Chapter 11

Automatic Multiorgan Segmentation Using
Hierarchically Registered Probabilistic
Atlases

Razmig Kéchichian, Sébastien Valette and Michel Desvignes

Abstract We propose a generic method for the automatic multiple-organ segmenta-
tion of 3D images based on a multilabel graph cut optimization approach which uses
location likelihood of organs and prior information of spatial relationships between
them. The latter is derived from shortest-path constraints defined on the adjacency
graph of structures and the former is defined by probabilistic atlases learned from a
training dataset. Organ atlases are mapped to the image by a fast (2+1)D hierarchical
registration method based on SURF keypoints. Registered atlases are also used to
derive organ intensity likelihoods. Prior and likelihood models are then introduced
in a joint centroidal Voronoi image clustering and graph cut multiobject segmen-
tation framework. Qualitative and quantitative evaluation has been performed on
contrast-enhanced CT and MR images from the VISCERAL dataset.

11.1 Introduction and Related Work

Clinical practice today, especially whole-body CT and MR imaging, often generates
large numbers of high-resolution images, which makes tasks of efficient data access,
transfer, analysis and visualization challenging. This is especially true in distributed
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computing environments which have seen a growing use of hand-held terminals for
interactive data access and visualization of anatomy. Therefore, there is great interest
in efficient and robust medical image segmentation algorithms for the purposes of
creating patient-specific anatomical models, clinical applications, medical research
and education, and visualization and semantic navigation of full-body anatomy
[3, 26].

Traditionally, single-object- or pathology-oriented, recent image processing meth-
ods [9, 12, 14, 15, 19, 23, 25, 27] have made the analysis and the segmentation of
multiple anatomical structures increasingly possible. However, CT and MR images
have intrinsic characteristics that render their automatic segmentation challenging.
They are commonly degraded by various noise sources and artefacts due to limited
acquisition time and resolution, and patient motion which all reduce the prominence
of intensity edges in images. In addition, MR images suffer from spatial distor-
tion of tissue intensity due to main magnetic field inhomogeneity. Regardless of the
imaging modality and related artefacts, many anatomically and functionally distinct
structures, especially those corresponding to soft tissues, have similar intensity lev-
els in images and, furthermore, blend into surrounding tissues which have intensities
close to their own. It is impossible to identify and segment such structures automati-
cally on the basis of intensity information only. Hence, most advanced segmentation
methods exploit some form of prior information on structure location [12, 19, 27]
or interrelations [9, 14, 23, 25] to achieve greater robustness and precision. Hierar-
chical approaches to segmentation [23, 25, 32] rely on hierarchical organizations of
prior information and algorithms that proceed in a coarse-to-fine manner according
to anatomical level of detail.

Graph cut methods, which have been widely applied to single-object segmentation
problems [4], rely on a maximum-flow binary optimization scheme of a discrete
cost function on the image graph. For a particular class of cost functions which
frequently arises in segmentation applications [16], these methods produce provably
good approximate solutions in multiobject [S] and global optima in single-object
segmentation. In addition, simultaneous multiobject segmentation approaches are
superior to their sequential counterparts in that they raise questions neither on the
best segmentation sequence to follow nor on how to avoid the propagation of errors
of individual segmentations [9].

While widely used by the computer vision community, keypoint-based image
description and matching methods, such as SIFT [20] and SURF [2], have found
relatively few application proposals in medical image processing. These methods
proceed by first detecting some points of interest (edges, ridges, blobs, etc.) within
the image, then compute vectors describing local neighbourhoods around these points
and use them as content descriptors. The approach has been successfully applied to
image indexing, content-based image retrieval, object detection and recognition, and
image registration [30]. In medical imaging, 3D versions of SIFT have been used in
brain MR image matching [6], linear registration of radiation therapy data [1], and
nonlinear (deformable) registration of thoracic CT [31] and brain MR [22] images.
A SURF-based method [10] has also been successfully applied to the intermodality
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registration of 2D brain images. A review of keypoint-based medical image registra-
tion can be found in [28].

We propose a generic method for the automatic multiple-organ segmentation
of 3D images based on multilabel graph cut optimization which uses location and
intensity likelihoods of organs and prior information of their spatial configuration.
The spatial prior is derived from shortest-path pairwise constraints defined on the
adjacency graph of structures [14], and the organ location likelihood is defined by
probabilistic atlases [24] learned from the VISCERAL training dataset [11]. We reg-
ister organ atlases to the image prior to segmentation using a fast (2+1)D registration
method based on SURF keypoints. Registered atlases are also used to derive organ
intensity likelihoods. Prior and likelihood models are then introduced in a joint cen-
troidal Voronoi image clustering and graph cut multiobject segmentation framework.
We present the results of qualitative and quantitative evaluation of our method on
contrast-enhanced CT and MR images from the VISCERAL dataset.

11.2 Methods

In the following, we present the different elements of our approach in detail, namely
the keypoint-based image registration method and its use in organ atlas construction
as well as its hierarchical application in segmentation. Image clustering and segmen-
tation methods are detailed next, followed by a presentation of evaluation results in
the subsequent section.

11.2.1 SURF Keypoint-Based Image Registration

We first outline our fast (2+1)D algorithm for the rigid registration of 3D medical
images using content features. Our method has the following properties:

e Features are extracted in 2D volume slices. This has the advantage of being fast
and easily parallelizable. Another advantage is that medical data are usually stored
in a picture archiving and communication system (PACS) in the form of volume
slices as opposed to full 3D volumes. Our method easily fits into such medical
environments. Note that while feature extraction is done in 2D images, registration
is still performed in 3D, hence the (2+1)D definition.

e Partial matching is well handled, thus making our algorithm suitable for general
medical data.

e Total processing time is on the order of seconds.

e The (2+1)D paradigm currently restricts our method to image volumes with consis-
tent orientations. A pair of images featuring patients with orthogonal orientations
cannot be registered for now.
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11.2.1.1 2D Feature Extraction and Matching

As previously mentioned, we extract features from 2D slices of the image volume.
We currently use the SURF image descriptor [21]; however, our method is generic
and would work with other descriptors as well. To reduce computation time, we
first downsample the input volume to a user-specified size. As a rule of thumb, we
isotropically resample each volume so that its second longest dimension is equal
to the desired resolution R. For example, with R = 100, the VISCERAL training
dataset image 10000108_1_CTce_ThAb of dimensions 512 x 512 x 468 and
spacing 0.7mm x 0.7mm x 1.5mm is resampled to a 100 x 100 x 198 volume
with an isotropic spacing of 3.54 mm.

Next, we extract 2D SURF features from each slice. As these operations are com-
pletely independent, this step is carried out in a parallel manner. Figure 11.1 shows
feature extraction results on a pair of axial slices from VISCERAL training dataset
images 10000108_1_CTce_Thab (left) and 10000109_1_CTce_Thab
(right). The top row shows all features extracted from these slices. The number
of extracted features is 11500 and 9400, respectively.

Once all features are extracted, they are matched using the widely used second
closest ratio criterion [20]. If the first volume V; contains n; slices and the second
volume V, contains n, slices, we have to compute n; x n, image matches, which
again is easily carried out in a parallel fashion. The bottom row of Fig. 11.1 shows
the nine matching couples (pairs of keypoints) found in both slices.

The output of the matching step is a similarity matrix S of n; x n, of, possibly
empty, matching couple sets H; ;. Figure 11.2 illustrates the 2D matching procedure
on test images 10000108_1_CTce_ThAb and 10000109_1_CTce_ThAb.
Figure 11.3 shows similarity matrices reflecting the number of matching couples
between any pair of slices for three settings of downsampling resolution R (grey
level is inversely proportional to the number of matching couples). Matrix diagonals
are clearly visible, confirming the fact that input volumes contain similar struc-
tures. In total, 2561 matching couples were found between this pair of volumes with
R = 100.

11.2.1.2 (2+1)D Registration

Once 2D matches are found, we are able to proceed with volume registration. For
robustness purposes, we use a simple “scale + translation” transformation model:

X X ty
Yi]=s|y|+|6] - (11.1)
7z z t,

We estimate the four parameters s, f,, ¢, and ¢, in similar spirit to the RANSAC
method [8], using the set of matching couples between the slices of the pair of
volumes, computed as indicated in the previous subsection. RANSAC is an iterative
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Fig. 11.1 Matching two slices of images. a 10000108_1_CTce_ThAb and b
10000109_1_CTce_ThAb from the VISCERAL training dataset. a, b Show all features
found in both slices (a feature is represented by a circle). ¢, d Show the nine matching features
between the two slices. Blue and red circles correspond to positive and negative Laplacian values [2]

parametric model estimation method known to be very efficient in the presence
of outliers. One RANSAC iteration usually consists in randomly picking a small
number of samples to estimate the model parameters, then counting the number
of data samples consistent with the model, rejecting outliers. After performing all
iterations, the model providing the highest number of consistent data samples is kept
as the solution. In our case, we carry out parameter estimation in a two-stage fashion;
first, we fix the parameters s and 7, which allow us to work only on a subset of S,
then we estimate the remaining parameters f, and t,. More specifically, we carry out
the n'" RANSAC iteration as follows:
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(@ (b)

(c) (d)

Fig. 11.2 Feature matching. The two input volumes (a, b) are sliced (¢, d), and each slice from the
first volume is compared against every slice from the second volume

R =200 R=150 R =100

Fig. 11.3 Similarity matrices of test volumes 10000108_1_CTce_ThAb and
10000109_1_CTce_ThAb for different values of downsampling resolution R

e Randomly pick a line L, crossing S. This fixes half of the transform parameters,
that is, the parameters s and f,. The top row of Fig. 11.4 shows three different
randomly picked lines on S.

o Build the couple set M,, as the union of all couple sets H; ; in S within a distance
dy to L,. In our experiments, we set d; to 2.5. For the three cases illustrated in
the top row of Fig. 11.4, couple sets M,, correspond to image pixels covered by
the red lines.

e Randomly pick one couple from M,, which allows to estimate the remaining
transform parameters #, and ¢,.

e Count the number of couples N, in M, which are consistent with the transform,
excluding outliers and forbidding any keypoints to appear in multiple matching
couples. If f; and f, are the coordinates of a couple, consistency checking is done
by transforming the coordinates of f into f{ using Eq. 11.1, and verifying that f|
is within a fixed distance d,. from f,. In practice, we set d. to 20 mm.
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851 couples 1636 couples 1735 couples
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Fig. 114 (2+1)D registration of test volumes 10000108_1_CTce_ThAb and
10000109_1_cCTce_Thab. The top row shows three randomly picked lines L, on the
similarity matrix and their respective numbers of matching couples. The bottom row shows the
corresponding registrations of test volumes, showing only patient body envelopes

In all experiments, we perform 2 x 10° iterations to register a pair of vol-
umes. The bottom row of Fig. 11.4 illustrates the final registration of test images
10000108_1_CTce_ThAband10000109_1_CTce_ThAbshowingonly respec-
tive patient body envelopes.

11.2.2 Organ Atlas Construction

Using contrast-enhanced CT and MR images and available ground-truth annotations
from the VISCERAL training dataset, we construct modality-specific probabilis-
tic atlases for the following 20 structures: thyroid; trachea; sternum; liver; spleen;
pancreas; gall bladder; first lumbar vertebra; aorta; urinary bladder; right and left



192 R. Kéchichian et al.

lungs, kidneys, adrenal glands, psoas major and rectus abdominis muscle bodies. In
addition, we create atlases for three additional image and body regions: background
(BKG), thorax and abdomen (THAB) and a body envelope (ENV) from annotations
generated automatically as follows. BKG is created by thresholding the image fol-
lowed by morphological processing in order to isolate the background from the body
region. THAB is created as the dilated union of the aforementioned 20 structures and
their bounding 3D ellipse, from which the structures are subtracted after dilation.
Finally, ENV is defined as the image minus BKG and THAB. Note that ENV is a
crude body envelope that comprises skin, fat, muscle and bone structures. Figure
11.8c, f illustrate the additional annotations.

To create probabilistic atlases, we choose a representative image per modality
from the dataset and use it as a reference onto which we register all remaining
images in the modality via the method described in Sect. 11.2.1. We register each
structure separately in a bounding box of a given margin in the intensity image,
defined according to the corresponding annotation image, and apply the obtained
transform subsequently to the annotation image. We accumulate annotations thus
registered in a 3D histogram of reference image dimensions which is normalized to
produce the corresponding probability map. Refer to Fig. 11.6a for an illustration of
probabilistic atlases.

11.2.3 Image Clustering

The full-resolution voxel representation is often redundant because objects usually
comprise many similar voxels that could be grouped. Therefore, we simplify the
image prior to segmentation by an image-adaptive centroidal Voronoi tessellation
(CVT), which strikes a good balance between cluster compactness and object bound-
ary adherence and helps to place subsequent segmentation boundaries precisely. We
have shown that the clustering step improves the overall run-time and memory foot-
print of the segmentation process up to an order of magnitude without compromising
the quality of the result [14].

Let us define a greyscale image as a set of voxels . = {v|v = (x, y, z)} and
associate with each voxel v € .& a grey level I, from some range I C R. Given a
greyscale image .# and n sites ¢; € .#, a CVT partitions .# into n disjoint clusters
C; associated with each centroid ¢; and minimizes the following energy:

n

Fwied) =2 [ D o) (Iv=cl? +all, — LI) | - (11.2)

i=1 \veC;

In Eq. 11.2, p(v) is a density function defined according to the intensity gradient
magnitude at voxel v, p(v) = |VI,|, « is a positive scalar and I; is the grey level
of the cluster C; defined as the mean intensity of its voxels. Intuitively, minimizing
Eq. 11.2 corresponds to maximizing cluster compactness in terms of both geometry
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(a)

Fig. 11.5 An image-adaptive CVT clustering and its dual graph for a circle image

and grey level. Refer to Fig. 11.5 for an illustration in 2D. To minimize Eq. 11.2, we
apply a variant of the clustering algorithm in [7], which approximates a CVT in a
computationally efficient manner, involving only local queries on voxels located on
boundaries of pairs of clusters.

For referral in later sections, we shall define the graph of a CVT, illustrated in Fig.
11.5b. Denote the surface of a cluster C; by dC;. Given a CVT clustering %, let the set
. index its clusters, and let ¢ = (., &) be an undirected graph on cluster centroids
where pairs of clusters having nonzero area common surface define the set of edges
&={{i,j} i, je, 10C;NIC;| # 0}. Consequently, the neighbourhood of a
node i €. isdefinedas A = {j | j € ., 3{i, j} € &}.

11.2.4 Multiorgan Image Segmentation

We formulate image segmentation as a labelling problem, defined as the assignment
of a label from a set of labels L representing the structures to be segmented to
each of the variables in a set of n variables, indexed by .7, corresponding to the
clusters of a CVT-clustered image. Assume that each variable i € .7 is associated
with the corresponding node in the graph ¢ of the CVT defined in Sect. 11.2.3.
An assignment of labels to all variables is called a configuration and is denoted by
¢ € Z. An assignment of a label to a single variable is denoted by ¢;. We cast the
labelling problem in a maximum a posteriori estimation framework and solve it by
minimizing the following energy function of label configurations via the expansion
moves multilabel graph cut algorithm [5], which has been shown to outperform
popular multilabel optimization algorithms in terms of both speed and quality of
obtained solutions [29]:
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EW) =1 D)+t Y P+ % DD Vil ) (11.3)

ied ies i€ jeN

In Eq. 11.3, #; and t, are temperature hyperparameters, and ./4; is the neighbourhood
of the variable i € .#. The first and second sums in Eq. 11.3 correspond, respectively,
to organ intensity and location (atlas) likelihood energies, and the third is the energy
of a prior distribution of label configurations expressed as a Markov random field [18]
with respect to the graph ¢. We shall define these terms in detail.

11.2.4.1 Spatial Configuration Prior

Pairwise terms of Eq. 11.3 encode prior information on interactions between labels
assigned to pairs of neighbouring variables encouraging the spatial consistency of
labelling with respect to a reference model. We define these terms according to
the piecewise-constant vicinity prior model proposed in [14], which, unlike the
standard Potts model, incurs multiple levels of penalization capturing the spatial
configuration of structures in multiobject segmentation. It is defined as follows.
Let Z be the set of symmetric adjacency relations on pairs of distinct labels
(corresponding to image structures), Z = {r |arb, a,b € L, a # b}. Z can be
represented by a weighted undirected graph on L, o/ = (L, W), with the set of
edges W = {{a, by|IreZ, arb, a # b}, where edge weights are defined by
w ({a, b}) = 1, such that w ({a, b}) = oo if Ir € Z, arb.
Given the graph o7, we define the pairwise term in Eq. 11.3 as follows:

Vi (€, €)= 10C;NaC,|w(a, b), ti=a, &;=b. (11.4)

where w(a, b) is the shortest-path weight from a to b in 7. The adjacency graph
of structures according to which we define the spatial prior in our experiments is
given in Fig. 11.6b. In Eq. 11.4, the area of the common surface of adjacent clusters
[0C; N dC}]|is introduced, so that Va, b € L the sum of pairwise energies in (11.3) is
equal to the area of the common surface between the corresponding pair of structures
multiplied by the shortest-path weight. This definition ensures that the segmentation
energy is independent of the CVT clustering resolution [13].

11.2.4.2 Intensity and Location Likelihoods

Unary terms of Eq. 11.3 measure the cost of assigning labels to variables. They are
defined as negative log-likelihood functions derived from organ observed intensity
and location probabilities:
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Fig. 11.6 a Registered organ atlases overlaid on a CT image and b the adjacency graph used to
define the spatial prior

Di(t)=—In[]Pe(s | &), (11.52)
VGC,’

Pty =—In]]Pr(x, | ). (11.5b)
VGC,'

In Eq. 11.5b, X, denotes the object-space coordinates of the voxel v. Conditional
probabilities in Eq. 11.5a and 11.5b correspond, respectively, to those of voxel inten-
sity and location given the structure £;. To estimate the conditional probability distri-
bution Pr(/ | ) for a given label/ € L, we first register the corresponding organ atlas
to the image, then estimate the conditional probability as a Gauss-smoothed and nor-
malized intensity histogram derived from voxels in high-probability regions of the
registered atlas according to a threshold value. Conditional probability distributions
Pr(X | L) are defined directly from registered atlases. The next section outlines our
hierarchical registration method which maps organ atlases to an image prior to its
segmentation.

11.2.4.3 Hierarchical Registration of Organ Atlases

We register probabilistic organ atlases, constructed as described in Sect. 11.2.2, to
an image in a three-step hierarchical fashion starting at the full image scale, then on
an intermediate level corresponding to the THAB region and finally on individual
organs. After performing registration on each scale, we apply the obtained transform
to the corresponding atlas as well as to those of organs contained in the registered
region. As in Sect. 11.2.2, we register each structure separately in a bounding box of
a given margin in the intensity image, defined according to the corresponding atlas.



196 R. Kéchichian et al.

I

Fig. 11.7 An illustration of the proposed hierarchical registration procedure

Figure 11.7 illustrates the hierarchical registration procedure, and Fig. 11.6a gives
an example of registered organ atlases overlaid on the CT image to which they have
been registered.

11.3 Evaluation Results and Discussion

We have carried out qualitative evaluation on several contrast-enhanced CT and MR
images from the VISCERAL training dataset. Figure 11.8 shows a pair of segmenta-
tionsonimages 10000109_1_CTce_ThAband10000324_4_MRTlcefs_Ab.
Their dimensions, respectively, are 512 x 512 x 428 and 312 x 72 x 384. For this
pair of images, the number of CVT clusters is set, respectively, to 3 and 20% of
image voxel count. In all experiments, we set temperature parameters #; and #, so
that intensity and location likelihood-based unary terms have the same magnitude
in Eq. 11.3. Likewise, for intensity likelihood estimation in all experiments, we fix
the probability threshold mentioned in Sect. 11.2.4.2 to 0.9 times that of the maxi-
mum probability of the registered probabilistic atlas. The spatial configuration prior
is defined according to the adjacency graph given in Fig. 11.6b. We note that, due to
a smaller field of view, VISCERAL dataset contrast-enhanced MR images exclude
thoracic organs, namely the pair of lungs, the trachea, the sternum and the thyroid.
Naturally, we do not construct probabilistic atlases for these structures nor do we
take them into account for the segmentation of MR images.

Table 11.1 presents the results of quantitative evaluation of our segmentation
method on contrast-enhanced CT images during the VISCERAL Anatomy 2 Bench-
mark and those of its more recent evaluation on contrast-enhanced MR images. We
report results corresponding to the best setting of temperature parameters out of the
allowed five. For CT images, the settings for ¢, are as follows: 0.15, 0.20, 0.25, 0.30
and 0.40. For MR images, tested settings of this parameter are as follows: 0.6, 0.8,
1.0, 1.2 and 1.4. The parameter #, was set to 0.2¢; in both cases. These ranges of
parameter values were experimentally found to give the best results in offline evalua-
tions on the VISCERAL training dataset. For each structure, the Table 11.1 gives the
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| f

(d) (e) ()

Fig.11.8 Segmentation of VISCERAL training dataset images 10000109_1_CTce_ThAb (top
row) and 10000324_4_MRT1cefs_Ab (bottom row). Coronal sections correspond to a, d the
image, b, e its segmentation and ¢, f the associated ground truth with additional labels for BKG,
ENV and THAB regions

number of produced segmentations out of an attempted 10, mean Dice and average
distance (in millimeters) measurements. “N/A” indicates an absent structure, while a
dash “~" indicates one for which the segmentation was missed or was not attempted.
Mean run-time and memory footprint figures of our algorithm are given in Table
11.2. These measurements are taken on the 20 contrast-enhanced CT images in the
VISCERAL training dataset, the average dimension of which is 512 x 512 x 426.
The number of CVT clusters is set to 5% of image voxel count. The algorithm is
run on a cluster computer of heterogeneous nodes with an average CPU speed of 2.1
GHz, an average number of cores of 20 and an average memory size of 87 GB.
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Table 11.1 Quantitative evaluation results of the proposed method on contrast-enhanced CT and
MR images

CT MR
Structures # Dice Avg. Dist. # Dice Avg. Dist.
Trachea 9 0.62 18.56 N/A  N/A N/A
Lung (R) 10 095 0.30 N/A  N/A N/A
Lung (L) 10 0.96 0.20 N/A  N/A N/A
Pancreas 7 0.35 11.45 6 0.37 11.99
Gall bladder 2 014 21.82 1 030 1.90
Urinary bladder 10 0.77 1.08 10 0.40 3.67
Sternum 10 0.63 6.59 N/A N/A N/A
Lumbar vertebra 10 049 9.74 7 0.26 6.65
Kidney (R) 10 0.81 1.81 10 0.80 3.90
Kidney (L) 10 0.86 0.89 8 074 1.69
Adrenal gland (R) - - - - - -
Adrenal gland (L) - - - - - -
Psoas major muscle (R) 10 0.71 2.70 10  0.69 1.73
Psoas major muscle (L) 10 0.79 1.22 10 0.66 2.28
Rectus abdominis muscle (R) 9 026 30.25 - - -
Rectus abdominis muscle (L) 10 0.13 24.43 - - -
Aorta 10  0.58 5.43 3027 17.40
Liver 10 0.93 0.34 10 0.77 1.91
Thyroid 3004 13.77 N/A  N/A N/A
Spleen 10 0.84 1.29 9 053 3.31

Table 11.2 Mean memory footprint and run-time figures of proposed algorithms measured on 20
contrast-enhanced CT images from the VISCERAL training dataset

Memory (MB) Registration (s) Clustering (s) Segmentation (s) Total run-time (m)
10520.87 4294.60 8995.20 2598.48 264.80

From these results, we can readily see that our method performs better on CT
than on MR images. This is due to the fact that tissues in CT images have consis-
tent appearances, whereas in MR images, they suffer intensity inhomogeneity. In
addition, MR images in the VISCERAL dataset have lower resolution compared
to CT images. We can observe furthermore that our method performs better on
larger, well-contrasted structures than on smaller, low-contrasted ones such as the
gall bladder, the thyroid and the adrenal glands. This is mainly due to the inaccu-
rate localization of these structures by our registration method and the subsequent
flawed estimation of the structure intensity likelihood. For most structures however,
even though our hierarchical approach of mapping atlases to the image relies on
a rigid registration method, unlike many hierarchical methods which use non-rigid
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deformable registration [17], it helps localizing structure boundaries in segmentation
quite well. This is because location information roughly registered atlases provide is
complemented by intensity similarity and spatial consistency criteria. Furthermore,
full-body modelling by the introduction of BKG, ENV and THAB annotations not
only complements location information and allows for hierarchical registration, but
also increases the discriminative power of the spatial prior by a higher penalization
of inconsistent configurations.

11.4 Concluding Remarks and Future Work

It should not go without notice that without the VISCERAL platform and the dataset,
we would not have been able to test and understand the limits and the properties of
our algorithms, to improve them and to develop new ones. We hope that our active
participation in benchmarks and our regular feedback on software and data have been
valuable for the VISCERAL project.

We are currently scrutinizing our hierarchical registration method in view of
multiresolution extensions, possibly bypassing anatomical hierarchy, which would
help better localize structures, especially small, low-contrasted ones. We are also
investigating the introduction of a better, more robust intensity likelihood estimation
method. If an inaccurate registration could be detected and quantified, then it may
be possible to “correct” it. Otherwise, with a large training dataset to draw upon,
techniques from machine learning could easily be used. Another interesting venue
for future research is the extension of the spatial prior model to express other types
of relations, such as spatial directionality, and the possibility of taking into account
the uncertainty of relations.
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