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Abstract Many interesting fluid interface problems involve singular events, as
breaking-up or merging of the physical domain. In particular, wave propagation
and breaking, droplet and bubble break-up, electro-jetting, rain drops, etc. are
good examples of such processes. All these mentioned problems can be modeled
using the potential flow assumptions, in which an interface needs to be advanced
by a velocity determined by the solution of a surface partial differential equation
posed on this moving boundary. The standard approach, the Lagrangian-Eulerian
formulation together with some sort of front tracking method, is prone to fail when
break-up or merging processes appear. The embedded formulation using level sets
seamlessly allows topological breakup or merging of the fluid domain. In this
work we present the numerical approximation of the embedded model and some
computational results regarding electrohydrodynamic applications.

1 The Embedded Model Equations

Let ˝1.t/ be a fluid domain immersed in an infinite exterior fluid ˝2.t/, �t be
the free boundary separating both domains, and ˝D be a fixed domain that should
contain the free boundary for all t 2 Œ0;T�. The level set/extended potential flow
model, [3, 4], may be then written as:

u D r� in ˝1.t/ (1)

�� D 0 in ˝1.t/ (2)
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�t C uext � r� D 0 in ˝D (3)

Gt C uext � rG D fext in ˝D: (4)

Here, � is the velocity potential, u the velocity field, � the level set function, G
the extended potential function, f accounts for the surface forces, and the subscript
“ext” refers to the extended quantities off the front into ˝D. This hydrodynamic
problem can be coupled with any other exterior problem on ˝2.t/. In particular,
assuming a uniform electric field E in ˝2.t/, acting in the direction of the z axis and
E D 0 in ˝1.t/ (perfect conductor fluid) then:

E D �rU in ˝2.t/ (5)

�U D 0 in ˝2.t/ (6)

U D U0 on �t (7)

U D �E1z at the far field; (8)

where U is the electric potential and E1 is the electric field intensity.

2 Numerical Approximation

The semidiscretization in time of the model equations is:

un D r�n in ˝1.tn/ (9)

��n.r; z/ D 0 in ˝1.tn/ (10)

� nC1 � � n

�t
D �unext � r� n in ˝D (11)

GnC1 � Gn

�t
D �unext � rGn C f next in ˝D; (12)

�Un.r; z/ D 0 in ˝2.tn/ (13)

where a first order explicit scheme has been applied. For the space discretization of
Eqs. (11) and (12) a first order or second order upwind scheme can be used. The
approximation of (10) and (13) is crucial in this numerical method, as it provides
the velocity to advance the free boundary and also the velocity potential evolution
within this front. We have coupled the following solvers for the interior and exterior
Laplace equations:

• For 2D and 3D axisymmetric geometries a Galerkin boundary integral solution is
established, where the boundary element method with linear elements have been
used to approximate the integral equations, see [6, 8].
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• For the fully 3D approximation a non conforming Nitsche finite element method
has been used together with stabilization techniques of the bilinear forms, as the
jump stabilization or the ghost penalty stabilization, see [1, 2, 9].

3 Numerical Results

Several physical scenarios can be simulated using the assumptions and the numeri-
cal method presented here. In the case of pure hydrodynamicproblems, Eqs. (1)–(4),
results for the wave breaking phenomena in a 2D geometry have been presented in
[3], where splitting of the fluid domain was not considered. The first simulation
involving computations through singular events was presented in [4], where the
pinch-off of an infinite fluid jet and subsequent cascade of drop formation was
reproduced in a seamless 3D axi-symmetric computation. In Fig. 1 we present the
comparison of the satellite break up simulation with laboratory photographs. The
interaction of two inviscid fluids of different densities was studied in [5]. The only
parameter in the non-dimensional model is the fluid density ratio and simulations
of the breaking up transition patterns from air bubbles to water droplets have been

Fig. 1 Satellite drop breaking up, computed profiles (a) and Laboratory photographs (b), see [10].
Reproduced from [4] with permission from Elsevier
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Fig. 2 Laboratory snapshots at indicated times of the evolution of a surface charged super-cooled
water droplet, reprinted figure with permission from E. Giglio, D. Duft and T. Leisner, Phys. Rev.
E, 77, 036319 (2008). Copyright (2008) by the American Physical Society (bottom); and computed
profiles at times 80; 101:2; 108:1; 108:5; 109:8; 112:1; 124:2; 133:4; 138; 142; 154:1 �s (top)

computed. When electrical forces acting on the free surface are also considered,
Eqs. (1)–(8), the flow gets even more interesting: a charged water droplet will
elongate until Taylor cones are formed, from which fine filaments will be ejected
from both drop tips. As soon as the drop losses enough charge, it will recoil
and oscillate back to equilibrium. In Fig. 2 we show also a comparison between
computed profiles on top and Laboratory experiments on bottom at corresponding
times. See [7].
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