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Abstract. Training a classifier with imbalanced dataset where there are more
data from the majority class than the minority class is a known problem in data
mining research community. The resultant classifier would become under-fitted
in recognizing test instances of minority class and over-fitted with over-
whelming mediocre samples from the majority class. Many existing techniques
have been tried, ranging from artificially boosting the amount of the minority
class training samples such as SMOTE, downsizing the volume of the majority
class samples, to modifying the classification induction algorithm in favour of
the minority class. However, finding the optimal ratio between the samples from
the two majority/minority class for building a classifier that has the best accu-
racy is tricky, due to the non-linear relationships between the attributes and the
class labels. Merely rebalancing the sample sizes of the two classes to exact
portions will often not produce the best result. Brute-force attempt to search for
the perfect combination of majority/minority class samples for the best classi-
fication result is NP-hard. In this paper, a unified preprocessing approach is
proposed, using stochastic swarm heuristics to cooperatively optimize the
mixtures from the two classes by progressively rebuilding the training dataset is
proposed. Our novel approach is shown to outperform the existing popular
methods.
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1 Introduction

Imbalance dataset is referred to the phenomenon where there are far more samples in
one class than in the other. Some data mining applications that would have to deal with
imbalance datasets are those typically would have to be trained with large amount of
common samples but with limited rare samples. They include big data analytics and
text mining [1], forecasting natural disasters [2], fraud detection in transactions [3],
target identification from satellite radar images [4], classifying biological anomalies [5]
as well as computer-assisted medical diagnosis and treatment [6], just to name a few.
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Imbalanced data classification has long been an important and challenging problem in
data mining and machine learning [7]. Conventional supervised learning algorithms by
greedy search are usually designed to embrace the imbalanced dataset without regards
to the class balance ratio by default. Most original classification model induction
algorithms were designed without the consideration of imbalance issue initially. Those
trained models suffer from overfitting from the sheer volume of majority training data;
the recognition power for identifying rare test samples is limited due to the lack of
sufficient training (known as underfitting) given few minority samples are available.
Additional performance metrics which are used to assess or judge whether a classifi-
cation model is incompetent owing to imbalance training go beyond just accuracy.
Some useful metrics which are based on the counts of true-positive, false-positive etc.
include G-mean [8], F1 measure [9], Kappa statistics [10], AUC/ROC [11], Matthews
correlation coefficient [12] and Balance error rate [13] that have been used in the
literature.

Pre-processing styled rebalancing schemes have been proposed in the past, mainly
in the aspects of artificially inflating the minority class data, resampling down the
volume of the majority class data, or a combination of the two. It was already shown
[10] that merely matching the quantities of the majority and minority data to equal,
does not yield the highest possible classification performance.

In this paper, an adaptive rebalancing model as a preprocessing tool is proposed, by
considering the drawbacks of the current methods for solving imbalanced classification
problem. What data mining users desire as the features of an ideal rebalancing tool, in
observation of the above-mentioned limitations are: high performance that is not only
in accuracy but in other reliability measures as well, free of parameter calibration, joint
rebalancing actions by increasing and decreasing the minority and majority samples
respectively, and be able to complete the dual actions till reaching the best possible
performance within a reasonable time.

Given a potentially very large number of instances in the original dataset, finding
the best ratio between two majority and minority classes of data is a challenging
combinational optimization problem. Without resorting to brute-force, swarm opti-
mization is applied on each aspect of rebalancing – one on searching for the appropriate
amount of majority instances, and the other one on estimating the best combo of
control parameters (the intensity and how far that the neighbors of the minority samples
are to be fabricated) with respect to enlarging the minority population size. Our pro-
posed rebalancing method couples these two optimizations as an unified iterative
approach which will progressively enhance the mixtures of the optimized data from the
two swarm optimizations by crossing over their optimized results generation after
generation until a good quality dataset is produced. This unified rebalancing approach
is called Adaptive Multi-Objective Swarm Crossover Optimization (AMSCO), within
which the optimization of majority instances is called Swarm Instance Selection (SIS),
the optimization of minority instances is called Optimized Synthetic Minority Over-
sampling Technique (OSMOTE). The overall design of AMSCO is shown in Fig. 1.

In this new approach, Particle Swarm Optimization (PSO) algorithm is chosen as the
core optimizer whose searching particles represent the solution candidates. The original
dataset, after it was loaded for the first time, will become the current dataset, and be
checked with respect to its quality by inferring a candidate classifier from it. Until the
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performance of the candidate classifier meets the expected requirement, the current
dataset will be subject to two parallel swarm optimizations for optimally increasing the
minority samples and decreasing the majority samples. The two swarms operate inde-
pendently because their candidate solutions are different in nature. Their outputs,
however, are crossed over by selectively merging instances from the most competent
optimized datasets into one that is framed by the size of the original dataset. The selected
dataset in turn becomes the current dataset when the optimization cycle iterates. The
dataset is checked by the criteria and passed to two swarm operations again, if it is still
not good enough. Decision tree is used as the classification algorithm here which works
like a wrapper approach in testing the goodness of the current dataset.

The advantages of AMSCO are: (1) progressively refining the dataset by rebal-
ancing the instances through swarm optimizations to its best; (2) the imbalanced dataset
becomes balanced in such a way that both accuracy and reliability are maximized;
(3) the size of the resultant balanced dataset is controlled so the original dataset size is
approximately preserved; (4) as a by-product, the base-learner used in the wrapper
approach is trained upon finding the well balanced dataset. The classifier trained by the
final dataset (which supposed to offer the best performance) can be instantly put into
use; (5) compared to the tightly coupled swarm optimization techniques and other
conventional rebalancing methods by linear search, AMSCO has superior in fast
computational speed, accuracy and reliability.

The remainder of this paper is structured as follows. Section 2 reviews popular
approaches that have been successfully employed in imbalanced dataset classification to
certain extent. In Sect. 3, we elaborate the design of AMSCO. The benchmark datasets,
experiment and its results are described in Sect. 4. Section 5 concludes this paper.

Fig. 1. Flow chart of AMSCO
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2 Related Works

Class rebalancing techniques can be summed up as two major categories. The first
group concerns about data level, which re-sampling the two classes samples [14]. The
second level pertains to alter the classification algorithms for imbalanced data classi-
fication. Researches proposed various resample techniques in data level. Random
over-sampling [15] and under-sampling [16] are the simplest method. The former
augments minority scale through copying its samples, and the latter randomly delete
majority class samples to realize a balance. Typical under-sampling and over-sampling
techniques may subside the disadvantage of information vacancy and over learning
[17] respectively. One-side selection [18] techniques categorized majority class sam-
ples and eventually find out the safety samples to fulfill the under-sampling. The most
popular sampling method is SMOTE (Synthetic Minority Oversampling Technique)
[19] that usually achieve effective performance. The principle is letting the algorithm
fabricate extra minority data into the dataset through observing and analyzing the
characteristics of minority class sample’ spatial structure. Assuming the oversampling
rate is N (Eq. (1) synthesizes N times new minority class samples) and each minority
class sample xi 2 Sminority. The other parameter k is used by the algorithm to examine
k neighbors of xi in minority class samples, then to randomly select xt from the
k neighbors using Eq. (1) to generate the synthetic data xnew;N :

xnew;N ¼ xi þ rand 0; 1½ � � xt � xið Þ ð1Þ

In Eq. (1) rand [0, 1] generates a random number between 0 and 1. N and
k influence SMOTE to generate a suitable number of characteristic minority class
samples. The second level of approaches solves the class imbalance problem during the
training stage. It contains ensemble based techniques [20] and cost-sensitive learning
approaches [21]. The basic idea of ensemble learning is that, a strong classifier will be
voted and integrated by a series of weak classifiers after several rounds of iteration. The
commonly used ensemble learning methods are bagging [22], boosting [23], and
random forest [24]. SMOTEBoost [25] approach combines Adaboosting and SMOTE,
and it offers high performances. Cost-sensitive learning assigns a different weight to
each part of confusion matrix by the cost matrix. In general, the cost of misclassified
minority class is the largest, thus in order to obtain a results with minimum cost, the
classifier will be bias to minority class. The distinguished cost-sensitive learning
algorithms are associated with boosting [26, 27] or Support Vector Machines
(SVM) [28] to tackle class imbalance problem.

3 Design of AMSCO

The proposed AMSCO uses mainly two swarm optimization processes that run inde-
pendently, for fixing the exceeding majority data instances and shortage of minority
data instances respectively. The overall idea of AMSCO is to smash up the original
dataset and to resemble it back again using only the qualified instances selected by the
two swarm optimization processes. This is done by first dividing the original dataset
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into two groups – one group contains instances which are purely of majority class and
the other group purely of minority class. Through the swarm search processes, the
instances are randomly encoded into search particles which represent some candidate
solutions, and the particles move iteratively from random positions towards some
global optimum. The instances being selected from the swarm processes are being
heuristically enhanced, leaving only some fittest ones at the end.

At the end of each iteration, the qualified instances which are represented by the
fittest particles so far are gathered in buffers, in preparation of packing them into a new
dataset by crossover operation. The new dataset after packed, will be taken as the
current dataset, and subject to the optimization in the new iteration. By this way, the
current dataset evolves in improving its quality, offering increasingly higher fitness
iteration after iteration. Eventually the most refined dataset is outputted as the best
dataset at the end of the whole preprocessing operation, by which the imbalance
problem is solved and the final dataset is ready to induce a classifier that will have the
best possible performance.

The intermediate dataset which is supposed to be the best thus far at each round of
optimization, is assembled from four possible datasets. The compositions of the
datasets are shown in Fig. 2.

Fig. 2. Components and data around the AMSCO
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The four possible datasets, which are candidates to be crossed over and packed into
a new generation of current dataset are the three combinations of optimized majority
dataset, optimized minority datasets, and the current dataset. From Fig. 2, they are
mixed and enumerated as follow: (1) New dataset 1 = New Majority class data (after
optimized by SIS on the majority instances) + Current Minority class data; (2) New
dataset 2 = New Majority class data (after optimized by SIS on the majority instan-
ces) + New Minority class data (after optimized by OSMOTE on minority instances);
(3) New dataset 3 = New Minority class data (after optimized by OSMOTE on
minority instances) + Current Minority class data; and, (4) New dataset 4 = Current
Majority class data + Current Minority class data.

The rationale behind crossing over different majority and minority portions of the
optimized data is hoping to generate the new dataset that may have the perfect
balance/ratio by fusing the best from the two optimized portions. Since the perfect ratio
between the majority and minority instances is not known in advance, and it is short of
a deterministic way (other rather brute-force) to compute the ratio, we resort to iterative
heuristics in summing up the best instances from both majority and minority classes
found so far for the improved version of dataset. It is worth noting a few remarks that:
(1) An ideal balanced dataset is required to have both portions of majority and minority
although the exact ratio is elusive; so in the four combos of new datasets, there must be
certain instances that come from majority and minority classes; (2) The swarm opti-
mization is purely probabilistic, there may be chances that both OSMOTE and SIS
yield no better quality instances (none or even negative improvement), so New dataset
4 is needed as a backup; (3) The terminal conditions are the result doesn’t change in the
past defined iterations (convergence);The length of new minority class samples cannot
too bigger than the new majority class samples (2 times are used in the experiment); or
it achieves the maximum iteration (4) The sizes of the optimized datasets do vary from
time to time; there are chances that they are shorter than the original dataset. When this
happens the full dataset of the highest fitness will fill in, followed by all of the second
best, and so forth until the new generation of current dataset matches the size of the
original dataset. This is to prevent the assembled dataset overly shrinking or enlarging
along the way. (5) OSMOTE and SIS are separate processes since the ways how the
instances are selected for reduction and replication are different, though they share the
same objectives and similar fitness evaluation functions.

OSMOTE and SIS which are the core of the proposed rebalancing model are based
on Swarm intelligence optimization algorithm [29] which iteratively evolves a solution
from randomly picked values to some global optimal result. Specifically, Particle
Swarm Optimization (PSO) algorithm [30] is used in OSMOTE and SIS whose search
agents imitate the flying patterns of birds. Assuming there is a population X = (X1, X2,
…, Xn) which is grouped by n particles in D dimensional search space, the ith particle in
this space is expressed as a vector Xi with D dimension, Xi = (xi1, xi2, …, xiD)

T, and the
position of the ith particle in the search space represents a potential solution. As the
objective function, the program can calculate the corresponding fitness of position Xi of
each particle, where the speed of the ith particle is Vi = (Vi1 ,Vi2, …, ViD)

T, the
extremum value of each agent is Pi = (Pi1, Pi2, …, PiD)

T and the extremum of the
population is Pg = (Pg1, Pg2, …, PgD)

T. In the process of iteration, the extremum value
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of each agent and the population will update their position and speed [31]. Equa-
tions (2) and (3) show the mathematical process as follows:

Vkþ 1
id ¼ x � Vk

id þ c1r1 Pk
id � Xk

id

� �þ c2r2 Pk
id � Xk

id

� � ð2Þ

Xkþ 1
id ¼ Xk

id þVkþ 1
id ð3Þ

In the Eq. (2), x is inertia weight; d = 1, 2, …, D; i = 1, 2, …, n; k is the current
iteration time; c1 and c2 are non-negative constants as the velocity factor, r1 and r2 are
random values between 0 to 1 and Vid is the particle speed.

Cooperation evolution draws thought from population coordination theory in the
ecology. It simulates the mutual influence and mutual restriction between various
populations in nature to strengthen performances of each population and global [32].
Generally, in multiple swarm collaboration algorithm, particles randomly be divided
into M sub-groups, Si, 1 � i � M, collaboration through the information interaction
between populations. There are three kinds of evaluation rules:

ER1 : Vi ¼ x � Vi þ c1r1 Ps
i � Xi

� �þ c2r2 Psg
i � Xið Þ ð4Þ

ER2 : Vi ¼ x � Vi þ c1r1 Ps
i � Xi

� �þ c2r2 Psg
i � Xið Þþ c3r3 Pg

i � Xið Þ ð5Þ

ER3 : Vi ¼ x � Vi þ c1r1 Ps
i � Xi

� �þ c2r2 Pg
i � Xið Þ ð6Þ

In Eqs. (4) to (6) Ps
i ;P

sg
i andPg

i are respectively stands for the best value of particle
Xi, the best fitness of particle Xi’s sub-group and the best fitness of all groups. Thus,
multiple swarms collaboration method founded on reducing a problem into several or
more sub-problems. The sub-groups demarcate and search the searching space in
parallel and though communicating and sharing the best information between each
sub-groups to find out the final global best solution for a short time. In the case of
AMSCO, two sub-groups are constructed, for cooperatively optimizing two classes of
data in OSMOTE and SIS, the best information are crossed over, until a final global
best solution is obtained as a well-balanced dataset. More information regarding
OSMOTE and SIS will be explained in the following sub-sections.

The fitness is defined as a product of accuracy and Kappa or Kappa statistics [33].
Kappa is chosen to estimate the credibility of a classification model. When a classifier
suffers from imbalanced dataset, it has a sign of high accuracy but a low value (zero or
even negative) of Kappa. Kappa is an efficient indicator to be fairly reflect the con-
sistency of test data and the dependability of the classification model, so as to inves-
tigate whether the performances fall into a secure area. There are six degrees of
interpretation for Kappa outcome ranging between −1 and 1 in mathematics [33].
Subzero part denotes that this model is worthless, and each of the other five levels is
segmented by a 0.2 interval. These areas respectively stand for the strength of agree-
ment in poor, slight, fair, moderate, substantial and almost prefect. The model typically
has some credibility when its Kappa value exceeds over 0.4 [10, 34], and the credibility
will increase with the improvement of Kappa statistics. For the fitness which is used to
represent the goodness of the classification model, a composite performance criterion
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called Reliable Accuracy (RA) is defined, where RA a Accuracy� Kappað Þ, of an
induced model. The fitness function therefore is the performance evaluation of a
decision tree, generated from a given dataset. Other classification algorithms could be
optionally used in lieu of decision tree, though it is used because of its popularity. The
fitness is RA that depends on the accuracy and Kappa which are defined as follow:

RA ¼ P2
o � PoPc

1� Pc
ð7Þ

Accuracy ¼ TPþ TN
PþN

ð8Þ

Kappa ¼ Po � Pc

1� Pc
ð9Þ

Po ¼ Accuracy ¼ TPþ TN
cþ þ c�

ð10Þ

Pc ¼ TPþFPð Þ � TPþFNð Þþ FN þ TNð Þ FPþ TNð Þ
cþ þ c�ð Þ2 ð10Þ

where TP, TN, FP, FN, C+ and C− are the counts of true-positive, true-negative,
false-positive, false-negative, instances of positive/majority class and instances of
negative/minority class respectively. Po is the measure of the percentage of agreement,
and Pc is the chance of agreement.

3.1 Optimized SMOTE for Over-Sampling Minority Instances

OSMOTE is extended from Synthetic Minority Oversampling Technique (SMOTE)
[19], which is one of the most popular methods to over-sample the minority instances
for rebalancing an imbalanced dataset. Its basic idea is to fabricate extra minority data
into the dataset by inserting synthetic samples along the line segments connecting any
or all of the k minority class nearest neighbors in the data space. In SMOTE, two
parameters are required and they need to be manually set. One is the over-sampling rate
of N which tells the algorithm to synthesize N times new minority class samples, e.g.
N = 2 means the minority class data are going to be doubled. The other parameter k is
used by the algorithm to inspect k nearest neighbours of each minority data to generate
the synthetic data.

This method can effectively create synthetic examples increasing the population of
minority instances, rather than by over-sampling with replacement. Depending upon
the extent of over-sampling required by N, certain neighbors from the k nearest
neighbors are chosen randomly. One obvious drawback is the lack of guideline rec-
ommending what the values of N 2 1. . .1½ � and k 2 1. . . Cþ andC�ð Þ½ � should be
used, for generating a rebalanced dataset that gives the highest classification perfor-
mance. In many cases, these two parameters are arbitrarily chosen; though the resultant
classification performance is improved, it is not maximized.
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In our OSMOTE approach, the two parameters of the system, N which indicates the
target amount of dataset after over-sampled, and k the range of reference neighbors for
duplicating the minority data vectors, are to be optimized using PSO. Each particle of
PSO swarm, p, is coded as a candidate solution with a pair of values within the ranges of
N and k. So p ¼ m; jh i; where m 2 1. . .1½ � and j 2 1. . . Cþ andC�ð Þ½ �: The fitness
function is the resultant decision tree built on a dataset after over-sampled by SMOTE
with N ¼ m and k ¼ j. The RA performance is treated as fitness in this case, for evalu-
ating the goodness of the chosen p such that fitness = RA = fitness_evaluation(DT(p)).

OSMOTE is aimed at improving both accuracy and Kappa where these two values
fluctuate dynamically during the search process. As such, it is a dynamic
multi-objective algorithm. Without considering complex situations like Pareto, this
dual objective algorithm actually just tries to maintain a certain high accuracy level
while maximizing the Kappa which is deemed more importantly as credibility to its
highest. Figure 3 shows a snapshot of the fluctuation patterns of accuracy and Kappa as
the optimization progresses. In general, accuracy and Kappa follow similar trends but
of different intensities in swinging ups and downs; and the overall trends are on the rise.
One can see that in this example, accuracy and Kappa have both reached a very high
value of approximately 1, at the 310th cycle of iteration. Since the two objectives are
not opposing each other, a special type of optimization called the non-inferior set
tactics [35] is adopted here and customized for this specific rebalancing task.

It first collects all the possible solutions of this multi-objective problem. These
solutions in non-inferior set are satisfied with several update criteria. Three update
criteria are used here regulating the OSMOTE for the particles evolution, optimization
and convergence.

(1) Both accuracy and Kappa of the new particle must be better than the existing one;
(2) Either one of the accuracy or Kappa of the new particle must be better than the

existing one, as well as the defined tolerance is larger than the absolute value of
difference of the other measures such as F1, ROC and BER;

(3) The current threshold value of Kappa of the new particle must be greater than the
older particle’s Kappa value.

If a new particle meets any of the above three criteria, it will replace the current one
into the next generation. Otherwise, this particle will follow its trajectory and move to a
neighbor position. This algorithm progressively lifts up Kappa through updating by the

Fig. 3. Snapshot of fluctuating values of accuracy and Kappa during OSMOTE of a imbalanced
dataset
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constraint conditions. At the start, the initial threshold of Kappa, kt, is set at 0.4 that is
the second bottom confidence level of Kappa. In the last phase of each iteration, the
average Kappa value in current non-inferior set will compare with the latest threshold
value, the threshold will increase further if the average value increases, and vice versa.
By doing so, the non-inferior region will progressively be reduced as the Kappa
threshold is lifting up. Figure 4 illustrates this concept; the shaded region is the search
space within which the particles of PSO move and scout for the highest values of
accuracy and Kappa. The search time is significantly reduced when the non-inferior
region (search space) is closing up by the variable, threshold Kappa. The ultimate
objective of SMOTE is to achieve finding the maximum value of the reliable accuracy
(RA) which is dependent both on Kappa and accuracy. It is noted that the constraints in
preparing the search over the current dataset are based on these conditions:
100�N � r� size majority data; Cþð Þ; and 2� k� size minority data; C�ð Þ where r is
the ratio of majority and minority classes in the original data.

The pseudo code of OSMOTE is listed in Algorithm 1.

Fig. 4. Illustration of non-inferior region in the search space
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3.2 Swarm Instance Selection (SIS) for Reducing Majority Instances

Along with OSMOTE that syntheses just the correct amount of minority data, Swarm
Instance Selection (SIS) is there for reducing majority instances to the appropriate
amount. The outputs of these optimizations which have been rebalanced at the best
efforts with respect to its majority/minority class, would be used as potential candidates
for restructuring a new output data in the crossover.

The SIS approach is an evolutionary version of under-sampling method [36] which
could effectively select the useful majority samples. It is known that there is no rigid
ratio or partitioning rule for labelling which instances are useful or otherwise. The
relations between different combinations of majority and minority class data with the
predicted class are non-linear. Therefore, a wrapper approach, using the classifier (DT
in our case) to tell which combinations of majority instances and minority instances can
find us the best combination which offers the highest classification performance from
the base learner.

Given the sheer volume of instance, brute-force is not feasible. That is the reason
why the majority data selection process is devised to be optimized by stochastic swarm
search. In SIS each PSO particles encodes a candidate solution as two parts, one of
which is a collection of instances randomly selected from the majority instances of the
current dataset (or original dataset if it is the first cycle). Figure 5 shows the random
selection concept. The other part of the particle is the whole of the minority group of
instances from the current (or original) dataset. Like chromosomes in genetic algo-
rithm, the particles will change in their collections towards a global best solution
represented by the maximum performance from the base learner.

The size of the PSO particle is Size pð Þ ¼ Random selection Datamaj
� �þDatamin:

The size of the swarm particle is also constrained by the minimum and maximum limits

Fig. 5. Majority instances are selected into
swarm particles in SIS

Fig. 6. Flow chart of Swarm Instance
Selection
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as follow: Min� r � Size Dataminð Þ; andMax\r � Size Datamaj
� �

; where r is the ratio
of the minority data over majority data of the current dataset. Figure 6 shows the
working procedure of Swarm Instance Selection approach.

In SIS, each randomly selected group from the majority class data will combine
with all of the minority class data to create a new candidate dataset, which will be used
to build a decision tree for performance testing. As SIS runs, the particles will even-
tually choose the best combination of majority class samples through the comparison of
each particle’s fitness over some time. Compared with other under-sampling methods,
SIS incurs certain overhead in computational speed. However, SIS often can achieve a
better solution (globally best) at the end, without using the naïve brute-force.

Both OSMOTE and SIS have the advantage of staying focused in tackling the
imbalance problem with respect to one of their classes, through cooperation
hand-in-hand via the crossover operation at the end of each iteration. Their respective
class data are rebalanced while considering the best sampled data that were generated
thus far. Conventional over-sampling or under-sampling techniques however focus
only on their individual class size, neglecting about how the other class size and
instances within might have been evolved or improved. The conventional
over-sampling and under-sampling are conducted independently without regards of
their counter-part. This is the prime advantage and unique difference between AMSCO
and the traditional rebalancing algorithms. The pseudo codes of SIS is listed as follow:

4 Experiment

Eight rebalancing methods are used in the experimentation to evaluate the performance
of the proposed methods in this paper versus the traditional ones. The first to compare
is basic classification algorithm, decision tree, without any pre-processing of rebal-
ancing, three methods are commonly used in algorithm level to the bias of classifier,
and the other four are sampling methods which include the traditional over-sampling
methods with the three swarm rebalancing algorithms.
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• Decision Tree (DT): one of the most popular classifiers. It often shows good per-
formance in imbalanced dataset classification. Many papers in the workshop of
ICML 2013 investigated C4.5 with imbalanced dataset and it effectively increases
the performance of sampling techniques from imbalanced dataset [37].

• Bagging: Bagging method + DT.
• AdaBoost.M1 (AdaBM1): AdaBM1 + DT.AdaBoost.M1 stands for Discrete Ada-

Boost [38], which is classical boosting method.
• Cost-sensitive (CTS): CTS + DT. The values of cost matrix respectively matching

to the elements of confusion matrix, TP and TN’s cost are zero. FN denotes the
misclassified minority class samples; its cost is 10. Misclassified majority class
samples are FP which cost half of FN.

• Synthetic Minority Over-Sampling Technique (SMOTE): SMOTE + DT. The two
parameters are manually selected taking the default values. The average value of its
ten times operation is used as the final performance.

• Swarm Instance Selection algorithm (SIS): SIS + DT.
• Optimized SMOTE Algorithm (OSMOTE): OSMOTE + DT.
• SIS-OSMOTE: SIS-OSMOTE + DT. The two optimization processes are placed

sequentially. OSMOTE will load the new dataset from SIS as the Kappa of SIS is
greater than 0.3 or it reaches the maximum iteration. In this case, SIS and OSMOTE
work independently without crossing over their optimized datasets.

• AMSCO: Adaptive Multi-Objective Swarm Crossover Optimization. Its logics are
in Fig. 1.

For fair comparison, the maximum iteration of bagging, AdaBM1, SIS, OSMOTE,
SIS-OSMOTE and AMSCO is standardized at 100. The amount of base classifiers of
Bagging, the population of SIS, OSMOTE, SIS-OSMOTE and AMSCO is 20. Strat-
ified 10-cross-validation is used as the verification and testing method. There are 30
imbalanced datasets being used for benchmarking as they are selected from 100 binary
class imbalanced dataset from KEEL [39]. These datasets have low Kappa statistics.
Table 1 lists the characteristics of these datasets, Maj and Min respectively denotes
majority class and minority class, Imb.r is the imbalance ratio (majority/minority). The
imbalance ratio ranges from 1.87 to 129.44. The simulation software is programmed by
Matlab 2014b. The simulation computing platform is CPU: E5-1650 V2 @ 3.50 GHz,
RAM: 32 GB.

For easy comparison, the average performance values across the 30 benchmark
datasets are charted as histograms featuring vis-a-vis all the rebalancing algorithms, the
swarm and the traditional. The results unanimously point to an observation that
AMSCO has an edge over the performances outperforming the rest of them. Figure 7
shows the overall performance comparison chart.

Observing from the results, it is apparent that, there are rooms for improvement for
decision tree that classifies the original datasets without any rebalancing, both the
accuracy and Kappa are the lowest among all. In the four typical methods, SMOTE
performs relatively well. In the ensemble learning, AdaBM1 is better than Bagging.
Cost-sensitive learning is more effective than Bagging. Our individual class opti-
mization methods using Swarms are much better than the traditional methods,
demonstrating the usefulness of swarm optimization, except for SIS is worse than
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SMOTE. However, OSMOTE which focuses on minority data is more effective than
SIS. Compared to the conventional methods, AMSCO’s Kappa values stay above 0.9
in 26 out of 30 cases, achieve perfect performance at 1 in 3 out of 30 cases. AMSCO is
relatively more stable too comparing to other methods. The average values of accuracy
and Kappa are the highest, and the standard deviations of the two performance mea-
sures are the lowest for AMSCO.

5 Conclusions

This paper proposed AMSCO algorithm to tackle class imbalanced dataset in sampling
two classes in parallel. AMSCO aims at rebalancing the dataset, improving classifi-
cation model’s credibility and preserving the high accuracy, within reasonable time.

Table 1. Characteristic of datasets used in experiment

Dataset #Samples Maj Min Imb.r Dataset #Samples Maj Min Imb.r

abalone-17_vs_7-8-9-10 2338 2280 58 39.31 poker-8-9_vs_6 1485 1460 25 58.4

abalone-19_vs_10-11-12-13 1622 1590 32 49.69 poker-8_vs_6 1477 1460 17 85.88

abalone-20_vs_8-9-10 1916 1890 26 72.69 poker-9_vs_7 244 236 8 29.5

abalone-21_vs_8 581 567 14 40.5 vehicle1 846 629 217 2.9

abalone19 4174 4142 32 129.44 vehicle3 846 634 212 2.99

abalone9-18 731 689 42 16.4 winequality-red-3_vs_5 691 681 10 68.1

cleveland-0_vs_4 177 164 13 12.62 winequality-red-8_vs_x6-7 855 837 18 46.5

flare-F 1066 1023 43 23.79 winequality-red-8_vs_6 656 638 18 35.44

glass-0-1-4-6_vs_2 205 188 17 11.06 winequality-white-3-9_vs_5 1482 1457 25 58.28

glass-0-1-5_vs_2 172 155 17 9.12 winequality-white-9_vs_4 168 163 5 32.6

glass-0-1-6_vs_2 192 175 17 10.29 yeast-0-3-5-9_vs_7-8 506 456 50 9.12

glass2 214 197 17 11.59 yeast-0-5-6-7-9_vs_4 528 477 51 9.35

haberman 306 225 81 2.78 yeast-1-2-8-9_vs_7 947 917 30 30.57

pima 768 500 268 1.87 yeast-1-4-5-8_vs_7 693 663 30 22.1

poker-8-9_vs_5 2075 2050 25 82 yeast-1_vs_7 459 429 30 14.3

Fig. 7. Overall comparison of the rebalancing methods in terms of Kappa, accuracy and
Reliable Accuracy
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It implements two swarm optimization algorithm to progressively find out the best
performance for a specific classifier. One optimization process called OSMOTE is
extended from SMOTE. It focuses on inflating the minority data to an appropriate
amount. The other is called SIS which selects only the useful instances for filtering the
majority data. Experimental results show that, AMSCO can significantly outperform a
number of rebalancing methods in different categories. In our future works, AMSCO
will be extended to solving imbalanced problem on multi-class classification.
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