Questions

Let X be a K3 surface over a number field k. In this section, we return to the question
of possible orders of the finite quotient | Br X/ Br0 X |, and connect this question to
the geometric correspondences we saw in Theorem 4.21. There is a strong analogy
between torsion points on elliptic curves over number fields, and nonconstant Brauer
classes of K3 surfaces over number fields. We start by exploring this idea: the anal-
ogy suggests it is conceivable that if one fixes just the right amount of data, e.g.,
a geometric lattice polarization, then there are only finitely many possibilities for
| Br X/ Br0 X |.

5.1 Torsion Subgroups of Elliptic Curves

Let E be an elliptic curve over a number field k. By the Mordell-Weil theorem, the
group E(k) is finitely generated and abelian. Hence

E(k) ∼= E(k)tors × Z
r ,

for some nonnegative integer r . In a 1966 survey paper, Cassels asserts it is a folklore
conjecture that there are only finitely many possibilities for E(k)tors [14, Sect. 22].
Shortly thereafter, Manin showed that for each prime p there is a uniform bound on
the p-primary torsion of elliptic curves over k:

Theorem 5.1 ([67]). Let k be a number field; fix a prime p. There is a constant
c := c(k, p) such that |E(k)tors| < c(k, p) for all elliptic curves E/k.

Manin proved that the modular curve X1(pr ), which has high genus for all r �
0, has only finitely many k-points—before Faltings’ theorem was known! Shortly
thereafter, Ogg gave a precise conjecture for the possible orders of torsion points
on elliptic curves over Q [83, Conjecture 1]. In a spectacular breakthrough, Mazur
proved this conjecture, and classified all possibilities for E(Q)tors.
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Theorem 5.2 ([71, Theorem 8]). Let E/Q be an elliptic curve. Then E(Q)tors is
isomorphic to one of the following 15 groups:

Z/nZ for 1 ≤ n ≤ 10 or n = 12, or Z/2Z × Z/2nZ for 1 ≤ n ≤ 4.

In fact, Mazur showed that the only rational points of the modular curve X1(N ) are
the rational cusps if N = 11 or N ≥ 13. After subsequent work establishing (strong)
uniform boundedness of torsion over more classes of number fields [54, 55], Merel
showed that in fact #E(k)tors could be bounded by a constant depending only on the
degree of k:

Theorem 5.3 ([73]). Fix d ≥ 1. There is a constant c := c(d) such that |E(k)tors| <
c for all elliptic curves E over a number field k for which [k : Q] = d.

5.2 From Torsion on Elliptic Curves to Brauer Groups
of K3 Surfaces

Is there a Mazur/Merel Theorem for K3 surfaces? At first glance, this question makes
no sense. K3 surfaces have no group structure: what would torsion subgroup even
mean? Perhaps we can reinterpret the group E(k)tors of an elliptic curve in such a way
that it does not depend on the group structure of E , and then look for an analogue
on K3 surfaces:

E(k)tors � (Pic0 E)tors by [96, III.3.4], taking Galois invariants,
� (Pic E)tors because only degree 0 line bundles are torsion,
� H1(E,O×

E )tors [39, Exercise III.4.5],
� H1

ét(E,Gm)tors [75, III, Proposition 4.9],
� H1

ét(E,Gm)tors/H1
ét(Spec k,Gm) by Hilbert’s Theorem 90.

The quotient H1
ét(E, Gm)tors/H1

ét(Spec k, Gm) makes no reference to the group struc-
ture of E , and so it is defined for more general varieties. For a K3 surface X/k, we
might thus consider the quotient

H2
ét(X, Gm)tors/H2

ét(Spec k, Gm) = Br X/ Br0 X.

Theorem 4.7 guarantees that Br X/ Br0 X is finite!

5.3 Moduli Spaces

Understanding the arithmetic of the modular curves X0(N ) and X1(N ) is essential
in proving Theorems 5.2 and 5.3. We should expect that defining and understanding
moduli spaces for K3 surfaces with level structures coming from the Brauer group
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will be crucial in investigating uniform boundedness problems for Brauer groups on
K3 surfaces. As with modular curves, one can start by studying the geometry of these
spaces when defined as complex analytic varieties.

In this context, for example, Proposition 4.15 should have the following inter-
pretation: let Ko

2 denote the locus of the coarse moduli space of complex K3 sur-
faces of degree 2 whose points correspond to K3 surfaces of Picard rank 1; see [35,
Sect. 2.5] for a definition of this space. Then the locus of the (to be defined) moduli
space Y0(2, 2) parametrizing pairs (X, 〈α〉), where X is a K3 surface of degree 2
and 0 	= α ∈ (Br X)[2], such that ρ(X) = 1 has three components. Each component
maps dominantly ontoKo

2 via the forget map, with finite degree equal to the number of
lattices in the corresponding isomorphism class of Proposition 4.15. Proposition 4.18
identifies each of these three components in turn as moduli spaces of other varieties,
and Theorem 4.21 details geometric correspondences realizing the isomorphisms
between the moduli spaces of objects in Proposition 4.18 and the components of
Y0(2, 2). Compare this with the discussion in Sect. 4.9.

The lattice-theoretic calculations of [72] show that if p � 2d, then the analogous
moduli space Y0(2d, p) parametrizing pairs (X, 〈α〉), where X is a K3 surface of
degree 2d and 0 	= α ∈ (Br X)[p], has three components. One of these components
can be identified, á la Mukai, with the moduli space K2dp2 of K3 surfaces of degree
2dp2, and if d = 1 and p ≡ 2 mod 3, then another component is isomorphic to the
moduli space C2p2 of special cubic fourfolds of discriminant 2p2. Both K2dp2 and
C2p2 are varieties of general type for p ≥ 11 [34, 104]. This leads us to propose the
following challenge:

Challenge 5.4 Does there exist a K3 surface X/Q of degree 2 with ρ(X) = 1, such
that (Br X/ Br0 X)[11] 	= 0?

The above discussion is admittedly informal, but it should be possible to use ideas
of Rizov [90] to make it precise and arithmetic.

5.4 Uniform Boundedness

We conclude by stating optimistic conjectures about Brauer groups of K3 surfaces
over number fields suggested by the above discussion.

Conjecture 5.5 (Uniform boundedness). Fix a number field k and a primitive lattice
L ↪→ �K3 = U⊕3 ⊕ E8(−1)⊕2. Let X be a K3 surface over k such that NS X � L.
Then there is a constant c(K , L), independent of X, such that

| Br X/ Br0 X | < c(k, L).

Conjecture 5.6 (Strong uniform boundedness). Fix a positive integer n and a prim-
itive lattice L ↪→ �K3 = U⊕3 ⊕ E8(−1)⊕2. Let X be a K3 surface over a number
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field k of degree n such thatNS X � L. Then there is a constant c(n, L), independent
of X such that

| Br X/ Br0 X | < c(n, L).

If, for some lattice L , Conjecture 5.5 is verified with an effectively computable
constant c(k, L), then [59, Theorem 1] would imply that the obstruction set X (Ak)

Br X

is effectively computable for the corresponding surfaces. Skorobogatov’s Conjec-
ture 4.5 would then imply there is an effective way to determine if X (k) 	= ∅ for
these K3 surfaces.

The relevant moduli spaces with level structures whose rational points would
shed light on Conjectures 5.5 and 5.6, have dimension 20 − r , where r = rk L . These
spaces tend to have trivial Albanese varieties (one can use the techniques of [56] to see
this); thus, determining the qualitative arithmetic of these spaces is a difficult problem
for small values of r . However, special cases of these conjectures may be accessible,
e.g., by taking specific L with r = 19 or 20, where the moduli spaces to be studied
have dimension ≤ 1. This is the subject of upcoming joint work with Bianca Viray.
More optimistically, recent work of the author with Dan Abramovich [2, 3] gives
“proofs-of-concept” for similar questions on abelian varieties, conditional on Lang’s
Conjecture and Vojta’s Conjecture, respectively. These strong conjectures allow us
to control the arithmetic of high-dimensional moduli spaces with level structures.
It is our hope that once an arithmetic theory of moduli spaces of K3 surfaces with
Brauer level structures is firmly in place, one may obtain similar conditional results
strengthening the plausibility of Conjectures 5.5 and 5.6.

6 Epilogue: Results from the Arizona Winter School

We report on the work of three project groups that began at the Arizona Winter
School.

6.1 Picard Groups of Degree Two K3 Surfaces

Using the techniques presented in Sect. 3 as a starting point, Bouyer, Costa, Festi,
Nicholls, and West [10] have computed not only the geometric Picard rank, but
the full Galois module structure for general members of the family of degree 2 K3
surfaces given by

X/Q : w2 = ax6 + by6 + cz6 + dx2y2z2.

Over Q, we can assume that a = b = c = 1; for general d, the authors showed that
ρ(X) = 19. Using explicit generators for NS(X), the authors are able to compute
the Galois cohomology groups Hi (Gal(Q/Q), NS(X)) for 0 ≤ i ≤ 2, and hence
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compute the algebraic Brauer groups Br1 X/ Br0 X of this family; see Sect. 4.2. The
case d = 0, where ρ(X) = 20 is also studied in Nakahara’s upcoming Ph. D. thesis.

6.2 Rational Points and Derived Equivalence

Ascher, Dasaratha, Perry, and Zong constructed remarkable further examples of
the kind appearing in Theorem 4.11 which showed that, over Q, Q2 and R, the
existence of rational points on K3 surfaces need not be preserved by twisted derived
equivalences ([4]). This result stands in sharp contrast with the untwisted derived
equivalence over finite fields and p-adic fields; see [46, 61] and [42, Corollary 35].

6.3 Effective Bounds for Brauer Groups of Kummer Surfaces

Let A be a principally polarized abelian surface over a number field k, and let X be
the associated Kummer surface. Building on ideas in [102], Cantoral Farfán, Tang,
Tanimoto, and Visse ([32]) showed there is an effectively computable constant M ,
depending on the Faltings’ height of A and NS(A), such that | Br X/ Br1 X | < M .
By [59, Theorem 1], it follows that the Brauer–Manin set X (A)Br X for these surfaces
is effectively computable. Their work also yields practical algorithms for computing
the quotient Br1 X/ Br0 X when ρ(A) = 1 or 2.
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Odd-Dimensional Cohomology with Finite
Coefficients and Roots of Unity

Yuri G. Zarhin

Abstract We prove that the triviality of the Galois action on the suitably twisted
odd-dimensional étale cohomology group with finite coefficients of an absolutely
irreducible smooth projective variety implies the existence of certain primitive roots
of unity in the field of definition of the variety. This text was inspired by an exercise
in Serre’s Lectures on the Mordell–Weil theorem.

1 Introduction

We recall some basic facts about cyclotomic characters. Let K be a field, K̄ its
algebraic closure, GK = Aut(K̄/K ) the absolute Galois group of K . Let n be a
positive integer that is not divisible by char(K ). We write μn ⊂ K̄ for the cyclic
multiplicative group of nth roots of unity in K̄ . We write

χ̄n : GK → Aut(μn) = (Z/nZ)∗

for the cyclotomic character that defines the Galois action on nth roots of unity.
Clearly, μn ⊂ K if and only if

χ̄n(g) = 1 ∀g ∈ GK .

Recall that the order of (Z/nZ)∗ is φ(n) where φ is the Euler function. This implies
that

χ̄φ(n)
n (g) = 1 ∀g ∈ GK .
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Let K (μn) ⊂ K̄ be the nth cyclotomic extension of K . Then the degree
[K (μn) : K ] of the (abelian) field extension K (μn)/K coincides with the order of the
finite commutative Galois group Gal(K (μn)/K ) of this extension. By definition of
χ̄n , its kernel coincides with GK /GK (μn) and χ̄n is the composition of the surjection

GK �→ GK /Gal(K̄/K (μn)) = Gal(K (μn)/K )

and the embedding
Gal(K (μn)/K ) ↪→ (Z/nZ)∗,

which we continue to denote by χ̄n , slightly abusing notation.

Remark 1.1 Clearly, the exponent exp(n, K ) of Gal(K (μn)/K ) divides the order
of Gal(K (μn)/K ), which, in turn, divides φ(n). In addition, if f is an integer then
the character χ̄

f
n is trivial if and only if f is divisible by exp(n, K ). In particular,

the character χ̄
exp(n,K )
n is trivial. On the other hand, if the degree of the extension

K (μn)/K is even then so is exp(n, K ); this implies that if f is an odd integer then
the character χ̄

f
n is nontrivial.

Remark 1.2 If m is (another) positive integer that is relatively prime to n and
char(K ), then the map

μn × μm → μnm, (γ1, γ2) �→ γ1γ2

is an isomorphism of groups (and even Galois modules). The natural map

φn,m : Z/nmZ → Z/nZ × Z/mZ, c + nmZ �→ (c + nZ, c + mZ)

is a ring homomorphism and the group homomorphism

χ̄nm : GK → (Z/nmZ)∗

coincides with

g �→ (χ̄n(g), χ̄m(g)) ∈ (Z/nZ)∗ × (Z/mZ)∗
φ−1
n,m−→ (Z/nmZ)∗.

If A is an abelian variety over K thenwewrite A[n] for the kernel ofmultiplication
by n in A(K̄ ). It is well known that A[n] is a finite Galois submodule of A(K̄ ). If we
forget about the Galois action then A[n] is a free Z/nZ-module of rank 2 dim(A).

The following assertion is stated without proof, as an exercise, in Serre’s Lectures
on the Mordell–Weil Theorem [7, Sect. 4.6, p. 55].
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Theorem 1.3 If dim(A) > 0 and A[n] ⊂ A(K ) then μn ⊂ K.

Proof First, it suffices to check the case when n = �r is a power of a prime � �=
char(K ).

Second, if At is the dual of A then let us take a K -polarization λ : A → At of
smallest possible degree. Then λ is not divisible by �, i.e., ker(λ) does not contain the
whole A[�]. Otherwise, divide λ by � to get a K -polarization of lower degree. Thus
the image λ(A[�r ]) ⊂ At [�r ] contains a point of exact order �r , say Q. Otherwise,

λ(A[�r ]) ⊂ At [�r−1]

and therefore A[�] = �r−1A[�r ] lies in the kernel of λ, which is not the case.
Since A[�r ] ⊂ A[K ] and λ is defined over K , the image λ(A[�r ]) lies in At (K ).

In particular, Q is a K -rational point on At .
Third, there is a nondegenerate Galois-equivariant Weil pairing [5]

en : A[�r ] × At [�r ] → μ�r .

I claim that there is a point P ∈ A[�r ] such that en(P, Q) is a primitive �r th root of
unity. Indeed, otherwise

en(A[�r ], Q) ⊂ μ�r−1

so that the nonzero point �r−1Q is orthogonal to the whole A[�r ] with respect to en ,
which contradicts the nondegeneracy of en .

Thus, γ := en(P, Q) is a primitive �r th root of unity that lies in K , because
both P and Q are K -points. Since μ�r is generated by γ, μ�r ⊂ K . �

The aim of this paper is to a prove a variant of Serre’s exercise that deals with the
Galois action on the twisted odd-dimensional étale cohomology group with finite
coefficients of a smooth projective variety (see Theorem 1.6 below). Our proof
is based on the Hard Lefschetz Theorem [2] and the unimodularity of Poincaré
duality [10].

1.4 If � is a commutative ring with 1 and without zero divisors and M is a
�-module, then we write Mtors for its torsion submodule and M/tors for the quotient
M/Mtors. Usually, we will use this notation when � is the ring Z� of �-adic integers.

If � is a prime different from char(K ) then we write Z�(1) for the projective limit
of the cyclic Galois modules μ�r with �th power as transition map. It is known that
Z�(1) is a free Z�-module of rank 1 with natural continuous action of GK defined by
the cyclotomic character

χ� : GK → AutZ�
(Z�(1)) = Z

∗
�.

There are canonical isomorphisms

Z�/�
r
Z� = Z/�rZ, Z�(1)/�

r
Z�(1) = μ�r ;
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in addition
χ� mod �r = χ̄�r

for all positive integers r .
We write Q�(1) for the one-dimensional Q�-vector space

Q�(1) = Z�(1) ⊗Z�
Q�

provided with the natural Galois action that is defined by the character χ�. For each
integer a we will need the ath tensor power Q�(a) := Q�(1)⊗a , which is a one-
dimensional Q�-vector space provided with the Galois action that is defined by the
character χa

� .
Let X be an absolutely irreducible smooth projective variety over K of posi-

tive dimension d = dim(X). We write X̄ for the irreducible smooth projective d-
dimensional variety X ×K K̄ over K̄ . Let � be a prime �= char(K ) and a an integer.
If i is a nonnegative integer then we write Hi (X̄ ,Z�(a)) for the corresponding
(twisted) i th étale �-adic cohomology group. Recall that all the étale cohomology
groups Hi (X̄ ,μ⊗a

n ) are finite Z/nZ-modules and that the Z�-modules Hi (X̄ ,Z�(a))

are finitely generated. In particular, each Hi (X̄ ,Z�(a))/tors is a free Z�-module
of finite rank. These finiteness results are fundamental finiteness theorems in étale
cohomology from SGA 4, 4 1

2 , 5, see [3] and [4, pp. 22–24] for precise references.
All these groups are provided with the natural linear continuous actions of GK . We
also consider the corresponding finite-dimensional Q�-vector spaces

Hi (X̄ ,Q�(a)) = Hi (X̄ ,Z�(a)) ⊗Z�
Q�.

The Galois action on Hi (X̄ ,Z�(a)) extends byQ�-linearity to Hi (X̄ ,Q�(a)). There
are natural isomorphisms of GK -modules

Hi (X̄ ,Q�(a + b)) = Hi (X̄ ,Q�(a)) ⊗Q�
Q�(b)

for all integers a and b.

Remark 1.5 If a positive integer m is relatively prime to n and char(K ), then the
splitting μnm = μn × μm induces the splitting of Galois modules

Hi (X̄ ,μnm
⊗a) = Hi (X̄ ,μn

⊗a) ⊕ Hi (X̄ ,μm
⊗a).

The Q�-dimension of Hi (X̄ ,Q�(a)) is denoted by bi (X̄) and called the i th Betti
number of X̄ : it does not depend on a choice of (a and) �. In characteristic zero it
follows from the comparison theorem between classical and étale cohomology [6].
In finite characteristic the independence follows from results of Deligne [1]. It is also
known that bi (X̄) = 0 if i > 2d [3, 4].

Our main result is the following statement.

Theorem 1.6 Let i be a nonnegative integer.
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(i) Suppose that i ≤ d − 1 and b2i+1(X̄) �= 0. If the Galois action on
H 2i+1(X̄ ,μn

⊗i ) is trivial then μn ⊂ K.
(ii) Suppose that 1 ≤ i ≤ d and b2i−1(X̄) �= 0. If the Galois action on

H 2i−1(X̄ ,μn
⊗i ) is trivial then μn ⊂ K.

Example 1.7 Let us take i = 1. Then Kummer theory tells us that

H 2i−1(X̄ ,μn
⊗i ) = H 1(X̄ ,μn) = Pic(X̄)[n]

is the kernel of multiplication by n in the Picard group Pic(X̄) of X̄ . On the other
hand if B is an abelian variety over K that is the Picard variety of X [5] then
dim(B) = b1(X̄) and B[n] is a Galois submodule of H 1(X̄ ,μn). If we know that the
Galois action on H 1(X̄ ,μn) is trivial then the same is true for its submodule B[n].
Now if b1(X̄) �= 0 then B �= {0} and Theorem 1.3 applied to B implies that μn ⊂ K .

Theorem 1.6 may be viewed as a special case (when a = j±1
2 ) of the following

statement.

Theorem 1.8 Let j be a nonnegative integer and b j (X̄) �= 0. Let a be an integer.
Assume that the Galois action on H j (X̄ ,μ⊗a

n ). is trivial. Then

χ̄n2a− j (g) = 1 ∀g ∈ G = GK .

If, in addition, 2a − j is relatively prime to φ(n) then μn ⊂ K

Corollary 1.9 [Corollary toTheorem1.8].Let K beafield, n apositive integer prime
to char(K ). Suppose that K does not contain a primitive nth root of unity. Suppose
that j is an odd positive integer. Let a be an integer such that 2a − j is relatively
prime to φ(n). Then for each absolutely irreducible smooth projective variety X over
K with b j (X̄) �= 0 the Galois group GK acts nontrivially on H j (X̄ ,μ⊗a

n )

The next assertion covers (in particular) the case of quadratic χ̄n (e.g., when K is
the maximal real subfield Q(μn)

+ of the nth cyclotomic field Q(μn) of Q).

Theorem 1.10 Let K be a field, n a positive integer prime to char(K ). Suppose that
the degree [K (μn) : K ] is even. (E.g., K (μn)/K is a quadratic extension.) Then for
each positive odd integer j , each integer a and every absolutely irreducible smooth
projective variety X over K with b j (X̄) �= 0 the Galois group GK acts nontrivially
on H j (X̄ ,μ⊗a

n ).

Remark 1.11 The special case ofTheorem1.10when χ̄n is a quadratic character fol-
lows directly from Theorem 1.6, because in this case the Galois module H j (X̄ ,μ⊗a

n )

is isomorphic either to H j (X̄ ,μ
⊗[( j+1)/2]
n ) or to H j (X̄ ,μ

⊗[( j−1)/2]
n ).

The paper is organized as follows. Section2 contains auxiliary results about pair-
ings between finitely generated modules over discrete valuation rings. We use them
in Sect. 3, in order to prove Theorems 1.8, 1.6 and 1.10.
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2 Linear Algebra

This section contains auxiliary results that will be used in the next section in order
to prove main results of the paper.

2.1 Let E be a discrete valuation field, � ⊂ E the corresponding discrete valuation
ring with maximal ideal m. Let π ∈ m be an uniformizer, i.e., m = π�.

If U is a finitely generated �-module then we write UE for the corresponding
(finite-dimensional) E-vector space U ⊗� E . The kernel of the homomorphism of
�-modules

⊗1 : U → U ⊗� E = UE , x �→ x ⊗ 1

coincides with Utors while the image

Ũ := ⊗1(U ) ⊂ UE

is a �-lattice in VE of (maximal) rank dimE (UE ).
Let G be a group and

χ : G → �∗ ⊂ E∗

is a homomorphism of G to the group �∗ of invertible elements of �. If H is a
nonzero finite-dimensional vector space over E and

ρ : G → AutE (H)

is a E-linear representation of G in H then H becomes a module over the group
algebra E[G] of G over E . Then

ρ ⊗ χ : G → AutE (H), ρ ⊗ χ(g) = χ(g)ρ(g) ∀g ∈ G

is also a linear representation of G in H . We denote the corresponding E[G]-module
by H(χ) and call it the twist of H by χ. Notice that H and H(χ) coincide as E-
vector spaces. It is also clear that if T is a �-lattice in H then it is G-stable in H(χ)

if and only if it is G-stable in (the E[G]-module) H . On the other hand, let L be a
one-dimensional E-vector space provided with a structure of G-module defined by

gz := χ(g)z ∀g ∈ G, z ∈ L .

Then the G-modules H(χ) and H ⊗E L are isomorphic (noncanonically).

Lemma 2.2 Suppose that H1 and H2 are nonzero finite-dimensional E-vector
spaces and

ρ1 : G → AutE (H1), ρ2 : G → AutE (H2)

are isomorphic E-linear representations of G. Suppose that T1 is a G-stable�-lattice
in H1 of rank dimE (H1) and T2 is a G-stable�-lattice in H2 of rank dimE (H2). Then
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there is an isomorphism of E[G]-modules u : H1 → H2 such that

u(T1) ⊂ T2, u(T1) �⊂ π · T2.

Proof Clearly,

H2 =
∞⋃
j=1

π− j · T2,
∞⋂
j=1

π j · T2 = {0}.

Let u0 : H1
∼= H2 be an isomorphism of E[G]-modules. Since H1 is a finitely gen-

erated �-module, there exists an integer j such that π− j · u0(T1) ⊂ T2. Let us take
the smallest j that enjoys this property and put u = π− j u0. �

Theorem 2.3 Suppose that U and V are finitely generated �-modules provided
with group homomorphisms

G → Aut�(U ), G → Aut�(V ).

Let us assume that U/tors �= {0}, i.e., rank of U is positive.
Suppose that we are given a �-bilinear pairing

e : U × V → �

that enjoys the following properties.

(i)
e(gx, gy) = χ(g) · e(x, y) ∀g ∈ G; x ∈ U, y ∈ V .

(ii) The �-bilinear pairing
U/tors × V/tors → �

induced by e is perfect (unimodular).
(iii) The E[G]-modules UE and VE are isomorphic.

Let r be a positive integer such that the induced G-action on U/πrU is trivial,
i.e.,

x − gx ∈ πrU ∀g ∈ G, x ∈ U.

Then
χ(g) mod πr� = 1 ∈ �/πr� ∀g ∈ G.

Proof Clearly,
e(Utors, V ) = {0} = e(U, Vtors).

It is also clear that Utors is a G-submodule of U and Vtors is a G-submodule of V . It
is also clear that the G-module [U/tors]/πr [U/tors] is isomorphic to a quotient of
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the G-module U/πrU . In particular, the G-action on [U/tors]/[πrU/tors] is (also)
trivial. In the notation of Sect. 2.1, the natural homomorphisms

U/tors = U/Utors → Ũ , x +Utors �→ x ⊗ 1, V/tors = V/Vtors → Ṽ , x + Vtors �→ x ⊗ 1

are G-equivariant isomorphisms of free �-modules of finite rank

U/tors ∼= Ũ , V/tors ∼= Ṽ

where Ũ and Ṽ are G-stable lattices of maximal rank in UE and VE respectively.
This implies that the G-action on Ũ/πr Ũ and e induces a �-bilinear perfect pairing

ẽ : Ũ × Ṽ → �

such that
ẽ(gx, gy) = χ(g) · ẽ(x, y) ∀g ∈ G; x ∈ Ũ , y ∈ Ṽ .

Applying Lemma 2.2 to the isomorphic E[G]-modules UE and VE , we obtain a
“nicer” isomorphism of E[G]-modules u : UE

∼= VE such that

u(T1) ⊂ T2, u(T1) �⊂ πT2.

Let us pick x0 ∈ T1 with y := u(x0) /∈ πT2. Since x0 mod πr T1 ∈ T1/πr T1 is
G-invariant, its image

u(x) mod πr T2 = y mod πr T2 ∈ T2/π
r T2

is also G-invariant. Since y is not divisible in T2, the �-submodule � · y is a direct
summand of T2. Since the pairing ẽ between T1 and T2 is perfect, there is x ∈ T1 with
e(x, y) = 1. This implies that

χ(g) = χ(g) · 1 = χ(g) · ẽ(x, y) = ẽ(gx, gy),

i.e.,
χ(g) = ẽ(gx, gy) ∀g ∈ G.

On the other hand, since

x − gx ∈ πr T1, y − gy ∈ πr T2,

we have
ẽ(gx, gy) − ẽ(x, y) ∈ πr� ∀g ∈ G.

This means that
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χ(g) − 1 = ẽ(gx, gy) − ẽ(x, y) ∈ πr� ∀g ∈ G

and we are done. �

The next statement is a useful variant of Theorem 2.3 that deals with twisted
representations.

Theorem 2.4 Suppose that U and V are finitely generated �-modules provided
with group homomorphisms

G → Aut�(U ), G → Aut�(V ).

Assume that U/tors �= {0}, i.e., the rank of U is positive.
Suppose that we have a �-bilinear pairing

e : U × V → �

that enjoys the following properties.

(i)
e(gx, gy) = e(x, y) ∀g ∈ G; x ∈ U, y ∈ V .

(ii) The �-bilinear pairing
U/tors × V/tors → �

induced by e is perfect (unimodular).
(iii) The E[G]-modules UE and VE (χ) are isomorphic.

Let r be a positive integer such that the induced G-action on U/πrU is trivial,
i.e.,

x − gx ∈ πrU ∀g ∈ G, x ∈ U.

Then
χ(g) mod πr� = 1 ∈ �/πr� ∀g ∈ G.

Proof Let
ρU : G → Aut�(U ), ρV : G → Aut�(V )

be the structure homomorphisms that define the actions ofG onU and V respectively.
In this notation,

e(ρU (g)x, ρV (g)y) = e(x, y) ∀g ∈ G; x ∈ U, y ∈ V .

Let us twist ρV by considering the group homomorphism

ρV (χ) : G → Aut�(V ), g �→ χ(g)ρ(g).
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We denote the resultingG-module by V (χ) and call it the twist of V byχ. Notice that
V coincides with V (χ) as �-module. On the other hand, the E[G]-module V (χ)E
is canonically isomorphic to VE (χ). The pairing e defines the �-bilinear pairing

eχ : U × V (χ) → �, eχ(x, y) := e(x, y) ∀x ∈ U, y ∈ V = V (χ)

of G-modules U and V (χ), which satisfies

eχ(ρU (g)x, ρV (χ)(g)y) = e(ρU (g)x,χ(g)ρV (g)y) = χ(g)e(ρU (g)x, ρV (g)y) =

χ(g)e(x, y) = χ(g)eχ(x, y) ∀g ∈ G; x ∈ U, y ∈ V (χ).

This implies that

eχ(ρU (g)x, ρV (χ)(g)y) = χ(g)eχ(x, y) ∀g ∈ G; x ∈ U, y ∈ V (χ).

Now the result follows from Theorem 2.3 applied to U , V (χ) and eχ. �

3 Proofs of Main Results

Let � be a prime different from char(K ) and r a positive integer. Let us put

E = Q�,� = Z�,π = �,G = GK .

We keep the notation and assumptions of Sect. 1.4. Recall that d = dim(X) ≥ 1.

Proposition 3.1 Let j be a nonnegative integer with j ≤ 2d and b j (X̄) �= 0. Let a
be an integer. Assume that the Galois action on H j (X̄ ,μ�r

⊗a) is trivial. Then

χ̄
2a− j
�r (g) = 1 ∀g ∈ G = GK .

Proof Let us putU := H j (X̄ ,Z�(a)): it is providedwith the natural structure ofG =
GK -module. Then the universal coefficients theorem [6, Chap. V, Sect. 1, Lemma
1.11] gives us a canonical GK -equivariant embedding

U/�rU = H j (X̄ ,Z�(a))/�r H j (X̄ ,Z�(a)) ↪→ H j (X̄ ,μn
⊗a).

Since the Galois action on H j (X̄ ,μn
⊗a) is trivial, it is also trivial on U/�rU . We

have (in the notation of Sect. 2.1)

UE = H j (X̄ ,Z�(a)) ⊗Z�
Q� = H j (X̄ ,Q�(a)).

Let V := H 2d− j (X̄ ,Z�(d − a)): it has the natural structure of G = GK -module and
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VE = H 2d− j (X̄ ,Z�(d − a)) ⊗Z�
Q� = H 2d− j (X̄ ,Q�(d − a)).

The cup product pairing gives rise to a Z�-bilinear GK -invariant pairing known as
Poincaré duality ([6, Chap. VI, Sect. 11, Cor. 11.2 on p. 276], [4, p. 23], [3, Chap. II,
Sect. 1])

e : H j (X̄ ,Z�(a)) × H 2d− j (X̄ ,Z�(d − a)) → H 2d(X̄ ,Z�(d)) ∼= Z�.

It is known [10] that the induced pairing of free Z�-modules of finite rank

e : H j (X̄ ,Z�(a))/tors × H 2d− j (X̄ ,Z�(d − a))/tors → Z�

is perfect and unimodular.
Let us choose an invertible very ample sheaf L on X and let

h ∈ H 2(X̄ ,Q�(1))
GK ⊂ H 2(X̄ ,Q�(1))

be its first �-adic Chern class. If j ≤ d then the Hard Lefschetz Theorem ([2],
[3, Chap. IV, Sect. 5, pp. 274–275]) tells us that cup multiplication by (d − j)th
power of h establishes an isomorphism between Q�-vector spaces H j (X̄ ,Q�(a))

and H 2d− j (X̄ ,Q�(a + d − j)). On the other hand, if d ≥ j then cup multiplica-
tion by the ( j − d)th power of h establishes an isomorphism between the Q�-
vector spaces H 2d− j (X̄ ,Q�(a + d − j)) and H j (X̄ ,Q�(a)). In both cases the
Galois-invariance of h implies that the Q�-vector spaces UE = H j (X̄ ,Q�(a)) and
H 2d− j (X̄ ,Q�(a + d − j)) are isomorphic as GK -modules. On the other hand, the
GK -module

H 2d− j (X̄ ,Q�(a + d − j)) = H 2d− j (X̄ ,Q�(d − a + 2a − j)) =

H 2d− j (X̄ ,Q�(d − a)) ⊗Q�
Q�(2a − j) ∼= VE (χ)

where
χ := χ

2a− j
� : G = GK → Z

∗
� = �∗.

So, the G-module UE is isomorphic to VE (χ) and Theorem 2.4 tells us that

χ̄
2a− j
�r (g) = (χ�(g))2a− j mod �rZ� = χ(g) mod �rZ� = 1 ∀g ∈ G = GK .

�
Proof of Theorem 1.8 Since b j (X̄) �= 0, we have j ≤ 2d. Recall that n is a positive
integer that is not divisible by char(K ). Let � be a prime dividing n and let �rn(�)

be the exact power of � that divides n. Applying Proposition 3.1 to all such � with
r = rn(�) and using Remarks 1.2 and 1.5, we obtain that the character χ̄2a− j

n is trivial,
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which gives us the first assertion of Theorem 1.8. On the other hand, we know that
χ̄

φ(n)
n is trivial. This implies that if 2a − j and φ(n) are relatively prime then χ̄n is

itself trivial, i.e., μn ⊂ K . This proves the second assertion of Theorem 1.8.

Now we use Theorem 1.8 in order to prove Corollary 1.9 and Theorem 1.10.

Remark 3.2 In the statement of Theorem 1.8 we do not require that j is odd and
therefore its immediate Corollary 1.9 remains true without this assumption. How-
ever, if we drop this assumption in Corollary 1.9 (while keeping all the other ones)
and assume instead that j is even then 2a − j is also even and therefore φ(n) is
odd, because it is relatively prime to 2a − j . This implies that n = 2 and therefore
char(K ) �= 2 and K does not contain a primitive square root of unity, i.e., K does
not contain −1, which is absurd.

Remark 3.3 The second assertion Theorem 1.8 (and its proof) remains true (valid)
if in its statement we replace φ(n) by its divisor exp(n, K ).

Proof of Theorem 1.6 Since a = ( j ± 1)/2, the integer 2a − j = ±1 is relatively
prime to φ(n). Now the result follows from already proven Theorem 1.8. �
Proof of Theorem 1.10 Suppose that the Galois action on H j (X̄ ,μn

⊗a) is trivial
for some absolutely irreducible smooth projective variety X with b j (X̄) �= 0. By
Theorem 1.8, the character χ̄

2a− j
n is trivial. On the other hand, since f := 2a − j is

odd and [K (μn) : K ] is even, Remark 1.1 tells us that χ̄2a− j
n is nontrivial. This gives

us a desired contradiction. �
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