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Chapter 9
Actinobacteria in Agricultural 
and Environmental Sustainability

L. Shivlata and Tulasi Satyanarayana

Abstract  The advent of green revolution or high input agrotechnologies have led 
to self-reliance in food production. Modern agriculture methods are getting increas-
ingly dependent on the steady supply of synthetic inorganic fertilizers and pesti-
cides, which are products of fossil fuels. There is an increasing concern about the 
excessive dependence on the supply of chemical fertilizers and pesticides, and the 
adverse effects of the indiscriminate use of synthetic inputs in soil productivity and 
environmental quality. The cumulative effect of environmental degradation due to 
application of agrochemicals has led to a decline in food production during the last 
two decades. In order to overcome these adverse effects, there is an urgent need to 
develop new strategies for ensuring further growth in agricultural output. By adapt-
ing a strategy involving integrated supply of nutrients from a combination of chemi-
cal fertilizers and pesticides, organic manures, and biofertilizers and biopesticides, 
the soil can be saved from further impoverishment and environmental degradation. 
The use of microbes as bioinoculants for promoting plant growth and/or bioreme-
diation purposes gives a new dimension to agricultural and environmental biotech-
nology. Actinobacteria are considered as the most prominent source of bioactive 
compounds (antibiotics, enzymes, and plant growth modulators) facilitating plant 
growth promotion and plant disease suppression. Attempts are being made to utilize 
actinobacteria that produce antibiotics and agro-active compounds as biofertilizers 
and biopesticides; these aids in mitigating the use of harmful chemical fertilizers 
and pesticides. Besides making agriculture systems sustainable, soil inhabiting acti-
nobacteria play important roles in various ecological processes such as organic mat-
ter decomposition and toxic pollutant and heavy metal bioremediation, thus 
contributing to the restoration of soil fertility and environmental sustainability.
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9.1  �Introduction

Ever increasing population and over exploitation of natural resources are the two 
major causes of disturbance in the structure of world economy that has resulted in 
drastic setbacks on overall growth and development (Bretschger 2013). The world 
population has already reached 6.8 billion and is estimated to cross nine billion by 
2050 (Alexandratos and Bruinsma 2012). Intensive agricultural technologies have 
been adopted to feed the escalating population since 1960s. These conventional 
agricultural technologies include hybridized seed distribution, modern irrigation 
practices, use of improved crop varieties, synthetic fertilizers and pesticides, etc. 
With advances in modern technologies, crop productivity rates have increased to 
meet the global food demand and provide future food security through green revolu-
tion. The green revolution is an agrotechnology-based solution to the worldwide 
food scarcity that arose after the Second World War. It has brought tremendous 
breakthroughs in agricultural economy in the last few decades (Pingali 2012) and 
has led to a phenomenal increase in food production per capita, especially in the 
yield of staple foods (rice, maize, and wheat). This revolution has been successful 
in making many nations self-sufficient in food grains. The development of agricul-
tural self-reliance system in many countries has ensured a long-term food produc-
tion in an economically viable way (Herdt 1998). Despite impressive results, these 
modern practices have caused certain negative impacts on ecological units encom-
passing changes in physiochemical properties of soil, depletion of stratospheric 
ozone, and destruction of food chains. An excessive use of synthetic fertilizers and 
pesticides pollute land area and ultimately water resources giving rise to algal 
blooms, nitrate poisoning, emergence of pesticide-resistant insects and pathogenic 
fungi (Ntalli and Menkissoglu-Spiroudi 2011), and thereby making crop production 
more susceptible to abiotic and biotic stresses (Babalola 2010). Other severe reper-
cussions include ecological infrastructure damages, unfavorable climate change, 
deforestation, and soil erosion (Zacharia 2011), thus disturbing the overall sustain-
ability of agriculture system and environment, which ultimately leads to major 
health concerns, extinction of wildlife, and other life forms (Carson 1962).

Environmental degradation is one of the biggest concerns that must be addressed 
at the global level. This is mainly due to ever increasing human population, urban-
ization, and industrialization. The effluents from various industries contaminate the 
atmosphere as well as aquatic and terrestrial zones of the biosphere, thus, influenc-
ing both biotic and abiotic environmental factors. Disturbances in the environment 
lead to undesirable and deleterious outcomes triggering unseasonal rainfall, atmo-
spheric pollution, soil degradation, and deterioration of soil microbiota that affect 
land fertility and agro-economy.

Environment and agriculture are two interlinked systems. The perturbation of 
environment causes negative impacts on agriculture system and vice versa. These 
two systems determine the economic status and progressive structure of a nation. 
The preservation of sustainability in agriculture and environment is an important 
concern in the current scenario that needs special attention. Consequently, robust 
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organizational systems need to be developed, which control land use and coordinate 
soil and water management to a sustainable level. Sustainable agriculture aims pri-
marily at making nutritious food available for the present and future generation to 
conserve soil fertility and natural resources. To fulfill these, sustainable soil man-
agement, development of pest-resistant crop plants, improvement in agricultural 
services, and search for alternatives to hazardous chemicals are the current focus.

Soil management practices increase nutrient content and water holding capacity 
of soil that permits proliferation of beneficial microbes and restricts the entry of 
toxic compounds into the food chain. Soil microbes regulate nutritive and physical 
status of the soil (Anderson and Domsch 1989) and make an essential contribution 
in humus formation and soil texture improvement, thereby making soil more suit-
able for sustainable cropping practices. In the present scenario, pesticide-resistant 
plant pathogens and abiotic stresses are emerging factors that severely affect the 
agricultural production. Genetically modified and improved crop varieties are being 
used to relieve the effects of biotic and abiotic stresses (Rai et al. 2011). On the 
other hand, the emergence of resistant pathogenic strains is comparably high war-
ranting a search for an alternate solution. The application of microbial inoculants 
has proven to be effective for suppression of pathogenic fungal growth (Toyota and 
Watanabe 2013). In addition, some microbes have an inherent trait of triggering the 
plant immune system in order to defend herbivore insect attack (Van Wees et al. 
2008). Thus, these microbes can be employed as alternatives to harmful pesticides. 
Some extremotolerant microbes are capable of supporting plant growth in adverse 
environments (Yandigeri et al. 2012; Selvakumar et al. 2015), and these could serve 
as suitable candidates to cope with abiotic stresses (drought, salinity, and nutrient 
deficiency) to enable exploitation of unsuitable soils (saline coastal sediments and 
desolate areas) for cultivation purposes.

Microbial flora also has a key role to play in biogeochemical cycles, which regu-
lates recycling of principal elements (carbon, nitrogen, sulphur, and phosphorus) 
between biotic and abiotic factors. Recycling of essential elements facilitates growth 
and survival of microbes and others in the ecological niches (Rousk and Bengtson 
2014). Moreover, microorganisms participate in plant growth promotion via plant–
microbe associations. This association can be cooperative or antagonistic. 
Mutualistic association is broadly classified into two major types: bipartite com-
munities (nitrogen-fixing nodular symbioses or arbuscular mycorrhiza) and multi-
partite communities (endophytes and epiphytes) (Tikhonovich and Provorov 2011). 
Beneficial microbes provide solubilized minerals to plants and fixed nitrogen to 
enhance fitness of plants, and thus, bepragmatic biofertilizers. The application of 
biofertilizer and biopesticide is more promising as they have negligible detrimental 
effects on the environment. Likewise, the multiple benefits of microbial inoculants 
offer an effective way for sustainable agriculture (Jha et al. 2013).

Microbes are a boon to keep the environment clean. They possess an immense 
tolerance to toxic environment and exhibit metabolic potential to degrade xenobiot-
ics. They play a role in providing a cleaner and healthier environment for mankind 
through pollution control. They are of paramount importance in the degradation of 
recalcitrant organic compounds (Daubaras and Chakrabarty 1992), detoxification of 
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heavy metals (Lovley and Coatest 1997) and waste treatment. Several microbes and 
their enzymes have found application in the process of bioremediation. To improve 
their degradation capabilities, potential microorganisms have been genetically 
improved for combating environmental problems (Sayler and Ripp 2000). Microbes 
such as bacteria, actinobacteria, fungi, and algae have been tested for their utility in 
agricultural and environmental sustainability. The domain bacteria include a large 
number of biotechnologically important strains. One such good example is of the 
phylum Actinobacteria that constitutes a large number of antibiotic producing, 
disease suppressing, and plant growth-promoting genera (Hamedi and 
Mohammadipanah 2015). Their ability to secrete a large number of bioactive com-
pounds, high catabolic rate, and omnipresence in the environment make them 
potential candidates for agriculture and environmental biotechnology. Moreover, 
their metabolic diversity, characteristic growth pattern, and tolerance to noxious 
environmental pollutants enable them to remediate extremely polluted sites (http://
www.biotecharticles.com/Environmental-Biotechnology-Article/Actinomycetes-
and-Bioremediation-1091.html). In this chapter, an attempt has been made to 
describe the utility of actinobacteria in the conservation or restoration of agricul-
tural and environmental sustainability.

9.2  �Actinobacteria: Biological Properties and Prospects

Actinobacteria is an interesting prokaryotic phylum that includes physiologically, 
taxonomically, and morphological diverse genera (Atlas 1997). This includes a het-
erogeneous group of Gram-positive/Gram-variable, aerobes or anaerobes, motile/
nonmotile and sporulating/non-sporulating prokaryotes. The majority of actinobac-
teria possess DNA with high GC content (>50 %) and a few with low GC (Ghai 
et al. 2012, 2013). Actinobacteria are mostly heterotrophs that thrive on complex 
organic matter, but the oligotrophic mode of nutrition has also been documented in 
a very few actinobacteria (Yoshida et al. 2014; Toth 1996). These are often regarded 
as the prokaryotic equivalent of fungi or filamentous bacteria as most of them grow 
as branched filamentous hyphae resembling fungi and show similar nutritional pref-
erences. They also share certain characteristic features with bacteria in being unicel-
lular and having prokaryotic nuclei, cell wall composition, and antibiotic 
susceptibility patterns. Genome size of actinobacteria is in the range of 0.93 Mb 
(Tropheryma whipplei) and 11.9 Mb (Streptomyces bingchenggensis) (Verma et al. 
2013). Some actinobacteria harbor circular (Nocardia)/linear (Streptomyces) plas-
mids. Actinobacteria have been considered as an intermediate group between bacte-
ria and fungi. Subsequently, the precise taxonomic status of actinobacteria had been 
approved and categorized as a separate phylum Actinobacteria within the domain 
Bacteria. The phylum Actinobacteria is one of the most dominant taxonomic units 
of the domain Bacteria (Ventura et  al. 2007) that constitutes six major classes 
(Actinobacteria, Acidimicrobiia, Coriobacteriia, Nitriliruptoria, Rubrobacteria, 
and Thermoleophilia).
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Actinobacteria encompass a large group of industrially and agriculturally signifi-
cant species. They are a prolific source of novel secondary metabolites [antimicro-
bial, antitumor, anti-inflammatory agents (Brana et al. 2015), antioxidants (Karthik 
et al. 2013)], and other pharmaceutically valuable compounds. Actinobacterial spe-
cies have a tremendous economic importance in both agriculture and environmental 
ecology (shown in Fig. 9.1). The phylum Actinobacteria includes a considerably 
high number of plant growth-promoting genera than bacteria (Hamedi and 
Mohammadipanah 2015). Plant growth-promoting actinobacteria secrete a vast 
array of chemical modulators, which either directly stimulate plant growth or act 
indirectly by supporting other plant beneficial microbes. Soil-dwelling actinobacte-
ria either kill or inhibit the growth of plant pathogens via antibiotic production, 
thereby ensuring the good health of plants. The term “wonder drug” was proposed 
for antibiotics, as these diminish the threat caused by plant and animal pathogens 
(Demain 1999). Actinobacteria comprises the largest number of antibiotics produc-
ing genera, which produce approximately 45 % of the total antibiotics known (Raja 
and Prabakarana 2011). They secrete some volatile tertiary alkaloids such as geosmin 

Fig. 9.1  A schematic diagram showing the role of actinobacteria in agriculture and environment 
sustainability
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(Gerber and Lechevalier 1965) and 2-methylisoborneol (2-MIB) (Gerber 1969), 
which account for the earthy smell of soil (Wilkins 1996) and indicate fertility and 
nutrient levels of the soil to farmers. Some actinobacteria display mutualistic rela-
tionship like actinorhizal (Verghese and Misra 2002), actinolichen (Lazo and Klein 
1965) and endophyte associations (Taechowisan et al. 2005) to promote plant fit-
ness viaplant morphogenesis. Other ecophysiological roles of actinobacteria include 
nitrogen fixation, phosphate solubilization, and production of phytohormones (aux-
ins and cytokinin) and siderosphores (Palaniyandi et al. 2013b), which add further 
value to the significance of actinobacterial taxa from the perspective of agriculture.

The effectiveness of actinobacteria is not only limited in formulation of biofertil-
izers or biopesticides, but they also appear ideal for myriad applications in environ-
mental biotechnology. Their adaptive morphology as well as exceptional metabolic 
versatility enables them to establish their populations to all kinds of extreme envi-
ronments including highly polluted locations. Pizzul et al. (2006) evaluated the sig-
nificant role of actinobacteria in decontamination of polyaromatic hydrocarbons. 
Studies on the evaluation and characterization of pollutant degrading actinobacteria 
are currently increasing and these are gaining considerable attention in developing 
bioremediation tools because of their favorable characteristics such as filamentous 
structure, sporulation, drought resistance, and having an ability to secrete hydrolytic 
enzymes.

9.3  �Role of Actinobacteria in Sustainability of Agriculture 
System

Besides being a potential source of antibiotics, actinobacteria are a prominent 
source of agro-active products (Tekaya et  al. 2012). Actinobacteria are naturally 
associated with plants and display several beneficial effects on plant growth. Their 
distinctive features make them highly useful in the conservation of soil quality, 
control of plant diseases, and regulation of plant metabolism. The inoculants of 
some actinobacteria are being employed in soil amendment, biocontrol and as bio-
fertilizers. The mechanisms and applications, through which they regulate and 
improve the health of plants, are described below.

9.3.1  �Soil Amendments

Conventional farming practices rely on chemical inputs (fossil fuel derivatives) and 
highly mechanized approaches which have proven to be effective in feeding an 
exponentially increasing population. These rapid agricultural innovations have been 
successful in maximizing the crop yield though at the cost of natural ecosystems. 
They bring about a radical change in environmental biotic and abiotic factors that 
lead to soil and land degradation, water scarcity, and resource depletion. These 
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modern practices often require high cost energy inputs and nonrenewable resources 
affecting the landscape economy. These concerns have prompted the agriculture 
policies to shift towards organic farming to preserve the ecological integrity that 
includes the health of soils, ecosystems, and people. Organic agriculture techniques 
include sustainable practices such as crop rotation, composting, and biological pest 
controls. Composting is microbial degradation of complex organic matter into 
nutrient-rich humus that nurtures plants and helps in restoration of productivity of 
eroded soils (Barker 1997). Humus contributes to the formation of dense aggregates 
by gluing soil particles together and thereby improving water retention capacity of 
the soil. Similarly, the filamentous structure of actinobacteria is also involved in the 
formation of stable soil aggregates (Barea et al. 2005). Humus results from hydro-
lytic microbial actions on lignocellulosic materials during the composting process. 
Actinobacteria secrete various types of peroxidases (le Roes-Hill et al. 2011) among 
which, lignin peroxidases facilitate humification and composting via hydrolysis of 
lignin into humic acid-like complexes. Compost not only acts as a good soil condi-
tioner to improve soil texture, but also supplements the nutrient content of the soil. 
Microbes (bacteria, actinobacteria, and fungi) show cumulative actions to break 
down the complex organic matter during the composting process. Actinobacteria 
and bacteria belonging to the phylum Firmicutes (Fracchia et al. 2006) primarily 
dominate composts. Cultivation- dependent and -independent methods have 
revealed the dominant and active participation of actinobacteria in composting 
(Dees and Ghiorse 2001). The composition of actinobacterial community changes 
during various stages of composting, for example, the presence of both mesophilic 
(Corynebacterium, Rhodococcus and Streptomyces) and thermotolerant species 
(Saccharomonospora viridis, Thermobifida fusca and Thermobispora bispora) have 
been recorded at different phases of compost formation (Steger et al. 2007).

9.3.2  �Nutrient Availability

The high metabolic rate and hydrolytic enzyme secretion (amylase, chitinase, cel-
lulase and peroxidases) makes actinobacteria potential decomposers that mineralize 
complex organic matter into simpler assimilative forms. They release solubilized 
carbon compounds in large quantities into the soil. In addition to carbon sources, 
other macro- and micro-nutrients are also essential for plant growth. Agricultural 
practices such as irrigation and natural phenomena like rain result in unwanted 
washing away of essential minerals from the cropland making soil unproductive. 
Numerous chemical fertilizers are used to the soil directly or onto the plant foliage 
to improve crop yield and quality. These fertilizers get immobilized in soil (Reddy 
et al. 2002) or percolate into deeper soil horizons and become unavailable for plant 
uptake. The agricultural runoff contaminates ground water as well as fresh surface 
water resources such as pond and river by leaching the hazardous chemicals (Shigaki 
et al. 2006). Therefore, innovative agricultural research inclines towards cleaner and 
safer cropping practices such as utilization of microbes as biofertilizers. Several 
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actinobacterial species with efficient biological activities such as nitrogen fixation, 
phosphate solubilization and siderophore production have been isolated and 
screened from soil, rhizosphere, roots and aerial parts of plants (Table 9.1).

9.3.2.1  �Nitrogen Fixation

Nitrogen is a versatile element available in both organic and inorganic forms that 
play various structural and functional roles in all living organisms. It is a critical 
limiting factor for plant morphogenesis. Despite being a highly abundant gas 
(approximately 78  % of total atmospheric gases), molecular nitrogen (N≡N) is 
quite stable and inert which is an unsuitable form for plant use. Some microbes, 
known as diazotrophs, possess nitrogenase activity, and are capable of fixing the 
atmospheric N2 into ammonium (NH4

+), which is transformed into nitrate (NO3
−) or 

organic nitrogen forms for their own growth or for plant assimilation. They main-
tain symbiotic association with plants by providing nitrogenous compounds and in 
turn utilizing carbon compounds like sugars of plant origin. They live as either 
endobionts of plants or free living. Diazotrophic growth metabolism is also dis-
played by some actinobacterial species. For example, Frankia species have been 
well characterized which make an association with dicot plants (belonging to 24 
genera and eight families) and cause nodulation on plant roots, known as actinorhi-
zal association (Yamaura et  al. 2010). Nitrogen fixation activity has also been 
noticed in non-Frankia actinobacteria including Arthrobacter sp. (Cacciari et  al. 
1979), Mycobacterium flavum (Fedorov and Kalininskaya 1961), Corynebacterium 
autotrophicum (Berndt et  al. 1978), Microbacterium isolates (Ruppel 1989), 
Agromyces and Propionibacteria (Sellstedt and Richau 2013). The actinobacterial 
species belonging to the family Thermomonosporaceae and Micromonosporaceae 
are also capable of fixing atmospheric nitrogen (Valdes et al. 2005). A thermophilic 
actinobacterium, Streptomyces thermoautotrophicus is an obligate chemoauto-
troph, which has been isolated from burning charcoal pile (Gadkari et al. 1990). 
This actinobacterium has a tendency to fix atmospheric nitrogen during autotrophic 
growth (Ribbe et al. 1997). Actinobacterial species also facilitate nitrogen avail-
ability by promoting the growth of other plant symbionts (Palaniyandi et al. 2013b). 
Actinobacterial species such as Streptomyces, Micromonospora, and Actinoplanes 
have been shown to promote the root nodulation of Frankia sp. (Solans 2007) and 
Sinorhizobium meliloti (Solans et al. 2009). Several other actinobacteria are known 
to colonize the mycorrhizae, and strengthen the plant mycorrhiza association (Table 
9.1) by promoting the growth of fungal hyphae or germination of fungal spore. 
Mycorrhiza is a plant–fungal association in which fungal species mineralize the 
nutrients and make them available to the plant and utilize the sugars released by 
plant roots.
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Table 9.1  List of plant growth-promoting actinobacteria

Actinobacteria Inhabitation types

Host plant/
mycorrhizal 
association References

Nitrogen-fixing actinobacteria

Frankia sp. Root colonizing or 
free living

Plants of families 
(Betulaceae, 
Casuarinaceae, 
Coriariaceae, 
Datiscaceae, 
Elaeagnaceae, 
Myricaceae, 
Rhamnaceae, and 
Rosaceae)

Benson and 
Silvester (1993)

Micromonospora sp. Root colonizing Casuarina 
equisetifolia

Valdes et al. 
(2005)

Root nodule 
colonizing and 
rhizosphere 
inhabitant

Pisum sativum Carro et al. (2012)

Streptomyces 
thermoautotrophicus

Soil inhabitant – Ribbe et al. (1997)

Phosphate solubilizing actinobacteria

Streptomyces sp. CTM396 Agricultural soil and 
rock processing site 
inhabitants

– Farhat et al. 
(2015)

Citricoccus zhacaiensis B-4 Rhizosphere 
inhabitant

Banana plant Selvakumar et al. 
(2015)

Cellulosimicrobium sp. S16 Rhizosphere soil 
inhabitants

Potatoes plant Nabti et al. (2014)

Streptomyces badius Mangrove isolate – Bhardwaj et al. 
(2012)

Leifsonia soli Rhizosphere 
inhabitant

Teak plant Madhaiyan et al. 
(2010a)

Microbacterium azadirachtae Rhizoplane 
inhabitant

Neem seeding Madhaiyan et al. 
(2010b)

Thermobifida sp. Rhizosphere 
inhabitant

Clover plant Franco-Correa 
et al. (2010)

Kitasatospora sp. Rhizosphere 
inhabitants

Maize crop Oliveira et al. 
(2009)

Streptosporangium isolates Casts isolates of 
tropical earthworms

– Mba (1997)

Plant mycorrhiza growth influencing actinobacteria

Streptomyces sp. Mycorrhizal 
inhabitants

Norway spruce Schrey et al. 
(2012)

Rhodococcus sp. strain EJP75 Ectomycorrhizal 
colonizing

Pinus sylvestris–
Lactarius rufus 
association

Poole et al. (2001)

(continued)
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9.3.2.2  �Phosphate Solubilization

Like carbon and nitrogen, phosphorus is also a crucial macro-element, which is 
necessary for growth and development of all living organism. It is an integral part 
of various biological molecules such as nucleic acids, phospholipids and energy-
rich compounds (ATP, NADH, and NADPH). It has an important role in numerous 
metabolic pathways such as cell division, signal transduction, macromolecular bio-
synthesis, photosynthesis (Shenoy and Kalagudi 2005; Fernandez and Schaefer 
2012), and constitutes approximately 3 % of total dry cell weight (Bhardwaj et al. 
2012). It is second most crucial component after nitrogen for plant growth 
(Donahue et al. 1990). Despite the presence of high quantity (400–1200 mg/kg) of 
phosphorus in soil (Fernandez and Novo 1988), only a small proportion (1 mg/kg 
or less) is accessible to the plant (Goldstein 1996). The availability of phosphorus 
is mainly limited by two processes (1) immobilization of soluble phosphorus in 
soil particles (2) adsorption of phosphorus onto compounds (aluminum oxide, iron 
oxide, and aluminum silicate) in acidic soil (Whitelaw 2000) or calcium carbonate 
in alkaline soil (Gyaneshwar et al. 2002). Several phosphate solubilizing microbes 
have been characterized which transform insoluble phosphorus into solubilized 
form through processes such as acidification, chelation (Delvasto et al. 2006), and 
hydrolytic enzyme production. Mutualistic actinobacterial species are the key par-
ticipants in the biogeochemical cycling of phosphorus in marine environments 
(Sabarathnam et al. 2010). Various rhizosphere inhabitants and endophytic actino-
bacteria have phosphate solubilizing capability, among which, a comparatively 
high abundance of Streptomyces species occur in phosphate mobilizing sites 
(Hamdali et al. 2008; Jog et al. 2014; Franco-Correa et al. 2010). Their additional 
antimicrobial activities make them more competent to function as Plant 

Table 9.1  (continued)

Actinobacteria Inhabitation types

Host plant/
mycorrhizal 
association References

Actinomycetes Soil inhabitant – Carpenter-Boggs 
et al. (1995)

Streptomycescoelicolor 2389 – Sorghum–Glomus 
intraradices LAP8 
association

Abdel-Fattah and 
Mohamedin 
(2000)

Streptomyces strains MCR9, 
MCR26 and Thermobifida 
strain MCR24

Rhizosphere 
inhabitant

Clover plants–
Glomus mosseae

Franco-Correa 
et al. (2010)

Siderophore producing actinobacteria

Streptomyces sp. – – Imbert et al. 
(1995)

Rhodococcus erythropolis 
IGTS8

– – Carrano et al. 
(2001)

Nocardia tenerifensis NBRC 
101015

– – Mukai et al. 
(2009)
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Growth-Promoting Agents (PGPA). Few other non-Streptomyces species have also 
been reported (Table 9.1) to facilitate plant growth by mineralizing insoluble phos-
phorus into soluble forms for plant uptake.

9.3.2.3  �Enhancement of Iron Uptake

Plant growth and development also requires additional elements such as Fe, Co, Cr, 
Cu, Zn, Mn, and Mo in very small quantities. Iron is a major limiting element which 
functions as a cofactor of several enzymes and reaction center of numerous proteins 
involved in energy metabolism. In the soil, it mainly exists in various oxide forms 
such as insoluble (Fe+3) and soluble (Fe+2) forms. Many microbes have a tendency 
to catalyze the reduction of Fe+3 into a soluble form (Fe+2) which is assimilated by 
plant or plant beneficial microbes (Francis et  al. 2010). Actinobacteria such as 
Arthrobacter spp. (Valencia-Cantero et  al. 2007) and Kocuria rosea HN01 (Wu 
et al. 2014) are capable of catalyzing the reduction of ferric iron to a soluble form 
and facilitate plant growth in alkaline soils. The actinobacteria enhance iron avail-
ability (listed Table 9.1) by producing siderophores. Siderophores are small organic 
molecules, which chelate the iron moieties and sequester them in the rhizospheric 
zone of the plant. Furthermore, siderophore production enables Streptomyces spe-
cies to hinder the germination of basidiospores of pathogenic fungus, Moniliophthora 
perniciosa (Macagnan et al. 2006). Actinobacterial siderophores can also promote 
the proliferation of beneficial actinobacteria exhibiting antagonistic activity against 
pathogens (Palaniyandi et al. 2013b), thereby involving in the regulation of health 
of plants.

9.3.3  �Alleviation of Biotic and Abiotic Stresses

Plants are constantly subjected to various biotic and abiotic stresses in their natural 
environment. These stresses cause severe impact on agricultural crop productivity. 
Biotic plant attackers include microbial pathogens (bacteria, fungi, and viruses), 
weed plants and insects, which lower crop yields and their market value. Abiotic 
stresses are due to environmental factors (drought, temperature, nutrient deficiency, 
and salinity). To cope up with these stresses, plants have developed various strate-
gies such as synthesis of phytohormones (salicylic acid, jasmonic acid, abscisic 
acid, and ethylene). These phytohormones are involved in providing protection 
against both biotic and abiotic stresses (Fujita et  al. 2006). A diverse array of 
microbes help plants to mitigate the negative impact of various stresses caused by 
abiotic factor (Grover et al. 2011). Actinobacteria are the prominent species that 
participate in providing protection to plants by killing or suppressing the growth of 
microbes directly via antibiosis, parasitism or in an indirect manner (induction of 
the plant immune system) (Palaniyandi et  al. 2013b). The mechanisms, through 
which the actinobacteria show plant disease suppression and biotic or abiotic stress 
alleviation, are described below.
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9.3.3.1  �Biotic Stress Alleviation

Microbial pathogenicity and emergence of pesticide-resistant pathogens bring about 
new challenges to agro-economy. Biotic stresses, primarily plant diseases, are a sig-
nificant impediment in attaining the actual potential crop yield. The incidence of 
several plant diseases brings nearly 9–16 % losses in total production yields of many 
important crops (rice, wheat, barley, maize, potato, and cotton) (Chakraborty et al. 
2000). Several side effects of using chemical pesticides are prompting researchers to 
find eco-friendly solutions to combat the severe damages caused by plant pathogens. 
Actinobacteria have a great potential in controlling plant pathogens. Many genera 
including Arthrobacter (Mitchell and Hurwitz 1965) Cellulomonas (Wadi and 
Easton 1985), Actinoplanes, Micromonospora (Filnow and Lockwood 1985), and 
Streptomyces (Al-Askar et  al. 2015) are capable of reducing the growth of plant 
pathogens. Palaniyandi et al. (2013b) described basic mechanisms of disease sup-
pression by actinobacteria that include: (1) production of antibiotics or cell wall 
degrading enzymes, (2) exhibition of hyperparasitism on plant parasitic microbes as 
well as competition with disease causing microbes in order to colonize the plant 
rhizosphere, and (3) induction of plant immune system. Antibiotic production is a 
major mechanism that gives the actinobacterial group prominence in agricultural 
crop protection. Actinobacteria colonize as a major microbial population in rhizo-
sphere of many plant species. Their high dominance has been recorded in soil 
amended with Brassica plant residues. An increased actinobacterial population had 
resulted in a significant suppression of Rhizoctonia solani damping-off disease 
(Ascencion et al. 2015) in the Brassica amended soil. Many Streptomyces species 
are known for having a pronounced competence for controlling the growth of plant 
pathogens (Table 9.2). For instance, Streptomyces griseorubens E44G showed a 
high antifungal effect, thus, could inhibit the mycelial growth of Fusarium oxyspo-
rum f. sp. lycopersici (Al-Askar et al. 2015) which is a seed-borne fungal species 
responsible for causing damages to tomato crop. The growth of another soil-borne 
pathogen, Sclerotium rolfsii, has been controlled by Streptomyces sp. (Errakhi et al. 
2007). A novel actinobacterium, Streptomyces sp. N2, had a broad-spectrum inhibi-
tory effect against various phytopathogenic fungi such as Pyricularia grisea, 
Fusarium oxysporum f. sp. niveum, F. oxysporum f. sp. vasinfectum, Penicillium 
italicum, Colletotrichum gloeosporioides, and Rhizoctonia solani. In vivo, this acti-
nobacterium showed significant inhibitory action only against Rhizoctonia solani 
causing anthracnose disease of grapes (Xu et al. 2015). Li et al. (2014b) isolated a 
Streptomyces sp. strain CNS-42 from the plant Alisma orientale, which displayed a 
broad-spectrum antimicrobial activity against pathogenic bacteria and fungi. The 
strain CNS-42 produced a compound staurosporine that shows both antifungal and 
plant growth-promoting activity. Another Streptomyces species, Streptomyces arau-
joniae ASBV-1T was reported to produce a multiantibiotic complex (containing 
monactin, dinactin, trinactin, tetranactin, and valinomycin) that eradicates fungal 
pathogens by disturbing the integrity of cell structure (Silva et al. 2014) via forma-
tion of ionophores in the cell membrane. Actinobacteria reported to exhibit plant 
disease suppression activities are listed in Table 9.2.
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Table 9.2  Biocontrol of plant pathogens by actinobacterial species

Actinobacteria
Bioactive 
compounds/enzymes Plant pathogen

Economic 
plant References

Streptomyces sp. Antifungal agent Sclerotium rolfsii Sugar beet Errakhi et al. 
(2007)

Streptomyces sp. 
N2

Antifungal 
metabolite 
(3-methyl-3,5-
amino-4-vinyl-2-
pyrone, C6H7O2N)

Colletotrichum 
gloeosporioides

Grape fruits Xu et al. 
(2015)

Streptomyces 
ambofaciens S2

Antifungal 
compounds

Colletotrichum 
gleosporioides

Red Chilli 
fruits

Heng et al. 
(2015)

Streptomyces sp. 
strain CNS-42

Antifungal agents 
(staurosporine)

Fusarium 
oxysporum f. sp. 
cucumerinum

Cucumber Li et al. 
(2014b)

Streptomyces (S. 
canus, S. fradiae, 
S. avermitilis, and 
S. cinnamonensis)
and non-
Streptomyces sp. 
(Leifsonia poae)

– Xanthomonas 
axonopodis

Pomegranate Poovarasan 
et al. (2013)

Antifungal 
compounds

Fusarium 
oxysporum and 
Alternaria solani

Guava Mohandas 
et al. (2013)

Propionicimonas 
sp. ENT-18

Albocycline Sclerotinia 
sclerotiorum

– Zucchi et al. 
(2014)

Streptomyces 
hygroscopicus

– Colletotrichum 
acutatum, C. 
gloeosporioides 
and Fusarium 
avenaceum

Apple Grahovac 
et al. (2014)

Streptomyces 
araujoniae 
ASBV-1 T

Multiantibiotic 
complex

Botrytis cinerea Strawberry 
pseudofruit

Silva et al. 
(2014)

Production of cell wall degrading and other antagonistic enzymes

Streptomyces sp. Chitinase Lasiodiplodia 
theobromae

Rubberwood Sajitha and 
Florence 
(2013)

Streptomyces sp. 
9p

Chitinase and 
β-1,3-glucanase

Alternaria 
brassiceae OCA3

Chilli Srividya 
et al. (2012)

Streptomyces sp. 
PTK19

Chitinase Fusarium 
oxysporum PTK2

– Thiagarajan 
et al. (2011)

Streptomyces 
vinaceusdrappus 
S5 MW2

Chitinase Rhizoctonia solani Tomato Yandigeri 
et al. (2015)

Streptomyces 
goshikiensis 
YCXU

Volatile antifungal 
compounds and 
enzymes (β-1,3-
glucanase, chitinase, 
and urease)

A broad range of 
phytopathogenic 
fungi and in vivo 
suppression of 
Fusarium sp.

Watermelon Faheem et al. 
(2015)

(continued)

9  Actinobacteria in Agricultural and Environmental Sustainability



186

EL-Tarabily et al. (1997) screened 45 Streptomyces and non-Streptomyces sp. 
for their in vitro and in vivo fungal inhibition activity. Among them, seven species 
(Streptomyces janthinus, Streptomyces cinerochromogenes, Streptoverticillium 
netropsis, Actinomadura ruhra, Actinoplanes philippinensis, Streptosporangium 
albidum, and Micromonospora carbonaceae) showed inhibitory action against fun-
gal pathogens (Pythium sp.) by producing non-volatile metabolites. Pythium spe-
cies are widely known as causative agents of disease cavity spot in carrots, which 
decrease the quality of carrots resulting in substantial economic losses. Actinoplanes 
philippinensis and Micromonospora carbonaceae showed hyperparasitism on 
growing hyphae and oospores of Pythium coloratum. They colonized heavily on the 
outer surface of mycelium and resulted in cytoplasmic collapses of oospores. In 
another report, 64 out of total 317 actinobacterial cultures (isolated from roots and 
rhizospheric soils of leguminous plants) were reported to exhibit antagonism 
against soybean pathogen Xanthomonas campestris pv. glycine (Mingma et  al. 
2014) causing bacterial pustule. Among them, Streptomyces sp. RM 365 showed 
highest inhibition rate against Xanthomonas campestris pv. glycine. This actinobac-
terium did not display any antagonistic activity against Rhizobium sp. (plant 
growth-promoting bacterial species), thus, can be a potential candidate for the 
development of a biocontrol agent (BCA) to control the plant bacterial pustule. 
Streptomyces phaeopurpureus ExPro138, isolated from rhizosphere of yam plant, 
was shown to produce multiple proteases and inhibit the growth of foliar fungal 
pathogen (Colletotrichum coccodes) in early stage by disrupting various processes 
such as spore germination, spore adhesion, and appressorium formation (Palaniyandi 
et al. 2013a). Marine isolates belonging to the genera Streptomyces, Nocardiopsis, 
and Saccharopolyspora also displayed antagonism against phytopathogens like 
Colletotrichum falcatum, Thielaviopsis paradoxa, and Fusarium semitectum 
(Vijayakumar et  al. 2012). Streptomyces sp. PM9 was effective candidate for 
controlling microbial disease in forest plants (Salla et al. 2014). This actinobacte-
rium brought changes in the secondary metabolism of economically valuable plants 
(Eucalyptus grandis and Eucalyptus globulus) by (1) boosting up the plant immune 
system by triggering the enhanced production of key enzymes (polyphenol oxidase 
and peroxidase) of plant defense mechanism and (2) inducing synthesis of total 

Table 9.2  (continued)

Actinobacteria
Bioactive 
compounds/enzymes Plant pathogen

Economic 
plant References

Streptomyces 
phaeopurpureus 
ExPro138

Proteases Colletotrichum 
coccodes

Tomato Palaniyandi 
et al. (2013a)

Streptomyces sp. Chitinase, 
phosphatase, and 
siderophores

Xanthomonas 
oryzae pv.oryzae

Rice Hastuti et al. 
(2012)
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phenolic and quercetinic flavonoid fraction. The strain PM9 also produces indole-
3-acetic acid to stimulate high rooting of plants. Mohamed et al. (2013) reported 
that Streptomyces noboritoensis produces bioactive compounds and their usefulness 
was assessed for suppressing the growth of bacterial or fungal contaminants dur-
ing in  vitro micropropagation of banana. The two actinobacterial species, 
Curtobacterium flaccumfaciens and Rhodococcus sp., were isolated from ascocarps 
of Tuber magnatum collected from a natural truffle ground in Western Serbia (Pavic 
et al. 2013). Both showed β-glucanase activity, siderophore production, and ammo-
nification of organic matter. Besides enhancing the nutrition content of soil, they 
were also capable of promoting growth of other plant beneficial fungal species such 
as Trichoderma species. Valois et  al. (1996) showed that multiple glucanases 
(β-1,3-, β-1,4-, and β-1,6-glucanases) producing actinobacteria triggered lysis of 
the cell wall of Phytophthora fragariae and reduced root rot when co-inoculated 
with raspberry plantlets. Streptomyces species (Streptomyces canus, S. fradiae, S. 
avermitilis, and S. cinnamonensis) and non-Streptomyces species (Leifsonia poae) 
colonizing the mycorrhizae (Glomus mosseae) of plant pomegranate (Punica gra-
natum L. cv Bhagwa) were shown to exhibit antibacterial activity against 
Xanthomonas axonopodis which causes bacterial blight of pomegranate and 
decreases its export drastically (Poovarasan et al. 2013). Among them, Streptomyces 
canus was capable of promoting the plant growth by producing gibberellic acid 
(GA3) and auxin (indole 3-acetic acid). Mohandas et  al. (2013) isolated same 
Streptomyces and non-Streptomyces species from the mycorrhizal (Glomus mosseae–
guava plant association) zone. Out of five, S. canus, S. avermitilis, and L. poae 
exhibited higher activity of siderophore production and phosphate solubilization. 
All isolates possessed chitin degradation activity. Chitinase producing actinobacte-
ria mainly provide protection against fungal pathogen because chitinase breaks 
down chitin, a major component of fungal cell wall. Some endophytic Streptomyces 
species provide protection to plants against pathogenic actinobacterial species such 
Streptomyces scabies by activating the salicylic acid (SA)-mediated plant defense 
system (Lin et al. 2012). Besides the above, an unusual plant protecting mechanism 
was identified in an actinobacterium (Rhodococcus erythropolis) which was capa-
ble of degrading the signaling molecules such as N-acyl-homoserine lactone, and 
thus disturbed quorum sensing-based communication of Gram-negative soft-rot 
bacteria, thereby providing protection against Gram-negative bacterial pathogens 
(Latour et al. 2013). In this actinobacterium, the degradation of signaling molecules 
is stimulated upon activation of γ-lactone degradation pathway that generally 
requires the presence of incuder (γ-lactone) or cheap stimulating compounds such 
as γ-caprolactone. The biocontrol system of R. erythropolis could be activated by 
using a stimulator in order to guard crop plants from microbial attack.

Priyadharsini and Dhanasekaran (2015) reported that some actinobacterial spe-
cies exhibit allelopathic activity against weed plants such as Cyperus rotundus. 
Other reports also suggested that Streptomyces species are a potent source of herbi-
cide and inhibit the growth of Echinochilora crusgalli (Dhanasekaran et al. 2010) as 
well as Cyperus rotundus (Dhanasekaran et al. 2012). Many Streptomyces species 
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exhibit insecticidal or pesticidal activity. For instance, Streptomyces hydrogenans 
DH16 exhibited antifeedant, pupicidal, larvicidal, and growth inhibitory effects 
against pest, Spodoptera litura. This pest causes defoliation in plants and damages 
crop yield severely (Kaur et al. 2014). Streptomyces species also displayed insecti-
cidal activity against lepidopteran insects (Helicoverpa armigera, Spodoptera 
litura, and Chilo partellus) (Vijayabharathi et al. 2014). A compound with antibac-
terial and insecticidal properties was purified from Streptomyces bikiniensis A11 
(El-khawaga and Megahed 2012). This compound belonging to the class of amino-
glycoside antibiotics was found to be very effective against cotton leaf worm 
Spodoptera littoralis, which is one of the most destructive agricultural lepidopteran 
pests.

9.3.3.2  �Abiotic Stress Mitigation

In addition to soil topology, other abiotic factors such as nutrient content, tempera-
ture, and moisture are also key determinants influencing global crop productivity. 
For example, drought has an immense impact on agriculture crop yield, and has 
generally been considered as one of the major destruction factors of the entire crop 
system. Actinobacterial species such as Citricoccus zhacaiensis B-4 (MTCC 12119) 
was reported to show plant growth modulation. The strainB-4 (MTCC 12119) 
enhanced biopriming of onion seeds even under water stress conditions (Selvakumar 
et al. 2015). This actinobacterium showed other activities such as IAA and GA3 
production, phosphate and zinc solubilization, NH3 production, and 1-aminocyclop
ropane-1-carboxylate (ACC) deaminase activity to assist the plant growth by allevi-
ating stress caused by water deficit condition. ACC deaminase activity has been 
reported from a number of plant growth-promoting actinobacteria. The enzyme 
ACC deaminase hydrolyzes a substrate (ACC) that is a precursor of ethylene. 
Ethylene is a well-known stress hormone, which negatively modulates the plant 
growth during stress conditions (Glick 2005). The concentration of ethylene 
increases during both biotic and abiotic stresses, which shrinks plant growth and 
activates other stress alleviating mechanisms. ACC producing actinobacteria there-
fore enhance plant growth by reducing the effect of stress environment. Streptomyces sp.
strain PGPA39 isolated from agriculture soil was found to produce ACC deaminase 
and endorse the growth of “MicroTom” tomato plants under salt stress (Palaniyandi 
et al. 2014). Besides ACC deaminase activity, this strain produced indole 3-acetic 
acid (IAA) and was also capable of solubilizing tricalcium phosphate, thus, enhanc-
ing both nutrient availability and plant tolerance capacity. El-Tarabily (2008) iso-
lated 64 Streptomyces isolates from rhizosphere of tomato plant, which were 
screened for evaluating their ACC deaminase and plant growth modulation. Among 
them, two strains S. filipinensis no. 15 and S. atrovirens no. 26 showed both ACC 
deaminase activity and high rhizosphere competence. However, an increased plant 
growth promotion was observed in the plants co-cultured with S. filipinensis no. 15 
as compared to S. atrovirens no. 26. Since the former strain also produces the 
phytohormone IAA that gives an additional benefit to the plants for their growth. 
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High salt concentration is another growth limiting factor, which disrupts plant 
metabolism leading to crop destruction. Basic mechanisms of alleviation of saline 
stress are production of IAA, secretion of siderophore and ACC deaminase activity. 
For instance, Streptomyces isolate (C) exhibited high IAA production, siderophore 
biosynthesis, and phosphate solubilization under high salt environment (Sadeghi 
et  al. 2012), which makes it a good candidate as a bioinoculant for enhancing 
nutrient content in saline crop field. A rhizosphere inhabitant, Kocuria turfanensis 
strain 2 M4 produces IAA and was isolated from rhizospheric soil of the halotol-
erant plant Suaeda fruticosa, colonizing in the saline desert of Little Rann of 
Kutch, Gujarat, India (Goswami et al. 2014). Srivastava et al. (2014) demonstrated 
that Streptomyces rochei SM3 activates ethelyne-mediated defense pathway and 
phenylpropanoid pathway in chickpea and therefore discharged stresses caused 
by both biotic (Sclerotinia sclerotiorum) and abiotic (NaCl) factors. Hence, this 
could be a potential candidate for the development of a plant growth-promoting 
agent (PGPA).

9.4  �Bioformulation of Actinobacteria Inoculant 
as Biofertilizer and Biopesticide

Bioformulation is a preparation of microbial cell inoculants or microbe-derived 
products with economical carrier materials (Arora et al. 2010). The use of a suitable 
carrier material improves shelf-life and stability of microbes and their bioactive 
compounds during storage and field implementation. Several plant growth-
promoting microorganisms including bacteria, actinobacteria, and fungi have been 
formulated and tested in crop fields. Microbes with multiple mechanisms of disease 
suppression and plant growth promotion are better candidates for the development 
of biofertilizers and biopesticides. It is obvious from the foregoing discussion that 
actinobacteria have several attributes useful for biocontrol and plant growth promo-
tion. Many Streptomyces species and their bioactive compounds have, therefore, 
been formulated and commercialized as biofertilizers and biopesticides for crop 
protection and enhancing yield (Table 9.3).

9.5  �Role of Actinobacteria in Environment Sustainability

Besides plant growth promotion and disease suppression, actinobacteria play a vital 
role in various biological degradation processes. They have a high competence for 
degrading recalcitrant polymers such as toxic chemicals (pesticides, insecticides, 
and herbicides), dyes, bioplastics, and oil and petroleum products. Their imperative 
role in heavy metal detoxification has also been documented. In general, laboratory 
studies related to microbial degradation are not always successful during in situ 
bioremediation, since microbial cells used are subjected to both biotic and abiotic 
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environmental challenges that may decrease their survival rate and degradation effi-
ciency. Therefore, microbes isolated from polluted sites are better candidates for 
bioremediation. Many investigations support the fact that actinobacterial species 
show supremacy in heavily contaminated zones (Gremion et al. 2003; Chikere et al. 
2009). Actinobacteria have considerable tolerance or acclimatization potential for 
the toxic compounds or metals, which help them to grow in highly polluted sites as 
well as to clean the environment. The use of actinobacteria and their enzymes as a 
bioremediation tool may thus provide an effective gateway to the field of environ-
mental biotechnology.

9.5.1  �Bioremediation of Pesticides/Insecticide-Polluted Sites

Cultivable land area and water resources are becoming scarce in modern industrial 
times, which drastically affect the world agro-economy. The new challenges of 
modern agricultural system include producing more and more food commodities to 
feed the ever increasing population with limited resources. Considering the agricul-
tural intensification aspects, the use of various organic or inorganic agrochemicals 
has been allowed for cropping. Most chemical compounds are hazardous and persist 
for longer in the environment raising serious concerns such as their toxicity to 

Table 9.3  Commercially available bioformulants of actinobacteria (adapted from Palaniyandi 
et al. (2013b).

Commercialized product name
Actinobacterium and/or bioactive 
compounds Applications

Actinovate® AG Streptomyces lydicus WYEC108 BCA
Micro108® soluble S. lydicus WYEC108 BCA
Action Iron® S. lydicus WYEC108 BCA and PGPA
Thatch Control S. violaceusniger strain YCED 9 BCA
Mycostop® S. griseoviridis strain K61 BCA
YAN TEN Streptomyces 
saraceticus

S. saraceticus KH400 BCA

AFFIRMWDG Polyoxin D (S. cacoi var. asoensis) BCA
PH-D® Fungicide Polyoxin D (S. cacoi var. asoensis) BCA
Keystrepto™ Streptomycin (S. griseus) BCA
Agri-Mycin 17 WP Streptomycin (S. griseus) BCA
Strepto Streptomycin (S. griseus) BCA
Plantomycin WG Streptomycin (S. griseus) BCA
Ag-Streptomycin Streptomycin (S. griseus) BCA
Plantomycin Streptomycin (S. griseus) BCA
Kasumin™ Kasugamycin (S. kasugaensis) BCA
Biomycin Kasugamycin (S. kasugaensis) BCA
Omycin Kasugamycin (S. kasugaensis) BCA
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nontarget organisms. This creates a need to decontaminate toxic pollutants and 
restore the environmental sustainability. A high catabolic rate, adaptability, rapid 
germination of spores, and fast-growing hyphae make actinobacteria potent candi-
dates to remediate polluted sites (Fuentes et al. 2010). Their filamentous structures 
penetrate and facilitate colonization into the deep soil horizon, therefore, minimizes 
the mixing step of bioremediation process (Ensign 1992), which is an advantage for 
using actinobacteria in bioremediation. In addition, the indigenous actinobacterial 
population is comparatively high (104–106 per gram of soil) and has been enumer-
ated as the second most abundant inhabitants after bacteria in soil (Goodfellow and 
Williams 1983). In general, indigenous microbes of contaminated environment are 
considered as good candidates for bioremediation (El Fantroussi and Agathos 2005) 
since they are already acclimatized to tolerate (Shelton et al. 1996). The actinobac-
teria isolated from a polluted site are capable of secreting a large number of extra-
cellular enzymes such as monooxygenase and dioxygenase that catalyze the 
mineralization of xenobiotic pesticides with diverse chemical compounds. A large 
group of actinobacterial species was observed as the active participants of biodegra-
dation processes in freshwater and marine sediments. They constitute an approxi-
mately 21.7 % fraction of the total genera identified by a metagenomic approach 
(Fang et al. 2014). Actinobacteria utilize pesticides either as a carbon and energy 
source or co-metabolize the harmful chemicals without gaining any advantage. 
Co-metabolism is the degradation of toxic chemicals by hydrolytic enzymes pro-
duced by microbes for metabolism of other energy yielding biomolecules. 
Brevibacterium linens DSM20425 was shown to co-metabolize the toxic pesticide 
2,4,5-T into 3,5-dichlorocatechol (Horvath 1971). Pesticide degradation is most 
often completed through synergistic actions of microbial consortia than via a single 
isolate. In mixed microbial populations, microorganisms either directly degrade 
toxic compounds or hasten the biotransformation efficiency of other microbes. Byss 
et al. (2008) showed the synergistic action between actinobacteria and Pleurotus 
ostreatus in bioremediation.

Organophosphate pesticides (OP) are chemicals with O-P bonds, used worldwide 
as pesticide, insecticide, and herbicide accounting for more than 34 % of the total 
world market (Singh and Walker 2006). It includes chlorpyrifos (O,O-diethyl O-(3,5,6-
trichloro-2-pyridinyl) phosphorothioate), parathion (O,O-diethyl O-4-nitrophenyl 
phosphorothioate), malathion (O,O-dimethyl S-1,2-di(ethoxycarbonyl), ethyl phos-
phorodithionate), and diazinon (O,O-diethyl O-(2-isopropyl-6-methylpyrimidine-4-yl( 
phosphorothioate)). Most of them have been found to interfere with the function of 
acetylcholinesterase (a key enzyme of neurotransmission) (Hassall 1990), thus act as 
broad-spectrum insecticides. However, only <0.1 % fraction of total employed pesti-
cide is used up in killing or suppression of growth of the target organisms (Pimentel 
1995), while the rest remains in the environment and contaminates both soil and water 
ecosystems, leading to major environmental and human health problems. The exten-
sive use of OP has become a major cause of over 2,00,000 deaths annually worldwide 
(Singh et al. 2009). These polluted sites require to be decontaminated by chemical, 
physical, and biological methods. Microbial degradation is considered as a better 
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option to clean up the polluted sites since microbes can detect even the presence of 
small quantity of pesticides and detoxify them.

Chlorpyrifos (CP) is a broad-spectrum chlorinated organophosphorus insecticide 
that has been used for over 40 years to increase crop productivity. According to the 
statistics data of the Committee of the Ministry of Agriculture and Land Reclamation 
(2011), approximately 1280 tons of CP is consumed annually in agriculture fields in 
Egypt. Persistence of CP is between 10 and 120 days in soil, but can extend up to 1 
year in some environmental conditions. CP residues have been detected in various 
ecosystems, which led to disturbance in biogeochemical cycles (Chishti et al. 2013). 
They need to be completely detoxified as soon as possible after their application. 
Briceno et al. (2012) isolated two potent Streptomyces strains, which could metabo-
lize up to 90 % of toxic CP within 24 h of incubation, and yield 3,5,6-trichloro-2-
pyridinol (TCP). However, the release of TCP into environment is another major 
ecological problem because of its higher solubility and mobility than the parent 
compound (CP). It exhibits antimicrobial activity inhibiting the proliferation of CP 
degrading bacteria (Singh and Walker 2006), thus the complete degradation of CP 
is required. An actinobacterium, Gordonia sp. JAAS1 capable of degrading the CP 
and its hydrolytic metabolite such as TCP into diethylthiophosphoric acid (DETP) 
was isolated from a paddy field (previously exposed to CP treatment) (Abraham 
et  al. 2013). Recently, a kinetic study of parathion degradation by Streptomyces 
venezuelae ACT 1 has been done, which revealed that the actinobacterium strain 
ACT 1 has a high ratio of degradation and chemical oxygen degradation (COD) 
reduction rate (Naveena et al. 2013). The high biodegradability enhances industrial 
importance of this strain, especially in the treatment of pesticide-contaminated 
wastewater. Conversion of methyl parathion into PNP has been achieved by using 
Nocardiopsis sp. DD2, isolated from the coastal area, Gujarat, India (Pravin et al. 
2012). The strain DD2 showed a broad catabolic activity and was capable of degrad-
ing other organophosphate pesticides such as endosulfan (6,7,8,9,10,10-hexachloro-
1,5,5a,6,9,9 a-hexahydro-6,M9-methano-2,4,3-benzo-dioxathiepine-3-oxide). A 
constitutive expression of enzymes degrading parathion has been observed in 
Arthrobacter sp. (Nelson 1982) that utilizes parathion as a sole source of carbon and 
energy. Arthrobacter species are also capable of degrading another OP such as 
diazinon, but it requires the process of cometabolism by Streptomyces species to 
initiate the degradation process (Gunner and Zuckerman 1968).

PNP is another environmental pollutant, extensively used as a raw material in the 
manufacturing of dyes, explosives, drugs, and herbicides. It is also released as an end 
product of microbial degradation of pesticides such as parathion and methyl para-
thion (Ningthoujam et al. 2012). A comparatively high solubility of PNP (16 g/L) in 
water enhances its infiltration through soil strata, leading to the contamination of both 
surface and ground water (Kulkarni and Chaudhari 2006). High concentration of PNP 
is extremely hazardous to human health and affects severely both microbial flora and 
fauna (PAN 2008). It has been listed as a major pollutant by the U.S. Environmental 
Protection Agency (EPA) (http://www.epa.gov/waterscience/methods/pollutants.
htm). Several actinobacterial species such as Citricoccus nitrophenolicus (Nielsen 
et  al. 2011), Rhodococcus sp. HS6-1 and Brevibacterium sp. (Ningthoujam 2012) 
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have been reported to metabolize PNP and lower its toxicity. The last two actinobac-
terial strains were shown to degrade up to 350 and 270 mg/L PNP, respectively. Hanne 
et al. (1993) isolated two PNP degrading soil actinobacteria (Arthrobacter aurescens 
TW17 and Nocardia sp. strain TW2). Arthrobacter strain harbors genes, which 
encode enzymes involved in biodegradation on an extrachromosomal plasmid. The 
enzyme production in both strains is inducible and requires the presence of 
pesticides.

Glyphosate is a well-known organophosphonate herbicide (Pn) with C-P linkage 
which inhibits the function of a critical enzyme (5-enolpyruvyl shikimic acid-3-
phosphate synthase) of the biosynthetic pathway of aromatic amino acids 
(Steinrucken and Amrhein 1980). The C-P bond makes glyphosate more stable and 
resistant to the microbial degradation. Only two Arthrobacter species had been 
reported to utilize glyphosate as the sole source of phosphorus (listed in Table 9.4). 
Metabolic pathways of glyphosate differ in both the actinobacteria. Arthrobacter sp. 
GLP-1 produces two distinct C-P lyases, which act on glyphosate to yield sarcosine. 
Sarcosine is further degraded to glycine (incorporated in purine and pyrimidine) 
and C1-unit (utilized for the synthesis of aminoacids) (Kertesz et al. 1991). A very 
dissimilar glyphosate metabolism was observed in A. atrocyaneus ATCC 13752 that 
catabolizes glyphosate into aminomethylphosphonic acid (AMPA) and C2-units 
(Pipke and Amrhein 1988). Complete degradation of AMPA to CO2 occurs in this 
actinobacterium.

Organochlorine pesticides such as Endosulfan (6,7,8,9,10,10-Hexachloro-
1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide), Lindane 
(gamma-hexachlorocyclohexane (γ-HCH)), Chlordane (1,2,4,5,6,7,8,8-Octachloro-
3a,4,7,7a-tetrahydro-4,7-methanoindane), Metolachlor [(RS)-2-Chloro-N-(2-ethyl-
6-methyl-phenyl)-N-(1-methoxypropan-2-yl)acetamide], atrazine (2-chloro-4-isopropylamino- 
6-ethylamino-s-triazine), Methoxychlor [1,1,1-Trichloro-2,2-bis(4-methoxyphenyl)
ethane], DDT (Dichloro diphenyl trichloroethane), PCNB (pentachloronitroben-
zene), 2,4-D [(2,4-Dichlorophenoxy)acetic acid], 2,4,5-T [(2,4,5-Trichlorophenoxy)-
acetic acid], and pentachlorophenol are the most toxic and environmentally 
destructive synthetic chemicals. Most of them have been banned in many countries 
because of their long lasting persistence, high toxicity and ability to bioaccumulate in 
the living tissues (Hirano et al. 2007). Actinobacteria have a good potential to detox-
ify or feed on the hazardous organochlorine pesticides (listed in Table 9.4). Martens 
(1976) had isolated several endosulfan degrading actinobacteria. The detailed inves-
tigations on actinobacteria confirmed that the genus Streptomycesis capable of catab-
olizing a wide range of organochlorine pesticides, specifically, DDT, PCNB (Chacko 
et al. 1966), metolachlor (Liu et al. 1990), Dalapon (Kaufman 1964), diuron (Castillo 
et al. 2006), atrazine (Fadullon et al. 1998), lindane, chlordane, and methoxychlor 
(Fuentes et al. 2010).

The degradation of mono-, di-, and tri-chlorinated pesticides is commonly 
observed among actinobacteria. The enzymatic system involved in biodegradation 
of 2,4-D has been extensively studied in two actinobacterial strains including 
Nocardioides simplex 3E (Kozyreva and Golovleva 1993) and Arthrobacter strain 

9  Actinobacteria in Agricultural and Environmental Sustainability
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(Loos et al. 1967). The former actinobacterium was also found to degrade another 
pesticide 2,4,5-T (Golovleva et al. 1990). The Arthrobacter strain was also capable 
of utilizing two other organochlorine pesticides, viz. 4-CPA (4-chlorophenoxyacetate) 
and MCPA (2-methyl-4-chlorophenoxyacetate) as the sole source of carbon and 
energy. Stability of organochlorine compounds depends on the degree of chlorina-
tion. The polychlorinated compound, pentachlorophenol (PCP), is a highly stable 
compound, widely used as biocide (bactericide, fungicide, and algaecide), wood 
and leather preservative (Kao et  al. 2004). PCP acts as an inhibitor of oxidative 
phosphorylation, therefore, is toxic to almost all living organisms (Shen et al. 2005) 
causing severe disease symptoms in humans. This compound has also been listed as 
a toxic pollutant (EPA 1987). Aerobic degradation of this recalcitrant chemical by 
diverse genera of actinobacteria has been confirmed (listed in Table 9.4). 
Streptomyces rochei 303 is the only actinobacterium reported till date that can 
metabolize a broad spectrum of chlorophenols ranging from mono- to pentachloro-
phenols (Golovleva et al. 1992). Mono- and polychlorinated dibenzo-p-dioxin deg-
radation is known to be catalyzed by Janibacter, Rhodococcus, and Terrabacter 
species (shown in Table 9.4). They metabolize and incorporate the carbon moieties 
of the toxic compounds into their cell biomass.

Benzonitrile herbicides include dichlobenil (2,6-dichlorobenzonitrile), 
ioxynil (3,5-diiodo-5-hydroxybenzonitrile), and bromoxynil (3,5-dibromo-5-
hydroxybenzonitrile). The massive use of these chemicals contaminates soil and 
ground water (US-EPA, Herbicide Report, 1974). The use of dichlobenil is 
restricted in the European Union since its hydrolytic metabolite [2,6-dichloro-
benzamide (BAM)] is highly toxic. The complete degradation of dichlobenil by 
Aminobacter MSH1 was reported (Frkova et al. 2014). However, the use of this 
actinobacterium in bioremediation application is limited because it can only par-
tially hydrolyze the other two benzonitrile herbicides (ioxynil and bromoxynil) 
and yields toxic end products which may pose an environmental risk.

Streptomyces sp. has also been found to metabolize the synthetic pyrethroid 
insecticides (shown in Table 9.4). Synthetic pyrethroid insecticides are pyrethrin 
analogues derived from plants (Laffin et al. 2010). Their photostability, low mam-
malian toxicity, and quick insecticidal capability enhanced their market value 
(approximately 25  % of the total world insecticide market) and replaced toxic 
organophosphate pesticides (Katsuda 1999; Zhang et al. 2010). Synthetic pyrethroid 
insecticides were earlier considered as thenontoxic insecticides (Dorman and 
Beasley 1991). According to recent studies, these have been found to be carcino-
genic and a major causative agents of chronic diseases (Wang et  al. 2009). For 
instance, cypermethrin was found to disturb the food chain of aquatic ecosystem 
(Pearce 1997). Streptomyces aureus strain HP-S-01 isolated from activated sludge 
is capable of degrading deltamethrin and its toxic metabolite (3-phenoxybenzaldehyde) 
(Chen et  al. 2011). 3-phenoxybenzaldehyde possesses antimicrobial activity and 
hinders further biodegradation (Laffin et al. 2010). This actinobacterium can also 
efficiently degrade other synthetic pyrethroids such as cyfluthrin, bifenthrin, cyper-
methrin, fenvalerate, fenpropathrin, and permethrin.

9  Actinobacteria in Agricultural and Environmental Sustainability
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9.5.2  �Biodegradation of Hydrocarbon Containing 
Contaminants

As compared to bacteria and fungi, actinobacteria exhibit greater potential for deg-
radation of hydrocarbons (Idemudia et al. 2014). The concentration of hydrocarbon 
pollutants including complex organic compounds, petroleum and oil products are 
steadily increasing in the environment due to their excessive use. Hydrocarbons are 
toxic to microbes, plants, and other living organisms (Andreoni et al. 2004) causing 
a potential risk to the environment. Bioremediation and phytoremediation, the use 
of microbes or plants to remove toxic hydrocarbon compounds, are getting atten-
tion in the recent years (Chibuike and Obiora 2014; Arthur et  al. 2005). 
Phytoremediation method relies on a mutualistic relationship between plants and 
microbes. Actinobacterial species (showing close similarities with Arthrobacter 
species) form a dynamic part of microbial communities associated with phytoreme-
diation of hydrocarbon-polluted sites (Phillips et  al. 2008). The taxonomically 
diverse actinobacterial genera colonize as dominant populations in hydrocarbon-
polluted sites. They constitute antimicrobial group capable of degrading a wide 
range of hydrocarbons (listed in Table 9.5). Hydrocarbonoclastic bacterial com-
munities isolated from mangrove sediment, Guanabara Bay (Brazil) include bacte-
rial species as well as actinobacterial species (belonging to the genera Micrococcus, 
Cellulomonas, Dietzia, and Gordonia) (Brito et  al. 2006). These are capable of 
degrading an assortment of hydrocarbon pollutants. Hydrocarbon degrading micro-
organisms have also been isolated from seawater, Semarang port, Indonesia. This 
microbial community consisted of approximately 23 % of actinobacterial species 
(Harwati et al. 2007). Culture-dependent microbial diversity analysis revealed that 
actinobacterial species (Micrococcus, Nocardia, Gordonia, Micromonospora, and 
Rhodococcus) and bacterial species form a potential microbial group for degrading 
spent lubricating oil (Idemudia et al. 2014). These actinobacterial species showed 
approximately 1.035–7.53 % degradation of oil. Actinobacterial isolates belonging 
to the genera Rhodococcus and Gordonia were capable of degrading both long 
chain n-alkanes and c-alkanes of petroleum compounds (Kubota et  al. 2008). 
Diverse salt-tolerant actinobacterial species, Streptomyces albiaxialis (Kuznetsov 
et  al. 1992), Rhodococcus erythropolis and Dietzia maris (Zvyagintseva et  al. 
2001), Rhodococcus sp. and Gordonia sp. (Borzenkov et al. 2006), Dietzia sp. and 
Actinopolyspora sp. DPD1 (Al-Mueini et al. 2007) were documented to possess an 
efficiency to degrade crude oils under moderate to high saline environment. 
Bjorklof et al. (2009) reported that Mycobacterium species were a dominant popu-
lation in the hydrocarbon-contaminated soil. Actinobacterial species (Rhodococcus 
sp., Nocardia sp., Arthrobacter sp., Gordonia sp., Mycobacterium sp., 
Corynebacterium sp., and Micrococus sp.) contributed significantly to the biodeg-
radation of crude oil (Chikere et  al. 2009). A high potential for biodegradation 
makes actinobacteria a prospective clean-up solution for remediation of hydrocar-
bon-contaminated sites.
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9.5.3  �Detoxification of Heavy Metals

All living organisms require a small quantity of heavy metals including iron, zinc, 
copper, manganese, cobalt, and nickel for their physiological growth and develop-
ment (Park et al. 2006), but these metals become toxic at higher concentrations. 
The presence of very small quantity of other heavy metals causes toxic effects on 
both prokaryotes and eukaryotes. On the basis of physiological viewpoints, heavy 
metals are classified into two major categories (1) harmful at high concentrations 
(e.g., Fe, Zn, Cu, Mn, Co, Ni, and Cr) (2) highly toxic or nonessential (Hg, Cd and 
Pb) (Valls and Lorenzo 2002). Industrial activities and abandoned mining represent 
major sources of discharge of copious amounts of heavy metals into the environ-
ment leading to human health risks and serious ecological complications. At pres-
ent, environmental metal-toxicity is increasing alarmingly which calls for an 

Table 9.5  List of hydrocarbons degrading actinobacteria

Actinobacteria Hydrocarbons Site of isolation References

Janibacter anophelis strain 
JY11

Phenanthrene, 
anthracene, and 
pyrene

Polluted soil 
sample, Jinan Oil 
Refinery Factory, 
China

Zhang et al. (2009)

Streptomyces sp., 
Rhodococcus sp., and 
Nocardia sp.

Crude oil, 
Anthracene, 
Coronene, 
Napthacene, 
Acenapthene

Soil samples, 
Mathura Oil 
Refinery, 
Lucknow

Shekhar et al. 
(2014)

Rhodococcus erythropolis 
BZ4, R. cercidiphyllus BZ22, 
Arthrobacter sulfureus BZ73, 
Pimelobacter simplex BZ91

n-alkanes, phenol, 
anthracene, pyrene

Petroleum 
hydrocarbon-
contaminated 
alpine soil, Italy

Margesin et al. 
(2013)

Dietzia strain DQ12-45-1b Petroleum 
hydrocarbons 
(C6–C40) and 
crude oil

Oil production 
water sample, 
China

Wang et al. (2011)

Micrococcus luteus GPM2603 
and Cellulomonas variformis 
GPM2609

Pristine and pyrene, 
respectively

Mangrove 
sediments, Brazil

Brito et al. (2006)

Gordonia alkanivorans HKI 
0136T

Hexadecane Tar-contaminated 
soil, Rositz

Kummer et al. 
(1996)

Micrococcus luteus Naphthalene and 
benzene

Oil-contaminated 
tropical marine 
sediments, south 
Singapore

Zhuang et al. 
(2003)

Dietzia sp. strain GS-1 Disodium 
terephthalate

Soil sample Sugimori et al. 
(2000)

D. maris and Rhodococcus 
erythropolis

n-alkane and 
iso-alkanes

– Zvyagintseva et al. 
(2001)
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immediate action. Currently, development of phytoextraction (Gremion et al. 2003) 
and microorganism-based remediation methods (Colin et  al. 2012) have been in 
focus for toxic metal detoxification as they are cost-effective and efficient. 
Actinobacteria is an ecologically important group that is conferred with specific 
cellular machinery to respond to both metal deprived and overloaded condition. 
The exact mechanisms for metal homeostasis by actinobacteria have not been ade-
quately understood. In southwest Slovakia, a heavy metal-contaminated farmland 
was predominantly colonized by actinobacterial species after proteobacteria 
(Karelova et al. 2011). High dominance of actinobacterial species occurs in heavy 
metal-contaminated bulk and rhizospheric zone of many metal accumulating plant 
species (Gremion et  al. 2003). In general, microbial populations isolated from 
metal-contaminated sites are preferred for the development of metal remediating 
tools. Actinobacteria includes a number of heavy metal-resistant species (Table 
9.6) that are capable of bioaccumulation of toxic elements and decontamination of 
metal-polluted sites. The species of Streptomyces  has been considered as potential 
sources for remediating sites that were co-polluted with Cr and lindane (Aparicio 
et al. 2015). Frankia species show an elevated level of tolerance to several metals 
and metalloids (Pb2+, Al3+, SeO2

3−, Cu2+, AsO4, and Zn2+) (Richards et al. 2002). 
Metal resistance in Frankia species aids colonization of actinorhizal host plants in 
highly contaminated or nutrient-poor soils (Schwencke and Caru 2001). 
Arthrobacter sp. U3 isolated from metal-contaminated environment was capable of 
detoxifying a hazardous metal (Hg) up to 80 % in a bioremediation site (Giovanella 
et al. 2015). The soil inhabiting and nonpathogenic Arthrobacter species offer their 
exploitation in environment cleanup and remediation process.

9.5.4  �Biodegradation of Plastics/Bioplastics

The term “white pollution” refers to solid waste including polythene and plastic 
bags, disposed into the environment, which affect the soil ecosystem adversely. 
These plastic products are made of polystyrene, polypropylene, polyvinyl chloride, 
and other polymers that are highly resistant to microbial degradation, thereby lead-
ing to severe urban environmental consequences. The problems related to white 
pollution have encouraged research into finding or developing biodegradable plas-
tics (Steinbuchel 2001). Several microbes synthesize biopolymers in the form of 
intracellular storage granules (Luengo et al. 2003). These have been explored for the 
manufacturing of biodegradable plastics. Microbe-derived biopolymers are majorly 
poly (3-hydroxyalkanoate) (PHA) and poly (3-hydroxybutyrate) (PHB) (Bugnicourt 
et al. 2014). Bioplastics are receiving considerable attention since they can easily be 
degraded by microbes in the environment. Diverse thermophilic and thermotolerant 
actinobacterial species have been reported with the capability to degrade bioplastics 
and rubbers (Shivlata and Satyanarayana 2015). Several mesophilic Streptomyces 
species producing polyhydroxyalkanoate and poly (3-hydroxybutyrate) depolymer-
ases and other non-Streptomyces species have been shown to degrade bioplastics 

L. Shivlata and T. Satyanarayana



201

Table 9.6  List of metal detoxifying, dye decolorizing, and bioplastic degrading actinobacteria

Actinobacteria
Toxic metal or 
effluents

Site of isolation/
collection References

Metal detoxifying actinobacteria

Streptomyces 
roseisederoticus (V5)

Cr, Cd, Zn, and 
Pb

Rhizosphere region of 
Casuarina 
equisetifolia

Vinod et al. (2014)

S. flavochromogenes (V6)
S. vastus (V7)
S. praguaeneses (V8)
Streptomyces and 
Amycolatopsis species

Cr, Cd, Zn, and 
Pb

Abandoned mining 
areas

El Baz et al. (2015)

Streptomyces werraensis 
LD22

Cr, Pb, Ni, and 
Zn

Chicken and goat 
feces

Latha et al. (2015)

Actinobacteria including 
both Streptomyces and 
non-Streptomyces species 
(Micromonospora, 
Actinoplanes, Norcardia and 
other rare genera)

Hg, Cd, Cu, Pb, 
As, Ni, and Zn

Tin tailings and forest 
soil

Hema et al. (2014)

Arthrobacter sp. U3 Hg Metal-contaminated 
industrial effluents

Giovanella et al. 
(2015)

Bioplastic degrading actinobacteria

Streptomyces roseolus SL3, 
Streptomyces pulveraceus, 
Streptomyces atratus, 
Streptomyces anulatus, 
Streptomyces beijiangensis, 
and Streptomyces 
omiyaensis

Polyesters 
including 
P(3HP), P(3HB), 
P(HB-HV), and 
PCL

Soil, sludge, and 
water sample

Gangoiti et al. 
(2012)

Streptomyces venezuelae 
SO1

Medium-chain-
length PHA

Soil sample Santos et al. (2013)

Arthrobacter globiformis 
SBI-5

Polyurethane Oil-contaminated 
connecticut soil

El-Sayed et al. 
(1996)

Corynebacterium sp. Polyurethane Degraded polyester 
polyurethane samples

Kay et al. (1991)

Rhodococcus equi TB-60 Urethane Soil samples Akutsu-Shigeno 
et al. (2006)

Actinomadura sp. AF-555 P(HB-HV) Soil sample Shah et al. (2010)
Kibdelosporangium aridum 
JCM 7912

Poly(l-lactide) Japan collection of 
microorganisms

Jarerat et al. (2003)

Amycolatopsis orientalis 
IFO 12362

Poly(l-lactide) Institute for 
Fermentation, Osaka

Jarerat et al. (2006)

Saccharothrix 
waywayandensis JCM 9114

Poly(l-lactide) Japan collection of 
microorganisms

Jarerat and Tokiwa 
(2003)

Dyes decolorizing actinobacteria

Saccharothrix 
aerocolonigenes TE5

Reactive azo dyes Soil contaminated 
with textile effluents

Rizwana and 
Palempalle (2015)

(continued)

9  Actinobacteria in Agricultural and Environmental Sustainability



202

(Table 9.6). Bioplastics are also derived from renewable resources including vege-
tables, cornstarch, and agricultural by-products. Synthesis of bioplastics from green 
renewable resources is of current interest. Recently, a mesophilic actinobacterium, 
Streptomyces coelicolor CH13 degraded a blended cassava starch/natural rubber 
biopolymer (Watcharakul et al. 2012). An endophytic actinobacterium, Nocardiopsis 
sp. mrinalini9 capable of degrading polythene, plastic and diesel, was isolated from 
leaves of Hibiscus rosasinensis (Singh and Sedhuraman 2015). Rothia sp. belong-
ing to the phylum Actinobacteria was isolated from a deteriorating epoxy resin 
statue (Pangallo et  al. 2015). A chemical compound dibutylin (DBT) is a most 
widely used plastic stabilizer, which causes neurotoxic, hepatotoxic, and immuno-
toxic effect on humans. It is also released into the environment as a by-product of 
degradation of tributylin (used as antifouling agent in boat paints) (Antizar-Ladislao 
2008). Streptomyces spp. isolated from plant waste composting heaps have been 
shown to be capable of degrading up to 90 % of DBT (added at 20 mg/L) after 1 day 
of incubation (Bernat and Dlugonski 2009).

9.5.5  �Decolorization of Dyes

After the discovery and successful commercialization of the world’s first synthetic 
dye (mauevin), more than 10,000 synthetic dyes have been developed and are being 
used in textile and dyestuff manufacturing (Robinson et al. 2001). Other applica-
tions of synthetic dyes include paper printing, manufacturing of food coloring 

Table 9.6  (continued)

Actinobacteria
Toxic metal or 
effluents

Site of isolation/
collection References

Micrococcus 
glutamicusNCIM 2168

Reactive green 
19A

Culture Collection 
Center, National 
Chemical Laboratory, 
Pune

Saratale et al. 
(2009)

Streptomyces species Azo blue and azo 
orange dyes

Textile industry 
effluent, Kerala

Pillai et al. (2014)

Rhodococcus qingshengii 
JB301

Triphenyl 
methane dyes

Sawdust Li et al. (2014a)

Amycolatopsis orientalis Amido black Soil sample Chengalroyen and 
Dabbs (2013)

Streptomyces chromofuscus 
A11

Azo dye isomers American type culture 
collection

Pasti-Grigsby et al. 
(1996)

Dietzia sp. PD1 Congo red and 
indigo carmine

Textile effluent, 
Kolkata

Das et al. (2016)

P(3HP) poly(3-hydroxypropionate), P(3HB) poly(3-hydroxybutyrate), P(HB-HV) poly(3-
hydroxybutyrate-co-3-hydroxyvalerate), PCL poly-ε-caprolactone
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additives and cosmetics. More than 7 × 105 metric tons of synthetic dyes are pro-
duced annually (Zollinger 1987). In general, complete utilization of coloring dyes 
does not occur during the dyeing processes. Approximately 10–15 % of total dyes 
used are lost as effluent from industries due to inefficiency of the processing opera-
tion. Dye-containing effluents discharged from industries enter into water bodies 
and disturb the aquatic ecosystem. Textile industries consume a substantial amount 
of water for wet processing of textiles and release a large quantity of liquid effluent 
pollutants into the environment. Approximately 2.8 × 105 tons of dye effluents are 
discharged from textile industries per annum (Jin et al. 2007), representing the larg-
est source of water pollution. Consumption of dye-polluted water causes toxicity 
and carcinogenicity in all living beings (Ratna and Padhi 2012). The presence of 
colored dye molecules in water bodies reduces the penetration of sunlight and 
decreases photosynthetic activity of aquatic flora, thereby deteriorating water qual-
ity such as decreasing the dissolved oxygen concentration (Vandevivere et al. 1998). 
In addition, their acute toxic effects on aquatic fauna have also been demonstrated 
(Olaganathan and Patterson 2013). The presence of toxic dyes in the environments 
everly damages economically important plants growing in the vicinity of such pol-
luted areas (Kapustka and Reporter 1993). Therefore, there is an urgent requirement 
of proper treatment of industrial effluents prior to their discharge into the environ-
ment. Several physical and chemical methods have been used for the treatment of 
wastewater effluent. Physiochemical methods are too expensive and inefficient to 
perform complete removal of dyes from wastewater (Saratale et al. 2011). These 
limitations inspire to search for an alternate effective way to decontaminate the 
water resources. Microbial or enzymatic decolorization methods are therefore being 
developed, as these are economic and eco-friendly as opposed to physiochemical 
decomposition methods (Rai et al. 2005). Actinobacteria are considered as potent 
decomposers, and they mineralize a diverse array of recalcitrant pollutants includ-
ing toxic dyes (shown in Table 9.6). Ball et al. (1989) reported that three actinobac-
terial species, Streptomyces badius 252, Streptomyces sp. strain EC22, and 
Thermomonospora fusca MT800, have the ability to decolorize the polymeric dye 
Poly R.  Fourteen lignocellulolytic Streptomyces species were screened for their 
ability to decolorize dyes (Poly B-411, Poly R-478 and Remazol Brilliant Blue R). 
A strong positive correlation was found between ligninolytic capability and dye 
decolorization of two dyes (Poly B-411 and Remazol Brilliant Blue R). Streptomyces 
species produced extracellular peroxidases involved in decolorization of dyes (Pasti 
and Crawford 1991). There is another report that also supports the fact that lignin 
solubilizing Streptomyces species, S. violaceoruber, decolorized 63  % of Poly 
R-478 after 24  h of incubation (Abou-Dobara and Omar 2014). Zhou and 
Zimmermann (1993) demonstrated that actinobacteria removed dyes from effluents 
through either adsorption or degradation process. Actinobacteria catalyzing the 
reactions of hydroxylation, dealkylation, and oxidation were able to degrade the 
xenobiotic pollutants (Goszczynski et al. 1994).

Complete degradation of Reactive Green 19A (50 mg/L) was achieved by using 
Micrococcus glutamicus NCIM 2168 within 48  h of incubation (Saratale et  al. 
2009). Actinobacteria are known to decolorize dyes in all states as in pure culture or 
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co-culture or mixed culture. Saratale et al. (2010) developed a bacterial consortium 
by co-culturing two pure cultures of Proteus vulgaris NCIM-2027 and Micrococcus 
glutamicus NCIM-2168. This consortium degraded azo dyes more efficiently than 
the individual strains. Another actinobacterium Rhodococcus globerulus capable of 
decolorizing azo dyes was found to be an active participant in the microbial consor-
tium with two bacterial strains (Joshi et al. 2008). Streptomyces sp. C1 isolated from 
thermophilic phase of composting showed decolorizing activity by producing an 
enzyme known as laccase-like multicopper oxidase (Lu et al. 2013). Streptomyces 
psammoticus was also shown to secrete an extracellular laccase that finds applica-
tion in decolorization of dyes (Niladevi and Prema 2008). Therefore, whole cells of 
actinobacteria or their enzymes can be used for decolorization of dye-contaminated 
effluents.

9.6  �Conclusions and Future Perspectives

Actinobacteria have potential applications in both agricultural economy and envi-
ronmental biotechnology. Use of actinobacteria as microbial inoculants for enhanc-
ing crop productivity and environmental pollution control would be a beneficial 
approach to keep both agriculture and environment clean and safe. In order to 
exploit actinobacteria, there is a need to carry out detailed investigations on their 
physiology and molecular mechanisms. Detailed investigations are called for under-
standing the physiological and molecular basis of plant–actinobacteria interactions. 
In view of the major impact of actinobacteria in environmental sustainability, the 
elucidation of metabolic pathways involved in the biodegradation of toxic pollut-
ants would be useful.
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