
Chapter 6
Higher Order Finite Element Methods

S. Duczek, C. Willberg, and U. Gabbert

Abstract The efficiency of numerical methods for wave propagation analysis is
essential, as very fine spatial and temporal resolutions are required in order to
properly describe all the phenomena of interest, such as scattering, reflection, mode
conversion, and many more. These strict demands originate from the fact that
high-frequency ultrasonic guided waves are investigated. In the current chapter, we
focus on the finite element method (FEM) based on higher order basis functions
and demonstrate its range of applicability. Thereby, we discuss the p-FEM, the
spectral element method (SEM), and the isogeometric analysis (IGA). Additionally,
convergence studies demonstrate the performance of the different higher order
approaches with respect to wave propagation problems. The results illustrate that
higher order methods are an effective numerical tool to decrease the numerical costs
and to increase the accuracy. Furthermore, we can conclude that FE-based methods
are principally able to tackle all wave propagation-related problems, but they are not
necessarily the most efficient choice in all situations.

6.1 Higher Order Finite Element Methods:
One-Dimensional Case

We already explained the basic idea of the finite element method (FEM) in Chap. 4
and derived the semi-discrete equations of motion, cf. Eq. (4.42). In this context,
we also introduced the basis function matrices in Eqs. (4.43) and (4.44) without
specifying the polynomial functions. In Sects. 6.1.1–6.1.3, different higher order
FEM schemes are discussed. The only difference between these approaches lies in
the choice of the type of basis functions.

Generally speaking, wave propagation problems require particularly accurate
solutions [25], as they are very sensitive to numerical dispersion errors. In finite
element simulations, the term dispersion error refers to the fact that the higher
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frequency components in a wave packet may exhibit a phase lead and accordingly
propagate faster than they theoretically should (equivalent to the pollution effect
in the frequency domain). This can cause unwanted interferences. Moreover, it
can be proven that the pollution error increases with increasing frequency, and
consequently, the number of finite elements per wavelength is also increasing to
achieve a constant global error. However, in the following we demonstrate that the
error is reduced if finite elements with higher order polynomials as basis functions
are employed. Therefore, even today the task of simulating elastic waves is a highly
demanding one.

One of the main challenges is to develop efficient numerical methods that reduce
the computational effort resulting from very fine spatial and temporal discretizations
[6, 34]. In our studies, we found that higher order methods are suitable to reduce
the numerical costs significantly and that they are also applicable to all types of
problems related to wave propagation [14, 55]. In this context, we make use of two
advantages that higher order FEMs offer:

1. Anisotropic ansatz spaces, and
2. Free of locking phenomena.

The anisotropic ansatz space is important to represent shell-like structures using
continuum elements [7, 15]. In such structures, locking is often encountered but can
easily be avoided if the polynomial degree is chosen high enough, i.e. p � 4 [15].

The content of the current chapter is essentially based on several PhD theses
and related journal articles that have been published by the corresponding authors
[1, 12, 20, 52, 53].

6.1.1 p-Version of the Finite Element Method

As mentioned before, all higher order FEMs that we discuss in Chap. 6 only differ in
the choice of basis functions. The basis functions of the p-FEM are the normalized
integrals of the Legendre polynomials. Following the methodology presented by
Szabó and Babuška [49, 50], we demonstrate how hierarchical basis functions of
arbitrary polynomial degree can be constructed.

In the one-dimensional case, the basis functions are defined on the reference
element ˝1

ref D .�1; 1/, cf. Fig. 6.1. The internal degrees of freedom are not
attached to the geometry because they do not retain a physical interpretation. They
are only unknowns for the polynomial ansatz to describe the primary variables.

The first two hierarchic basis functions associated with the two nodes 1 and 2 are
the well-known linear basis functions given as

Np-FEM
1 .�1/ D 1

2
.1 � �1/ ; (6.1)

Np-FEM
2 .�1/ D 1

2
.1 C �1/ : (6.2)
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Fig. 6.1 A one-dimensional reference element with the numbering of the degrees of freedom. The
illustration is based on the notion of hierarchical basis functions

The higher order terms that are not associated with physical nodes are defined in
terms of the normalized integrals of the Legendre polynomials

Np-FEM
n .�1/ D 1

Ln�2

Z �1

x1D�1

Len�2 .x1/dx1; n D 3; 4; : : : ; p C 1 ; (6.3)

where Ln�2 denotes the norm of the Legendre polynomial

Ln�2 D
s

2

2n � 3
: (6.4)

The higher order basis functions Np-FEM
n are zero at the nodes 1 and 2 and can be

computed by means of a simple recursion formula

Np-FEM
n .�1/ D 1

2
Ln�2 ŒLen�1 .�1/ � Len�3 .�1/� ; n D 3; 4; : : : ; p C 1 ; (6.5)

with Lei.�1/ denoting the Legendre polynomial of order i. The Legendre polynomi-
als belong to the class of orthogonal polynomials and are a special type of the Jacobi
polynomials [48]. They satisfy the Legendre differential equation

�
1 � x2

1

�
x00

2 � 2x1x
0
2 C n .n C 1/ x2 D 0; n D 0; 1; 2; : : : ; �1 � x1 � 1:

(6.6)

We can compute the Legendre polynomials either analytically by means of
Rodriguez’ formula

Len.x1/ D 1

2nnŠ

dn

dxn1
� �x2

1 � 1
�n

; n D 0; 1; 2; : : : ; �1 � x1 � 1; (6.7)

or numerically using Bonnet’s recursion formula

Len.x1/ D 1

n
Œ.2n � 1/x1Len�1 .x1/ � .n � 1/Len�2 .x1/� ;

n D 2; 3; 4; : : : ; �1 � x1 � 1: (6.8)
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The first two Legendre polynomials are needed to start the recursion process and are
provided at this point by

Le0 .x1/ D 1 ; (6.9)

Le1
.x1/ D x1 : (6.10)

The roots of the Legendre polynomials are the integration points for the standard
Gaussian quadrature scheme and therefore lie in the interval Œ�1; 1�.

One important feature of this set of polynomials is their orthogonality with
respect to the weight function w D 1

Z 1

�1

Lei.x1/Lej.x1/dx1 D
8<
:

2

2i C 1
if i D j ;

0 if i ¤ j :

(6.11)

The orthogonality property of the Legendre polynomials also implies that the
derivatives of the basis functions are orthogonal

Z 1

�1

dNp-FEM
n .�1/

d�1

dNp-FEM
m .�1/

d�1

d�1 D ınm; n; m � 3 : (6.12)

Because of this feature, the condition number of the (element) stiffness matrix is
significantly decreased.

The first five basis functions corresponding to a polynomial degree of p D 4 are
illustrated in Fig. 6.2. By means of a graphical representation, we can easily explain
the concept of hierarchical basis functions. Generally speaking, in a hierarchic set of
basis functions all lower order polynomials up to order . p � 1/ are contained in the
set of basis functions of order p. Therefore, if the polynomial degree is elevated, we
only need to add one new basis function without recomputing the lower order ones,
cf. Fig. 6.2. This hierarchy also translates to the system matrices [15]. The behavior
of nodal-based basis functions is fundamentally different in that regard.

The derivatives of the Legendre polynomials that are required to compute the
derivatives of the basis functions can also be expressed by means of the Legendre
polynomials themselves

dLen.�1/

d�1

D n

�2
1 � 1

.�1Len.�1/ � Len�1
.�1// : (6.13)

6.1.2 The Spectral Element Method

In the context of the spectral element method (SEM), we typically use a polynomial
expansion which is based on the Lagrange interpolation polynomials Lpan.�1/. The
presentation of this type of basis functions follows the explanations given in [27, 40].
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Fig. 6.2 Hierarchic basis functions based on the normalized integrals of the Legendre polynomi-
als: a solid black line denotes Np-FEM
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line marked with filled squares
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Fig. 6.3 A one-dimensional reference element with the numbering of the degrees of freedom. The
illustration is based on the notion of nodal basis functions

Lagrange polynomials are also defined within the elemental reference region, cf.
Fig. 6.3. However, this time all degrees of freedom retain their physical meaning
and therefore we can assign each node also a physical location.

The Lagrange polynomials of order p are based on a set of p C 1 nodal points
�k1 which are chosen in advance? They can be distributed in an equidistant or
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non-equidistant fashion within the reference interval. For reasons, we will discuss
later, it is preferable to choose a non-equidistant series of nodes. The basis functions
for the SEM are generally given as

NSEM;p
n .�1/ D Lpan.�1/ D

pC1Y
kD1; k¤n

�1 � �k1

�n1 � �k1
; (6.14)

where �k1 denotes the nodal points and �n1 represents the node corresponding to the
nth basis function. In the current work, we use the Gauß–Lobatto–Legendre (GLL)
points [28, 30, 51] which are defined as

�k1 D

8̂
<̂
ˆ̂:

�1 if k D 1

k�1�
L
p�1
o0

1 if 2 � k � p

C1 if k D p C 1

: (6.15)

Here, �
L
p�1
o0

1 denotes the complete set of roots of the Lobatto polynomials of order
p � 1. The Lobatto polynomials are the derivatives of the Legendre polynomials.
Therefore, they can be analytically computed by

Lon.�1/ D 1

2nnŠ

dnC1

d�nC1
1

� ��2
1 � 1

�n
; n D 0; 1; 2; : : : ; �1 � �1 � 1: (6.16)

Figure 6.4 illustrates the basis functions for the polynomial degrees from p D 1 to
p D 4. All basis functions have to be recomputed when increasing the polynomial
degree as the set of functions is non-hierarchic.

The computation of the Lagrange polynomials by means of Eq. (6.14) is not
very efficient and therefore we suggest a different approach [40]. First, an auxiliary
polynomial is introduced as

�pC1.�1/ D
pC1Y
kD1

�
�1 � �k1

�
: (6.17)

Its first derivative with respect to �1 at �n1 is computed by means of the product rule
of differentiation resulting in

�0
pC1.�n1 / D

pC1Y
kD1; k¤n

�
�n1 � �k1

�
: (6.18)
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Fig. 6.4 Spectral basis functions: a solid black line denotes NSEM
1 , a solid red (bright) line

represents NSEM
2 , a dashed black line stands for NSEM

3 , a dashed red (bright) line marks NSEM
4 ,

and NSEM
5 is signified by a black line marked with filled squares

In a next step, we use the first derivative at �n1 to compute the barycentric weights
cn by

cn D 1

�0
pC1.�n1 /

: (6.19)

Fortunately, we can precompute them in order to increase the efficiency. The
Lagrange basis functions can now be evaluated using

NSEM
n .�1/ D Lpan.�1/ D

8̂
<
:̂
cn

�pC1.�1/

�1 � � i1
for �1 ¤ � i1

1 for �1 D � i1

: (6.20)
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The first derivatives of the Lagrange polynomials are computed analogously and are
given by

N0SEM
n .�1/ D L0p

an.�1/ D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Lpan.�1/
pC1P

kD1; k¤n

1

�1 � �k1
for �1 ¤ �k1

ci
.�1 � �n1 /ck

for �1 D �k1 ; n ¤ k

pC1P
kD1; k¤n

1

�1 � �k1
for �1 D �k1 ; n D k

: (6.21)

A more detailed derivation of these formulae is given in the monograph by
Pozrikidis [40] (see Chap. A.2).

In the remainder of the book, we use the GLL nodal distribution if not specified
otherwise. In the context of seismic wave propagation problems, the Chebyshev–
Gauß–Lobatto (CGL) grid is favored [35, 46, 47]

�k1 D

8̂
ˆ̂̂<
ˆ̂̂̂
:

�1 if k D 1

� cos

 
k�

p

!
if 2 � k � p

C1 if k D p C 1

: (6.22)

The properties of the resulting numerical schemes are very similar in cases of other
distributions, so that they are not considered here.

6.1.3 The Isogeometric Analysis

The isogeometric analysis (IGA) was developed to bridge the gap between finite
element analysis (FEA) and computer-aided design [8, 23]. Typically nonuniform
rational B-splines (NURBS) are deployed as basis functions [41]. Since B-splines
are the building blocks of NURBS, we start with a brief definition of the univariate
basis. For a detailed presentation of B-splines and NURBS, the interested reader is
referred to the monograph by Piegl and Tiller [38].

6.1.3.1 B-Spline Curve

A B-spline basis of degree p is formed by a sequence of ascending values called
knot vector �1 D Œ�1

1 ; �2
1 ; : : : ; �

nCpC1
1 �. Univariate B-spline basis functions can be

computed using the Cox-de Boor recursion formula

NB;p
i .�1/ D �1 � � i1

�
iCp
1 � � i1

NB;p�1
i .�1/ C �

iCpC1
1 � �1

�
iCpC1
1 � � iC1

1

NB;p�1
iC1 .�1/; p � 0 : (6.23)
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The recursion starts with the piecewise constant . p D 0/ basis function

NB;0
i .�1/ D

(
1 if � i1 � �1 � � iC1

1

0 otherwise
: (6.24)

If the knot vector �1 has repeated entries, the smoothness of the B-spline is
decreased at this location. A repeated knot of multiplicity k results in a Cp�k-
continuous function at that location. With Eq. (6.23), the B-spline basis functions
are given and we can build a B-spline curve by a linear combination of these basis
functions

CBs.�1/ D
nX

iD1

PiN
B;p
i .�1/ ; (6.25)

where Pi denotes the coordinates of the control points. A piecewise linear
interpolation of these points is referred to as control polygon.

In order to be able to compute the derivatives of a B-spline curve, we first need
to define the derivative of an arbitrary B-spline basis function as [38]

dNB;p
i .�1/

d�1

D p

�
iCp
1 � � i1

NB;p�1
i .�1/ � p

�
iCpC1
1 � � iC1

1

NB;p�1
iC1 .�1/ : (6.26)

If we substitute Eq. (6.26) into Eq. (6.25), we obtain the first derivative of a B-spline
curve with respect to �1

dCBs.�1/

d�1

D
nX

iD1

Pi
dNB;p

i .�1/

d�1

: (6.27)

The set of B-spline basis functions is also a nonhierarchical one but it provides the
advantage of higher inter-element continuity. Depending on the chosen polynomial
degree p, these functions can be Cp�1-continuous. This aspect has advantages for
dynamic problems as shown in [8, 53, 55].

6.1.3.2 Nonuniform Rational B-Spline Curve

In the one-dimensional case, NURBS are obtained from B-splines by a projection
from the two-dimensional space [8]. Univariate NURBS basis functions NIGA;p

i
are given by

NIGA;p
i .�1/ D wiN

B;p
i .�1/

pP
jD1

wjN
B;p
j .�1/

; (6.28)
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where NB;p
i .�1/ are the polynomial B-spline basis functions and wi denote the

weights. The derivative of the NURBS basis functions can be computed straight-
forwardly by applying the quotient rule of differentiation in conjunction with
Eq. (6.26).

Figure 6.5 illustrates the basis functions for the polynomial degrees from p D 1

to p D 4. To illustrate the higher order continuity of IGA basis functions, we show
a domain consisting of two elements. The separation is indicated in the figure by a
gray dashed line.
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Fig. 6.5 Isogeometric basis functions: due to the higher continuity (Cp�1) of NURBS-based basis
functions, two elements are depicted, separated by the gray dashed line. Depending on the location
of the local maximum of these functions, the following colors have been chosen—black denotes
that the maximum is in the first element, while red indicates that the maximum value occurs in the
second element
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The definition of suitable control points Pi and weights wi can be done ana-
lytically in a straightforward manner only for simple geometries [38]. For more
complex problems, they can be derived from CAD tools such as Rhino®.

6.2 Comparison of the Properties of Different Higher Order
Finite Element Approaches

In principle, we have to note that all different higher order approaches span the same
polynomial space. Nevertheless, there are specific advantages and disadvantages for
the methods discussed in Sects. 6.1.1–6.1.3. Some of those features have already
been mentioned but will be repeated at this point for the sake of completeness.

6.2.1 Hierarchic Basis Functions

The advantages of hierarchic sets of basis functions over non-hierarchic ones is
that only one basis function is added to a preexisting set when the polynomial
degree is increased from p to p C 1 (p-adaptivity). In the case of non-hierarchic
basis functions, we have to recompute the whole set of basis functions resulting in
an increased numerical effort [12, 15, 49, 50]. This feature has also an immediate
effect on the structure of the system matrices. Here, we also notice that the mass and
stiffness matrices for the polynomial degree p are a subset of those corresponding
to the polynomial degree pC 1. This behavior is illustrated in Fig. 6.6. The different
shades of gray indicate the components of the matrices that belong to certain
polynomial degrees.

FK

p= 1

p= 2

p= 3

Fig. 6.6 Hierarchic structure of the stiffness matrix and the load vector for p D 3
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6.2.2 Nodal Basis Functions

Nodal basis functions that are used in the SEM (see Sect. 6.1.2) offer the advantage
that each degree of freedom also corresponds to the primary variable at the location
of the corresponding node [40]. Therefore, the degrees of freedom retain a physical
meaning. The reason for this behavior lies in the Kronecker delta property of
this type of basis functions. In the case of modal basis functions introduced in
Sects. 6.1.1 and 6.1.3, the degrees of freedom only describe unknowns of the chosen
ansatz. Consequently, we need an additional post-processing step to compute the
primary variables.

Another advantage of nodal-based functions is that there are readily avail-
able mass-lumping techniques, see Sect. 4.6.3. Using a diagonal mass matrix,
we can fully exploit the benefits provided by explicit time-integration schemes, see
Sect. 4.6.1. Remembering that if we use a consistent mass matrix formulation, a
system of equations has to be solved for each time step, while a diagonalized mass
matrix results in a time-stepping scheme where only matrix-vector operations are
required. Consequently, it is highly advantageous to be able to employ explicit time-
marching schemes especially considering ultrasonic wave propagation analysis.
Here, the time step is naturally limited by the high-frequency regime and therefore
explicit time-stepping algorithms are the method of choice in these situations
[9–11]. To our knowledge, suitable mass matrix diagonalization techniques for
modal-based and/or hierarchic basis functions are currently not available.

The most important advantages and disadvantages of each type of basis functions
are compiled in Table 6.1 [12, 55].

Table 6.1 Comparison of key features of the different basis function types (one-dimensional case)

Method

Feature p-FEM SEM IGA

Inter-element continuity C0 C0 Cp�1

Degrees of freedom (interpretation) Unknowns of the Primary variables Primary variables

ansatz at the nodes at control points

Mass-lumping No Yes Possible

Available lumping schemes – Nodal quadrature –

– Row sum Row sum

– HRZ lumping –

Convergence rate

(with applied mass lumping) – Optimal Deteriorated

Hierarchic set of functions Yes No No

Number of common degrees of

freedom between adjacent elements 1 1 p or less

Runge phenomenon (oscillations) No No No
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6.3 Multivariate Basis Functions

In Sect. 6.1, we introduced the univariate basis functions for different higher
order finite element approaches. In the present section, we want to generalize the
one-dimensional case to multiple dimensions. As already mentioned in Sect. 4.4,
the implementation of two- or three-dimensional basis functions is based on a
quadrilateral or hexahedral element formulation. The reason for this choice is
justified by the higher accuracy compared to triangular or tetrahedral element
formulations [15]. In the book at hand, we only consider the tensor product space
which consists of all polynomials spanned by the set of monomials

� i1�
j
2.�k3/ with i D 0; 1; 2; : : : ; p1, j D 0; 1; 2; : : : ; p2, .k D 0; 1; 2; : : : ; p3/.

The terms in the round brackets denote a three-dimensional implementation. An
alternative would be the trunk space (serendipity-type elements) which is commonly
deployed in the p-version of the FEM [49, 50].

In the context of higher order FEMs, multivariate basis functions are defined by
the tensor product of the univariate basis functions and therefore they are given by

2DNtype;p
l .�����������������/ D Ntype;p1

i .�1/N
type;p2

j .�2/ ; (6.29)

3DNtype;p
l .�����������������/ D Ntype;p1

i .�1/N
type;p2

j .�2/Ntype;p3

k .�3/ : (6.30)

The polynomial degrees in the local coordinates are denoted by pi. The superscript
“type” indicates the type of basis functions that are being used: (1) p-FEM (see
Sect. 6.1.1), (2) SEM (see Sect. 6.1.2), and (3) IGA (see Sect. 6.1.3); while the
subscripts .i; j; k/ specify the number of the one-dimensional shape functions. The
index l stands for the number of the overall basis function

i D 1; 2; : : : ; p1 C 1 ;

j D 1; 2; : : : ; p2 C 1 ;

k D 1; 2; : : : ; p3 C 1 ;

l D 1; 2; : : : ; . p1 C 1/. p2 C 1/. p3 C 1/ :

A relation between the indices .i; j; k/ and the basis function number l is defined
separately according to the chosen numbering conventions.

6.4 Benchmark Problems

In the current section, one wave propagation-related problem is solved with each
of the three different higher order FE approaches. In Sect. 6.4.1, we investigate
the modal behavior of a piezoelectric disc actuator by means of the p-version of
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the FEM. Such a transducer is often used to excite ultrasonic guided waves in
thin-walled structures. The second problem features a two-dimensional porous
plate and is investigated in Sect. 6.4.2 deploying the SEM. Finally, in Sect. 6.4.3
we use the IGA to simulate the mode conversion behavior in a three-dimensional
perforated plate.

The validation examples presented in Sects. 6.4.1–6.4.3 are taken from journal
articles and PhD theses that have been published during the last 5 years in our
research group. The chosen benchmark problems are of interest when dealing with
the propagation of ultrasonic guided waves. Apart from the numerical problems that
are discussed in the following, also other validation examples have been simulated
confirming the performance of higher order FEMs in the context of high-frequency
wave propagation analysis. For more information in that regard, the interested reader
is referred to [12–14, 42, 53–55] and the references cited therein.

6.4.1 p-FEM: Modal Analysis of a Three-Dimensional
Piezoelectric Disc

The first example is the modal analysis of a piezoelectric circular disc [12, 53], cf.
Fig. 6.7. Here, we seek to compute the eigenfrequencies and the eigenmodes. The
effect of a resonance on the wave field has been demonstrated by Pohl et al. [39]
and Huang et al. [22]. Corresponding to the mode shape of the transducer, the wave
field is distorted as well. Considering signal processing approaches, discussed in
Chaps. 13–16, it is important that the propagating wave packets are not influenced by
the excitation source itself. Therefore, it is necessary to take the dynamic behavior
of the piezoelectric actuator into account.

x2

ϕ1

ϕ2

x1

x3

d pd

t pd

Fig. 6.7 Geometry and electrical boundary conditions of the circular piezoelectric disc transducer.
The diameter of the disc is dpd D 0:03 m and the thickness is tpd D 0:001 m. Depending on the
state of the transducer (open or short-circuited electrodes), the electrical boundary conditions '1

and '2 are specified on the bottom and the top surface of the actuator
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The influence of the electro-mechanical coupling is best seen when studying
the analytical equations, i.e., Eq. (4.42). The mechanical boundary conditions are
chosen to be free, while as electrical ones we examine the two limit cases:

1. Short-Circuited Electrodes, and
2. Open Electrodes.

In the first case, there is no coupling between the mechanical and electrical
properties [37] and consequently the analytical solutions for a free circular plate can
be used as a reference [17, 21]. The situation is different if we introduce a charge
separation between the electrodes and hence an electric field is generated. This
results in a stiffer behavior of the plate and thus higher eigenfrequencies compared
to the purely elastic case are achieved.

6.4.1.1 Short-Circuited Electrodes

Considering short-circuited electrodes, the electric potential is controlled .˚̊̊̊̊̊̊̊̊̊̊̊̊̊̊̊̊ D 0/.
Consequently, we can directly solve the first row of the semi-discrete equations of
motion in Eq. (4.42) as the electric potential is a priori known. This approach results
in the following equation

Mu RU C KuU D fu � Ku' ˚̊̊̊̊̊̊̊̊̊̊̊̊̊̊̊̊ : (6.31)

The second term on the right-hand side of the system of equations represents the
piezoelectric load. From Eq. (6.31), we can compute the mechanical displacements
U and thereafter the electric charges f' are determined by inserting the results into
the second row of Eq. (4.42). Another important result that follows immediately
from the derived equation is that the eigenvalues of this system with short-circuited
electrodes are identical to the elastic ones

.Ku � �iMu/Ui D 0 ; (6.32)

where �i is the square of the ith angular eigenfrequency !Ri that can be computed
in terms of the linear eigenfrequency fRi

�i D !2
Ri

D .2�fRi/
2 : (6.33)

In Eq. (6.32), we note that all electro-mechanical coupling terms are neglected for
short-circuited electrodes.

6.4.1.2 Open Electrodes

In contrast to short-circuited electrodes, open ones are specified by a charge
boundary condition .f' D 0/. In this case, we rearrange the second row of
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the semi-discrete equations of motion Eq. (4.42). According to Eq. (4.71) and the
explanations given above, the electric potential is computed as

˚̊̊̊̊̊̊̊̊̊̊̊̊̊̊̊̊ D K�1
' KT

u'U: (6.34)

In the next step, we substitute the electric potential in the first row of Eq. (4.42)
and obtain

Mu RU C
�
Ku C Ku'K�1

' KT
u'

�
U D fu : (6.35)

By introducing the modified dynamic stiffness matrix QK analogous to Eq. (4.72), we
write the eigenvalue problem as

� QK � �iMu

�
Ui D 0 : (6.36)

Therefore, the modified dynamic stiffness matrix depends on the electrical boundary
conditions and the overall stiffness of the system is increased if the electrodes are
left open [37]. Compared to the purely elastic case, the eigenfrequencies are raised
but the mode shapes are identical since the coupling influences the whole structure
homogeneously.

6.4.1.3 Eigenfrequencies and Mode Shapes of a Circular Disc

The piezoelectric actuator under investigation is made of the piezoceramic material
PIC-151. The material constants are compiled in Table 6.2. Furthermore, Fig. 6.7
depicts the geometrical model of the transducer including the electrical boundary
conditions.

Table 6.2 Material
properties for PIC-151

Mechanical properties Electrical properties

C11 D C22 107:6 GPa e31 �9:6 N/Vm

C12 63:12 GPa e33 15:1 N/Vm

C13 D C23 63:85 GPa e15 12:0 N/Vm

C33 100:4 GPa �T
11=�0 1936

C44 22:24 GPa �T
33=�0 2109

C55 D C66 19:62 GPa

	 7760 kg/m3

The poling direction of the material is the x3-
direction (cf. Fig. 6.7). The vacuum permittivity
(permittivity of free space) is �0 D 8:8542 �
10�12 As/Vm. The given values are: the elasticity
tensor Cij, the piezoelectric coupling tensor eij, the
dielectric tensor �ij, and the mass density 	
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The results we obtained by applying the p-version of the FEM are compared
with an analytical solution for the elastic circular disc. Regarding the electro-
mechanically coupled simulation, the commercial software Abaqus® is employed
to compute a reference solution. The piezoelectric disc is discretized by means of
fully integrated 20-noded hexahedral finite elements. Since we wish to obtain highly
accurate results, a high-resolution finite element model is set up. To this end, the
elements size is chosen as hAbaqus D 1:67 � 10�4 m. Using this element size, six
quadratic elements are stacked over the thickness of the disc. In total, this results in
176,886 finite elements with 3,198,880 degrees of freedom.

The two special cases of boundary conditions have been numerically imple-
mented by defining a zero potential for all electric degrees of freedom of the model
in case of the short-circuited electrodes or by fixing the electric degrees of freedom
of the top and bottom surfaces if open electrodes are of interest.

Considering the p-FEM solution, we decided for an element size of hp-FEM D
2 � 10�3 m. The chosen element size results in a total of 224 finite elements with
only one element layer over the thickness of the circular disc. The finite element
discretizations for both models are shown in Fig. 6.8. The polynomial degree p
is successively increased until the relative error in the eigenfrequencies reaches a
value below 0:1% which is considered to be very accurate from an engineering
point of view. The smallest polynomial order to reach this error threshold is p D 3

(isotropic polynomial degree template [16]) for both cases—purely elastic and
electro-mechanically coupled. Thus, the number of degrees of freedom amounts
to ndof D 33;040. Even if we employ 27-noded quadratic p-elements, the error
is already below 2:1% for the first 10 eigenfrequencies (ndof D 11;148). For
this benchmark problem, we observe highly accurate results of the p-extension. A
sufficient accuracy, compared to the numerical or analytical reference solutions, is
reached with a relatively low polynomial degree p D 3.

In Table 6.3, we compiled the values of the first 10 nonzero eigenfrequencies.
These results confirm what we have already deduced from the analytical equations.
We generally observe a stiffening effect of the electro-mechanical coupling although
the influence on certain mode shapes is more pronounced than on others. If only the
boundary of the disc undergoes a considerable deformation (modes shape: 1, 3, 4,

Fig. 6.8 Discretization of the circular piezoelectric disc. (a) Finite element mesh for the high-
resolution model (Abaqus®). (b) Finite element mesh for the higher order FEM model (p-FEM)
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Table 6.3 Eigenfrequencies for the piezoelectric circular disc with open and short-circuited
electrodes (first 10 nonzero eigenfrequencies)

Short-circuited electrodes Open electrodes

Eigenfrequency in [Hz] Eigenfrequency in [Hz]

No. Mode shape Analytical sol. p-FEM; p D 3 Abaqus®; p D 2 p-FEM; p D 3

1 3109:2 3109:8 3158:4 3159:1

2 5395:5 5395:5 6245:7 6245:7

3 7175:5 7177:6 7359:8 7362:5

4 12;497 12;502 12;903 12;910

5 12;049 12;050 13;647 13;647

6 18;988 18;998 19;699 19;713

7 20;392 20;396 22;864 22;867

8 22;322 22;323 25;243 25;244

9 26;561 26;579 27;657 27;682

10 30;128 30;136 33;611 33;618

The reference solution is computed using a high-resolution finite element model
(ndof D 3;198;880). For the p-FEM solution, only 33,040 degrees of freedom are necessary

6, and 9), the eigenfrequency is notably changed. However, if the interior of the
domain is also affected by the deformation state (mode shape: 2, 5, 7, 8, and 10),
the change in the eigenfrequency is more significant.

We also notice from Table 6.3 that the mode shapes 4 and 5 are reversed. In
the purely elastic case, the 5th mode shape has the smaller eigenvalue while in the
electro-mechanically couple system mode shape 5 has the higher eigenfrequency.
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Huang et al. [21] presented experimental and analytical results for the
electro-mechanically coupled system. However, their results do not show a
satisfactory agreement with FEM simulations and experiments. They used laser
Doppler vibrometry (LDV) and amplitude-fluctuation electronic speckle pattern
interferometry (AF-ESPI) to confirm the developed analytical theory. In contrast to
Huang’s numerical results, our p-FEM and Abaqus® are in good agreement with
the measurements.

6.4.2 Spectral Element Method: Wave Propagation Analysis in
a Two-Dimensional Porous Plate

In the current section, we study the basic features of ultrasonic waves in thin-walled
structures. To this end, we choose a two-dimensional system. The model geometry,
including its boundary conditions and loads, is depicted in Fig. 6.9. Even in a
two-dimensional system, important features such as wave scattering, transmission,
reflection, and conversion are observed. In the context of wave propagation analysis,
the specific advantage of the SEM is the option to compute lumped mass materices
without simultaneously jeopardizing the convergence behavior. Consequently, the
simulation is computationally very efficient as an explicit time-integration scheme
can be deployed.

The porous plate, depicted in Fig. 6.9, is made of aluminum (material properties:
Young’s modulus E D 70 GPa, Poisson’s ratio 
 D 0:33, and mass density
	 D 2700 kg/m3). Furthermore, we assume that the conditions of plane strain are
fulfilled. The guided waves are excited by means of two time-dependent point forces
acting in opposite directions. The excitation signal is a sine-burst which is often
used in the context of ultrasonic waves. The time-dependent amplitude of the forces
is given as

F.t/ D OF sin.!ext/ sin2

�
!ext

2ncyc

�
; (6.37)

F(t)

F(t)

152

600

154

5

4

4

r = 1

x1
x2

P2 P3
P1

P4

Fig. 6.9 Porous plate with 13 circular holes in the middle and 12 semi-circular cutouts on each
side (top and bottom edge). The loading conditions (excitation forces) are also illustrated. The
coordinates of the four measurement points are: P1 (x1P1

D 100 mm, x2P1
D 2:5 mm), P2 (x1P2 D

163 mm, x2P2
D 0:0 mm), P3 (x1P3

D 167 mm, x2P3
D 0:0 mm), and P4 (x1P4

D 302 mm, x2P4
D

2:5 mm) [26]
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Fig. 6.10 Excitation signal: Hann-window modulated sine-function. (a) Time domain. (b) Fre-
quency domain

where OF is the amplitude, !ex D 2�fex denotes the central circular frequency, and
ncyc stands for the number of cycles determining the width of the excited frequency
band around the central frequency fex.

In this example, we set OF D 1 N, f D 200 kHz, and n D 5. Figure 6.10 shows
the excitation force in the time and frequency domain. If the number of cycles in the
signal is further increased, we can decrease the width of the main lobe and at the
same time the amplitudes of the side lobes are also minimized.

The loading conditions are chosen such that a mono-modal excitation of the
fundamental symmetric Lamb wave mode S0 is facilitated. Since the perturbations
of the plate-like structure are only symmetric with respect to its midplane, we do
not expect any mode conversion to occur [1, 2].
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(a) (b)

(c)

Fig. 6.11 Discretization of the porous plate. (a) Mesh for the explicit solver: Element size
hexplicit;lin

Abaqus D 1 � 10�4 m. (b) Mesh for the implicit solver: Element size himplicit;quad
Abaqus D 2 � 10�4 m.

(c) Mesh for the SEM solver: Element size hSEM D 5 � 10�4 m

Similar to the approach we followed in Sect. 6.4.1, we use the commercial
software Abaqus® to compute reference solutions. In this case, both explicit and
implicit simulations are conducted. By comparing the computational time for these
two simulations, we already observe the advantages of an explicit time integration.
The discretization of the porous plate is shown in Fig. 6.11. Generally speaking, the
element size is a function of the wavelength and the polynomial degree of the basis
function. The wavelength can be determined by means of a dispersion diagram. In
our example, the excitation frequency is set to 200 kHz and the thickness of the
plate is 5 mm. Therefore, we only expect the two fundamental Lamb wave modes,
S0 and A0, to be present in the plate. Since we deploy a symmetric mono-modal
excitation, only the S0-mode is observed in the simulated signal. As a rule of thumb,
it is usually recommended to use 10 quadratic elements per wavelength, and at least
25 linear elements to achieve accurate results. Hence, the minimum element size
can be estimated by

hquad
min D cmin

p

10 � fex
; (6.38)

hlin
min D cmin

p

25 � fex
; (6.39)
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with cmin
p denoting the phase velocity of the slowest propagation mode that is present

in the numerical model. We have to keep in mind that for higher frequencies the
pollution error gets more pronounced and therefore more lower order finite elements
are needed to ensure accurate results.

The phase velocities and the wavelengths in a 5 mm thick aluminum plate for the
chosen excitation parameters are:

• S0 Lamb wave mode: cpS0
D 5309 m/s; �S0 D 0:0265 m, and

• A0 Lamb wave mode: cpA0
D 2327 m/s; �A0 D 0:0116 m.

The minimal element sizes estimated by Eqs. (6.38) and (6.39) are hquad
min D 2:65 mm

and hlin
min D 1:06 mm. As the chosen element size are more than an order of

magnitude smaller, accurate results can be expected.
As already mentioned, we use Abaqus® to compute the reference solutions. The

discretization parameters for the different simulations are compiled in Table 6.4.
The accuracy of the listed simulations is similar but the computational times are
quite different. Here, we already observe the most important advantage of explicit
time-integration methods concerning wave propagation analysis. Regarding explicit
time-integration schemes, we exploit the fact that inversion of a diagonal mass
matrix is trivial. Therefore, only matrix–vector operations are needed to advance
in time. Furthermore, it is straightforward to parallelize explicit algorithms as it
is possible to break all operations down to the element level. Considering implicit
time-stepping techniques, we have to decompose the dynamic stiffness matrix first.
This can be achieved by means of LU or Cholesky decompositions. Thus, we only
need to perform a forward elimination and a backward substitution. If we save
the result of the LU decomposition, the aforementioned processes are also only
matrix–vector operations. Nonetheless, each time step is more costly compared
to an explicit algorithm and therefore a significant reduction in computational
time is achieved in comparison to an implicit solution scheme. Although implicit
schemes are unconditionally stable, the time step is nonetheless limited by the
physics of the problem, (typically around �t � 1 � 10�8 s) i.e., the high-frequency
excitation that is required to generate ultrasonic guided waves. Therefore, in most
SHM-related application cases the implicit time step is not significantly higher
than the explicit one, which is determined by Eq. (4.79). Due to this fact, implicit
time-integration methods are inefficient in this context and usually outperformed by
explicit ones. Considering the example at hand, an explicit scheme needs roughly

Table 6.4 Discretization
parameter

FEM
(explicit)

FEM
(implicit)

SEM
(explicit)

p 1 1 3

h in [mm] 0.1 0.2 0.5

nel 244,851 64,006 9221

ndof 502,928 397,260 174,132

tcomp in [s] 605 74,454 615
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(a)

(b)

(c)

(d)

(e)

Fig. 6.12 Contour plots of the displacement field in x2-direction at different time steps.
(a) t D 3:125 � 10�5 s. (b) t D 4:375 � 10�5 s. (c) t D 5:625 � 10�5 s. (d) t D 6:875 � 10�5 s.
(e) t D 8:125 � 10�5 s

one hundredth of the computational time to reach the same accuracy as an implicit
algorithm does.

To get a first impression of the behavior of ultrasonic guided waves, contour plots
for different time steps are shown in Fig. 6.12. We clearly observe the fundamental
symmetric Lamb wave mode and its interaction with the obstacles in the structure.
As predicted, only wave scattering and transmission take place. Even behind the
perturbation, no antisymmetric mode is present in the plate.

The displacement histories for the four measurement points computed using the
FEM and the SEM are in excellent agreement. There is neither a notable phase shift
nor a difference in the amplitudes. As a reference, we show the results at point P4

in Fig. 6.13.
To further assess the accuracy of the SEM computations, we take a brief look at

the group velocity of the S0-mode. By means of the Hilbert transform, we compute
the envelope of the displacement history and evaluate the group velocity of the
ultrasonic waves. The Hilbert transform is defined by

H .ui.t// D 1

�

Z 1

�1
ui.
/ � 1

t � 

d
 : (6.40)
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In the next step, we deploy the Hilbert transform of the time signal to compute the
envelope

E .t/ D
p
H .ui.t//2 C ui.t/2 : (6.41)

If we now compute the centroids of the envelopes for two different points, we can
also compute the group velocity as the distance between these measurement points
is known. The corresponding time of flight between the two measurement points is
computed by the absolute value of the difference of the two centroid values. The
centroid is calculated using the static moment of the envelope signal as

tc D
R te

0 E .t/ � t dtR te
0 E .t/ dt

: (6.42)

In Fig. 6.14, we show the convergence of the relative error in the group velocity and
the corresponding normalized computational time.

It follows from Fig. 6.14 that the results obtained by employing the SEM are
highly accurate when a p-extension is performed. Moreover, due to the possibility
of using a diagonal mass matrix the SEM is also computationally highly efficient. In
comparison to Newmark-type solvers which are typically used in implicit dynamics,
every time step in the SEM is less costly.

The benchmark problem of this section clearly demonstrated why the SEM is
popular in the wave analysis community. It is very often used to compute both
seismic and elastic waves [3, 4, 9–11, 18, 19, 29, 29–32, 36, 44, 46, 47, 56].
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Fig. 6.14 Relative error in the group velocity (denoted by black squares) and normalized
computational time (denoted by red triangles). The results are compiled for different SEM
simulations (p D 1; : : : ; 4) and Abaqus® Implicit/Explicit ones
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6.4.3 Isogeometric Analysis: Wave Propagation Analysis
in a Three-Dimensional Perforated Plate

The third example features a three-dimensional plate structure that is perforated by
a conical hole. In contrast to the example presented in Sect. 6.4.2, the perturbation
of the plate-like structure is asymmetric with respect to the midplane.

Therefore, the excited wave mode(s) are not only scattered by the conical hole
but also converted. That is to say an initially mono-modal wave packet still features
both mode types after the interaction asymmetric (with respect to the midplane of
the plate) perturbation of the palte structure.

The geometry of the model including its dimensions is given in Fig. 6.15. In the
current example, the mono-modal excitation is executed by means of two collocated
piezoelectric actuators that are driven in-phase. As only the fundamental symmetric
Lamb wave mode is excited, a mode conversion to the fundamental antisymmetric
mode is observed.

The discretization is chosen according to the guidelines that have been proposed
in [55]. Here, an anisotropic polynomial degree template is used with in-plane poly-
nomial degrees of p1 D p2 D 3 and an out-of-plane polynomial degree of p3 D 4. To
ensure the accuracy of the simulation results, the element size is determined by using
4.5 nodes/modes per wavelength. Corresponding to the wavelength at an excitation
frequency of fex D 175 kHz, the element size is hmin D 0:2828 mm (Fig. 6.16).

In Fig. 6.17, we show contour plots of the x3-displacement at different time steps.
The incident S0-wave packet is clearly seen in Fig. 6.17a where it interacts with the

t p

P3
(a)

r a
ri

r

x1

x2

P1

P2

c
d

a

P3 b

(b)

Fig. 6.15 Aluminum plate with a conical hole. Dimensions: a D 300 mm, b D 200 mm,
c D 50 mm, d D 200 mm, ra D 10 mm, ri D 9 mm, and h D 2 mm (thickness of the plate);
Material properties: Aluminum (Young’s modulus E D 70 GPa, Poisson’s ratio 
 D 0:33, and
mass density 	 D 2700 kg/m3); Excitation: collocated transducers (r D 15 mm) at the origin of
the coordinate system driven by a sine burst (cf. Eq. (6.37), fex D 175 kHz, n D 3). (a) Cross
section. (b) Top view
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Fig. 6.16 Discretization of the three-dimensional perforated plate—dashed lines (bright yellow)
indicate auxiliary planes used for the partitioning of the numerical model

S0-mode

(a)

S0-mode

A0-mode

(b)

S0-mode

A0-mode

(c)

Fig. 6.17 Contour plot of the displacement field in x3-direction. The incident S0-wave packet is
shown in part (a) of the figure. Parts (b) and (c) show the mode conversion from the S0-mode to an
A0-mode as well as reflection and transmission of the incident S0-mode. (a) t1 D 0:945 � 10�5 s.
(b) t2 D 3:420 � 10�5 s. (c) t3 D 5:315 � 10�5 s
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conical hole. Thus, the S0-mode is scattered, transmitted, and a mode conversion to
the A0-mode takes place. In Fig. 6.17b, the existence of both modes can clearly be
seen as well as the first signs of boundary reflections.

The reference solution is computed in Abaqus® Implicit by using a very fine
mesh of 20-noded hexahedral elements (p D 2) with more than 50 nodes per
wavelength (himplicit;quad

Abaqus D 1:4 mm, ndof � 1:5 � 106). Furthermore, we exploited
the symmetry of the structure and modeled only one half. The corresponding finite
element grid is depicted in Fig. 6.16.

In Fig. 6.15, three measurement points have been defined where the displacement
history is computed. The results are depicted in Fig. 6.18. The agreement between
the reference solution and the IGA results is excellent. The time signals are virtually
coincident. The relative error in the group velocity is below 0:1% which is highly
accurate from an engineering point of view. Therefore, we conclude that IGA
provides very accurate results for wave propagation problems.

In various publications [8, 24, 53], the advantages of the so-called k-refinement
is emphasized. k-refinement describes the opportunity to increase the inter-element
continuity. In the case of the IGA, the elements typically exhibit a Cp�1-continuous
approximation of the unknowns which benefits the accuracy of wave propagation
problems. However, IGA suffers from the same drawback as the p-FEM:

• There is currently no suitable mass-lumping scheme available that provides
accurate results over a wide range of frequencies [33].

Consequently, the SEM in conjunction with a diagonal mass matrix seems to be the
most promising method for an efficient analysis of ultrasonic guided waves in the
time domain.

6.5 Convergence Studies

Comprehensive convergence studies indicating the performance of different higher
order FE schemes have been published by the authors and coworkers in [12, 14, 53,
55]. At this point, we only repeat the most important findings of these investigations
and briefly outline the applied methodology.

6.5.1 Numerical Model

We use the system depicted in Fig. 6.19 as a benchmark problem for wave
propagation analysis and conduct convergence studies showing the convergence
properties of the higher order FEMs introduced in Sects. 6.1.1–6.1.3. To this end,
we deploy a time-dependent excitation force with a central frequency
fex D 477:5 kHz and five cycles.
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Fig. 6.18 Displacement history .ux3 / at the three measurement points P1, P2, and P3. The IGA
results are compared with solutions obtained by the commercial software Abaqus® Implicit
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F(t)

Fig. 6.19 Two-dimensional model including loads and boundary conditions for the convergence
study. Two collocated point forces are employed to excite the structure. The time-dependent
behavior of the load is given by Eq. (6.37). At the left boundary (x1 D 0), we apply symmetry
boundary conditions. The dimensions of the aluminum (Young’s modulus E D 70 GPa, Poisson’s
ratio 
 D 0:33, and mass density 	 D 2700 kg/m3) plate are: la D 100 mm, lb D 200 mm,
lp D 500 mm, and d D 2 mm

Due to the collocated nature of the concentrated forces, we are capable of exciting
a purely symmetric or antisymmetric Lamb wave mode. This procedure is favored
as we want to study the behavior of these modes separately.

The main purpose of the convergence studies is to derive a general guideline
concerning the necessary polynomial degree and element size to achieve a certain,
predefined accuracy.

6.5.2 Signal Analysis

Similar to the approach taken in Sect. 6.4.2, we compute the time of flight of a
wave packet between two measurement points P1 and P2, cf. Fig. 6.19, by means
of the Hilbert transform and its envelope. From the time difference �tc, we can
then determine the group velocity of the travelling wave packet. This procedure is
illustrated in Fig. 6.20.

6.5.3 Polynomial Degree in x1

In the first step, we investigate the discretization in x1-direction. To eliminate the
influence of the discretization in x2-direction, we fix the out-of-plane polynomial
degree to px2 D 6 with one element layer over the thickness of the structure. Such
a discretization provides highly accurate results independent of the discretization
in x2-direction. For different in-plane polynomial degrees . px1 D 2; 3; : : : ; 6/, we
perform a h-refinement and compute the relative error in the group velocity cg. In the
current example, we use the analytical solution as a reference value, cf. Sect. 3.2.3.4.
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Fig. 6.20 Time of flight between two measurement points: difference in the location of the
centroids

The results of the convergence study are depicted in Figs. 6.21 and 6.22. Here,
the relative error in the group velocity is plotted over the number of nodes/modes per
wavelength �. This quantity can be determined in terms of the number of degrees of
freedom ndof, the out-of-plane polynomial degree px2 , the length of the plate lp, and
the wavelength of the propagating mode � as

�S0=A0 D ndof

2. px2 C 1/lp
� �S0=A0 : (6.43)

From an engineering point of view, an accuracy of 1% is sufficient and therefore
the “optimal” polynomial degree in the in-plane direction can be determined at
this threshold. A suitable discretization for a given wave propagation problem
can therefore be determined with the help of Figs. 6.21 and 6.22.

The convergence curves of the p-FEM and the SEM exhibit kinks at distinct
locations. This behavior is not severe and can be attributed to element resonances as
reported in [42]. Furthermore, we note that an elevation of the in-plane polynomial
degree automatically results in a faster convergence. Due to the higher continuity of
isogeometric elements, higher convergence rates can be achieved [55]. The overall
accuracy is, however, similar for all higher order approaches. For a detailed analysis
of the numerical costs of the different approaches, the interested reader is referred
to [12, 14, 53, 55].

6.5.4 Polynomial Degree in x2

In the second step, we investigate the discretization in x2-direction. To ensure that
the discretization in x1-direction does not interfere with this study, we choose an
element size that corresponds to at least 20 nodes/modes per wavelength and set the
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Fig. 6.21 Convergence curves for the S0-mode (px1 ): the relative error in the group velocity is
plotted over the number of nodes/modes per wavelength
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Fig. 6.22 Convergence curves for the A0-mode (px1 ): the relative error in the group velocity is
plotted over the number of nodes/modes per wavelength
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Fig. 6.23 Convergence curves for the S0-mode (px2 ): the relative error in the group velocity is
plotted over the out-of-plane polynomial degree
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Fig. 6.24 Convergence curves for the A0-mode (px2 ): the relative error in the group velocity is
plotted over the out-of-plane polynomial degree

in-plane polynomial degree to px1 D 6. We now perform a p-refinement and again
compute the relative error in the group velocity.

The results of these convergence studies are depicted in Figs. 6.23 and 6.24. The
overall accuracy and the general convergence behavior are very similar for all higher
order methods. The curves level off at an out-of-plane polynomial degree of px2 D 4

for the symmetric Lamb wave mode and at px2 D 6 for the antisymmetric one. Due
to the flexural nature of the A0-mode, it is more demanding from a numerical point
of view than the S0-mode that basically resembles a tensional mode.

Important meshing parameters such as the polynomial degrees in in-plane and
out-of-plane directions and the element size can be inferred from the combined
findings of Figs. 6.21, 6.22, 6.23, and 6.24. If a certain level of accuracy is
prescribed, we can use these figures to construct a mesh that guarantees accurate
results. In all cases, px1 D 3 and px2 D 4 would be a suitable polynomial degree
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template [55] that provides accurate results and minimizes the computational costs.
The only thing left to do is to read the number of nodes/modes per wavelength from
the diagram.

6.6 Industrial Applications

In this section, we compute the wave propagation in a structural section of an
airplane and in a wind turbine rotor blade. Here, we apply the SEM since it
offers the advantages of a lumped (diagonal) mass matrix and therefore explicit
time-integration schemes can be deployed which reduces the numerical costs
significantly.

6.6.1 Stiffened Composite Plate

The first example that we investigate is a curved carbon fiber reinforced plastic
(CFRP) plate. To increase the stiffness of the structure, T-stringers have been bonded
to the surface, cf. Fig. 6.25. The radius of curvature is rcurv D 3:57 m. This radius
corresponds to the width of an Airbus A380 fuselage. Since we want to highlight
typical wave propagation phenomena in fiber reinforced materials, we assume that
the structure consists of only one unidirectional layer (UD250) with the material
data compiled in Table. 6.5. Such a material is transversely isotropic and therefore
the wave velocity is directionally dependent.

Fig. 6.25 CAD model of the curved plate with three T-stringers
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Table 6.5 Material properties of a UD250 layer at 0ı

E1 E2 
12 G12 G23 	

in [GPa] in [GPa] [–] in [GPa] in [GPa] in [kg/m3]

[UD250]0ı 127.5 7.9 0.273 5.58 2.93 1550

Fig. 6.26 Detail view of the discretization of the curved plate with three T-stringers

The thickness of the plate and the T-stringers is t = 2 mm. The three stringers
are assembled with a distance of 200 mm from center to center. The plate itself is
800 mm long and 600 mm wide. The excitation is executed using a concentrated
force with a time-dependent amplitude. The center frequency of the excitation
signal is fex D 75 kHz with three periods, cf. Eq. (6.37). The force is placed
between two stringers and is applied at the top surface of the plate. Due to the
nature of the excitation, both the fundamental symmetric mode and the fundamental
antisymmetric mode are present in the structure.

The curved plate is discretized using hexahedral finite elements with an element
size of h D 2 mm resulting in 165;000 finite elements and 3;075;090 degrees of
freedom (p D 2). A detail view of the generated mesh is shown in Fig. 6.26.

This model demonstrates two distinct features of wave propagation in stiffened
thin-walled structures made of CFRP. First, we notice that the wave front is
not circular anymore, cf. Fig. 6.27. That is due to the anisotropy of the material
properties, i.e., the material is considerably stiffer in the direction of the fibers and
therefore the wave velocity is also increased in this direction. The second issue we
notice is that the majority of the energy is reflected at the stiffener and is only partly
transmitted. Due to the scaling of the color map, we primarily observe the A0-mode
in Fig. 6.27. It can be seen that a significant amount of energy stays between the two
stringers where also the excitation force is applied. Similar observations have been
made by Schulte et al. [43–45]. Considering the symmetric guided wave mode, they
have concluded that the mentioned behavior (energy is locked between the stringers)
is not as pronounced. Due to the asymmetric placement of the stringers, also mode
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(a) (b)

(c) (d)

(e) (f )

Fig. 6.27 Contour plots of the guided waves at different time steps: curved plate with three T-
stringers. (a) ux1 : t1 D 3:5 � 10�5 s. (b) ux3 : t1 D 3:5 � 10�5 s. (c) ux1 : t2 D 1:43 � 10�4 s. (d)
ux3 : t2 D 1:43 � 10�4 s. (e) ux1 : t3 D 2:5 � 10�4 s. (f) ux3 : t3 D 2:5 � 10�4 s

conversion takes place when the wave packet interacts with these structural elements
of the shell-like structure. The mentioned features are discussed at length in [43–45].

Such a knowledge is very important if we want to design a robust SHM system.
We can then a priori determine an optimal sensor and actuator placement which
increases the detectability of damage events.
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6.6.2 Rotor Blade of a Wind Turbine

As a geometrically complex example (features many stiffening elements in the wing
box) which is also of practical interest, we analyze a rotor blade of the DTU 10 MW
Reference Wind Turbine (offshore) [5]. A CAD model of the airfoil is depicted
in Fig. 6.28. This device was designed by DTU Wind Energy in cooperation with
Vestas Wind Systems during the research project Light Rotor. One of the objectives
of the research was to design a wind energy plant with existing and established
methods that are publicly available. Thus, the model can be used by persons,
institutions, and companies that were not part of the project. As the name already
suggests, the wind turbine should be a reference for future design ideas. The blade is
made of CFRP/GFRP laminates with balsa wood as core material of the sandwich.
The blade has a length of 86:77 m and a mass of 41 t.

The analysis mesh consists of 8-noded layered shell elements and 20-noded
hexahedral elements. The solid elements are only used to represent adhesive bonds
in the model. For the sake of computational time, a mesh with 35,000 elements has
been generated which amounts 61,600 degrees of freedom, cf. Fig. 6.29. For the
wave propagation analysis, the blade was clamped at the left end (connection to
the hub) and a pressure load with time-dependent amplitude Eq. (6.37) is prescribed
to the surface as indicated in Fig. 6.30. The structure is excited at a frequency of
fex D 2 kHz which is far below the otherwise used frequencies, with five signal
periods. Due to the nature of the excitation, both the fundamental symmetric mode
and the fundamental antisymmetric mode are present in the structure.

The results of the wave propagation analysis are shown in Fig. 6.31. In the left
part of the figure, the out-of-plane displacements are shown, while the in-plane
displacements are depicted in the right part. The symmetric guided wave mode
is nicely seen through the in-plane displacements and the asymmetric mode is

Fig. 6.28 CAD model of a wind turbine rotor blade—individual parts are highlighted with
different colors
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Fig. 6.29 Numerical model of a wind turbine rotor blade

Fig. 6.30 Numerical model of a wind turbine rotor blade including Dirichlet and Neumann
boundary conditions

observed by the out-of-plane displacements. We basically notice the same properties
as already discussed in Sect. 6.6.1. Again the main portion of the wave energy is
shielded by the two webs which are inside the rotor blade. Therefore, the wave
amplitudes in the leading edge of the blade are nearly decayed.

The current section demonstrates the applicability of the proposed methods
to practical problems. The wavelength is approximately 0:5 m and therefore the
accuracy of detection would be quite poor. In this wavelength range, it would be also
conceivable to deploy modal analysis approaches. By decreasing the wavelength, we
are nonetheless able to monitor safety-relevant regions.

A detailed description of the material properties, the geometry and aeroelastic
performance of the DTU 10 MW RWT can be found in [5].



156 S. Duczek et al.

(a) (b)

(c) (d)

(e) (f )

Fig. 6.31 Contour plots of the guided waves at different time steps (left: out-of-plane displace-
ments; right: in-plane displacements): Rotor blade of a wind turbine. (a) ux3 : t1 D 1:75 � 10�3 s.
(b) ux1 : t1 D 1:75 � 10�3 s. (c) ux3 : t2 D 3:5 � 10�3 s. (d) ux1 : t2 D 3:5 � 10�3 s. (e) ux3 :
t3 D 8:5 � 10�3 s. (f) ux1 : t3 D 8:5 � 10�3 s
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