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Abstract. Spectral clustering has recently become one of the most pop-
ular modern clustering algorithms for traditional data. However, the
application of this clustering method on geostatistical data produces spa-
tially scattered clusters, which is undesirable for many geoscience appli-
cations. In this work, we develop a spectral clustering method aimed
to discover spatially contiguous and meaningful clusters in multivariate
geostatistical data, in which spatial dependence plays an important role.
The proposed spectral clustering method relies on a similarity measure
built from a non-parametric kernel estimator of the multivariate spatial
dependence structure of the data, emphasizing the spatial correlation
among data locations. The capability of the proposed spectral clustering
method to provide spatially contiguous and meaningful clusters is illus-
trated using the European Geological Surveys Geochemical database.
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1 Introduction

In recent years, spectral clustering has become one of the most popular modern
clustering algorithms for classical data [11,19,22,23,27]. Spectral clustering is a
class of partitional clustering algorithms that relies on the eigendecomposition
of feature similarity matrices to partition the data points. Advantages of using
spectral clustering include its flexibility in terms of incorporating diverse types of
similarity measures, the superiority of its clustering solution compared to tradi-
tional clustering algorithms such as K-means algorithm, and its well-established
theoretical properties [7,17,20,21,31].

However, applied to geostatistical data, spectral clustering method tends
to produce spatially scattered clusters, which undesirable for many geoscience
applications. This clustering method can not produce spatially contiguous and
meaningful clusters because it makes the assumption that observations are inde-
pendent. This fundamental assumption, however, does not hold in the realm of
spatial data. Geostatistical data distinguish themselves from conventional data
in that they often show properties of spatial dependency and heterogeneity over
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the study domain. Observations located close to one another in the geographical
space might have similar characteristics. Furthermore, the mean, the variance,
and the spatial dependence structure can be different from one sub-domain to
another.

Existing clustering approaches which take into account the specificities of
geostatistical data can be classified into four groups: (1) non-spatial clustering
with geographical coordinates as additional variables, (2) non-spatial clustering
based on a spatial dissimilarity measure, (3) spatially constrained clustering, and
(4) model-based clustering. The first group incorporates the spatial information
by treating each observation as a point in a dimensional space formed by the
geographical space and the attribute space, for a non-spatial clustering method.
The second group uses existing non-spatial clustering methods by modifying the
dissimilarity measure between two observations to take explicitly into account
the spatial dependence [5,12,13,24]. The third group considers spatial contiguity
constraints (rather than spatial dissimilarities) in a clustering process [25,26].
The latest group is not model-free. It relies on the assumption that observations
are drawn from a particular distribution like a mixture of Gaussian or Markov
random fields [1-4,10,14].

In this work, we propose a spectral clustering method designed for multi-
variate geostatistical data, in which spatial dependence plays an important role.
The basic idea is to include the spatial information in the clustering procedure
through a non-parametric kernel estimator of the multivariate spatial depen-
dence structure of the data. This estimator is used to build a measure of sim-
ilarity between two data locations, emphasizing the spatial correlation among
data locations. The proposed clustering method is non-parametric, adapted to
irregularly spaced data, and can produce spatially contiguous clusters without
including any geometrical constraints. The proposed spectral clustering method
is illustrated using the European Geological Surveys Geochemical database. The
results derived from the proposed spectral clustering method are compared with
those provided by two baseline clustering methods: K-means clustering and tra-
ditional spectral clustering.

The rest of the paper is organized as follows. Section 2 describes the proposed
spectral clustering method through its basic ingredients. Section 3 illustrates
using the European Geological Surveys Geochemical database, the capability of
the proposed clustering method to providing spatially contiguous and meaningful
clusters. Section 4 outlines concluding remarks.

2 Method

We consider a set of p standardized variables of interest {Z1,. .., Z,} defined on
a continuous domain of interest G C R%(d > 1), and all measured at a set of
distinct locations {x1,...,x,}. The goal is to partition these data locations into
spatially contiguous and meaningful clusters so that data locations belonging to
the same cluster are more similar than those in different clusters. We describe in
this section the different ingredients required to implement the proposed spectral
clustering method.
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2.1 Similarity Measure

One of the key tasks in spectral clustering as well as in other clustering methods is
the choice of the similarity measure. The traditional spectral clustering usually
calculates the similarity using the well-known Gaussian kernel based on the
FEuclidean distance in the attribute space. However, in the geostatistical setting,
this type of similarity measure can not reflect the spatial dependence structure
of the data, even if geographical coordinates are also considered as attributes.
We propose a novel similarity measure that takes care of the spatial dependence
between observations.

A non-parametric kernel estimator of the multivariate spatial dependence
structure of the data described by the direct and cross variograms, at two locations
u € G and v € G is given by:
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where (7’7]) € {17 s ’p}Z; K¢ ((u7 V)? (xlvxl’)) = KE(”u - Xl”)KE(HV - Xl’||)7
with K.(-) a non-negative kernel function with constant bandwidth parameter
€ > 0; 1 denotes the indicator function.

Given the set of estimated direct and cross variograms {7;;(-,-)}} j=1» the
similarity between two sample locations x; and x¢ (¢,¢' = 1,...,n) is defined
by:
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WithD" = max; ;g1 ny2 2107 (Xe, X¢7)|. The resulting similarity matrix
at all data locations is denoted S = [s(x¢,x¢/)]; -

In Eq. (2), the term + D% j—17ij (x4, x¢r)| represents the dissimilarity (nor-
malized) between data locations x; and x;. Thus, the dissimilarity between two
data locations is defined as the sum (normalized) of absolute values of all direct
and cross variograms at these two data locations. Equation (2) well defines a

measure of similarity [28].

2.2 Similarity Graph

Spectral clustering requires that the data are represented in the form of an undi-
rected similarity graph § = (V, ), where V is the set of vertices and € is the set
of edges between pairs of vertices. We construct a graph G from the similarity
measure defined in Eq. (2), where the vertices of the graph represent the data
locations, and the edge weights represent similarities between data locations.
The similarity graph resulting from this construction is a full connected (com-
plete) graph. This construction is suited according to [19] since the similarity
measure defined in Eq. (2) itself already encodes local neighbourhoods (through
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the kernel function K.(-) in Eq. (1)). Moreover, this construction is coherent with
the Tobler’s first law of geography [29]: everything is related to everything else,
but near things are more related than distant things.

Given the similarity graph, the next step in the spectral clustering is the
computation of the graph Laplacian matrix. There are several versions of the
graph Laplacian matrix [19,20]. We use the normalized graph Laplacian matrix
defined as: L =D '/?2(D-S)D~Y/2 =1 - D~Y/28SD~'/2 where S is the affinity
(similarity) matrix between every pair of the data locations built from the simi-
larity measure defined in Eq. (2); D is a diagonal matrix whose elements are the
degrees of the nodes of the graph G and corresponding to dy = >, _; s(xs, X¢/);
I denotes the identity matrix.

2.3 Spectral Clustering Algorithm

By representing data locations as a similarity graph, the clustering problem is
equivalent to a graph partitioning problem, where we identify connected com-
ponents with clusters. For a given number of clusters ¢, spectral clustering algo-
rithm finds the top ¢ eigenvectors. These ¢ eigenvectors define a g-dimensional
projection of the data. Then, a standard clustering algorithm such as K-means is
applied to derive the final clusters of the data locations. The proposed spectral
clustering algorithm for multivariate geostatistical data performs the following
steps:

compute the similarity matrix of all data locations S;

compute the degree matrix D;

compute the graph Laplacian matrix D~1/28D~1/2;

compute the ¢ largest eigenvalues of D~1/2SD~1/2 and form the matrix F €
R"™ 4 whose columns are the associated ¢ first eigenvectors of D—1/2SD~1/2;
normalize the rows of F' to norm 1;

cluster the rows of F with the K-means algorithm into clusters C1,...,Cqy;
7. assign data location x; to the same cluster the row t of F' has been assigned.

=W

I

2.4 Hyper-parameters Selection

The proposed spectral clustering method relies on the kernel function K(-) used
in the estimation of the multivariate spatial dependence structure of the data
(Eq. (1)). The choice of the kernel function K(+) is less important than the choice
of its bandwidth parameter €. We opt for the Epanechnikov kernel whose support
is compact, showing optimality properties in density estimation [30]. To estimate
the spatial dependence structure of the data reliably, the bandwidth parameter e
is chosen by using an empirical rule of thumb in geostatistics [9, 15, 16]: € is chosen
so that the support of the kernel function K.(-) centered at each data location
contains at least 35 observations. Thus, for each data location its distance to the
35th neighbour is computed; then, the maximum of resulting distances is taken
as the value of the bandwidth parameter €.
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The optimal number of clusters is chosen so that it corresponds to the best
clustering identified in terms of an internal clustering validation measure. A
variety of internal cluster validation indexes has been proposed in the litera-
ture [8,28]. We choose the Calinski-Harabasz index [6] which is best suited for
K-means clustering solutions with squared Euclidean distances. Given various

number of clusters ¢ = 2,3, ..., the optimal number of clusters is the one that
maximizes the Calinski-Harabasz index:
B(q)/(g—1)
cn(g) = SOMI= L 0

W(q)/(n—q)’

where B(q) = >0 _ i ||ym — ¥|? is the overall between-cluster variance, and
Wi(g) =201 Yee, Iy — ¥ml|? is the overall within-cluster variance; y; € R
is the vector corresponding to the ¢-th row of the matrix F; y,,, = ﬁ ZteCm N

is the average of points in cluster C,,, and y = % Zle y¢ is the overall average;
Ny is the number of points in cluster C,,.

3 Application

The proposed spectral clustering method is applied to the European Geological
Surveys Geochemical database. The results provided by the proposed spectral
clustering method are compared with those produced by two baseline clustering
methods: K-means clustering and traditional spectral clustering.

3.1 Dataset

Data correspond to eight critical heavy metals in topsoils from the European
Geological Surveys Geochemical database (26 European countries) [18]. Vari-
ables are: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury
(Hg), nickel (Ni), lead (Pb), and zinc (Zn). On 1588 georeferenced available
data, 1498 observations have been used in this application because there are
some missing values for some variables. Prior to the clustering, all variables are
logit-transformed and standardized. A representation of logit-transformed and
standardized variables is given in Fig. 1. In the two baseline clustering methods,
geographical coordinates are considered as attributes.

3.2 Results

Figure 2 shows the results provided by the baseline clustering methods and the
proposed spectral clustering method, for different predefined number of clusters
(from 2 to 4). As one can see, the baseline clustering (non-spatial clustering)
methods fail to produce spatially contiguous clusters. The failure of these clus-
tering methods is not surprising because they do not distinguish between the
geographical space and the attribute space. It appears that the proposed spec-
tral clustering method can produce spatially contiguous clusters. Moreover, the
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Fig. 1. Logit-transformed and standardized variables for clustering purpose. (Color

figure online)
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proposed spectral clustering method can produce disconnected clusters of similar
data locations.

In the proposed spectral clustering method, the optimal number of clusters
through the Caliiski-Harabasz index defined in Eq. (3) corresponds to two as
shown in Fig. 3. Table 1 reports the means and standard deviations of the vari-
ables (Logit-transformed and standardized) corresponding to the two optimal
spatial clusters. There is a marked difference between the properties of samples
in each spatial cluster. It appears that spatial cluster 1 (green points in Fig. 2g)
is characterized by the lowest concentrations; whereas spatial cluster 2 shows
highest concentrations (red points in Fig. 2g). The group of lower values contains
494 observations located primarily in countries of Northern Europe (Denmark,
Norway, Sweden, Finland, Estonia, Latvia, and Lithuania). The group of high
values contains 1004 observations located in United Kingdom, Ireland, countries
of Western Europe, and countries of Southern Europe.

After the elaboration of a clustering, it is important to know the contribution
of each variable in the formation of the resulting clusters. By considering vari-
ables as predictors and cluster labels as the response, the random forest classifier
is used to provide the importance of variables as shown in Fig. 4. It appears that
the two most important variables are arsenic (As) and lead (Pb), with a relative
contribution of 19% and 18 % respectively. This result is explained by the fact
that the contrast between spatial clusters 1 and 2 is more pronounced for these
two variables compared to other variables as one can see in Table 1. Moreover,
a visual inspection of the variables arsenic (As) and lead (Pb) (Fig.1) shows
that the partition given by spatial clusters 1 and 2 (Fig. 2g) is coherent with the
spatial variation of these variables.

Calinski-Harabasz index
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1
/
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2 4 6 8 10 12 14

Number of clusters

Fig. 3. Proposed spectral clustering method: selection of the optimal number of clusters
through CH index.
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Fig. 4. Proposed spectral clustering method: contribution of each variable in the for-
mation of the two optimal spatial clusters based on the Gini importance measure of
the random forest classifier.

Table 1. Proposed spectral clustering method: means and standard deviations of the
variables (Logit-transformed and standardized) corresponding to the two optimal spa-
tial clusters.

Spatial cluster 1 (n; = 494) | Spatial cluster 2 (n2 = 1004)
Mean | Std. Mean | Std.

As [-0.77 |0.54 0.38 10.95

Cd -0.50 |0.79 0.25 |1.00

Cr [-0.49 |0.95 0.24 |0.93

Cu |-0.65 [0.94 0.32 |0.86

Hg |-0.60 |0.81 0.29 |0.95

Ni |-0.65 |0.77 0.32 0.94

Pb|-0.72 |0.91 0.36 |0.84

Zn |-0.62 | 0.88 0.31 |0.91

4 Conclusion

In this work, a spectral clustering method aimed to discover spatially contiguous
and meaningful clusters in multivariate geostatistical data has been developed.
The proposed spectral clustering method relies on a similarity measure built
from a non-parametric kernel estimator of the multivariate spatial dependence
structure of the data, thereby reinforcing the spatial contiguity of the result-
ing clusters. The proposed spectral clustering approach is non-parametric; there
is no distributional assumptions or spatial dependence structure assumptions.
It is adapted to irregularly sampled data and can produce spatially contiguous
and meaningful clusters without including any geometrical constraints. Applied
to the European Geological Surveys Geochemical database, the proposed
spectral clustering method highlights two spatially contiguous clusters with
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significant meaning. It is also able to produce disconnected clusters of simi-
lar data locations. The proposed spectral clustering method is computationally
intensive when dealing with large datasets. Indeed, the calculation of the simi-
larity matrix at all data locations is more complex than calculating the sum of
squared deviations. Future work includes the application of the proposed spectral
clustering method to other geostatistical databases.
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