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Abstract. Support Vector Clustering (SVC) has become a significant
boundary-based clustering algorithm. In this paper we propose a novel SVC
algorithm named “Partitioning Clustering Based on Support Vector Ranking
(PC-SVR)”, which is aimed at improving the traditional SVC, which suffers the
drawback of high computational cost during the process of cluster partition.
PC-SVR is divided into two parts. For the first part, we sort the support vectors
(SVs) based on their geometrical properties in the feature space. Based on this,
the second part is to partition the samples by utilizing the clustering algorithm of
similarity segmentation based point sorting (CASS-PS) and thus produce the
clustering. Theoretically, PC-SVR inherits the advantages of both SVC and
CASS-PS while avoids the downsides of these two algorithms at the same time.
According to the experimental results, PC-SVR demonstrates good performance
in clustering, and it outperforms several existing approaches in terms of Rand
index, adjust Rand index, and accuracy index.

Keywords: Support vector clustering � Support vector ranking � Partitioning
clustering

1 Introduction

Data Clustering has been an important task in data mining, and existing clustering
algorithms can be classified into five categories [1]: partitioning methods [2–4], hier-
archical methods [2, 5–7], density-based methods [8–10], grid-based methods [11, 12],
and model-based methods [13, 14].

Among many clustering algorithms, support vector clustering (SVC) [15, 16] has
become a significant boundary-based clustering algorithm in several applications such
as community discovery, speech recognition and bioinformatics analysis [17]. SVC has
the following features: first, it can be applied to various shapes of the clusters; second,
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the number of clusters is not needed in advance; third, it can deal with structured data by
using kernel functions; fourth, it can reduce the impact of noise on the cluster partition.

However, there is still room for improvement for SVC. The algorithm is still
inadequate due to two bottlenecks: expensive computational cost and poor labeling
piece, and this degrades the popularity of SVC [17]. To address these limitations, some
work has been done: Ben-Hur et al. [15] improved the original algorithm and proposed
a method called support vector graph (SVG). The main idea of this method was that
support vectors (SVs) were used to construct the adjacency matrix and derive con-
nected component with an aim to reduce time complexity; Yang et al. [18] proposed
the proximity graph (PG), and its time complexity was reduced to OðN logNÞ or OðNÞ;
Lee et al. [19] devised gradient descent (GD) by looking for the stable equilibrium
point (SEP); Jung et al. [20] proposed the fast support vector clustering (FSVC), which
improved the speed of the algorithm as well as the quality of clustering; Sei-Hyung Lee
[21] designed a cone-based cluster partition method to avoid random operations, and it
was called Cone Cluster Labeling (CCL), which improved the quality of clustering but
increased operation cost; Convex decomposition based cluster labeling (CDCL) [22]
was proposed to improve both the efficiency and accuracy of clustering based on
convex decomposition; L-CRITICAL was a novel SVC cluster labeling algorithm, and
it solved the labeling phase of SVC within competitive processing time [23]; Proximity
Multi-sphere Support Vector Clustering (PMS-SVC) was developed based on the
multi-sphere approach to support vector data description [24]; Rough–Fuzzy Support
Vector Clustering (RFSVC) can obtain rough fuzzy clusters using the support vectors
as cluster representatives [25].

The clustering algorithm of similarity segmentation based point sorting (CASS-PS)
[26] has a faster speed in clustering. However, the similarity measure of the algorithm
is based on distance, which is likely to cause staggered sorting issue between different
cluster elements, and this will reduce the accuracy of clustering results.

In this paper, we propose an improved SVC algorithm called partitioning clustering
based on support vector ranking (PC-SVR). The algorithm’s crucial components are
(1) SV’s sorting based on their geometric properties in the feature space and (2) cluster
partition that uses the clustering algorithm of similarity segmentation based point
sorting (CASS-PS). The proposed algorithm guarantees the quality of the clustering
and improves the speed of clustering at the same time.

2 Partitioning Clustering Based on Support Vector Ranking

Our PC-SVR algorithm combines the first stage of SVC and CASS-PS, and the
algorithm is composed of two stages: first, sort the support vectors (SVs) into an array;
second, split the sorted array.

2.1 Support Vector Sorting

In the feature space, data are mapped to the minimal sphere. Assume this sphere is S,

and the center is a. According to Kðx; xÞ ¼ exp �q � x� xk k2
� �

¼ 1, we can get
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Kðx; xÞ ¼ \UðxÞ � UðxÞ[ ¼ UðxÞk k2¼ 1, which means all the data points are located
on the surface of the unit ball. Assume this ball is B, and the center of B is O. So, the
covering is the intersection, whose shape is like a cap. The center of this cap is denoted
as a0, as shown in Fig. 1. Since SVs are on the surface of S, they are also on the
intersection hyper line of S and B.U við Þ and U vj

� �
are SVs in the feature space, and h is

the angle between the support vectors and two sphere center. The transverse section of
the cap is illustrated in Fig. 2.

Given a dataset containing N data points xijxi�x; 1� i�Nf g, let V ¼ vi vijf
is a SV ; 1� i�NSVg. In this research, we will use the geometric properties of samples
in the feature space as follows [21]:

Lemma 1. \ðUðvioa0ÞÞ ¼ \ðUðvjoa0ÞÞ 8vi; vj 2 V

Lemma 2. 8x 2 X; v 2 V ;\ðUðvÞoUðxÞÞ\h , jjv� xjj\jjv� U�1ða0Þjj
Lemma 3. x 2 X; v 2 V ; jjv� xjj\jjv� U�1ða0Þjj , x; v belongs to the same cluster.

Fig. 1 Intersection between ball and sphere

Fig. 2 Transverse section of the cap
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The following corollary can be proven by the above three properties, as in [17]:

Corollary. In the feature space of Gaussian Kernel, SVs are collected in terms of
clusters on the intersection hyper line of S and B. This is illustrated in Fig. 3.

From the above properties, for any vi; vj 2 V , in the feature space, they have the
same angle as Oa0 in Fig. 1, and if the angle between the sample point and the SV is
less than h, the point and the SV belong to the same cluster. In the data space, the point
to which the distance from the SV is less than jjv� U�1ða0Þjj has the same cluster label
as the SV, and thus the computation of the feature space can be converted to the
computation of input space.

Therefore, we can use the angle between two SVs (vi and vj) and O to measure the
distance between two SVs. The relation between the angle and the Gaussian kernel
function is as follows: cosð\UðviÞOUðvjÞÞ ¼ \UðviÞ � UðvjÞ[ ¼ Kðvi � vjÞ. Namely,
the comparison of the distance of two SVs is transformed into the comparison of the
kernel function, and the greater the distance between the two SVs is, the larger the
angle is, and the smaller the kernel value is.

The similarity matrix for SVs is constructed according to the values of the kernel
function. Then, according to the matrix, SVs are sorted as follows: first, the two SVs
whose U við Þ, U vj

� �
have the minimum distance are selected as the head and tail of an

ordered array; Second, find the SV whose U vkð Þ has the minimum distance from the
head (or tail) of the sorted array as the head (or tail) of the array. Repeat this step until
all data points are stored in an array and we can get the sequence of SVs in the feature
space on the circumference, as shown in Fig. 4.

Fig. 3 The distribution of SVs in three clusters

Fig. 4 The Sequence of SVs
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2.2 Partition Clustering

This part mainly uses the CASS-PS algorithm to partition the cluster.
In the data space, we firstly calculate the distance between each sample point

(except for SVs) and each SV, and find the nearest SV. Then we insert the point into
the adjacent position of the array in which the SV is located. Repeat this process until
all the sample points are stored in the array. In order to observe the transformation of
the distance between adjacent elements more directly, we draw the distance curve
between the adjacent sample points according to the distance between elements. The
distance curve can show obvious changes in distance between adjacent elements, and
especially it has a great wave between adjacent sample points of SVs.

At the same time, we can use the wavelet filter function to reduce the impact of
noise points or isolated points, and thus we can find the best segmentation point more
accurately. Then we set up a threshold whose value can be set as the mean amplitude,
and we ignore the part below the threshold in order to simplify the determination of
split points. So the continuous curve is divided into several discontinuous curve seg-
ments. Furthermore, we find the position which has the maximum distance between
adjacent elements as the splitting point in each curve. Then we sort these splitting
points after finding the splitting points of all (the whole) curve, and the position which
has the maximum distance between adjacent splitting points is selected as the first
splitting place. According to this procedure, it can be decided that the next step is
re-segmentation or termination. After algorithm terminates, we output the number of
clusters.

2.3 The Implementation of PC-SVR Algorithm

In this research we mainly use the geometric properties of sample points in the feature
space and CASS-PS to improve the cluster partitioning, which is the second stage of
the SVC algorithm. In the feature space, SVs are collected based on the clusters on the
intersection hyper line of the minimal sphere and the unit ball. Sorting SVs is based on
the similarity between two SVs, which is based on the value of the kernel function.
Since SVs are already sorted, it is useful to avoid the limitation of the CASS-PS
algorithm, that is, the sample points of different clusters tend to overlap.

The detailed steps of our algorithm are finally given as follows:

(1) Given a sample set S ¼ xijxi�Xf g, its sample size is N, and set parameters q and
C. Initialize a one-dimensional array based on the sample size;

(2) Calculate the kernel matrix of the sample set;
(3) Calculate the radius R of the minimal sphere and SVs according to Lagrange

polynomial;
(4) Calculate the kernel matrix of SVs, and construct a similarity matrix of support

vectors;
(5) Sort SVs according to the similarity matrix and get a sorted array of SVs. At this

point, the first stage of the algorithm is completed;
(6) Calculate the distance from other sample points to all SVs, and find the closest SV

to the sample point to be sorted. Insert the sample point into the back of the SV;
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(7) Repeat Step 6, until all other sample points are completed with the interpolation,
and we get a new sample point array;

(8) Draw the curve of the distance between adjacent sample points. Apply the
wavelet filter function to the sample point array to reduce noise. Set a certain
threshold and retain the portion above the threshold as the split segment;

(9) Find the points that have the maximum distance (the peak of the distance curve)
in various segments, and sort these points. According to the number of clusters,
select the corresponding points as the splitting points to split the array of sample
points;

(10) Label cluster labels on the sample points.

3 Experiment Analysis

3.1 Evaluation Criteria of Experimental Results

In this paper, Rand index [27], Adjust Rand index [28] and Accuracy index [29] are
used to evaluate the clustering results.

The Rand index is an external evaluation metric and it evaluates the effectiveness of
clustering by comparing the actual results and the results obtained by the clustering
algorithms. Given a dataset that contains n elements and its known partition result P,
we run the algorithm to be evaluated to get another partition result Q. Suppose r is the
number of data which belong to the same cluster in P and Q, s is the number of data
which belong to different clusters in P and Q, t is the number of data belong to the same
cluster in P but belong to the different cluster in Q, and v is the number of data belong
to the same cluster in Q but belong to a different cluster in P. On the base of the above,
r and s can determine the similarity of clustering results, while t and v can describe the
inconsistency of the results. Rand index is given as follows:

RI ¼ rþ s
rþ sþ tþ v

ð1Þ

The values of Rand index range in [0, 1], and the greater the value of RI is, the
better the clustering results are.

The adjust Rand index will standardize the clustering results in addition to the
comparison of the known clustering results and the results obtained by an algorithm.
The formula is as follows:

s1 ¼
XKP

i¼1

C2
Ni
; s2 ¼

XKQ

j¼1

C2
Nj
; s3 ¼ 2s1s2

NðN � 1Þ ; ARI ¼

PKP

i¼1

PKQ

j¼1
C2
Nij

� s3

ðs1 þ s2Þ=2� s3
ð2Þ

In the above, P and Q represent the two clustering results of a sample set consisting
of n elements, and KP and KQ are the numbers of clusters in P and Q, respectively. Ni

and Nj represent the numbers of elements in clusters i and j in P and Q, respectively,
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and Nij represents the number of elements in both cluster i in P and cluster j in Q.
Adjust Rand index ranges in [-1, 1], and the greater the index value is, the more similar
the results of the two clustering results are. Adjust Rand index can also be used as a
method for determining whether the algorithm is applicable to certain datasets.

Accuracy is one of the most commonly used external evaluation indices. The
formula is as follows:

AC ¼
Pm

i¼1 ci
N

ð3Þ

In the above, m represents the number of clusters, and N represents the number of
elements in the sample set. The above formula is based on the principle of similarity
comparison between the correct results and the results obtained by the clustering
algorithm.

3.2 Experimental datasets

In this research, the experiments are carried out by both artificial data and real data. All
the datasets are described in Table 1. The two artificial datasets: Example 1 and
Example 2.

Example 1 is a set of two-dimensional datasets with the size of 150� 2. In order to
verify the feasibility of the algorithm, the dataset is relatively easy to separate.

Example 2 is a set of concentric ring datasets with the size of ::. This type of dataset
is difficult to cluster, and the purpose is to verify whether the algorithm can deal with
the linearly inseparable situations.

The four real datasets used in this research are taken from UCI [30], and they are
frequently used in clustering analysis: Iris dataset, Wine dataset, Wisconsin dataset and
Balance Scale dataset.

Table 1. Description of datasets

Dataset Dims Size Clusters

Example 1 2 150 3
Example 2 2 250 2
Iris 4 150 3
Wine 13 178 3
Wisconsin 9 683 2
Balance Scale 4 625 3
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3.3 Experimental Results and Analysis

(1) We make a comparison between the experimental results on two artificial datasets
based on the PC-SVR algorithm and the original clustering algorithm of similarity
segmentation based point sorting algorithm (CASS-PS). The two artificial datasets
are shown in Fig. 5.

As shown in Fig. 6, the clustering results of the two algorithms on Example 1 are
both satisfactory. But the PC-SVR algorithm is more accurate than the CASS-PS
algorithm, and it does not have wrong clustering points. Figure 6 shows that PC-SVR
which uses the sorting and clustering algorithm after sorting SVs makes the sorting
process more accurate, and it does not tend to assign the data points of the same cluster
to the wrong ones.

(a) Example 1                                                    (b) Example 2 
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Fig. 5 Two artificial datasets

(a) The clustering result for PC-SVR                  (b) The clustering result for CASS-PS
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Fig. 6 A comparison of Example 1 clustering effect
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Figure 7 shows the results on Example 2 dataset obtained by using the two
algorithms.

As shown in Fig. 7, PC-SVR inherits the advantages of SVC to deal with the linear
inseparable datasets when clustering, and it is more accurate than SVC. For this type of
datasets, the clustering result of CASS-PS algorithm is not satisfactory.

(2) The comparison of time cost between PC-SVR and SVC is presented in Table 2.

Table 2 presents the comparison between SVC and PC-SVR on the two artificial
datasets and four sets of classical data in terms of the running time. From this table, we
can see the efficiency of the PC-SVR algorithm has been greatly improved compared
with the original SVC algorithm.

(3) We use Rand Index to make a comparison of experimental results between the
PC-SVR algorithm and other four existing algorithms on three sets of real data-
sets. The other four clustering algorithms are Support Vector Clustering, Cluster
Algorithm of Similarity Segment based Point Sorting, Convex Decomposition
based Cluster Labeling and Cone Cluster Labeling. The above experimental
results about CDCL and CCL is from reference [22]. The results are shown in
Fig. 8.

(e) Final clustering result for PC-SVR                 (f) Final clustering result for CASS-PS
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Fig. 7 A comparison of clustering effect on Example 2

Table 2. Time comparison between SVC and PC-SVR (in second)

Datasets SVC PC-SVR

Example 1 215.0942 5.6316
Example 2 47.1435 9.3601
Iris 39.8895 4.9608
Wine 637.2953 5.6940
Balance scale 50.1387 20.787
Wisconsin 37.3594 18.326
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Figure 8 reports the results for the Rand Index on the three datasets with five
algorithms. We can see that PC-SVR performs the best on Iris dataset. Although does
not getting the highest Rand Index values on other two datasets, PC-SVR is only
3.46 % lower than CDCL (the best one on Wine dataset) and 12.15 % lower than CCL
(the best one on Wisconsin dataset).

In addition, in order to fully verify the clustering performance of the PC-SVR
algorithm, we use the other two indices of clustering results to evaluate and compare
the clustering performance of PC-SVR algorithm and the other four classical algo-
rithms which are K-means, Hierarchical Clustering, Support Vector Clustering and
Cluster Algorithm of Similarity Segment based Point Sorting on the four real datasets,
that is, Adjust Rand Index and Accuracy. The results are listed in Tables 3 and 4.

The above results show that the PC-SVR algorithm can ensure the quality of the
clustering and improve the speed of clustering, and the clustering performance is
excellent.

Fig. 8 A comparison of Rand Index for all five algorithms

Table 3. Ajust Rand Index

Dataset Iris Wine Balance scale Wisconsin

K-Means 0.7302 0.3711 0.1335 0.4914
HC 0.5621 −0.0054 0.0854 0.0073
SVC 0.00018143 0 0 0.0024
CASS-PS 0.5621 0.6569 0.131 0.0073
PC-SVR 0.941 0.6162 0.1298 0.5921
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4 Conclusions and Future Work

In this paper, the PC-SVR algorithm based on support vector sorting has been pro-
posed, and it is divided into two parts: support vector sorting and segmentation. In the
first part, we sort the SVs on the basis of their geometrical properties of the feature
space. In the second part, we partition the samples by using the point sorting-based
partition cluster algorithm and generate the clustering. Experimental results demon-
strate the effect of PC-SVR for improving the performance of SVC, and better clus-
tering performance has been achieved compared with existing approaches.

In the future work, we would explore the potential application fields of our
approach, for instance, in the field of bioinformatics and social media analysis.
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