
Chapter 7
Hybrid Simulation Methods: Combining Finite
Element Methods and Analytical Solutions

S. Duczek, Z.A.B. Ahmad, J.M. Vivar-Perez, and U. Gabbert

Abstract In the context of wave propagation analysis the computational efficiency
of numerical and semi-analytical methods is essential, as very fine spatial and tem-
poral resolutions are required in order to describe all phenomena of interest, includ-
ing scattering, reflection, mode conversion, and many more. These strict demands
originate from the fact that high-frequency ultrasonic guided waves are investigated.
In this chapter, our focus is on developing semi-analytical methods based on higher
order basis functions and demonstrating their range of applicability. Thereby, we
discuss the semi-analytical finite element method (SAFE) and a hybrid approach
coupling spectral elements with analytical solutions in the frequency domain. The
results illustrate that higher order methods are essential in order to decrease the
numerical costs. Moreover, it is demonstrated that the proposed approaches are the
methods of choice when we want to compute dispersion diagrams or if large parts of
the structure are undisturbed and, therefore, can be described by analytical solutions.
If, however, complex geometries are considered or the whole structure has to be
investigated, only purely FE-based approaches seem to be a viable option.

7.1 The Semi-Analytical Finite Element Method

The content of the current section is primarily based on Dr. Ahmad’s research.
The results of his investigations are published in a PhD thesis [1] and in two peer-
reviewed journal articles [2, 3].

The semi-analytical finite element method (SAFE) is typically used to com-
pute the dispersion curves for isotropic and composite plates [1]. More complex
waveguides, such as rods, wires, and rail road tracks, have also been investigated
[4, 9, 15, 27, 38, 44, 53]. If we want to consider the effect of initial axial loads
on the dispersion curves, additional terms need to be added to the conventional
formulation [43]. As in standard FE applications, both h- and/or p-refinements
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can be deployed to increase the accuracy of the simulations. This is especially
important when higher order wave modes need to be evaluated [8]. The influence
of external loads and a piezoelectric excitation can also be included in the SAFE
formulation. For two-dimensional problems this is discussed in [9, 48] and three-
dimensional (3D) cases are considered in [7, 57]. These simulations solve the wave
propagation problem for plates with infinite (in-plane) dimensions, due to the fact
that the SAFE method implicitly assumes the plate to be infinite in its formulation.
Additional effects on the propagation of elastic guided waves, i.e. reflections and
transmissions from damages, actuators or boundaries make the wave propagation
behavior more complex and must be added separately. Therefore, the SAFE
method can be combined with classical methods, such as the FEM, the boundary
element method (BEM), and other computational approaches. The reflection and
transmission behavior of ultrasonic guided waves at geometrical perturbations of
the infinite plate have been investigated in [2, 3, 23, 35, 36, 39, 54, 55]. In these
cases, the infinite plate section is modeled using the SAFE approach, while damages
or boundaries are modeled using the FEM or the BEM, respectively [2, 3]. Leaky
Lamb waves are also investigated with the help of SAFE to evaluate the energy loss
into the surrounding medium [24, 29, 46].

7.1.1 Motivation

The SAFE method has its advantages in the computation of dispersion curves and
in the analysis of wave interactions with obstacles. The solution to both problems
benefits from the semi-analytical character of the SAFE. That is to say, unperturbed
regions of a structure or infinite regions can be simulated at hardly any cost
compared to classical FE approaches. The SAFE is not as severely affected by the
need for a fine spatial discretization compared to the FEM because of its specifically
tailored basis functions that account for typical properties of propagatingwaves. The
details behind this behavior are explained in Sects. 7.1.2–7.1.6.

7.1.2 Theoretical Principles

In this section we provide the formulation of the semi-analytical finite element
method according to [4, 13–15, 41, 45]. The SAFE method is basically a combi-
nation of the FEM in the cross section of the structure and analytical methods in
the direction of wave propagation direction. Accordingly, we discretize the cross
section of the waveguide by means of conventional finite elements and deploy a
complex exponential function in the propagation direction [14], cf. Fig. 7.1. That
is to say, we reduce the dimensionality of the problem by one which is also the
reason for the decreased computational costs. Since the plate thickness can easily be
resolved by only a few finite elements mesh requirements for the SAFE method are
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Fig. 7.1 Sketch of the cross
section of a plate-like
waveguide
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comparably low [1]. In the remainder of this chapter we will use the term in-plane
to refer to the cross section plane of the waveguide, while out-of-plane denotes the
wave propagation direction, cf. Fig. 7.1. Note that this is in contrast to the natural
understanding of the words in- and out-of-plane.

The point of departure for the derivation of the SAFE is the weak form of the
equilibrium equations as discussed in Chap. 4. For the sake of clarity and simplicity,
we only repeat the weak form of the mechanical equilibrium equations at this point

Z
˝

vTu� Rud˝ C
Z
˝

.ruvu/
T Cruud˝ �

Z
˝

vTubd˝ �
Z
�u

vTu Ntd� D 0 ; (7.1)

with ˝ and � denoting the computational domain and its boundary. The loading
of the structure is given by b and t which are the vector of body forces and the
surface traction vector, respectively. The overbar represents a prescribed value at the
Neumann boundary. The mechanical displacement field is denoted by u and the test
functions corresponding to the method of weighted residuals are vu. The material
properties are given by C, the elasticity matrix, and by �, the mass density. In the
framework of the SAFE we split the mechanical differential operator matrix ru

into three parts to separate the derivatives with respect to the individual coordinates
[45] as
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with
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In the next step we discretize the displacement field in a similar fashion as known
from the FEM. In the framework of the SAFE we assume that the displacement
field is a harmonic function in x1 and the cross section (x2 � x3 plane) of the plate
is discretized by conventional two-dimensional finite elements. Therefore, we can
express the displacement vector as [4]

u.x; t/ D QN.x2; x3/Uee�j.kx1�!t/ ; (7.3)

where j D p�1 represents the imaginary unit and QN.x2; x3/ is the two-dimensional
basis function matrix. The wavenumber and the circular frequency are denoted by
k and !, respectively. Keep in mind that we use the same ansatz also for the test
functions vu

vu.x; t/ D QN.x2; x3/Vuee�j.kx1�!t/ : (7.4)

The basis function matrix QN and the vector of nodal degrees of freedomUe have the
following form

QN D
2
4NN1 NN2 NNnNode

NN1 NN2 : : : NNnNode

NN1 NN2 NNnNode

3
5 ; (7.5)
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1 u

NnNode
2 u
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3

iT
; (7.6)

where nNode is the number of nodes per finite element. At this point we also introduce
the linear strain–displacement relation

"""""""""""""""""u D ruu : (7.7)

If we now substitute Eqs. (7.2) and (7.3) into Eq. (7.7), we obtain [45]

"""""""""""""""""u D �
B�
u � jkB#

u

�
Uee

�j.kx1�!t/ (7.8)
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with

B�
u D Lx2

QN;x2 C Lx3
QN;x3 ; (7.9)

B#
u D Lx1

QN : (7.10)

The derivatives with respect to the variables xi are denoted by .�/;xi . The semi-
discrete equations of motion for one element can be derived from Eq. (7.1) and are
given as
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(7.11)

In the next steps we simplify the first two terms of Eq. (7.11) and derive the stiffness
matrix Ku and the mass matrix Mu corresponding to the semi-analytical finite
element method. The ansatz for the displacement field and the test functions has
the inherent advantage that we can easily split the domain integration into two
separate parts. First, we solve the one-dimensional integral with respect to x1 and
then we perform a domain integration over the x2 � x3 plane denoted by ˝� [4].
In order to transpose a complex matrix we need to compute the conjugate transpose
matrix by negating the imaginary part. Therefore the first two terms in Eq. (7.11)
are given by
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As mentioned before Eq. (7.11) represents the contribution of one finite element to
the weak from. Therefore, we have to sum the contributions of all nel elements to
obtain the semi-discrete (homogeneous) equations of motion for the system under
investigation as

nelX
eD1

�
Ke

11u C jkKe
12u C k2Ke

22u � !2Me
u

�
Ue D 0 ; (7.14)

where Ke
11u, K

e
12u, K

e
22u, and Me

u denote the in-plane stiffness matrix, the coupling
stiffness matrix, the out-of-plane stiffness matrix, and the mass matrix, respectively.
Their definitions are given below
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Equation (7.14) constitutes the eigenvalue problem of the SAFE method which has
to be solved to compute the propagation of elastic guided waves in infinite media.
For further information on the SAFE method, the interested reader is referred to
[22, 23, 26, 27, 32–37, 39, 40, 50] and the references cited therein.

7.1.3 Plate with Infinite Dimensions

Considering a plate with infinite dimensions in x1- and x2-directions we can further
simplify the SAFE equations as there is no dependence of the displacement field
on x2 [45]. Therefore, only the thickness of the plate has to be discretized by one-
dimensional finite elements. This is illustrated in Fig. 7.2. Due to this simplification
the strain–displacement relation is given by

"""""""""""""""""u D �
B�
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u

�
Uee�j.kx1�!t/ (7.19)

with
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Fig. 7.2 Sketch of the cross section of an infinite plate. The finite element discretization is
indicated by its nodes (one-dimensional elements)

This also implies that the integration domain changes from d˝� to d x3. The
integrals in Eqs. (7.15)–(7.18) can now be evaluated numerically by a standard one-
dimensional Gaussian quadrature rule.

In the context of the FEM it is advantageous to define the basis functions with
respect to a reference domain [11, 28, 66]. Therefore, the finite elements need to
be mapped from the reference frame to the global domain as discussed in Sect. 4.7.
This procedure is exemplarily discussed for a 3-noded (quadratic) isoparametric
finite element. The basis functions are [66]

NN1
u;3.�1/ D 1

2
�1.�1 � 1/ ; (7.22)

NN2
u;3.�1/ D .1 � �21 / ; (7.23)

NN3
u;3.�1/ D 1

2
�1.�1 C 1/ : (7.24)

For the infinite plate the domain integration over the cross section is simply given by

Z
˝�

e

: : : d˝ D
Z 1

�3D�1
: : : det.J/d�3 ; (7.25)

where J denotes the Jacobian matrix of the mapping. In the one-dimensional case
the evaluation of Eq. (4.59) reduces to a scalar value

J D d x3
d�1

: (7.26)
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Due to the isoparametric mapping concept discussed in Sect. 4.7.2 we can express
x3 within an element by a linear combination of the basis functions and the nodal
coordinates Xi

3 by

x3 D Q.e/.�1/ D
3X

iD1
NNi
u;3.�1/X

i
3 : (7.27)

With the help of Eq. (7.27) we can compute the Jacobian matrix in terms of the
nodal coordinates and the local coordinate �1

J D
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u;3.�1/

d�1
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3 D �

�1 � 1 �2�1 �1 C 1
�

2
4X13
X23
X33

3
5 : (7.28)

7.1.4 Dispersion Curves for Undamped Media

When studying the propagation of elastic guided waves the knowledge of the
group and phase velocity dispersion diagrams is essential. These curves provide
information on the number of propagating modes for a specific combination of
excitation frequency and plate thickness and naturally on the wave velocities of
these wave modes. Therefore, we need to solve the SAFE eigenvalue problem
formulated in Eq. (7.14). From the definition of the system matrices provided in
Eqs. (7.15)–(7.18) we know that K11u, K22u, andMu are symmetric matrices, while
K12u is skew-symmetric [1].

Without loss of generality, we introduce a transformation matrix T to eliminate
the imaginary unit in Eq. (7.14). To this end, we premultiply Eq. (7.14) by the
transpose of T [4]

TT
�
K11u C jkK12u C k2K22u � !2Mu

�
U D 0 : (7.29)

The transformation matrix is a .ndof � ndof/-diagonal matrix which is equal to 1 at
the rows corresponding to displacements in x2- and x3-direction and equal to the
imaginary unit j at those rows corresponding to displacements in x1 direction

T D

2
66666666664

j
1 0

1

: : :

j
0 1

1

3
77777777775

: (7.30)
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This matrix has some favorable properties, such as TT D T� and TT� D T�T D 1,
where 1 denotes the identity matrix and .�/� represents the conjugate transpose of a
complex matrix. Therefore we can expand Eq. (7.29) resulting in

TT
�
K11u C jkK12u C k2K22u � !2Mu

�
TTTU D 0 : (7.31)

The proposed transformation does, however, not change the system matrices
K11u, K22u, and Mu which is due to the fact that in their definition provided in
Eqs. (7.15), (7.17) and (7.18) the x1 related terms do not interact with the x2, x3
related terms and consequently the following relations hold

TTK11uT D K11u ; (7.32)

TTK22uT D K22u ; (7.33)

TTMuT D Mu : (7.34)

Considering the coupling stiffness matrix K12u the transformation has the desired
effect that

TTK12uT D �j OK12u (7.35)

where OK12u is a symmetric matrix if we neglect material damping. In principle, the
transformation can be thought of as a multiplication of ux1 by the imaginary unit [4].
The final (real-symmetric) form of the SAFE eigenvalue problem is given as

h
K11u C k OK12u C k2K22u � !2Mu

i OU D 0 ; (7.36)

where the new nodal displacement vector is defined as

OU D TTU : (7.37)

If we now assign real values to k Eq. (7.36) constitutes a standard eigenvalue
problem in !.k/; due to the fact that k is a real value all wave modes are propagating
ones [1]. The number of Lamb wave modes that can be computed depends on the
number of degrees of freedom ndof of the system. For each wavenumber ki we obtain
ndof propagating modes for which we also determine the mode shape OUi. Moreover,
the phase velocity cp can be computed from the real part of the wavenumber and the
angular frequency as

cp D !

Re.k/
: (7.38)

On the other hand, if we are interested in the full spectrum of propagating and
evanescent modes, we have to determine the unknown complex wavenumber k.!/
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for a prescribed circular frequency !. To this end, Eq. (7.36) is usually rewritten in
the following form [4]

.A � kB/Q D 0 ; (7.39)

where the matrices A and B are defined as

A D
�

0 K11u � !2Mu

K11u � !2Mu OK12u

�
; (7.40)

B D
�
K11u � !2Mu 0

0 K22u

�
; (7.41)

and the vectorQ is given as

Q D
" OU
k OU

#
: (7.42)

Consequently, the size of the eigenvalue problem is doubled. The computed complex
wavenumbers k D kRe C jkIm contain the phase velocity as the real part and their
amplitude decay is described by the imaginary part [1]. The solution of Eq. (7.36)
provides for each circular frequency !i the 2ndof eigenvalues kmi and eigenvectors
OUi (right eigenvector). We have to bear in mind that the formulation in Eq. (7.36) is
preferred if only the propagating modes are considered [4].

7.1.4.1 Phase and Group Velocities of Guided Waves

After solving the eigenvalue problems in Eqs. (7.36) or (7.39) we can easily compute
the phase velocity cp in terms of the real part of the complex wavenumber and
the angular frequency, cf. Eq. (7.38). The group velocity cg can be determined if
we compute the derivative of the phase velocity with respect to the wave vector k
defined as

k D kd ; (7.43)

where d is the propagation direction vector. The final result to compute the group
velocity is [17]

cg D @!

@k
D c2p

cp � !
dcp
d!

: (7.44)
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In the computation of the group velocity we follow the methodology published in
[10, 21]. The procedure starts by evaluating the derivative of Eq. (7.36)

@

@k

�h
K11u C k OK12u C k2K22u � !2Mu

i OU
	

D 0 : (7.45)

In the next step, we premultiply Eq. (7.45) with the transpose of the so-called left
eigenvector OUT

L

OUT
L

"
OK12u C 2kK22u � 2! @!

@k
Mu

#
OU D 0 : (7.46)

The group velocity can now be computed as

cg D
OUT
L

� OK12u C 2kK22u

	 OU
2! OUT

LMu OU : (7.47)

The left eigenvector is determined by solving the following eigenvalue problem

OUT
L

h
K11u C k OK12u C k2K22u � !2Mu

i
D 0 : (7.48)

From the result we can conclude that the left eigenvector OUL is the complex
conjugate of the right eigenvector OU

OUL D OU� : (7.49)

7.1.4.2 Verification

In this paragraph we demonstrate the performance of the SAFE method by
computing the dispersion diagrams for several plates made of different materials.
The first simple benchmark problem constitutes the solution of the eigenvalue
problem Eq. (7.36) for an aluminum plate (Young’s modulus E D 70GPa, Poisson’s
ratio � D 0:33, mass density � D 2700 kg/m3). We deploy ten quadratic (one-
dimensional) finite elements to discretize the thickness of the plate. In Fig. 7.3 we
notice an excellent agreement with the analytical solution.

The accuracy of the computed results naturally depends on the number of finite
elements and the basis functions used. Analogous to the FEM we can always
increase the accuracy by a h- or p-refinement. In this chapter we limit our analysis to
quadratic basis function. However, the implementation of higher order polynomial
functions introduced in Sect. 6.1 is straightforward.
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Fig. 7.3 Dispersion curves for an aluminum plate. Comparison between SAFE results and
analytical solutions

Figure 7.4 illustrates the effect of a h-extension on the phase velocity. We merely
assess the accuracy of the first four Lamb wave modes as this is a typical frequency
range that is used in literature for damage detection purposes. The results highlight
that three quadratic elements are sufficient to compute highly accurate dispersion
curves with a relative error of well below 1% [1]. The number of elements over the
thickness of the plate has to be increased if a higher frequency range is of interest.

As a second example we investigate a composite plate made of 16 unidirectional
(UD) layers with the following lay up Œ0ı=45ı=90ı= � 45ı�s2. The plate has an
overall thickness of 3:2mm and the material properties for a UD layer are compiled
in Table 7.1. Each ply is discretized with one quadratic finite element. We observe
an excellent agreement with the results published in [14], cf. Fig. 7.5. We have to
keep in mind that for a CFRP plate the Lamb and the SH wave modes are often
coupled.
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Fig. 7.4 Phase velocity dispersion curves for an aluminum plate for different finite element
discretizations

Table 7.1 Material properties of the UD layer at 0ı [14]

E1 E2 �12 �23 G12 G23 �

in [GPa] in [GPa] [–] [–] in [GPa] in [GPa] in [kg/m3]

[UD]0ı 172.0 9.8 0.37 0.55 6.1 3.2 1608
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Fig. 7.5 Dispersion curves for a 16-ply CFRP plate

7.1.5 Interaction of Guided Waves with Perturbations

7.1.5.1 General approach

If we want to simulate arbitrary boundary conditions or geometries of plate
edges, we have to couple the SAFE method with other numerical approaches.
One possibility is to deploy the FEM to account for general perturbations of
the plate-like structure [1–3]. The FEM is known for its versatility in modeling
geometrically complex systems and therefore we define the boundary conditions,
the plate edge, and/or other perturbations in the FE domain as shown in Figs. 7.6
and 7.7, respectively.

The continuity between the SAFE and the FE regions is ensured by using a
conformal mesh at the coupling interface(s). In the SAFE method the displacements
and the reaction forces at the interface have to be computed. If we now consider an
incident wave mode interacting with the edge of a plate, the displacement vector of
the reflected wave mode Ureflected can be approximated by a modal sum of a finite
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Coupling Interface Incident wave
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Fig. 7.6 Illustration of the coupling between SAFE and FEM: Reflection of the wave at the edge
of the plate
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Coupling Interface
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−∞

Crack

Fig. 7.7 Illustration of the coupling between SAFE and FEM: Interaction of the wave with a crack

number of modes nr [13]

Ureflected D
nrX
iD1

biUie�jkix1 ; (7.50)

where bi denotes the amplitude of the ith wave mode and the vector Ui is the ith
eigenvector computed from Eq. (7.14) corresponding to the wavenumber ki. The
approximation of the force is written analogously as

Freflected D
nrX
iD1

bi                 ie
�jkix1 ; (7.51)

where                  i is the force eigenvector which represents the nodal force components due
to stresses �x1 and �x3 [35]. According to [13] the force eigenvector is given as

                 i D . jkiK22u C K12u/Ui : (7.52)

After having computed the displacement and force vectors due to the reflected wave
we still need to determine the following quantities for the incident wave

Uincident D aiU
.�/
i ; (7.53)

Fincident D ai                 
.�/
i ; (7.54)
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where ai denotes the amplitude of the ith incident mode. The vectors U.�/i and

                 
.�/
i are obtained from their corresponding vectors Ui and                  i by negating each

component related to the x1-direction [1]. The overall displacement and force
vectors are now computed as

U D Uincident C Ureflected ; (7.55)

F D Fincident C Freflected : (7.56)

These quantities can be included in a FEM software to compute the reflection
coefficient Cij

R for the different propagating wave modes [1, 3, 13]. According to
Karunasena et al. [35] we define the reflection coefficient Cij

R of the ith reflected
mode due to the jth incident mode as

Cij
R D bi

aj
: (7.57)

7.1.5.2 Verification

Benchmark examples to demonstrate the applicability of the discussed procedure
are studied in the remainder of this section. The finite element stiffness matrix KFE

u
and mass matrix MFE

u are computed by means of the software package Abaqus®.
At the boundary between the FE and SAFE regions a conformal discretization is
generated. The plate under investigation is made of aluminum (Young’s modulus
E D 70GPa, Poisson’s ratio � D 0:33, mass density � D 2700 kg/m3) with a
thickness of t D 1mm. The maximal frequency of interest is 4:5MHz because in
this frequency range only the first four higher order Lamb wave modes exist. In the
numerical simulations we only excite the S0-mode and observe its interaction with
the boundary.

Figure 7.8 illustrates the wave reflection behavior at a symmetric plate edge.
The term symmetric refers to the midplane of the plate. The infinite plate region
is modeled with the help of SAFE, while the edge is discretized using the FEM.
From the simulation we determine the edge reflection coefficient CR 2 Œ0; 1� for the
symmetric and antisymmetric modes. Here, one important advantage of the SAFE
method can be exploited as each mode can be investigated separately.

As expected only the symmetric mode is reflected and no mode conversion takes
place. In Fig. 7.8 we clearly observe the cut-off frequencies of the higher order
symmetric Lamb wave modes. Note that the sum of the reflection coefficients of all
propagating modes is equal to one.

Figure 7.9 illustrates the wave reflection behavior at an asymmetric plate edge.
The plate edge is inclined at an angle of 45ı. Because of the asymmetry of the
edge geometry mode conversion from the symmetric S0-mode to the antisymmetric
modes Ai is observed. The reflection coefficient illustrates the existence of both
symmetric and antisymmetric wave modes after the interaction with the boundary
of the plate.
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Fig. 7.8 SAFE-FE: Reflection of the S0-mode at a symmetric plate edge. (a) Numerical model.
(b) Reflection coefficient CR for the symmetric and antisymmetric guided wave modes
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Fig. 7.9 SAFE-FE: Reflection of the S0-mode at an asymmetric plate edge. (a) Numerical model.
(b) Reflection coefficient CR for the symmetric and antisymmetric guided wave modes.
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7.1.6 Force Response Analysis

7.1.6.1 General approach

In Sects. 7.1.4 and 7.1.5 we have computed the wave motion in an infinite plate and
additionally we have included the interaction of the waves with perturbations in the
platelike geomerty. This simulations have been executed without applying forces to
the structure. In this section we, therefore, focus on the force response analysis. To
this end, we include the effect of point forces. This is the most important case as all
distributed forces can be decomposed into a set of (energetically equivalent) point
forces in the framework of the FEM.

In this section we only discuss the two-dimensional implementation of the force
response analysis. To this end, we follow the approach discussed in [9, 42, 44]. We
consider the case of an arbitrarily distributed force f.t/ as illustrated in Fig. 7.10.
The frequency components of the external force are computed using the Fourier
transform

Lf.!/ D
Z 1

�1
f.t/e�j!tdt : (7.58)

The homogeneous equation (7.39) can now be complemented by the force term

ŒA � kB.!/�Q D LF.!/ ; (7.59)

with

LF.!/ D
�Lf.!/

0

�
: (7.60)

The solution of Eq. (7.59) can be expressed in terms of an eigenvector expansion
[51]

OU.k; !/ D
4nNodeX
iDi

1

ki � k
Qi

QT
i

LF
QT

i BQi
: (7.61)

x1

x3

Incident wave

Measurement point

∞−∞ f(t)

x1 = x1M

x1 = x1f

Fig. 7.10 Sketch of the SAFE model for the force response analysis
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If nNode is the number of nodes corresponding to the finite element discretization of
the cross section of the structure, we can compute 4nNode eigenvalue–eigenvector
pairs. To determine the results in the spatio-temporal domain we additionally need
to define the spatial as well as the inverse Fourier transforms [9, 42, 44] as

OU.k; !/ D
Z 1

�1
OU.x; !/e jkx1d x1 ; (7.62)

OU.x; !/ D 1

2�

Z 1

�1
OU.k; !/e�jkx1dk : (7.63)

Accordingly,we obtain the solution in the x1-domain by applying the inverse Fourier
transform to Eq. (7.61) as

OU.x1; !/ D 1

2�

4nNodeX
iDi

Z 1

�1
1

ki � k
Qi

QT
i

LF
QT

i BQi
e�jkix1dk : (7.64)

Equation (7.64) is now solved with the help of Cauchy’s theorem of residues [42].
The solution depends on the location of the measurement point x1M with respect to
the excitation point x1f, cf. Fig. 7.10. We consider the case where x1M > x1f

OU.x1; !/jx1M>x1f D �j
2nNodeX
iDi

Qi
QT

i
LF

QT
i BQi

e�jki Mx1 ; (7.65)

with

Mx1 D x1M � x1f : (7.66)

Due to the requirement that the displacements should be bounded, we only sum over
those modes that have real wavenumbers or complex wavenumbers with a positive
imaginary part. The time-domain response is then computed by using the inverse
Fourier transform as [1]

OU.x1; t/ D 1

2�

Z 1

�1
OU.x1; !/e j!td! : (7.67)

The extension to three-dimensional systems is discussed in [1, 42]. There, also an
alternative approach, based on a convolution integral, is explained. Furthermore, an
extension to account for edge reflections is also possible [1].

7.1.6.2 Verification

The excitation of the guided waves is achieved by means of a perfectly bonded
thin actuator. Instead of modeling the transducer itself we apply the simplified force
model developed in [16, 18]. Therefore, the actuator is modeled as two point forces
acting in opposite directions at the end of the actuator edges.
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The time response simulations are performed for a 1mm thick aluminum plate
(material properties: Young’s modulus E D 70GPa, Poisson’s ratio � D 0:33, mass
density � D 2700 kg/m3) with a 6mm long actuator attached on the top surface,
as shown in Fig. 7.11. For the current example we choose an excitation frequency
of fex D 250 kHz for the five cycle sine burst signal given in Eq. (6.37). At this
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Fig. 7.11 Force response analysis: Two-dimensional model of a perfectly bonded actuator. (a)
Numerical model. (b) In-plane (u1) and out-of-plane (u3) displacements at the measurement
point PM
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frequency only the two fundamental Lamb wave modes are present in the plate.
A comparison of the displacement history at the measurement point PM, which is
located at a distance of 80mm from the excitation source is obtained by using the
SAFE method and Abaqus® and shows an excellent agreement.

7.1.7 Summary

The SAFE method combines the versatility of FE-based approaches with the
advantages of purely analytical solutions. Using this method the material properties
can vary in the thickness direction of the plate, while infinite dimensions are
assumed otherwise. To this end, the thickness is discretized using a conventional
FE ansatz. Regarding the wave propagation direction we deploy complex-valued
exponential functions. For plane waveguides, only one-dimensional (1D) elements
are needed. Each material layer in the plate is represented by at least one 1D
element. 2D elements, however, are needed for modeling complex, 3D waveguides.
The SAFE method is formulated in the frequency domain similar to analytical
approaches. The computational effort is significantly reduced compared to the fully
three-dimensional FEM due to the fact that the dimensionality of the problem is
reduced. However, if we want to recover the displacement field in the time-domain,
an inverse Fourier transform has to be evaluated. One main advantage shared by
both analytical and semi-analytical methods is that each mode can be considered
individually. This allows a detailed analysis of the wave propagation behavior, since
specific modes of interest can be considered separately in further stages of the
analysis. Generally speaking these types of methods are applicable to [63]:

1. The investigation of the behavior of a single mode.
2. The efficient computation of dispersion diagrams.
3. The computation of the displacement fields if only a small area is of interest.

7.2 Coupling of Analytical Solutions and the Spectral
Element Method in the Frequency Domain

The content of this section is primarily based on Dr. Vivar-Perez’ research. The
results of his investigations are published in a PhD thesis [58] and in two peer-
reviewed journal articles [59, 60].

7.2.1 Motivation

The application of purely analytical methods is very convenient when dealing with
wave propagation problems in large homogeneous structures. From a computational
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point of view, the computation of analytical solutions is rather inexpensive. On the
other hand, analytical methods are only suitable for certain geometries and they
are derived mostly in the frequency domain. Therefore, many researchers favor the
use of purely numerical methods, such as the finite element method (FEM) to deal
with more general problems. The main advantage of the FEM lies in its flexibility
to model arbitrarily shaped domains and to obtain solutions in the time-domain
[58]. However, they are numerically more expensive and involve a higher number
of degrees of freedom in comparison to the same computation using analytical
methods. Consequently, we promote the development of hybrid methods that only
deploy analytical approaches in large areas of the model that are unperturbed and
suitable for this purpose. Therefore, only specific details that are of interest to the
analyst need to be resolved by numerical approaches.

To attain our goal we seize ideas that were proposed by Karmazin [30, 31] and
Glushkov et al. [19, 20]. They have analyzed the wave propagation in a plate in the
frequency domain and obtained the solution to the system of partial differential
equations in terms of the fundamental solution or Green’s tensor. To this end,
Cauchy’s theorem of residues is applied. We then derive integral expressions which
can be used to compute the response of the plate due to an arbitrary distribution
of loads. This approach can naturally also be used to describe wave reflections at
boundaries and defects. Similar ideas have already been presented in Sect. 7.1 in the
context of the SAFE method.

The novelty of our approach lies in the fact that instead of using standard FEM to
model the perturbations of the plate [6, 25] we deploy the spectral element method
(SEM) which has a higher order of accuracy [5, 12, 56]. Furthermore, we determine
the bonding conditions between the numerical model of the perturbation and the
analytical model of the plate in the frequency domain by means of an analytical
ansatz. With the help of quadrature formulae and the SEM we discretize the set
of coupling equations and derive semi-analytical expressions for the propagation
of guided waves. To this end, we exploit the concept of the dynamic reaction or
response matrix of the plate with exact wavenumbers. The inherent advantage of
using exact wavenumbers instead of approximated ones is to be seen in the increased
accuracy of the final results. Additionally, no discretization through the thickness of
the plate has been used in contrast to the works presented by Loveday [42], Ahmad
[1], or Morvan et al. [47].

7.2.2 Definition of the Problem

In the following we derive the coupling equations to account for the bonding of a
piezoelectric transducer to an isotropic (infinite) plate. Accordingly, the transducer
and the plate share a common surface denoted by �C. A schematic representation of
the problem under consideration is shown in Fig. 7.12.

The behavior of the piezoelectric transducer and of the plate are analyzed
separately. To couple both systems we apply specific boundary conditions on the
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Fig. 7.12 Schematic representation and reference coordinate system of a piezoelectric patch
bonded to a plate. The piezoelectric patch occupies a volume˝piezo and shares a common interface
�C with the plate
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Fig. 7.13 Separate analyses of the dynamic response of the plate and the piezoelectric transducer
are executed. The influence of the transducer on the plate is modeled as a transient load Fpiezo

acting on �C. To account for the coupling of both systems specific boundary conditions are applied
at the interface representing the reaction forces of the plate acting on the transducer

common interface �C. To this end, we first compute the displacements of the infinite
plate due to mechanical loads acting on �C. Second, we analyze the mechanical
displacements and the electric potential of the piezoelectric transducer due to certain
boundary conditions applied on �C. These conditions describe the influence of the
reaction forces exerted by the plate on the transducer. The basic idea is illustrated in
Fig. 7.13.

In Sect. 7.2.3 we discuss how to analytically compute the displacements of an
infinite plate due to an arbitrary distribution of loads. To this end, we consider the
governing equations and boundary conditions presented in Sect. 4.1 and transform
them into the frequency domain. Thereafter, we derive appropriate boundary
conditions that need to be applied on the common interface �C, see Sect. 7.2.4.



7 Hybrid Simulation Methods 185

7.2.3 Analytical Solution to the Wave Propagation Problem in
Isotropic Plates

For the sake of clarity and completeness, we repeat Navier’s equation for a three-
dimensional isotropic body

.	C 
/rr � u C 
�u D � Ru : (7.68)

The coefficients 	 and 
 denote Lame’s constants and � is the mass density. The
displacement vector u is a function of the position vector x and the time t. The
differential operators r and � represent spatial derivatives according to the Nabla
operator and Laplace’s operator, while an overdot P.�/ denotes a temporal derivative.
In the following we assume that the plate has infinite dimensions in the x1�x2-plane
and regarding the x3-direction it is bounded by two parallel surfaces at x3 D ˙d=2.
We account for the influence of external loads Fext (applied to the upper surface) by
introducing Neumann boundary conditions

Œ
 .ru3 C u;3/C 	r � ue3�x3DCd=2 D Fext ; (7.69)

Œ
 .ru3 C u;3/C 	r � ue3�x3D�d=2 D 0 ; (7.70)

where ei stands for the unit normal vector in xi-direction and the notation .�/;i
represents the partial derivative with respect to xi.

7.2.3.1 Analytical Approach

As mentioned before we consider the solution to Navier’s equation in the frequency
domain. Therefore, we have to apply the Fourier transform to the displacement
vector and the load vector

Lu.Nx; x3; !/ D
Z 1

�1
u.Nx; x3; t/e j!tdt ; (7.71)

LFext.Nx; !/ D
Z 1

�1
Fext.Nx; t/e j!tdt : (7.72)

For reasons that will become apparent in the course of this section we divide the
position vector into two parts that correspond to the in-plane components Nx and an
out-of-plane component x3 with respect to the infinite plate

Nx D x1e1 C x2e2 ; (7.73)

x D Nx C x3e3 : (7.74)
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Now the governing equations (7.68) and the boundary conditions (7.69) and (7.70)
can be expressed in terms of the circular frequency !

.	C 
/rr � Lu C 
� Lu D ��!2 Lu : (7.75)

We have to bear in mind that any temporal derivation is replaced by a multiplication
with j! when we operate in the frequency domain. Here, j D p�1 denotes the
imaginary unit. The boundary conditions are basically unchanged and are given as

Œ
 .r Lu3 C Lu;3/C 	r � Lue3�x3DCd=2 D LFext ; (7.76)

Œ
 .r Lu3 C Lu;3/C 	r � Lue3�x3D�d=2 D 0 : (7.77)

The solution to Eq. (7.75) satisfying the boundary conditions Eqs. (7.76) and (7.77)
can be found in terms of the external load LFext using the concept of Green’s tensor
also known as response tensor

Lu.Nx; x3; !/ D
Z
R2

LE.Nx � Nx0; x3; !/ � LFext.Nx0; !/dNx0 ; (7.78)

where Nx0 is the in-plane position vector of the applied load. Since it is possible to
derive a closed-form analytical expression for the frequency-dependent response
tensor LE, we can also solve Eq. (7.78) for the displacement vector. A detailed
derivation is found in [58] and similar procedures have also been published in
[30, 31, 61]. In the remainder of this section we sketch the solution algorithm for
the two-dimensional problem.

7.2.3.2 Two-Dimensional Problem

The statement of the problem is simplified by considering a distribution of loads
that is only dependent on the spatial variable x� as illustrated in Fig. 7.14. The

x1

x2

x3
F̌ext

xξ

xφ

φ

Fig. 7.14 Distribution of a line load and rotation of the coordinate system
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rotated coordinate system (x� ; x�; x3) is obtained by a counterclockwise rotation
about the x3-axis. The rotation angle � depends on the orientation of the distributed
load. Therefore, all dependencies on the spatial variable x� can be neglected and
Eq. (7.78) is given as

Lu.Nx; x3; !/ D
Z
R2

LE.x� � x0
� ; x3; !/ � LFext.x

0
� ; !/d x

0
� : (7.79)

According to Vivar-Perez [58] Green’s tensor can be determined under these
conditions using the following expression

LE.x� ; x3; !/ D
1X
nD0

h
EA.x3; k

A
n ; !/e

jkAn x� C ES.x3; k
S
n ; !/e

jkSn x�

C Ea.x3; k
a
n; !/e

jkanx� C Es.x3; k
s
n; !/e

jksnx�
i
;

(7.80)

where EA, ES, Ea, and Es denote the response matrices for the antisymmetric and
symmetric Lamb wave (capital letter) and shear horizontal (SH) modes (lower
case letter), respectively. These quantities depend on the material properties, the
excitation frequency, the geometry of the structure, and the wavenumbers kA

n , k
S
n ,

kan and ksn. It is important to notice that we are able to pre-compute all these
parameters [58]. The two wavenumbers kA

n and kSn are solutions to the Rayleigh-
Lamb dispersion equations for the symmetric and antisymmetric modes

4k2pq cos
pd

2
sin

qd

2
C Œk2 � q2�2 sin

pd

2
cos

qd

2
D 0 ; (7.81)

4k2pq sin
pd

2
cos

qd

2
C Œk2 � q2�2 cos

pd

2
sin

qd

2
D 0 : (7.82)

The two wavenumbers kan and ksn, on the other side, are solutions for the shear
horizontal modes which can be computed explicitly using

kan D
s
!2

c22
� .2n C 1/2�2

d2
; (7.83)

ksn D
s
!2

c22
� 4n2�2

d2
; (7.84)
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where p, q, c1, and c2 are defined as

p D
s
!2

c21
� k2 ; (7.85)

q D
s
!2

c22
� k2 ; (7.86)

c1 D
s
	C 


�
; (7.87)

c2 D
s



�
: (7.88)

Equations (7.81) and (7.82) are implicit functions of the wavenumber and the
circular frequency. These equations are numerically solved by means of tracking
the individual wavenumber branches for each wave mode and each positive value
of the frequency. The algorithm is based on a combination of Muller’s method [49],
used to find the complex roots of Eqs. (7.81) and (7.82) and a procedure to trace
implicit planar curves [65]. In the next step, we compute the response matrices EA,
ES, Ea, and Es for each single mode. In the two-dimensional case shown here the
matrix functions are given as

EA.x3; k
A
n ; !/ D j

2

@DA

@k

2
4NA

kk 0 N
A
k3

0 0 0

NA
3k 0 N

A
33

3
5

ˇ̌
ˇ̌
ˇ̌
kDkAn

; (7.89)

ES.x3; k
S
n ; !/ D j

2

@DS

@k

2
4NS

kk 0 NS
k3

0 0 0

NS
3k 0 NS

33

3
5

ˇ̌
ˇ̌
ˇ̌
kDkSn

; (7.90)

Ea.x3; k
a
n; !/ D j.�1/n


kand
sin

.2n C 1/�x3
d

2
40 0 00 1 0

0 0 0

3
5 ; (7.91)

Es.x3; k
s
n; !/ D j.�1/n

n
ksnd
cos

2n�x3
d

2
40 0 00 1 0

0 0 0

3
5 ; (7.92)
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where 0 D 2 and n D 1 for n � 1. In the definitions of the response matrices EA

and ES we introduced a set of functions N which is given as

NA
kk.x3; k; !/ D q

�
2k2 sin

qd

2
sin px3 � .k2 � q2/ sin

pd

2
sin qx3

�
; (7.93)

NS
kk.x3; k; !/ D q

�
�2k2 cos qd

2
cos px3 C .k2 � q2/ cos

pd

2
cos qx3

�
; (7.94)

NA
3k.x3; k; !/ D �jk

�
2pq sin

qd

2
cos px3 C .k2 � q2/ sin

pd

2
cos qx3

�
; (7.95)

NS
3k.x3; k; !/ D �jk

�
2pq cos

qd

2
sin px3 C .k2 � q2/ cos

pd

2
sin qx3

�
; (7.96)

NA
k3.x3; k; !/ D jk

�
.k2 � q2/ cos

qd

2
sin px3 C 2pq cos

pd

2
sin qx3

�
; (7.97)

NS
k3.x3; k; !/ D jk

�
.k2 � q2/ sin

qd

2
cos px3 C 2pq sin

pd

2
cos qx3

�
; (7.98)

NA
33.x3; k; !/ D p

�
.k2 � q2/ cos

qd

2
cos px3 � 2k2 cos

pd

2
cos qx3

�
; (7.99)

NS
33.x3; k; !/ D p

�
�.k2 � q2/ sin

qd

2
cos px3 C 2k2 sin

pd

2
cos qx3

�
: (7.100)

Additionally, we need to define the functions D

DA D 4k2pq cos
pd

2
sin

qd

2
C Œk2 � q2�2 sin

pd

2
cos

qd

2
; (7.101)

DS D 4k2pq sin
pd

2
cos

qd

2
C Œk2 � q2�2 cos

pd

2
sin

qd

2
: (7.102)

Thus, each mode has its corresponding excitation matrix. This formulation is
convenient for applications, where only the contribution of one single mode is
needed [62].

In principle, the different wavenumbers can assume real or complex values. In
case of complex wavenumbers the corresponding modes are evanescent meaning
that their amplitude decays with the covered distance. On the other hand, real
wavenumbers correspond to propagating modes. It can be shown that for each
frequency there is a finite number of propagating modes and the rest are evanescent.
In many applications we can neglect the evanescent modes as their contribution to
the response matrix given in Eq. (7.80) is insignificant. Therefore, we can truncate
the sum depending on a pre-defined error threshold [58]. Another point worth
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mentioning is that in isotropic plates the response matrix LE is independent of the
wave propagation direction. Therefore, we assume that e� D e1 without loss of
generality. In anisotropic plates this is unfortunately not the case. The dispersion
curves for an aluminum plate are exemplarily shown in Fig. 7.15.
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Fig. 7.15 Complex dispersion curves of the Lamb wave and SH modes for an aluminum plate
(Young’s modulus E D 70GPa, Poisson’s ratio � D 0:33, mass density � D 2700 kg/m3).
Symmetric modes are denoted by black solid lines, while antisymmetric modes are marked with
red solid lines. (a) Lamb wave modes. (b) SH wave modes
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7.2.4 Coupling Boundary Conditions

After having studied the analytical solution of an infinite plate under external
loading we conduct a separate analysis of the bonded piezoelectric transducer. As
already discussed in Chap. 4 piezoelectric materials exhibit a coupling of electrical
and mechanical quantities [52, 64]. The mechanical state is characterized by the
vector of displacements u, the strain tensor """""""""""""""""u, and the stress tensor �����������������u. On the other
hand, the electrical state in a piezoelectric material is given by the electrical potential
' which is a scalar quantity, the electric field vector E, and the vector of electrical
displacementsD. The governing equations and the constitutive equations for such a
material have been presented in Sects. 4.1 and 4.2, respectively.

In order to implement suitable boundary conditions on the interface �C between
the infinite plate and the piezoelectric transducer we consider the problem in the
frequency domain. We now apply the Fourier transform presented in Eqs. (7.71)
and (7.72) to the governing equations (cf. Eqs. (4.1) and (4.2)) and take the consti-
tutive equations (cf. Eqs. (4.14) and (4.15)) of the linear theory of piezoelectricity
into account. Therefore, the formulation of the problem in the frequency domain is
given in index notation as

cijkl Luk;lj C elij L';lj D �!2� Lui (7.103)

ejkl Luk;lj � lj L';lj D 0: (7.104)

Einstein’s summation convention regarding the sum over repeated indices k, l, and j
is considered and an index j after a comma denotes a partial derivative with respect
to the variable xj. Dirichlet and Neumann boundary conditions are prescribed in the
usual way [58, 60].

The interaction between the plate and the transducer is now considered sepa-
rately. We assume an ideal bonding and therefore both the displacements and the
tractions are continuous. The forces in the interface exerted by the piezoelectric
transducer on the plate/substrate and the reaction forces of the plate/substrate
exerted on the transducer are denoted by LFpiezo and therefore we obtain the bonding
boundary condition as

�
cijkl Luk;l C elij L';l

�
njj�C C LFi;piezo D 0 : (7.105)

The displacements of the piezoelectric transducer and the infinite plate are identical
on �C. Hence, we can use Eq. (7.78) to obtain an expression to compute the
displacements

Lu.Nx; d=2; !/ D
Z
R2

LE.Nx � Nx0; d=2; !/ � LFext.Nx0; !/dNx0 ; Nx0 2 �C: (7.106)

Equations (7.105) and (7.106) constrain the plate to account for the dynamical
behavior of the piezoelectric transducer and vice versa. Once the system of
governing equations restricted to these boundary conditions is solved, we obtain
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a solution for the behavior of an isolated piezoelectric patch when it is perfectly
bonded to an infinite plate without the need to analyze the behavior of any other
point in the plate except for those contained in �C.

The system of partial differential equations given by Eqs. (7.103) and (7.104)
can be solved using a FE-based approach, see Chaps. 4 and 6. However, in [58, 60]
a collocation approach has been deployed instead of a Bubnov-Galerkin method. In
the following we only sketch the basic idea for the case of a transducer which is
not bonded to the plate LFpiezo D 0, cf. Eq. (7.105). Therefore, we can set up a linear
system of equations in Lu for each frequency

�
K � !2M

� Lu D LF ; (7.107)

where K and M denote the finite element stiffness and mass matrices, respectively.
In the case where the piezoelectric transducer is perfectly bonded to the infinite
plate we have to take the reaction forces LFpiezo into account and their relation
to the displacements Lu (cf. Eq. (7.106)). A detailed discussion of the numerical
procedure to solve the resulting linear system of equations is provided in [58].

7.2.5 Numerical Results

To demonstrate the properties of the proposed method we consider a two-
dimensional problem. A piezoelectric transducer made of PIC-181 (the material
data is compiled in Table 7.2) is perfectly bonded to an infinite aluminum plate.
The thickness of the transducer is set to tp D 1mm with a length of lp D 10mm
and the thickness of the aluminum plate is d D 2mm, cf. Fig. 7.16. The surfaces of
the plate are traction free, and the upper and the lower surface of the piezoelectric

Table 7.2 Material
properties for PIC-181

Mechanical properties Electrical properties

C11 D C22 152.3 GPa e31 �4.5N/Vm

C12 89.09 GPa e33 14.9N/Vm

C13 D C23 85.42 GPa e15 11.0N/Vm

C33 134.1 GPa T11=0 1224

C44 31.61 GPa T33=0 1135

C55 D C66 28.30 GPa

� 7850 kg/m3

The poling direction of the material is the x3-
direction. The vacuum permittivity (permittivity of
free space) is given by 0 D 8:8542 � 10�12 As/Vm.
The values of the non-zero components of the elas-
ticity matrix Cij, the piezoelectric coupling tensor eij,
the dielectric tensor ij, and the mass density � are
given
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x1

x3
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Fig. 7.16 Two-dimensional model of the aluminum plate with a perfectly bonded piezoelectric
transducer

(a)

(b)

Fig. 7.17 Deformation of the perfectly bonded piezoelectric transducer depicted in Fig. 7.16. The
coloring of the contour plots indicates the normalized distribution of the electric potential �. (a)
t1 D 5ms. (b) t2 D 10ms

actuator are electroded. On the lower face of the actuator the potential is fixed
(�l D 0), while a time dependent voltage signal (cf. Eq. (6.37)) is applied at the
upper surface. The center frequency is fex D 200 kHz and three cycles are excited
with an amplitude of 50V.

The piezoelectric transducer is discretized using one spectral element with 567
degrees of freedom (px1 D 20, px3 D 8). To obtain the solution we only considered
the first 16 terms in the infinite sum of Eq. (7.80). The simulation results are depicted
in Figs. 7.17, 7.18 and 7.19.

With the proposed method, the behavior of the bonded piezoelectric actuator
can be analyzed by only considering points located on its domain. Nevertheless the
effects of the reaction forces, caused by the elastic plate, on the behavior of the
piezoelectric patch are observed. The impact on the bahavior of the plate in the
simplified model of the bonded patch is introduced in terms of the response matrix
and therefore, the application of our approach is limited to cases where the response
matrix can be determined.

To verify the results we compute the displacements at two predefined observation
points. Both points are located at the top surface of the plate at x11 D 200mm
and at x21 D 245mm. We compare the obtained results with finite element
computations. To this end, we set up a finite element model in Abaqus® using 8-
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Fig. 7.18 Horizontal and vertical displacement at the first observation point (x1 D 200mm,
x3 D 1mm)

noded quadrilateral elements (plane strain conditions are assumed). The element
size is hAbaqus D 2:510�5m. We observe that the curves are in good agreement.

This shows the capability of the method to describe the piezoelectric behavior
of a sensor/actuator network bonded to a plate. Here, only points lying within the
bonding surfaces are considered, i.e. we do not need to discretize the plate itself and
we only include points in the interface in the computation. This is very advantageous
regarding the simulations of Lamb waves excited by piezoelectric transducers with
applications to non-destructive testing. The number of degrees of freedom of the
system and the calculation effort are significantly reduced and additionally the
analysis of the behavior of the sensor due to the effect of the signals emitted by
the actuators is simplified.
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Fig. 7.19 Horizontal and vertical displacement at the second observation point (x1 D 245mm,
x3 D 1mm)
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