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Preface

The 17th edition of the Jacques-Louis Lions Spanish-French School, which
addressed Numerical Simulation in Physics and Engineering, took place in Gijón,
Spain, in June 2016. The School is a biennial event jointly organized by the Spanish
Society of Applied Mathematics, SeMA, and the French Society of Applied and
Industrial Mathematics, SMAI. This year, we also celebrated the 25th anniversary
of SeMA. More than 80 mathematicians of different nationalities came together in
Gijón for 5 days in order to attend the courses and participate in the other events
organized for the occasion.

Four-hour courses were delivered by experts in the fields of Optimal Control,
High Performance Computing, Numerical Linear Algebra, and Computational
Physics. During the school, the attendants—graduate students and also some
experienced researchers interested in the organized courses—had the opportunity
to present their own work with a poster. Almost twenty participated in the poster
session.

The lecture notes for the courses are presented in the first part of this book in
the form of long review papers. These papers are authored by very experienced
researchers and each one is intended to offer a self-contained presentation of the
state of the art in the topic under consideration. We hope that they can be used both
as a reference for the interested researcher and as a textbook for graduate students.

In the second part of this publication we present a selection of the extended
abstracts submitted to the poster session. Together with these works, we have also
included an extended abstract of the conference lecture by J. Calvo, winner of
the 19th SeMA Antonio Valle Award, presented to the most outstanding young
researcher in 2016.

The short papers in this part, all of which relate to different aspects of com-
putational methods and numerical analysis, do not cover only topics concerning
Simulation in Physics and Engineering. They also deal with topics ranging from
numerical linear algebra or computational methods in group theory to applications
of Mathematics to subjects such as biomedical sciences, chemistry, and quantum
physics.

v



vi Preface

We think that both the courses and the short papers evidence that numerical
simulation is no longer a field only applicable to physics or engineering and that, as
more applications appear, the need for faster and more reliable methods in numerical
linear algebra and computational techniques will become more pressing.

The first six papers in the second part correspond to the works presented at the
school by J. Calvo, M. Garzon, S. Busto, J.R. Rodríguez-Galván, N. Esteban, and H.
Al Rachid. We can say that these works fall into the classical definition of “applied
mathematics”, where some numerical method is developed and investigated to solve
some aspect of a physical model.

The work by J.A. Huidobro et al. investigates different models in Chemistry and
compares them with actual experimental data to develop a new simpler model to
solve the problem.

The eighth extended abstract, introduced at the school by M.L. Serrano, inves-
tigates several aspects of numerical linear algebra, in close connection with the
lecture notes of the course delivered by J.M. Peña and also related to the lecture
notes of the course delivered by L. Grigori. Solving large scale systems of linear
equations has become a necessity for the mathematical community. For instance,
in the numerical experiments shown at the end of the course by E. Casas and M.
Mateos, the nonlinear system (73)–(76) has more than one million unknowns and
to solve it not just one but a sequence of linear systems with a huge number of
variables must be solved.

The interesting paper by J. Martínez Carracedo and C. Martínez López shows
how computer-based techniques can be applied to prove abstract algebra results.

The last two works, which correspond to posters presented by J.C. Beltrán and M.
Loureiro-Ga, deal with applications of Mathematics to medical sciences. Here, we
find again the usual language of applied mathematics: least squares, PDEs, discrete
approximations. But the focus is on the applications of numerical simulation as
another tool to help medical doctors in research and clinical work.

Finally, we want to thank all the contributors (more than forty) who have co-
authored the articles contained in this volume, as well as the anonymous referees
who have revised the work.

Gijón, Spain Pedro Alonso
April 2017 Mariano Mateos
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Optimal Control of Partial Differential
Equations

Eduardo Casas and Mariano Mateos

Abstract In this chapter, we present an introduction to the optimal control of partial
differential equations. After explaining what an optimal control problem is and the
goals of the analysis of these problems, we focus the study on a model example. We
consider an optimal control problem governed by a semilinear elliptic equation, the
control being subject to bound constraints. Then we explain the methods to prove
the existence of a solution; to derive the first and second order optimality conditions;
to approximate the control problem by discrete problems; to prove the convergence
of the discretization and to get some error estimates. Finally we present a numerical
algorithm to solve the discrete problem and we provide some numerical results.
Though the whole analysis is done for an elliptic control problem, with distributed
controls, some other control problems are formulated, which show the scope of
the field of control theory and the variety of mathematical methods necessary for
the analysis. Among these problems, we consider the case of evolution equations,
Neumann or Dirichlet boundary controls, and state constraints.

1 Introduction

In an optimal control problem, we find the following basic elements.

1. A control u that we can handle according to our interests, that can be chosen
among a family of feasible controls K.

2. The state of the system y to be controlled, that depends on the control. Some
limitations can be imposed on the state, in mathematical terms y 2 C, which
means that not every possible state of the system is satisfactory.

E. Casas (�)
Departmento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria,
39005 Santander, Spain
e-mail: eduardo.casas@unican.es

M. Mateos
Departmento de Matemáticas, E.P.I. Gijón, Universidad de Oviedo, Campus de Gijón, 33203
Gijón, Spain
e-mail: mmateos@uniovi.es

© Springer International Publishing AG 2017
M. Mateos, P. Alonso (eds.), Computational Mathematics,
Numerical Analysis and Applications, SEMA SIMAI Springer Series 13,
DOI 10.1007/978-3-319-49631-3_1
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4 E. Casas and M. Mateos

3. A state equation that establishes the dependence between the control and the
state. In the next sections this state equation will be a partial differential equation,
y being the solution of the equation and u a function arising in the equation so
that any change in the control u produces a change in the solution y. However the
origin of control theory was connected with the control of systems governed by
ordinary differential equations and there was a huge activity in this field; see, for
instance, the classical books Pontriaguine et al. [41] or Lee and Markus [31].

4. A function to be minimized, called the objective function or the cost function,
depending on the state and the control . y; u/.

The aim is to determine an admissible control that provides a satisfactory
state and that minimizes the value of the functional J. It is called the optimal
control, and the associated state is the optimal state. The basic questions to study
are the existence of a solution and methods for its computation. However to
obtain the solution we must use some numerical methods, that leads to some
delicate mathematical questions in this numerical analysis. The first step to solve
numerically the problem requires the discretization of the control problem that is
made usually by finite elements. A natural question is how good the approximation
is. Of course we would like to have some error estimates of these approximations. In
order to derive the error estimates, some regularity of the optimal control is essential,
more precisely, some order of differentiability (at least in a weak sense) is necessary.
The regularity of the optimal control can be deduced from the first order optimality
conditions. Another key tool in the proof of error estimates is the use of second
order sufficient optimality conditions. Therefore, our analysis requires to derive the
first and second order conditions for optimality. This will be analyzed in this paper.

Once we have a discrete control problem, we have to use some numerical
algorithm of optimization to solve this problem. When the problem is not convex,
the optimization algorithms typically provides local minima, the question now is if
these local minima are significant for the original control problem.

The following steps must be performed when we study an optimal control
problem:

1. Existence of a solution.
2. First and second order optimality conditions.
3. Numerical approximation. Convergence analysis and error estimates.
4. Numerical resolution of the discrete control problem.

We will will consider these issues for a model problem. In this model problem
the state equation will be a semilinear elliptic partial differential equation. Though
the nonlinearity introduces some complications in the study, we have preferred
to consider it to show the role played by the second order optimality conditions.
Indeed, if the equation is linear and the cost functional is the typical quadratic
functional, then the use of the second order optimality conditions is hidden.
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There are not many books devoted to all the questions we are going to study
here. Firstly let us mention the book by professor Lions [33], which is an obliged
reference in the study of the theory of optimal control problems of partial differential
equations. In this text that has left an indelible track, the reader will be able to find
some of the methods used in the resolution of the two first questions above indicated.
More recent books are those by Li and Yong [32], Fattorini [23], Neittaanmaki et al.
[38], Hinze et al. [27] and Tröltzsch [48].

2 Setting of the Model Control Problem

Let ˝ be an open and bounded subset of Rn, n 2 f2; 3g, � being its boundary that
we will assume to be regular; C1;1 is enough for us in the whole paper. In˝ we will
consider a linear operator A defined by

Ay D �
nX

i;jD1
@xj

�
aij.x/@xi y.x/

�C a0.x/y.x/;

where aij 2 C0;1. N̋ / and a0 2 L1.˝/ satisfy

8
ˆ̂̂
<

ˆ̂̂
:

9m > 0 such that
nX

i;jD1
aij.x/�i�j � mj�j2 8� 2 R

n and 8x 2 ˝;

a0.x/ � 0 a.e. x 2 ˝:

Now let � W R �! R be a non decreasing monotone function of class C2, with
�.0/ D 0. For any u 2 L2.˝/, the Dirichlet problem

�
Ay C �. y/ D u in ˝

y D 0 on �
(1)

has a unique solution yu 2 H1
0.˝/\ L1.˝/.

The control problem associated to this system is formulated as follows

(P)

8
ˆ̂<

ˆ̂:

Minimize J.u/ D
Z

˝

L.x; yu.x/; u.x//dx

u 2 K D fu 2 L1.˝/ W ˛ � u.x/ � ˇ a.e. x 2 ˝g;
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where �1 < ˛ < ˇ < C1 and L fulfills the following assumptions:

(H1) L W ˝ � R
2 �! R is a Carathéodory function and for all x 2 ˝ , L.x; �; �/

is of class C2 in R
2. Moreover for every M > 0 and all x; x1; x2 2 ˝ and

y; y1; y2; u; u1; u2 2 Œ�M;CM�, the following properties hold

jL.x; y; u/j � LM;1.x/; j@L

@y
.x; y; u/j � LM;Np.x/

j@L

@u
.x1; y; u/� @L

@u
.x2; y; u/j � CMjx1 � x2j

jL00
. y;u/.x; y; u/jR2�2 � CM

jL00
. y;u/.x; y1; u1/ � L00

. y;u/.x; y2; u2/jR2�2 � CM.jy1 � y2j C ju1 � u2j/;

where LM;1 2 L1.˝/, LM;Np 2 LNp.˝/, Np > n, CM > 0, L00
. y;u/ is the Hessian

matrix of L with respect to . y; u/, and j � jR2�2 is any matricial norm.
To prove sufficient second order optimality conditions and error estimates,
we will need the following additional assumption

(H2) There exists � > 0 such that

@2L

@u2
.x; y; u/ � � 8 .x; y; u/ 2 ˝ � R

2:

Remark 1 A typical functional in control theory is the so-called tracking type
functional

J.u/ D
Z

˝

˚jyu.x/ � yd.x/j2 C Nu2.x/
�

dx; (2)

where yd 2 L2.˝/ denotes the ideal state of the system and N � 0. The termR
˝

Nu2.x/dx is called the Tikhonov term. It can be considered as the control cost
term, and the control is said expensive if N is big, however the control is cheap
if N is small or zero. From a mathematical point of view, the presence of the
term

R
˝

Nu2.x/dx, with N > 0, has a regularizing effect on the optimal control.
Hypothesis (H1) is fulfilled if yd 2 Lp.˝/. This condition plays an important role in
the study of the regularity of the optimal control. Hypothesis (H2) holds if N > 0.

Remark 2 Other choices for the set of feasible controls are possible, in particular
the case K D L2.˝/ is frequent. The important issue is that K must be closed and
convex. Moreover, if K is not bounded, then some coercivity assumption on the
functional J is required to assure the existence of a solution.

Remark 3 In practice, �.0/ D 0 is not a true restriction because it is enough to
change � by � � �.0/ and u by u � �.0/ to get a new problem satisfying the
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required assumptions. Nonlinear terms of the form f .x; y.x//, with f of class C2

with respect to the second variable and monotone non decreasing with respect to
the same variable, can be considered as an alternative to the term �. y.x//. We lose
some generality in order to avoid technicalities and to get a simplified and more
clear presentation of our methods to study the control problem.

Given n
2
< p < C1 and u 2 Lp.˝/, we can prove the existence of a unique

solution yu of (1) in W2;p.˝/ \ H1
0.˝/ as follows. First, we prove the existence of

a solution yu in H1
0.˝/ \ L1.˝/: we truncate � to get a bounded function �k, for

instance in the way

�k.t/ D
8
<

:

�.t/ if jtj � k;
�.Ck/ if t > Ck;
�.�k/ if t < �k:

Then, the operator .A C �k/ W H1
0.˝/ �! H�1.˝/ is monotone, continuous and

coercive. Therefore there exists a unique element yk 2 H1
0.˝/ satisfying Ayk C

�k. yk/ D u in ˝ . By using the usual methods it is easy to prove that fykg1
kD1 is

uniformly bounded in L1.˝/ (see, for instance, Stampacchia [46]). Consequently
for k large enough �k. yk/ D �. yk/ and then yk D yu 2 H1

0.˝/ \ L1.˝/ is the
solution of problem (1). On the other hand, the C1;1 regularity of � and the fact that
Ayu 2 Lp.˝/ imply the W2;p.˝/-regularity of yu; see Grisvard [24, Chap. 2]. Thus
we have the following theorem.

Theorem 4 For any control u 2 Lp.˝/ with n
2
< p < C1 there exists a unique

solution yu of (1) in W2;p.˝/ \ H1
0.˝/. Moreover, there exists a constant Cp > 0

independent of u such that

kyukW2;p.˝/ � Cp
�kukLp.˝/ C 1

�
: (3)

Finally, remembering that K is bounded in L1.˝/, we deduce the next result.

Corollary 5 For any control u 2 K there exists a unique solution yu of (1) in
W2;p.˝/ \ H1

0.˝/, for all p < 1. Moreover, there exists a constant Cp > 0 such
that

kyukW2;p.˝/ � Cp 8u 2 K: (4)

It is important to remark that the previous corollary implies C1. N̋ / regularity of
yu. Indeed, it is enough to remind that W2;p.˝/ � C1. N̋ / for any p > n.
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3 Existence of a Solution

The goal of this section is to study the existence of a solution for problem (P), which
is done in the following theorem.

Theorem 6 Let us assume that L is a Carathéodory function satisfying the follow-
ing assumptions:

A1) For every .x; y/ 2 ˝ � R, L.x; y; �/ W R �! R is a convex function.
A2) For any M > 0, there exists a function  M 2 L1.˝/ such that

jL.x; y; u/j �  M.x/ a.e. x 2 ˝; 8jyj � M; 8juj � M:

Then problem (P) has at least one solution.

Proof Denote inf .P/ D inffJ.u/ W u 2 Kg. Let fukg � K be a minimizing sequence
of (P), this means that J.uk/ ! inf .P/. Take a subsequence, again denoted in the
same way, converging weakly� in L1.˝/ to an element Nu 2 K. Let us prove that
J.Nu/ D inf .P/. For this we will use Mazur’s Theorem (see, for instance, Ekeland
and Temam [22]): given 1 < p < C1 arbitrary, there exists a sequence of convex
combinations fvkgk2N,

vk D
nkX

lDk

�lul; with
nkX

lDk

�l D 1 and �l � 0;

such that vk ! Nu strongly in Lp.˝/. Then, using the convexity of L with respect to
the third variable, the dominated convergence theorem and the assumption A1), it
follows

J.Nu/ D lim
k!1

Z

˝

L.x; yNu.x/; vk.x//dx �

lim sup
k!1

nkX

lDk

�l

Z

˝

L.x; yNu.x/; ul.x//dx � lim sup
k!1

nkX

lDk

�lJ.ul/C

lim sup
k!1

Z

˝

nkX

lDk

�l jL.x; yul.x/; ul.x// � L.x; yNu.x/; ul.x//j dx D

inf .P/C lim sup
k!1

Z

˝

nkX

lDk

�l jL.x; yul.x/; ul.x// � L.x; yNu.x/; ul.x//j dx;

where we have used the convergence J.uk/ ! inf .P/. To prove that the last term
converges to zero, it is enough to remark that, for any given point x, the function
L.x; �; �/ is uniformly continuous on bounded subsets of R2, the sequences fyul.x/g
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and ful.x/g are uniformly bounded and yul.x/ ! yNu.x/ when l ! 1. Therefore

lim
k!1

nkX

lDk

�l jL.x; yul .x/; ul.x//� L.x; yNu.x/; ul.x//j D 0 a.e. x 2 ˝:

Using again the dominated convergence theorem, assumption A2) and the previous
convergence, we get

lim sup
k!1

Z

˝

nkX

lDk

�l jL.x; yul.x/; ul.x// � L.x; yNu.x/; ul.x//j dx D 0;

which concludes the proof. ut
Remark 7 It is possible to formulate other similar problems to (P) by taking K as a
closed and convex subset of Lp.˝/, with n

2
< p < C1. The existence of a solution

of this kind of problems can be proved as above by assuming that K is bounded
in Lp.˝/ or J is coercive on K. The coercivity holds if the following conditions is
fulfilled: 9 2 L1.˝/ and C > 0 such that

L.x; y; u/ � Cjujp C  .x/ 8.x; y; u/ 2 ˝ � R
2:

This coercivity assumption implies the boundedness in Lp.˝/ of any minimizing
sequence, the rest of the proof being as in Theorem 6.

Remark 8 If there is neither convexity nor compactness, we cannot assure, in
general, the existence of a solution. Let us see an example.

.P/

8
<

:
Minimize J.u/ D

Z

˝

Œ yu.x/
2 C .u2.x/� 1/2�dx

�1 � u.x/ � C1; x 2 ˝;

where yu is the solution of the state equation

� ��y D u in ˝
y D 0 on �:

Let us take a sequence of controls fukg1
kD1 such that juk.x/j D 1 for every x 2 ˝

and satisfying that uk * 0 weakly� in L1.˝/. The reader can construct such a
sequence (include ˝ in a n-cube to simplify the proof). Then, taking into account
that yuk ! 0 uniformly in ˝ , we have

0 � inf�1�u.x/�C1 J.u/ � lim
k!1 J.uk/ D lim

k!1

Z

˝

yuk.x/
2dx D 0:
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But it is obvious that J.u/ > 0 for any feasible control, which proves the non-
existence of an optimal control.

In [4] and [5], some compactness of the control set was used to prove the
existence of optimal controls.

To deal with control problems in the absence of convexity and compactness, (P)
is sometimes included in a more general problem ( NP), in such a way that inf .P/ D
inf( NP), ( NP) having a solution. This leads to the relaxation theory; see Ekeland and
Temam [22], Pedregal [40], Roubiček [43], Warga [49], Young [50].

4 Some Other Control Problems

In this section, we are going to present some control problems whose existence of
solution can be proved by using the previous methods. First let us start with a very
well known problem, which is a particular case of (P).

4.1 The Linear Quadratic Control Problem

Let us assume that � is linear and L.x; y; u/ D .1=2/f. y � yd.x//2 C Nu2g, with
yd 2 L2.˝/ and N � 0 fixed, therefore

J.u/ D 1

2

Z

˝

. yu.x/ � yd.x//
2dx C N

2

Z

˝

u2.x/dx:

Now (P) is a convex control problem. In fact the objective functional J W L2.˝/ ! R

is well defined, continuous and strictly convex. Under these conditions, if K is a
convex and closed subset of L2.˝/, we can prove the existence and uniqueness of
an optimal control under one of the two following assumptions:

1. K is a bounded subset of L2.˝/.
2. N > 0.

For the proof it is enough to take a minimizing sequence as in Theorem 6, and
remark that the previous assumptions imply the boundedness of the sequence. Then
it is possible to take a subsequence fukg1

kD1 � K converging weakly in L2.˝/ to Nu 2
K. Finally the convexity and continuity of J implies the weak lower semicontinuity
of J, then

J.Nu/ � lim inf
k!1 J.uk/ D inf .P/:

The uniqueness of the solution is an immediate consequence of the strict convexity
of J.
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If N > 0, the term N
2

R
˝

u2.x/dx is called Tychonoff regularization term. In this
case, it is usually possible to prove that the optimal control is more regular than
expected, e.g. it maybe a Lipschitz function, and both the analysis and the numerical
approximation of (P) are simpler than in the case N D 0.

4.2 A Neumann Boundary Control Problem

Let us consider the Neumann problem

�
Ay C �. y/ D f in ˝

@	A y D u on � ;

where f 2 L
.˝/, 
 > n=2, u 2 Ls.� /, s > n � 1 and

@	A y D
nX

i;jD1
aij.x/@xi y.x/	j.x/;

	.x/ being the unit outward normal vector to � at the point x.
The choice 
 > n=2 and s > n � 1 allows us to deduce a theorem of existence

and uniqueness analogous to Theorem 4, assuming that a0 6� 0.
The control problem is defined as follows

.P/

8
ˆ̂<

ˆ̂:

Minimize J.u/ D
Z

˝

L.x; yu.x// dx C
Z

�

l.x; yu.x/; u.x// d�.x/

u 2 K D fu 2 L1.� / W ˛ � u.x/ � ˇ a.e. x 2 � g:

4.3 A Dirichlet Boundary Control Problem

Now we are concerned with the Dirichlet problem

�
Ay C �. y/ D f in ˝

y D u on � ;

where f 2 L
.˝/, 
 > n=2, u 2 L1.� /.
Associated to this boundary value problem we consider the control problem

.P/

8
ˆ̂<

ˆ̂:

Minimize J.u/ D
Z

˝

L.x; yu.x// dx C N

2

Z

�

u.x/2 d�.x/

u 2 K D fu 2 L1.� / W ˛ � u.x/ � ˇ a.e. x 2 � g:
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4.4 A Parabolic Control Problem

Let us consider the following parabolic equation:

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

@y

@t
.x; t/C Ay.x; t/C b.x; t; y.x; t// D u.x; t/ in ˝T D ˝ � .0;T/;

y.x; t/ D 0 on ˙T D � � .0;T/;

y.x; 0/ D y0.x/ in ˝:

Here y0 2 L1.˝/ \ H1
0.˝/ and b is a Carathédoroy function, non-decreasing

monotone with respect to the third variable and locally bounded. For every
u 2 L1.˝T/, the previous problem has a unique solution yu 2 L1.˝T/ \
L2.Œ0;T�;H1

0 .˝//.
For N > 0 and yd 2 L1.˝T/, we can formulate a control problem as follows:

.P/

8
ˆ̂<

ˆ̂:

Minimize J.u/ D 1

2

Z

˝T

. yu.x; t/ � yd.x//
2dxdt C N

2

Z

˝T

u.x/2dxdt

u 2 K D fu 2 L1.˝T/ W ˛ � u.x; t/ � ˇ a.e. .x; t/ 2 ˝Tg:

4.5 A Problem with State Constraints

Under the same notation and conditions of the previous example, with y0 2 C. N̋ T/,
we consider the following state constrained control problem

.P/

�
Minimize J.u/
u 2 K and G. yu/ 2 C;

where G W Y �! Z is a C1 mapping, Y D C. N̋ T/ \ L2.Œ0;T�;H1.˝//, Z being a
Banach space, and C is a closed convex subset of Z with nonempty interior. Due to
the continuity assumption of y0, the solution yu of the above parabolic equation is
continuous in N̋ T . Let us consider some examples of state constraints G. yu/ 2 C.

Example 9 Given a continuous function g W N̋ T � R �! R of class C1 respect to
the second variable, the constraint a � g.x; t; yu.x; t// � b for all .x; t/ 2 N̋ T , where
�1 < a < b < C1 are given real numbers, can be written in the above framework
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by setting Z D C. N̋ T/, G W Y �! C. N̋ T/, defined by G. y/ D g.�; y.�//, and

C D fz 2 C. N̋ T/ W a � z.x; t/ � b 8.x; t/ 2 N̋ Tg:

Example 10 Let g W ˝ � Œ0;T��R �! R be a function measurable with respect to
the first variable, continuous with respect to the second, of class C1 with respect to
the third and such that @g=@y is also continuous in the last two variables. Moreover
it is assumed that for every M > 0 there exists a function  M 2 L1.˝/ such that

jg.x; t; 0/j C
ˇ̌
ˇ̌@g

@y
.x; t; y/

ˇ̌
ˇ̌ �  M.x/ a:e: x 2 ˝; 8t 2 Œ0;T� and jyj � M:

Then the constraint
Z

˝

g.x; t; yu.x; t//dx � ı 8t 2 Œ0;T�

is included in the above formulation by taking Z D CŒ0;T�,

C D fz 2 CŒ0;T� W z.t/ � ı 8t 2 Œ0;T�g;

and G W Y �! CŒ0;T� given by

G. y/ D
Z

˝

g.x; �; y.x; �//dx:

Example 11 The constraint

Z

˝T

jyu.x; t/jdxdt � ı

is considered by taking Z D L1.˝T/, G W Y �! L1.˝/, with G. y/ D y, and C the
closed ball in L1.˝/ of center at 0 and radius ı.

Example 12 For every 1 � j � k let gj W ˝T � R �! R be a measurable function
of class C1 with respect to the second variable such that for each M > 0 there exists
a function � j

M 2 L1.˝T/ satisfying

jgj.x; t; 0/j C
ˇ̌
ˇ̌@gj

@y
.x; t; y/

ˇ̌
ˇ̌ � �

j
M.x; t/ a:e: .x; t/ 2 ˝T ; 8jyj � M:

Then the constraints
Z

˝

gj.x; t; yu.x; t//dxdt � ıj; 1 � j � k;
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are included in the formulation of (P) by choosing G D .G1; : : : ;Gk/
T , with

Gj. y/ D
Z

˝

gj.x; t; y.x; t//dxdt;

Z D R
k, and C D .�1; ı1� � � � � � .�1; ık�.

Example 13 Integral constraints on the gradient of the state can be considered
within our formulation of problem (P):

G. yu/ D
Z T

0

Z

˝

jrxyu.x; t/j2dxdt � ı:

In this case we can take Z D R and C D .�1; ı�.
We will not consider state constrained problems in the present work. The

interested reader may consult, e.g., the papers [3, 6, 7, 17].

5 First Order Optimality Conditions

The first order optimality conditions are necessary conditions for local optimality.
In the case of convex problems, they become also sufficient for global optimality.
In absence of convexity, the sufficiency requires the use of second order optimality
conditions, which will be the goal of the next section. From the first order necessary
conditions we can deduce some properties of the optimal control as we will prove
later. Before proving the first order optimality conditions let us recall the meaning
of a local minimum.

Definition 14 We will say that Nu is a local minimum of (P) in the Lp.˝/ sense, 1 �
p � C1, if there exists a ball B".Nu/ � Lp.˝/ such that J.Nu/ � J.u/8u 2 K\B".Nu/.
The element Nu will be said a strict local minimum if the inequality J.Nu/ < J.u/ holds
8u 2 K \ B".Nu/ with Nu ¤ u.

Since K is a bounded subset of L1.˝/, if Nu is a (strict) local minimum of (P)
in the Lp.˝/ sense, for some 1 � p < C1, then Nu is a (strict) local minimum of
(P) in the Lq.Q/ sense for every q 2 Œ1;C1�: if q > p, this follows directly from
the fact that Lq.˝/ ,! Lp.˝/; if q < p we use the boundedness of K to get the
inequality ju.x/ � Nu.x/jp � ju.x/ � Nu.x/jqjˇ � ˛jp�q for a.e. x 2 ˝ to deduce the
result. However, if Nu is a local minimum in the L1.˝/ sense, it is not necessarily a
local minimum in the Lp.˝/ sense for any p 2 Œ1;C1/. In the sequel, if nothing is
precised, when we say that Nu is a local minimum of (P), it should be intended in the
Lp.˝/ sense for some p 2 Œ1;C1�.

The key tool to get the first order optimality conditions is provided by the next
lemma.
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Lemma 15 Let U be a Banach space, K � U a convex subset and J W U �! R a
function. Let us assume that Nu is a local solution of the optimization problem

.P/

�
min J.u/
u 2 K

and that J has directional derivatives at Nu. Then

J0.Nu/ � .u � Nu/ � 0 8u 2 K: (5)

Conversely, if J is a convex function and Nu is an element of K satisfying (5), then Nu
is a global minimum of (P).

Proof The inequality (5) is easy to get

J0.Nu/ � .u � Nu/ D lim
�&0

J.Nu C �.u � Nu// � J.Nu/
�

� 0:

The last inequality follows from the local optimality of Nu and the fact that NuC�.u�Nu/
2 K for every u 2 K and every � 2 Œ0; 1� due to the convexity of K.

Conversely, if Nu 2 K fulfills (5) and J is convex, then for every u 2 K

0 � J0.Nu/ � .u � Nu/ D lim
�&0

J.Nu C �.u � Nu// � J.Nu/
�

� J.u/� J.Nu/:

Therefore Nu is a global solution of (P). ut
In order to apply this lemma to the study of problem (P) we need to analyze

the differentiability of the functionals involved in the control problem. To this end,
taking into account the C1;1 regularity of � and the regularity result of Theorem 4,
we obtain the following result.

Proposition 16 Let n
2
< p < C1. The mapping G W Lp.˝/ �! W2;p.˝/ defined

by G.u/ D yu is of class C2. Furthermore if u; v 2 Lp.˝/ and z D DG.u/ � v, then z
is the unique solution in W2;p.˝/ of the Dirichlet problem

�
Az C �0. yu.x//z D v in ˝;
z D 0 on �:

(6)

Finally, for every v1; v2 2 Lp.˝/, zv1v2 D G00.u/.v1; v2/ is the solution of

�
Azv1v2 C �0. yu.x//zv1v2 C �00. yu.x//zv1zv2 D 0 in ˝;
zv1v2 D 0 on �;

(7)

where zvi D G0.u/vi, i D 1; 2.
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Proof To prove the differentiability of G, we apply the implicit function theorem.
Let us consider the Banach space V.˝/ D W2;p.˝/\W1;p

0 .˝/. Let us mention that
V.˝/ � C. N̋ / with a continuous embedding. Indeed, since p > n

2
the continuous

embedding W2;p.˝/ � C. N̋ / follows. Now let us take the function

F W V.˝/ � Lp.˝/ �! Lp.˝/

defined by

F. y; u/ D Ay C �. y/� u:

It is obvious that F is of class C2, yu 2 V.˝/ for every u 2 Lp.˝/, F. yu; u/D 0 and

@F

@y
. y; u/ � z D Az C �0. y/z

is an isomorphism from V.˝/ into Lp.˝/. By applying the implicit function
theorem we deduce that G is of class C2 and DG.u/ � z is given by (6). Finally (7)
follows by differentiating twice with respect to u in the equation

AG.u/C �.G.u// D u: ut

For every u 2 L1.˝/, we define its related adjoint state 'u 2 W2;Np.˝/, as the
unique solution of the problem

8
<

:
A�' C �0. yu/' D @L

@y
.x; yu; u/ in ˝

' D 0 on �;
(8)

A� being the adjoint operator of A and Np > n, the exponent introduced in
Assumption (H1). As a consequence of the previous result we get the following
proposition.

Proposition 17 The function J W L1.˝/ ! R is of class C2. Moreover, for every
u; v; v1; v2 2 L1.˝/

J0.u/v D
Z

˝

�
@L

@u
.x; yu; u/C 'u

�
v dx (9)

and

J00.u/v1v2 D
Z

˝

�
@2L

@y2
.x; yu; u/zv1zv2 C @2L

@y@u
.x; yu; u/.zv1v2 C zv2v1/C

@2L

@u2
.x; yu; u/v1v2 � 'u�

00. yu/zv1zv2

	
dx (10)

where zvi D G0.u/vi, i D 1; 2.
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Proof From hypothesis (H1), Proposition 16 and the chain rule, we deduce that J is
of class C2 and we have

J0.u/ � v D
Z

˝

�
@L

@y
.x; yu.x/; u.x//z.x/C @L

@u
.x; yu.x/; u.x//v.x/

	
dx;

where z D G0.u/v. Using (8) and integrating by parts in this expression, we get

J0.u/ � v D
Z

˝

�
ŒA�'u C �0. yu/'u�z C @L

@u
.x; yu.x/; u.x//v.x/



dx

D
Z

˝

�
ŒAz C �0. yu/z�'u C @L

@u
.x; yu.x/; u.x//v.x/



dx

D
Z

˝

�
'u.x/C @L

@u
.x; yu.x/; u.x//



v.x/ dx;

which proves (9). Finally, (10) follows again by application of the chain rule and
Proposition 16. ut
Remark 18 Let us note that for any u 2 L1.˝/, the continuous linear and bilinear
forms J0.u/ W L1.˝/ �! R and J00.u/ W L1.˝/ � L1.˝/ �! R can be readily
extended to continuous linear and bilinear forms J0.u/ W L2.˝/ �! R and J00.u/ W
L2.˝/ � L2.˝/ �! R. Indeed, it is enough to use the expressions given by (9)
and (10). In addition, we have the following continuity property: if fukg1

kD1 is a
bounded sequence in L1.˝/ converging to u in L2.˝/, then

lim
k!1 kJ00.uk/ � J00.u/k D 0:

Here k � k denotes the norm in the space of bilinear and continuous forms in L2.˝/.
To check this identity, we first observe that Proposition 16 implies that kG.uk/ �
G.u/kL1.˝/ ! 0 and kG0.uk/ � G0.u/k ! 0, where k � k denotes the norm in
L .L2.˝/;H2.˝//. Moreover, an application of Lebesgue theorem and Assumption
(H1) leads easily to the above convergence.

Combining Lemma 15 with the previous proposition, we get the first order
optimality conditions.

Theorem 19 Let Nu be a local minimum of (P). Then there exist Ny; N' 2 H1
0.˝/ \

W2;Np.˝/ such that the following relations hold

�
ANy C �.Ny/ D Nu in ˝;
Ny D 0 on �;

(11)

8
<

:
A� N' C �0.Ny/ N' D @L

@y
.x; Ny; Nu/ in ˝;

N' D 0 on �;
(12)
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Z

˝

�
N'.x/C @L

@u
.x; Ny.x/; Nu.x//



.u.x/� Nu.x//dx � 0 8u 2 K: (13)

From this theorem, we can deduce some regularity results of the local minima.

Theorem 20 Let us assume that Nu is a local minimum of (P) and that the hypotheses
(H1) and (H2) are fulfilled. Then for any x 2 N̋ , the equation

N'.x/C @L

@u
.x; Ny.x/; t/ D 0 (14)

has a unique solution Nt D Ns.x/, where Ny is the state associated to Nu and N' is the
adjoint state defined by (12). The mapping Ns W N̋ �! R is Lipschitz. Moreover Nu
and Ns are related by the formula

Nu.x/ D ProjŒ˛;ˇ�.Ns.x// D max.˛;min.ˇ; Ns.x///; (15)

and Nu is Lipschitz too.

Proof The existence and uniqueness of solution of Eq. (14) is an immediate
consequence of the hypothesis (H2), therefore Ns is well defined. Let us see that Ns
is bounded. Indeed, by the mean value theorem and the identity

N'.x/C @L

@u
.x; Ny.x/; Ns.x// D 0;

we get that

@2L

@u2
.x; Ny.x/; 
.x/Ns.x//Ns.x/ D � N'.x/ � @L

@u
.x; Ny.x/; 0/

for some measurable function 0 � 
.x/ � 1. This relationship, (H2), and (H1) lead
to

�jNs.x/j � j N'.x/j C
ˇ̌
ˇ̌@L

@u
.x; Ny.x/; 0/

ˇ̌
ˇ̌ � C 8x 2 ˝:

Now let us prove that Ns is Lipschitz. To do this, we use (H2), the properties
of L enounced in (H1), the fact that Ny and N' are Lipschitz functions (due to the
inclusion W2;Np.˝/ � C1. N̋ / for Np > n) and the equation above satisfied by Ns.x/.
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Let x1; x2 2 N̋

�jNs.x2/ � Ns.x1/j � j@L

@u
.x2; Ny.x2/; Ns.x2//� @L

@u
.x2; Ny.x2/; Ns.x1//j D

j N'.x1/ � N'.x2/C @L

@u
.x1; Ny.x1/; Ns.x1//� @L

@u
.x2; Ny.x2/; Ns.x1//j �

j N'.x1/ � N'.x2/j C CM .jNy.x1/ � Ny.x2/j C jx2 � x1j/ � Cjx2 � x1j:

Finally, from (13) and the fact that .@L=@u/ is an increasing function of the third
variable we have

˛ < Nu.x/ < ˇ ) N'.x/C @L

@u
.x; Ny.x/; Nu.x// D 0 ) Nu.x/ D Ns.x/;

Nu.x/ D ˇ ) N'.x/C @L

@u
.x; Ny.x/; Nu.x// � 0 ) Nu.x/ � Ns.x/;

Nu.x/ D ˛ ) N'.x/C @L

@u
.x; Ny.x/; Nu.x// � 0 ) Nu.x/ � Ns.x/;

which implies (15). ut
Remark 21 If the assumption (H2) does not hold, then the optimal controls can be
discontinuous. The most obvious case is the one where L is independent of u. In this
case (13) is reduced to

Z

˝

N'.x/.u.x/� Nu.x// dx � 0 8u 2 K;

which leads to

Nu.x/ D
�
˛ if N'.x/ > 0
ˇ if N'.x/ < 0 a.e. x 2 ˝:

If N' vanishes only in a set of points of zero Lebesgue measure, then Nu jumps from
˛ to ˇ. Such a control Nu is called a bang-bang control. The controls of this nature
are of great interest in the applications because of the ease to automate the control
process. All the results presented previously are valid without the assumption (H2),
except Theorem 20.
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Remark 22 If we consider the tracking cost functional L.x; y; u/ D Œ. y � yd.x//2 C
Nu2�=2 with N > 0 and yd 2 L2.˝/, then (14) leads to Ns D � N'=N, and (15)
implies

Nu.x/ D Proj
K

�
� 1

N
N'
�
.x/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

˛ if � 1

N
N'.x/ < ˛;

ˇ if � 1

N
N'.x/ > ˇ;

� 1

N
N'.x/ if ˛ � � 1

N
N'.x/ � ˇ:

If, furthermore, we assume that K D L2.˝/, then (13) implies that Nu D
�.1=N/ N'. Thus Nu has the same regularity than N'. Therefore, Nu will be the more
regular as much as greater be the regularity of yd, � , � and the coefficients of
operator A. In particular, we can get C1. N̋ /-regularity, if all the data of the problem
are of class C1.

6 Second Order Optimality Conditions

The material contained in this section is based on the paper by Casas and Tröltzsch
[15].

Let Nu 2 K satisfy the first order optimality conditions (11)–(13) along with Ny and
N'. In order to simplify the notation we will consider the function

Nd.x/ D @L

@u
.x; Ny.x/; Nu.x//C N'.x/:

From (13) it follows

Nd.x/
8
<

:

0 a.e. x 2 ˝ if ˛ < Nu.x/ < ˇ;
� 0 a.e. x 2 ˝ if Nu.x/ D ˛;

� 0 a.e. x 2 ˝ if Nu.x/ D ˇ:

(16)

The following cone of critical directions is essential in the formulation of the
second order optimality conditions:

CNu D fv 2 L2.˝/ satisfying (17) and v.x/ D 0 if Nd.x/ ¤ 0g;

v.x/

� � 0 a.e. x 2 ˝ if Nu.x/ D ˛;

� 0 a.e. x 2 ˝ if Nu.x/ D ˇ:
(17)

Now we can formulate the necessary and sufficient conditions for optimality.
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Theorem 23 Under the hypothesis (H1), if Nu is a local minimum of (P), then

J00.Nu/v2 � 0 8v 2 CNu: (18)

Conversely, if additionally (H2) holds and Nu 2 K fulfills the first order optimality
conditions (11)–(13) along with the condition

J00.Nu/v2 > 0 8v 2 CNu n f0g; (19)

then there exist � > 0 and " > 0 such that

J.u/ � J.Nu/C �

2
ku � Nuk2L2.˝/ 8u 2 K \ NB".Nu/; (20)

where NB".Nu/ is the closed ball in L2.˝/ with center at Nu and radius ".

Proof

i) Given v 2 CNu we define for every k 2 N

vk.x/ D
8
<

:
0 if ˛ < Nu.x/ < ˛ C 1

k
or ˇ � 1

k
< Nu.x/ < ˇ;

ProjŒ�k;Ck�.v.x// otherwise:

Then we have that vk 2 CNu \L1.˝/. Moreover vk ! v in L2.˝/when k ! 1,
and Nu C 
vk 2 K holds for every 
 2 .0; 1

k2
�. By using the local optimality of Nu

and taking 
 small enough we obtain

0 � J.Nu C 
vk/� J.Nu/



D J0.Nu/vk C 


2
J00.Nu C 
k
vk/v

2
k ;

with 0 < 
k < 1. From this inequality and the identity

J0.Nu/vk D
Z

˝

.
@L

@u
.x; Ny.x/; Nu.x//C N'.x//vk.x/ dx D

Z

˝

Nd.x/vk.x/ dx D 0;

we deduce by passing to the limit as 
 ! 0

0 � J00.Nu C 
k
vk/v
2
k ! J00.Nu/v2k :

By the expression of the second derivative J00 given by (10), we can pass to the
limit in the previous expression when k ! 1 and get that J00.Nu/v2 � 0.

ii) Now let us assume that (19) holds and prove (20). We argue by contradiction
and assume that for any k 2 N we can find an element uk 2 K such that

kNu � ukkL2.˝/ <
1

k
and J.uk/ < J.Nu/C 1

2k
kuk � Nuk2L2.˝/: (21)
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Let us define


k D kuk � NukL2.˝/ and vk D 1


k
.uk � Nu/:

By taking a subsequence if necessary, we can suppose that vk * v weakly in
L2.˝/. The proof is split into three steps.

Step 1 v 2 CNu. First we observe that each element vk obviously satisfies (17). Since
the set of elements satisfying (17) is closed and convex in L2.˝/, hence weakly
closed, we deduce that v satisfies (17) as well. Let us prove that v vanishes at almost
all points x 2 ˝ where Nd.x/ ¤ 0. From (13) and the fact that uk 2 K, we infer

Z

˝

Nd.x/v.x/ dx D lim
k!1

1


k

Z

˝

Nd.x/.uk � Nu/ dx � 0: (22)

Now, using (21) and the mean value theorem we get

J0.Nu C 
k.uk � Nu//.uk � Nu/ < 1

2k
kuk � Nuk2L2.˝/ D 
2k

2k
:

Dividing this inequality by 
k it follows

J0.Nu C 
k.uk � Nu//vk <

k

2k
! 0 as k ! 1: (23)

Let us write Ouk D Nu C 
k.uk � Nu/, and let Oyk and O'k be the associated state and
adjoint state. Applying Proposition 16 we get that Oyk D G.Ouk/ ! G.Nu/ D Ny in
W2;Np.˝/ � C. N̋ /. From the assumption (H1) we infer that

@L

@y
.x; Oyk; Ouk/ ! @L

@y
.x; Ny; Nu/ strongly in LNp.˝/ as k ! 1:

Then, from the equation satisfied by O'k and the above convergences we deduce that
O'k ! N' strongly in W2;Np.˝/ � C. N̋ /. Hence, we can pass to the limit in (23) and
deduce
Z

˝

Nd.x/v.x/ dx D lim
k!1

Z

˝

�
O'k C @L

@u
.x; Oyk; Ouk/

�
vk dx D lim

k!1 J0.Nu C 
k.uk � Nu//vk � 0:

This inequality, along with (22), implies that

Z

˝

Nd.x/v.x/ dx D 0:
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Finally, due to the sign conditions (17) satisfied by v, we conclude that

Z

˝

j Nd.x/jjv.x/j dx D
Z

˝

Nd.x/v.x/ dx D 0;

hence v 2 CNu.

Step 2 v D 0. Performing a Taylor expansion, we get

J.uk/ D J.Nu C 
kvk/ D J.Nu/C 
kJ0.Nu/vk C 
2k
2

J00.Ouk/v
2
k ;

where Ouk D Nu C #k.uk � Nu/ with 0 � #k.x/ � 1. Since Nu satisfies the first order
optimality conditions, we have that J0.Nu/vk � 0. Using this fact in the above identity
and (21), we obtain


2k
2

J00.Ouk/v
2
k � J.uk/ � J.Nu/ < 
2k

2k
;

therefore J00.Ouk/v
2
k < 1=k ! 0 as k ! 1. In the next lines we will prove that

J00.Nu/v2 � lim infk!1 J00.Ouk/v
2
k � 0. This inequality, the fact that v 2 CNu, and (19)

imply that v D 0.
With the same notation as above and arguing in the same way, we get that

.Oyk; O'k; Ouk/ ! .Ny; N'; Nu/ strongly in LNp.˝/ and .Oyk; O'k/ ! .Ny; N'/ strongly in C. N̋ /
as k ! 1. Moreover, from Proposition 16 we have that Ozvk D DG.Ouk/vk *

DG.Nu/v D zv weakly in W2;p.˝/ for every p < C1, hence Ozvk ! zv strongly
in C. N̋ /. Now, from (10) we obtain

J00.Ouk/v
2
k D

Z

˝

�h@2L
@y2

.x; Oyk; Ouk/ � O'k�
00.Oyk/

i
Oz2vk

C 2
@2L

@y@u
.x; Oyk; Ouk/vkOzvk

�
dx

C
Z

˝

@2L

@u2
.x; Oyk; Ouk/v

2
k dx: (24)

From the convergence properties established for .Oyk; O'k; Ouk; Ozvk / it is easy to pass
to the limit in the first integral towards the corresponding terms of J00.Nu/v2; see
Remark 18. To deal with the last integral, we use Lemma 24 below to deduce that

Z

˝

@2L

@u2
.x; Ny; Nu/v2 dx � lim inf

k!1

Z

˝

@2L

@u2
.x; Oyk; Ouk/v

2
k dx;

which concludes the proof of the step 2.

Step 3 Contradiction. Since v D 0 we have that Ozvk ! 0 in C. N̋ /. Then, the
first integral in (24) converges to 0. Now, using the assumption (H2) and that
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kvkkL2.˝/ D 1, we infer from (24)

� D �

Z

˝

v2k dx � lim inf
k!1

Z

˝

@2L

@u2
.x; Oyk; Ouk/v

2
k dx D lim inf

k!1 J00.Ouk/v
2
k � 0;

which contradicts the fact that � > 0. ut
Lemma 24 ([15]) Let .X; ˙; �/ be a measure space with �.X/ < C1. Suppose
that fgkg1

kD1 � L1.X/ and fvkg1
kD1 � L2.X/ satisfy the assumptions

• gk � 0 a.e. in X, fgkg1
kD1 is bounded in L1.X/ and gk ! g in L1.X/ as k ! 1.

• vk * v in L2.X/ as k ! 1.

Then there holds the inequality

Z

X
g.x/v2.x/ d�.x/ � lim inf

k!1

Z

X
gk.x/v

2
k .x/ d�.x/: (25)

Proof Since fgkg1
kD1 is bounded in L1.X/, it holds g 2 L1.X/. Denote the lower

limit in (25) by �. Then there exists a subsequence of functions, denoted in the same
way, such that the integrals of the right hand side of (25) converge to �. Again, we
can select a new subsequence of this one such that gk.x/ ! g.x/ a:e: in X. Let " > 0
be arbitrary. By Egorov’s theorem, there exists a measurable set K" � X such that
�.X n K"/ < " and kg � gkkL1.K"/ ! 0 as k ! 1. Then we have

lim inf
k!1

Z

X
gk.x/v

2
k .x/ d�.x/ � lim inf

k!1

Z

K"

gk.x/v
2
k .x/ d�.x/

� lim inf
k!1

Z

K"

Œgk.x/� g.x/�v2k .x/ d�.x/C lim inf
k!1

Z

K"

g.x/v2k .x/ d�.x/

D lim inf
k!1

Z

K"

g.x/v2k .x/ d�.x/ �
Z

K"

g.x/v2.x/ d�.x/:

Finally, passing to the limit as " ! 0 we get (25) ut
We will finish this section by proving an interesting result that simplifies the

proof of the error estimates of discrete approximations of problem (P).

Theorem 25 Under the hypotheses (H1) and (H2), if Nu 2 K satisfies (11)–(13), the
following statements are equivalent:

J00.Nu/v2 > 0 8v 2 CNu n f0g (26)

and

9ı > 0 and 9� > 0 W J00.Nu/v2 � ıkvk2L2.˝/ 8v 2 C�Nu ; (27)
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where

C�
Nu D fv 2 L2.˝/ satisfying (17) and v.x/ D 0 if j Nd.x/j > �g:

Proof Since CNu � C�Nu for all � > 0, it is obvious that (27) implies (26). Let us
prove the converse implication. We proceed by contradiction and assume that for
any � > 0 there exists v� 2 C�Nu such that J00.Nu/v2� < �kv�k2L2.˝/. Dividing v� by its
norm, and taking a subsequence if necessary, we can assume that

kv�kL2.˝/ D 1; J00.Nu/v2� < � and v� * v in L2.˝/: (28)

Let us prove that v 2 CNu. Arguing as in the proof of the previous theorem, we get
that v satisfies the sign condition (17). On the other hand,

Z

˝

j Nd.x/v.x/j dx D
Z

˝

Nd.x/v.x/ dx D

lim
�!0

Z

˝

Nd.x/v� .x/ dx D lim
�!0

Z

jNd.x/j��
Nd.x/v� .x/ dx �

lim
�!0

�

Z

˝

jv� .x/j dx � lim
�!0

�
p

j˝jkv�kL2.˝/ D 0;

which proves that v.x/ D 0 if Nd.x/ ¤ 0. Thus we have that v 2 CNu. Then (26)
implies that either v D 0 or J00.Nu/v2 > 0. But (28) leads to

J00.Nu/v2 � lim inf
�!0

J00.Nu/v2� � lim sup
�!0

J00.Nu/v2� � 0:

Thus we conclude that v D 0 and limk!1 J00.Nu/v2� D 0. Moreover, arguing as in the
proof of the previous theorem, we deduce that z� ! 0 strongly in C. N̋ /, therefore

0 < � D �

Z

˝

v2� dx � lim inf
�!0

Z

˝

@2L

@u2
.x; Ny; Nu/v2� dx D lim

�!0
J00.Nu/v2�

� lim
�!0

Z

˝

�
@2L

@y2
.x; Ny; Nu/z2� C @2L

@y@u
.x; Ny; Nu/v� z� � N'�00.Ny/z2�

	
dx D 0;

which leads to the desired contradiction. ut
Remark 26 Some comments are necessary to clarify the results stated in the
Theorems 23 and 25. If J is a functional in R

n, we know that the first order
condition J0.Nu/ D 0, together with the second order condition J00.Nu/v2 > 0 for
every v 2 R

n n f0g, implies that Nu is a strict local minimum of J. However, this is
not true in infinite dimension. Let us confirm this by the following example.
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Example 27 Consider the optimization problem

min
u2L1.0;1/

J.u/ D
Z 1

0

Œtu2.t/ � u3.t/� dt:

The function Nu.t/ � 0 satisfies the first order necessary condition J0.Nu/ D 0 and

J00.Nu/v2 D
Z 1

0

2tv2.t/ dt > 0 8v 2 L1.0; 1/ n f0g:

However, Nu is not a local minimum of J. Indeed, if we define

uk.t/ D
8
<

:
2t if t 2 .0; 1

k
/;

0 otherwise,

then it holds J.uk/ D � 1
k4
< J.Nu/, and kuk � NukL1.0;1/ D 2

k , which shows that Nu is
not a local minimum of the optimization problem.

The classical theorem for optimization in infinite dimensional spaces state that
the second order sufficient condition requires the existence of some ı > 0 such that
J00.Nu/v2 � ıkvk2. In finite dimension this condition is equivalent to J00.Nu/v2 > 0 if
v ¤ 0, but this equivalence is not true, in general, in infinite dimension. However,
Theorem 25 proves the equivalence of both conditions for our control problem.
The main reasons for this equivalence are the following: on the one hand, the
compactness of the relation control-to-state. On the other, the strict convexity of
L with respect to u. Indeed, the fact that � > 0 played a crucial role in the proof.
The situation is even more complicated for infinite dimensional control problems
with constraints. Indeed, the following example by Dunn [21] demonstrates that
J00.Nu/v2 � ıkvk2

L2.˝/
for every v 2 CNu is not in general sufficient for local

optimality.

Example 28 We define J W L2.0; 1/ ! R by

J.u/ D
Z 1

0

Œ2a.x/u.x/� sign.a.x//u.x/2� dx;

where a.x/ D 1 � 2x. The set of admissible functions u is defined by

K WD fu 2 L1.0; 1/ W 0 � u.x/ � 2 for a.a. x 2 Œ0; 1�g;

and the optimization problem is

min
u2K J.u/:
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Let us set Nu.x/ D maxf0;�a.x/g; then Nu.x/ D 0 holds on Œ0; 1=2� and 0 < Nu.x/ < 2
on .1=2; 2/. We have

J0.Nu/v D
Z 1

0

2Œa.x/� sign.a.x//Nu.x/�v.x/ dx D
Z 1

0

Nd.x/v.x/dx

D
Z 1=2

0

2a.x/v.x/dx � 0

for all v 2 L2.0; 1/ with v.x/ � 0 on Œ0; 1=2�. Since u � Nu is nonnegative for all
u 2 K, Nu satisfies the first order necessary optimality conditions.

In view of the sign conditions (17) and of Nd.x/ > 0 on Œ0; 1=2/, the critical cone
for this example is

CNu D fv 2 L2.0; 1/ W v.x/ D 0 on Œ0; 1=2/g:

For all v 2 CNu, we obtain

J00.Nu/v2 D �
Z 1

0

2 sign.a.x// v2.x/ dx D 2

Z 1

1=2

v2.x/ dx � 2
Z 1=2

0

v2.x/ dx

D2
Z 1

1=2

v2.x/ dx D 2 kvk2L2.0;1/:

Therefore, J00.Nu/v2 � ıkvk2
L2.0;1/

8v 2 CNu is fulfilled with ı D 2. However, Nu is not

a local minimum in L2.0; 1/. Indeed, take for 0 < " < 1=2

u".x/ D
�
3"; if x 2 Œ 1

2
� "; 1

2
�

Nu.x/; else:

Then we have

J.u"/ � J.Nu/ D
Z 1

2

1
2�"
Œ6".1 � 2x/� 9"2�dx D �3"3 < 0:

The second order condition J00.Nu/v2 � ıkvk2
L2.0;1/

must be assumed on an
extended cone. Once again, in our control problem the fact that � > 0 implies
that the condition on the extended cone C�Nu is equivalent to the condition (19).

Remark 29 (The Two-Norm Discrepancy)
There is another important issue when we look for second order sufficient

conditions in infinite dimensional spaces. Let us consider the following example.
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Example 30

min
u2L2.0;1/

J.u/ D
Z 1

0

sin.u.t// dt:

It is obvious that Nu.t/ � ��=2 is a solution. After some fast computations we get

J0.Nu/v D
Z 1

0

cos.Nu.t//v.t/ dt D 0 8v 2 L2.0; 1/

and

J00.Nu/v2 D �
Z 1

0

sin.Nu.t//v2.t/ dt D
Z 1

0

v2.t/ dt D kvk2L2.0;1/:

Then we conclude that Nu is a strict local minimum. However, this is not true! Indeed,
the functions

u".t/ D

8
ˆ̂<

ˆ̂:

��
2

if t 2 Œ0; 1 � "�

C3�

2
if t 2 .1 � "; 1�

satisfy that J.Nu/ D J.u"/ and nevertheless we have that kNu � u"kL2.0;1/ D 2�
p
",

which shows that Nu is not a strict local minimum. Therefore, something is wrong.
What is it? The point is that J is not a C2 function in L2.0; 1/. On the other hand, it is
immediate to check that Nu is a strict local minimum of J in L1.0; 1/ and moreover
J is of class C2 in L1.0; 1/. However, an inequality of type

J00.Nu/v2 � ıkvk2L1.0;1/

does not hold.
This fact is known as the two-norm discrepancy: the function is of class C2 with
respect to one norm, but the second order sufficient condition holds with respect
to a different norm. This fact does never occur in finite dimension because all the
norms are equivalent. To deal with this situation we can use the following abstract
result.

Theorem 31 Let U be a vector space endowed with two norms, k�k1 and k�k2,
such that J W .U; k�k1/ 7! R is of class C2 in a .U; k�k1/-neighborhood A � U of
Nu and assume that the following properties hold:

J0.Nu/ D 0 and 9ı > 0 such that J00.Nu/v2 � ıkvk22 8v 2 U; (29)



Optimal Control of PDE 29

and there exists some " > 0 such that NB1.NuI "/ � A and

jJ00.Nu/v2 � J00.u/v2j � ı

2
kvk22 8v 2 U if ku � Nuk1 � ": (30)

Then there holds

ı

4
ku � Nuk22 C J.Nu/ � J.u/ if ku � Nuk1 � " (31)

so that Nu is strictly locally optimal with respect to the norm k � k1.
In the above theorem B1.NuI "/ denotes the ball of radius " and centered at Nu with

respect to the norm k � k1.
The proof of this theorem is quite elementary. To our knowledge, Ioffe [28] was

the first who proved a result of this type by using two norms in the context of optimal
control for ordinary differential equations.

Theorem 31 can be applied to Example 30 to deduce that Nu is a strict local
minimum in the sense of L1.0; 1/.

Returning to the control problem (P), we observe that despite the two-norm
discrepancy occurs, we get strict local optimality of Nu in L2.˝/. The situation is
completely different if we analyze the case where the assumption (H2) does not
hold. For instance, if we consider the tracking-type control problem where the
Tikhonov term does not appear: N D 0. It is not the aim of this paper to study such
a case. We only show how the second order sufficient conditions can be formulated.

Theorem 32 Let us assume that Nu 2 K satisfies the first order optimality
conditions. We also suppose that there exist ı > 0 and � > 0 such that

J00.Nu/v2 � ıkzvk2L2.˝/ 8v 2 C�Nu ;

where zv D G0.Nu/v. Then, there exist " > 0 and � > 0 such that

J.Nu/C �

2
kyu � Nyk2L2.˝/ � J.u/ 8u 2 B".Nu/\ K;

where B".Nu/ is the L2.˝/ ball centered at Nu and radius ".
The proof of this theorem can be found in [9]. It is also proved in [9] that the

inequality J00.Nu/v2 � ıkvk2
L2.˝/

for every v 2 C�Nu is never fulfilled.

7 Numerical Approximation

The goal of this section is to prove error estimates for the numerical approximation
for the control problem. In the last years, many papers have been devoted to this
question; see [1, 2, 7, 8, 10, 12–14, 16, 20, 26, 37]. The reader is also referred to
[34, 36, 39] and [35] for the case of control problems of parabolic equations.
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In order to simplify the presentation we will assume from now on that ˝ is
convex.

We consider a finite element based approximation of (P). Associated with a
parameter h we consider a family of triangulations fThgh>0 of N̋ . To every element
T 2 Th we assign two parameters 
.T/ and �.T/, where 
.T/ denotes the diameter
of T and �.T/ is the diameter of the biggest ball contained in T. The size of the grid
is given by h D maxT2Th 
.T/. The following standard regularity assumptions on
the triangulation are assumed.

1. There exist two positive constants 
 and � such that


.T/

�.T/
� �;

h


.T/
� 


for every T 2 Th and all h > 0.
2. Let us set N̋ h D [T2Th T, where ˝h and �h are the interior and the boundary of

N̋ h respectively. We assume that the vertices of Th placed on the boundary �h

are points of � . We also assume

9C > 0 such that j˝ n˝hj � Ch2; (32)

where j � j denotes the Lebesgue measure. See [42, inequality (5.2.19)] for a proof
of this inequality for two dimensional domains with a C2 boundary.

Associated to these triangulations we define the spaces

Uh D fu 2 L1.˝h/ j ujT is constant on each T 2 Thg;

Yh D fyh 2 C. N̋ / j yhjT 2 P1; for every T 2 Th; and yh D 0 in N̋ n˝hg;

where P1 is the space formed by the polynomials of degree less than or equal to
one. For every u 2 L2.˝h/, we denote by yh.u/ the unique element of Yh satisfying

a. yh.u/;wh/C
Z

˝h

�. yh.u//wh dx D
Z

˝h

uwh dx 8wh 2 Yh; (33)

where a W Yh � Yh �! R is the bilinear form defined by

a. yh;wh/ D
Z

˝h

.

nX

i;jD1
aij.x/@xi yh.x/@xj wh.x/C a0.x/yh.x/wh.x// dx:

To prove the existence of a solution of (33) we truncate � as in the proof of
Theorem 4. Then we use Brouwer’s fixed point theorem, and we take into account
that all the norms are equivalent in a finite dimensional space. The uniqueness is an
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immediate consequence of the monotonicity of � and the coercivity of the elliptic
operator A.

The set of discrete admissible controls is defined by

Kh D fuh 2 Uh W ˛ � ujT � ˇ 8T 2 Thg:

The finite dimensional approximation of the optimal control problem (P) is defined
in the following way

.Ph/

(
min Jh.uh/ D R

˝h
L.x; yh.uh/.x/; uh.x// dx;

uh 2 Kh:

Let us start the study of problem .Ph/ by analyzing the differentiability of
the functions involved in the control problem. We just state the differentiability
results analogous to the ones of Sect. 5 whose proof is an immediate consequence
of the implicit function theorem. The change of the space Lp.˝/ considered in
Proposition 16 by L1.˝/ is possible due to the fact that Yh � C0.˝/.

Proposition 33 For every u 2 L1.˝h/, problem (33) has a unique solution yh.u/ 2
Yh. The mapping Gh W L1.˝h/ �! Yh, defined by Gh.u/ D yh.u/, is of class C2 and
for all v; u 2 L1.˝h/, zh.v/ D G0

h.u/v is the solution of

a.zh.v/;wh/C
Z

˝h

�0. yh.u//zh.v/wh dx D
Z

˝h

vwh dx 8wh 2 Yh: (34)

Finally, for every v1; v2 2 L1.˝h/, zh.v1; v2/ D G00
h.u/.v1; v2/ 2 Yh is the solution

of the variational equation:

a.zh;wh/C
Z

˝h

�0. yh.u//zhwh dx C
Z

˝h

�00. yh.u//zh1zh2whdx D 0; (35)

for all wh 2 Yh, where zhi D G0
h.u/vi, i D 1; 2.

For every u 2 L1.˝h/. we define its related discrete adjoint state 'h.u/ 2 Yh, as the
unique solution of the problem

a.wh; 'h.u//C
Z

˝h

�0. yh.u//'h.u/wh dx D
Z

˝h

@L

@y
.x; yh.u/; u/wh dx 8wh 2 Yh:

(36)
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Proposition 34 The functional Jh W L1.˝h/ ! R is of class C2. Moreover, for all
u; v; v1; v2 2 L1.˝h/

J0
h.u/v D

Z

˝h

�
@L

@u
.x; yh.u/; u/C 'h.u/

�
v dx (37)

and

J00
h .u/v1v2 D

Z

˝h

�
@2L

@y2
.x; yh.u/; u/zh1zh2C

@2L

@y@u
.x; yh.u/; u/Œzh1v2 C zh2v1�C

@2L

@u2
.x; yh.u/; u/v1v2 � 'h.u/�

00. yh.u//zh1zh2

	
dx (38)

where yh.u/ D Gh.u/, 'h.u/ 2 Yh is defined in (36) and zhi D G0
h.u/vi, i D 1; 2.

We conclude this section by studying the existence of a solution of problem .Ph/

and establishing the first order optimality conditions. The second order conditions
are analogous to those proved for problem (P) and they can be obtained by the
classical methods of finite dimensional optimization.

Theorem 35 For every h > 0, problem .Ph/ has at least one solution. If Nuh is a
local minimum of .Ph/, then there exist Nyh, N'h 2 Yh such that

a.Nyh;wh/C
Z

˝h

�.Nyh/wh.x/ dx D
Z

˝h

Nuh.x/wh.x/ dx 8wh 2 Yh; (39)

a.wh; N'h/C
Z

˝h

�0.Nyh/ N'hwh dx D
Z

˝h

@L

@y
.x; Nyh; Nuh/wh dx 8wh 2 Yh; (40)

Z

˝h

�
N'h C @L

@u
.x; Nyh; Nuh/



.uh � Nuh/dx � 0 8uh 2 Kh: (41)

Proof The existence of a solution is an immediate consequence of the compactness
of Kh in Uh and the continuity of Jh. The optimality system (39)–(41) follows from
Lemma 15 and Proposition 34. ut

From this theorem we can deduce a representation formula of local minima of
.Ph/ analogous to that obtained in Theorem 20.
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Theorem 36 Under the hypotheses (H1) and (H2), if Nuh is a local minimum of .Ph/,
and Nyh and N'h are the state and adjoint state associated to Nuh, then for every T 2 Th

the equation

Z

T
Œ N'h.x/C @L

@u
.x; Nyh.x/; t/� dx D 0; (42)

has a unique solution Nt D NsT . The mapping Nsh 2 Uh, defined by NshjT D NsT , is related
with Nuh by the formula

Nuh.x/ D ProjŒ˛;ˇ�.Nsh.x// D max.˛;min.ˇ; Nsh.x///: (43)

Proof The existence of a unique solution of (42) is a consequence of hypothesis
(H2). Let us denote by NuT the restriction of Nuh to T. From the definition of Uh

and (41) we deduce that

Z

T

�
N'h C @L

@u
.x; Nyh; NuT/



dx .t � NuT/ � 0 8t 2 Œ˛; ˇ� and 8T 2 Th:

From here we get

˛ < NuT < ˇ )
Z

T

�
N'h C @L

@u
.x; Nyh; NuT/



dx D 0 ) NuT D NsT ;

NuT D ˇ )
Z

T

�
N'h C @L

@u
.x; Nyh; NuT/



dx � 0 ) NuT � NsT ;

NuT D ˛ )
Z

T

�
N'h C @L

@u
.x; Nyh; NuT/



dx � 0 ) NuT � NsT ;

which implies (43). ut

8 Convergence of the Approximations

In this section we will prove that the solutions of the discrete problems .Ph/ converge
strongly in L1.˝h/ to solutions of problem (P). We will also prove that strict local
minima of problem (P) can be approximated by local minima of problems .Ph/. In
order to prove these convergence results we will use two lemmas whose proofs can
be found in [2] and [11].

Lemma 37 Let .v; vh/ 2 L1.˝/�Uh satisfy kvkL1.˝/ � M and kvhkL1.˝h/ � M.
Let us assume that yv and yh.vh/ are the solutions of (1) and (33) corresponding to
v and vh respectively. Moreover, let 'v and 'h.vh/ be the solutions of (8) and (36)
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corresponding to v and vh respectively. Then the following estimates hold

kyv � yh.vh/kH1.˝h/
C k'v � 'h.vh/kH1.˝h/

� C.h C kv � vhkL2.˝h/
/; (44)

kyv � yh.vh/kL2.˝h/
C k'v � 'h.vh/kL2.˝h/

� C.h2 C kv � vhkL2.˝h/
/; (45)

kyv � yh.vh/kL1.˝h/ C k'v � 'h.vh/kL1.˝h/ � C.h2j log hj2 C kv � vhkL2.˝h/
/; (46)

where C � C.˝; n;M/ is a positive constant independent of h.
Estimate (46) was not proved in [2], but it follows from [2] and the uniform error

estimates for the discretization of linear elliptic equations; see for instance [44] and
[45].

Lemma 38 Let fuhgh>0 be a sequence, with uh 2 Kh and uh * u weakly in L1.˝/.
Then yh.uh/ ! yu and 'h.uh/ ! 'u in H1

0.˝/\C. N̋ / strongly as h ! 0. Moreover
J.u/ � lim infh!0 Jh.uh/.

Let us remark that uh is only defined in˝h. Therefore, we need to establish what
uh * u weakly in L1.˝/ means. It means that

Z

˝h

 uh dx !
Z

˝

 u dx 8 2 L1.˝/:

Since the measure of ˝ n ˝h tends to zero when h ! 0, the above property is
equivalent to

Z

˝

 Quh dx !
Z

˝

 u dx 8 2 L1.˝/

for any uniformly bounded extension Quh of uh to ˝ . Analogously we can define the
weak� convergence in L1.˝/.

Theorem 39 Let us assume that (H1) and (H2) hold. For every h > 0 let Nuh be a
solution of .Ph/. Then there exist subsequences of fNuhgh>0 converging in the weak�

topology of L1.˝/ that will be denoted in the same way. If Nuh
�
* Nu in L1.˝/, then

Nu is a solution of (P) and the following identities hold

lim
h!0

Jh.Nuh/ D J.Nu/ D inf .P/ and lim
h!0

kNu � NuhkL1.˝h/ D 0: (47)

Proof The existence of subsequences converging in the weak� topology of L1.˝/
is a consequence of the boundedness of fNuhgh>0, ˛ � Nuh.x/ � ˇ, for every h > 0.
Let Nu be a limit point of one of these converging subsequences. We are going to
prove that Nu is a solution of (P). Let Qu be a solution of (P). From Theorem 20 we
deduce that Qu is Lipschitz in N̋ . Let us consider the operator ˘h W L1.˝/ �! Uh
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defined by

˘hujT D 1

jTj
Z

T
u.x/ dx 8T 2 Th:

Let uh D ˘h Qu 2 Uh. It is easy to prove that uh 2 Kh and

kQu � uhkL1.˝h/ � �Quh;

where�Qu is the Lipschitz constant of Qu. By applying the Lemmas 37 and 38 we get

J.Nu/ � lim inf
h!0

Jh.Nuh/ � lim sup
h!0

Jh.Nuh/ �

� lim sup
h!0

Jh.uh/ D J.Qu/ D inf .P/ � J.Nu/;

which proves that Nu is a solution of (P) and

lim
h!0

Jh.Nuh/ D J.Nu/ D inf .P/:

Let us prove now the uniform convergence Nuh ! Nu. From (15) and (43) follows

kNu � NuhkL1.˝h/ � kNs � NshkL1.˝h/;

therefore it is enough to prove the uniform convergence of fNshgh>0 to Ns. On the other
hand, from Theorem 36 we have that

Z

T
Œ N'h.x/C @L

@u
.x; Nyh.x/; NshjT /� dx D 0:

From this equality and the continuity of the integrand with respect to x it follows the
existence of a point �T 2 T such that

N'h.�T/C @L

@u
.�T ; Nyh.�T/; Nsh.�T// D 0: (48)

Given x 2 ˝h, let T 2 Th be such that x 2 T. Since Nsh is constant in each element T

jNs.x/� Nsh.x/j � jNs.x/� Ns.�T/j C jNs.�T /� Nsh.�T/j �
�Nsjx � �T j C jNs.�T/ � Nsh.�T/j � �Nsh C jNs.�T /� Nsh.�T/j;

where �Ns is the Lipschitz constant of Ns. Thus it remains to prove the convergence
Nsh.�T / ! Ns.�T / for every T. To do this, we will use again the strict positivity of the
second derivative of L with respect to u (Hypothesis (H2)) along with (48) and the
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fact that Ns.x/ is the solution of the Eq. (14) to get

�jNs.�T/ � Nsh.�T/j �
ˇ̌
ˇ̌@L

@u
.�T ; Nyh.�T/; Ns.�T //� @L

@u
.�T ; Nyh.�T/; Nsh.�T //

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌@L

@u
.�T ; Nyh.�T /; Ns.�T// � @L

@u
.�T ; Ny.�T/; Ns.�T//

ˇ̌
ˇ̌C

ˇ̌
ˇ̌@L

@u
.�T ; Ny.�T/; Ns.�T//� @L

@u
.�T ; Nyh.�T/; Nsh.�T//

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌@L

@u
.�T ; Nyh.�T /; Ns.�T// � @L

@u
.�T ; Ny.�T/; Ns.�T//

ˇ̌
ˇ̌C j N'.�T/� N'h.�T/j ! 0

thanks to the uniform convergence Nyh ! Ny and N'h ! N' (Lemma 38). ut
In a certain sense, the next result is converse to the previous theorem. The ques-

tion we formulate now is wether a local minimum u of (P) can be approximated by
a local minimum uh of .Ph/. The answer is positive if the local minimum u is strict.

Theorem 40 Let us assume that (H1) and (H2) hold. Let Nu be a strict local
minimum of (P) in the Lp.˝/ sense with 1 � p � 1. Then there exist a ball
B".Nu/ of Lp.˝/ and h0 > 0 such that .Ph/ has a local minimum Nuh 2 B".Nu/ for every
h < h0. Moreover the convergences (47) hold.

Proof First we analyze the case p D 1. Since Nu is a strict local minimum in the
L1.˝/ sense, there exists " > 0 such that Nu is the unique solution of problem

.P"/

�
min J.u/
u 2 K \ NB".Nu/;

where B".Nu/ denotes the ball of L1.˝/. Let us consider the functions

˛".x/ D maxf˛; Nu.x/ � "g and ˇ".x/ D minfˇ; Nu.x/C "g 8x 2 ˝:

It is easy to check that

j˛".x2/ � ˛".x1/j � jNu.x2/ � Nu.x1/j � �ujx2 � x1j;
jˇ".x2/ � ˇ".x1/j � jNu.x2/� Nu.x1/j � �ujx2 � x1j; 8x1; x2 2 ˝: (49)

For every T 2 Th we set

˛"T D 1

jTj
Z

T
˛".x/ dx; ˇ"T D 1

jTj
Z

T
ˇ".x/ dx



Optimal Control of PDE 37

and

˛"h.x/ D
X

T2T
˛"T�T and ˇ"h.x/ D

X

T2T
ˇ"T�T ;

where �T denotes the characteristic function of T. Using (49) we infer 8x 2 T

j˛".x/ � ˛"h.x/j D
ˇ̌
ˇ
1

jTj
Z

T
.˛".x/ � ˛".�// d�

ˇ̌
ˇ � �uh:

A similar inequality is obtained for ˇ".x/� ˇ"h.x/. Hence we get

k˛" � ˛"hkL1.˝h/ � �uh and kˇ" � ˇ"hkL1.˝h/ � �uh: (50)

Now, we introduce a discrete set K"h approximating K" D K \ NB".Nu/ in the
following way

K"h D fuh 2 Uh W ˛"T � uT � ˇ"T 8T 2 Thg:

Associated to this set we consider the family of discrete control problems

.P"h/

�
min Jh.uh/

uh 2 K"h:

Let ˘h W L1.˝/ �! Uh be the operator introduced in the proof of the previous
theorem. Since k˘h Nu � NukL1.˝h/ ! 0, it is obvious that ˘h Nu 2 K"h for every h
small enough. Therefore K"h is non empty compact set and consequently (P"h) has
at least one solution Nuh for every small h. In the sequel every element Nuh is extended
to ˝ by setting Nuh.x/ D Nu.x/ if x 2 ˝ n ˝h. Now, let us consider a subsequence,

denoted in the same way, such that Nuh
�
* Qu in L1.˝/. Arguing as in the proof of

Theorem 39, we have that Qu is a solution of (P") and Jh.Nuh/ ! J.Qu/. But Nu is the
unique solution of (P"), hence Qu D Nu, and consequently the whole sequence fNugh>0

converges weakly� to Nu in L1.˝/. Let us prove that this convergence is strong. As
in Theorem 36, performing some obvious modifications in the proof, we have that
every Nuh satisfies

Nuh.x/ D ProjŒ˛"h.x/;ˇ"h.x/�.Nsh.x//: (51)

Moreover, taking into account (15) and the definition of ˛" and ˇ", it is obvious that

Nu.x/ D ProjŒ˛;ˇ�.Ns.x// D ProjŒ˛".x/;ˇ".x/�.Ns.x//: (52)
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Finally, combining (50)–(52) and the convergence kNs � NshkL1.˝h/ ! 0 as h ! 0

established in the proof of Theorem 39, we obtain for x 2 ˝h

jNu.x/ � Nuh.x/j D ˇ̌
ProjŒ˛".x/;ˇ".x/�.Ns.x//� ProjŒ˛"h.x/;ˇ"h.x/�.Nsh.x//

ˇ̌

� ˇ̌
ProjŒ˛".x/;ˇ".x/�.Ns.x// � ProjŒ˛"h.x/;ˇ"h.x/�.Ns.x//

ˇ̌

Cˇ̌ ProjŒ˛"h.x/;ˇ"h.x/�.Ns.x// � ProjŒ˛"h.x/;ˇ"h.x/�.Nsh.x//
ˇ̌

� maxfj˛".x/� ˛"h.x/j; jˇ".x/� ˇ"h.x/jg C jNs.x/ � Nsh.x/j
� �uh C kNs � NshkL1.˝h/ ! 0

as h ! 0, which proves that kNu � NuhkL1.˝h/ ! 0. Therefore there exists h0 > 0

such that kNu � NuhkL1.˝h/ <
"
2

for every h � h0. Then, for any uh 2 Kh \ B "
2
.Nuh/ we

have that

kuh � NukL1.˝/ � kNuh � NukL1.˝/ C kuh � NuhkL1.˝/ < ";

hence uh 2 K"h and consequently J.Nuh/ � J.uh/. This proves that Nuh is a local
minimum of .Ph/.

To complete the proof we consider the case 1 � p < 1. We introduce again the
problem (P"h) with K"h D Kh \ NB".Nu/. This time, NB".Nu/ denotes the ball in Lp.˝/.
Once again we have that ˘h Nu 2 K"h for every h small enough. Now, we consider
a sequence fNuhgh>0 of solutions of the problems (P"h), where Nuh is extended to ˝

by Nu as before. Then, arguing as above we get that Nuh
�
* Nu and Jh.Nuh/ ! J.Nu/ as

h ! 0. If we prove that Nuh ! Nu in L2.˝/ as h ! 0, then the boundedness of fNuhgh

in L1.˝/ implies the strong convergence Nuh ! Nu in Lp.˝/ as h ! 0 for every
p < 1. Hence, we deduce as above that Nuh is a local minimum of .Ph/.

Let us prove that Nuh ! Nu in L2.˝/. First we observe that Lemma 38 implies that

Nyh ! Ny in C. N̋ /. Then, using the hypothesis (H1), the convergence Nuh
�
* Nu, (32),

and Jh.Nuh/ ! J.Nu/, we infer

Z

˝

ŒL.x; Ny; Nuh/� L.x; Ny; Nu/� dx

D
Z

˝

ŒL.x; Ny; Nuh/ � L.x; Nyh; Nuh/� dx C
Z

˝

ŒL.x; Nyh; Nuh/� L.x; Ny; Nu/� dx

D
Z

˝

@L

@y
.x; Ny C 
h.Nyh � Ny/; Nuh/ dx C

Z

˝n˝h

L.x; 0; Nu/ dx C ŒJh.Nuh/� J.Nu/� ! 0:
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From this convergence and hypothesis (H2), we obtain by a Taylor expansion

0 D lim
h!0

Z

˝
ŒL.x; Ny; Nuh/� L.x; Ny; Nu/� dx

D lim
h!0

Z

˝

@L

@u
.x; Ny; Nu/.Nuh � Nu/ dx C lim

h!0

1

2

Z

˝

@2L

@u2
.x; Ny; Nu C #h.Nuh � Nu///.Nuh � Nu/2 dx

D lim
h!0

1

2

Z

˝

@2L

@u2
.x; Ny; Nu C #h.Nuh � Nu///.Nuh � Nu/2 dx � �

2
lim sup

h!0

kNuh � Nuk2L2.˝/;

which concludes the proof. ut

9 Error Estimates

In this section we will assume that (H1) and (H2) hold and that Nu is a local
minimum of (P) satisfying the sufficient second order condition for optimality (19)
or equivalently (27). fNuhgh>0 denotes a sequence of local minima of problems .Ph/

such that kNu� NuhkL1.˝h/ ! 0; remind Theorems 39 and 40. The goal of this section
is to estimate the error Nu � Nuh in the of L2.˝h/ and L1.˝h/ norms, respectively. To
this aim , we are going to prove three auxiliary lemmas.

For convenience, in this section we will extend Nuh to ˝ by taking Nuh.x/ D Nu.x/
for every x 2 ˝ n˝h.

Lemma 41 Let ı > 0 be as in Theorem 25. Then there exists h0 > 0 such that

ı

2
kNu � Nuhk2L2.˝h/

� .J0.Nuh/ � J0.Nu//.Nuh � Nu/ 8h < h0: (53)

Proof Let us set

Ndh.x/ D @L

@u
.x; Nyh.x/; Nuh.x//C N'h.x/

and take ı > 0 and � > 0 as in Theorem 25. We know that Ndh converges uniformly
to Nd in ˝ , therefore there exists h� > 0 such that

kNd � NdhkL1.˝h/ <
�

4
8h � h� : (54)

For every T 2 Th we define

IT D
Z

T

Ndh.x/ dx:
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From (41), it follows

NuhjT D
�
˛ if IT > 0

ˇ if IT < 0:

Let us take 0 < h1 � h� such that

j Nd.x2/� Nd.x1/j < �

4
if jx2 � x1j < h1:

This inequality, along with (54), implies that

� 2 T and Nd.�/ > � ) Ndh.x/ >
�

2
8x 2 T; 8T 2 OTh; 8h < h1;

hence IT > 0, therefore NuhjT D ˛, in particular Nuh.�/ D ˛. From (16) we also have
Nu.�/ D ˛. Then .Nuh � Nu/.�/ D 0 whenever Nd.�/ > � and h < h1. We can prove the
analogous result when Nd.�/ < �� . On the other hand, since ˛ � Nuh.x/ � ˇ, it is
obvious that .Nuh � Nu/.x/ � 0 if Nu.x/ D ˛ and .Nuh � Nu/.x/ � 0 if Nu.x/ D ˇ. Thus we
have proved that .Nuh � Nu/ 2 C�Nu , remember that Nu D Nuh in ˝ n˝h. Then (27) leads
to

J00.Nu/.Nuh � Nu/2 � ıkNuh � Nuk2L2.˝/ D ıkNuh � Nuk2L2.˝h/
8h < h1: (55)

On the other hand, by applying the mean value theorem, we get for some 0 <

h < 1 that

.J0.Nuh/� J0.Nu//.Nuh � Nu/ D J00.Nu C 
h.Nuh � Nu//.Nuh � Nu/2 �
.J00.Nu C 
h.Nuh � Nu//� J00.Nu//.Nuh � Nu/2 C J00.Nu/.Nuh � Nu/2 �

�
ı � kJ00.Nu C 
h.Nuh � Nu//� J00.Nu/k� kNuh � Nuk2L2.˝/:

Finally, recalling Remark 18, we can choose 0 < h0 � h1 such that

kJ00.Nu C 
h.Nuh � Nu//� J00.Nu/k � ı

2
8h < h0

to deduce (53). ut
In the next step the convergence of J0

h to J0 is estimated.

Lemma 42 There exists a constant C > 0 independent of h such that for every u1,
u2 2 K and every v 2 L2.˝/, with v D 0 on ˝ n˝h, the following inequalities are
fulfilled

j.J0
h.u2/� J0.u1//vj � C

˚
h2 C ku2 � u1kL2.˝/

� kvkL2.˝h/: (56)
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Proof By using the expression of the derivatives given by (9) and (37) along with
the inequality (32) we get

j.J0
h.u2/ � J0.u1//vj

�
Z

˝h

ˇ̌
ˇ̌
�
@L

@u
.x; yh.u2/; u2/C 'h.u2/

�
�
�
@L

@u
.x; yu1 ; u1/C 'u1

�ˇ̌
ˇ̌ jvj dx

� C
˚k'h.u2/� 'u1kL2.˝h/ C kyh.u2/ � yu1kL2.˝h/

Cku2 � u1kL2.˝h/

� kvkL2.˝h/:

Now (56) follows from the previous inequality and (45). ut
A key point in the derivation of the error estimate is to get a good approximate

of Nu by a discrete control uh 2 Kh satisfying J0.Nu/Nu D J0.Nu/uh. Let us define this
control uh and prove that it fulfills the required conditions. For every T 2 Th let us
set

IT D
Z

T

Nd.x/ dx:

We define uh 2 Uh with uhjT D uhT for every T 2 Th by the expression

uhT D

8
ˆ̂̂
<

ˆ̂̂
:

1

IT

Z

T

Nd.x/Nu.x/ dx if IT ¤ 0

1

jTj
Z

T
Nu.x/ dx if IT D 0:

(57)

We extend this function to ˝ by taking uh.x/ D Nu.x/ for every x 2 ˝ n˝h. This
function uh satisfies our requirements.

Lemma 43 There exists h0 > 0 such that for every 0 < h < h0 the following
properties hold

1. uh 2 Kh.
2. J0.Nu/Nu D J0.Nu/uh.
3. There exists C > 0 independent of h such that

kNu � uhkL1.˝h/ � Ch: (58)

Proof Let�Nu > 0 be the Lipschitz constant of Nu and let us take h0 D .ˇ�˛/=.2�Nu/.
Then, for every T 2 Th and every h < h0, there holds

jNu.�2/ � Nu.�1/j � �Nuj�2 � �1j � �Nuh <
ˇ � ˛
2

8�1; �2 2 T
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which implies that Nu cannot take the values ˛ and ˇ in a same element T for any
h < h0. Therefore the sign of Nd in T must be constant thanks to (16). Hence IT D 0

if and only if Nd.x/ D 0 for all x 2 T. Moreover if IT ¤ 0, then Nd.x/=IT � 0 for every
x 2 T. As a first consequence of this, we get that ˛ � uhT � ˇ, which means that
uh 2 Kh. On the other hand

J0.Nu/uh D
Z

˝n˝h

Nd.x/Nuh.x/ dx C
X

T2Th

�Z

T

Nd.x/ dx

�
uhT

D
Z

˝n˝h

Nd.x/Nu.x/ dx C
X

T2Th

Z

T

Nd.x/Nu.x/ dx D J0.Nu/Nu:

Finally let us prove (58). Since the sign of Nd.x/=IT is always nonnegative and Nd
is a continuous function, we get for any of the two possible definitions of uhT the
existence of a point �j 2 T such that uhT D Nu.�j/. Hence for all x 2 T

jNu.x/� uh.x/j D jNu.x/� uhT j D jNu.x/ � Nu.�j/j � �Nujx � �jj � �Nuh;

which proves (58). ut
Finally we get the desired error estimates.

Theorem 44 There exists a constant C > 0 independent of h such that

kNu � NuhkL2.˝h/ � Ch: (59)

Proof Taking u D Nuh in (13) we get

J0.Nu/.Nuh � Nu/ D
Z

˝

�
N' C @L

@u
.x; Ny; Nu/

�
.Nuh � Nu/ dx � 0: (60)

From (41) with uh defined by (57) it follows

J0
h.Nuh/.uh � Nuh/ D

Z

˝h

�
N'h C @L

@u
.x; Nyh; Nuh/

�
.uh � Nuh/ dx � 0;

then

J0
h.Nuh/.Nu � Nuh/C J0

h.Nuh/.uh � Nu/ � 0: (61)

Adding (60) and (61) and using Lemma 43-2, we deduce

�
J0.Nu/ � J0

h.Nuh/
�
.Nu � Nuh/ � J0

h.Nuh/.uh � Nu/ D �
J0

h.Nuh/� J0.Nu/� .uh � Nu/:



Optimal Control of PDE 43

For h small enough, this inequality along with (53) implies

ı

2
kNu � Nuhk2L2.˝h/

� �
J0.Nu/ � J0.Nuh/

�
.Nu � Nuh/ �

�
J0

h.Nuh/� J0.Nuh/
�
.Nu � Nuh/C �

J0.Nuh/ � J0.Nu/� .uh � Nu/:

We estimate the first term of the previous line using (56) with u2 D u1 D Nuh and
v D Nu � Nuh. For the second term, we use the expression of J0 given by (9) along
with (45) for v D Nu and vh D Nuh. We obtain

ı

2
kNu � Nuhk2L2.˝h/

� C1
�
h2 C kNu � uhkL2.˝h/

� kNu � NuhkL2.˝h/:

From (58) we deduce

ı

2
kNu � NuhkL2.˝h/ � C2.h

2 C h/;

which implies (59). ut
Finally let us prove the error estimate in L1.˝/.

Theorem 45 There exists a constant C > 0 independent of h such that

kNu � NuhkL1.˝h/ � Ch: (62)

Proof Let �T be defined by (48). In the proof of Theorem 35 we obtained

kNu � NuhkL1.˝h/ � kNs � NshkL1.˝h/ � �NshC

max
T2Th

ˇ̌
ˇ̌@L

@u
.�T ; Nyh.�T/; Ns.�T //� @L

@u
.�T ; Ny.�T /; Ns.�T//

ˇ̌
ˇ̌C j N'.�T/ � N'h.�T/j:

Using the hypothesis (H1), (46) and (59) we get

kNu � NuhkL1.˝h/ � �Nsh C C.kNy � NyhkL1.˝h/ C k N' � N'hkL1.˝h// �
�Nsh C C.h C kNu � NuhkL2.˝h// � Ch: ut

10 Piecewise Linear Approximations of the Controls

In this section we are going to use a different approximation of the controls.
Instead of using piecewise constant controls, we will consider piecewise linear and
continuous functions. More precisely we take

Uh D fu 2 C. N̋ h/ j ujT 2 P1; for all T 2 Thg;
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where P1 is the space of polynomials of degree less or equal than 1. Let us denote
by fxjgN.h/

jD1 the nodes of the triangulationTh. A basis of Uh is formed by the functions

fejgN.h/
jD1 � Uh defined by their values at the nodes xj

ej.xi/ D
�
1 if i D j;
0 otherwise:

In the sequel we will follow the notation uj D uh.xj/ for any function uh 2 Uh,
so that

uh D
N.h/X

jD1
ujej:

The finite dimensional approximation of the optimal control problem is defined by

.Ph/

(
min Jh.uh/ D R

˝h
L.x; yh.uh/.x/; uh.x// dx;

uh 2 Kh D fuh 2 Uh W ˛ � uj � ˇ 1 � j � N.h/g:

Theorem 35 is still valid, there is no difference in the proof. However the
representation of the optimal control given by the formula (43) is not true. The
reason is that (43) is a local representation, but we can not change the values
of the discrete controls in a triangle without modifying them in the neighbouring
triangles. This was possible for piecewise constant controls, but it is not for
continuous piecewise linear controls. The representation formula (43) was used
in Theorem 39 to prove the uniform convergence of the discretizations; see (47).
With new approximations of the controls, Theorem 39 is also valid except for
the uniform convergence of the controls. However, we still can prove the strong
convergence in L2.˝/. Lemma 41 is also valid, but the given proof used the uniform
convergence of the discrete controls. In the new framework the proof is completely
different. Finally, the function uh used in Lemma 43 is replaced by uh D Ih Nu, where
Ih W C. N̋ / �! Uh is the interpolation operator:

Ih Nu D
N.h/X

jD1
Nu.xj/ej:

The elements uh are extended to ˝ by setting uh.x/ D Nu.x/ in ˝ n ˝h. For the
interpolated function uh it is proved

lim
h!0

J0.Nu/.uh � Nu/
h2

D 0:
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Taking into account these modifications, it is possible to follow the approach used
in the proof of Theorem 44 to deduce that

lim
h!0

1

h
kNu � NuhkL2.˝h/ D 0I (63)

The reader is referred to Casas [8] for the details. In many practical situations
this error estimate can be improved. Indeed, let us set

T C
h D fT 2 Th W j Nd.x/j > 0 8x 2 Tg;

T 0
h D fT 2 Th W 9�T 2 T such that Nd.�T/ D 0g;

T 0;1
h D fT 2 T 0

h W such that Nu 2 H2.T/g; T 0;2
h D T 0

h n T 0;1
h :

Now we assume that

X

T2T 0;2
h

jTj � Ch; (64)

which is a frequent situation. Then we have

jJ0.Nu/.Ih Nu � Nu/j D
ˇ̌
ˇ̌
ˇ̌
X

T2Th

Z

T

Nd.x/.Ih Nu.x/ � Nu.x// dx

ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ̌
X

T2T 0
h

Z

T

Nd.x/.Ih Nu.x/� Nu.x/ dx

ˇ̌
ˇ̌
ˇ̌

�
X

T2T 0
h

Z

T
j Nd.x/ � Nd.�T/jjIh Nu.x/� Nu.x/j dx

� �Ndh
X

T2T 0
h

Z

T
jIh Nu.x/ � Nu.x/j dx

� �Ndh

8
<̂

:̂

X

T2T 0;1
h

Z

T
jIh Nu.x/� Nu.x/j dx C

X

T2T 0;2
h

Z

T
jIh Nu.x/� Nu.x/j dx

9
>=

>;

� C�Ndh

8
ˆ̂<

ˆ̂:
h2

0
B@
X

T2T 0;1
h

kNuk2H2.T/

1
CA

1=2

C O.h/kNukC0;1. N̋ /
X

T2T 0;2
h

jTj

9
>>=

>>;
D O.h3/;
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where �Nd is the Lipschitz constant of Nd. From this inequality we deduce by
following the same proof of Theorem 44 that

kNu � NuhkL2.˝h/ D O.h3=2/: (65)

11 Semidiscretization of the Problem (P)

Let us consider in this section the very frequent case where

L.x; y; u/ D L0.x; y/C N

2
u2:

In this situation Hinze [26] suggested the discretization of the state equation by
using piecewise linear approximations of the states, but he proposed no discretiza-
tion for the controls. It means that Uh D L1.˝/ for any h > 0. In this case we
deduce from (41)

Z

˝h

. N'h.x/C N Nuh.x//.uh.x/ � Nuh.x// dx � 0 8uh 2 K; (66)

which leads to

Nuh.x/ D ProjŒ˛;ˇ�
� � 1

N
N'h.x/

� D maxf˛;minfˇ;� 1

N
N'h.x/g a.e. in ˝h: (67)

Since N'h 2 Yh, Nuh is piecewise linear and continuous in˝h. The linear structure of Nuh

is not supported on the grid defined by the nodes fxjgN.h/
jD1 , but there is a different grid,

which can be computed, where Nuh is supported. Therefore it is possible to carry out
the computations by using the corresponding grid for any iterate uk

h obtained from
the projection formula applied to 'k

h . In this case we can take uh D Nu in the proof of
Theorem 44. Therefore the inequality used in that proof,

ı

2
kNu � Nuhk2L2.˝h/

� �
J0.Nu/ � J0.Nuh/

�
.Nu � Nuh/ �

�
J0

h.Nuh/ � J0.Nuh/
�
.Nu � Nuh/C �

J0.Nuh/ � J0.Nu/� .uh � Nu/;

is reduced to

ı

2
kNu � Nuhk2L2.˝h/

� �
J0

h.Nuh/ � J0.Nuh/
�
.Nu � Nuh/:

Now using (56) we obtain

kNu � NuhkL2.˝h/ � Ch2: (68)
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12 Superconvergence and Postprocessing Step

A different approach to obtain convergence order O.h2/ was shown by Meyer and
Rösch in [37]. When the discretization of the state and the adjoint state is done
using continuous piecewise linear elements and the discretization of the control is
done using piecewise constant elements, a direct application of Theorem 44 and
Eq. (45) in Lemma 37 leads to the error estimate

kNy � NyhkL2.˝h/ C k N' � N'hkL2.˝h/ � Ch:

Nevertheless, a superconvergence phenomenon, which suggests that the order of
convergence should be O.h2/, is observed in all the available numerical experiments.
Meyer and Rösch proved that the values of the numerical solution Nuh in the centroids
of the elements have a quadratic convergence rate. Using this, they were able to
explain the order of convergence that was observed numerically.

Theorem 46 Suppose that L.x; y; u/ D 1
2
. y � yd.x//2 C N

2
u2 with N > 0 and

yd 2 Lp.˝/, p > 2. Suppose also that (64) is satisfied. Then

kNy � NyhkL2.˝h/ C k N' � N'hkL2.˝h/ � Ch2:

The proof given in [37] is for problems governed by linear equations. Recently,
Krumbiegel and Pfefferer [30] proved that the result was true for Neumann control
problems governed by a semilinear elliptic equation. Their technique can also be
applied to distributed problems.

Using this, one can construct a new approximation of the optimal control, namely

Quh.x/ D ProjŒ˛;ˇ�
� � 1

N
N'h.x/

�
a.e. in ˝h;

that satisfies

kNu � QuhkL2.˝/ � Ch2:

13 Time Dependent Problems

Let us briefly comment on some results about the approximation of the time
dependant problem presented in Sect. 4.4.

We will use the discontinuous Galerkin method dG0 to obtain the discretization
in time. For this, we consider a quasi-uniform family of partitions of Œ0;T�, 0 D
t0 < t1 < � � � < tN� D T and denote Ij D .tj�1; tj/, �j D tj � tj�1, � D maxf�jg and
� D .h; �/. We will also use the space-time cylinder Qh D ˝h � .0;T/.
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Now we consider the finite dimensional space

Y� D fy� 2 L2.0;TI Yh/ W y� jIj 2 Yh 8j D 1; : : : ;N�g:

The elements of Y� can be written as

y� D
N�X

jD1
yh;j�j

where yh;j 2 Yh for j D 1; : : : ;N� and �j denotes the characteristic function of the
interval Ij D .tj�1; tj/.

For every u 2 L1.Qh/, we define its associated discrete state as the unique
element y� .u/ 2 Y� such that

Z

˝h

. yh;j � yh;j�1/zhdx C �ja.yh;j; zh/C
Z

Ij

Z

˝h

b.x; t; yh;j/zhdxdt

D
Z

Ij

Z

˝h

uzhdxdt 8zh 2 Yh and all j D 1; : : : ;N� ;

Z

˝h

yh;0zhdx D
Z

˝h

y0zhdx 8zh 2 Yh: (69)

By using the monotonicity of the nonlinear term b.x; t; y/, the proof of the
existence and uniqueness of a solution for (69) is standard.

To discretize the controls, we will use piecewise constant functions. Consider Uh

as in Sect. 7,

U� D fu� 2 L2.0;TI Uh/ W u� jIj 2 Uh 8j D 1; : : : ;N�g

and

K� D fu� 2 U� W ˛ � u� .x; t/ � ˇ for a.e. .x; t/ 2 Qhg:

We formulate the discrete problem as

.P� / min
u�2K�

J� .u�/ D 1

2

Z

Qh

. y�.u� /.x; t/ � yd.x; t//
2dx dt C N

2

Z

Qh

u�.x; t/
2dx dt:

In [39, Theorem 5.3], it is proved that under adequate second order sufficient
conditions, the following error estimate holds:

kNu � Nu�kL2.Qh/ � C.� C h/:
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In that reference, it is also shown that the spatial order of convergence is improved
to h2 for a variational discretization or a post processing step analogous to those
discussed in Sects. 11 and 12.

14 An Optimization Method

One of the most common ways to solve (P) is to use an SQP method; see [48] e.g.
In this method, at each step, a control constrained linear-quadratic control problem
must be solved; this is accomplished using a primal dual active set strategy, which
is equivalent to a semismooth Newton method. Therefore, two nested loops are
needed, the outer with quadratic order of convergence and the inner only with
superlinear order of convergence. Nevertheless, the semismooth Newton method
can be directly applied to solve (P), leading to a superlinear convergent sequence.
Let us show how to do this.

To compute a solution of (P) we write the optimality system with the help of
a Lagrange multiplier. From Theorems 19 and 20, we have that, if Nu is a local
minimum of (P) and we define

N� D � N' � @L

@u
.x; Ny; Nu/

then N� 2 C0;1. N̋ / and for any c > 0 the optimality system can be written as

�
ANy C �.Ny/ D Nu in ˝;
Ny D 0 on �;

(70)

8
<

:
A� N' C �0.Ny/ N' D @L

@y
.x; Ny; Nu/ in ˝;

N' D 0 on �;
(71)

N' C @L

@u
.x; Ny; Nu/C N� D 0 in ˝; (72)

N� D maxf0; N�C c.Nu � ˇ/g C minf0; N�C c.Nu � ˛/g: (73)

This is a nonlinear system. We are going to apply Newton’s method to solve it.
Notice that the nonlinearities appearing in (70) and (71) are smooth, while the
max.0; z/ and min.0; z/ functions appearing in (73) are not. To deal with them,
we introduce the concept of slantly differentiable function in the sense stated in
[18, 25]. For an alternative approach involving semismoothness with respect to
Clarke’s generalized differential see [27]. In the book [29], the notion of semismooth
Newton differentiability is used. In our case, all these approaches are equivalent.

Definition 47 Let X and Y be Banach spaces and consider a function F W D � X !
Y, where D � X is open. We will say that F is slantly differentiable in D if there
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exists a family of mappings M W D ! L .X;Y/ such that

lim
h!0

F.x C h/ � F.x/� M.x C h/h

khk D 0 for all x 2 D:

A family of mappings M satisfying this condition is called a slant derivative of F. It
need not be unique.

Given a slantly differentiable function F with a slant derivative M, to solve the
equation F.x/ D 0 we may apply Newton’s method:

1. choose x0 2 D and set k D 0;
2. solve M.xk/.xkC1 � xk/ D �F.xk/;
3. set k D k C 1 and go to 2.

Theorem 48 ([18, 25]) Let F W D � X ! Y be a continuous and slantly
differentiable function with slant derivative M, and let Nx 2 D be a solution of
F.x/ D 0. Suppose further that M.x/ is nonsingular for all x 2 D and kM.x/�1k is
uniformly bounded in U. Then there exists ı > 0 such that for kx0 � xk < ı, the
sequence fxkg generated by Newton’s method converges superlinearly to Nx.

Any function that is differentiable in an open set is slantly differentiable and
the family of differentials is a slant derivative, which is unique in this case. We
have that t 2 R ! maxf0; tg 2 R is slantly differentiable and a slant derivative
of it is given by M.t/ D 1 if t > 0, M.t/ D 0 if t � 0. It is known that v 2
L2.˝/ 7! maxf0; vg 2 L2.˝/ is not slantly differentiable, but for every q > 2,
v 2 Lq.˝/ 7! maxf0; vg 2 L2.˝/ is; see [25, Appendix A]. Since the optimal
control is a Lipschitz function, there is no problem in choosing some q > 2 and to
define

F W H1
0.˝/ � H1

0.˝/ � Lq.˝/� Lq.˝/ ! H�1.˝/ � H�1.˝/ � L2.˝/ � L2.˝/

by

F

0

BB@

y
'

u
�

1

CCA D

0

BBBBB@

Ay C �. y/ � u

A�' C �0. y/' � @L

@y
.�; y; u/

' C @L

@u
.�; y; u/C �

� � maxf0; �C c.u � ˇ/g � minf0; �C c.u � ˛/g

1

CCCCCA
:

By the use of the chain rule [27], to compute the slant derivative of maxf0; �C
c.u � ˇ/g and of minf0; �C c.u � ˛/g, all we need to know are the so called active
and inactive sets. For fixed c > 0, given . y; u; '; �/, let us define the active and
inactive sets related to it as

A. y; u; '; �/ D A˛. y; u; '; �/[ Aˇ. y; u; '; �/;

I. y; u; '; �/ D ˝ n A. y; u; '; �/;
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where

Aˇ. y; u; '; �/ D fx 2 ˝ W �C c.u � ˇ/ > 0g;
A˛. y; u; '; �/ D fx 2 ˝ W �C c.u � ˛/ < 0g:

Sometimes we will abuse notation and just write Aˇ, A˛ , A and I. So for given
. y; '; u; �/ 2 H1

0.˝/ � H1
0.˝/ � Lq.˝/ � Lq.˝/, a slant derivative of F applied to

.z; �; v; �/ 2 H1
0.˝/ � H1

0.˝/ � Lq.˝/ � Lq.˝/ is given by

M

0
BB@

y
'

u
�

1
CCA

0
BB@

z
�

v

�

1
CCA D

0

BBBBBB@

Az C �0. y/z � v

A�� C �00. y/z' C �0. y/� � @2L

@y2
.�; y; u/z � @2L

@y@u
.�; y; u/v

� C @2L

@y@u
.�; y; u/z C @2L

@u2
.�; y; u/vC �

��I � cv�A

1

CCCCCCA

where �A and �I denote the characteristic functions of A and I, respectively. After
some simplification, Newton’s iteration reads like

�
AykC1 C �0.yk/ykC1 D ukC1 C �0. yk/yk � �. yk/ in ˝;
ykC1 D 0 on �;

(74)

8
ˆ̂̂
<̂

ˆ̂̂
:̂

A�'kC1 C �0. yk/'kC1 D
�
@2L

@y2
.x; yk; uk/� 'k�

00. yk/

	
. ykC1 � yk/

C@L

@y
.x; yk; uk/C @2L

@y@u
.x; yk; uk/.ukC1 � uk/ in ˝;

'kC1 D 0 on �;

(75)

'kC1 C @2L

@y@u
.x; yk; uk/. ykC1 � yk/C @2L

@u2
.x; yk; uk/.ukC1 � uk/

C@L

@u
.x; yk; uk/C �kC1 D 0 in ˝ (76)

�kC1 D 0 in Ik; ukC1 D ˇ in Aˇk ; ukC1 D ˛ in Ak
˛ (77)

where Aˇk D Aˇ. yk; uk; 'k; �k/, Ak
˛ D A˛. yk; uk; 'k; �k/, and Ik D I. yk; uk; 'k; �k/.

Now, one possibility is to set up a discrete approximation of this system and to
solve the resulting linear system. This usually leads to a very large scale problem;
see e.g. [19]. Instead, we are going to write it as an unconstrained reduced quadratic
program in the inactive part of the control variable.
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First, we notice that we can write ukC1 D ukC1�Ik C ˇ�
A
ˇ
k

C ˛�Ak
˛

and define

y0k 2 W2;p.˝/\ H1
0.˝/ the solution of

(
Ay0k C �0. yk/y0k D ˇ�

A
ˇ
k

C ˛�Ak
˛

C �0. yk/yk � �. yk/ in ˝

y0k D 0 on �:
(78)

Next, for v 2 L2.Ik/ we introduce the linearized state zk
v 2 W2;p.˝/ \ H1

0.˝/, the
solution of

�
Azk

v C �0. yk/zk
v D v in ˝

zk
v D 0 on �;

(79)

where, abusing notation, we extend the functions in L2.Ik/ by zero to Ak D ˝ n Ik.
We have that ykC1 D zk

ukC1�Ik
C y0k and the following relations are satisfied:

(
Azk

ukC1�Ik
C �0. yk/zk

ukC1�Ik
D ukC1�Ik in ˝

zk
ukC1�Ik

D 0 on �
(80)

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

A�'kC1 C �0. yk/'kC1 D
�
@2L

@y2
.x; yk; uk/ � 'k�

00. yk/

	
.zk

ukC1�Ik
� . yk � y0k//

C@L

@y
.x; yk; uk/

C@2yuL.x; yk; uk/.ukC1�Ik � .uk � ˇ�
A
ˇ
k

� ˛�Ak
˛
// in ˝;

'kC1 D 0 on �;

(81)

'kC1 C @2L

@y@u
.x; yk; uk/.z

k
ukC1�Ik

� . yk � y0k//C @2L

@u2
.x; yk; uk/.ukC1�Ik � uk/

C@L

@u
.x; yk; uk/ D 0 in Ik: (82)

This is the optimality system of the unconstrained linear-quadratic optimal control
problem

.Pk/ Min fJk.v/ W v 2 L2.Ik/g; (83)
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where

Jk.v/ D 1

2

Z

˝

�
@2L

@y2
.x; yk; uk/� 'k�

00. yk/

	
.zk
v � . yk � y0k//

2 dx

C
Z

˝

@L

@y
.x; yk; uk/z

k
v dx

C
Z

˝

@2L

@y@u
.x; yk; uk/.v � .uk � ˇ�

A
ˇ
k

� ˛�Ak
˛
//zk

v dx

C
Z

Ik

�
@2L

@y@u
.x; yk; uk/.z

k
v � . yk � y0k//C @L

@u
.x; yk; uk/

	
v dx

C 1

2

Z

Ik

@2L

@u2
.x; yk; uk/.v � uk/

2 dx:

Remark 49 In the existing literature, see e.g., [47, Corollary 4.3], it is assumed that
J00.Nu/v2 � ıkvk2

L2.˝/
for all v 2 L2.˝/. Then, for uk close enough to Nu, it is proved

Jk is a strictly convex functional and hence .Pk/ has a unique solution.
A weaker assumption can be formulated, if we assume that Nu satisfies the

sufficient second order condition (19) and the strict complementarity condition
j Nd.x/j > 0 for a.a. x in the active set fNu.x/ D ˛ or Nu.x/ D ˇg. Indeed, taking into
account the continuity property of the second derivative stated in Remark 18 and the
equivalence result given in Theorem 25, it can be proved that if uk is close enough
to Nu and Ik is close enough to the active set, then Jk is a strictly convex functional
and hence .Pk/ has a unique solution.

Finally, let us describe with some detail how to solve .Pk/. We use the linear
solution operator of Eq. (79)

Sk W L2.Ik/ ! L2.˝/

v 7! zk
v

and its adjoint operator, given by

S�
k W L2.˝/ ! L2.Ik/

z 7! �jIk ;

where � 2 H1
0.˝/ is the unique solution of

�
A�� C �0. yk/� D z in ˝;
� D 0 on �:

(84)
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Using integration by parts we have that

.z; Skv/˝ D .S�
k z; v/Ik 8 z 2 L2.˝/ and 8v 2 L2.Ik/;

and we can write

Jk.v/ D 1

2
.Akv; v/Ik � .bk; v/Ik C C

where C is independent of v, Ak 2 L .L2.Ik// is given by

Ak D S�
k

�
Œ
@2L

@y2
.�; yk; uk/ � 'k�

00. yk/�Sk
�

C 2S�
k

@2L

@y@u
.�; yk; uk/Ik C @2L

@u2
.�; yk; uk/Ik;

where Ik is the identity operator in L2.Ik/, and bk 2 L2.Ik/ is

bk D �S�
k


@L

@y
.�; yk; uk/ � @2L

@y@u
L.�; yk; uk/.uk � ˇ�

A
ˇ
k

� ˛�Ak
˛
/

�@
2L

@y2
.�; yk; uk/. yk � y0k/C 'k�

00. yk/. yk � y0k/
�

�@L

@u
.�; yk; uk/C @2L

@y@u
.�; yk; uk/. yk � y0k/C @2L

@u2
.�; yk; uk/uk:

At each step of Newton’s method we have to solve the unconstrained quadratic
program

min
v2L2.Ik/

1

2
.Akv; v/Ik � .bk; v/Ik :

Under the assumptions of Remark 49, Ak is a self-adjoint, positive definite
operator, so the quadratic problem can be solved using the conjugate gradient
method. We cannot compute Ak explicitly, but at each step, for a given descent
direction d, we can compute Akd just solving two partial differential equations,
namely (79) and (84). In practice, of course, we compute appropriate FEM
discretizations Sk;h and S�

k;h of the operators.
An alternative way of addressing this problem consists in replacing the dis-

cretized version of Ak by a BGFS quasi-Newton approximation. If the size of the
problem is very big, a limited-memory BGFS quasi-Newton method may be used.
This may be necessary if Jk is not convex or uk is not close enough to Nu.
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15 An Example

We will consider the tracking functional with Tikhonov regularization

L.x; y; u/ D 1

2
. y � yd.x//

2 C N

2
u2;

We can simplify the above expression for Ak and bk and obtain

Ak D S�
k

�
Œ1� 'k�

00. yk/�Sk
�C NIk and bk D �S�

k

�
y0k � yd C 'k�

00. yk/. yk � y0k/
�
:

To build an example with explicit known optimal control, we simply define N' 2
W2;p.˝/\ H1

0.˝/ and compute Nu using the projection formula of Remark 22. If we
define yd D � N'CNy� N'�0.Ny/, we have that .Ny; Nu; N'/ satisfies the first order optimality
conditions for (P). Since we cannot compute Ny explicitly, the FEM approximation
yh.Nu/ will be used in the computations when necessary.

For our example we have set ˝ D B.0; 1/ � R
n, n D 2 or n D 3, ˛ D �0:5,

ˇ D 0:5, N D 1, �. y/ D jyj3y and N' D �1C jxj2. Notice that � N' D 2n.
We approximate both the control and the state by continuous piecewise linear

elements and solve the finite element approximations of the problem using the
semismooth Newton method. We select the parameter c D 1 in all cases. The
method stops when the difference between two iterations, measured in L2.˝/ is
smaller than 5� 10�15 for the control, state and the adjoint state variables. In all the
experiments, the method terminated after about 10 iterations, independently of the
mesh size.

We report on the error on the L2.˝/ norm of the control. At each level j, the mesh
is obtained by regular dyadic refinement from the previous mesh (this must be done
very carefully in the case of dimension n D 3 in order to obtain a quasi-uniform
family of triangulations of the unit ball). In this way, we have that h 	 2�j.

In our problem (64) holds, and using (65) we expect an order of convergence of
1.5. We have computed the experimental order of convergence (EOC) using a linear
regression of the loglog graph of the mesh size vs. the error. In dimension 2, we
obtain the order 1.56 and in dimension 3, we obtain 1.62. These values are quite in
agreement with the theoretical value 1.5. In Tables 1 and 2 we show the mesh data
and the errors for the 2D and the 3D problems respectively. The optimal value of
the discrete problem is also included for reference and possible double-check. We
show loglog graphs of the results as well as the linear regression lines together with
lines with slope 1.5. Results for dimension 2 are shown in Fig. 1 and for dimension
3 in Fig. 2.
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Table 1 Results for
dimension 2

j ]cells ]nodes kNu � NuhkL2.˝h/ Jh.Nuh/

1 32 25 2.15E�01 24.6762

2 128 81 3.09E�02 25.2333

3 512 289 1.46E�02 25.3645

4 2048 1089 7.06E�03 25.3988

5 8192 4225 1.36E�03 25.4080

6 32;768 16;641 6.59E�04 25.4101

7 131;072 66;049 2.00E�04 25.4107

8 524;288 263;169 8.38E�05 25.4108

EOC 1.56

Table 2 Results for
dimension 3

j ]cells ]nodes kNu � NuhkL2.˝h/ Jh.Nuh/

1 160 55 3.36 E�01 65.9926

2 1280 309 5.91E�02 73.1047

3 10;240 2057 2.71E�02 75.0302

4 81;920 14;993 9.21E�03 75.5253

5 655;360 114;465 3.11E�03 75.6498

EOC 1.62

-8 -7 -6 -5 -4 -3 -2 -1
log2(h)

-14

-12

-10

-8

-6

-4

-2

lo
g 2

(e
(u

))

Dimension 2. EOC = 1.56

L2(Ω) error
EOC
Theory
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Introduction to First-Principle Simulation
of Molecular Systems

Eric Cancès

Abstract First-principle molecular simulation aims at computing the physical and
chemical properties of a molecule, or more generally of a material system, from the
fundamental laws of quantum mechanics. It is widely used in various application
fields ranging from quantum chemistry to materials science and molecular biology,
and is the source of many very interesting and challenging mathematical and
numerical problems. This chapter is an elementary introduction to this field,
covering some modeling, mathematical, and numerical aspects.

1 Introduction

This chapter contains lecture notes of a 4 h introductory course to first-principle
molecular simulation, delivered in June 2016 in Gijón, on the occasion of the
XVII Jacques-Louis Lions Spanish-French School on Numerical Simulation in
Physics and Engineering. First-principle molecular simulation aims at computing
the physical and chemical properties of a molecule, or more generally of a material
system, from the fundamental laws of quantum mechanics. Its power is that it can
be used in principle to compute any property of any molecule or materials from
its chemical formula. Its limitations are on the one hand that approximations are
required to deal with the curse of dimensionality (see Sect. 5), and on the other hand
that the computational costs of the approximate models increase fast with the size
and complexity of the simulated system.

First-principle molecular simulation is used by thousands of physicists, chemists,
biologists, materials scientists, and nanoscientists on a daily basis. Such simulations
are reported in over 20,000 scientific articles published in 2015, and are the matter of
about 15% of the high-performance computing (HPC) projects funded by PRACE
(Partnership for Advanced Computing in Europe) in 2016. The importance of
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molecular simulation for the applications was acknowledged by the 1998 and 2013
Nobel prizes in Chemistry [43, 45, 50, 64, 77].

From a mathematical point of view, first-principle molecular simulation is
an extremely rich field, which gives rise to a variety of interesting modeling,
mathematical analysis, and numerical problems of different natures, ranging from
easy to extremely difficult. The many mathematical models encountered in this
field involve linear and nonlinear partial differential equations (PDEs), optimiza-
tion problems, spectral theory, stochastic processes, high-performance computing,
machine learning, as well as some tools of differential geometry (Berry curvature),
non-commutative geometry (C*-algebras), or algebraic topology (Chern classes).
This is therefore a fantastic playground for mathematicians.

This chapter is organized as follows. In Sects. 2 and 3, we briefly present
two fundamental mathematical tools, namely optimization in Hilbert spaces, and
the spectral theory of self-adjoint operators, which are useful in many fields of
mathematics, and are heavily relied upon in Sects. 4–7. The reader familiar with
these tools can directly proceed to Sect. 4. In the latter, we introduce the (non-
relativistic) quantum many-problem and the N-body Schrödinger equation, and we
then apply this formalism to the special case of a molecular system in Sect. 5.
In Sect. 6, we present the Hartree-Fock model, which is the simplest variational
approximation of the central equation in first-principle molecular simulation, that is
the N-electron Schrödinger equation. As will be seen throughout these notes, (linear
and nonlinear) elliptic eigenvalue problems play a key role in this field. Section 7
is devoted to the numerical approximation of the eigenvalues of (linear) elliptic
eigenvalue problems.

2 Optimization in Hilbert Spaces

It is well-known that if J W R ! R is differentiable, the set of the local minimizers
of J is included in the set C D fx 2 R j J0.x/ D 0g of the critical points of J. The
latter set contains all the local minimizers and maximizers of J, as well as points
which are neither minimizers nor maximizers (see Fig. 1).

The purpose of this section is to extend this elementary result to unconstrained
and constrained optimization problems in finite or infinite dimensional Hilbert
spaces. Let us first recall some basic definitions.

In this section, V and W are two real Hilbert spaces. We denote by .�; �/V and
.�; �/W the scalar products on V and W respectively, by k�kV and k�kW the associated
norms, and by B.V;W/ the vector space of the continuous (also called bounded)
linear maps from V to W. Recall that B.V;W/, endowed with the norm defined by

kAkB.V;W/ WD sup
v2Vnf0g

kAvkW

kvkv ;
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Local maximizer

Global minimizer
Local minimizers

Critical points

Fig. 1 Critical points of a simple differentiable function J W R ! R

is a Banach space. The adjoint of a continuous linear map A 2 B.V;W/ is the
continuous linear map A� 2 B.W;V/ characterized by

8.v;w/ 2 V � W; .A�w; v/V D .w;Av/W :

The above definition makes sense by virtue of Riesz representation theorem [69,
Theorem II.4].

Definition 1 Let U be an open subset of V , F W U ! W, and v 2 U. The
function F is called differentiable at v, if there exists dvF 2 B.V;W/ such that
in the vicinity of v,

F.v C h/ D F.v/C dvF.h/C o.h/;

which means

8" > 0; 9� > 0 s.t. 8h 2 V s.t. khkV � �; we have v C h 2 U and

kF.v C h/� F.v/ � dvF.h/kW � "khkV :

If such a linear map dvF exists, it is unique. It is called the derivative of F at v.

Definition 2 The function F is called differentiable on U if F is differentiable at
each point of U. In this case, the mapping

dF W U ! B.V;W/

v 7! dvF

is called the derivative of F. The function F is called of class C1 on U if dF is
continuous.
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Definition 3 Let U be an open subset of V and J W U ! R a function
differentiable at v 2 U. The unique vector of V denoted by rJ.v/ and uniquely
defined1 by

8h 2 V; dvJ.h/ D .rJ.v/; h/V ;

is called the gradient of J at v.
Note that the above abstract definition of the gradient of agrees with the usual

one when V is the space Rd endowed with the Euclidean scalar product:

8h 2 R
d; J.x C h/ D J.x/C

dX

iD1

@J

@xi
.x/ hi C o.h/ D J.x/C rJ.x/ � h C o.h/;

where

rJ.x/ D

0

BBBBBBBB@

@J

@x1
.x/

�
�
�

@J

@xd
.x/

1

CCCCCCCCA

:

It is important to keep in mind the geometric interpretation of the gradient. Let
J W V ! R be a function of class C1, v 2 V and ˛ D J.v/. If rJ.v/ ¤ 0, then

• in the vicinity of v, the level set

C˛ WD fw 2 V jJ.w/ D ˛g

is a C1 hypersurface (a codimension one C1 manifold);
• the vector rJ.v/ is orthogonal to the affine hyperplane tangent to C˛ at v and

points toward the steepest ascent direction.

The first-order optimality condition for smooth unconstrained optimization
problems in Hilbert spaces, that is for problems consisting in minimizing some
differentiable real-valued function on an open subset of a Hilbert space, is a direct
extension of the basic result for the one-dimensional case recalled at the beginning
of the present section.

1Again by Riesz representation theorem.
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Theorem 4 (Optimality Condition for Unconstrained Optimization Problems)
Let J W V ! R be a differentiable function. The set of the local minima of J is
included in the set

C D fv 2 V j dvJ D 0g D fv 2 V j rJ.v/ D 0g
of the critical points of J.

The proof of this result is elementary and is left to the reader.
As a first example, consider V D R

2, endowed with the Euclidean scalar product,
and J W R2 ! R defined by

8x D
�

x1
x2

�
2 R

2; J.x/ D .x31 C x22/ e�.x21Cx22/: (1)

We have

rJ.x/ D
0

@ x1
�
3x1 � 2x31 � 2x22

�
e�.x21Cx22/

2x2
�
1 � x31 � x22

�
e�.x21Cx22/

1

A D 0 , .x1; x2/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

.0; 0/;

.˙p3=2; 0/;

.0;˙1/;

.2=3;˙p19=27/:
We can clearly see the positions of these seven critical points on the level set

representation of the function J plotted on Fig. 2.
The second example is concerned with an infinite dimensional optimization

problem in the Sobolev space

V D H1.Rd/ D ˚
v 2 L2.Rd/ j rv 2 .L2.Rd//d

�
;

0

0
–1

–1
1 2 3–2

–2
–3

–3–4
–4–5 –5

Fig. 2 Graphical representations of the function J defined by (1): 3D plot (left) and level sets
(right)
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endowed with its usual scalar product

.u; v/H1 D
Z

Rd
uv C

Z

Rd
ru � rv;

and the quadratic functional J W H1.Rd/ ! R defined by

8v 2 H1.Rd/; J.v/ D 1

2

Z

Rd
jrvj2 C 1

2

Z

Rd
v2 �

Z

Rd
fv;

where f is a given function of L2.Rd/. To compute the derivative of J, we proceed
as follows. For v 2 V and h 2 V , we have

J.v C h/D 1

2

Z

Rd
jr.v C h/j2 C 1

2

Z

Rd
.v C h/2 �

Z

Rd
f .v C h/

D 1

2

Z

Rd
jrvj2C

Z

Rd
rv � rhC 1

2

Z

Rd
jrhj2C 1

2

Z

Rd
v2C

Z

Rd
vhC 1

2

Z

Rd
h2

�
Z

Rd
fv�

Z

Rd
fh

DJ.v/C
Z

Rd
rv � rh C

Z

Rd
vh �

Z

Rd
fh C 1

2

Z

Rd
jrhj2 C 1

2

Z

Rd
h2;

with
ˇ̌
ˇ̌
Z

Rd
rv � rh C

Z

Rd
vh �

Z

Rd
fh

ˇ̌
ˇ̌ � Cv;f khkH1 ;

and
ˇ̌
ˇ̌1
2

Z

Rd
jrhj2 C 1

2

Z

Rd
h2
ˇ̌
ˇ̌ D 1

2
khk2H1 D o.h/:

This allows one to conclude that J is differentiable at v and that

8h 2 V; dvJ.h/ D
Z

Rd
rv � rh C

Z

Rd
vh �

Z

Rd
fh:

By definition, the gradient of J at v is the function w 2 H1.Rd/ characterized by

8h 2 V D H1.R3/; .w; h/H1 D dvJ.h/ D
Z

R3

rv � rh C
Z

R3

vh �
Z

Rd
fh:

To compute w D rJ.v/, we therefore have to solve the linear elliptic problem

�
seek w 2 V such that
8h 2 V; a.w; h/ D L.h/;
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where

a.w; h/ D
Z

R3

rw �rhC
Z

R3

wh and L.h/ D
Z

R3

rv �rhC
Z

R3

vh�
Z

R3

fh;

or equivalently the PDE

seek w 2 H1.R3/ such that ��w C w D ��v C v � f in D 0.R3/;

where D 0.R3/ is the space of distributions in R
3. The integral kernel of the operator

.��C 1/�1 being the Green function G.x; y/ D e�jx�yj

4�jx�yj , we therefore have

rvJ.x/ D v.x/ �
Z

R3

e�jx�yj

4�jx � yj f .y/ dy:

Let us now turn to the more interesting case of equality constrained optimization
problems. Let V and W be real Hilbert spaces such that dim.W/ < 1, J W V ! R,
and F W V ! W. We consider the optimization problem

inf
v2K

J.v/ where K D fv 2 V j F.v/ D 0g :

The first-order optimality conditions for the above problem are easy to state when
the constraints F D 0 are qualified in the following sense.

Definition 5 (Qualification of the Constraints) The equality constraints F D 0

are called qualified at u 2 K if duF W V ! W is surjective.
We are now in position to write down the central result of this section.

Theorem 6 Let V and W be real Hilbert spaces such that dim.W/ < 1, J W V !
R, and F W V ! W. Let u 2 K be a local minimum of J on

K D fv 2 V j F.v/ D 0g :

Assume that

1. J is differentiable at u and F is C1 in the vicinity of u;
2. the equality constraint F D 0 is qualified at u.

Then, there exists a unique � 2 W such that

8h 2 V; duJ.h/C .�; duF.h//W D 0 or equivalently rJ.u/C duF�.�/ D 0;

where duF� is the adjoint of duF. The vector � 2 W is called the Lagrange multiplier
of the constraint F D 0.
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Fig. 3 Graphical illustration
of Theorem 6 for V D R

2 and
W D R. Some level sets of J
are represented in dashed
closed curves, while
K D F�1.0/ is represented
by a solid closed curve. The
five critical points of J on K
are represented by bullets

g(u)

K

u

E(u)

Assume that the constraints are qualified at any point of K. The solutions of the
Euler-Lagrange equations

8
<

:

seek .u; �/ 2 V � W such that
rJ.u/C duF�.�/ D 0;

F.u/ D 0;

(2)

are called the critical points of J on K. The set of critical points contains in particular
the local minimizers and the local maximizers of J on K.

Remark 7 If dim.V/ D d < 1 and dim.W/ D m < 1, then the above problem
consists of .d C m/ scalar equations with .d C m/ scalar unknowns.

A simple case when V D R
2 and W D R is depicted on Fig. 3. On K D F�1.0/ D

fv 2 V j F.v/ D 0g, the function J possesses

• two local minimizers, both global
• two local maximizers, among which the global maximizer
• one critical point which is neither a local minimizer not a local maximizer.

Sketch of the Proof of Theorem 6 Let u be a local minimizer of J on K D F�1.0/ D
fv 2 V j F.v/ D 0g and ˛ D J.u/. If the constraint F D 0 is qualified at u (i.e. if
duF W H ! K is surjective), then, in the vicinity of u, K is a C1 manifold and its
affine tangent subspace at u is

u C TuK D u C fh 2 V j duF.h/ D 0g D u C Ker.duF/:

Since u is a minimizer of J on K, the vector rJ.u/ must be orthogonal to TuK.
Indeed, for any h 2 TuK, there exists a C1 curve � W Œ�1; 1� ! V drawn on K such
that �.0/ D u and �0.0/ D h, and we have

0 � J.�.t//� J.u/ D J.u C th C o.t//� J.u/ D trJ.u/ � h C o.t/:

Therefore, rJ.u/ � h D 0. In addition, it holds

rJ.u/ 2 .TuK/? D .Ker.duF//? D Ran.duF�/ D Ran.duF�/ since dim.W/ < 1:
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Therefore, there exists � 2 W such that rJ.u/C duF�.�/ D 0. ut
Most often, Lagrange multipliers have a “physical” interpretation:

• in statistical mechanics [9], the equilibrium state of a chemical system interacting
with its environment is obtained by maximizing the entropy (which is equivalent
to minimizing minus the entropy) under the constraints that the energy, the
volume and the concentration of chemical species are given on average: the
corresponding Lagrange multipliers are respectively 1=T, P=T and �i=T, where
T is the temperature, P the pressure, and �i the chemical potential of species i;

• in fluid mechanics [25], the admissible dynamics of an incompressible fluid are
the critical points of some action under the constraint that the density of the fluid
remains constant (div .u/ D 0). The Lagrange multiplier of the incompressibility
constraint is the pressure field;

• in microeconomics [66], prices are Lagrange multipliers arising in the opti-
mization of utility functions under the constraints that some goods have limited
availability.

Let us conclude this section with a result on the differentiability of func-
tions defined by equality constrained optimization problems. Such a situation is
encountered in many fields of science and engineering, and is very useful in first-
principle molecular simulation to compute atomic forces (see Sects. 5 and 6) or
molecular properties such as polarizabilities or hyperpolarizabilities [40]. Consider
the function W W Rd ! R defined as

8x 2 R
d; W.x/ D inf fE.x; v/; v 2 V; F.x; v/ D 0g ; (3)

where E W Rd � V ! R, F W Rd � V ! W, V and W being real Hilbert spaces such
that dim.W/ < 1.

Assume that for each x 2 R
d, problem (3) has a unique minimizer v.x/, and that

the function x 7! v.x/ is regular. Then,

W.x/ D E.x; v.x// ) @W

@xi
.x/ D @E

@xi
.x; v.x//C @E

@v
.x; v.x//

�
@v

@xi
.x/
�
;

F.x; v.x// D 0 ) @F

@xi
.x; v.x//C @F

@v
.x; v.x//

�
@v

@xi
.x/
�

D 0:

On the other hand, the Euler-Lagrange equations associated with the constrained
optimization problem (3) give

8h 2 V;
@E

@v
.x; v.x// .h/C

�
@F

@v
.x; v.x//.h/; �.x/

�

W

D 0:
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Therefore

@W

@xi
.x/ D @E

@xi
.x; v.x//C

�
@F

@xi
.x; v.x//; �.x/

�
: (4)

This formula is very important for practical purposes: it implies that it is possible
to compute the derivatives of W at x without computing the derivatives of the
minimizer v.x/. Only the state itself v.x/ and the Lagrange multiplier �.x/ are
necessary, and those quantities can be obtained by solving the Euler-Lagrange
equations.

3 Introduction to the Spectral Theory of Self-adjoint
Operators

The purpose of this section is to transpose to the case of self-adjoint operators on
infinite-dimensional separable complex Hilbert spaces, the following well-known
results on Hermitian2 matrices:

1. the spectrum �.A/ D ˚
z 2 C j .z � A/ 2 C

d�d non-invertible
�

of a Hermitian
matrix A 2 C

d�d consists of the set

�p.A/ D ˚
z 2 C j .z � A/ 2 C

d�d non-injective
�

D ˚
z 2 C j 9x 2 C

d n f0g s.t. Ax D zx
�

of the eigenvalues of A, and �.A/ � R;
2. any Hermitian matrix A 2 C

d�d can be diagonalized in an orthonormal basis:

A D
dX

iD1
�ixix�

i ; �i 2 �.A/ � R; xi 2 C
d; x�

i xj D ıij; Axi D �ixi:

(5)
Here �1 � �2 � � � � � �d denote the d eigenvalues of A (counting multiplicities),
and .x1; � � � ; xd/ an orthonormal basis of associated eigenvectors;

3. there exists a functional calculus for Hermitian matrices: for any Hermitian
matrix A, and any f W R ! C, the matrix

f .A/ WD
dX

iD1
f .�i/xix�

i (6)

2Recall that a matrix A 2 C
d�d is called Hermitian if A� D A (i.e. Aij D Aji, 81 � i; j � d). If

z 2 C and A 2 C
d�d , we use the shorthand notation z � A to denote the matrix zId � A, where Id is

the rank-d identity matrix. We proceed similarly with linear operators on complex Hilbert spaces.
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is independent of the choice of the spectral decomposition of A, that is on the
choice of the basis .x1; � � � ; xd/ of eigenvectors. This definition agrees with the

usual definition of f .A/ for polynomial functions f . Indeed, if f .�/ D
nX

kD0
˛k�

k,

then

f .A/ D
dX

iD1
f .�i/xix�

i D
dX

iD1

 
nX

kD0
˛k�

k
i

!
xix

�
i D

nX

kD0
˛k

 
dX

iD1
�k

i xix
�
i

!
D

nX

kD0
˛kAk:

The strength of formula (6) is that it makes sense for any function f W R ! C,
while the definition based on a polynomial expansion of f only works for
polynomial functions, and in the limit, for continuous functions by virtue of
Weierstrass approximation theorem.

In this section, H denotes a separable complex Hilbert space, h�j�i its scalar
product, and k � k the associated norm.

3.1 Linear Operators on Hilbert Spaces

Let us first review some basic properties of bounded linear operators on Hilbert
spaces.

Definition 8 (Bounded Linear Operator) A bounded operator on H is a linear
map A W H ! H such that

kAk WD sup
u2H nf0g

kAuk
kuk < 1:

In other words, a bounded operator on H is an element of B.H / WD
B.H ;H /.

Theorem 9 The set B.H / of bounded operators on H is a non-commutative
algebra and k � k is a norm on the algebra B.H /:

8.A;B/ 2 B.H / � B.H /; kABk � kAk kBk: (7)

Endowed with the norm k � k, B.H / is a Banach algebra.
The proof that k � k is a norm on B.H / is elementary, as well as the one of (7).

Regarding the completeness of B.H / for the resulting topology, we refer e.g. to
[69, Theorem III.2].

Note that, in view of Riesz representation theorem, a bounded linear operator B
is uniquely defined by the values of the sesquilinear form H � H 3 .u; v/ 7!
hujBvi 2 C. This is the reason why the following definition makes sense.
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Definition 10 (Adjoint of a Bounded Linear Operator) Let A 2 B.H /. The
operator A� 2 B.H / defined by

8.u; v/ 2 H � H ; hujA�vi D hAujvi; (8)

is called the adjoint of A. The operator A is called self-adjoint if A� D A.
Endowed with its norm k � k and the 
 operation, B.H / is in fact a C�-

algebra [5]:

.A�/� D A; kA�k D kAk; and kA�Ak D kAk2:

Many linear operators arising in quantum mechanics are not bounded operators
on some Hilbert space. This is the case for instance of the kinetic energy operator,
formally defined as T D � „2

2m�. We therefore have to introduce the concept of
(non-necessarily bounded) linear operators on Hilbert spaces.

Definition 11 (Linear Operator) A linear operator on H is a linear map A W
D.A/ ! H , where D.A/ is a subspace of H called the domain of A.

Note that bounded linear operators are special linear operators, for which D.A/ D
H and A W H ! H is continuous.

Definition 12 (Extensions of Operators) Let A1 and A2 be operators on H . A2 is
called an extension of A1 if D.A1/ � D.A2/ and if 8u 2 D.A1/, A2u D A1u.

Definition 13 (Unbounded Linear Operator) An operator A on H which does
not possess a bounded extension is called an unbounded operator on H .

A possible way to extend the notion of bounded self-adjoint operator to the case
of unbounded operators is the following.

Definition 14 (Symmetric Operator) A linear operator A on H with dense
domain D.A/ is called symmetric if

8.u; v/ 2 D.A/ � D.A/; hAujvi D hujAvi: (9)

Criterion (9) is simple and usually quite easy to check, but, unfortunately,
symmetric operators are not very interesting. Only self-adjoint operators—which we
are going to introduce—represent physical observables and have nice mathematical
properties reminiscent of those of Hermitian matrices (real spectrum, spectral
decomposition, functional calculus).

Definition 15 (Adjoint of a Linear Operator with Dense Domain) Let A be a
linear operator on H with dense domain D.A/, and D.A�/ the vector space defined
as

D.A�/ D fv 2 H j 9wv 2 H s.t. 8u 2 D.A/; hAujvi D hujwvig :
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The linear operator A� on H , with domain D.A�/, defined by

8v 2 D.A�/; A�v D wv;

(if wv exists, it is unique since D.A/ is dense) is called the adjoint of A.
Note that this definition agrees with definition (8) for bounded operators.

Definition 16 (Self-adjoint Operator) A linear operator A with dense domain is
called self-adjoint if A� D A (that is if A symmetric and D.A�/ D D.A/).

Any self-adjoint operator is symmetric, but the converse is not true. As mentioned
previously, only self-adjoint operators have interesting mathematical properties.
While it is usually easy to check that a given operator is symmetric, proving self-
adjointness is not trivial and often relies on deep theorems of linear operator theory.
We will not elaborate on these technicalities in these lectures notes and refer the
reader to the literature [67]. We will only provide a short list of self-adjoint operators
commonly encountered in first-principle molecular simulation:

• free-particle Hamiltonian (or kinetic energy operator)

H D L2.Rd/; D.T/ D H2.Rd/; 8u 2 D.T/; Tu D � „2
2m
�u;

where m > 0 is the mass of the particle, and „ the reduced Planck constant;
• Schrödinger operators with confining potential V 2 C0.Rd/ s.t. V.x/ �!

jxj!C1
C1

H D L2.Rd/; D.H/ D
�

u 2 L2.Rd/ j � „2
2m
�u C Vu 2 L2.Rd/




8u 2 D.H/; Hu D � „2
2m
�u C Vu I

• Schödinger operators with uniformly locally L2 potentials in dimension 3, i.e.

V 2 L2unif.R
3/ WD

(
u 2 L2loc.R

3/ j sup
x2R3

Z

xCŒ0;1�3
juj2 < 1

)
;

H D L2.Rd/; D.H/ D H2.R3/; 8u 2 D.H/; Hu D � „2
2m
�u C Vu:

3.2 Spectrum

The following definition is a natural extension of the definition of the spectrum of a
square matrix A 2 C

d�d.
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Definition 17 (Spectrum of a Linear Operator) Let A be a closed3 linear operator
on H . Then

• the set 
.A/ D fz 2 C j .z � A/ W D.A/ ! H invertibleg is called the resolvent
set of A;

• the set �.A/ D C n 
.A/ is called the spectrum of A.

As for Hermitian matrices, the spectrum of a self-adjoint operator A is always a
subset of R. On the other hand, it does not only contains the set of the eigenvalues
of A, that is the set of the complex numbers z such that .z � A/ W D.A/ ! H is
injective. Indeed, even in the case when D.A/ D H , the linear map .z � A/ can be
injective and not surjective since H is infinite dimensional.

Theorem 18 (Spectrum and Resolvent) Let A be a closed linear operator on H .
Then

• the resolvent set 
.A/ is an open subset of C and the function


.A/ 3 z 7! Rz.A/ WD .z � A/�1 2 B.H /

is analytic. It is called the resolvent of A. It holds

8.z; z0/ 2 
.A/ � 
.A/; Rz.A/ � Rz0.A/ D .z0 � z/Rz.A/Rz0.A/:

The above equality is called the resolvent identity;
• the spectrum �.A/ of A is a closed subset of C.

Theorem 19 (Spectrum of a Self-adjoint Operator) Let A be a self-adjoint
operator on H . Then A is closed, �.A/ � R, and it holds

�.A/ D �p.A/[ �c.A/;

where �p.A/ and �c.A/ are respectively

• the point spectrum of A

�p.A/ D fz 2 C j .z � A/ W D.A/ ! H non-injectiveg D feigenvalues of Ag I

• the continuous spectrum of A

�c.A/ D fz 2 C j .z � A/ W D.A/ ! H injective but non surjectiveg:

The mathematical decomposition of the spectrum of a self-adjoint operator into
point and continuous spectra has an interesting physical counterpart, which will

3The operator A is called closed if its graph � .A/ WD f.u;Au/; u 2 D.A/g is a closed subspace of
H � H .
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be presented in the next section. The following alternative decomposition of the
spectrum is fundamental both for theoretical and numerical purposes, as will be
seen in Sect. 7.

Definition 20 Let A be a closed linear operator onH . Then �.A/ D �d.A/[�ess.A/
where

�d.A/ D ˚
isolated eigenvalues of A with finite multiplicities

�
(discrete spectrum)I

�ess.A/ D �.A/ n �d.A/ (essential spectrum):

The essential spectrum therefore consists of

• the continuous spectrum;
• the eigenvalues of infinite multiplicities;
• the eigenvalues embedded in the continuous spectrum.

Theorem 21 (Weyl) Let A be a self-adjoint operator on H and B a symmetric
operator on H with domain D.A/ such that B.A C i/�1 2 L .H / is compact. Then
A C B, with D.A C B/ D D.A/ is self-adjoint and �ess.A C B/ D �ess.A/.

Weyl theorem allows in particular to prove the following result, which covers
many interesting cases arising in first-principle molecular simulation.

Corollary 22 Let ˛ > 0 and V 2 L2.R3/C L1
" .R

3/, where

L2.R3/C L1
" .R

3/ WD ˚
V 2 L2loc.R

3/ j 8" > 0; 9.V2;V1/ 2 L2.R3/ � L1.R3/

such that V D V2 C V1; kV1kL1 � "
�
:

Then the operator H D �˛� C V is self-adjoint on L2.R3/ with domain H2.R3/

and �ess.H/ D Œ0;C1/.
We conclude this brief introduction to spectral theory, with the famous min-max

principle, which gives a variational characterization of the discrete eigenvalues (with
their multiplicities) located below the bottom of the essential spectrum of a bounded
below self-adjoint operator.

Theorem 23 (Min-Max Principle, Courant-Fisher Formula) Let A be a
bounded below self-adjoint operator on H , Q.A/ its form domain,4 and a its
associated quadratic form. For each j 2 N

�, we define

�j.A/ D inf
Wj2Ej

sup
w2Wjnf0g

a.w;w/

kwk2 ;

4Since A is bounded below, there exists C 2 R s.t. .u; v/Q.A/ WD hujAviCChujvi is a scalar product
on D.A/. The Cauchy closure of D.A/ for the associated norm is a Hilbert space, independent of
C, called the form domain of A. The quadratic form associated with A is the unique continuous
extension of .u; v/ 7! hujAvi to Q.A/.
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where Ej is the set of the j-dimensional subspaces of Q.A/. Then,

• if A has at least j eigenvalues lower than min �ess.A/ (taking multiplicities into
account), then �j.A/ is the smallest jth eigenvalue of A;

• otherwise, �j.A/ D min �ess.A/.

4 The QuantumMany-Body Problem

According to the first principles of quantum mechanics, an isolated quantum system
is described by

• a state space H (a complex Hilbert space);
• a Hamiltonian H (a self-adjoint operator on H );
• other observables (i.e. self-adjoint operators on H ) allowing one to connect

theory and experiments.

The state5 of the system at time t is completely characterized by a wavefunction
�.t/ 2 H such that k�.t/kH D 1. Its dynamics is governed by the time-dependent
Schrödinger equation

i„d�

dt
.t/ D H�.t/; (10)

where we recall that „ is the reduced Planck constant. The steady states are by
definition states of the form �.t/ D f .t/ , where f .t/ 2 C and  2 H . Inserting
the Ansatz �.t/ D f .t/ in (10) and separating the variables, we obtain that
the function f is just a physically irrelevant phase factor6: f .t/ D e�iEt=„, with
E 2 R is homogenous to an energy. The function  satisfies the time-independent
Schrödinger equation

H D E ; k kH D 1:

The energy E is therefore an eigenvalue of the Hamiltonian H and  an associated
normalized eigenvector.

5We limit ourselves to pure states in these lectures notes.
6It may seem weird that steady states explicitly depend on time. This apparent paradox is due to
the fact that a state is in fact an element of the projective space .H n f0g/=C�, so that f .t/ and
 actually represent the exact same state.
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4.1 One-Particle Systems

The above formalism is completely general, and valid for any isolated quantum
system. Let us now deal with specific systems of physical interest, starting with a
very simple one: a spinless particle of mass m subjected to an external potential Vext.
In this case, the state space is H D L2.R3;C/ and the Hamiltonian

H D � „2
2m
�C Vext;

which, under assumptions on Vext (see some examples in Sect. 3.1), is a self-adjoint
operator on H . In the so-called position representation, the wavefunction has a
clear physical meaning: j�.t; r/j2 is the probability density of observing the particle
at point r at time t. Note that it follows from the normalization condition that

Z

R3

j�.t; r/j2 dr D k�.t/k2H D 1:

The time-dependent Schrödinger equation then takes the form of a partial differen-
tial equation (PDE):

i„@�
@t
.t; r/ D � „2

2m
��.t; r/C Vext.r/�.t; r/:

Likewise, the time-independent Schrödinger equation reads in this case as an elliptic
linear eigenvalue problem:

� „2
2m
� .r/C Vext.r/ .r/ D E .r/:

The spectrum of H strongly depends on Vext (see Sect. 3.2). The spectrum of the
free Hamiltonian (Vext D 0) is purely continuous and equal to RC. For confining
potentials, the spectrum of H is purely discrete and consists of an increasing
sequence of real eigenvalues of finite multiplicities going to C1. For one-particle
or mean-field Hamiltonians usually encountered in first-principle models of finite
molecular systems, the potential Vext vanishes at infinity, �ess.H/ D RC, and
�d.H/ can be either empty (no bound states), or consist of a finite or infinite
increasing sequence of negative eigenvalues of finite multiplicities. If H has negative
eigenvalues, the lowest one is called the ground state energy. If Vext is not too
singular (see [68, Theorem XIII.46] for details), it is non-degenerate. The higher
eigenvalues are called excited state energies. If H has infinitely many negative
eigenvalues, then they necessarily accumulate at 0, the bottom of the essential
spectrum. This is the case for instance for the Hamiltonian of the hydrogen atom:
the discrete spectrum of the Hamiltonian

H D � „2
2me

� e2

4�"0jrj
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Scattering states (continuous spectrum)
Ground state

Excited states

Fig. 4 Typical spectrum of one-particle Hamiltonians encountered in first-principle simulation of
finite molecular systems

Fig. 5 Emission spectrum of atomic hydrogen in the visible range

on L2.R3/ is the Rydberg series .En/n2N� , where En D � ERyd

n2
, and where

ERyd WD me

2

�
e2

4�"0„
�2

is the Rydberg energy. Here me is the electron mass, e the elementary charge, and
"0 the dielectric permittivity of the vacuum (Fig. 4).

When this model is coupled to a quantized electromagnetic field, transitions
between electronic energy levels may occur. The electron of the hydrogen atom
may jump from a higher energy level Em to a lower one En (m > n) by emitting a
photon of energy h	m!n D Em � En (h D 2�„ is the Planck constant and 	m!n the
frequency of the photon), or, conversely, absorb a photon of energy h	m!n and jump
from the energy level En to the energy level Em. As a consequence, the transitions
between electronic levels are quantized. This is the reason why the emission and
absorption spectra of molecular gases consist of rays (see Fig. 5). In the case of the
hydrogen atom, four rays lay in the visible spectrum (wavelengths between 400 and
700 nm). They are part of the Balmer series (transitions between Em and E2) and
can be easily measured experimentally:

�
exp
6!2 D 410:17 nm; �exp

5!2 D 434:05 nm; �exp
4!2 D 486:13 nm; �exp

3!2 D 656:28 nm:

Using the relation �m!n D c=	m!n, where c is the speed of light, the wavelengths
of the electronic transitions are given by

�m!n D 8�„c

ERyd

�
1

n2
� 1

m2

��1
;
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which leads to the following numerical results

�6!2 D 410:07 nm; �5!2 D 433:94 nm; �4!2 D 486:01 nm; �3!2 D 656:11 nm:

The slight discrepancies between these results and the experimental ones are due to
the fact that the motion of the nucleus and the relativistic effects have not been taken
into account. Replacing the electron mass me with the reduced mass memp=.me C
mp/, where mp is the proton mass, and adding to the non-relativistic Hamiltonian the
so-called Breit terms [30], experimental values can be recovered with a very high
relative accuracy of the order of 10�8.

The above discussion provides a physical interpretation of the discrete spectrum
of the Hamiltonian of the hydrogen atom. Let us now turn to the continuous
spectrum.

Theorem 24 (RAGE Theorem, Ruelle [70], Amrein and Georgescu [3],
Enss [33]) Let H be a locally compact7 self-adjoint operator on L2.Rd/. Let

Hp D Span feigenvectors of Hg and Hc D H ?
p :

Let �BR be the characteristic function of the ball BR D ˚
r 2 R

d j jrj < R
�
. Then,

�
�0 2 Hp

� , 8" > 0; 9R > 0; 8t � 0;
���.1 � �BR/e

�itH=„�0
���
2

L2
� "I

.�0 2 Hc/ , 8R > 0; lim
T!C1

1

T

Z T

0

����BR e�itH=„�0
���
2

L2
dt D 0:

The physical meaning of this result is the following: if the particle is in the
quantum state �0 at t D 0, then its state at time t is the solution at time t
of the time-dependent Schrödinger equation (10) with initial datum �0, that is
 .t/ D e�itH=„�0. In view of the physical interpretation of the wavefunction in
the position representation,

����BR e�itH=„�0
���
2

L2
D
Z

BR

j .t; r/j2 dr

7An operator A on L2.Rd/ such that 
.A/ ¤ ; is called locally compact if for any bounded set
B, the operator �B.z � A/�1 is a compact operator on L2.Rd/ for some (and then all by virtue of
the resolvent formula) z 2 
.A/. Here, �B is the characteristic function of B; in the expression
�B.z � A/�1, �B should be understood as the multiplication operator by the bounded function �B,
which is a bounded self-adjoint operator on H . The Hamiltonian of the hydrogen atom is a locally
compact self-adjoint operator on L2.R3/, and for this operator, dim.Hp/ D dim.Hc/ D 1.
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is the probability that the particle lays inside the ball BR at time t, while

���.1 � �BR/e
�itH=„�0

���
2

L2
D
Z

R3nBR

j .t; r/j2 dr

is the probability that the particle lays outside the ball BR at time t.
The subspace Hp can therefore be seen as a set of bound states, and the subspace

Hc as a set of scattering states:

• if �0 2 Hp, then the particle essentially remains in the vicinity of the nucleus at
all times;

• if �0 2 Hc, then the particle scatters away from the nucleus. Note that in the case
of the hydrogen atom, which has no singular continuous spectrum [68, Section

XIII.10], the convergence is stronger:
���BR e�itH=„�0

��2
L2

goes to zero when t goes
to infinity.

4.2 Many-Particle Systems

The state space H of a quantum system consisting of two spinless particles is
always a closed subspace of L2.R3;C/ ˝ L2.R3;C/ � L2.R6;C/, and, in the
position representation, if the system is in the pure state �.t/ at time t, then
j�.t; r1; r2/j2 is the probability density of observing at time t particle 1 at r1 and
particle 2 at r2. The precise structure of H depends of the natures of the two
particles8:

• for two different particles: H D L2.R3;C/˝ L2.R3;C/;
• for two identical bosons (e.g. two carbon 12 nuclei), H D L2.R3;C/ _

L2.R3;C/, where _ denotes the symmetrized tensor product. Otherwise stated,
the wavefunction � must satisfy the symmetry condition

�.t; r2; r1/ D �.t; r1; r2/I

• for two identical fermions (e.g. two electrons), H D L2.R3;C/ ^ L2.R3;C/,
where ^ denotes the antisymmetrized tensor product. In other words, the
wavefunction � must satisfy the antisymmetry condition, also called Pauli
principle,

�.t; r2; r1/ D ��.t; r1; r2/:

8For simplicity, we omit the spin variables. See Remark 25 below for more details.
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Note that for two identical particles, whatever they are bosons or fermions, the
particle density is given by


.t; r/ D
Z

R3

j�.t; r; r2/j2 dr2 C
Z

R3

j�.t; r1; r/j2 dr1 D 2

Z

R3

j�.t; r; r2/j2 dr2:

Consider now N quantum particles of masses m1; � � � ;mN subjected to an external
potential Vext.r/ and pair-interaction potentials Wij.ri; rj/. The state space H then
is a closed subspace of L2.R3;C/˝ � � � ˝ L2.R3;C/ � L2.R3N ;C/, whose precise
structure depends on the natures of the N particles. In the case of N identical bosons,
H D _NL2.R3;C/, while in the case of N identical fermions, H D ^NL2.R3;C/.
Likewise, if the state of the system at time t is characterized by the wavefunction
�.t/ 2 H in the position representation, then j�.t; r1; � � � ; rN/j2 is the probability
density of observing at time t particle 1 at r1, particle 2 at r2, etc. The time-
independent Schrödinger equation of such a system reads
0

@�
NX

iD1

„2
2mi

�ri C
NX

iD1
Vext.ri/C

X

1�i<j�N

Wij.ri; rj/

1

A�.r1; � � � ; rN/ D E�.r1; � � � ; rN/

and therefore has the structure of a 3N-dimensional linear elliptic eigenvalue
problem.

In general, such an equation is extremely difficult to solve. However, in the
special case of N non-interacting identical particles of mass m subjected to an
external potential Vext.r/, the Hamiltonian becomes separable

H D �
NX

iD1

„2
2m
�ri C

NX

iD1
Vext.ri/ D

NX

iD1
hri

and all the bound states of H can be easily computed from the bound states of the
three-dimensional Schrödinger operator h:

8
ˆ̂̂
<

ˆ̂̂
:

h�i D "i�i; "1 � "2 � � � � ;Z

R3

�i�j D ıij;

h D � „2
2m
�C Vext:

In particular, if h is bounded below and has at least one (for bosons) or N (for
fermions) eigenvalues below the bottom of the essential spectrum, then H has a
ground state:

• the bosonic ground state energy is E0 D N"1 and the ground state wavefunction
and density are given by

 .r1; � � � ; rN/ D
NY

iD1
�1.ri/ and 
.r/ D Nj�1.r/j2I
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• the fermionic ground state energy is E0 D PN
iD1 "i, a ground state wavefunction

is the Slater determinant

 .r1; � � � ; rN/ D 1p
NŠ

det.�i.rj// D 1p
NŠ

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

�1.r1/ �1.r2/ � � � �1.rN/

�2.r1/ �2.r2/ � � � �2.rN/

� � �
� � � � � �
� � �

�N.r1/ �N.r2/ � � � �N.rN/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

;

and the corresponding density is 
.r/ D
NX

iD1
j�i.r/j2.

5 First-Principle Molecular Simulation

First-principle molecular simulation is based on a simple observation:

• any molecule is a set of M nuclei and N electrons in Coulomb interaction;
• the state space H is the subset of L2.R3.MCN/;C/ defined by the suitable

symmetry and antisymmetry constraints for identical bosons and fermions;
• the Hamiltonian of the molecule is

H D �
MX

kD1

1

2mk
�Rk �

NX

iD1

1

2
�ri

�
NX

iD1

MX

kD1

zk

jri � Rkj C
X

1�i<j�N

1

jri � rjj C
X

1�k<l�M

zkzl

jRk � Rlj : (11)

Here, we have used atomic units, that is the set of units such that

„ D 1; me D 1; e D 1; 4�"0 D 1:

Remarkably, the Hamiltonian (11) is free of empirical parameters specific to the
molecular system, and it can be deduced from the mere chemical formula of the
latter. Likewise, any physical observable associated with the system and can be
written down from the first-principles of quantum mechanics. Quoting Dirac [28],

The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
solved.
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The model described above is extremely accurate, at least for light atoms, for
which relativistic effects can be neglected. As a matter of example, let us consider
the computation of the ionization energy of the helium atom. The ionization process
is the reaction

He C h	 ! HeC C e�;

in which a helium atom absorbs a photon; if the energy of the photon is larger than
a threshold value �E D h�	, one of the two electrons of the atom is kicked out of
its bound state and escapes to infinity. The threshold frequency�	 can be measured
experimentally with high accuracy. Two different experiments on helium 4 (the most
common isotope of helium, whose nucleus contains four nucleons: two protons and
two neutrons) performed in 1997 and 1998 respectively lead to the following results:

�	exp:1 ' 5;945;204;238MHz [32] and �	exp:2 ' 5;945;204;356 MHz [11]:

From a theoretical point of view, �	 can be computed as �	 D �E=h, where
�E D min.�.HHeC// � min.�.HHe//, where �.HHeC/ and �.HHe/ are the spectra
of the operators

HHe D � 1

2m
�R � 1

2
�r1 � 1

2
�r2 � 2

jr1 � Rj � 2

jr2 � Rj C 1

jr1 � r2j ;

and

HHeC D � 1

2m
�R � 1

2
�r1 � 2

jr1 � Rj ;

respectively (see Fig. 6), where m denotes the mass of the Helium 4 nucleus. It can
be shown that min.�.HHeC// D �2. Using translational and rotational invariance,
the quantity min.�.HHe// can be obtained by solving a three-dimensional linear
elliptic eigenvalue problem. A careful calculation reported in [47] gives:�Ecalc:1 D
5;945;262;288 MHz. Taking relativistic corrections (Breit terms) into account
gives �Ecalc:2 D 5;945;204;223MHz, to be compared with the experimental

Δ E=h ν − E (e ) = h Δν

Ground state energy of He

Ground state energy of He +

c
−

Fig. 6 Spectra of the Hamiltonians HHe and HHeC
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values reported above. The agreement between theory and experiment is therefore
exceptionally good.

Let us now turn to the more complicated case of a polyatomic system. As a
matter of example, we will deal with a water molecule H2O, which consists of M D
3 atomic nuclei (1 oxygen 16 nucleus, and 2 hydrogen 1 nuclei9) and N D 10

electrons in Coulomb interaction. Such a system can be fully described by the laws
of quantum mechanics (many-body Schrödinger equation) and statistical physics.
The only parameters of these models are

• a few fundamental constants of physics

„ D 1; me D 1; e D 1; "0 D .4�/�1;

c ' 137:0359996287515 : : : ; kB D 3:16681537 : : :� 10�6;

where c is the speed of light and kB the Boltzmann constant (all the values are in
atomic units);

• the charges and masses of the hydrogen 1 and oxygen 16 nuclei

zH D 1; zO D 8; mH D 1836:152701 : : :; mO D 29156:944123 : : :

We then observe that the ratio me=mn (electron mass/nucleus mass) is very small,
even for the lightest nucleus (hydrogen 1). Following Born and Oppenheimer, this
suggests to use this ratio as a small parameter to approximate the many-body
Schrödinger equation. The procedure described in the sequel can be justified to some
point with mathematically rigorous arguments; we refer the interested reader to the
literature cited below. The so-called Born-Oppenheimer method can be decomposed
in two steps:

• step 1: definition of the potential energy surfaces;
• step 2: analysis of the potential energy surfaces.

Let us first detail the first step. Assuming that the M nuclei are clamped point-
like particles located at positions R1; � � � ;RM , Rk 2 R

3, the electronic problem for
the nuclear configuration fRkg1�k�M consists in computing the bound states of the
N electrons in the electrostatic potential

Vne
fRkg.r/ D �

MX

kD1

zk

jr � Rkj

9These are the most common isotopes of oxygen and hydrogen.
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generated by the nuclei. For the water molecule, we have: M D 3, N D 10, z1 D 8,
z2 D 1, z3 D 1. The electronic bound states are obtained by solving the time-
independent Schrödinger equation

0

@�1
2

NX

iD1
�ri C

NX

iD1
Vne

fRkg.ri/C
X

1�i<j�N

1

jri � rjj

1

A .r1; � � � ; rN/ D E  .r1; � � � ; rN/:

Since electrons are fermions, the wavefunction  must satisfy the antisymmetry
condition

8p 2 SN ;  .rp.1/; � � � ; rp.N// D ".p/ .r1; � � � ; rN/; (Pauli principle):

The electronic density associated with  is


 .r/ D N
Z

R3.N�1/

j .r; r2; � � � ; rN/j2 dr2 � � � drN ; (12)

and the normalization condition k kL2 D 1 ensures that

Z

R3


 .r/ dr D N:

Remark 25 For simplicity, we omit here the spin variables. In fact, electrons are
particles of spin s D 1=2, so that the one-electron state space is not L2.R3;C/ but

L2.R3;C2sC1/ D L2.R3;C2/ � L2.R3 � fj"i; j#ig ;C/;

where j "i and j #i respectively denote the spin-up and spin-down states. An N-
electron wavefunction therefore is a vector of HN D VN L2.R3 � fj"i; j#ig ;C/,
that is a complex-valued function of the variables .r1; �1I � � � ; rN ; �N/ 2�
R
3 � fj"i; j#ig�N

satisfying the antisymmetry condition

8p 2 SN ;  .rp.1/; �p.1/I � � � I rp.N/; �p.N// D ".p/ .r1; �1I � � � I rN ; �N/:

In this framework, j .r1; �1I � � � I rN ; �N/j2 represents the probability density of
observing electron 1 at r1 in the spin state �1, electron 2 at r2 in the spin state
�2, etc.

The structure of the spectrum of the electronic Hamiltonian

HfRkg
N D �

NX

iD1

1

2
�ri �

NX

iD1
Vne

fRkg.ri/C
X

1�i<j�N

1

jri � rjj
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{R }k

Excited statesGround state

Essential spectrum
Ε

Σ0 {R }k

Fig. 7 Graphical illustration of Zhislin’s theorem

on HN D VN L2.R3;C/ with domain HN \ H2.R3N/, which can be proved to be
self-adjoint, is given by Zhislin’s theorem (illustrated by Fig. 7).

Theorem 26 (Zhislin [79]) If N �
MX

kD1
zk (neutral or positively charged sys-

tem), then

�d.H
fRkg
N / D

n
EfRkg

n

o

n2N and �ess.H
fRkg
N / D Œ˙

fRkg
N ;C1/;

where .EfRkg
n /n2N is a nondecreasing sequence of negative eigenvalues10 converging

to˙ fRkg, the bottom of the essential spectrum of HfRkg
N . Besides˙ fRkg

N D 0 if N D 1

and˙ fRkg < 0 if N � 1.
It can also be shown (HVZ theorem [42, 76, 78]) that ˙ fRkg

N D min �.HfRkg
N�1 /.

The lowest eigenvalue EfRkg
0 is called the ground state energy of HfRkg

N , while the

eigenvalues EfRkg
n > EfRkg

0 are called the excited state energies of HfRkg
N . For each

n 2 N, the function R
3M 3 .R1; � � � ;RM/ 7! EfRkg

n 2 R is continuous. This can
be proved using e.g. the minmax principle (Theorem 23), or Kato’s perturbation
theory of self-adjoint operators [44]. Using the latter approach, it can be shown in
addition that this function is C1 at .R1; � � � ;RM/ whenever EfRkg

n is a nondegenerate

eigenvalue of HfRkg
N .

The potential energy surfaces are then defined as the real-valued functions Wn

on R
3M , n 2 N, defined by

Wn.R1; � � � ;RM/ D EfRkg
n C

X

1�k<l�M

zkzl

jRk � Rlj : (13)

The function W0 is called the ground state potential energy surface (PES), the
function W1 the first excited state PES, etc. (Fig. 8).

10Eigenvalues are counted with their multiplicities, so that EfRkg

0 � EfRkg

1 � EfRkg

2 � � � , with a
priori large inequalities.
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Fig. 8 Sketch of the
potential energy surfaces Wn

W0

σ(H  )N

{Rk}

W1

W2

Let us now turn to the second step, that is the analysis of the potential energy
surfaces. Usually,11 the Born-Oppenheimer approximation is invoked at this point.
This approximation is based on the fact that

1. the ratio me=mn (electron mass/nucleus mass) is small, which allows one to
somehow decouple the electronic and nuclear dynamics by means of an adiabatic
limit [61]. At low enough temperature (usually from 0 K to room temperature
or more), it can be considered for most systems that the wave function of the
molecular system at time t can be approximated by a wave function of the form

�BO.tIR1; � � � ;RMI r1; � � � ; rN/ D ˚.tIR1; � � � ;RM/ 
.R1;��� ;RM/.r1; � � � ; rN/;

where  .R1;��� ;RM /.r1; � � � ; rN/ is a normalized ground state of HfRkg
N , that is a L2-

normalized eigenfunction of the electronic Hamiltonian HfRkg
N associated with

the ground state eigenvalue EfRkg
0 , assumed here to be non-degenerate;

2. nuclei are heavy particles, so that their dynamics can be well-approximated by
the classical Newton equation

mk
d2Rk

dt2
.t/ D �rRk W0.R1.t/; � � � ;RM.t//; 1 � k � M: (14)

This equation is obtained from the Schrödinger equation on ˚.tIR1; � � � ;RM/

resulting from the adiabatic approximation, by letting the reduced Planck
constant „ go to zero (semiclassical limit, see [1, 2] and references therein).

Equation (14), together with the definition (13) for n D 0 of the ground state PES,
are the fundamental equations of first-principle molecular dynamics. According to
this model, the nuclei behave as point-like classical particles interacting via the
effective M-body potential W0.

11Breakdowns of the adiabatic approximation are studied in [14, 22, 35].
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Fig. 9 Within the
Born-Oppenheimer
approximation, the global
minimizers of W0 correspond
to the most stable
configurations of the system

W0

σ(H  )N

{Rk}

Fig. 10 Equilibrium
configuration of the water
molecule (experimental
values)

104.45°

OH

H

95.84 pm

It follows from (14) that the local minima of W0 correspond to equilibrium
configurations of the system. In particular, global minima of W0 correspond to the
most stable configurations of the molecular system under consideration (Fig. 9).
The water molecule has a single global minimum (up to translations and rotations),
corresponding to the configuration depicted on Fig. 10.

The limiting step for integrating numerically the first-principle molecular dynam-
ics Eq. (14) is the computation of the effective forces �rRk W0.R1; � � � ;RM/

experienced by the nuclei. The nucleus-nucleus interaction is explicit and easy to
deal with. The main issue is the computation of �rRk EfR1;��� ;RMg

0 . Since EfR1;��� ;RM g
0

is the ground state eigenvalue of HfRkg
N , il can be obtained by solving the constrained

optimization problem

EfR1;��� ;RMg
0 D inf

(
h jHfRkg

N j i;  2
N̂

L2.R3/ \ H1.R3N/; k kL2 D 1

)
:

(15)
This problem has the same structure as problem (3), which implies that it is not
necessary to compute the first derivatives of the minimizers with respect to the
Rk’s to compute �rRk EfR1;��� ;RMg

0 . In addition, since the constraint k kL2 D 1 does
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Schrodinger
equation 

electronic 

Wavefunction methods 

Density functional theory
(DFT)

Thomas−Fermi (orbital free) : TF, TFW, ...

Kohn−Sham : Hartree, X   , LDA, GGA, ... α

Single−reference methods: MPn, CI, CC, ...

Multi−reference methods: MCSCF, MRCC,  ...

Hartree−Fock

Variational MC 

Diffusion MC 

Quantum Monte Carlo 

       ¨

N−body 

Fig. 11 Classification of the main electronic structure methods

not depend explicitly on the Rk’s, the gradients �rRk EfR1;��� ;RMg
0 can be computed

explicitly from the minimizer  fRkg
0 . A simple calculation shows that

�rRk W0.R1; � � � ;RM/ D zk

Z

R3



fRkg
0 .r/

r � Rk

jr � Rkj3 dr C
X

l¤k

zkzl
Rk � Rl

jRk � Rlj3 ;

where the ground state density



fRkg
0 .r/ D N

Z

R3.N�1/

j fRkg
0 .r; r2; � � � ; rN/j2 dr2 � � � rN ;

is the electronic density associated with the ground state wavefunction  fRkg
0 . Since

the electronic Schrödinger equation is a 3N-dimensional PDE, it is not possible to
solve it accurately for systems containing more than a couple of electrons. Several
approximation have been proposed along the past 80 years, which can be classified
in three main groups (see Fig. 11). Describing all these methods is out of the scope of
this introductory lecture notes. We will only focus on the simplest of them, namely
the Hartree-Fock method, which will be presented in the next section. We refer the
reader to [40] for a comprehensive monograph on wavefunction methods, to [29, 34]
for reference textbooks on DFT, to [7] for a several relevant contributions, including
a mathematical introduction to quantum Monte Carlo methods, and to [4, 17–19,
24, 26, 37–39, 48, 51, 53–60, 71, 74] and reference therein for various mathematical
and numerical works on these models.

Let us mention that the various avatars of the Kohn-Sham model [10, 46, 62, 63,
73, 75] are the most widely used models in the present time, since it is generally
considered as the best compromise between computational efficiency and accuracy.
The mathematical structure of the Kohn-Sham LDA model is quite similar to the
one of the Hartree-Fock model we are now going to discuss.
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6 Hartree-Fock Approximation

In this section, we assume that the nuclear configuration fRkg is given, and we focus
on the calculation of the electronic ground state energy EfRkg

0 and of the electronic

components �rRk EfRkg
0 of the atomic forces. In order to simplify the notation, we

set E0 WD EfRkg
0 , 
0 WD 


fRkg
0 ,

HN WD �1
2

NX

iD1
�ri C

NX

iD1
Vne.ri/C

X

1�i<j�N

1

jri � rjj and Vne.r/ WD �
MX

kD1

zk

jr � Rkj :

Recall that the operator HN is self-adjoint on HN D
N̂

L2.R3/ with domain

D.HN/ D HN \ H2.R3N/ and form domain Q.HN/ D HN \ H1.R3N/, and that
the ground state energy can be obtained as

E0 D inf fh jHN j i;  2 WNg ;

where

WN D
(
 2

N̂

L2.R3/\ H1.R3N/; k kL2 D 1

)
:

The Hartree-Fock approximation is a variational approximation consisting in
minimizing the exact energy functional h jHN j i on the subset of WN defined as

�
 ˚; ˚ D .�1; � � � ; �N/ 2 .H1.R3//N ;

Z

R3

�i�j D ıij




where

 ˚.r1; � � � ; rN/ WD 1p
NŠ

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

�1.r1/ �1.r2/ � � � �1.rN/

�2.r1/ �2.r2/ � � � �2.rN/

� � �
� � �
� � �

�N.r1/ �N.r2/ � � � �N.rN/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

is the Slater determinant constructed with the functions �1; � � � ; �N .
Rewriting h ˚ jHN j ˚ i as a function of ˚ D .�1; � � � ; �N/, we obtain after some

technical manipulations that the Hartree-Fock ground state energy is

EHF
0 D inf

�
EHF.˚/; ˚ D .�1; � � � ; �N/ 2 .H1.R3//N ;

Z

R3

�i�j D ıij



;
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where the Hartree-Fock energy functional is defined by

EHF.˚/ D 1

2

NX

iD1

Z

R3

jr�ij2 C
Z

R3


˚Vne

C1

2

Z

R3

Z

R3


˚ .r/ 
˚.r0/
jr � r0j dr dr0

„ ƒ‚ …
Coulomb term

� 1

2

Z

R3

Z

R3

j�˚.r; r0/j2
jr � r0j dr dr0

„ ƒ‚ …
exchange term

;

with

Vne.r/ D �
MX

kD1

zk

jr � Rkj ; �˚ .r; r0/ D
NX

iD1
�i.r/ �i.r0/; 
˚ .r/ D

NX

iD1
j�i.r/j2:

Since the Hartree-Fock approximation is variational, we have E0 � EHF
0 . The

function 
˚ is the electronic density associated with ˚ . It is easy to check that

˚ D 
 ˚ , where 
 ˚ is the density associated with the N-body wavefunction  ˚
by (12). The function �˚ is called the (one-electron) density matrix associated with
˚ . It holds

�˚.r; r0/ D N
Z

R3.N�1/

 ˚.r; r2; � � � ; rN/ ˚.r0; r2; � � � ; rN/ dr2 � � � drN :

The Hartree-Fock model enjoys a gauge invariance property: if ˚ 2 .H1.R3//N

satisfies the L2-orthonormality constraints, then so does ˚U for all U 2 O.N/ and
E.˚U/ D E.˚/. This is due to the fact that  ˚U D det.U/ ˚ . This property is
used in the proof of the fifth statement of the following theorem.

Theorem 27 Assume that N � Z WD PM
kD1 zk (neutral or positively charged

molecular system). Then

1. the Hartree-Fock model has a ground state ˚0 D .�01 ; � � � ; �0N/ [56];
2. Euler-Lagrange equations: there exists � 2 R

N�N symmetric such that

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

˚0 D .�01 ; � � � ; �0N/ 2 .H1.R3//N

�1
2
��0i C Vne�0i C �


˚0 ? j � j�1��0i �
Z

R3

�˚0.�; r0/
j � �r0j �0i .r

0/ dr0 D
NX

jD1
�ij�

0
j

Z

R3

�0i �
0
j D ıijI

3. elliptic regularity: �0i 2 H2.R3/ \ C0;1.R3/ \ C1.R3 n fRkg/;
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4. Fock operator:

F˚0 WD �1
2
�C Vne C 
˚0 ? j � j�1 C K˚0;

where

.K˚0�/.r/ D �
Z

R3

�˚0.r; r
0/

jr � r0j �.r0/ dr0;

defines a self-adjoint operator on L2.R3/ with domain H2.R3/ and form domain
H1.R3/. It is bounded below and �ess.H0/ D Œ0;C1/;

5. Hartree-Fock equations: up to replacing˚0 by˚0U for some U 2 O.N/, it holds

F˚0�
0
i D "i�

0
i ;

Z

R3

�0i �
0
j D ıij; "1 � � � � � "N < 0I

6. Aufbau principle: "1 � "2 � � � � � "N are the lowest N eigenvalues of F˚0 ,
counting multiplicities;

7. no unfilled-shell property [8]: "N < "NC1 where "NC1 D �NC1.F˚0/ is the
.N C 1/st eigenvalue of F˚0 (counting multiplicities) if F˚0 has at least .N C 1/

negative eigenvalues and 0 otherwise.

The Hartree-Fock model can be solved numerically by means of a Galerkin
approximation. Let X D Span.�1; � � � ; �Nb/ be a subspace of H1.R3/ of finite
dimension Nb. An upper bound EHF

0;X of the exact Hartree-Fock ground state
energy EHF

0 , which is itself an upper bound of the exact ground state energy E0
of the electronic Hamiltonian, is obtained by minimizing the Hartree-Fock energy
functional on the sets of orbitals in X D Span.�1; � � � ; �Nb/ satisfying the L2

orthonormality conditions:

E0 � EHF
0 � EHF

0;X D inf

�
EHF.˚/; ˚ D .�1; � � � ; �N/ 2 X N ;

Z

R3

�i�j D ıij



:

Denoting by C D ŒC�i�1���Nn; 1�i�N the matrix collecting the coefficients of the
orbitals �1; � � � ; �N in the basis .�1; � � � ; �N�b/,

�i.r/ D
NbX

�D1
C�i��.r/;

the discretized Hartree-Fock model can be written as

EHF
0;X D inf

˚
EHF.CCT/; C 2 R

Nb�N ; CTSC D IN
�
;
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where

EHF.D/ D Tr.hD/C1

2
Tr.G.D/D/; ŒG.D/��	 D

X

��

Œ.�	j��/� .��j�	/� D��;

and where the entries of the overlap matrix S, the core Hamiltonian matrix h, and
the two-electron integrals .��j�	/ are defined as

S�	 D
Z

R3

���	; h�	 D 1

2

Z

R3

r�� �r�	�
MX

kD1
zk

Z

R3

��.r/�	.r/
jr � Rkj dr; (16)

and

.�	j��/ D
Z

R3

Z

R3

��.r/�	.r/��.r0/��.r0/
jr � r0j dr dr0: (17)

A fundamental observation made by Boys in the 1950s [15] is that if the ��’s are
gaussian-polynomial functions, i.e. functions of the form

��.r/ D p.r/ exp.�˛jrj2/;

where p is a polynomial function and ˛ a positive real number, then all the integrals
in (16) and (17) can be computed analytically.

In practice, most calculations in quantum chemistry are performed using gaussian
atomic orbital basis sets, which are built as follows:

1. a collection
n
�A
�

o

1���nA

of nA linearly independent linear combinations of

gaussian polynomials are associated with each chemical element A of the
periodic table: these are the atomic orbitals of A;

2. to perform a calculation on a given chemical system, one builds a basis
˚
��
�

by
putting together all the atomic orbitals related to all the atoms of the system.

This approach is reminiscent of the reduced basis method used in other fields of
science and engineering (see e.g. [41, 65] and references therein). For instance, still
in the case of a water molecule H2O, we have

˚
��
� D ˚

�H
1 .r � RH1 /; � � � ; �H

nH
.r � RH1 /I �H

1 .r � RH2 /; � � � ; �H
nH
.r � RH2 /I

�O
1 .r � RO/; � � � ; �O

nO
.r � RO/

�
;

where RH1 , RH2 and RO denote the positions in R
3 of the hydrogen nuclei and of

the oxygen nucleus respectively.
To better understand the geometric nature of the discretized Hartree-Fock model,

let us assume that the family .��/1���Nb is orthonormal. The discretized Hartree-
Fock model can be written in two different ways:
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• molecular orbital formulation

EHF
0;X D inf

˚
EHF.CCT /; C 2 C

�
; (18)

where

EHF.D/ D Tr.hD/C 1

2
Tr.G.D/D/;

and where

C D ˚
C 2 R

Nb�N ; CT C D IN
�

is a so-called Stiefel manifold;
• density matrix formulation

EHF
0;X D inf

˚
EHF.D/; D 2 P

�
; (19)

where

P D ˚
D 2 R

Nb�Nb ; D D DT ; Tr.D/ D N; D2 D D
�

is the set of rank-N orthogonal projectors of RNb�Nb and is called a Grassmann
manifold.

The equivalence between (18) and (19) comes from the fact that when C varies in
the set C , D D CCT spans P .

The Euler-Lagrange equations associated with (18) can be transformed as in the
fifth statement of Theorem 27 by a unitary transform to diagonalize the Lagrange
multiplier � of the orthonormality constraints (� is an N �N real symmetric matrix).
We thus obtain the discretized Hartree-Fock equations (for the general case of a non-
orthogonal basis)

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

D D
NX

iD1
˚i˚

T
i ;

F D h C G.D/;

F˚i D "iS˚i; "1 � � � � � "N ; ˚T
i ˚j D ıij;

(20)

where "1 � � � � � "N are the lowest N generalized eigenvalues (counting
multiplicities) of the generalized eigenvalue problem

F˚ D "S˚;
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and where

D 2 R
Nb�Nb
sym ; F 2 R

Nb�Nb
sym ; ˚i 2 R

Nb ;

respectively denote the discretizations of the density matrix, of the Fock operator,
of the Hartree-Fock orbitals in the discretization basis .�1; � � � ; �Nb/.

Solutions to the discretized Hartree-Fock problem can be obtained

• either by solving a constrained optimization problem (on a Stiefel or a Grassmann
manifold [31, 49]);

• or by solving the above equations by means of a self-consistent field (SCF)
algorithm (see [16] and references therein).

The design of more efficient methods, in particular for very large molecular systems,
is still an active field of research.

Since the Hartree-Fock ground state energy for the nuclear configuration fRkg is
obtained by solving a constrained optimization problem depending parametrically
on the fRkg, it also falls into the scope of formulas (3) and (4). A simple calculation
shows that the effective forces in the discretized Hartree-Fock model are given by

�rRk WHF
0 .R1; � � � ;RM/ D �Tr .rRk hD/� Tr .rRk SDE/C

X

l¤k

zkzl
Rk � Rl

jRk � Rlj3 ;

where D is the ground state density of the discretized Hartree-Fock model for the
nuclear configuration fRkg obtained by solving (20) and DE is the energy weighted
ground state density matrix defined by

DE D
NX

iD1
"i˚i˚

T
i ;

where the "i’s and the ˚i’s are solutions to (20).

7 Numerical Approximation of Eigenvalues of Self-adjoint
Operators

Let A be a self-adjoint operator on a Hilbert space H with domain D.A/ and form
domain Q.A/, and a the associated quadratic form. The typical example we have in
mind is the three-dimensional Schrödinger operator

H D L2.R3/; D.A/ D H2.R3/; A D �1
2
�C V; V 2 L2unif.R

3/:
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The quadratic form associated with A is defined on the form domain Q.A/ D H1.R3/

by

8.u; v/ 2 Q.A/ � Q.A/; a.u; v/ D 1

2

Z

R3

ru � rv C
Z

R3

Vuv:

Let .Vn/n2N be a sequence of finite-dimensional subspaces of Q.A/ such that

8v 2 Q.A/; inf
vn2Vn

kv � vnkQ.A/ �!
n!1 0:

For each n, we denote by AjVn the self-adjoint operator on Vn defined by

8.un; vn/ 2 Vn � Vn; .AjVnun; vn/H D a.un; vn/:

The spectrum of AjVn is obtained by solving the variational problem

8
<

:

search .un; �n/ 2 Vn � R such that
8vn 2 Vn; a.un; vn/ D �n.un; vn/H
kunkH D 1

The question we would like to investigate in this section is the following:
does �.AjVn/, the spectrum of AjVn , converge to �.A/, the spectrum of A? Quite
surprisingly, the answer to this question is no, in general.

Recall that, according to Theorem 23, if A is bounded below, then the real number

�j.A/ D inf
Wj2Ej

sup
w2Wjnf0g

a.w;w/

kwk2 ;

where Ej is the set of the d-dimensional subspaces of Q.A/, is equal to

• the smallest jth eigenvalue of A if A has at least j eigenvalues lower than
min �ess.A/ (taking multiplicities into account);

• min �ess.A/ otherwise.

From this result, we can infer the following classical results (see e.g. [6, 23]).

Theorem 28 Let A be a bounded below self-adjoint operator on H . Then

8j 2 N
�; �j.AjVn/ #

n!1
�j.A/:

Theorem 29 Let A be a bounded below self-adjoint operator on H , � <

min �ess.A/ a discrete eigenvalue of A of multiplicity m, and " > 0 such that

Œ� � "; �C "�\ �.A/ D f�g :
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Let P WD 1f�g.A/ and Pn WD 1Œ��"=2;�C"=2�.AjVn/. Then, for n large enough,
Rank.Pn/ D m and there exists C 2 RC such that

k.P � Pn/PkB.H ;Q.A// � Ck.1 �˘Q.A/
Vn

/PkB.H ;Q.A//;

k.P � Pn/PnkB.H ;Q.A// � Ck.1 �˘
Q.A/
Vn

/PkB.H ;Q.A//;

max
�n2�.AjVn /\Œ��";�C"�

j�n � �j � Ck.1 �˘
Q.A/
Vn

/Pk2B.H ;Q.A//;

where˘Q.A/
Vn

is the orthogonal projection of Q.A/ on Vn for the Q.A/-scalar product.
As previously mentioned, the spectrum of the discretized operator AjVn does not,

in general, converge to the spectrum of the original operator A. However, everything
goes well if A is a bounded operator with compact resolvent.12

Theorem 30 Assume that A is bounded below with compact resolvent. Then

lim
n!1 �.AjVn/ D �.A/:

More precisely,

• the spectrum of A is purely discrete and the sequence .�j/j2N� of the eigenvalues
of A (counted with their multiplicities) forms a non-decreasing sequence going
to C1;

• let �n
1 � �n

2 � � � � � �n
Nn

denote the eigenvalues of AjVn (counted with their
multiplicities). Then

8j 2 N
�; �n

j � �j for all n 2 N such that Nn � j; and lim
n!1�n

j D �j:

Example 31 Let H D L2.Rd/ and V 2 C0.Rd/ such that lim
jxj!C1

V.x/ D C1
(confining potential). Consider the operator A defined as

D.A/ D
�

u 2 L2.Rd/ j � 1

2
�u C Vu 2 L2.Rd/



;

and

8u 2 D.A/; Au D �1
2
�u C Vu:

12The operator A has a compact resolvent if, for some z 2 
.A/ (and therefore for all z 2 
.A/ by
virtue of the resolvent formula), z � A, considered as a bounded operator on H , is compact.
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Then A is bounded below and has a compact resolvent. The spectrum of A therefore
is an increasing sequence of eigenvalues of finite multiplicities going to C1, and
Theorem 23 can be applied.

If more general situations, two different problems may occur. First, it may happen
that

�.A/ ª lim inf
n!1 �.AjVn/:

This is referred to as the lack of approximation problem. It may also happen that

lim sup
n!1

�.AjVn/ ª �.A/:

This is called the spectral pollution problem.

Example 32 (Lack of Approximation Problem) Let H D L2per..0; 2�/;C/, D.A/ D
H1

per..0; 2�/;C/ and A D �i
d

dx
. The operator A is the momentum operator in one-

dimensional quantum mechanics. Let .ek/k2Z be the basis of the Fourier modes
(ek.x/ D .2�/�1=2eikx), and

Vn D Ce0;n ˚ CQe0;n ˚ Span fek; 1 � jkj � n � 1g ;

where

e0;n WD cos.1=n/e0 C sin.1=n/p
2

en C sin.1=n/p
2

e�n; Qe0;n D 1p
2

en � 1p
2

e�n:

Then

�.A/ D Z and lim
n!1 �.AjVn/ D Z

�;

which reveals a lack of approximation problem: the eigenvalue 0 of the operator A
is missed by the numerical approximation.

The lack of approximation and spectral solutions problems are investigated from
a mathematical point of view in the references [13, 27, 52, 72], from which we have
extracted some important general results.

First, there is no risk of lack of approximation whenever the operator is
semibounded, that is bounded from above, or bounded from below.

Theorem 33 If A is semibounded, then �.A/ � lim inf
n!1 �.AjVn/.

The following nice example of spectral pollution is due to Szegö.

Example 34 Let Vper 2 L1
per..0; 2�/;R/, H D L2per..0; 2�/;C/,

.Au/.x/ D Vper.x/u.x/:
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Vn

0 1
Graph of the function Vper Spectrum of A Spectrum of A|

Fig. 12 A case of spectral pollution (Example 34)

Let Vn D Span fek; jkj � ng, where .ek/k2Z is the Fourier basis. Then (see Fig. 12),

�.A/ D ess-range.Vper/ and lim
n0!1

[

n�n0

�.AjVn/ D CH.�.A//;

where CH.B/ denotes the convex hull of the set B.

Definition 35 A real number � … �.A/ such that there exists a sequence .Vn/n2N of
finite-dimensional subspaces of Q.A/ such that

• 8v 2 Q.A/; inf
vn2Vn

kv � vnkQ.A/ �!
n!1 0

• � 2 lim
n!1�.AjVn/

is called a spurious eigenvalue of A. The set of the spurious eigenvalues of A is
denoted by Spu.A/.

Theorem 36 It holds

Spu.A/ D CH

�
�.A/

R n �d.A/

�
n �.A/:

Let us illustrate the spectral pollution problem and the above theorem on the
more physical case of a perturbed periodic Schrödinger operators on L2.Rd/. Such a
situation notably arises in the modeling of crystals with point defects within density
functional theory (DFT). Consider a periodic lattice R of Rd, and the operator

H D �1
2
�C Vper C W; (21)

with

Vper 2 L1.Rd/R-periodic and W 2 L1.Rd/; lim
jxj!1

W.x/ D 0:

The operator H can be seen as a perturbation of the periodic Schrödinger operator

H0 D �1
2
�C Vper:
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Essential spectrum

Discrete spectrum

Spu(H)

Fig. 13 Sketch of the spectrum of the perturbed periodic Schrödinger operator H defined by (21)
(top) and of the set of the spurious eigenvalues of H (bottom) given by Theorem 36

It can be shown that the multiplication operator by the function W is H0-compact.
It therefore follows from Weyl’s theorem (Theorem 21) that �ess.H/ D �ess.H0/.
Besides, the spectrum of H0 can be studied using Bloch’s theory (see e.g. [68,
Section XIII.16]). It turns out that H0 is bounded below and that its spectrum
is purely continuous (i.e. H0 has no eigenvalues), and consists of bands: it is a
countable union of possibly overlapping closed bounded intervals of R.

In view of the previous results, there is no risk of lack of approximation since H is
bounded below (cf. Theorem 33), but spectral pollution may be a problem (Fig. 13).

Quoting Boulton and Levitin [12], the natural approach of truncating R
d to a

large compact domain and applying the projection method to the corresponding
Dirichlet problem is prone to spectral pollution. Consider for instance the case when
d D 2, R D 2�Z2 (so that a unit cell is Œ��; �/2),

Vper.x; y/ D cos.x/C 3 sin.2.x C y/C 1/;

W.x; y/ D �.x C 2/2.2y � 1/2 exp.�.x2 C y2//;

and the approximation spaces

Vn D ˚
vn 2 C0.R2/ j Supp.vn/ � ˝n; 8Kn 2 T 1

n ; vnjKn 2 P1

�
;

where the computational domain is defined as ˝n D Œ�Ln=2;Ln=2� with Ln ! 1,
and the mesh T 1

n is a uniform R-periodic mesh of R2 with 2n2 triangles per unit
cell (see Fig. 14).

Numerical simulations using Bloch theory show that there is a gap
.�0:341; 0:016/ between the first and second bands of the unperturbed operator
H0

per D ��C Vper, and that H D H0
per C W has exactly one eigenvalue � ' �0:105

in this gap. The spectral pollution problem can be clearly observed on Fig. 15. The
eigenfunction associated with the approximation of the eigenvalue � in the circle on
Fig. 15 is plotted on Fig. 16. The one associated with the spurious approximation in
the square on Fig. 15 is plotted on Fig. 17. We can see that the spurious eigenfunction
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hn Ln

Computational domain

Unit cell

Fig. 14 Computation domain ˝n and mesh T 1

n

Fig. 15 Spectrum of HjVn in the gap for 40 � n � 100

seems to concentrate on the boundary of the simulation domain. A mathematical
explanation of this phenomenon is given in [21] (see also [20]). These calculations
were performed with FreeFEM++ [36].
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IsoValue
–0.390637
–0.352804
–0.31497
–0.277136
–0.239302
–0.201468
–0.163634
–0.125801
–0.0879667
–0.0501329
–0.0122991

  0.0255348
  0.0633686
  0.101202
  0.139036
  0.17687
  0.214704
  0.252538
  0.290372
  0.328205

Fig. 16 Profile of a “true” eigenvector

Let us summarize the main messages of this section:

• variational approximations work well if the operator A is bounded below and has
a purely discrete spectrum;

• if the operator is bounded below (resp. bounded above), variational approxima-
tions allow one to approximate the eigenvalues which are below the bottom (resp.
above the top) of the essential spectrum;

• if the operator is bounded neither from below nor from above, variational
approximations can lead to lack of approximation (some eigenvalues can be
missed);

• variational approximation can give rise to spectral pollution in the “gaps” of the
essential spectrum;

• in the latter two cases, the approximation spaces must be chosen very carefully.
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Iso Value
–0.246176
–0.222618
–0.19906
–0.175502
–0.151944
–0.128386
–0.104828
–0.0812696
–0.0577116
–0.0341536
–0.0105956
0.0129624
0.0365204
0.0600784
0.0836364
0.107194
0.130752
0.15431
0.177868
0.201426

Fig. 17 Profile of a “spurious” eigenvector
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Accurate Computations and Applications
of Some Classes of Matrices

J.M. Peña

Abstract Performing an algorithm with high relative accuracy is a very desirable
goal. High relative accuracy means that the relative errors of the computations
are of the order of machine precision, independently of the size of the condition
number. This goal is difficult to assure although in recent years there have been
some advances, in particular in the field of Numerical Linear Algebra. Up to now,
computations with high relative accuracy are guaranteed only for a few classes of
matrices, mainly for some subclasses of M-matrices and for some subclasses of
totally positive matrices. Previously, a reparametrization of the matrices is needed.
We review this procedure related with the high relative accuracy computations of
these matrices. We also present some recent applications of the two classes of
matrices mentioned previously. On the one hand, applications of M-matrices to the
linear complementarity problem. On the other hand, applications of totally positive
matrices to Computer Aided Geometric Design.

1 Introduction

This paper surveys some recent advances on high relative accuracy when working
with some classes of matrices. Performing an algorithm with high relative accuracy
(HRA) is a very desirable goal. Recent research in Numerical Linear Algebra has
shown that certain classes of matrices allow us to perform many computations
to HRA, independently of the size of the condition number. For instance, the
computation of their singular values, eigenvalues or inverses. These classes of
matrices are defined by special sign or other structure and require to know some
natural parameters to HRA, and they are related to some subclasses of P-matrices.
Let us recall that a square matrix is called a P-matrix if all its principal minors are
positive (the principal minors use the same rows and columns). Subclasses of P-
matrices with many applications are the nonsingular totally positive matrices and
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the nonsingular M-matrices. Some recent applications of these matrices are also
recalled in this paper.

Let us now present the layout of the paper. Section 2 recalls some basic concepts
related with the errors obtained when computing with floating point arithmetic. In
general, the forward error bound (difference between the computed and the exact
solution) is obtained through the backward error and the condition number of our
problem. However, in some problems it is possible to find a parametrization of
the data and an algorithm leading to small forward error bounds in spite of a bad
conditioning with its initial parametrization. In these cases, we can assure HRA.
We mention simple algorithms that cannot be computed with HRA and simple
structured classes for which we cannot guarantee computations with HRA. We also
present a simple sufficient condition (NIC: no inaccurate cancellation) to assure that
an algorithm can be performed with HRA. The remaining sections deal with classes
of matrices for which an adequate parametrization permits NIC algorithms.

Section 3 presents the class of P-matrices and some subclasses of P-matrices (see
[86]). In a Linear Complementarity (LC) problem, there exists a unique solution
if and only if the associated matrix is a P-matrix. We shall also present some
subclass of P-matrices, including the class of nonsingular M-matrices (matrices
with nonpositive off-diagonal entries and nonnegative inverse). M-matrices present
important applications in Numerical Analysis, dynamic systems, Economy or Opti-
mization (including the LC problem mentioned above). Several characterizations
of nonsingular M-matrices are recalled. We also present other related classes
of matrices such as diagonally dominant matrices and H-matrices (which are
generalized diagonally dominant matrices). Finally, we recall the LC problem and
we recall some recent error bounds for this problem obtained when the associated
matrix A is an H-matrix with positive diagonal entries, which are valid in particular
when A is a nonsingular M-matrix. Let us also mention that error bounds for the
LC problem have been improved for some subclasses of nonsingular M-matrices
(see [50, 51]) and have also obtained for other subclasses of M-matrices different of
nonsingular M-matrices (see [47, 49, 52]).

Section 4 considers one of the classes of matrices for which algorithms with
HRA have been obtained: the class of diagonally dominant M-matrices. First we
recall the important concept of rank revealing decomposition. Recall that if we have
a rank revealing decomposition of a matrix A with HRA, then we can apply the
results of [39] to derive algorithms for finding the singular values of A with HRA.
In the case of a diagonally dominant M-matrix, an LDU-decomposition obtained
with an adequate pivoting strategy will provide the rank revealing decomposition.
We recall several ways of obtaining such LDU-factorization with HRA and how the
pivoting strategy can be implemented in a very economic way.

A matrix is said to be totally positive (TP) if all its minors are nonnegative.
These matrices present important applications (see [8, 43, 46, 53, 64, 91]) in
many fields such as Approximation Theory, Economics, Combinatorics, Mechanics,
Statistics, Differential Equations or Computer Aided Geometric Design (CAGD).
Section 5 presents TP matrices and considers some problems related with their
parametrization to obtain algorithms with HRA. There are many remarkable
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properties of TP matrices, such as spectral properties or variation diminishing
properties. However, the important property in the context of accurate computations
is their bidiagonal factorization. We recall the history of this factorization and its
role to parametrize nonsingular TP matrices. Given the bidiagonal factorization of
a nonsingular TP matrix with HRA, then one can derive algorithms with HRA to
obtain all eigenvalues, all singular values and even the inverse of the matrix. In order
to construct the bidiagonal factorization of a TP matrix, Neville elimination can be
used. Neville elimination is a procedure to create zeroes in a matrix alternative to
Gaussian elimination. The elementary operations of Neville elimination always add
to a row a multiple of the previous one, instead of a multiple of the pivot row as in
Gaussian elimination. Neville elimination allows us to check if a given matrix is TP
with a computational cost similar to that Gaussian elimination (see [55] and [87]).
Section 5.1 presents Neville elimination and shows how it can be used to obtain the
bidiagonal factorization of a nonsingular TP matrix. In fact, we provide an explicit
bidiagonal factorization of a nonsingular TP matrix in terms of the multipliers and
diagonal pivots of the Neville elimination. Error analysis of Neville elimination has
been considered in [4, 5] and [6]. In Sect. 5.2 we show how to extend the accurate
computation for nonsingular TP matrices to the larger class of signed bidiagonal
decomposition (SBD) matrices, which contains nonsingular TP matrices as well as
their inverses.

Section 6 shows some applications of TP matrices to the field of CAGD.
We recall that shape preserving representations of curves are associated with
(normalized) totally positive bases, which are bases such that their collocation
matrices are (stochastic) TP (see [81]). We also recall corner cutting algorithms,
which form the main source of algorithms in CAGD and that present a matrix
form as a bidiagonal factorization. Other important applications of tTP matrices to
CAGD is related with the problem of finding bases with optimal shape preserving
properties (which correspond to the concept of normalized B-bases) and with the
problem of recognizing normalized totally positive bases (and so, shape preserving
representations). As for this last problem, we have a shape preserving representation
(which would be associated to a normalized totally positive basis) if the matrix
of change of basis with respect to the normalized B-basis of the space is totally
positive. So, checking the total positivity of a unique matrix implies the total
positivity of the basis and so of its infinite collocation matrices.

Examples of normalized B-bases are the Bernstein basis and the B-spline basis.
Normalized B-bases satisfy more optimal properties (see [18, 24]). In the particular
case of the Bernstein basis, we also have optimal conditioning of its collocation
matrices with respect to the collocation matrices of another normalized totally
positive basis (see [27]). As for the important problem of the numerical evaluation of
curves and surfaces in CAGD, B-bases also present important advantages. In fact,
B-bases and beyond Total Positivity, more general bases present optimal stability
properties for the evaluation among all bases of nonnegative functions (see [72, 82–
84]). The stability of the corresponding evaluation algorithms has been also deeply
studied (see [13, 14, 23, 25, 26, 28–30, 33, 35, 73, 88, 89]).
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It is well known that, if we have the bidiagonal decomposition BD.A/ of a
nonsingular TP matrix with HRA, then we can perform many computations of A
with HRA, such as computing its inverse or computing its eigenvalues or its singular
values (cf. [68]). Therefore, the entries of the bidiagonal factorization (17) are
the adequate parameters for nonsingular TP matrices. There are several subclasses
of nonsingular TP matrices for which this factorization can be obtained to HRA
(and so, the computations mentioned previously, too). For instance, the mentioned
algebraic computations can be performed with HRA for the following subclasses of
TP matrices: Vandermonde positive matrices [38], Bernstein-Vandermonde matrices
[74], Said-Ball-Vandermonde matrices [75], Pascal matrices [7], Jacobi-Stirling
matrices [32], some rational collocation matrices [31], q-Bernstein-Vandermonde
matrices [34] (these last three cases are considered in Sect. 7 and Schoenmakers-
Coffey matrices [36].

Rational Bernstein bases play a very important role in CAGD and their collo-
cation matrices are called rational Bernstein-Vandermonde matrices. In Sect. 7.1
we present the construction of the bidiagonal factorization of rational Bernstein-
Vandermonde matrices with HRA.

The basis of q-Bernstein polynomials has been introduced recently with some
advantages for the curve design. Its collocation matrices are called q-Bernstein-
Vandermonde matrices. In Sect. 7.2 we present the construction of the bidiagonal
factorization of conversion of a q-Bernstein-Vandermonde matrix with HRA, and
we show how it can be used to compute its inverse or its eigenvalues and singular
values with HRA.

Finally, in Sect. 7.3 we consider Jacobi-Stirling matrices, which play an impor-
tant role in Combinatorics. We present the construction of the bidiagonal factoriza-
tion of with HRA.

2 Errors and High Relative Accuracy

If x is a real number that can be calculated through an algorithm, let us denote
by Ox the corresponding computed number with floating point arithmetic. Then the
absolute error performed to compute Ox is given by Eabs.Ox/ D jx � Oxj and the
corresponding relative error when x ¤ 0 is

Erel.Ox/ D jx � Oxj
jxj :

Analogously, if x is a real vector that can be calculated through an algorithm, let us
denote by Ox the corresponding computed vector with floating point arithmetic. Then
the relative error performed to compute Ox (with x a nonzero vector) is given by

Erel.Ox/ D kx � Oxk
kxk :
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However, if x has nonzero components and we do not want to miss the computed
error corresponding to the components of x with least absolute value, then we can
consider a componentwise relative error given by maxi

jxi� Oxij
jxij .

Since we do not know the exact error performed with our computations, it is
convenient to try to derive upper bounds of this error, usually known as forward
error bounds. However, it is usually difficult to obtain directly such bounds. An
alternative approach that has been very successful in the field of Numerical Linear
Algebra and other fields tries to obtain the forward error bounds through the
backward errors. Let us introduce this last concept. This alternative approach
considers that our computed solution is the exact solution of a perturbed problem,
and the backward error measures the distance between the perturbed problem and
the initial problem. For instance, consider y D f .x/, a continuous real function, and
Oy a numerical approximation to f at a point x. Then let us consider the set of values
x C 4x for which Oy is the exact value:

Oy D f .x C 4x/;

and we consider the least j 4 xj, which is called backward error. If for all x, the
value j 4 xj is small (in the context of our problem), then we say that our method
is backward stable. Backward stability plays an important role for designing a good
algorithm.

It is well known that the growth factor of an algorithm is an indicator of its
stability (cf. [58]). The growth factor of a numerical algorithm is usually defined
as the quotient between the maximal absolute value of all the elements that occur
during the performance of the algorithm and the maximal absolute value of all the
initial data.

Backward and forward errors are related by the conditioning of the problem,
which measures the effect of data perturbations on the solution of the problem.

In general, when for a given problem we have defined the corresponding forward
error, backward error and the condition number, one tries to prove the relation:

forward error � condition number � backward error;

which allows us to derive a forward error bound through the backward error.
Although the computed solution has a small backward error, it can be amplified
by the condition number leading to a large forward error. So, in contrast to the
backward error, which depends of the used method, the conditioning can become an
intrinsic cause to obtain a nice forward error bound. However, in some problems it
is possible to find a parametrization of the data and an algorithm leading to small
forward error bounds in spite of a bad conditioning with its initial parametrization.
The desired goal is to guarantee high relative accuracy (HRA). We say that we have
performed an algorithm with HRA if the following formula holds:

relative forward error � Ku; for some constant K;
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where u is the unit roundoff.
Is it always possible to guarantee HRA for a given problem? The answer is NO.

An example of a simple problem for which an HRA algorithm cannot be found is
provided by the evaluation of three real numbers x C y C z (see [40]). We have
announced that for some structured classes of matrices, HRA algorithms can be
found. However, this is not always possible. For instance, accurate linear algebra
for the problem of calculating determinants or minors is impossible on the class of
Toeplitz matrices (see Corollaries 3.43 and 3.45 of [40]). Let us recall that a Toeplitz
matrix B has the following simple structure:

B D

0
BBBBBBB@

a0 a1 � � � an�2 an�1
a�1 a0

: : : an�2
:::

: : :
: : :

: : :
:::

a�nC2
: : :

: : : a1
a�nC1 a�nC2 � � � a�1 a0

1
CCCCCCCA

:

There exists a sufficient condition to assure the HRA of an algorithm that
we now recall. Given an algorithm using only additions of numbers of the same
sign, multiplications and divisions, and assuming that each initial real datum is
known to HRA, then it is well-known that the output of that algorithm can be
computed to HRA (cf. [39, p. 52]). Moreover, in (well-implemented) floating point
arithmetic HRA is also preserved even when we perform true subtractions when
the operands are original (and so, exact) data (cf. p. 53 of [39]). So, the sufficient
condition to assure the HRA of an algorithm is satisfied if it only uses additions of
numbers of the same sign, multiplications, divisions and subtractions (additions of
numbers of different sign) of the initial data. This condition is called “no inaccurate
cancellation” (NIC).

In order to find algorithms satisfying the NIC condition for some classes of
matrices, an idea that has played a crucial role in some recent works has been the
need to reparametrize matrices belonging to these special classes. This topic will be
considered in the following sections.

3 P-Matrices, M-Matrices, Diagonal Dominance
and Applications to LC Problems

Recent research in Numerical Linear Algebra has shown that certain classes of
matrices allow us to perform many computations to HRA, independently of the
size of the condition number. For instance, the computation of their singular values,
eigenvalues or inverses. These classes of matrices are defined by special sign or
other structure and require to know some natural parameters to HRA, and they
are related to some subclasses of P-matrices. Let us recall that a square matrix is
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called a P-matrix if all its principal minors are positive (the principal minors use the
same rows and columns). Subclasses of P-matrices with many applications are the
nonsingular TP matrices and the nonsingular M-matrices. Usually, accurate spectral
computation (eigenvalues, singular values) or accurate inversion is assured when
an accurate matrix factorization with a suitable pivoting is provided. For instance,
the bidiagonal decomposition in the case of TP matrices (see [68]) or an LDU
factorization after a symmetric pivoting in the case of diagonally dominant matrices
(cf. [37, 85]).

Let us now introduce some other classes of matrices used in this section. A real
matrix with nonpositive off-diagonal entries is called a Z-matrix. We say that a
matrix A D .aij/1�i;j�n is (row) diagonally dominant (resp., strictly (row) diagonally
dominant) if, for each i D 1; : : : ; n, jaiij � P

j¤i jaijj (reps., jaiij > P
j¤i jaijj). If

AT is row diagonally dominant, then we say that A is column diagonally dominant.
Given a matrix M D .mij/1�i;j�n, its comparison matrix QM D . QMij/1�i;j�n is the
Z-matrix defined by mii WD jmiij and mij WD �jmijj if i ¤ j, 1 � i; j � n. Let
us recall that if a Z-matrix A can be expressed as A D sI � B, with B � 0 and
s � 
.B/ (where 
.B/ is the spectral radius of B), then it is called an M-matrix.
Let us also recall that a Z-matrix A is a nonsingular M-matrix if and only if A�1
is nonnegative. Nonsingular M-matrices have important applications, for instance,
in iterative methods in numerical analysis, in the analysis of dynamical systems, in
economics and in mathematical programming. Finally, we say that a matrix is an
H-matrix if its comparison matrix is a nonsingular M-matrix.

Nonsingular M-matrices have many equivalent definitions. In fact, Berman and
Plemmons (see Theorem 2.3 in Chap. 6 of [15]) list 50 equivalent definitions. We
shall use the following equivalent definitions:

Definition 1 Let A be a real n � n matrix with nonpositive off-diagonal elements.
Then the following concepts are equivalent:

(i) A is an M-matrix.
(ii) A�1 is nonnegative.

(iii) The principal minors of A are strictly positive.
(iv) Ax � 0 implies x � 0 for all x 2 Rn.

A remarkable property of P-matrices is that the linear complementarity problem
has always a unique solution if and only if the associate matrix M is a P-matrix. Let
us now present the linear complementarity (LC) problem. The LC problem consists
of finding vectors x 2 Rn satisfying

Mx C q � 0; x � 0; xT .Mx C q/ D 0; (1)

where M is an n � n real matrix and q 2 Rn. We denote this problem by LCP(M; q)
and its solutions by x�. Many problems can be posed in the form (1). For instance,
problems in linear and quadratic programming, the problem of finding a Nash
equilibrium point of a bimatrix game or some free boundary problems of fluid
mechanics (see Chap. 10 of [15, 77] and [21], and references therein).
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It is well-known that an H-matrix with positive diagonals is a P-matrix (see, for
instance, Theorem 2.3 of Chap. 6 of [15]) and that a strictly diagonally dominant
matrix is an H-matrix. In [77], error bounds for kx � x�k were derived when M
in (1) is a P-matrix. When M in (1) is an H-matrix with positive diagonals, sharper
error bounds were obtained in [20], as we now recall.

Let M be an H-matrix with positive diagonal entries. Since M is a P-matrix, we
can apply the third inequality of Theorem 2.3 of [20] and obtain for any x 2 Rn the
inequality:

kx � x�k1 � maxd2Œ0;1�nk.I � D C DM/�1k1kr.x/k1;

where I is the n � n identity matrix, D the diagonal matrix D D diag.di/ with
0 � di � 1 for all i D 1; : : : ; n, x� is the solution of the LCP(M; q) and r.x/ WD
min.x;Mx C q/, where the min operator denotes the componentwise minimum of
two vectors.

By (2.4) of [20], given in Theorem 2.1 of [20], when M D .mij/1�i;j�n is an
H-matrix with positive diagonals, then

maxd2Œ0;1�n k.I � D C DM/�1k1 � k QM�1max.�; I/k1; (2)

where QM is the comparison matrix of M, � is the diagonal part of M (� WD
diag.mii/) and max.�; I/ WD diag.maxfm11; 1g; : : : ;maxfmnn; 1g/.

Computing the bound (2) requires O.n3/ elementary operations because it
involvers the inverse of an n � n matrix. As we shall see, the bound of the following
theorem (which corresponds to Theorem 2.1 of [48]) can be obtained with lower
computational cost than the bound (2). Moreover, it can be much smaller than (2) as
we show later.

Theorem 2 Let us assume that M D .mij/1�i;j�n is an H-matrix with positive
diagonal entries. Let ND D diag.Nd1; : : : ; Ndn/, Ndi > 0, for all i D 1; : : : ; n, be a
diagonal matrix such that M ND is strictly diagonally dominant by rows. For any
i D 1; : : : ; n, let Ň

i WD mii Ndi �P
j¤i jmijj Ndj. Then

maxd2Œ0;1�n k.I � D C DM/�1k1 � maxfmaxifNdig
minif Ň

ig
;

maxifNdig
minifNdig

g: (3)

A first way to obtain the matrix ND of Theorem 2 can be described as follows.
We form QM, the comparison matrix of M, and consider any positive vector p > 0

(for instance, p D e WD .1; 1; : : : ; 1/T). Since QM is an M-matrix, QM�1 � 0 and
then system QM Nd D p has the nonnegative solution Nd D QM�1p and then we take
ND D diag.Nd1; Nd2; : : : ; Ndn/. Observe that Ň

i of Theorem 2 coincides with the i-
th component of p. Since this procedure involves the solution of a linear system
associated to the n � n matrix QM, it requires O.n3/ elementary operations and
so, the complexity is similar to that of the bound (2). However there is a second
alternative to obtain our bound (3) of Theorem 2 with a complexity of lower order.
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There are several recent iterative methods to compute the matrix ND with at most
O.n2/ elementary operations per iteration (see [1, 70] and [80]), which lead to a
computational cost much lower than computing QM�1 in (2), in particular in the case
of sparse matrices. Then, we can observe that the vector Ň WD . Ň

1; : : : ; Ň
n/

T satisfies
Ň D QM NDe and so its calculation requires O.n2/ additional elementary operations. In

conclusion, this alternative procedure has less computational cost than that of (2.4)
of [20].

If the matrix M of Theorem 2 is strictly diagonally dominant by rows, then we
can take ND D I and so formula (3) becomes

maxd2Œ0;1�n k.I � D C DM/�1k1 � maxf 1

minif Ň
ig
; 1g:

4 HRA for Diagonally DominantM-Matrices

A crucial tool to derive accurate algorithms for the computation of the singular
values of a matrix is provided by the concept of rank revealing decomposition. Let
us recall that a rank revealing decomposition of a matrix A is defined in [39] as a
decomposition A D XDYT , where X;Y are well conditioned and D is a diagonal
matrix. In [39] Demmel et al. showed that the singular value decomposition can be
computed accurately and efficiently for matrices possessing accurate rank revealing
decompositions.

Let us also recall that an idea that has played a crucial role in some recent works
on accurate computations has been the need to reparametrize matrices belonging to
some special classes. In the class of M-matrices, the natural parameters that permit
obtaining accurate and efficient algorithms are the off-diagonal entries and the row
sums (or the column sums): see [2, 3] and [37], where the class of M-matrices
row diagonally dominant was considered. Furthermore, the parameters can have
a meaningful interpretation when the matrix arises in a “real” problem. In the field
of digital electrical circuits, the column sums are given by the quotient between the
conductance and capacitance of each node (see [2]).

An algorithm of [3] computed to HRA the LDU factorization of an n � n
row diagonally dominant M-matrix A when the off-diagonal entries and the row
sums are given. The trick was to modify Gaussian elimination to compute the off-
diagonal entries and the row sums of each Schur complement without performing
subtractions. On the other hand, let us recall that a symmetric pivoting leading
to an LDU-decomposition of A is equivalent to the following factorization of A:
PAPT D LDU, where P is the permutation matrix associated to the pivoting
strategy. Symmetric complete pivoting was used in [37] in order to obtain well
conditioned L and U factors because U is row diagonally dominant and the off-
diagonal entries of L have absolute value less than 1. This factorization is a special
case of a rank revealing decomposition. To implement symmetric complete pivoting,
the algorithm in [37] computes all the diagonal entries and all Schur complements
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and this increases the cost in O.n3/ flops with respect to standard Gaussian elim-
ination. In [85] another symmetric pivoting strategy (called diagonally dominant
pivoting) was used, also with a subtraction-free implementation and a similar
computational cost, but leading to both triangular matrices L and U column and
row diagonally dominant, respectively. In [10], an accurate algorithm for the same
LDU-decomposition of [85], but requiring O.n2/ elementary operations beyond the
cost of Gaussian elimination, is presented. This method is also valid for diagonally
dominant matrices satisfying certain sign patterns: with off-diagonal entries of the
same sign or satisfying a chessboard pattern. The problem of computing an accurate
LDU decomposition of diagonally dominant matrices has been solved by Ye in
[95]. Finally, for a class of n � n nonsingular almost row diagonally dominant Z-
matrices and given adequate parameters, an efficient method to compute its LDU
decomposition with HRA is provided in [12]. It adds an additional cost of O.n2/
elementary operations over the computational cost of Gaussian elimination.

Now we recall the accurate algorithm of [10] mentioned above. We start with
some notations and definitions. As usual, an LDU factorization of a square matrix
A D LDU means that L is a lower triangular matrix with unit diagonal (unit lower
triangular), D is a diagonal matrix and U is an upper triangular matrix with unit
diagonal (unit upper triangular). Given k 2 f1; 2; : : : ; ng, let ˛; ˇ be two increasing
sequences of k positive integers less than or equal to n. Then we denote by AŒ˛jˇ�
the k � k submatrix of A containing rows numbered by ˛ and columns numbered
by ˇ. For principal submatrices, we use the notation AŒ˛� WD AŒ˛j˛�. Gaussian
elimination with a given pivoting strategy, for nonsingular matrices A D .aij/1�i;j�n,
consists of a succession of at most n � 1 major steps resulting in a sequence of
matrices as follows:

A D A.1/ �! QA.1/ �! A.2/ �! QA.2/ �! � � � �! A.n/ D QA.n/ D DU; (4)

where A.t/ D .a.t/ij /1�i;j�n has zeros below its main diagonal in the first t�1 columns

and DU is upper triangular with the pivots on its main diagonal. The matrix QA.t/ D
.Qa.t/ij /1�i;j�n is obtained from the matrix A.t/ by reordering the rows and/or columns

t; tC1; : : : ; n of A.t/ according to the given pivoting strategy and satisfying Qa.t/tt ¤ 0.
To obtain A.tC1/ from QA.t/ we produce zeros in column t below the pivot element
Qa.t/tt by subtracting multiples of row t from the rows beneath it. If the matrix A is
singular, in this paper we allow the resulting matrices in (4) to have Qa.t/tt D 0, but (as
we shall see later) in this case its corresponding column and row are null,

A.t/Œt; : : : ; njt� D 0; A.t/Œtjt; : : : ; n� D 0; (5)

and we continue the elimination process with A.tC1/Œt C 1; : : : n� D A.t/Œt C 1; : : : n�.
We say that we carry out a symmetric pivoting strategy when we perform

the same row and column exchanges, that is, PAPT D LDU, where P is the
associated permutation matrix. Let us present several symmetric pivoting strategies
for row diagonally dominant matrices that either have been used in other papers or
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will be used in this paper. Since row diagonal dominance is inherited by Schur
complements in the Gaussian elimination, Gaussian elimination with symmetric
pivoting preserves it, that is, all matrices A.t/ of (4) are row diagonally dominant
(and, in particular, DU and so U). Therefore, it is sufficient to describe the choice
of the first pivot Qa11 D akk. On the one hand, the symmetric pivoting that selects
the maximum entry on the diagonal for the pivot will be equivalent to complete
pivoting and was used in [37]. It leads to U row diagonally dominant, and so well
conditioned, and to L, which is usually well conditioned as well. On the other hand,
since A is row diagonally dominant, we have

nX

iD1
jaiij �

nX

iD1

nX

jD1;j¤i

jaijj;

and there exists k such that column k is diagonally dominant, that is,

jakkj �
nX

iD1;i¤k

jaikj: (6)

The symmetric pivoting strategy that chooses the first pivot Qa11 D akk was called
in [95] column diagonal dominance pivoting. In [85] the first pivot Qa11 D akk

was chosen so that it gives the most diagonal dominance in (6) (i.e., the largest
difference between the absolute value of a diagonal entry and the sum of the absolute
values of the off-diagonal entries of the corresponding row), and this strategy is a
particular case of column diagonal dominance pivoting. In this paper we shall use a
strategy that we call weak column diagonal dominance pivoting: it is a symmetric
pivoting strategy that chooses the first pivot Qa11 D akk satisfying (6), and without
the necessity of being nonzero. If Qa11 D 0, then its row and column diagonal
dominance implies that its row and column are null, and we continue the elimination
process with A.2/Œ2; : : : ; n� D AŒ2; : : : ; n� (as we had announced for the t-th pivot
in (5)). In order to uniquely determine this strategy, we can choose the first index k
satisfying (6).

Column diagonal dominance pivoting and weak column diagonal dominance
pivoting lead to U row diagonally dominant and to L column diagonally dom-
inant. Then both triangular matrices are always well conditioned. In fact, since
L is unit lower triangular column diagonally dominant, we know by Peña [85,
Proposition 2.1, Remark 2.2] that

�1.L/ D kLk1 kL�1k1 � n2 and �1.L/ D kLk1 kL�1k1 � 2n: (7)

Analogously, with U unit upper triangular and row diagonally dominant, we have

�1.U/ � 2n and �1.U/ � n2:
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In contrast, symmetric complete pivoting leads to L that is usually well con-
ditioned, but it is not necessarily column diagonally dominant. Finally, let e WD
.1; : : : ; 1/T and let

r WD Ae (8)

be the vector of row sums.
It is well known (cf. [3]) that we can carry out the Gaussian elimination of a

diagonally dominant M-matrix with HRA because there is no subtraction involved
throughout the process. Summarizing the process of [3, Algorithm 1], it starts
with (8) and at each step of the Gaussian elimination it is only necessary to update
the vector r. Diagonal entries of the matrix are not computed at each step (except
the pivot) and so, the computational cost is of order O.n2/ beyond the cost of
Gaussian elimination. We can also conclude that it is possible to compute the inverse
of a nonsingular diagonally dominant M-matrix, A, with HRA, by the following
procedure. We obtain the LDU factorization of A accurately. Then, it is well known
(cf. [63, Sect. 13.2]) that we can compute the inverse of L and U without subtraction
in the process. Thus, we can compute A�1 D U�1D�1L�1 with HRA.

If A is a row and column diagonally dominant M-matrix, then no pivoting strategy
is necessary to compute an accurate LDU factorization with L and U column and
row diagonally dominant, respectively, because L also inherits through Gaussian
elimination the column diagonal dominance from A. In fact, Gaussian elimination
can be applied without row or column exchanges and so, for each t D 1; : : : ; n � 1,
A.t/ D QA.t/ (see (4)) and all matrices A.t/Œt; : : : ; n� are row and column diagonally
dominant. In conclusion, given the off-diagonal elements of a row and column
diagonally dominant M-matrix A D .aij/1�i;j�n and the vector r of row sums
(see (8)), we can calculate with HRA the LDU decomposition of A, where L is
column diagonally dominant and U is row diagonally dominant. Moreover, this
computation is subtraction-free and so can be performed with HRA.

Now we provide an accurate and efficient method for obtaining the LDU
factorization (with L column diagonally dominant and U row diagonally dominant)
of a row diagonally dominant M-matrix provided its off-diagonal entries and its
row sums. Using AT instead of A, we have also an accurate method for obtaining
the LDU factorization of a column diagonally dominant M-matrix provided its off-
diagonal entries and its column sums. The comparison with the computational cost
of the methods presented in [37] and in [85, Sect. 4] can be seen in Remark 3.1
of [10]. This method produces a matrix U with a similar conditioning as in those
papers because it is also row diagonally dominant and a matrix L that can be better
conditioned than that of [37] (as the matrices of [10] show) and satisfies bounds (7)
because it is column diagonally dominant, as commented previously. We start by
presenting our algorithm (which corresponds to Algorithm 1 of [10]) to compute
the LDU decomposition of a row diagonally dominant M-matrix.

In output, the algorithm produces the factorization PAPT D LDU (nontrivial
entries of U are stored in N D .nij/1�i<j�n).

The following result, which corresponds to Theorem 3.1 of [10] proves the
interesting properties of the previous algorithm.
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Algorithm 1
Input: A D Œaij� (i ¤ j) and r D Œri� � 0

For i D 1 W n
pi D Pn

jD1;j¤i aij

aii D ri � pi

si D Pn
jD1;j¤i aji

hi D aii

End For
Choose an interchange permutation P1 such that A D P1APT

1 satisfies h1 � �s1 , where h D P1h,
s D P1s
Initialize: P D P1; L D I; D Ddiag.di/

n
iD1 Ddiag.h1; 0 : : : ; 0/; r D P1r

For k D 1 W .n � 1/

If dk D 0

For i D .k C 1/ W n
lik D 0

nki D 0

End For
Else

For i D .k C 1/ W n
lik D aik=akk

nki D aki=akk

ri D ri � likrk

hi D hi � nkihk

si D si � nkisk

For j D .k C 1/ W n
If i ¤ j

aij D aij � likakj

End If
End For

End For
End If
Choose interchange permutation P2 such that A D P2APT

2 satisfies hkC1 � �skC1 , where
h D P2h, s D P2s

P D P2P; L D P2LP2; r D P2r
pkC1 D Pn

jDkC2 akC1;j

akC1;kC1 D rkC1 � pkC1

dkC1 D akC1;kC1

End For

Theorem 3 Given the off-diagonal elements of a row diagonally dominant M-
matrix A D .aij/1�i;j�n and the vector r of row sums (see (8)), we can compute, by
Algorithm 1, with HRA the LDU decomposition of PAPT, where P the permutation
matrix associated to a weak column diagonal dominance pivoting strategy applied
when performing Gaussian elimination of A and such that L is column diagonally
dominant and U is row diagonally dominant. Moreover, this computation is
subtraction-free and can be performed with a computational cost that exceeds that
of the Gaussian elimination by at most .7n2 � 11n C 6/=2 additions, n.n � 1/

multiplications, n.n � 1/=2 quotients and n.n � 1/=2 comparisons.
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The method of the previous theorem has less computational cost than those of
[37] (symmetric complete pivoting) and [85, Sect. 4] because it requires O.n2/
(instead of O.n3/) elementary operations beyond the cost of Gaussian elimination.
The reason for the lower computational cost comes from the fact that the method of
Theorem 3 does not require, for each t > 1, the calculation of all diagonal elements
a.t/jj (j � t) of the matrices A.t/Œt; : : : ; n� in order to choose the pivot Qa.t/tt . However, in
the case of symmetric complete pivoting, Ye suggested in [95, p. 2202], that we can
use the diagonal entries as computed by standard Gaussian elimination to determine
the pivot and permutation and then compute the pivot a.t/tt . With this procedure,
symmetric complete pivoting also requires O.n2/ elementary operations beyond the
cost of Gaussian elimination, although the possible pivots are not then computed
accurately for the choice.

Theorem 3.1 can be applied to any row diagonally dominant matrix A D
.aij/1�i;j�n satisfying

sign.aij/ � 0; j ¤ i; sign.aii/ � 0; i D 1; : : : ; n; (9)

given its off-diagonal entries and its vector r of row sums (see (8)) and so the method
of [39] allows us to calculate accurately all its singular values. Let us observe that
we can also apply the method of Theorem 3.1 (and so the method of [39] allows
us to calculate accurately all its singular values) to any row diagonally dominant
matrix A satisfying any of the following sign patterns:

sign.aij/ D .�1/iCjC1; j ¤ i; sign.aii/ � 0; i D 1; : : : ; n; (10)

sign.aij/ � 0; j ¤ i; sign.aii/ � 0; i D 1; : : : ; n: (11)

sign.aij/ D .�1/iCj; j ¤ i; sign.aij/ � 0; i D 1; : : : ; n; (12)

assuming that we know its off-diagonal entries and the vector of row sums of
its comparison matrix M .A/. In fact, let us define the diagonal n � n matrix
J D diag.1;�1; : : : ; .�1/n�1/ and observe that J�1 D J and that, if A satisfies (10),
then the matrix J�1AJ D JAJ D M .A/ satisfies (9), has the same singular
values as A and we can calculate them with the method of [39] after obtaining the
accurate LDU factorization of M .A/ by the method of Theorem 3. Analogously, if
A satisfies either (11) or (12), then we apply the procedure of Theorem 3 to �A or
to J.�A/J, respectively. Diagonally dominant matrices with arbitrary sign patterns
were considered in [41] and [95], as commented above.

5 Totally Positive Matrices and Bidiagonal Factorizations

Let us recall that TP matrices are real, nonnegative matrices whose minors are all
nonnegative. They are also called totally nonnegative matrices and they present
many applications to several fields, including CAGD. In the next section we present
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some applications to this last field. If all minors of a matrix are positive, then
the matrix is called strictly totally positive matrix (STP matrix). TP and STP
matrices have a long history and many applications (see [8, 43, 46, 53, 64, 91])
and have been studied mainly by researchers of those applications. In spite of their
interesting algebraic properties, they have not yet received much attention from
linear algebrists, including those working specifically on nonnegative matrices. One
of the aims of the masterful survey [8] by T. Ando, which presents a very complete
list of results on TP matrices until 1986, was to attract this attention, which lead to
a very active research on the properties of these matrices.

The parametrization of TP matrices leading to HRA algorithms is provided by
their bidiagonal factorizations, which are in turn closely related to an elimination
procedure known as Neville elimination. In some papers by M. Gasca and G.
Mühlbach ([54], for example) on the connection between interpolation formulas
and elimination techniques it became clear that what they called Neville elimination
had special interest for TP matrices. It is a procedure to make zeros in a column
of a matrix by adding to each row an appropriate multiple of the precedent one
and had been already used in some of the first papers on TP matrices (see [55]).
However, in [55, 56] and [57] a better knowledge of the properties of Neville
elimination was developed, which permitted to improve many previous results on
those matrices. In this paper we shall use this elimination technique to get the
factorization of a nonsingular TP matrix as a product of bidiagonal matrices. This
provides a useful representation of such matrices which allows us to identify some
important subclasses, as for example that of STP matrices (that is, TP matrices
whose minors are all positive). Under some conditions on the zero pattern of the
bidiagonal matrices that representation is unique.

A direct consequence of the well-known Cauchy-Binet identity for determinants
is that the product of TP matrices is again a TP matrix. Consequently, one of the
topics in the literature of TP matrices has been their decomposition as products
of simpler TP matrices. In particular, in view of applications, the most interesting
factorization seems to be in terms of bidiagonal nonnegative matrices which,
obviously, are always TP matrices. Let us give a brief overview of some of the
different approximations to this question.

Square TP matrices of order n form a multiplicative semigroup Sn, and the
nonsingular matrices of Sn form a semigroup sn of the group of all real nonsingular
square matrices of order n (see [76]). In [71], Loewner used some notions from
the theory of Lie groups which we briefly recall for the study of Sn and sn: If
U.t/ is a differentiable matrix function of the real parameter t in an interval Œ0; t0�,
representing for each t an element of sn, and U.0/ is the identity matrix I (which
belongs to sn), then the matrix . dU.t/

dt /tD0 is called an infinitesimal element of sn:

The first task in [71] was to prove that the set �n of all infinitesimal elements of
sn consists of the Jacobi (i.e., tridiagonal) matrices with nonnegative off-diagonal
elements.
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As in Lie-group theory, it can be shown that if ˝.t/ (0 � t � t0) is any
one-parameter family of elements of �n which is piecewise continuous in t, the
differential equation

dU.t/

dt
D ˝.t/U.t/

has a unique continuous solution U.t/ in sn satisfying U.0/ D I. In this case we say
that U.t0/ is generated by the infinitesimal elements˝.t/ (0 � t � t0). In general, a
semigroup cannot be completely generated by its infinitesimal elements. However,
Loewner proved in [71] that this is not the case for sn. He used the following
reformulation of a result due to Whitney [94].

Let Eij (1 � i; j � : : : ; ng) be the n � n matrix with all elements zero with the
exception of a one at the place .i; j/ and denote Fij.!/ D I C !Eij. Then every
nonsingular TP matrix U can be written as a product

U D U1U2 � � � Un�1DV1V2 � � � Vn�1; (13)

where, for i D 1; 2; : : : ; n � 1,

Ui D Fn;n�1.!i
n;n�1/Fn�1;n�2.!i

n�1;n�2/ � � � FiC1;i.!i
iC1;i/; (14)

Vi D Fn�i;n�iC1.!i
n�i;n�iC1/Fn�iC1;n�iC2.!i

n�iC1;n�iC2/ � � � Fn�1;n.!i
n�1;n/; (15)

with all the !-s nonnegative, and D represents a diagonal matrix with positive
diagonal elements.

Observe that the matrices Ui and Vi are products of bidiagonal elementary TP
matrices but neither Ui nor Vi are bidiagonal and so the above factorization (13) of
U uses n.n � 1/ bidiagonal factors.

The conclusion of [71] is that, by using infinitesimal generators, any nonsingular
TP matrix of order n can be generated from the identity by the solutions of the above
differential equation.

In 1979 Frydman and Singer ([45], Theorem 1) showed that the class of transition
matrices for the finite state time-inhomogeneous birth and death processes coincides
with the class of nonsingular TP stochastic matrices. This result was based upon a
factorization of nonsingular TP stochastic matrices S in terms of bidiagonal matrices
([45], Theorem 1’) similar to (13) without the diagonal matrix D:

S D U1U2 � � � Un�1V1V2 � � � Vn�1; (16)

and with the elementary matrices F scaled to be stochastic. As in (13) the matrices
Ui, Vi are not bidiagonal and (16) contains n.n � 1/ bidiagonal factors. The fact that
those transition matrices for birth and death processes are all had been pointed out
in 1959 by Karlin and Mc Gregor (see [65] and [66]) with probabilistic arguments.
All these results have been surveyed in 1986 by G. Goodman [59], who extended
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them to compound matrices, that is matrices whose elements are the values of the
minors of a certain order m of a given matrix A.

In [22], Remark 4.1, Cryer pointed out that a matrix A is TP if and only if it can
be written in the form

A D
NY

rD1
Lr

MY

sD1
Us

where each Lr (resp. Us) is a TP bidiagonal lower (upper) triangular matrix. In that
remark the author did not give any relation between N; M; and the order n of A.

On the other hand, factorizations of TP matrices as product of bidiagonal
matrices are important in CAGD and, in particular, in corner cutting algorithms.
In [60], Goodman and Micchelli showed that the existence of a corner cutting
algorithm transforming a control polygon of a curve into another one with the same
number of vertices was equivalent to the fact that both polygons were related by
a nonsingular stochastic matrix. The key tool to obtain this result was again (see
[60], Theorem 1) the characterization of a nonsingular TP stochastic matrix of order
n as the product of n � 1 bidiagonal lower triangular stochastic matrices by other
n � 1 matrices which are bidiagonal upper triangular, with an adequate zero pattern.
Observe that in this case the factorization is formed by 2n � 2 bidiagonal matrices
and compare with (16). What has happened is that the set of TP elementary matrices
which appeared in (16), by replacing the factors Ui, Vi by their corresponding
decompositions (14),(15), has been reordered to give rise to a short number of
bidiagonal (in general nonelementary) matrices. In [78], Theorem 3.1, Micchelli and
Pinkus obtained a factorization theorem for rectangular TP matrices as a product
of bidiagonal matrices in order to extend the previous interpretation to general
corner cutting algorithms. For more details related with this matter and for concrete
factorizations associated with corner cutting algorithms to the Bezier polygon, see
[16, 17, 61]. The use of Neville elimination (which will be recalled later) was crucial
to prove the results on optimality obtained in these last two papers.

In conclusion, bidiagonal factorizations of TP matrices have played a crucial
role in their study and applications since several decades ago. More recently, the
bidiagonal factorization has been used to perform accurately many computations
with these matrices (see [68]).

Let us define bidiagonal matrices L.k/, U.k/ by

L.k/ D

0
BBBBBBBBBBBB@

1

0 1

: : :
: : :

0 1

l.k/n�k 1

: : :
: : :

l.k/n�1 1

1
CCCCCCCCCCCCA

;U.k/ D

0
BBBBBBBBBBBB@

1 0

: : :
: : :

1 0

1 u.k/n�k

: : :
: : :

1 u
.k/
n�1

1

1
CCCCCCCCCCCCA

;
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where k D 1; : : : ; n � 1.
In this section we shall consider matrices with bidiagonal decompositions of the

form presented in the following definition.

Definition 4 Let A be a nonsingular n � n matrix. Suppose that we can write A as a
product of bidiagonal matrices

A D L.1/ � � � L.n�1/DU.n�1/ � � � U.1/; (17)

where D D diag.d1; : : : ; dn/, and, for k D 1; : : : ; n � 1, L.k/ and U.k/ are lower and
upper bidiagonal matrices with unit diagonal respectively, with off-diagonal entries
l.k/i WD .L.k//iC1;i and u.k/i WD .U.k//i;iC1, .i D 1; : : : ; n � 1/ satisfying

1. di ¤ 0 for all i,
2. l.k/i D u.k/i D 0 for i < n � k,

3. l.k/i D 0 ) l.k�s/
iCs D 0 for s D 1; : : : ; k � 1 and

u.k/i D 0 ) u.k�s/
iCs D 0 for s D 1; : : : ; k � 1.

Then we denote (17) by BD.A/, a bidiagonal decomposition of A satisfying the
conditions of this definition.

A matrix that can be decomposed in terms of bidiagonal matrices can also admit
many other bidiagonal factorizations (cf. Chap. 6 of [91]). But the next result of [11]
shows that a bidiagonal factorization as in Definition 2.1 is unique.

Theorem 5 If a BD.A/ exists for some matrix A, then it is unique.
The following result provides the unique bidiagonal decomposition of a nonsin-

gular TP matrix and it is a consequence of Theorem 4.2 of [57].

Theorem 6 A nonsingular n �n matrix A is TP if and only if there exists a (unique)
BD.A/ such that

1. di > 0 for all i,
2. l.k/i � 0, u.k/i � 0 for 1 � k � n � 1 and n � k � i � n � 1.

It is well known that, if we have the BD.A/ of a nonsingular tall matrix
with HRA, then we can perform many computations of A with HRA, such as
computing its inverse or computing its eigenvalues or its singular values (cf.
[68]). Therefore, the entries of the bidiagonal factorization (17) are the adequate
parameters for nonsingular TP matrices. There are several subclasses of nonsingular
TP matrices for which this factorization can be obtained to HRA (and so, the
computations mentioned previously, too). For instance, the mentioned algebraic
computations can be performed with HRA for the following subclasses of TP matri-
ces: Vandermonde positive matrices [38], Bernstein-Vandermonde matrices [74],
Said-Ball-Vandermonde matrices [75], Pascal matrices [7], Jacobi-Stirling matrices
[32], some rational collocation matrices [31], q-Bernstein-Vandermonde matrices
[34] (these last three cases will be considered in Sect. 7 and Schoenmakers-Coffey
matrices [36]. The bidiagonal factorization is obtained through an elimination
procedure called Neville elimination and described below.
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Now let us denote by " the vector " D ."1; : : : ; "m/ with "j 2 f˙1g for j D
1; : : : ;m, which will be called a signature.

Definition 7 Given a signature " D ."1; : : : ; "n�1/ and a nonsingular n � n matrix
A, we say that A has a signed bidiagonal decomposition with signature " if there
exists a BD.A/ (unique by Theorem 5) such that

1. di > 0 for all i,
2. l.k/i "i � 0, u.k/i "i � 0 for 1 � k � n � 1 and n � k � i � n � 1.

Bidiagonal decompositions satisfying the properties of Definition 2.1 have been
considered in [11] and [10] and it was proved that the class of matrices satisfying
this definition contains nonsingular TP matrices and their inverses. Moreover, in
[11] it has been shown that if we have the BD.A/ of a matrix with HRA, then we
can perform many computations of A with HRA, assuming that A belongs to the
class of matrices satisfying the previous definition.

5.1 Neville Elimination and Bidiagonal Factorizations

We now present Neville elimination, which provides a constructive way of obtaining
bidiagonal factorizations. Neville elimination is an alternative procedure to Gaus-
sian elimination to eliminate nonzeros in a column of a matrix by adding to each
row a multiple of the previous one (see [55]). If A is a square matrix of order n,
A D .aij/1�i;j�n this elimination procedure consists of at most n � 1 successive
major steps, resulting in a sequence of matrices as follows:

A D A.1/ !eA.1/ ! A.2/ !eA.2/ ! � � � ! A.n/ DeA.n/ D U; (18)

where U is an upper triangular matrix.
The matrix eA.t/ can be obtained by a reordering of the rows of the matrix A.t/,

moving the rows with a zero entry in column t to the bottom such that ea .t/it D 0

for i � t implies thatea .t/ht D 0 for 8 h � i. Besides, A.tC1/ is obtained from eA.t/
eliminating nonzeros in the column t below the main diagonal by adding an adequate
multiple of the ith row to the .i C 1/th for i D n � 1; n � 2; : : : ; t according to the
following formula

a.tC1/ij D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

ea .t/ij ; if 1 � i � j � t;

ea .t/ij � ea .t/it

ea .t/i�1;t
ea.t/i�1;j; if t C 1 � i; j � n andea .t/i�1;t ¤ 0;

ea .t/ij ; if t C 1 � i � n andea .t/i�1;t D 0;

(19)

for all t 2 f1; : : : ; n � 1g.
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The element

pij Dea . j/
ij ; 1 � j � i � n; (20)

is called the .i; j/ pivot of Neville elimination of A. The Neville elimination can be
performed without row exchanges if all the pivots are nonzero. The pivots pii are
called diagonal pivots. Let us notice that when no rows exchanges are needed, then
A.t/ D eA.t/ for all t. If all the pivots pij are nonzero then, by Lemma 2.6 of [55],
pi1 D ai1 for 1 � i � n and

pij D det AŒi � j C 1; : : : ; ij1; : : : ; j�
det AŒi � j C 1; : : : ; i � 1j1; : : : ; j � 1�

(21)

for 1 � j � i � n. The element

mij D

8
ˆ̂<

ˆ̂:

ea . j/
ij

ea . j/
i�1;j

D pij

pi�1;j
; ifea . j/

i�1;j ¤ 0;

0; ifea . j/
i�1;j D 0;

(22)

is called the .i; j/ multiplier of Neville elimination of A, where 1 � j < i � n.
Neville elimination characterizes nonsingular TP matrices, as the following result

shows. It follows from Theorem 4.2 and p. 116 of [57].

Theorem 8 A matrix A is nonsingular TP if and only if the Neville elimination of A
and AT can be performed without row exchanges, all the multipliers of the Neville
elimination of A and AT are nonnegative and all the diagonal pivots of the Neville
elimination of A are positive.

Using the previous result as well as results of results of [56] and [57], we can
describe bidiagonal decompositions of nonsingular TP matrices and their inverses
in terms of the diagonal pivots and multipliers of their Neville elimination and the
multipliers of the Neville elimination of their transposes.

Theorem 9 Let A be a nonsingular TP matrix. Then A and A�1 admit factorizations
in the form

A�1 D G1G2 � � � Gn�1D�1Fn�1 � � � F1 and A D Fn�1 � � � F1DG1 � � � Gn�1;
(23)
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respectively, where Fi and Fi, i 2 f1; : : : ; n�1g, are the lower triangular bidiagonal
matrices given by

Fi D

0

BBBBBBBBBBBBB@

1

0 1
: : :

: : :

0 1

�miC1;i 1

�miC2;i 1
: : :

: : :

�mn;i 1

1

CCCCCCCCCCCCCA

and

Fi D

0
BBBBBBBBBBBBB@

1

0 1

: : :
: : :

0 1

miC1;1 1

miC2;2 1
: : :

: : :

mn;n�i 1

1
CCCCCCCCCCCCCA

;

Gi and Gi, i 2 f1; : : : ; n � 1g, are the upper triangular bidiagonal matrices whose
transposes are given by

GT
i D

0

BBBBBBBBBBBBB@

1

0 1
: : :

: : :

0 1

�emiC1;i 1

�emiC2;i 1
: : :

: : :

�emn;i 1

1

CCCCCCCCCCCCCA
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and

G
T
i D

0
BBBBBBBBBBBBB@

1

0 1
: : :

: : :

0 1

emiC1;1 1

emiC2;2 1
: : :

: : :

emn;n�i 1

1
CCCCCCCCCCCCCA

;

and D the diagonal matrix diag. p11 : : : ; pnn/. The entries mij,emij are the multipliers
of the Neville elimination of A and AT, respectively, and the entries pii are the
diagonal pivots of A.

The results obtained until now assuring accurate computations with some
subclasses of TP matrices have used the multipliers of Neville elimination as a
natural parametrization of the matrices (cf. [7, 31, 32, 34, 36, 38, 67, 68, 74, 75]).

5.2 HRA for SBD Matrices

We finish this section by introducing the class of matrices analyzed in [11] and that
will generalize the class of nonsingular TP matrices. For this class of matrices, HRA
can be constructed.

Definition 10 Given a signature " D ."1; : : : ; "n�1/ and a nonsingular n � n matrix
A, we say that A has a signed bidiagonal decomposition with signature " if there
exists a BD.A/ (unique by Theorem 5) such that

1. di > 0 for all i,
2. l.k/i "i � 0, u.k/i "i � 0 for 1 � k � n � 1 and n � k � i � n � 1.

We say that a matrix A has a signed bidiagonal decomposition (or, equivalently,
that it is SBD) if it has a signed bidiagonal decomposition with some signature
". Observe that, by Theorem 6, a nonsingular TP matrix has a signed bidiagonal
decomposition with signature " D .1; : : : ; 1/.

Let us now give the characterization of the matrices introduced in the last
definition and the characterization of their inverses. First, we need some notations.
Given a signature sequence " D ."1; : : : ; "n�1/, let us define a diagonal matrix
K D diag.k1; : : : ; kn/ with ki satisfying

ki 2 f˙1g 8 i D 1; : : : ; n; kikiC1 D "i 8 i D 1; : : : ; n � 1: (24)
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Observe that, given ", there are only two possible diagonal matrices K satisfy-
ing (24), depending on the two possibilities for k1 D "1 or k1 D �"1. Finally,
given a matrix A D .aij/1�i;j�n, we define jAj WD .jaijj/1�i;j�n.

The following theorem, which correspond to Theorem 3.1 of [11], provides
several characterizations of matrices with signed bidiagonal decomposition with a
given signature.

Theorem 11 Let A D .aij/1�i;j�n be a nonsingular matrix and let " D
."1; : : : ; "n�1/ be a signature sequence. Then the following properties are
equivalent:

1. A has a signed bidiagonal decomposition with signature ".
2. KAK D jAj is TP, where K is any diagonal matrix satisfying (24).
3. A�1 has a signed bidiagonal decomposition with signature

�" D .�"1; : : : ;�"n�1/.
4. jAj is TP and, for all 1 � i; j � n, sign.aij/ is given by "j � � � "i�1 if i > j, by 1 if

i D j and by "i � � � "j�1 if i < j, respectively.

Theorem 11 allows us to characterize the matrices with a signed bidiagonal
decomposition in terms of TP matrices, as the following result shows. This
characterization will allow us to use the accurate methods for TP matrices of
[68] in order to assure accurate computations for matrices with signed bidiagonal
decomposition.

Corollary 12 Let A be a nonsingular n � n matrix. Then A has a signed bidiagonal
decomposition if and only if there exists a diagonal matrix K D diag.k1; : : : ; kn/

with ki 2 f˙1g for all i D 1; : : : ; n such that KAK D jAj is a TP matrix.
A particular case of the Theorem 11 corresponds to the case of nonsingular TP

matrices, as shown in the following corollary, which corresponds to Corollary 3.3
of [11].

Corollary 13 Let A be a nonsingular matrix. Then the following properties are
equivalent:

1. A has a signed bidiagonal decomposition with signature .1; : : : ; 1/.
2. A is TP.
3. A�1 has a signed bidiagonal decomposition with signature .�1; : : : ;�1/.

As recalled above, inverses of TP matrices are very important in applications.
Corollary 13 has proved that they are matrices with signed bidiagonal decomposi-
tion. Observe that Theorem 11 also proves that the class of matrices with a signed
bidiagonal decomposition is closed for the inversion of matrices.

If a matrix is opposite in sign to a matrix satisfying the properties of Defini-
tion 10, then it also satisfies all properties of Definition 10 except property 1, which
is replaced by

10. di < 0 for all i.
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So, the bidiagonal decomposition of these matrices has the diagonal matrix with
negative diagonal entries. Then, by Corollary 12, a nonsingular matrix A is opposite
in sign to a matrix with a signed bidiagonal decomposition if and only if there exists
a diagonal matrix K D diag.k1; : : : ; kn/ with ki 2 f˙1g for all i D 1; : : : ; n such
that �KAK D jAj is TP.

Let us see that if we assume it for the matrices of this subsection, then we can
find algorithms with HRA to perform some computations with these matrices, such
as the computation of their singular values, the computation of their eigenvalues, the
computation of their inverses or solving certain linear systems Ax D b (those with
Kb with a chessboard pattern).

For all the mentioned computations, we can apply a similar procedure, which can
be summarized as follows:

Step 1. From BD.A/, we obtain BD.jAj/, given by (6) of [11].
Step 2. We can apply known algorithms with HRA for TP matrices to BD.jAj/.

Recall that, by Corollary 12 and Remark 3.4 of [11], jAj is TP if A belongs
to the class of matrices characterized by these results.

Step 3. From the information obtained for jAj, we can get the corresponding result
for A.

Let us now explain how to perform each of the previous steps.
As for Step 1, let us assume that we know the BD.A/ (see (17)) with HRA for a

given matrix A either satisfying the properties of Corollary 12 or satisfying them by
�A. Then either jAj D KAK or jAj D �KAK for a diagonal matrix K satisfying (24)
and so we can deduce from (6) of [11] that

jAj D jL.1/j � � � jL.n�1/jjDjjU.n�1/j � � � jU.1/j (25)

is the BD.jAj/. In fact, BD.A/ and BD.KAK/ are given by (17) and (5) of [11]
respectively. The proof of Theorem 11 shows that, if KAK D jAj, then all factors of
BD.KAK/ (in (5) of [11]) are nonnegative and so jL. j/j D KL. j/K, jU. j/j D KU. j/K
for all j D 1; : : : ; n � 1. Thus, (25) follows from (5) of [11]. If jAj D �KAK, then
by the same argument all factors of BD.�KAK/ are nonnegative and, taking into
account that BD.KAK/ and BD.�KAK/ only differ in the fact that the diagonal
factor KDK is changed by �KDK, we deduce that �KDK D �D D jDj and we can
also derive (25) from (5) of [11].

As for Step 2, we apply to (25) the corresponding algorithm for TP matrices
with HRA. In particular, we consider the following accurate computations with TP
matrices:

A. The eigenvalues of jAj can be obtained by the method of Sect. 5 of [67]
(TNEigenvalues in [69] is an implementation in MATLAB of this method).

B. The singular values of jAj can be obtained by the method of Sect. 6 of [67]
(TNSingularValues in [69] is an implementation in MATLAB of this
method).

C. The inverse of jAj can be obtained by the method of p.736 of [68].
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D. Observe that Ax D b is equivalent to solving .KAK/.Kx/ D Kb, that is,
jAj.Kx/ D Kb. Then, jAj�1 can be calculated accurately by the procedure of
the previous case. By Theorem 3.3 of [8], jAj�1 has a chessboard pattern of
signs and so, since Kb has also a chessboard pattern of signs, Kx D jAj�1.Kb/
can be calculated without subtractions and therefore with HRA as recalled in the
introduction.

As for Step 3, we have the following cases corresponding to each of the cases of
Step 2:

A. If A has a signed bidiagonal decomposition, then jAj D KAK D K�1AK and
so they are similar matrices and have the same eigenvalues. If �A has a signed
bidiagonal decomposition, then the eigenvalues of A are opposite in sign to the
eigenvalues of jAj.

B. The singular values of A and jAj coincide because jAj D ˙KAK, that is, jAj and
A coincide up to unitary matrices.

C. If A has a signed bidiagonal decomposition, then jAj�1 D .KAK/�1 D
KA�1K and so A�1 D KjAj�1K. Analogously if �A has a signed bidiagonal
decomposition, then jAj�1 D �KA�1K and A�1 D �KjAj�1K.

D. If we know Kx, then x D K.Kx/.

In addition, let us show that if we have the BD.A/ (see (17)) with HRA, then
we can also calculate the LDU decomposition of A with HRA, and even obtain the
matrix A with HRA. In fact, by the uniqueness of the LDU decomposition of a
matrix, it can be checked that the matrices

L D L.1/ � � � L.n�1/; U D U.n�1/ � � � U.1/ (26)

can be calculated without subtractions and so with HRA. Then we can also compute
A D LDU with HRA.

6 Applications of Totally Positive Matrices to CAGD

Let us start by recalling some basic facts on methods of CAGD using control
polygons. We shall focus on the problem of finding bases with (optimal) shape
preserving properties.

Given a sequence U0; : : : ;Un of points in Rk, we define a curve �.t/ DPn
iD0 Uiui.t/, t 2 I. We shall denote by U0 � � � Un the polygonal arc with vertices

U0; : : : ;Un. This is usually called the control polygon of � and the points Ui,
i D 0; : : : ; n, are called control points.

In CAGD it is usually required that the functions ui, i D 0; : : : ; n, are nonnegative
and

Pn
iD0 ui.t/ D 1 for all t 2 I (that is, the system U D .u0; : : : ; un/ is normalized,

or equivalently, the functions form a partition of unity). A normalized system of
nonnegative functions is usually called a blending system. Now we shall recall some
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properties which are convenient for design purposes, following mainly the notation
of [44].

An important property for curve design is the convex hull property: for any
control polygon, the curve lies always in the convex hull of the control polygon.
Let us remark that the convex hull property holds if and only if U is a blending
system. For blending systems, affine invariance also holds: computing a point of the
curve �.t/ and then applying an affine map to it gives the same result as applying
first an affine map to the control polygon and then evaluating the mapped polygon
at t.

These geometric properties correspond to some properties of the collocation
matrices of the system of functions U. Given a system of functions U D .u0; : : : ; un/

defined on I � R, the collocation matrix of U at t0 < � � � < tm in I is given by

M

�
u0; : : : ; un

t0; : : : ; tm

�
WD .uj.ti//iD0;:::;mIjD0;:::;n:

Clearly, U is blending if and only if all its collocation matrices are stochastic (that
is, nonnegative and such that the sum of each row is one).

In order to have a more precise guide of the curve, and to put together several
pieces of curves, it is desirable for the designer to have a very precise control of what
happens at the ends of the curve. This leads to the endpoint interpolation property:
the first control point always coincides with the start point of the curve and the last
control point always coincides with the final point of the curve.

In interactive design we also want that the shape of a parametrically defined
polynomial curve mimics the shape of its control polygon; thus we can predict or
manipulate the shape of the curve by suitably choosing or changing the control
polygon. It is well-known (cf. [16]) that when the basis is normalized totally
positive the curve imitates the shape of its control polygon, due to the variation
diminishing properties of the TP matrices. A system of functions is totally positive
if all its collocation matrices are TP. If U is normalized totally positive then the
curve � inherits many shape properties of the control polygon. For instance, any
line intersects the curve no more often than it intersects the control polygon. In
particular, a planar curve or polygon is convex if and only if it crosses any line of
the plane no more than two times. So, if the control polygon is planar and convex
then the curve generated is also planar and convex.

For normalized totally positive bases it also holds that the length, number of
inflections and angular variation of the curve are bounded above by those of the con-
trol polygon (see [16]) for a more precise statement of these properties. Furthermore,
totally positive bases also satisfy generalized convexity preserving properties [19]
and can be characterized in terms of these properties. From Bemerkung II.4 of [92],
we obtain that a blending system of functions satisfying the variation diminishing
and the endpoint interpolation properties is necessarily totally positive. Therefore,
if a system of functions is such that the curves generated by any control polygon
satisfy the convex hull, variation diminishing and endpoint interpolation properties
simultaneously, then it is a normalized totally positive system.
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Now we shall deal with the problem of comparing the shape preserving properties
of different blending systems. Our goal is to find a basis with optimal shape
preserving properties: we want a normalized totally positive basis such that the
control polygon of a curve with respect to it is closer in shape to the curve than
the control polygon with respect to any other normalized totally positive basis of
the space. Due again to the variation diminishing property of the TP matrices (see
Sect. 2 of [16] and Sect. 2 of [18]), the precise formulation of this problem is finding
a normalized totally positive basis B D .b0; : : : ; bn/ such that any other (normalized)
totally positive basis U is of the form U D .b0; : : : ; bn/K, where K is a (stochastic)
TP matrix. The concept of (normalized) B-basis (introduced in [17]) gives always
an affirmative answer to the previous problem by Theorem 4.2 of [17]: a space with
a normalized totally positive basis has always a unique normalized B-basis B, which
is the basis with optimal shape preserving properties, as we shall explain later. For
the space of polynomials of degree less than or equal to n on Œa; b�, the Bernstein
basis is the optimal (this was proved in [16]), and, for the corresponding space of
polynomial splines, the B-spline basis is the optimal (see Theorem 4.6 of [17]).

In general, a space with a totally positive basis has always B-bases (see
Remark 3.8 of [17]). By Proposition 3.11 of [17], a B-basis can be characterized
as a basis B D .b0; : : : ; bn/ such that

ftotally positive basesg D fBKjK is a nonsingular TP matrixg: (27)

Since nonsingular TP matrices can be characterized in terms of products of
bidiagonal nonnegative matrices (see [56], where even the uniqueness of such
factorizations is studied), let us observe that (27) allows us to construct all the totally
positive bases of the space if we know a B-basis.

As for the problem of uniqueness of B-bases, we have the following result, which
corresponds to Corollary 3.9 (iii) of [17]:

Proposition 14 Let .c0; : : : ; cn/ be a B-basis of a space of functions U . A basis of
U is a B-basis if and only if it is of the form .d0c0; : : : ; dncn/ with di > 0 for all
i D 0; : : : ; n.

On the other hand, by Theorem 4.2 (ii) of [17], we have that, if U D .u0; : : : ; un/

is a normalized B-basis, then the set

fnormalized totally positive basesg

coincides with the set

fUHjH is a nonsingular stochastic TP matrixg:

Thus, since a nonsingular stochastic TP matrix can be characterized in terms of
products of bidiagonal stochastic nonnegative matrices (cf. Theorem 1 of [60]), we
can construct all the normalized totally positive bases of the space if we know the
normalized B-basis.
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As for the problem of uniqueness of normalized B-bases, we have an affirmative
answer, which corresponds to Theorem 4.2 (i) of [17]:

Proposition 15 If a space of functions has a normalized totally positive basis, then
it has a (unique) normalized B-basis.

Now let us justify the optimal shape preserving properties of the normalized B-
basis. As shown in [18], a basis is a normalized B-basis if and only if it satisfies the
least variation diminishing, the endpoint interpolation and the convex hull properties
simultaneously.

Let us show now that the unique normalized B-basis of a given space has
optimal properties in this geometric framework. Since the normalized B-basis is
least variation diminishing, we may hope that the control polygon of a curve with
respect to the normalized B-basis is the closest in shape to the curve than the
control polygons with respect to any other reasonable basis for curve design. Let
us collect now some shape properties established in [61] and [16], which applied to
the normalized B-basis, confirm that it has optimal shape preserving properties.

Let � be a curve generated by the control polygon P0 � � � Pn with respect to a
normalized totally positive basis. Let B0 � � � Bn be the control polygon with respect
to the normalized B-basis. Then the following properties hold:

(i) If P0 � � � Pn is convex, then so are B0 : : :Bn and the curve � , and B0 � � � Bn lies
between P0 � � � Pn and � .

(ii) Length � � length B0 � � � Bn � length P0 � � � Pn.
(iii) If P0 � � � Pn turns through an angle< � , then I.�/ � I.B0 � � � Bn/ � I. p0 � � � Pn/,

where I.ˇ/ denotes the number of inflexions of a curve ˇ.
(iv) 
.�/ � 
.B0 � � � Bn/ � 
. p0 � � � Pn/, where 
.ˇ/ denotes the angular variation

of a curve ˇ.

In [18] there is a survey of other optimal properties which are satisfied by B-
bases.

7 HRA for Some Subclasses of TP Matrices

We have recalled in Sect. 5 that if we have the BD.A/ of a nonsingular TP matrix
with HRA, then we can perform many computations of A with HRA, such as
computing its inverse or computing its eigenvalues or its singular values.

In this section we shall illustrate some subclasses of TP matrices for which the
BD.A/ can be computed with HRA or for which we can perform computations with
HRA. The first two subsections considers subclasses of matrices with applications
to CAGD and the third subsection a subclass of matrices with applications to
Combinatorics.
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7.1 HRA with Rational Bernstein-Vandermonde Matrices

Let us start with the example of rational Bernstein-Vandermonde matrices consid-
ered in [31].

Given a basis u D .un
0; : : : ; u

n
n/ of nonnegative functions on Œa; b� and a sequence

of strictly positive weights .wi/
n
iD0, we can construct a rational basis r D .rn

0; : : : ; r
n
n/

defined by

rn
i .t/ D wi un

i .t/

W.t/
; t 2 Œa; b�; i 2 f0; 1; : : : ; ng; (28)

where W.t/ D Pn
jD0 wj un

j .t/.
In CAGD the usual representation of a polynomial curve is the so called

Bernstein-Bézier form, that is, these curves are expressed in terms of the Bernstein
bases .bn

0; b
n
1; : : : ; b

n
n/ defined by

bn
i .t/ D

 
n

i

!
ti.1 � t/n�i; i 2 f0; 1; : : : ; ng; t 2 Œ0; 1�:

The square collocation matrices B WD .bn
j .ti//0�i;j�n of the Bernstein basis of

polynomials .bn
0; b

n
1; : : : ; b

n
n/ at a sequence of parameters 0 < t0 < t1 < : : : <

tn < 1, are STP. From now on we will refer to these matrices as Bernstein-
Vandermonde (BV) matrices. The corresponding square collocation matrices of the
rational Bernstein basis at a sequence of parameters 0 < t0 < t1 < : : : < tn < 1,
given by .rn

j .ti//0�i;j�n, where functions rn
i are given by (28) with un

i D bn
i for

i D 0; 1; : : : ; n, will be called rational Bernstein-Vandermonde (RBV) matrices.
In Theorem 3.3 and Sect. 4 of [74] an algorithm for computing with HRA the

bidiagonal decompositions of BV matrices and their inverses was presented. Here,
we present the bidiagonal decompositions of RBV matrices and its inverses and an
algorithm to compute them with HRA.

In Proposition 3.1 of [74], taking into account the relation between BV and
Vandermonde matrices, the determinant of BV matrices was computed. Taking into
account the result previously mentioned and the relation between RBV and BV
matrices, the following result (which corresponds to Theorem 3.1 of [31]) computes
the determinant of RBV matrices showing that they are STP.

Theorem 16 Let A D .wjbn
j .ti/=W.ti//0�i;j�n be a RBV matrix whose nodes satisfy

0 < t0 < t1 < � � � < tn < 1. Then:

1. det A D �n
0

��n
1

� � � � �n
n

� w0w1���wn
W.t0/W.t1/���W.tn/

Q
0�i<j�n.tj � ti/.> 0/:

2. det

0

BBB@

.1 � t0/n t0.1 � t0/n�1 � � � tn
0

.1 � t1/n t1.1 � t1/n�1 � � � tn
1

:::
:::

: : :
:::

.1 � tn/n tn.1 � tn/n�1 � � � tn
n

1

CCCA D Q
0�i<j�n.tj � ti/:
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3. A is STP.

We now describe bidiagonal decompositions of RBV matrices and their inverses
in terms of the diagonal pivots and multipliers of their Neville elimination and
the multipliers of the Neville elimination of their transposes (which corresponds
to Theorem 3.2 of [31]).

Theorem 17 Let A D .wjbn
j .ti/=W.ti//0�i;j�n be a RBV matrix whose nodes satisfy

0 < t0 < t1 < � � � < tn < 1. Then A admits a factorization of the form

A D FnFn�1 � � � F1DG1 � � � Gn; (29)

where Fi and Gi, i 2 f1; : : : ; ng, are the lower and upper triangular bidiagonal
matrices given by

Fi D

0
BBBBBBBBBBBBB@

1

0 1

: : :
: : :

0 1

mi0 1

miC1;1 1
: : :

: : :

mn;n�i 1

1
CCCCCCCCCCCCCA

;

G
T
i D

0

BBBBBBBBBBBBB@

1

0 1
: : :

: : :

0 1

emi0 1

emiC1;1 1
: : :

: : :

emn;n�i 1

1

CCCCCCCCCCCCCA

;

and D the diagonal matrix diag. p00; p11 : : : ; pnn/. The entries mij, emij and pii are
given by

mij D W.ti�1/
W.ti/

.1�ti/n�j.1�ti�j�1/

.1�ti�1/n�jC1

Qi�1
kDi�j.ti�tk/

Qi�2
kDi�j�1.ti�1�tk/

; for 0 � j < i � n; (30)

emij D wi
wi�1

n�iC1
i

tj
1�tj

; for 0 � j < i � n; (31)

pii D wi
W.ti/

�n
i

�
.1�ti/n�i
Qi�1

kD0.1�tk/

Qi�1
kD0.ti � tk/; for 0 � i � n: (32)
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Given the bidiagonal decomposition BD.A/ of a RBV matrix A presented in
Theorem 17, we can obtain, from Theorem 9 and the results in [55, 56] and [57], the
bidiagonal decomposition of A�1, which will be denoted by BD.A�1/, given by

A�1 D G1G2 � � � GnD�1FnFn�1 � � � F1;

where Fi and Gi, i 2 f1; : : : ; ng, are the lower and upper triangular bidiagonal
matrices of the form of Fi and Gi (respectively), but replacing the off-diagonal
entries

fmi0;miC1;1; : : : ;mn;n�ig

and

fmi0;miC1;1; : : : ;mn;n�ig

by the entries

f�mi;i�1;�miC1;i�1; : : : ;�mn;i�1g

and

f�mi;i�1;�miC1;i�1; : : : ;�mn;i�1g

(respectively).
Now we present a sequence of algorithms to compute the previous bidiagonal

factorizations BD.A/ and BD.A�1/ with HRA. These factorizations will be used
in the following section in order to solve certain linear systems Ax D b, and to
compute A�1, and the eigenvalues and singular values of A accurately.

In order to compute those bidiagonal decompositions we need to calculate
accurately the multipliers mij andemij, and the diagonal pivots pii in Theorem 17. Let
us start with the computation of the multipliers mij. In the case of the computation of
the multipliers mij it is necessary to evaluate the polynomial W.t/ D Pn

iD0 wibn
i .t/ at

the points .ti/niD0 accurately. It is well known that Horner algorithm consists of O.n/
elementary operations to evaluate a polynomial of n degree (see [26]). But Horner
algorithm uses the monomial representation instead of the Bernstein representation,
so we rule it out. The usual form of evaluating a polynomial represented with
the Bernstein basis is the de Casteljau algorithm (see [26]). But this algorithm
evaluates a polynomial of degree n with O.n2/ elementary operations. An alternative
algorithm for the evaluation of polynomials represented in the Bernstein basis is the
VS algorithm, presented in [93] for the evaluation of multivariate polynomials and
also adapted for the evaluation of univariate polynomials (see [26] for example). It
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evaluates a polynomial of degree n

p.t/ D
nX

iD0
civ

n
i .t/;

with O.n/ elementary operations (see [26]), where the basis .vn
0; : : : ; v

n
n/, given

by vn
i .t/ D ti.1 � t/n�i i D 0; 1; : : : ; n, coincides with the Bernstein basis up

to scaling. Algorithm 1 of [31] reminds the VS algorithm. This algorithm has a
nested nature like Horner algorithm. As we shall justify later, for the particular
case where the weights are positive, VS algorithm evaluates accurately polynomial
W.t/ at points t 2 Œ0; 1�. By the same reason, we can also consider to evaluate
accurately the polynomial W.t/ in a straightforward way, that is, to evaluate the
basis functions bn

i .t/ and then compute the linear combination of the obtained values
with the corresponding weights wi, i D 0; 1; : : : ; n. Since bn

iC1.t/ D t
1�t

n�i
iC1bn

i .t/,
a carefully programming of this approach uses O.n/ elementary operations to
compute W.ti/ accurately. Taking into account that we need to evaluate polynomial
W.t/ D Pn

iD0 wibn
i .t/, t 2 Œ0; 1�, with wi > 0 for all i 2 f0; 1; : : : ; ng, we have

applied the VS algorithm above with ci D �n
i

�
wi > 0 for i D 0; 1; : : : ; n. In this case

the algorithm evaluates W.t/ for all t 2 .0; 1/ accurately because it does not use
subtractions.

Now we state in Algorithm 2 of [31] the procedure for the computation of the
multipliers mij accurately. In this algorithm, W.ti/ in this algorithm will be computed
by the VS algorithm, that is, by Algorithm 1 of [31]. The algorithm can be computed
accurately because we only perform subtractions with the initial data.

Algorithm 3 of [31] provides the multipliers emij with HRA. Finally, the diagonal
elements pii of D are computed by Algorithm 4 of [31] accurately.

Observe that the computation of Algorithms 2–4 of [31] is clearly of O.n2/
elementary operations.

7.2 HRA with q-Bernstein-Vandermonde Matrices

Let us recall that a basis of univariate functions .u0; : : : ; un/ on an interval I is called
STP (respectively, TP) if all its collocation matrices .uj.ti//0�i;j�n at points t0 < t1 <
: : : < tn in I are STP (respectively, TP). A very important example of STP basis is
the basis formed by the Bernstein polynomials on .0; 1/ (see [16]). In fact, these
polynomials provide one of the most important bases in CAGD. Let us recall that
the Bernstein polynomials of degree n are defined as

bn
i .x/ D

 
n

i

!
xi.1 � x/n�i; x 2 Œ0; 1� i D 0; : : : ; n:



Accurate Computations 139

The polynomials B D .bn
0.x/; : : : ; b

n
n/ form the Bernstein basis of the space of

polynomials of degree less than or equal to n, ˘n.
Now let us introduce the bases considered in this paper. Given q > 0 and any

nonnegative integer r, we define a q-integer Œr� as

Œr� D
�
.1 � qr/=.1 � q/; q ¤ 1;

r; q D 1;

A q-factorial Œr�Š, where r is a nonnegative integer, is defined as

Œr�Š D
�
Œr�Œr � 1� � � � Œ1�; r � 1;

1; r D 0;

We define the q-binomial coefficient as

hn

r

i
D Œn�Œn � 1� � � � Œn � r C 1�

Œr�Š
D Œn�Š

Œr�ŠŒn � r�Š

for integers n � r � 0 and as zero otherwise. The q-Bernstein polynomials of
degree n for 0 < q � 1 were introduced in the mathematical literature by Phillips in
[90]. They are defined as

bn
i;q.x/ D

hn

i

i
xi

n�i�1Y

sD0
.1 � qs x/; x 2 Œ0; 1�; i D 0; 1; : : : ; n:

These polynomials Bq D .bn
0;q; b

n
1;q; : : : ; b

n
n;q/ also form a basis of ˘n. For q D 1

the q-Bernstein basis coincides with the Bernstein basis.
The following equivalence between TP and STP bases of the space of polyno-

mials of degree not greater than n follows from Proposition 3.4 of [16] and will be
applied in Sect. 3.1 to the q-Bernstein basis.

Proposition 18 A basis of the space of polynomials of degree not greater than n is
TP on an interval if and only if it is STP on its interior.

The collocation matrices of the q-Bernstein basis Bq (0 < q � 1) at a sequence
of points x0 < x1 < � � � < xn, given by

Bq D

0
BBBB@

bn
0;q.x0/ bn

1;q.x0/ � � � bn
n;q.x0/

bn
0;q.x1/ bn

1;q.x1/ � � � bn
n;q.x1/

:::
:::

: : :
:::

bn
0;q.xn/ bn

1;q.xn/ � � � bn
n;q.xn/

1
CCCCA
;

will be called q-Bernstein-Vandermonde matrices, qBV matrices from now on. In
[62] the total positivity of this matrix for q 2 .0; 1/ was proved (for more details see
Sect. 3.1).
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In [68], assuming that the multipliers and diagonal pivots of a nonsingular TP
matrix A and its transpose are known with HRA (that is, BD.A/), Koev presented
algorithms for computing:

• the eigenvalues of the matrix A,
• the singular values of the matrix A,
• the solution of linear systems of equations Ax D b where b has a chessboard

pattern of alternating signs,
• the inverse of the matrix A, i.e., A�1,

with HRA. In [69] we can get a software library called TNTool, which contains
an implementation of the mentioned algorithms for Matlab and Octave. The name
of the corresponding functions are TNEigenvalues, TNSingularValues,
TNSolve and TNJInverse, respectively. These functions require as input
argument the bidiagonal decomposition (23) of the matrix A, BD.A/. TNSolve
also requires a second argument, the vector of independent coefficients b of the
linear system Ax D b to be solved. Let us observe that TNJInverse provides
the bidiagonal decomposition of C D JA�1J, where J D diag...�1/i/niD0/, and
so we compute A�1 D JCJ to HRA. So, if we were able to obtain a bidiagonal
decomposition of a qBV matrix to HRA, then we would solve the algebraic
problems mentioned above to HRA with the help of the software library in [69].

Observe that, if one has the unique bidiagonal factorization BD.A/ of a matrix
A, then BD.AT/ is given by transposing the factorization (23), as remarked in [68].
In conclusion, if we were able to obtain a bidiagonal decomposition of a qBV matrix
A to HRA, we would solve the algebraic problems mentioned above to HRA also
for AT . For instance, an application of solving linear systems with AT comes from
obtaining numerical differentiation and integration formulae with the q-Bernstein
basis.

We shall now determine the bidiagonal decomposition (23) of a qBV matrix Bq

in terms of the diagonal pivots and multipliers of its Neville elimination and those of
their transposes. Previously, let us justify the strict total positivity of these matrices
and let us show some relations involving these matrices, which will be very useful
later.

Since the q-Bernstein polynomials of degree n, Bq, form a basis of ˘n for any
q 2 .0; 1�, for any q; r with 0 < q; r � 1 there exists a nonsingular matrix Mn;q;r

such that

.bn
0;q.x/; : : : ; b

n
n;q.x//

T D Mn;q;r.bn
0;r.x/; : : : ; b

n
n;r.x//

T : (33)

From Theorems 4.1 and 4.3 of [62] the following result is deduced.

Theorem 19 For 0 < q � r the matrix Mn;q;r has all its entries positive. In addition,
for 0 < q � rn�1 the matrix Mn;q;r is TP.

From the previous theorem, taking r D 1, the following results follow (which
correspond to Theorem 3.1 and Corollary 3.2 of [34]).

Corollary 20 For q 2 .0; 1/ the matrix Mn;q;1 is TP.
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Since the Bernstein basis is TP we have the following result, which corresponds
to Corollary 3.3 of [34]. Observe that the Bernstein basis corresponds to the case
q D 1.

Corollary 21 For any q 2 .0; 1� the basis formed by the q-Bernstein polynomials
is TP on Œ0; 1� and STP on .0; 1/.

We now present the bidiagonal factorization of qBV matrices, which corresponds
to Theorem 3.4 of [34].

Theorem 22 Let Bq D .bn
j;q.xi//0�i;j�n be a qBV matrix whose nodes satisfy 0 <

x0 < x1 < � � � < xn < 1. Then Bq admits a factorization of the form (29), where the
entries mij, emij and pii are given by

mij D
Qn�. jC1/

sD0 .1�qsxi/�.1�qn�jxi�1�j/Qn�j
sD0.1�qsxi�1/

�
Qi�1

kDi�j.xi�xk/
Qi�2

kDi�1�j.xi�1�xk/
; for0 � j < i � n; (34)

emij D Œn�iC1�
Œi� � xj

1�qn�ixj
�
Qj�1

kD0.1�qn�iC1xk/Qj�1
kD0.1�qn�ixk/

; for 0 � j < i � n; (35)

pii D 
 n
i

� Qn�.iC1/
sD0 .1�qsxi/Qi�1
kD0.1�qn�ixk/

�Qi�1
kD0.xi � xk/; for0 � i � n: (36)

As we can observe in the previous theorem, in order to compute the multipliers
and the pivots, expressions of the form 1 � qsxk must be calculated. These
expressions involve products before a true subtraction. Hence, a subtraction of
inexact data must be calculated up to the case q D 1. Then we conclude that
the multipliers and the pivots cannot be computed directly to HRA and BD.Bq/,
q 2 .0; 1/, cannot be computed to HRA. So the algebraic problems detailed above
cannot be solved to HRA using this bidiagonal factorization. Now we provide an
alternative approach that allows us to solve algebraic problems with q-Bernstein-
Vandermonde matrices to HRA.

Let us consider the collocation matrices of the Bernstein basis B, that is, the q-
Bernstein basis for q D 1 at a sequence of points x0 < x1 < � � � < xn, B WD B1. Since
these matrices generalize Vandermonde matrices they are usually called Bernstein-
Vandermonde matrices (see [74]).

In Theorem 4.2 of [62] a bidiagonal factorization of the matrix Tn;q;r such that
Mn;q;r D DqTn;q;rD (see (33)) was given, where

Dq D diag
�hn

0

i
; : : : ;

hn

n

i�
and D�1 D diag

  
n

0

!
; : : : ;

 
n

n

!!
:

For our purposes we are interested in the case that r D 1.

Theorem 23 For n � 2 and for any q 2 .0; 1/ Tn;q;1 D G1 G2 � � � Gn�1, where Gi is
the upper triangular bidiagonal matrix coinciding with the identity matrix up to the
entries .1; 2/; .2; 3/; : : : ; .i; i C 1/ which are all 1 � qn�i.



142 J.M. Peña

Observe that the zero pattern of the previous bidiagonal decomposition is
different from that of BD.Tn;q;1/. If we want to use Koev’s results and his software
library TNTool in [69], then we need to overcome this difficulty, and we will use
conversion matrices. Given a matrix A D .aij/1�i;j�n we define the conversion
matrix of A as A# D .a#

ij/1�i;j�n WD .anC1�i;nC1�j/1�i;j�n, which can be written
as A# D PAP where P is obtained from the identity matrix by reversing the order
of its rows. Transposing (33) and taking collocation matrices at a given sequence
of points, we have that Bq D B D .Tn;q;1/TDq. Then, using the conversion of this
matrix, we obtain

.Bq/
# D B#D#..Tn;q;1/T/#.Dq/

#: (37)

The bidiagonal decomposition BD..Tn;q;1/#/ of .Tn;q;1/# is given by the product of
the conversion of the bidiagonal factors in the decomposition in Theorem 23 in the
same order. Since 1 � qk D .1 � q/.1 C q C q2 C � � � C qk�1/ the decomposition
BD..Tn;q;1/#/ can be computed to HRA. Then, the bidiagonal decomposition
BD...Tn;q;1/T/#/ is given by the transpose of the previous bidiagonal decompo-
sition, and so it can be computed to HRA. We have implemented the bidiagonal
decomposition of .Tn;q;1/# to HRA in Matlab function TNBDCCM (see Algorithm 1
of [34]).

Using the results and algorithm in Sect. 5.2 of [68], implemented in function
TNProduct of the library TNTool, BD..Bq/

#/ to HRA can be obtained if we are
able to compute BD.B#/ to HRA. Before studying the possibility of computing the
bidiagonal decomposition of B#, let us show that using TNTool with BD..Bq/

#/ to
HRA the algebraic problems with Bq can be solved to HRA.

Since Bq D P.Bq/
#P, let us analyze the corresponding four algebraic problems

for Bq in terms of .Bq/
#:

• Eigenvalues and singular values of Bq. Taking into account that P is a
unitary matrix and that P�1 D P, the eigenvalues and singular values of Bq

coincide with those of .Bq/
#. Then, using the functions TNEigenvalues and

TNSingularValues of TNTool with the bidiagonal decomposition of .Bq/
#

to HRA, we obtain the eigenvalues and the singular values of Bq with HRA.
• Solution of a system of linear equations Bqx D b such that b has a chessboard

sign pattern. Since b D Bqx D P.Bq/
#Px and P�1 D P, we deduce that the

system is equivalent to .Bq/
#y D Pb where y D Px. So, taking into account that,

if b has a chessboard sign pattern, then Pb also has a chessboard sign pattern,
using TNSolve with the bidiagonal decomposition BD..Bq/

#/ to HRA, we
obtain y D Px to HRA. So, performing Py, which is just reversing the order
of the entries of y, we obtain x to HRA.

• Inverse of the matrix Bq, .Bq/
�1. Since P�1 D P and Bq D P.Bq/

#P, we have
.Bq/

�1 D P..Bq/
#/�1P. So, using TNJInverse with BD..Bq/

#/ to HRA we
obtain BD. j..Bq/

#/�1J/ to HRA. Then, using TNExpand of [69] with this
last bidiagonal decomposition and the usual matrix product we obtain .Bq/

�1
to HRA.
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In conclusion, we need to obtain the bidiagonal decomposition of B# to HRA.
First we need the following auxiliary result, which corresponds to Proposition 3.6
of [34].

Proposition 24 Let B be a BV matrix whose nodes satisfy 0 < x0 < x1 < � � � <
xn < 1. Then:

1. det B# D
 

n

0

! 
n

1

!
� � �
 

n

n

!
Y

0�i<j�n

.xj � xi/:

2. det

0
BBB@

.1 � x0/n x0.1 � x0/n�1 � � � xn
0

.1 � x1/n x1.1 � x1/n�1 � � � xn
1

:::
:::

: : :
:::

.1 � xn/
n xn.1 � xn/

n�1 � � � xn
n

1
CCCA

#

D
Y

0�i<j�n

.xj � xi/:

3. B# is STP.

We now describe the bidiagonal decompositions of the conversion of BV
matrices and their inverses in terms of the diagonal pivots and multipliers of their
Neville elimination and the multipliers of the Neville elimination of their transposes,
which corresponds to Theorem 3.7 of [34].

Theorem 25 Let B# denote the conversion of the BV matrix B D .bn
j .xi//0�i;j�n

whose nodes satisfy 0 < x0 < x1 < � � � < xn < 1. Then B# admits a factorization of
the form (29), where the entries mij, emij and pii are given by

mij D x
n�j
n�ixn�.i�j/C1

x
n�. j�1/
n�.i�1/

Qn�.i�j/
lDn�.i�1/.xl�xn�i/

Qn�.i�j/C1
lDn�.i�2/.xl�xn�.i�1//

; for 0 � j < i � n; (38)

emij D n�iC1
i � 1�xn�j

xn�j
; for 0 � j < i � n; (39)

pii D � n
n�i

� xn�i
n�iQn

kDn�.i�1/ xk

Qn
lDn�.i�1/.xl � xn�i/; for 0 � i � n: (40)

In [74] Marco and Martínez provide an algorithm for computing the bidiagonal
decomposition of a BV matrix with HRA. Analogously, taking into account the
previous theorem we can design an algorithm to compute BD.B#/ to HRA, which
corresponds to Algorithm 2 of [34] with the accurate computation of the multipliers
mij. The algorithm is accurate because we only perform subtractions with the initial
data. Algorithm 3 of [34] provides the multipliers emij with HRA. Finally, the
diagonal elements pii of D are computed accurately by Algorithm 4 of [34]. Observe
that the computation of these algorithms is clearly of O.n2/ elementary operations.
We have implemented these algorithms in the function TNBDConvBV.

As we have mentioned above, another interesting function of the library for our
purpose is TNProduct. Given the bidiagonal decompositions to HRA, A and B, of
two m � m TP matrices, F and G, respectively, TNProduct(A,B) computes with
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O.m3/ elementary operations the bidiagonal decomposition of the TP matrix FG to
HRA. So, from (37), using TNProduct, TNBDConvBV and TNBDCCM, we have
implemented the computation of the bidiagonal decomposition of the conversion of
the qBV matrix B#

q to HRA in function TNBDConvqBV.

7.3 HRA with Jacobi-Stirling Matrices

In [42] (see also [79] and [9]) the Jacobi-Stirling numbers were introduced as the
coefficients of the integral composite powers of the Jacobi differential operator

I˛;ˇŒ y�.t/ D 1

.1 � t/˛.1C t/ˇ
��.1 � t/˛C1.1C t/ˇC1y0.t/

�0
; (41)

with ˛; ˇ real numbers greater than �1. The Jacobi-Stirling numbers JS. j/
n .z/ of the

second kind depend only on the parameter z D ˛ C ˇ C 1.> �1/ and satisfy the
following recurrence relation

JS. j/
n .z/ D JS. j�1/

n�1 .z/C j. j C z/ JS. j/
n�1.z/ .n; j � 1/; (42)

JS.0/n .z/ D JS. j/
0 .z/ D 0; JS.0/0 .z/ D 1: (43)

The Jacobi-Stirling numbers Jc. j/
n .z/ of the first kind also depend only on the

parameter z D ˛ C ˇ C 1 and satisfy the following recurrence relation

Jc. j/
n .z/ D Jc. j�1/

n�1 .z/C .n � 1/.n � 1C z/ Jc. j/
n�1.z/ .n; j � 1/; (44)

Jc.0/n .z/ D Jc. j/
0 .z/ D 0; Jc.0/0 .z/ D 1: (45)

The Jacobi-Stirling numbers Jc. j/
n .z/ of the first kind are a generalization of the

Legendre-Stirling numbers: for z D 1 we obtain the Legendre-Stirling numbers.
In Theorem 4.2 of [79] the Jacobi-Stirling numbers of the second kind JS. j/

n were
defined via the following expansion of the n-th composite power of I˛;ˇŒ y�.t/:

.1� t/˛.1C t/ˇI˛;ˇŒ y�.t/ D
nX

jD0
.�1/j. jS. j/

n .˛CˇC1/.1� t/˛Cj.1C t/ˇCjy. j/.t//.k/;

where I˛;ˇŒ y�.t/ is the Jacobi differential operator (41).
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The Jacobi-Stirling numbers JS. j/
n .z/ of the second kind satisfy

xn D
nX

jD0
JS. j/

n .z/ hxij .z/ .n 2 N/;

where

hxij .z/ WD
j�1Y

iD0
.x � i.i C z//

for all j � 1 and hxi0 .z/ WD 1. The (unsigned) Jacobi-Stirling numbers of the first
kind Jc. j/

n .z/ are defined via

hxin .z/ D
nX

jD0
.�1/nCjJc. j/

n .z/x
j .n 2 N/:

In this subsection we consider the infinite matrices JS.z/ D . jS. j/
i .z//i;j�0

and Jc.z/ D . jc. j/
i .z//i;j�0 and their corresponding truncated matrices given by

JSn.z/ D . jS. j/
i .z//0�i;j�n�1 and Jcn.z/ D . jc. j/

i .z//0�i;j�n�1 formed by the Jacobi-
Stirling numbers of the first and second kind, respectively. We provide a technique
that guarantees that the computation of the singular values and the inverses of
the matrices JSn.z/ and Jcn.z/ can be performed with HRA, recalling the results
presented in [32].

In Theorem 5 of [79] the following result was proved.

Theorem 26 The matrices JS and Jc are TP.
Taking into account the definition of TP matrix, from the previous theorem the
following result follows (see last line of Sect. 4 in [79]).

Corollary 27 The matrices JSn and Jcn are TP.
The following result is a consequence of Proposition 4 of [79] and states the

bidiagonal decomposition of the matrices JSn.

Theorem 28 The Jacobi-Stirling matrix JSn, n 2 N, admits a factorization of the
form

JSn D G
2

1 � � � G
2

n�1; (46)
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where G
2

i , i 2 f1; : : : ; n � 1g, are the n � n upper bidiagonal triangular matrices
given by

G
2

i D

0

BBBBBBBBBBBBBBBB@

1 0 � � � � � � � � � � � � � � � 0

: : :
: : :

:::

1 0
:::

1 miC1;1
:::

1 miC2;2
:::

: : :
: : : 0

1 mn;n�i

1

1

CCCCCCCCCCCCCCCCA

(47)

where mij D j.z C j/ for 1 � j < i � n.
The following result is also a consequence of Proposition 4 of [79] and provides

the bidiagonal decomposition of the matrices Jcn.

Theorem 29 The Jacobi-Stirling matrix Jcn, n 2 N, admits a factorization of the
form

Jcn D G
1

1 � � � G
1

n�1; (48)

where G
1

i , i 2 f1; : : : ; n � 1g, are the n � n upper bidiagonal triangular matrices
given by

G
1

i D

0

BBBBBBBBBBBBBBBB@

1 0 � � � � � � � � � � � � � � � 0
: : :

: : :
:::

1 0
:::

1 miC1;1
:::

1 miC2;2
:::

: : :
: : : 0

1 mn;n�i

1

1

CCCCCCCCCCCCCCCCA

; (49)

where mij D .i � j/.z C i � j/ for all 1 � j < i � n.
Given a nonsingular TP matrix A, the BD.A/ (see [68]) is a compact form for

representing the bidiagonal decomposition of A (for instance, for matrices JSn and
Jcn see (48) and (46)). Moreover, BD.A/ is the starting point for the algorithms to
HRA recalled in the next section. From now on, we will denote the compact form
of the bidiagonal factorization (46) of JSn by BD. jSn/ and that of (48) of Jcn by
BD. jcn/.
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Finally, let us mention that the entries mj;jC1’s and mj;jC1’s of (47) and (49) are
the multipliers of the Neville elimination (see Sect. 5).

Given the bidiagonal decomposition of a Jacobi-Stirling matrix BD. jSn/ or
BD. jcn/ presented in Theorems 28 and 29, respectively, we can obtain from
applying Theorem 2.6 of [56] to the transposes of the Jacobi-Stirling matrices (see
also the results of [57]) a bidiagonal decomposition of the inverses of the Jacobi-
Stirling matrices given by

. jSn/
�1 D G2

1 � � � G2
n and . jcn/

�1 D G1
1 � � � G1

n (50)

where G2
i and G1

i , i 2 f1; : : : ; ng, are the upper triangular bidiagonal matrices

of the form of G
2

i and G
1

i , respectively, but replacing the off-diagonal entries
fmiC1;1; : : : ;mn;n�ig and fmiC1;1; : : : ;mn;n�ig by f�miC1;i;�miC2;i; : : : ;�mnig and
f�miC1;i;�miC2;i; : : : ;�mnig, respectively, where the mij’s and mij’s are given in
Theorems 28 and 29, respectively.

Let us recall (see Sect. 2) that an algorithm can be performed with HRA if it
does not include subtractions (except of the initial data), that is, if it only includes
products, divisions, sums of numbers of the same sign and subtractions of the initial
data (cf. [38]). Observe that Theorems 28 and 29 guarantee that we know BD. jSn/

and BD. jcn/ with HRA and that we know bidiagonal factorizations of . jSn/
�1 and

. jcn/
�1 with HRA. In fact, these last bidiagonal factorizations can be used directly

to obtain . jSn/
�1 and . jcn/

�1 because the matrix products can be performed without
subtractions.

In [67] and [68] Koev presented algorithms for solving with HRA some usual
linear algebra problems for an n � n TP matrix A, assuming that the entries of the
bidiagonal decomposition BD.A/ are known with HRA. In particular, we have the
computation of the singular values and the eigenvalues of the matrix A. Koev has
also developed a library available in [69], which contains an implementation of
the algorithms devised in [67] and [68] for using them with Matlab and Octave.
The name of the functions we are interested in are TNSingularValues and
TNSolve, as we will comment in the next section. The computational cost of the
corresponding algorithms is of O.n3/ elementary operations for an n�n matrix. The
functions require as input argument the bidiagonal decompositionsBD. jcn/ (given
by (48) and (49)) or BD. jSn/ (given by (46) and (47)) of the Jacobi-Stirling matrix
of first or second kind, respectively. In addition, TNSolve need a second argument,
the vector of independent terms of the system to be solved.

Previously we have deduced how to compute the bidiagonal decompositions of
the n � n Jacobi-Stirling matrices of both kinds with high accuracy and a total
cost of O.n2/ elementary operations. We have implemented them in the functions
named TNBDJS1 and TNBDJS2, respectively, for Matlab and Octave, which take
as input argument z D ˛ C ˇ C 1 and the order n of the matrix. So, the accurate
bidiagonal decompositions of Jacobi-Stirling matrices obtained by TNBDJS1 and
TNBDJS2 can be used with the functions TNSingularValues and TNSolve
of the TNTool library in [69] in order to obtain very accurate approximations of all
the singular values of those matrices and of the solution of the corresponding linear
systems.
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Introduction to Communication Avoiding
Algorithms for Direct Methods of Factorization
in Linear Algebra

Laura Grigori

Abstract Modern, massively parallel computers play a fundamental role in a large
and rapidly growing number of academic and industrial applications. However,
extremely complex hardware architectures, which these computers feature, effec-
tively prevent most of the existing algorithms to scale up to a large number of
processors. Part of the reason behind this is the exponentially increasing divide
between the time required to communicate a floating-point number between two
processors and the time needed to perform a single floating point operation by one
of the processors. Previous investigations have typically aimed at overlapping as
much as possible communication with computation. While this is important, the
improvement achieved by such an approach is not sufficient. The communication
problem needs to be addressed also directly at the mathematical formulation and the
algorithmic design level. This requires a shift in the way the numerical algorithms
are devised, which now need to reduce, or even minimize when possible, the number
of communication instances. Communication avoiding algorithms provide such a
perspective on designing algorithms that minimize communication in numerical
linear algebra. In this document we describe some of the novel numerical schemes
employed by those communication avoiding algorithms, with a particular focus on
direct methods of factorization.

1 Introduction

This document discusses one of the main challenges in high performance computing
which is the increased communication cost, the fact that the time needed to commu-
nicate a floating-point number between two processors exceeds by huge factors the
time required to perform a single floating point operation by one of the processors.
Several works have shown that this gap has been increasing exponentially (see
e.g. [36]) and it is predicted that it will continue to do so in the foreseeable future!
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The memory wall problem, the disparity between the time required to transfer data
between different levels of the memory hierarchy and the time required to perform
floating point operations, was predicted already in 1995 by Wulf and McKee [71].
However, we are also facing now the inter-processor communication wall. Because
of this, most of the algorithms are not able to scale to a large number of processors
of these massively parallel machines. The slow rate of improvement of latency is
mainly due to physical limitations, and it is not expected that the hardware research
will find a solution to this problem soon. Hence the communication problem needs
to be addressed also at the algorithmic and software level.

The communication gap is already seen and felt in the current, highly optimised
applications, as illustrated by the top panel of Fig. 1, which displays the performance
of a linear solver based on iterative methods used in the cosmic microwave
background (CMB) data analysis application from astrophysics. This performance
result is extracted from [40]1 where a more detailed description of the algorithms
can be found. It shows the cost of a single iteration of conjugate gradient iterative
solver preconditioned by a block diagonal preconditioner, together with the time
spent on computation and communication. These runs were performed on a Cray
XE6 system, each node of the system is composed of two twelve-cores AMD
MagnyCours. It can be seen that the communication becomes quickly very costly,
potentially dominating the runtime of the solver when more than 6000 cores are
used (each MPI process uses 6 cores). The bottom part of Fig. 1 displays the
performance estimated on a model of an exascale machine of a dense solver
based on Gaussian elimination with partial pivoting (GEPP) factorization2 (see also
[41]). The plot displays the computation to communication ratio as a function of
the problem size, vertical axis, and the number of used nodes, horizontal axis.
The plot shows two regimes, at the top left corner this is the computation which
dominates the run time, while at the bottom right this is the communication. The
white region marks the regime where the problem is too large to fit in memory.
We note that the communication-dominated regime is reached very fast, even for
such a computationally intensive operation requiring O.n3/ floating point operations
(flops) as shown here (where the matrix to be factored is of size n � n).

1.1 Communication Avoiding Algorithms

New communication avoiding algorithms have been introduced in the recent years
that minimize communication and are as stable as classic algorithms. We describe
in more details the communication complexity of direct methods of factorization
in Sect. 2. Then in the following sections we describe communication avoiding
algorithms for direct methods of factorization that attain the lower bounds on

1Courtesy of M. Szydlarski.
2Courtesy of M. Jacquelin.
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Fig. 1 Communication bottleneck of two algorithms, a dense linear solver based on LU factoriza-
tion with partial pivoting (bottom figure) and a sparse iterative solver applied to the map-making
problem in astrophysics (top figure, using data extracted from [40])
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communication discussed in Sect. 2 (up to polylogarithmic factors). Section 3
describes CALU, a communication avoiding LU factorization. Section 4 presents
CAQR, a communication avoiding QR factorization, while Sect. 5 discusses a com-
munication avoiding rank revealing factorization. Section 5.3 focuses on computing
a low rank matrix approximation. We assume for simplicity real matrices, but the
algorithms can be generalized to complex matrices.

This document follows the presentation of the communication avoiding algo-
rithms from the original papers that introduced them. The communication avoiding
LU factorization is introduced in [37, 39], while the communication avoiding QR
factorization is introduced in [21], and with many more details in the technical
report [19]. A follow-up paper [9] allows to reconstruct Householder vectors such
that it is sufficient to replace the panel factorization in a QR factorization to obtain
a communication avoiding algorithm. A communication avoiding rank revealing
QR factorization is presented in [23], while an LU factorization more stable than
Gaussian elimination with partial pivoting is presented in [54]. When executed in
parallel, these algorithms reduce significantly the number of messages exchanged
with respect to classic algorithms as for example implemented in LAPACK [1]
and ScaLAPACK [12]. They sometimes perform redundant computations, however
these computations represent lower order terms with respect to the computational
complexity of classic algorithms. In practice, when used with advanced scheduling
techniques, the new algorithms lead to important speedups over existing algorithms
[25, 26].

We cite here several other communication avoiding algorithms that were intro-
duced in the recent years, but they are not described in this document. Communi-
cation avoiding algorithms for singular value decomposition (SVD) and eigenvalue
problems are described in [2]. Bounds on communication for fast matrix multipli-
cation are introduced in [3] and communication optimal algorithms for Strassen
matrix multiplication are discussed in [6]. For sparse matrices, the communication
complexity of the Cholesky factorization is studied in [38], while a communication
optimal sparse matrix matrix multiplication algorithm is presented in [7].

Let’s now give an example of classic algorithms that do not attain the lower
bounds on communication. Several direct methods of factorization require some
form of pivoting to preserve numerical stability, or reveal the rank of a matrix. The
classic pivoting schemes, as partial pivoting in LU factorization or column pivoting
in rank revealing QR, imply that the subsequent parallel algorithm cannot attain the
lower bounds on communication. For a machine with one level of parallelism, the
number of messages exchanged is on the order of n log P, where n is the number of
columns of the matrix and P is the number of processors used in the algorithm. For
square matrices and when the memory per processor is of size O.n2=P/, the lower
bound on number of messages is ˝.

p
P/ (see Eq. (4) in Sect. 2). Hence in this case

minimizing communication requires to invent novel pivoting schemes. There are
examples in the literature of pivoting schemes, as for example proposed by Barron
and Swinnerton-Dyer in their notable work [10], that minimize communication on
sequential machines. At that time the matrices were of dimension 100 � 100 and
the pivoting scheme was stable. But as shown in [39], this method can become



Communication Avoiding Algorithms 157

unstable for sizes of the matrices we encounter nowadays. The solution that we
have developed for LU factorization is described in Sect. 3.

For iterative methods of factorization, most of the research around communi-
cation avoiding algorithms focuses on Krylov subspace methods. Those methods,
as Conjugate Gradient (CG) [47], Generalized Minimal RESidual (GMRES) [62],
Bi-Conjugate Gradient STABilized (Bi-CGSTAB) [69] are the most used iterative
methods for solving linear systems of the form Ax D b, where A is very large and
sparse. Starting from an initial solution x0 and an initial residual r0, a new approxi-
mate solution xk is computed at iteration k by minimizing a measure of the error over
x0CKk.A; r0/, where Kk.A; r0/ D spanŒr0;Ar0; : : : ;Ak�1r0; � is the Krylov subspace
of dimension k. Every iteration requires computing the product of A (and in some
cases of AT) with a vector and several other operations as dot products related to the
orthogonalization of the vectors of the basis. In the parallel case, the input matrix
and the vectors are distributed over processors. Hence every iteration requires point
to point communications for multiplying A with a sparse vector and collective com-
munications for the dot products. On a large number of processors, the collective
communications start dominating the overall cost of the iterative process. There are
two main approaches used to reduce communication. The first approach relies on so
called s-step methods [15, 17, 31, 50] that compute s vectors of the Krylov basis with
no communication and then orthogonalize them against the previous vectors of the
basis and against themselves. With this approach, the communication is performed
every s iterations and this results in an overall reduction of the communication cost
of the iterative method [15, 20, 50]. A second approach, described in [42], relies
on enriching the subspace used in these methods that allows, at the cost of some
extra computation, to reduce communication, while ensuring theoretically that the
convergence is at least as fast as the convergence of the corresponding existing
Krylov method. For this, first the problem is partitioned into P domains, and at each
iteration of the iterative method, P dimensions are added to the search space instead
of one dimension as in classic methods. Experimental results presented in [42] show
that enlarged CG converges faster than CG on matrices arising from several different
applications. This method is related to block Krylov subspace methods [58]. There
are few preconditioners developed in this context, one of them is the communication
avoiding incomplete LU preconditioner described in [42].

1.2 Different Previous Approaches for Reducing
Communication

Most of the approaches investigated in the past to address this problem rely
on changing the schedule of the computation such that the communication is
overlapped as much as possible with the computation. However such an approach
can lead to limited improvements. Ghosting is a different technique for reducing
communication, in which a processor ghosts some data and performs redundantly



158 L. Grigori

some computation, thus avoiding waiting to receive the results of this computation
from other processors. But the dependency between computations in linear algebra
operations prevents a straightforward application of ghosting. There are operations
for which ghosting would require storing and performing on one processor an
important fraction of the entire computation. Cache-oblivious algorithms represent
a different approach introduced in 1999 for Fast Fourier Transforms [33], and then
extended to graph algorithms, dynamic programming, etc. They were also applied to
several operations in linear algebra (see e.g. [30, 45, 67]) as dense LU and QR factor-
izations. These cache-oblivious factorizations are computed through recursive calls
of linear algebra operations on sub-blocks of the matrix to be factored. Since the sub-
blocks become smaller and smaller, at some level of the recursion they fit in memory,
and overall the amount of data transferred between different levels of the memory
hierarchy is reduced. However there are cases in which the number of messages is
not reduced and they perform asymptotically more floating-point operations.

1.3 Notations

We use Matlab like notation. We refer to the element of A at row i and column j
as A.i; j/. The submatrix of A formed by rows from i to j and columns from k to s
is referred to as A.i W j; k W s/. The matrix formed by concatenating two matrices
A1, A2 stacked atop one another is referred to as ŒA1I A2�. The matrix formed by
concatenating two matrices one next to another is referred to as ŒA1;A2�. The matrix
formed by the absolute value of the elements of A is referred to as jAj. The identity
matrix of size n � n is referred to as In.

To estimate the performance of an algorithm, we use the ˛ � ˇ � � model. With
this model, the time required for transferring one message of n words between two
processors is estimated as ˇ � n C ˛, where ˇ is the interprocessor bandwidth cost
per word and ˛ is the interprocessor latency. Given the time required to compute
one floating point operation (flop) � , the time of a parallel algorithm is estimated as,

T D � � # flops C ˇ � # words C ˛ � # messages; (1)

where #flops represents the computation, #words the volume of communication, and
#messages the number of messages exchanged on the critical path of the parallel
algorithm.
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2 Lower Bounds on Communication for Dense Linear
Algebra

In this section we review recent results obtained on the communication complexity
of dense linear algebra operations. In the sequential case, these results consider a
machine with two levels of memory, at the first level the memory has size M words,
at the second level, the memory has infinite size but the access to the data is much
slower. In the parallel case, they assume one level of parallelism, that is a parallel
machine with P processing units connected through a fast network. One notable
previous theoretical result on communication complexity is a result derived by Hong
and Kung [51] providing lower bounds on the volume of communication of dense
matrix multiplication for sequential machines. These bounds are extended to dense
parallel matrix multiplication in [52] (with a different approach used for the proofs).
It was shown in [19] that these bounds hold for LU and QR factorizations (under
certain assumptions) and that they can be used to also identify lower bounds on
the number of messages. General proofs that hold for almost all direct dense linear
algebra operations are given in [4]. Consider a matrix of size m � n and a direct
dense linear algebra algorithm as matrix multiplication, LU, QR, or rank revealing
QR factorization, executed on a sequential machine with fast memory of size M
words and slow memory of infinite size. The number of words and the number of
messages transferred between slow and fast memory is bounded as,

# words � ˝

�
mn2

M1=2

�
; # messages � ˝

�
mn2

M3=2

�
: (2)

The bounds can be obtained by using the Loomis-Whitney inequality, as proven in
[4, 52], which allows to bound the number of flops performed given an amount
of data available in the memory of size M. Equation (2) can be used to derive
bounds for a parallel program executed on P processors. For simplicity we consider
in the following square dense matrices of size n � n. Assuming that at least one
processor does n3=P floating point operations, and that the size of the memory of
each processor M has a value between n2=P and n2=P2=3, the lower bounds become

# words � ˝

�
n3

P � M1=2

�
; # messages � ˝

�
n3

P � M3=2

�
: (3)

When the memory of each processor is on the order of n2=P, that is each processor
has enough memory to store =1=P-th of the matrices involved in the linear algebra
operation and there is no replication of the data, the lower bounds become

# words � ˝

�
n2p

P

�
; # messages � ˝

�p
P
�
: (4)
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Algorithms that attain these bounds are referred to as 2D algorithms. Cannon’s
matrix multiplication [14] is such an algorithm that attains the lower bounds on
communication from (4). The lower bounds from (3) become smaller when the
memory size is increased, and this until M is on the order of n2=P2=3. Indeed, even in
the case of infinite memory M, it is shown in e.g. [5] that at least one processor must
communicate˝.n2=P2=3/ words of data. This leads to the following lower bounds,

# words � ˝

�
n2

P2=3

�
; # messages � ˝ .1/ : (5)

Algorithms that attain the lower bounds on communication in the case when M is
larger than n2=P are referred to as 3D algorithms. In these algorithms, the matrices
are replicated over a 3D grid of processors.

These lower bounds on communication allow to identify that most of the existing
algorithms as implemented in well-known numerical libraries as ScaLAPACK and
LAPACK do not minimize communication. In the rest of this document we will
discuss 2D algorithms that store only one copy of the matrices involved in the
computation and use a memory on the order of n2=P per processor (for square
matrices). We discuss only the parallel case, however the algorithms can be adapted
to minimize communication between two levels of memory in the sequential case.

3 Communication Avoiding LU Factorization

Given a matrix A 2 R
m�n, m � n, the LU factorization decomposes the matrix A

into the product L � U, where L is a lower triangular matrix of size m � n with unit
diagonal and U is an upper triangular matrix of size n � n. This algorithm can be
written as three nested loops, whose order can be interchanged. A so-called right-
looking version of the algorithm is presented in Algorithm 1. To avoid division by
small elements and preserve numerical stability, this algorithm uses partial pivoting.
During the factorization, for each column k, the element of maximum magnitude in
A.k W n; k/ is permuted to the diagonal position before the column is factored. Then,
multiples of row k are added to all subsequent rows k C 1 to m to annihilate all
the nonzero elements below the diagonal. This algorithm requires mn2� n3=3 flops.
An in-place version can be easily obtained by overwriting the matrix A with the
matrices L and U.

Typically, this factorization is implemented by using a block algorithm, in which
the matrix is partitioned into blocks of columns of size b. In the remaining of this
document, without loss of generality, we consider that n and m are multiples of b.
At the first iteration, the matrix A is partitioned as

A D
�

A11 A12
A21 A22

	
; (6)
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Algorithm 1 LU factorization with partial pivoting (GEPP)
Require: A 2 R

m�n

1: Let L 2 R
m�n be initialized with identity matrix and U 2 R

n�n with zero matrix.
2: for k D 1 to n � 1 do
3: Let A.i; k/ be the element of maximum magnitude in A.k W m; k/
4: Permute row i and row k
5: U.k; k W n/ D A.k; k W n/
6: L.k C 1 W m; k/ D A.k C 1 W m; k/=A.k; k/
7: for i D k C 1 W m do
8: for j D k C 1 W n do
9: A.i; j/ D A.i; j/� A.i; k/A.k; j/

10: end for
11: end for
12: end for
13: U.n; n/ D A.n; n/

where A11 is of size b � b, A21 is of size .m � b/ � b, A12 is of size b � .n � b/,
and A22 is of size .m � b/ � .n � b/. With a right looking approach, the block
algorithm computes the LU factorization with partial pivoting of the first block-
column (panel), it determines the block U12, and then it updates the trailing matrix
A22. The factorization obtained after the first iteration is

˘1A D
�

L11
L21 Im�b

	
�
�

U11 U12

A122

	
; (7)

where A122 D A22 � L21U12. The algorithm continues recursively on the
trailing matrix A122.

3.1 Parallel Block LU Factorization

We describe now briefly a parallel block LU algorithm by following its implemen-
tation in ScaLAPACK (PDGETRF routine). The input matrix is distributed over a
Pr � Pc grid of processors using a bidimensional (2D) block cyclic layout with
blocks of size b � b. As an example, with a 2 � 2 grid of processors, the blocks of
the matrix are distributed over processors as

2

64
P0 P1 P0 P1 : : :
P2 P3 P2 P3 : : :
:::
:::
:::
:::
: : :

3

75 :

Algorithm 2 presents the main operations executed at each iteration of the block
LU factorization. In terms of number of messages, it can be seen that, except for
the panel factorization, all the other operations rely on collective communications
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Algorithm 2 LU factorization with partial pivoting using a block algorithm
Require: A 2 R

m�n distributed over a 2D grid of processors P D Pr � Pc

1: Let L 2 R
m�n be initialized with identity matrix and U 2 R

n�n with zero matrix
2: for k = 1 to n/b do
3: kb D .k � 1/ � b C 1, ke D kb C b � 1

4: Compute panel factorization using partial pivoting (processors in the same column of the
process grid)

˘kA.kb W m; kb W ke/ D L.kb W m; kb W ke/ � U.kb W ke; kb W ke/

5: Broadcast pivot information along the rows of the process grid, pivot by applying the
permutation matrix ˘k on the entire matrix (all processors)

A D ˘kA

6: Broadcast right L.kb W ke; kb W ke/, compute block row of U (processors in the same row of
the process grid)

U.kb W ke; ke C 1 W n/ D L.kb W ke; kb W ke/
�1A.kb W ke; ke C 1 W n/

7: Broadcast along rows of the process grid L.ke C 1 W m; kb W ke/, broadcast along columns
of the process grid U.kb W ke; ke C 1 W n/, update trailing matrix (all processors)

A.ke C 1 W m; ke C 1 W n/ D A.ke C 1 W m; ke C 1 W n/� L.ke C 1 W m; kb W ke/ � U.kb W ke; ke C 1 W n/

8: end for

which require exchanging O.log Pr/ or O.log Pc/ messages. Hence, the latency
bottleneck lies in the panel factorization, where the LU factorization is performed
column by column as in Algorithm 1. For each column, finding the element of
maximum magnitude requires a reduce-type communication based on exchanging
log Pr messages. In other words, partial pivoting requires performing a number
of O.n log Pr/ collective communications, which depends on n, the number of
columns of the matrix. Since the lower bound on number of messages in Eq. (4) is
˝.

p
P/ for square matrices, LU factorization with partial pivoting as implemented

in ScaLAPACK does not allow to minimize communication on a parallel machine.
However we note that recently it has been shown that with a sophisticated data
layout, it is possible to minimize data movement on a sequential machine for LU
with partial pivoting [8].

3.2 Tournament Pivoting

Communication avoiding LU based on tournament pivoting was introduced in [37,
39] where a more detailed description can be found. We refer to this factorization
as CALU. As in a classic LU factorization, the matrix is partitioned in blocks of b
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columns. At the first iteration, consider the matrix A partitioned as

A D
�

A11 A12
A21 A22

	
;

where A11 is of size b � b, A21 is of size .m � b/ � b, A12 is of size b � .n � b/, and
A22 is of size .m � b/ � .n � b/. With tournament pivoting, the panel factorization
is performed as following. A preprocessing step plays a tournament to find at low
communication cost b pivots that can be used to factor the entire panel. The selected
b rows are permuted into the leading positions and they are used as pivots for the LU
factorization of the entire panel (which is performed hence with no permutation).
The preprocessing step is performed as a reduction operation where at each node of
the reduction tree Gaussian elimination with partial pivoting (GEPP) is used to select
b pivot rows. This strategy has the property that the communication for computing
the panel factorization does not depend on the number of columns, but depends
only on the number of processors. We refer to this procedure for computing the
LU factorization of the panel as TSLU. The communication avoiding LU algorithm
computes then the block U12, updates the trailing matrix A22, and a factorization as
in Eq. (7) is obtained. It then continues recursively on the updated block A122.

We explain now in more details tournament pivoting. Given P processors, the
panel is partitioned into P block rows. We consider here the simple case P D 4, a
binary reduction tree, and we suppose that m is a multiple of 4. The first panel is
partitioned as A.W; 1 W b/ D ŒA00 I A10 I A20 I A30�. Each processor p has associated
a block row Ap0. At the first step of the reduction, b rows are selected from each
block Ap0 by using GEPP. The selected rows correspond to the pivot rows used
during the LU factorization. After this step we obtain 4 sets of b candidate rows. In
the second step, the sets are combined two by two, we obtain two matrices of size
2b�b each. From each matrix we select b rows by using again GEPP. In the last step
of tournament pivoting, the two sets of candidate rows form a new matrix of size
2b�b from which the final b rows are selected. This algorithm is illustrated in Fig. 2
from [39], where the function f .Aij/ computes the GEPP factorization of Aij and
returns the b pivot rows used by partial pivoting. The input matrix Aij of dimension
2b � b is formed by the two sets of candidate rows selected by the previous steps of
tournament pivoting.

A30

A20

A10

A00

→
→
→
→

f (A30)

f (A20)

f (A10)

f (A00)

↗
↘

↗
↘

f (A11)

f (A01)

↗
↘

f (A02)

Fig. 2 TSLU with binary tree based tournament pivoting. This figure is from [39]. Copyright
©[2011] Society for Industrial and Applied Mathematics. Reprinted with permission. All rights
reserved
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Algorithm 3 Parallel TSLU factorization
Require: P processors, i is my processor’s index, all reduction tree with height L D log P
Require: A 2 R

m�n;m � n, distributed in block row layout; Ai;0 is the block of rows belonging
to my processor i

1: Compute ˘i;0Ai;0 D Li;0Ui;0 using GEPP
2: for each level k in the reduction tree from 1 to L do
3: s D bi=2kc, f D 2kbi=2kc, j D f C .i C 2k�1/ mod 2k

4: si D bi=2k�1c, sj D b j=2k�1c
5: Non-blocking send .˘si ;k�1Asi ;k�1/.1 W n; 1 W n/ to processor j
6: Non-blocking receive .˘sj ;k�1Asj ;k�1/.1 W n; 1 W n/ from processor j
7: Wait until the previous send and receive have completed

8: Form the matrix As;k of size 2n � n as As;k D
�
.˘si ;k�1Asi ;k�1/.1 W n; 1 W n/
.˘sj ;k�1Asj ;k�1/.1 W n; 1 W n/

	

9: Compute ˘s;kAs;k D Ls;kUs;k using GEPP
10: end for
11: Determine the final permutation ˘ , such that .˘A/.1 W n; W/ are the k selected rows at the end

of tournament
12: All P processors compute the Gaussian elimination with no pivoting of their blocks, ˘A D

LU
Ensure: U0;L is the U factor obtained at step 12 for all processors i.

Algorithm 3 presents a pseudo-code for the parallel implementation of TSLU on
P processors. It follows the presentation of TSLU in [39], where a more detailed
description can be found. For simplicity, we consider that P is a power of 2. We
consider here an all reduction tree based on a butterfly scheme, whose height is
L D log P. The matrix A is distributed block row-wise over processors. The levels
of the tree are numbered from 0 to L, where the first level 0 corresponds to the
phase with no communication and each leaf node represents a processor. At the first
level k D 1, each node s has associated two processors i and i � 1, where i is an
odd number. The two processors exchange their set of candidate rows. Then each
processor forms a matrix with the two sets of candidate rows and selects a new set
of candidate rows using GEPP. In general, at a given level k, processor i participates
to the computation associated with node numbered s D bi=2kc. The first processor
associated with this node is f D 2kbi=2kc and the processor exchanging information
with this processor is numbered f C 2k�1. Processor i exchanges information with
processor j D f C .i C 2k�1/ mod 2k. They exchange the candidate rows that were
selected at the previous level k�1 in the reduction tree at the children nodes si and sj.

TSLU requires exchanging log P messages among processors. This allows the
overall CALU algorithm to attain the lower bounds on communication in terms of
both number of messages and volume of communication. When the LU factorization
of a matrix of size n � n is computed by using CALU on a grid of P D Pr � Pc

processors, as shown in [39] where a more detailed description can be found,



Communication Avoiding Algorithms 165

the parallel performance of CALU in terms of number of messages, volume of
communication, and flops, is

TCALU.m; n;P/

� � �
�
1

P

�
mn2 � n3

3

�
C 1

Pr

�
2mn � n2

�
b C n2b

2Pc
C nb2

3
.5 log2 Pr � 1/

�

Cˇ �
��

nb C 3n2

2Pc

�
log2 Pr C 1

Pr

�
mn � n2

2

�
log2 Pc

�

C˛ �
�
3n

b
log2 Pr C 3n

b
log2 Pc

�
: (12)

To attain the lower bounds on communication, an optimal layout can be chosen with

Pr D Pc D p
P and b D log�2

�p
P
�

� np
P

. The blocking parameter b is chosen

such that the number of messages attains the lower bound on communication from
Eq. (4), while the number of flops increases only by a lower order term. With this
layout, the performance of CALU becomes,

TCALU.m; n;P D p
P � p

P/ � � �
�
1

P

2n3

3
C 5n3

2P log2 P
C 5n3

3P log3 P

�

C ˇ � n2p
P

�
2 log�1 P C 1:25 log P

�

C ˛ � 3pP log3 P: (13)

We note that GEPP as implemented for example in ScaLAPACK (PDGETRF
routine) has the same volume of communication as CALU, but requires exchanging
a factor on the order of b more messages than CALU.

3.3 Pivoting Strategies and Numerical Stability

The backward stability of the LU factorization depends on the growth factor gW ,
defined as,

gW D maxi;j;k jA.k/.i; j/j
maxij jA.i; j/j ; (14)

where A.k/.i; j/ denotes the entry in position .i; j/ obtained after k steps of elimina-
tion. This is illustrated by the following Lemma 1.
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Table 1 Bounds for the growth factor gW obtained from different pivoting strategies for a matrix
of size m � n

CALU GEPP CALU_PRRP LU_PRRP

Upper bound 2n.log PC1/�1 2n�1 .1C �b/.n=b�1/ log P � 2b�1 .1C �b/n=b�1 � 2b�1

CALU_PRRP and LU_PRRP select pivots using strong rank revealing QR (that uses a parameter
� typically equal to 2). The reduction tree used during tournament pivoting is of height log P

Lemma 1 (Lemma 9.6, Sect. 9.3 of [48]) Let A D LU be the Gaussian elimina-
tion without pivoting of A. Then kjLjjUjk1 is bounded using the growth factor gW

by the relation kjLjjUjk1 � .1C 2.n2 � n/gW/kAk1.
A comparison of the upper bound of the growth factors obtained by different

pivoting strategies is given in Table 1. All the results discussed in this section hold
in exact arithmetic. The growth factor of CALU is obtained by using the fact that
performing CALU on a matrix A is equivalent with performing GEPP on a larger
matrix formed by blocks from the original matrix A and blocks of zeros. In addition
to partial pivoting (GEPP) and CALU, we also include in this table the growth
factor of the LU factorization with panel rank revealing pivoting (LU_PRRP) and
its communication avoiding version (CALU_PRRP), presented in [54]. We observe
that the upper bound of the growth factor is larger for CALU than for GEPP.
However many experiments presented in [39] show that in practice CALU is as
stable as GEPP. There is one particular case of nearly singular matrices in which
CALU can lead to a large growth factor, and a solution to this case is presented in a
paper in preparation [24].

3.4 Selection of References for LU Factorization

The LU factorization has been largely studied in the literature, and we give here only
several references. One of the first references (if not the first) to a block algorithm is
[10], a paper by Barron and Swinnerton-Dyer. The authors were interested in solving
a linear system of equations on EDSAC 2 computer, by using a magnetic-tape store.
Hence they were interested in using as much as possible the data in main store,
and reduce the number of transfers between magnetic tape and main store. They
introduce two algorithms, the first one uses a pivoting strategy referred to nowadays
as pairwise pivoting, the second one is the block LU factorization presented at
the beginning of this section. The numerical stability of the LU factorization is
studied for example in [48, 49, 68, 70]. Techniques as pairwise pivoting and block
pivoting are studied in [64, 68]. In [68] it is shown experimentally that two factors
are important for the numerical stability of the LU factorization, the elements of L
are bounded in absolute value by a small number and the correction introduced at
each step of the factorization is of rank 1. The latter property is satisfied by GEPP,
CALU, LU_PRRP, and CALU_PRRP. Pairwise pivoting, parallel pivoting and their
block versions do not satisfy this property, and block parallel pivoting can lead to
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an exponential growth factor [68]. As shown in [39], for matrices with more than
212 rows and columns, block pairwise pivoting leads to a growth of gW which is
faster than linear. Potentially this pivoting strategy can become unstable for very
large matrices.

4 Communication Avoiding QR Factorization

The QR factorization decomposes a matrix A 2 R
m�n as A D QR, where Q 2 R

m�m

is orthogonal and R 2 R
m�n. We can further decompose the factors into Q1 2

R
m�n, Q2 2 R

m�.m�n/, and the upper triangular matrix R1 2 R
n�n to obtain the

factorization

A D QR D 

Q1 Q2

� �R1
0

	
D Q1R1: (15)

If A is full rank, the thin factorization Q1R1 is unique (modulo signs of diagonal
elements of R). We consider in this document the QR factorization based on House-
holder transformations. Algorithm 4 presents such a factorization. A Householder
transformation is a symmetric and orthogonal matrix of the form H D I � 2

yT y
yyT ,

which is independent of the scaling of the vector y. When applied to a vector x, it
reflects x through the hyperplane span.y/?.

At each iteration k of the QR factorization from Algorithm 4, the Householder
matrix Hk D I � �kykyT

k is chosen such that all the elements of A.k W m; k/ are
annihilated, except the first one, HkA.k W m; k/ D ˙kA.k W m; k/k2e1. For more

Algorithm 4 QR factorization based on Householder transformations
Require: A 2 R

m�n

1: Let R 2 R
n�n be initialized with zero matrix and Y 2 R

m�n with identity matrix
2: for k = 1 to n do

F Compute Householder matrix Hk D I � �kykyT
k s.t. HkA.k W m; k/ D ˙kA.k W m; k/k2e1.

Store yk in Y./ and �k in T .k/
3: R.k; k/ D �sgn.A.k; k// � kA.k W m; k/k2
4: Y.k C 1 W m; k/ D 1

R.k;k/�A.k;k/ � A.k C 1 W m; k/ F vector yk

5: T .k/ D R.k;k/�A.k;k/
R.k;k/ F scalar �k

F Update trailing matrix A.k W m; k C 1 W n/
6: A.k W m; k C 1 W n/ D .I � Y.k C 1 W m; k/T .k/Y.k C 1 W m; k/T / � A.k W m; k C 1 W n/
7: R.k; k C 1 W n/ D A.k; k C 1 W n/
8: end for
Ensure: A D QR, where Q D H1 : : :Hn D .I � �1y1yT

1 / : : : .I � �nynyT
n /, the Householder vectors

yk are stored in Y, and T is an array of size n.
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details on how to compute the Householder matrix, the reader can refer to [35, 48]
or to the LAPACK implementation [1]. We obtain

QTA D HnHn�1 : : :H1A D R;

Q D .I � �1y1yT
1 / : : : .I � �nynyT

n /:

A block version of this algorithm can be obtained by using a storage efficient
representation of Q [63],

Q D .I � �1y1yT
1 / : : : .I � �nynyT

n / D I � YTYT ; (16)

where Y is the matrix containing the Householder vectors as obtained in Algorithm 4
and T is computed from Y and the scalars �k stored in T . As example, for n D 2,
the compact representation is obtained as follows,

Y D Œ y1; y2�; T D
�
�1 ��1yT

1y2�2
0 �2

	
:

The product of two compact representations can be represented by one compact
representation as follows [30],

Q D .I � Y1T1Y
T
1 /.I � Y2T2Y

T
2 / D .I � YTYT /;

Y D ŒY1;Y2�;

T D
�

T1 �T1YT
1 Y2T2

0 T2

	
:

A block algorithm for computing the QR factorization is obtained by partitioning
the matrix A of size m � n as

A D
�

A11 A12
A21 A22

	
; (17)

where A11 is of size b � b, A21 is of size .m � b/ � b, A12 is of size b � .n � b/,
and A22 is of size .m � b/ � .n � b/. The first step of the block QR factorization
algorithm computes the QR factorization of the first b columns ŒA11I A21� to obtain
the following factorization,

A D
�

A11 A12
A21 A22

	
D Q1

�
R11 R12

A122

	
:

The algorithm continues recursively on the trailing matrix A122. The algebra of block
QR factorization is presented in Algorithm 5.
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Algorithm 5 QR factorization based on Householder transformations using a block
algorithm
Require: A 2 R

m�n

1: Let R 2 R
m�n be initialized with zero matrix

2: for k = 1 to n/b do
3: kb D .k � 1/ � b C 1, ke D kb C b � 1

4: Compute by using Algorithm 4 the factorization

A.kb W m; kb W ke/ D QkR.kb W ke; kb W ke/

5: Compute the compact representation Qk D I � YkTkYT
k

6: Apply QT
k on the trailing matrix

A.kb W m; ke C 1 W n/ D .I � YkTT
k YT

k /A.kb W m; ke C 1 W n/

D A.kb W m; ke C 1 W n/� Yk

�
TT

k

�
YT

k .A.kb W m; ke C 1 W n//
��

7: R.kb W ke; ke C 1 W n/ D A.kb W ke; ke C 1 W n/
8: end for
Ensure: A D QR, where Q D .I � Y1T1YT

1 / : : : .I � Yn=bTn=bYT
n=b/

A parallel implementation of the QR factorization as implemented in ScaLA-
PACK, PDGEQRF routine, considers that the matrix A is distributed over a grid of
processors P D Pr � Pc. We do not describe here in detail the parallel algorithm.
We note that similarly to the LU factorization, the latency bottleneck lies in the
QR factorization of each panel, that is based on Algorithm 4. The computation of a
Householder vector at each iteration k of Algorithm 4 requires computing the norm
of column k. Given that the columns are distributed over Pr processors, computing
the norm of each column requires a reduction among Pr processors. Hence overall
a number of messages proportional to the number of columns of A needs to be
exchanged during PDGEQRF. Such an algorithm cannot attain the lower bounds on
the number of messages. We note however that PDGEQRF attains the lower bound
on the volume of communication.

4.1 Communication Avoiding QR Factorization for a Tall and
Skinny Matrix: TSQR

Consider a matrix A 2 R
m�n for which m 
 n. TSQR is a QR factorization

algorithm that allows to minimize communication between different processors or
between different levels of the memory hierarchy. It is performed as a reduction
operation, in which the operator used at each step of the reduction is a QR
factorization. We describe here the parallel case, for more details the reader is
referred to [19]. We assume that the matrix A is distributed over P processors by
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using a block row distribution. We consider in the following that P D 4, m is a
multiple of 4, and the matrix A is partitioned among processors as,

A D

2

664

A00
A10
A20
A30

3

775 ; (18)

where Ai0; i D 0; : : : ; 3 is of dimension m=4 � n. At the first step of TSQR, each
processor computes locally a QR factorization,

A D

2
664

A00
A10
A20
A30

3
775 D

2
664

Q00R00
Q10R10
Q20R20
Q30R30

3
775 D

2
664

Q00

Q10

Q20

Q30

3
775

2
664

R00
R10
R20
R30

3
775 : (19)

At the second step, the upper triangular factors Ri0; i D 1 W 4 are grouped into pairs,
and each pair is factored in parallel as,

2

664

R00
R10
R20
R30

3

775 D
�

Q01R01
Q11R11

	
D
�

Q01

Q11

	 �
R01
R11

	
: (20)

At the last step the resulting upper triangular factors are factored as,

�
R01
R11

	
D Q02R02: (21)

The QR factorization obtained by TSQR based on a binary tree is,

A D QR02; (22)

where

Q D

2
664

Q00

Q10

Q20

Q30

3
775 �

�
Q01

Q11

	
� Q02: (23)

The matrix Q is an orthogonal matrix formed by the product of three orthogonal
matrices (the dimensions of the intermediate factors are chosen such that their
product can be written as above). Unless it is required, the matrix Q is not formed
explicitly, but it is stored implicitly. The QR factorization used at each step of
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A30

A20

A10

A00

→
→
→
→

R30

R20

R10

R00

↗
↘

↗
↘

R11

R01

↗
↘

R02

Fig. 3 Binary tree based TSQR. This figure is from [21]. Copyright ©[2012] Society for Industrial
and Applied Mathematics. Reprinted with permission. All rights reserved

Algorithm 6 Parallel TSQR factorization
Require: P processors, i is my processor’s index, all reduction tree with height L D log P
Require: A 2 R

m�n;m � n, distributed in a block row layout; Ai;0 is the block of rows belonging
to my processor i

1: Compute QR factorization Ai;0 D Qi;0Ri;0

2: for each level k in the reduction tree from 1 to L do
3: s D bi=2kc, f D 2kbi=2kc, j D f C .i C 2k�1/ mod 2k

4: si D bi=2k�1c, sj D b j=2k�1c
5: Non-blocking send Rsi ;k�1 to processor j
6: Non-blocking receive Rsj ;k�1 from processor j
7: Wait until the previous send and receive have completed

8: Compute

�
Rsi ;k�1

Rsj ;k�1

	
D Qs;kRs;k

9: end for
Ensure: A D QR0;L, R0;L is available on all processors i
Ensure: Q is implicitly represented by the intermediate Q factors fQs;kg, for each node s and each

level k in the all reduction tree

TSQR can be performed by using Algorithm 4 or any other efficient sequential QR
factorization (as recursive QR [30]).

By using an arrow notation similar to CALU, a binary tree based parallel
TSQR factorization is represented in Fig. 3. Algorithm 6 presents parallel TSQR
by following its presentation from [19]. The notation used for the nodes and the
levels of the all reduction tree is the same as in Algorithm 3. It can be easily
seen that parallel TSQR requires exchanging only log P messages, and thus it
minimizes communication. It exchanges the same volume of communication as the
ScaLAPACK implementation of Householder QR (PDGEQR2 routine), .n2=2/�log P
words. In terms of floating point operations, TSQR performs 2mn2=P C .2n3=3/ �
log P flops, while PDGEQR2 performs 2mn2=P � .2n3/=.3P/ flops.

We note also that it is possible to reconstruct the Householder vectors of the
classic Householder QR factorization (Algorithm 4) from TSQR. Let A D QR be
the factorization obtained from Householder QR, where A is of size m � n, and let

Q D I � YTYT D I �
�

Y1
Y2

	
T


YT
1 YT

2

�
(24)
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be the compact representation of Q, where Q is of size m � m. Let Q D ŒQ1;Q2�,
where Q1 is formed by the first n columns of Q. This is also called a basis-kernel
representation of an orthogonal matrix, and as described in [66], there are several
different basis-kernel representations. The reconstruction of Householder vectors
introduced in [9] relies on the observation that

Q1 � S D Y.�TYT
1 /; (25)

where S is a sign matrix which reflects the sign choice of the diagonal of R made
in line 3 of Algorithm 4. Since Y is unit lower triangular and .�TYT

1 / is upper
triangular, this represents the unique LU decomposition of Q1�S. In other words, Y
and T can be reconstructed by computing the LU decomposition of Q1�S. With this
approach, denoted as TSQR-HR in [9], the performance of the algorithm becomes:

TTSQR�HR.m; n;P/ D � �
�
4mn2

P
C 4n3

3
log P

�
Cˇ � n2 log P C ˛ � 2 log P: (26)

We note that this algorithm performs 2:5 times more floating point operations than
TSQR. However, in practice it leads to a faster algorithm than PDGEQR2, as shown
in [9]. It can also be used to obtain a communication avoiding QR factorization
by only replacing the panel factorization in PDGEQRF. Faster approaches are
possible, but they could be less stable. For example the Householder vectors can
be reconstructed from the LU factorization of A � R, and this approach is stable
when A is well conditioned.

4.2 Communication Avoiding QR Factorization

We consider now the case of general matrices. CAQR was introduced in [19]
and it relies on using TSQR for its panel factorization. Each QR factorization
performed during TSQR induces an update of the trailing matrix. Hence the update
of the trailing matrix is driven by the reduction tree used during TSQR. CAQR
exchanges the same volume of communication as PDGEQRF. But the number of
messages with an optimal layout is .3=8/

p
P log3 P for CAQR, while for PDGEQRF

is .5n=4/ log2 P. The number of floating point operations remains the same (only
lower order terms change).

Another approach [9] consists in reconstructing the Householder vectors from
TSQR. A communication avoiding version can be obtained by replacing the panel
factorization in a classic algorithm such that the update of the trailing matrix does
not change. This leads to a simpler algorithm to implement, and better performance
on parallel machines, as described in [9].
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5 Communication Avoiding Rank Revealing Factorization
and Low Rank Matrix Approximation

In this section we consider the problem of estimating the singular values of a
matrix or computing its numerical rank, a problem with many diverse applications
in both scientific computing and data analytics, a detailed description can be found
in [16]. One such application is computing the rank-k approximation QAk of a matrix
A 2 R

m�n, QAk D ZWT , where Z 2 R
m�k, WT 2 R

k�n, and k is much smaller
than m and n. Very often, this low rank approximation is used in the context of an
iterative process which involves multiplying a matrix with a vector. Hence instead
of computing the product Ax, which requires computing 2mn flops when A is dense,
one could compute the product ZWTx with 2.m C n/k flops.

The best rank-k approximation of A is the rank-k truncated singular value
decomposition (SVD) of A. The singular value decomposition of A is

A D U˙VT D 

U1 U2

� �
�
˙1 0

0 ˙2

	
� 
V1 V2

�T
;

where U is m � m orthogonal matrix, the left singular vectors of A, U1 is formed by
the first k vectors, U2 is formed by the last m�k vectors.˙ is of dimension m�n, its
diagonal is formed by �1.A/ � : : : � �n.A/, ˙1 is of dimension k � k and contains
the first k singular values,˙2 is of dimension .m � k/� .n � k/ and contains the last
n � k singular values. V is n � n orthogonal matrix, the right singular vectors of A,
V1 is formed by the first k vectors, V2 is formed by the last n � k vectors. The rank-k
truncated singular value decomposition of A is Ak D U1˙1VT

1 . Eckart and Young
[29] have shown that

min
rank.QAk/�k

jjA � QAkjj2 D jjA � Akjj2 D �kC1.A/; (27)

min
rank.QAk/�k

jjA � QAkjjF D jjA � AkjjF D
vuut

nX

jDkC1
�2j .A/: (28)

Since computing the SVD of a matrix is very expensive, several different
approaches exist in the literature to approximate the singular value decomposition
which trade-off accuracy for speed. Those include the Lanczos algorithm [18, 61],
rank revealing factorizations as the rank revealing QR or LU factorizations, and
more recently randomized algorithms. For an overview of randomized algorithms
the reader can refer to [56].
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5.1 Rank Revealing QR Factorization

In this section we consider the rank revealing QR factorization based on QR
factorization with column pivoting. Given a matrix A 2 R

m�n, its QR factorization
with column pivoting is

A˘c D QR D Q

�
R11 R12

R22

	
; (29)

where ˘c is a column permutation matrix, Q 2 R
m�m is orthogonal, R11 2 R

k�k

is upper triangular, R12 2 R
k�.n�k/, R22 2 R

.m�k/�.n�k/. We say that this is a rank
revealing factorization (RRQR) if the column permutation matrix˘c is chosen such
that

1 � �i.A/

�i.R11/
;
�j.R22/

�kCj.A/
� q.k; n/; (30)

for any 1 � i � k and 1 � j � min.m; n/ � k, where q.k; n/ is a low degree
polynomial in n and k, and �1.A/ � : : : � �n.A/ are the singular values of A (we
assume in this document that the singular values of A and R are all nonzero). In
other words, the column permutation allows to identify a submatrix of k columns
whose singular values provide a good approximation of the largest k singular
values of A, while the singular values of R22 provide a good approximation of the
min.m; n/� k smallest singular values of A. If jjR22jj2 is small and since �kC1.A/ �
�max.R22/ D jjR22jj2, then the numerical rank of A is k. Then Q.W; 1 W k/ forms an

approximate orthogonal basis for the range of A. Since A˘c

�
R�1
11 R12
�I

	
D Q

�
0

�R22

	

then ˘c

�
R�1
11 R12
�I

	
are approximate null vectors.

The usage of a QR factorization to reveal the rank of a matrix was introduced
in [34] and the first algorithm to compute it was introduced in [13]. With this
algorithm, the absolute value of the entries of R�1

11 R12 is bounded by O.2k/ and
it might fail sometimes to satisfy (30), for example on the so-called Kahan matrix
[53]. However, in most cases it provides a good approximation to the SVD and it
is the method of choice for estimating the singular values of a matrix through a
pivoted QR factorization. We refer to this algorithm as QRCP, which stands for QR
with Column Pivoting. It chooses at each step of the QR factorization the column of
maximum norm and permutes it to the leading position before proceeding with the
factorization.

The strong RRQR factorization was introduced in [44]. For a given k and a
parameter f > 1, the results in [44] show that there exists a permutation ˘c such
that

�
R�1
11 R12

�2
i;j

C !2i .R11/ �
2
j .R22/ � f 2; (31)
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for any 1 � i � k and 1 � j � n � k, where !i.R11/ denotes the 2-norm of the
i-th row of R�1

11 and �j.R22/ denotes the 2-norm of the j-th column of R22. This
inequality bounds the absolute values of the elements of R�1

11 R12 and leads to the
following bounds on singular values.

Theorem 2 (Gu and Eisenstat [44]) Let the factorization in Eq. (29) satisfy
inequality (31). Then

1 � �i.A/

�i.R11/
;
�j.R22/

�kCj.A/
�
p
1C f 2k.n � k/; (32)

for any 1 � i � k and 1 � j � min.m; n/� k.
A strong RRQR factorization can be obtained by computing first a QR factor-

ization with column pivoting to choose a rank k. For this rank k and a given f ,
additional permutations are performed until the inequality in (31) is satisfied, for a
cost of O.mnk/ floating point operations [44].

When executed on a distributed memory computer, the matrix A is distributed
over a 2D grid of processors P D Pr � Pc. Finding the column of maximum norm
at each step of QRCP requires a reduction operation among Pr processors, which
costs O.log Pr/ messages. After k steps of factorization, this requires exchanging
O.k � log Pr/messages. Hence, when run to completion, QRCP and its strong variant
cannot attain the lower bound on communication˝.

p
P/.

5.2 Tournament Pivoting for Selecting a Set of k Columns

A communication avoiding rank revealing QR factorization, referred to as CAR-
RQR, was introduced in [23]. This factorization is based on tournament pivoting,
and performs a block algorithm which computes the factorization by traversing
blocks of k columns (where k is small). At each iteration, it selects k columns that are
as well conditioned as possible by using a tournament which requires only O.log Pr/

messages. The selected columns are permuted to the leading positions before the
algorithm computes k steps of a QR factorization with no more pivoting.

Algorithm 7 describes the selection of k columns from a matrix A by using binary
tree based tournament pivoting. This selection is displayed in Fig. 4, in which the
matrix A is partitioned into 4 subsets of columns, A D ŒA00;A10;A20;A30�. At the
leaves of the reduction tree, for each subset of columns A0j, f .A0j/ selects k columns
by using strong rank revealing QR factorization of A0j. Then at each node of the
reduction tree, a new matrix Aij is obtained by adjoining the columns selected by
the children of the node, and f .Aij/ selects k columns by using strong rank revealing
QR factorization of Aij.
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Fig. 4 Binary tree based QR
factorization with tournament
pivoting. This figure is from
[23]. Copyright ©[2015]
Society for Industrial and
Applied Mathematics.
Reprinted with permission.
All rights reserved

A00 A10 A20 A30

↓ ↓ ↓ ↓
f (A00) f (A10) f (A20) f (A30)

↘ ↙ ↘ ↙
f (A01) f (A11)

↘ ↙
f (A02)

Algorithm 7 QR_TP (A,k): Select k linearly independent columns from a matrix A
by using QR factorization with binary tree based tournament pivoting
Require: A 2 R

m�n, number of columns to select k
1: Partition the matrix A D ŒA00; : : : ;An=k;0�, where Ai0 2 R

m�2k, i D 1; : : : n=.2k/ //
Assume n is a multiple of 2k

2: for each level in the reduction tree j D 0 to log2 n=.2k/ � 1 do
3: for each node i in the current level j do
4: if j D 0 (at the leaves of the reduction tree) then
5: Ai0 is the i-th block of 2k columns of A
6: else Form Aij by putting next to each other the two sets of k column candidates selected

by the children of node j
7: end if
8: Select k column candidates by computing Aij D Q1R1 and then computing a RRQR

factorization of R1, R1Pc2 D Q2

�
R2 �

�
	

9: if j is the root of the reduction tree then
10: Return ˘c such that .A˘c/.W; 1 W k/ D .Aij˘c2 /.W; 1 W k/
11: else Pass the k selected columns, A˘c2 .W; 1 W k/ to the parent of i
12: end if
13: end for
14: end for
Ensure: ˘c such that .A˘c/.W; 1 W k/ are the k selected columns

It is shown in [23] that the factorization as in Eq. (29) computed by CARRQR
satisfies the inequality

�2j
�
R�1
11 R12

�C �
�j .R22/ =�min .R11/

�2 � F2TP; for j D 1; : : : ; n � k; (33)

where �j.B/ denotes the 2-norm of the j-th column of B. This inequality is very
similar to the one characterizing a strong RRQR factorization. The following
Theorem 3 shows that CARRQR reveals the rank by satisfying an inequality similar
to (31), where the constant f is replaced by FTP, a quantity which depends on the
number of columns n, the rank k, and the depth of the tree used during tournament
pivoting. More details can be found in [23].
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Theorem 3 Assume that there exists a permutation˘c for which the QR factoriza-
tion

A˘c D Q

�
R11 R12

R22

	
; (34)

where R11 is k � k and satisfies (33). Then

1 � �i.A/

�i.R11/
;
�j.R22/

�kCj.A/
�
q
1C F2TP.n � k/; (35)

for any 1 � i � k and 1 � j � min.m; n/� k.
If only one step of QR with binary tree based tournament pivoting is used to

select k columns of the m � n matrix A, Corollaries 2.6 and 2.7 from [23] show that
the rank of A is revealed by satisfying inequality (35), with bound

FTP�BT � 1p
2k

�p
2fk
�log2.n=k/ D 1p

2k
.n=k/log2.

p
2fk/ : (36)

Given that f is a small constant and k in general is small compared to n, this bound
can be seen as a polynomial in n. If tournament pivoting uses a flat tree, then the
bound becomes

FTP�FT � 1p
2k

�p
2fk
�n=k

; (37)

exponential in n=k. The exponent of both bounds has an additional factor on the
order of n=k if multiple steps of QR with tournament pivoting are required to
reveal the rank (which is hence larger than k). However, the extensive numerical
experiments performed in [23] show that both binary tree and flat tree are effective
in approximating the singular values of A. For a large set of matrices, the singular
values approximated with CARRQR are within a factor of 10 of the singular values
computed with the highly accurate routine dgesvj [27, 28]. Figure 5 shows the
results obtained for two matrices (from [22]), EXPONENT, a matrix whose singular
values follow an exponential distribution �1 D 1, �i D ˛i�1 .i D 2; : : : ; n/,
˛ D 10�1=11 [11], and SHAW, a matrix from an 1D image restoration model [46].
The plots display the singular values computed by SVD and their approximations
computed by QR factorizations with column permutations (given by the diagonal
values of the R factor): QR with column pivoting (QRCP), CARRQR based on
binary tree tournament pivoting (CARRQR-B), and flat tree tournament pivoting
(CARRQR-F). The plots also display bounds for trustworthiness,

"minfjj.A˘0/.W; i/jj2 ; jj.A˘1/.W; i/jj2 ; jj.A˘2/.W; i/jj2g (38)

"maxfjj.A˘0/.W; i/jj2 ; jj.A˘1/.W; i/jj2 ; jj.A˘2/.W; i/jj2g (39)
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Fig. 5 Singular values as computed by SVD and approximations obtained from QRCP,
CARRQR-B, and CARRQR-F. (a) EXPONENT. (b) SHAW

where ˘j. j D 0; 1; 2/ are the permutation matrices obtained by QRCP, CARRQR-
B, and CARRQR-F respectively, and " is the machine precision. Those bounds
display for each column an estimate of uncertainty in any entry of that column of R
as computed by the three pivoting strategies.

On a distributed memory computer, CARRQR is implemented by distributing
the matrix over a 2D grid of processors P D Pr � Pc. By using an optimal layout,
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Pr D p
mP=n, Pc D p

nP=m, and b D B �pmn=P, B D 8�1 log�1
2 .Pr/ log�1

2 .Pc/,
the overall performance of CARRQR (some lower order terms are ignored) is:

TCARRQR.m; n;P/ � � �
�
6mn2 � 6n3=3

P
C cmn2

�

C ˇ � 2
p

mn3p
P

 
log2

r
mP

n
C log2

r
nP

m

!

C ˛ � 27
r

nP

m
log22

r
mP

n
log22

r
nP

m
;

where c < 1. This shows that parallel CARRQR performs three times more floating
point operations than QRCP as implemented in ScaLAPACK (routine pdgeqpf),
and it is communication optimal, modulo polylogarithmic factors.

5.3 Low Rank Matrix Approximation for Sparse Matrices

In this section we focus on computing the low rank approximation of a sparse matrix
by using rank revealing factorizations. In this case, the factors obtained by using
Cholesky, LU, or QR factorizations have more nonzeros than the matrix A. The R
factor obtained from the QR factorization is the Cholesky factor of ATA, and since
ATA can be much denser than A, it is expected that its Cholesky factor has more
nonzeros than the Cholesky factor of A. Hence, the QR factorization can lead to
denser factors than the LU factorization. Similarly, a rank revealing QR factorization
can be more expensive in terms of both memory usage and floating point operations
than a rank revealing LU factorization. We present in the following LU_CRTP, a
rank revealing LU factorization that also minimizes communication cost. A detailed
presentation can be found in [43]. Given a desired rank k, the factorization is written
as

˘rA˘c D
� NA11 NA12

NA21 NA22
	

D
�

I
NA21 NA�1

11 I

	 � NA11 NA12
S. NA11/

	
; (40)

where A 2 R
m�n, NA11 2 R

k;k, S. NA11/ D NA22� NA21 NA�1
11

NA12. The rank-k approximation
matrix QAk is

QAk D
�

I
NA21 NA�1

11

	 
 NA11 NA12
� D

� NA11
NA21
	

NA�1
11


 NA11 NA12
�
: (41)

The second formulation of QAk from (41) is referred to as CUR decomposition (see
[56, 65, 72] and references therein), since the first factor is formed by columns of
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A and the third factor is formed by rows of A. This decomposition is of particular
interest for sparse matrices because its factors C and R remain sparse as the matrix A.

In LU_CRTP, the first k columns are selected by using QR with tournament
pivoting of the matrix A. This leads to the factorization

A˘c D Q

�
R11 R12

R22

	
D
�

Q11 Q12

Q21 Q22

	 �
R11 R12

R22

	
: (42)

After tournament pivoting we have the QR factorization of the first k columns,
A.W; 1 W k/ D Q.W; 1 W k/R11. The first k rows are then obtained by using QR factor-
ization with tournament pivoting of the rows of the thin Q factor, Q.W; 1 W k/T ,

˘rQ D
� NQ11

NQ12

NQ21
NQ22

	
;

such that jj NQ21
NQ�1
11 jjmax � FTP and bounds for the singular values of NQ11 with

respect to the singular values of Q are governed by a low degree polynomial. This
leads to the factorization,

˘rA˘c D
� NA11 NA12

NA21 NA22
	

D
�

I
NA21 NA�1

11 I

	 � NA11 NA12
S. NA11/

	

D
�

I
NQ21

NQ�1
11 I

	 � NQ11
NQ12

S. NQ11/

	 �
R11 R12

R22

	
(43)

where

NQ21
NQ�1
11 D NA21 NA�1

11 ;

S. NA11/ D S. NQ11/R22 D NQ�T
22 R22:

The following theorem from [43] shows that LU_CRTP (A; k) factorization
reveals the singular values of A, and in addition also bounds the absolute value
of the largest element of S. NA11/. This is important for the backward stability of the
LU factorization.

Theorem 4 ([43]) Let A be an m � n matrix. The LU_CRTP.A; k/ factorization,

NA D ˘rA˘c D
� NA11 NA12

NA21 NA22
	

D
�

I
NQ21

NQ�1
11 I

	 � NA11 NA12
S. NA11/

	
(44)

where

S. NA11/ D NA22 � NA21 NA�1
11

NA12 D NA22 � NQ21
NQ�1
11

NA12; (45)

satisfies the following properties
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l. NA21 NA�1
11 / D 
l. NQ21

NQ�1
11 / � FTP; (46)

jjS. NA11/jjmax � min

�
.1C FTP

p
k/jjAjjmax;FTP

q
1C F2TP.m � k/�k.A/

�

(47)

1 � �i.A/

�i. NA11/
;
�j.S. NA11//
�kCj.A/

� q.m; n; k/; (48)

for any 1 � l � m � k, 1 � i � k, and 1 � j � min.m; n/ � k. Here 
l.B/ denotes
the 2-norm of the l-th row of B, FTP is the bound obtained from QR with tournament

pivoting, as in Eq. (36), and q.m; n; k/ D
q�
1C F2TP.n � k/

� �
1C F2TP.m � k/

�
.

The existence of a rank revealing LU factorization has been proven by Pan
in [59], who shows that there are permutation matrices ˘r; ˘c such that the
factorization from (40) satisfies

1 � �k.A/

�min. NA11/
;
�max.S. NA11//
�kC1.A/

� k.n � k/C 1: (49)

The existence of a stronger LU factorization has been proven by Miranian and Gu
in [57], which in addition to (49) also upper bounds jj NA�1

11
NA12jjmax by a low degree

polynomial in k, n, and m. Pan also introduces two algorithms for computing such
a factorization which are based on the notion of local maximum volume, where
the volume of a square matrix refers to the absolute value of its determinant. The
first algorithm starts by performing LU factorization with conventional column
pivoting (chooses as pivot the element of largest magnitude in the current row)
followed by a block pivoting phase. The second algorithm relies on using the LU
factorization of ATA to perform symmetric pivoting. Experiments presented in [32]
show that when there is a sufficiently large gap in the singular values of the matrix
A, pivoting strategies as rook pivoting or complete pivoting produce good low rank
approximations. However, they can fail for nearly singular matrices, as shown by
examples given in [60].

The bounds on the approximation of singular values from (48) are worse than
those from (49) showing the existence of a rank revealing LU factorization. However
LU_CRTP is a practical algorithm that also minimizes communication. The bounds
from (48) are also slightly worse than those obtained by CARRQR for which

q.m; n; k/ D
q
1C F2TP.n � k/ (see Theorem 3 for more details). But for sparse

matrices, CARRQR requires significantly more computations and memory, as the
experimental results in [43] show. A better bound than (48) can be obtained by using
strong rank revealing QR for selecting the rows from the thin Q factor in Eq. (43),
in which case jj NA21 NA�1

11 jjmax � f , similar to the LU factorization with panel rank
revealing pivoting from [55].

The bound on the growth factor from (47) is the minimum of two quantities. The
first quantity has similarities with the bound on the growth factor obtained by the
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Fig. 6 Singular values as computed by SVD and as approximated by LU_CRTP (LU with column
and row tournament pivoting) and LU_CTP (LU with column tournament pivoting and row partial
pivoting) for SHAW matrix

LU factorization with panel rank revealing pivoting from [55]. The second quantity
is new and it relates the growth factor obtained after k steps of factorization to �k.A/.

Experiments reported in [43] show that LU_CRTP approximates well the
singular values. For the matrices considered in that paper, the ratio of the singular
values approximated by LU_CRTP to the singular values computed by SVD is at
most 13 (and 27 for the devil’s stairs, a more difficult matrix). Figure 6 [43] shows
the results obtained for SHAW matrix, the 1D image restoration matrix also used in
Sect. 5.2.
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Part II
Applications



Singular Traveling Waves and Non-linear
Reaction-Diffusion Equations

Juan Calvo

Abstract We review some recent results on singular traveling waves arising as
solutions to reaction-diffusion equations combining flux saturation mechanisms and
porous media type terms. These can be regarded as toy models in connection with
some difficulties arising on the mathematical modelization of several scenarios in
Developmental Biology, exemplified by pattern formation in the neural tube of
chick’s embryo.

1 Pattern Formation in Morphogenesis

Morphogenic proteins play a key role in Developmental Biology, acting as signal-
ing molecules mediating intracellular communication. In particular they mediate
cellular differentiation processes like those taking place during embryonic devel-
opment. Understanding how morphogens induce distinct cell fates becomes then a
paramount issue.

Morphogenic proteins are usually issuing from localized sources in the extracel-
lular medium, originating a concentration gradient. Several mathematical models
have been proposed to explain how morphogens are transported through the extra-
cellular matrix; these have been usually based on reaction-diffusion equations after
the pioneering works of Turing, Crick and Meinhardt [13, 19, 24]. Reaction terms
account for the set of chemical reactions (known as the signaling pathway) taking
place inside each cell after morphogens attach to their membrane receptors; the final
result of these intracellular processes is a specific change in gene transcription.

An important scenario which has been the subject of intensive research is that
of the neural tube (particularly in chick embryos), which is the precursor of the
spinal cord in the adult individual. Owing to the natural propagation direction in
this structure, one-dimensional reaction-diffusion models have been widely used to
describe how gradients of morphogen concentration are dynamically created in the
neural tube, see e.g. [22] and references therein. Such mathematical models assume
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that morphogens are transported through the medium by means of linear diffusion,
whereas chemical reactions taking place within individual cells can be described in
terms of a system of ordinary differential equations.

Several recent experimental findings have come to question the validity of the
linear diffusion assumption in this context (see [23, 26] for an account of this). Here
we focus on the results by Dessaud et al. [14], stating that the concentration of
morphogen that cells receive and the exposure time have the same importance (e.g.
very small morphogen concentration can exert noticeable effects if the exposure
time is long enough). To see why this property cannot be replicated by a linear
diffusion model, let us consider the one-dimensional FKPP equation [15, 17],

ut D 	uxx C k u.1� u/

which displays classical, C1-smooth traveling waves u.t; x/ D u.x � � t/ for
wavespeeds � � 2

p
k	: These traveling profiles are supported in the whole real

line, matching with zero by means of an exponentially decaying profile. This is
rooted in the fact that the linear diffusion equation has the property of infinite
speed of propagation. It entails the fact that traveling waves as such propagate some
(chemical) information instantaneously, which spoils any attempt to track exposure
times on the sole basis of this model. In fact, no a posteriori engineering procedures
seem to quantify in a reasonable way experimental observations [23, 26].

It is mandatory to have mathematical descriptions allowing to track in a very
precise way exposure times for the sake of having accurate models for morpho-
genesis (and specifically for the case of the neural tube). It is a natural idea to test
if nonlinear diffusion can perform better in this setting, particularly when models
having finite propagation speed are used. We try to get some clues dealing with
simplified settings in the following section.

2 Nonlinear Reaction-Diffusion Models

Describing traveling wave solutions in nonlinear reaction-diffusion equations con-
stitutes a full research area in itself. It is tempting to think that traveling waves for
reaction diffusion equations having finite speed of propagation will be supported on
half lines. The actual scenario is a bit more complicated. As a prototypical example,
we may consider the porous medium equation (see e.g. [25]) coupled with a logistic
reaction term,

ut D 	.um�1ux/x C k u.1� u/; m > 1: (1)

For each value of m > 1 there is a one-parametric family of traveling wave solutions.
All the members of this family are supported on the whole real line, except for the
slowest wave of each family, which is a continuous profile which is supported on a
half line. See [20] for details.
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This subject has been treated in great generality to find that this behavior is
not specific of porous media equations but rather of parabolic equations with finite
propagation speed, see the book [16]. Here we want to draw attention on a family
of degenerate parabolic equations having the property of finite speed of propagation
which does not fall in the scope of [16]. These are know as flux saturated or flux
limited diffusion equations, arguably introduced in the works by Rosenau [21] and
Levermore and Pomraning [18]. A prototypical example is

@u

@t
D 	 div

0
B@

jujrxuq
u2 C 	2

c2
jrxuj2

1
CA : (2)

Note that when c ! 1 we get the heat equation. This model is known in the
mathematical literature as the “relativistic heat equation” after [5], in which a
connection with optimal transport theory was found. In fact, the form of the cost
function hints that (2) should have a finite speed of propagation given by c above,
a fact that was also pointed out in [21]. This is proved in [3]. In fact, this model is
also able to propagate discontinuous interfaces, which is a desirable feature for the
morphogen transport problem, as we explain below. These properties are somewhat
natural in the light of the degenerate functional framework which is needed to tackle
such models, see e.g. [1, 2] (where an entropy solution framework is introduced).
For a recent account on the research done on flux-saturated equations we refer to
[8].

In the light of the previous considerations, we want to probe what sort of traveling
waves arise in connection with these degenerate diffusion mechanisms. As a test
case, we can mix the mechanisms of flux saturation and porous-media-type diffusion
and consider the following equation for m � 1:

ut D 	

0

B@
umuxq

juj2 C 	2

c2
juxj2

1

CA

x

C k u.1 � u/: (3)

It was shown in [9, 11] that this family of equations admits traveling wave solutions
which are supported on a half line and whose interfaces are discontinuous. When
m D 1 such singular waves exist only for wavespeeds equal to c, any other
(necessarily faster) traveling waves are classical. If m > 1 then there exist two
bifurcation values �smooth > �ent. If the wavespeed coincides with �ent then the
corresponding traveling waves are again discontinuous and supported on a half line.
If the wavespeed exceeds �smooth then the associated waves are classical, while those
with speeds between the two bifurcation values consist on two smooth branches
joined by a jump discontinuity and their support is the whole line. These results
are proved by reducing the problem of constructing wave solutions to describing the
orbits of a planar dynamical system. Singular traveling waves arise as admissible
concatenation of several orbits of the planar diagram, being the compatibility
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conditions at the matchin points given by Rankine–Hugoniot’s jump conditions plus
some geometric information coming from the entropy solution framework, see [12].

These results in [9, 11] are no isolated phenomena but part of a robust framework.
It has been tested that similar families of traveling profiles are obtained under a
number of generalizations of (3), see [6, 8–10].

3 Nonlinear Models for Morphogen Propagation

The analytical findings in the previous section suggest that replacing the linear
diffusion mechanism on mophogen propagation models with a nonlinear mechanism
having finite speed of propagation may allow to get a better description of the
overall dynamics. One of the concerns we need to address is to track exposure times
carefully, a task for which saturation mechanisms like that in (2) seem quite suited
-note that propagation speed is universal, in contrast with the porous medium case,
for which it depends on the initial datum [25]. This specific feature was tested on a
simplified model for morphogen propagation in the neural tube introduced in [7],

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

@u

@t
D

0

B@
jujuxq

u2 C 	2

c2
juxj2

1

CA

x

in Œ0;T� � Œ0;L� ;

�a.u.t; 0/; ux.t; 0// D ˇ > 0 and u.t;L/ D 0 on t 2 Œ0;T� ;

(4)

The non-homogeneous Neumann boundary condition encodes the fact that there
is an incoming morphogenic signal. It was shown in [4] that the incoming flux of
morphogens propagates with speed c in the form of a sharp traveling front, quite
related with the results mentioned in the previous section. This supports the proposal
of a complete model in [26]. Morphogen propagation along the neural tube would
be described by an equation like (4), with the addition of suitable reaction terms
accounting for attachment and detachment effects linked with the availability of
membrane receptors at each individual cell. This partial differential equation is
coupled with a system of ordinary differential equations representing the signaling
pathway at each cell according to the amount of attached morphogens and the
time of exposure to their action. In such a way, the chemical signal is propagated
as a traveling front (as shown by numerical simulations), thus allowing different
biological responses at different times. We refer to [26] for a detailed exposition. We
think that the model proposed in [26] opens a new perspective on the subject, since
its qualitative behavior is in close correspondence with biological observations,
opposed to what is predicted by linear diffusion models. Therefore, morphogen
propagation seems to be an inherently nonlinear process, of which some features
could be well approximated by some nonlinear diffusion mechanisms. The proposal
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in [26] can be an interesting departing point from which we may develop more
accurate theories and models.
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Numerical Simulation of Flows Involving
Singularities

Maria Garzon, James A. Sethian, and August Johansson

Abstract Many interesting fluid interface problems involve singular events, as
breaking-up or merging of the physical domain. In particular, wave propagation
and breaking, droplet and bubble break-up, electro-jetting, rain drops, etc. are
good examples of such processes. All these mentioned problems can be modeled
using the potential flow assumptions, in which an interface needs to be advanced
by a velocity determined by the solution of a surface partial differential equation
posed on this moving boundary. The standard approach, the Lagrangian-Eulerian
formulation together with some sort of front tracking method, is prone to fail when
break-up or merging processes appear. The embedded formulation using level sets
seamlessly allows topological breakup or merging of the fluid domain. In this
work we present the numerical approximation of the embedded model and some
computational results regarding electrohydrodynamic applications.

1 The Embedded Model Equations

Let ˝1.t/ be a fluid domain immersed in an infinite exterior fluid ˝2.t/, �t be
the free boundary separating both domains, and ˝D be a fixed domain that should
contain the free boundary for all t 2 Œ0;T�. The level set/extended potential flow
model, [3, 4], may be then written as:

u D r� in ˝1.t/ (1)

�� D 0 in ˝1.t/ (2)

M. Garzon (�)
Universidad de Oviedo, Oviedo, Spain
e-mail: maria.garzon.martin@gmail.com

J.A. Sethian
University of Berkeley, Berkeley, CA, USA
e-mail: sethian@math.berkeley.edu

A. Johansson
Center for Biomedical Computing, Simula, Norway
e-mail: august@simula.no

© Springer International Publishing AG 2017
M. Mateos, P. Alonso (eds.), Computational Mathematics,
Numerical Analysis and Applications, SEMA SIMAI Springer Series 13,
DOI 10.1007/978-3-319-49631-3_6

195

mailto:maria.garzon.martin@gmail.com
mailto:sethian@math.berkeley.edu
mailto:august@simula.no


196 M. Garzon et al.

�t C uext � r� D 0 in ˝D (3)

Gt C uext � rG D fext in ˝D: (4)

Here, � is the velocity potential, u the velocity field, � the level set function, G
the extended potential function, f accounts for the surface forces, and the subscript
“ext” refers to the extended quantities off the front into ˝D. This hydrodynamic
problem can be coupled with any other exterior problem on ˝2.t/. In particular,
assuming a uniform electric field E in˝2.t/, acting in the direction of the z axis and
E D 0 in ˝1.t/ (perfect conductor fluid) then:

E D �rU in ˝2.t/ (5)

�U D 0 in ˝2.t/ (6)

U D U0 on �t (7)

U D �E1z at the far field; (8)

where U is the electric potential and E1 is the electric field intensity.

2 Numerical Approximation

The semidiscretization in time of the model equations is:

un D r�n in ˝1.tn/ (9)

��n.r; z/ D 0 in ˝1.tn/ (10)

� nC1 � � n

�t
D �un

ext � r� n in ˝D (11)

GnC1 � Gn

�t
D �un

ext � rGn C f n
ext in ˝D; (12)

�U n.r; z/ D 0 in ˝2.tn/ (13)

where a first order explicit scheme has been applied. For the space discretization of
Eqs. (11) and (12) a first order or second order upwind scheme can be used. The
approximation of (10) and (13) is crucial in this numerical method, as it provides
the velocity to advance the free boundary and also the velocity potential evolution
within this front. We have coupled the following solvers for the interior and exterior
Laplace equations:

• For 2D and 3D axisymmetric geometries a Galerkin boundary integral solution is
established, where the boundary element method with linear elements have been
used to approximate the integral equations, see [6, 8].
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• For the fully 3D approximation a non conforming Nitsche finite element method
has been used together with stabilization techniques of the bilinear forms, as the
jump stabilization or the ghost penalty stabilization, see [1, 2, 9].

3 Numerical Results

Several physical scenarios can be simulated using the assumptions and the numeri-
cal method presented here. In the case of pure hydrodynamic problems, Eqs. (1)–(4),
results for the wave breaking phenomena in a 2D geometry have been presented in
[3], where splitting of the fluid domain was not considered. The first simulation
involving computations through singular events was presented in [4], where the
pinch-off of an infinite fluid jet and subsequent cascade of drop formation was
reproduced in a seamless 3D axi-symmetric computation. In Fig. 1 we present the
comparison of the satellite break up simulation with laboratory photographs. The
interaction of two inviscid fluids of different densities was studied in [5]. The only
parameter in the non-dimensional model is the fluid density ratio and simulations
of the breaking up transition patterns from air bubbles to water droplets have been

Fig. 1 Satellite drop breaking up, computed profiles (a) and Laboratory photographs (b), see [10].
Reproduced from [4] with permission from Elsevier
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Fig. 2 Laboratory snapshots at indicated times of the evolution of a surface charged super-cooled
water droplet, reprinted figure with permission from E. Giglio, D. Duft and T. Leisner, Phys. Rev.
E, 77, 036319 (2008). Copyright (2008) by the American Physical Society (bottom); and computed
profiles at times 80; 101:2; 108:1; 108:5; 109:8; 112:1; 124:2; 133:4; 138; 142; 154:1 �s (top)

computed. When electrical forces acting on the free surface are also considered,
Eqs. (1)–(8), the flow gets even more interesting: a charged water droplet will
elongate until Taylor cones are formed, from which fine filaments will be ejected
from both drop tips. As soon as the drop losses enough charge, it will recoil
and oscillate back to equilibrium. In Fig. 2 we show also a comparison between
computed profiles on top and Laboratory experiments on bottom at corresponding
times. See [7].
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A Projection Hybrid Finite
Volume-ADER/Finite Element Method
for Turbulent Navier-Stokes

A. Bermúdez, S. Busto, J.L. Ferrín, L. Saavedra, E.F. Toro,
and M.E. Vázquez-Cendón

Abstract We present a second order finite volume/finite element projection method
for low-Mach number flows. Moreover, transport of species law is also considered
and turbulent regime is solved using a k � " standard model. Starting with a
3D tetrahedral finite element mesh of the computational domain, the momentum
equation is discretized by a finite volume method associated with a dual finite
volume mesh where the nodes of the volumes are the barycenter of the faces of the
initial tetrahedra. The resolution of Navier-Stokes equations coupled with a k � "

turbulence model requires the use of a high order scheme. The ADER methodology
is extended to compute the flux terms with second order accuracy in time and space.
Finally, the order of convergence is analysed by means of academic problems and
some numerical results are presented.

1 Mathematical Model

The system of equations described in this section corresponds to a model for low-
Mach number flows. The underlying assumption is that the Mach number M is
sufficiently small so that pressure p can be written as the sum of a spatially constant
known function � and a small perturbation � . The perturbation will be neglected
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in the state equation but it has to be retained in the momentum equation (see [2]
for further details). We also consider the conservative law of transport of species
and the k � " standard model (see [3]). Then, the system of equations to be solved
reads

@wu

@t
C div.Fwu.wu; 
//C r� � div.�/ D fu; (1)

divwu D q; q WD � @
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; (2)
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�	
C C2"

w2"
wk

D C1"
w"
wk

Gk C f"; (6)

where 
 denotes the density and w is the conservative variables vector with
wu D 
u and u being the velocity. The flux tensor is given by F .w; 
/ D
uiw, F D .Fwu ;FwY ;Fwk ;Fw" /T . The Cauchy stress tensor is denoted by �
and f D .fwu ; fwY ; f wk ; f w" /T is a generic source term. In the equation of state,
R D R=M denotes the gas constant, where R is the universal constant (R D
8314 J/(kmol K)), M is the molecular mass and 
 is the absolute temperature
which is supposed to be given. The remaining conservative variables are: wY D 
Y
(Y mass fraction vector), wk D 
k (k viscosity dissipation rate), w" D 
"

(" turbulent kinetic energy). Finally, Gk represents the production of turbulent
kinetic energy and C1", C1" and C� are the closure coefficients of the turbulence
model.

2 Numerical Discretization

The developed numerical method solves, at each time step, Eqs. (1) and (4)–(6) with
a finite volume method and, so, an approximation of w is obtained. The next item
is the projection step applied to system (2) that provides the pressure correction by
a piecewise linear finite element method. Finally, an approximation of wu verifying
the divergence condition (2) is computed (see [2]).
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Focusing on the finite volume method, the Local ADER scheme is developed
to approximate the advection terms with second order accuracy in time and space
(see [4]). Four main steps are considered:

Step 1. Data reconstruction. First-degree polynomial of each conservative vari-
able, w, for a cell i are used, pi.N/ D wi C .N � Ni/ .rwi/N :

Step 2. Computation of boundary extrapolated values at the barycenter of the
faces �ij, wi Nij D pi.Nij/ D wi C .Nij � Ni/ .rwi/Nij

D wi C .Nij �
Ni/r

�
Wn

jTijL

�
:

Step 3. Computation of the flux terms with second order of accuracy using
the mid-point rule. Taylor series expansion in time and Cauchy -
Kovalevskaya procedure are applied to locally approximate the conser-
vative variables at time � D �t

2
, (see [5]). Two different options are

considered:

OP1 Contribution of the advection term to the time evolution of the
normal flux term, Z .W; �/ D F .W; rho/ �:

Wi Nij D Wi Nij � �t

2Lij

�
Z .Wi Nij ;�ij/C Z .Wj Nij ;�ij/

�
:

OP2 Contribution of the advection and diffusion terms to the time
evolution of the flux term:

Wi Nij D Wi Nij � �t

2Lij

�
Z .Wi Nij ;�ij/C Z .Wj Nij ;�ij/

�

C �t

2L 2
ij

�
˛iNijrWn

jTijL
�ij C ˛jNijrWn

jTijR
�ij

�
:

We have denoted Lij D min
n

vol.Ci/

S.Ci/
;

vol.Cj/

S.Cj/

o
and ˛i the diffusion coeffi-

cient of each conservative variable W.

3 Numerical Results

In this section, we present the results obtained for two test problems. To check the
order of the error, we compute the norms l2 in time and L2 in space.�t is computed
at each time step from a fixed CFL number.
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Table 1 Gaussian bells test Mesh Elements Vertex Nodes h

M1 11; 664 2527 24; 408 0:1

M2 18; 522 3872 38; 514 0:0857

M3 54; 000 10; 571 111; 000 0:06

M4 93; 312 17; 797 190; 944 0:05

M5 182; 250 33; 856 256; 711 0:04

Mesh features

Table 2 Gaussian bells test

Variable EM1 EM2 EM3 EM4 EM5

� 2.59E�04 1.67E�04 5.89E�05 3.47E�05 1.83E�05

wu 6.75E�04 4.61E�04 1.87E�04 1.18E�04 6.69E�05

wy 1.61E�03 1.16E�03 5.56E�04 3.85E�04 2.48E�04

Variable oM1=M2 oM2=M3 ov3=MC4 oM4=M5

� 2:87 2:92 2:90 2:87

wu 2:47 2:54 2:53 2:53

wy 2:12 2:07 2:01 1:97

Observed errors and convergence rates. Flux terms were computed neglecting the diffusion terms
contribution (OP1). CFLy D 0:1

3.1 Gaussian Bells

The first test problem studied is the Gaussian Bell Problem discussed, for instance,
in [1]. The analytical expression of its solution reads

�.x; y; z; t/ D 1; u.x; y; z; t/ D .�y; x; 0/T ; y.x; y; z; t/ D
��0
�

�3
exp

� �r

2�2

�
;

r.x; y; z; t/ D ..x cos.t/C y sin.t//C 0:25/2 C .�x sin.t/C y cos.t//2 C z2;


 D 1; �.t/ D
q
�20 C 2tD ; �0 D 0:08; � D 0:01; D D 0:01:

We define the computational domain˝ D Œ�0:9; 0:9��Œ�0:9; 0:9��Œ�0:3; 0:3� and
consider the mesh depicted in Table 1 where h denotes the size of the cubes used to
generate the tetrahedra of the finite element mesh. After a complete rotation of the
bell, second order of accuracy is attained (see Table 2).

3.2 MMS Test

The second test was defined using the method of manufactured solutions (MMS).
We consider the computational domain ˝ D Œ0; 1�3 and we assume the flow being
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Table 3 MMS test

Mesh N Elements Vertices Nodes vm
h (m3) vM

h (m3)

M1 4 384 125 864 6.51E�04 1.30E�03

M2 8 3072 729 6528 8.14E�05 1.63E�04

M3 16 24;576 4913 50;688 1.02E�05 2.03E�05

Mesh features

Table 4 MMS test

Variable EM1 EM2 EM3 oM1=M2 oM2=M3

� 8.83E�02 1.94E�02 5.05E�03 2:18 1:94

wu 8.37E�03 2.30E�03 6.17E�04 1:86 1:90

wy 6.19E�03 1.44E�03 3.52E�04 2:10 2:03

wk 7.91E�03 1.79E�03 4.32E�04 2:14 2:05

w" 5.27E�03 1.13E�03 2.55E�04 2:22 2:15

Observed errors and convergence rates for the meshes introduced in Table 3. Flux terms were
computed accounting for the diffusion terms contribution (OP2). CFLy D 10

defined by

� D 1:e � 2; D D 1:e � 3; 
.x; y; z; t/ D 1;

�.x; y; z; t/ D cos.� t.x C y C z//; u.x; y; z; t/ D .sin.�yt/; � cos.�zt/; exp.��xt//T ;

y.x; y; z; t/ D sin.�xt/C 2; k.x; y; z; t/ D sin.�xt/C 2; ".x; y; z; t/ D exp.��zt/C 1:

The needed source terms corresponding to the former manufactured solution are
obtained using symbolic calculus. In order to analyse the accuracy in time and
space, three uniform meshes with different cell sizes are used. We consider the
computational domain ˝ D Œ0; 1�3.The properties of these meshes can be seen
in Table 3 where N C 1 is the number of points along the edges of the domain
and h D 1=N. vm

h and vM
h denote the minimum and maximum volume of the finite

volumes, respectively. The numerical results presented in Table 4 confirm second
order of accuracy.
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Stable Discontinuous Galerkin Approximations
for the Hydrostatic Stokes Equations

F. Guillén-González, M.V. Redondo-Neble, and J.R. Rodríguez-Galván

Abstract We propose a Discontinuous Galerkin scheme for the numerical solution
of the Anisotropic (in particular, Hydrostatic) Stokes equations in Oceanography.
The key is the introduction of interior penalties into the usual Stokes bilinear
forms and, moreover, in the anisotropy (with respect to the horizontal and vertical
directions) of these forms. Using Pk discontinuous finite elements for velocity and
pressure, we obtain discrete inf-sup stability independently on the ratio " between
the horizontal and vertical domain scales. Numerical tests are provided.

1 Anisotropic (Hydrostatic) Stokes Equations
in Oceanography

Anisotropic Stokes (and Hydrostatic) equations are the centerpiece for more
complex models in Oceanography in large scale domains, where " D (vertical scale)
/ (horizontal scale) is very small:

8
ˆ̂<

ˆ̂:

�	�u C rxp D f; in ˝;

�"2�v C @zp D g; in ˝;

rx � u C @zv D 0; in ˝:

(AnisStokes)

In particular, the limit case, " D 0 (the hydrostatic Stokes problem) gives
rise to the well known Primitive Equations of the ocean. The approximation
of (AnisStokes) has been studied by the authors in [3–6]. In the three later ones,
two underlying inf-sup constraints for (AnisStokes) were shown:
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1. The well-know LBB-like inf-sup condition for Stokes
2. A new Hydrostatic inf-sup constraint, related to the vertical velocity of (Anis-

Stokes):

sup
0¤p2P

R
˝ p@zv

kpkL2.˝/
� ˇvk@zvkL2.˝/; 8 v 2 H1

z .˝/: .IS/V

In order to avoid the last constraint, making possible the use of standard finite
elements for (AnisStokes), different techniques are proposed in [4–6]. Here we show
a different technique, based in DG methods.

2 Discontinuous Galerkin Approximation

We consider Interior Penalty (IP) methods that, for second order elliptic equations,
were introduced in [1] and for the isotropic Stokes equations (i.e. for " D 1) have
been recently studied by different authors (see e.g. [2] and references therein).

Specifically, we consider Pk.Th/ discontinuous spaces Uh, Vh and Ph, for
approximation of the velocity field wh D .uh; vh/ 2 Uh � Vh and the pressure
ph 2 Ph. The key for the well posedness of the discrete problem is in the introduction
of the anisotropic bilinear form (depending on a penalty parameter � > 0):

ah.wh;wh/ D 	

d�1X

iD1
asip;�.uh;i; uh;i/C "2 asip;�="2 .v; vh/;

where asip;� is the well-known symmetric IP bilinear form,

asip;�.v; v/ D
Z

˝

rhv � rhv �
X

e2Eh

Z

e

�
ffrhvgg � neŒŒv��

C ŒŒv��ffrhvgg � ne

�
C �

X

e2Eh

1

he

Z

e
ŒŒv��ŒŒv��:

Here, rh denotes the broken (defined by elements) divergence operator, ŒŒ��� and ff�gg
are the jump and average operators on the edges (or faces), denoted e 2 Eh. We must
also consider the anisotropic norm for velocity

kwhkvel D
�
kuhk2sip C k@z;hvhk2L2.˝/ C jvhj2J

�1=2
;
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where k � ksip is the norm associated to asip;�.�; �/, @z;h is the broken partial derivative
and j � jJ is the jump seminorm:

jvjJ D
�X

e2Eh

h�1
e kŒŒv��kL2.e/

2
�1=2

:

Lemma 1 (Partial Coercivity for ah.�; �/) There exist � and ˛ > 0 (independent
of h and "), such that 8� > �,

ah.wh;wh/ � ˛
�
kuhksip

2 C jvhjJ
2
�
:

Note that Lemma 1 does not provide control for k@z;hvhkL2.˝/. It shall be
recovered in Theorem 3. Let us consider the standard IP velocity-pressure coupling

bh.wh; ph/ D �
Z

˝

ph rh � wh C
X

e2Eh

Z

e
ŒŒwh�� � ne ff phgg

and pressure seminorm, defined in H1.Th/ � Pk.Th/:

jpjP D
�X

e2E 0h
he kŒŒ p��k2L2.e/

�1=2
:

Lemma 2 (Stability for bh) There Exists ˇ > 0 independent of h, such that

ˇ kphkL2.˝/ � sup
wh2Whnf0g

bh.wh; ph/

kwhkvel
C jphjP; 8ph 2 Ph:

We consider the discrete formulation for (AnisStokes): find .wh; ph/ 2 Wh � Ph

such that, 8wh 2 Wh; ph 2 Ph,

(
ah.wh;wh/C bh.wh; ph/ D R

˝
f wh C R

�s
gs wh;

�bh.wh; ph/C sh. ph; ph/ D 0;
(P)

where sh.qh; rh/ D
X

e2E 0h
he

Z

e
ŒŒqh�� ŒŒrh��. Let c..wh; ph/; .wh; ph// be the correspond-

ing mixed bilinear form and let

k.wh; ph/kXh D
�
kwhkvel

2 C kphk2L2 C jphj2p
�1=2

:
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The following result implies well posedness of former discrete problem:

Theorem 3 (Discrete Inf-Sup Stability) There exists � > 0 and � > 0

(independent of h and ") such that, for every � > �, one has for all .wh; ph/ 2
Xh D Uh � Vh � Ph:

� k.wh; ph/kXh � sup
.wh;ph/2Xhnf0g

ch..wh; ph/; .wh; ph//

k.wh; ph/kXh

:

Proof (Idea) Lemma 1 provides control of kuhksip
2 and jvhjJ

2. Lemma 2 provides
control of kphkL2.˝/. Discrete inf-sup condition .IS/V is satisfied for Pk elements,
hence one has control of k@z;hvhkL2.˝/.

3 Numerical Tests

A cavity test for the discrete problem (P) was programmed in FreeFem++ [7], using
the following data: Physical domain V/H ratio: " D 10�7. Viscosity: 	 D 1. RHS
functions: f D 0, g D 0. Adimensional domain ˝ D Œ0; 1�2, structured 32 � 32

mesh (h 	 10�2). P1 elements for velocity & pressure.
Dirichlet boundary conditions (B.C.): Let �S D surface boundary, we take: u D

x.x � 1/ on �S; u D 0 on @˝ n �S; v D 0 on @˝: B.C. are imposed weakly,
using the Nitsche method. To determinate adequate IP and B.C. (Nitsche) penalty
parameters was not easy. We set: IP Penalty parameter � D 102, B.C. Penalty � D
102.
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Future Research Convergence shall be studied in a future work. In the Stokes
case (" D 1), optimal estimates in energy norm can be obtained for smooth exact
solutions (see e.g. [2]). We conjecture that they can be extended to the Hydrostatic
case. Results for non-smooth solutions are more difficult.
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A Two-Step Model Identification for Stirred
Tank Reactors: Incremental and Integral
Methods

A. Bermúdez, E. Carrizosa, Ó. Crego, N. Esteban, and J.F. Rodríguez-Calo

Abstract In this work we present a new methodology for solving an inverse
identification problem with application in chemistry, using two approaches in
cascade. More precisely, we are interested in the identification of kinetic models and
their corresponding parameters in stirred tank reactors, using a set of experimental
data and the reactions taking place. A catalogue of kinetic models containing the
parameters to be identified will be provided too. In order to solve it, we use a
combination of an incremental and an integral method.

1 Introduction

Nowadays the study of chemical process in industry makes extensive use of
mathematical modelling. Building models needs the identification of the reactions
taking place and their kinetics. The latter represents a challenging task in the reactor
description.
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2 The General Model

An important family of chemical reactors is the so-called stirred tank reactors
(STR). We assume that the mixture inside these reactors is homogeneous because of
stirring so the physico-chemical magnitudes do not depend on position. Then they
are modelled as (usually stiff) ordinary differential equations which are non-linear
and coupled.

We consider a model with mole balance and heat balance equations. In addition,
we have an equation for volume variation. The entire model can be written as

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

dy
dt

D f.
; y; z/ in Œ0;T�; mole balance system

d


dt
D h.
; y; z/; heat balance equation

dV

dt
D f2 � f3; volume equation

y.0/ D y0; 
.0/ D 
0 and V.0/ D V0;

(1)

with source terms

f D Aı.
; y; z/C 1

V
.Ff1 � f2y/;

h D
�H.
/ � ı.
; y; z/� g

V .
out � 
/ � w0.
/ �
0

@F
PX

pD1
f1p.


s
p � 
/ep

1

A

w0.
/ � y :

�H.
/ D Atw.
/; wi.
/ D Miei and ei.
/ D e�
i C

Z 



�

ci.s/ds fot the ith species:

y represents the vector of species concentrations.

 represents the vector of catalysts.
z represents the temperature of mixture.
V represents the volume of mixture.
A is the stoichiometric matrix.
ı represents the vector of reaction velocities.
F represents the inlet composition.
f1 is the vector of inlet flow rates.
f2 is the sum of components in f1.
f3 is the outlet flow rate.
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�H is the vector with heat of the reactions.
g is the heat transfer coefficient.

out is the outside temperature.

 s

p is the temperature of the pth stream where P is the number of streams.
Mi is the molecular mass of the ith species.
ci is the specific heat of the ith species.
ei is the internal energy of the ith species.
e�

i is the internal energy of formation of the ith species at temperature 
�.

In the most general case, we have inlet and outlet streams and inlet composition
matrix of the mixture and the reactor is called continuous STR, when we only have
inlet streams and inlet composition the reactor is called semi-batch STR, and when
we have no any of these the reactor is called batch STR.

3 Methodology

For solving this problem, several techniques can be considered, such as differential,
integral and incremental methods [2]. All these methods are based on the opti-
mization of their corresponding functional costs which provide kinetics and their
parameters. They can be used independently.

We have some controlled experiments and measurements of species at some time
instants.

The differential method uses cubic spline functions interpolating the data and
taking their derivatives at time measurements. The error in these derivatives may
affect to the accuracy of the solution.

In some cases the solution given by the incremental method is good enough
and we may conclude the identification process, but this is not always the case.
The integral method can improve the initial solution and this is important when the
experiments are affected by noise.

• The incremental method. Initial approach.
The incremental method for STR is described in [4]. We introduce an

alternative method where the heat balance equation is treated independently.
The main features of this method are the decoupling of the reaction equations

using algebraic procedures and obtaining the direct solution of the transformed
equations. Thus, the kinetic models and their parameters can be identified in
parallel for all reactions.

Volume equation can be solved firstly and independently, but the ODEs
system (1) is coupled. That is why we work in two stages: the concentrations
system is rewritten as a decoupled extents system and the temperature equation
is treated apart.
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Finally, we minimize the following functional cost in terms of extents

Jm;l.�
m
l / D

X

e2E

X

s2Se

jOee
sl � e.m/l .te

s ;�
m
l /j2;8m D 1; : : : ;Ml and l D 1; : : : ;L:

where �m
l is the parameter vector, e.m/l .te

s ;�
m
l / and Oee

sl are the lth component
of the extents model and of measurements respectively at time te

s 2 Se and
experiment e 2 E . Ml is the set of kinetics for the lth reaction.

• The integral method. Improvements in the solution.
The integral method is based on a direct comparison of measurements and

computed concentrations.
The main difficulties lie in the huge number of parameters, solving numeri-

cally the model, and computing the derivatives with respect to these parameters.
We propose an heuristic based on the variable neighbourhood search (VNS) [3].
This method uses as initial values of the parameters those previously computed
by the incremental method. A new solution is generated by doing successive
perturbations both in kinetics and in parameters.

We use a finite differences scheme (BDF2 initializated with a BDF1) to solve
the problem derived from the reactor model and the derivatives of functional
cost are computed using the adjoint-state method [1]. The functional cost is the
following:

J.�/ WD
X

e2E

X

i2S

X

s2Se

!ien.y
e
i .t

e
s ;�/� Oye

si/
2;

where � is the parameter vector, ye
si.t

e
s ;�/ and Oye

si are the ith component of the
solution of the model and of measurements respectively at time te

s 2 Se and
experiment e 2 E .

4 Example

We consider an academic example that represents a batch type reactor with known
temperature. The reaction system is described by 12 species, involved in 6 reactions
and 1 catalysts with constant concentration.

ACB ! CCD; B ! CC0:5E; B ! FCG; B ! HCI; B ! JCK; DCG ! L
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We have 10 experiments with different initial conditions and time measurements
from 0 to 100 s at each 10 s. The list of kinetics for each reaction is:

Reaction 1

ı
.1/
1 .
; y; z/ D B1e

�
� Ea1

R


�

y˛11 y˛22 z˛31 ;

ı
.2/
1 .
; y; z/ D B1e

�
� Ea1

R


�

y˛11 z˛21 ;

ı
.3/
1 .
; y; z/ D B1e

�
� Ea1

R


�

y˛12 z˛21 ;

ı
.4/
1 .
; y; z/ D B1e

�
� Ea1

R


�

y˛11 y˛22 ;

ı
.5/
1 .
; y; z/ D B1e

�
� Ea1

R


�

y˛11 ;

ı
.6/
1 .
; y; z/ D B1e

�
� Ea1

R


�

y˛12 ;

ı
.7/
1 .
; y; z/ D B1e

�
� Ea1

R


�

z˛11 ;

ı
.8/
1 .
; y; z/ D B1e

�
� Ea1

R


�

y
˛int
1

1 y
˛int
2

2 z
˛int
3

1 :

Reaction 4

ı
.1/
4 .
; y; z/ D B4e

�
� Ea4

R


�

y˛12 z˛21 ;

ı
.2/
4 .
; y; z/ D B4e

�
� Ea4

R


�

y˛12 ;

ı
.3/
4 .
; y; z/ D B4e

�
� Ea4

R


�

z˛11 ;

ı
.4/
4 .
; y; z/ D B4e

�
� Ea4

R


�

y
˛int
1

2 z˛21 :

Reaction 2

ı
.1/
2 .
; y; z/ D B2e

�
� Ea2

R


�

y˛12 z˛21 ;

ı
.2/
2 .
; y; z/ D B2e

�
� Ea2

R


�

y˛12 ;

ı
.3/
2 .
; y; z/ D B2e

�
� Ea2

R


�

z˛11 ;

ı
.4/
2 .
; y; z/ D B2e

�
� Ea2

R


�

y
˛int
1

2 z˛21 :

Reaction 3

ı
.1/
3 .
; y; z/ D B3e

�
� Ea3

R


�

y˛12 z˛21 ;

ı
.2/
3 .
; y; z/ D B3e

�
� Ea3

R


�

y˛12 ;

ı
.3/
3 .
; y; z/ D B3e

�
� Ea3

R


�

z˛11 ;

ı
.4/
3 .
; y; z/ D B3e

�
� Ea3

R


�

y
˛int
1

2 z˛21 ;

ı
.5/
3 .
; y; z/ D B3e

�
� Ea3

R


�

y˛12 z
˛int
2

1 ;

ı
.6/
3 .
; y; z/ D B3e

�
� Ea3

R


�

y
˛int
1

2 z
˛int
2

1 :

Reaction 5

ı
.1/
5 .
; y; z/ D B5e

�
� Ea5

R


�

y˛12 z˛21 ;

ı
.2/
5 .
; y; z/ D B5e

�
� Ea5

R


�

y˛12 ;

ı
.3/
5 .
; y; z/ D B5e

�
� Ea5

R


�

z˛11 ;

ı
.4/
5 .
; y; z/ D B5e

�
� Ea5

R


�

y
˛int
1

2 z˛21 :

Reaction 6

ı
.1/
6 .
; y; z/ D B6e

�
� Ea6

R


�

y˛14 y˛27 z˛31 ;

ı
.2/
6 .
; y; z/ D B6e

�
� Ea6

R


�

y˛14 y˛27 ;

ı
.3/
6 .
; y; z/ D B6e

�
� Ea6

R


�

y˛17 z˛21 ;

ı
.4/
6 .
; y; z/ D B6e

�
� Ea6

R


�

y˛14 z˛21 ;

ı
.5/
6 .
; y; z/ D B6e

�
� Ea6

R


�

y˛14 ;

ı
.6/
6 .
; y; z/ D B6e

�
� Ea6

R


�

y˛17 ;

ı
.7/
6 .
; y; z/ D B6e

�
� Ea6

R


�

z˛11 ;

ı
.8/
6 .
; y; z/ D B6e

�
� Ea6

R


�

y
˛int
1

4 y
˛int
2

7 z˛31 :
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R is the universal gas constant. B 2 Œ0; 1014� and Ea 2 Œ0; 200000� represent the
pre-exponential factor and the activation energy respectively in the Arrhenius law,
and ˛i 2 Œ0; 2� 8i D 1; 2; 3. The super index int in the exponents means that we do
integer optimization on these parameters.

The incremental method select the following kinetics after computing the
parameters of all the kinetics in the list in about 4732 s

ı
.4/
1 .
; y; z/ D 1:76 105e

�
� 4:60 105

R


�

y0:921 y0:902 ; with J4;1.�
4
1/ D 5:48 10�2

ı
.2/
2 .
; y; z/ D 1:06 104e

�
� 3:80 104

R


�

y1:872 ; with J2;2.�
2
2/ D 5:48 10�2

ı
.2/
3 .
; y; z/ D 201:29e

�
� 3:80 104

R


�

y1:882 ; with J2;3.�
2
3/ D 5:48 10�2

ı
.2/
4 .
; y; z/ D 1:16 104e

�
� 1:14 105

R


�

y0:932 ; with J2;4.�
2
4/ D 5:48 10�2

ı
.1/
5 .
; y; z/ D 1:62 108e

�
� 1:14 105

R


�

y0:952 z0:961 ; with J1;5.�
1
5/ D 5:48 10�2

ı
.2/
6 .
; y; z/ D 2:27 106e

�
� 6:86 104

R


�

y0:984 y0:977 ; with J2;6.�
2
6/ D 5:48 10�2:

The objective value of the integral method for these kinetics is 0.2184.
The integral method provides a value of the functional cost of 0.2071 after

11,755 s. The kinetics selected are the following:

ı
.8/
1 D 1:97 108e

�
� 4:60 104

R


�

y1y2z1;

ı
.1/
2 D 1:05 107e

�
� 3:80 104

R


�

y1:872 z0:991 ;

ı
.4/
3 D 6:46 104e

�
� 3:44 104

R


�

y22z
0:84
1 ;

ı
.2/
4 D 1:16 104e

�
� 6:97104

R


�

y0:932 ;

ı
.4/
5 D 7:99 108e

�
� 1:18 105

R


�

y2z
1:02
1 ;

ı
.8/
6 D 4:96 109e

�
� 6:91 104

R


�

y4z
1:09
1 :

Now we can see the comparison between the data and the numerical solution of
the model with the selected kinetics and their parameters in both incremental and
integral methods in one of the experiments.
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Obs. A, E.4
Calc. A, E.4
Obs. B, E.4
Calc. B,E.4
Obs. C, E.4

Obs. D, E.4

Obs. E, E.4

Obs. F, E.4

Obs. G, E.4

Calc. C, E.4

Calc. D, E.4

Calc. E, E.4

Calc. F, E.4

Obs. H, E.4
Calc. G, E.4

Calc. H, E.4
Obs. I, E.4
Calc. I, E.4
Obs. J, E.4
Calc. J, E.4
Obs. K, E.4
Calc. K, E.4
Obs. L, E.4
Calc. L, E.4

Obs. A, E.4
Calc. A, E.4
Obs. B, E.4
Calc. B,E.4
Obs. C, E.4

Obs. D, E.4

Obs. E, E.4

Obs. F, E.4

Obs. G, E.4

Calc. C, E.4

Calc. D, E.4

Calc. E, E.4

Calc. F, E.4

Obs. H, E.4
Calc. G, E.4

Calc. H, E.4
Obs. I, E.4
Calc. I, E.4
Obs. J, E.4
Calc. J, E.4
Obs. K, E.4
Calc. K, E.4
Obs. L, E.4
Calc. L, E.4

The incremental method provides us a good solution as it can be seen in figure
a). However in this method experimental data are not compared directly because an
algebraic transformation of the data is previously done.

Then, the integral method is used to correct these possible differences between
data and numerical solution. The largest differences appear in species A, E and
F. It is not recommendable to use only the integral method by itself because it is
computationally expensive.
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5 Conclusions

In conclusion, the described methods generate better results when used together.
The incremental method gives good results when enough measurements and/or the
experiments are not affected by noise are given. In other cases, incremental method
generates an initial solution for the integral method which is essential in order to
obtain a better adjustment. Moreover, this last method is computationally expensive
and so, to improve this, an adjoint method is considered for computing functional
cost derivatives and a VNS heuristic is too considered in the optimization process.
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Variance Reduction Result for a Projected
Adaptive Biasing Force Method

Houssam AlRachid and Tony Lelièvre

Abstract This paper is committed to investigate an extension of the classical
adaptive biasing force method, which is used to compute the free energy related to
the Boltzmann-Gibbs measure and a reaction coordinate function. The issue of this
technique is that the approximated gradient of the free energy, called biasing force,
is not a gradient. The commitment to this field is to project the estimated biasing
force on a gradient using the Helmholtz decomposition. The variance of the biasing
force is reduced using this technique, which makes the algorithm more efficient than
the standard ABF method. We prove exponential convergence to equilibrium of the
estimated free energy, with a precise rate of convergence in function of Logarithmic
Sobolev inequality constants.

1 Introduction

Let us consider the Boltzmann-Gibbs measure:

�.dx/ D Z�1
� e�ˇV.x/dx; (1)

where x 2 DN denotes the position of N particles in D � R
n (or the n-dimensional

torus Tn). The potential energy function V W D �! R associates with the positions
of the particles x 2 D , Z� is the normalization constant and ˇ is a constant
proportional to the inverse of the temperature.
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The equilibrium probability measure � can be sampled through the Overdamped
Langevin Dynamics:

dXt D �rV.Xt/dt C
s
2

ˇ
dWt; (2)

where Xt 2 DN and Wt is a Nn-dimensional standard Brownian motion. Under loose
assumptions on V , the dynamics .Xt/t�0 is ergodic with respect to the equilibrium
measure �.

Because of the metastability, trajectorial averages converge very slowly to their
ergodic limit. To overcome this difficulty, we focus in this paper on the Adaptive
Biasing Force (denoted ABF) method (see [2, 3]). In order to introduce the ABF
method, we require another ingredient: a reaction coordinate � describing the
metastable zones of the dynamics associated with the potential energy V . For sake of
simplicity, take � W .x1; : : : ; xn/ 2 T

n 7! .x1; x2/ 2 T
2. The associated free energy:

A.x1; x2/ D �ˇ�1 ln.Z˙.x1;x2/ / D �ˇ�1 ln
Z

Tn�2

e�ˇV.x/dx3 : : : dxn:

The idea of the ABF method is that, for a well chosen �, the dynamics associated
with the potential V � A ı � is less metastable than the dynamics associated with V .
The so called mean force rA.z/, can be obtained as:

rA.x1; x2/ D Z�1
˙.x1;x2/

Z

Tn�2

f .x/e�ˇV dx3: : :dxn D E�. f .X/j�.X/ D .x1; x2//;

where f D . f1; f2/ D .@1V; @2V/. At time t, the mean force is approximated by
Fi

t.z/ D E�Œ fi.Xt/j�.Xt/ D .x1; x2/�, which also, under appropriate assumptions,
converges exponentially fast to rA (see [4–6]). Despite the fact that Ft converges
to a gradient, there is no reason why Ft would be a gradient at time t. In this paper,
we propose an alternative method, where we approximate rA, at any time t, by a
gradient denoted rAt.

2 Projected Adaptive Biasing Force Method (PABF)

In this section, we present the PABF method, by reconstructing the mean force from
the estimated one used in the ABF method.



PABF Method 223

In practice, At is obtained from Ft by solving the Poisson problem:

div.rAt 
�.t; :// D div.Ft 

�.t; :// on T
2; (3)

where  �.t; �/ denotes the density of the random variables �.Xt/ which is the Euler
equation associated to the minimization problem:

At D argmin
g2H1.T2/=R

Z

T2

jrg � Ftj2:

Solving (3) amounts to computing the so-called Helmholtz-Hodge decomposition
of the vector field Ft as:

Ft 
� D rAt 

� C Rt on T
2;

with div.Rt/ D 0. In the following we denote by

rAt D P � .Ft/; on T
2

the projection of Ft onto a gradient. We will study the longtime convergence of the
following Projected adaptive biasing force (PABF) dynamics:

8
ˆ̂<

ˆ̂:

dXt D �r�V � At ı ��.Xt/dt C
p
2ˇ�1dWt;

rAt D P � .Ft/;

Fi
t.x1; x2/ D EŒ@iV.Xt/j�.Xt/ D .x1; x2/�; i D 1; 2;

(4)

Using entropy techniques, we study the longtime behavior of the nonlinear
Fokker-Planck equation which rules the evolution of the density of Xt solution to (4).
The following theorem shows exponential convergence to equilibrium of At to A,
with a precise rate of convergence in terms of the Logarithmic Sobolev inequality
constants of the conditional measures d�˙.x1;x2/ D Z�1

˙.x1;x2/
e�ˇV dx3: : :dxn.

The assumptions we need to prove the longtime convergence of the biasing force
rAt to the mean force rA are the following:

H1 V 2 C2.Tn/, 9� > 0; 8 3 � j � n;8x 2 T
n;max.j@1@jV.x/j; j@2@jV.x/j/ �

�:

H2 V is such that 9
 > 0, the conditional probability measures �˙.x1;x2/ satisfy a
Logarithmic Sobolev inequality with constant 
.

The proof of the following main theorem is provided in [1].



224 H. AlRachid and T. Lelièvre

Theorem 1 Let us assume H1 and H2. The biasing force rAt converges to the
mean force rA in the following sense:

9C > 0; 9� > 0;8 t � 0;

Z

T2

jrAt � rAj2 �.t; x1; x2/dx1dx2 � 8C�2



e��t:

Since, numerically, we use Monte-Carlo methods to approximate Ft and rAt, the
variance is an important quantity to assess the quality of the result. The following
second main result is a variance reduction result and proved in [1].

Proposition 2 For any time t > 0, the variance of P � .Ft/ is smaller than the
variance of Ft in the sense:

8t > 0;
Z

T2

Var.P � .Ft// �
Z

T2

Var.Ft/;

where Var.Ft/ D E.jFtj2/ � E.jFtj/2 and jFtj being the Euclidian norm.

3 Numerical Experiments

This section is devoted to a numerical illustration of the practical value of the
projected ABF compared to the standard ABF approach.

We consider a system composed of 100 particles in a two-dimensional periodic
box. Among these particles, three particles are designated to form a trimer, while the
others are solvent particles. All particles interact through several potential functions
such as the Lennard-Jones potential, the double-well potential and a potential on the
angle formed by the trimer. We choose the reaction coordinate to be the transition
from compact to stretched state in each bond of the trimer. We apply now ABF and
PABF dynamics to the trimer problem described above. One can refer to [1] for
more detailed descriptions of the model and the used ABF and PABF algorithms.

First, we illustrate the improvement of the projected ABF method in terms of

the variances of the biasing forces by comparing
Z

Var.rAt/ D
Z

Var.@1At/ C
Z

Var.@2At/ (for the PABF method) with
Z

Var.Ft/ D
Z

Var.F1t /C
Z

Var.F2t / (for

the ABF method). Figure 1 shows that the variance for the projected ABF method
is smaller than for the standard ABF method, where

R
Var.rAt/ (respectivelyR

Var.Ft/) is represented by Var.F1/C Var.F1/ (respectively Var.A1/C Var.A1/).
We now present, the variation, as a function of time, of the normalized averages

L2-distance between the real free energy and the estimated one. As can be seen in
Fig. 2, in both methods, the error decreases as time increases. Moreover, this error
is always smaller for the projected ABF method than for the ABF method.
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Fig. 1 Variances as a function of time. Reproduced courtesy SMAI-JCM [1]

Fig. 2 Free energy error as a function of time. Reproduced courtesy SMAI-JCM [1]
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Fig. 3 At time 0:025. Left:
R
 �.z1; z2/dz2; Right:

R
 �.z1; z2/dz1 . Reproduced courtesy SMAI-

JCM [1]

Fig. 4 At time 5. Left:
R
 �.z1; z2/dz2; Right:

R
 �.z1; z2/dz1 . Reproduced courtesy SMAI-JCM

[1]

Fig. 5 At time 25. Left:
R
 �.z1; z2/dz2; Right:

R
 �.z1; z2/dz1 . Reproduced courtesy SMAI-JCM

[1]

Another way to illustrate that the projected ABF method converges faster than
the standard ABF method is to plot the density function  � as a function of time. It
is clearly observed (see Figs. 3, 4, and 5) that, for the PABF method, the convergence
of  � to uniform law along .�1; �2/ is faster with the projected ABF method.
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Modeling Chemical Kinetics in Solid State
Reactions

J.A. Huidobro, I. Iglesias, B.F. Alfonso, C. Trobajo, and J.R. Garcia

Abstract This work deals with the kinetics of thermally stimulated processes
which take place in the solid state phases. The activation energy of the solid is
calculated using several methods of different families of isoconversional methods
(differential, integral and incremental). A model of the kinetics is obtained by a
method independent from the procedure used to compute the activation energy and
it is analysed in three theoretical simulations as well as the thermal degradation
of FeNH4(HPO4)2. The reconstructed ˛ � T curves of the simulations and the
experimental case indicates that the model works properly.

1 Modeling Kinetics

The study of kinetics in solid state reactions explains the mechanism of the
chemical processes as well as the meaning of the related parameters. It provides
qualitative and quantitative information on phase transformations, crystallization,
thermal decomposition, etc. Several analysis techniques such as Thermogravimetric
Analysis (TGA), have been developed to measure physical and chemical changes.

A simple stimulated thermal reaction follows a scheme in the form Re ! P C S
where Re is the reactant, P the solid product and S is the solvent or water vapour. The
reaction progress is given by the extent of conversion ˛.t/ D .m0�m.t//=.m0�mf /
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where m.t/ is the mass of Re at time t and m0 and mf are the initial and final masses,
respectively. These reactions are commonly described by the equation

d˛

dt
D A exp.� E

RT
/ f .˛/ (1)

where T is the temperature, R the universal gas constant, A the pre-exponential
factor, E the activation energy and f .˛/ the model function [5].

The knowledge of A, E and f .˛/, the called kinetic triplet, allows solving Eq. (1)
and so a description of the process can be obtained. In the model-fitting methods, the
obtention of the kinetic triplet is based on the determination of the model function
by fitting several reaction models to the experimental data and then the coefficients
A and E are computed. But different forms of f .˛/ with disparate values of A and E
can be fitted to the data and then these methods are not recommended [6].

In isoconversional methods the activation energy is computed without knowing
the model function or the pre-exponential factor [7]. Consequently, a model of the
process based on Eq. (1) cannot be obtained. Some authors [4, 8] have proposed
different methods in order to calculate the product Af .˛/, considered as a sole factor,
depending on how the activations energy has been computed. The main purpose of
this study is to analyse the behaviour of a method to compute Af .˛/, independent
of the procedure used to compute the activation energy, when it is applied to three
theoretical simulations as well as the thermal degradation of FeNH4(HPO4)2.

Mechanisms of chemical transformations are indeed complicated, they usually
involve more than a single reaction. Then, Eq. (1) must be understood as an
approximation to describe the process, the kinetic parameters are considered as
apparent parameters and their physical meaning should be carefully analysed.

One of the simplest isoconversional methods is that proposed by Friedman (FR)
[2], which is a differential isoconversional method. For a constant heating rate
program of temperature T D T0 C ˇt and taking logarithms, Eq. (1) turns into

ln

�
d˛.T/

dT
ˇ

�
D ln.Af .˛.T/// � E

RT
(2)

where now ˛.T/ represents the dependence of the extent of conversion respect to the
temperature. Several runs with different heating rates ˇi, i D 1; : : : ; n with n � 3

are carried out and n experimental ˛�T curves are obtained. Thus, for a fixed value
of ˛ and from each experimental curve, values for Ti and d˛.Ti/=dT are obtained.
Then, from Eq. (2), the points .1=Ti; ln.d˛.Ti/=dT/ˇi// belong to a straight line
whose slope is �E˛=R. The activation energy E˛ can be obtained by fitting to the
experimental data.

Wu et al. [8] extended this method by computing not only E but also ln.Af .˛.T///
and then, the product Af .˛/ is known and the differential Eq. (1) can be solved.

Generally, one drawback of this method is its sensitivity to noise that can come
from numerical differentiation or experimental measures. A method (MFR) to
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diminish this effect was proposed in [3] where Eq. (2) is considered for more values
of ˛. Then, by fitting to the experimental data, the activation energy is computed.

Less sensitive to noise are integral isoconversional methods that consider an
integral form of Eq. (1) but exp.�E=.RT// does not have a suitable antiderivative
and some approximations have been proposed. They are based on assuming E is
constant over the whole process and this is not very common. One of these is the
generalized Kissinger method [1] (KAS), widely used. Vyazovkin [5] introduced
an non-linear method (Vyaz) by integration of Eq. (1) over Œ˛� � �˛�; ˛�� and
Samuelsson [4] computed Af .˛/, assuming it is constant over the interval.

A different idea, where this assumption is not necessary, is to compute the factor
Af .˛/ directly from Eq. (1). Assuming the activation energy is known, for a fixed
value of ˛, the product Af .˛/ can be obtained by fitting to the experimental data.
Then, the differential Eq. (1) can be solved and a model is obtained. In this work,
the four aforementioned methods were used to determine the activation energy and
four set of values E˛ �˛ were obtained. For each method, the corresponding values
of Af .˛/ were computed and model of the kinetics was achieved.

2 Results and Conclusions

This procedure to obtain a kinetic model has been implemented in Matlab and
it was applied to three theoretical simulations. In all cases four constant heating
rates were applied to generate the simulated data. In the first case, a one-step
model with a first-order model function f .˛/ D 1 � ˛ and Arrhenius parameters
A D 109 min�1 and E D 102 kJ mol�1 were considered. The four methods used
to compute the activation energy provide similar values. Using them, the product
Af .˛/ was computed and then ˛ � T curves were plotted by solving the general
kinetic differential equation.

In the second simulation, a parallel two-step, equally weighted, case was
analysed being f1.˛/ D 1 � ˛, A1 D 1012 min�1 and E1 D 167 kJ mol�1 and
f2.˛/ D 1 � ˛, A2 D 1026 min�1 and E2 D 352 kJ mol�1. The third simulation
analysed an Avrami-Erofeev model function f .˛/ D 4.1 � ˛/Œ�ln.1 � ˛/3=4� with
A D 102 min�1 and E D 20:9 kJ mol�1. Figure 1 shows the simulated and the
reconstructed ˛ � T curves for the three simulations. In all cases a good agreement
was achieved.

Finally, thermogravimetric analysis of the thermal degradation of FeNH4(HPO4)2
was conducted in a N2 dynamic atmosphere, using a Mettler-Toledo
TGA/SDTA851e, at four different heating rates. As can be seen in Fig. 2a, the
process occurs in two consecutive stages, the on-line mass spectrometric analysis
indicates that the material firstly loses water about 600 K and secondly, at about
900 K, water and ammonia. The E � ˛ plot, displayed in Fig. 2b, shows this
behaviour. The experimental data are satisfactorily reconstructed (Fig. 2c)

In conclusion, the product Af .˛/ has been computed by a method independent of
how the activation energy has been obtained. Then, the general kinetic differential
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Fig. 1 Comparison of the simulated and reconstructed ˛ � T curves for ˇ D 8K min�1.
Simulations 1, 2 and 3 in (a), (b) and (c), respectively

Fig. 2 TG and DTG curves of FeNH4(HPO4)2 obtained at 10 K min�1 heating rate (a); activation
energy versus extent of conversion (b); experimental (line) and reconstructed (points) ˛�T curves
for ˇ D 2:5K min�1 (c)

equation can be solved overcoming the ambiguity of the model-fitting methods.
In this way, a discrete model that can be used to describe kinetics in solid state
processes. This model has worked efficiently in the description of the theoretical
simulations studied and in the thermal decomposition of FeNH4(HPO4)2.
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ASSR Matrices and Some Particular Cases

P. Alonso, J.M. Peña, and M.L. Serrano

Abstract A real matrix is said Almost Strictly Sign Regular (ASSR) if all its
nontrivial minors of the same order have the same strict sign. In this research,
nonsingular ASSR matrices are characterized through the Neville elimination (NE).
In addition, the algorithm is simplified for two important subclases: almost strictly
totally negative (ASTN) matrices and Jacobi (tridiagonals) ASSR matrices.

1 Introduction

For k; n 2 N, with 1 � k � n, Qk;n denotes the set of all increasing sequences of k
natural numbers not greater than n. For ˛ D .˛1; : : : ; ˛k/, ˇ D .ˇ1; : : : ; ˇk/ 2 Qk;n

and A an n � n real matrix, we denote by AŒ˛jˇ� the k � k submatrix of A containing
rows ˛1; : : : ; ˛k and columns ˇ1; : : : ; ˇk of A. If ˛ D ˇ, we denote by AŒ˛� WD
AŒ˛j˛� the corresponding principal submatrix. In addition, Q0

k;n denotes the set of
increasing sequences of k consecutive natural numbers not greater than n.

The ASSR matrices present grouped null elements in certain positions, and can
be classified in two classes which are defined below, type-I and type-II staircase.

A matrix A D �
aij
�
1�i;j�n

is called type-I staircase if it satisfies simultaneously
the following conditions

• a11 6D 0; a22 6D 0; : : : ; ann 6D 0;
• aij D 0, i > j ) akl D 0, 8l � j; i � k;
• aij D 0, i < j ) akl D 0, 8k � i; j � l.
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So, A is a type-II staircase matrix if it satisfies that PnA is a type-I staircase matrix,
where Pn is the backward identity matrix n � n, whose element .i; j/ is defined as

pij D
�
1 if i C j D n C 1;

0 otherwise:

To describe the zero-pattern of this kind of matrices it is necessary to introduce
several sets of indices that we denote as I, J,bI andbJ (see, for instance, p. 482 of
[1]). Besides, it is necessary to introduce the concepts of nontrivial matrices and
signature sequence.

Given a matrix A of type-I (type-II) staircase, we say that a submatrix AŒ˛jˇ�,
with ˛; ˇ 2 Qm;n is nontrivial if all its main (secondary) diagonal elements are
nonzero.

A vector " D ."1; "2; : : : ; "n/ 2 R
n is a signature sequence, or simply, a signature,

if "i D ˙1, 8i 2 N, 1 � i � n.
Taking into account the previous results, we define the ASSR matrices:

Definition 1 A real matrix A D .aij/1�i;j�n, is said to be ASSR, with signature
" D ."1; "2; : : : ; "n/, if it is either type-I or type-II staircase and all its nontrivial
minors det AŒ˛jˇ� satisfy that

"m det AŒ˛jˇ� > 0; ˛; ˇ 2 Qm;n; m � n: (1)

Notice that an ASSR matrix is nonsingular.
The characterizations presented here are based on the signs of the pivots of the

NE, so we will introduce briefly this procedure (see [4]). If A is a nonsingular n � n
matrix, NE consists of at most n � 1 successive major steps, resulting in a sequence
of matrices as follows:

A DeA.1/ ! A.1/ ! � � � !eA.n/ D A.n/ D U (2)

where U is an upper triangular matrix.

For each t, 1 � t � n, A.t/ D
�

a.t/ij

�

1�i;j�n
has zeros in the positions a.t/ij , for

1 � j < t, j < i � n. Besides, it holds that

a.t/it D 0; i � t ) a.t/ht D 0; 8h � i: (3)

Matrix A.t/ is obtained fromeA.t/ reordering rows t, t C 1, : : : , n according to a row
pivoting strategy which satisfies (3).
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To obtaineA.tC1/ from A.t/, zeros are introduced below the main diagonal of the
tth column by subtracting a multiple of the ith row from the .i C 1/th, for i D n � 1,
: : : , t. The elementsea .tC1/ij are obtained according to the following formula

8
ˆ̂̂
<̂

ˆ̂̂
:̂

a.t/ij ; 1 � i � t;

a.t/ij � a
.t/
it

a
.t/
i�1;t

a.t/i�1;j; if a.t/i�1;t 6D 0; t C 1 � i � n;

a.t/ij ; if a.t/i�1;t D 0; t C 1 � i � n:

(4)

The element pij D a. j/
ij , 1 � i; j � n; is called the .i; j/ pivot of NE of A.

2 Characterization of ASSR Matrices Through NE

In this section we present a characterization of ASSR matrices through the NE.
First, we present necessary conditions for nonsingular type-I and type-II staircase
matrices.

Theorem 2 Let B D .bij/1�i;j�n be a nonsingular type-I staircase matrix, with zero
pattern defined by I, J,bI andbJ. If B is ASSR with signature " D ."1; "2; : : : ; "n/,
then the NE of B and BT can be performed without row exchanges and:

• the pivots pij of NE of B satisfy, for any 1 � j � i � n,

pij D 0 , bij D 0 (5)

"j�jt"j�jtC1pij > 0 , bij 6D 0 (6)

where "0 ..D 1,

jt ..D max f js = 0 � s � k � 1; j � js � i � isg (7)

and k is the only index satisfying that jk�1 � j < jk,
• and the pivots qij of NE of BT satisfy, for any 1 � i < j � n,

qij D 0 , bij D 0 (8)

"
i�bit0 "i�bit0 C1qij > 0 , bij 6D 0 (9)

where

bit0 ..D max
n
bis = 0 � s � k0 � 1; i �bis � j �bjs

o
(10)

and k0 is the only index satisfying thatbik0�1 � i <bik0 .
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Following, we characterize the type-I staircase matrices:

Theorem 3 A nonsingular matrix A D �
aij
�
1�i;j�n

is ASSR with signature " D
."1; "2; : : : ; "n/, with "2 D 1 if and only if for every h D 1; : : : ; n � 1 the following
properties hold simultaneously:

(i) A is type-I staircase;
(ii) the NE of the matrices Ah

..D AŒh; : : : ; n� and AT
h

..D AT Œh; : : : ; n� can be
performed without row exchanges;

(iii) the pivots ph
ij of the NE of Ah satisfy conditions corresponding to (5), (6), and

the pivots qh
ij of the NE of AT

h satisfy (8) and (9);
(iv) for the positions .ih; jh/ of matrix Ah:

• if ih � jh and ih � jh D iht � jht then "jh�jht
"jh�jht C1 D "jh�1"jh ,

• if ih < jh and ih � jh Dbi h
t0 �bj h

t0 then "
ih�bi h

t0
"

ih�bi h
t0

C1 D "ih�1"ih ,

where indices it, jt,bit0 andbjt0 are given by (7) and (10).

When an ASSR matrix is multiplied by the backward identity matrix, the product
is also an ASSR matrix. In the following result the relationship between the
signature of A and PnA is given.

Corollary 4 A matrix A D .aij/1�i;j�n is ASSR if and only if PnA is also ASSR.
Furthermore, if the signature of A is " D ."1; "2; : : : ; "n/, then the signature of PnA

is "0 D ."0
1; "

0
2; : : : ; "

0
n/, with "0

m D .�1/ m.m�1/
2 "m, for all m D 1; : : : ; n.

Observe that, if the second signature of A is "2 D �1, then, the second signature

of PnA is given by "0
2 D .�1/ 2.2�1/2 .�1/ D 1. This allow us to apply the Theorem 3

to the matrix PnA and all the ASSR matrices are characterized.

3 Characterization of ASTNMatrices

A real matrix A D .aij/1�i;j�n is said almost strictly totally negative (ASTN)
if it is ASSR with signature .�1;�1; : : : ;�1/. In this section we present the
obtained characterization for this kind of matrices, which allows us to reduce the
computational cost of testing the ASTN characteristic.

Theorem 5 Given a nonsingular matrix A D .aij/1�i;j�n, with n � 2, A is ASTN if
and only if the following properties hold simultaneously:

(a) aij ¤ 0 if .i; j/ … f.1; 1/, .n; n/g.
(b) The NE of B D PnA and BT can be performed without row exchanges.
(c) The pivots pij of the NE of B, with i � j verify:

pn1 D 0 , bn1 D 0; (11)

if j D jt; then pij < 0 , bij 6D 0; (12)

if j > jt; then .�1/ j�jt pij > 0 , bij 6D 0; (13)
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and the pivots qij of BT with i < j verify

q1n D 0 , b1n D 0; (14)

if i Dbit; then qij < 0 , bij 6D 0; (15)

if i >bit; then .�1/i�bit qij > 0 , bij 6D 0; (16)

where indices it, jt,bit andbjt are given by conditions corresponding to (7)
and (10).

(d) The matrix M D AŒ1; : : : ; n � 1j2; : : : n� is strictly totally negative.

Notice that a strictly totally negative matrix is a matrix whose minors are all
strictly negative. In [3], the authors present a result to test whether a matrix is STN,
checking the signs of the pivots elements.

4 Tridiagonal Matrices

The tridiagonal matrices or Jacobi matrices, often appear to solve problems by
numerical methods, see for example the finite element method in one dimension.
The Jacobi ASSR matrices are characterized in this section.

Definition 6 Given a matrix A D �
aij
�
1�i;j�n

, we say that it is a tridiagonal matrix
if aij D 0 when ji � jj > 1. In addition, if aij ¤ 0 when ji � jj � 1, we say that A is
strictly tridiagonal matrix.
In [2], the authors shown that for a tridiagonal ASSR matrix, with A � 0, the
only feasible signatures are .1; : : : ; 1; 1/ or .1; : : : ; 1;�1/. In the next Theorem a
characterization is given.

Theorem 7 Let A D .aij/1�i;j�n be a real nonnegative tridiagonal matrix and
nonsingular. Then A is ASSR with " D .1; 1; : : : ; 1; "n/ if and only if it holds that

(a) A is type-I staircase,
(b) the NE of the matrices A and AT can be performed without row changes,
(c) the pivots pij of the NE of A and the pivots qij of the NE of AT satisfy:

• If i � j,

pij D 0 , aij D 0; (17)

j < n; pij > 0

j D n; "npin > 0



, aij ¤ 0; (18)
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• If i < j,

qij D 0 , aij D 0; (19)

qij > 0 , aij ¤ 0; (20)

(d) A2 D AŒ2; : : : ; n� is ASTP.

A definition of Almost Strictly Totally Positive (ASTP) matrices can be found in [2].
If an ASSR matrix A D .aij/1�i;j�n verifies that aij � 0 for all 1 � i; j � n, then

�A is an ASSR matrix with "0
1 D 1. Then we can apply the Theorem 7 to �A and

all the strictly tridiagonal matrices are characterized.
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A Computational Approach to Verbal
Width in Alternating Groups

Jorge Martínez Carracedo and Consuelo Martínez López

Abstract We know that every element in an Alternating group An, n � 5, can be
written as a Engel word of length two (Carracedo, Extracta Math. 30(2), 251–262,
2015 and J. Algebra Appl. 16(2), 1750021, 10 p., 2017). There is a conjecture that
every element in an Alternating group An, n � 5, can be written as an Engel word
of arbitrary length. We give here a computational approach to this problem, what
allows to prove the conjecture for 5 � n � 14.

1 Engel Graphs

Given an arbitrary group G and a word in the free group of rank r, ! 2 Fr, with r a
natural number, we can consider the word map

!G W
r‚ …„ ƒ

G � � � � � G �! G

that maps each r-tuple .g1; g2; : : : ; gr/ to !G.g1; g2; : : : ; gr/.
Several questions can be formulated: What is the size of the set !G.G/? Is the

map !G surjective? Is h!G.G/i D G? Can we find a constant k such that !G.G/k D
h!.G/i?. See [1].

An Engel word of length m is the element of the free group of rank 2 given by:

Em.x; y/ WD Œ: : : Œx;

m‚ …„ ƒ
y�; y�; : : : ; y�:

Our aim is to study the verbal width of an Engel word of arbitrary length in an
Alternating group An, that is, for each m � 1 we want to find a constant k � 1 such
that every element � in An can be written as a product of at most k Engel words of
length m.
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In [2] it is proved that this constant is at most 2 for every m � 1 and every n � 5,
while for Engel words of length 2 it is 1, ie, every element in an Alternating group
An, n � 5, can be written as an Engel word of length 2.

Technics used to prove these results fail when we consider Engel words of higher
length. So we have intended a computational approach. We define the Engel Graph
.Vy

n;E/ depending on an element y in An and we use GAP to study this graph.
If we denote the set of Engel words of length m by Em. y/ WD fEm.x; y/ j x 2 Ang

and by ˝y
m the set fCAn. y/x j x 2 Em�1. y/g, we can construct a map

'm W ˝y
m �! Em. y/

CAn. y/x 7! Œx; y�
(1)

Theorem 1 For every m � 1 and every element y 2 An, n � 5, the map 'm is well
defined and bijective.

Now, let’s construct a directed graph taking as set of nodes the set Vy
n WD ˝

y
1 D

fCAn. y/x j x 2 Ang and whose arrows are defined by:

• Given CAn. y/z1;CAn. y/z2 2 Vy
n , there exists an arrow from CAn. y/z1 to CAn. y/z2

if and only if CAn. y/Œz1; y� D CAn. y/z2.

Definition 2 Let y be an element in an Alternating group An, the graph .Vy
n;E/ is

called Engel graph associated to the element y and the group An.
Some of the reasons why we have defined this graph are:

• If we want to compute Ek.x; y/, it is enough to start with the node CAn. y/x and,
in each step ki, to compute the commutator with y of an arbitrary element of the
coset CAn. y/zki .

• We can study the dynamic of the set fEm.�; y/gm�0 by studying the dynamic of
the graph .Vy

n;E/

Once we have build the graph, we want to know whether or not an element in the
Alternating group An, n � 5, can be written as an Engel word of type Em.�; y/ for
m � 1. We will study the directed cycles of the Engel graph .Vy

n;A/.

Theorem 3 Let '1 be the map given in (1) with m D 1. If .W; ˇ/ is a directed cycle
of .Vy

n ;E/, then every element in the set '1.W/ can be written as an Engel word of
arbitrary length.

Proof Consider .W; ˇ/ a directed cycle in the Engel graph .Vy
n;E/.

Given an arbitrary element CAn. y/x in W, we have that

'1.W/ WD fEl.x; y/ j l 2 Ng:
Since W is a directed cycle, there exists an integer k � 1 such that

CAn. y/Ek�1.x; y/ D CAn. y/x:

and so Ek.x; y/ D Œx; y�, where k � 1 is the length of the cycle .W; ˇ/.
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Let m be an arbitrary integer, m � 1. For any permutation � in '1.W/, we have
that � D Œx; y� for CAn. y/x 2 W and then

� D Œx; y� D Ek.x; y/ D E2k.x; y/ D : : :Erk.x; y/;

for every r � 1.
It is enough to take r such that rk > m to get that � D Em.�; y/ for some � 2 An.

ut
Example Consider the element y WD .1; 2; 3; 4; 5/ in A5. We have that CA5 . y/ D hyi
is a cyclic group of order 5, so Vy

5 D fhyix j x 2 A5g is a set whose cardinal is
j A5=hyi jD 12.

Let’s construct the Engel graph .Vy
5;E/. As we know, each node is associated to

a coset module CA5 . y/. We will denote each node CA5 . y/� by a permutation of the
set fyj� j 1 � j � 4g (Fig. 1).

Fig. 1 We can see here the Engel graph .Vy
5 ;A/. There are two directed cycles (drawn in red) in

the graph. The first one, W1, is a cycle with five elements, and the other one, W2, has only one
node, CA5 . y/
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Table 1 Computational results using GAP

Group Conjugacy classes not represented Runtime

A5 f.1; 2/.3; 4/S5 ; .1; 2; 3/S5g 7 mm s

A6 f.1; 2/.3; 4/S6 ; .1; 2; 3/S6 ; .1; 2; 3/.4; 5; 6/S6g 18 mm s

A7 f.1; 2/.3; 4/S7 g 40 mm s

A8 f.1; 2/.3; 4/S8 g 201 mm s

A9 f.1; 2/.3; 4/S9 g 4 s 12 mm s

A10 f.1; 2/.3; 4/S10 g 40 s 809 mm s

A11 f.1; 2/.3; 4/S11 g 5 min 37 s 139 mm s

A12 f.1; 2/.3; 4/S12 g 63 min 38 s 210 mm s

A13 f.1; 2/.3; 4/S13 g 21 h 6 min 54 s

A14 f.1; 2/.3; 4/S14 g >12 days

We have used GAP [3] to compute the directed cycles fWkg1�k�r of the Engel
graph .Vy

5;E/ for 5 � n � 14, where y D .1; 2; : : : ; n/ if n is odd and y D
.1; 2; : : : ; n � 1/ if n is even. Later we have computed

r[

kD1
'1.Wk/;

and we see which conjugacy classes of Sn are not represented in this set. The
obtained results are given in Table 1.

Using these computational results and Theorem 3 the following theorem can be
proved.

Theorem 4 Every element in an Alternating group An, 5 � n � 14, can be written
as an Engel word of arbitrary length. That is

An D Em.An/; 5 � n � 14; 8m � 2

Let us highlight that we could not have got this result computationally through a
Brute-force attack, not only because the huge order of An when n is big (nŠ=2), but
also because the length of the Engel word is not bounded.
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Improvements in Resampling Techniques
for Phenotype Prediction: Applications
to Neurodegenerative Diseases

Juan Carlos Beltrán Vargas, Enrique J. deAndrés-Galiana, Ana Cernea,
and Juan Luis Fernández-Martínez

Abstract Searching for new biomarkers, biological networks and pathways is
crucial in the solution of neurodegenerative diseases. In this research we have
compared three different algorithms and resampling techniques to find possible
genetic causes in patients with Alzheimer’s and Parkinson’s diseases, providing
some interesting insights about the main causes involved in these diseases.

1 The Phenotype Prediction Problem

The study of major neurodegenerative diseases is a clear priority since 16% of the
population in Europe is over 65 years old, they affect more than seven million
Europeans, and it is expected that this figure will double in the next 20 years.
Despite all the research done, the number of existing treatments is very limited and
only address symptoms, instead of finding causes. Gene expression analysis studies
can provide a snapshot of actively expressed genes and transcripts under various
conditions. The solution requires the use of advanced bioinformatics algorithms able
to guide the analysis of genetic data relative to this kind of diseases, allowing the
discovery of new biomarkers, biological networks and pathways,orphan drugs, and
new therapeutic targets. For that purpose, the corresponding phenotype prediction
is formulated as a binary supervised classification problem. The ingredients are:

1. A matrix E 2 Mm�n .R/ of n genes for a set of m samples with m << n, where
Eij is the expression of gene j in sample i; and the vector of observed phenotype
classes cobs 2 R

m.
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2. A classifier L�.g/ W g 2 R
s ! C where g is the set of genetic signatures of size

s << n, and C is the set of binary classes. The classifier L� is built ad-hoc and
it is just a mathematical abstraction used to discover the genes/pathways that are
involved in the phenotype discrimination.

The relevant features would be the ones that minimize the cost function O.g/
related to the class prediction vector: O.g/ D jjL�.g/ � cobsjjp, where L�.g/ D
.L�.g1/; : : : ;L�.gi/; : : : ;L

�.gm//, p is the norm applied in the distance criterion,
L�.g/ is the set of predicted classes by the classifier L�.g/, gi 2 R

s is the set of genes
of size s corresponding to sample i, and L�.gk/ is the predicted class for sample k.
These genetics signatures will be used to predict the class of new incoming samples.
Due to noise in data and modeling errors, the phenotype prediction problem is ill-
posed [2]. In presence of noise the set of genes with the highest predictive accuracy
will never perfectly coincide with the set(s) of genes that explains the disease.
For that reason it is desirable to also look for other sets of features with lower
predictive accuracy than the optimum. A robust solution consists in finding the
genetic networks and pathways that are involved, and performing ensemble-based
predictions [5]. For that purpose we have used in all the cases the leave-one-out-
crossvalidation (LOOCV) accuracy.

2 Methodology

In this contribution we have compared different methodologies:

1. Adaboost [3] with Adaptive Resampling. The adaboost version that it is proposed
consists in building a strong classifier, L�

e .g/ D PNw
kD1 wkl�k .gk/, where l�k are the

weak classifiers and wk the corresponding weights, such as it is possible to build
a new L�

e .g/ exploring the classification cost function landscape [2] to choose an
improved combination of l�k .gk/.

2. K-NN [1] with Network Resampling, following a prior probability distribution
that is based in the Fisher’s Ratio of the most discriminatory genes. This
algorithm works as follows: (1) First of all, the smallest-scale gene signature
is found via Backwards Feature Elimination of the ranked list of genes with
Fisher’s ratio greater than a given cut-off. (2) Secondly, a random sampling is
performed using as prior probability distribution induced by the Fisher’s ratio.
For that purpose the genes are divided into two different categories: headers and
helpers. Headers expand the low frequency details in the classification, while
helpers provide high frequency details in phenotype discrimination. (3) The
final prediction is given by majority voting using the high predictive signatures
sampled in the previous step.

3. SVM with LASSO [7], that is, as support vector machines algorithm with a L1
regularization in the genetic signature. This algorithm tries to find the maximum-
margin hyperplane for a binary classification. This problem can be formulated as
a regularized estimation problem, corresponding to a prediction error O.g/ plus a
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regulation term in jjgjj1. The L1 regularization provides the additional property to
look for sparse genetic signatures (small-scale genetic signatures). Similarly to k-
NN with Network Resampling, we first obtain the sparse coefficients! (weights)
for each gene through a cross validation experiment with twofolds and 5 repeti-
tions. In each of the steps of the cross validation we determine the best complex-
ity value c with a grid search algorithm. The genes are ranked according to !, and
finally, a Recursive Feature Elimination algorithm with linear SVM was used to
find the smallest-scale gene signature having the maximum predictive accuracy.

3 Results and Discussion

These algorithms were applied to the analysis of two genetic datasets concerning
Parkinson’s disease (PD) [6] and Alzheimer’s disease (AD) [4] and their respective
control patients. The Parkinson’s dataset contained 22,164 genetic probes and 114
samples (59 with PD), while the Alzheimer’s dataset had 38,323 genetic probes and
329 samples (225 with Alzheimer and Mild Cognitive Impairment-MCI). Table 1
show the most predictive genes for AD and PD according to their respective Fisher’s
Ratio.

The best results obtained by these 3 methodologies are shown in Table 2. We also
provide the LOOCV accuracy and the number of genes of the predictive signatures
used to attain these results. The main results were:

1. SVM with LASSO and KNN-NR have obtained better results than adaboost.
SVM-LASSO also provided the shortest high-predictive genetic signatures, but it
was highly computationally intensive. KNN-NR improves in both cases the accu-
racy provided by KNN without resampling. In the case of Alhzaimer a signature
of 72 genes with accuracy LOOCV = 77.2% was found. The resampling found
a genetic signature with 12 genes and LOOCV = 81.5%. Finally, the majority
voting improves accuracy up to 84.5%. In the case of Parkinson, these figures

Table 1 Best discriminatory
genes in Alzheimer and
Parkinson according to the
Fisher’s Ratio

Alzheimer Parkinson

Gene name FR Gene name FR

LOC401206 1:29 GRHL1 1:35

MRPL51 1:19 SBDS 1:32

THX1BP1 1:17 RPS4Y1 1:28

RPS25 1:16 JARID1D 1:10

LOC650276 1:09 FAM29A 1:09

RPL36AL 1:04 UNQ1940 1:03

RPA3 0:99 CD27 1:09

LOC6462001 0:96 GPR142 1:01

LOC648000 0:93 LELP1 1:00

RPL17 0:92 FAM83C 1:00
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Table 2 Accuracy (Acc %) and number of genes (#) of the small-scale gene signature obtained
for the different methodologies: Adaboost with adaptive resampling (Adaboost-AR), K-NN with
Network Resampling (KNN-NR), SVN with LASSO

Parkinson Alzheimer
Methodology Acc (%) # of genes Acc (%) # of genes

Adaboost-AR 82.23 158 93.82 328

KNN-NR 84.50 12 97.40 46

SVM-LASSO 90.00 2 99.00 2

were 90.35% with 46 genes, 92.1% with 36 genes and a final majority voting
of 97.40%. This algorithm is very fast and accurate. Adaboost with Adaptive
Resampling provided good results at the expenses of increasing the length of the
genetic signatures used. It is also highly computationally intensive.

2. The pathway analysis has shown the importance of several mechanisms con-
cerning oxidative stress and transcriptions factor concerning hypoxia in the case
of Parkinson Disease, and the role of Ribosomal and Mitochondrial Ribosomal
proteins, involved in Influenza Viral RNA Transcription and Replication and
Viral mRNA Translation in Alzheimer. The Parkinson’s disease (99%) was
better predicted than Alzheimer’s disease (90%). This result suggests that some
important genetic mechanisms in Alzheimer have not been sampled and/or the
presence of behavioral outliers.
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Abstract Aortic valve (AoV) stenosis is one of the most common valvular diseases.
Assessing the aortic valve function could provide crucial information towards
a better understanding of the disease, where numerical simulation will have an
important role to play. The main scope of this work is to find an aortic root (AR)
patient specific geometric model, which could be used for simulation purposes.
Several models were followed to obtain an AR geometry implementing them in open
source tools. Necessary parameters were obtained from 2D echo images. In order to
test the obtained AR geometry, a finite element study was performed solving a fixed
mesh fluid structure interaction (FSI) model. The fluid was supposed to be laminar
and the tissues were modeled as St. Venant-Kirchhoff materials. Obtained results
for the 1-way FSI study are compared with the published ones for structural and
2-way FSI studies showing similar results. An AR geometric reconstruction from
clinic data is suited for numerical simulation.
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1 Geometry Modeling

Measurements from 2D TEE are used as input for the equations in [2] in order to
obtain the parameters for the geometric model of the aortic valve leaflets. Using
those parameters, a closed geometry for the leaflets with different angles between
each one, hence different size, is designed. In order to model the aortic sinuses, the
procedure described in [3] is followed.

Several scripts were coded implementing the equations in order to obtain an
automatized geometric model of the AR using open free software FreeCAD.

The geometry reconstruction starts by representing the main points, lines and
curves of the aortic leaflets from the parameters previously calculated. Later, the
main lines and curves for the sinuses of Valsalva are created together with surfaces
from the exiting lines. A general thickness of 0.5 mm is considered for the leaflets
and 2 mm for the exterior part in order to take into account the soft tissues
surrounding the AR in vivo. Extrusions will be done together with solid from two
surfaces in order to obtain solid elements. B-splines and ruled surfaces were used
to create the above mentioned curves and surfaces. Finally, inter-leaflet triangles are
reconstructed from the existing sinuses of Valsalva together with the final union of
the different parts in one domain. The described process can be found in Fig. 1.

Fig. 1 Aortic root reconstruction process valid for numerical simulation. Measurements are
obtained from 2D TEE images. Parameters for the geometric model are deduced using the
equations. From (a) to (f) are shown the main steps followed in order to obtain the geometry
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2 Mathematical Model and Numerical Simulation

The modelling of the blood flow behaviour in the AoV has to reflect two types of
phenomenon that coexist: the blood flow, with any suitable model to represent its
behaviour, and the AR wall displacement. In this section, the biomechanical models
that allow to perform numerical simulation, on the geometry previously obtained,
are presented. COMSOL MULTIPHYSICS is used and the domain is discretized with
P2+P1 elements for the blood flow and P2 for the AR.

2.1 Blood Flow Model

Blood flow modeling is not straightforward due to the non-Newtonian nature of
the blood since it is a suspension of cells and particles in plasma, which affect to
its modeling in small vessels. In this paper, since the domain can be considered
as a big vessel, blood flow is approximated by a Newtonian fluid as in the used
bibliography [2–4]. Since the heat transfer between the blood and walls can be
considered negligible and there is not a source term, it is an adiabatic flow.

Blood flow properties are 
 D 1060 kg/m3 and � D 0:004 Pa � s. As a 1-way
FSI problem is solved, the only information required from the fluid are the tensions,
therefore a laminar and incompressible flow is supposed modelled by Navier-Stokes

div.v/ D 0



@v
@t

C 
.v � r/v � rŒ�pI C �.rv C .rv/T/� D 0

9
=

; : (1)

2.2 Aortic Root Tissue Model

In order to model the AR tissue a 3D approach is done from the isotropic elastic
point of view, with null volume forces. The tissue is under large strains and small
deformations modelled as a non linear St. Venant-Kirchooff material [1]. The system
evolution is supposed slow, the inertial terms can be despicable then a cuasi-static
study is performed with equilibrium equation and material law behaviour given by,

div � D 0
� D �tr.E.u//I C 2�E.u/



; (2)
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where � and� are named Lamé parameters, � the linearized part of the second Piola
Kirchhoff stress tensor and E the Green St Venant tensor,

E D 1

2
.ruT C ru C ruTru/: (3)

Material parameters are: E D 106 Pa and 	 D 0:3.

2.3 Fixed Mesh FSI

FSI models are the most realistic computational tools, however they are computa-
tionally expensive. The fixed mesh FSI, also called 1-way FSI, models situations
where the displacements of the solid are assumed to be small enough for the
geometry of the fluid domain to be considered as fixed during the interaction. The
total force exerted on the solid boundary by the fluid is the negative of the reaction
force on the fluid,

f D �n � T D n � 
pI C �.rv C .rv/T/
�

(4)

where T is the fluid stress tensor and n the outward normal vector.
The one-way coupled models sequentially solve for the fluid flow, compute for

each time step the load from Eq. (4), and then apply it in the solution for the solid
displacement

�solid � n D T � n: (5)

2.4 Boundary Conditions

For the fluid domain, pressure boundary conditions are imposed. Obtained values
from the free open software CircAdapt (http://www.circadapt.org/) are used in order
to obtain the pressure in the left ventricle, pLV.t/ and in the aorta, pAO.t/. The solid
is clamped on the inferior and superior faces and free in the rest.

3 Numerical Results and Conclusions

Several simulations with different meshes were done in order to choose the more
appropriate mesh. It was chosen as optimum a 97;424 elements mesh and a
simulation during two cardiac cycles was performed. Computations run in a server 2

http://www.circadapt.org/
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Fig. 2 Left: Time-dependent radial position of the nodulus of Arantius. Fixed mesh FSI results are
similar to structural and moving mesh FSI analysis [4]. Right: total displacement in mm showing
the proper opening of the aortic leaflets

Intel Xeon (2:60GHz) using 25 threats. Computational time was of 8 h for the fluid
and 4 h for the solid, hence the computational cost of FSI models is clear.

Volume average velocity and blood flowing through the inlet and outlet bound-
aries was computed. Blood flow velocity reached values of 1.2 m/s. Average von
Mises, total displacement and nodule of Arantius radial position were also computed
for three leaflets. Figure 2 compares our results with published ones in bibliography.

Approached results have a similar behaviour with the existing ones in bibliogra-
phy. They can not be strictly compared because geometries are not exactly the same
and pressure boundary conditions, which influence a lot the solution, are different.

The presented parametric model for AR geometric reconstruction from clinic
data (including leaflets, inter-leaflet triangles and sinus of Valsalva) is suitable for
numerical simulation. It is possible to develop a FSI fixed mesh model of the AR
using the presented AR geometry, providing similar results as shown in literature.

The obtained results prove that the use of numerical simulation could be a valid
and powerful tool that could be used in the future in clinic applications.
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