
Implementing Snapshot Objects on Top
of Crash-Prone Asynchronous

Message-Passing Systems

Carole Delporte-Gallet1, Hugues Fauconnier1, Sergio Rajsbaum2,
and Michel Raynal3(B)

1 IRIF, Université Paris Diderot, Paris, France
2 Instituto de Matemáticas, UNAM, 04510 México D.F, Mexico

3 IUF and IRISA, Université de Rennes, Rennes, France
raynal@irisa.fr

Abstract. Distributed snapshots, as introduced by Chandy and Lam-
port in the context of asynchronous failure-free message-passing distrib-
uted systems, are consistent global states in which the observed dis-
tributed application might have passed through. It appears that two
such distributed snapshots cannot necessarily be compared (in the sense
of determining which one of them is the “first”). Differently, snapshots
introduced in asynchronous crash-prone read/write distributed systems
are totally ordered, which greatly simplify their use by upper layer
applications.

In order to benefit from shared memory snapshot objects, it is possi-
ble to simulate a read/write shared memory on top of an asynchronous
crash-prone message-passing system, and build then snapshot objects on
top of it. This algorithm stacking is costly in both time and messages. To
circumvent this drawback, this paper presents algorithms building snap-
shot objects directly on top of asynchronous crash-prone message-passing
system. “Directly” means here “without building an intermediate layer
such as a read/write shared memory”. To the authors knowledge, the
proposed algorithms are the first providing such constructions. Interest-
ingly enough, these algorithms are efficient and relatively simple.

Keywords: Asynchronous message-passing system · Atomic read/write
register · Linearizability · Process crash failure · Snapshot object

1 Introduction

Snapshots in Message-Passing Systems. Being able to compute global states of
message-passing distributed applications is a central issue of distributed comput-
ing. This is because many problems can be stated as properties on global states.

M. Raynal—The French authors were partially supported by the French ANR project
DESCARTES devoted to abstraction layers in distributed computing. The third
author was supported in part by UNAM PAPIIT-DGAPA project IN107714.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016, LNCS 10048, pp. 341–355, 2016.
DOI: 10.1007/978-3-319-49583-5 26

342 C. Delporte-Gallet et al.

One of the most famous example is the detection of stable properties of distrib-
uted computations, such as termination detection or deadlock detection (once
true, a stable property remains true forever).

One of the very first algorithms computing consistent global states of a dis-
tributed computation is due to Chandy and Lamport [5]. This simple and elegant
algorithm introduced the term snapshot to denote a computed global state. It
assumes FIFO channels, and uses additional control messages called markers.
Later, snapshot algorithms, which require neither FIFO channels nor additional
control messages, have been introduced (e.g., [9,14]).

It was shown in [5] that, while the snapshot returned by a snapshot algorithm
is consistent, it is impossible to prove that the computation passed through it.
It is only possible to claim a very weak property, namely that the computation
could have passed through it. This has sometimes been called the relativistic
nature of distributed computing. More generally, it was shown in [6] that the
set of consistent global states that can be computed has a lattice structure.
This means that if two processes launch concurrently two independent snapshot
computations, each process obtain a consistent snapshot, but the snapshots they
obtain, not only can be different, but can be incomparable in the sense that it is
impossible to show that one of them occurred before the other one (the interested
reader will find a pedagogical presentation of these issues in Chap. 6 of [18]).
As far as fault-tolerance is concerned, the message-passing snapshot algorithms
described in [5,9,14] assume failure-free systems (no process crash).

Snapshots in Shared Memory Read/Write Systems. Considering crash-prone
asynchronous systems where the processes communicate by accessing atomic
Single-Writer/Multi-Reader (SWMR) registers, the notion of a snapshot object
was introduced in [1]. Crash-prone means here that any number of processes
may unexpectedly stop progressing. Atomic registers means that each read or
write operation appears as if it has been executed instantaneously at some point
between its start and its end, and each read of a register returns the value
written by the closest preceding write on this register. The term Linearizabil-
ity introduced in [11] is synonym of atomicity. A correct sequence of read and
write operations is called a linearization of these operations, and the time at
which an operation appear to be instantaneously executed (linearized) is called
its linearization point.

In this context a snapshot object is composed of n SWMR atomic registers,
where n is the number of processes, which means that, while each process can
read all registers, it can write only “its” register. The snapshot object offers
to the processes a higher abstraction level, defined by two operations, denoted
write() and snapshot(). A process invokes write() to define the value of its atomic
register. When it invokes snapshot(), a process obtains the whole array of reg-
isters as if it read them simultaneously. Said differently, a snapshot object is
atomic (linearizable): the operations write() and snapshot() appear as if they
have been executed one after the other.

In a very interesting way, it is possible to build a snapshot object on top of
SWMR atomic registers in a system of n asynchronous processes where up to

Implementing Snapshot Objects on Top of Crash-Prone 343

t = n − 1 of them may crash [1]. This progress condition, which tolerates any
number of process crashes, is called the wait-freedom [10]. More precisely, any
process that executes an operation and does not crash, terminates it whatever
the behavior of the other processes.

Snapshot objects have a lot of applications in crash-prone asynchronous sys-
tems where processes communicate through a read/write shared memory (exam-
ples of algorithms based on snapshot objects can be found in several following
textbooks such as [4,19,20]. This comes from the fact that a snapshot object
allows processes to define and use consistent global states of a read/write-based
computation: each process deposits the relevant part of its local state in the
snapshot object, and can then obtain consistent global states by invoking the
operation snapshot().

The previous snapshot object considers that each process has its “own”
underlying atomic register. Hence, they are called SWMR snapshot objects.
Snapshot objects, where the underlying atomic registers are Multi-Writer/Multi-
Reader (MWMR) registers, have also been studied (e.g., [12,13]).

Construction of Read/Write Registers in Message-Passing Systems. Read/write
registers are the most basic objects of computing science, and consequently,
a fundamental problem of asynchronous message-passing distributed systems
consists in building an SWMR or MWMR atomic register providing the
processes with a higher abstraction level than message-passing. This allows to
use read/write-based algorithms on top of message-passing systems. Moreover,
as in distributed systems “failures are not on option but are blunded with soft-
ware”, such constructions must tolerate as many process failures as possible.

One of the most celebrated algorithm implementing an atomic read/write
register on top of an asynchronous message-passing system is the algorithm due
to Attiya et al. [3], called ABD in the literature. This construction copes with
up to t < n/2 process crashes, which has been shown (in the same paper) to be
an upper bound on the number of process crashes that can be tolerated. The
algorithms, which implement the read and write operations, are particularly
simple. They use of a simple broadcast facility, sequence numbers, and majority
quorums. The fact that (a) any quorum contains at least one process that never
crashes, and (b) any two majority quorums have a non-empty intersection, are
key elements of this construction.

Many constructions of atomic read/write registers on top of message-passing
systems have been proposed (e.g., [2,4,8,16–18] to cite a few). They differ in the
type and the number of failures they tolerate, the number of messages they need
to implement a read or a write operation, the size of control information carried
by these implementation messages, and the time complexity of each operation.

Content of the Paper. This paper is on the construction of a (high level) t-
tolerant SWMR snapshot object on top of an underlying (low level) asynchronous
message-passing system where up to t processes may crash. As t < n/2 is an
upper bound on the number of process crashes to build an read/write atomic

344 C. Delporte-Gallet et al.

register on top of a crash-prone message-passing system, it follows that t < n/2
remains an upper bound when one wants to build a snapshot object.

A simple way to obtain such a construction consists first in using an algo-
rithm (such as one of the previously mentioned ones) to build n SWMR atomic
registers on top of the crash-prone asynchronous message-passing system, and
then use any algorithm building an SWMR snapshot object (e.g., [1,12]) on top
of the read/write shared memory build previously. This construction consists
of a simple stacking of existing algorithms: the first layer going from message-
passing to n SWMR atomic registers, the second layer going from n SWMR
atomic registers to a snapshot object.

While it obeys basic structuring principles, this solution is not satisfactory
for the following reason. The stacking-based construction is not genuine. More
precisely, building intermediate SWMR atomic registers is a way to build a
snapshot object, but is not a problem requirement. Maybe there are simpler and
more efficient constructions, which build directly a snapshot object on top of
a message-passing system, without requiring this intermediate level. Moreover,
being not genuine, the stacking-based construction can be more costly and its
engineering more difficult than an ad’hoc construction.

The paper presents a genuine construction of an SWMR snapshot object on
top of a message-passing system in which, in any run, any minority of processes
may crash. From a number of messages point of view, a write operation requires
O(n) messages, while a snapshot operation requires between O(n) and O(n2)
messages (this depends on the concurrency pattern involving the snapshot oper-
ation and the number of concurrent write operations). From a time complexity
point of view, a write operation requires a round-trip delay, while a snapshot
operation requires between one and (n − 1) round-trip delays (as before this
depends on the concurrency pattern occurring during the snapshot).

Roadmap. The paper is made up of 6 sections. Section 2 presents the basic
definitions: system model, one-shot and multi-shot snapshot objects. Section 3
presents a genuine algorithm constructing a one-shot snapshot object. Section 4
proves its correctness. Section 5 shows how to modify the previous algorithm to
go from a one-shot to a multi-shot snapshot object. Finally, Sect. 6 concludes
the paper. All missing proofs can be found in [7].

2 System Model, and Snapshot Objects

System Model

Processes. The computing model is composed of a set of n sequential processes
denoted p1, ..., pn. Each process is asynchronous which means that it proceeds
at its own speed, which can be arbitrary and remains always unknown to the
other processes.

A process may halt prematurely (crash failure), but executes correctly its
local algorithm until it possibly crashes. The model parameter t denotes the

Implementing Snapshot Objects on Top of Crash-Prone 345

maximal number of processes that may crash in a run. A process that crashes
in a run is said to be faulty. Otherwise, it is correct or non-faulty. Let us notice
that, as a faulty process behaves correctly until it crashes, no process knows if
it is correct or faulty.

Communication. The processes cooperate by sending and receiving messages
through bi-directional channels. The communication network is a complete net-
work, which means that any process pi can directly send a message to any process
pj (including itself). Each channel is reliable (no loss, corruption, nor creation of
messages), not necessarily first-in/first-out, and asynchronous (while the transit
time of each message is finite, there is no upper bound on message transit times).

A process pi invokes the operation “send tag(m) to pj” to send to pj the
message tagged tag which carries the value m. It receives a message tagged
tag by invoking the operation “receive tag()”. The macro-operation “broadcast
tag(m)” is a shortcut for “for each j ∈ {1, . . . , n} send tag(m) to pj end
for”. (The sending order is arbitrary, which means that, if the sender crashes
while executing this macro-operation, an arbitrary – possibly empty – subset of
processes will receive the message.)

Let us notice that, due to process and message asynchrony, no process can
know if an other process crashed or is only very slow.

Notation. In the following, the previous computation model, restricted by the
feasibility predicate t < n/2, is denoted CAMPn,tn,t[t < n/2] (“Crash Asyn-
chronous Message-Passing” model in which any minority of processes may crash).

It is important to notice that, in this model, all processes are a priori “equal”.
This allows each process to be at the same time a “client” (it invokes high level
operations) and a “server” (it locally participates in the implementation of the
object that is built).

Message types are denoted with small capital letters, while local variables
are denoted with small italics letters, indexed by a process index.

Snapshot Object

Definition. The SWMR snapshot object has been informally presented in the
Introduction. It is made up of n components (one per process), and provides the
processes with two operations denoted write() and snapshot().

Let SNAP be such an object. When a process pi invokes write(v), it stores
the value v in its component SNAP [i]. When a process pi invokes snapshot(), it
obtains the value of all the components SNAP [1..n]. A snapshot object is atomic
(or linearizable), which means that the operations write() and snapshot() issued
by the processes appear as if each of them had been executed instantaneously,
at a single point of the time line between its start and its end. Moreover, no two
operations appear at the same point of the time line, and the array reg[1..n]
returned by a process, when it terminates an invocation of snapshot(), is such
that reg[k] = v if the closest preceding write operation issued by pk is write(v). If
there is no such write by pk, reg[k] = ⊥ (a default value that, at the application
level, no process can write).

346 C. Delporte-Gallet et al.

One-Shot vs Multi-Shot. In the context of snapshot objects, we distinguish one
and multi-shot objects. In both cases, a process can issue as many operations
snapshot() as it wants.

– One-shot. No process invokes write(v) more than once.
– Multi-shot. There is no restriction on the number of times a process can invoke
write().

In the following we consider first the implementation of a one-shot snapshot
object. This construction is then generalized to the case of a multi-shot snapshot
object in Sect. 5.

3 Implementing a One-Shot Snapshot Object

Algorithm 1 implements a one-shot snapshot object.

Local Representation of the Snapshot Object. Each process pi manages a local
array regi[1..n], which contains its current view of the snapshot object. This
array is initialized to [⊥, · · · ,⊥].

Each process pi manages also a sequence number ssni. Initialized to 0, this
local variable is used to identify the successive requests generated by the invo-
cations of the operation snapshot() issued by pi.

Algorithm Implementing the Operation write(v): Client Side. This algorithm is
described at lines 1–6, executed by the invoking process pi (client), and lines 15–
16, executed by all processes (in their server role).

When pi invokes write(v), it assigns the value v to its local register regi[i]
and broadcasts the message write(regi) to inform the other processes of its
write (lines 1–2). Then, pi waits for acknowledgments (line 3). Each message
write ack(reg) carries the current value of regj [1..n] of the sender pj . After
pi received acknowledgments from a majority of processes, it updates its local
view of the snapshot object, namely regi[1..n], to have it as recent as possible
(line 5). This is done, for each local register regi[k], by taking the maximum
on the value it received and its current value. As we consider here a one-shot
snapshot object, a process invokes write() at most once, and consequently, the
values in regi[k], reg(1)[k], · · · , reg(m)[k] are all equal to ⊥ if pk has not yet
invoked write(), or belong to the set {⊥, v} if pk invoked write(v). After the
update of regi[1..n] is done, pi returns from the operation.

Algorithm Implementing the Operation write(v): Server Side. On the server side,
when pi receives a message write(reg) from a process pj , it updates its local
array regi[1..n] to have it as up to date as possible (line 15). It then sends back
to pj the acknowledgment message write ack(regi) (line 16). As seen above,
if pi knows writes not yet known by pj , this message allows pj to known them.

Algorithm Implementing the Operation snapshot(): Client Side. As previously,
this algorithm is decomposed in two parts. The part described at lines 8–14 is

Implementing Snapshot Objects on Top of Crash-Prone 347

Fig. 1. One-shot snapshot object in CAMPn,t[t < n/2] (code for pi)

executed by the invoking process pi (client), while lines 17–18 are executed by
all processes (in their server role).

The invoking process enters a repeat loop that it will exit when, from its point
of view, its local array regi[1..n] can no longer be enriched with new values. To
this end it uses a local array variable prev[1..n] (whose scope is restricted to the
operation snapshot()). After it assigned regi to prev, pi broadcasts an inquiry
message snapshot(regi, ssni), in which the sequence number ssni is used to
identify the different inquiries broadcast by pi.

Then, pi has exactly the same behavior as the one described at lines 3–5
of the write operation. Namely, pi waits for acknowledgment messages from a
majority of processes (those are messages snapshot ack(reg, ssni) carrying
the appropriate sequence number). Hence, after it has executed lines 10–12,
pi possibly updated its local representation regi[1..n] of the snapshot object.

348 C. Delporte-Gallet et al.

Then, if regi has been updated (we have then regi �= prev at line 3), pi re-enters
the repeat loop. If regi has not been enriched with new values during the last
iteration, pi returns it as result of it snapshot invocation.

Algorithm Implementing the Operation snapshot(v): Server Side. This part
(reception of a message snapshot(reg, ssn) from a process pj , lines 17–
18) is the same as the reception of a message write(reg, ssn). Namely, pi
updates regi[1..n] and sends back to pj an acknowledgment message snap-
shot ack(regi, ssn).

4 Proof of the One-Shot Snapshot Algorithm

4.1 Termination

Lemma 1. If a correct process pi invokes write(), it terminates. Any invocation
of snapshot() by a correct process terminate.

4.2 Definitions and Notations

The following definitions are from [11]. For simplicity, and as they are sufficient
for the understanding, we consider here only the failure-free case.

Events. Let op be an operation write() or snapshot(). The execution of an oper-
ation op by a process pi is modeled by two events: an invocation event, denoted
invoc(op), which occurs when pi invokes the operation, and a response event,
denoted resp(op), which occurs when pi terminates the operation. The event
invoc(op) of an operation op occurs when it executes its first statement (line 1 or
line 8), and its event resp(op) (termination) occurs when it executes its return()
statement (line 6 or line 14).

In addition to these events, sending and reception of messages create corre-
sponding communication events [15]. Without loss of generality, it is assumed
that no two events occur at the same time.

Histories. A history models a run. It is a total order on the events produced
by the processes. Given any two events e and f , e < f if e occurs before f in
the corresponding history. Let us notice that we always have e < f or f < e.
A history is denoted ̂H = 〈E,<〉, where E is the set of events.

A history is sequential if (a) its first event is an invocation; (b) each invocation
is followed by the matching response event; and (c) each response event – except
the last one if the computation is finite – is followed by a an invocation event.

̂H|i is called a local history; it is the sub-sequence of ̂H made up of the
events generated by process pi. Two histories are equivalent if no process can
distinguish them, i.e., ∀ i, j : ̂H|i = ̂H|j.

Implementing Snapshot Objects on Top of Crash-Prone 349

Linearizable Snapshot History. A snapshot-based history ̂H = 〈E,<〉 is correct
(or linearizable) if there is an equivalent sequential history ̂Hseq = 〈E,<seq〉 in
which the sequence of write() or snapshot() operations issued by the processes
is such that (a) each operation appears as if it has been executed at a single
point of the time line between its invocation and response events, and (b) each
snapshot() operation returns an array reg such that reg[i] = v if the invocation
of write(v) by pi appears previously in the sequence, and reg[i] = ⊥ if it does
not.

When considering a sequential history it is possible to associate a time instant
of the time line with each operation. As, in such a history, all operations are
ordered, no two operations are associated with the same time instant.

Given two arrays reg1 and reg2 returned by two snapshot operations, reg1 ≤
reg2 is a shortcut for ∀ x ∈ [1..n]: (reg1[x] �= ⊥) ⇒ (reg2[x] = reg1[x]), and
reg1 < reg2 is a shortcut for (reg1 ≤ reg2) ∧ (reg1 �= reg2).

Concurrent Operations. Let op1 and op2 be two operations. We say “op1 precedes
op2” (denoted op1 → op2) if resp(op1) < invoc(op2). If ¬(op1 → op2) and
¬(op2 → op1), we say “op1 and op2 are concurrent”, which is denoted op1||op2.
It follows that the relation “→op” defined on operations is an irreflexive partial
order.

4.3 Basic Lemmas

The next three Lemmas follow directly from the algorithm.

Lemma 2. Let ww = write(v) a write operation issued by a process pi and snap
a snapshot operation returning the array reg. (ww → snap) ⇒ (reg[i] = v).

Lemma 3. Let ww = write(v) a write operation issued by a process pi and snap
a snapshot operation returning the array reg. (snap → ww) ⇒ (reg[i] = ⊥).

The following corollary is an immediate consequence of Lemmas 2 and 3.

Corollary 1. Let snap be a snapshot operation returning the array reg, such
that reg[i] = v. There is an operation write(v) issued by process pi, and it is
such that write(v) → snap or write(v)||snap.
Lemma 4. Let snap1 and snap2 be two snapshot operations, returning reg1 and
reg2, respectively. (snap1 → snap2) ⇒ (reg1 ≤ reg2).

4.4 A Linearization of the Write and Snapshot Operations

Lemma 5. Let snap1 and snap2 be two snapshots operations, returning reg1 and
reg2, respectively. We have (reg1 ≤ reg2) ∨ (reg2 ≤ reg1).

Lemma 6. Let ww1 = write(v1) a write operation issued by a process pi, ww2 =
write(v2) a write operation issued by a process pj, and snap a snapshot operation
returning the array reg.

(

(ww1 → ww2) ∧ (reg[j] = v2)
) ⇒ ((reg[i] = v1).

350 C. Delporte-Gallet et al.

Lemma 7. Given a history ̂H produced by Algorithm1, there is an equivalent
sequential history ̂H ′ which respects the sequential specification of the one-shot
snapshot object.

Theorem 1. Algorithm1 implements a one-shot snapshot object in the system
model CAMPn,t[t < n/2].

Proof. The proof follows from Lemma 1 (Termination), and Lemma 7 (Lin-
earizability). �

5 Implementing a Multi-shot Snapshot Object

This section extends the previous algorithm from a one-shot snapshot object
(at most one write per process) to a multi-shot snapshot object (any number of
writes per process).

A Non-blocking Algorithm. It is easy to extend the basic algorithm depicted
in Fig. 1, which assumes that each process invokes at most once the write opera-
tion, to obtain a multi-shot algorithm in which, despite t < n/2 process crashes,
at least once process can invoke any number of write operations without being
blocked forever. This progress condition is called non-blocking (it can be seen as
absence of deadlock in the presence of failures).

The extension is as follows. A sequence number is associated with each write
or snapshot operation. They are then used to ensure that any snapshot returns an
array containing values such that it is possible to build a sequence of all write and
snapshot invocations where each snapshot returns the array defined by the most
recent write that appear before it in the sequence. This implementation is non
blocking because (a) it ensures that all write operations terminates, and (b) all
snapshot operations which are not concurrent with a write operations terminate.
A snapshot operation may not terminate if infinitely often write operations are
concurrent with it.

An Always Terminating Algorithm

Underlying Principles. An extension ensuring that any invocation of a write or
snapshot operation, issued by a correct process, does terminate, is described in
Figs. 2 and 3. To ensure this strong termination property, two mechanisms are
added to the basic algorithm.

(1) Every process helps perform all snapshot operations: when a process wants to
perform a snapshot operation it broadcasts its query to every process, and,
when receiving this query, each process issues a basic snapshot operation
(essentially identical to the one-shot snapshot of the previous section). In this
way, each process participates to every snapshot operation and in particular
every process is aware of all snapshots that are not currently terminated.

Implementing Snapshot Objects on Top of Crash-Prone 351

Fig. 2. Multi-shot snapshot object in CAMPn,t[t < n/2] (Part 1 of the code for pi)

(2) To ensure that the snapshot operations are not prevented from terminating
by write operations, each process, when there are some snapshot operations
currently not terminated, is required to wait for the termination of the old-
est snapshot operation among them. In this way, eventually no write oper-
ation can be concurrent with a snapshot operation, thereby ensuring their
termination.

The corresponding extended algorithm is detailed in Figs. 2 and 3, where
(as before) regi is the current view of the memory at process pi. This view is
updated when pi receives a write() or snapshot() message. The operator ≺sn

is on pairs (value, seq. number). It orders them according to their increasing
sequence numbers:

(

(v, a) ≺sn (w, b)
) ⇔ (a < b).

352 C. Delporte-Gallet et al.

Fig. 3. Multi-shot snapshot object in CAMPn,t[t < n/2] (Part 2 of the code for pi)

Algorithms Implementing the write() and snapshot() Operations. To perform a
write operation, pi does not immediately start to realize a write operation as
in the one-shot algorithm. It records the value to be written into a variable
write pending with an appropriate sequence number (line 1). The write opera-
tion terminates (line 2) when the write is made in the background task of the
algorithm (lines 19–23).

To perform a snapshot operation, a process pi broadcasts in a reliable way,
with the help of the underlying operation Rbroadcast(),1 the request (message
snap()) and its associated a sequence number to all processes (including itself)
(Line 3). This request is processed in the background task at lines 20 and 22.
Function base snapshot() implements a “basic” snapshot that is essentially the
same as for one-shot snapshot (waiting until the process obtains two identical
vectors of values for the requested snapshot). Here this basic snapshot is stopped
when at least one process has terminated a basic snapshot for the requesting
upper layer snapshot. More precisely, the variable repSnap is an array such that
repSnap[j,m] contains the result of the m-th snapshot initiated by process pj
(and ⊥ before). This variable is written at line 29 when process pi is notified
1 The main property of such a broadcast operation is that any message delivered by

a (correct or faulty) process is delivered by all correct processes, and at least the
messages broadcast by the correct processes are delivered. Hence all correct processes
deliver the same set of messages S, and any faulty process delivers a subset of S.
Algorithms implementing reliable broadcast in the presence of process crashes are
described in many textbooks (e.g. [4,17]).

Implementing Snapshot Objects on Top of Crash-Prone 353

(by a message end()) that at least one of basic snapshots for the requested upper
layer snapshot terminated. Then repSnap[j,m] contains a snapshot value of the
m-th snapshot initiated by process pj

2.
In its background task (lines 19–23), process pi performs a write (function

base write) if there a pending write (line 19). It easy to check that the function
base write always terminates. Then, if there are some requests for upper layer
snapshots (corresponding to the reception of message snap()), process pi chooses
the oldest request and runs a basic snapshot for this request (line 22).

Let us first notice that each process executes sequentially the base operations
denoted base write() and base snapshot(). Let us also notice that a upper layer
snapshot terminates as soon as it is not concurrent with processes performing
write operations. This follows from the following observation. Let us assume
that an upper layer snapshot does not terminate. Then, all corresponding basic
snapshots it generates are necessarily stuck in the execution of the underlying
basic base snapshot(). But, if this occurs, no non-crashed process is currently
running a base write operation base write, from which follows that the upper
layer snapshot operation terminates.

6 Conclusion

Since a long time, snapshot algorithms suited to asynchronous message-passing
reliable systems have been proposed (e.g. in [5,9,14]). These algorithms, which
consider process local states and channels states, do not cope with failures, and
provides snapshots which cannot always be compared [6,18].

Differently this paper has introduced the notion of a read/write snapshot
object built on top of asynchronous message-passing systems in which any minor-
ity of processes may crash. A main property of these read/write snapshot lies
in their Containment property (they can be totally ordered according to their
occurrence order). The paper has considered two types of such snapshot objects:
one-shot (in which a process may issue as many snapshot operations as it wants,
but is restricted to issue only one write operation), and multi-shot (in which there
is no restriction on the number of write operations issued by each process). The
paper has also presented two algorithms, one for each type of snapshot object.
The two main properties of these algorithms are their fault-tolerance and the
total order on the snapshot values they return.

Table 1 compares the cost of the one-shot snapshot algorithm proposed in
the paper with the stacking of the read/write snapshot algorithm described
in [1], executed on the emulation of SWMR atomic registers in an asynchronous
message-passing system described in [3]. This comparison considers the best
cases, namely it assumes that each operation is invoked in a concurrency-free
context (which is the most frequent case in practice).

2 Let us notice that it is possible that several processes wrote snapshot values in
repSnap[j,m] to help pj terminate its snapshot invocation. Any of these values is a
correct snapshot value.

354 C. Delporte-Gallet et al.

Table 1. Cost comparison in favorable cases

Stacking [1] on [3] Our algorithm

Messages per write 2n 2n

Messages per snapshot 8n 2n

Write duration one round-trip one round-trip

Snapshot duration 4 round-trips one round-trip

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Attiya, H.: Efficient and robust sharing of memory in message-passing systems. J.
Algorithms 34, 109–127 (2000)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing
systems. J. ACM 42(1), 121–132 (1995)

4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn, 414 p. Wiley-Interscience (2004)

5. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

6. Cooper, R., Marzullo, K.: Consistent detection of global predicates. In: Proceedings
of Workshop on Parallel and Distributed Debugging. ACM press (1991)

7. Delporte, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Implementing snapshot
objects on top of crash-prone asynchronous message-passing systems, 15 p. Tech-
nical report 2037, IRISA, Université de Rennes (F) (2016)

8. Dutta, P., Guerraoui, R., Levy, R., Vukolic, M.: Fast access to distributed atomic
memory. SIAM J. Comput. 39(8), 3752–3783 (2010)

9. Hélary, J.-M., Mostéfaoui, A., Raynal, M.: Communication-induced determination
of consistent snapshots. IEEE TPDS 10(9), 865–877 (1999)

10. Herlihy, M.P.: Wait-free synchronization. ACM Trans. Program. Lang. Syst.
(TOPLAS) 13(1), 124–149 (1991)

11. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

12. Imbs, D., Raynal, M.: Help when needed, but no more: efficient read/write partial
snapshot. J. Parallel Distrib. Comput. 72(1), 1–12 (2012)

13. Inoue, M., Masuzawa, T., Chen, W., Tokura, N.: Linear-time snapshot using multi-
writer multi-reader registers. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS,
vol. 857, pp. 130–140. Springer, Heidelberg (1994). doi:10.1007/BFb0020429

14. Lai, T.H., Yang, T.H.: On distributed snapshots. Inf. Process. Lett. 25, 153–158
(1987)

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

16. Mostéfaoui, A., Raynal, M.: Two-bit messages are sufficient to implement atomic
read/write registers in crash-prone systems. In: Proceedings of 35th International
ACM Symposium on Principles of Distributed Computing (PODC 2016), pp. 381–
390. ACM Press (2016)

http://dx.doi.org/10.1007/BFb0020429

Implementing Snapshot Objects on Top of Crash-Prone 355

17. Raynal, M.: Communication and Agreement Abstractions for Fault-Tolerant Asyn-
chronous Distributed Systems, 251 p. Morgan & Claypool Publishers (2010). ISBN
978-1-60845-293-4

18. Raynal, M.: Distributed Algorithms for Message-Passing Systems, 510 p. Springer
(2013). ISBN 978-3-642-38122-5

19. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations,
515 p. Springer (2013). ISBN 978-3-642-32026-2

20. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming, 423 p.
Pearson Prentice-Hall (2006). ISBN 0-131-97259-6

	Implementing Snapshot Objects on Top of Crash-Prone Asynchronous Message-Passing Systems
	1 Introduction
	2 System Model, and Snapshot Objects
	3 Implementing a One-Shot Snapshot Object
	4 Proof of the One-Shot Snapshot Algorithm
	4.1 Termination
	4.2 Definitions and Notations
	4.3 Basic Lemmas
	4.4 A Linearization of the Write and Snapshot Operations

	5 Implementing a Multi-shot Snapshot Object
	6 Conclusion
	References

