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Abstract We review some recent results on singular traveling waves arising as
solutions to reaction-diffusion equations combining flux saturation mechanisms and
porous media type terms. These can be regarded as toy models in connection with
some difficulties arising on the mathematical modelization of several scenarios in
Developmental Biology, exemplified by pattern formation in the neural tube of
chick’s embryo.

1 Pattern Formation in Morphogenesis

Morphogenic proteins play a key role in Developmental Biology, acting as signal-
ing molecules mediating intracellular communication. In particular they mediate
cellular differentiation processes like those taking place during embryonic devel-
opment. Understanding how morphogens induce distinct cell fates becomes then a
paramount issue.

Morphogenic proteins are usually issuing from localized sources in the extracel-
lular medium, originating a concentration gradient. Several mathematical models
have been proposed to explain how morphogens are transported through the extra-
cellular matrix; these have been usually based on reaction-diffusion equations after
the pioneering works of Turing, Crick and Meinhardt [13, 19, 24]. Reaction terms
account for the set of chemical reactions (known as the signaling pathway) taking
place inside each cell after morphogens attach to their membrane receptors; the final
result of these intracellular processes is a specific change in gene transcription.

An important scenario which has been the subject of intensive research is that
of the neural tube (particularly in chick embryos), which is the precursor of the
spinal cord in the adult individual. Owing to the natural propagation direction in
this structure, one-dimensional reaction-diffusion models have been widely used to
describe how gradients of morphogen concentration are dynamically created in the
neural tube, see e.g. [22] and references therein. Such mathematical models assume
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that morphogens are transported through the medium by means of linear diffusion,
whereas chemical reactions taking place within individual cells can be described in
terms of a system of ordinary differential equations.

Several recent experimental findings have come to question the validity of the
linear diffusion assumption in this context (see [23, 26] for an account of this). Here
we focus on the results by Dessaud et al. [14], stating that the concentration of
morphogen that cells receive and the exposure time have the same importance (e.g.
very small morphogen concentration can exert noticeable effects if the exposure
time is long enough). To see why this property cannot be replicated by a linear
diffusion model, let us consider the one-dimensional FKPP equation [15, 17],

ut D �uxx C k u.1 � u/

which displays classical, C1-smooth traveling waves u.t; x/ D u.x � � t/ for
wavespeeds � � 2

p
k�: These traveling profiles are supported in the whole real

line, matching with zero by means of an exponentially decaying profile. This is
rooted in the fact that the linear diffusion equation has the property of infinite
speed of propagation. It entails the fact that traveling waves as such propagate some
(chemical) information instantaneously, which spoils any attempt to track exposure
times on the sole basis of this model. In fact, no a posteriori engineering procedures
seem to quantify in a reasonable way experimental observations [23, 26].

It is mandatory to have mathematical descriptions allowing to track in a very
precise way exposure times for the sake of having accurate models for morpho-
genesis (and specifically for the case of the neural tube). It is a natural idea to test
if nonlinear diffusion can perform better in this setting, particularly when models
having finite propagation speed are used. We try to get some clues dealing with
simplified settings in the following section.

2 Nonlinear Reaction-Diffusion Models

Describing traveling wave solutions in nonlinear reaction-diffusion equations con-
stitutes a full research area in itself. It is tempting to think that traveling waves for
reaction diffusion equations having finite speed of propagation will be supported on
half lines. The actual scenario is a bit more complicated. As a prototypical example,
we may consider the porous medium equation (see e.g. [25]) coupled with a logistic
reaction term,

ut D �.um�1ux/x C k u.1 � u/; m > 1: (1)

For each value ofm > 1 there is a one-parametric family of travelingwave solutions.
All the members of this family are supported on the whole real line, except for the
slowest wave of each family, which is a continuous profile which is supported on a
half line. See [20] for details.
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This subject has been treated in great generality to find that this behavior is
not specific of porous media equations but rather of parabolic equations with finite
propagation speed, see the book [16]. Here we want to draw attention on a family
of degenerate parabolic equations having the property of finite speed of propagation
which does not fall in the scope of [16]. These are know as flux saturated or flux
limited diffusion equations, arguably introduced in the works by Rosenau [21] and
Levermore and Pomraning [18]. A prototypical example is
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Note that when c ! 1 we get the heat equation. This model is known in the
mathematical literature as the “relativistic heat equation” after [5], in which a
connection with optimal transport theory was found. In fact, the form of the cost
function hints that (2) should have a finite speed of propagation given by c above,
a fact that was also pointed out in [21]. This is proved in [3]. In fact, this model is
also able to propagate discontinuous interfaces, which is a desirable feature for the
morphogen transport problem, as we explain below. These properties are somewhat
natural in the light of the degenerate functional framework which is needed to tackle
such models, see e.g. [1, 2] (where an entropy solution framework is introduced).
For a recent account on the research done on flux-saturated equations we refer to
[8].

In the light of the previous considerations, we want to probewhat sort of traveling
waves arise in connection with these degenerate diffusion mechanisms. As a test
case, we can mix themechanisms of flux saturation and porous-media-typediffusion
and consider the following equation for m � 1:
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C k u.1 � u/: (3)

It was shown in [9, 11] that this family of equations admits traveling wave solutions
which are supported on a half line and whose interfaces are discontinuous. When
m D 1 such singular waves exist only for wavespeeds equal to c, any other
(necessarily faster) traveling waves are classical. If m > 1 then there exist two
bifurcation values �smooth > �ent. If the wavespeed coincides with �ent then the
corresponding traveling waves are again discontinuous and supported on a half line.
If the wavespeed exceeds �smooth then the associated waves are classical, while those
with speeds between the two bifurcation values consist on two smooth branches
joined by a jump discontinuity and their support is the whole line. These results
are proved by reducing the problem of constructing wave solutions to describing the
orbits of a planar dynamical system. Singular traveling waves arise as admissible
concatenation of several orbits of the planar diagram, being the compatibility
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conditions at the matchin points given by Rankine–Hugoniot’s jump conditions plus
some geometric information coming from the entropy solution framework, see [12].

These results in [9, 11] are no isolated phenomena but part of a robust framework.
It has been tested that similar families of traveling profiles are obtained under a
number of generalizations of (3), see [6, 8–10].

3 Nonlinear Models for Morphogen Propagation

The analytical findings in the previous section suggest that replacing the linear
diffusionmechanism onmophogen propagationmodels with a nonlinearmechanism
having finite speed of propagation may allow to get a better description of the
overall dynamics. One of the concerns we need to address is to track exposure times
carefully, a task for which saturation mechanisms like that in (2) seem quite suited
-note that propagation speed is universal, in contrast with the porous medium case,
for which it depends on the initial datum [25]. This specific feature was tested on a
simplified model for morphogen propagation in the neural tube introduced in [7],
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�a.u.t; 0/; ux.t; 0// D ˇ > 0 and u.t;L/ D 0 on t 2 Œ0;T� ;

(4)

The non-homogeneous Neumann boundary condition encodes the fact that there
is an incoming morphogenic signal. It was shown in [4] that the incoming flux of
morphogens propagates with speed c in the form of a sharp traveling front, quite
related with the results mentioned in the previous section. This supports the proposal
of a complete model in [26]. Morphogen propagation along the neural tube would
be described by an equation like (4), with the addition of suitable reaction terms
accounting for attachment and detachment effects linked with the availability of
membrane receptors at each individual cell. This partial differential equation is
coupled with a system of ordinary differential equations representing the signaling
pathway at each cell according to the amount of attached morphogens and the
time of exposure to their action. In such a way, the chemical signal is propagated
as a traveling front (as shown by numerical simulations), thus allowing different
biological responses at different times. We refer to [26] for a detailed exposition.We
think that the model proposed in [26] opens a new perspective on the subject, since
its qualitative behavior is in close correspondence with biological observations,
opposed to what is predicted by linear diffusion models. Therefore, morphogen
propagation seems to be an inherently nonlinear process, of which some features
could be well approximated by some nonlinear diffusion mechanisms. The proposal
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in [26] can be an interesting departing point from which we may develop more
accurate theories and models.
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