Improving the Performance of Volunteer
Computing with Data Volunteers: A Case Study
with the ATLAS@home Project

Satl Alonso-Monsalve®™) | Félix Garcia-Carballeira, and Alejandro Calderén

Department of Computer Science and Engineering, Computer Architecture Group,
University Carlos I1I of Madrid, Leganés, Madrid, Spain
{saul.alonso,felix.garcia,alejandro.calderon}@uc3m.es

Abstract. Volunteer computing is a type of distributed computing in
which ordinary people donate processing and storage resources to sci-
entific projects. BOINC is the main middleware system for this type of
computing. The aim of volunteer computing is that organizations be able
to attain large computing power thanks to the participation of volunteer
clients instead of a high investment in infrastructure. There are projects,
like the ATLAS@home project, in which the number of running jobs has
reached a plateau, due to a high load on data servers caused by file trans-
fer. This is why we have designed an alternative, using the same BOINC
infrastructure, in order to improve the performance of BOINC projects
that have reached their physical limit. This alternative involves having
a percentage of the volunteer clients running as data servers, called data
volunteers, that improve the performance by reducing the load on data
servers. This paper describes our alternative in detail and shows the
performance of the solution using a simulator of our own, ComBoS.

Keywords: BOINC - Data volunteers - Throughput - Simulation -
Volunteer computing

1 Introduction

Volunteer Computing (VC) is a type of distributed computing in which ordinary
people donate processing and storage resources to one or more scientific projects.
Most of the existing VC systems have the same basic structure: a client pro-
gram runs on the volunteer’s computer, periodically contacting project-operated
servers over the Internet to request jobs and report the results of completed jobs.
VC is important for several reasons [24]:

— Because of the huge number (> 1 billion) of computers in the world, VC can
supply more computing power to science than any other type of computing.
In addition, this advantage will increase over time, because the number of
computers is in continuous growth.

S. Alonso-Monsalve—This work has been partially funded by the grant TIN2013-
41350-P of the Spanish Ministry of Economics and Competitiveness.
© Springer International Publishing AG 2016

J. Carretero et al. (Eds.): ICA3PP 2016, LNCS 10048, pp. 178-191, 2016.
DOI: 10.1007/978-3-319-49583-5_13

Improving the Performance of Volunteer Computing with Data Volunteers 179

— VC power cannot be bought; it must be earned. A research project that has
limited funding but large public appeal can get remarkable computing power.
In contrast, traditional supercomputers are extremely expensive, and are avail-
able only for applications or teams that can afford them.

— VC promotes public interest in science, and provides the public with a voice
in determining the directions of scientific research.

BOINC (Berkeley Open Infrastructure for Network Computing) [3] is an
open-source VC platform. It provides a complete middleware system for volun-
teer computing. In fact, BOINC is the most widely used middleware system.
According to BOINCstats [11], currently there are 57 projects, with more than
13 million hosts participating in them. The number of active hosts is around
1 million, offering 190 PetaFLOPS of computation. One example of this is the
Einstein@home project, in which users regularly contribute about 1,080 Ter-
aFLOPS of computational power, which would rank Einstein@home among the
top 100 on the TOP500 [23] list of the 500 fastest supercomputers of the world.
From the data storage point of view, 13 million hosts with an average of 25 GB
available per client can provide a total capacity of 310 PetaBytes.

The aim of Volunteer Computing (VC) is that organizations be able to attain
large computing power thanks to the participation of volunteer clients instead of
a high investment in infrastructure. This is why we have designed an alternative,
using the same BOINC infrastructure, in order to improve the performance of
BOINC projects that have reached their limit. This alternative involves having a
percentage of the volunteer clients running as data servers, called data volunteers.
We have evaluated the performance of our alternative using a simulator of our
own, ComBoS [2].

The rest of the paper is organized as follows. Section 2 discusses related work;
Sect. 3 presents our alternative to the current functioning of BOINC, using data
volunteers; Sect. 4 presents and describes the simulator that we have developed;
Sect. 5 analyzes the performance of our alternative, showing some case studies
considering the ATLAS@home project; and finally, Sect.6 concludes the paper
and presents some future work.

2 Related Work

The computing resources that power Volunteer Computing (VC) are shared with
the owners of the client machines. Because the resources are volunteered, utmost
care is taken to ensure that the VC tasks do not obstruct the activities of each
machine’s owner; a VC task is suspended or terminated whenever the machine
is in use by another person. As a result, VC resources are volatile in the sense
that any number of factors can prevent the task of a VC application from being
completed. These factors include mouse or keyboard activity, the execution of
other user applications, machine reboots, or hardware failures. Moreover, VC
resources are heterogeneous, in the sense that they differ in operating systems,
CPU speeds, network bandwidth and memory and disk sizes. Consequently, the
design of systems and applications that utilize this system is challenging.

180 S. Alonso-Monsalve et al.

BOINC [3] is the main middleware system for VC that makes it easy for
scientists to create and operate public-resource computing projects. It sup-
ports diverse applications, including those with large storage or communica-
tion requirements. PC owners can participate in multiple BOINC projects, and
can specify how their resources are allocated among these projects. BOINC is
being used by several projects, including SETI@home, Climateprediction.net,
LHC@home, Predictor@home, and Einstein@Home. Volunteers participate by
running a BOINC client program on their computers.

The BOINC architecture is based on a strict master/worker model, with
a central server responsible for dividing applications into thousands of small
independent tasks and then distributing the tasks among the worker nodes as
they request the workunits. To simplify network communication and bypass any
NAT (Network Address Translation) problems that might arise from bidirec-
tional communication, the centralized server never initiates communication with
worker nodes: all communication is initiated by the worker when more work is
needed or results are ready for submission.

The BOINC middleware uses a fixed set of data servers to provide input files
to each client. Clients download input files from this set of data servers. Once
the computation has been completed, they upload the output files to the same
data servers. In projects with thousands of participants, the access to the data
servers can form a bottleneck. The BOINC middleware is, therefore, appropri-
ate for CPU-intensive jobs that process small files. Projects like ATLAS@home
[1], in which each workunit requires large files (100 MB of input data and
50 MB of output data), a high number of volunteer participants can saturate
the data servers. Some data-intensive projects use file replication to improve the
performance; Einstein@home [21] uses large (40 MB) input files, and any given
input file may be sent to a large number of hosts (in contrast with projects like
SETI@home [5,22,25], in which each input file is different).

In the BOINC architecture [6] data servers can be located anywhere; they are
simply web servers, and do not access the BOINC database. Current BOINC-
based projects that use large files (Einstein@home [17] and Climateprediction.net
[14]) use replicated and distributed data servers, located at partner institutions.
The download and upload traffic is spread across the commodity Internet con-
nections of those institutions. These components share data stored in disks,
including relational databases and file storage. Data servers handle file uploads
using a certificate-based mechanism to ensure that only legitimate files, with
prescribed size limits, are uploaded. File downloads are handled by plain HTTP.
BOINC provides a form of redundant computing in which each computation is
performed on multiple clients [15], and the results are compared. Results are
only validated when a ‘consensus’ is reached. In some cases new tasks must be
created and sent to the clients to perform the computation again.

In [18], authors use the Attic File System (AtticFS), previously the Peer-
to-Peer (P2P) Arhictecture for Data-Intensive Cycle Sharing (ADICS) [20], to
decentralize data distribution in the BOINC achitecture. AtticFS is a decentral-
ized P2P data sharing software for accessing distributed storage resources over

Improving the Performance of Volunteer Computing with Data Volunteers 181

the network in a similar way to BitTorrent. In this solution, when a BOINC
client downloads input files to process, it caches them to be available to other
clients, who can then process the same job. Although this solution can prevent
the bottleneck in the BOINC data server, it requires the integration of AtticF'S
in the BOINC infrastructure, and a centralized data lookup service to obtain the
list of BOINC clients that store the files to process. The use of VC systems for
Big Data processing has been studied in [9]. In this article, the authors describe
an architecture of intelligent agents to optimize Big Data processing. In [12], the
authors present a VC solution called FreeCycles, which supports MapReduce
jobs. FreeCycles improves data distribution (among mappers and reducers) by
using the BitTorrent protocol to distribute data, and improves intermediate data
availability by replicating files through volunteers in order to avoid losing inter-
mediate data.

The main difference between our solution and the solutions described above,
as described in the next section, is that our solution does not require that any
external elements be added to the BOINC infrastructure. Besides, our solution
uses the idea of edge computing [19], as it tries to decentralize VC servers.

3 Alternative with Data Volunteers Using BOINC

Even though the clients volunteer for free, the manpower required to set up and
maintain a BOINC project is not negligible. Nevertheless, it is only a fraction of
the power needed for a regular Grid site. On the other hand, there are projects
in which the number of running jobs has reached a plateau. An example is the
ATLAS@home project [1]. This project uses a single server host [7] that includes
all the functionalities of the BOINC server side: upload/download server, sched-
uler, file deleter, etc. In this project, each workunit requires about 100 MB of
input data, which are downloaded each time from the ATLAS@home server, and
50 MB of output data, which are uploaded to the ATLAS@home server when
each task is computed. This is causing a problem in the server, as the current
setup has reached its limit (mainly because 1/O). The ATLAS@home project
team are exploring to use multiple data servers, which makes it necessary to
improve the infrastructure. Another problem is that there are not enough vol-
unteers joining the project, but the one server is already saturated, so the team
deliberately do not advertise too much. We have evaluated the performance of
the ATLAS@home project using ComBoS [2], in terms of throughput (Fig. 1a)
and the load of the server (Fig.1b). As shown in Fig. 1b, data servers get sat-
urated when there are about 1,200 Volunteer Nodes (VN), causing a severe
deceleration in throughput (Fig.1a). In this section, we will present a solution
for this problem.

The aim of Volunteer Computing (VC) is that organizations be able to attain
large computing power thanks to the participation of volunteer clients instead
of a high investment in infrastructure. This is why we have designed an alter-
native, using the same infrastructure, in order to improve the performance of
BOINC projects that have reached their limit. This alternative involves having

182 S. Alonso-Monsalve et al.

- a -

/
o/

0 800 1600 2400 3200 4000

Number of VN

Server Load (%)

Throughput (TeraFLOPS)

(a) Throughput (TeraFLOPS).

100

800

1600

2400
Number of VN

3200 4000

(b) Server Load (%).

Fig. 1. ATLAS@home current performance.

a percentage of the VN running as data servers, called data volunteers. Each
file needed by a workunit must be replicated in N data volunteers (dcreplication

attribute).

Client side
13

Server
ordinary complex
client

Scheduling
server

Data client 1

Data client
server

7((8

Data client 2 ‘;

Data server

i

Server side

—
—
File storage

Project
back end

Work
generator

Validator

Assimilator

File deleter

D Current components [:] New components

Fig. 2. Alternative with data volunteers.

Figure 2 shows the functioning of the system considering our alternative. It
would only need another process on the server side (Data client server, Pseudocode
1) and the data client software (Data client, Pseudocode 2). Each data volunteers
works as an ordinary VN (downloading input files) and as a server (sending input
files) at the same time. Figure 2 contemplates an scenario with three volunteer
nodes (Ordinary client, Data client 1, and Data client 2) and one project. First,
Data client 1 requests and downloads some work from the Data client server (1
and 2). Then, Data client 1 downloads the corresponding input files from the Data
server (3 and 4) and stores them in its file system. Data client 2 repeats the same

Improving the Performance of Volunteer Computing with Data Volunteers 183

process (5 and 6), but this time it downloads the corresponding input files from
Data client 1 (7 and 8), which had downloaded them before. Note that in this
case, Data client 2 does not access the Data server, thus reducing its load. Now,
Ordinary client wants to execute tasks in the regular way, so it requests and down-
loads some work from the Scheduling server (9 and 10), but now it can download
the corresponding input files from Data client 1, Data client 2, or the Data server,
because the same input files are replicated in all of them. In our alternative, ordi-
nary clients only download workunits that need files that are replicated dcreplica-
tion times in data clients. In the example of Fig. 2, the client downloads the input
files from Data client 1 (11 and 12), executes the tasks (13) and returns the com-
putation results to the Scheduling server (14). In some projects, it is necessary to
upload the output files of the computation to the data server. In this case, each
project should decide whether to upload the output files to the actual data servers
or to the data clients.

Pseudocode 1. Data client server dispatcher

1: function DATA_CLIENT_SERVER_DISPATCHER()

2: while 1 do

3: POP message from received-messages_queue

4: switch message.type do

5: case Request

6: CREATE_ANSWER ans

7: for each workunit w in current_workunits do
8: if w.status in progress and

9: w.dataclients < dcreplication and

10: (w.dataclients == 0 or w.dataclients_confirmed > 0) then
11: w.ndata_clients+ = 1

12: ans.workunit = w

13: end if

14: break

15: end for

16: SEND ans to client

17: case Con firmation

18: w = FIND_-WORKUNIT (message.workunit)

19: PUSH(w.input_files_urls, message.client_address)
20: CREATE target_nresults instances of w

21: end while
22: end function

Normally, a workunit has a list of associated input files [15], and each input file
is defined as a list of addresses from where it can be downloaded, giving priority to
the data volunteers (we do not want to collapse the data servers). For example, in
the previous case, the definition of an input file that has been downloaded by Data
client 1 and Data client 2 should be the list {Data client 1 address, Data client 2
address, Data server address}. Obviously, the fewer volunteer clients that access
the data servers, the better this system works. In some projects, each input file is
shared by multiple workunits, but each workunit describes a different computa-
tion using the same file. For these cases, locality scheduling can be used. The goal
of locality scheduling [6,15] is to minimize the amount of data transfer to hosts
by preferentially sending jobs to hosts that already have some or all of the input
files required by those jobs. This would also be our ideal scenario, because each

184 S. Alonso-Monsalve et al.

input file might be downloaded from a data server only once, and from data vol-
unteers the rest of the time. For instance, consider a project where each input file
is shared by five workunits and there is only one data server. With our alternative,
only the first data client should download the file from the data server. In the cur-
rent BOINC system, the same input file would have to be downloaded five times,
one per workunit. With our alternative, the data server would have five times less
load and allow for more VN in the system. In the next section we will show some
examples of our alternative, considering real scenarios. An advantage of our alter-
native is that it can also be used when jobs do not share input files, unlike locality
scheduling. For example, we can use our alternative to reduce the load on the data
servers when the same job is sent to multiple VN in order to reach a consensus.

Pseudocode 2. Data client ask for files
1: function DATA_CLIENT_ASK_FOR_FILES()

2: while 1 do

3: if current_storage < max_storage then

4: SEND request to data client server

5: message = RECEIVE from to data client server

6: if message.workunit then

7: for each url in message.workunit.input_files_urls do
8: if url is active then

9: SEND request to url

10: input_files = RECEIVE from wurl

11: STORE input_files

12: break

13: end if

14: end for

15: SEND con firmation to data client server

16: else

17: EXPONENTIAL_BACKOFF

18: end if

19: SLEEP until current_storage < max_storage (files are deleted)
20: end if

21: end while

22: end function

4 Complete Simulator of BOINC Infrastructures

In order to study the alternative presented in the previous section, we have
implemented the functionality in ComBoS. ComBoS [2] is a Complete simulator
of BOINC Infrastructures developed by the authors. ComBoS has been imple-
mented in C programming language, with the help of the tools provided by the
MSG API of SimGrid [13]. In this section we describe the architecture of the
simulator in the simplest possible way. We have divided all the components of
the simulator into two groups: the server side and the client side. The specifica-
tion of the networks that connect both groups is detailed in the client side. In
the server side, jobs are created and distributed to the clients. A BOINC job has
two parts [10]:

Improving the Performance of Volunteer Computing with Data Volunteers 185

Table 1. ComBoS new parameters (necessary with our alternative).

Server parameter Description

ndata_client_servers | Number of data client servers of the project.
dsreplication Number of replicas of each file in the data servers.
dcreplication Number of replicas of each file in the data clients.

output_file_storage | Where to upload output files [0 -> data servers, 1 -> data clients]. Default is 0.

Client parameter Description
ndata_clients Number of data volunteers of the group.
st_distri Storage fit distribution of the data volunteers:

‘Weibull, Gamma, Lognormal, Normal, Hyperexponential

— A workunit describing the computation to be performed.

— One or more results, each of which describes an instance of a computation,
either unstarted, in progress, or completed. The BOINC client software refers
to results as tasks. In this paper, we use both terms interchangeably.

4.1 Server Side

Servers are responsible for managing projects. The architecture of the server side
is shown in Fig. 2. The server side of a project consist of two parts [15]:

— A project back end that supplies applications and workunits, and that han-
dles the computational results. It includes: a work generator, which creates
workunits and their corresponding input files; a validator that examines sets
of results and selects canonical results; an assimilator that handles workunits
that are completed; and a file deleter, which deletes input and output files
that are no longer needed.

— A BOINC server complex that manages data distribution and collection. It
includes: one or more scheduling servers (sometimes called task servers), that
communicate with participant hosts; and data servers, that distribute input
files and collect output files. For small projects, if there are no data servers,
scheduling servers also operate as data servers.

ComBoS allows for the definition of multiple projects. For each project, users
must define the parameters described in [2] and in Table 1. In addition, we have
included the data client server functionality described in Sect. 3.

4.2 Client Side

In ComBoS [2], the client side is formed by groups of Volunteer Nodes (VN). VN
are used by the participants who join a BOINC-based project. Each VN group
in ComBoS can be attached to any set of projects, and the client performs CPU
scheduling among all runnable jobs. A VN is responsible for asking a project for
more work, and scheduling the jobs of the different projects.

The BOINC client implements two related scheduling policies:

186 S. Alonso-Monsalve et al.

— CPU scheduling: of the currently runnable jobs, which to run. Of the pre-
empted jobs, which to keep in memory.

— Work fetch: when to ask a project for more work, which project to ask, and
how much work to ask for.

The scheduling is based on a round-robin between projects, weighted accord-
ing to their resource share. This scheduling is described in detail in [4]. In addi-
tion, we have relied on the client scheduler code implemented in [16]. In Com-
BoS, each client is implemented with at least three different threads: the client
main thread, which updates the client parameters every scheduling interval; the
work fetch thread, which selects the project to ask for work; and the execution
threads, one per attached project, that execute the tasks. However, our simu-
lator is complemented with the most important features of the real scheduler
(deadline scheduling, long term debt, fair sharing and exponential back-off).

Apart from that, ComBoS allows for the definition of multiple VN groups.
The power and the availability of each host of the group is obtained from a
traces file. Alternatively, the power and the availability can be modelled with
input statistical distributions. For each group, users must define the parame-
ters described in [2] and in Table1. To simulate VN groups using SimGrid,
we have used the cluster entity. Like real clusters, each cluster contains many
hosts interconnected by some dedicated network. SimGrid does not allow us to
fix the power and availability of individual hosts within a cluster, so we have
implemented the necessary functionality in order to solve the problem. Users
can define the power and availability of the VN hosts via either a traces file or
distribution functions. For example, in the case of the SETI@home project, we
have analyzed the 3,900,000 hosts that participate in this project. In order to
evaluate our alternative, we have included the data client functionality described
in Sect. 3.

4.3 Validation of the Simulator

To validate the complete simulator, we have relied on data from the BOINCstats
website [11], which provides official statistical results of BOINC projects. In this
section, we analyze the behavior of ComBoS considering the simulation results
of the SETI@home, Einstein@home and ATLAS@home projects.

We have used the CPU power traces of the client hosts that make up the
VN of each project. We have not used any other traces. In order to model the
availability and unavailability of the hosts, we used the results obtained in [8].
This research analyzed about 230,000 hosts’ availability traces obtained from
the SETI@home project. According to this paper, 21% of the hosts exhibit truly
random availability intervals, and it also measured the goodness of fit of the
resulting distributions using standard probability-probability (PP) plots. For
availability, the authors saw that in most cases the Weibull distribution is a
good fit. For unavailability, the distribution that offers the best fit is the log-
normal. The parameters used for the Weibull distribution are shape = 0.393 and
scale = 2.964. For the log-normal, the parameters obtained and used in ComBoS

Improving the Performance of Volunteer Computing with Data Volunteers 187

Table 2. Validation of the whole simulator.

Project Total hosts | Active hosts | BOINCstats ComBoS

GigaFLOPS | Credit/day | GigaFLOPS | Credit/day
SETI@Qhome 3,970,427 175,220 864,711 171,785,234 | 865,001 168,057,478
Einstein@home | 1,496,566 68,338 1,044,515 208,902,921 | 1,028,172 205,634,486
ATLAS@home | 13,144 3,206 5,293 1,052,649 5,172 968,370

are a distribution with mean p = —0.586 and standard deviation o = 2.844. All
these parameters were obtained from [8] too.

Table2 compares the actual results of the SETIQhome, Einstein@home
and ATLAS@home projects with those obtained with ComBoS in terms of
GigaFLOPS and credits. The error obtained is 2.2% for credit/day and 0.03% for
GigaFLOPS compared to the SETI@Qhome project; 1.6% for credit/day and for
GigaFLOPS compared to the Einstein@home project; and 8.1% for credit/day
and 2.3% for GigaFLOPS compared to the ATLAS@home project. We consider
that these results allow us to validate the whole simulator.

5 Evaluation and Analysis Results

In this section we will present different test cases using ComBoS [2]. Our goal
is to assess the performance of our alternative, which involves some volunteer
clients working as data servers, and has been described in the previous sections.
We are especially interested in analyzing bottlenecks and limits that this archi-
tecture presents compared to the current BOINC architecture. We will show
some practical examples of the ATLAS@home project using ComBoS, with the
subsequent analysis of the execution results. We have used the same host avail-
ability and unavailability parameters as those used in Sect.4.3. Each simulation
result presented in this section is based on the average of 20 runs. For a 95%
confidence interval, the error is less than & 3% for all values.

5.1 Files Replication

Input files can be replicated in one or more data volunteers, in addition to the
main server. In this case study we analyzed the throughput (in TeraFLOPS) and
the load of the server of the ATLAS@home project using five different values
for the replication parameter: from 1 to 5 (number of data volunteers that must
store a copy of each input file). We also compared these results with the results
of the original system (without our alternative). The storage capacity of the data
volunteers of the experiment follows a normal distribution with a mean of 20 GB
of storage per host. All simulations were performed with 3,200 hosts, which is
the current number of active hosts of the ATLAS@home project. Figure 3 shows
these results.

Figure 3a shows that for a certain percentage of data volunteers, the perfor-
mance of our alternative considerably surpasses the performance of the origi-
nal system. For example, with a replication factor of 3 and an amount of data

188 S. Alonso-Monsalve et al.

100 =¥
Original — Replication 2 —<— Replication 4
1w Replication 1 —— Replication 3 —— R ion 5 —v— H_V/")
(2]
4 » T
I M\ S
w7 - <
< 9
s ™]
= 9 =
5 s ° Original =——
o
_5’ GE’ Replication 1 ——
3 7 n 2 Replication 2 —¢—
E 25 4 Replication 3 ——
Replication 4
Replication 5 —v—
0 20 0 50 & 100 0 20 0 50 & 100
Data Volunteers (%) Data Volunteers (%)
(a) Throughput (TeraFlops). (b) Server load (%).
100 100
Ordinary Volunteers] —
Data Volunteers I N
)
7 & 75
3 19}
g 3
k] =1
g 54 Data Volunteers Il
50 o 50 N
5 — Ordinary Volunteers
1
H 5]
n 2
x 3
o]
©
a
0

4 5 0 20 80 100

2 3 40 60
Replication Data Volunteers (%)

(c) Server load (% caused by ordinary (d) Server load (% caused by ordinary
volunteers and by data volunteers) at the volunteers and by data volunteers) with
peek of throughput. replication 3.

Fig. 3. ATLAS@Qhome performance using our alternative and varying the input files
replication in data volunteers (3,200 active hosts).

volunteers that ranges between 20% to 60% of the total number of VN, our
alternative outperforms the original system in terms of throughput. Figure 3b
shows the server load in each simulation. The results obtained show that the
load of the server with our alternative is greatly reduced compared to the origi-
nal server load. Note that the higher the percentage of data volunteers, the larger
the load on the server is, because more data volunteers request input files from
the server. This shows that in order to implement this model, designers must
carefully choose the number of data volunteers. Figure 3¢ shows the server load
at the throughput peak of each replication factor. This figure shows the server
load caused by the ordinary volunteers and by the data volunteers. The lower
the replication factor, the greater the load that ordinary volunteers cause on the
main server, because when an ordinary client tries to download a file from a data
volunteer that turns out to be unavailable, the client then tries to download the
file from the next host on the input file address list, in which the last address
is always that of the main server. With a high replication factor (e.g. 5), there
are more options to download the same input file, so the load that ordinary
volunteers cause on the data server is solely due to the upload of output files.
Finally, Fig. 3d shows in detail the server load for a replication factor of 3.

Improving the Performance of Volunteer Computing with Data Volunteers 189

Data Volunteers: 1 DS ——

Data Volunteers: 2 DS —@—

Data Volunteers: 4 DS —&— A

2 /// Original: 1 DS, 2 DS, 4 DS wunn

Data Volunteers: 1 DS ——
Data Volunteers: 2 DS —@—
Data Volunteers: 4 DS —A—

Original: 1 DS =+
Original: 2 DS -
Original: 4 DS

//\\
AT

0 60
Data Volunteers (%)

8

Throughput (TeraFLOPS)

Data Servers Load (average %)

80 100 0 80 100

2 60
Data Volunteers (%)

(a) Throughput (TeraFlops). (b) Data servers load (%).

Ordinary Volunteers]
Data Volunteers I

100

Data Volunteers Il
Ordinary Volunteers

B

Data Servers Load (average %)
Data Servers Load (average %)

Original 4 0 20 80 100

1 2 40 60
Number of data servers Data Volunteers (%)

(c) Data servers load (% caused by ordi- (d) Server load (% caused by ordinary
nary volunteers and by data volunteers) volunteers and by data volunteers) with
at the peek of throughput. 4 data servers.

Fig. 4. ATLAS@home performance using our alternative and varying the number of
data servers (10,000 active hosts).

On the other hand, some projects, such as the ATLAS@home project, vali-
date each result just by checking that the corresponding output file exists, with-
out checking the file content. Therefore, for future work, it would be interesting
to analyze the performance of the project if ordinary volunteers upload output
files to data volunteers instead of uploading them to data servers.

5.2 Data Servers

In this experiment, we have tested our alternative using different numbers of
data servers. In these tests we have combined our alternative (usage of data
volunteers) with an improvement of the infrastructure (increasing the number
of data servers). We have set the replication parameter to 3 and increased the
number of volunteer nodes to 10,000. The other simulation parameters were the
same as in the previous experiment. Figure 4 shows the results of this experiment
for 1, 2, and 4 data servers. Like in the previous experiment, we have focused
our work on showing the throughput and the average load of the data servers of
the system.

190 S. Alonso-Monsalve et al.

Like in the previous case, there is a range in the percentage of data volunteers
in which the system throughput considerably outperforms that of the system
without data volunteers (Fig.4a). For example, with twice as many servers, our
alternative renders a throughput of 18 GigaFLOPS, which doubles the through-
put of the same system without our alternative. Furthermore, Fig.4b, ¢ and d
show the average server load analogously to the previous experiment.

It is interesting to mention how a small improvement in the infrastructure,
combined with our solution, can enhance the project throughput. In addition,
our solution allows for more volunteers in the system.

6 Conclusion and Future Work

This paper has presented a solution in order to improve the performance of
BOINC projects that have reached their limit due to the I/O bottleneck in data
servers. This solution involves having a percentage of the volunteer clients run-
ning as data servers, called data volunteers, using the same BOINC infrastruc-
ture. We have evaluated the performance of our alternative using a simulator
of our own, ComBoS. Our solution combines volunteer computing with peer-to-
peer computing (P2P), since the data volunteers run as clients when downloading
data files, and also as data servers when sending files to ordinary clients. To be
implemented, our alternative needs to include the security protocols (for exam-
ple, to traverse firewalls) that the P2P communications use. For future work, we
want to analyze more case studies and use the simulator in order to analyze the
energy consumption of the machines involved in a volunteer computing project.

References

1. Adam-Boundarios, C., Cameron, D., Filipcic, A., Lancon, E., Wu, W.:
ATLAS@Home: harnessing volunteer computing for HEP. In: 21st International
Conference on Computing in High Energy and Nuclear Physics, CHEP2015,
Okinawa, Japan (2015)

2. Alonso-Monsalve, S., Garcia-Carballeira, F., Calderén, A.: Analyzing the perfor-
mance of volunteer computing for data intensive applications. In: 14th Interna-
tional Conference on High Performance Computing & Simulation, HPCS 2016,
Innsbruck, Austria (2016)

3. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In:
5th IEEE/ACM International Workshop on Grid Computing, pp. 4-10 (2004)

4. Anderson, D.P.: Local scheduling for volunteer computing. In: IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2007, pp. 1-8. IEEE
(2007)

5. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
an experiment in public-resource computing. Commun. ACM 45(11), 56-61 (2002)

6. Anderson, D., Korpela, E., Walton, R.: High-performance task distribution for
volunteer computing. In: 2005 First International Conference on e-Science and
Grid Computing, pp. 8-203 (2005)

7. ATLAS@home Project Status. http://atlasathome.cern.ch/server_status.php

http://atlasathome.cern.ch/server_status.php

10.
11.
12.

13.

14.
15.
16.

17.
18.

19.

20.

21.

22.
23.
24.
25.

Improving the Performance of Volunteer Computing with Data Volunteers 191

Javadi, B., Kondo, D., Vincent, J.-M., Anderson, D.P.: Discovering statistical mod-
els of availability in large distributed systems: an empirical study of SETI@Qhome.
IEEE Trans. Parallel Distrib. Syst. 22, 1896-1903 (2011)

Balicki, J., Kortub, W., Paluszak, J.: Big data processing by volunteer comput-
ing supported by intelligent agents. In: Kryszkiewicz, M., Bandyopadhyay, S.,
Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 268-278. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-19941-2_26

BOINC Jobs. https://boinc.berkeley.edu/trac/wiki/JobIn

BOINCstats. http://boincstats.com/en/stats

Bruno, R., Ferreira, P.: FreeCycles: efficient data distribution for volunteer com-
puting. In: CloudDP 2014 Proceedings of the Fourth International Workshop on
Cloud Data and Platforms (2014)

Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. J. Parallel
Distrib. Comput. 74(10), 2899-2917 (2014)

Climateprediction.net. http://climateprediction.net

Creating BOINC Projects. https://boinc.berkeley.edu/boinc.pdf

Donassolo, B., Casanova, H., Legrand, A., Velho, P.: Fast and scalable simulation
of volunteer computing systems using SimGrid. In: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, HPDC
2010, pp. 605-612. ACM, New York (2010)

Einstein@home. http://www.einsteinathome.org

Elwaer, A., Taylor, I.J., Rana, O.: Optimizing data distribution in volunteer com-
puting systems using resources of participants. Scalable Comput.: Pract. Exp. 12,
193-208 (2011)

Garcia-Lépez, P., Datta, A., Barcellos, M., Montresor, A., Higashino, T.,
Felber, P., Epema, D., lamnitchi, A., Riviere, E.: Edge-centric computing: vision
and challenges. ACM SIGCOMM Comput. Commun. 45, 37-42 (2015)

Kelly, 1., Taulor, I.: Bridging the data management gap between service and desk-
top grids. In: Kacsuk, P., Lovas, R., Nemeth, Z. (eds.) Distributed and Parallel
Systems In Focus: Desktop Grid Computing. Springer, Heidelberg (2008)

LIGO Scientific Collaboration, Anderson, D.P.: Einstein@Home search for periodic
gravitational waves in early S5 LIGO data. Phys. Rev. D, 80, 042003 (2009)
Paul, P.: SETI@home project and its website. Crossroads 8(3), 3-5 (2002)

Top. 500 Supercomputer list. http://www.top500.org/

Volunteer Computing. http://boinc.berkeley.edu/trac/wiki/VolunteerComputing
Werthimer, D., Cobb, J., Lebofsky, M., Anderson, D., Korpela, E.: SETITQHOME-
massively distributed computing for SETI. Comput. Sci. Eng. 3(1), 78-83 (2001)

http://dx.doi.org/10.1007/978-3-319-19941-2_26
https://boinc.berkeley.edu/trac/wiki/JobIn
http://boincstats.com/en/stats
http://climateprediction.net
https://boinc.berkeley.edu/boinc.pdf
http://www.einsteinathome.org
http://www.top500.org/
http://boinc.berkeley.edu/trac/wiki/VolunteerComputing

	Improving the Performance of Volunteer Computing with Data Volunteers: A Case Study with the ATLAS@home Project
	1 Introduction
	2 Related Work
	3 Alternative with Data Volunteers Using BOINC
	4 Complete Simulator of BOINC Infrastructures
	4.1 Server Side
	4.2 Client Side
	4.3 Validation of the Simulator

	5 Evaluation and Analysis Results
	5.1 Files Replication
	5.2 Data Servers

	6 Conclusion and Future Work
	References

