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Abstract. State-of-the-art deep neural networks (DNNs) have greatly
improved the performance of facial landmarks detection. However, DNN
models usually have a large number of parameters, which leads to high
computational complexity and memory cost. To address this problem,
we propose a method to compress large deep neural networks, which
includes three steps. (1) Importance-based neuron pruning: compared
with traditional connection pruning, we introduce weights correlations to
prune unimportant neurons, which can reduce index storage and infer-
ence computation costs. (2) Product quantization: further use of product
quantization helps to enforce weights sharing, which stores fewer cluster
indexes and codebooks than scalar quantization. (3) Network retraining:
to reduce training difficulty and performance degradation, we iteratively
retrain the network, compressing one layer at a time. Experiments of
compressing a VGG-like model for facial landmarks detection demon-
strate that the proposed method achieves 26x compression of the model
with 1.5% performance degradation.
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1 Introduction

Facial landmarks detection is a fundamental work in many face vision tasks,
such as face detection [1], emotion recognition [2] and face verification [3,4]. A
good detection method should not only be robust to deformation, expression
and illumination, but also computational efficient. Recent years have witnessed
the significant improvement in the performance of facial landmarks detection
[6—7], mainly due to the development of deep neural networks (DNNs). Typically,
larger models are always needed for more accurate facial landmarks detection,
which results in greater number of parameters and greater storage demand. In
order to reduce the size of detection models and make them well suited for mobile
applications, model miniaturization methods are in great need.

In this paper, we address the problem by proposing an effective compression
method based on the fusion of pruning and product quantization [8]. We first
train a baseline model for 68 facial landmarks, which has a good performance,
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Fig. 1. An illustration of differences between pruning connections and neurons.

but with a large model size. Then we iteratively retrain the network, compressing
one layer at a time. When compressing each layer, we prune unimportant neurons
based on weights correlations and apply product quantization on the absolute
value of remaining weights. Finally, we successfully achieve a 26x compression
with only 1.5% performance loss.

Pruning aims at removing redundancy and constructing a sparser network.
It shares some similarity with Dropout [11], which is used to avoid overfit-
ting through randomly setting the neural output to zero. Pruning is a common
method in dense network compression [12-14], and is usually used to prune con-
nections between neurons. While this kind of pruning can reduce the model size
and storage costs, it needs to reconstruct the sparse weights matrix during test-
ing and the computation time and memory may still stay the same. Instead of
pruning connections, we introduce the neurons-pruning method, which is equal
to build a smaller net with less neurons, as shown in Fig. 1. Product quantization
decomposes the original high-dimensional weights into several low-dimensional
Cartesian product subspaces, which are then quantized separately. Compared
with scalar quantization in [14], product quantization needs fewer cluster indexes
and codebooks, which means a high compressing ratio can be obtained with-
out noticeable accuracy loss. On the other hand, public datasets of facial land-
marks detection do not provide enough training data. Even by combining several
datasets, we have only obtained 4k images of 68 labeled landmarks, which means
we must be careful to avoid overfitting. Fortunately, with the use of pruning and
quantization, we no longer need to worry about the overfitting problem, and we
can use a larger learning rate even without a dropout layer.

The rest of the paper is organized as follows. Section 2 briefly reviews the
related work. Section 3 describes the three main parts of our method: neuron
pruning, production quantization and network retaining. In Sect. 4, we first intro-
duce our baseline model and then compress the network and evaluate its perfor-
mance. Finally, the conclusion is given in Sect. 5.

2 Related Work

The most straightforward way to improve the performance of deep neural net-
works is by making it deeper and wider. However, this strategy makes the net-
works more prone to be overfitting. Larger amount of training data may solve
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this problem, but manually labeling facial landmarks is labor-intensive. Besides,
a larger network means more parameters, which can slow down the detection
speed and is especially undesirable when we wish to run on mobile devices.
Therefore, more and more works begin to explore network compression.

Some works achieve this goal by carefully designing small network archi-
tectures. GoogLeNet-V3 [16] not only uses 1 x 1 convolution kernels to reduce
dimension, but also replaces the n x n convolution with a 1 X n convolution
followed by a n x 1 convolution. As a result, the amount of parameters reduces
by 4. Unlike this, Courbariaux et al. [17] train a binarized neural network with
binary weights and activations, which drastically reduces memory consumption.
Denil et al. [18] represent the weight matrix as a product of two low rank factors,
during training, they fix one factor and only update the other factor. Similarly,
Sainath et al. [20] use a low-rank matrix factorization to reduce parameters in the
final weight layer. However, training a factorized representation network directly
usually performs poorly. Recently, Scardapane et al. [19] design a new loss func-
tion to perform features selecting, network training and weights compression
simultaneously, but their work is not suitable for convolutional network.

In addition to training small models directly, compressing a larger model into
a smaller one is another popular choice. Denton et al. [21] first consider singular
value decomposition (SVD) to compress parameters. Gong et al. [22] system-
atically explore quantization methods for compressing the dense connected lay-
ers of DNNs, including binarization, scalar quantization, product quantization
and residual quantization. Their experiments show that product quantization
is obviously superior to other methods. However, these methods have no net-
work retraining schemes, which can inevitably cause performance degradation.
In our method, we draw the strength of production quantization and use it in the
retraining procedure so that we can get a high compression ratio with negligible
performance loss.

Han et al. [14] compress the network by combining pruning, trained quan-
tization and huffman coding, which is a popular work recently. Inspired by it,
we not only prune neural connections but also prune neurons, which means we
are able to spend less to store the sparse structure and inference on a smaller
net. We also replace its scalar quantization with absolute product quantization
and introduce an iterative way to retrain the network layer by layer, the details
are shown in Sect. 3. In addition, Sun et al. [13] find that weight magnitude is
not a good indicator to the importance of neural connections, so they prune the
network based on correlation rather than the weight magnitude, we improve this
method and bring it into our work.

3 Our Method

We first train a dense network as our baseline and then compress it with the
following steps.
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3.1 Neurons Pruning

Having a pre-trained dense network, we use a pruning ratio R (R > 1) to control
the number of neurons that will be pruned, e.g., if there are P neurons in the
input of one layer, then P/R neurons are preserved after pruning. The only
problem here is to decide which neurons will be kept. A fairly straightforward
approach is to iteratively drop a neuron with minimum prediction error.

Aly) = [[Wz — Wl (1)

Where x is the input neurons, Ay is the error of output neurons, W and w
are the original weights matrix and the pruned-weights matrix respectively, %4
is computed by setting the matrix column where the pruned neuron is located
to 0. However, this greedy algorithm is inefficient, especially when there are too
many neurons. Inspired by [13], we measure the importance of neuron based on

the sum of connection correlation, which has two aspects:

(1) For fully-connected and locally-connected layers that have no weight-
sharing, the correlation coefficient between neuron z; and y; is computed as

follows:
- El(xi — ug,)(y; — ij)] (2)

O, 0y,

where iz, piy;, 0z, and o, denote the mean and standard deviation of z;
and y;, respectively. Then the importance of neuron z; is:

Ii=> |ryl. (3)

Jj=1

Then we keep the most important P/R neurons.

(2) For convolutional layers with weight-sharing, pruning neurons is difficult,
especially for pooling operations. So we prune connections first, and then
we randomly add or remove weights in order to make the number of weights
in each row equal, as shown in Fig.2. This step dramatically reduces the
index storage and makes it easy to apply product quantization on the rest
of the weights.

3.2 Product Quantization

We cannot only use neurons pruning to get a high compression ratio, which
will dramatically impact the performance, therefore we utilize product quan-
tization to compress further. Product quantization is a popular vector quanti-
zation method. With decomposing original high-dimensional space into several
low-dimensional subspaces and taking quantization separately, product quanti-
zation is able to make a good description of space distribution with less centroid
codes.
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Fig. 2. (a) Convolutional kernels. (b)Weights matrix from reshaping and aligning all
kernels. (c¢) Pruning connections using the method in [13], white squares mean the
pruned connections (or weights). (d) Each row has same number of weights left after
smoothing. (e)The remaining weights establish a new weights matrix, then product
quantization can be applied on it directly.

Given the pruned weights matrix W e R™*" we first record the positive or
negative sign of each weight and substitute W for its absolute value. Then we
split W column-wise into S submatrices

W= WL, w2, W (4)

For each submatrix Wi € Rmx(n/s), (t=1,...5), we run the K-Means clus-
tering algorithm on it and get a sub-codebook C;. The whole code space is
therefore defined as the Cartesian product

C=CyxCyx...xCs. (5)
For each row W, in W, we can reconstruct it as
W, = [WHLW2, ... W5, where Wi e Ci, r=1,2,...,m. (6)

Supposing that all submatrices have the same cluster number k, we can use
k x S subcodes to generate a codebook with a large size of k°. That is the rea-
son why product quantization consumes less memory than scalar quantization.
Suppose scalar quantization has the same kS clustering centers and the data for-
mat is float32, product quantization will yield a (32kS + mnlog,(kS))/(32kn +
mslog,(k)) compression ratio compared with the scalar quantization case.

3.3 Network Retraining

We compress the network layer by layer from backward to forward. For every
iteration, we use the previously trained model to calculate correlated coefficients,
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Fig. 3. Reconstructing weights with index and codes. Only if the index is nonzero,
the corresponding weight will be recovered by looking up codes tables and adding a
corresponding positive or negative sign.

and then prune and quantify one additional layer. To retrain the network, we
use deep learning tools Caffe [23] and simply modify its convolutional and fully-
connected layers by adding another two blobs to store index and codes. Each time
before forward-propagation, we use index and codes to reconstruct the weights.
Particularly, if the index is zero, it means the corresponding connection has been
pruned, otherwise if the index is nonzero, we recover the corresponding weight
by looking up tables and adding a positive or negative sign, as shown in Fig. 3.
During back-propagation, we only update the centroids codes using the method
describes in [14]. Layers after pruning and quantization become very sparse,
therefore we no longer need the dropout layer before or after them, which can
speed up training without suffering from overfitting.

4 Experiments

In this section, we first introduce our baseline VGG-like model, and compare
its performance with SDM [10]. Then we compress the model, and compare the
performance before and after compression. Finally, we discuss the impact of some
parameters on the trade-off between accuracy and compression ratio.

4.1 Baseline Model

Our facial landmarks dataset contains 4025 images with 68 landmarks collected
from LFPW, AFW, HELEN and 300W [24-27], and we randomly select 425
images as our test set. Then we augment the training set using mirror transform
and geometric transform such as shifting, rotating. The baseline model is fine-
tuned from VGG [9] net with the number of output of last fully-connected layer
changing to 136 and the original softmax-loss layer replacing with Euclidean-loss
layer. The architecture of our baseline model is shown as Table 1.
In order to measure the performance, we introduce two metrics:

(1) Mean normalized euclidean distance (MNED):

1 i >0 (pj — B))?

MNED = —
M d;

=1
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Table 1. Structure of baseline model and configurations for compressed network

D. Zeng et al.

Layer Weights Params | Proportion R | K | D
convl+Maxpool |3 X 7 X 7 x 96 14K 0.0001 - |- -

conv2+Maxpool |96 X 5 x 5 x 256 | 614K | 0.0062 - - -

conv3 256 x 3 x 3 x 512|1.18M |0.0119 - 1284
conv4 512 x 3 x 3 x512|2.36M |0.0237 2 128 |4
convbh+Maxpool | 512 x 3 x 3 x 512 |2.36M | 0.0237 4 1128 |4
fc6+dropoutl 18432 x 4096 75.50M | 0.7598 4 12568
fc7+dropout2 4096 x 4096 16.78M | 0.1689 2128 |4
fc8+loss 4096 x 136 557K | 0.0056 2164 |4
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Fig. 4. Performance of the compressed network. The “Compress all” represents the
compressed model with the configuration in Table 1. And the “Compress fc8” represents
a same model with fc8 layer compressed alone.

where M is the number of images in the test set, d; is the eye distance, p;
is the ground truth position of the specific facial landmark and p; is the
predicted position.

(2) A ROC-like curve, whose horizontal axis represents MNED and vertical axis
denotes the percentage of images with error less than its MNED.

The MNED of our baseline model is 0.0329, while the MNED of SDM [10] is
0.0440, much larger than ours. The ROC-like curve is shown as Fig. 4.
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4.2 Compressed Network

We compress the baseline network iteratively with the method described in
Sect. 3. We directly remove the dropout layers before retraining the network,
since they are unnecessary and will reduce retraining speed. The compressing
configurations are shown as Table 1, where R indicates the ratio of pruning, D
indicates dimensionality of subspace in product quantization and K indicates
the cluster number in each subspace.

We prune neurons for fully connected layer and connections for convolutional
layer respectively. For example, the size of left dense weights matrix in fc6 layer
becomes 18432 x 2014 after pruning neurons in fc7 layer, and this matrix further
becomes 4 times sparser after pruning connections in fc6 layer. Since the para-
meters in the fully connected layer are mostly redundant, a larger compression
ratio is used. On the other hand, parameters in lower layers contribute a smaller
part of the whole network and are harder to be reduced, so we take a smaller(or
zero) compression ratio on them. As shown in Fig. 4, by making necessary trade-
offs between performance and compression ratio, we achieve 26x compression of
the baseline model with only 1.5% performance degradation. It is worth noting
that, the black line in Fig. 4 represents a same model with fc8 layer compressed
alone, whose performance is surprisingly better than baseline. We think some
suitable sparseness will enhance generalization ability of DNNs models.

4.3 Discussion About Different Configurations

By now we know that quantization helps to reduce parameter size, while pruning
can not only reduce parameter size, but also improve inference speed. It seems
that we should heavily prune to get both high compression ratio and speed
improvement. However, for facial landmarks detection, we find that a higher
pruning ratio leads to significant performance degradation. Figure5 shows the
comparison of different pruning ratio on fully-connected layers, and the pruning
method is described in [13]. The result shows the method [13] is not suitable for
our facial landmarks detection, and pruning too many connections will severely
degrade the performance.

In this case, we must be careful to prune neurons or connections and use prod-
uct quantization to compress more parameters. We find that the performance of
product quantization is positively correlated with the cluster number K in each
subspace, and negatively correlated with the dimensionality D of subspace. To
get a higher compression ratio, we obviously need a small K and a large D, but
the performance will suffer from this. Fortunately, we find that applying product
quantization on the absolute values can help, and the only extra expense is that
we need one bit to record a positive or negative sign for each value. Figure 6
shows the comparison of taking product quantization on the absolute values for
original values. The experiment of the weights of fc7 layer demonstrates that our
method can use fewer quantization centroids with less error and compress the
network further.
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Fig. 5. Comparison of different pruning ratio on fully-connected layers, the pruning

method is described in [13]. “PruneX” represents all fully-connected layers are pruned
with a same pruning ratio X.
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Fig. 6. Comparison of product quantization on absolute values or original values with
different dimensionality D of subspace. It shows it is able to use fewer quantization
centroids with less error on absolute values.
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5 Conclusion

In this paper, we propose an efficient method to compress large DNN models. We
fuse pruning and product quantization directly to reduce the time of compressing
the whole network and the risk of overfitting. In addition, we prune unimportant
neurons rather than connections, which not only reduces model size but also
speeds up the computation. We also take product quantization on the absolute
values of the remaining weights, so we use fewer quantization centroids and
compress the network further.

In the experiment of facial landmarks detection with VGG-like model, we
successfully achieve a 26x compression with only 1.5% performance degradation.
In the future work, we will pay more attention to compression in convolution
layers and acceleration on test phase.
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