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Preface

Back in 2008, Prof. Jari Nurmi hosted the International System-on-Chip Symposium
in Tampere, Finland, with a key focus on software-defined radio (SDR) technology.
The symposium was attended by a large audience traveling from different parts
of the world and in particular by Dr. Joseph Mitola who coined the term “the
SDR.” At the end of the conference, the editors felt the absolute need to compile
a comprehensive book that particularly addresses the baseband processing engines
for SDR—a book still largely required by many in academia and industry.

SDR has revolutionized how we deal with radio electronics today. SDR has
impacted almost every field of life and spawned newer ideas like cognitive and
intelligent radios. It is evident from the many chapters submitted to this book
that software support for signal processing is equally important than the efforts
put in place to increase the transistor density on the chip. The editors gratefully
acknowledge the contributions from all the authors and their patience during the
stringent review process. The editors are thankful for their cooperation and timely
responses.

Tampere, Finland Waqar Hussain
Tampere, Finland Jari Nurmi
Turku, Finland Jouni Isoaho
Nuremberg, Germany Fabio Garzia
September 2016
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Chapter 1
The Evolution of Software-Defined Radio:
An Introduction

Waqar Hussain, Jouni Isoaho, and Jari Nurmi

The Software-Defined Radio (SDR) concept was originally developed by the com-
bined efforts of various research groups in the private and government organizations
of the United States (US) in 1970s–1980s. The important ones to mention are the
US Department of Defense Laboratory and a team at the Garland, Texas Division of
E-Systems Inc. In 1991, Joe Mitola independently reinvented the term ‘Software
Radio’ (SR) in cooperation with E-Systems as a plan to build a true software-
based GSM transceiver [1]. The SR platform essentially processes almost all the
transceiver algorithms as software for a processor. This includes nearly all layers
of transmission. However, an optimal implementation of physical layer is always
challenging due to an enormous amount of mathematical computation. Over the
period of time, many developmental changes occurred and an interesting feature
of cognition was added to existing SDR platforms, thereby inventing the term
‘Cognitive Radio’. The main idea was to reduce over-sampling by the analog to
digital converter, reduce on-chip processing and to target only the spectrum of
interest. This book also touches the CR feature in the large SDR field in some
of its selected chapters. Since, the very first few articles of J. Mitola, there has a
been a tremendous amount of research work conducted in industry and academia.
The evolution in SDRs is continuous with time and provides a number of excellent
opportunities to researcher for exploration and to come up with their findings. The
present day SDR implementations are such that the designers are focused mostly on
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2 W. Hussain et al.

the design of hardware and software, their interfacing and optimizations for varying
architectural choices. It includes multiple cases of application-specific general-
purpose acceleration platforms that are scalable, homogeneous, and heterogeneous
in nature while providing multiple programmable cores on a single chip computing
system.

There are ten chapters included in this book written by different authors who
designed platforms to support the execution of specific algorithms. The platforms
were then synthesized for different process sizes or their images were placed and
routed over the FPGAs to measure or estimate the performance and then to conduct
comparisons with the other state of the art. However, among different architectural
choices, none has been observed as an absolute SDR processing platform. However,
it is important to have a collective look from the architectures and in future the
design choice can be influenced from already existing platforms—so a nearly
approaching design of a platform can be made that falls in the abstract defining
the vague boundaries of an absolute SDR processor. There are a number of radio
protocols that need to be supported by a single transceiver system. Nevertheless,
most of them are computation-intensive and require parallel processing while
containing some sub-programs that are serial in nature.

We have divided the contents of the book into two parts and each part contains
five chapters. The first part is a compilation of Architectures, Designs, and
Implementations that are widely accepted for SDR realization. The second part
is focused on the radio protocols implementation in software while introducing
cognition mechanism for RF sensing of available spectrum and implementation of
some of the customized tools from the academia. The details related to software
implementation are presented in connection with the underlying hardware platform.
Let’s discuss highlights from the chapters included and the key points authors have
mentioned. We will then try to summarize and make points to some conclusions.

Part-I: Architectures, Designs, and Implementations

This part includes some of the latest SDR architectures and their design imple-
mentations. The first chapter ‘Design Transformation from a Single-Core to a
Multi-Core Architecture targeting Massively Parallel Signal Processing Algorithms’
describes an evolution from single core Coarse-Grained Reconfigurable Array
(CGRA) architectures to a Heterogeneous Accelerator-Rich Platform (HARP)
which contained multiple CGRA connected with each other over a Network-
on-Chip. The HARP platform was subjected to some of the most stringent test
comprising of many computationally intensive signal processing algorithms. The
second chapter, ‘The CoreVA-MPSoC: A Multiprocessor Platform for Software-
Defined Radio’ is about a hierarchical system architecture composed of multiple
VLIW processors and the overall platform supports fine-grained instruction-level
parallelism thereby benefiting important SDR related algorithms. The authors intro-
duce LLVM-based C-compiler and a StreamIt-based compiler to map applications
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on multiple processors. The third chapter, ‘Design and Implementation of IEEE
802.11a/g Receiver Blocks on a Coarse-Grained Reconfigurable Array’ is about the
implementation of almost all the kernels of a single input single out WiFi receiver on
a processor-CGRA model. Almost 80 % of the computational tasks were assigned
to the CGRA and some serial processing tasks were left of the RISC processor to
solve. The case to conduct such a work was to know the feasibility of a CGRA for
processing a large set of different signal processing related algorithms. In the fourth
chapter, the author emphasizes high flexibility, high scalability, high performance
while low power dissipation for SDR solutions to fulfil modern day requirements
and uses a ‘Reconfigurable Multiprocessor Systems-on-Chip’ architecture to prove
her point. In the last chapter of Part I, the authors present a Multi-Processor System-
on-Chip architecture composed on nine RISC cores arranged as two dimensional
array of three rows and three columns. The platform is tested for an FFT algorithm
where the computational load is almost equally distributed over the nine cores.
From this first part, the reader can see how single core platforms, homogeneous and
heterogeneous multicores contribute to the solution of the SDR design problem. It
can be beneficial further to the solution, if the next generation platforms contain
flavor from all the three design philosophies.

Part-II: Software-Based Radio Cognition
and Implementation Tools

In the first chapter of this part, ‘Application of the Scalable Communications Core
as an SDR Processor’, the authors emphasize on the efficient support of a wide
range of wireless standards and the cognitive radios that can perform RF sensing
for the available spectrum. The authors present a scalable communications core,
developed by Intel Labs which was programmable and allowed resource sharing
for efficient scheduling of radio threads. The tape-out was performed at 65 nm
CMOS. The chip supported the processing of multiple protocols including WiFi,
WiMAX, GPS, Bluetooth, and DVB-H. In the next chapter, ‘HW/SW Co-Design
Toolset for Customization of Exposed Datapath Processors’, the authors present an
open source toolset for hardware and software co-design to support different types
of parallelisms in applications. The toolset is based on a re-targetable high-level
language compiler and a scalable datapath template. The third chapter, ‘FPGA-
based Cognitive Radio Platform with Reconfigurable Front-End and Antenna’
presents an SDR platform that is prototyped on an FPGA as a proof-of-concept
for radio cognition. The platform works on a 12.8 Mbps RF-to-Ethernet bridge
to support industrial, scientific, and medical bands of 868 MHz and 2.45 GHz.
Another interesting chapter, ‘Synchronization in NC-OFDM-Based CR Platforms’
is presented which discusses the implementation of a reconfigurable synchronizer
and its multiple derivatives. The author highlights different architectural choices
affecting resource consumption, operating frequency, and power dissipation on
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a FPGA device. The last chapter highlights cryptography and security issues in
modern communications system and highlights the potential role of SDR platforms
towards contribution.

In the end, a concluding chapter is presented summarizing the key points from all
the chapters and recommendations for the reader. The chapter indicates important
characteristics that an SDR platform should contain in future to support a wide
range of radio applications with ever increasing performance levels with minimum
costs and investments. It further discusses the future SDR as a key enabler for many
upcoming technologies that can change the human society and our planet Earth.

Reference

1. Mitola, J.: Software radios-survey, critical evaluation and future directions. In: Telesys-
tems Conference, 1992. NTC-92, National, Washington, DC, pp. 13/15–13/23 (1992).
doi:10.1109/NTC.1992.267870
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Chapter 2
Design Transformation from a Single-Core
to a Multi-Core Architecture Targeting
Massively Parallel Signal Processing Algorithms

Waqar Hussain, Henry Hoffmann, Tapani Ahonen, and Jari Nurmi

2.1 Introduction

Parallel processing of digital signals demands an ever increasing throughput and
is expected to increase in future. Considering the upcoming 5G standards, the
chip designs accelerating such computationally intensive tasks are subject to
many challenges. This includes but not limited to achieve specified execution-time
constraints, resource/area consumption on the chip and to deal with power/energy
walls. The Dennardian scaling of transistor feature size was promising to increase
the number of transistors on the chip while keeping the power dissipation constant
[8]. This scaling was supporting Moore’s law, i.e., the number of transistors on
a silicon chip will double after every 2 years. However, the down-scaling of the
transistor size and increasing the operating frequency increased the power density
of the chip to unprecedented thermal levels and further packing of more transistors
while keeping the power dissipation constant became infeasible. A solution was
found in multi-core scaling which lasted not for long, where multiple cores are
combined together on a chip and the workload is distributed over all the cores.
Studies by the research group of Michael B. Taylor at the University of California,
San Diego, have shown with an experimental evidence that the power-wall is
obstructing again the existence of Moore’s law. The continuous scaling in the
number of cores is not consistent for keeping the power dissipation constant. The
study shows that only a 7.0 % area of a 300 mm2 homogeneous multi-core chip can
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Department of Electronics and Communications Engineering, Tampere University of Technology,
Tampere, Finland
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be operated at its full frequency within a power budget of 80 W [21]. Hence most of
the part of the chip stays under-utilized, i.e., switched-off (Dark) or being operated
at a very low frequency (Dim). The overall terminology used for dark or dim part
of chip is known as Dark Silicon. Different research groups across the world are
addressing this problem in different domains. For example, Hank Hoffmann at the
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, USA, presented a Self-Aware Computing model to dynamically
control the voltage and operating frequency for power mitigation of a video decoder
using an adaptive feedback control system. Efforts have been placed to design 3D
integrated circuits for energy efficiency as well as the traditional Dynamic Voltage
and Frequency Scaling (DVFS) approach is also actively pursued. The author in [19]
has suggested the use of Coarse-Grained Reconfigurable Arrays (CGRAs) as one of
the possible solutions to deal with this issue. Since CGRAs provide a large number
of Processing Elements (PEs) to work in parallel, they can process computationally
intensive signal processing tasks at a high throughput while being operated at a
low frequency. The parts of the silicon which are dark can be replaced by custom-
computing CGRAs, and since they are reconfigurable, they can adapt to the needs
to multiple applications.

In this chapter, we introduce a scalable model of a template-based CGRA and a
brief description of the crafting mechanism to generate application-specific CGRA-
based accelerators. Then using the CGRAs for integration over a Network-on-Chip
(NoC) to establish a Heterogeneous Accelerator-Rich Platform (HARP). HARP is
also a template-based design and its instances can contain a variable number of
Reduced Instruction-Set Computing (RISC) cores as well as user-specified number
of CGRAs. The overall design demonstrates the advantages of loose-coupling
where all the cores over the NoC can access each other’s communication and
computation resources. The design of HARP is an effort to maximize the number
of reconfigurable processing resources on a single chip. HARP has been evaluated
for a proof-of-concept test as well as for a relatively realistic design problem,
i.e., satisfying the execution-time constraints for Fast Fourier Transform (FFT)
processing required in the baseband processing of IEEE-802.11n demodulators. In
addition to this, HARP has been subjected to constraint-aware workload balancing
in conjunction with dynamic frequency scaling. This work showed interesting
results and the importance of adopting cost effective self-aware computing mod-
els in heterogeneous multi-core architectures. The HARP design has also been
evaluated for suitability to 3D Integrated Circuit (IC) design and as a competitive
contender in the dark silicon era.

This chapter is organized as follows. The next section describes the existing
multi-core platforms that have a similar architecture as of HARP. Section 2.3
explains the design and usage of the CGRAs to instantiate application-specific
accelerators to be integrated to HARP nodes. The next following section describes
the NoC which is used as a backbone for communication and control between all
the nodes. The overall HARP architecture is described in Sect. 2.6 followed by
hardware and software integration details presented in Sect. 2.5. The measurement
and estimation of different basic and advanced level performance metrics are
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described in Sect. 2.8. Section 2.9 establishes comparisons between HARP and the
state-of-the-art platforms described in Sect. 2.2. In the last section, conclusions are
presented.

2.2 Existing State of the Art

The multi-core platforms exist both in homogeneous and heterogeneous forms.
A homogeneous platform is generally composed of similar cores loosely connected
with each other while a heterogeneous platform is a loose or tight integration of
different cores over a communication infrastructure. Both forms of the multi-core
platforms are programmable in C but for heterogeneous platforms, additional cus-
tom tools may be required than a simple C compiler. In a heterogeneous platform,
cores are generally application-specific targeting only a set of applications. For
example, reconfigurable Application-Specific Instruction-set Processors (rASIPs),
Fine-Grained, Mid-Grained, and Coarse-Grained Reconfigurable Array devices,
Very Long Instruction Word (VLIW) processors, and nevertheless to mention the
Digital Signal Processors (DSPs).

2.2.1 MORPHEUS

Morpheus is an integrated platform made of a Fine-, Mid-, and a Coarse-Grained
Reconfigurable Array (CGRA) [23]. The platform supports an operating system and
uses a custom-designed tool chain for reconfigurable accelerators. The Fine-, Mid-,
and Coarse-Grained devices are called as FlexEOS [22], DREAM [6], and XPP-
III [7] and these devices communicate over an NoC. FlexEOS is a high-density
multi-logic FPGA fabric made of SRAM cells. DREAM is a reconfigurable DSP
core which can perform general-purpose processing using a 32-bit RISC processor
and the reconfiguration feature is supported by PiCoGA [16]. XPP-III is a CGRA
integrated into the datapath of a VLIW processor.

2.2.2 P2012

P2012 is a homogeneous multi-core platform composed of 16 processors equally
divided into four clusters [18]. All the processors in a cluster are locally synchronous
and globally asynchronous with processors in other clusters. The P2012 platform
is tested for image processing algorithms and shows a performance of 0.04 Giga
Operations Per Second per Milli Watt (GOPS/mW) on a 90 nm Complimentary
Metal-Oxide Semiconductor (CMOS) technology.
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2.2.3 NineSilica

NineSilica is a homogeneous Multi-Processor System-on-Chip (MPSoC) platform,
designed and developed at Tampere University of Technology, Finland [2]. The
platform contains nine RISC cores integrated together over an NoC in a topology of
three rows and three columns. Each RISC core has an instruction and a data memory.
The synchronization between cores is established based on using a shared-memory
architecture, where the data is exchanged using flags. NineSilica has a track record
of processing many computationally intensive signal processing related algorithms,
e.g., Fast Fourier Transform (FFT).

2.2.4 RAW

Reconfigurable Architecture Workstation (RAW) is composed of sixteen 32-bit
MIPS2000 processors placed in an order of four rows and four columns [20] and
the communication between the processors is facilitated by an NoC. RAW supports
static and dynamic scheduling hence being similar to a reconfigurable fabric as well
as a multi-core platform.

2.2.5 CRISP

CRISP was a European Union funded project that stands for Cutting edge Recon-
figurable ICs for Stream Processing [1]. It presents a general stream processor
which is a highly scalable platform with core-level coarse-grained granularity. The
platform targets streaming DSP applications and is designed on the principle of
locality-of-reference which indicates different levels of storage. An instance of this
platform was generated which was composed of a general-purpose processor and
a reconfigurable fabric. The system also contains an ARM core and 45 Xentium
DSP cores, where all the cores are integrated with each other using an NoC. The
Xentium processor can operate at 200.0 MHz using a 90 nm CMOS technology.
The overall general-purpose processor device is manufactured using UMC 130 nm
CMOS technology, yielding an operating frequency of 200.0 MHz.

2.2.6 Intel’s Single-Chip Cloud Computer

A 48 core x86-based Single-Chip Cloud Computer (SCC) was designed by Intel
to provide an opportunity for design-space exploration with custom-application
implementation and to explore future design challenges and opportunities [17].
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The communication between cores is provided using a mesh network and memory
controllers. The SCC is implemented using a 45 nm CMOS technology and all
the processors can be tuned to different operating frequencies between 100.0 and
800.0 MHz. The communication network can be operated from 0.8 to 1.6 GHz and
the platform has been benchmarked by different research groups across the globe.

2.2.7 TILE64™

TILE64™is a homogeneous multi-processor composed of 64 cores arranged in an
order of eights rows and eight columns and covers a wide range of embedded
applications [4]. Each processor core is a 64-bit VLIW machine but the integer
datapath is 32-bit wide to support subword computations. All the cores support SMP
Linux kernel and run at 750.0 MHz while delivering a performance of 384 GOPS.
All the cores communicate with each using an NoC which provides a bandwidth of
120.0 GB/s. The processor system has three layers of caches and each core has a
autonomous DMA engine.

2.3 Scalable CGRAs

In this section, special emphasis is given to briefly describe the family of template-
based CGRAs used in the integrated design of HARP. In particular, the CGRAs used
are CREMA [9], AVATAR [11], and SCREMA [12]. Figure 2.1 shows combined
representation of all the three CGRAs. The unit of processing in all the CGRAs
is a Processing Element (PE) which is a 32-bit Arithmetic and Logic Unit (ALU)
capable to perform arithmetic and logic operations in integer and IEEE-754 format.
Each PE has two inputs (a, b) and two outputs (A, B). The inputs are supplied with
operands which reside in the corresponding registers inside each PE. An arithmetic
or logic operation can be performed on the operands received by the registers and
the output A provides the results. The output B provides the registered value of
input b, so to be multiplexed to the inputs of other PEs for the maximum availability
of data. The template feature of the CGRAs allows all the processing elements to
instantiate only those computational resources that are required by the set of target
applications. This is specified by the user manually during the system design time
using a custom-made Graphical User Interface (GUI) tool. It optimizes resource
utilization on FPGA or area on an ASIC, increases operating frequency, and reduces
power and energy consumption. The PEs can exchange data with each other using
point-to-point local and global interconnections. Local interconnections are with the
neighboring PEs while the global ones are with the PEs that are located relatively
farther than the neighboring ones. CREMA is an R�8, AVATAR is an R�16, and
SCREMA is an R�C PE CGRA, where R can be any positive integer and C can
only have values, i.e., 4, 8, 16, and 32. The CGRAs are equipped with two local
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Fig. 2.1 A combined representation of CREMA, AVATAR, and SCREMA. The figure shows
local and global interconnections towards destined PEs shown in black, I/O buffers, and the data
memories [13]

memories to contain the data to be processed as shown in Fig. 2.1. The figure also
shows two I/O buffers but they are only instantiated in the designs of CREMA and
AVATAR. The I/O buffers make each memory bank in the local memory accessible
to almost each and every input of the PE array for read and write operations. I/O
buffers are composed of multiplexers and registers. The size of the multiplexer will
always be 2C�1 and there will always be 2C number of multiplexers in each I/O
buffer. SCREMA does not carry I/O buffers as in case of C D 32, the number and
size of each multiplexer will be very large thus consuming a large portion of the
overall design space. These CGRAs were initially designed to work as accelerators
with an RISC core. A Direct Memory Access (DMA) device was tightly integrated
with each CGRA to transfer configuration and data stream from the main memory of
the system to the local data memories of the CGRA during the system startup time.
A new configuration can also be loaded as required during the run-time making the



2 Single-Core and Multi-Core Architectures for Parallel Signal Processing 13

CGRA dynamically reconfigurable. Similarly, for continuous processing, new data
can be loaded whenever required. The user can write the custom program flow which
is essentially composed of three major portions. (1) Loading the configuration and
data to be processed; (2) Enabling different context for cycle-accurate processing;
and (3) Transferring the computed results from the CGRA to the main memory of
the system. A context means a pattern of interconnections among the PEs and the
operation to be performed by each PE at a particular cycle. These CGRAs have a
track record of processing a number of computationally intensive signal processing
related algorithms, for example, different length and types of FFTs, complex and
real Matrix-Vector Multiplication (MVM), and Correlations. The implementation
details can be found in [10, 12] and [11], respectively.

2.4 The Network-on-Chip

As described earlier, the communication over HARP is supported by an NoC, a
network of nine nodes placed in a geometry of three rows and three columns. The
NoC nodes in HARP can act as supervisors or workers based on the user-specified
custom design. The overall architecture of HARP is template based, so the user can
select particular nodes to be instantiated at the system design time. All the nodes
can be integrated to either an RISC core or to the CGRAs mentioned in Sect. 2.3.
A combined view of the NoC node integrated with RISC or the DMA is shown in
Fig. 2.2. The NoC nodes function as routers for a master and two slave devices. If
a node is connected to an RISC core, the master interface of the node is integrated
with an RISC core and rest of the two slaves are interfaced with the instruction and
data memory. The RISC can access these memories locally within the node and can
also write to the network to send data to other devices connected to other nodes. A
node can also be interfaced with the CGRA which is tightly integrated with a DMA
device. The DMA device has master and slave ports which are interfaced with the
master and slaves ports of the NoC node. The other slave interface of the node is
integrated with the data memory. The DMA slave can be written from the NoC
to invoke the DMA master, so to access the data memory, conduct CGRA related
operations, and also to write to the NoC.

2.5 Hardware/Software Integration

The HardWare/SoftWare (HW/SW) integration is implemented by addressing
special-purpose registers and dedicated shared-memory locations in the overall
architecture. The addressing and data transfers are carried out by implementing
special Application Programming Interfaces (APIs) which can be repetitively used
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Fig. 2.2 An NoC node interfaced with RISC core or the DMA device [13]

by the programmer for algorithm mapping. The HW/SW integration is divided into
three layers fundamentally required for processing, i.e., Loading the Configuration
and Data, Execution, and Synchronization. The general description of APIs related
to these procedures is presented in the following subsection.

2.5.1 Loading Configuration and Data

The major part of the configuration stream required for processing is generally
loaded at system startup time. A configuration word is composed of address and
data fields. The configuration can be injected straight into a CGRA and based on
the address fields, it reaches the destination PEs after passing through a pipelined
distribution infrastructure.

1. Configuration Transfer: The API developed for this task requires the base
addresses of the configuration stream in the main memory and the configuration
memories of the CGRA. Since the data and configuration memories operate at
the same frequency across the platform, there is one word per clock cycle transfer
between the nodes, therefore no particular synchronization protocol is required.

2. Data Transfer: The data transfer between two nodes is either between the
data memories of the respective nodes or if the DMA of an associated CGRA
transfers the data from the local memories of the CGRA to the data memory of
another node. During the system startup time, the data from the supervisor node’s
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(RISC processor) data memory is fetched and sent to the data memory of a
CGRA node. As explained in the previous point, this step does not need any
synchronization, but the data from the node’s memory has to be placed in a time-
multiplexed manner in the local memories of the CGRA for custom processing.
This task may require several clock cycles. To conduct this task, the supervising
RISC processor sends a control word to the DMA of the associated CGRA node
which starts reading the data from the memory and sends the data to the local
memories of the CGRA. The control word contains the source and destination
addresses, the number of read and write cycles, and information related to time-
division multiplexing for the placement of data to be processed. When an internal
data transfer is in progress within a node, i.e., between the node’s data memory
and the local data memories of the CGRA, the supervising RISC node should
wait for the current data transfer to complete before invoking another internal
data transfer through the DMA.

2.5.2 Context Enabling and Execution

As soon as the configuration and data transfer complete, the supervising RISC node
enables CGRA execution by sending a control word for cycle-accurate processing.
The control word contains information for the CGRA, i.e.,

1. Direction of data flow for processing, that is from the first local data memory of
the CGRA to the other or vice-versa;

2. The context to be enabled;
3. Read and write latency, cycles, and offsets;
4. Total number of operation cycles.

During this task, different user-designed contexts are enabled in a sequence for a
specified number of clock cycles for the custom computing of the target application.

2.5.3 Synchronization

There are two types of data transfers: (1) between data memories of NoC nodes
and (2) between the node’s data memory and the local memory of the CGRA
and vice-versa. The data memories of the NoC nodes operate on the same clock
frequency, so there is no specific synchronization required. The transfer rate is about
one word per clock cycle after a latency equal to the number of nodes encountered
in the transfer path. The transfer between the node’s data memory and the data
memory of the CGRA is established by the RISC core which sends a control
word to the DMA device tightly integrated with the CGRA. The control word is
packed with cycle-accurate information that enables data transfer in a specific time-
multiplexed pattern. This internal transfer may require several clock cycles and the
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RISC processor must not invoke another DMA transfer for this node, unless the
current one is active. During this time, the RISC processor can send commands
to other nodes and can be busy with subsequent tasks. The RISC processor before
invoking a DMA transfer within a node sets a reserved location in its data memory.
As soon as the DMA transfer completes, the DMA writes to the NoC to reset the
same reserved location in the data memory of the supervising RISC processor.
Meanwhile, the RISC processor continuously monitors the reserved location and
as soon as it finds it being reset, it assigns another DMA transfer for the same node.

2.6 Heterogeneous Accelerator-Rich Reconfigurable
Platform

Currently, HARP template has been used to instantiate four different instances.
The first instance is for the proof-of-concept where each application-sized CGRA
integrated with the node performs a computationally intensive signal processing
task, i.e., 64- and 128-point FFT, 64th-order complex Matrix-Vector Multiplication
(MVM), and 32nd-order real MVM. This instance is composed of six CGRA nodes
and one central master node integrated with the RISC processor. Node-7 is not
instantiated in this design to prove the template feature of the platform.

The second instance is relatively a realistic design problem, that is processing of
four different streams of 64- and 128-point of FFT. The third instance is a hybrid
architecture where the middle horizontal layer of the NoC is integrated with RISC
cores and rest of the nodes are interfaced with CGRAs of application-specific sizes.
This hybrid architecture was motivated to organize a distributed control among the
RISC processors so that the program workload distribution for the CGRAs can be
divided over the three processors. In this way, the tasks related to the distribution
of configuration and data streams can be made faster than the instance presented in
Fig. 2.3. The hybrid instance of HARP is shown in Fig. 2.4. The layered architecture
of this instance is favorable for 3D IC integration. Simulation results have shown
that the RISC processors are active most of the time, therefore contributing a major
part to the average dynamic power dissipation. In this context, the layer of the RISC
cores can be spatially closer towards the heat-sink and the airflow than the layers of
the 3D IC containing the CGRAs.

Another instance of HARP was subjected to Dynamic Frequency Scaling (DFS)
while considering the computational workload to be equally distributed over all
the CGRAs. In this context, the central supervising node integrated to the RISC
processor continuously monitors the execution time of each CGRA and then issues
instructions to fine tune the operating frequency of the CGRAs until they approach
the same execution-time constrained as a user-stated goal. This task is achieved
by implementing a feedback control system in both HW and SW. The HW part
constitutes a dedicated frequency control register and software part includes the
API addressing the register as soon as the frequency of a particular CGRA needs
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Fig. 2.3 A proof-of-concept
HARP instance [13]
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Fig. 2.5 An instance of HARP subjected to DVFS for workload balancing [13]

to be updated. The CGRAs are performing signal processing related tasks similar
to the ones mentioned for the first instance of HARP. Figure 2.5 shows the HARP
instance being subjected to DFS using a feedback control loop specified in dashed
red colored lines. A larger CGRA is designed to process a large amount of data and
its overall execution time is relatively lower than the smaller CGRAs. However, if all
the CGRAs over the platform are supposed to exchange data with each other, they
are required to process their respective tasks in the same time frame which is needed
by the most work-loaded CGRA. In this case, the RISC processor while identifying
the worst performing CGRA tunes the clock frequency of other CGRAs, so that all
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the CGRAs perform closer to the performance of the worst-case. The DFS applied
during this process shows that this particular workload balancing scheme mitigates
power dissipation. Figure 2.5 also shows a frequency tunable clock generator which
is a piece of non-synthesizable VHDL, but when actually implemented on a printed
circuit board, or an FPGA, Phase-Locked Loop (PLL) based clock generators need
to be adopted.

2.7 Application Mapping

The programming of an instance of HARP can be broadly categorized at two
different levels. The first one is at the level of the CGRA, where the application
data flow is organized based on the spatial location of the processing elements
and establishing the interconnections between them. The second is purely writing
the software for the application program flow and control. It includes calling the
API functions with specific parameters to address the DMA and the CGRA control
registers for cycle-accurate processing. The configuration streams are generated by
the GUI tool (mentioned in Sect. 2.3) upon completion of the design of a context
which can be loaded at the system start time. In fact, for any instance of HARP,
all the configuration streams related to integrated CGRAs are loaded before the
overall system starts processing. For any multi-core platform, it is important to
demonstrate that the cores can exchange data with each other and also process the
data simultaneously and independently of each other. The proof of this concept is
implemented so that the CGRA integrated at Node N0 of HARP instance depicted
in Fig. 2.3 processes 64-point FFT in radix-4 scheme and then transfers the results
to the data memory of node N1. The DMA engine in node N1 fetches this data
and sends it to the local data memory of node N1 CGRA which subsequently
processes 64th-order complex MVM on the 64-point vector data obtained from FFT
processing. The node N1 transfers the results of complex MVM processing back
to node N4. The transfer and processing of data between these nodes show that
nodes can exchange data with each other for dependent processing. The other nodes
N2, N3, N5, N6, and N8 are simultaneously processing the data and independently
of each other. The node N2 CGRA processes 128-point FFT in mixed-radix(2, 4)
scheme while rest of the CGRA nodes are processing integer MVM of different
orders. The second instance of HARP was processing only FFT for IEEE-802.11n
demodulator case which requires four different streams of 128-point data to be
processed simultaneously. In this case, nodes N1, N2, N5, and N8 are instantiated
with mixed-radix(2, 4) FFT CGRAs to perform this task. The details of application
mapping on these first two instances of HARP are well described in [13]. Table 2.1
shows the type of the CGRA integrated with a node of HARP and the application
mapped on it. The table is a combined representation of the first two instances of
HARP, i.e., the homogeneous (hom) and the heterogeneous (het).

The third instance of HARP is a hybrid platform which has a flavor of both
homogeneous and heterogeneous cores. In it, the nodes N3, N4, and N5 are
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Table 2.1 Types and sizes of the CGRAs integrated with the nodes of HARP and the
applications mapped on them [13]

Node PEs CGRA type Kernel

HARP-het-N0 8�9 CREMA Radix-4, 64-point FFT

HARP-het-N1 4�8 CREMA Complex MVM, 64th-order

HARP-het-N2 4�16 AVATAR Radix-(2, 4), 128-point FFT

HARP-het-N3 4�4

SCREMA Real MVM 32nd-orderHARP-het-N5 4�8

HARP-het-N6 4�16

HARP-het-N8 4�32

HARP-hom-(N0, N2, N6, N8) 4�16 AVATAR 128-point FFT

In the table, hom and het stand for homogeneous and heterogeneous, respectively

integrated with COFFEE RISC cores and rest of the nodes are integrated with
CGRAs of application-specific sizes. The three RISC cores communicate with each
other to establish distributed supervisory control among all the CGRA cores. The
RISC at node N3 supervises the CGRAs at node N0 and N6, the N4 does it for N1
and N7 CGRAs while the N5 performs supervision for N2 and N8 CGRAs. The
synchronization and control are established as the RISC cores write and read flags
in each others shared-memory locations. Meanwhile, the CGRAs on the completion
of a task write acknowledgments in specific memory locations of their supervising
RISC cores. The advantage of using the three RISC cores is the simultaneous
configuration transfer to all the cores which otherwise in the case of the first instance
of HARP is the responsibility of a single RISC core—a situation where the NoC
bandwidth was under-utilized. The application mapping in this instance of HARP
is similar to the two instances and the CGRA nodes are processing different lengths
and types of FFTs, complex and real MVM [13, 14].

The fourth instance of HARP was designed as a six core platform organized in
a geometry of two rows and three columns. The nodes N0, N1, N2, N3, and N5
are integrated with CGRAs while the node N4 contains the RISC core acting as a
supervisor. The platform is subjected to Dynamic Frequency Scaling (DFS) in an
effort to equalize performance on all the CGRAs, thereby mitigating instantaneous
dynamic power dissipation. The RISC has a special-purpose counter which counts
the cycles elapsed for the execution of an algorithm by the CGRA and stores the
measurement in the data memory. This counter is not the part of the main datapath of
the processor, so if the RISC processor is busy in general-purpose tasks, its counting
remains unobstructed. Once the clock-cycle count is measured for all the CGRA
integrated to the HARP platform, then the supervising RISC processor searches
for the largest number (worst-case). Based on this worst-case, the RISC sends the
data to its frequency control register which updates the operating frequencies of
all the CGRAs other than the worst performing. This process is made iterative so
in the next iteration, the clock-cycle count is measured for all the CGRAs again
and fine tuning is performed in form of a feedback loop. In this way, the CGRAs
gradually approach the performance of the worst-case. Once all the CGRAs degrade
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their execution time, the instantaneous power consumption is reduced, therefore the
overall heat dissipation. This form of DFS is implemented for the proof-of-concept
when all the cores on a platform are supposed to exchange data with each other and
it is not a requirement if one core needs to operate faster than the other. However,
the overall operating frequency control system is software-defined which allows any
custom power mitigation technique to be implemented in software.

2.8 Measurement and Estimation

This section presents the numbers related to different performance metrics for
all the four instances of HARP platform, i.e., clock cycles required to perform
data transfers and execution, resource utilization on the FPGA device, synthesis
frequencies and estimates related to power dissipation and energy consumption.
Table 2.2 presents clock cycles required for transfer between the data memories of
NoC nodes and from the data memory of an NoC to one of the local data memories
of the CGRA. The table also shows the cycles required for execution by the CGRA.

Table 2.3 shows the DSP resource consumption on the FPGA at the node level.
The Stratix-V FPGA device has 18-bit DSP elements and to implement one 32-
bit DSP element, two 18-bit DSP resources are required. For example, in the first
row of the table, 12 32-bit multipliers consume 24 DSP resources. It can also be
observed, the DSP resource consumption increases as the complexity of algorithm
increases, for example, radix-(2, 4) FFT accelerator requires 56 DSP elements than
the 24 required by the radix-4 FFT algorithm.

Table 2.4 shows the resources required by the first two instances of HARP, i.e.,
hom and het on the FPGA device. As it has been discussed before that the HARP-het
and HARP-hom are the instances with 7 and 4 nodes, respectively, but the Adaptive
Logic Module (ALM) consumption by homogeneous version is significantly higher

Table 2.2 The number of clock cycles for data transfer and execution at different stages
measured with reference to clock frequency of the supervising node [13]

Node-to-node D. mem to D. mem D. mem to CGRA Trans. total Exe. total

het(N4-N0) 1017 659 1676 420

het(N0-N1) 1036 446* 1482 457

het(N1-N4) – 448* – –

het(N4-N2) 2042 1033 3075 571

het(N4-N3) 728

het(N4-N5) 609

het(N4-N6) 75,622 – 75,622 340

het(N4-N8) 211

hom(N4- (N0, N2, N6, N8)) 4� 2042 4� 1033 4� 3075 587

D. Mem, Trans., and Exe. stand for Data Memory, Transfer, and Execution, respectively
* Sign shows data transfer from CGRA to node’s data memory
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Table 2.3 DSP resource
consumption on the FPGA
device at the node level for
both of the versions of
HARP [13]

Node Accelerator type Multipliers(32-bit) DSPs

HARP het

Node-0 Radix-4 FFT 12 24

Node-1 Complex MVM 12 24

Node-2 Radix-(2, 4) FFT 28 56

Node-3 Real MVM 4 8

Node-4 RISC Core 6 12

Node-5 Real MVM 8 16

Node-6 Real MVM 16 32

Node-7 – – –

Node-8 Real MVM 32 64

Total – 118 236

HARP hom

Node-0 Radix-(2, 4) FFT 28 56

Node-2 Radix-(2, 4) FFT 28 56

Node-4 RISC Core 6 12

Node-6 Radix-(2, 4) FFT 28 56

Node-8 Radix-(2, 4) FFT 28 56

Total – 118 236

Table 2.4 Resource
utilization by HARP
instances on Stratix-V FPGA
device (5SGXEA4H1F35C1)
[13]

HARP het

ALMs 78,845/158,500 50 %

Registers 64,436/634,000 10 %

Memory bits 21,000,928/38,912,000 54 %

DSP 236/256 92 %

HARP hom

ALMs 120,823/158,500 76 %

Registers 67,475/634,000 10.6 %

Memory bits 13,679,616/38,912,000 35 %

DSP 236/256 92 %

than heterogeneous version. The ALM consumption depends on the complexity
of the algorithm mapped on the CGRA and in comparison, the complexity of
radix-(2, 4) FFT algorithm is the highest and having four of those makes the hom
version to have the largest number of ALMs despite the fact that it has less number
of CGRAs integrated than the het version.

The first two instances of HARP operate on a single clock source. The HARP-
het version synthesizes at 214.64 MHz at 0 ıC and 186.22 MHz at 85 ıC while the
functional voltage is set to 900 mV. These measurements were observed for slow
timing model. The fast time model shows 274.65 MHz at 0 ıC and 251.0 MHz at
85 ıC. The HARP-hom instance synthesizes for slow timing model at 208.42 MHz
at 0 ıC and 196.89 MHz at 85 ıC with the functional voltage equal to 900 mV. The
operating frequencies for fast timing model are observed to be 299.31 MHz at 0 ıC
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and 272.63 MHz at 85 ıC. The HARP-hom processes four streams of 128-point
FFT within 587 CC �1=186:22 MHz D 3:15 �s while considering the operating
frequency of 186.22 MHz and the cycles presented in Table 2.2, therefore satisfying
FFT execution-time constraints of IEEE-802.11n standard.

Table 2.5 shows the dynamic power and energy consumption by the CGRAs
integrated with the nodes of HARP-hom and -het versions. It is evident that a
larger CGRA in size has more logic to toggle per unit time and therefore dissipates
more power but offers lower execution times as in the case of processing 32nd-
order MVM. As energy is the product of power dissipation and execution time,
so in this specific case, the dynamic power dissipation does not appear to deviate
considerably.

2.9 Evaluation and Comparisons

The HARP instances are synthesized for a 28 nm FPGA device. According to a
document produced by Altera Corporation, the average operating frequency of a
Stratix FPGA device scales by 20 % as the process size scales [3], which means
that a 28 nm FPGA is capable to operate with a 20 % higher operating frequency
than a 40 nm FPGA device. On the other hand, Xilinx. Inc claims to provide
50 % higher operating frequency for the synthesized designs with their latest 28 nm
FPGA device in comparison to their 40 nm one, but such a performance comes
at the cost of increasing the on-chip resources by 2� [24]. The designer can
implement 2� parallel resources to achieve 2� speed-up. Since this argument is
out of context, therefore Altera’s scaling trend can also be estimated for Xilinx
devices as well. A 90 nm ASIC implementation shows 3.4� to 4.6� (average 4.0�)
higher operating frequency than an equivalent FPGA implementation as well as
consumes 14� lesser dynamic power dissipation [15]. Based on this information,
cross-technology comparisons are established in comparison to a HARP instance
as shown in Table 2.6. The state-of-the-art platforms selected for comparisons are
already described in Sect. 2.2.

The node N0 of HARP-het version computes 64-point FFT in 420
CC �1=100:0 MHz D 4:2 �s. NineSilica computes the same task in 10.3 �s
on a 40 nm FPGA using all of its RISC nodes. Since HARP-het is synthesized on
a 28 nm FPGA device, scaling on NineSilica’s performance is required to establish
comparisons. After scaling, NineSilica is estimated to compute the same task in
8.25 �s, hence HARP-het shows a 1.96� gain in comparison.

A homogeneous MIMD MPSoC delivers a performance of 19.2 GOPS while
being synthesized on a 90 nm FPGA. After appropriate scaling to establish compar-
isons, the performance estimate increases to 26.88 GOPS. HARP-het performs at
40.8 GOPS and shows 1.51� of gain in comparison.

A homogeneous MPSoC platform called P2012 is synthesized on a 28 nm CMOS
technology. The performance gap ratios discussed above between an ASIC and
FPGA implementation are supposed to remain similar even between a 28 nm ASIC
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Table 2.5 Estimation of dynamic power/energy for each CGRA integrated in a node for
both of HARP instances [13]

Node

CGRA size Algorithm Dynamic power Active time Dynamic energy

Other HW (Type) (mW) (�s) (�J)

HARP-het

N0 Radix-4 FFT

8�9 PE (64-point) 129.68 4.20 0.54

N1 Complex MVM

4�8 PE (64-Order) 116.75 4.57 0.53

N2 Radix-(2, 4) FFT

4�16 PE (128-point) 213.12 5.71 1.21

N3 Real MVM

4�4 PE (32nd order) 61.55 7.28 0.44

N4 General flow

RISC control 59.73 – –

N5 Real MVM

4�8 PE (32nd order) 98.97 6.09 0.60

N6 Real MVM

4�16 PE (32nd order) 175.80 3.40 0.59

N7 – 0.37 – –

N8 Real MVM

4�32 PE (32nd order) 327.36 2.11 0.69

NoC integration – 7.12 – –

Logic – 302.07 – –

Total – 1492.52 – 4.6

HARP-hom

N0 Radix-(2, 4) FFT

4�16 PE (128-point) 214.68

N2 Radix-(2, 4) FFT

4�16 PE (128-point) 214.35

N4 General flow

RISC control 59.75

N6 Radix-(2, 4) FFT

4�16 PE (128-point) 212.97 5.87 7.11

N8 Radix-(2, 4) FFT

4�16 PE (128-point) 213.89

NoC integration – 0.67

Logic – 295.64

Total – 1211.95



2 Single-Core and Multi-Core Architectures for Parallel Signal Processing 25

Ta
bl

e
2.

6
M

ul
tip

le
pe

rf
or

m
an

ce
m

et
ri

c
co

m
pa

ri
so

n
w

ith
H

A
R

P
Im

pl
em

en
ta

tio
n

at
10

0.
0

M
H

z
on

a
28

nm
FP

G
A

[1
3]

Pl
at

fo
rm

/te
ch

no
lo

gy
Pe

rf
or

m
an

ce
Pl

at
fo

rm
’s

Sc
al

ed
H

A
R

P-
he

t

m
et

ri
c

va
lu

e
(P

V
)

PV
V

al
ue

G
ai

n

N
in

eS
ili

ca
[2

]
/F

PG
A

40
nm

FF
T

ex
ec

ut
io

n
E

xe
.t

im
e

�E
xe

.t
im

e�
20

%
SU

_f
T

fs

tim
e

(�
s)

10
.3

D
1
0
:3

�
1
0
:3

�0
:2

D
8
:2

4
4.

2
1.

96
�

[5
]

/F
PG

A
90

nm
PV

�4
0

%
SU

_f
T

fs

G
O

PS
19

.2
D

1
9
:2

�1
:4

D
2
6
:8

8
40

.8
1.

51
�

P2
01

2/
[1

8]
PV

�S
D

_a
tf

s�
Ps

C
M

O
S

28
nm

G
O

PS
/m

W
0.

04
D

0
:0

4
�1

=
4

�1
=
2

D
0
:0

0
5

0.
01

53
3.

0�
M

O
R

PH
E

U
S

/[
23

]
(P

V
�S

D
_a

T
fs

�P
s)

�6
0

%
SU

_f
T

fs

C
M

O
S

90
nm

G
O

PS
/m

W
0.

02
D

.0
:0

2
�1

=
4

�1
=
2
/

�1
:6

D
0
:0

0
4

0.
01

53
3.

8�
In

th
e

ta
bl

e,
SU

_f
T

fs
,S

D
_a

T
fs

,a
nd

Ps
st

an
d

fo
r

Sp
ee

d-
U

p
fo

r
FP

G
A

to
FP

G
A

sc
al

in
g,

Sp
ee

d-
D

ow
n

fo
r

A
SI

C
to

FP
G

A
sc

al
in

g,
an

d
Po

w
er

sc
al

in
g,

re
sp

ec
tiv

el
y



26 W. Hussain et al.

and a 28 nm FPGA implementation. The gap shows that performance degrades by a
factor of 4 but the dynamic power dissipation increases by a factor of 14 on an FPGA
implementation than the ASIC for the same process size. Considering the worst-
case scenario, where the static power can be equal to dynamic power dissipation,
the factor of 14 can be almost equal to 2. In such a situation, the scaled performance
of P2012 is estimated to be 0.005 GOPS/mW as shown in Table 2.6 while HARP
shows a performance gain of 3.0�.

The 0.02 GOPS/mW performance of MORPHEUS at 90 nm CMOS can be first
scaled for a 90 nm FPGA and then be scaled down to a 28 nm FPGA to establish
comparison with HARP. The scaling is also shown in the last row of Table 2.6. In
comparison, HARP shows a performance of 3.8�.

2.10 Conclusions

In this chapter, an extra large-scale template-based homogeneous/heterogeneous
accelerator-rich architecture is presented which is capable to process massively
parallel computationally intensive signal processing related algorithms. In particu-
lar, three instances from the architecture’s template were generated in which one
is completely heterogeneous, the other one homogeneous, and the third one is
hybrid in nature. All of these instances were tested for a proof-of-concept to verify
the functionality and architectural features. From the discussion presented in the
overall and particularly in the section of evaluation and comparisons, the platform
outperforms many state-of-the-art platforms in several performance metrics due to
its high density in the number of on-chip computational resources and efficient
utilization of the communication channel, i.e., a Network-on-Chip.
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Chapter 3
The CoreVA-MPSoC: A Multiprocessor
Platform for Software-Defined Radio

Gregor Sievers, Boris Hübener, Johannes Ax, Martin Flasskamp,
Wayne Kelly, Thorsten Jungeblut, and Mario Porrmann

3.1 Introduction

The advancement in performance of mobile devices goes hand in hand with
increasing demand for communication bandwidth. In the past decade an almost
unmanageable number of different wireless communication standards have
emerged. In addition, the complexity of many of those standards has led to a
steadily increasing demand for high performance of modem signal processing of
the devices. The computational throughput required for processing state-of-the-art
algorithms ranges from 100 GOPS for the current generation (3.5G) to 1000 GOPS
for next generation communication systems (4G and above) [7, 35]. Additionally,
a high number of different configurations per single protocol expand the huge
design-space to be taken into account by developers. Seamless handover between
the different protocols has to be supported and a fast run-time reconfiguration is
essential.

Besides the usual physical requirements such as low silicon area or energy
consumption, new requirements such as programmability and flexibility arise. In the
history of mobile communication, multi-standard communication-interfaces relied
on multiple fixed application-specific implementations. The need to support a huge
number of different standards can lead to a large increase of device complexity if
each is implemented separately in silicon. While a fine-tuned power management
may avoid the drawback of a possible increase of the power consumption, the large
silicon area may undo these efficiencies. Therefore, as new standards emerge or
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changes in standards evolve, reprogrammable devices allow us to realize silicon
optimized chips that need only meet the resource needs of the most complex
communication standard. In addition, it allows a reduction in time-to-market by
providing the ability to easily adapt to changes of standards. Additional features
can be implemented in late design cycles and even post-silicon bugs can be handled
more easily. Although this challenge mainly applies to high volume mobile devices,
flexible hardware architectures can also be used in stationary base stations especially
when including pico-cell concepts of state-of-the art protocols like LTE.

As the computational requirements of baseband processing steadily increasing,
the performance demands of the application layer also add to the problem. Mul-
timedia applications such as 3D graphics processing or video en-/decoding (e.g.,
H.265) increase performance demand even more. Uniform architectures are capable
to handle baseband processing together with the application layer. To allow for
the required flexibility on one hand and a sustainable performance on the other
hand, several approaches have evolved towards SDR-based architectures in the
past. Research moved from ASIC-centered blocks towards heterogeneous DSP-
centered designs aided by specialized hardware accelerators. Such architectures
provide a higher flexibility but still lack in terms of programmability, flexibility,
and scalability for new communication standards in the future. Flexibility and
ease of programming is enabled by use of homogeneous many-core architectures
with uniform communication infrastructure as they allow for simpler and more
generic programming models. The programmability of such architectures enables
the efficient mapping of the particular baseband core algorithms as well as high-level
applications like operating systems. Due to their regular structure homogeneous
many-cores also allow us to higher levels of performance by merely increasing the
number of processor cores. Furthermore, a uniform communication infrastructure
and a general programmability should facilitate the use of high-level mapping
strategies to allow for the required flexibility while maintaining the maximum
possible efficiency.

Recently, various homogeneous many-core architectures designed for high per-
formance signal processing have been proposed [6, 8, 11]. While their sustained
performance makes them suitable for baseband signal processing, they are impracti-
cal for use in mobile user equipment as their energy needs exceed the typical mobile
restriction of 1 W [7, 35]. They are therefore more suitable for software-defined
radio in stationary base stations with a wire-connected power supply.

In this work, we try to depict the future path of performing SDR baseband
processing via the use of homogeneous many-core architectures. To illustrate
the architectural challenges, we present our CoreVA-MPSoC as an example of
an embedded hierarchical multiprocessor architecture for SDR processing. The
massive parallelism is introduced at different levels. Our basic building block is
the resource-efficient VLIW1 processor CoreVA providing fine-grained concurrency
at the instruction level. Multiple CoreVA CPUs are then combined within a CPU

1VLIW: Very Long Instruction Word.
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Fig. 3.1 Hierarchical CoreVA-MPSoC with 4�2 mesh NoC. ©IEEE [32]

cluster and connected via a high speed, low latency interconnect. On the next level
of hierarchy a Network-on-Chip2 is then used to connect together any number of
CPU clusters all located on a single chip (cf. Fig. 3.1).

Mapping an SDR application to dozens or hundreds of CPUs under throughput,
latency, energy, and memory constraints is a challenging task. Therefore, in addition
to our MPSoC hardware architecture, we present an MPSoC compiler for streaming
applications.

This chapter is organized as follows. In Sect. 3.2 we present related work and
the current state of the art. Section 3.3 describes our CoreVA-MPSoC hardware
architecture including the different levels of the hierarchy: CPU core, cluster, and
NoC. Section 3.4 shows synthesis results using a 28 nm FD-SOI standard-cell
technology. In Sect. 3.5, we propose our software tool-chain including VLIW and
MPSoC compiler, simulator, and MPSoC programming model. In Sect. 3.6 we
present results of mapping typical SDR algorithms to both a single CoreVA and
different configurations of MPSoCs. The work is concluded in Sect. 3.7 with a
summary.

3.2 Related Work

Many different multicore architectures for software-defined radio have been pro-
posed by academia and industry in the last years. A short overview is given in the
following.

The MAGALI [7] is a heterogeneous SDR MPSoC with a 15-router NoC. The
NoC routers are asynchronous to reduce dynamic power consumption. Five general
purpose VLIW cores perform channel estimation and MIMO3 decoding. Four

2NoC: Network-on-Chip.
3MIMO: Multiple Input, Multiple Output.
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NoC nodes integrate 1 Mbit memory each and a DMA4 engine for data transfers.
An ARM1176 CPU with floating-point support is used for control and scheduling.
In addition, the MPSoC features four Fast Fourier Transform (FFT), three channel
decoding, and two bit-level hardware accelerators. The MPSoC has a peak perfor-
mance of 37.3 GOPS. A chip prototype manufactured in 65 nm consumes 477 mW
while executing a 4�2 LTE receiver with 10.8 MBit/s throughput.

Noethen et al. [24] present Tomahawk2, a heterogeneous MPSoC with 20
CPU cores targeting 4�4 MIMO LTE baseband SDR. The hierarchical MPSoC
contains two CPU clusters with four general purpose CPUs (Duo-PE) each and two
additional CPU clusters with I/O interfaces, memory controller, and application-
specific cores. A Duo-PE consists of a fourfold 16 bit SIMD5 core and a Tensilica
LX4 CPU with floating-point support. Tasks can be scheduled dynamically either in
software or via a dedicated hardware unit (CoreManager). The MPSoC features
hierarchical power management. The area requirements of the chip are 36 mm2

and it consumes 480 mW in a 65 nm process. Peak performance is 105 GOPS and
3.8 GFLOPS.

The Infineon X-GOLD SDR20 [29] is an SDR baseband processor for communi-
cation standards such as UMTS, HSPA, and LTE. The SDR20 consists of 12 SIMD
cores for baseband processing and additional hardware accelerators. In addition,
an ARM-based subsystem can execute a protocol stack. A SIMD core contains
four processing elements which provide 16 bit and 32 bit integer calculations, 4 kB
scratchpad memory, a DMA controller, and an additional scalar core to handle
control and synchronization. Four SIMD cores, two additional scalar cores, and
512 kB shared memory are grouped in a cluster and connected via a multi-layer
interconnect. Three of those clusters, an additional accelerator cluster, and the ARM
subsystem are connected via a full crossbar. Manufactured in a 65 nm process,
the SDR20 operates at 300 MHz (SIMD cores) and 412 MHz (ARM core). Peak
performance of the SDR subsystem is 17.7 GOPS.

The SDR MPSoCs that we presented in this section feature programmable DSP-
like processing cores and specialized hardware accelerators. Using today’s chip
technology, these accelerators are mandatory to meet performance and energy
requirements. Considering the execution of an increasing number of communi-
cation standards on a single MPSoC and due to improvements in semiconductor
technology, more and more homogeneous many-core architectures like our CoreVA-
MPSoC will emerge.

The Kalray MPPA-256 [8] is a hierarchical 288-core MPSoC targeting embedded
applications. Each CPU cluster contains a system CPU, 16 processing CPUs, and
2 MB shared L2 memory.

Adapteva’s Epiphany E64G401 [11] is a multiprocessor with 2 MB distributed
shared memory and 64 CPU cores. The maximum operation frequency is 800 MHz.

4DMA: Direct Memory Access.
5SIMD: Single Instruction, Multiple Data.
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The interconnect fabric features a 3-layer 2D-mesh NoC. The Epiphany does not
introduce a cluster-level hierarchy but solely relies on NoC communication.

The Cadence Tensilica Xtensa processor-suite [10, 13] provides a customizable
CPU architecture that targets a variety of different fields of applications. The
processor-suite is based on a configurable 32-bit RISC6 processor core that can be
used as an embedded controller, e.g., for memories and interfaces. This controller
can be extended by a multiplicity of DSP IP cores that enable the processor to be a
high performance data-plane processing unit (DPU). The DSP cores mainly provide
VLIW and SIMD extensions of different data widths to speedup the baseband and
RF signal processing in, e.g., LTE and LTE-Advanced wireless modems. The latest
Cadence Tensilica DSPs provide fourfold VLIW instructions and 32-way SIMD
calculations on vectors with up to 512 bits. In combination with specialized vector-
MAC7-units this enables the processor can calculate up to 128 MAC operations
per cycle.

3.3 The CoreVA-MPSoC Architecture

This section provides architectural details about CoreVA CPU core, CPU cluster,
and NoC that represent the three main building blocks of the CoreVA-MPSoC. The
architecture is highly configurable at design-time which leads to a huge design-
space but carefully to be explored to select the configuration with the highest
resource efficiency for the execution of SDR applications.

3.3.1 CoreVA VLIW CPU

The configurable 32 bit VLIW CPU CoreVA is designed to be used as an embedded
processor for signal processing purposes. It has a typical Harvard architecture with
separate instruction and data memories. The CoreVA is based on an ARM-like
RISC instruction set that consists of 41 scalar and 13 vector instructions. The
CoreVA comprises parallelism-schemes like VLIW and SIMD to exploit inherent
instruction- and data-level-parallelism (ILP and DLP). The VLIW concept benefits
from ILP within the applications by executing data-independent instructions in
parallel. For this purpose, the CoreVA processor integrates multiple processing
elements that form independent vertical issue slots executing multiple instructions
streams in the pipeline (Multiple Instruction, Multiple Data—MIMD). SIMD ben-
efits from DLP and uses multiple functional units within one processing engine to
perform the same operation on different input data elements in parallel. As depicted

6RISC: Reduced Instruction Set Computing.
7MAC: Multiply Accumulate.
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Fig. 3.2 Pipeline of the CoreVA processor

in Sect. 3.4.1, the CoreVA allows for the fine-grained configuration of the number
of issue slots and processor’s functional units at design-time, e.g., ALUs,8 MACs,
or LD/ST units.

The CoreVA CPU is based on a six-staged pipeline that consists of the
instruction-fetch (FE), instruction-decode (DE), register-read (RD), execute (EX),
memory (ME), and register-write stage (WR) (see Fig. 3.2). Besides these stages,
the processor comprises a unified register file that provides the operands for the
calculations and keeps the intermediate results until they are stored to the data
memory.

The register file is directly connected to the processor pipeline to ensure that the
operands can be read inside the RD stage and written by the WR stage without any
delay. It contains 32 general purpose registers with a size of 32 bits each. The 32’nd
register is used as a special purpose register holding the program counter. If multiple
VLIW issue slots are configured, all of them are able to read and write every register.

The number of the register file’s read and write ports depends on the chosen
number of issue slots and functional units. Each VLIW slot requires two read and
one write port to provide the operands for the ALU and to store the results. If an
MAC unit is present, a third read port is required to provide the accumulator. LD/ST
units require a second write port to store the updated address in pre- and post-
modify addressing mode. Besides these general purpose registers, the register file
contains eight 1-bit condition registers that allow for the conditional execution of
instructions.

8ALU: Arithmetic Logic Unit.
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The FE and DE stages are responsible for reading and decoding the instruction
words that are stored in the instruction memory. All instructions that are scheduled
to be executed in parallel are combined to an instruction group. To avoid perfor-
mance degradation, the number of instructions read from the memory in the FE
stage has to at least match the number of VLIW slots. However, this would imply
a waste of instruction memory if the compiler is not able to utilize all available
VLIW slots. For this reason, a stop-bit is used to compress partial filled instruction
groups by marking the last instruction. By shortening some instruction groups, the
memory alignment of instructions would be disrupted leading to additional memory
stalls. Therefore, the FE stage contains an alignment register that stores at least two
instruction groups and guarantees the availability of one group per clock cycle. If
the size of the alignment register is configured to be greater than necessary, this
register can be seen as a level zero (L0) cache to buffer instructions and save energy
by reducing the number of memory accesses [27].

The DC stage is used to determine the type of the instruction (e.g., data
processing, load/store, branch) and to extract the containing operands and register
addresses. Furthermore, the DC stage is responsible for the execution of conditional
and non-conditional branches. To avoid stall cycles while executing conditional
branches, this stage contains a simple branch prediction and functionality to revert
mistaken branches. The branch prediction follows the assumption that backward
branches are predicted to be taken (e.g., in loops) and forward branches will not be
taken [Backward Taken Forward Not Taken (BTFNT)].

After the data registers have been read by the RD stage, the containing operands
are forwarded to the EX stage where the actual data operation is performed. Each
VLIW slot contains a dedicated 32-bit ALU that comprises an add/sub and a shift
unit. Besides the handling of data processing operations, the ALUs are used for
memory address calculation. The results of the ALU operations are valid in the end
of the EX stage and thus have a latency of one cycle.

In addition to the ALU that is present in every issue slot, each slot can be
extended by dedicated multiply accumulate (MAC) and division step (DIV) units.
The MAC unit multiplies two 32-bit values and adds a third operand (accumulator)
within one MAC instruction. This functionality is an essential part of the CoreVA
since MAC operations are very useful for the processing of matrix multiplications
which are used in most SDR algorithms. Due to the high combinatorial delay of the
multiplier the MAC units are segmented into an EX and ME stage part (cf. Fig. 3.2).
On this account, they achieve a sustainable throughput of one instruction per clock
cycle with a latency of two clock cycles.

Data memory accesses are handled by dedicated LD/ST units implemented in
parallel to the EX-ME pipeline registers (cf. Fig. 3.2). The addresses of load and
store operations and the operands that shall be written to the memory are determined
by the ALU and provided to the LD/ST unit in the EX stage. The data read from
the memory is stored to an ME-WR pipeline register which results in a latency of
two cycles for load operations. Divisions are accelerated by using a radix-2 division
which is able to calculate a 32-bit division within 32 clock cycles.
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To exploit DLP, the CoreVA processor can be enabled to process two 16-bit
SIMD calculations within each VLIW slot. If SIMD support is enabled, each VLIW
slot is extended by two 16-bit ALUs and two 16-bit MAC units where applicable.
The results of the data processing and memory operations are finally stored to the
register file in WR stage.

Since the results of the operations are already available at the end of the EX
or ME stage, a complete pipeline bypass is implemented to forward those results
to directly succeeding operations. The pipeline bypass provides paths from the
last three pipeline stages (EX, ME, WR) to all operand registers in RD stage
(data bypass) and condition registers in DC stage (control bypass). The number
of bypass paths highly depends on the number of implemented VLIW slots. Since
the utilization of this bypass path is very application-specific and some of them may
only rarely be used, the CoreVA architecture allows the configuration of whether a
pipeline bypass is implemented or replace by a stalling mechanism. The potential
of such an application-specific configuration is shown in [17].

In addition to the high configurability of the processing elements and the
control/data flow of the CoreVA processor, instruction and data memories are also
widely configurable at design-time (cf. Fig. 3.3). The memories can be configured as
caches or on-chip scratchpad memories and their size and the number of read- and
write-ports can be adapted to application requirements. Furthermore, if two LD/ST
units are configured, the data memory can either be implemented as a true dual-port
memory or as a two-banked multi-port memory.

In addition to the CPU pipeline, the CoreVA can be extended via a generic
interface to connect to additional components like a CPU system interface (interface
to the cluster interconnect), UART or Ethernet MAC, or dedicated hardware
accelerators (cf. Fig. 3.3). Those interfaces can be accessed via memory-mapped-
IO (MMIO) supported by an address-decoder located in the EX-stage.

Fig. 3.3 Block diagram of
the CoreVA processor
environment
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Fig. 3.4 CPU cluster with Network Interface (NI) ©IEEE [32]

3.3.2 CPU Cluster

The last section presented the different types of parallelism provided by the CoreVA-
MPSoC on core level (i.e., essentially ILP). In this section it is shown how the
computing capacity can be further increased by tightly coupling several CoreVA
CPUs in a CPU cluster. The CPUs communicate via low latency, high bandwidth
interconnects by reading and writing distributed shared memory (cf. Fig. 3.4). Each
CPU can access the local data memories of all other CPUs in an NUMA9 fashion
using the cluster interconnect [32]. Therefore, each CPU has a master interface to
access the other CPUs, the network interface (NI, cf. Sect. 3.3.3), and an optional
common shared memory [33]. In addition, each CPU has a slave interface for
initialization and the external access of its local memories.

The master and slaves of a cluster are connected via an interconnect fabric. The
highest possible performance and lowest latency can be achieved if a full crossbar
is used [28]. All bus masters are directly connected to all bus slaves. This results
in large area requirements and power consumption. In contrast, a shared bus allows
only one master to access the interconnect at the same time [5]. This increases the
probability of bus conflicts, but decreases area and power requirements. A partial
crossbar combines the advantages of shared bus and full crossbar by grouping
some slaves using a shared bus. The masters are connected to these segments via
a full crossbar. Several other interconnect topologies like a ring are discussed in the
literature [5, 28] but not considered in this work.

9NUMA: Non-Uniform Memory Access.
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The configurable architecture of the CoreVA-MPSoC allows for the integration
of different interconnect standards depending on the communication requirements
of the target application. The CPU cores feature a generic bus interface that can
be configured to be compliant to certain bus standards. We have implemented
OpenCores Wishbone (WB) [26] as an example for a light-weight bus-based
interconnect and ARM AMBA AXI4 [1] which has a more advanced architecture
with separated address and data channels. WB is maintained by the community
project OpenCores and is used in a broad range of academic and open-source
projects.

AMBA AXI4 is used by ARM Inc. as interconnect standard for their latest
Cortex-A CPUs. In addition, AXI is used by a broad range of companies for their
products. AXI defines separate channels for read and write transfers. This allows
for parallel read and write requests even if a shared bus is used. In addition, address
and data channels are separated to allow for efficient burst handling. This results
in five channels in total (read and write address, read and write data, and write
response). Each channel is uni-directional which allows for an easy integration of
register stages to achieve higher clock frequencies. Our AXI implementation can
be configured to use, e.g., a crossbar for the data channels and a shared bus for
the address channels. This allows for high throughput if bursts are used and saves
area because the address channels are only rarely used. In this work, we use a non-
pipelined round robin arbiter. The AXI shared bus requires 5 arbiters (1 per channel)
while the AXI crossbar interconnect requires 2 arbiters per slave (read and write
address channel). The WB shared bus requires 1 arbiter in total and the WB crossbar
1 arbiter per slave. The data channels do not require extra arbitration, because our
interconnect does not support outstanding transactions.

Depending on the size and the number of connected CPU cores, bus-based
interconnects may have long combinatorial paths. This limits the maximum clock
frequency of the interconnect. To overcome this drawback, register stages can be
added to the design. By default our interconnect implementations are not registered.
This results in a combinatorial path from the system interface of one CPU within
a cluster to the memories of another CPU. Register stages can be added to master
and slave ports. We have implemented two different types of register stages. Type 1
registers all signals but the stall (WB) or ready (AXI) signals. The register can store a
request only if the stall signal of the successor is not set. To avoid this combinatorial
path, the second implementation (type 2) contains two sets of registers. An incoming
request is stored in the first set of registers. In the next cycle, another request can be
stored in the second set. If both sets of registers are full, a register is set to stall the
predecessor for the next cycle.

The minimum read latency to access a data memory of another CPU within
a cluster is four cycles (without register stages). In contrast, the read latency to
access the CPU’s local data memory is two cycles (cf. Sect. 3.3.1). Outstanding read
requests are not required to be supported as our CoreVA CPU does not implement
out-of-order execution. The data bus width of both interconnect implementations is
configurable at design-time. In this work, we consider a data bus width of 32 bits.
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A cluster can optionally integrate a common shared memory that can be split into
several banks. This memory can be used to fulfill the memory requirements of state-
of-the-art SDR applications like LTE [29]. In combination with a (partial) crossbar,
memory banks allow CPUs to access the shared memory in parallel. A DMA
controller can be used to copy data between the local data memory of a CPU to
the common shared memory or the local memory of another CPU. The CPU is
informed (interrupt or mutex) when the transfer has been finished. This reduces the
CPU cycles due to copy operations. Our implementation is connected to the cluster
interconnect and has one slave port for configuration. Two master ports are used to
read from and write to the memories within a cluster. The synchronization of our
DMA controller implementation is based on our CoreVA-MPSoC communication
model (cf. Sect. 3.5.1).

3.3.3 Network-on-Chip

As discussed in Sect. 3.1, SDR applications are highly computationally intensive.
To provide the required throughput the many-core architecture has to scale towards
a high number of processing cores. Shared-bus-based interconnects lack a linear
speedup for a high number of connected nodes, because the resource requirements
of the interconnect network and/or stalls due to bus arbitration limit the expected
gain in performance. To handle this, an additional interconnect hierarchy called
Network-on-Chip (NoC) is introduced to the CoreVA-MPSoC. Because of its
modularity and an explicit packet-based communication within an NoC, additional
CPU cores scale with a higher and more predictable performance compared to a
bus-based interconnect [9, 32].

The NoC used in the CoreVA-MPSoC features packet wormhole switching. In
contrast to circuit switched networks, packet switched networks transmit the data
packets without allocating the entire physical path for a single packet [2]. This
allows for the usage of physical links for different data streams at the same time.
In wormhole switching each packet is segmented into small pieces called flits (flow
control digits). All flits of a data packet are sent sequentially from the source node to
the destination node, along one path of the NoC. In wormhole switching only small
flits need to be buffered at each node. This requires less amount of buffer space
compared to a “store and forward” or “virtual cut through” switching network. For
embedded devices tailored for SDR applications this is more efficient in terms of
chip area and power consumption.

3.3.3.1 Switch Box

The NoC is built up of routing nodes called switch boxes (cf. Fig. 3.1), which
forward the flits along a path of the network links. Each switch box has a
configurable number of ports.
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One port of each switch box is connected to a CPU cluster or a single CPU core
using a network interface (NI). All other ports are connected via communication
links to further switch boxes to build up the network topology. The configurable
number of ports allows for the implementation of different topologies at design-
time. Until now the CoreVA-MPSoC supports the configuration of three different
topologies: 2D-mesh, honeycomb, and ring. The number of ports per switch box
(5 for 2D-mesh, 4 for honeycomb, and 3 for ring) has a major effect on-chip
area and power consumption of the NoC. A higher number of ports lead to a
better bisection bandwidth of the network, which results in a higher maximum data
throughput. For the further description of the CoreVA-MPSoC, a 2D-mesh topology
(cf. Fig. 3.1) in combination with a static XY-routing algorithm is used. The static
XY-routing is a simple routing and always follows a deterministic path. Due to
XY-routing, the 2D-mesh topology is interpreted as a cartesian coordinate system. In
this context each destination node (a CPU cluster or a single CPU) of the network
has a unique XY-coordinate. Flits are sent along the shortest path of the network,
first in X-direction and afterwards in Y-direction. Another more powerful routing
algorithm would be an adaptive routing. Adaptive routing is able to avoid congested
paths, but the implementation is more complex compared to static routing. This
results in an increase of chip area and power consumption, which is in conflict with
the requirements for an embedded MPSoC platform executing SDR applications.

Figure 3.5a shows a single switch box and gives more details about a port. At
first an incoming flit is registered to decouple the critical path of the circuit from
other switch boxes within the network. The second stage features an FIFO10, which
buffers flits if it is not possible to forward them directly to the next switch box (e.g.,
high traffic on the outgoing link). To guarantee that no flits get lost, a flow control
between two switch boxes is required. Within the CoreVA-MPSoC a stall/go flow
control is used. If there is no buffer space available at the receiving switch box, a
stall signal is activated. In contrast to a handshake-based flow control, this leads to
a higher throughput, because a flit can be sent every cycle while no stall signal is
active. In addition, the stall signal is registered at the output port to decouple the
critical path of the circuit from other switch boxes. The registration of flits and the
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stall signals require an FIFO with almost-full functionality to avoid a flit loss. If a
flit is waiting in the FIFO, a routing component decides to which output port the
flit needs to be forwarded. A crossbar with round robin arbitration per output port
decides from which input port a flit could be sent.

Due to the input register and the FIFO, each switch box has a latency of two
clock cycles. For the minimal latency of a whole packet, this implies a latency of
two clock cycles per hop for the first flit of the packet. All remaining flits follow
one-by-one.

To increase the average throughput, virtual channels can be introduced to the
NoC. The virtual channels are realized with dedicated input buffers at each input
port (cf. Fig. 3.5b). This allows flits to pass a waiting flit, as long as they are
forwarded via a different output port. On the one hand, virtual channels increase the
average throughput, on the other hand, chip area and power consumption increase,
which makes it less attractive for embedded systems.

3.3.3.2 Network Interface

The network interface (NI, cf. Fig. 3.4) represents the interface between the CPU
cluster and the NoC [4]. The NI bridges between the address-based communication
of the cluster and the flow- and packet-based communication of the NoC to provide
a communication between two CPU cores of different clusters. This communication
is based on the CoreVA-MPSoC communication model presented in Sect. 3.5.1. It
acts like a DMA controller by sending and receiving packets concurrently to CPU
processing. Communication between two CPUs is done via uni-directional channels
synchronized by mutexes.

Figure 3.6 gives an abstract overview of the NI architecture. One end of the NI is
connected with the cluster interconnect. Via Slave Control all CPUs can configure
the NI by writing information about incoming packets into a look up table (LUT).
On the other end, the Recv. Control handles incoming flits from the NoC inter-
connect. All flits of a packet have the same unique flow ID to identify their
origin. With this flow ID and address information, stored in an LUT, the NI is

Fig. 3.6 NoC interface (NI)
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able to store incoming flits directly in the data memory of the target CPU via the
Master Control. The Send Control handles the sending of packets, which is initiated
by the source CPU.

With the help of an FIFO the NI is able to handle concurrent sending requests
from several CPUs of a cluster without any blocking of the CPUs. Requests within
the FIFO are executed successively by the Send Control. It reads packets directly
from the data memory of the source CPU, segments it in flits, and sends it to the
switch box. Each flit contains a 23-bit header for control information (e.g., flow ID
or X and Y coordinates) and 64-bit of payload data. The maximum payload size
of a whole packet is configurable at design-time and set to 4 kB for the proposed
CoreVA-MPSoC implementation.

3.3.3.3 Globally Asynchronous Locally Synchronous

The implementation of large-scaled MPSoCs results in a very complex design
process when implementing fully synchronous circuits. Huge clock trees require a
high effort to minimize clock skew which leads to an increasing chip area and power
consumption. In addition, a large synchronous circuit impacts the electromagnetic
interference (EMI) of the system due to high peak currents on the clock edges.

The NoC can be extended by Globally Asynchronous Locally Synchronous
(GALS)-based network links for large-scaled CoreVA-MPSoCs. To support GALS
links the system is divided into sub-modules with small autonomous clock trees. In
the CoreVA-MPSoC each sub-module consists of a cluster and a single switch box
(cf. Fig. 3.4), hereinafter called node. To divide the system into these nodes with
autonomous clock trees, mesochronous links are introduced between the switch
boxes. In this context, mesochronous indicates that the clocks of the different
nodes run with the same frequency but unknown phase shifts. This phase shift can
distribute the switching activity of the MPSoC over the whole clock period and
therefore minimize electromagnetic interference of the design.

To avoid metastability at the input ports of a switch box, a mechanism for
synchronization needs to be integrated. In the CoreVA-MPSoC the Tightly Cou-
pled Mesochronous Synchronizer (TCMS) proposed in [20] is used. The TCMS
replaces the input register within each network port of a switch box. It is based on
three latches, which alternately store the incoming data controlled by a 2-bit counter,
clocked by the sender clock. A second 2-bit counter, clocked by the receiver clock,
controls the forwarding of stable data out of the latches. As shown in [16], the TCMS
is more efficient in chip area and latency compared to asynchronous FIFOs.
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3.4 Implementation Results in a 28 nm FD-SOI Technology

To provide the required high resource efficiency for an embedded many-core
architecture executing SDR applications, the optimal trade-off between resource
requirements and performance has to be found. Resource costs are given by
the production- and processing-costs, namely die area and power consumption of
the system.

Therefore, this section analyzes the resource requirements for different processor,
cluster, and NoC configurations in terms of area and power consumption. The results
are generated using a highly automated standard-cell design-flow based on Cadence
Encounter Digital Implementation System. A 28 nm FD-SOI standard-cell library11

provided by STMicroelectronics is used for the physical implementation. This tech-
nology offers a maximum clock frequency of 900 MHz for our CPU core. For the
proposed implementation we chose a slightly relaxed clock frequency of 800 MHz.
The presented results are based on RTL synthesis. RTL Synthesis features a much
shorter round-trip time compared to physical implementation (place and route)
and allows an accurate comparison of different CPU and MPSoC configurations.
Nevertheless, we present example results at the end of each subsection to show
the exact area requirements for certain CPU and MPSoC configurations. All power
results considered in this section are determined on the basis of gate-level netlists
assuming switching activities of 10 %.

3.4.1 CoreVA VLIW CPU Implementation Results

Since the configurability of the CoreVA CPU enables the implementation of several
ten-thousand different processor configurations, the analysis of the complete design-
space would be very time consuming. Therefore, this chapter evaluates the impact
of single configuration parameters on the area and power consumption. Thus, only
one of the most important processor core parameters is varied at once while the
others are fixed. The resource requirements of many other processor configurations
can be seen in Sect. 3.6.1 and in [15]. For this analysis, the design-space is limited
to 1–8 VLIW-issue-slots, 1–8 MAC-units, and 1 or 2 LD/ST units. If 2 LD/ST units
are implemented, either a true dual-port or a two-banked multi-port memory can
be used. The number of DIV units is fixed to 1 since divisions are rarely used in
SDR algorithms. The size of the instruction- and data-memory is fixed to 16 KB.
The width of the instruction memory is set to 256 bits. The EX-DC control bypass
is disabled as proposed in our previous work [17].

The basic RISC-like configuration that consists of one ALU, MAC, and LD/ST
unit has an area requirement of 0:144 mm2 and a power consumption of 21,243 mW.

11STMicroelectronics, 10 metal layer, Worst Case Corner: 1.0 V, 125 ıC.
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Fig. 3.7 Area requirements of CoreVA CPU configurations with varying number of slot (S, M,
L = number of slots, MAC, LD/ST)

As depicted in Fig. 3.7, the area increase for every additional VLIW slots is about
0:032 mm2. The power consumption increases by 3.732 mW, respectively. This
overhead is mainly caused by additional ALUs in the EX stage, more read and write
ports of the register file, and by the adaption of the pipeline registers.

A comparison of the first five bars in Fig. 3.8 shows the overhead for adding up
to eight MAC units to a 8-slot CoreVA with one LD/ST-Unit. The resulting average
increases are 0:003 mm2 and 0.330 mW per MAC. In addition to an increasing size
of the EX stage, the area of the register file increases due to the additional read ports
for the accumulator of the MAC unit.

Finally, the resource requirements for a processor with eight slots and one MAC
unit increase by 0:02 mm2 and 5.48 mW (multi-bank memory) or 0:08 mm2 and
6.08 mW (dual-port memory), if a second LD/ST unit is implemented. This increase
is caused by the impact of the additional LD/ST unit and by the overhead of the true
dual-port memory compared to the single-port or multi-bank memory with same
capacity.

Figure 3.9a shows the layout of the CoreVA VLIW CPU in a 2-issue configura-
tion with 2 ALUs, 1 MAC, and 1 LD/ST unit. For all MPSoC configurations a fixed
CoreVA CPU hard macro with 2 VLIW slots, 16 kB data-, and 16 kB instruction-
memory is used. This macro is completely pre-placed and pre-routed based on the
synthesis results presented in this section. The area requirements are 0:130 mm2 and
the estimated power consumption is 18.57 mW.

Up to now, two chip prototypes of the CoreVA CPU have been realized based on a
65 nm low-power technology. Data and instruction caches have a size of 16 kB each.
The CoreVA-VLIW is based on a conventional standard-cell library and contains
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Fig. 3.8 Area requirements of CoreVA CPU configurations with varying number of MAC- and
LD/ST-units (S, M, L = number of slots, MAC, LD/ST)

Fig. 3.9 Annotated floorplan and die photograph of the CoreVA VLIW CPU. (a) 2-issue CoreVA
CPU in 28 nm FD-SOI. (b) 4-issue CoreVA in 65 nm technology ©IEEE [31]

4 ALU, 2 MAC, 2 DIV, and 2 LD/ST units (cf. Fig. 3.9b). Power consumption is
about 100 mW at a clock frequency of 300 MHz. The CoreVA-ULP12 [21] features
a RISC-like one-slot processor with 1 ALU, 1 MAC, 1 DIV, and 1 LD/ST units.

12ULP: Ultra Low Power.
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This ASIC is based on a custom standard-cell library optimized for sub-threshold
operations. The operation voltage of the CoreVA-ULP ranges from 1.2 V down to
200 mV. The lowest energy consumption (9.94 pJ/cycle) is observed at a supply
voltage of 325 mV [22].

3.4.2 MPSoC Implementation Results

This section shows synthesis results for different MPSoC configurations comprising
8, 16, and 32 CoreVA CPUs. For all MPSoC configurations the CoreVA CPU hard
macro (2 VLIW slots, 16 kB data-, and 16 kB instruction-memory) presented above
is used. For a CPU cluster we consider different topologies (shared bus, partial
crossbar, and full crossbar; see Sect. 3.3.2). The partial crossbar configurations
feature 4 (N/4) and 2 (N/2) CPUs per shared bus with N representing the number of
shared buses of the partial crossbar interconnect. For 8 CPUs this results in a partial
crossbar configuration with 2 shared buses and 4 CPUs per shared bus (2/4) and
another configuration with 4 shared buses and 2 CPUs per bus (4/2, cf. Fig. 3.10).
The interconnect within a cluster is compliant to the AXI standard. In addition, we
consider different NoC configurations with 1, 4, and 8 CPUs per cluster. All NoC
configurations use a full crossbar as the cluster interconnect.

Fig. 3.10 Area requirements of different MPSoC topologies, 2-issue VLIW CPU, and 32 kB
memory per CPU. The partial crossbar configurations features 4 (N/4) and 2 (N/2) CPUs per shared
bus where N is the number of shared buses ©IEEE [32]
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To match the target frequency of 800 MHz all configurations with 32 CPUs
require 1 master and 1 slave register stage to meet the timing (cf. Sect. 3.3.2). The 16
CPU full crossbar configuration requires one master register stage of type 2 (double
register). All other configurations met timing with 1 master register stage of type
1 or type 2. The type 1 configurations are shown in Fig. 3.10 due to smaller area
requirements.

The 8 CPU cluster with a shared bus has a total area of 1:11 mm2, the
interconnect requires only 6.26 % .0:069 mm2/ of this area. The 2/4, 4/2,
and full crossbar configurations consume only 0:071 mm2, 0:080 mm2, and
0:102 mm2 respectively. A 4�2 mesh NoC with 1 CPU per cluster (4�2�1,
NoC_dimesion_1 � NoC_dimension_2 � #CPU_per_cluster) has an area of
1:49 mm2 with 0:448 mm2 (30.13 %) for the NoC. This shows that a pure NoC
without a CPU cluster as an additional level of hierarchy has a large area overhead
compared to bus-based interconnects. The NoC with two 4-CPU clusters (2�1�4)
requires 1:22 mm2 with 0:097 mm2 for the two AXI crossbar clusters and 0:082 mm2

for the NoC. Area requirements for the 16 CPU clusters vary from 2:23 mm2

(shared bus) to 2:43 mm2 (full crossbar). The 4/4 partial crossbar is 26 % larger
than the shared bus whereas the 8/2 partial crossbar requires 66 % more area. Both
considered NoC configurations have approximately the same size compared to the
full AXI crossbar (2�2�4: 2:44 mm2, 2�1�8: 2:39 mm2). Considering 32 CPU
cores, the shared bus implementation scales quite well and requires only 9.89 % of
the overall area. The crossbars interconnects require 11.64 % (8/4), 16.40 % (16/4),
and 22.77 % (full crossbar) of the overall area. A 4�2�4 MPSoC consumes 14.65 %
of the area whereas the 2�2�8 MPSoC requires 13.14 % of the overall area for the
interconnect.

In the following we present power estimations for the MPSoC configurations
with 16 CPUs. The shared bus cluster consumes 331 mW in total including 10 % for
the interconnect. The 4/4 partial crossbar dissipates 345 mW, the 8/2 partial crossbar
358 mW and the full crossbar 383 mW. The 2�2�4 NoC consumes 433 mW and the
2�1�8 NoC 394 mW.

Figure 3.11 shows the physical implementation (layout) of a 3�2�4 NoC with
24 2-issue VLIW cores and 768 kB distributed shared memory in total. The area of
the CPU clusters with four CPUs is 0:755 mm2 and the total area is 4:53 mm2 [32].

3.5 Programming the CoreVA-MPSoC

Most SDR applications can be split into smaller parts or algorithms, e.g., different
filters, FFT, etc. A typical SDR development flow starts with a specification of the
SDR application using a high-level language, e.g., MATLAB. In a second step each
algorithm is implemented in the target language, e.g., C or CCC for a single CPU
of the target platform. Within this step it is important to consider limitations of the
target platform, like floating-point support or the availability of libraries. We use the
compiler framework LLVM [19] with a CoreVA-specific backend to map algorithms
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Fig. 3.11 Layout of a 3�2�4 NoC with 4:53 mm2 area requirements

written in C to a single CoreVA VLIW CPU. In addition, we have developed a cycle
accurate simulator for both single CPU and MPSoC simulations. This allows for an
accurate estimation of execution time for each algorithm at the early design stage.

3.5.1 Communication Model

The different algorithms of the SDR application are connected via a directed
data flow graph. Based on early performance estimation, some algorithms can be
executed on the same CPU and some algorithms may have to be split into multiple
CPUs to satisfy the throughput and latency constrains of the SDR application. To
allow communication between the algorithms executing on different CPUs, a com-
munication model is required. Within the CoreVA-MPSoC we use a communication
model with uni-directional communication channels. This approach is more efficient
and scalable than shared memory concepts where the memory access can be the
bottleneck [23].

In general, an algorithm will read from one or more input channels and write to
one or more output channels. Each channel manages one or more read/write buffers.
The application can ask its input channels for a buffer to read from and ask its
output channels for a buffer to write. The channels manage synchronization at the
granularity of a buffer. The operation of requesting a buffer from a channel may
block if sufficient data has not yet arrived or if there is not a free buffer available to
write. However, once the application is handed a buffer by channel, it is free to read
or write (as appropriate) any memory location within that buffer without need for
any further synchronization. When the application finishes using a buffer, it must
inform the channel so that it can be reused.
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There are three types of channels:

• MemoryChannel for communication between algorithms mapped to the same
core.

• ClusterChannel for communication between cores of same cluster.
• NoCChannel for communication between cores of different clusters.

To simplify the work for the programmer, a unified interface is provided
regardless of the channel type. Internally inter-CPU channels (ClusterChannel and
NoCChannel) maintain at least two separate buffers so that latency can be hidden.
This is called double buffering—one buffer can be filled while a previous buffer is
still being read.

In case of the ClusterChannel, the buffers are allocated in the receiving proces-
sor’s memory to avoid the latency of a read over the bus. In addition, write accesses
to the bus are made asynchronous via a hardware FIFO queue attached to each CPU.
For synchronization, two mutexes are used per buffer: one mutex signals that the
producer can start writing to the buffer and the second one signals that the consumer
can start reading from the buffer. To minimize latency for checking the mutexes, the
ReadyToWrite mutex is allocated in the producer’s memory and the ReadyToRead
mutex is allocated in the consumer’s memory. A hardware mutex can be used to
switch off the CPU and save energy until all required buffers are available.

From a programmer’s perspective the interface remains the same for an NoCCha-
nnel. Internally an NoCChannel is implemented as a pair of ClusterChannels, one
on the sending cluster and the other on the receiving cluster. The NCI on the sending
cluster acts as a consumer and the NCI on the receiving cluster acts as a producer.
For an NoCChannel, data buffers are allocated at the sending and at the receiving
cluster. Therefore, the memory footprint of an NoCChannel is doubled compared to
a cluster channel.

3.5.2 StreamIt Language and Compiler

Programming and partitioning an application efficiently on a large number of CPUs
is a non-trivial task. Although a unified programming model exists for our CoreVA-
MPSoC, a lot of effort is required to adapt an existing program to a different
number of CPU cores or another topology. By automating the partitioning process
the programmer is able to write a program independently from a specific CoreVA-
MPSoC configuration.

Streaming applications are a typical kind of program in the SDR domain.
A popular stream-based programming language is StreamIt developed at MIT [34].
A StreamIt program describes a data flow graph consisting of filters which are
connected via pipeline, split-join, and feedback loop structures. Hereby, the inherent
parallelism contained in the program can be expressed in an abstract way. Each filter
is an independent block that receives an input data stream, processes the data, and
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produces an output data stream. In [18], we presented a compiler for the StreamIt
language targeting the CoreVA-MPSoC architecture.

Our compiler conforms with the traditional compiler structure. Source code
written in the StreamIt language is parsed and analyzed to create a corresponding
abstract syntax tree. The static part of the StreamIt program is then “executed”
(at “compile time”) to dynamically generate a hierarchical data flow graph consist-
ing of primitive filter instances connected via pipelines, split-join, and feedback loop
structures. Every filter must specify the number of data items that it will consume
and produce each time its work function is executed. Based on these I/O rates, the
compiler determines a schedule by computing the minimum number of times each
filter will need to be executed in each iteration of the application’s steady state loop.
We require that during each iteration of the steady state loop each producer produces
exactly the amount of data required by its consumers, which allows us to allocate
only a minimal fixed amount of buffer space. A prime pump phase is executed prior
to the start of the steady state loop to fill the buffers so that each filter will always
receive data reads from a buffer which was written in a previous iteration of the
steady state and writes to a buffer which is not needed before the next steady state
iteration. This helps to hide internal communication latency and thereby maximize
throughput.

The hierarchical data flow graph consisting of pipelines, split-join, and feedback
loop structures is flattened into a graph consisting of just primitive filter instances
which are directly connected to one another via edges which represent actual
communication channels at runtime.

The compiler partitions this flattened graph by mapping each filter instance
to a specific CPU core of the CoreVA-MPSoC. Our compiler tries to balance
the computational load as evenly as possible across the available CPUs, while
minimizing the communication cost.

Secondly, we can adjust the granularity of work done in each iteration of the
steady state loop. If each iteration of the steady state loop is not doing much work,
then communication and synchronization overheads may outweigh the benefits from
parallelism. To overcome this, we can simply do more work in each iteration of the
steady state loop by effectively unrolling it a fixed number of times. If according
to the original schedule filter A was executed m times and filter B was executed n
times, then we can instead execute them ˛ � m and ˛ � n times, respectively, since the
I/O rates remain matched. So the synchronization overhead remains unchanged but
more data items are processed. This is referred to as increasing the multiplicity. The
buffer sizes increase as a result, so multiplicity must be restricted as the system’s
memory is a limited resource.

Thirdly, all three forms of parallelism [14], namely pipeline, task, and data
parallelism, need to be exploited by the compiler. A StreamIt program allows
the compiler to directly exploit pipeline parallelism by executing all filters in
a pipeline on different CPUs. Our compiler benefits from task parallelism by
executing the branches of split-join structures on distinct CPUs. Both forms of
parallelism offer typically only a constant amount of parallelism. To enable the
scalability required by SDR applications, the use of data parallelism is required.



3 The CoreVA-MPSoC: A Multiprocessor Platform for Software-Defined Radio 51

Data parallelism is achieved by the compiler in terms of replacing a stateless
filter instance by multiple clones of that filter and executing them in parallel. This
transformation is called fission.

The compiler has to choose: the placement of all filters, the multiplicity, and
the amount of fission for individual filters. Currently these decisions are made
with the goal of optimizing throughput. To handle such a large search space, a
simulated annealing optimization algorithm was implemented [18]. The algorithm
starts with an initial solution generated by a simple greedy bin packing algorithm.
Afterwards, it tries to improve the throughput by generating mutations of this
solution. Meanwhile the compiler has to verify if a solution is valid by taking care
of the limited resources of the CoreVA-MPSoC [12]. Typically for an embedded
system memory is not only a bounded resource but also the number of individual
channels supported by the Network-on-Chip. Finally, C code for every CPU of
the CoreVA-MPSoC is generated for the partitioned program. It is automatically
determined what kind of communication channel is needed between two connected
filters depending on their placement.

To date, all of our optimizations have aimed to only optimize system throughput.
However many application scenarios, especially in the context of SDR, have
real-time requirements. Therefore, we are currently integrating latency as an
optimization target into the compiler.

3.6 Mapping SDR Algorithms to the CoreVA-MPSoC

A typical application of the CoreVA-MPSoC is a software-defined radio imple-
mentation of an OFDM-receiver in, e.g., LTE, IEEE-802.11n WiFi, or DVB-T
receivers [25]. The following paragraph presents the main processing elements
and their underlying algorithms for the inner-part of such an OFDM-receiver
(see Fig. 3.12).

Fig. 3.12 OFDM-receiver [25]
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The first processing element of an OFDM13-receiver after A/D conversion is the
frequency compensation. This element is needed to detect and correct phase shifts
that might have happened during transmission. This can be done using cordic or
cross-correlation algorithms that are widely used in DSP-Systems [3, 25].

The time and frequency synchronization take place in cooperation with the fre-
quency compensation. These synchronizations are required to detect the beginning
of an OFDM-packet and are also based on correlation-techniques [25]. Thereafter
the processed signal is transferred to the frequency-domain using Fast Fourier
Transformation (FFT) and then demodulated [25]. The demodulation is supported
by a channel estimation that determines whether the signal has been distorted by the
transmission channel. This is done by extracting and analyzing specially transmitted
pilot signals.

In discrete SDR systems, these methods are mainly based on filtering-techniques
like Finite-Impulse-Response filter (FIR) [30]. The demodulation reverts the ampli-
tude or phase modulation that has been applied by the OFDM sender. This
demodulation is less calculation-intensive compared to the other parts of the
receiver [3].

A possible mapping of the processing elements to a many-core architecture like
the CoreVA-MPSoC is shown in Fig. 3.13. In this example the calculation-intensive
FFT processing is mapped to four CPU clusters whereas the other algorithms require
fewer CPUs.

This chapter presents the mapping of several algorithms that are common in
most SDR systems to the CoreVA-MPSoC. We use FFT, FilterBank (a series of
FIR-filters), AutoCor (autocorrelation), and LowPassFilter that represent algorithms
used in an OFDM-receiver. Apart from OFDM, we consider MatrixMult (matrix
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Fig. 3.13 Mapping of an OFDM-receiver to the CoreVA-MPSoC

13OFDM: Orthogonal Frequency-Division Multiplexing.
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multiplication), the encryption algorithm DES, Lattice, and Sender80211. Lattice is
a filter algorithm used in devices for the GSM standard. Sender80211 is a baseband
implementation of a WiFi sender. We evaluate the mapping to different single CPU
configurations with up to four issue slots and MPSoC configurations with up to
16 CPUs.

3.6.1 Mapping SDR Algorithms to a Single CPU VLIW Core

This section shows the performance gains that can be achieved by using additional
VLIW issue slots and functional units as well as the energy requirements that
represent the trade-off between the resource costs and performance gains.

The analyses treat the algorithms AutoCor, FFT, FilterBank, and LowPassFilter.
The LLVM compiler is used to map the algorithms to the CPU configurations
presented in Sect. 3.4.1. It uses a configuration-specific scheduler that is aware of
the availability of issue slots and MAC- and LD/ST-units. The execution time is
measured using our cycle accurate instruction set simulator. The performance and
energy gains are determined by calculating the speedup or energy reduction of the
individual configurations compared to the 1-slot configuration. Figure 3.14 shows
that adding an additional VLIW slot results in a speedup of 1.2 (AutoCor), 1.6
(FFT), 1.5 (FilterBank), and 1.7 (LowPassFilter). This speedup improves the energy

Fig. 3.14 Speedup of different CPU configurations related to S1M1L1 (S, M, L = number of slots,
MAC, LD/ST)
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Fig. 3.15 Energy requirements of different CPU configurations related to S1M1L1 (S, M,
L = number of slots, MAC, LD/ST)

consumption by 27 % (FFT), 21 % (FilterBank), and 31 % (LowPassFilter) since the
number of cycles falls more than the power requirements increase (see Fig. 3.15).
The energy requirements of the AutoCor algorithm stay constant.

By adding a second LD/ST and a second MAC unit (S2M2L2), the performance
can be increased even further. The speedup increases by a factor of 1.6 (AutoCor),
1.7 (FFT), 1.5 (FilterBank), and 1.7 (LowPassFilter) compared to the 1-slot
configuration. Unfortunately this improvement comes at a high power and area
consumption that is mainly caused by the overhead of the true dual-port memory
(c.f. 3.4.1). Therefore the resulting energy requirements worsen in most cases, i.e.,
AutoCor 3 %, FFT 10 %, FilterBank 13 %, and LowPassFilter 13 % in comparison
to the 1-slot configuration. Thus only AutoCor can benefit from these additional
functional units since it is based on a comparatively large amount of load-store
operations.

Finally, increasing the number of VLIW issue slots and functional units to the
maximum value (S4M4L2) shows a speedup of 1.6 (AutoCor), 2.2 (FFT), 1.6
(FilterBank), and 2.5 (LowPassFilter). It can be seen that the compiler’s ability in
utilizing additional functional units highly differs from one algorithm to another
due to data dependencies between succeeding instructions. FFT and LowPassFilter
can benefit from a third and fourth issue slot while the speedup of AutoCor and
FilterBank remains nearly the same like for S2M2L2.

The search for the configuration that achieves the lowest energy consumption
while processing the given algorithms results in the configuration S2M1L2 for
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AutoCor, S2M2L1 for FFT and FilterBank, and S3M1L1 for LowPassFilter. Those
configurations decrease the energy requirements by 6 % (AutoCor), 29 % (FFT),
21 % (FilterBank), and 35 % (LowPassFilter) in contrast to the 1-slot configuration.

3.6.2 Benchmark Results for CoreVA-MPSoC

Certainly the huge performance requirements of SDR applications exceed the
throughput provided by a single CPU. Therefore most applications have to be
partitioned on multiple CPUs. To determine the overhead of the communication and
parallelizing the algorithms, we analyzed the speedup of the presented algorithms
compared to a single CPU. Figure 3.16 shows the speedup of throughput using
4, 8, and 16 CPUs for different MPSoC configurations. All CoreVA-MPSoC
configurations use a CoreVA CPU with two issue slots (S2M1L1). The partitioning
of the algorithms to the different CoreVA-MPSoC configurations is done by our
compiler for the StreamIt language.

The average speedup of all algorithms is 4.0 for a cluster with 4 CPUs (1�1�4)
compared to a single CPU. For clusters with 8 (1�1�8) and 16 (1�1�16) CPUs
the average speedup factor is 7.1 and 11.0, respectively. A hierarchical MPSoC
configuration with a 2�1 NoC and 8 CPUs per cluster (2�1�8) shows similar results
(average speedup factor of 10.5). With a speedup between 11 and 15, the DES, FFT,

Fig. 3.16 Speedup of SDR applications on different CoreVA-MPSoC configurations compared to
a single CoreVA CPU
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FilterBank, and LowPassFilter benefit most from 16 CPUs. The implementations
of Lattice and MatrixMult do not benefit significantly from more than 8 CPUs,
because CPU-to-CPU communication becomes a bottleneck. This shows that the
most efficient number of CPUs highly depends on the considered algorithm.

The effect of the overhead of NoC communication is clearly shown in a 4�4 NoC
with only 1 CPU per node (4�4�1). NoCChannels are more expensive in terms of
memory consumption (see Sect. 3.5.1), which limits the average speedup to 8.4.
Nevertheless, an NoC is essential to build MPSoCs with hundreds of CPUs due to
the shown hardware limitations of bus-based interconnects. The benchmark results
presented in this section combined with hardware analysis shown in Sect. 3.4 and
[32] indicate that a hierarchical MPSoC (CPU cluster and NoC) provides the most
efficient trade-off between performance and resource requirements. We presented
the speedup gains provided by a massively parallel architecture for sub-tasks of a
next generation SDR application. For a holistic scenario, the application will consist
of dozens of this sub-tasks and therefore will benefit even more from large-scaled
MPSoCs providing the required computational throughput.

Figure 3.17 gives an example how the Sender80211 algorithm is mapped
to a 1�1�4 CoreVA-MPSoC. The Sender80211 is the sender part of an IEEE
802.11b algorithm. It performs scrambling, differential encoding, symbol mapping,
and an FIR-filter which is split into inphase (I) and quadrature (Q) components.
Additionally an input filter generates a data stream and an output filter joins the
data from FIR-filters to send it out of chip. The most computational work is done
by the FIR-filters. A native programmer would partition the two FIR-filters (I and
Q) to two different CPUs and all other filters to the two remaining CPUs. In this
partition an FIR-filter will still be the bottleneck and the speedup is limit to 3.
However, our StreamIt compiler identifies the bottleneck and performs fission by
cloning the FIR-filters, to distribute them to multiple CPU cores (see Fig. 3.17).
This results to a better load balancing and the mapping to a cluster with 4 CPUs,

CPU 1

Cluster Interconnect

CPU 0
symbol mapping

diff. encoding

scrambling

input

FIR-filter IFIR-filter Q

output

output

CPU 2 CPU 3
input

scrambling

symbol mappingFIR-filter I (12,5%)

FIR-filter Q (50%)

diff. encoding

FIR-filter I (50%)

FIR-filter Q (50%)
FIR-filter I (37,5%)

Fig. 3.17 Mapping of a 802.11b sender to a 1�1�4 CoreVA-MPSoC configuration
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resulting to a speedup of 4 compared to a single CPU. Because of massive data
interpolation, Sender80211 produces a lot of data and the output filter becomes the
system’s bottleneck limiting further scaling. In future work, this bottleneck will be
removed.

3.7 Summary

In this chapter, we presented the CoreVA-MPSoC, an efficient multiprocessor archi-
tecture for software-defined radio applications. The CoreVA-MPSoC is based on
a hierarchical system architecture comprising multiple resource-efficient processor
cores connected via a high performance communication infrastructure. On CPU
level, the CoreVA VLIW processor supports fine-grained ILP for the execution
of SDR key algorithms. On the second level of hierarchy (i.e., the cluster level),
multiple CPUs can be tightly connected via a bus-based interconnect. The tight
coupling of CPUs within a cluster is required to allow for an efficient scaling of
complex algorithms like FFT because a single CPU is not fast enough. On the third
level of hierarchy a network-on-chip is introduced to cope with scaling challenges
of the bus-based interconnect when integrating a high number of CPUs and thus
meet the processing requirements for SDR.

For the efficient programming, we introduced an LLVM-based C-compiler for a
single CPU and a StreamIt-based compiler for mapping of applications to multiple
CPUs. Our work has shown that it is possible to realize many-core architectures
suited for an efficient SDR processing. Integrating 64 CPUs in 28 nm FDSOI tech-
nology provides a peak performance of 200 GOPS at a power consumption of 1.7 W.
To further increase the energy-efficiency future work will include a fine-grained
power-management to turn-off unused system-parts in phases of lower performance
requirements. In addition, we will explore different memory architectures because
memory limits the scaling of some of the proposed SDR algorithms.
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Sajjad Nouri, Waqar Hussain, Diana Göhringer, and Jari Nurmi

4.1 Introduction

During the last decade, wireless technologies have experienced significant
development, most notably in the form of mobile cellular radio evolution
from GSM to UMTS/HSPA and thereon to Long-Term Evolution (LTE) for
increasing the capacity and speed of wireless data networks. The continuous
evolution in wireless communication systems has yielded higher data rates to
improve the quality of service. The concept of Multiple-Input-Multiple-Output
(MIMO) Orthogonal Frequency-Division Multiplexing (OFDM) was introduced
to support higher data rates where multiple streams are required to be processed
in parallel. On the other hand, with increasing demand for additional bandwidth,
new wireless communication technologies have to seek solutions for resolving
spectrum scarcity issue. One proposed solution for efficiently utilizing the spectrum
across frequency, space, and time is Dynamic Spectrum Access (DSA) [21] which
can be realized by using reconfigurable wireless platforms. This purpose can
be achieved using Software Defined Radio (SDR) technology and its intelligent
version called Cognitive Radio (CR) [14] where a high degree of flexibility is
introduced by the software which allows the implementation of multi-mode,
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multi-standard transceivers. In an SDR platform, most of the kernels related to
signal processing can be performed in programmable processing technologies
including General-Purpose Processor (GPP), Digital Signal Processor (DSP),
Coarse-Grained Reconfigurable Array (CGRA), and Field Programmable Gate
Array (FPGA). Different types of data transmission schemes are employed in
wireless communication systems such as OFDM which is important in SDR
because of providing high data rates. OFDM systems split an input high-speed
data stream into several parallel streams which are simultaneously transmitted
across a contiguous collection of non-overlapping subcarriers.

In order to provide a large number of computational resources to process multiple
parallel streams and maintaining the power consumption at an acceptable level,
reconfigurable architectures are playing a significant role in embedded systems as
they provide high computation parallelism and throughput. Furthermore, reducing
the execution time by tailoring the platform for a specific algorithm and achieving
higher performance level with minimum resources has always been a matter of
concern for designers. The reconfigurable devices can be classified according to the
level of granularity into Fine-Grained (< 4-bits), Middle-Grained (� 8-bits), and
Coarse-Grained (> 8-bits) [20]. One of the most powerful classes of reconfigurable
platforms is CGRA which offers a high level of parallelism and throughput due to its
array-based structure. The symmetry feature in their structure makes them ideal for
digital signal processing of multiple parallel streams. CGRAs have a proven track-
record of processing massively parallel workloads of critical-priority applications,
e.g., Fast Fourier Transform (FFT) [7], Wideband Code Division Multiple Access
(WCDMA) cell search [5], Finite Impulse Response Filtering [9], Image Processing,
and Video Decoding applications [2, 12]. Some state-of-the-art CGRAs are ADRES
[13], MorphoSys [11], PACT-XPP [1], and MORPHEUS [20]. General-purpose
CGRAs consume an area of a few million gates due to their ability to perform several
tasks which are not financially feasible in lightly loaded scenarios. Furthermore,
they can have potentially high transient power dissipation. As a solution, template-
based CGRAs were developed which are able to generate application-specific
accelerators on a specified mapping tailored for the computationally intensive tasks.
In this context, a 32-bit template-based CGRA, CREMA, was generated to reduce
area and resource utilization by instantiating only those hardware resources which
are required for a particular application [4].

In this chapter, the implementation of application-specific accelerators targeting
OFDM receiver baseband processing based on IEEE 802.11a/g (WiFi) specifi-
cations on template-based CGRAs is presented. In an OFDM transceiver, the
processing of some blocks like Time Synchronization and Fast Fourier Transform
(FFT) is computationally intensive for a processor core since each received data
symbol has to be processed within 4.0 �s. The chapter is organized as follows:
the architecture of the platform is described in the next section. Then the design
and implementation of OFDM receiver blocks using template-based CGRA and
execution details of baseband algorithms are presented. The last section presents
the simulation and synthesis results along with the conclusion.



4 Implementation of IEEE 802.11a/g Receiver on a CGRA 63

4.2 Platform Architecture

The experimental platform is a processor/coprocessor model where COFFEE, a
Reduced Instruction-Set Computing (RISC) core, is used as a general-purpose
processor while the generated accelerators are used as coprocessors for computa-
tionally intensive tasks. CREMA is 32-bit CGRA template which is working as an
accelerator with COFFEE RISC core. Both COFFEE and CREMA are designed
and developed at Tampere University of Technology. As it is shown in Fig. 4.1,
CREMA is composed of a matrix of 4 rows � 8 columns of PEs and two 32-bit
local memories each of size 16 columns � 256 rows. There are also two I/O buffers
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Fig. 4.1 CREMA template © 2009 IEEE [4]
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for interleaving data between local memories and PE array. I/O buffers are made
of 16 of the 16 � 1 multiplexers and 32 of 32-bit registers. The multiplexers are
used for distributing the data from the local memory to the processing array and
vice versa where their outputs can be delayed for one clock cycle by the register.
The first I/O buffer interleaves the data from the first local memory to the PEs and
vice versa for the second I/O buffer. During an operation, the data to be processed
is loaded into the local memories by the Direct Memory Access (DMA) device and
then processed over the PE array. The results are stored sequentially in the receiving
memories. The written data on the second local memory can be directly read during
the next iteration by changing the direction of data flow.

As it is shown in Fig. 4.2, every PE receives two operands and can perform
32-bit integer and IEEE-754 format floating-point operations. A PE is com-
posed of a Look-Up Table (LUT), adder, multiplier, shifter, immediate register,
and floating-point logic. The blocks with the dashed borders can be selected at
design time according to the processing requirements of the applications. The
connections among the PEs are in a point-to-point fashion with multiple routing
possibilities divided into three groups: local, interleaved, and global. Local inter-
connections are with the nearest-neighboring PEs such as up-left, up, up-right, and
loops. The global connections are used for transferring the data among PEs in
both vertical and horizontal directions by using specific point-to-point connections.
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Fig. 4.2 PE core template © 2009 IEEE [4]
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Each particular application has to be performed according to its mathematical
expressions with the most optimum placement and routing. At any clock cycle, the
pattern of interconnections among all PEs and the operations to be performed by
the PEs is called context. The functionality and routing of the existing PEs can
be switched as required for application processing. Enabling a different context
is based on the configuration words stored in the local configuration memories.
Each configuration word is composed of an operation filed for specifying the
task of each PE and also address field to specify its destination address. Each
configuration word includes an operation and address field to specify the task
of each PE and its destination address, respectively. The configuration words are
sequentially injected into the configuration memories and distributed among the
PE array in a pipelined fashion with the help of a DMA device. The CREMA-
generated accelerators are programmable in C and COFFEE RISC core performs
the control operation by writing control words in the accelerator control registers.
As the first step, a graphical platform called Firetool can be utilized for defining the
functionalities of the PEs and routing among them. Then configuration files will be
generated for mapping and run-time reconfiguration. At the system start-up time, the
configuration data is loaded using the DMA device. After configuring the array with
a set of contexts, the data to be processed should be loaded into the local memories
of CREMA. Then a context should be enabled for configuring the functionalities of
the PEs and the routing among them. Once the data is processed over the PE array,
a new set of data can be loaded in one of the local memories based on the algorithm
flow. These steps may be repeated until the algorithm completes its execution. In this
chapter, we further scaled up CREMA to AVATAR (a 4 � 16 array) [8], as shown
later.

4.3 Design Implementation and Algorithm Mapping

In this section, design and implementation of OFDM receiver shown in Fig. 4.3
using template-based CGRAs are studied in detail and fully described. In this
experimental work, OFDM data symbols are generated based on IEEE 802.11a/g
specifications. Since the experimental platform is a processor/coprocessor model,
COFFEE core is the supervisory module in the system besides its general-purpose
functionality. Thus, the reference measurements are based on COFFEE (system)
clock cycle. In the following, the design and implementation of application-specific
accelerators for OFDM receiver blocks on a CGRA is presented.

4.3.1 Time Synchronization

The first block of OFDM receiver after Analog-to-Digital Converter (ADC) is Time
Synchronization which is essential for detecting the arrival time of the received
OFDM symbols and the right position of Fast Fourier Transform (FFT) window
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precisely. In different wireless standards, synchronization requires the calculation
of the correlation for determining similarity between two signals. The timing
synchronization can be performed by using Cyclic Prefix (CP) or Guard Interval
(GI) correlation method [18]. In telecommunications, the term CP is introduced
for coping with Inter-Symbol Interference (ISI) which refers to the prefixing of a
data symbol with a repetition of the end. According to the CP correlation method
shown in Fig. 4.4, the received signal .yn/ is correlated with its delayed version.
The delay z�D is equal to the length of CP which is 16 based on IEEE 802.11a/g
standard specifications. It should be considered that the length of received data
symbol according to the mentioned standard is equal to 80 (64 FFT and 16 CP),
if there is no multipath propagation. This method will produce outputs cn and zn

shown in Fig. 4.2 and expressed in (4.1) and (4.2), respectively.

cn D cny�
n�D (4.1)
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zn D
L�1X

iD0

ciCn (4.2)

In order to have optimal placement and routing over the PE array, (4.1) can be
simplified as (4.3) where R and I stand for Real and Imaginary parts of the received
signal, respectively.

cn D ..cn.R/ � yn�D.R// C .cn.I/ � yn�D.I///„ ƒ‚ …
Real

C ..cn.I/ � yn�D.R// � .cn.R/ � yn�D.I///„ ƒ‚ …
Imaginary

(4.3)

The mapping of an 80-point correlation algorithm on CREMA according to the
above equation can be performed by using two contexts shown in Figs. 4.5 and 4.6.
These two contexts must be enabled in a sequence for complete implementation of
the above equation. The functional contexts are the same for all PEs. However, the
only difference between the two contexts is related to their I/O buffers. Furthermore,
some PEs should be switched off for each context which can be performed by
disabling the specific parts of I/O buffers. The first context is related to the loading of
immediate values required for performing shift operation after each multiplication
to prevent any overflows. As the first step, the received data symbols must be
loaded into the first local memory and multiplied by the complex conjugation of
its delayed version. In order to perform Time Synchronization for 80 data symbols,
80 correlations are required. Both contexts are indicated by the indexes from 0 to
79 which belong to 80-point correlation. For each correlation, a sum-of-products
of the results of complex multiplication is required for calculating the final result
of each correlation. The summation operation can be performed using feedback
addition. During this process, the data symbols are also shifted by one position
using Unregistered-Feed Through (URF) feature of the PE. A shifted version of the
data is transmitted to the second local memory which allows accomplishment of the
next step. In order to achieve higher processing speed and reduce the execution time,
the generated accelerators related to the correlation algorithm can be redesigned by
scaling-up CREMA which is called AVATAR. AVATAR is composed of a matrix
of 5 rows � 16 columns of PEs and two 32-bit local memories each of size 32
columns �512 rows. I/O buffers are also made of 32 of the 32 � 1 multiplexers and
32 of 32-bit registers.

The mapping of an 80-point correlation algorithm on AVATAR is depicted in
Figs. 4.7 and 4.8. Similarly, as the first step, data should be loaded into the first
local memory of AVATAR. Second context has been designed for performing two
different tasks which is only used once for the first correlation. The first task
is multiplication between the received signal and the complex conjugation of its
delayed version, indicated by the indexes from 0 to 79 which belong to 80-point
correlation. The second task is related to data distribution for maximizing the
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Fig. 4.5 First context for the calculation of the correlations [15] © 2015 IEEE

parallel usage of resources. Then the direction of the data flow will be changed
from the second local memory to the first one for processing four correlations in
parallel. As it can be observed in Fig. 4.8, four URFs are used in order to shift the
delayed version of received data symbols by four-cycle delay during each iteration
which allows accomplishment of the next step. It means that each four correlations
and data shifting can be performed in parallel using just one context until all 80
correlations complete their execution.

In the next step of Time Synchronization block, the largest value has to be
searched by the RISC core as it will indicate the index of the time offset specifying
the edge of the first FFT window.
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O�s D argmax
n

j zn j

D argmax
n

j zn.R/ � zn.R/ C zn.I/ � zn.I/ j (4.4)

As it can be seen from (4.4), O�s specifies the largest value among the 80 values
of the performed correlations where R and I represent the Real and Imaginary parts.
Since the results are complex, the Square Modulus .SMn/ is required to calculate the
magnitude of complex numbers. The SM can be mapped on a template-based CGRA
by using just two columns of PEs. As it is shown in Fig. 4.9, n D 0; 1; 2; : : : ; 79

are representing the results of square modulus stored in the second local memory.
Once the computation of square modulus is completed, the results are returned to
the RISC core for probing the largest peak as well as the index of time offset. Then
the COFFEE RISC core performs search algorithms for this task.
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Fig. 4.9 Two columns of the context for the square modulus [15] © 2015 IEEE

The mapping of Time Synchronization on CREMA platform requires three
contexts. The immediate values used for performing the shift operation after
each multiplication can be loaded in the first context. The second context is
used for correlations and the third one is required for SM. The number of clock
cycles required depends on the size of the correlation window and therefore they
decrease as the correlation window shifts. For example, 80 clock cycles are required
(excluding latency due to PE arrays) to perform 80 points correlation. However,
in the next iteration, 79 clock cycles are needed to compute 79 points correlation
and so on. The 80 correlations are implemented in 4015 system clock cycles in
total. There is an overhead between each correlation during the entire correlation
kernel because of the control operations that are performed by COFFEE RISC core.
Control operations are composed of context switching, reloading of I/O buffers,
reconfiguration, and transferring the data from the main memory to local memories
or vice versa. Calculation of the square modulus is performed in 192 system clock
cycles including communication overhead. Then, the maximum value along with
its index (time offset) can be found using COFFEE RISC core software in 835
clock cycles. The overall process of time synchronization can be executed in a total
of 5042 system clock cycles by using both CREMA and the processor software.
In the case of AVATAR, the total number of clock cycles for the complete Time
Synchronization implementation is equal to 1681 which gives us 4.0� speed-up in
comparison with CREMA CGRA implementation.
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Fig. 4.10 Upconversion and downconversion of signal in transceiver

4.3.2 Frequency Offset Estimation

OFDM waveform is composed of multiple sinusoidal components. As it is depicted
in Fig. 4.10, a transmitted signal should be upconverted to carrier frequency before
transmission and then downconverted from the same carrier frequency at the
receiver side. Because of the device impairments [6], OFDM is sensitive to Carrier
Frequency Offset (CFO). Therefore, the received baseband signal might be centered
at f� instead of zero which is equal to the difference between the carrier frequencies
in transmitter and receiver side. One of the methods for estimating the CFO is using
short training sequences that are added by the transmitter. Lets assume that rn is the
received signal and can be expressed as

rn D xnej2� f�nTs ; (4.5)

where f� stands for the frequency offset and xn is the transmitted signal. Frequency
offset can be estimated by using delay and correlation method based on (4.6).

z D
L�1X

nD0

rnr�
nCD

D
L�1X

nD0

...rn.R/ � rnCD.R// C .rn.I/ � rnCD.I///„ ƒ‚ …
Real

C ..rn.I/ � rnCD.R// � .rn.R/ � rnCD.I///„ ƒ‚ …
Imaginary

/ (4.6)
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Fig. 4.11 Context for the multiplication between a signal and its complex conjugation [15] © 2015
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According to IEEE 802.11a/g specifications, the value of delay D is equal to
16 which is calculated by multiplying the period of short training symbols and
frequency space (0:8 �s �20 MHz). The short training symbols can be used for
frequency offset estimation and are composed of 160 predefined data symbols
added by the transmitter. Accordingly, there is a need to compute 160 complex
multiplications. The main processing context of the accelerator generated is shown
in Fig. 4.11, where r and rD stand for received signal and its delayed version,
respectively. Subsequent to the multiplication among the received signal and the
complex conjugation of its delayed version, the frequency offset estimation can be
expressed as

Of� D � 1

2�DTs
†z; (4.7)

where Ts is the sampling period and † takes the angle of z. For a complex number
x C iy, the phase angle equation can be expressed as (4.8).
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O� D atan
�y

x

�
(4.8)

At first, an imaginary part should be divided by the real part and then, the
phase angle can be computed by using ATAN function. It is feasible to execute
the division operation in processor software using COordinate Rotation DIgital
Computer (CORDIC) algorithm [19]. It is an efficient algorithm for the calcula-
tion of trigonometric and hyperbolic functions (functions of an angle), including
exponential and logarithmic. In addition, it might be used for other purposes
containing complex number multiplication and division. The CORDIC algorithm
for calculating the division operation can be written based on the following C code.
The accuracy can also be increased by increasing the number of MaxBits at the cost
of more execution time.

f o r ( i = 0 ; i < MaxBits ; i ++)
{
i f ( y < 0 | | z >= 0)
{
y = y + x� t ;
z = z � t ;
}
e l s e
{
y = y � x� t ;
z = z + t ;
}
t = t >> 1 ;
}

Once the division operation is performed, the phase angle should be computed.
In this case, atan function can be implemented by using several methods such as
CORDIC and Taylor series. However, Taylor series is selected due to its simplicity
and shorter execution time in COFFEE RISC processor software. Taylor series is an
expansion of a particular function into an infinite sum of terms about a point which
can be written as (4.9).

atan x D
mX

nD0

�1n

2n C 1
x2nC1 for � 1 < x < 1 (4.9)

Here, the value of m can be chosen based on the proposed accuracy. Finally,
the frequency offset correction can be implemented by multiplying the estimated
frequency offset and the received signal as represented in (4.10) where rn

0 is the
corrected signal, n is the sample index, and N is the number of samples in a symbol.

rn
0 D rn � e�j2� f�

n
N (4.10)
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The exponent of �j2� f�
n
N can be expanded by using Taylor series as (4.11).

ex D 1 C x C x2

2Š
C x3

3Š
C x4

4Š
C � � � for � inf < x < inf

D
1X

nD0

xn

nŠ
(4.11)

The above equation can be rewritten for a complex number z as

ez D ex.cos.y/ C i sin.y//; (4.12)

where z is composed of real part (x) and imaginary part (y). The cos and sin functions
can also be expanded by using Taylor series as a sum series which are expressed
in (4.13) and (4.14), respectively.

cos y D 1 � y2

2Š
C y4

4Š
� y6

6Š
C � � � for � inf < y < inf

D
1X

nD0

.�1/n

.2n/Š
y2n (4.13)

sin y D y � y3

3Š
C y5

5Š
� y7

7Š
C � � � for � inf < y < inf

D
1X

nD0

.�1/n

.2n C 1/Š
y2nC1 (4.14)

Finally, the received signal must be multiplied by the correction factor calculated
above using CREMA-generated accelerator with almost the same context as the first
one. As it is shown in Fig. 4.11, 160 complex numbers (320 real integer numbers) are
injected into the local memories in a way that the four complex multiplications can
be performed in parallel. Thus, the 160-point complex multiplications are performed
in 40 clock cycles in addition to 4 clock cycles latency of the PE arrays. The complex
multiplication results (320 real integers) are transferred back to the main memory
using the DMA device which requires 429 system clock cycles. The division
operation for calculating the phase angle of a single complex number requires 163
clock cycles. In the total of 160 complex numbers, the first 16 values are zero due
to the delay D mentioned in Eq. (4.6). As the remaining complex numbers are 144,
so the total number of system cycles required for all the phase angle calculations
are 144 � 163 D 23;472 clock cycles. The correction factor for 80 complex data
symbols mentioned in Eq. (4.8) is also implemented in processor software. This
process requires 5868 system clock cycles. The 80-point complex multiplication for
performing the frequency offset correction also requires 30 system clock cycles on
CREMA-generated accelerator.
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Fig. 4.12 Channel estimation based on linear interpolation

4.3.3 Channel Estimation

Transmitted data symbols after passing through the wireless channel may get
destroyed because of various impairments which require correction. Subsequent to
the recovering of the data symbols in FFT block [7], the channel frequency response
should be estimated. This issue can be performed in channel estimation block by
using the long training sequences or the pilots (shown in Fig. 4.12) which are added
in the transmitter side and known to the receiver.

The received signal Yn can be expressed as follows:

Yn D XnHn C Nn; (4.15)

where n is representing the number of subcarriers, Hn stands for channel impulse
response, and Nn is the additive noise. In the case of a linear channel, there are two
steps for performing channel correction [16]:

• Channel estimation attempts to estimate Hn

• Channel equalization attempts to correct Yn based on Xn

One of the methods is pilot-assisted linear interpolation algorithm. There are
some known training symbols for the receiver like pilots in WLAN OFDM which
can be employed for various targets. According to the IEEE 802.11a/g specifi-
cations, four specific values are inserted between data subcarriers as pilots prior
to transmitting the signal. The channel impulse response can be mathematically
expressed as

QHk D M�1PRx; (4.16)

where k is the number of pilots, PRx represent the received noise-impaired pilots, and
QHk is representing the channel impulse response of received pilots. Furthermore, M

can be represented as a diagonal matrix formed from transmitted pilots according
to (4.17).
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M D

2

6664

M1;1 0 � � � 0

0 M2;2 � � � 0
:::

:::
: : :

:::

0 0 0 Mk;k

3

7775 (4.17)

As it is shown in Fig. 4.13, the first context of channel estimation can be mapped
on CREMA by using only four columns of PEs in order to calculate the com-
plex multiplication between the Received Pilots (RP) and Inverse of Transmitted
Pilots (ITP). As the next step, the channel frequency response related to the other
subcarriers should to be calculated. It can be performed by using linear interpolation
method for approximating the value among two data samples. Equation (4.18)
is used for linear interpolation by expanding the channel frequency response of
four received pilots OHn and then estimating the channel frequency response of the
remaining subcarriers QHk.
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Np�1X
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QHk.i/ C„ƒ‚…
3

0

BBB@. QHk.i C 1/ �„ƒ‚…
1

QHk.i// �„ƒ‚…
2

j � 1

Ns„ƒ‚…
�

1

CCCA (4.18)

Here Np, Ns, and � are representing the number of pilots, the number of samples
between the two pilots, and the step size, respectively.

As it is shown in Figs. 4.14 and 4.15, the step size has to be loaded along
with the real and imaginary parts which can take 16 different fixed values.
Equation (4.18) can be mapped on CREMA in three steps that is also shown in
Fig. 4.14. Furthermore, delay operations are used for preprocessing the data. The
last two columns of PEs (dashed border) are not active in the first context and
can be instantiated in the second one for transferring the results of the real part of
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linear interpolation. Once linear interpolation is performed, the computed channel
frequency response is returned to the main memory of RISC core as it will be needed
again for performing channel equalization.

After estimating the channel frequency response, channel equalization is the next
step for correcting the noisy data symbols Yn the closest possible to Xn. Therefore,
the received signal should be divided by its channel frequency response as expressed
in (4.19).

OYn D Yn

OHn

(4.19)

Although the CORDIC algorithm can be employed for performing the division
operation, but another algorithm is proposed to be used in this case since the
mapping of CORDIC algorithm on template-based CGRA is not efficient due to
using iteration in that. In this case, the denominator can be assumed a fixed value due
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to the specific pilots which are added in the transmitter. The selected algorithm for
executing the division operation is Newton–Raphson method [17] as an algorithm
for computing the root of an equation expressed as

xnC1 D xn C f .xn/

f 0

.xn/
; (4.20)

where n is the number of iteration started from zero and xn is the initial guess of
the root. In order to use the above equation for the division operation, it has to be
modified according to Eq. (4.21) where D stands for the denominator.

xnC1 D xn C
1
xn

� D

� 1
x2

n

D xn C
 

1
xn

� D

� 1
x2

n

� �x2
n

�x2
n

!

D xn � .�xn C Dx2
n/

D 2xn � Dx2
n

D xn:.2 � Dxn/ (4.21)

Since the denominator might be a complex number because of the noisy channel, it
would be simplified to a number for mapping on CGRA based on (4.22).

x C iy

a C ib
� a � ib

a � ib
D .x C iy/ � .a � ib/

a2 C b2
(4.22)

Here x C iy, a C ib, and a � ib stand for demodulated data symbols after FFT block,
estimated channel response, and complex conjugation of the channel response,
respectively.

As it is shown in Figs. 4.16 and 4.17, in order to perform channel equalization,
Newton–Raphson method should be mapped on CREMA for computing the value
of 1

a2Cb2 where D is equivalent to .a2 C b2/ based on Eq. (4.21). Here a and b
are representing the real and imaginary values of the channel frequency response.
The execution of Newton–Raphson method according to Eq. (4.21) can be imple-
mented by tailoring the CREMA as two contexts. During the first context related to
Newton–Raphson algorithm, multiplication among the real and imaginary values,
addition, and then multiplication between the result of addition and the initial guess
(Dxn) have to be performed, respectively. During the second context, the final result
of division ( 1

a2Cb2 ) is computed and then transferred back to the main memory of
RISC core using the DMA device. In the last step, the complex multiplication among
the demodulated data symbols and the complex conjugation of estimated channel
frequency response should be performed in another context shown in Fig. 4.18.
Once the complex multiplication is performed, the results of Newton–Raphson
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Fig. 4.16 First context for the Newton–Raphson method [15] © 2015 IEEE

division are transmitted back from the main memory to the CGRA to perform
channel equalization. Within this stage, multiplication as well as the shift operation
is required to produce the final product shown in Figs. 4.19 and 4.20. Here Resi

stands for equalized received data.
The design and implementation of an application-specific accelerator for channel

estimation block is performed completely using CREMA with eight contexts and
seven I/O buffers. As it is shown in Table 4.1, the overall processing of channel
estimation requires 686 system clock cycles.

4.4 Experimental Results and Conclusion

The generated accelerators are synthesized for Altera Stratix-V 5SGXEA4H1F35C1
FPGA device. Table 4.2 represents the resource utilization summaries of each of the
designed accelerator on FPGA device. The consumption of ALMs on the FPGA
device in case of AVATAR is almost three times more than CREMA because
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Fig. 4.17 Second context for the Newton–Raphson method [15] © 2015 IEEE

of increasing the size of the PE array and the multiplexers in the I/O buffers.
Furthermore, the DSP consumption of AVATAR is twice in comparison with
CREMA which is related to the number of 32-bit multiplication. The maximum
operating frequencies of the accelerators generated are shown in Table 4.3 at two
different temperature in the fast and slow timing models and in two different
categories, i.e., the clock frequency of PE array and system. It can be observed that
the operating frequency of CREMA-generated accelerator is roughly 1.3� higher
than the operating frequency of AVATAR.

Power estimation has been implemented using PowerPlay Power Analyzer Tool
of Quartus II 15.0. To estimate power dissipation, the postfit gate-level netlist
for each accelerator is generated and then the timing simulation is performed
which is the most accurate method. A Value Change Dump (VCD) file is used
for power estimation which is generated using ModelSim software. The VCD file
contains signal transition activity information of the design [3]. The estimated power
dissipation for each designed accelerator is shown in Table 4.4. The power analyzer
tool showed a “HIGH” level of confidence for all estimations. From the table, it can
be concluded that the static power which is required to keep the device in the ON
state is almost the same for both platforms due to the unused portion of the FPGA
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chip. However, AVATAR requires 1.5� dynamic power consumption in comparison
with the CREMA as the size of CGRA increases which results to increase the
number of signals those have switching activity at a specific time instant.

The speed-up for each designed accelerator is computed according to the product
of the total number of clock cycles and clock period which is called execution time.
Thus, the overall speed-up is equal to the ratio of old execution time to the new one
for a system. Table 4.5 depicts that the performance of CREMA and in its scaled-
up version, AVATAR, gives a significant speed-up compared to the COFFEE RISC
software.

In this chapter, three processing blocks related to OFDM baseband receiver are
designed and implemented. The implementation is performed using a template-
based CGRA which can be tailored to the computational requirements of the
target algorithm. In comparison with a Reduced Instruction-Set Computing (RISC)
processor software, the implementation of Time Synchronization and Frequency
Offset Estimation on the CGRA shows speed-ups for different subsets of their
algorithms. Furthermore, the Channel Estimation implementation on CGRA shows
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an overall speed-up 9.2� in comparison with the RISC core. The measured power
dissipation for designed accelerators are also presented in this experimental work.
In future, the generated accelerators can be redesigned by using different CGRA
templates made by scaling-up CREMA for achieving higher processing speed and
reducing the execution time at the cost of more resource utilization and higher
transient power dissipation.

Acknowledgements This research work is conducted by the Department of Electronics and
Communications Engineering, Tampere University of Technology, Finland. It was funded by the
Academy of Finland under contract # 258506 (DEFT: Design of a Highly parallel Heterogeneous
MP-SoC Architecture for Future Wireless Technologies).



86 S. Nouri et al.

Res15
Real

Res15
Imag

Res31
Real

Res31
Imag

Res47
Real

Res47
Imag

Res1
Real

Res1
Imag

Res17
Real

Res17
Imag

Res33
Real

Res33
Imag

Res0
Real

Res0
Imag

Res16
Real

Res16
Imag

Res32
Real

Res32
Imag

>> >>

Res15
Real

Res15
Imag

Res31
Real

Res31
Imag

Res47
Real

Res47
Imag

Res14
Real

Res14
Imag

Res30
Real

Res30
Imag

Res46
Real

Res46
Imag

…
..

Res0
Real

Res0
Imag

Res16
Real

Res16
Imag

Res32
Real

Res32
Imag

Lo
ca

l M
em

or
y 2

 

…
..

Lo
ca

l M
em

or
y 1

 

>> >>

>> >>

>> >>

>> >>
>> >>

>> >> >> >> >> >>

>> >> >> >> >> >>

Fig. 4.20 Eighth context for the channel estimation

Table 4.1 Cost for different steps of channel estimation [15]
© 2015 IEEE

S/No Execution steps Clock cycles (CC)

1 Overhead 31 CC

2 Stage-1 complex multiplication 5 CC

3 Overhead 342 CC

4 Stage-2 linear interpolation 30 CC

5 Overhead 15 CC

6 Stage-3 Newton–Raphson method 30 CC

7 Overhead 163 CC

8 Stage-4 14 CC

9 Overhead 16 CC

10 Stage-5 14 CC

11 Overhead 12 CC

12 Stage-6 14 CC

Total 686 CC
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Table 4.2 Resource utilization summary of proposed accelerators

Resource utilization

Accelerator ALMs Registers Memory bits DSP

Time synchronization (CREMA) 6777 (4 %) 8196 267,520 (<1 %) 16

Time synchronization (AVATAR) 23,417 (15 %) 16,072 536,320 (1 %) 32

Frequency offset estimation 9316 (6 %) 9188 267,520 (<1 %) 32

Channel estimation 10,075 (6 %) 9566 267,968 (<1 %) 40

Table 4.3 Synthesis frequencies of designed accelerators

Max frequency 85 ıC j 0 ıC

Accelerator Slow model (MHz) Fast model (MHz)

clk_crema clk_sys clk_crema clk_sys

Time synchronization (CREMA) 271 j 291 347 j 397 376 j 419 504 j 531

clk_avatar clk_sys clk_avatar clk_sys

Time synchronization (AVATAR) 220 j 249 300 j 336 262 j 289 496 j 526

clk_crema clk_sys clk_crema clk_sys

Frequency offset estimation 168 j 196 285 j 330 271 j 297 426 j 468

clk_crema clk_sys clk_crema clk_sys

Channel estimation 191 j 204 267 j 310 274 j 305 391 j 426

Table 4.4 Power dissipation of designed accelerator

Static power Dynamic power I/O power Total power

Accelerator (mW) (mW) (mW) (mW)

Time synchronization (CREMA) 990 789 30 1809

Time synchronization (AVATAR) 1016 1202 31 2249

Frequency offset estimation 985 639 43 1667

Channel estimation 975 348 55 1378

Table 4.5 Performance comparison in clock cycles between COFFEE RISC core software and
CREMA by considering the clock frequency of system at 100 MHz [10]

Accelerator Application RISC CGRA Gain

Time synchronization Correlation (CREMA) 12,800 4015 3.2�
Time synchronization Correlation (AVATAR) 12,800 453 28.3�
Time synchronization Square modulus 1680 192 8.8�
Time synchronization Overall (By considering 15,315 5042 3.0�

DMA transfer on CREMA)

Time synchronization Overall (By onsidering 15,315 1681 9.1�
DMA transfer on AVATAR)

Frequency offset estimation 160-point complex multiplication 4338 467 9.3�
Frequency offset estimation 80-point complex multiplication 2338 842 2.8�
Channel estimation Overall 6274 686 9.2�
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Chapter 5
Reconfigurable Multiprocessor Systems-on-Chip

Diana Goehringer

5.1 Introduction and Motivation

Software Defined Radio (SDR) [1] is one of the most predestinated applications
for re-configurable computing. The reason for this is the diversity of algorithms
within the application, which changes from one use case to another. These changes
of algorithms, such as adapting a codec, encryption and error correction according to
the demands of the current signal to be processed, make reconfigurable hardware the
ideal platform for this kind of application. The benefit is obvious: hardware which
can be adapted to the demands of an algorithm can be reused and does not need
to be provided in parallel on the chip. This re-use leads to a reduction of chip area
which simultaneously reduces costs and power consumption. Looking more deeply
to the SDR algorithms brings up, that besides the reconfiguration also parallelism
can be exploited to improve the efficiency. Here the digital front end and the
baseband processing include many opportunities to parallelize the signal processing
by using several specific cores realizing a submodule of the general algorithm. The
combination of parallelism and reconfiguration of hardware blocks enables now to
adapt to changing requirements by substituting a module of the parallel hardware
architecture. A simple example is to exchange an encryption block which is used in
a secure communication environment. In a further scenario, this block might not be
used anymore, but a different codec for a protocol is reconfigured and substitutes
the encryption block. This is only one small example of the powerful methods,
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which can be used with reconfigurable Multi-Processor System-on-Chip (MPSoC)
architectures. In the next sections, a detailed view to the hardware architecture
and the mechanisms of dynamic and partial reconfiguration will be presented. It
motivates the usage within the SDR domain and enables to develop many more use
cases for future applications.

5.2 Background: Reconfigurable Hardware

There exist a wide variety of different types of reconfigurable hardware architec-
tures. They can be classified into coarse-, medium-, and fine-grained architectures
(see [2, 3] and [4]). This classification depends on the bitwidth of the logic blocks
as well as on the bitwidth of the routing resources between the logic blocks.
As the separation between those classes is not exactly defined, it can occur that
a reconfigurable hardware cannot be classified as a specific type of granularity.
An example for such a difficult case is an architecture where the bitwidth of the
logic blocks and the one of the routing differ from each other. As rule of thumb,
reconfigurable architectures with a bitwidth of less than 6 bits are classified as fine-
grained, those with a bitwidth between 6 and 8 bits are classified as medium-grained,
and all those with a bitwidth of more than 8 bits are classified as coarse-grained.

Coarse-grained architectures are less flexible than fine-grained ones and often
have a similar structure as Digital Signal Processors (DSPs), i.e., they consist of
an array of DSP-like processing elements with a fixed bitwidth each. Because of
this similarity with DSPs their main target application domain is signal processing.
A well-known commercial example for this kind of architectures is the PACT-XPP
[5]. Their advantage is a simpler programming paradigm compared to fine-grained
architectures and also a faster context switch. This means a part or the complete
functionality of the PACT-XPP architecture can be adapted at runtime within a few
clock cycles.

Fine-grained reconfigurable architectures are often called Field Programmable
Gate Arrays (FPGAs). They consist of an array of Look-Up Tables (LUTs), which
are connected with each other using a routing network of so called switchboxes.
Due to this, the fine-grained architecture has many choices for the user in terms
of bitwidth and application realization. Frequently used IP cores such as digital
signal processing elements and processors are implemented in some FPGA families
as specific on-chip hard-coded IP blocks. The advantage of this realization is an
improved performance compared to an implementation of the same functionality
using LUTs. FPGAs can be further classified into subgroups based on the type
of memory used for containing the configuration information. These subgroups
are: SRAM-, flash-, and fuse-based FPGAs. Some of the well-known vendors are
Xilinx, Altera, Lattice, and Microsemi. There also exist more and more startup
companies such as Tabula and Tier Logic. Xilinx and Altera are the market leaders
for SRAM-based FPGAs. SRAM- and flash-based FPGAs can be reconfigured
many times, while fuse-/antifuse-based FPGAs can be configured only once. Due to
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their reconfigurability, SRAM- and flash-based FPGAs are more flexible, because
they can be reused for different application scenarios. Due to their fine-grained
and flexible structure FPGAs are used for a wide variety of applications, e.g.
aerospace/defense, digital signal processing, automotive and medical applications
and are therefore more widely deployed than coarse-grained reconfigurable archi-
tectures. Their flexibility comes with a longer reconfiguration time compared to
coarse-grained reconfigurable architectures. SRAM-based FPGAs from Xilinx and
Altera provide currently the highest number of LUTs. Therefore, these FPGAs are
frequently used in rapid prototyping systems, such as Synopsis ChipIT [6] and
Cadence RP Platform [7], to evaluate the correct functionality of integrated circuits
before an ASIC (Application Specific Integrated Circuit) is fabricated. In addition,
FPGAs are frequently used in commercial products, for which the production of an
ASIC would be too expensive. These are typically products with either medium
sales volumes or systems which require a lot of field-updates, due to changing
protocols or functionality. Examples are entertainment systems in automotive-,
as well as in avionics systems and software defined radios. The reduced power
consumption of latest FPGA families and their support for partial reconfiguration
make them an attractive platform for a variety of applications.

5.3 Dynamic and Partial Reconfiguration

SRAM-based FPGAs, such as the ones offered by Xilinx, consist of two layers: the
first layer (see Fig. 5.1a) contains the reconfigurable hardware (LUTs grouped into
Configurable Logic Blocks (CLBs), wiring resources, etc.) and the second layer (see
Fig. 5.1b) is the SRAM-based configuration memory containing the configuration
frames. A frame is 1-bit wide and is the smallest piece of configuration information
that can be written to an FPGA. By writing configuration frames to the SRAM-based
configuration layer the hardware structure on the hardware layer, i.e. the function
of the LUTs or the wiring, can be changed before the initial start and at runtime.
For writing to and reading from the configuration layer, specific configuration and
control logic exists. The reading functionality can be used, e.g., to detect errors in
the hardware layer, due to event upsets. While in former FPGA families from Xilinx,
such as Virtex-II, the frame covered the complete height of the FPGA, this has been
changed on the newer architectures starting from Virtex-4. Here a frame only covers
a specific height, as shown in the tiled structure of Fig. 5.1b. This height depends on
the FPGA family, e.g. Virtex-4 uses 16 CLB-high and Virtex-5 uses 20 CLB-high
configuration frames.

Besides configuring the complete FPGA, some SRAM-based FPGAs such as
the ones from Xilinx and now also from Altera support a special feature called
dynamic and partial reconfiguration. This feature allows exchanging a subset of the
FPGA hardware architecture on the first layer, by overwriting only the dedicated
configuration frames in the corresponding SRAM configuration memory of the
second layer. During this partial configuration, the remaining hardware architecture
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Fig. 5.1 Layered-Structure of an SRAM-based Xilinx FPGA: (a) configurable hardware layer of
a Virtex-4FX20 FPGA; (b) SRAM configuration memory layer

stays operative and unaffected. Therefore, this process is called dynamic and
partial reconfiguration and allows using the FPGA hardware resources in a time-
multiplexed fashion for different application tasks. To write the configuration frames
into the second layer (SRAM configuration layer) Xilinx provides several external
(e.g., PCAP (Processor Configuration Access Port), JTAG) interfaces and an internal
interface called ICAP (Internal Configuration Access Port). Therefore, the dynamic
and partial reconfiguration can be controlled either from outside of the FPGA,
e.g. by using an external processor connected to one of the external configuration
interfaces (see, e.g., [8]) or from within the FPGA itself using the ICAP interface
(see, e.g., [9]). The internal interface only allows doing partial reconfiguration,
i.e. the control processor cannot reconfigure itself using this interface, while the
external interface allows both a complete reconfiguration of the FPGA and just
loading partial configuration bitstreams. This makes the PCAP, which is available
on the Xilinx Zynq FPGAs, such an interesting solution. The main benefits of
systems supporting dynamic and partial reconfiguration compared to static FPGA
systems are:

• Smaller FPGAs can be used, as the area is reused in a time-multiplexed fashion.
This means only the currently needed functionality has to be configured on the
FPGA at one point in time.

• Lower power consumption due to the smaller FPGA.
• Reduced costs due to the smaller FPGA.
• Shorter reconfiguration time because the reconfiguration time is proportional to

the size of the reconfigured FPGA area.
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• No down-time. The non-affected part of the FPGA design stays operative during
dynamic and partial reconfiguration.

• Higher flexibility, as the FPGA can be adapted at runtime to the current needs of
the application (algorithm, performance, power consumption).

• Higher fault-tolerance, as erroneous parts can be overwritten or exchanged at
runtime.

5.3.1 Benefits of Dynamic and Partial Reconfiguration
for Software Defined Radio Applications

Due to their configurability, SRAM-based FPGAs allow to receive an in-field update
of their hardware architecture, e.g., to support a new communication standard
in Software Defined Radio (SDR) applications. During this update typically the
complete FPGA is shut down and then a new full bitstream with the updates
is configured onto the FPGA. This results in a down-time of the system and a
connection loss. However, using dynamic and partial reconfiguration the FPGA
hardware can be updated without shutting down the FPGA. This is very important
for SDR, as the connection will not be lost if reconfiguration happens within a call
or session. Therefore, SDR was one of the first applications used by Xilinx in 2005
(see [10] and [11]) to show the benefits of dynamic and partial reconfiguration in
terms of flexibility, reduced system power and costs. Of course, to fully exploit the
reconfiguration during a call or session, it has to be assured that the reconfiguration
will occur fast enough and sufficient buffer space is available to store the incoming
data. An analysis of four SDR scenarios showing the benefits of dynamic and partial
reconfiguration and the requirements in terms of reconfiguration time, buffering
time and processing performance is given in [12]. The goal of this analysis is to
give developers a guideline in designing dynamic and partial reconfigurable systems
for SDR. Until now, several research groups all over the world investigate different
approaches for exploiting dynamic and partial reconfiguration for software defined
radio (see, e.g., [13] and [14]). The availability of open-source libraries, such as
GNU radio (www.gnuradio.org), further motivates the development of novel flexible
architectures for SDR.

5.4 Reconfigurable Multiprocessor Systems-on-Chip

During the last years, the available hardware resources on Xilinx and Altera FPGAs
have increased a lot allowing the implementation of complex systems, such as a
Multi-Processor System-on-Chip (MPSoC) consisting of 20 or more cores. Both
major FPGA vendors have seen the benefits of combining powerful processor cores
with the flexibility of reconfigurable hardware. As a result, both are cooperating with

www.gnuradio.org
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ARM, famous for low power embedded processors. Out of this, powerful reconfig-
urable SoCs were generated, such as the Xilinx Zynq (www.xilinx.com) and the
Altera SoC (www.altera.com), both combining an FPGA with an ARM dual-core
(www.arm.com) processor. Xilinx already announced the follow-up of Zynq called
UltraScale MPSoC, which contains even more specialized hardware IP (Intellectual
Property) cores combined with the flexible hardware architecture of an FPGA. Due
to the high amount of available reconfigurable resources on current FPGAs and the
available tool flows for designing dynamically and partially reconfigurable systems,
more and more academic and industrial solutions for reconfigurable single- and
multiprocessor systems have been introduced. To differentiate these systems from
each other with respect to their reconfigurability, well-known taxonomies, such as
the one from Flynn [15] which classifies systems based on single/multiple data
and instruction streams, are not sufficient anymore. Therefore, Goehringer et al.
proposed a new taxonomy (see [16] and [17]), which extends Flynn’s taxonomy
by differentiating between static (SI/MI) and reconfigurable instruction stream
(rSI/rMI) as well as static (SD/MD) and reconfigurable data stream (rSD/rMD)
systems. Systems with a reconfigurable instruction stream can reconfigure either
their instruction memory or their instruction set, e.g. using reconfigurable hardware
accelerators, or both. Reconfigurable data stream systems can either reconfigure
their data memory or modify the data paths or both. Figure 5.2 shows the taxonomy.
The four classes in the center (SISD, MISD, SIMD, and MIMD) are the ones known
from Flynn taxonomy and resemble systems that do not support reconfiguration.
Example architectures for each of the classes can be found in [16].

Fig. 5.2 Goehringer’s taxonomy [17]

www.xilinx.com
www.altera.com
www.arm.com
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A further extension of this taxonomy for datastream (anti-machine) no instruc-
tion stream systems has been provided by Hartenstein (see [18]) resulting in four
additional classes (SD, MD, rSD, rMD). Until now, many different reconfigurable
processor systems have been proposed, which can be classified based on this
taxonomy. However, the focus in the following is on reconfigurable multiprocessor
systems, as they provide the highest parallelism (MIMD) combined with reconfigu-
ration, resulting in the three classes: rMIMD, MIrMD, rMIrMD. The class rMIrMD
provides hereby the highest flexibility, because it contains multiple instructions and
data streams and both are reconfigurable, i.e., they can be adapted at runtime to the
requirements of the applications.

5.4.1 rMIMD: Multiprocessors with Reconfigurable
Instruction Streams

The first system approaches have been developed for the rMIMD class which
stands for MPSoCs with reconfigurable instruction streams, such as reconfigurable
instruction memories or reconfigurable accelerators. One of the first systems of
this kind was presented by Paulsson et al. [19] and Huebner et al. [20]. This
homogeneous MPSoC consisted of several Xilinx MicroBlaze processors and
supported the reconfiguration of the instruction memories of the processors in order
to load new software applications from the external flash memory at runtime. The
system was developed to target automotive applications.

Claus et al. [21] and Bobda et al. [22] also developed FPGA-based multi-
processor systems which can be classified as rMIMD systems. In both systems,
the processors are fixed but the accelerators can be reconfigured using dynamic
and partial reconfiguration. The system developed by Claus et al. [21] is called
Autovision and targets image processing applications for advanced driver assistance
systems. The system developed by Bobda et al. [22] is called AMoC (Adaptive
Multiprocessor-on-Chip) and targets image processing applications in general.

The multiprocessor system proposed by Dobson et al. [14] consists of five Xilinx
Zynqs and targets SDR applications. The ARM dual-core A9 processors are static,
but the accelerators implemented on the FPGAs are reconfigurable, thus resulting in
rMIMD system.

Tumeo et al. [23] present a homogeneous FPGA-based MPSoC which supports
dynamic and partial reconfiguration of the processors. The goal behind this is to
increase the reliability by using dynamic and partial reconfiguration to exchange a
faulty processor.

Nguyen et al. [24] introduced an FPGA-based MPSoC called PR-HMPSoC.
This system consists of several tiles connected over an NoC [25]. A tile can be a
processor or an accelerator. Each tile can be exchanged using dynamic and partial
reconfiguration.
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A different approach is the XiRisc reconfigurable processor [26], which consists
of a dual-datapath VLIW RISC core. An additional datapath of this VLIW RISC
core is implemented as a closely coupled runtime reconfigurable datapath, called
PiCoGA (Pipelined Configurable Gate-Array). By reconfiguring the PiCoGA, the
instruction set of the processor and therefore the instruction stream are reconfig-
urable. The XiRisc was designed and optimized for DSP applications.

An additional example for a VLIW processor with a runtime reconfigurable data
path consisting of a coarse-grained reconfigurable array is the ADRES architecture
[27]. This reconfigurable array is used to extend the instruction set of the VLIW
RISC core and to increase the performance for special instructions, for example
related to multimedia applications.

All the above-mentioned architectures are just a subset of the MPSoCs falling
into this category and more and more are currently being developed due to the
provided flexibility by adapting the instruction stream of these architectures at
runtime.

5.4.2 MIrMD: Multiprocessors with Reconfigurable
Data Streams

MPSoCs belonging to the MIrMD class have static instruction streams and recon-
figurable data streams, i.e. they support reconfigurable data memories and/or have a
reconfigurable communication infrastructure.

Sander et al. [28] were the first to demonstrate the transfer of data from one
set of on-chip block memories (BRAMs) to another set of BRAMs using partial
reconfiguration over the ICAP interface. Shelbourne et al. [29] proposed Metawire,
which is an NoC architecture using the same principle as proposed by Sander et al.
[28]. This means, the NoC routers are not directly connected with each other on the
first layer of the FPGA. Instead the ICAP is used to read out the respective data
stored within a BRAM of the source router and transfer this data to the BRAM of
the destination router. The functionality was proven with an AM radio application.

Several reconfigurable communication infrastructures have been proposed. Pio-
nteck et al. [30] presented CoNoChi, which is a packet-based Network-on-Chip
(NoC) with a 2D mesh topology. It supports dynamic and partial reconfiguration of
the processing elements and the routers, i.e., the size of the NoC can be scaled at
runtime to fit to the current application requirements.

CSRA-NoC [31] is a circuit-switching NoC with a 2D mesh topology. It also
supports dynamic reconfiguration of both the routers and the processing elements.
The advantage of this NoC is the small size of the routers compared to a packet-
based NoC such as CoNoChi. However, the drawback is the comparable long setup
time to establish a communication channel between a sender and its destination, as
this is done using partial reconfiguration.
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The Star-Wheels NoC [32] combines packet- and circuit-switching. It has a
special topology consisting of several subnets using a wheel topology that are
connected over a central star topology. This NoC supports partial reconfiguration
of routers and the processing elements.

Recently, the RAR-NoC [33] using wormhole routing and a 2D mesh topology
has been proposed. As the previous NoCs it supports partial reconfiguration of
the routers and the processing elements. In addition the routing algorithm can be
adapted at runtime to avoid hotspots.

Also for this category more examples exist than can be mentioned here.
Especially, in the area of reconfigurable NoCs, a lot of research is being done.

5.4.3 rMIrMD: Multiprocessors with Reconfigurable
Instruction and Reconfigurable Data Streams

The rMIrMD class combines both the rMIMD and the MIrMD class. Basically
they consist of MPSoCs from the rMIMD class using either the ICAP for trans-
ferring data from one PE to another or using a reconfigurable communication
in-frastructure, such as the NoCs mentioned in the MIrMD class. The benefits of
this architecture are the high flexibility, as both the data transfer and the processing
elements can be reconfigured. However, designing and programming such a flexible
architecture is very complex. Therefore, so far only a few systems exist that fall into
this category. Two of them will be introduced more in detail in the next subsections.

5.4.3.1 RAMPSoC

The first MPSoC fulfilling these features has been RAMPSoC [34], which sup-
ports dynamic and partial reconfiguration of the processing elements (processors
and hardware accelerators) and the communication infrastructure. For the communi-
cation infrastructure it uses the before mentioned Star-Wheels NoC [32]. Figure 5.3
shows an example of the RAMPSoC architecture at one point in time.

RAMPSoC has one master processor called RAMPSoCVM (RAMPSoC Virtual
Machine) [35] and several slave processing elements. RAMPSoCVM is responsible
for scheduling and allocation of the application task to the processing elements.
It is also responsible for handling all reconfiguration decisions. Therefore, it is
connected to the ICAP using an own developed IP core called FSL-ICAP [9].
On this processor an embedded Linux operating system is running to abstract
from the complexity of the MPSoC and to provide a well-known interface to the
user. The user then can start his/her applications within the Linux interface and
the RAMPSoCVM will manage then all the required scheduling, allocation, and
reconfiguration decisions for this application. The slave processing elements can
be either processors with/without hardware accelerators or a Finite State Machine
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Fig. 5.3 RAMPSoC architecture at one point in time [17]

(FSM) with a hardware accelerator. The slave processors only run a small boot
program to receive incoming application tasks over the Network-on-Chip and store
them into their memory before execution. RAMPSoC uses a distributed memory
approach. Due to the limited on-chip memory of the FPGA, RAMPSoCVM uses
external memory for the Linux OS, while the slave processors use on-chip memory
and therefore do not have an OS but rather use an area optimized boot program.
Figure 5.3 also shows the Star-Wheels Network-on-Chip. As can be seen, only the
currently required number of routers are present on the FPGA. In addition, the
routers have the functionality to detect, if the connected processing element has
been exchanged or removed. Two additional components should be mentioned here
as well. The first one is the Virtual-IO, which allows connecting sensors (e.g., a
camera) and actors (e.g., a screen) to the Star-Wheels NoC. The second one is the
intelligent memory controller called i-memory controller [36], which manages the
access of the varying number of processing elements to the external memory. An
additional feature of this architecture is that it can be easily distributed over several
FPGA boards, as it was shown in [37].

Designing and programming such a system is not easy due to the huge design
space. The number and type of the required processing elements and their connec-
tions have to be specified. It has to be selected which of these elements need to be
reconfigurable. In addition, the applications have to be partitioned and optimized
to achieve a good performance on the selected processing elements. To support the
user, a semi-automatic design methodology, see Fig. 5.4, has been introduced in
[38] and extended in [17]. It consists of three phases and uses a combination of
commercial and own developed tools. The first phase is responsible for suggesting
an application partitioning, the number of required processors and their placement
within the Star-Wheels NoC. Therefore, this first phase requires the application
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Fig. 5.4 RAMPSoC design methodology [17]

described either as C/CCC code with or without the usage of MPI (Message Passing
Interface) or alternatively embedded Matlab code which has been translated to C
code using the M-to-C compiler from Matlab [39]. The functions of the resulting
C/CCC code are then analyzed with a commercial profiler, such as GNU gprof [40].
In addition, an own developed tool is used to analyze the required communication
between the functions. With this analysis, all required information needed (relative
computation time of the functions, communication effort between the functions)
for the Software (SW)/SW Partitioning tool is available. The SW/SW Partitioning
tool uses the hierarchical clustering algorithm to partition the application in such a
way that the computation load is well balanced and that the required communication
between the processors is reduced. Due to the heterogeneous architecture of the Star-
Wheels NoC a further optimization is done using the Task Allocation tool. This tool
will analyze how close the processing elements should be placed to each other to
reduce the communication delay over the Star-Wheels NoC. For this step a heuristic
is used, which combines a greedy algorithm with an optimization heuristic, which
is based on the Kernighan-Lin [41] and the Fiduccia-Matheyses [42] algorithms.

The second phase uses then again a commercial profiler to do a line-by-line
profiling for the function sets assigned to each individual processor. Based on this
line-by-line profiling, a hardware/software partitioning is done to move compute-
intensive functionality into hardware accelerators.

The third phase is responsible for generating all the required hardware and
software files needed for the RAMPSoCVM processor to manage the system.
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C-to-FPGA tools, such as VivadoHLS, are used to generate the code for the hard-
ware accelerators identified in Phase 2. An own developed MPI-library is linked to
the software functions to abstract from the low-level commands of the Star-Wheels
NoC. The Xilinx Embedded Development Kit (EDK) tools are then used to design
and synthesize the MPSoC and to compile the software executables. To generate the
full and partial bitstreams an own developed tool called GenerateRCS is used, which
calls the Xilinx tools for generating the full and partial bitstreams. In addition, the
design methodology generates an XML description, which includes the description
of the task graphs and their ideal relevant placement to each other within the Star-
Wheels NoC. The resulting files of the design methodologies are then given to the
RAMPSoCVM at system startup.

RAMPSoC has been evaluated with a variety of different applications such as
image processing, 3D Ultrasound Computer Tomography and Bioinformatics.

5.4.3.2 RAR-MPSoC

A second architecture of this kind called RAR-MPSoC is built around the recon-
figurable RAR-NoC [33]. Besides the reconfiguration of the NoC, also here the
processing elements (processors and hardware accelerators) can be reconfigured at
runtime. Figure 5.5a shows the system architecture and Fig. 5.5b the corresponding
FPGA layout with the reconfigurable regions for the PEs and the routers.

As can be seen, this system uses the Xilinx Zynq architecture. Also here a
distributed memory architecture with one master and multiple slave processors
is used. The ARM functions as the master processor and is responsible for
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Fig. 5.5 RAR-MPSoC [33]: (a) system architecture, (b) FPGA layout
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reconfiguring the other processors and routers. For the reconfiguration, the PCAP
interface is used. Due to the higher clock rate and higher performance of the
ARM processor compared to the reconfigurable fabric, two high performance ports,
Accelerator Coherence Port (ACP) and High Performance Port (HP), are used to
connect the ARM to the RAR-NoC.

The system has been evaluated so far with image processing applications and an
automotive use case. In the future software defined radio will be implemented to
evaluate the flexibility, scalability and high energy efficiency of RAR-MPSoC for
this kind of application.

5.5 Conclusion and Outlook

Reconfigurable MPSoCs combine the benefits of traditional MPSoCs and FPGAs.
Due to dynamic and partial reconfiguration, these systems can adapt at runtime
both the software and the hardware according to the application requirements. This
way high energy efficiency as well as a high flexibility is achieved. In addition,
these systems are highly scalable, both on-chip and by connecting several chips
to a cluster. This makes them ideal candidates for hosting software defined radio
applications. In addition, open-source libraries such as GNU radio will even increase
the interest of the reconfigurable computing community to develop efficient systems
for this kind of application.
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Chapter 6
Ninesilica: A Homogeneous MPSoC Approach
for SDR Platforms

Roberto Airoldi, Fabio Garzia, Tapani Ahonen, and Jari Nurmi

6.1 Introduction

Embedded run-time Reconfigurable/Reprogrammable hardware is today largely
recognized as a necessity for the design of future generations of System-on-Chips
(SoCs) in order to face the continuous evolution of algorithms and protocols.
In particular, Multi-Processor Systems-on-Chip (MPSoC) are widely considered
an effective solution to deal with the increasing complexity of algorithms, their
rapid evolution due to standard updates and increase in performance requirements
[14]. MPSoCs offer high flexibility and high computational power. Moreover,
they offer programmers a known and standardized programming environment that
does not break the familiar Von-Neumann paradigm. Inter-core networking issues
and parallel thread dependencies are handled using standards and APIs that are
closely related to computer networks and thus well established both in industry
and literature. On the other hand, the flexibility of MPSoCs comes at the price of
more complex design parameters: MPSoCs are intrinsically more redundant than
application-specific or application-oriented designs and very often also of most
existing reconfigurable hardware solutions. General purpose processor cores feature
GOPS/mm2 and GOPS/mW signatures around 1 or 2 orders of magnitude larger
than application specific circuitry. As an example, Table 6.1 summarizes GOPS,
GOPS/mm2, and GOPS/W for state-of-the-art signal processing platforms.

While the area issue is somehow not critical in terms of silicon real estate due
to the resources made available by technology scaling, distributing a design over a
large silicon area will make it more subject to Process, Voltage, and Temperature
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Table 6.1 GOPS performance of State-of-the-art signal processing plat-
forms

Device Techno GOPS GOPS/mm2 GOPS/W

Morpheus [12] CMOS 90 60 0.6 20

ARM 9 CMOS 90 0.35 0.15 1

ST ASIC CMOS 90 NA 10 1000

TU iVisual [6] CMOS 180 77 1.16 205

KAIST vect. Proc. [9] CMOS 130 125 3.4 214

Philips Xetal II CMOS 90 107 1.44 170

Cell [10] CMOS 90 200 0.9 0.5

UCB Bee2 FPGA NA NA 2.2

Virtex-4 SX55 FPGA 50 NA 3.5

Xilinx Virtex-II 8000 FPGA 450 NA 3.5

(PVT) variability issues leading to lower design yields. Even more critical is the
increase in power consumption: power is not only a critical design parameter in
itself. The presence of strong current densities in the die might lead to significant
design issues such as thermal dissipation, static and dynamic IR drop, electro-
migration and electro-magnetic interferences that in turn may cause hard and soft
errors that can jeopardize the functionality of the whole design.

When considering SDR platforms, the majority of the proposed approach is
based on heterogeneous solutions [13, 15]. Indeed heterogeneous solutions offer
today the best compromise in terms of performance, area, and power consumption.
On the other hand, such architectures introduce complications in the application
development. In fact, a heterogeneous set of components requires a heterogeneous
set of tools, based on different programming languages and interfaces. Therefore,
from a programmability and scalability point of views, homogeneous architec-
ture might be more appealing. Furthermore problems related to task scheduling,
resources contention, and hardware scalability have a higher impact when trying
to realize heterogeneous platform composed of an increasing number of nodes.
Therefore, it is interesting from a research point of view to explore homogeneous
MPSoC solutions as a feasible way to mitigate such issues.

In this book chapter, the authors propose a homogeneous MPSoC implementing
kernels related to wireless communications systems. Focus of the research work
is the analysis of implementation efficiency, scalability of the algorithms with the
number of processing nodes and portability of the solutions. Key point of the
research will also be the impact that power saving techniques have on the system
performance when applied to MPSoC.

The rest of the paper is organized as follows. Section 6.2 introduces Ninesilica
architecture and discusses its main features. Section 6.3 briefly describes the study
cases analyzed and their implementation on Ninesilica. Section 6.4 summarizes
the obtained results in terms of achieved speed-ups, absolute performance, energy
consumption, and parallelization efficiency. Finally, Sect. 6.5 discusses conclusions
and future work directions.
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6.2 Ninesilica Architecture

Ninesilica architecture provides a generic platform composed of an arbitrary number
of Processing Nodes (PNs) arranged in a mesh topology. The interconnection
between PNs is supported by a hierarchical Network-on-Chip [1]. The template
allows the partition of the platform in clusters, which are composed of an arbitrary
number of nodes, obtaining a hierarchical type of architecture. Ninesilica is a
homogeneous cluster composed of nine nodes arranged in a 3 � 3 mesh. The cluster
can be utilized as standalone block or as a building block to realize clustered many-
core architectures.

A schematic view of one Ninesilica cluster and its internal node structure are
given in Fig. 6.1. Each node is composed of 16 KBytes data memory (DMEM), 16
KBytes of instruction memory (IMEM) besides COFFEE RISC core and Network
Interface (NI). Hardware Description Language (HDL) of COFFEE RISC core is
freely available from the COFFEE RISC project website [7]. The PE utilized in for
this research work is not the main focal point. In fact, the authors are interested in
the system properties that are independent from the type of PE utilized; the obtained
results could be applied to any similar architecture based on different type of PEs,
affecting only the absolute performance, but for example, scalability, parallelization
efficiency, and relative power consumption would not be influenced by the PE
choice.

6.2.1 Network-on-Chip

The NoC is the backbone of the template, allowing the composition of different
architectures based on a different number of cluster and/or nodes. The hierarchical
NoC provides two levels of communication inside a cluster. The lower level takes
care of the inter-node communication while the higher level takes care of the
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COFFEE RISC
CORE
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INITIATOR

TARGET
INSTRUCTION

MEMORY
DATA
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Fig. 6.1 Schematic view of Ninesilica cluster and its node structure
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communication at cluster level. The NI of each node acts as a bridge between the
two communication levels. The NoC supports single-cast, multi-cast (symmetric
and non), and broadcast communication. The multicast and broadcasting is accom-
plished via the repetition of the packet from a node to another. It was proved that
the utilization of the broadcasting technique could improve the system performance
of a 30 % factor [2].

In clustered architectures, a third level of hierarchy connects the different clusters
together. The interconnection routes can be adapted at run-time to different traffic
conditions. Each NI contains a look-up-table with 16 possible routing paths for the
communication over the NoC. Routing paths can be redefined at run-time according
to the application requirements. The clustering is a feasible way to efficiently
implement many-core systems, while keeping the communication overhead limited.
This is true in particular when most of the data exchanges occur between nodes
belonging to the same cluster, while only few synchronization messages and data
exchanges will take place between clusters.

6.2.2 Power Management

The template provides power management support based on clock gating controlled
via software. Each node in the architecture has three power domains: one for the
memories, one for the network interface, and one for the PE. Therefore it is possible
to define different sleep states for each node. Light sleep mode is utilized when
a PE has no processing to be done and it is waiting for a new chunk of data. In
such a scenario DMEM and NI need to be active to allow the download of the
data. However, the PE can stay in a sleep mode, since there is no processing to be
performed. Sleep mode is utilized when processing in a node is completed. In this
case there are two possibilities. Either the node is utilized as repeater for multi-
cast communications or the node is completely idle. In the first case, both PE and
memories can be kept in sleep mode, however the NI needs to be clocked to allow the
re-routing of communications. In the second case, the node is completely switched
off, allowing a higher energy saving.

6.2.3 I/O Management

An SDR application is characterized by data-streaming. In Ninesilica cluster, the
only node connected to the input ports is the central node. The central node
acts as cluster controller and it takes care of data and tasks scheduling, power
management, and synchronization. The central position in the cluster offers the
most uniform latency in the data distribution and a balanced workload on the NoC.
When considering clustered many-core architecture, each central node of a cluster
is equipped with I/O, allowing each cluster to work independently on the received
data stream. This way it is possible to reduce the communication between clusters
to control-flow data, keeping a low communication overhead.
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Table 6.2 Stratix IV FPGA synthesis results of Ninesilica and 4 Ninesilica
clusters architecture

Entity ALUT Logic regs DSP blocks % Utilization

COFFEE RISC 7054 4941 16 1.6

NI 381 411 0 0.1

Central node 7617 5308 16 1.7

Processing node 7360 5167 144 1.7

Ninesilica cluster 71,679 50,897 0 17

NoC switch 2155 1489 0 0.5

(average)

Whole NoC 99,026 69,223 0 23.4

4-cluster architecture 352,970 247,099 576 83.5

6.2.4 Hardware Implementation

Ninesilica was fully implemented on an Altera Stratix-IV FPGA device
(EP4GX530). In particular, we implemented a standalone Ninesilica and a 4-cluster
architecture. The synthesis was carried out using Quartus II version 9.1 SP1 design
flow. Table 6.2 collects synthesis results. The four Ninesilica clusters utilize 83.5 %
of the available resources. Moreover, analyzing the breakdown of the system, it is
possible to notice that at node level, most of the resources are consumed by the
COFFEE RISC while the network interface occupies less than 0.1 %. Operating
frequency, setting a slow mode synthesis is 115.0 MHz. The maximum working
frequency in the fast FPGA mode is 180.0 MHz.

6.3 Cases Studies

To analyze the performance of Ninesilica and the 4-cluster architecture performing
SDR applications, we have considered two significant communication techniques
of state-of-the-art radio standards, and their respective kernels. The first one is
WCDMA [8]. WCDMA is widely used for state-of-the-art cellular communications.
Therefore its implementation is significant to the scope of this research work. The
second communication technique analyzed is OFDM [13]. In the past few years
OFDM has been gaining a lot of interest as a feasible way to obtain high data rates.
OFDM is widely utilized in most of today’s broadband communications standard,
such as: IEEE 802.11a/g/n (WiFi), IEEE 802.16 (WiMax), and 3GPP-LTE (4G).
OFDM has also been considered as a physical layer communication technique
for highly innovative communications systems, as for example cognitive radios
[11]. WCDMA modulation, demodulation and timing synchronization are based
on the computation of correlations (e.g., in rake receivers) and for OFDM the most
demanding kernel computationally is the modulation/demodulation block, which is
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based on the computation of IFFT/FFT. According to the communication standard,
the FFT size can span from 64-point (i.e., IEEE 802.11a/g) up to 2048-point (i.e.,
3GPP-LTE).

6.3.1 WCDMA

One of the most significant kernels in WCDMA is the computation of cor-
relations. Correlations are utilized in the demodulation (rake receivers) and in
the time-synchronization steps. The time-synchronization steps involve different
functionalities from the multi-path detection to the cell synchronization. In this
section, we will briefly analyze how a correlation is mapped on the Ninesilica cluster
and see a few detail of the cell search algorithm implementation. The computation
of correlations for the timing synchronization can be formulated as

rn D 1

256

255X

iD0

RnCi � Ci (6.1)

where rn is the nth correlation point; RnCi is the .n C i/th input of the data-stream;
Ci is the ith sample of the coefficients. The parallelization can be done in two
different ways. In the first case, the accumulation can be split into N independent
accumulations, which are finally added together. In such a case, considering N
computational nodes, the formula can be rewritten as

rn D 1

256

N�1X

jD0

255=NX

iD0

RnCi�j � Ci�j (6.2)

where each internal accumulation is carried out by a single computational node. The
second option is to divide the computation on different set of nodes where nodes
perform the computation of following correlation points of the sliding window. In
this case, the communication overhead can be kept low since the data-stream is
broadcasted to the nodes and they operate only on their assigned window.

The cell search algorithm is composed of three following steps [4]. In the first
step in slot synchronization, the receiver gets aligned with the transmitted signal.
This step is accomplished by correlating the received signal with a known sequence,
which is transmitted at the beginning of each slot. The detection of high peaks in
the correlation output identifies the boundary of a slot. In the second step of frame
synchronization, the slots are actually classified and recognized. This allows the
selection of the possible scrambling code utilized by the transmitting base-station.
In this phase the incoming data-stream is correlated to 16 possible sequences to
identify the frame structure and hence the code-group of the transmitting cell.
Finally in the last step of scrambling code identification, the possible scrambling
codes (which are 8) are tested against the received stream. The scrambling code
which offers the highest correlation pattern is then identified as the one transmitted
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Fig. 6.2 Block diagram of a generic OFDM transceiver

by the base-station. Hence knowing the scrambling code utilized and the timing
synchronization from the previous two steps, it is possible to start the demodulation
of the incoming signal.

6.3.2 OFDM

A block level view of transmitter and receiver scheme of a generic OFDM is given
in Fig. 6.2. If we consider the computational complexity, modulator/demodulator,
which are based on the computation of IFFT/FFT, are the most critical blocks.
Therefore how the FFTs are implemented is quite important. Moreover, in a
flexible radio context, the implementation of the FFT cannot be fixed in size and
computation time. In fact, different standards utilize different numbers of sub-
carriers (FFT size) and require different symbol processing time. Hence, the FFTs
computation cannot be anymore done by a monolithic hardwired block, but it
requires a higher level of flexibility, which can allow changing the computational
block structure according to the OFDM system currently running on the platform.

In such a scenario, the implementation of FFTs on programmable parallel
architectures gains a lot of interest as a feasible way to obtain high flexibility
as well as high performance. However, when moving from a single DSP core to
multi-core platforms there are new issues that arise. Communication overhead,
which is a natural bottleneck of parallel architecture, might affect algorithm’s
performance lightly or heavily according to the algorithm partitioning adopted. In
fact, slightly different parallelization strategies might lead into different results both
in terms of performance and parallelization efficiency. Another important choice
in the implementation of the FFT block is the algorithm utilized. In literature, it
is possible to find many variants of algorithms leading to a reduced computation
complexity. However, the parallelization scheme introduced might dilute the benefit
introduced by the algorithm reduction. The parallelization technique and the
algorithm partitioning on the multi-core platform can significantly affect the final
algorithm performance.
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6.4 Analysis of Results

The kernels introduced in the previous section have been implemented and profiled
via cycle accurate simulation on:

1. a single core architecture (utilized as reference architecture) based on the same
PE of Ninesilica;

2. Ninesilica cluster;
3. and the 4-cluster architecture.

The experimental work shows the achieved speed-ups, parallelization-efficiency,
and relative energy saving when clock gating techniques are applied.

For the WCDMA technique, we implemented a single correlation point and
the cell search algorithm. For the OFDM system, we implemented a receiver for
IEEE 802.11a/g. Moreover, we analyzed in detail the FFT kernel and its parallel
implementation, implementing different algorithms and trying to find out which
algorithms give the best performance and in which situations.

6.4.1 WCDMA Cell Search

Cell search for WCDMA can be divided into three steps: slot synchronization, frame
synchronization, and scrambling code identification. Each step of the cell search
requires the computation of correlations on a sliding window with a different set
of coefficients according to the algorithm. Table 6.3 collects the profiling for the
computation of a single correlation point as well as the each single step of the cell
search algorithm, on a single core architecture and Ninesilica. Table 6.3 also reports
the relative energy saving that can be achieved when applying clock gating to the
system. It is worth mentioning that the introduction of clock gating does not affect
the profiling performance, even if software controlled, but it only avoids the energy
consumption in situations where cores are on hold.

Table 6.3 Performance of Ninesilica cluster computing the WCDMA cell search algorithm

# clock cycles # clock cycles Energy savings

Task Single COFFEE NineSilica Speed-up Via clock gating

Correlation point 12,381 2546 5� –

Slot synch. (fixed part) 52,890,764 7,147,387 7.5� 18 %

Frame synch. 3,750,593 471,458 8� 46 %

Scrambling code ID. 149,973 56,203 2.7� 40 %

Cell search 57,410,380 7,802,348 7.3� 33 %
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Table 6.4 Performance comparison between Ninesilica and 4-cluster archi-
tecture

# clock cycles # clock cycles

Task 4-cluster architecture NineSilica Speed-up

Correlation point 688 2546 3.7�
Slot synch. (fixed part) 1,906,649 7,147,387 3.7�
Frame synch. 276,428 471,458 1.7�
Scrambling code ID. 56,203 56,203 1�
Cell search 2,366,580 7,802,348 3.3�

Scaling the system from a single Ninesilica cluster to a 4-cluster architecture
requires the redefinition of the implemented step. After a detailed study of the
application it was possible to notice that for some steps of the algorithm a further
parallelization would have led into a lower speed-up and performance due to a
higher impact of the communication overhead. For such reason, the peak detection
of the slot synchronization and the scrambling code identification steps have been
kept on a single cluster while multi-path detection and frame synchronization have
been further distributed on the 4 clusters. Table 6.4 summarizes the performance
results and achieved speed-ups for the cell search implementation on Ninesilica and
the 4-cluster architecture.

6.4.2 FFT Parallelization and OFDM Receiver

The implementation of parallel FFT is a hot topic in the research community and
many research works can be found that consider different aspects of the parallel
implementation. In [5], the authors focused their attention on how to reduce the
communication overhead, utilizing an NoC as communication infra-structure. Bahn
et al. [5] also presents the study of different algorithm solutions for the data
exchange between the PE which led to different performance levels. Our interest
was to understand the behavior of different FFT algorithms on parallel architectures.
We have considered three FFT algorithms for implementation: radix-2, radix-4, and
radix-8. For the parallel implementation on Ninesilica, we studied the algorithms
data flows and we implemented the partitioning in the way that could lead into
the lowest number of data exchanges between nodes, keeping the overhead of
communication as low as possible [3]. Radix-2 algorithm performs three data
exchange steps. Figure 6.3a shows the data exchange actors for each one of the
three phases. From the figure it is possible to notice that each data exchange phases
require the communication and synchronization between pair of nodes with different
pair for each exchange phase. Radix-4 algorithm reduces the number of stages
required to perform the FFT and at the same times reduces the number of exchange
phases required. In fact, for a radix-4 algorithm only two data exchange phases are



116 R. Airoldi et al.
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c

Fig. 6.3 Actors for data exchange phases for radix-N algorithm: (a) radix-2; (b) radix-4;
(c) Radix-8

needed (see Fig. 6.3b). However in this case the first data exchange requires the data
exchange and synchronization not between pairs of nodes but group of 4 nodes at the
time. Therefore, a more complex data exchange and synchronization are required.
Finally, radix-8 algorithm requires only a single data exchange phase. This single
data exchange phase needs each node to communicate and synchronize with every
other node in the architecture. Such operation can be performed taking advantage
of the NoC capability of generating broadcast messages. An example of a broadcast
message is shown in Fig. 6.3c, where the top left corner node is generating a message
that via repetition reaches every node in the system. This leads in an even higher
overhead of synchronization and data exchange which potentially could nullify the
advantages of having a single data exchange phase.



6 Ninesilica: A Homogeneous MPSoC Approach for SDR Platforms 117

Table 6.5 FFT algorithms
profiling on NineSilica

FFT size # clock cycles # clock cycles

Algorithm COFFEE NineSilica Speed-up

64-point

Radix-2 22,214 3773 5.9�
Radix-4 10,937 3388 3.2�
Radix-8 10,282 3880 2.6�
2048-point

Radix-2 1,066,595 154,805 6.9�
Radix-4 656,536 129,803 5�
Radix-8 639,514 221,107 2.9�

Table 6.5 summarizes the profiling results for the implementation of small
(64-point) and large (2048-point) FFTs for the three radix algorithms. Analyzing the
absolute performance it is possible to notice that radix-4 algorithm shows the best
performance in both cases. However, when analyzing the parallelization efficiency,
radix-2 algorithms give the best results. The algorithm simplifications introduced by
radix-8, which on a single core leads to good performance, are completely hidden
by the overhead of communication required for the data exchange, making such
approach not suitable for parallel implementations.

Once that the best suitable implementation for the FFT block was identified
we implemented a receiver for the IEEE 802.11a/g which bases its physical
layer on the OFDM technique. In particular, it utilizes a 64-point FFT for the
demodulation. Beside the actual modulation the receiver has to perform tasks
such as timing synchronization, channel equalization, and symbol de-mapping. We
defined two macro-tasks. The first task takes care of packed detection and timing
synchronization; the second one takes care of the demodulation, equalization, and
symbol demapping. Figure 6.4 shows the partitioning of the macro-tasks on the
single Ninesilica cluster. Timing synchronization is based on the evaluation of
correlations sequences. The data is managed by the central node which is also
responsible for the evaluation of the results of the correlated data. For the second
macro-step the demodulation is performed by utilizing a radix-4 FFT algorithms.
While the computational nodes are demodulating the symbol, the central node is
performing the evaluation of the coefficient for the channel equalization, and then
delivering the new set of data to be demodulated. Such pipelined approach is able to
hide the overhead of communication under the computation of the previous symbol.

6.5 Conclusions

In this chapter, we presented Silicon café template and its first instances: Ninesilica
cluster and 4-cluster architecture. The utilization of homogeneous approach is
not very convenient when compared to heterogeneous solutions. Heterogeneous
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Fig. 6.4 Macro-steps for the implementation of an OFDM receiver on Ninesilica cluster: (a)
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solutions offer the best performance in terms of power, computation efficiency
and processing power. However, the number of processing elements inside an
MPSoC is continuously growing and heterogeneous solutions might become too
complex to design. Therefore the exploration of homogeneous platforms is needed.
In this chapter, we showed that homogeneous solutions offer a high scalability
in terms of hardware implementation as well as software partitioning. Speed-ups
close to Amdahl’s limit have been achieved and high energy saving are possible
via the utilization of clock gating controlled via software. The possibility to
realize architecture composed of clusters would also allow the implementation
of hierarchical solutions and architecture composed by a heterogeneous set of
homogeneous clusters.
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Chapter 7
Application of the Scalable Communications
Core as an SDR Baseband

Anthony Chun and Jeffrey D. Hoffman

7.1 Introduction

Today’s consumers are increasingly reliant upon their wireless computing devices
(smart phones, tablets, wearables, and ultrabooks) for computation and communi-
cation, anywhere and anytime. Users expect constant connectivity for voice, data,
and multimedia access that has led to an explosion in the number of standards
that a wireless device needs to support: a multitude of cellular standards, mobile
broadband such as WiMAX (Worldwide Interoperability for Microwave Access)
IEEE 802.16 or 3GPP Long Term Evolution (LTE), wireless local area network
(WiFi), personal area network (Bluetooth), satellite navigation such as the Global
Positioning System (GPS) or Galileo or GLONASS, various broadcast digital TV
standards, and wireless display.

For the radio developer, there are a number of aspects to provide a superior
wireless device for the consumer:

1. Support for all of the target radio standards with excellent quality of service.
2. Seamless management of the target radio standards based upon the user’s profile.
3. Implementation of the radio that maximizes the user experience, including small

form factor, low cost, and long battery life.

In order to meet the requirement to support numerous radio standards requires
that the device incorporates multiple antenna, front end, baseband, and Media
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Access Control (MAC) components. Because instantiating a radio chain for each
standard can quickly increase the size of the radio, flexible radio solutions that
implement multiple standards have become the goal of radio developers. This
has led to the development of Software Defined Radio (SDR) technology that is
comprised of flexible components where each component can be reconfigured or
reprogrammed as necessary.

For a programmable radio, selecting and managing the wireless configurations
within the consumer’s device is becoming increasingly complex. For example, the
consumer may maintain a profile indicating which wireless services he or she is
subscribed to based upon physical location, time of day, etc.

We can envision a set of programmable wireless radio technologies to meet the
consumers’ needs and provide a seamless user experience:

1. Flexible Radio: the radio supports multiple standards although not all are
available simultaneously. The change in the radio configuration is initiated by
the user and the rate of change of the radio’s configuration is relatively slow,
such as when the user arrives in a different location.

2. Adaptive Radio: the radio adapts automatically to maximize the user experience
based on sensing of the radio environment, for example, by increasing throughput
or minimizing latency by selecting the appropriate Modulation Coding Scheme
if the radio environment is favorable. The change in the radio configuration is
initiated by the radio and the rate of change of the radio configuration is relatively
fast, such as when the radio detects an improvement in the Signal-to-Noise ratio
or the availability or lack of availability of a particular wireless standard. An
example might be a handoff between the cellular and WiFi radios when the user
enters his/her home.

3. Cognitive Radio: the radio adapts autonomously to maximize the user experience
based on the radio environment and the user’s preferences. The change in the
radio configuration is initiated by the radio using a cognition engine and the
rate of change of the radio personality is relatively fast, such as when the radio
detects nearby unused spectrum in order to maximize the available data rate and
minimize the user’s costs.

There are subtle differences in the above definitions: the required rate of change
of the radio configuration can be slower in a Flexible Radio and faster in an
Adaptive or Cognitive Radio. On the other hand, the Cognitive Radio requires more
sophisticated control and sensing capability than either the Adaptive or Flexible
Radios.

In order to meet the consumers’ demand for a wireless device that has a small
form factor, is inexpensive and is energy-efficient with a long battery life, the radio
architecture must be highly optimized. One of the challenges in the introduction of
SDR technology in consumer wireless devices (vs. in base stations) is meeting the
power and area requirements with flexible components that incur a higher cost in
area and power when compared to the corresponding fixed versions.

A critical component of the SDR is the digital baseband in the physical layer
(PHY), which executes computationally intensive algorithms but also must be
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flexible in order to accommodate different algorithms for modulation/demodulation,
equalization, encoding/decoding, etc. The Scalable Communications Core (SCC) is
an example of an efficient and flexible wireless baseband that was developed by
Intel Labs in Intel Corporation [4, 5, 11]. The SCC architecture is a multi-core SoC
consisting of flexible coarse-grained Processing Elements (PE’s) connected via a
Network-on-Chip (NoC).

The architecture achieves flexibility via the following features:

• The PEs implement common baseband signal processing kernels such as demod-
ulation, forward error correction decoding, and descrambling that were defined
after studying numerous wireless standards. Depending upon the kernel, each PE
is either programmable (complete flexibility) or configurable (limited flexibility).

• The programmable PEs are programmed in a high level language via a tool chain
that includes a compiler, debugger, simulator, and profiler.

• The configurable PEs are configured by setting appropriate control registers.
• The NoC enables flexible data routing between the right set of PEs for each

different standard.

The architecture is also area- and energy-efficient:

• Each PE design is tailored to its target kernel with the appropriate arithmetic
types, operators, and memory which is kept local to improve energy efficiency.

• The flexibility of each PE is constrained to be sufficient to meet the target
requirements—another way to improves both energy and area efficiency.

• The PEs are multi-threaded so that the architecture can simultaneously process
multiple standards using shared resources, which improve area efficiency.

• Data-driven control, in which configuration parameters are sent with data,
enables relatively fast reconfiguration of the PEs for supporting a different
standard with minimal intervention of a microcontroller, which improves energy
efficiency.

To demonstrate the technology, we implemented a test chip based upon the SCC
architecture, programmed it for a variety of standards and measured the area and
power consumption of the implementation. When it was originally designed, SCC
was intended to demonstrate a Flexible Radio architecture by showing how multiple
standards could be implemented on a programmable baseband; however, we believe
that SCC architecture with the integration of a Cognitive Engine can be potentially
applied to Adaptive and Cognitive Radio applications. In any case the architectural
and programming lessons that we learned from this research are worth sharing with
other SDR developers.

This chapter is organized as follows: in Sect. 7.2, we begin by describing the
SDR baseband requirements followed by an analysis of the key computational
kernels in Sect. 7.4. In Sect. 7.5, we discuss the SCC architecture, kernels, and the
NoC interconnect. In Sect. 7.6, we describe the implementation of various wireless
protocols and Sect. 7.7 summarizes the measurements of our silicon prototype.
Finally, we conclude with the lessons that we learned in Sect. 7.8.



126 A. Chun and J.D. Hoffman

7.2 SDR Requirements

The ETSI standard describes the capability requirements for SDR [9]. These
requirements and their impact on the baseband architecture are summarized
below:

1. Multiple Standards: The SDR device operates on multiple bands using multiple
bandwidths ranging from 200 kHz to 500 MHz and covers existing cellular
and non-cellular radios and new radio technologies. Impact: the radio must be
programmable for a range of current standards and be extensible via hardware
computational resources and software tools to support future standards.

2. Incremental Configuration: The SDR device loads a new radio while the current
set of radios is already running. Impact: the entire radio cannot be shut down
when a new radio configuration is added and resource allocation must be
dynamic.

3. Simultaneous Operation: The SDR device executes a number of radio standard
simultaneously using coexistence rules to mitigate interference. Impact: the radio
must have a global controller to coordinate the different operational radios.

4. Resource Sharing: The SDR device enables sharing of computational and mem-
ory resources among multiple radio applications. Impact: the architecture must
enable hardware sharing to maximize efficiency and support context switching
between different radio applications.

7.3 Supported Standards

As indicated in the previous section, the consumer SDR should support cellular
and non-cellular standards. Some of the desired applications include cellular,
Wireless Wide Area Network (WWAN) for mobile broadband, Wireless Personal
Area Network (WPAN) for communications between the device and a peripheral,
Wireless Local Area Network (WLAN) for local access, Global Navigation Satellite
System (GNSS) to support Location-Based services, Digital Video Broadcast for
High Definition video, and Wireless Display for projecting video. Some examples
of the radios that an SDR should support are shown in Table 7.1.

It is apparent from Table 7.1 that the flexible baseband needs to support a wide
range of data rates from 50 bits/s to 4 Gbits/s, modulations ranging from spread
BPSK to OFDM with 8K subcarriers, and potential requirement for state-of-the-art
4�4 MIMO processing.
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Table 7.1 Consumer SDR basebands should support a variety of wireless standards

Application Example standard User data rates Notes

Cellular 3GPP Release 8 LTE
[1]

324.6 Mbits/s (peak
downstream rate)

4�4 MIMO, OFDMA with
4096 carriers, SC-FDMA

Digital video
broadcast

DVB-T, ETSI EN
300 744 [8]

Up to 31.7 Mbits/s OFDM with 8K subcarriers

Global
navigation
satellite service

GPS [10] 50 bits/s BPSK direct sequence spread
spectrum

Wireless local
area network

IEEE 802.11a/n [12] Up to 600 Mbits/s 4�4 MIMO, OFDM

Wireless wide
area network

WiMAX IEEE
802.16ea [13]

40 Mbits/s OFDMA with 2048 subcarriers

Wireless personal
area network

Bluetooth v3.0+HS
[3]

Up to 24 Mbits/s Frequency hopping GFSK and
Differential 8PSK

Wireless display IEEE 802.15.3c-2009
[14]

Up to 5 Gbits/s OFDM with 512 subcarriers

a WiMAX was still being considered as a WWAN standard in 2008 when this work was done

7.4 Baseband Algorithms

7.4.1 Kernels

We developed the SCC architecture by first examining numerous standards and
studying baseband algorithms for many wireless standards, including some that
listed in Table 7.1 [5]. We identified baseband kernels that are common to numerous
standards, as shown in Table 7.2.

For our architecture, we arbitrarily defined the digital baseband as the physical
layer operations between the Digital Front End (DFE), which includes filtering,
resampling and gain control operations, and the Media Access Control (MAC),
which is part of the data link layer and includes addressing and access control
mechanisms.

An example of a generic OFDM baseband is shown in Fig. 7.1. The key baseband
algorithms for the receiver include the following:

• Channel Estimation: identification of the frequency response of the RF channel
characteristics such as fading and multipath based on pilot sequences or carriers.

• Channel Equalization: mitigation of the RF channel characteristics based on
either time or frequency-domain techniques.

• Multiple-Input and Multiple-Output (MIMO) detection: processing of spatial
diversity based on Minimum Mean Squared Error or Maximum Likelihood
Detection (or suboptimal variations of these) algorithms.

• Demodulation: correction of carrier and timing offsets and mapping of channel
symbols to either soft or hard decisions.
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Table 7.2 Wireless standards share common baseband kernels

Algorithm WiFi WiMAX 3G/LTE DVB-H UWB

FIR/IIR X X X X X

Correlation X X X X X

Spreading X X

FFT X X X X X

Channel estimation X X X X X

QAM mapping X X X X X

Interleaving X X X X X

Convolutional coding X X X X X

Turbo coding X X

Reed–Solomon coding X X X

Randomization X X X X X

CRC X X X X

Preamble
Ch. Est.

FFT 64 Ch. Corr

Pilot Tr.
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Fig. 7.1 Block diagram of an example OFDM receiver baseband

• Despreading: correlation of spread spectrum code sequences and recovery of
spread data.

• Block or convolutional deinterleaving: mitigation of burst bit errors.
• Forward Error Correction (FEC): decoding of convolutional, Turbo, Low Density

Parity Check (LDPC), and Reed–Solomon codes to mitigate channel bit errors
(Note: only the Viterbi decoder is shown in the figure).

• Descrambling: randomization of data patterns to improve spectral characteristics.

On the transmitter side, the baseband also includes the corresponding inverse
operations of scrambling, FEC encoding, interleaving, spreading, insertion of pilots,
and modulation.

We have arbitrarily assigned the filtering, resampling, and prefix removal opera-
tions for Orthogonal Frequency Division Multiplexing (OFDM)-based protocols to
the Digital Front End that is implemented in a dedicated block in our architecture.
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7.4.2 Kernel Analysis

After studying numerous wireless standards and analyzing the required baseband
algorithms, we observed many characteristics of the baseband kernels that are
summarized in Table 7.3.

Table 7.3 Observations of digital baseband kernels

Observation Description Implication

Regular data flow Data flow is regular and
unidirectional. Example: in the
receiver pipeline, data flows from the
antenna to the front end,
analog-to-digital converter (ADC),
demodulator, deinterleaver, FEC
decoder, descrambler, and then to the
MAC.

Group operations into kernels where
data movement and data types are
localized.

Constrained kernel
types

The kernel types for
communications algorithms are very
well defined and constrained.
Example: for OFDM-based
standards, FFTs and inverse FFTs
can be grouped into an optimized
FFT butterfly data path.

Define kernels to implement specific
arithmetic operations.

Local data access
patterns

Within each kernel, the data are
localized and the memory access
patterns are regular. Examples: fixed
data strides used for each stage of
the FFT or Viterbi Algorithm
Add-Compare-Select (ACS)
butterflies.

Keep memory local to each kernel,
which saves on bus power, reduces
number of ports on each memory
and power consumption at the
expense of overall increased area.
Simplify the design of address
generator units.

Amenable to
parallelism

Computationally intensive
algorithms such as FFT and Viterbi
decoding can be implemented to
take advantage of parallelism.

Implement data-level parallelism for
many of the kernels.

Stream processing For each kernel, samples stream
through the data path continuously
and configuration of the data path
remains fixed for a large number of
consecutive samples.

Reduce the number of instructions
that are read and decoded from code
memory, which reduces the number
of memory touches thereby reducing
power consumption.

Limited data types Data types within each kernel are
constrained. Examples: the
demodulator processes complex 8 or
10-bit samples while the
descrambler processes hard decision
bits.

Tailor the data path of each kernel
for a specific data type, which
improves area and energy efficiency.

Limited global
control

Global control of the baseband is
needed relatively infrequently.
Example: control is needed for initial
acquisition of a particular protocol or
when a base station handoff occurs.

Reduce the utilization of the global
controller by decentralizing control
operations within a kernel.
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7.4.3 Kernel Flexibility

After defining the key baseband kernels, the next question is determining how
flexible the kernels need to be. The kernels need to be flexible enough to support
differences between standards. For example, the equalization and demodulation is
different for OFDM-based protocols such as WiFi, WiMAX, LTE, and DVB-H as
compared to single carrier modulations such as GPS, Bluetooth, and the Advanced
Television Systems Committee (ATSC) broadcast digital TV standard. Even within
the set of OFDM-based protocols, the FFT sizes and locations of pilots may be
different; the turbo codes used in LTE and WiMAX are also different.

Flexibility is also essential to enabling handset vendors who use the same
hardware baseband to differentiate themselves by providing superior performance
with their own unique software. For example, a vendor could use a more powerful
equalizer algorithm to provide better quality of service compared to a competitor.
Some of the kernels need to be more flexible than others. For example, the algo-
rithms for channel estimation and equalization can be optimized by the developer to
provide better performance. On the other hand, there is a limited set of convolutional
codes, turbo codes, and Reed–Solomon codes that are used in most standards so that
these kernels do not need complete flexibility.

It is apparent that a mixture of flexible and configurable kernels may be sufficient
to address most of the baseband processing requirements and that total flexibility
(and the resulting power and area costs) is not required. However, there is the
possibility of finding an unforeseen algorithm where the limited flexibility results in
an unsuccessful implementation of a protocol, which we will describe later.

7.4.4 Hardware Accelerators

While it is certainly feasible to implement a flexible baseband on general purpose
multi-core processors, DSPs, or FPGAs, we believe that the energy and area costs
would be too high for a small battery-operated handheld device. This observation led
us to focus on baseband implementations based on hardware accelerators. The type
and number of different accelerators has an impact on the hardware and software
complexity.

Homogeneous accelerators define a single type of accelerator for all kernels
and use a single programming model but are less energy- and area-efficient if
the kernels are very different. Heterogeneous accelerators that are optimized for
different kernels may be more efficient but more difficult to program without a
unified software development tool.

Fine-grained accelerators, in which each accelerator performs a portion of
the computation within a kernel, may offer greater flexibility for composing an
arbitrary algorithm but may also have higher costs in terms of interconnect area and
programming complexity. Coarse-grained accelerators, in which each accelerator
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implements an entire kernel, are less flexible for implementing algorithms that
deviate from the kernel definition and are not scalable but may be more efficient
in terms of interconnect area and have a simpler programming model.

7.5 Architecture of the Scalable Communications Core

The previous section described aspects of baseband algorithms and kernels that led
to our definition of the architecture of the Scalable Communications Core. This
section discusses the SCC architecture, its components, and the features that enable
it to meet the competing demands of flexibility and efficiency.

7.5.1 SCC Requirements

The requirements for the SCC research project were much more modest than
the broader SDR requirements discussed in Sect. 7.2. Our initial goal was to
support Wireless LAN (WiFi), Wireless broadband (WiMAX), and broadcast digital
TV on a programmable baseband with simultaneous operation of either WiFi or
WiMAX and digital TV, enabling the consumer to surf the Internet while watching
broadcast TV. We had no explicit requirements for resource sharing or configuration
time. However, the architecture that we developed inherently addresses these
requirements.

7.5.2 Overall SCC Architecture

Figure 7.2 illustrates the implementation of SCC architecture in our silicon test chip.
Based upon the algorithm analysis described in the previous section, we defined
an architecture consisting of a heterogeneous set of coarse-grained processing
elements, a packet-based two-dimensional 3�3 NoC data interconnect, inband,
data-driven control flow, and out-of-band configuration using an off-the-shelf
microcontroller.

7.5.3 Processing Elements

The SCC architecture consists of heterogeneous coarse-grained accelerators, each
targeted for a different kernel. We selected heterogeneous accelerators because
they can more efficiently implement the diverse set of baseband kernels, although
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Fig. 7.2 Block diagram of the Onega baseband test chip prototype platform showing the 3�3
Network-on-Chip, seven PEs, the microcontroller and off-chip interfaces to the MAC (MAC
Adaptation Layer), and Digital Front End (XCVR Adaptation Layer)

this placed a greater burden on the developers to program them. We decided on
coarse granularity because of the constrained flexibility that is required for the target
kernels.

The PEs currently defined in SCC are summarized in Table 7.3. Each PE is
optimized for a different kernel to improve area and energy efficiency and is
configurable for a range of operations.

The most flexible PE is the Data stream Processing Element (DPE), which
is a programmable stream accelerator that covers a wide range of fixed point
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mathematical operations. It consists of a flexible Very Long Instruction Word
(VLIW) data path engine and a closely coupled programmable microcontroller. The
DPE performs computationally intensive operations such as the FFT/IFFT, channel
estimation, equalization, despreading, and soft-bit mapping.

Two instances of the DPE are included in the SCC prototype that was taped
out, one with more memory than the other. For example, the larger DPE was used
to perform larger FFTs that are required for WiMAX processing. As a result of
processing the larger FFT size, the throughput of the larger DPE is less that of
the smaller DPE. The DPE is very efficient for streaming workloads since the data
path configuration is fixed for the duration of a particular stream of data so that the
VLIW instructions are issued infrequently. The other PEs in the SCC architecture
include an Interleaver (ILV), Low Power Viterbi Decoder (LPV), Reed–Solomon
Encoder (RSE) and Decoder (RSD), and a CRC/Convolutional Coder (CC). A High
Speed Viterbi Decoder (that simultaneously decodes multiple threads) and a Turbo
Decoder were designed but not included in the silicon prototype because they did
not meet the tapeout schedule (Table 7.4).

7.5.4 Resource Sharing

To take advantage of the commonality between the kernels used by different
standards, most of the PEs were designed to support multiple threads so that
hardware resources could be shared to improve the area efficiency. Some of the key
features that enabled resource sharing include defining control and configuration
formats for each thread, supporting context switching in the data path, providing
enough data path resources to meet the real-time throughput requirements for all of
the target threads, and clocking the data path faster than real-time.

Table 7.4 Summary of SCC processing elements showing latency, throughput, and area in a
65 nm process and clock rate of 233 MHz

Throughput Area

Name Label Function (MS/s) (mm2)

Data stream processing
engine

DPE0 FFT, channel estimate, phase-freq.
estimate, QAM map

160 2.13

Data stream processing
engine

DPE1 FFT, etc. 111 4.69

Interleaver ILV Puncturing/depuncturing, block, and
convolutional interleaving and
deinterleaving

932 1.57

Low power Viterbi LPV Viterbi decoding (single thread) 58.2 0.21

Reed–Solomon decode RSD Reed–Solomon decoding 76.1 0.26

Reed–Solomon encode RSE Reed–Solomon encoding 123 0.09

CRC and convolutional
encode

CC CRC, scrambling/descrambling,
convolutional encoding

932 0.21

ARC controller ARC System control and configuration N/a 0.73
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An example of resource sharing is the Interleaver PE. This PE includes a single
data path that is shared among multiple baseband inputs that are designated as
“streams.” The data path can implement a different interleaving algorithm for each
radio standard or “function” that is programmed via microcode. For example,
the 802.16e WiMAX interleaving algorithm is defined as a function. Overlapping
bursts in a WiMAX frame are contextually independent streams that use the same
interleaving function.

The PE code memory contains a block of microcode for each of the available
radio standards. The Interleaver PE receives a packet consisting of a header and
data. The data are stored in available local memory. The Stream ID in the packet
header is used to look up the context for that stream of data, where the context could
indicate how much of the block of data for that interleaver has been received. The
Function ID is used to look up the microcode that is specific to the interleaving
algorithm for that radio standard; this is the microcode that is executed by the data
path on the data that are stored in local memory. Finally, the Stream and Function
IDs are used to look up the header that is applied to the output data packet. The
output header is prepended to the output data and the output packet is sent to the
next PE in the chain.

7.5.5 NoC Interconnect

To connect the PEs, we initially considered interconnect options such as cross-bars
and busses. We eventually selected a packet-based NoC arranged in a two-
dimensional 3�3 mesh because it was more energy-efficient than the other options
[2]. Each PE is connected to a very simple router that consists of a crossbar switch
that supports nearest neighbor connections between PEs, as shown in Fig. 7.3. Data
are encapsulated within packets, where the packet size is a function of the PE
requirements and the packet headers contain routing and control information. Packet
routing between the processing elements is dictated by the protocol lineup. Packets
can be routed past unused PEs.

The advantage of the NoC over other interconnect options is that it enables
flexible routing between any set of PEs with low area and energy costs because the
number of physical multiplexers is kept small. Finally, the NoC supports a modular
and extensible architecture in which new PEs to be inserted into future instantiations
as necessary; for example, a Low Density Parity Check (LDPC) decoder block could
be inserted into the NoC to support a future protocol that requires it.

The NoC was designed to support the traffic corresponding to the simultaneous
operation of WiFi/WiMAX and digital TV. For the worst case throughput for
concurrent operation of IEEE 802.11n and DVB-T, the minimum bandwidth was
designed to be 4.612 Gbits/s [2].

The potential disadvantage of the NoC is the nondeterministic delay that is a
function of the current network traffic. To mitigate the potential latency issues, the
length of physical packets was kept relatively short. As will be seen in Sect. 7.7, key
latency issues for real-time operation of 802.11a were met using this approach.
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Fig. 7.3 Block diagram of the router that is used in the SCC Network-on-Chip

7.5.6 High Level Control

Wireless protocols require both infrequent high level control and frequent low level
control. High level control is required for global changes in protocol processing such
as base station acquisition or handoff as well as for coordination of multiple radios
to minimize interference. These operations are implemented using an off-the-shelf
microcontroller. However, microcontrollers have the potential to increase the overall
energy consumption and decrease battery life, especially if they are constantly on.
In the SCC architecture, the microcontroller is normally in sleep mode and only
wakes up to change the lineup of PEs in the processing flow, significantly reducing
the energy consumption of the architecture. Most of the low level PE configuration
is implemented as data-driven control using the packet headers.

7.5.7 Low Level Data-Driven Control

In our architecture, low level control (for example, the current modulation type) is
implemented via the NoC packet headers that are attached to each packet of data.
The headers contain routing information and tags, where the routing information
points to the next PE in the processing chain and the tag points to a configuration
for the data path that is to be applied to that data.

Data-driven control is depicted in Fig. 7.4. Each packet header includes the
coordinates of the destination PE (dX, dY), the Stream ID (SID) that identifies the
data stream for supporting multiple threads, and the Function ID (FID) that defines
the operation that the data path will perform. The SID is used for context switching
of the data path and the FID is used to look up the data path configuration. The
combination of the SID and FID is used to look up the destination of the next PE in
the processing chain.
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Fig. 7.4 Functional depiction of data-driven control in the SCC architecture. Each packet header
includes the destination coordinates (dX, dY), a Stream ID (SID) used for distinguishing multiple
threads, and a Function ID (FID) that defines the operation that is to be performed

The value of Data-Driven Control is that it enables a new protocol to be
dynamically added to the baseband while it is running. Here is an example. The
configurations for Protocols A, B, and C have been pre-generated and are stored
in the corresponding configuration memories of each PE in the processing chain.
Suppose Protocols A and B are currently running on the baseband. When the higher-
level control decides to initiate processing of Protocol C, the data corresponding
to Protocol C are prepended with the headers corresponding to this protocol. As
the packets flow through the baseband, each PE reads the packet header and
implements the processing for Protocol C. The reconfiguration of the baseband
is performed with minimal higher-level intervention and without reconfiguring the
entire baseband. This saves power since the microcontroller can continue to sleep
and the baseband can continue uninterrupted.

7.5.8 Programming Technology

Because of the complexity of the baseband algorithms, having capable programming
technology is key to enabling developers to efficiently program the architecture for
a new protocol. However, one of the challenges of a heterogeneous accelerator
architecture is providing a uniform programming environment for all of the PEs
since the range of programmability varies with the PE. For example, programming
the PEs ranges from setting registers for the code polynomials in the LPV, RSE, and
RSD to writing microcode for an interleaver implementation in the ILV to writing
C code for the FFT in the DPE.
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When we started this project, we had a goal of enabling developers to pro-
gram SCC as if it were one monolithic DSP; unfortunately, because of schedule
constraints we were able to develop a complete programming environment only
for the DPE. For the DPE, which is the most flexible of the PEs, the tools
included a simulator and an integrated development environment that coordinates
programming, compiling, debugging, and configuring the DPE [16]. The DPE is
programmed via two languages: C code for its internal microcontroller and the
Data stream Programming Language (DPL) for the data path functions. DPL is
a stream language tailored to the DPE architecture that separately specifies the data
path configuration and data flow. The DPE programming environment was essential
to enabling us to implement complex demodulation algorithms.

Our programming technology did not include an early architecture exploration
tool that would have enabled us to quickly simulate the required algorithms
and identify gaps in the architecture. As we will describe in the next section,
our Bluetooth implementation did not meet real-time requirements because our
instruction set did not include some key DPE instructions. As new protocols are
added to the architecture, an architecture exploration tool is essential; we have begun
developing tools to support this goal [21].

7.6 Protocol Implementations on SCC

This section discusses the implementation of a several wireless protocols on the
SCC architecture. We developed two types of protocol implementations: those that
were instantiated and validated on the prototype test chip and those that were coded
and executed in the software simulation environment. We measured performance
and power consumption for WiFi 802.11a/n and a limited feature set of WiMAX
802.16e on the test silicon.

To challenge the flexibility of the architecture and utility of the programming
technology, we mapped a limited feature set of Digital Video Broadcast-Handheld
(DVB-H), Bluetooth, and GPS protocols after silicon design was completed.
The performance for these applications was not optimal because of limitations
uncovered in the silicon test chip: the Bluetooth implementation, while functional,
did not meet real-time throughput requirements.

The protocol implementation results are summarized here and were described in
detail in [5].

7.6.1 WiFi

We implemented and validated all data rates and key operational modes such as
receive and transmit for IEEE 802.11a and a subset of 802.11n including 2�2
MIMO on the test chip.



138 A. Chun and J.D. Hoffman

Descrambled Bits

Viterbi Decoded Bits

Deinterleaved Soft-Bits

OFDM Symbol Soft-Bits

OFDM Symbol Time Domain
Samples

Continuous Time Domain
Samples

CC – CRC, scrambling, and
convolutional coding
LPV – LowPower Viterbi decoding
RSD – Reed-Solomon decoding
RSE – Reed-Solomon encoding
ILV – Interleaving
DPE – Datastream processing

MAC
(WiFi)

MAC
(WiMax)

Transport
(DVB)

R R R

R R R

R R R

RSE
PE

RSD
PE

ILV
PE

LPV
PE

CC
PE

stub

stubDPE
0

DFE DFE DFE

DPE
1

RFIC
(WiFi)

RFIC
(WiMax)

RFIC
(DVB)

Fig. 7.5 Processing flow for WiFi 802.11a Rx showing data routing through the NoC. The stubs
correspond to the High Speed Viterbi Decoder and the Turbo Decoder that were not ready for the
tapeout. Routing for WiMAX Rx is similar except that the larger DPE is used

The mapping of the computationally intensive 802.11a Rx (receiver) functions
and dataflow to SCC is shown in Fig. 7.5 and is described below:

• The DPE receives OFDM symbols in packets from the Digital Front End via the
Transceiver Adaptation Layer (XAL) (implemented in an FPGA on the test board
that contains the SCC prototype chip) and performs an FFT, channel estimation
using the 802.11a long training symbol, channel correction, soft-bit mapping,
pilot tracking, and symbol timing correction.

• The ILV deinterleaves soft bits from the DPE.
• The LPV performs Viterbi decoding of soft bits from the ILV.
• The CC descrambles the decoded hard decisions from the LPV.
• The descrambled bits are sent off chip to the MAC via the MAC Adaptation

Layer (MAL).

The 802.11a Tx functions and data flow mapping are similar although in the
opposite direction.

Two important results that we measured on the test chip are the latency and
Bit Error Rate (BER). As discussed in [4], we met the critical 802.11a/n Short
Inter-Frame Spacing (SIFS) maximum latency of 16 �s. The measured maximum
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SIFS time on the test silicon was 15.955 �s is important because it shows that
the nondeterministic, packet-based NoC interconnect can meet stringent real-time
requirements.

The AWGN-only BER performance of the initial 802.11a was measured in the
lab for a range of data rates and is shown in Fig. 7.6 and suffers from performance
degradations of about 5 dB from ideal.

7.6.2 WiMAX

We validated a subset of the WiMAX standard on the test chip. Since WiMAX is an
OFDM-based protocol like WiFi, the implementation mapping was similar to that
of Fig. 7.5 except that the DPE with more memory was used in order to process the
larger WiMAX FFT. The measured BER performance with AWGN showed about
5 dB of degradation with respect to ideal.

7.6.3 DVB-H

We successfully implemented the receiver for the OFDM-based DVB-H TV
standard on the software simulator using a mapping that was similar to that of
WiMAX. This implementation supported the 2K FFT and QPSK modulation and
validated all functions from cyclic prefix removal to descrambling.

7.6.4 Bluetooth

The Bluetooth standard, which uses a single carrier modulation that is quite
dissimilar from the OFDM-based protocols that we had previously implemented,
stressed the flexibility of the architecture. Although Bluetooth was not in our list of
required protocols that were considered in our Silicon prototype, we nevertheless
attempted to implement a basic data rate (1 Mbit/s) Bluetooth transmitter and
receiver on the DPE software simulator in order to show the versatility of the
architecture. We met with mixed success: while the transmitter would operate in
real-time, the receiver implementation only supported a data rate of 0.2 Mbits/s well
below the goal of 1 Mbits/s. After the test chip had been taped out, we identified
a couple of key instructions that the DPE data path did not support that would
have enabled it to meet the target throughput. In this case, having early architecture
exploration tools to help us identify missing instructions across the full set of
required or potential protocols would have been invaluable.
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the SCC test chip
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7.6.5 Global Positioning System

We implemented the GPS baseband because it is prevalent on most wireless
devices. It is also quite different from our initial set of protocols as it uses
direct sequence spread spectrum. We implemented two critical parts of a GPS
baseband: the acquisition of the Coarse/Acquisition (C/A) spread spectrum code
and the despreader code tracking loop. The code acquisition block performed
cross-correlation between the received samples and the candidate Gold code in the
frequency domain while the despreader tracking loop was implemented as a Costas
loop. Both algorithms were coded and run on the DPE simulator and met the real-
time requirements for GPS.

7.7 Silicon Prototype

In order to measure the power consumption and area of the architecture, we taped
out the Onega (named for a lake in Russia) test chip at the end of 2007 in a 65 nm
CMOS process. Figure 7.7 is a photo of the die showing the size and placement
of the PEs. We completed post-silicon validation in early 2009. The total area is

Fig. 7.7 Die photo of the Onega test chip showing the various accelerators (DPE0, DPE1, ILVPE,
LPVPE, RSD, RSE, and CCPE), microcontroller (ARC), interconnect (routers) and off-chip
interfaces to the MAC (MAC Adaptation Layer or MAL), and Digital Front End (Transceiver
Adaptation Layer or XAL)
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Table 7.5 Measured power and area of the SCC prototype and comparable architectures, where
the comparison results are scaled to a 65 nm process technology

Device

Area-
normalized
to 65 nm
(mm2)

Rx power
normalized to
65 nm
process (mW)

Tx power
normal-
ized to
65 nm
(mW)

Rx power
effi-
ciency
(nJ/bit)

Tx power
effi-
ciency
(nJ/bit) Notes

SCC Core 21 146 104 2.70 1.93 802.11a 54Mbps

SCC DPE only 71 52 1.31 0.96 802.11a 54Mbps

SCC Core 21 188 145 3.25 2.51 802.11n
2�2MIMO
57.78Mbps

SCC DPE only 90 72 1.56 1.25 802.11n
2�2MIMO
57.78Mbps

FAUST[15] 22.08 321.10 270.40 3.21 2.70 OFDM
SISO@100Mbps

SIMT [18] 3.33 29.58 N/A 0.93 N/A Rx only DVB
31.76Mbps

Atheros [17] 7.56 157.17 141.96 0.73 0.66 802.11n
2�2MIMO
216Mbps
baseband and
MAC

MAGALI [6] 29.6 219 60.0
(esti-
mated)

20.28 5.56 3GPP-LTE Rx
MIMO 2�2, Tx
MIMO 2�2

24.35 mm2 with a core area of 20.75 mm2. The 10.2 mm2 consumed by the logic
includes two DPEs: one optimized for 802.11 OFDM symbol sizes, while the second
has larger memories to support the larger OFDM symbols of WiMAX and DVB-H.
Table 7.5 summarizes our measured power consumption and energy efficiency in
joules per bit for 802.11a and 802.11n for the entire core and for the DPE alone.

7.7.1 Comparison to other Flexible basebands

As discussed in [7], flexible baseband architectures can be divided into either
Reconfigurable Arrays (either Fine or Coarse-grained) or VLIW architectures.
Using this taxonomy, the overall SCC architecture is classified as hybrid that
combines a Coarse Grain Reconfigurable Array (like FAUST [15]) with a VLIW
processing element: namely, the DPE.

Table 7.5 also compares our results with other flexible basebands, including
SIMT [18], IMEC SDR [19], FAUST [15], and MAGALI [6], where the results
were normalized to a 65 nm process. In addition, we compared the cost of multi-
protocol flexibility of SCC with a single protocol Atheros ASIC [17] that includes
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Fig. 7.8 Comparison of SCC power consumption and throughput with examples from [20]. These
results are not normalized for improvements in process technology. The ideal implementation
would be in the upper left corner of the plot

the entire radio. The energy efficiency of SCC compares favorably with other
published flexible baseband solutions for OFDM, DVB, and LTE. As shown in
Fig. 7.8, we also compared the measured SCC throughput vs. power consumption
results for 802.11a and 802.11n with examples of flexible basebands [20]. These
results, which were not normalized for different process technologies, indicate that
SCC is very competitive with these examples and is only surpassed by an ASIC for
energy efficiency at broadband data rates.

7.8 Lessons Learned

The SCC architecture meets the requirements for an SDR baseband, including
support for Multiple Standards, Resource Sharing, Incremental Reconfiguration,
and Simultaneous Operation. In addition, the measured power and area results
are competitive with comparable flexible baseband architectures. In particular, the
lessons we learned from this project are worth sharing with the SDR community:

• Architecture Efficiency: The combination of coarse-grained, heterogeneous
accelerators, localized memory, and distributed control provides an energy
efficiency that was competitive with similar flexible architectures.

• Lightweight NoC Interconnect: A very lightweight packet-based NoC intercon-
nect is power- and area-efficient, will meet the critical throughput and latency
requirements with very low area and power penalty, and will support future
extensibility of the architecture.
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• Targeted Flexibility: By implementing a set of very diverse wireless protocols
that met real-time requirements, we showed that a coarse-grained architecture
can be made sufficiently flexible and efficient.

• Resource Sharing: Sharing hardware resources in a multi-threaded design
enables the architecture to achieve competitive area efficiency.

• Efficient Control: The combination of High Level and Data-Driven Control
supports both infrequent global coordination of multiple protocols and frequent
low level PE configuration to support dynamic changes to the protocol lineup.

• Programming Technology: High level programming technology was essential
to enabling us to implement five very different protocols efficiently. Having an
architecture exploration tool would have ensured successful implementation of
potential future protocols and is a requirement for the future.

Software Defined Radio technology is essential to meeting consumer demand for
ubiquitous wireless access using a multitude of standards via Flexible, Adaptive,
and Cognitive Radios. This chapter has described aspects of the Scalable Commu-
nications Core architecture that can be applied to these future devices.
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Chapter 8
HW/SW Co-design Toolset for Customization
of Exposed Datapath Processors

Pekka Jääskeläinen, Timo Viitanen, Jarmo Takala, and Heikki Berg

8.1 Introduction

It is nowadays common to integrate multiple different computing devices in a single
chip, each device serving a different application domain or accelerating a specific
part of an application. While specialized fixed function hardware accelerators have
been shown to bring performance and efficiency gains, designing and implementing
new designs has remained a high-cost exercise. In addition, programmable cores
are often favored to fixed-function accelerators for their post-manufacture flexibility
(e.g., on-the-field bug fixes or algorithm updates) and their ability to reuse computer
hardware in case multiple algorithms can be efficiently mapped to the same
accelerator.

Customized processors provide a middle ground between fixed function accel-
erators and generic programmable cores. They bring benefits of hardware tailoring
to programmable designs, while adding new advantages such as reduced imple-
mentation verification effort. The hardware of customized processor is optimized
for executing a predefined set of applications, while allowing the very same design
being used to run other, close enough routines by switching the executed software
in the instruction memory.

The processor hardware tailoring is dictated by the use case. In case a processor
is customized to execute a single application efficiently, but still support software-
based functionality updates, terms Application-Specific Instruction-set Processor
(ASIP) or Application-Specific Processor (ASP) can be used to describe the
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end result. A customized processor can also be optimized for classes of applications
such as Software Defined Radio (SDR), in which case the term Domain-Specific
Processor (DSP) is more suitable.

In any case, the processor customization process is demanding due to the
abundance of different parameters in the design space to choose from, and very
error-prone, which results in high non-recurring engineering costs. Moreover,
as the design process of customized processors is usually iterative in nature,
porting the required software program codes to new processor variations needs
either manual assembly language program rewrites or updating the compiler so
it can generate assembly code for each new processor variant. One approach to
simplifying the processor customization process is to compose the processor from
a set of component libraries and other verified building blocks, thereby reducing
the required verification effort. The software porting problem can be alleviated by
automatically adapting software development kits.

In the rest of this chapter, we describe TTA-Based Co-Design Environment
(TCE), an open source processor design and programming toolset based on a
processor template that efficiently supports Instruction-Level Parallelism (ILP).
TCE enables rapid design of high-level language programmable cores ranging from
tiny scalar microcontrollers to wide VLIW-style machines with a resource oriented
design methodology that emphasizes the reuse of predesigned and preverified
components.

8.2 Exposed Datapath Processor Template

To implement a design and programming toolset for customized processors, the
design space of the supported customized processor alternatives needs to be
limited. This is done by defining a processor template that describes the set of
customization parameters within which the processors can vary. The parameters
drive the retargeting of the software development toolchain, most importantly
the compiler and the simulator. Here we have selected exposed datapath as one
of the characteristics of the architectural template. The exposed datapath means
that some additional processor datapath details are visible to the programmer or
compiler such that the programmer can directly control the additional details.
Such architectures have been discussed earlier, e.g., MOVE [4], MOVE-Pro [6],
FlexCore [13], STA [6], and ELM [5].

The main focus of the TCE toolset is on energy-efficient data-oriented com-
puting scenarios. Therefore, compiler-controlled static structures are favored over
hardware-controlled dynamic structures whenever feasible. This can be seen in the
choice of the basis for the processor template of TCE which exploits transport
triggering paradigm in form of Transport Triggered Architectures (TTA) [2, 11].

TTA processors have a programmer-exposed interconnection (IC) network.
A program is defined as a set of move instructions between the ports of the
datapath components, including function units and register files. The operations
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Fig. 8.1 Example of a TTA
processor instantiated from
the template. In TTA, data
transports between
components are explicitly
programmed. The example
instruction defines move
instructions for three buses
out of five, performing an
integer summation of a value
loaded from a data memory
with a constant while
simultaneously storing a
previously computed value to
memory
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are triggered as a side effect of transporting data to designated function unit ports.
Figure 8.1 presents an example TTA processor with five transport buses, i.e., five
data transports can be executed simultaneously. In this processor, each instruction
contains five move slots, where each slot specifies the data transport carried out in
each bus. The figure illustrates execution of an instruction with three parallel moves:
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#4 ! ALU0.i0.ADD;
LSU1.r0 ! ALU0.i1;
RF0.r1 ! LSU0.i0.STW

On the first transport bus, an immediate value is moved to input port 0 of the
function unit ALU0. The immediate value is actually obtained from the immediate
unit, which has only one output port. The move carries also information about the
operation to be executed; opcode ADD is transported to function unit along with
the operand. The second bus transports an operand from load-store unit LSU1 to the
input port 1 of the ALU0. The actual load from memory has been specified by one of
the previous moves and this move simply transports the result of the memory access.
The third bus is used to transport a value from output port 1 in register file RF0 to the
input port 0 of the load-store unit LSU0. The third move contains opcode indicating
that the transported word is to be stored to memory. The actual store address has
been defined by another move to port 1 of the LSU0. The remaining two buses are
not used in the example instruction, thus they can be considered executing an NOP.

Figure 8.1 shows that the instructions control the operation of each transport bus
through the instruction unit. The connection to each bus convoys control informa-
tion, e.g., the source and destination of the transport move, possible opcode for the
operation to be executed, etc. The function units are connected to the transport buses
with the aid of sockets. The interconnection network in our architectural template
consists of buses and sockets. The concept of socket is illustrated in Fig. 8.2; each
port of a function unit has a socket, which defines the connections to the buses.
When the control information in a bus indicates that the port is the destination for
the current move instruction, data from the bus is passed to the port. In similar
fashion, data from the source port is forwarded to the bus.

In TTAs, operation execution is a side result of operand transport; when operands
are available in the function unit, the operation is triggered. In this sense, the
execution model reminds static data flow machines. The architecture template used
here defines that that one of the input ports is a trigger port and a move to this port
triggers the operation. Figure 8.3 illustrates the concept; the trigger port is indicated
by a cross in the input port. A move to this port will latch data from the bus to trigger
register and the operation execution starts with operands from trigger port and other

a b

B#0

t_data o_data

B#2 B#3

B#0
B#1
B#2
B#3
B#4 B#1

address
decode

B#2 B#4 control buses

...

r_data opcode

B#0 B#1 B#3

Fig. 8.2 Principal socket interface for function units: (a) high abstraction level representation and
(b) structure. The result register in the output is optional
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Fig. 8.3 Function units in
transport triggered
architecture: (a) high-level
abstraction representation and
(b) principal block diagram
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operand registers; the function unit in Fig. 8.3 expects two operands, thus there is
one trigger register and one operand register. The operand to the operand register
can be moved by an earlier instruction. The operand can also be moved in the same
instruction as the trigger port moves if there are enough buses available.

Function units can be pipelined independently, and there are several methods to
pipeline the function units in TTAs. In TCE, we use semi-virtual time latching [3]
where the pipeline is controlled with valid bits depicted in Fig. 8.3b. The pipeline
starts an operation whenever there is a move to the trigger port, i.e., the o_load signal
is active. The pipeline operation is controlled by valid bits, which imply that a single
pipeline stage is active only once for one trigger move. The result can be read from
the result register three instructions after the trigger move. However, the pipeline
operates only on the cycles when instructions are issued; if an external or internal
event has caused processor to be locked (glbl_lock signal is active), the pipeline is
inactive. The architectural template requires each operation in function units to have
a deterministic latency such that the result read for the operation can be scheduled
properly. If the function unit faces an unexpected longer latency operation, e.g., a
memory refresh cycle or a function unit has iterative operation of which latency
depends on the inputs, the unit can request the processor to be interlocked (by
activating the rqst_lock signal) until the on-going operation is completed.

SDR applications can often utilize a lot of computational parallelism in its
various granularities, but at the same time their usage environment places limits
to the power consumption due to thermal design and battery constraints. Therefore,
a popular processor architecture choice for SDR applications is a static multi-issue
architecture with a simple control hardware. The traditional VLIW architecture ful-
fills these requirements by providing multiple parallel function units to support ILP
while not imposing the hardware complexity from out of order execution support.
The VLIW function units in SDR designs can also provide SIMD operations to
exploit data level parallelism in the algorithm at hand, which together with ILP can
provide very high operation per watt performance in SDR designs.
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The use of the TTA paradigm to provide a more scalable alternative for traditional
VLIW architectures has been studied extensively in [3]. One of the main findings
is that TTAs can support more ILP with simpler low-power register files than
“traditional” VLIWs because of the capability to route results directly between
function unit port registers, without accessing the larger general purpose register
files. In addition, the general ability to control the timing of the operand and result
data transports alleviates the parallel access requirements of the register files. The
simpler register files can remove the register file from the critical path and bring
savings in required chip area and power consumption.

The TTA instruction format resembles those of horizontal microcode pro-
grammed architectures which are notorious for their poor instruction density.
However, our example designs and experiments indicate that the additional instruc-
tion bits due to the exposed datapath control are negligible compared to the
savings if the workload is data-oriented and the interconnection network is carefully
optimized [8, 14].

The exposed datapath template also opens unique non-apparent opportunities.
For example, due to the explicit result transfers, the function units are independently
executing isolated modular components in the datapath. In the point of view of
processor design methodology, the modularity allows point-and-click style tailoring
of the datapath resources from existing processor component databases. It also
means the function units can have latencies and pipeline lengths from a single cycle
to no practical upper bound because the hazard detection hardware does not need to
account for the structural hazards resulting from concurrent completion of operation
results. Likewise, there is no practical limit to the number of outputs produced
by operations. For example, there have been experiments where long latency fixed
function accelerators with tens of result words have been integrated to the processor
datapath in order to reduce accelerator communication and synchronization costs.

Using the TTA as a template in TCE means that it allows designing completely
new TTA processors from the scratch by allowing the user to define the sets of
basic TTA components to include. The customizable parameters are summarized in
Table 8.1. An interesting customizable aspect in TTA processors is the interconnec-
tion network. As it is visible to the programmer, it enables carefully customizing the
connectivity based on the application’s need as will be discussed later in this chapter.
This can help in achieving implementation goals such as high clock frequency or
low power consumption. Another useful feature is the support for multiple disjoint
address spaces: one can add one or more private address spaces for local memories
inside a core that can be accessed using address space type qualifier attributes in the
input C code.



8 HW/SW Co-design Toolset for Customization of Exposed Datapath Processors 153

Table 8.1 Configuration
parameters in TCE’s
processor template

Register files

• Number of register files

For each register file:

• Number of registers
• WIDTH
• Number of read/write ports

Function units

• Number of function units

For each function unit:

• Operation set implemented by FU
• Number of input and output ports
• Width of the ports
• Resource sharing / pipelining
• Accessed address space (in case of a load-store unit)

Operation set For each operation:

• Number of operands
• Number of results
• Data type of the results and operands
• Operation state data

Instruction encoding

• Number of instruction formats

For each instruction format:

• Immediate (constant) support

Address spaces

• Number of address spaces

For each address space:

• Size
• Address range
• The numerical id (referred to from program code)

Top level

• Endianness
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8.3 Processor Description Formats

TCE uses several file formats and component libraries for setting the processor
template parameters for new designs. The roles of the different files and libraries
are designed to enhance processor design and verification effort reuse. These XML-
based file formats are edited using graphical user interfaces without the toolset user
seeing the file contents and if preferred can be edited also using a text editor.

8.3.1 Architecture Description

An Architecture Description File (ADF) stores the programmer-visible architectural
aspects of a designed processor, such as the number and type of register files and
function units, operation latencies and resource sharing of the operations inside
function units, and the connections between the processor components [1].

The function unit architectures described in an ADF file can refer to one or
more operation descriptions. An operation in TCE is a behavioral level abstraction
separated from the function unit. Operation descriptions are stored in Operation Set
Abstraction Layer (OSAL) databases. The granularity of an OSAL operation can
range from basic operations to complex multioutput operations with internal state.

Operation descriptions in OSAL contain C++ or DAG-based models to simulate
the behavior of the operation in the processor simulator and static metadata to drive
the high-level language compiler, such as the number of operands and results, the
semantics of the operations, whether the operation reads or modifies memory, or
has other effects to the program state. The automatically retargeting compiler needs
these properties together with the architecture data from the ADF.

OSAL and ADF enable processor design space exploration at the architectural
level. This allows fast exploration cycles with enough of modeling accuracy to drive
the selection of the components.

The separation of the concepts of a function unit (with programmer visible
latencies) and the behavioral operation descriptions is a key feature which enables
trial-and-error cycles with the operation set design without needing to describe the
operation candidates as detailed Register Transfer Level (RTL) descriptions.

8.3.2 Architecture Implementation

ADF and OSAL are not sufficient alone to implement the processor in hardware.
For example, each programmer-identical function unit or register file can be
implemented in multiple ways, emphasizing different goals such as small area or
high clock frequency.
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Hardware implementation choices are defined using an Implementation Defini-
tion File (IDF). IDFs connect the architecture components described in ADF files to
component implementations stored in Hardware Databases (HDB). HDBs contain
RTL level VHDL or Verilog implementations of register files and function units,
along with their metadata. The component implementations can be easily reused in
future architectures, reducing the validation effort of new customized processors.

8.4 HW/SW Co-design Flow

Processor customization in TCE is usually conducted as a hardware–software co-
design process. The processor design is iterated by varying the processor template
parameters defined using the TCE file formats while adapting the software to better
exploit the features, such as by calling custom operation intrinsics or enhancing
parallelization opportunities from the program side.

The co-design process is supported by a set of tools, which are illustrated in
Fig. 8.4. Initially, the designer has a set of requirements and goals placed to the end
result. It is usual to have a real time requirement as the primary requirement, given
as a maximum run time for the programs of interest. A secondary goal can be to
optimize the processor for low power consumption or minimal chip area. In some
cases, there can be a strict area and/or power budget which cannot be exceeded, and
the goal is to design a processor that is as fast as possible and still goes below the
budget.

The iterative customization process starts with an initial predesigned architecture,
which can be a minimal machine shipped with TCE that contains just enough
resources for the compiler to provide C programming language support for the
design, or a previous architecture that is close to the placed targets, but needs further
customization to fully meet them.
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Fig. 8.4 TCE processor customization flow
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8.4.1 Architecture Design Space Exploration

The designer can add, modify, and remove architecture components using a
graphical user interface tool called Processor Designer (ProDe). Each iteration
of the processor can be evaluated by compiling the software of interest to the
architecture using TCE’s retargetable high-level language compiler and simulating
the resulting parallel assembly code using an architecture simulator.

The simulator statistics give the runtime of the program, the utilization of dif-
ferent datapath components and indicating bottlenecks in the design. The processor
simulator provides a compiled simulation engine for fast evaluation cycles, and a
more accurate interpretive engine for software debugging which supports common
software debugging features such as breakpoints.

The accuracy of the TCE processor simulator is at the instruction-set level, but
gives enough information to drive the architecture design process due to the static
TTA-based processor template. Because the instruction-set controls the fine details
of the processor as data transfers, the simulation is closer to a more detailed RTL
simulation, especially regarding the metrics of interest.

The architecture exploration cycle enables low effort evaluation of different cus-
tom operations. For a completely new processor operation, the designer describes
the operation simulation behavior in C/C++ to OSAL, estimates its latency in
instruction cycles when implemented in hardware, and adds the operation to one
of the function units in the architecture. This way it is possible to see the effects of
the custom hardware to the cycle count, before deciding whether to include it in the
design or not. As the OSAL behavior description is C/C++, usually the designer can
just copy-paste the piece of program code that should be replaced by the custom
operation call to get it modeled.

8.4.2 Processor Hardware Generation

When a design point that fulfills the requirements is found or more accurate statistics
of a design point is needed, the designer uses a tool called Processor Generator
(ProGe) which produces a synthesizable RTL implementation of the processor.
Thanks to the modular TTA template, the RTL generation is straightforward and
reliable; ProGe collects component implementations from a set of HDBs, produces
the interconnection network connecting them, and then generates an instruction
decoder that expands the instructions to datapath control signals.

The designer has to implement only the new function units in VHDL or Verilog
and add them to an HDB. Most of the more generic components in the new processor
designs are found readily available in previously accumulated HDBs and only the
special function units that implement application-specific custom operations need
to be manually implemented. To assist in the implementation process, a tool is
available to automatically validate the function unit implementation against its
architecture simulation model.
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The generated RTL is fed to a standard third party synthesis and simulation flow.
This step generates more detailed statistics of the processor at hand, which can
again drive further iterations in the architectural exploration process. The detailed
statistics include timing details to verify if the target clock frequency is achieved,
chip area to ensure the design is not too large and for low power designs, the power
consumption when executing the applications of interest.

The detailed implementation level statistics map trivially back to the design
actions at the architecture level. For example, the chip area can be reduced
by removing architecture components. Similarly, adding more pipeline stages to
complex function units, or reducing the connectivity of the interconnection network
helps increasing the maximum clock frequency.

8.5 Automated Architecture Design

We think that the best processor designs should involve some human designer
effort instead of attempting to completely automatize the process. After all, when
describing a new architecture, what is actually being designed is a programmer–
hardware interface, a user interface of a kind. This applies especially to designs
that will be implemented with expensive ASIC processes, or are expected to be at
least partially assembly programmed. Such designs are better to be iterated at least
partially manually in order to produce designs that are more understandable and
logical for programmers. We have found semiautomated design space exploration
a good compromise in this matter; instead of aiming towards a fully automated
processor design process, the designer uses assisting tools for iterating different
aspects of the design at hand automatically.

One aspect of TTA designs that calls for automated architecture design support
is the interconnection network; connectivity between components in larger TTA
designs is hard to manage manually due to the huge space of options. Therefore,
usually in the earlier phases of TCE design process the connectivity aspect is simply
ignored and a fully connected interconnection matrix is used in order to evaluate the
compute resource sufficiency. Only after the application of interest is saturated with
enough register file and function unit resources, the connectivity is pruned.

A redundant fully connected interconnection network can spoil TTA designs that
are usually otherwise very streamlined and energy efficient. In addition to increasing
the critical path, worsening the power consumption and expanding the required chip
area, the excessive connectivity results in bloated instruction words due to the large
number of sources and destinations to encode. Loose instruction words reflect in
larger instruction memory requirements and energy waste in instruction fetch and
decode.

TCE provides multiple automated design space exploration tools for iterating
the interconnection network. One of them, called Bus Merger [14], starts by
creating a connectivity matrix similar to VLIW designs with full FU bypass network
connectivity (see Fig. 8.5). This network is then gradually reduced by merging
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Fig. 8.5 (a) An example 4-issue VLIW datapath with a fully connected FU bypass network, and
(b) the corresponding TTA architecture with equal connectivity

buses (producing a bus with a union of the connections) that are rarely used at
the same time for data transports, on each iteration evaluating the program to the
new architecture using the compiler and the simulator. Finally, the original overly
complex VLIW-like register files are simplified, thanks to the reduced need for RF
ports.

The greedy Bus Merger finds rather good application-specific ICs quickly for
VLIW-style designs, but might not be efficient for smaller architectures with a
small number of equally highly utilized buses. Another option provided by TCE for
automated connectivity optimization is Connection Sweeper. As the name suggests,
it works in a brute force fashion, sweeping the interconnection network in a trial-
and-error fashion, removing connections and testing the effect to the cycle count,
stopping when the performance degrades more than a given threshold. It first tries
to remove RF connections as they often reside in the critical path.

Other automated design assisting exploration tools in TCE include Simple IC
Optimizer, a connectivity optimizer that simply removes all unused connections, a
useful tool for FPGA softcore designs; Machine Minimizer, a brute force tool that
tries to remove components until the cycle count increases above a given threshold
(Machine Grower is its counterpart) and Cluster Generator, that helps to produce
clustered-VLIW style TTAs. The automated exploration tools can be called from
the command line, enabling a design methodology where the machine is partially
constructed from a starting point architecture using scripts or makefiles.

8.6 Programming Support

Optimizing the code manually for the designed processor using its assembly
language might be a last step taken after the processor design has been frozen
and the programmer wants to squeeze off the last loose execution cycles in the
application of interest. During the design process, however, the use of assembly
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is not feasible due to the changing target; whenever the architecture is changed, the
affected parts of the assembly code would need to be rewritten. This would make the
fast iterative evaluation of different architecture parameters practically impossible,
or at least heavily restrict the practical number of evaluated architectures.

Other motivations for using high-level programming languages or intermediate
formats for application description is to hide the actual instruction-set (which is very
low level in TTAs) from the programmer. This avoids constraining new designs with
legacy backwards compatibility issues and the design process is simplified because
instruction encoding specifics are pushed to the background.

In our experience, the benefits from using the assembly language in comparison
to relying on an HLL compiler often stem from the inability of the compiler
to extract adequate parallelism from the program description to utilize all the
parallel processor resources, or from the inability to use complex custom operations
automatically to accelerate the program. TCE attempts to alleviate this by taking
advantage of, in addition to the usual C/C++ languages, the parallel OpenCL
standard. The explicit and implicit parallelism of OpenCL C helps in the utilization
issue while the automatically generated OpenCL vendor extensions of the TCE
compiler can be used to execute custom operations manually from the source
code [7].

Due to making the high-level programming of the designed processors a priority,
a key tool in TCE is its retargetable software compiler, tcecc. The compiler uses
the LLVM [10] project as a backbone and pocl [9] to provide OpenCL support. The
frontend supports the ISO C99 standard with a few exceptions, most of the C++98
language constructs, and a subset of OpenCL C.

The main compilation phases of tcecc are shown in Fig. 8.6. Initially, LLVM’s
Clang frontend converts the source code into the LLVM’s internal representation.
After the frontend has compiled the source code to LLVM bytecode, the utility
software libraries such as libc are linked in, producing a fully linked self-contained
bytecode program. Then standard LLVM IR optimization passes are applied to
the bytecode-level program, and due to it being fully linked, the whole-program
optimizations can be applied aggressively. The optimized bytecode is then passed
to the TCE retargetable code generation.

To make custom operation evaluation easier, the automatically retargeting back-
end has the facilities to exploit custom operations automatically. Custom operations
can be described in OSAL as data-flow graphs of more primitive operations, which
the LLVM instruction selector automatically attempts to detect and replace in the
program code.

Complex custom operations, such as those that implement long chains of primi-
tive operations, or those that produce multiple results, often cannot be automatically
found from intermediate codes produced from high-level language programs. For
this, tcecc produces intrinsics that can be used manually by the programmer from
the source code.

For example, this C code snippet calls a custom operation called “ADDSUB” that
computes both the sum and the difference of its operands in parallel and produces
them as two separate results:



160 P. Jääskeläinen et al.

Fig. 8.6 tcecc compiler
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int a, b, sum, diff;
...
_TCE_ADDSUB(a, b, sum, diff);

The actual processor described in ADF must then include at least one function
unit that supports the operation, one of which is triggered by code generated by
the compiler. If the programmer wants to restrict the operation to be triggered in a
specific function unit (making the source code more target specific in the process),
another intrinsics version can be used:

_TCEFU_ADDSUB("ALU1", a, b, sum, diff);

This instructs the compiler to generate code to call operation ADDSUB in a
function unit referred to as ALU1 in the targeted ADF.

8.7 Layered Verification

Using a component library based processor design with automated RTL generation
is helpful in reducing implementation and verification effort. As the processors can
be composed of preverified function unit and register file implementations, the effort
required for new designs should reduce gradually as the databases are augmented
with new validated components. However, additional verification is still usually
preferred to gain trust on the produced processor implementation.

The approach TCE takes to verifying the designs is shown in Fig. 8.7. It uses
a layered top-down approach where each level in the implementation abstraction
hierarchy is compared against the previous one. At the first level, the designer
who uses a portable high-level language program as an application description can
implement and verify the software functionality using a desktop environment and
the work station’s CPU. Printouts to standard output can be used to produce the
initial “golden reference” data.

Each layer of implementation abstraction can be compared to the golden refer-
ence data by including a standard output instruction in the processor architecture,
used to produce the output at the different levels. In RTL simulation, the function
unit implementation uses the VHDL or Verilog file printout APIs, and at the FPGA
prototyping stage it may write to a JTAG-UART console. Further verification can
be done by comparing bus traces which contain values in each processor transport
bus at each instruction cycle.

Finally, the core is integrated to a system level model. TCE provides facilities
to help producing project files and other integration files to different FPGA flows.
System level simulation is supported via bindings for SystemC. The bindings
allow plugging TTA instruction accurate core simulation models to larger SystemC
models to enable cycle accurate performance modeling and functional verification
simulations. The following is an example of how to integrate a TTA core simulation
model to a system simulation by connecting its clock and global lock signals:
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Fig. 8.7 Verification flow

. . .
# i n c l u d e < t c e _ s y s t e m c . hh>
. . .
i n t sc_main ( i n t argc , char� a rgv [ ] ) {

. . .
TTACore t t a ( " t t a _ c o r e _ n a m e " , " p r o c e s s o r . a d f " , " program . t p e f " ) ;
t t a . c l o c k ( c l k . s i g n a l ( ) ) ;
t t a . g l o b a l _ l o c k ( g l o c k ) ;
. . .

}

The FPGA flow can produce the same standard output printouts using a
development board with a JTAG interface or similar. When using the system level
simulation, verification data is produced similarly to the architecture simulator.

Post-fabrication verification is performed using suites of test programs that stress
the different aspects of the processor design. At this point, additional verification
and debugging can be done by using an automatically generated debug interface
which can be used to output verification data and single step the processor.
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8.8 Conclusions

In this chapter, we described TCE, a processor customization toolset based on the
exposed datapath transport triggered architecture. TCE provides tool support for
iterative processor customization starting from high-level programming languages,
producing synthesizable RTL implementations of the processors along with instruc-
tion parallel binary code.

TCE is available as a liberally licensed open source project and can be down-
loaded via the project web page [12]. The toolset is mature and it has been
tested with various design cases over the past decades, and is evolving with new
developments focusing on the compiler code generation quality and energy saving
features, both in the produced hardware and those that can be achieved with the
compiler.
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Chapter 9
FPGA-Based Cognitive Radio Platform
with Reconfigurable Front-End and Antenna

Aitor Arriola, Pedro Manuel Rodríguez, Raúl Torrego, Félix Casado,
Zaloa Fernández, Mikel Mendicute, Eñaut Muxika, Juan Ignacio Sancho,
and Iñaki Val

9.1 Introduction

In the last few decades there has been an increasing interest towards replacing
wired communications by their wireless counterparts, mainly due to the various
advantages the latter offer, such as cost reduction, ease of maintenance, and
the possibility of reaching areas where conventional wiring is too difficult or
costly [1–3]. This is especially important in industrial environments (e.g. factories,
airplanes, or trains), where the advantages presented by wireless solutions have a
large economical impact.

However, industrial environments present significant challenges for wireless
communications [4, 5]: signal shadowing, multipath fading, and the presence
of interferences are major issues that need to be considered carefully. In this
context, Software Defined Radios (SDR) and Cognitive Radios (CR) can help to
overcome these limitations, and appear as promising opportunities for the successful
deployment of wireless communication in industrial environments [6, 7].

In this chapter a Field Programmable Gate Array (FPGA)-based SDR platform
with cognitive features is presented. This platform relies on a hardware that is
reconfigurable at all levels (i.e. baseband processing, Radio-Frequency (RF) front-
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end, and antenna), allowing the operation in different frequency bands; this is an
interesting feature in order to fight undesired effects such as multipath fading or
interferences. Based on this hardware, an FGPA-based RF-to-Ethernet bridge has
been implemented, which is able to switch between the Industrial, Scientific, and
Medical (ISM) bands of 868 MHz and 2.45 GHz; a reconfigurable antenna has also
been integrated in this platform, which is optimized for direct placement on metallic
surfaces. The rationale behind these selections has been the following one:

• FPGA-based: there are several implementation possibilities for SDRs, from
classical Digital Signal Processors (DSPs) or general-purpose processors, to
dedicated multi-core architectures [8]. Among these, the use of FPGAs and
dynamic partial reconfiguration fits perfectly with the flexibility and high-
performance computing demanded by SDRs.

• RF-to-Ethernet Bridge: an RF extension to Ethernet has been chosen as an
application example, as Ethernet and its industrial variations such as Industrial
Ethernet or Ethernet for Control Automation Technology (EtherCAT) are some
of the most used standards for wired industrial-control applications [9].

• 868 MHz and 2.45 GHz ISM bands: these are the frequency bands where most
industrial wireless communications are focused nowadays [4]. The solutions in
each of these bands have some particular features: the ISM band of 868 MHz
is mainly operated by proprietary protocols and narrowband communication
systems (i.e. systems with high sensitivity and high interference rejection), which
take advantage of the smaller path-loss in this band; on the other hand, the
systems operating in the ISM band of 2.45 GHz benefit from a huge market of
low-cost Radio-Frequency Integrated Circuits (RF-ICs) and from the existence of
several standard protocol stacks tailored for industrial environments (e.g. Wire-
less Highway Addressable Remote Transducer Protocol (WirelessHART) [10],
International Society of Automation 100.11a (ISA100.11a) [11], and Wireless
networks for Industrial Automation—Process Automation (WIA-PA)). The main
drawback of the 2.45 GHz band is that it is very crowded as a consequence of
its popularity, what results in high interference from other users. Therefore, an
RF platform which can be reconfigured between these two bands increases the
availability of the wireless link.

• Antenna for metallic environments: in industrial environments, antennas are
prone to have metallic objects in their vicinity. As shown in [12], monopole-
like antennas exhibit significant variations in their input impedance and radiation
efficiency when placed near metallic objects. Hence, the reconfigurable antenna
designed for this platform has been based on microstrip topology, which shows a
great robustness against any object placed under the antenna [13].

The rest of the chapter is organized as follows: Sect. 9.2 introduces the concepts
of SDR and Cognitive Radio, and their particularities for FPGA implementation;
Sect. 9.3 describes the cognitive platform, including design and implementation
details of its main building blocks. Finally, measurement results and concluding
remarks are presented in Sects. 9.4 and 9.5, respectively.
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9.2 FPGA-Based Architectures for Cognitive and Software
Defined Radio

The term “Software Radio” was first used by Joseph Mitola to refer to reconfigurable
or reprogrammable radios that can support different functionalities at different times
by changing their configuration in software [14]. This definition has, however,
endured different interpretations since then, leading the term Software Defined
Radios to be used for a wide spectrum of implementations, ranging from pure
software implementations on general-purpose processors to FPGA-based imple-
mentations. Regarding reconfiguration capabilities, SDR covers minimal changes,
where single parameters like filter coefficients or amplifier gains are updated, as
well as coarse reconfigurations where a whole new communication standard is
applied [i.e. reconfiguration from WiFi to WiMAX (Worldwide Interoperability for
Microwave Access)].

Moreover, Software Defined Radios are the base for other novel architectures
for communication systems, like Adaptive Radios, Cognitive Radios, or Intelligent
Radios. Figure 9.1 shows the evolution between these architectures. Adaptive
Radios monitor their own performance and are able to change some of their
characteristics using SDR, in order to improve their performance without the
user’s intervention. Cognitive Radios behave in a similar way but, apart from
monitoring their own performance, they are also aware of the characteristics of
the RF environment and change their parameters accordingly. One of the most
typical characteristics measured by Cognitive Radios is the availability of the RF
spectrum: using spectrum-sensing algorithms, Cognitive Radios can detect which
wireless channels are available and change their transmission frequency to them in
order to improve the quality of the communication link. This process is also known
as Dynamic Spectrum Access (DSA). Finally, Intelligent Radios are an evolution of
Cognitive Radios with an ability to learn; this means that Intelligent Radios are not
only aware of their RF environment, but also of their previous decisions.

Regarding the implementation of SDR and CR on FPGAs, dynamic partial
reconfiguration appears as a very convenient technique, as it enables an FPGA to

Fig. 9.1 Evolution of radio
communication technologies Intelligent Radio

Cognitive Radio

Adaptive Radio

Software Defined Radio
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change the functionality of part of the chip while the rest of it continues working
uninterrupted [15]. This characteristic comes from the use of Static Random Access
Memory (SRAM) technology for the configuration memory on the FPGA, what
allows runtime download of new configuration data. One of the key parameters to
consider in partial reconfiguration is the reconfiguration time; during this time the
reconfigurable area is not functional, so it must be carefully considered.

On the other hand, the use of rapid prototyping tools is highly advisable for
the design and implementation of SDR signal-processing functions on FPGAs
[16]. These tools enable a model-based design, therefore allowing the designer to
program the required algorithms in a graphical way, generating synthesizable code
automatically, as well as launching functional simulations in the early design steps
leading to huge time savings. For the platform described in this chapter, Xilinx’s
System Generator for DSP tool has been used [17].

9.3 Platform Description

The cognitive SDR platform consists of two FPGA-based nodes, being each of
them able to carry out both the Ethernet-to-RF and RF-to-Ethernet conversion. The
platform is reconfigurable at the three main parts that make up each of the nodes: a
Virtex 6 FPGA in charge of baseband processing, an RF front-end, and an antenna.

The system works in a half duplex mode; this means that each time one
of the nodes acts as an Ethernet-to-RF bridge, while the other one acts as an
RF-to-Ethernet bridge. In order to achieve the reliability needed in industrial com-
munications scenarios, the system implements a DSA algorithm; taking advantage
of the capability of the system for transmitting in two ISM bands (868 MHz and
2.45 GHz), the DSA algorithm selects the most suitable frequency band in order
to avoid interference and, as a consequence, the platform is fully reconfigured.
The platform also allows small in-band frequency changes (<10 MHz) in the
transmission frequency by reconfiguring the digital oscillator that generates the
Intermediate Frequency (IF). This reconfiguration of the oscillator is carried out
using dynamic partial reconfiguration of the FPGA. A block diagram of the whole
platform is detailed in Fig. 9.2.

The signal-processing tasks of the platform have been hardware-implemented
on an FPGA device, thanks to the high performance and flexibility offered. System
Generator for DSP, Xilinx’s rapid prototyping tool, has been used for designing,
implementing, and testing the baseband data-processing algorithms. The transmitter
and the receiver parts use a MicroBlaze processor in charge of controlling different
parts of the architecture: FPGA dynamic partial reconfiguration, programming of
the front-end, and control of the antenna.

With regard to dynamic partial reconfiguration, in this case it has been used
to reconfigure the local oscillators of the channel-selection downconverter, and
produce small in-band frequency changes. However, it could also be used to change
any other parameter in the baseband signal-processing tasks, e.g., modulation, data
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Fig. 9.2 Block diagram of the Ethernet-to-RF and RF-to-Ethernet bridges ©Springer [18]

Fig. 9.3 Prototypes of Ethernet-to-RF and RF-to-Ethernet bridges ©Springer [19]

rate, etc. The MicroBlaze processor has access to both the Internal Configuration
Access Port (ICAP) of the FPGA and the external Flash memory where the different
partial bitstreams are stored. When an in-band frequency change is required, the
MicroBlaze processor will read the corresponding partial bitstream from the Flash
memory and download it to the configuration memory of the FPGA through the
ICAP port.

A prototype of the platform is shown in Fig. 9.3., which depicts the FPGA
boards in charge of the baseband processing, the reconfigurable RF boards, and
the reconfigurable antennas with their associated circuitry.

The following sections will describe in detail the building blocks shown in
Fig. 9.3.
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9.3.1 Ethernet-to-RF FPGA

The FPGA acting as Ethernet-to-RF bridge implements three main functions:
Ethernet frame-processing, Quadrature Phase-Shift Keying (QPSK) modulation,
and Energy-Detection (ED)-based DSA.

9.3.1.1 Ethernet Frame-Processing IP Core

The Ethernet frame-processing Intellectual Property (IP) core is in charge of
receiving the frames from the Ethernet physical layer (PHY) using a Media
Independent Interface (MII), reconditioning them, and routing them to the QPSK
modulator. It implements an Ethernet Medium Access Control (MAC) layer, two
dual-port RAMs (implemented using FPGA Block-RAMs (BRAMs) for improved
speed), and a control using a Finite State Machine (FSM). A high-level hardware
diagram of this IP core is shown in Fig. 9.4.

The Ethernet MAC block manages the communication between the PHY and the
user logic. It receives the frames from an MII interface and translates them into a
byte-to-byte format. Due to the different data rates of the incoming information and
the modulator, it is not possible to connect them directly; the dual-port RAMs enable
this connection by allowing asynchronous and independent read/write operations in
each of their ports. The control of these operations is carried out by the FSM.

It should be noted that only the Ethernet-to-modulator transition has been
mentioned, but the Ethernet frame-processing IP core is bidirectional (therefore,
a single Ethernet-processing IP core has been implemented per node). In the node
acting as RF-to-Ethernet bridge, this block is in charge of properly encapsulating
the demodulated data into a frame and delivering it to the Ethernet PHY.

Fig. 9.4 High-level hardware
diagram of the
Ethernet-processing IP core
©Springer [18]
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9.3.1.2 QPSK Modulator

As shown in Fig. 9.2, the QPSK modulator is in charge of two main functions:
data encoding and modulation. Data encoding increases the reliability of the
communication using a convolutional encoder with rate 1⁄2. The modulator receives
the data stream from the encoder and adds a 256-symbol preamble for start-of-
frame detection, frequency, and phase-recovery in the receiver. A 32-symbol Start
Frame Delimiter (SFD) is added as well. On the other hand, as Ethernet frames may
have different lengths, this value is measured and included in two bytes (8 QPSK
symbols) before the payload. The complete frame to be transmitted over the air is
represented in Fig. 9.5.

Afterwards, data is mapped onto the QPSK constellation and the signal is
oversampled by a factor of 4. The reason for this is that at the other end of the
wireless link, the receiver oversamples the signal by the same factor of 4 in order to
improve the symbol timing estimation [20]. Therefore, the complete modem should
maintain the same oversampling factor for transmission and reception, taking into
account that they use a common clock frequency.

Finally, the signal is filtered with a raised-cosine filter (roll-off factor = 0.35) in
order to optimize the spectrum efficiency prior to being sent to the reconfigurable
front-end.

9.3.1.3 Energy Detection for Spectrum Sensing

In parallel with the frame-processing IP core and the QPSK modulator, a two-
stage ED-based DSA algorithm is running [21]. This algorithm looks for available
frequencies within the spectrum based on energy presence and selects the transmis-
sion frequency accordingly. Hence, the goal of the spectrum-sensing algorithm is to
decide between two hypotheses: H0 for an available channel and H1 for a channel
occupied by another signal:

H0 W yŒn� D wŒn�

H1 W yŒn� D sŒn� C wŒn�
(9.1)

where yŒn� is the received signal, wŒn� is white Gaussian noise, and sŒn� is the
external signal that may occupy the channel. The decision is taken according to
a test statistic, which in the case of the ED detector corresponds to the energy of the
received signal.

The ED is based on two stages, which are shown in Fig. 9.6. In the first stage the
detector analyzes the energy of the received signal:

Fig. 9.5 QPSK modulator
frame ©Springer [18]
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Fig. 9.6 Two-stage ED
scheme ©Springer [18]

X
jyŒn�j2 ? 	ED (9.2)

If the energy is higher than the threshold (	ED), the detector decides that the
sensing is under the hypothesis H1, executing the second stage otherwise. The
second stage is an ED with two thresholds; these thresholds define three regions:
the two hypotheses H0 and H1, and an uncertainty zone. The Ethernet-to-RF bridge
will transmit in the assessed channel as long as it is available (i.e. the outcome of the
detector is H0); if the analysis results in hypothesis H1 or the uncertainty zone, the
Ethernet-to-RF will continue looking for an available channel. On the other hand,
it must be noted that the performance of an ED is reduced as noise level grows;
therefore, an estimator of noise power has also been implemented using a recursive
averaging algorithm [20].

9.3.2 RF-to-Ethernet FPGA

Similarly, the FPGA that carries out the inverse operation, i.e., the RF-to-Ethernet
conversion, also implements three functions: DSA based on a Cyclostationary
Detector (CD), QPSK demodulation, and Ethernet frame processing.

9.3.2.1 Cyclostationary Detection for Spectrum Sensing

The RF-to-Ethernet bridge has no information about the frequency channel that
the Ethernet-to-RF bridge is using. For this reason, the DSA technique must
distinguish between the desired signal and possible interference sources. To achieve
this purpose, a CD-based DSA technique has been implemented, which allows the
RF-to-Ethernet bridge to tune to the correct frequency channel. This kind of detector
has been chosen instead of a matched filter-based detector, because it does not
require any synchronization; it basically analyzes the cyclostationary features of
the signal to distinguish the desired transmission.

Modulated signals are generally cyclostationary (i.e. their autocorrelation is
periodic). This is due to cyclic prefix, synchronization, preambles, modulation, etc.
[22]. Hence, the autocorrelation of a cyclostationary signal s can be represented as
a function of its Discrete Fourier Transform (DFT):
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Rs.n; n C �/ D
1X

˛D0

R˛
s .�/ej2�˛n (9.3)

where R˛
s , called Cyclic Autocorrelation, are the coefficients of the DFT, defined as:

R˛
s D 1

N

N�1X

nD0

s.n/s�.n � �/e�j 2�˛n
N (9.4)

where ˛ is the cyclic frequency. Considering x as the received signal, R˛
x will be zero

unless ˛ is equal to a period of the autocorrelation function of s. The test statistic in
a CD is the value of R˛

x :

R˛
x ? 	CD (9.5)

The value of ˛ has been fixed to a period of the autocorrelation function of
the desired signal s. The value of the cyclic autocorrelation for this ˛ allows
distinguishing between the QPSK signal transmitted by the Ethernet-to-RF bridge
and a possible interferer.

Regarding implementation, Shift Register Look-Up Tables (SRL) and a COor-
dinate Rotation DIgital Computer (CORDIC) block are in charge of calculating
the cyclic autocorrelation [23]. The SRLs are in charge of delaying the signal
to compute the autocorrelation; then, the CORDIC block is used to generate the
complex exponential.

9.3.2.2 QPSK Demodulator

Once the system is configured at the correct frequency channel, baseband In-
phase and Quadrature (IQ) data coming from the RF front-end is processed by the
QPSK demodulator (see Fig. 9.2). A detailed view of the signal paths inside the
demodulator is shown in Fig. 9.7:

1. The system detects a transmitted message by means of a preamble detector,
which triggers the feed-forward timing-recovery algorithm based on Maximum
Likelihood estimation [20].

2. A Farrow-structure interpolator filter is used to get optimal symbol values.
3. A data-aided coarse frequency estimator is used to compensate the carrier

frequency drift [24]. Joint phase and SFD estimation [25] are done first detecting
where the frame starts, and then the phase offset is estimated based on the
preamble training data.

4. A closed loop PLL circuit estimates and corrects the residual frequency offset
using the received data, by means of decision-directed criteria.

5. Once the data symbols are correctly aligned, the payload data is decoded using
the Viterbi algorithm and routed to the Ethernet frame-processing IP core.
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The demodulator also includes an Automatic Gain Controller (AGC). This block
uses the preamble to compute the power of the incoming signal, and sets the
analog amplifiers of the RF front-end accordingly, so that the received signal at the
Analog-to-Digital Converters (ADCs) reaches 90 % of full scale. Once a frame has
been properly demodulated, the AGC sets back the amplifiers to their maximum
gain in order to obtain the highest possible sensitivity. The dynamic range of the
receiver is specified from �95 to �30 dBm.

9.3.2.3 Ethernet Frame-Processing IP Core

In the node configured as RF-to-Ethernet bridge, the Ethernet frame-processing IP
core is in charge of managing the communications between the demodulator and
the Ethernet PHY. This IP core encapsulates the received data into an Ethernet
frame, adjusts the data rates with the double-port RAMs, and delivers the frame
to the Ethernet PHY via a MAC IP core. As mentioned earlier, a single Ethernet-
processing IP core is present in each node, which is able to manage a bidirectional
communication.

9.3.3 RF Front-End and Antenna

A Nutaq Radio420S module (depicted in Fig. 9.3) has been used as reconfigurable
RF front-end [26]. This module operates between 300 MHz and 3 GHz with a
bandwidth between 1.5 and 28 MHz. Its transmitted power can be adjusted between
�21.5 and 10 dBm, and its sensitivity ranges between �90 dBm (0.3–1.5 GHz)
and �103 dBm (1.5–3 GHz). It should be noted that this module has separate RF
transmission and reception ports; hence, in order to use a single antenna, a Mini-
Circuits ZYSW-2-50DR RF-switch has been used (see Fig. 9.8). This switch has
a wideband operation (Direct Current (DC) to 5 GHz) and is controlled with a
Transistor–Transistor Logic (TTL) signal coming from the main FPGA.

Regarding the antenna, a frequency-reconfigurable topology has been used which
operates in the two selected ISM bands. Reconfigurable antennas are an optimal
solution to cover different bands as, depending on their reconfiguration state (usually
controlled by switching elements), they can cover the desired band and reject the
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undesired one [27]. There are other antenna options to cover different bands, such
as Ultra-Wideband (UWB) antennas [28], which cover a very large spectrum, or
multiband antennas [29] (e.g. those used in smartphones), which cover different
bands simultaneously. However, when using UWB or multiband antennas, all bands
are covered at the same time; this means that if any interference is detected, even
though the whole system changes its operating frequency, the interference is still
received and the front-end has to be able to filter it. Reconfigurable antennas, on the
contrary, provide this extra filtering within the antenna structure itself.

In Fig. 9.9, the topology of the proposed reconfigurable antenna is shown.
An electromagnetically fed microstrip antenna has been selected. The microstrip
topology shows great robustness against objects placed under the antenna, such as
metal structures, what makes it suitable for industrial environments. On the other
hand, using an electromagnetic feed allows the antenna designer to use thicker
substrates for the microstrip antenna, what improves significantly the bandwidth
and efficiency of the antenna. However, with this kind of feed there is no physical
connection between the feeding line and the radiating element, what adds extra
complexity for providing the DC supply to the RF switches placed on the radiator.

For the present antenna two PIN (P-type, Intrinsic, N-type) diodes (BAP55LX
model by NXP [30]) have been used as switching elements. These elements provide
high switching speed and low actuation voltage, what makes them suitable for the
integration in high-data rate and low-power reconfigurable platforms. RF Micro-
Electro-Mechanical Systems (MEMS) can also be used as switching elements in
antennas [31], but they have lower switching speeds and require higher actuation
voltages.

The PIN diodes are placed on the antenna and are fed by DC lines. It should be
noted that both the RF signal and the DC power are provided by the FPGA board,
and combined with a Bias-T circuit (Mini-Circuits ZFBT-4R2G-FT), as depicted in
Fig. 9.8.
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Fig. 9.9 Topology of
proposed reconfigurable
antenna and matching
network ©Springer [19]

Table 9.1 States of PIN
diodes

ISM 868 MHz ISM 2.45 GHz

PIN diodes on antenna ON OFF

PIN diodes on RMN OFF ON

The operation of the PIN diodes placed on the radiator element is as follows: in
order to work at the 2.45 GHz ISM band, the diodes are put in OFF state (ideally
behaving as an open) and the resulting antenna is a microstrip patch antenna with
a parasitic element at the other side of the diodes; to operate at the 868 MHz
ISM band, the diodes are put in ON state (ideally behaving as a short) and the
resulting antenna is the original patch plus an extension which shifts the frequency
downwards. On the other hand, in order to ensure a proper matching in both ISM
bands, a Reconfigurable Matching Network (RMN) has been designed and added to
the antenna. This RMN (shown in Fig. 9.9) is a microstrip stub-based network, and
its reconfiguration is also done through PIN Diodes. Depending on the frequency
of operation, the FPGA provides a DC voltage to the PIN diodes that control the
antenna and the RMN. Table 9.1 shows the state of the PIN diodes depending on the
selected ISM band.
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9.4 Measurements

This section details the measurements from the RF-to-Ethernet bridge. It includes
time, system performance, and antenna measurements.

9.4.1 Time Measurements

System latency and frequency-reconfiguration delay have been measured in order to
quantify the time-domain performance of the RF-to-Ethernet bridge. System latency
includes the end-to-end latency of a digital frame (once the platform is configured
on a specific frequency), while the frequency-reconfiguration delay accounts for the
time needed to change the operating frequency of the platform. The obtained results
for both parameters are presented in the following subsections.

9.4.1.1 Latency

Table 9.2 shows the latency introduced by the different blocks of the system, as
well as the overall latency. These measurements have been done with ChipScope,
Xilinx’s logic analyzer. It should be noted that air propagation delay, although
negligible, should also be added to the measured times in order to obtain an exact
latency. In this case the boards were a few meters apart, so the air propagation
delay is several orders of magnitude below the latency of the different blocks of
the system.

It can be observed that due to the double-port BRAMs needed to adapt the data
rate in the Ethernet-to-FPGA and FPGA-to-Ethernet transitions, the latency is also
dependent on frame length. Besides, these transitions are the ones that introduce the
longest latencies in the system. Due to the system topology and working frequency
of the selected FPGA, it is not possible to remove these transitions and their
associated latencies.

Table 9.2 Latency measurements

System latency (�s)

Frame
length
(bytes)

Eth
MAC
RX

Eth
BRAM
RX Mod.

Front-end
TX

Front-end
RX Demod.

Eth
BRAM
TX

Eth
MAC
TX Total

32 1.52 5.20 24.00 0.10 0.50 67.00 42.80 0.70 141.82

128 1.52 11.80 24.00 0.10 0.50 67.00 163.00 0.70 268.62

512 1.52 42.50 24.00 0.10 0.50 67.00 643.00 0.70 779.32

1024 1.52 83.80 24.00 0.10 0.50 67.00 1280.00 0.70 1457.62

1356 1.52 110.00 24.00 0.10 0.50 67.00 1700.00 0.70 1903.82
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Table 9.3 Frequency-reconfiguration delays

Front-end

FPGA Antenna Programming and calibration Physical change

94 �s 53 �s 1:83 ms 12 ns

9.4.1.2 Frequency-Reconfiguration Delays

When performing frequency reconfiguration, two different cases can be distin-
guished: the in-band channel change (i.e. within the ISM band) and the complete
band change, i.e., from 868.0 MHz to 2.45 GHz, or vice versa. The first case requires
only the partial reconfiguration of the FPGA, while the RF front-end and the antenna
remain unaltered. The second case, on the other hand, requires reconfiguration at all
levels of the platform, i.e., FPGA, front-end, and antenna.

Frequency-reconfiguration delays have been measured and they are reported in
Table 9.3. The measurement represents the time from the moment in which the
MicroBlaze processor generates the reconfiguration order to the moment in which
the physical frequency change happens.

A few comments on these results:

1. In order to reconfigure the antenna it is necessary to change its DC polarization.
This change is achieved through a General-Purpose Input/Output (GPIO) from
the MicroBlaze processor and glue logic. The presented antenna reconfiguration
time measures the delay of the complete process.

2. In order to reconfigure the front-end, the MicroBlaze processor first recalculates
several configuration parameters, e.g., Phase-Locked Loop (PLL) parameters,
amplifier gains, etc., using the new frequency as input parameter; then it pro-
grams these parameters into the front-end through a Serial Peripheral Interface
(SPI) interface, and finally commands the front-end for calibrations. When all
this process is completed, the physical frequency change takes place.

3. In order to carry out a transmission-frequency change it is necessary to reconfig-
ure both the RF front-end and the antenna. These two operations are performed in
parallel. Therefore, the worst case will indicate the time during which the system
is not available.

9.4.2 System Performance

Several parameters that account for the performance of the RF-to-Ethernet bridge
are detailed in this section, such as resource utilization within the FPGA, effective
data rate, and Bit/Packet Error Rate curves.
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Table 9.4 FPGA resource utilization summary

SLICES LUT Flip-Flop BRAM DSP48

Ethernet IP 394 866 790 2 0

QPSK modulator 554 250 1197 4 168

QPSK demodulator 9684 30,582 16,691 14 259

Energy detector 303 503 425 1 40

Cyclostationary detector 10,325 26,125 30,650 0 525

MicroBlaze 11,321 24,551 22,800 78 19

Total 32,581 82,877 72,553 99 1011

9.4.2.1 FPGA Resource Utilization

Table 9.4 shows the resource utilization within the FPGA. Assuming the number of
SLICES as the most representative value of the size of the design, each of the nodes
in the Ethernet-to-RF bridge fits correctly into the XC6VLX240T Virtex 6 FPGA,
occupying 32,581 SLICES out of the 37,680 available SLICES. It can be observed
that the most resource-hungry blocks of the system are the QPSK demodulator, the
Cyclostationary Detector, and the MicroBlaze processor. The first two blocks are
related to the receiver, which has inherently complex signal-processing algorithms.
Regarding the MicroBlaze processor, in the present application it is only used
to manage the dynamic partial reconfiguration process, control the reconfigurable
front-end, and execute some minor control tasks; however, it has enough processing
power to implement more complex functions in the future that justify its resource
utilization, e.g., a MAC layer for multi-point wireless networks.

9.4.2.2 Effective Data Rate

The baseband data-processing algorithms implemented in the FPGA and the IQ
ADC/DAC converters in the adjustable RF front-end are both clocked at 25.6 MHz.
An oversampling rate of 4 has been used in the system, what leads to a 12.8
Mbps raw data rate in the wireless link. However, the inclusion of a 1⁄2 rate
convolutional encoder to increase the reliability of the communication reduces the
effective data rate of the system by half. Besides, the 256-symbol preamble and 32-
symbol SFD included in each of the frames also degrade this effective data rate.
Moreover, taking into account that the length of these two sections of the frame
is fixed, the degradation will be more significant for small frames. Figure 9.10
shows the effective data rate of the system versus frame length. It can be observed
that the effective data rate suffers some degradation from the raw 12.8 Mbps.
However, considering that typical data-update periods in industrial wireless sensor
and actuator networks are between 10 and 500 ms [32], and considering also that
these applications transmit small amounts of data, the achieved data rate is suitable
for this type of industrial wireless networks.
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Fig. 9.10 Effective data rate
vs. Ethernet frame length
©Springer [18]

7

6

5

4

3

2

1

0
0 200 400 600

Ethernet frame length (Bits)

E
ffe

ct
iv

e 
da

ta
 r

at
e 

[B
its

/s
]

800 1000 1200 1400

x 106

Fig. 9.11 AWGN packet
error rate ©Springer [18] 100

10-1

10-2

10-3

10-4

6 8 10 12 14 16 18 20

SNR (dB)

PER

P
ac

ke
t E

rr
or

 R
at

e

9.4.2.3 Bit Error Rate/Packet Error Rate Performance Curves

In order to evaluate the performance of the receiver, Packet Error Rate (PER) and
Bit Error Rate (BER) values have been measured over a range of Signal-to-Noise
Ratios (SNR). For this purpose, an RF channel emulator has been used which tracks
the transmitted power and adds noise to the signal based on its bandwidth. 32-Byte
data frames have been used in each test [33].

The resulting PER performance for an Additive White Gaussian Noise (AWGN)
channel and several SNR values is shown in Fig. 9.11 and BER values are depicted
in Fig. 9.12. A PER value of 0.01 (1 %) is obtained for an SNR of 16 dB. This
result indicates that the platform is suitable as a proof-of-concept for reconfigurable
systems, but its baseband performance can be further optimized.
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Fig. 9.13 Simulated and measured return loss for reconfigurable antenna at ISM 868 MHz state
©Springer [19]

9.4.3 Antenna

In Figs. 9.13 and 9.14 the simulated and measured return losses of the reconfigurable
antenna are shown for the two frequency states, i.e., 868.0 MHz and 2.45 GHz. In
each case the operational band is colored and the non-operational band is marked
with a dashed line. The simulations have been carried out with CST Microwave
Studio electromagnetic solver [34].

It can be observed that in the working bands, ISM 868 MHz in Fig. 9.13
and ISM 2.45 GHz in Fig. 9.14, the antenna shows low return-loss values, i.e.,
good impedance match. This means that in these bands the vast majority of the
transmitted/received power is delivered to the antenna, while in the non-working
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Fig. 9.14 Simulated and measured return loss for reconfigurable antenna at ISM 2.45 GHz state
©Springer [19]
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Fig. 9.15 Simulated radiation patterns of reconfigurable antenna: 868 MHz state (left); 2.45 GHz
state (right) ©Springer [19]

bands, ISM 2.45 GHz in Fig. 9.13 and ISM 868 MHz in Fig. 9.14, the antenna is
mismatched and, as a consequence, most of the power is reflected towards the RF
front-end.

In Fig. 9.15 the simulated radiation patterns are depicted. In order to take a deeper
look, the radiation patterns for both bands have also been measured in an anechoic
chamber. The measurement setup is shown in Fig. 9.16. Given the fact that the
electrical size of the antenna is small at 868 MHz, a sleeve balun has been used
in order to suppress the outer currents on the RF cable.

In Figs. 9.17 and 9.18, simulated and measured radiation patterns at 868 MHz
and 2.45 GHz are shown. An excellent agreement has been obtained between
simulations and measurements. Comparing the radiation patterns in both bands, it
can be concluded that they are of the same kind, i.e., in both cases the radiation
pattern is broadside (maximum gain normal to the plane of the antenna). On the
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Fig. 9.16 Radiation pattern measurement setup ©Springer [19]

other hand, at 868 MHz it was expected to obtain a typical patch antenna radiation
pattern, with a strong contribution from the co-polar component and a negligible
cross-polar component. The reason for the higher cross-polar component observed
in the measurement is the diffraction in the cable used in the measurement setup.
On the other hand, at 2.45 GHz the contribution of an orthogonal higher-order mode
increases both the simulated and measured cross-polar patterns (see Fig. 9.18a). This
is an orthogonal mode that resonates at 2.6 GHz.

9.5 Conclusions

In this chapter, an FPGA-based SDR platform with cognitive features has been
presented. This platform is based on a fully reconfigurable hardware and operates as
a 12.8 Mbps RF-to-Ethernet bridge in the ISM bands of 868 MHz and 2.45 GHz. The
reconfiguration between these two bands is a powerful tool for fighting undesired
effects found in industrial environments, such as signal shadowing or multipath
fading. Moreover, in order to ensure the communication in an interference-free
frequency, the platform includes a Dynamic Spectrum Access algorithm.

The data-processing algorithms of the platform have been implemented in an
FPGA using Xilinx’s System Generator for DSP rapid prototyping tool. A MicroB-
laze processor has also been included to control the dynamic partial reconfiguration
of the FPGA for small in-band frequency changes. In order to achieve full-band
reconfiguration, a commercial RF front-end and a custom reconfigurable antenna
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have been integrated. The antenna includes PIN diodes for frequency reconfigura-
tion, and its design has been optimized for direct placement on metallic surfaces,
which is a useful feature for industrial environments. Design and implementation
details of all the previous blocks have been presented, along with the measurement
results.

This platform sets the framework for implementing and testing future mech-
anisms, such as time-critical cognitive MAC layers with the aim of improving
the reliability, robustness, and timeliness of wireless communications in industrial
environments under hard real-time requirements [35].
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Chapter 10
Synchronization in NC-OFDM-Based
Cognitive Radio Platforms

Farid Shamani, Tapani Ahonen, and Jari Nurmi

10.1 Introduction

With advancements in wireless technology, applications demand higher data rates.
On the other hand, spectrum scarcity is becoming a major problem due to the incre-
ment of the spectrum users [1]. As Fig. 10.1 illustrates, a real measurement taken
in downtown Berkeley shows that licensed users (also known as primary users)
occupied most of the prime spectrum while do not utilize it efficiently. The Dynamic
Spectrum Access (DSA) is a promising solution to cope with spectrum scarcity
problem. Conceptually, DSA exploits the white spaces between frequencies occu-
pied by several licensed users. Figure 10.2 depicts how DSA enables the secondary
usage of the white spaces within a licensed spectrum without interfering primary
user’s activities. DSA approach also improves spectrum utilization significantly [6].

With the advent of the Software Defined Radio (SDR) in 1991, transceiver could
carry out the entire baseband processing in software. Indeed, the SDR is a platform
in which, at least, a portion of the implementation is held in software [24]. A more
intelligent and advanced version of the SDR known as Cognitive Radio (CR) which
was proposed by Joseph Mitola in 1999 [13]. The CR is a radio platform which is
always aware of its environment and can rapidly change its operating parameters by
considering new characteristics of the spectrum. The user is not even notified when
the CR is changing its corresponding parameters. The CR is an alternative solution
to mitigate spectrum scarcity problem by reusing the portion of the spectrum
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Fig. 10.1 Spectrum utilization snapshot at downtown Berkeley [25]

Frequency

Spectral White Spaces Occupied by
Secondary Users

Spectral White Spaces Occupied by Primary Users

Fig. 10.2 Spectrum utilization using DSA technology [24, p. 151]

assigned to the licensed user for secondary users without disrupting the operations of
any nearby primary user [7]. At first glance, the above-mentioned approaches look
simple. However, a simple alteration in frequency-domain arises several challenges
in the transceiver of which the synchronization is one of the prominent ones. Briefly,
the receiver has no idea that the transmitter sends the data in which frequency band.

10.2 Synchronization Issues in NC-OFDM Systems

Synchronization is an essential issue in all digital communication systems in order
to extract the data out of the received signal. Therefore, one of the main challenges
for digital design engineers is to establish a reliable, robust, and accurate synchro-
nization. Synchronization is a process in which the receiver detects the existence of
an incoming packet and then distinguishes the boundaries of the received packet.
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Cyclic Prefix

(1 + δ)TsTs Td

Fig. 10.3 The effect of a bad synchronizer in an ideal channel [20]

Synchronization errors yield in either time, frequency, or both. Conceptually, the
receiver must run the sampling process on the incoming wave stream in certain time
intervals. Any alteration in sampling time misleads the receiver to properly extract
the data. Figure 10.3 illustrates the picture when the receiver is not able to execute
the sampling process on time. As it can be seen, sampling at a period of .1 C ı/Ts

causes a ı shift in time which leads to an incorrect sampling.

10.2.1 OFDM Versus NC-OFDM

NC-OFDM is an extension of the conventional OFDM modulation where unused
subcarriers are deactivated to eliminate interference made by the secondary user
with adjacent licensed users. Therefore, understanding the architecture of an OFDM
transceiver is strongly required before stepping forward to NC-OFDM systems. As
Fig. 10.4 shows, a high-speed data stream X.n/ is demultiplexed into Nu parallel
ones x.k/.n/; k D 0; : : : ; Nu. This procedure is usually performed by using a serial-
to-parallel converter to form a set of data subcarriers. Then each subcarrier is
individually modulated using either QAM or PSK modulation technique to produce
y.k/.n/; k D 0; : : : ; Nu [24]. Typically, as long as the receiver knows the modulation
pattern, each subcarrier is modulated with the same constellation [3]. Thereafter,
the baseband OFDM waveform s.`/.n/; ` D 0; : : : ; N is constructed as an N-input
IDFT unit with N � Nu defined as Eq. (10.1). The remaining N � Nu unused inputs
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(Also known as VR) are set to zero. VCs are employed as guard bands to cope with
the Inter-Symbol Interference (ISI) problem. ISI is imposed to the system due to the
interferences caused by transmission power of the adjacent subcarriers. Typically,
IDFT is implemented using an IFFT function. Eventually, the transmitter inserts a
CP before converting all the subcarriers to the composite signal s.n/ [15].

s.`/.n/ D 1

N

N�1X

kD0

y.k/.n/ej2�k`=N (10.1)

The receiver performs the inverse procedure to the received signal. The first step
is to remove the CP from the received signal r.n/. Next, considering Eq. (10.2), a
serial-to-parallel demultiplexer converts the serial stream to parallel ones. There-
after, the information is extracted by performing DFT function on the received
parallel waveforms r.`/.n/. DFT is performed using an FFT function to produce
Oy.k/.n/. Next step is to compensate channel distortion imposed to the subcarriers
using an equalizer. The equalized subcarriers !.n/ are demodulated and, subse-
quently, the serial steam x0.n/ is fetched by employing a parallel-to-serial converter
on parallel streams x.k/.n/ [15].

Oy.`/.n/ D
N�1X

`D0

r.`/.n/e.�j2�k`=N/ (10.2)

Figure 10.5 presents the architecture of an NC-OFDM transceiver. By taking into
consideration both Figs. 10.4 and 10.5, the fundamental difference in both architec-
tures is the synchronizer. In contrast to the OFDM where the synchronization was
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done prior to the Fast Fourier Transform (FFT) (synchronization in time-domain),
an NC-OFDM receiver performs the synchronization following the FFT (synchro-
nization in frequency-domain). The main reason which enforces the receiver to
perform synchronization in frequency-domain is a simple change in time-domain
representation of the signal. This is mainly due to the time-domain stochastic
alteration of the preamble, pilot, and data carriers of the secondary user based
on primary user activities. In addition, all secondary users must reduce their
transmission power to avoid interfering with the licensed user due to the sidelobe
leakages caused by the OFDM nature.

10.2.2 Synchronization Methods

As previously discussed, contrary to OFDM, in NC-OFDM systems a precise
location for signal carriers are not guaranteed. Moreover, the location of the licensed
user is changed across the spectrum over the time. Therefore, an NC-OFDM
receiver has no prior information about the subcarriers employed by the secondary
transmitter. This is one of the key challenges emerged from synchronization point
of view. Some researches proposed Out-Of-Band (OOB) architecture to inform the
receiver about the new characteristics of the spectrum [11, 17, 23, 26, 27]. In this
methodology, a special-purpose pre-dedicated channel is established between the
transmitter and receiver to reveal information with regard to the active subchannels
using by the secondary user as well as inactive ones. However, OOB methodology
seems not to be a suitable solution since the dedicated channel may not be available
in some practical situations [16].
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Conceptually, in contrast to OOB mechanism, the prerequisite synchronization
information of a secondary transmitter is embedded to the incoming packet itself.
However, the secondary receiver still has the problem to detect a secondary
transmission. Fortunately, the Federal Communication Commision (FCC) provides
secondary users willing to transmit over the licensed spectrum with transmission
information of the primary user, including the structure of the signal, power, location
of the primary user, etc. [21]. Having substantial information about the primary
user’s activities enables the secondary receiver to filter out subcarriers occupied by
the primary user. Following discusses few proposed method with regard to in-band
communication in NC-OFDM systems.

In [16], the existence of the primary user as well as the corresponding inter-
ferences is discussed. Authors explain an A Posterior Probability (APP) algorithm
to discover active subchannels. A threshold-based Hard Decision-based Detection
(HDD) scheme is used to detect NC-OFDM symbols as soon as an active sub-
channel is detected. However, the HDD operates quite confident for the subset of
subchannels far away from primary user band while the performance is drastically
degraded for subchannels closed to the primary user band. In order to mitigate the
performance degradation to some extent, a Soft Decision-based Detection (SDD)
is performed to increase accuracy for (noisy) subchannels adjacent to the primary
user. However, the existence of the primary user still causes severe synchronization
problems. Eventually, the performance of the proposed method is heavily dependent
on the primary user activities, power, etc.

In [10], authors claim that the system code rate of the proposed algorithm in
[16] is 1/4 when only half of the subcarriers are active. Hence, in order to improve
the system code rate, they proposed a Low-Density Parity-Check (LDPC) after
performing the APP algorithm. The authors emphasized more on how to create
the LDPC code while a perfect spectrum synchronization is taken into assumption.
Since the obtained results are based on simulations, in hardware perspective the
proposed method requires additional hardware element to decode the received
LDPC. In addition, employing more hardware element might increase the energy
consumption as well as the silicon area.

In [22], a fractional bandwidth model has been proposed in which a different
preamble pattern is designed. The information of the active subbands generated by a
Pseudo-Noise (PN) sequence is transmitted over the channel. Therefore, the receiver
identifies and detects the active subbands in the frequency-domain. In time-domain,
the preamble is represented with two identical halves whose sign bits are inverted.
However, the proposed method is based on considering only contiguous subbands
(OFDM-based CR system) which is not practical in NC-OFDM systems. Moreover,
in reality the NC-OFDM secondary transmitter always keeps its transmission power
lower than the licensed user to mitigate interfering with the primary band due to the
sidelobe leakages [9].

Saha et al. [6, 18] proposed a blind synchronization method where the receiver is
capable of regenerating time-domain preamble of the frequency-domain represen-
tation of the same preamble. Furthermore, they considered the idea of employing
multiplier-less correlator instead of performing a full 16-bit Multiplier-Accumulate



10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 195

(MAC) operation in frequency-domain. Furthermore, the primary user’s activities
are taken into account and, consequently, subchannels occupied by the primary
user are filtered using a binary mask. As a result, the existence of the primary
user is eliminated right after performing the FFT. Henceforward, the rest of the
synchronization process is similar to the one of OFDM.

In OFDM systems, synchronization can be performed either in time-domain,
frequency-domain, or both. Since synchronization in frequency-domain requires
many cycles to compute, an OFDM receiver prefers to perform synchronization
in time-domain [4]. Furthermore, each packet starts with the so-called preamble.
The preamble is repetitive sequence known for both transmitter and receiver. Due to
the repetitive nature of the preamble, time-domain representation of the preamble
has a good autocorrelation property. Nevertheless, any change in time-domain
representation of the preamble will cause the NC-OFDM receiver to fail detecting
a packet. On the other hand, a secondary transmitter has to alter its transmitting
frequencies over the time (in the frequency-domain) depending on the licensed
user’s activities. A simple change in frequency-domain results in a complete change
of the time-domain waveform of the preamble. This is the reason why an NC-
OFDM receiver has no idea about the time-domain representation of the preamble.
Therefore, synchronization based on preamble detection should be performed in
frequency-domain in NC-OFDM-based systems. In addition, NC-OFDM receivers
are compromised with two main challenges, as well. First, only a portion of the
subcarriers are available (the rest are occupied by the licensed user). Second, they
should face a low SNR region due to the low transmission power of the secondary
user (to mitigate interferences with the licensed user) [9]. The above-mentioned
obstacles disable conventional synchronization methods which were feasible in
OFDM systems. Figure 10.6 depicts the architecture of an NC-OFDM receiver. By
taking into account the block diagram, synchronization is performed in several steps
explained in the following [18].
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Fig. 10.6 NC-OFDM synchronization scheme [20]
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10.2.3 Active Subcarrier Detection

The first step is to filter those subcarriers occupied by the licensed user. Since
characteristics of the licensed user are known for the secondary receiver [21],
it can be simply done by excluding primary user’s subcarriers when collecting
all the subcarriers (after the FFT). The hardware circuit of such a filter can be
a simple XOR gate. Henceforth, a set of collected subcarriers implies the entire
spectrum where the secondary user might have been active. At this stage, all
subcarriers are employed for spectrum sensing in a pipeline manner using one
of the spectrum sensing methods. The corresponding spectrum sensing results of
all subcarriers are reported to a decision maker unit. The decision maker unit
compares computed results with an approximate threshold. The threshold can be
approximately calculated as follows: when there is no incoming signal or during the
inter-packet duration, the output of the FFT is the magnitude of the noise level. The
decision maker unit is able to dynamically approximate a threshold by subtracting
the noise level from the FFT output. The last step in this phase is to stop spectrum
sensing as soon as the decision maker unit detects the results that have risen over
the threshold. Note that a copy of the incoming packet is also buffered to extract
time-domain samples in the next step.

10.2.4 Preamble Regeneration in Time-Domain

The time-domain representation of the frequency-domain coefficients are gen-
erated by employing a low-cost IFFT unit. Once the time-domain preamble is
generated, the coefficients of the correlator are re-initialized by new samples.
Henceforward, the synchronization mechanism is quite similar to OFDM. The
similarity of the new coefficients with the buffered version of the incoming packet
(which stored in previous step) is computed to detect the boundary of the signal.
As soon as a peak is found, the correlation is inferred to be successful. The last step
is to call decoding unit to extract the data out of the received bits.

10.2.5 Failure in Correlation

When the correlation computations do not yield appropriate results, for whatever
reason, the spectrum sensing mechanism is started to obtain a new set of subcarriers
which is occupied by the secondary transmitter. There are several reasons which
might desynchronize the receiver with the transmitter. A low secondary signal SNR
is one of the main reasons. This happens due to the fact that a secondary user
near to a primary user should minimize its transmission power as low as possible.
A high power primary user has the potential to overwhelm any adjacent secondary
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transmitter. Furthermore, a secondary transmitter might have been using a white
space spectrum which belonged to a turned-off primary. When the primary user
shows an activity on the white space band, the secondary user should immediately
disrupt its transmission. In such circumstances, the receiver must be intelligent and
agile enough to start sensing the channel from the beginning.

10.3 Proposed Synchronization Dataflow

In this section, we propose a reconfigurable platform for sensing the spectrum
as well as the preamble detection/generation. The term “reconfigurability” mainly
refers to the correlator architecture to perform autocorrelation and cross-correlation
on demand. In addition, instead of using wide-input multicorrelator (e.g., 4096-tap),
we employ several smaller ones in parallel. Figure 10.7 illustrates the block diagram
of the proposed receiver architecture. However in order to keep the figure clean,
only one multicorrelator is shown in the figure. In this design, a controller unit
monitors the behavior of the whole system. At the instantiation, multicorrelators
are set up by the controller to perform spectrum sensing. Spectrum sensing is
done by executing the autocorrelation function of the incoming signal with a
delayed version of itself. Each multicorrelator is assigned to compute a particular
portion of the spectrum. Computation results obtained by all the multicorrelators
are compared to an approximate threshold. As soon as the computation results of
a multicorrelator are exceeded over the threshold, the decision maker unit reports
the event to the controller. Next, the controller issues the command to preamble
regenerator unit to generate time-domain representation of the frequency-domain
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Fig. 10.7 Proposed NC-OFDM synchronization scheme [20]
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preamble. In the meantime, the controller sets up the corresponding multicorrelator
to compute cross-correlation function while dismisses the other multicorrelators.
Once the time-domain version of the preamble is generated, the coefficients of
the active multicorrelator are set by the time-domain coefficient of the generated
preamble while the buffered version of the In-Phase/Quadrature (I/Q) signals is
fed as the input signal. When the multicorrelator is re-initiated, the maximum
similarity between the noisy buffered signal and the clean version of the time-
domain preamble is computed. Again, the obtained result is compared to a second
threshold by the decision maker unit. Once the second peak is detected, the
controller infers that the packet is detected and it is ready to be handed to the decoder
unit. When the decoder unit extracts the data bits, it reports to the controller to make
the proper action.

10.4 FPGA Implementation of the Multicorrelator

Figure 10.8 presents an overview of the proposed NC-OFDM synchronizer. The
core content of the multicorrelator is based on a Memory Block to store predefined
preambles as well as the regenerated preambles, a MAC Operator for computing
complex Sum-of-Products (SoPs), a Decision Maker unit to compare obtained
results with a threshold, followed by a Controller to monitor the entire system; each
block is described in the following in detail.

10.4.1 Memory Block

In this design, the considered memory block is inferred as an SRAM initialized
by frequency-domain representation of the preamble. The SRAM is used to
store predefined preamble values in frequency-domain representation as well as
the regenerated preambles. The SRAM data are mainly used as a sequence of
coefficients for cross-correlation purposes. The SRAM has a 32-bit data width
output port where the first half (16 least significant bits) includes Real part of the
preamble and, consecutively, the second half (16 most significant bits) contains the
Imaginary part. One coefficient is inserted to the FIR structure unit per clock cycle.

10.4.2 Decision Maker Unit

The main objective of the Decision Maker unit is to compare results computed by
the MAC operator with a threshold. The decision maker employs different threshold
for autocorrelation and cross-correlation purposes. When the multicorrelator is set
to perform autocorrelation function, the decision maker estimates the noise level
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during the silent time and, based on that, an approximate threshold is set. When there
is an incoming packet, the noise level is subtracted from the FFT output and the final
16-bit result is compared to the approximate threshold. When the result exceeds the
threshold, an autocorrelation peak is found, meaning that the transmitter is sending
a packet. In cross-correlation mode, the decision maker unit makes the decision
based on a comparison between the results given by the MAC operator with a 2-step
threshold level. The main idea of employing 2-step threshold level is explained in
[2] in detail. Figure 10.9 shows how the decision maker unit decides whether a peak
is found. There are two threshold level: a preliminary threshold Thr1 alongside an
original threshold Thr2. When the first half of the incoming signal exceeds Thr1, the
decision maker unit issues a command to the MAC operator to compute the rest of
the calculation. This is generally made to minimize unnecessary calculations of the
MAC operations. Indeed, MAC operations are the most power-hungry operation in
this design. If the first half of the MAC operations meets the Thr1, the second half
of the MAC operations are executed. The packet is detected if the MAC operation
result exceeds the Thr2. Otherwise, the decision maker unit infers that the packet
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Fig. 10.9 2-step threshold detection flowchart [20].

was not detected and, consequently, inform the controller to discard undergoing
procedures. The decision maker unit informs the controller with two separate signals
each of which indicates a particular peak that is found either in autocorrelation or
cross-correlation. Choosing a proper value for both Thr1 and Thr2 has an impressive
impact on correct packet detection even in low SNR regions. A high-value threshold
will improve the algorithm robustness, however, it might result in missing frames
with lower energy. On the opposite side, a low value might mislead the decision to
detect the noise in lower SNR regions. For instance, a good approximation for Thr1

value could be 45 % of the original Thr2 in 2-step algorithm [2].

10.4.3 Controller Block

The controller block is the most responsible block in the design. The main task of
this block is to make proper action by continuously monitoring the behavior of the
system. When the receiver is waiting for a packet, the synchronizer continuously
performs autocorrelation function between the incoming signals with a delayed
version of itself. Therefore, the controller sets the MAC operator to perform auto-
correlation function. In order to perform the autocorrelation function, the controller
routes the incoming signal with the delay length of D to the coefficient register
bank through a multiplexer. Whenever the coefficient register bank is appropriately
loaded, the controller freezes the register bank to avoid register overloading.
Henceforward, the controller waits on the decision maker unit to respond. Once the
autocorrelation peak is confirmed by the decision maker, the controller prepares the
environment for the multicorrelator to perform cross-correlation function between a
buffered version of the packet and regenerated time-domain preambles. The cross-
correlation function is executed in the same way as the autocorrelation function.
This time, the coefficient register bank is loaded by the regenerated preambles
which are stored in the memory. Only one coefficient can be loaded to the register
bank per clock cycle. Based on the MAC operator architecture, the multicorrelator
performs cross-correlation function at the same time the coefficients are being
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loaded. The functionality of the MAC operator is explained in next subsection.
When the coefficients of the multicorrelator are fed by proper values, the controller
freezes the register bank and waits for any prompt from decision maker unit. Once
the second peak is confirmed, the controller disables the MAC operator and hands
the packet to the decoding unit to extract the data. When the data is extracted, the
decoding unit informs the controller to restart the synchronization process.

10.4.4 MAC Operator Unit

Due to the nature of the NC-OFDM, the highest order of the tap, e.g. 4096-tap, is
required to perform synchronization over the entire spectrum. Therefore, an NC-
OFDM receiver has a massive power dissipation along with a huge silicon usage
[12]. The MAC operator unit is quite similar to Finite Impulse Response (FIR)
filters from infrastructure point of view. As Eq. (10.3) presents, an FIR filter of
order N calculates y.n/ as the SoP of coefficients h.k/ with the input x.n � k/. The
hardware implementation of the MAC operator unit also calculates y.n/ as the SoP
of complex conjugate coefficients c.k/ with incoming signal x.n � k/ on a window
whose length is N [8]. The Conjugation is simply done by inverting the sign bit
of the imaginary part of the coefficients. As previously discussed, both coefficient
and incoming signal are 32 bits long where we stipulated that the first half is the
Real part and the remaining 16 bits are the Imaginary part. It is also worth taking
into consideration that the products are complex are complex multiplications which
have the potential to double resource usage resource usage from the hardware point
of view. Furthermore, we considered fixed-width truncation method where only 16
most significant bits are taken into consideration as the final result of the MAC
operation. The MAC operator unit is the most intensive block of the multicorrelator
due to the massive workload of complex computations. The infrastructure of the
MAC operator is described in the following subsections.

y.n/ D c.n/ � x.n/ D
N�1X

kD0

c.k/x.n � k/ (10.3)

10.4.4.1 MAC-Based Operator

In general, the MAC operator is composed of three fundamental functional units
aptly named adders, multipliers, and delay elements. An N-tap MAC operator is
consisted of N delay elements, N multipliers, as well as N � 1 adders. Furthermore,
different architectures are obtained by different arrangements of these functional
units. Technically, there are two well-known architectures for implementing MAC
operator known as Direct Form (DF) and Transposed Direct Form (TDF), each of
which is capable of calculating y.n/. We also experience different structures namely
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Parallel Direct Form (PDF) as well as Pipelined-Parallel Direct Form (PPDF).
Figure 10.10 pictures the above-mentioned architectures with their pros and cons.
Figure 10.10a presents the DF architecture where the delay elements are located
through the input path. A large N-tap DF introduces a long critical path due to
the nature of its architecture. If we assume that each addition takes Ta and each
multiplication takes Tm unit of time and number of taps are equal to 256 (as
it is in this implementation), the critical path of the DF architecture is equal to
Tcrit D Tm C 255Ta. Therefore, it is not a wise choice for large MAC operator
designs at all.

Figure 10.10b shows the TDF architecture which is the optimized version of
the DF form. In this architecture, since the delay elements are located between the
adders, the critical path is bounded by Tcrit D Tm C Ta irrespective to the number
of taps. In the TDF version, the inverse version of the coefficient chain C.k/, e.i.
.Ck; Ck�1; : : : ; C0/, is multiplied with the input signal X.n/. Thus, this architecture
does not require a register chain in its input path (see Fig. 10.8). However, the TDF
version has the potential to introduce a long interconnection on its input path.

Figure 10.10c illustrates the PDF form where at the first glance it looks similar
to the DF version. The idea behind the PDF architecture is to cope with long
interconnection input as well as the critical path to some extent. Despite the DF
form, PDF distributes the adders in several parallel levels (hierarchy levels). The
number of required levels is proportional to the dlogN

2 e where N is the number
of taps. In this case study, since N D 256, 8 levels of adders are required.
Consequently, the critical path of a 256-tap MAC operator is equal to Tcrit D
Tm C �dlogN

2 e � Ta
� D Tm C 8Ta. The hardware implementation procedure of this

architecture is more complex than the DF and TDF forms.
Figure 10.10d depicts the pipelined version of the PDF form where a register

is inserted between each two adders. Although the inserted registers maintain
the critical path at its minimum level (Tcrit D Tm C Ta) while preventing long
interconnections, a variety of register elements are introduced to the system.
Moreover, the PPDF architecture has the same complexity as the PDF form.

10.4.4.2 Multiplier-less-Based Operator

A study in [5, 14] shows that the M-L-based multicorrelator design offers com-
parable synchronization performance. In this approach, a sign bit correlation
between coefficients and input signal is considered instead of performing 16-bit
multiplication. The sign bit correlation can be implemented in hardware by a simple
XOR gate. The M-L form reduces a substantial number of registers as well as the
DSP blocks. Although the M-L-based multicorrelator takes only 1-bit into account,
simulation results obtained by the ModelSim software show that the performance
of the MAC operator is at a satisfactory level in our case study. Furthermore, Saha
et al. [18] acknowledged that the sign-based correlator has satisfactory performance
even in low SNR regions, as well. Based on these evidences, we can claim that the
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M-L-based multicorrelator is the best choice in our case study. More discussion with
regard to the synthesis results of the multicorrelator with different architectures are
addressed in Sect. 10.5.

10.5 Synthesis Results

This section discusses with respect to the proposed multicorrelator configured
with different architectures. We used VHDL description language to implement
the multicorrelator, ModelSim software for simulation, and verification progresses,
Quartus-II environment to synthesize the design and generate the netlist. We also
took into account the Altera family FPGA targeting Stratix-V speed grade 2 series to
prototype the design. Table 10.1 shows synthesis results in terms of logic utilization,
DSP blocks, total registers, and maximum frequency. The results show that the
M-L-based multicorrelator achieved the best results in most cases whereas the DF
can be considered as the worst design approach. As previously explained, the PPDF
architecture consumes more resources due to the use of more register elements. The
M-L approach drastically reduces logic utilization due to mitigating substantial DSP
blocks, registers, etc. In this case study, the M-L-based multicorrelator preserved
more than 75 % logic elements as well as 78 % reduction in total registers in
comparison with MAC-based architectures. All MAC-based architectures use 512
DSP blocks (32 % of the total) because of the multiplication purposes whereas
the M-L-based design does not require any DSP block. The maximum frequency
is approximately similar in all architectures, excluding the DF architecture. The
M-L-based design achieved the highest frequency between all configurations. Power
dissipation analysis is reported based on the results given by Quartus-II PowerPlay
Power Analyzer Tool. The analyzer directly reads the SAIF generated by the
ModelSim for the multicorrelator running at 50 MHz. The static probability and
toggle rate are calculated based on the generated VCD file for detecting a packet

Table 10.1 Synchronizer synthesis results

TDF DF PDF PPDF ML

Logic utilization (ALMs) 12,483 12,490 7504 14,611 1876

Total DSP blocks 512 512 512 512 0

Total registers 16,378 16,883 8873 28,037 2886

Max. freq. (MHz) 238 68 88 240 257

Table 10.2 Thermal power dissipation (mW)

TDF DF PDF PPDF ML

Total 1436.82 3371.45 1286.90 1138.75 937.15

Dynamic 344.15 200.60 265.90 160.10 9.40

Static 1070.05 1062.70 987.10 955.80 951.50

I/O 22.60 2108.15 33.90 22.85 26.20
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Table 10.3 Thermal power dissipation by hierarchy (mW)

TDF DF PDF PPDF ML

Memory block 0.78 0.81 1.21 0.80 0.79

Threshold block 0.01 0.01 0.01 0.01 0.01

Controller block 0.02 0.02 0.02 0.02 0.02

FIR filter block 230.20 165.55 192.40 128.80 4.20

Table 10.4 Cell power consumption (mW)

TDF DF PDF PPDF ML

DSP block 216.50 130.4 157.75 95.2 0

Combinational cell 76.60 10.80 51.80 1.3 1.85

Register cell 2.10 30.30 10.65 32.65 2.45

I/O 25.1 2090.10 15.80 4.25 7.45

after the boot-up. Table 10.2 summarized the estimated results. The DF architecture
has the most power dissipation rather than the other implementations due to the long
critical path through its I/O. The dynamic thermal power is noticeably decreased
in M-L-based approach. It is generally due to the fact that the M-L architecture
mitigates massive number of complex multiplications. Furthermore, the M-L-based
design saves more than 94 % of the dynamic power consumption in comparison with
the PPDF form. The PPDF architecture is the lowest power-hungry architecture in
MAC-based designs.

Dynamic power dissipation by hierarchy is reported in Table 10.3 for different
architectures. The MAC operator unit is the most power-hungry block in MAC-
based architecture while the controller block as well as the decision maker are
the least power consumer, respectively. The power dissipation was reduced due to
employing a sign bit correlation instead of 16-bit multiply accumulate operations.
Table 10.4 depicts the power dissipation in each cell. The results show that the
M-L-based multicorrelator achieves a better result in comparison with MAC-based
architectures. The reason why the DF has a massive power dissipation can be
explained due to the long critical path which exist in the I/O.

10.6 Conclusion

This chapter discussed about fundamental principles with regard to synchro-
nization issues in Non-Contiguous Orthogonal Frequency Division Multiplexing
(NC-OFDM) systems. The architecture of an OFDM transceiver as well as an
NC-OFDM transceiver were explored. In contrast to the OFDM system where the
synchronization is based on time-domain preamble, an NC-OFDM receiver should
regenerate the time-domain representation of the preamble in frequency-domain.
Following by, the proposed synchronization data flow as well as the state of the art
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in synchronizer explained. The main idea was to perform spectrum sensing along
with packet detection by a single multicorrelator. The second idea was to segment
the supreme spectrum into several subchannels and employ several multicorrelator
(instead of searching a wide spectrum). The core content of the synchronizer
was based on MAC operations which were quite similar to FIR filters. The
MAC operator unit implemented with different structures including Direct Form,
Transposed Direct Form, Parallel Direct Form, Pipelined-Parallel Direct Form,
Multiplier-Less architectures. The synthesis results inferred that the Multiplier-
Less-based multicorrelator had better performance in terms of maximum frequency,
silicon area, dynamic power consumption, etc., compared to other configurations.
On the other hand, the worst case architecture was Direct Form in all aspects in our
case study while there was a trade-off for remaining architectures. As experiences
showed, the simplest MAC-based architecture in terms of implementation belonged
to Transposed Direct Form and Direct Form, whereas the most complex ones were
Pipelined-Parallel Direct Form and Pipelined Direct Form, respectively.
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Chapter 11
Towards Adaptive Cryptography and Security
with Software Defined Platforms

Antti Hakkala, Jouni Isoaho, and Seppo Virtanen

11.1 Introduction

Security and privacy are essential components of modern communication systems,
of which the Internet is arguably the primary medium for most of us. The
Internet was originally designed on the base assumption that all users will comply
with standardized protocols and rules, but development in the last two decades
unfortunately shows that this assumption can be challenged on several different
levels.

First, the rise of cybercrime in the first decade of the twenty-first century has
provided evidence that there are adversaries willing to compromise any and all
assumptions of security, and they do it for profit. Cybercrime in itself has grown to
become a multi-billion business, and their methods range from social engineering to
capitalizing on existing vulnerabilities in software and hardware [38]. In the battle
against cybercrime the main focus should be in building security in the systems
and maintaining the ability to adapt to discovered vulnerabilities, thus swaying the
balance in the continuous security arms race to the defenders’ benefit.

Second, we can recognize another even more pressing driver for advances
in security and privacy: the advent of global network surveillance. Performed
by the most powerful intelligence organizations in the world, global network
surveillance has emerged as one of the main threats against security and privacy on
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the Internet [2, 47]. Ordinary criminals target Internet users—whether businesses
or individuals—stealing their data and credit card details by leveraging existing
vulnerabilities in software and hardware. Intelligence agencies have taken a more
disruptive approach. By undermining security protocols and standards these orga-
nizations have succeeded at making Internet communication less secure. When a
vulnerability is detected in software, it is patched with a software update. If the flaw
is in a hardware implementation of a standardized algorithm, and that particular
algorithm in itself is found to be compromised, the flaw cannot be fixed without
changing the hardware itself. It is hard to convince consumers to upgrade their
hardware because of such a security flaw. It is in most cases also not cost effective
in the consumer device segment. In more specialized or mission critical hardware,
however, replacement can be worth serious consideration. This can be true even
in cases where consumer devices would be left in a vulnerable state through their
lifetime, e.g., WLAN access points supporting only outdated encryption options
such as WEP.

Traditionally different types of communication have required specific terminal
equipment and infrastructure, all specific to a single application. Placing phone
calls typically required a phone and either a wired or wireless telephone connec-
tion. Browsing websites and reading email required a computer and a network
connection. Watching television required a television set, and so on. Nowadays
the situation is significantly more complex. While we do have handheld battery-
powered devices capable of handling all of these communication scenarios, the
pressure for security in communications has not yet reached the point where all
communications regardless of type and platform are encrypted by default. This
would place even more requirements on multipurpose devices such as smartphones,
but the current generation devices are already more than capable of handling
this. One significant caveat is whether better security and privacy should come at
the cost of end user experience. In a consumer product this could be considered
unacceptable. The emergence of this trend can already be seen from certain key
stakeholder reactions to mass Internet surveillance [21, 42, 49]. While it can even
be considered idealistic in the current state of events, we hope to see a demand
for security and privacy that will result in security and encryption permeating all
tiers of hardware devices, even those with insufficient resources to implement these
features.

Future communication systems need to support a variety of signal processing
algorithms, radio interfaces, and communication and security protocols in the same
device, with the capability to adapt to changing situations. We already observed
the present trend towards provision of high processing speed for a wide variety
of applications by handheld battery-powered devices in [6]. We can see this trend
realized in current smartphones and software ecosystems. With the advent of
Internet of Things (IoT) and Wireless Sensor Network (WSN) systems, smaller
devices with less computational capacity than current handheld devices will have
to fulfill the same requirements for secure communication as present handheld
devices. We see that a new trend driven by data security and privacy concerns
will require more security-related functionality from all devices, regardless of their
position in the communication chain—whether they are measuring, processing,
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or just transmitting data. For example, sensors in healthcare IoT must use strong
methods to secure medically sensitive data, and military sensor network applications
must adapt to changing environments and corresponding security requirements.

The field of embedded security is under intense research. Some challenges,
as identified in [27], are, e.g., securing the data content and data transportation
within the device, data exchange with the recipient device at the other end of the
wireless link, and data transportation between end-to-end applications. These are
vital capabilities and indispensable built-in features for any communication device
that aims to serve as a credible solution for current and future communication
applications. Software Defined Radio (SDR) and Open Wireless Architecture
(OWA) have previously been established as potential design paradigms to address
the needs for higher system integration and multiple communication interface
support.

The objective of this chapter is to specify a design methodology and process
as a framework for enabling resource-constrained devices both to implement
necessary security features and to preserve processing power to the actual target
application. We refer to this as the Software Defined Secure Communications
(SDSC) framework. In this chapter we examine the augmentation of the SDR
and OWA concepts with built-in security support, and present our approach to
building security in the framework. We identify and analyze the requirements set
by modern security algorithms and applications to future communication systems,
and further specify a design methodology which leverages SDR principles, adaptive
cryptography as well as software and reconfigurable hardware for such systems.
As a result of the analysis, we discuss the potential benefits of this approach in
the future, where IoT and sensor networks are ubiquitous. Essentially we see our
method as a flexible, programmable, and security oriented design framework for
security enabled SDR applications that can be used to create proprietary hardware
and software designs, which can later be adapted to several different functions
with software. We also see benefits of our method in shortened time-to-market and
potential cost savings in increased volume and customization options.

In our earlier studies we have introduced the programmable and parameterizable
TACO (Tools for Application-specific hardware/software codesign) hardware plat-
form [51, 52] for protocol processing (PP) applications, and proposed a digital signal
processing (DSP) extension to it [41], making it possible to run PP and DSP tasks in
parallel on the same programmable processor with optimized execution units. SDR
capabilities were introduced to the architecture in [1].

The chapter continues with an overview of the TACO architecture and concept
in Sect. 11.2, where we also discuss the PP and DSP features of the architecture. In
Sect. 11.3 we give an overview of our SDR research on the architecture. In Sect. 11.4
we provide the necessary background on cryptography and its relevance to security
protocols. We describe our approach to accelerating cryptographic protocols by
identifying and accelerating their underlying primitive operations, and discuss the
use of Transport Triggered Architecture (TTA) based processors in cryptography.
In Sect. 11.5 we present our design methodology and flow for the SDSC platform
and discuss cryptography reconfiguration approaches and motivations for different
target applications. A preliminary case study and a simulation experiment on
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incorporating RSA support onto our platform are presented, with results that are
encouraging but limited in scope. In Sect. 11.6 we discuss future work in the form
of potential target applications and implementation scenarios for our approach, and
begin to outline the challenges we face in the future of communication systems.
Finally, in Sect. 11.7 we provide our concluding remarks.

11.2 TACO Platform for Application Domain Specific
Programmable Acceleration

The TACO hardware platform is based on the Transport Triggered Architecture
paradigm [9, 50] and is aimed at developing application domain specific pro-
grammable processors. A processor customized for a specific application does not
only outperform a general purpose core, but is also expected to consume less power
and circuit area. Application-specific hardware can reduce the computational load
associated with complicated operations that are cumbersome when executed on
traditional processors. A customized processor can meet the desired throughput
requirements at a lower clock speed, thus reducing energy expense. Unlike a
general purpose execution unit, a highly tailored processor will not implement
any extra functionality, except for the subset needed for the desired application
domain. Because of the TTA based architecture, TACO protocol processors are
programmable and configurable, providing dedicated hardware to deal efficiently
with application-specific tasks. As seen in Fig. 11.1, a TACO processor consists
of a set of functional units (FUs) connected by an interconnection network of
one or more buses. There may be multiple FU instances of the same type in a
TACO processor, allowing parallel execution of respective operations. This resource
redundancy, depending on circumstances, may serve either to speed up the execution
of a particular single application or to provide real multitasking for a set of simulta-
neously run applications. The interconnection network is composed of one or more
buses, supported by an interconnection network controller. The interconnection
network is presented in more detail in Fig. 11.2, where the individual connections
between FUs and buses are shown. The number of buses directly limits instruction
level parallelism, as it determines the maximum number of simultaneous data
moves. As TACO is a modular architecture, FUs are designed separately and are
provided standard interfaces to the interconnection network. This also makes it easy
to automate the design process to a high degree. Each FU implements a set of
functions, and the final configuration is defined by the choice of appropriate FUs
to the target application. FUs can be modified internally as long as they provide the
same interface to the sockets connecting them to the interconnection network. This
makes module re-usability straightforward and simple, and it is an integral part of
the TACO hardware platform and design methodology.

The performance of the architecture can be scaled up by adding extra FUs, buses,
or by increasing the capacity of the data transports and storage. Increasing the
number of existing FUs provides more performance for parallel and pipelinable
tasks, while adding FUs with new functions in turn provides support for new
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application types. Performance of TTA processors is at least equal to that of
their conventional or DSP counterparts (i.e., processors of different types but
with functionally and quantitatively equivalent capacity). According to [24, 25],
this performance is also achieved at far lower cost, which encourages our further
development of optimized functionality on TACO.

TACO is programmed by only one type of instruction, move, which specifies
independent data transports on each of the defined buses. In contrast to traditional
processors, data transports trigger operations, and not vice versa. The operation
of the processor occurs as a side-effect of the transports between functional units,
transparently to the control unit and its instructions. The architecture allows for one
processor cycle to fit several bus transports. The interconnection network controller
implements the data transports on the buses. The controller uses a program memory,
from which it fetches instructions, splits them into sub-instructions, and dispatches
each sub-instruction onto the corresponding bus. Each move sub-instruction has



214 A. Hakkala et al.

FU 2
Op

Tr

Res

Bus 1 Bus 2 Bus 3Bus 1
Data Src Dst

FU 1
Op

Tr

ResFU 1

Operand
Trigger

Result

FU 3
Op

Tr

Res

trig
opcode

FU 3

Operand
Trigger

Result

trig
opcode

FU 2

Operand
Trigger

Result

trig
opcode

Interconnection
network

Sockets

Input

Trigger

Output

Data Src Dst Data Src Dst Data Src Dst

Fig. 11.2 TACO processor interconnection network. Each interconnection bus consists of a data
bus, a source address bus, and a destination address bus. Left: Three FUs and one bus: only one
data transport per clock cycle. Right: Three FUs and three buses: three data transports per clock
cycle are possible, so each functional unit can be triggered to function on each clock cycle

a source and a destination field, and the data is carried accordingly from one FU
register to another on the respective bus. When adding new FUs to a design, the
instruction format does not change as long as the existing FUs are addressable
by the length of source and destination addresses, and unless more parallelism is
required. The excellent pipelining capacity of TTA, together with the emphasis
on moving data, makes it a good platform for data-intensive applications. It is
exceptionally well suited to protocol processing and for all communication-related
tasks in general.

11.2.1 Protocol Processing Application Domain

The first application domain we have addressed in the development of TACO was
protocol processing (PP). The following discussion on building the TACO platform
for the PP application domain is based on our earlier research in [50–52].

In order to develop customized devices for the PP application domain we
carefully studied commonly used protocols and protocol processing applications.
Special emphasis was placed on finding functionality that varies very little from one
protocol to another or remains virtually the same across a set of protocols. Studies by
Jantsch et al. [29] and Virtanen et al. [50, 51] identified characteristic functionality
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that, if parameterized, is generalizable to several protocols instead of just one
specific protocol. These studies identified, for example, the need for bit pattern
matching and masking, substring replacement in bit strings, Boolean comparisons,
counters, and checksum calculations. They are also functionality that can be
parameterized. One finding was also that protocol processing can be implemented
using only unsigned arithmetic (i.e., there is no need for managing negative values),
making hardware implementation considerably simpler. The emphasis in these
studies was on analyzing protocols that can be regarded as layer 1–3 protocols
(physical, data link, and network layer) in the OSI reference model. In these layers
the protocols are not end-to-end protocols, but require intermediate stations (e.g.,
repeaters, bridges, switches, routers, etc.) between the source and destination ter-
minals. Thus, these protocols present a clear need for application-specific hardware
systems in addition to application software, whereas the end-to-end protocols in
OSI layers 4 and above are often completely implemented as software running
on networked workstations. However, the higher layer end-to-end protocols can
also potentially take advantage of application-specific processors, particularly in
mobile devices and low-power sensor networks. In terms of the work presented in
this chapter, we argue that we cannot concentrate solely on the three lowest OSI
layers, as security-related protocols reside on the upper layer of the OSI model.
Especially important are protocols providing end-to-end encryption, an essential
part of information security.

11.2.2 TACO Extension to Digital Signal Processing Domain

In [41] we explored possibilities for augmenting our hardware platform to support
DSP operations, in addition to the pre-existing support for protocol processing.
As our first step towards bridging the gap between the protocol processing and
DSP domains, we enhanced the TACO hardware platform to support finite impulse
response (FIR) filtering. To enable efficient filtering we had to implement the
multiply-and-accumulate (MAC) operation typical to many DSP applications.
The approach we chose required remarkably few modifications to our hardware
platform. The process of designing and implementing a new FU for the multiply-
and-accumulate (MAC) operation demonstrated the flexibility of our hardware
platform in terms of adding support for new functionality even across the boundaries
of supported application domains. As our initial starting point in the design of the
DSP domain MAC FU, we used an existing protocol processing FU, namely the
Internet check sum calculation unit presented in [51].

Fine-tuning of the TACO modules allowed us to enhance our protocol processor
architecture with support for some DSP applications without loss of performance in
either domain, and at a very low cost. We determined that the MAC FU consumes
about 5–10 % of the total chip area of a typical TACO processor implementation.
With a single MAC FU hardware implementation we were able to specify multiple
system implementation schemes with different optimization factors for the target
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application. The conducted analysis suggests that the obtained enhancement of
TACO platform allows efficient parallel execution of application software requiring
both protocol processing and DSP operations, and this was also demonstrated
by experimental results. This work laid foundation for further studies on parallel
execution of operations from DSP, protocol processing, and other domains on our
hardware platform. With these encouraging results we proceed to the software
defined radio domain.

11.3 TACO as a Platform for Software Defined Radio

In [1] we took the cross-domain customization of TACO further and explored
both methodological and technical aspects of adding support for Software Defined
Radio domain to the architecture. Our goal was to deliver a novel software defined
approach for designing and implementing common baseband processing tasks,
with focus on exploring the algorithmic and architectural design spaces of 3G
and 4G systems. Specifically, we identified computational and geometric structures
shared by diverse coding schemes, services and hardware platforms related to SDR
domain, and integrated physical layer support for them in extensible hardware.
While the primary goal was to enhance the TACO platform with the features
of a programmable SDR enabled processor, in this process the methodology of
extending the TACO platform to support new application domains was also realized.
This process is done in two phases. First, the initial design is done using standard
design principles and methods for the original target application. After this the
design is extended to support a new set of requirements by identifying target
components in the design and modifying them to fulfill the requirements from the
new application domain.

The approach incorporates control structures, component abstractions and
parameterization, and architectural optimization into a system design process.
We found the proposed platform and design methodology to be very suitable for
SDR domain applications, as they have strict requirements on power consumption,
chip size, processing speed and scalability for other existing and future applications
and standards. Since the TACO platform has the scalability and modularity required
by SDR applications, the design framework allows the designer to focus on the
internals of the required hardware components due to the well-defined structural
entities of the hardware platform. A key benefit of our approach is the support for
making FUs definable in software. Once a new radio application has been mapped
and partitioned to existing FUs, the designer typically needs to make only minor
changes or additions to the internal implementation of existing units. In many cases,
modifying the external interfaces of the functional units is not necessary when
adding support for novel functionality. These characteristics result in a shortened
turnaround time and less design effort in the process of upgrading the platform to
support new (radio) applications. On the architectural abstraction level, the designer
typically does not have to modify the platform implementation, except to choose
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the utilized level of execution parallelism and of data transport capacity. Parallel
execution of operations can be realized by adding several FUs of the same type to
a design, and data transport capacity is affected by the number of buses and the
interconnection network.

In the case study presented in [1], we designed a TACO platform for Digital
Video Broadcasting (DVB) and then modified the system to additionally support
GSM. The platform implementation required 4000 lines of VHDL code. As
expected, we found that extending the platform from supporting only DVB to also
support GSM did not considerably increase the amount of code, as most additions
were needed into specific processes inside the FU implementations. Only two FUs
needed to be enhanced for GSM support: demapper and bit deinterleaver. These
FUs are marked with a dashed line in Fig. 11.3. We determined in our study that
the cost of extending one functional unit to support additional, software definable
functionality from another standard was an area increase of only about 10–15 % and
a power increase of 23–26 %, showing that these existing units already supported
most of the new functionality. At the processor level, the GSM extension produced
only 2.4 % of total processor area and 2.7 % of overall power consumption. The
extension required 4 days of hardware design and verification, 2 days for each FU
that needed modifications.
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11.4 Towards Software Defined Secure Communication:
Multi-Domain Integration for Secure Network
Applications

In this section we will extend the TACO platform and design methodology towards
a comprehensive communications solution. The Software Defined Secure Commu-
nication (SDSC) platform will provide support for all aspects of communication,
and we start outlining the platform by examining necessary building blocks for
secure communication systems, examining the characteristic functionality found
in security algorithms, and discussing on how to adapt to a changing security
environment.

11.4.1 Cryptography Fundamentals

Cryptography is a core element of security. All secure protocols and communication
standards include methods for guaranteeing data confidentiality, integrity, and
authenticity. They are the essential cornerstones of information security, so we
will have to extend the TACO platform to handle these vital areas. Confidentiality
is provided by encryption, while integrity and authenticity are provided by error
correction, cryptographic hash functions, Message Authentication Codes (MAC),
and digital signatures. The choice of a cryptographic solution for a target application
is not trivial, as there are many choices, constraints, and metrics for the designer to
consider. The communication cipher suite for an IoT healthcare solution will differ
significantly from a smartphone due to differences

Cryptographic ciphers can be broadly divided into three groups: private key,
public key, and cryptographic hash algorithms [46]. Private key algorithms use the
same key for encryption and decryption, while public key algorithms have two
keys: public key for encryption and private key for decryption. Hash algorithms
compress an arbitrary length input to a fixed length output, and attempt to provide
unique outputs for each input. All three types of algorithms are important for secure
communication protocols. Public key algorithms are used for initiating a secure
communication channel over an insecure medium. Keys for a private key algorithm
are then exchanged over this secure channel, and that private key algorithm is used
for bulk data encryption. The integrity of communications can be verified using
secure hash functions, which can provide proof that a message has not been altered
in transition. Cryptographic hash functions are also often used to derive session keys
from master encryption keys, using key derivation schemes such as PBKDF2,1 and
bcrypt [43].

1Defined in IETF RFC 2898, https://tools.ietf.org/html/rfc2898

https://tools.ietf.org/html/rfc2898
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11.4.1.1 Accelerating Cryptography

There are several different approaches to accelerating cryptography algorithms [34].
Because of large operands and complicated operations that are ill-suited for
standard computer architectures, software cryptography implementations tend to
be slow when compared to hardware. Thus the natural approach is to build cipher-
specific hardware. Dedicated hardware solutions are orders of magnitude faster than
software implementations, but they have some significant drawbacks. Hardware
implementation of an algorithm cannot be changed later, should the need arise, thus
locking us to that algorithm implementation. Reconfigurable hardware such as Field
Programmable Gate Arrays (FPGA) has been used to solve this issue.

In [17] we have surveyed the methods for accelerating different cryptographic
algorithms. Exponentiation operations are very common in cryptography, and
combined with modular arithmetic, they provide the backbone of ciphers such
as RSA [44]. Since these operations can be regarded as bottlenecks, accelerating
them will boost the performance. Known efficient multiplication algorithms and
different number representations such as Montgomery representation [37] for
modular arithmetic can be leveraged for significant gains. The Chinese Remainder
Theorem (CRT) can be applied specifically to RSA, providing up to four times faster
operation [19]. Finite field arithmetic is crucial to Elliptic Curve Cryptography
(ECC) [32, 36]. ECC operates in finite prime or extension fields. In prime fields,
operands are reduced modulo a prime, and in extension fields the reduction is done
modulo an irreducible polynomial. A representation of the arithmetic hierarchy for
ECC is presented in [31], where the relationship between the arithmetic operations
and underlying primitives is shown. Elliptic curve operations are all based on
modular arithmetic, and this makes modular arithmetic an essential underlying
operation for ECC as well.

Similarly, finite field arithmetic is also essential for AES [39], in which calcu-
lations are done in the binary extension field GF.28/. In some cases leveraging
different coordinate systems for representing field elements can eliminate the need
for computationally costly operations. As an example of reuse of cryptographic
primitives, AES calculations can be accelerated with an Elliptic Curve instruction
set designed to accelerate calculations in finite fields of characteristic 2n [48].
Another example is the use of the Intel AES instruction set [5] to accelerate
AES-based SHA-3 hash function candidates, an approach which leverages existing
hardware on processors to accelerate the execution of structurally similar algo-
rithms. A summary of essential operations in various cryptography algorithms is
presented in Table 11.1.

11.4.2 Previous Work on TTA and Cryptography

As far as we are aware, there is very little literature on the use of transport triggered
architecture based systems in the cryptography domain. TTA has mostly been
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Table 11.1 Summary of essential features and associated methods in cryp-
tography

Base operation Techniques and methods

Fast exponentiation Fast multiplication algorithms, windowing
methods (see, e.g., [15])

Fast modular arithmetic Montgomery [37] and Barrett [3] modu-
lar reduction, and derivatives [20, 22, 53],
Itoh-Tsujii inversion [28], repeated squar-
ings [30], Extended Euclidean Algorithm,
Chinese Remainder Theorem

Fast point scalar multiplica-
tion

Various coordinate systems, fast multipli-
cation algorithms (see, e.g., [18])

Fast substitution, rotation,
and permutation

Operation-specific Instruction Set Exten-
sions [4], hardware implementation

used for protocol processing, and so far the available literature clearly reflects
this. Hardware implementations of IWEP, RC4, and 3DES all based on TTA are
analyzed in [24]. The paper aims to explore Instruction Level Parallelism (ILP)
for the previously mentioned algorithms, finding that parallelism can be exploited
in some limited scope. The suitability of TTA for efficient AES encryption is
studied in [26], where AES on different platforms, including TTA based processor,
for wireless sensor networks was examined in a survey study. A coprocessor for
elliptic curve cryptography acceleration based on TTA is presented in [35]. Here,
the presented system is targeted at the Chinese standard ECC algorithm SM2. Their
implementation was capable of scalar multiplication in 3 ms at 80 MHz for a 192
bit elliptic curve. A TTA hardware implementation of RSA based on the Chinese
Remainder Theorem is presented in [16], where the presented implementation is
capable of decrypting RSA at the rate of 106 kbps at 100 MHz. A TTA based
hardware solution for RSA key expansion is presented in [23], where the presented
hardware is capable of generating three 1024 bit RSA keys per second at 100 MHz,
when implemented in VHDL and synthesized in a 0.18 �m process.

Our approach with the TACO platform had been primarily directed towards
protocol processing, but both the advantages of the TTA based platform and the
requirements of future networks support extending the platform to the cryptography
domain. The development of communication systems towards IoT and sensor
networks also put pressure on providing significant cryptography resources with
flexible cipher suites and broad communication protocol support on hardware.

11.4.3 The Pyramid Model of Security

Security design can be generalized as a pyramid with different layers representing
abstraction levels of security systems [45]. At the highest abstraction level is
the security protocol architecture, which contains the protocols used for security
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purposes. The next abstraction level contains the actual algorithms such as RSA,
DSA, and SHA. The third abstraction level contains the “building blocks” of
algorithms, derived from number theory. The fourth abstraction level contains cycle
accurate platform independent representations of these algorithms, and the fifth
level contains the physical implementation of the algorithms. If approached from
a completely different point of view, the security pyramid model can also be seen
as a service architecture. It incorporates a distinct customer–service relationship
between the layers, where the upper layers issue directives and requirements for the
layers below, whereas the latter provide service to the layers above, according to the
received requirements [17]. The model is illustrated in Fig. 11.4.

When we consider different protocols and algorithms for our SDSC platform and
design methodology, we are mostly concerned with the first, second, and third layer
of the security pyramid. These layers constitute the manual part of the design flow,
while the fourth layer is handled by the TACO design toolkit. The mapping of the
pyramid model to the TACO design flow is examined later in Sect. 11.5.

11.4.4 Adaptive Cryptography for Dynamic Security
Dimensions

Security requirements for future communication systems will continue to evolve,
and when applications and use cases develop, security features and capabilities must
evolve and adapt with them. One source of motivation for strengthening security
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features is the widespread surveillance of communication networks, affecting
everyone on the Internet. This affects a significant part of the world’s population
and businesses.

The security landscape for IoT is challenging. When all devices can be—
and many are—used to transfer sensitive information and all of it is subject to
potential eavesdropping by malicious parties, securing these devices is a difficult
but necessary task. IoT also brings an additional layer of complexity by making the
number of communicating devices grow significantly in the future. Another strong
driver are sensor networks, which require robust and adaptive security features as
well.

Our chosen approach to this problem is to first recognize the underlying primitive
operations for cryptography algorithms and then selecting a representative set of
primitives to implement in hardware. In this way we can provide hardware accelera-
tion to the computationally most challenging operations, and also provide flexibility
with regard to chosen algorithms and cipher suites, as they are implemented on a
higher abstraction level.

Adaptive cryptography has been defined as a cryptographic library from where
different implementations of algorithms can be selected to adapt to changes in
requirements [10, 11]. The target application in the referred papers was IPSec, for
which an FPGA implementation of a large cipher suite was made. We consider this
approach to be inadequate in the face of current developments regarding network
surveillance and the efforts to undermine cryptography standards by intelligence
agencies. With this in mind, to respond to these challenges we will redefine adaptive
cryptography as

adapting to changing cryptography requirements on the fly, without replacing physical
hardware, even when the changes warrant using a completely new algorithm.

We suggest an approach where the important underlying operations for cryptogra-
phy are implemented in hardware, and the higher abstraction level is implemented
in software. In this manner we will take a performance hit when compared to pure
hardware implementations, but we see that this performance hit is acceptable with
the gain of better flexibility and adaptability to unforeseen situations.

With adaptive cryptography techniques, we can create systems that are more
versatile and less subject to catastrophic failure in case of a serious threat to the
underlying security infrastructure and algorithms. We will discuss one particular
promising implementation approach in Sect. 11.6 where we discuss the concept of
security dimensions.

In Fig. 11.5 we show the landscape of various encryption application areas and
targets. Adaptive cryptography targets the application area where resources are
constrained but flexibility is required. This application area will see more and
more interest in the future, based on the direction of societal development and how
communication systems are used. The advent of big data has made nearly everything
that is capable of collecting data a viable data source, and this data is communicated
through the Internet. At the same time, important societal functions are also being
transformed by the Internet, leading to more and more aspects of our lives being
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online. This in turn leads to developments that are not as positive, such as online
crime, cyberterrorism, and mass Internet surveillance—all are phenomena that have
surfaced strongly in the 2010s. The TACO SDSC platform aims to provide a starting
point for building systems capable of answering to these difficult challenges.

11.5 Design Methodology and Flow

In this section we define the design methodology and flow for the SDSC platform.
The methodology is built on and extended from the SDR platform methodology
proposed in [1]. We see the SDSC concept as a viable platform for next-generation
communication devices. Parameterizability, programmability, and run-time recon-
figurability are all properties that make designing new hardware and software for
emerging applications easier. This also provides better product lifetime, as product
platforms are more extensible. Modularity allows reusing blocks both at design
phase and at run-time, helps optimizing resource utilization and it is crucial for
the design flow itself. This is especially important in energy- and space-constrained
environments with high performance demands.
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11.5.1 Target Application and Domain Specific Requirement
Analysis

Several design stage issues must be taken into account. To identify potential points
of application domain specific optimization, we need to identify computationally
heaviest portions of the code and find potential sets of functionality that are common
throughout the application domain. These are priority targets for acceleration and
thus are subject to being broken down into primitives at platform level. The analysis
of the target application starts at the pseudo code level, where we start to identify
recurring and parallel operations.

With looped operations we must verify that the operations are truly independent
from each other. In this case it is possible to accelerate functions by adding
additional FUs to the design and calculating each iteration of the operation on
an individual FU in parallel. This is demonstrated in Fig. 11.6, where a loop of
3 iterations on a single FU is replaced by three FUs in parallel. For some of
our intended applications in the SDSC domain, such as cryptography, repeated
operations are often dependent of each other. As an example, it would be intuitive
to have a design with several FUs which implement one round of a symmetric
cipher such as AES, thus increasing encryption and decryption speed. But because
the input to a round is dependent on the output of the previous round in most
cipher modes, this approach cannot be taken. One exception to this is the Electronic
Code book (ECB) mode, where the rounds are independent, but it is seldom used
in any real-world applications because it lacks semantic security [14]. This in
combination with the findings in [24] suggests that while parallelism does exist,
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it is not common enough in cryptography applications. Acceleration of primitives
and different arithmetic techniques thus are often better options for optimizing
cryptography performance.

Reuse of previously designed hardware instances, whether whole or partial, is
a key design goal in this design methodology. This approach provides significant
advantage in design time. Using existing design instances that have similar func-
tionality as templates is a practical approach that provides the designer with a
baseline design with low initial cost, sparing a lot of time and effort. After template
initialization, all necessary functional units are then added to the design. This is
based on a careful analysis of the target application and what are the essential
operations that need to be implemented on the hardware level.

11.5.2 Design Methodology and Flow

The proposed SDSC design methodology is described in Fig. 11.7. The first step
is analysis of the target application, and the result of this analysis is a list of
functionality requirements for that application. This makes the methodology a top-
down approach. When these key functions have been identified, the necessary
algorithms required for implementing them must be chosen. The application domain
of the target application will heavily influence this process. It also provides a chance
to group similar functions into hardware units and augmenting already existing
template components, thus promoting reuse of existing components. If no such
functionality is available in the platform’s library of existing hardware templates,
a new hardware template must be designed for this purpose.

Next, a hardware platform instance for sequential processing is specified. In
this instance, only one interconnection bus and one FU of each required FU type
are included. This gives us an initial setup that satisfies functional processing
requirements of the target application, but processing speed requirements are not
typically met at this stage. This process is shown in Fig. 11.8, where the system-
level model is mapped to VHDL library components. This sequential instance,
along with associated sequential program code, is then simulated, testing for correct
operation. Once the functionality is verified, the next stage in the methodology
is designer-driven design space exploration. Here, parallel processing capacity
is added to the model to meet the processing speed requirements of the target
application. The designer typically specifies 2–3 additional hardware instances,
varying the number of data transport buses (data transportation parallelism) and the
number of FUs of the same type in the hardware instance (FU level parallelism).
Both methods increase processing performance. The target application and its
computational capacity requirement greatly affects the set of feasible hardware
configuration instances. This process is not automatic. Optimization factors derived
from power consumption and chip size requirements, as well as current processing
performance requirements and even future extensibility are all manually defined by
the designer. When we are satisfied with the obtained model we test the optimized
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entity input_module is
generic (
logic_address : positive:=1);          -- total 9 conditions

port (
clk : in  std_ulogic;
reset : in  std_ulogic;
trg_load : in  std_ulogic;
opcode : in  integer range logic_address-1 downto 0;
trig_operand : in  unsigned (data_buswidth-1 downto 0);
real_data : in  unsigned (data_buswidth-1 downto 0);
imag_data : in  unsigned (data_buswidth-1 downto 0);
result_R1    : out unsigned (data_buswidth-1 downto 0);
result_R2    : out unsigned (data_buswidth-1 downto 0);
next_symbol : out std_ulogic);-- guard_bit : out std_ulogic);

end input_module;

entity network_controller is
generic (

logic_address : positive := 1);
port (

clk : in  std_ulogic;
reset : in  std_ulogic;
data_in_pm : in  unsigned (pm_data_buswidth -1 downto 0);
address_out_pm : out unsigned (pm_address_buswidth-1 downto 0);
CS                    : out std_ulogic;
RD_WR                 : out std_ulogic;
taco_src_addbus : out taco_address_bus;  --refer to sdr_package
taco_dst_addbus : out taco_address_bus;  --refer to sdr_package
taco_internal_databus : out taco_data_bus;     --refer to sdr_package
--trigger socket interface
trg_load : in  std_ulogic;
opcode : in  integer range logic_address-1 downto 0;
trig_operand : in  unsigned (data_buswidth-1 downto 0));

end network_controller;

SC_HAS_PROCESS(InputFU);
InputFU(sc_module_name name, sc_clock &c,

sc_uint<ADDRESSWIDTH>* opId = zero,
sc_uint<ADDRESSWIDTH>* resId = zero,
sc_uint<ADDRESSWIDTH>* trigIds = zero

) : FunctionalUnit(name, c, 0, 3, 1, opId, resId, trigIds)

Etc…

SC_HAS_PROCESS(NetworkController);
NetworkController(const sc_module_name name_, sc_clock

&c) : sc_module(name_)

Etc…

Fig. 11.8 Process flow for mapping of system-level designs to VHDL hardware library compo-
nents and their relation to the final platform instance, complemented by the co-designed application
software

version for functional correctness and processing speed, and estimate its hardware
characteristics (power consumption and chip size) based on the data gathered
from the VHDL component library. When all tests are approved, the hardware is
synthesized and the software is finalized for that hardware instance.
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11.5.3 Cryptography Reconfiguration Approaches

In the case of a fixed hardware implementation, adversaries immediately know
what algorithms are used and what are available for use in different applications.
With essential operations implemented in hardware and encryption on the algorithm
level implemented in software with hardware acceleration, the software designer
has a lot of control on the actual security features of the system. Reacting to
vulnerabilities is similarly significantly more flexible, as we can first approach the
problem as a software problem, even in cases when hardware level changes are
normally warranted.

An effective way for an attacker to approach a hardware cryptography implemen-
tation is to try to map its behavior and to find potential side channel attacks [33],
which allow the attacker to extract information about the encrypted data from the
operation of the physical device itself. If a hardware implementation of an algorithm
is found to be vulnerable to a side channel attack, mitigating this threat can be
next to impossible. With adaptive cryptography, responding to side channel attacks
and timing attacks changes from impossible to plausible due to the possibility of
reprogramming the software and still using the same hardware acceleration blocks
as before.

If we are using a reconfigurable hardware platform such as FPGA, it expands the
options available for cryptography reconfiguration. In addition to redesigning the
software, we can also change hardware configuration without actually replacing
the hardware. In such use cases where the target application changes with a non-
negligible probability, this can be a valid approach. Also the cost of reconfigurable
hardware can be prohibitive in many applications, where the unit cost of a
computation platform must be pushed as low as possible.

The design flow for reconfiguring cryptography functions and the relation of this
process to the TACO design flow is presented in Fig. 11.9. In the case of a change
in the security environment that warrants algorithm level changes to the device,
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we first enter the software segment of the flow, where the security algorithms are
re-evaluated and redesigned as necessary. After this we examine the suitability of
the current hardware platform. On one hand, if all necessary primitives are present,
no hardware reconfiguration is necessary and we can resume operation with new,
redesigned software. On the other hand, if hardware implementations of necessary
primitives are not present, we enter the hardware segment of the flow. Here we will
first assess whether the initial application requirements have changed and need to be
re-evaluated, or if we can just add the necessary hardware instances and go through
design space exploration on the existing design. Regardless, we will re-iterate the
TACO design flow to get a new design suitable for the changed situation. If we
already have hardware reconfiguration capability, reacting to changes in application
scope and required cryptography primitives is significantly more streamlined, as we
can adapt the existing hardware to a new configuration that we get as the result of a
new iteration of the TACO design flow without replacing hardware.

11.5.3.1 Product Customization on the Market

A potential benefit from using the TACO SDSC design flow is the opportunity
for swift design of hardware implementations that can be mass produced at large
volume and later customized to the specific configuration required by the target
application on the software layer. In this approach a single hardware platform
capable of supporting several functions and cryptography cipher sets is designed,
and the actual product differentiation is done with software. Another significant
benefit is that when primitive operations are implemented on hardware and their
relationships are defined on the software layer, we can fix possible bugs in
implementation by rewriting the software. This makes it possible to fix a bug in
production with a software update that would require product recall if implemented
fully in hardware.

Reconfigurable hardware naturally makes this process less vital, but the target
applications for this approach would probably be those where it is not cost effective
or feasible to use reconfigurable hardware. Regardless of the type of the hardware
platform, this level of flexibility in customization after manufacture allows for larger
manufacturing volumes and cost savings, while at the same time shortening the
time-to-market for a product.

11.5.4 Case Study

To test the feasibility of a TACO SDSC platform, the RSA algorithm [44] was
chosen as the initial algorithm for implementation. The RSA algorithm is familiar
and well known, and it is suitable for this purpose as such. This case study and
its results are preliminary, and while far from complete or compelling, still provide
us with encouraging initial results for further optimization and improvement of the
TACO SDSC hardware platform and its design methodology.
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11.5.4.1 Architecture

The RSA algorithm was implemented on a TACO instance both as a single FU
capable of computing a whole round of RSA encryption and as separate FUs
that implement the necessary operations. The simulations were performed in a
Linux environment on SystemC 2.3.0. The conceptual model of the test instance
is presented in Fig. 11.10. The dedicated RSA FU contains an implementation
of the RSA cipher, which reads in the operands, performs RSA encryption on
the input, and stores the result in a designated memory location. The separate
FUs are programmed to do the same task using individual FUs for Montgomery
modular reduction [37], exponentiation, and Extended Euclidean Algorithm for
finding modular inverses. These individual operations are used in several types of
cryptography algorithms, and as such are a compelling choice for a cryptography
enhanced processor instance.

11.5.4.2 Results

The simulations on the processor architecture instance show that when compared
with the single Functional Unit, the three separate Functional Units were capable
of performing the same RSA encryption operation with a 31 % overhead on
performance time. A performance decrease of roughly one-third can be considered
significant on a hardware platform, but given that this performance loss comes
with the flexibility to change the encryption algorithm by reprogramming, and that
these results are preliminary in nature and the code is far from optimized, these
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results are encouraging for continued improvement on the TACO SDSC design
methodology. The directions we plan to explore will be discussed next in Sect. 11.6,
where we expand some of our ideas on further research on the SDSC platform and
methodology.

11.6 Application and Implementation Scenarios

In this final section we will briefly discuss some interesting and potentially
noteworthy applications and implementation scenarios.

11.6.1 Dynamic Security Dimensions and Adaptive
Cryptography

In [40] we have explored the concept of dynamic security dimensions and their
effects on sensor network security. The concept is based on the various target
applications that sensor networks have, and that security requirements can and
do change on the fly. We aim to identify all relevant security dimensions, and
model them in a manner which facilitates the construction of an adaptive holistic
security system for low-power and resource-constrained devices. We identify sensor
networks and IoT devices as targets that would benefit greatly from this approach.

To summarize, we first model the security landscape of sensor networks as
individual “dimensions” that represent distinct, measurable characteristics. The key
dimensions that we have identified are energy .de/, processing capacity .dproc/,
memory capacity .dme/, data coherence .dco/, data lifetime .dli/, location security
level .dloc/, and mobility .dmo/. These dimensions, or dimension vectors, are
modified by corresponding scalar weight factors .w/, so that we can model the
changes in environment, and by grouping related dimensions together we aim to
reduce the complexity of modeling the security environment. We define the final set
of compound dimensions as the 4-tuple

.˛; ˇ; �; ı/ D
�

dewe;
dmewme C dprocwproc

wme C wproc
;

dmowmo C dlocwloc

wmo C wloc
;

dcowco C dliwli

wco C wli

�
: (11.1)

Energy is the only dimension left uncompounded, given its importance in resource-
constrained systems. These dimensions can be used to model the security environ-
ment with extreme granularity by assigning a mapping between different real-world
scenarios and the four-dimensional security landscape. For example, a certain region
of the security space where energy consumption is not an issue, and the coherence
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and lifetime of data are high, using the strongest available encryption algorithm
supported by the current configuration is warranted. Another region could have high
limits for energy consumption and low data lifetime and coherence, so the security
environment would allow data to be transmitted even without any confidentiality
measures in place. For some situations even integrity preserving features can be
turned off to conserve energy.

Changes in dimensions can force changes in operating parameters, and this can
warrant changing operational security features in the system. These changes can
happen quickly or gradually. Even the slow kind of change can be dramatic, if, for
example, a certain set of cryptographic ciphers is compromised. While unlikely,
this not impossible, as cryptanalysis on existing systems is always ongoing and
intelligence organizations and other equivalent governmental organizations have
capabilities that can force changes in this field [8]. The ability to adapt even older
hardware to a new situation can be a preferable approach, compared to having to
replace all hardware with new designs, having to wait for them to be designed and
verified and manufactured, and so on.

The main motivation of this approach is to design a dynamically adaptive sensor
network security framework, capable of assessing available resources and changing
application requirements in order to provide optimal protection with minimal
overhead and cost. The framework observes the network continuously using an
intrusion detection/prevention system and also uses location related information
and feedback from a trust management module responsible for mapping different
trust scenarios and conditions on the sensor network and its surroundings. With this
information, the end system based on this framework takes action to achieve optimal
security-energy point. This translates into maximum security under a given resource
and context. The security framework will be developed based on a platform vision to
enable cost effective and application-independent realization. The scalability feature
of the framework is also an important aspect since the number of nodes in low-
power wireless networks varies from a few to many nodes based on the application
requirement.

We see that incorporating adaptive cryptography as a concept is vital to the
evolution of such a framework, and the TACO SDSC platform will give us a robust
and efficient HW-SW platform for development and eventual implementation.

11.6.2 Building Security in the Design

The current version of the TACO SDSC methodology does not yet take into account
some aspects of secure processor design as outlined in [7] and [12], such as
secure handling of cryptographic keys. These security issues have been addressed
in designs such as SAFES [13], and similar care should be taken when designing
cryptography functionality for TACO SDSC processors. This is a clear improvement
target for the design process in order to incorporate security and safety into the core
of the methodology.



11 Towards Adaptive Cryptography and Security with Software Defined Platforms 233

In a broader scope, the concept of building security and trust into systems that
we use every day is a vital aspect of future communication systems. The TACO
SDSC platform and methodology make designing communication systems that can
adapt to changing environments and requirements significantly easier. For a single
hardware instance, we can support several different software implementations of the
same functionality. By doing the changes only on the software level, we provide an
additional layer of resistance to attacks by malicious parties. If a hardware instance
is deemed to be vulnerable to an attack, by reconfiguring the system on the software
level we can extend our mitigation capabilities substantially.

11.7 Conclusion

When we consider the requirements of future communication systems, the need for
flexible encryption in all communication layers is evident. With the advent of IoT,
ubiquitous computing, and a data-intensive information society, devices and sensors
with strict requirements for both efficient communications and robust security will
be in demand. The SDR concept can be leveraged and enhanced to answer these
requirements.

In this chapter we have presented a design methodology and process for a
Software Defined Secure Communications framework. As a platform, SDSC can
provide secure, flexible, and lightweight communication to sensor networks and
IoT devices without significantly compromising performance, and the presented
framework provides the methods and processes for exploring this further. Additional
benefits of this design approach include potential cost savings in larger production
volumes and shorter time-to-market for products when we can design devices,
that are highly customizable with software and implement only key primitive
operations in hardware. We see that our design model coupled with the concept
of adaptive cryptography could be leveraged towards developing flexible and yet
secure application-specific devices for future communication networks.
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Chapter 12
The Future of Software-Defined Radio:
Recommendations

Waqar Hussain, Jouni Isoaho, and Jari Nurmi

An efficient Software-Defined Radio solution comes when all the aspects of system
design are collectively addressed under application specifications and constraints.
It includes all—the efforts to design wideband antennas, powerful software to
process huge bandwidth of information, optimizations at hardware to maximize
performance, and nevertheless to mention compilers and operating systems. It is
important that every engineer or a scientist working on a particular block of SDR
should have a bare-minimum understanding of the entire design stack. There is a
need to have clear vision about the targets to be achieved, trade-offs to be made, and
a unified approach so that all the objectives are measurable to enable a qualitative
and quantitative analysis.

The contributions as chapters in the books provide conclusions and based
on those we can indicate recommendations for future designs. Computationally
intensive parallel processing tasks are suitable for homogeneous/heterogeneous
multicore architectures. The cores in such platform can be chosen based on
application scenarios, for example a general-purpose task is more suitable for a
RISC processor to handle or signal processing task to a DSP. Special logic can
be implemented on FPGAs and rASIPs can be used to allow maximum flexibility.
The cores can communicate with each other over a network-on-chip or on an
efficient bus architecture. If the objective is to provide maximum instruction-
level parallelism, then multiple VLIW cores can be integrated together over
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a high-performance communication infrastructure. In such cases, LLVM-based
C-compiler StreamIt-based compilers are optimal choices. Reconfigurable MPSoCs
is also a good solution for SDRs as they are highly programmable and require a
minimum knowledge of the underlying hardware by the SDR programmers. Open
source libraries such as GNU radio will attract more programmers towards the
SDR development. From a scalable communications core, we can expect that it
yields several advantages including architectural efficiency, efficient interconnects,
targeted flexibility and control as well as programmability. Tool development is
also very important for consistent SDR evolution. We need tools that can do
rapid prototyping, provide early synthesis results and near-accurate performance
estimates. The tools should contain support for multiple compilers of different
programming languages.

In the end, we can emphasize there is a need to continuously invent new
applications to keep a high demand for SDR technology. All those interesting
features that this books highlights come at a cost, i.e., power and area/resources. An
SDR world—present day Internet-of-Things can become an environmental hazard
due to the unprecedented energy requirements. It is urgently required that special
emphasis should be given to the global view and idea of SDR design paradigm from
all fields of technology.
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