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Abstract. Smartphones are widely available commercial devices and
using them as a basis to creates the possibility of future widespread
usage and potential applications. This paper utilizes the embedded sen-
sors in a smartphone to recognise a number of common human actions
and postures. We group the range of all possible human actions into five
basic action classes, namely walking, standing, sitting, crouching and
lying. We also consider the postures pertaining to three of the above
actions, including standing postures (backward, straight, forward and
bend), sitting postures (lean, upright, slouch and rest) and lying postures
(back, side and stomach) . Training data was collected through a num-
ber of people performing a sequence of these actions and postures with
a smartphone in their shirt pockets. We analysed and compared three
classification algorithms, namely k Nearest Neighbour (kNN), Decision
Tree Learning (DTL) and Linear Discriminant Analysis (LDA) in terms
of classification accuracy and efficiency (training time as well as classifi-
cation time). kNN performed the best overall compared to the other two
and is believed to be the most appropriate classification algorithm to use
for this task. The developed system is in the form of an Android app.
Our system can real-time accesses the motion data from the three sen-
sors and on-line classifies a particular action or posture using the kNN
algorithm. It successfully recognizes the specified actions and postures
with very high precision and recall values of generally above 96 %.

1 Introduction

Today, smartphones have become a natural part of our daily life; we rely on
it more than ever. Its functionalities are diverse. Yet, its full potential is to be
unleashed; one of these is the power of its in-built sensors. Figure 1 illustrates
several of the many embedded sensors commonly found in modern smartphones.
These sensors include the accelerometer, gyroscope and magnetometer, all of
which are commonly found in modern COTS (Commercial off-the-shelf) smart-
phones. Besides smartphones, sensors (and in particular, motion sensors) play an
important role in the design of many “smart” products. Though they have vari-
ous applications such as security and games, there are also perhaps less obvious
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Fig. 1. Embedded sensors in a smartphone

ones such as human activity recognition by detecting changes in movement of dif-
ferent human body parts. Smartphones are a widely available commercial device
and using it as a basis for human activity recognition creates the possibility of
widespread usage and potential applications. This can also allow for large-scale
data mining and significantly accelerate research in the fields of behavioural and
social sciences.

Prior research has already been devoted to determining the effectiveness of
sensors in the field of activity recognition. One of the first work in this area,
Bao and Intille [4], investigated the performance of recognition algorithms using
five accelerometers attached around the body, achieving a high overall accuracy
rate of 84 %. Further research has expanded on this field of research, adding in
different methods of data collection (varying the number and types of sensors
used as well as their position on the body), different models for data classification
as well as different lists of activities to cover.

To date, these efforts cover a wide range of scenarios in which such a sys-
tem may be used. For example, Kwapisz et al. [13] explore this in an outdoor
environment with common actions that reflect different changes in body move-
ment and posture, whilst Hung et al. [10] focus on recognising social actions at
informal gatherings. Ermes et al. [6] take an interesting approach to this area
by classifying a wide range of actions related to sports, including rowing, run-
ning, football and cycling. Some works are more focused on drawing conclusions
regarding human behaviour. The work by Hung et al. [9] is one example of this.
They use a worn accelerometer to track body movement with the aim of detect-
ing conversing groups in a dense social setting, and from this, analyse social
behaviour in these groups, such as dominance, leadership and cohesion.

However, much less work has focused on targeting this research to practical
everyday situations. For example, Yang et al. [25] required the sensors to be
distributed all around the body, and also require them to be strictly oriented
in their proper positions in order for accuracy to not be compromised. It is
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clearly impractical for such a system to be incorporated for use in our everyday
activities. If such a system were designed for widespread or commercial purposes,
the more important criteria would include availability, accessibility, flexibility
and ease of use.

Therefore, this paper extends beyond prior work by simplifying the activity
recognition process in order for this field of research to be practical for everyday
applications. We aim to accomplish the task of activity recognition whilst relying
on widely available non-research based devices with minimal intrusion to our
everyday activities, yet maintain an acceptable level of classification accuracy
and efficiency. Hence, the smartphone stands out as being the most appropriate
for this task. This goal has been investigated with much success by Kwapisz
et al. [13], where they also used a smartphone in activity recognition. However,
they only accessed the accelerometer, and only explored a few outdoor motion-
based activities. In this paper, we develop an Android system that can accurately
and efficiently recognize basic human actions and postures using a few embedded
sensors in a smart-phone, including accelerometer, gyroscope and magnetometer.
We intend to use more of the smartphone’s sensors, and explore a wider coverage
of possible human daily actions. Our main contributions are summarized as the
following:

– We address a real-time human activity recognition (HAR) problem using a
COTS smartphone. Our approach is light-weight, low-cost, and unobtrusive in
the sense that only a smartphone is put in the pocket. Our proposed approach
relaxes the requirement that people need to wear multiple devices (e.g., sen-
sors or transceivers) for daily activity recognition.

– We compare a series of classification methods including k Nearest Neighbors,
Decision Tree and LDA in terms of recognizing accuracy and computation
efficiency, which paves a way to deploy the machine learning technique for a
practical, daily using and less computation-demanding human activity recog-
nition.

– We conduct extensive experiments to validate our proposed approach. The
experimental results demonstrate our system can achieves up to 100 % accu-
racy in real-world environments. In particular, we implement the system in
an Android smartphone and release the APK (android application package)
file and the Demo video, making an important step forward for a real-time,
practical HAR system.

The rest of the paper is organized as follows. In Sect. 2, we illustrate our HAR
system in terms of hardware and activity list. We describe our proposed approach
in Sect. 3. In Sects. 4 and 5, we report the experimental results. We overview the
related work in Sect. 6 and wrap up the paper in Sect. 7 with conclusion and
some future research discussions.
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2 System Overview

This section provides an outline of our proposed system. We first give a brief
overview of the embedded smartphone sensors, then define an appropriate sce-
nario in which the activities list for this system is devised.

2.1 Built-In Sensors

The sensors used in this paper include the accelerometer, the gyroscope and the
magnetometer. These are commonly found in almost all modern smartphones,
and provide a decent baseline for distinguishing between actions. An Android
phone will be used as supplier of the required sensors because it is very popular,
open-source, widely available and most importantly, easily accessible. Unlike
many prior work, our system does not require any separate sensors, thus there
is less freedom in deciding the location to attach the sensor. In an attempt to
keep our work practical, we only consider realistic and common places to carry
a smartphone. Some of these include pockets (shirt, front or rear pants), carry
bag, cases attached around the waist or simply in the hand. Weighing up the
commonness of each of these together with their perceivable effectiveness at being
used in the process of action recognition, it is believed that shirt pockets is the
best option for this system; it is a reasonably common place for a smartphone
and this location is very effective at differentiating almost all postures since it
can easily detect changes and movements in the upper body. Hence, shirt pockets
will be the chosen placement of the smartphone in our work.

Fig. 2. List of actions and postures to be recognized
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2.2 Defining Activity List

Prior efforts have investigated numerous activities in many different scenarios.
In this paper, the aim is not to improve the existing models or methods, but
rather to move this research area towards a more practical focus. Thus, whereas
past works defined a list of related activities primarily suited for the research
purpose, our system attempts to cover the range of possible actions one may be
performing. We first consider all the possible states the human body may be in,
and then define the five following basic actions that can cover all these states:

Walk: Body in motion
Stand: Stationary vertical position with 180◦ straight knees
Sit: Stationary vertical position with 90◦ bent knees
Crouch: Stationary vertical position with knees bent less than 90◦

Lie: Stationary horizontal position

Although these actions may have clear precise definitions in a normal every-
day context, here we loosen the definition slightly in order for each action to act
as a class and encompass many more similar actions providing that the above
definition is satisfied (for example, under the above definition, a squat would
also be considered as a crouch). This eliminates the need to specify unnecessar-
ily many actions, yet allow for coverage of the all the possible human actions.

Given a particular action class, it is possible to separate the encompassed
states into what we define as posture. In this context, postures are simply states
that are variations of the same action. In this paper, we consider the postures
for standing, sitting and lying.

Standing postures considered include:

Backward: Standing position with backwards lean
Straight: Straight standing position
Forward: Standing position with forwards lean
Bend: Standing position with body bent forwards to about 90◦

Sitting postures considered in this paper include:

Lean: Sitting position with backwards lean
Upright: Upright sitting position
Slouch: Sitting position with forward slouch
Rest: Sitting position with forward lean to rest on some surface

Lying postures considered in this paper include:

Back: Lying position with chest facing upwards
Side: Lying position with chest perpendicular to bed
Stomach: Lying position with chest facing downwards
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Given any one posture, a person can also perform a range of activities. For
example, a leaning posture whilst sitting may include activities such as watching,
reading, and many others. However, preliminary testing indicated that distin-
guishing activities with the same posture was very hard to achieve given the
setup of our system (with only one sensor at chest position). Thus, we will only
consider recognizing the different actions and postures. Figure 2 illustrates the
set of defined actions and postures that are to be trained for use with the system.

3 Methodology

3.1 Collection of Training Data

An intermediate version of the final system was developed to perform the training
data collection. This intermediate system involves setting up the sensors outlined
in Sect. 2.1, and then periodically accessing these sensors and writing the sensor
data to a CSV file (Fig. 3).

To collect the required training data, a number of people were asked to
perform a sequence of actions and postures specified in Sect. 2.2. They had the
training system installed onto an Android smartphone and this was placed in
their shirt pockets.

We treat each data point as an instantaneous reading from each of the three
sensors in all three x-, y-, z-dimensions; this gives a 9-dimensional data point.
For each of the specified actions and postures, we collected almost 1000 data
points each or in some cases, a sufficient number for that particular action to be

Fig. 3. Sensors readings for each of the basic actions
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distinguished. The sensor readings of these actions do differ in one or more of
the 9-dimensions based on our pilot experiments, supporting our assumption.

3.2 Classification Algorithms

This paper explores three well-known classification algorithms, namely k-Nearest
Neighbor, Decision Tree Learning and Linear Discriminant Analysis.

k Nearest Neighbour. k Nearest Neighbour (kNN) is a non-parametric clas-
sification algorithm, and one of the simplest to implement. It assigns the output
class as the majority vote of k of its neighbours. The neighbours can be com-
puted through a variety of distance functions; the one used for this paper is
euclidean distance. Given a set of training sensor data and a testing sensor data,
the action label is estimated from the training samples whose observation sensor
reading has the minimal distance when compared with the testing observation.
Assuming we have a training dataset T = {(s1, y1), (s2, y2), ..., (sN , yN )} with N
samples, where si ∈ R

D is the sensor readings, yi ∈ l = {l1, ..., lJ} is the corre-
sponding action label. Then, given a distance measuring method and a testing
sensor readings o, we can search its k nearest neighbors, represented by Nk(o).
Finally, the testing data is classified by a majority vote of its neighbors, being
assigned to a most-common location label y∗ among its k nearest neighbors:

y∗ = arg max
lj

∑

si∈Nk(o)

I(yi = lj) (1)

where i = 1, 2, ..., N ; j = 1, 2, ..., J ; I is an indicator function that equals to 1 if
yi = lj , otherwise 0. In the case of tied votes, we choose the nearest neighbor
among the k nearest neighbors to break the tie when using an even k value.

Decision Tree Learning. Decision Tree Learning (DTL) is a very popular
classification algorithm based on inductive inference. A decision tree or a clas-
sification tree is a tree in which each internal (non-leaf) node is labeled with an
input feature. The arcs coming from a node labeled with a feature are labeled
with each of the possible values of the feature. Each leaf of the tree is labeled
with a class or a probability distribution over the classes. A decision tree is built
using features of the training data. New instances are classified by traversing the
tree from root node to a leaf (where each node represents one feature). However,
this paper aims to accurately distinguish multiple activities, which substantially
is a supervised learning problem with several outputs to predict. When there
is no correlation between the outputs, a very simple way to solve this kind of
problem is to build J independent models, i.e. one for each output, and then
to use those models to independently predict each one of the J outputs. How-
ever, because it is likely that the output values related to the same input are
themselves correlated, an often better way is to build a single model capable
of predicting simultaneously all J outputs. First, it requires lower training time
since only a single estimator is built. Second, the generalization accuracy of the
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resulting estimator may often be increased. With regard to decision trees, we
adopt this strategy to support multi-output problems.

Linear Discriminant Analysis. Linear Discriminant Analysis (LDA) is
another classification method based on features. The idea is to find linear com-
binations of features of the training data that produces an optimal separation
of the classes. It is most commonly used as dimensionality reduction technique
in the pre-processing step for classification applications. The goal is to project
a dataset onto a lower-dimensional space with good class-separability in order
avoid over-fitting (i.e., curse of dimensionality) and also reduce computational
costs. This gives a lower dimensionality, yet retain the important information
that is used to distinguish between the data.

4 Evaluation

4.1 Comparison of Different Methods

These three algorithms were analyzed in terms implementation, accuracy of clas-
sification and efficiency of the algorithm (i.e., time of model training and testing).
This was accomplished in MATLAB.

Fig. 4. Comparison of different classi-
fication algorithms

Fig. 5. Comparison of the average clas-
sification time

Figure 4 demonstrates overall performance comparison of each algorithm
using the training data collected in each of the four detection modes. kNN
appears to give the best overall performance compared to DTL and LDA. DTL
has lower accuracy and higher training and classification time (in all four detec-
tion modes) compared to kNN, thus is concluded to be inferior to kNN in all
aspects (Fig. 5). Comparing with kNN, LDA has slightly lower accuracy but a
considerably lower classification time and hence, may be useful for speeding up
the classification. However, classification time was not perceived to be causing
any performance issues in this system. Therefore, kNN is the best option of the
three (Fig. 6).
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Fig. 6. Comparison of the average training time

Fig. 7. Effect of varying k on classification accuracy

4.2 Optimal Selection of Parameters

From Sect. 3.2, it was decided to use kNN for the classification process in the
final system. The main parameter, k (i.e., number of neighbours to use), can
significantly affect the accuracy of the prediction, and hence, will require some
analysis to determine the optimal value for our paper. This was achieved with
MATLAB using 10-fold cross-validation. The parameter, k, was varied from
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1–500, and the prediction accuracy was recorded for each of these values. Among
four detection modes, there exhibits a clear trend that accuracy decreases as the
value of k increases, with the maximum accuracy achieved at k = 1 (Fig. 7).

This is quite an important observation. The fact that all cases show the
same trend and that the optimal value of k is always 1 suggests that this may
be a recurring feature for our system (providing that the data continues to be
generated in the same way, thus maintaining approximately constant size and
noise). Although this is not sufficient evidence to draw a definitive conclusion,
it can nevertheless still form a basis for further exploration. The implication of
this observation is that expansions can be made to our system and/or the data
sets without the need to re-calculate the optimal value for k.

4.3 Development of Real-Time HAR System

The final stage of the system involved integrating the material in the previous
sections and completing the development of the system.

Figure 8 presents the system in its completed state1. Every second, the system
retrieves the sensor readings and using kNN on the stored training data, it
predicts the action performed, and automatically updates the word and renders
the image as well as output the appropriate sound corresponding to that action.
The implementation of the classification algorithm is sourced from a modified
version [15] of the open-source library, WEKA.

Fig. 8. Developed system as Android app

A setting menu was added to enable the user to change the detection mode,
mute sound, and/or switch to training mode. The first was accomplished by
replacing the current training data set with the new training data set from mem-
ory. The last option simply brings the APP to the intermediate state developed
in Sect. 3.1 and is used to obtain further training data.
1 Our android APP is available for download at: https://drive.google.com/file/d/

0Bwk YqDcv7VsaEZySXoyN2ttM2c/view?usp=sharing.

https://drive.google.com/file/d/0Bwk_YqDcv7VsaEZySXoyN2ttM2c/view?usp=sharing
https://drive.google.com/file/d/0Bwk_YqDcv7VsaEZySXoyN2ttM2c/view?usp=sharing
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5 In-situ Experiments

With a completed system, we performed numerous tests, similar to the process
in which the training data was collected, except that we are now interested in
the output action of the system. We evaluated the system’s performance in each
of the detection modes using the precision and recall metric. The results of this
analysis are shown in Tables 1, 2, 3 and 4.

Table 1. Basic actions

Predicted Recall (%)

Walk Stand Sit Crouch Lie

Actual Walk 307 36 5 1 0 87.97

Stand 15 326 6 0 0 93.95

Sit 3 2 342 0 0 98.56

Crouch 0 0 0 346 0 100.00

Lie 0 0 0 1 349 99.71

Precision (%) 94.46 89.56 96.88 99.43 100.00

Table 2. Standing postures

Predicted Recall (%)

Backward Straight Forward Bend

Actual Backward 223 1 0 0 99.55

Straight 2 221 0 0 99.10

Forward 0 0 223 0 100.00

Bend 0 0 0 224 100.00

Precision (%) 99.11 99.55 100.00 100.00

Overall, the prediction and recall values for all the models are very high,
indicating that the system is able to accurately recognize the specified actions
and postures with minimal error. Of the four detection modes, the basic actions
category appeared to be the least accurate, with some slight confusion between
the similar actions of walking, standing and sitting. Nevertheless, the achieved
accuracy is acceptable for most applications2.

2 Video demo of our system available at:http://cs.adelaide.edu.au/∼wenjie/HRAphone
.mp4.

http://cs.adelaide.edu.au/~wenjie/HRAphone.mp4
http://cs.adelaide.edu.au/~wenjie/HRAphone.mp4
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Table 3. Sitting postures

Predicted Recall (%)

Lean Upright Slouch Rest

Actual Lean 399 0 0 0 100.00

Upright 0 399 0 0 100.00

Slouch 0 4 394 0 98.99

Rest 0 0 0 395 100.00

Precision (%) 100.00 99.01 100.00 100.00

Table 4. Lying postures

Predicted Recall (%)

Back Side Stomach

Actual Back 220 0 0 100.00

Side 0 222 0 100.00

Stomach 0 1 223 99.55

Precision (%) 100.00 99.55 100.00

6 Related Work

The goal of activity recognition is to detect human physical activities from the
data collected through various sensors. There are generally three main research
directions: (i) attaching multiple extra sensors and RFID tags on human body,
(ii) deploying sensors or trans-receivers in the environment and people do not
have to carry them, and (iii) utilizing a COTS smart-phone that almost everyone
has without add extra cost and location constraints.

6.1 Wearable Sensors Based HAR

Wearable sensors such as accelerometers and gyroscopes are commonly used for
recognizing activities [4,12]. For example, the authors in [11] design a network
of three-axis accelerometers distributed over a user’s body. Activities can then
be inferred by learning information provided by accelerometers about the ori-
entation and movement of the corresponding body parts. Bao and Intille [4],
investigated the performance of recognition algorithms using five accelerome-
ters attached around the body, achieving a high overall accuracy rate of 84 %.
Apart from sensors, RFID has been increasingly explored in HAR systems.
Some research efforts propose to realize human activity recognition by combin-
ing RFID passive tags with traditional sensors (e.g., accelerometers) [5,17,23].
Other efforts dedicate to exploit the potential of using “pure” RFID techniques
for activity recognition [16,26]. For example, Wang et al. [24] use RFID radio
patterns to extract both spatial and temporal features, which are in turn used to
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characterize various activities. Asadzadeh et al. [3] propose to recognize gesture
with passive tags by combining with multiple subtags to tackle uncertainty of
the RFID readings. However, all of these efforts usually require people to carry
the sensors or tags, even RFID readers (e.g., wearing a bracelet). In summary,
wearable sensor based approaches have obvious disadvantages including discom-
fort of wires attached to the body as well as the irritability that comes from
wearing sensors for a long duration.

6.2 Environmental Sensors Based HAR

As a result, some research efforts of exploring environmental sensor based HAR
(also called Device-free HAR) have emerged recently [19,20]. Such approaches
exploit radio transmitters installed in environment, and people are free from car-
rying any receiver or transmitter. Most device-free approaches concentrate on ana-
lyzing and learning distribution of received signal strength or radio links. For exam-
ple, Ichnaea [21] realizes the device-free human motion tracking by exploring sev-
eral installed wireless networks, in which it first uses statistical anomaly detection
methods to achieve its detection capability and then employs an anomaly scores-
based particle filter model and a human motion model to track a single entity in
the monitored area. Zhang et al. [29] develop a tag-free human sensing approach
using RFID tag array. More recently, the authors of [8] and [22] propose device-free
activity recognition approaches using sensor arrays. RF-Care [27,28] proposes to
recognize human falls and activities in a device-free manner based on a passive
RFID array. WiVi [1,2] uses ISAR technique to track the RF beam, enabling a
through-wall human posture recognition. Though promising, such HAR systems
however require extra hardwares and also put a strict constraint to human mobil-
ities (i.e., being limited to the area that environmental sensor are deployed).

6.3 Smartphone Based HAR

Recently, smartphone-based HAR systems are also very popular due to its low-
cost and being less intrusive [6,10,14,18]. These methods aim to utilize the
accelerometers and gyroscopes embedded in smarphones to recognize human
activities [13]. The HAR system present in this paper belongs to such technique
category. Comparing to other two techniques, smartphone-based approach has
two advantages: (i) it does not need more hardware hence without adding any
financial burden; (ii) it substantially relaxes the requirement of human motion
areas, unlike the environmental sensor based systems that assume the target
user always locates in a specific area; and (iii) human daily activity contexts
recognized by a smartphone can be much easier to be integrated into mod-
ern advanced IoT (Internet of Things) infrastructures considering the built-in
Internet-connectivity, computation and storage capabilities in smartphones.

Until today, many smartphone-based attempts have been exploited. For exam-
ple, Kwapisz et al. [13] introduce a system that uses phone-based accelerometers to
perform activity recognition, which first collects labeled accelerometer data from
twenty-nine users and then uses the resulting training data to induce a predictive



Recognizing Daily Living Activity Using Embedded Sensors in Smartphones 263

model for recognition. While Hung et al. [10] propose to adopt the accelerometer
to automatically recognized socially relevant actions, including in speaking, step-
ping, drinking and laughing. Henpraserttae et al. [7] proposed a method (using
a transformation matrix to project sensor data) that allows data collected from
different positions around the body to rectify into one universal coordinate sys-
tem. Ermes et al. [6] take an interesting approach to this area by classifying a wide
range of actions related to sports, including rowing, running, football and cycling.
Some researchers also aim to mine useful social behaviors such as Hung et al. [9]
use a worn accelerometer to track body movement for detecting conversing groups
in a dense social setting, and from this, further analyzing social behavior in these
groups, including dominance, leadership and cohesion.

However, much less work has focused on targeting this research to practical
everyday situations. It is clearly impractical for such a system to be incorporated
for use in our everyday activities. If such a system were designed for widespread
or commercial purposes, the more important criteria would include availability,
accessibility, flexibility and ease of use. Therefore, our system extends beyond
prior work by simplifying the activity recognition process in order for this field
of research to be practical for everyday applications. We aim to accomplish
the task of activity recognition whilst relying on widely available non-research
based devices with minimal intrusion to our everyday activities, yet maintain an
acceptable level of classification accuracy and efficiency.

7 Conclusion

In this paper, we have demonstrated the possibility of using sensors embedded
in smartphones to accurately perform the task of action recognition. We defined
the actions and postures to cover the range of possible states the human body
may be in, and have differentiated between these with very high precision and
recall values using k Nearest Neighbour as the classification algorithm.

Our approach towards practicability has proven feasible in this paper. The
fact that we can now obtain action and posture data without any human effort
can allow for large-scale (and possibly more accurate) data collection. This can
open up a number of possibilities and applications, including human activity
monitoring (for health and/or research purposes) as well as enhanced features
for leisurely apps such as games involving body part movements and automatic
action identification systems to be incorporated into social networking apps.

Yet, there is still much room for improvement. One limitation of this system
has a requirement that the phone must be placed in the shirt pocket. This is
clearly impractical in widespread usage since different people may carry their
phone in different ways, which may be a worthwhile exploration to our system.

Another area to improve upon is to devise a method to recognize activities
associated with each posture. As mentioned earlier, this is very difficult (per-
haps even impossible) given the current setup. This is because given the same
posture, activities mainly differ in arm movements; this cannot be detected with
simply a sensor on the chest. One possibility may be to access additional sen-
sors in the smartphone such as sound or light, to provide more information in
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classifying certain activities. Overall, the ways to extend this system is vast, yet
the potential applications are even greater.
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