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Abstract. The last years have seen a steep rise in data generation world-
wide, with the development and widespread adoption of several software
projects targeting the Big Data paradigm. Many companies currently
engage in Big Data analytics as part of their core business activities,
nonetheless there are no tools or techniques to support the design of the
underlying infrastructure configuration backing such systems. In particu-
lar, the focus in this paper is set on Cloud deployed clusters, which repre-
sent a cost-effective alternative to on premises installations. We propose
a novel tool implementing a battery of optimization and prediction tech-
niques integrated so as to efficiently assess several alternative resource
configurations, in order to determine the minimum cost cluster deploy-
ment satisfying Quality of Service constraints. Further, the experimental
campaign conducted on real systems shows the validity and relevance of
the proposed method.
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1 Introduction

Nowadays, the Big Data adoption has moved from experimental projects to
mission-critical enterprise-wide deployments, providing new insights, competitive
advantage, and business innovation [20]. IDC estimates that the Big Data market
grew from $3.2 billion in 2010 to $16.9 billion in 2015 with a compound annual
growth rate of 39.4%, about seven times the one of the overall ICT market [5].
From the technological perspective, the MapReduce programming model is one
of the most widely used solutions to support Big Data applications [25]. Its
open source implementation, Apache Hadoop, is able to manage large datasets
over either commodity clusters or high performance distributed topologies [40].
MapReduce has attracted the interest of both industry and academia, as it
overtakes the scalability level that can be achieved by traditional data warehouse
and business intelligence technologies [25].
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However, the adoption of Hadoop and other Big Data technologies is complex.
The deployment and setup of an implementation is time-consuming, expensive,
and resource-intensive. Companies need an easy button to accelerate the deploy-
ment of Big Data analytics [18]. The pay-per-use approach and the almost infi-
nite capacity of Cloud infrastructures can be used efficiently in supporting data
intensive computations. Many Cloud providers already include in their offering
MapReduce based platforms, among which Microsoft HDInsight [8] or Amazon
Elastic MapReduce [2]. IDC estimates that, by 2020, nearly 40% of Big Data
analyses will be supported by public Clouds [5], while Hadoop touched half of
the world data last year [22].

In the very beginning, MapReduce jobs were meant to run on dedicated
clusters to support batch analyses via a FIFO scheduler [32,33]. Nevertheless,
MapReduce applications have evolved and, nowadays, they entail also interactive
queries, submitted by different users and performed on shared clusters, possibly
with some guarantees on their execution time [42,43]. In such systems, capacity
allocation becomes one of the most important aspects. Determining the optimal
number of nodes in a cluster shared among multiple users performing heteroge-
neous tasks is an important and difficult problem [37]. In this context, one of
the main challenges [37,43] is that the execution time of a MapReduce job is
generally unknown in advance.

Our focus in this paper is to provide a software tool able to support sys-
tem administrators and operators in the capacity planning process of shared
Hadoop 2.x Cloud clusters supporting both batch and interactive applications
with deadline guarantees. Having such information available at design-time
enables operators to make more informed decisions about the technology to use
and to fully exploit the potential offered by the Cloud infrastructure. We formu-
late the capacity planning problem by means of a mathematical model, with the
aim of minimizing the cost of Cloud resources. The problem considers multiple
VM types as candidates to support the execution of Hadoop applications from
multiple user classes. Through a search space exploration, our approach opti-
mizes the configuration of a shared cluster in terms of VM type and instances
number considering specific Cloud provider pricing models (namely, reserved and
spot instances [1]).

Our work is one of the first contributions facing the problem of optimal sizing
of Hadoop 2.x Cloud systems adopting the Capacity Scheduler [6]. We demon-
strate the effectiveness of our approach by considering Hive queries [4] and the
TPC-DS industry benchmark for business intelligence and data warehouses [9]
as reference application. Amazon EC2 and the CINECA Italian supercomputing
center have been considered as target deployments.

This paper is organized as follows. Section 2 presents in detail the problem
addressed in the paper. In Sect. 3 we focus on the formulation of the optimization
problem and on the design-time exploration algorithm to solve it implemented
by our D-SPACE4Cloud tool. In Sect. 4 we evaluate the effectiveness of our opti-
mization method. Finally, in Sect. 5 we compare our work with other proposals
available in the literature and draw the conclusions in Sect. 6.
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2 Problem Statement

In this section we aim at introducing some important details of the problem
addressed in this work. We envision the following scenario, wherein a company
needs to set up a cluster to carry out efficiently a set of interactive Big Data
queries. A Hadoop 2.x cluster featuring the YARN Capacity Scheduler and run-
ning on a public Cloud IaaS is considered a fitting technological solution for the
requirements of the company.

In particular, the cluster must support the parallel execution of Big Data
applications in the form of Hadoop jobs or Hive/Pig queries. Different classes
C = {i | i = 1, . . . , n} gather applications that show a similar behavior. The
cluster composition and size, in terms of type and number of VMs, must be
decided in such a way that, for every application class i, Hi jobs are guaranteed
to execute concurrently and complete before a prearranged deadline Di.

Moreover, YARN is configured in a way that all available cores can be dynam-
ically assigned to either Map or Reduce tasks. Finally, in order to limit the risk
of data corruption and according to the practices suggested by major Cloud ven-
dors [2,8], the datasets reside on an external storage infrastructure [3,7] acces-
sible at quasi-constant time.

As, in general, IaaS providers feature a limited, but possibly large, catalog
of VM configurations V = {j | j = 1, . . . , m} that differ in capacity (CPU speed,
number of cores, available memory, etc.) and cost, making the right design-
time decision poses a challenge that can lead to important savings throughout
the cluster life-cycle. We denote with τi the VM type j used to support jobs
of class i and with νi the number of VMs of such a kind allocated to class i.
In this scenario, we consider a pricing model derived from Amazon EC2 [1].
The provider offers: (1) reserved VMs, for which it adopts a one-time payment
policy that grants access to a certain number of them for the contract duration;
and (2) spot VMs, for which customers bid and compete for unused datacenter
capacity, yielding very competitive hourly fees. In order to obtain the most cost-
effective configuration, we rely on reserved VMs for the bulk of computational
needs and complement them with spot VMs. In the following, Ri is the number
of reserved VMs assigned to class i, whilst si is the number of spot VMs. Let
στi be the unit cost for spot VMs of type τi, whilst πτi is the effective hourly
cost for one reserved VM, i.e., it is the unit upfront payment normalized over the
contract duration. Overall, the cluster hourly renting out costs can be calculated
as follows:

cost =
∑

i∈C
(στisi + πτiRi) (1)

Let νi = Ri + si: as the reliability of spot VMs depends on market fluc-
tuations, to keep a high Quality of Service (QoS) the number of spot VMs is
bounded not to be greater than a fraction ηi of νi for each class i.

Reducing the operating costs of the cluster by using efficiently the leased
virtual resources is in the interest of the company. This translates into a Resource
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Fig. 1. Reference system

Provisioning problem where the renting out costs must be minimized subject to
the fulfillment of QoS requirements, namely Hi per-class concurrency level given
certain deadlines Di. In the following we assume that the system supports Hi

users for each class and that users work interactively with the system and run
another job after a think time exponentially distributed with mean Zi, i.e., the
system is represented as a closed model [24]. In order to rigorously model and
solve this problem, it is crucial to predict with fair confidence the execution times
of each application class under different conditions: level of concurrency, cluster
size, and composition. Following the approach presented in [37], it is possible to
derive from Hadoop logs a job profile, i.e., a concise behavior characterization
for each class. Following the notation brought forth in [27,37], given a certain
VM of type j, the job profile Pij for application class i aggregates the following
information: (1) nM

i and nR
i , respectively the total number of Map and Reduce

tasks per job; (2) Mmax
ij , Rmax

ij , Smax
1,ij , and Smax

typ,ij , the maximum duration of a
single Map, Reduce, and Shuffle task (notice that the first Shuffle wave of a given
job is distinguished from all the subsequent ones); (3) Mavg

ij , Ravg
ij , and Savg

typ,ij ,
i.e., the average duration of Map, Reduce, and Shuffle tasks, respectively. Given
the amount and type of resources allocated, the concurrency level, and the job
profile, the estimated execution time can generically be expressed as in (2):

Ti = T (Pi,τi , νi; Hi, Zi) , ∀i ∈ C. (2)

What is worthwhile to note is that the previous formula represents a general
relation describing either closed form results based on bounds, as those presented
in [27], or the average execution times derived via simulation, the approach
adopted in this paper. Since the execution of jobs on a suboptimal VM type
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might give rise to performance disruptions, it is critical to avoid assigning tasks
belonging to class i to the wrong VM type j �= τi. Indeed, YARN allows for
specifying Node Labels and partitioning nodes in the cluster according to these
labels, then it is possible to enforce this separation. Our configuration statically
splits different VM types with this mechanism and adopts within each partition
either a further static separation in classes or a work conserving scheduling mode,
where idle resources can be assigned to jobs requiring the same VM type. The
assumption on the scheduling policy governing the exploitation of idle resources
is not critical: it only affects the interpretation of results, where the former case
leads to sharp predictions, while in the latter the outcomes of the optimization
algorithm are upper bounds, with possible performance improvements due to a
better cluster utilization. Equations (2) can be used to formulate the deadline
constraints as:

Ti ≤ Di, ∀i ∈ C. (3)

In light of the above, we can say that the ultimate goal of the proposed
approach is to determine the optimal VM type selection τi and number and
pricing models of VMs νi = Ri + si for each class i such that the sum of costs is
minimized, while the deadlines and concurrency levels are met.

Table 1. Model parameters

Parameter Definition

C Set of application classes

V Set of VM types

Hi Number of concurrent users for class i

Zi Class i think time [ms]

Di Deadline associated to applications of class i [ms]

ηi Maximum percentage of spot VMs allowed to class i

σj Unit hourly cost for spot VMs of type j [e /h]

πj Effective hourly price for reserved VMs of type j [e /h]

Pij Job profile of class i with respect to VM type j

The reader is referred to Fig. 1 for a graphical overview of the main elements
of the considered resource provisioning problem. Furthermore, in Table 1 a com-
plete list of the parameters used in the models presented in the next sections is
reported, whilst Table 2 summarizes the decision variables.

3 Problem Formulation and Solution

In the following we present the optimization model and techniques exploited
by the D-SPACE4Cloud tool in order to determine the optimal VM mix given
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Table 2. Decision variables

Variable Definition

νi Number of VMs assigned for the execution of applications
from class i

Ri Number of reserved VMs booked for the execution of
applications from class i

si Number of spot VMs assigned for the execution of
applications from class i

xij Binary variable equal to 1 if class i is hosted on VM type j

the profiles characterizing the applications under study and the possible Cloud
providers to host the virtual cluster. Further, we describe the heuristic algorithm
adopted to efficiently tackle the resource provisioning problem by exploiting the
presented models.

3.1 Optimization Model

Basic building blocks for this tool are the models of the system under study.
First of all, we need a quick, although rough, method to estimate completion
times and operational costs: to this end, we exploit a mathematical program-
ming formulation based on jobs execution time bounds (see [27]). In this way,
it is possible to swiftly explore several possible configurations and point out the
most cost-effective among the feasible ones. Afterwards, the required resource
configuration can be fine-tuned using more accurate, even if more time con-
suming and computationally demanding, queueing network (QN) simulations,
reaching a precise prediction of the expected response time.

According to the previous considerations, the first step in the optimization
procedure consists in determining the most cost-effective resource type, based
on their price and the expected performance. This will be done by exploiting a
set of logical variables xij : we will enforce that only xi,τi = 1, thus determining
the optimal VM type τi for application class i. We address this issue proposing
the following mathematical programming formulation:

min
x,ν,s,R

∑

i∈C
(στisi + πτiRi) (P1a)

subject to:
∑

j∈V
xij = 1, ∀i ∈ C (P1b)

Pi,τi =
∑

j∈V
Pijxij , ∀i ∈ C (P1c)

στi =
∑

j∈V
σjxij , ∀i ∈ C (P1d)
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πτi =
∑

j∈V
πjxij , ∀i ∈ C (P1e)

xij ∈ {0, 1} , ∀i ∈ C,∀j ∈ V (P1f)

(ν, s,R) ∈ arg min
∑

i∈C
(στisi + πτiRi) (P1g)

subject to:

si ≤ ηi

1 − ηi
Ri, ∀i ∈ C (P1h)

νi = Ri + si, ∀i ∈ C (P1i)
T (Pi,τi , νi; Hi, Zi) ≤ Di, ∀i ∈ C (P1j)

νi ∈ N, ∀i ∈ C (P1k)
Ri ∈ N, ∀i ∈ C (P1l)
si ∈ N, ∀i ∈ C (P1m)

Problem (P1) is a bilevel resource allocation problem where the outer objec-
tive function (P1a) considers running costs. The first set of constraints, (P1b),
associates each class i with only one VM type j, hence the following constraints,
ranging from (P1c) to (P1e), pick the values for the inner problem parameters.

The inner objective function (P1g) has the same expression as (P1a), but
in this case the prices στi and πτi are fixed, as they have been chosen at the
upper level. The following constraints, (P1h), enforce that spot instances do not
exceed a fraction ηi of the total assigned VMs and constraints (P1i) add all
the VMs available for class i, irrespective of the pricing model. Further, con-
straints (P1j) mandate to respect the deadlines Di. In the end, all the remaining
decision variables are taken from the natural numbers set, according to their
interpretation.

The presented formulation of Problem (P1) is particularly difficult to tackle,
as it is a mixed integer nonlinear programming (MINLP) problem depending
on T . According to the literature about complexity theory [17], integer program-
ming problems belong to the NP-hard class, hence the same applies to (P1).
However, since there is no constraint linking variables belonging to different
application classes, we can split this general formulation into several smaller
and independent problems, one per class i. As it will be discussed in the fol-
lowing section, we evaluated the average job completion time T by considering
bounds and relying on QN models simulation.

3.2 Solution Technique

The aim of this section is to provide a brief description of the optimization
approach embedded in D-SPACE4Cloud. The tool implements an optimization
mechanism that efficiently explores the space of possible configurations.

Figure 2 depicts the main elements of the D-SPACE4Cloud architecture that
come into play in the optimization scenario. The tool takes as input a description
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of the considered problem, consisting in a set of applications, a set of suitable
VMs for each application along with the respective job profiles for each machine,
and QoS constraints expressed in terms of deadlines Di for each considered appli-
cation. Specifically, all these parameters are collected in a JSON file provided as
input to the tool. The Initial Solution Builder generates a starting solution for
the problem using a MINLP formulation where the time expression T appearing
in constraint (P1j) is a convex function: then the inner level of (P1) is a convex
nonlinear problem and we exploit the Karush-Kuhn-Tucker conditions to speed
up the solution process. For more details the reader is referred to [27]. It must
be highlighted, at this point, that the quality of the returned solution can still
be improved: this because the MINLP relies on an approximate representation
of the Application-Cluster liaison. For this reason, a QN model is exploited to
get a more accurate execution time assessment. This model allows to estimate
MapReduce jobs execution time with an average error around 14% with respect
to real systems. The increased accuracy leaves room for further cost reduction;
however, since QNs simulation is time consuming, the space of possible cluster
configurations has to be explored in the most efficient way, avoiding to evaluate
unpromising configurations.

In the light of such considerations, a heuristic approach has been adopted and
a component called Parallel Local Search Optimizer has been devised. Internally,
it implements a parallel hill climbing (HC) technique to optimize the number
of replicas of the assigned resource for each application; the goal is to find the
minimum number of resources to fulfill the QoS requirements. This procedure is
applied independently, and in parallel, on all application classes and terminates
when a further reduction in the number of replicas would lead to an infeasible
solution. As soon as all the classes reach convergence, it is possible to retrieve
from the D-SPACE4Cloud tool a JSON file listing the results of the overall
optimization procedure.

For the sake of clarity, HC is a local-search-based procedure that operates
on the current solution performing a change, a so-called move, in the structure
of the solution in such a way that the newly generated solution could possibly
show an improved objective value. If the move is successful it is applied again
on the new solution and the process is repeated until no further improvement is
possible. The HC algorithm stops when a local optimum is found; however, if the
objective to optimize is convex, HC is able to find the global optimum. This is
the case of the considered cost function (1), which is linear in the number of VMs
in the cluster, since VM prices are fixed at the first level. Hence, every feasible
instance of the inner problem can be heuristically solved to optimality through
HC. The initial solution S, obtained from the MINLP solution, is evaluated using
the QN model and each one of its parts is optimized separately and in parallel.
If the partial solution Si is infeasible the size of its personal cluster is increased
by one unit until it becomes feasible. Otherwise, the procedure attempts to
decrease the cost function by reducing the cluster size. One-VM moves might
seem problematic, but, given the quite accurate initial solution, the tool only
needs to explore a small neighborhood of possible configurations. Finally, it is
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Fig. 2. D-SPACE4Cloud architecture

worth pointing out that every time the total number of machines in a cluster
is incremented or decremented the best mix of pricing models (i.e., Ri, si) is
computed so as to minimize the configuration cost.

4 Experimental Analysis

In this section we show the results of several experiments performed to vali-
date the proposed approach. All these experiments have been performed on two
Ubuntu 14.04 VMs hosted on an Intel Xeon E5530 2.40 GHz equipped server.
The first VM ran D-SPACE4Cloud and the MINLP solver which was used to
generate an initial solution for the optimization problem presented in Sect. 3.1
(see [27] for further details). The second one, instead, ran JMT 0.9.3 [13], a QN
simulator.

4.1 Experimental Setup and Design of Experiments

In order to obtain job profiles, we devised a set of five SQL queries denoted with
R1–5 (see [16]). We then generated synthetic data compliant with the specifica-
tions of the industry standard benchmark TPC-DS [9] and executed the queries
on Apache Hive [4]. Notice that we generated data at several scale factors rang-
ing from 250 GB to 1 TB. Since profiles collect statistical information about jobs,
we repeated the profiling runs at least twenty times per query. Properly parsing
the logs allows to extract all the parameters composing every query profile, for
example average and maximum task execution times, number of tasks, etc. Pro-
filing has been performed on Amazon EC2, by considering m4.xlarge instances,
and on PICO1, the Big Data cluster offered by CINECA, the Italian supercom-
puting center. The cluster rented on EC2 was composed of 30 computational

1 http://www.hpc.cineca.it/hardware/pico.

http://www.hpc.cineca.it/hardware/pico
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nodes, for a total of 120 vCPUs hosting 240 containers, whilst on PICO we used
up to 120 cores configured to host one container per core. In the first case every
container had 2 GB RAM and in the second 6 GB. Along with profiles, we also
collected lists of task execution times to feed into the replayer in JMT service
centers. In the end, we determined query profiles for different VM types.

4.2 Queueing Network Validation

This section shows results validating the accuracy of the underlying QN model.
Table 3 reports the average percentage error ϑ obtained by comparing the queries
execution time extracted from logs, T , with the ones evaluated from QN simu-
lation, denoted with τ : ϑ = τ−T

T . Among these experiments, we considered both
single user scenarios, repeatedly running the same query on a dedicated cluster
with Zi = 10 s, and multiple users scenarios. In the worst case, the relative error
can reach up to 32.97%, which is perfectly in line with the expected accuracy in
the performance prediction field [24], while the average relative error is 14.13%
overall.

Table 3. Queueing network model validation

Query Hi #Cores Dataset [GB] #Maps #Reducers T [ms] τ [ms] ϑ [%]

R1 1 240 250 500 1 55410 50753.34 −8.40

R2 1 240 250 65 5 36881 27495.31 −25.45

R3 1 240 250 750 1 76806 77260.03 0.60

R4 1 240 250 524 384 92197 78573.96 −14.72

R1 1 60 500 287 300 378127 411940.93 8.94

R3 1 100 500 757 793 401827 524759.36 30.59

R3 1 120 750 1148 1009 661214 759230.77 14.82

R4 1 60 750 868 910 808490 844700.85 4.48

R3 1 80 1000 1560 1009 1019973 1053829.78 −1.00

R5 1 80 1000 64 68 39206 36598.32 −6.65

R1 3 20 250 144 151 1002160 1038951.05 3.67

R1 5 20 250 144 151 1736949 1215490.20 −30.02

R2 3 20 250 4 4 95403 112050.45 17.45

R2 5 20 250 4 4 145646 97619.46 −32.97

R1 5 40 250 144 151 636694 660241.29 3.70

R2 3 40 250 4 4 86023 105785.41 22.97

R2 5 40 250 4 4 90674 103173.38 13.78
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4.3 Scenario-Based Experiments

The optimization approach described in Sect. 3 needs to be validated, ensuring
that it is capable of catching realistic behaviors we expect of the system under
analysis. We test this property with a set of assessment runs where we fix all
the problem parameters but one and verify that the solutions follow an intuitive
evolution.

The main axes governing performance in Hadoop clusters hosted on public
Clouds are the level of concurrency and the deadlines. In the first case, increasing
Hi and fixing all the remaining parameters, we expect a need for more VMs to
support the rising workload, thus leading to an increase of renting out costs.
On the other hand, if at fixed parameters we tighten the deadlines Di, again we
should observe increased costs: the system will require a higher parallelism to
shrink response times, hence more computational nodes to support it.

For the sake of clarity, we performed single-class experiments: considering
only one class per experiment allows for an easier interpretation of the results.
Figure 3 reports the solutions obtained with the 250 GB dataset profiles. The
average running time for these experiments is about two hours. All the mentioned
figures show the cost in e /h plotted against decreasing deadlines in ms for both
the real VM types considered: CINECA is the 20-core node available on PICO,
whilst m4.xlarge is the 4-core instance rented on Amazon AWS. In Figs. 3a and
b the expected cost increase due to tightening deadlines is apparent for two
representative queries, R1 and R3, considering 10 concurrent users. Further, in
both cases it is cheaper to provision a Cloud cluster consisting of the smaller
Amazon-offered instances, independently of the deadlines. It is then interesting
to observe that R1 shows a different behavior if the required concurrency level
increases. Figure 3c shows that, as the deadlines become tighter and tighter,
it is possible to identify a region where executing the workload on larger VMs
becomes more economic.

5 Related Work

Capacity planning and architecture design space exploration are important prob-
lems analyzed in the literature [10,14]. High level models and tools to support
software architects (see, e.g., Palladio Component Model and PerOptirex design
environment [12,23], or stochastic process algebra [36] and the PEPA Eclipse
plugin [30]) have been proposed for identifying the best configuration given a set
of QoS requirements; unfortunately they neither support Cloud-specific abstrac-
tions nor do directly address the problem of deriving an optimized configuration
for Cloud and Big Data clusters. On the other side, capacity management and
cluster sizing for Big Data applications has received also a widespread interest
by both academia and industry. The starting point is the consideration that
Hadoop often requires an intense tuning phase in order to exhibit its full poten-
tial. For this reason, Starfish, a self-tuning system for analytics on Hadoop, has
been proposed [19]. The resource provisioning problem, instead, has been faced
by Tian and Chen [35]. The goal is the minimization of the execution cost for a



D-SPACE4Cloud: A Design Tool for Big Data Applications 625

Fig. 3. Cluster costs with varying deadlines

single application. They present a cost model that depends on the dataset size
and on some characteristics of the considered application.

Verma et al. [38] proposed a framework for the profiling and duration pre-
diction of applications running on heterogeneous resources. An approach to this
problem based on closed QNs is presented in [11]. This work is noteworthy as
it explicitly considers contention and parallelism on compute nodes to evaluate
the execution time of a MapReduce application. However, the weak spot of this
approach is that it contemplates the Map phase alone. Vianna et al. [39] worked
on a similar solution; however the validation phase has been carried out consid-
ering a cluster dedicated to the execution of a single application at a time. Both
Map and Reduce phases are considered in [34]. In this work the Map phase is
modeled as an M/G/1 queue, whereas for the Reduce phase a multi-server queue
have been used.

Castiglione et al. [15] introduce a novel modeling approach based on mean
field analysis and provide fast approximate methods to predict the performance
of Big Data systems. Deadlines for MapReduce jobs are considered in [31].
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The work proposes to adapt to the problem some classical multiprocessor
scheduling policies; in particular, two versions of the Earliest Deadline First
heuristic are presented and proved to outperform off-the-shelf schedulers. A sim-
ilar approach is presented in [41], where the authors present a solution to manage
clusters shared among Hadoop application and more traditional Web systems.
The problem of progress estimation of multiple parallel queries is addressed
in [29]. To this aim, the authors present Parallax, a tool able to predict the
completion time of MapReduce jobs. ParaTimer [28], an extension of Paral-
lax, features support to multiple parallel queries expressed as directed acyclic
graphs (DAGs). Recently, also the integration of Big Data and high performance
computing (HPC) applications received attention in the literature. In [21], the
authors compare and contrast the two paradigms, highlighting the similarities
that can be exploited to devise integrated deployments. An integration proposal
is presented in [26], where RADICAL-Pilot is adopted to run jobs in a hybrid
Hadoop-HPC environment.

In [37] the ARIA framework is presented. This work is the closest to our
contribution and focuses on clusters dedicated to single user classes handled by
the FIFO scheduler. The framework addresses the problem of calculating the
most suitable number of resources to allocate to Map and Reduce tasks in order
to meet a user-defined due date for a certain application; the aim is to avoid as
much as possible costs due to resource over-provisioning. We borrow from this
work the compact job profile definition, used there to calculate a lower bound,
an upper bound, and an estimation of application execution times. Finally, they
present a performance model eventually improved in [43] and then validated
through a simulation study and an experimental campaign on a 66-node Hadoop
cluster. The same authors, in a more recent work [42], provided a solution for
optimizing the execution of a workload specified as a set of DAGs under the
constraints of a global deadline or budget. All the above mentioned works are
based on Hadoop 1.0, where CPU slots are statically allocated to Map and
Reduce tasks and the basic FIFO scheduler is considered. To the best of our
knowledge, ours is one of the first contribution coping with Hadoop 2.x shared
clusters based on the Capacity scheduler, hence relaxing Hadoop 1.0 limitations.

6 Conclusions

In this paper we have proposed a novel approach to provisioning Cloud clusters
to support data intensive applications over Hadoop YARN managed clusters.
We have developed a mathematical programming formulation of the underlying
optimization problem. In order to achieve a favorable trade-off between predic-
tion accuracy and running times, we have adopted a heuristic approach that
exploits the fast solvers available for mathematical programming problems for
the initial exploration of the solution space and then relies on the precise, but
slower, QN simulation. Moreover, our experimental validation shows how our
tool is a valuable contribution towards identifying the best VM type, since we
have highlighted situations where sticking to small instances and scaling out
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proves to be less economic than switching to better equipped VMs that allow
for a smaller number of replicas: the decreased replication factor compensates
the increased unit price in a not obvious way.

Moving from the presented results, an interesting research direction for our
future work lies in the characterization of complex workflows expressed as DAGs,
e.g., Tez or Spark jobs. Another relevant aspect to investigate is the usage of more
sophisticated techniques for the heuristic exploration of the solution space, in
order to attain further speedup and, possibly, extend our method to the runtime
cluster management scenario.
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