
Chapter 9

Double-Diffusive Convection

In this chapter we turn our attention to processes of combined (simultaneous) heat

and mass transfer that are driven by buoyancy. The density gradients that provide

the driving buoyancy force are induced by the combined effects of temperature and

species concentration nonuniformities present in the fluid-saturated medium. The

present chapter is guided by the review of Trevisan and Bejan (1990), which began

by showing that the conservation statements for mass, momentum, energy, and

chemical species are the equations that have been presented here in Chaps. 1–3.

In particular the material in Sect. 3.3 is relevant. The new feature is that beginning

with Eq. (3.26) the buoyancy effect in the momentum equation is represented by

two terms, one due to temperature gradients and the other to concentration gradi-

ents. Useful review articles on double-diffusive convection include those by

Mojtabi and Charrier-Mojtabi (2000, 2005), Mamou (2002b), Diersch and Kolditz

(2002), and Mojtabi et al. (2015).

9.1 Vertical Heat and Mass Transfer

9.1.1 Horton-Rogers-Lapwood Problem

The interesting effects in double-diffusive (or thermohaline, if heat and salt are

involved) convection arise from the fact that heat diffuses more rapidly than a

dissolved substance. Whereas a stratified layer involving a single-component fluid

is stable if the density decreases upward, a similar layer involving a fluid consisting

of two components, which can diffuse relative to each other, may be dynamically

unstable. If a fluid packet of such a mixture is displaced vertically, it loses any

excess heat more rapidly than any excess solute. The resulting buoyancy may act

to either increase the displacement of the particle, and thus cause monotonic

instability, or reverse the direction of the displacement and so cause oscillatory
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instability, depending on whether the solute gradient is destabilizing and the

temperature gradient is stabilizing or vice versa.

The double-diffusive generalization of the Horton-Rogers-Lapwood problem

was studied by Nield (1968). In terms of the temperature T and the concentration

C, we suppose that the density of the mixture is given by Eq. (3.26),

ρf ¼ ρ0 1� β T � T0ð Þ � βC C� C0ð Þ½ �: ð9:1Þ

In this equation βC ¼ �ρf
�1∂ρf/∂C is a concentration expansion coefficient

analogous to the thermal expansion coefficient β ¼ �ρf
�1∂ρf/∂T. We assume that

βC and β are constants. In most practical situations βC will have a negative value.

As shown in Fig. 9.1, we suppose that the imposed conditions on C are

C ¼ C0 þ ΔC at z ¼ 0 and C ¼ C0 at z ¼ H: ð9:2Þ

The conservation equation for chemical species is

φ
∂C
∂t

þ v �∇C ¼ Dm∇2C ð9:3Þ

and the steady-state distribution is linear:

Cs ¼ C0 þ ΔC 1� z

H

� �
: ð9:4Þ

Proceeding as in Sect. 6.2, choosing ΔC as concentration scale and puttingbC ¼ C0=ΔC, and writing

bC ¼ γ zð Þexp sbt þ ilbx þ imby� �
, ð9:5Þ

we obtain

Le�1 D2 � α2
� �� φ

σ
s

h i
γ ¼ �W: ð9:6Þ
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Fig. 9.1 Infinite horizontal

porous layer with linear

distributions of temperature

and concentration
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In place of Eq. (6.23) we now have, if γa is negligible,

D2 � α2
� �

W ¼ �α2Ra θ þ Nγð Þ, ð9:7Þ

while Eq. (6.22) remains unchanged, namely

D2 � α2 � s
� �

θ ¼ �W: ð9:8Þ

The nondimensional parameters that have appeared are the Rayleigh and Lewis

numbers

Ra ¼ gβKHΔT
ναm

, Le ¼ αm
Dm

, ð9:9Þ

and the buoyancy ratio

N ¼ βCΔC
βΔT

: ð9:10Þ

If both boundaries are impermeable, isothermal (conducting), and isosolutal

(constant C), then Eqs. (9.6)–(9.8) must be solved subject to

W ¼ θ ¼ γ ¼ 0 at bz ¼ 0 and bz ¼ 1: ð9:11Þ

Solutions of the form

W; θ; γð Þ ¼ W0; θ0; γ0ð Þ sin jπbz ð9:12Þ

are possible if

J J þ sð Þ J þ Φsð Þ ¼ Ra α2 J þ Φsð Þ þ RaDα
2 J þ sð Þ, ð9:13Þ

where

J ¼ j2π2 þ α2, Φ ¼ φ

σ
Le, RaD ¼ NLeRa ¼ gβCKHΔC

νDm

: ð9:14Þ

At marginal stability, s ¼ iω where ω is real, and the real and imaginary parts of

Eq. (9.13) yield

J2 �Φω2 ¼ Raþ RaDð Þα2, ð9:15Þ

ω J2 1þΦð Þ � ΦRaþ RaDð Þα2� � ¼ 0: ð9:16Þ
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This system implies either ω ¼ 0 and

Raþ RaD ¼ J2

α2
, ð9:17Þ

or

ΦRaþ RaD ¼ 1þ Φð Þ J
2

α2
, ð9:18Þ

and

Φ
ω2

α2
¼ J2

α2
� Raþ RaDð Þ: ð9:19Þ

Since J2/α2 has the minimum value 4π2, attained when j ¼ 1 and α ¼ π, we
conclude that the region of stability in the (Ra, RaD) plane is bounded by the lines

Raþ RaD ¼ 4π2, ð9:20Þ

ΦRaþ RaD ¼ 4π2 1þ Φð Þ, ð9:21Þ

Equation (9.20) represents the boundary for monotonic or stationary instability,

and Eq. (9.21) is the boundary for oscillatory instability with frequency ω given by

Φ
ω2

π2
¼ 4π2 � Raþ RaDð Þ: ð9:22Þ

Clearly the right-hand side of Eq. (9.22) must be nonnegative in order to yield a

real value for ω.
If Φ ¼ 1, then the lines (9.20) and (9.21) are parallel, with the former being

nearer the origin. Otherwise they intersect at

Ra ¼ 4π2Φ

Φ� 1
, RaD ¼ 4π2

1� Φ
, ð9:23Þ

Illustrated in Fig. 9.2 is the case Φ > 1, which corresponds to Le > σ/φ.
The cases of other combinations of boundary conditions can be treated in a

similar manner. If the boundary conditions on the temperature perturbation θ are

formally identical with those of the solute concentration perturbation γ, then the

monotonic instability boundary is a straight line:

Raþ RaD ¼ Rac: ð9:24Þ
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One can interpret Ra as the ratio of the rate of release of thermal energy to the

rate of viscous dissipation of energy and a similar interpretation applies to RaD.

When the thermal and solutal boundary conditions are formally identical, the

eigenfunctions of the purely thermal and purely solutal problems are identical,

and consequently the thermal and solutal effects are additive. When the two sets of

boundary conditions are different, the coupling between the thermal and solutal

agencies is less than perfect and one can expect that the monotonic instability

boundary will be concave toward the origin, since then Ra + RaD � Rac with

equality occurring only when Ra ¼ 0 or RaD ¼ 0.

When Ra and RaD are both positive the double-diffusive situation is qualitatively

similar to the single-diffusive one. When Ra and RaD have opposite signs there

appear interesting new phenomena: multiple steady- and unsteady-state solutions,

subcritical flows, periodic or chaotic oscillatory flows, traveling waves in relatively

large aspect ratio enclosures, and axisymmetric flow structures. Such phenomena

arise generally because the different diffusivities lead to different time scales for the

heat and solute transfer. But similar phenomena can arise even when the thermal

and solutal diffusivities are nearly equal because of the factor φ/σ (often called the

normalized porosity). This is because heat is transferred through both the fluid and

solid phases but the solute is necessarily transported through the fluid phase only

since the porous matrix material is typically impermeable.

Experiments with a Hele-Shaw cell by Cooper et al. (1997, 2001) and Pringle

et al. (2002) yielded results in agreement with the theory.

In his study of gas/vapor mixtures, Davidson (1986) allowed for the temperature

dependence of mixture properties. Murty et al. (1994b) studied numerically the

stability of thermohaline convection in a rectangular box. Nield (1995b) pointed out

that they had overlooked the possibility of oscillatory instability.

Some asymptotic formulas were presented by Rosenberg and Spera (1992).

Forsyth and Simpson (1991) presented a two-phase, two-component model.

Stable
regime

Stationary
convection

RaD = N Le Ra

4π2

4π2 Ra

Oscillatory
convection

Fig. 9.2 The stability and

instability domains for

double-diffusive convection

in a horizontal porous layer
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The special case of isoflux boundary conditions was discussed by Nield and

Kuznetsov (2016c). In this case convection occurs at a very small wavenumber and

oscillatory convection is inhibited.

9.1.2 Nonlinear Initial Profiles

Since the diffusion time for a solute is relatively large, it is particularly appropriate

to discuss the case when the concentration profile is nonlinear, the basic concen-

tration distribution being given by

Cs ¼ C0 þ ΔC 1� Fc bzð Þ½ �: ð9:25Þ
The corresponding nondimensional concentration gradient is f c bzð Þ ¼ F0

c bzð Þ,
and satisfies < f 0c bzð Þ >¼ 1, where the angle brackets denote the vertical average.

Then, in place of Eq. (9.6) one now has

Le�1 D2 � α2
� �� φ

σ
s

h i
γ ¼ �f c bzð ÞW: ð9:26Þ

In the case of impermeable conducting boundaries, the Galerkin method of

solution (trial functions of the form sin lπbz with l ¼ 1, 2,. . .) gives as the first

approximation to the stability boundary for monotonic instability,

Raþ 2RaD < f c bzð Þsin 2π2bz >¼ 4π2: ð9:27Þ
For example, for the cosine profile with Fc(bz) ¼ (1 � cosπẑ)/2, and hence with

fc ¼ (π/2) sinπẑ, we get

Raþ 4

3
RaD ¼ 4π2: ð9:28Þ

Similarly, for the step-function concentration, with Fc(ẑ) ¼ 0 for 0 � ẑ < ½ and

Fc(ẑ) ¼ 1 for ½ < ẑ � 1, so that fc(ẑ) ¼ δ(ẑ � ½), we have

Raþ RaD ¼ 4π2: ð9:29Þ
The approximation leading to this result requires that jRaDj be small.

9.1.3 Finite-Amplitude Effects

Experiments in viscous fluids have shown that monotonic instability, associated

with warm salty water above cool fresh water, appears in the form of “fingers” that

grow downward from the upper part of the layer. More generally, fingering occurs
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when the faster diffusing component is stabilizing and the slower diffusing com-

ponent is destabilizing. This situation is referred to as the fingering regime. On the

other hand, oscillatory instability, associated with warm salty water below cool

fresh water, gives rise to a series of convecting layers that form in turn, each on top

of its predecessor. This situation is referred to as the diffusive regime.

In the case of a porous medium the questions are whether the fingers form fast

enough before they are destroyed by dispersive effects and whether their width is

large enough compared to the grain size for Darcy’s law to be applicable. Following

earlier work by Taunton et al. (1972), these questions were examined by Green

(1984), who, on the basis of his detailed analysis, predicted that fluxes associated

with double-diffusive fingering may well be important but horizontal dispersion

may limit the vertical coherence of the fingers. In their visualization and flux

experiments using a sand-tank model and a salt-sugar system, Imhoff and Green

(1988) found that fingering did indeed occur but it was quite unsteady, in contrast to

the quasisteady fingering observed in a viscous fluid (Fig. 9.3). Despite the unstead-

iness, good agreement was attained with the theoretical predictions. Imhoff and

Green (1988) concluded that fingering could play a major role in the vertical

transport of contaminants in groundwater.

(It should be noted that these fingers are distinct from those studied extensively by

Wooding (1959, 1960a, b, 1962a, b, 1964, 1969). The spacing of the double-diffusive

fingers is determined by the critical wavenumber determined by the Rayleigh–Bćnard

instability theory while the monodiffusive fingers investigated by Wooding arise

from Rayleigh–Taylor instability and the spacing is on a smaller length scale. In this

case the hydrological situation can be complex (Xie et al. 2012).)

That layered double-diffusive convection is possible in a porous medium was

shown by Griffiths (1981). His experiments with a two-layer convecting system in a

Hele–Shaw cell and a porous medium of glass spheres indicated that a thin

“diffusive” interface is maintained against diffusive thickening, despite the lack

of inertial forces. The solute and thermal buoyancy fluxes are approximately in the

ratio r ¼ φ Le�1/2. Griffiths explained the behavior of the heat flux in terms of a

coupling between purely thermal convection within each convecting layer and

220 mint = 60 min 460 min 908 min

Fig. 9.3 A series of pictures of finger growth. Dyed sugar solution (light color) overlies heavier
salt solution (Imhoff and Green 1988, with permission from Cambridge University Press)
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diffusion through the density interface. Further experiments in a Hele–Shaw cell by

Pringle and Glass (2002) explored the influence of concentration at a fixed buoy-

ancy ratio.

Rudraiah et al. (1982a) applied nonlinear stability analysis to the case of a

porous layer with impermeable, isothermal, and isosolutal boundaries. They

reported Nusselt and Sherwood numbers for Ra values up to 300 and RaD values

up to 70. Their results show that finite-amplitude instability is possible at subcritical

values of Ra.

Brand and Steinberg (1983a, b) and Brand et al. (1983) have obtained amplitude

equations appropriate for the onset of monotonic instability and oscillatory insta-

bility and also for points in the vicinity of the lines of monotonic and oscillatory

instability. Brand et al. (1983) found an experimentally feasible example of a co-

dimensional-two bifurcation (an intersection of monotonic and oscillatory instabil-

ity boundaries). Brand and Steinberg (1983b) predicted that the Nusselt number and

also the “Froude” (Sherwood) number should oscillate with a frequency twice that

of the temperature and concentration fields. Small-amplitude nonlinear solutions in

the form of standing and traveling waves and the transition to finite-amplitude

overturning convection, as predicted by bifurcation theory, were studied by

Knobloch (1986). Rehberg and Ahlers (1985) reported heat transfer measurements

in a normal-fluid He3–He4 mixture in a porous medium. They found a bifurcation to

steady or oscillatory flow, depending on the mean temperature, in accordance with

theoretical predictions.

Murray and Chen (1989) have extended the linear stability theory, taking into

account effects of temperature-dependent viscosity and volumetric expansion coef-

ficients and a nonlinear basic salinity profile. They also performed experiments with

glass beads in a box with rigid isothermal lower and upper boundaries. These

provide a linear basic-state temperature profile but only allow a nonlinear and

time-dependent basic-state salinity profile. With distilled water as the fluid, the

convection pattern consisted of two-dimensional rolls with axes parallel to the

shorter side. In the presence of stabilizing salinity gradients, the onset of convection

was marked by a dramatic increase in heat flux at a critical temperature difference

ΔT. The convection pattern was three-dimensional, whereas two-dimensional rolls

are observed for single-component convection in the same apparatus. WhenΔTwas

then reduced from supercritical to subcritical values the heat flux curve completed a

hysteresis loop.

For the case of uniform flux boundary conditions, Mamou et al. (1994) have

obtained both analytical asymptotic and numerical solutions, the latter for various

aspect ratios of a rectangular box. Both uniform flux and uniform temperature

boundary conditions were considered by Mamou and Vasseur (1999) in their linear

and nonlinear stability, analytical, and numerical studies. They identified four

regimes dependent on the governing parameters: stable diffusive, subcritical con-

vective, oscillatory, and augmenting direct regimes. Their results indicated that

steady convection can arise at Rayleigh numbers below the supercritical value for

linear stability, indicating the development of subcritical flows. They also demon-

strated that in the overstable regime multiple solutions can exist. Also, their
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numerical results indicate the possible occurrence of traveling waves in an infinite

horizontal enclosure.

A nonlinear stability analysis using the Lyapunov direct method was reported by

Lombardo et al. (2001) and Lombardo and Mulone (2002). A numerical study of the

governing and perturbation equations, with emphasis on the transition from steady

to oscillatory flows and with an acceleration parameter taken into consideration,

was conducted by Mamou (2003). The numerical and analytic study by Mbaye and

Bilgen (2001) demonstrated the existence of subcritical oscillatory instabilities. The

numerical study byMohamad et al. (2004) for convection in a rectangular enclosure

examined the effect of varying the lateral aspect ratio. Schoofs et al. (1999)

discussed chaotic thermohaline convection in the context of low-porosity hydro-

thermal systems. Schoofs and Spera (2003) in their numerical study observed that

increasing the ratio of chemical buoyancy to thermal buoyancy, with the latter kept

fixed, led to a transition from steady to chaotic convection with a stable limit cycle

appearing at the transition. The dynamics of the chaotic flow is characterized by

transitions between layered and nonlayered patterns as a result of the spontaneous

formation and disappearance of gravitationally stable interfaces. These interfaces

temporally divide the domain in layers of distinct solute concentration and lead to a

significant reduction of kinetic energy and vertical heat and solute fluxes. A scale

analysis, supported by numerical calculations, was presented by Bourich et al.

(2004c) for the case of bottom heating and a horizontal solutal gradient. The case

of mixed boundary conditions (constant temperature and constant mass flux, or vice

versa) was studied numerically by Mahidjiba et al. (2000a). They found that when

the thermal and solute effects are opposing the convection patterns differ markedly

from the classic Bénard ones.

Mulone and Straughan described an operative method to obtain necessary and

sufficient stability conditions. An extension to the case of systems with spatially

dependent coefficients (such as the case of a concentration based internal heat

source) was made by Hill and Malashetty (2012). Falsaperla et al. (2012) studied

rotating porous media under general boundary conditions. Peterson et al. (2010)

performed a multiresolution simulation of double-diffusive convection. Umla et al.

(2010) examined roll convection of binary fluid mixtures. Global stability for

penetrative convection was studied by Hill (2008). A differential equation approach

to obtain global stability for radiation-induced convection was introduced by Hill

(2009). Lo Jacono et al. (2010) studied the origin and properties of time-

independent spatially localized convection, computing using numerical continua-

tion different types of single and multipulse states. Rionero (2012d) re-examined

global nonlinear stability in double-diffusive convection in the light of hidden

symmetries. Diaz and Brevdo (2011, 2012) examined the absolute/convective

instability dichotomy at the onset of convection with either horizontal or vertical

solutal and inclined thermal gradients and with horizontal throughflow.

The effect of form drag on nonlinear convection and Hopf bifurcation (that

characterizes the transition from steady to unsteady convection) was studied by

Rebhi et al. (2016a, b). They found that hysteresis could be induced by the form

drag, and that a bistability phenomenon arose when the subcritical instability

threshold was close to the threshold for supercritical instability.
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9.1.4 Soret and Dufour Cross-Diffusion Effects

In the case of steep temperature gradients the cross coupling between thermal

diffusion and solutal diffusion may no longer be negligible. The tendency of a

solute to diffuse under the influence of a temperature gradient is known as the Soret

effect.

In its simplest expression, the conservation equation for C now becomes

φ
∂C
∂t

þ v �∇C ¼ Dm∇2Cþ DCT∇2T, ð9:30Þ

where the Soret coefficient DCT is treatable as a constant. If the Soret parameter S is
defined as

S ¼ � βCDCT

βDm

, ð9:31Þ

then the equation for the marginal state of monotonic instability in the absence of an

imposed solutal gradient is

Ra ¼ 4π2

1þ S 1þ Leð Þ : ð9:32Þ

The corresponding equation for marginal oscillatory instability is

Ra ¼ 4π2 σ þ φLeð Þ
Le φþ σSð Þ : ð9:33Þ

The general situation, with both cross-diffusion and double diffusion (thermal

and solutal gradients imposed), was analyzed by Patil and Rudraiah (1980). Taslim

and Narusawa (1986) showed that there is an analogy between cross-diffusion

(Soret and Dufour effects) and double diffusion in the sense that the equations

can be put in mathematically identical form. A general study of the Soret effect in

multicomponent flow was made by Lacabanne et al. (2002).

The linear analysis of Lawson et al. (1976), based on the kinetic theory of gases

and leading to a Soret effect, was put forward to explain the lowering of the critical

Rayleigh number in one gas due to the presence of another. This effect was

observed in a binary mixture of helium and nitrogen by Lawson and Yang

(1975). Lawson et al. (1976) observed that the critical Rayleigh number may be

lower or greater than for a pure fluid layer depending upon whether thermal

diffusion induces the heavier component of the mixture to move toward the cold

or hot boundary, respectively. Brand and Steinberg (1983a) pointed out that with

the Soret effect it is possible to have oscillatory convection induced by heating from

above. Bedrikovetskii et al. (1993) included the effect of pressure work. Rudraiah
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and Siddheshwar (1998) presented a weak nonlinear stability analysis with cross-

diffusion taken into account. Ouarzazi et al. (2002) studied pattern formation in the

presence of horizontal throughflow. Gaillard et al. (2003) investigated oscillatory

convection in a geological environment. Costesèque et al. (2002) presented a

synthesis of experimental and numerical studies.

The experimental and numerical study of Benano-Melly et al. (2001) was

concerned with Soret coefficient measurement in a medium subjected to a horizon-

tal thermal gradient. The onset of convection in a vertical layer subject to uniform

heat fluxes along the vertical walls was treated analytically and numerically by Joly

et al. (2001). The Soret effect also was included in the numerical study by Nejad

et al. (2001). Sovran et al. (2001) studied analytically and numerically the onset of

Soret-driven convection in an infinite horizontal layer with an applied vertical

temperature gradient. They found that for a layer heated from above, the motionless

solution is infinitely linearly stable in N> 0, while a stationary bifurcation occurs in

N < 0. For a layer heated from below, the onset of convection is steady or

oscillatory depending on whether N is above or below a certain value that depends

on Le and the normalized porosity. The numerical study of Faruque et al. (2004) of

the situation where fluid properties vary with temperature, composition, and pres-

sure showed that for lateral heating the Soret effect was weak, but with bottom

heating the Soret effect was more pronounced.

Further studies of Soret convection, building on studies discussed in Sect. 1.9,

were reported by Jiang et al. (2004a, b, c) and by Saghir et al. (2005a). Attention has

been placed on thermo-gravitational convection, a topic treated by Estebe and

Schott (1970). This refers to a coupling effect when a fluid mixture saturating a

vertical porous cavity in a gravitational field is exposed to a uniform horizontal

thermal gradient, and thermo-diffusion produces a concentration gradient that leads

to species separation. The porous media situation has been considered by Jamet

et al. (1992) and Marcoux and Charrier-Mojtabi (1998). The numerical results of

Marcoux and Mojtabi show the existence of a maximum separation corresponding

to an optimal Rayleigh number as expected, but there remains a difference between

the numerical results for that optimal value and experimental results of Jamet et al.

(1992). The study by Jiang et al. (2004b) concentrated on the two-dimensional

simulation of thermo-gravitation convection in a laterally heated vertical column

with space-dependent thermal, molecular, and pressure diffusion coefficients taken

as functions of temperature using the irreversible thermodynamics theory of Shukla

and Firoozabadi. The numerical results reveal that the lighter fluid component

migrates to the hot side of the cavity, and as the permeability increases the

component separation in the thermal diffusion process first increases, reaches a

peak, and then decreases. Jiang et al. (2004b) reported values of a separation ratio

for a methane and n-butane mixture. Further studies of separation have been made

by Er-Raki et al. (2008a, b) (vertical enclosure), Elhajjar et al. (2008, 2009, 2010)

(horizontal or inclined cell), Bennacer et al. (2009) (multidomain separation), and

Charrier-Mojtabi et al. (2011) (horizontal slot submitted to a heat flux) and Abahri

et al. (2017) (horizontal annulus). Jiang et al. (2004c) explicitly investigated the

effect of heterogeneous permeability, something that strongly affects the Soret
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coefficient. Saghir et al. (2005a) have reviewed some aspects of thermo-diffusion in

porous media.

Soret-driven convection in a shallow enclosure and with uniform heat (or both

heat and mass) fluxes was studied analytically and numerically by Bourich et al.

(2002, 2004e, f, 2005a, b), Er-Raki et al. (2005), and Bourich et al. (2016)

(magnetic field). Depending on the values of Le and N, subcritical stationary

convection may or may not be possible and parallel convective flow may or may

not be possible. Convection in a shallow enclosure was also studied by Bourich

et al. (2005a, b).

Enclosures heated and salted from the sides were studied by Er-Raki et al.

(2006a, 2007, 2008, 2009, 2011). In this situation subcritical convection is possible.

An analytical and numerical study of convection in a horizontal layer with

uniform heat flux applied at the horizontal walls, and with or without constant

mass flux at those walls, was reported by Bahloul et al. (2003) and Boutana et al.

(2004). A structural stability result was reported by Straughan and Hutter (1999).

Abbasi et al. (2011) studied the thermo-diffusion of carbon dioxide in various

binary mixtures. Theoretical predictions of effective thermo-diffusion coefficients

were made by Davarzani et al. (2010). A ternary mixture was examined by Jaber

et al. (2008). Heterogeneous media were analyzed numerically by Jiang et al.

(2006a). A doubly stratified medium was studied by Narayana and Murthy

(2007). Nonlinear convection due to compositional and thermal buoyancy was

treated by Tagare and Babu (2007). A strongly endothermic chemical reaction

system was studied by Li et al. (2006a). Saravanan and Jegajoth (2010) examined

a stationary fingering stability with coupled molecular diffusion and thermal

nonequilibrium. Soret-driven convection in a cavity with perfectly conducting

boundaries was analyzed by Lyubimov et al. (2011). Soret-driven convection in a

horizontal layer in the presence of a heat or concentration source was studied by

Goldobin and Lyubimov (2007). An analytical and numerical stability analysis of

Soret-driven convection in a horizontal layer was made by Charrier-Mojtabi et al.

(2007). A square cavity heated and salted from below was studied by Khadiri et al.

(2010a). A square cavity with icy fluid was treated by Alloui et al. (2010a). The

effect of anisotropy on linear and nonlinear convection in a horizontal layer was

examined by Gaikwad et al. (2009a, b), while Gaikwad and Prasad (2011) studied

the case of a couple-stress fluid. A study of stationary and oscillatory convection of

binary fluids was made by Augustin et al. (2010).

Other studies involving cross-diffusion were made by Mansour et al. (2007a, b)

(horizontal heat flux balanced by Soret mass flux), Motsa (2008), Rawat and

Bhargava (2009) (micropolar fluid), Ahmed et al. (2011a, b) (vertical channel

with magnetic field and chemical reaction), Jaimala and Goyal (viscoelastic

fluid), Malashetty and Biradar (2012) (nonlinear stability), Gaikwad and Kamble

(2012), Gaikwad and Kousar (2012) (rotation and chemical reaction), Patil and

Parvathy (1989) (anisotropy), Malashetty and Biradar (2011b) (viscoelastic fluid),

Gaikwad and Dhanraj (2014b) (viscoelastic fluid), Goyal and Jaimala (2012)

(micropolar fluid), Gaikwad and Kamble (2014), (rotation, anisotropy), Saravanan

and Keerthana (2012) (rotation), Rionero (2013a, b, c) (rotation), Ouattara et al.
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(2012) (conducting boundary plates), Ferdows et al. (2013) (velocity and thermal

slip, temperature-dependent viscosity, concentration-dependent diffusivity), Basu

and Layek (2013) (heating and salting from above), Nik-Ghazali et al. (2014)

(square annulus with cold inner surface and hot outer surface), Sekar et al. (2006)

(ferrofluid), Li et al. (2013a) (endothermic reaction), Hidouri et al. (2013) (square

cavity, entropy generation), Khidir and Sibanda (magnetic field, rotation), Sekar

and Raju (2014) (ferrofluid, magnetic field dependent viscosity, anisotropy),

Chamkha et al. (2014a) (rectangular duct, inclined magnetic field), Ajibade

(2014) (vertical microchannel, dual-phase lag, unsteady flow), Altawallbeh et al.

(2013a) (nonlinear stability, anisotropy, internal heat source), Wang et al. (2014a)

(horizontal cavity), Roy and Murthy (2015) (horizontal channel, viscous dissipa-

tion), Augustin et al. (2015) (review), Yacine et al. (2016) (separation of binary

mixtures, cross-heat fluxes), and Larabi et al. (2016) (ternary mixture).

The possible role of the Soret effect on the development of salinity gradients in

geologic basins was discussed by Nield et al. (2013).

The topic of thermo-gravitational diffusion in a binary fluid was surveyed by

Mojtabi et al. (2015).

9.1.5 Flow at High Rayleigh Number

The interaction between the heat transfer and mass transfer processes in the

regime of strong convection was investigated on the basis of a two-dimensional

model by Trevisan and Bejan (1987b). They used scale analysis to back up their

numerical work. Figure 9.4 shows the main characteristics of the flow, temperature,

and concentration fields in one of the rolls that form. This particular flow is heat

transfer-driven in the sense that the dominant buoyancy effect is one due to

temperature gradients (N ¼ 0). The temperature field (Fig. 9.4b) shows the

formation of thermal boundary layers in the top and bottom end-turn regions of

the roll. The concentration field is illustrated in Fig. 9.4b–d. The top and bottom

concentration boundary layers become noticeably thinner as Le increases from

1 to 20.

The overall Nusselt numbers Nu and overall Sherwood number Sh are defined by

Nu ¼ �q00

kmΔT=H
, Sh ¼

�j

DmΔC=H
ð9:34Þ

where �q00 and �j are the heat and mass fluxes averaged over one of the horizontal

boundaries. In heat transfer-driven convection, jNj<< 1, it is found that the Nusselt

number scales as

Nu ¼ Ra=4π2
� �1=2

: ð9:35Þ
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In the same regime the mass transfer scales are

Sh � Le1=2 Ra=4π2
� �7=8

if Le > Ra=4π2
� �1=4

, ð9:36aÞ
Sh � Le2 Ra=4π2

� �1=2
if Ra=4π2

� ��1=4
< Le < Ra=4π2

� �1=4
, ð9:36bÞ

Sh � 1 if Le < Ra=4π2
� �1=4

: ð9:36cÞ

The scales of mass transfer-driven flows, jNj >> 1, can be deduced from these

by applying the transformation Ra ! RaD, Nu ! Sh, Sh ! Nu, and Le ! Le�1.

The results are

Sh � RaD=4π
2

� �1=2
, ð9:37Þ

and

Nu � Le�1=2 RaD=4π
2

� �7=8
if Le < RaD=4π

2
� ��1=4

, ð9:38aÞ
Nu � Le�2 RaD=4π

2
� �1=2

if RaD=4π
2

� ��1=4
< Le < RaD=4π

2
� �1=4

, ð9:38bÞ
Nu � 1 if Le > RaD=4π

2
� �1=4

: ð9:38cÞ

These estimates agree well with the results of direct numerical calculations.

Rosenberg and Spera (1992) performed numerical simulations for the case of a

fluid heated and salted from below in a square cavity. As the buoyancy ratio

a b c d

Fig. 9.4 Two-dimensional numerical simulation for heat transfer-driven (N ¼ 0) convection in a

horizontal porous layer (Ra ¼ 200, H/L ¼ 1.89). (a) Streamlines; (b) isotherms, also isosolutal

lines for Le ¼ 1; (c) isosolutal lines for Le ¼ 4; and (d) isosolutal lines for Le ¼ 20 (Trevisan and

Bejan 1987b)
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N increases, the dynamics changes from a system that evolves to a well-mixed

steady state, to one that is chaotic with large amplitude fluctuations in composition,

and finally to one that evolves to a conductive steady state. Their correlations for Nu

and Sh were in good agreement with the results of Trevisan and Bejan (1987b).

Schoofs and Spera (2002) studied the transition to chaos.

Sheridan et al. (1992) found that their experimentally measured heat transfer

data correlated well with Nu ~ (Ra Da N )0.294Ja�0.45. Here Ja is the Jakob number,

defined by Ja ¼ cpΔT/hfg Δm, where hfg is the enthalpy of evaporation and m is the

saturated mass ratio (vapor/gas).

9.1.6 Other Effects

9.1.6.1 Dispersion

If a net horizontal flow is present in the porous layer, it will influence not only the

vertical solutal gradient but also the phenomenon of solute dispersion. Thermal

dispersion also can be affected. In most applications αm is greater than Dm, and as a

consequence the solutal dispersion is more sensitive to the presence of through

flow. The ultimate effect of dispersion is that the concentration distribution

becomes homogeneous.

The stability implications of the anisotropic mass diffusion associated with an

anisotropic dispersion tensor were examined by Rubin (1975b) and Rubin and Roth

(1978, 1983). The dispersion anisotropy reduces the solutal stabilizing effect on the

inception of monotonic convection and at the same time enhances the stability of

the flow field with respect to oscillatory disturbances. Monotonic convection

appears as transverse rolls with axes perpendicular to the direction of the horizontal

net flow, while oscillatory motions are associated with longitudinal rolls (axes

aligned with the net flow), the rolls of course being superposed on that net flow.

Certain geological structures contain some pores and fissures of large sizes. In such

cavernous media even very slow volume-averaged flows can deviate locally from the

Darcy flow model. The larger pores bring about an intensification of the dispersion of

solute and heat and because of the high pore Reynolds numbers, Rep, the effect of

turbulence within the pores. Rubin (1976) investigated the departure from the Darcy

flow model and its effect on the onset of convection in a horizontal layer with

horizontal through flow. This study showed that in the case of laminar flow through

the pores (Rep<< 1), the net horizontal flow destabilizes the flow field by enhancing

the effect of solutal dispersion. A stabilizing effect is recorded in the intermediate

regime (Rep � 1). In the inertial flow regime (Rep >> 1) the stability characteristics

become similar to those of monodiffusive convection, the net horizontal flow

exhibiting a stabilizing effect.

9.1 Vertical Heat and Mass Transfer 487



9.1.6.2 Anisotropy and Heterogeneity

The onset of thermohaline convection in a porous layer with varying hydraulic

resistivity (r ¼ μ/K ) was investigated by Rubin (1981). If one assumes that the

dimensionless hydraulic resistivity ξ ¼ r/r0 varies only in the vertical direction and

only by a relatively small amount, the linear stability analysis yields the monotonic

marginal stability condition

Raþ RaD ¼ π2 ξ1=2H þ ξ1=2V

� �2

: ð9:39Þ

In this equation ξΗ and ξV are the horizontal and vertical mean resistivities

ξH ¼
ð 1

0

dbz
ξ

� 	�1

, ξV ¼
ð 1

0

ξdbz, ð9:40Þ

and so ξΗ � ξV. The right-hand side of Eq. (9.39) can be larger or smaller than 4π2

depending on whether Ra is based on ξV or ξΗ. A similar conclusion is reached with

respect to the onset of oscillatory motions.

The Galerkin method has been used by Rubin (1982a) in an analysis of the

effects of nonhomogeneous hydraulic resistivity and thermal diffusivity on stabil-

ity. The effect of simultaneous vertical anisotropy in permeability (hydraulic

resistivity), thermal diffusivity, and solutal diffusivity was investigated by Tyvand

(1980) and Rubin (1982b).

Chen (1992) and Chen and Lu (1992b) analyzed the effect of anisotropy and

inhomogeneity on salt-finger convection. They concluded that the critical Rayleigh

number for this is invariably higher than that corresponding to the formation of

plumes in the mushy zone during the directional solidification of a binary solution

(see Sect. 10.2.3). A numerical study of double-diffusive convection in layered

anisotropic porous media was made by Nguyen et al. (1994).

Viscosity variations and their effects on the onset of convection were considered

by Patil and Vaidyanathan (1982), who performed a nonlinear stability analysis

using the Brinkman equation, assuming a cosine variation for the viscosity. The

variation reduces the critical Rayleigh number based on the mean viscosity.

Bennacer (2004) treated analytically and numerically a two-layer (one anisotropic)

situation with vertical through mass flux and horizontal through heat flux. Nield and

Kuznetsov (2013e) investigated a two-layer system with internal heating. Nield

et al. (2015) studied the effect of local thermal nonequilibrium in a two-layer

system.

Heterogeneity effects were also studied by Alloui et al. (2009a), Jaber and

Saghir (2011), Kuznetsov and Nield (2008b), Sammouda et al. (2013) (nonuniform

porosity), and Elbouzidi et al. (2014a, b). The case of depth-dependent viscosity

and permeability was studied by Rionero (2014b).

Anisotropy was also treated by Malashetty (1993), Malashetty and Gaikwad

(2002), Malashetty and Swamy (2010b), Malashetty and Biradar (2011a), while
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Subramanian and Patil (1991) combined anisotropy with cross-diffusion. Harfash

(2016d) combined heterogeneity and anisotropy.

9.1.6.3 Brinkman Model

The effect of porous medium coarseness on the onset of convection was

documented by Poulikakos (1986). With the Brinkman equation the critical Ray-

leigh number for the onset of monotonic instability is given by

Raþ RaD ¼ α2c þ π2
� �2

α2c
α2c þ π2
� �eDaþ 1
h i

, ð9:41Þ

where the critical dimensionless horizontal wavenumber (αc) is given by

α2c ¼
π2eDaþ 1

� �1=2

9π2eDaþ 1
� �1=2

� π2eDa� 1

4eDa
: ð9:42Þ

In terms of the effective viscosity eμ introduced in Eq. (1.17), the Darcy numbereDa is defined by

eDa ¼ eμ
μ

K

H2
: ð9:43Þ

Nonlinear energy stability theory was applied to this problem by Guo and Kaloni

(1995b). Fingering convection, with the Forchheimer term as well as the Brinkman

term taken into account, was treated numerically by Chen and Chen (1993a, b).

With Ra fixed, they found a transition from steady to time-periodic (and then to

quasiperiodic) convection as RaD increases. An analytical solution based on a

parallel flow approximation and supported by numerical calculations was presented

by Amahmid et al. (1999a). They showed that there is a region in the (N, Le) plane

where a convective flow of this type is not possible for any Ra and Da values. A

linear and nonlinear stability analysis leading to calculations of Nusselt numbers,

streamlines, isotherms, and isohalines was presented by Shivakumara and Sumithra

(1999). The Brinkman model was also used by Wang and Tan (2009). Further work

with the Brinkman model and a horizontal cavity was done by Alloui et al. (2010b).

The ultimate boundedness and stability of triply diffusive mixtures in rotating

layers was studied by Capone and de Luca (2012b). Kaloni and Guo (1996)

obtained a weak nonlinear solution and investigate the existence, regularity, and

uniqueness of a solution. The structural stability for Brinkman convection, with a

chemical reaction in which the solubility depends on temperature, was investigated

by Straughan and Al Sulaimi (2014).
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9.1.6.4 Additional Effects

Multicomponent Convection

Triple diffusion was treated by Rudraiah and Vortmeyer (1982), Poulikakos

(1985c), and Tracey (1996), who obtained some unusual neutral stability curves,

including a closed approximately heart-shaped oscillatory curve disconnected from

the stationary neutral curve, and thus requiring three critical values of Ra to

describe the linear stability criteria. For certain values of parameters the minima

on the oscillatory and stationary curves occur at the same Rayleigh number but

different wavenumbers. Tracey (1998) studied the case of penetrative convection.

Further studies were made by Chand (2012) (magnetized ferrofluid with internal

angular momentum), Bulgarkova (2012) (rectangular box, modulation of the con-

centration gradient), Chand (Chand 2013a, Chand 2013b) (micropolar ferromag-

netic fluid), Capone and De Luca (2012a), Wang et al. (2014a, b) (Maxwell

viscoelastic fluid, heated from below or internally), and Rionero (2011c, 2012a,

b, 2013c, 2014a, b, 2015) (global nonlinear stability, depth-dependent viscosity,

and permeability). A multicomponent fluid was investigated numerically by Kantur

and Tsibulin (2004). Multiple diffusion results for ultimate boundedness, absence

of subcritical instability, and global nonlinearity were obtained by Rionero (2013a,

b, c). Rionero (2014a) studied a multicomponent fluid in a rotating horizontal layer

heated from below and salted partly from below and partly from above, with

emphasis on the conditions for the instability of the thermal conduction solution

irrespective of the temperature gradient. Prakash et al. (2016c) discussed the

limitations of linear growth rates in triply diffusive convection. Prakash et al.

(2016d) treted convection in a cylindrical slab for the case of large viscosity

variation.

Magnetic Field

A ferromagnetic fluid was treated by Vaidyanathan et al. (1995), Sekar et al. (1998)

(rotation), Sunil et al. (2004b, 2005a, b, c, 2007, 2009a, 2010b), Divya et al. (2005),

Sunil and Sharma (2005a, b, c, d, e, f, g), Sunil and Mahajan (2008a, 2009a, b),

and Sekar and Raju (2015) (micropolar fluid). These papers covered both linear and

nonlinear stability and the various effects of rotation, micropolar fluid, magnetic-

field-dependent viscosity, suspended dust particles, and local thermal

nonequilibrium.

When the fluid is not a ferrofluid, the effect of a magnetic field is usually

unimportant for a regular porous medium (an exception is a mushy zone) because

it is not possible to produce a magnetic field strong enough for the magnetic drag to

be significant in comparison with the Darcy drag. We briefly mention the papers by

Sharma and Sharma (1980), Sharma and Kumari (1992) (rotation), Sharma and

Bhardwaj (1993) (rotation), Sunil (1994, 1999, 2001) (compressibility), Prakash
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and Manchanda (1994) (partly ionized plasma), Khare and Sahai (1993) (hetero-

geneity), Chamkha and Al-Naser (2002) (binary gas), Ramanbason and Vasseur

(2007), Shihari and Rao (2008), Bourich et al. (2008) (external shear stress),

Srivastava et al. (2012) (anisotropy, Soret effect), Salem and Fathy (2012),

Altawallbeh et al. (2013b, d) (heating from below, cooling from the side), Haque

et al. (2013) (rotation, unsteady flow), Benerji Babu et al. (2014) (nonlinear

stability), Harfash and Alshara (2015a, b) (throughflow, anisotropy, internal

heating, and then chemical reaction, variable gravity), Harfash and Alshara

(2015b) (throughflow, internal heating, anisotropy), Kumar et al. (2015e) (triple

diffusion, viscoelastic fluid), and Bourich et al. (2016) (Soret effect, uniform fluxes

of heat and mass). Shekar et al. (2016) (inclined square, cross-diffusion) and

Prakash and Gupta (2016) (conditions for the nonexistence of oscillatory motions)

and Zhao et al. (2016) (fractional Maxwell fluid).

Papers on MHD convection with a non-Newtonian fluid are those by Sharma and

Sharma (1990, 2000), Sharma and Kumar (1996), Sharma and Thakur (2000),

Sharma and Kishor (2001), Sharma et al. (2001), Sunil et al. (2001), Kumar and

Mohan (2011, 2012c), Kumar (2012b), Kumar et al. (2013c) (rotation), Rana (2013,

2014) (viscoelastic fluid, suspension, variable gravity, rotation), Kumar et al.

(2013c) (viscoelastic fluid, rotation), Kumar (2016) (micropolar fluid, radiation,

chemical reaction).

Rotation

The effect of rotation was included by Chakrabarti and Gupta (1981), Raptis

(1983a), Rudraiah et al. (1986), (anisotropic media), Patil et al. (1989, 1990)

(anisotropy), Malashetty and Begum (2011a) (anisotropy), Saravanan and

Keerthana (2012), Falsaperla et al. (2012) (general boundary conditions), Gaikwad

and Begum (2013) (reaction-convection, anisotropy), Bhadauria et al. (2013c)

(cross-diffusion, anisotropy), Rionero (2014d) (nonlinear stability), Capone and

De Luca (2014b) (vertical throughflow), Alhusseny and Turan (2015a, b) (long

rotating channel), and Gaikwad and Kamble (2016) (couple-stress fluid, cross-

diffusion, anisotropy).

Non-Newtonian Fluid

Papers involving a rotating non-Newtonian fluid are those by Sharma et al. (1998,

1999a) and Sharma and Rana (2001, 2002), Reena and Rana (2009), Kumar and

Bhadauria (2011c), Malashetty and Swamy (2010b, 2011a), b, Bhadauria (2011),

Malashetty et al. (2013), Rana and Thakur (2013a) (suspension), Rana and Thakur

(2013b) (couple-stress fluid), and Rana et al. (2012c) (compressible Walters model

B0 fluid).
Non-Newtonian fluids permeated with suspended particles have been studied by

Sharma et al. (1999b), Sunil et al. (2003b, 2004d), Sharma and Sharma (2004), and
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Rana et al. (2012c). Other papers on non-Newtonian fluids of various sorts are those

by Sharma and Kumari (1993), Awad et al. (2010) (Maxwell fluid), Malashetty

et al. (2009c, e, 2010b, 2011), (viscoelastic fluid, anisotropy), Kumar and

Bhadauria (2011b) (viscoelastic fluid, thermal nonequilibrium), Malashetty and

Swamy (2011a, b) (viscoelastic fluid, rotation, anisotropy), Malashetty and Kollur

(2011) (couple-stress fluid, anisotropy), Malashetty et al. (2010a) (couple-stress

fluid), Wang and Tan (2008c, 2011) (Maxwell fluid, cross-diffusion), Shivakumara

et al. (2011j, 2013b) (couple-stress fluid), Narayana et al. (2012a) (Maxwell fluid),

Swamy et al. (2012) (viscoelastic fluid), Swamy et al. (2012), Ben Khelifa et al.

(2012), Delenda et al. (2012) (viscoelastic fluid), Chand and Rana (2012b) (cross-

diffusion, viscoelastic fluid), Gaikwad and Birada (2013), Gaikwad and Kouser

(2013), Srivastava and Bera (2013) (couple-stress fluid, chemical reaction), Liu and

Umavathi (2013) (micropolar fluid), Gaikwad and Kouser (2013, 2014) (internal

heating, viscoelastic and couple-stress fluid), Zhao et al. (2014b) (internal heat

source, nonlinear stability), Gaikwad and Dhanraj (2014b) (anisotropy, internal

heat source), and Zhu et al. (2017a) (power-law fluid, anisotropy, unsteady flow, 3D

numerical investigation), Zhu et al. (2017b) (power law fluid, entropy production,

heterogeneity), Zheng et al (2016) (Marangoni effect, volumetric heat generation,

chemical reaction) and Thirumurugan and Vasanthakumari (2016) (Walters visco-

elastic fluid, suspension. A viscoelastic fluid with local thermal nonequilibrium was

examined by Malashetty et al. (2012a) and Yang et al. (2013).

Local Thermal Nonequilibrium

The effect of thermal nonequilibrium was added by Malashetty et al. (2008, 2009a),

Malashetty and Heera (2008a, b, 2009), and Chen et al. (2011).

Throughflow

The effect of vertical throughflow was studied by Shivakumara and Khalili (2001),

Shivakumara and Nanjundappa (2006) (quadratic drag), Shivakumara and

Sureshkumar (quadratic drag, Oldroyd-B fluid), Pieters and Schuttlelaars (2008)

(nonlinear dynamics), Capone et al. (2013, 2014), Capone and De Luca (2014a, b)

(nonlinear stability, variable diffusivities), Harfash and Hill (2014) (internal

heating, anisotropy, 3D simulation), Kiran (2015b, 2016c) (nonuniform effects,

g-jitter effects), and Deepika and Narayana (2016) (nonlinear stability,

concentration-based internal heat source). The effect of horizontal through flow

was investigated by Joulin and Ouarzazi (2000), Lyubimov et al. (2008a), Matta

et al. (2016a, b) (variable gravity, internal heat source, nonlinear stability), and

Deepika et al. (2016) (concentration-based internal heat source).
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Thermal Modulation

The effect of temporally fluctuating temperature on instability was analyzed by

Ouarzazi and Bois (1994), Ouarzazi et al. (1994), McKay (1998b, 2000),

Ramazanov (2001), and Malashetty and Basavaraja (2004). The last study included

the effect of anisotropy. The studies by McKay make use of Floquet theory. He

demonstrated that the resulting instability may be synchronous, subharmonic, or at

a frequency unrelated to the heating frequency.

The effect of modulated temperature at the boundaries was considered by

Ramazanov (2001), Bhadauria (2007b, c), Bhadauria and Sherani (2008b), and

Bhadauria and Srivastava (2010) (MHD). Chaotic behavior induced by thermal

modulation was studied by Malasoma et al. (1999). Resonance induced by sinu-

soidal heat was investigated by El Ayachi et al. (2010). Periodic heating of a square

enclosure with crossed temperature and concentration gradients was examined by

Abourida et al. (2011).

Vibration

The effect of vertical vibration was studied analytically and numerically by Sovran

et al. (2000, 2002) and Jounet and Bardan (2001). Depending on the governing

parameters, vibrations are found to delay or advance the onset of convection, and

the resulting convection can be stationary or oscillatory. An intensification of the

heat and mass transfers is observed at low frequency for sufficiently high vibration

frequency. The onset of Soret-driven convection with a vertical variation of gravity

was analyzed by Alex and Patil (2001) and Charrier-Mojtabi et al. (2004, 2005).

The latter considered also horizontal vibration and reported that for both monotonic

and oscillatory convection the vertical vibration has a stabilizing effect while the

horizontal vibration has a destabilizing effect on the onset of convection. A further

study of the effect of vibration was made by Strong (2008a, 2009). The effect of

vibration on a system with a horizontal layer of clear fluid overlying a horizontal

porous layer was studied by Lyubimov et al. (2008b).

The effect of g-jitter with a viscoelastic fluid and local thermal nonequilibrium

was studied by Suthar et al. (2012). The effect of g-jitter with a composite fluid/

porous layer was investigated by Swamy (2014a). The combination of thermal and

gravity modulation was treated by Siddheswar et al. (2012b).

Groundwater Studies

The problem of convection in groundwater below an evaporating salt lake was

studied in detail by Wooding et al. (1997a, b) and Wooding (2007). Now the

convection is driven by the evaporative concentration of salts at the land surface,

leading to an unstable distribution of density, but the evaporative groundwater

discharge dynamically can stabilize this saline boundary layer. The authors
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investigated the nature, onset, and development (as fingers or plumes) of the

convection. They reported the result of linear stability analysis, numerical simula-

tion, and laboratory experimentation using a Hele-Shaw cell. The results indicate

that in typical environments, convection will predominate in sediments whose

permeability exceeds about 10�14 m2, while below this threshold the boundary

layer should be stabilized, resulting in the accumulation of salts at the land surface.

A numerical model simulating this situation was presented by Simmons et al.

(1999). A related problem involving the evaporation of groundwater was studied

analytically and numerically by Gilman and Bear (1996). The groundwater flow

pattern in the vicinity of a salt lake also has been studied numerically by Holzbecher

(2005b). A numerical study of convection above a salt dome was made by

Holzbecher et al. (2010). A stability aspect of hot springs was studied by Bera

et al. (2011). The onset of convection in groundwater wells was examined by Love

et al. (2007). The onset of convection in under-ice melt ponds was investigated by

Hirata et al. (2012).

Chemical Reaction

The situation in which one of the components undergoes a slow chemical reaction

was analyzed by Patil (1982a), while a convective instability that is driven by a fast

chemical reaction was studied by Steinberg and Brand (1983, 1984). Further work

involving chemical reactions was carried out by Subramanian (1994), Malashetty

et al. (1994), and Malashetty and Gaikwad (2003).

The effects of chemical reaction with double dispersion were examined by

El-Amin et al. (2008). Li et al. (2006a, b, c, 2007, 2013a, b) examined various

combinations of cross-diffusion, endothermic reactions, local thermal

nonequilibrium, and forced convection. The onset of convection driven by a

catalytic surface reaction was studied by Postelnicu (2009) and Scott and Straughan

(2011); in the latter paper it was shown that if the reaction parameter exceeds a

certain value then convection appears as oscillatory (rather than stationary) con-

vection. Prichard and Richardson (2007) studied the effect of temperature-

dependent solubility. The case of strong exothermic chemical reaction with local

thermal nonequilibrium was studied by Bousri et al. (2012). Scott (2012a, b) studied

the case of a layer with an exothermal surface reaction at the lower boundary, with

and without the Soret effect. The effect of a reaction at the surface of a porous

medium was also studied by Scott (2013a, b) and Scott and Straughan (2013b). Kim

and Choi (2014b) studied the effect of first-order chemical reaction on gravitational

instability. Al-Sulaimi (2015) presented an energy stability analysis. A case where

the dissolved reaction component concentration is a function of temperature was

studied by Straughan (2015b). A nonlinear stability analysis for a problem with

chemical reaction was presented by Al-Sulaimi (2016) and Gaikwad and Dhanraj

(2016) (anisotropy).
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Internal Heating

The critical conditions for the onset of convection in a doubly diffusive porous layer

with internal heat generation were documented by Selimos and Poulikakos (1985).

The effect of heat generation or absorption was also studied by Chamkha (2002).

Heat generation with anisotropy was studied by Bhadauria (2012) and Gaikwad and

Dhanraj (2015). A case with local nonuniform thermal equilibrium was dealt with

by Zhang et al. (2015a, b, c). The effects of local thermal equilibrium and vertical

heterogeneity were analyzed by Kuznetsov et al. (2015).

Composite Domains

Fluid-porous composite media were studied by Gobin and Goyeau (2010), Hill and

Carr (2013a, b) (stability of solar ponds), Jena et al. (2013c), and Olali (2013)

(selective absorption of radiation).

Other Studies

Convective stability of a binary mixture in a fractured porous medium was studied

by Bedrikovetskii et al. (1994). An experimental study involving an electrochem-

ical effect when horizontal temperature and concentration gradients are imposed

was reported by Chen (1998d). A transport correlation was presented by Yoon et al.

(2001). Flow transitions in three-dimensional fingering were studied by Sezai

(2002). Younsi et al. (2002a, b) studied a 2D box with horizontal gradients and

opposing flow. Carr (2003b) modeled the evolution of under-ice melt ponds.

Kalla et al. (2001a) studied a situation involving imposed vertical heat and mass

fluxes and a horizontal heat flux that they treated as a perturbation leading to

asymmetry of the bifurcation diagram. Multiple steady-state solutions, with differ-

ent heat and mass transfer rates, were found to coexist. Two and three-dimensional

multiple steady states were studied by Khadiri et al. (2011). Multiple steady states

in an enclosure partly heated and fully salted from below were examined by Alloui

et al. (2009b). In their analytical studies Masuda et al. (1999, 2002) found that there

is a range of buoyancy ratios N for which there is an oscillation between two types

of solution, temperature dominated and concentration dominated. Some mathemat-

ical aspects were studied by Franchi and Straughan (1993), Lin and Payne (2007),

Rionero (2007, 2010, 2012c), and Rionero and Vergori (2010). The boundary

domain integral method was used by Kramer et al. (2007) and Jeci et al. (2009).

Convection in an enclosure with partial or localized heating and salting was studied

by Zhao et al. (2008b, c). Turbulent convection was treated by Tofaneli and de

Lemos (2009). Lin (1992) studied numerically a transient problem. For the case of a

cavity heated and salted from below, Khadiri et al. (2010b) made a comparison of

two-dimensional and three-dimensional models. The effect of viscous dissipation

was examined by Barletta and Nield (2011b). Tipping points for convection with a
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Cattaneo–Christov fluid were studied by Straughan (2011b). Umla et al. (2011)

studied three-dimensional pattern formation. Kim and Choi (2012) studied the

effect of an impulsive change in concentration at the upper boundary. Convection

due to a wavy horizontal surface was investigated by Narayana and Sibanda

(2012). Kuznetsov and Nield (2012c) studied the onset of double-diffusive con-

vection in a vertical cylinder occupied by a heterogeneous porous medium with

vertical throughflow. Convection in a cavity for the case of a density maximum

was treated by Muthtamilselvan and Das (2012). Benerji Babu et al. (2012b)

studied linear and weakly nonlinear stability in the presence of radiation. Musuuza

et al. (2012) studied a box with a partly heated bottom. Bahadori and Rezvantalab

(2014) investigated the effects of viscosity dependent on temperature and concen-

tration. Altawallbeh et al. (2013c) examined a cavity partly heated from below and

partly heated from the side. Lo Jacono et al. (2013) studied three-dimensional

spatially localized binary convection. Straughan (2014a) investigated an aniso-

tropic inertia effect in microfluidic convection. Jamshidzadeh et al. (2013) studied

the thermohaline extension of the Henry and Elder problems (unevenly heated

bottom wall) with dispersion effects. The effect of variable gravity on linear and

nonlinear stability of Hadley flow was investigated by Matta and Lakshmi

Narayana (2016).

9.2 Horizontal Heat and Mass Transfer

9.2.1 Boundary Layer Flow and External Natural
Convection

The most basic geometry for simultaneous heat and mass transfer from the side is

the vertical wall embedded in a saturated porous medium. Specified at the wall are

the uniform temperature T0 and the uniform concentration C0. The temperature and

concentration sufficiently far from the wall are T1 and C1.

The Darcy flow driven by buoyancy in the vicinity of the vertical surface can

have one of the four two-layer structures shown in Fig. 9.5. The thicknesses δ,
δT, and δC indicate the velocity, thermal, and concentration boundary layers.

The relative size of these three thicknesses is determined by the combination

(N, Le).

The heat and mass transfer from the vertical surface was determined first based

on scale analysis (Bejan 1984, pp. 335–338) and later based on the boundary layer

similarity method (Bejan and Khair 1985). The results of the scale analysis are

summarized in Table 9.1. Each row in this table corresponds to one of the quadrants

of the (N, Le) domain covered by Fig. 9.5. The v scale represents the largest vertical

velocity, which in Darcy flow occurs right at the wall. By writing this time �q00 and �j
for the heat and mass fluxes averaged over the wall heightH, the overall Nusselt and
Sherwood numbers are defined as
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Nu ¼ �q00

km T0 � T1ð Þ=H , Sh ¼
�j

Dm C0 � C1ð Þ=H : ð9:44Þ

The similarity solution to the same problem was obtained by Bejan and Khair

(1985) by selecting the nondimensional similarity profiles recommended by the

scale analysis (Table 9.1).

u ¼ �αm
x
Rax f

0 ηð Þ, ð9:45Þ

v ¼ �αm
2x

Ra1=2x f � ηf 0ð Þ, ð9:46Þ

θ ηð Þ ¼ T � T1
T0 � T1

, η ¼ y

x
Ra1=2x , ð9:47Þ

c ηð Þ ¼ C� C1
C0 � C1

: ð9:48Þ

Heat transfer
driven flow
 |N|<<1

Mass transfer
driven flow
 |N|>>1

Le>>1 Le<<1

Le>>1

dC dC

d

d

d

d

dT

dC dT

dT

dCdT

Le<<1

Fig. 9.5 The four regimes

of boundary layer heat and

mass transfer near a vertical

surface embedded in a

porous medium (Bejan and

Khair 1985)

Table 9.1 The flow, heat, and mass transfer scales for the boundary layer near a vertical wall

embedded in a porous medium (Bejan 1984, Bejan and Khair 1985)

Driving mechanism v Nu Sh Le domain

Heat transfer (αm/H ) Ra Ra1/2 (Ra Le)1/2 Le >> 1

(jNj << 1) (αm/H ) Ra Ra1/2 Ra1/2 Le Le << 1

Mass transfer (αm/H ) RajNj (RajNj)1/2 (RajNjLe)1/2 Le << 1

(jNj >> 1) (αm/H ) RajNj Le�1/2(RajNj)1/2 (RajNjLe)1/2 Le >> 1
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In this formulation, x is the distance measured along the wall and the Rayleigh

number is defined by Rax ¼ gβ Kx(T0 � T/)/ναm. The equations for momentum,

energy, and chemical species conservation reduce to

f 00 ¼ �θ0 � Nc0, ð9:49Þ

θ00 ¼ 1

2
f θ0, ð9:50Þ

c00 ¼ 1

2
f c0Le, ð9:51Þ

with the boundary conditions f ¼ 0, θ ¼ 1, and c ¼ 1 at η ¼ 0, and ( f, θ, c) ! 0 as

η ! 1. Equations (9.49)–(9.51) reinforce the conclusion that the boundary layer

phenomenon depends on two parameters, N and Le.

Figure 9.6 shows a sample of vertical velocity and temperature

(or concentration) profiles for the case Le ¼ 1. The vertical velocity increases

and the thermal boundary layer becomes thinner as jNj increases. The same

similarity solutions show that the concentration boundary layer in heat transfer-

driven flows (N ¼ 0) becomes thinner as Le increases, in good agreement with the

trend anticipated by scale analysis.

The effect of wall inclination on the two-layer structure was described by Jang

and Chang (1988b, c). Their study is a generalization of the similarity solution

N=4
N=-4
N=0

N=4
N=0
N=-4

0 7
0

0 7

(b)(a)

0.5

θ,c

η η

1

Le=1

0

-2

-4

f '

Fig. 9.6 The buoyancy ratio effect on the Le ¼ 1 similarity profiles for boundary layer heat and

mass transfer near a vertical wall embedded in a porous medium. (a) Velocity profiles

and (b) temperature and concentration profiles (Bejan and Khair 1985)
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approach employed by Bejan and Khair (1985). The heat and mass transfer scales

that prevail in the extreme case when the embedded H-long surface is horizontal

are summarized in Table 9.2. A related study was reported by Jang and Ni (1989),

who considered the transient development of velocity, temperature, and concentra-

tion boundary layers near a vertical surface. Further studies were made by

Bestman (1989).

The effect of flow injection on the heat and mass transfer from a vertical plate

was investigated by Lai and Kulacki (1991d): see also the comments by Bejan

(1992a). Raptis et al. (1981a, b) showed that an analytical solution is possible in the

case of an infinite vertical wall with uniform suction at the wall-porous medium

interface. The resulting analytical solution describes flow, temperature, and con-

centration fields that are independent of the vertical coordinate. This approach was

extended to the unsteady boundary layer flow problem by Raptis and Tzivanidis

(1984). Raptis et al. (1981a, b) and Raptis (1983c) studied the case of constant

suction with time-dependent temperature. Das et al. (2006) studied constant suction

and a source/sink. For the case of a non-Newtonian (power-law) fluid, an analytical

and numerical treatment was given by Rastogi and Poulikakos (1995). The case of a

thermally stratified medium was studied numerically by Angirasa et al. (1997).

Nonsimilar solutions for the case of two prescribed thermal and solutal boundary

conditions were obtained by Aly and Chamkha (2010).

The physical model treated by Bejan and Khair (1985) was extended to the case

of a boundary of arbitrary shape by Nakayama and Hossain (1995). A further scale

analysis of natural convection boundary layers driven by thermal and mass diffu-

sion was made by Allain et al. (1992), who also made some corroborating numer-

ical investigations. They noted the existence of flows that are heat driven even

though the amplitude of the solutal convection is dominant. Bansod and Jadhav

(2010) obtained an analytical solution of the Bejan-Khair equation. Aouachria

(2009), using an integral method, obtained results agreeing with those of Bejan

and Khair (1985).

An analytical-numerical study of hydrodynamic dispersion in natural convection

heat and mass transfer near vertical surfaces was reported by Telles and Trevisan

(1993). They considered flows due to a combination of temperature and concentra-

tion gradients and found that four classes of flows are possible according to the

relative magnitude of the dispersion coefficients.

Table 9.2 The flow, heat, and mass transfer scales for the boundary layer near a horizontal wall

embedded in a saturated porous medium (Jang and Chang 1988b)

Driving

mechanism u Nu Sh

Le

domain

Heat transfer (αm/H )Ra2/3 Ra1/3 Ra1/3Le1/2 Le >> 1

(jNj << 1) (αm/H )Ra2/3 Ra1/3 Ra1/3Le Le << 1

Mass transfer (αm/H ) � (RajNj)2/3Le�1/3 (RajNj)�1/3Le�1/6 (RajNjLe)1/3 Le << 1

(jNj >> 1) (αm/H ) � (RajNj)2/3Le�1/3 (RajNj)�1/3Le�2/3 (RajNjLe)1/3 Le >> 1
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For convection over a vertical plate, the Forchheimer effect was analyzed by

Murthy and Singh (1999); dispersion effects were studied by Khaled and Chamkha

(2001), Chamkha and Quadri (2003), and El-Amin (2004a), and the effect of double

stratification was discussed by Bansod et al. (2002) and Murthy et al. (2004b).

Chamkha (2001a) treated a nonisothermal permeable plate. Using homotopy anal-

ysis and the Forchheimer model, an analytic solution was obtained by Wang et al.

(2003a). The effect of thermophoresis particle deposition was analyzed by

Chamkha and Pop (2004), Ganesan et al. (2014) (stratification), and Kameswaran

et al. (2014b). Three-dimensional flow was treated by Singh (2005), Chamkha et al.

(2006a), and Duwairi and Damseh (2008b, 2009) (radiation, mixed convection).

The case of density depending on temperature and concentration in a nonlinear

manner was studied by Partha (2010) and Bég et al. (2009c) (time dependence,

radiation). Other studies were made by Singh and Queeny (1997), Singh (2007),

Singh et al. (2007) (periodic permeability, variable suction), Ferdows et al. (2008)

(cross-diffusion), El-Arabawy (2009) (cross-diffusion, variable wall temperature),

(variable conductivity, slip), Moorthy and Senthilvadivu (2012a), c) (variable

viscosity, cross-diffusion), Srinivasacharya et al. (2015c, d) (double stratification,

spectral quasilinearization), Srinivasacharya and Surenda (2016) (cross-diffusion,

double stratification), Huang (2016a, b) (cross-diffusion, radiation, internal

heating), and Loganathan and Sivapoornapriya (2016b) (impulsively started plate,

chemical reaction).

9.2.1.1 Magnetic Field

Except when the fluid is ferrofluid or the medium is a mushy zone, the effect of

convection in a regular fluid is generally insignificant. It is not possible to produce a

magnetic field strong enough for the magnetic drag to become significant in

comparison with the Darcy drag. Nevertheless a large number of theoretical papers

involving a magnetic field have been published.

MHD convection was treated for a vertical plate by Singh et al. (1991) (rotation,

unsteady flow), Cheng (1999, 2005), Chamkha and Khaled (2000c, d), Acharya

et al. (2000), Hassanien and Allah (2002) (pulsating permeability), Takhar et al.

(2003a, b) (unsteady flow), Kim (2004) (micropolar fluid, moving plate), Postelnicu

(2006), Chaudhary and Jain (2007a) (oscillating plate), Chaudhary and Jain (2007b)

(micropolar fluid, radiation, variable permeability, slip flow), Afifi (2007a) (cross-

diffusion, temperature-dependent viscosity), Ahmed (2007) (unsteady flow), Prasad

and Reddy (2008) (transient), Eldabe et al. (2008) (Eyring-Powell fluid), Das et al.

(2009a, b) (oscillatory suction), Al-Odat et al. (2009) (transient), Sudheer Babu and

Satya Narayana (2009) (chemical reaction, radiation absorption, variable suction),

Singh and Kumar (2010) (transient), Sharma et al. (2010) (transient), Jang and Hsu

(2009a) (Hall effect), Kamel (2001) (unsteady flow), Makinde (2009a, 2011a,

2012) (radiation, chemical reaction, stagnation point flow), Makinde and Sibanda

(2008), Postelnicu (2004) (double diffusion), Jain et al. (2009) (radiation, slip),

Ferdows and Chen (2009) (cross-diffusion), Kishan et al. (2009) (double
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stratification, viscous dissipation), Dash et al. (2009a, b) (viscoelastic fluid, rota-

tion, chemical reaction), Kairi et al. (2009) (double dispersion), Dash et al. (2011)

(Oldroyd fluid, rotation), Ramana Reddy et al. (2010), Tak et al. (2010a, b) (cross-

diffusion, radiation), Hayat et al. (2010c) (unsteady flow), Ramachandra Prasad

et al. (2011) (cross-diffusion), Rashad et al. (2011a) (chemical reaction, stretching

sheet), Osman et al. (2011a, b), Kesavaiah et al. (2011a, b) (chemical reaction,

radiation absorption, unsteady flow, moving plate with suction, heat source),

Al-Odat and Al-Ghamdi (2012) (cross-diffusion, unsteady flow), Sahoo and Dash

(2012), Salem and Fathy (2012) (stagnation point flow, stretching sheet, radiation,

variable viscosity and conductivity), Shawky (2012) (Casson fluid, stretching

sheet), Husnain et al. (2012a, b) (unsteady flow, variable viscosity and conductiv-

ity), Motsa and Shateyi (2012), Shateyi and Motsa (2012b) (unsteady flow,

stretching sheet, chemical reaction, radiation, suction/injection), Chand and

Kumar (2012) (viscoelastic fluid, oscillation, slip), Srinivasacharya et al. (2014)

(cross-diffusion, stratification), Ahmed et al. (2013a, b) (cross-diffusion, oscillating

plate), Anjalidevi and Kyalvizhi (2013) (stretching sheet, radiation, heat source),

Das (2013) (moving surface, chemical reaction), Rubio Hernandez and Zueco

(2013) (network numerical analysis of radiation absorption and chemical effects

for unsteady flow), Harish Babu and Satya Narayana (2013) (variable permeability,

micropolar fluid, moving plate), Hussaini et al. (2013) (unsteady flow, variable

suction), Prakash et al. (2013) (cross-diffusion, radiation, unsteady flow), Rath et al.

(2013) (chemical reaction, periodic permeability), Zafariyan et al. (2013) (second-

ary effects) Salem (2013) (micropolar fluid, chemical reaction, stretching sheet),

Ali et al. (2013a, b), Ganghadhar and Bhaskar Reddy (2013) (chemical reaction,

moving plate with suction), Mishra et al. (2013) (viscoelastic fluid, oscillatory

suction, and heat source), Ali and Alam (2014) (cross-diffusion, stretching sheet,

heat generation), Govindarajan et al. (2014), (chemical reaction, unsteady flow,

heat sink), Pal and Mondal (2014c) (cross-diffusion, radiation, stretching sheet,

radiation, viscous dissipation), Ramaprasad and Varma (2014) (chemical reaction,

heat generation, radiation, unsteady flow), Sarma et al. (2014) (rotation, moving

plate), Hsiao et al. (2014) (cross-diffusion, thermophoretic particle deposition),

Malga and Kishan (2014) (polar fluid, unsteady flow), Raju and Varma (2014)

(cross-diffusion), Ojjela and Naresh Kumar (2014) (cross-diffusion, couple-stress

fluid, chemical reaction, Hall and ion slip effects), Seth et al. (2015c) (rotation,

radiation, moving plate, heat absorption), Mohanty et al. (2015) (micropolar fluid,

stretching sheet), Choudhury and Das (2014) (viscoelasticity, chemical reaction,

radiation), Seth and Sarkar (2015) (rotation, chemical reaction, radiation, moving

plate), Seth et al. (2015a, b, c) (rotation, moving plate), Pattnaik et al. (2015)

(radiation, accelerated plane), Anand Rao et al. (2015) (cross-diffusion, radiation,

heat source, unsteady flow), Khan et al. (2015f) (radiation, unsteady flow),

Loganathan and Sivapoornapriya (2014b) (impulsively started plate), Mahanta

and Shaw (2015) (double diffusion, Casson fluid, unsteady flow, convective bound-

ary condition), Swain and Senapati (2015) (radiation, impulsively started plate),

Singh and Kumar (2015) (micropolar fluid, chemical reaction, double stratifica-

tion), Marneni et al. (2015) (ramped wall temperature, cross-diffusion), Mabood
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et al. (2016a) (cross-diffusion, stretching sheet, micropolar fluid, radiation),

Prakash et al. (2016a, b, c) (cross-diffusion, radiation, chemical reaction), Uddin

et al. (2016b) (stretching sheet, velocity, and thermal slip), Loganathan and

Sivapoornapriya (2016a) (viscous dissipation), Madhava Reddy et al. (2016)

(cross-diffusion, stratification, impulsively started plate), Seth et al. (2016a, b)

(ramped plate temperature, radiation, and either chemical reaction or rotation,

heat absorption, and an accelerated plate), Ibrahim and Suneetha (2016) (Soret

effect, heat source, chemical reaction, viscous dissipation), Sarma and Pandit

(2016) (Soret effect, accelerated plate, rotation about a normal to the plate),

Uddin et al. (2016g) (multiple slips, variable properties), Zhao et al. (2016a, b)

(fractional Maxwell fluid, cross-diffusion), Singh et al. (2016) (rotation, exponen-

tially accelerated plate) and Mabood and Ibrahim (2016) (stretching sheet, cross-

diffusion, micropolar fluid, radiation).

For a horizontal surface, Moorthy et al. (2013) studied cross-diffusion and

variable viscosity effects. For an inclined plane, studies were made by Ferdows

et al. (2009a, b), Reddy and Reddy (2011), Pal and Chatterjee (2013) (cross-

diffusion, power-law fluid, variable conductivity), Uddin and Enamul Karim

(2013) (cross-diffusion, heat generation, thermophoresis), Ali et al. (2013a, b)

(conjugate effects), and Ismail et al. (2014) (rotation, unsteady flow).

The effects of MHD, radiation, and variable viscosity on convection from a

vertical truncated cone were studied by Mandy et al. (2010). Flow past a sphere

with cross-diffusion was investigated by Vasu et al. (2012). Stagnation point flow

past a horizontal cylinder with radiation was studied by Uddin and Kumari (2011).

9.2.1.2 Non-Newtonian Fluid

A power-law non-Newtonian fluid was studied by Jumar and Majumdar (2000,

2001), Cheng (2006c, 2011b) (yield stress, cross-diffusion), Cheng (2007a, c,

2009a) (vertical wavy surface), El-Hakiem (2009a) (radiation), Ibrahim et al.

(2010) (yield stress), Hirata et al. (2010) (yield stress, chemical reaction, cross-

diffusion), Narayana et al. (2009a) (yield stress, cross-diffusion), Tai and Char

(2010) (cross-diffusion, radiation), Srinivasacharya and Swamy Reddy (2012a, b,

2013a, b, c) (cross-diffusion, chemical reaction, radiation, stratification), Narayana

et al. (2009b, 2013b) (cross-diffusion, stratification), and Murthy and Kairi (2009)

(cross-diffusion, melting), and Yih and Huang (2015) (internal heating).

A viscoelastic fluid was treated by Choudhury and Dey (2010) (periodic perme-

ability), Salem (2006b) (cross-diffusion), and Malashetty et al. (2012a) (local

thermal nonequilibrium). Flow of a viscoelastic fluid over a vertical cone and a

flat plate was examined by Kumar and Sivaraj (2013). A polar fluid with chemical

reaction and internal heat generation was studied by Patil and Kulkarni (2008) (for a

comment, pointing out an error in modeling viscous dissipation, see Rees (2009a)).

A micropolar fluid was studied by Chamkha et al. (2004a, b, c) (chemical reaction)

and Rashad et al. (2014a) (chemical reaction, radiation). A couple-stress fluid was
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investigated by Malashetty et al. (2012b) (cross-diffusion). A Casson fluid was

examined by Benazir et al (2016) (magnetic field).

9.2.1.3 Cross-Diffusion

For a vertical wall, cross-diffusion was also studied by Partha et al. (2006, 2008,

2009), Postelnicu (2007c, 2010a) (chemical reaction, stagnation point flow), Tsai

and Huang (2009a), El-Arabawy (2009), Rathish Kumar and Krishna Murthy

(2010b, 2012b) (wavy boundary, double stratification), Awad et al. (2011a, b)

(radiation), Murthy and El-Amin (2011) (stratification), Moorthy and Seethilvadivu

(2012a) (variable viscosity), and El-Kabeir et al. (2015a, b) (moving plate, chem-

ical reaction).

Cheng (2012d) studied cross-diffusion with an inclined plate. El-Kabeir (2011)

examined cross-diffusion with a stretching cylinder and chemical reaction. Rashad

and Chamkha (2014) treated cross-diffusion about a truncated cone.

9.2.1.4 Moving Surface, Stretching Sheet

For a regular porous medium, a moving surface such as a stretching sheet does not

have a significant effect in the bulk of the medium. Nevertheless a large number of

theoretical papers on this topic have been published, and these we briefly mention.

Flow over a stretching sheet was studied by Abel and Ueera (1998), Abel et al.

(2001) (viscoelastic fluid), Salem (2006b) (viscoelastic fluid), Mansour et al.

(2008a, b) (chemical reaction, thermal stratification, MHD, cross-diffusion), Aly

et al. (2011) (cross-diffusion), Beg et al. (2009a) (MHD, cross-diffusion),

Elbashbeshy et al. (2010) (unsteady flow, heat source/sink, variable heat flux),

Pal and Chaterjee (2010) (MHD, micropolar fluid, nonuniform heat source, thermal

radiation), Pal and Mondal (2010b) (MHD, radiation), Pal and Mondal (2012b)

(MHD, Forchheimer drag, nonuniform heat source/sink, variable viscosity), Abdou

(2010) (temperature-dependent viscosity), Rahman and Al-Lawatia (2010) (chem-

ical reaction, micropolar fluid), Chamkha et al. (2010b) (unsteady flow, chemical

reaction), Kandasamy et al. (2010a) (thermophoresis, temperature-dependent vis-

cosity), Chamkha and Aly (2011) (stagnation point flow, polar fluid, cross-

diffusion), Huang et al. (2011) (inclined surface, chemical reaction), Rahman

(2012) (chemical reaction, heat generation, variable viscosity and conductivity),

Hayat et al. (2015c) (cross-diffusion, exponential stretching, chemical reaction,

heat source), and Baoku et al. (2015) (viscoelastic second-grade fluid).

9.2.1.5 Horizontal or Inclined Wall

Li and Lai (1998), Bansod (2003), and Bansod et al. (2005) examined convection

from horizontal plates. Also for a horizontal plate, Wang et al. (2003b) obtained an
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analytical solution for Forchheimer convection with surface mass flux and thermal

dispersion effects, Bansod and Jadhav employed an integral treatment, while

Narayana and Murthy (2008), Murthy and Narayana (2010), and Narayana et al.

(2012b) studied the effect of cross-diffusion. Triple diffusion along a horizontal

plate with a convective boundary condition was investigated by Khan et al. (2014c).

For an inclined wall, Durga Prasad et al. (2016) investigated cross-diffusion with a

magnetic field. Jhansi Rani et al. (2015) considered a magnetic field and an

impulsively started plate while Choudhury and Das (2016) treated a viscoelastic

fluid, a magnetic field, and a chemical reaction. A moving vertical cylinder was

examined by Loganathan and Eswari (2016).

9.2.1.6 Wavy Surface

Convection over a wavy vertical plate or cone was studied by Cheng (2000c, d),

Rathish Kumar and Shalini (2004b), Narayana and Sibanda (2010) (cross-

diffusion), and Krishna Murthy et al. (2011) (cross-diffusion). Convection from a

wavy wall in a thermally stratified enclosure with mass and thermal stratification

was treated numerically by Rathish Kumar and Shalini (2005a, b). A vertical wavy

wall with double stratification was also studied by Neagu (2011).

An inclined wavy surface was treated by Cheng (2010b). A corrugated surface

with cross-diffusion was studied by Rathish Kumar and Krishna Murthy (2010b).

A vertical wavy cone with cross-diffusion was examined by Cheng (2011a).

9.2.1.7 Cone or Wedge or Cylinder or Sphere

A cone, truncated or otherwise, with variable wall temperature and concentration

was analyzed by Yih (1999a, d) and Cheng (2000a). For a cone or wedge, convec-

tion was treated by Chamkha et al. (2000). A cylinder or a cone with heat generation

or absorption effects was examined by Chamkha and Quadri (2001, 2002).

A vertical cone was also treated by Kumari and Nath (2009a), Awad et al.

(2011a, b) (cross-diffusion), and Cheng (2009c, d, f, 2010d, 2011a) (non-Newto-

nian fluid, cross-diffusion, variable wall temperature and concentration, variable

wall heat and mass fluxes), Kairi (2011) (power-law fluid), Mahmoud (2013)

(non-Newtonian fluid, chemical reaction, heat generation, radiation, variable vis-

cosity), Kairi and Ramreddy (2014), (power-law fluid), Khan and Sultan (2015)

(double diffusion, Eyring-Powel fluid) and Benazir et al. (2016) (Casson fluid,

magnetic field). A truncated cone was studied by Chamkha et al. (2006b) (icy

water), Cheng (2007c) (nonsimilar solutions), Cheng (2007c, 2008, 2009b, e,

2010a) (non-Newtonian fluid, wavy wall, variable viscosity), Mahdy (2010a, b)

(chemical reaction, variable viscosity), Kairy and Murthy (2011) and Uddin et al.

(2016e) (rotation, anisotropy, slip).

A vertical cylinder was studied by Yücel (1990). Convection above a near-

horizontal surface and convection along a vertical permeable cylinder were
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analyzed by Hossain et al. (1999a, b). A vertical cylinder was also treated by Cheng

(2010c), El-Aziz (2007) (MHD, permeable surface), Singh and Chandarki (2009),

Chamkha et al. (2011c), and Reddy (2014a) (radiation, magnetic field). Flow over a

slender body of revolution was studied by Lai et al. (1990b). Non-Darcy effects on

flow over a two-dimensional or axisymmetric body were treated by Kumari et al.

(1988a, b), while Kumari and Nath (1989c, d) dealt with the case where the wall

temperature and concentration vary with time. A numerical study of convection in

an axisymmetric body was reported by Nithiarasu et al. (1997b).

Flow over a horizontal cylinder, with the concentration gradient being produced

by transpiration, was studied by Hassan and Mujumdar (1985). A horizontal

permeable cylinder was considered by Yih (1999f). Flow over a horizontal cylinder

was also studied by El-Kabeir et al. (2008a, b) (MHD, cross-diffusion, non-New-

tonian fluid), Zueco et al. (2009a), Prasad et al. (2012b) (magnetic field, radiation,

variable viscosity), and Prasad et al. (2013b) (cross-diffusion). Flow over an

elliptical horizontal cylinder was treated by Cheng (2006a, 2011b).

Flow over a wedge with a chemical reaction was investigated by Kandasamy and

Palanima (2007), Kandasamy et al. (2008a), and Muhaimin et al. (2009a, b) (MHD,

mixed convection, thermophoresis).

The case of a heated sphere was analyzed by Lai and Kulacki (1990a),

Ganapathy (2012), and Prasad et al. (2012a) (magnetic field, radiation, variable

porosity).

9.2.1.8 Other Situations

A doubly stratified medium was studied by Narayana and Murthy (2006), Rathish

Kumar and Shalini (2005a, b) (wavy boundary), Srinivasacharya and RamReddy

(2010), and Srinivasacharya et al. (2011). Convection past a curved surface with

variable permeability was treated by Mohammadein and Al Shear (2011). Aziz

et al. (2014) treated boundary layer slip. Cao and Cui (2015) studied a case in which

viscosity, thermal conductivity, and mass diffusivity were power-law functions.

The effect of melting on convection about an axisymmetric stagnation point with

cross-diffusion and temperature-dependent viscosity was studied by Modather et al.

(Sect. 9.2.1).

9.2.2 Enclosed Porous Medium: Channel or Box

As the simplest configuration of simultaneous heat and mass transfer in an enclosed

porous medium consider the two-dimensional system defined in Fig. 9.7. The

uniform temperature and concentration are maintained at different levels along

the two side walls. The main engineering challenge is the calculation of the overall

heat and mass transfer rates expressed by Eq. (9.44).

9.2 Horizontal Heat and Mass Transfer 505



Relative to the single-wall problem (Fig. 9.5) the present phenomenon depends

on the geometric aspect ratio L/H as an additional dimensionless group next to

N and Le. These groups account for the many distinct heat and mass transfer

regimes that can exist. Trevisan and Bejan (1985) identified these regimes on the

basis of scale analysis and numerical experiments. Figure 9.8 shows that in the case

of heat transfer-driven flows (jNj << 1) there are five distinct regimes, which are

labeled I–V. The proper Nu and Sh scales are listed directly on the [Le, (L/H )2Ra]

subdomain occupied by each regime.

Five distinct regimes also are possible in the limit of mass transfer-driven flows,

jNj>> 1. Figure 9.9 shows the corresponding Nusselt and Sherwood number scales

and the position of each regime in the plane [Le, (L/H )2 RajNj]. Had we used the

plane [Le�1, (L/H )2 RajNj Le] then the symmetry with Fig. 9.8 would have been

apparent. The Nu and Sh scales reported in Figs. 9.8 and 9.9 are correct within a

numerical factor of order 1. Considerably more accurate results have been devel-

oped numerically and reported in Trevisan and Bejan (1985).

The most striking effect of varying the buoyancy ratio N between the extremes

represented by Figs. 9.8 and 9.9 is the suppression of convection in the vicinity of

N ¼ �1. In this special limit, the temperature and concentration buoyancy effects

are comparable in size but have opposite signs. Indeed, the flow disappears

completely if Le ¼ 1 and N ¼ �1. This dramatic effect is illustrated in Fig. 9.10,

which shows how the overall mass transfer rate approaches the pure diffusion level

(Sh ¼ 1) as N passes through the value �1.

When the Lewis number is smaller or greater than 1, the passing of N through the

value �1 is not accompanied by the total disappearance of the flow. This aspect is

illustrated by the sequence of streamlines, isotherms, and concentration lines

displayed in Fig. 9.11. The figure shows that when N is algebraically greater than

approximately �0.85, the natural convection pattern resembles the one that would

Porous
mediumH

T1
C1

0

L

x

C0

T0

g

y Adiabatic and impermeableFig. 9.7 Enclosed porous

medium subjected to heat

and mass transfer in the

horizontal direction
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(III) Sh ~ 1

(IV) Sh ~ 1

(V) Sh ~ (L/H)(Ra |N| Le)1/2

(II) Sh ~ (L/H)(Ra |N| Le)1/2Nu ~ 1

Nu ~ 1

Nu ~ (L/H)(Ra |N|)1/2

Nu ~ (L/H)(Ra |N|)1/2

(I) Sh ~ (L/H)(Ra |N| Le)1/2

Nu ~ (L/H)(Ra |N|)1/2Le-1/2
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Fig. 9.9 The heat and mass transfer regimes when the buoyancy effect in the system of Fig. 9.7 is

due mainly to concentration gradients, |N| 	 1 (Trevisan and Bejan 1985)
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Fig. 9.8 The heat and mass transfer regimes when the buoyancy effect in the system of Fig. 9.7 is

due mainly to temperature gradients, jNj 
 1 (Trevisan and Bejan 1985)
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be expected in a porous layer in which the opposing buoyancy effect is not the

dominant driving force. The circulation is reversed at N values lower than approx-

imately �1.5. The flow reversal takes place rather abruptly around N ¼ �0.9, as is

shown in Fig. 9.11b. The core, which exhibited temperature and concentration

stratification at N values sufficiently above and below �0.9, is now dominated by

nearly vertical constant T and C lines. This feature is consistent with the tendency of

both Nu and Sh to approach their pure diffusion limits (e.g., Fig. 9.10).

A compact analytical solution that documents the effect of N on both Nu and Sh

was developed in a subsequent paper by Trevisan and Bejan (1986). This solution is

valid strictly for Le¼ 1 and is based on the constant-flux model according to which

both sidewalls are covered with uniform distributions of heat flux and mass flux.

The overall Nusselt number and Sherwood number expressions for the high Ray-

leigh number regime (distinct boundary layers) are

Nu ¼ Sh ¼ 1

2

H

L

� 	1=5

Ra
2=5
* 1þ Nð Þ2=5, ð9:52Þ

where Ra* is the heat flux Rayleigh number defined by Ra* ¼ gβKH2q00/ναmkm.
These theoretical Nu and Sh results agree well with numerical simulations of the

heat and mass transfer phenomenon.

0–1–5
0

20

opposing aiding

Ra = 200

Le
0.1
1

10

40

Sh

4

N

Fig. 9.10 The effect of the buoyancy ratio on the overall mass transfer rate through the enclosed

porous medium shown in Fig. 9.7 (Ra ¼ 200, H/L ¼ 1) (Trevisan and Bejan 1985)
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Another theoretical result has been developed by Trevisan and Bejan (1986) for

the large Lewis numbers limit in heat transfer-driven flows (jNj << 1). In this limit

the concentration boundary layer can be described by means of a similarity solu-

tion, leading to the following expression for the overall Sherwood number:

Sh ¼ 0:665
L

H

� 	1=10

Le1=2Ra
3=10
* : ð9:53Þ

The mass flux j used in the Sh definition, Sh ¼ jH/Dm ΔC, is constant, while ΔC
is the resulting concentration-temperature difference between the two sidewalls.

Equation (9.53) is also in good agreement with numerical experiments.

Fig. 9.11 Streamlines, isotherms, and isosolutal lines for natural convection in the enclosed

porous medium of Fig. 9.7, showing the flow reversal that occurs near N ¼ �1 (Ra ¼ 200,

Le ¼ 10, H/L ¼ 1). (a) N ¼ �0.85; (b) N ¼ �0.9; and (c) N ¼ �1.5 (Trevisan and Bejan 1985)
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It has been shown that the constant-flux expressions (9.52) and (9.53) can be

recast in terms of dimensionless groups (Ra, Nu, Sh) that are based on temperature

and concentration differences. This was done in order to obtain approximate

theoretical results for the configuration of Fig. 9.7, in which the sidewalls have

constant temperature and concentrations (Trevisan and Bejan 1986). Similarly,

appropriately transformed versions of these expressions can be used to anticipate

the Nu and Sh values in enclosures with mixed boundary conditions, that is,

constant T and j, or constant q00 and C on the same wall. Numerical simulations

of the convective heat and mass transfer across enclosures with mixed boundary

conditions are reported by Trevisan and Bejan (1986).

An analytical and numerical study of convection in vertical slots due to pre-

scribed heat flux at the vertical boundaries was made by Alavyoon (1993), whose

numerical results showed that of any value of Le> 1 there exists a minimum aspect

ratio A below which the concentration field in the core region is rather uniform and

above which it is linearly stratified in the vertical direction. For Le > 1 the thermal

layers at the top and bottom of the enclosure are thinner than their solutal counter-

parts. In the boundary layer regime and for sufficiently large A the thicknesses of

the vertical boundary layers of velocity, concentration, and temperature were found

to be equal. The case of opposing fluxes was studied by Alavyoon et al. (1994).

They found that at sufficiently large values of Ra, Le, and A there is a domain of

N in which one obtains oscillating convection, while outside this domain the

solution approaches steady-state convection.

Numerical simulations based on an extension to the Brinkman model for the case

of cooperating thermal and solutal buoyancy forces in the domain of positive N and

for Le > 1 were reported by Goyeau et al. (1996a). The Brinkman model was also

employed by Mamou et al. (1998a).

The studies reviewed in this subsection are based on the homogeneous and

isotropic porous medium model. The effect of medium heterogeneity on the heat

and mass transfer across an enclosure with constant-flux boundary conditions is

documented byMehta and Nandakumar (1987). They show numerically that the Nu

and Sh values can differ from the values anticipated based on the homogeneous

porous medium model.

For the case N¼�1, a purely diffusive solution exists for suitable geometry and

boundary conditions. Charrier-Mojtabi et al. (1997, 1998) have studied this case for

a rectangular slot with constant temperature imposed on the side walls. The onset of

convection for which γ ¼ Leθ occurs when Ra jLe � 1j exceeds a certain critical

value, depending on the aspect ratio A. The critical value is 184.06 for a square

cavity (A ¼ 1) and 105.33 for a vertical layer of infinite extent; the corresponding

critical wavenumber has the value 2.51. For A ¼ 1, they also performed numerical

simulations, the results of which confirmed the linear instability results. They

observed that the bifurcation to convection was of the transcritical type and that

the bifurcation diagrams indicated the existence of both symmetrical and asym-

metrical subcritical and supercritical solutions.

A numerical study for a square cavity, comparing the Darcy, Forchheimer, and

Brinkman models, was made by Karimi-Fard et al. (1997). They found that Nu and
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Sh increase with Da and decrease with increase of a Forchheimer parameter. The

quadratic drag effects are almost negligible, but the boundary effect is important. A

further numerical study, for the case of opposing buoyancy effects, was reported by

Angirasa and Peterson (1997a). Effects of porosity variation were emphasized in

the numerical study by Nithiarasu et al. (1996). Three-dimensional convection in a

cubic or rectangular enclosure with opposing horizontal gradients of temperature

and concentration was studied numerically by Sezai and Mohamad (1999) and

Mohamad and Sezai (2002). A numerical treatment with a random porosity model

was reported by Fu and Ke (2000).

The various studies for the case N ¼ �1 have demonstrated that there exists a

threshold for the onset of monotonic convection, such that oscillatory convection

occurs in a narrow range of values of Le (close to 1, applicable for many gases)

depending on the normalized porosity. For the case of an infinite layer, the

wavelength at the onset of stationary convection is independent of the Lewis

number but this is not so for overstability. When the Lewis number is close to

unity the system remains conditionally stable provided that the normalized porosity

is less than unity. For a vertical enclosure with constant heat and solute fluxes, the

particular case N ¼ �1 + ε case (where ε is a very small positive number) was

studied by Amahmid et al. (2000). In this situation multiple unicellular convective

flows are predicted.

A non-Newtonian fluid was studied theoretically and numerically by Getachew

et al. (1998) and by Benhadji and Vasseur (2003), and by Ben Khelifa et al. (2012).

El-Sayed et al. (2011) studied the effect of chemical reaction with a non-Newtonian

fluid in a vertical peristaltic tube. Convection in a couple-stress fluid in a horizontal

wavy channel was investigated by Muthuraj et al. (2013).

An electrochemical experimental method was demonstrated by Chen et al.

(Chen et al. 1999a, b). An inverse method, leading to the determination of an

unknown solute concentration on one wall given known conditions for temperature

and concentration on the remaining faces, was reported by Prud’homme and

Jiang (2003).

A cavity with a freely convecting wall was studied by Nithiarasu et al. (1997c).

The case of constant heat and mass fluxes was investigated by Masuda et al. (1997).

A numerical study of the effect of thermal stratification on convection in a square

enclosure was made by Rathish Kumar et al. (2002). Convection in a square cavity,

or a horizontal layer with the Soret effect included, under crossed heat and mass

fluxes was studied analytically and numerically by Bennacer et al. (2001a, 2003b).

Entropy production in a square cavity was treated by Mchirgui et al. (2012).

Convection in a vertically layered system, with a porous layer between two clear

layers, was studied by Mharzi et al. (2000). Anisotropic cavities were studied

analytically and numerically by Tobbal and Bennacer (1998), Bera et al. (1998,

2000), Bera and Khalili (2002a), and Muasovi and Shahnazari (2008). Explicit

algebraic analytical solutions were presented by Cai et al. (2003) and Cai and Liu

(2008). The effect of a magnetic field was studied by Robillard et al. (2006) and

Ahmed and Zueco (2011) (rotation, Hall current). Akbal and Baytas (2008) inves-

tigated the effects of nonuniform porosity on convection in a cavity with a partly
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permeable wall. A cavity with icy water was studied by Kandasamy et al. (2008a),

Sivasankaran et al. (2008), and Eswaramurthi and Kandaswamy (2009). Unusual

oscillations in a box with opposing heat and mass fluxes on the vertical walls were

investigated numerically by Masuda et al. (2008, 2010, 2013). A box subjected to

heat and mass fluxes was studied analytically and numerically by Bennisaad and

Ouazaa (2012)A heterogeneous cavity was examined by Choukairy and Bennacer

(2012). Mimouni et al. (2014) studied two- and three-dimensional transitions in an

elongated horizontal enclosure. A shallow cavity heated and salted from the sides

with cross-diffusion was studied by Alloui and Vasseur (2013a). They found

multiple solutions when the buoyancy ratio is close to unity. A cavity with partly

active vertical walls was studied by Jena et al. (2013a). A highly accurate numerical

solution for Brinkman convection in a box was reported by Shao et al. (2016).

Triple diffusion in a square cavity was studied by Ghalambaz et al. (2016).

Unsteady convection in a box with nonuniform boundary conditions was inves-

tigated by Mondal and Sibanda (2015). Three-dimensional convection in a cubic

box was examined by Amel et al. (2014) and Hadidi et al. (2016) (partly filled

layer). Local thermal nonequilibrium was investigated by Bousri et al. (2012)

(chemical reaction) and Bera et al. (2014) (square cavity). An anisotropic box

with nonuniform temperature and concentration on the lower wall was studied by

Kumar et al. (2015d). For horizontal rectangular enclosures and heterogeneous

media, with the horizontal and vertical walls subject to different mass and heat

transfer, Choukairy et al. (2016) discussed the limitation of the 2D parallel flow

assumption for 2D-3D transition. A rectangular box with walls partly thermally

active was studied by Saberi and Nikbakhti (2016).

Analytical and numerical studies of convection in a vertical layer were reported

by Amahmid et al. (1999b, c, 2000, 2001), Bennacer et al. (2001b), Mamou et al.

(1998a), and Mamou (2002a). A vertical layer or slot was also treated by Asbik

et al. (2002) (evaporation), Mharzi et al. (2002) (vertical layering), Dash et al.

(2010) (second-order fluid), Li et al. (2006b) (transient convection, gas diffusion),

Rawat et al. (2009) (transient convection, MHD, micropolar fluid, variable thermal

conductivity, heat source), Zhao et al. (2007b) (thermal and solutal source), Liu

et al. (2008b) (concentrated energy and solute sources), Er-Raki et al. (2010) (cross-

diffusion), Kheilifa et al. (2012) (non-Newtonian fluid), Kumar et al. (2013b)

(micropolar fluid, magnetic field, radiation), Harzallah et al. (2014), (walls of finite

thickness, anisotropy, local thermal nonequilibrium), Manglesh et al. (2014),

(cross-diffusion, magnetic field), Umavathi (2015a, b, c) (chemical reaction, vari-

able viscosity and conductivity), Mathew and Singh (2015) (span-wise fluctuation,

radiation, chemical reaction), Ojjela and Naresh Kumar (2016) (unsteady MHD

flow, cross-diffusion, chemical reaction, couple-stress fluid) Usman et al. (2016)

(radiation, slip condition), Doh et al. (2016) (micropolar fluid, transient flow,

boundary conditions of the third kind), and Reddy et al. (2016a, b, c) (magnetic

field, rotation, viscoelastic fluid, radiation). An inclined box was studied by

Chandra Shekhar and Kishan (2015) (cross-diffusion), Abdelkrim and Mahfoud

(2014), Kefayati (2016a, b) (cross-diffusion, power-law fluid), and Mondal and

Sibanda (2016) (unsteady flow, radiation). For a vertical asymmetric channel and a
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Maxwell fluid, cross-diffusion, radiation, and chemical reaction, Noreen and

Saleem (2016) investigated peristaltic flow. Aly (2016a) and Aly and Asai (2016)

used the incompressible smooth particle hydrodynamic numerical method to study

an enclosure containing a sloshing rod and also an annulus or enclosure with cross-

diffusion and anisotropy. A numerical study within a horizontal partly porous

enclosure was made by Hadidi et al. (2016). Unsteady convection in an inclined

rectangular enclosure was investigated by Mondal and Sibanda (2016b).

9.2.3 Transient Effects

Another basic configuration in which the net heat and mass transfer occurs in the

horizontal direction is the time-dependent process that evolves from a state in

which two (side-by-side) regions of a porous medium have different temperatures

and species concentrations. In time, the two regions share a counter-flow that brings

both regions to a state of thermal and chemical equilibrium. The key question is

how parameters such as N, Le, and the height-length ratio of the two-region

ensemble affect the time scale of the approach to equilibrium. These effects have

been documented both numerically and on the basis of scale analysis by Zhang and

Bejan (1987).

As an example of how two dissimilar adjacent regions come to equilibrium by

convection, Fig. 9.12 shows the evolution of the flow, temperature, and concentra-

tion fields of a relatively high Rayleigh number flow driven by thermal buoyancy

effects (N¼ 0). As the time increases, the warm fluid (initially on the left-hand side)

migrates into the upper half of the system. The thermal barrier between the two

thermal regions is smoothed gradually by thermal diffusion. Figure 9.12c, d show

that as the Lewis number decreases the sharpness of the concentration dividing line

disappears as the phenomenon of mass diffusion becomes more pronounced.

In the case of heat transfer-driven flows, the time scale associated with the end of

convective mass transfer in the horizontal direction is

bt ¼ φ

σ

L

H

� 	2

Ra�1 if LeRa >
φ

σ

L

H

� 	2

, ð9:54Þ

bt ¼ φ

σ

L

H

� 	2

Le if LeRa <
φ

σ

L

H

� 	2

: ð9:55Þ

The dimensionless time bt is defined as

bt ¼ αmt

σH2
: ð9:56Þ

Values ofbt are listed also on the side of each frame of Fig. 9.12. The time criteria

(9.54)–(9.56) have been tested numerically along with the corresponding time
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Fig. 9.12 The horizontal spreading and layering of thermal and chemical deposits in a porous

medium (N ¼ 0, Ra ¼ 1000, H/L ¼ 1, Φ/σ ¼ 1). (a) Streamlines; (b) isotherms, or isosolutal lines

for Le ¼ 1; (c) isosolutal lines for Le ¼ 0.1; and (d) isosolutal lines for Le ¼ 0.01 (Zhang and

Bejan 1987)
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scales for approach to thermal equilibrium in either heat transfer-driven or mass

transfer-driven flows.

The transient problem for the case of a vertical plate, with a simultaneous step

change in wall temperature and wall concentration, was treated numerically using a

Brinkman-Forchheimer model by Jang et al. (1991). They found that the time to

reach steady state decreases with increase of Da or magnitude of the buoyancy ratio

N, increases with increase of the inertia coefficient cF, and passes through a

minimum as Le increases through the value 1. Earlier Pop and Herwig (1990)

had shown that when just the concentration was suddenly changed at an isothermal

vertical plate, the local Sherwood number decreases with time and approaches its

steady-state value. Cheng (2000b) analyzed a problem involving transient heat and

mass transport from a vertical plate on which the temperature and concentration are

power functions of the streamwise coordinate. The influence of fluctuating thermal

and mass diffusion on unsteady MHD buoyancy-driven convection past a vertical

plate with variable wall heat and mass fluxes was studied by Pal and Talukdar

(2012a).

Milne and Butler (2007) carried out a numerical investigation of the effects of

compositional and thermal buoyancy on transient plumes in a porous layer.

9.2.4 Stability of Flow

The stability of the steady Darcy flow driven by differential heating of the isother-

mal walls bounding an infinite vertical slab with a stabilizing uniform vertical

salinity gradient was studied independently by Gershuni et al. (1976, 1980) and

Khan and Zebib (1981). Their results show disagreement in some respects. We

believe that Gershuni et al. are correct. The flow is stable if jRaDj is less than

RaD1 ¼ 2.486 and unstable if jRaDj > RaD1. The critical wavenumber αc is zero for
RaD1 < jRaDj < RaD2 where RaD2 � 52 for the case N ¼ 100, σ ¼ 1, and nonzero

for jRaDj > RaD2. As jRaDj ! 1; either monotonic or oscillatory instability can

occur depending on the values of N and σ. If, as in the case of aqueous solutions,

N and N/σ are fairly large and of the same order of magnitude, then monotonic

instability occurs and the critical values are

Rac ¼ 2π1=2

N � 1j j RaDj j3=4, αc ¼ π

2

� �1=2

RaDj j1=4: ð9:57Þ

Mamou et al. (1995a) have demonstrated numerically the existence of multiple

steady states for convection in a rectangular enclosure with vertical walls. Mamou

et al. (1995b) studied analytically and numerically convection in an inclined slot.

Again multiple solutions were found. Convection in an inclined cavity with a

temperature-dependent heat source or sink was studied by Chamkha and

Al-Mudhaf (2008a, b).
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Two-dimensional convection produced by an endothermic chemical reaction

and a constant heat flux was examined by Basu and Islam (1996). They identified

various routes to chaos. The onset of convection in a rectangular cavity with

balanced heat and mass fluxes applied to the vertical walls was analyzed by

Marcoux et al. (1999a). An analytical and numerical study of a similar situation

was reported by Mamou et al. (1998d).

9.3 Concentrated Heat and Mass Sources

9.3.1 Point Source

Poulikakos (1985a) considered the transient flow as well as the steady flow near a

point source of heat and mass in the limit of small Rayleigh numbers based on the

heat source strength q[W], eRa ¼ gβKq/ναm km. The relative importance of thermal

and solutal buoyancy effects is described by the “source buoyancy ratio”

Ns ¼ βCm=Dm

βq=km
, ð9:58Þ

in which m[kg/s] is the strength of the mass source.

Figure 9.13 shows Poulikakos’ (1985a) pattern of streamlines for the time-

dependent regime. The curves correspond to constant values of the special group

ψ*t*
�1/2(1 � Ns), in which
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Fig. 9.13 The time-

dependent flow field around

a suddenly placed point

source of heat and mass

(A ¼ 1) (Poulikakos 1985a,

with permission from

Pergamon Press)
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ψ* ¼
ψ

αm
K�1=2, t* ¼ αmt

σK
, ð9:59Þ

and where ψ[m3/s] is the dimensional streamfunction. The radial coordinate η is

defined by

η ¼ r

2

σ

αmt

� 	1=2

, ð9:60Þ

showing that the flow region expands as t1/2. Figure 9.13 represents the special case
A ¼ 1, where A is shorthand for

A ¼ φ

σ
Le

� �1=2

: ð9:61Þ

Poulikakos (1985a) showed that the A parameter has a striking effect on the flow

field in cases where the two buoyancy effects oppose one another (Ns > 0 in his

terminology). Figure 9.14 illustrates this effect for the case N ¼ 0.5 and A ¼ 0.1;

when A is smaller than 1, the ring flow that surrounds the point source (seen also in

Fig. 9.13) is engulfed by a far-field unidirectional flow. The lines drawn on Fig. 9.14

correspond to constant values of the group 2πψ*t*
�1/2.

0.01

0.005

1

h

0

1

0

–0.01
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heat and mass (N ¼ 0.5,
A¼ 0.1) (Poulikakos 1985a,
with permission from

Pergamon Press)
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In the steady state and in the same small-eRa limit, the flow, temperature, and

concentration fields depend only on eRa, Ns, and Le. Figure 9.15 shows the migration

of one streamline as the buoyancy ratio Ns increases from �0.5 to 0.5, that is, as the

buoyancy effects shift from a position of cooperation to one of competition. When the

buoyancy effects oppose one another, N ¼ 0.5, the vertical flow field is wider and

slower. The curves drawn in Fig. 9.15 correspond toψ*¼RaR*/8π, whereR*¼ R/K1/2

and R is a reference radial distance. Asymptotic analytical solutions for the steady-

state temperature and concentration fields also are reported by Poulikakos (1985a).

Ganapathy (1994a) treated the same problem using the Brinkman model. For the case

of large Rayleigh numbers, a boundary layer analysis was carried out by Nakayama

and Ashizawa (1996). They showed that for large Le the solute diffuses some distance

from the plume centerline and the mass transfer influences both velocity and temper-

ature profiles over awide range. For largeLe the solute diffuseswithin a narrow region

along the centerline. A strongly peaked velocity profile then appears for positive

buoyancy ratio N, while a velocity defect emerges along the centerline for negativeN.
A finite element model for a leaking third species migration from a heat source

buried in a porous medium was demonstrated by Nithiarasu (1999). An inverse

problem, namely the determination from temperature measurement of an unknown

volumetric heat source that is a function of the solute concentration, was discussed

by Prud’homme and Jasmin (2003) and Jasmin and Prud’homme (2005). Hill

(2005) has considered the linear and nonlinear stability of a layer in which there

is a concentration-dependent internal volumetric heat source. Ganapathy and

Mohan (2016) studied a concentrated source with cross-diffusion.

5

0

5

r*/R*

0 0.5

Ns = –0.5
Fig. 9.15 The steady-state

flow near a point source of

heat and mass (eR a ¼ 5,

Le ¼ 1), and the effect of

the source buoyancy ratio

(Poulikakos 1985a, with

permission from Pergamon

Press)
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9.3.2 Horizontal Line Source

The corresponding heat and mass transfer processes in the vicinity of a horizontal

line source were analyzed by Larson and Poulikakos (1986). The source buoyancy

ratio in this case is

Ns
0 ¼ βCm

0=Dm

βq0=km
, ð9:62Þ

where q0 [W/m] and m0 [kg/m/s] are the heat and mass source strengths. All the

features described in the preceding sections also are present in the low Rayleigh

number regime of the line source configuration. The Rayleigh number for the line

source is based on the heat source strength q0,

bRa ¼ gβK3=2q0

ναmkm
: ð9:63Þ

In addition to developing asymptotic solutions for the transient and steady states,

Larson and Poulikakos (1986) illustrated the effect of a vertical insulated wall

situated in the vicinity of the horizontal line source. An instantaneous point source

was treated by Ganapathy (1994a). An analysis using the Brinkman model was

reported by Ganapathy (1994b).

The high Rayleigh number regime was studied by Lai (1990a). He obtained a

similarity solution and made calculations for a range of Le and N values. For the

special case Le ¼ 1 he obtained a closed form solution analogous to that given by

Eqs. (5.192)–(5.196). The study of Nakayama and Ashizawa (1996) mentioned in

the previous section covered the case of a line source also.

9.4 Other Configurations and Effects

Natural convection in a horizontal shallow layer induced by a finite source of

chemical constituent was given a numerical treatment by Trevisan and

Bejan (1989).

Convection in a vertical annulus was studied analytically and numerically by

Marcoux et al. (1999b) (analytically and numerically), Beji et al. (1999) (who

analyzed the effect of curvature on the value of N necessary to pass from clockwise

to anticlockwise rolls), Bennacer (2000), Bennacer et al. (2000), (Brinkman model),

Benzeghiba et al. (2003) (partly porous annulus), Bahloul et al. (2004b) (separation

of components with uniform wall heat fluxes), Bennacer and Lakhal (2005) (ther-

mal diffusion), Cheng (2006a) (asymmetric wall temperatures and concentrations),

Bahloul et al. (2006) (tall annulus), Kalita and Dass (2011) (higher order compact

simulation), Sankar et al. (2012a, b) (discrete heat and solute source), Sankar et al.
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(2012a, b), Badruddin et al. (2012a, b, c), Reddy and Rao (2012) (cross-diffusion,

quadratic density variation), Mallikarjuna et al. (2014) (cross-diffusion, heat

sources), and Jha et al. (2015e) (cross-diffusion).

A horizontal annulus was treated by Al-Amiri et al. (2006) (pulsating heating),

Alloui and Vasseur (2011a, b) (centrifugal force field), Moukalled and Darwish

(2013), and Boulechfar and Djezzar (2014) (elliptical annulus) and Abahri et al.

(2017) (thermogravitational separation). A rhombic annulus was studied by

Moukalled and Darwish (2013, 2015). A thin vertical ring was investigated by

Magomedbekov (1997). A rectangular horizontal annulus, with inner/outer walls at

high/low temperature and concentration, was studied by Jena et al. (2013b).

A problem involving a vertical enclosure with two isotropic or anisotropic

porous layers was studied numerically by Bennacer et al. (2003a), while convection

in a partly filled rectangular enclosure was studied numerically by Goyeau and

Gobin (1999), Singh et al. (1999), and Younsi et al. (2001). Unsteady convection in

a vertical enclosure with radiation was investigated by Jbara et al. (2013a). Thermal

enhancement in storage silos (internally heated vertical open-ended cylinders) with

periodic wall heating was studied numerically by Himrane et al. (2016).

The onset of convection in an inclined layer has been studied using linear

stability analysis and numerically by Karimi-Fard et al. (1998, 1999), who obtained

parameter ranges for which the first primary bifurcation is a Hopf bifurcation

(oscillatory convection). The same problem was studied numerically by Mamou

et al. (1998c) and Mamou (2004) using a finite element method and by Chamkha

and Al-Naser (2001) using a finite-difference method. An inclined layer was also

investigated by Chamkha and Abdulgafoor (2006), Al-Farhany and Turan (2012),

Hadidi et al. (2013, 2015) (bi-layered), Chamkha et al. (2011b), Mchirgui et al.

(2014) (second law analysis), and Rtibi et al. (2013, 2014) (cross-diffusion),

Chamkha and Al-Mudhaf (2008a, b) studied inclined cavities with various aspect

ratios, with a temperature-dependent source or sink, and Siavashi et al. (2017)

(entropy generation, various source configurations).

The composite fluid layer over a porous substrate was studied theoretically by

Chen (1990), who extended to a range of Ram (the thermal Rayleigh number in the

porous medium as defined in Eq. (6.167)) the calculations initiated by Chen and

Chen (1988c) for the salt-finger situation. For small Ram (¼0.01) there is a jump in

αc as the depth ratiobd¼ df /dm increases (the jump is fivefold asbd increases between
0.2 and 0.3). For large Ram (¼1) there is no sudden jump. Convection occurs

primarily in the fluid layer if bd is sufficiently large. When this is so, multicellular

convection occurs for sufficiently large Ram. The cells are superposed and their

number increases with increase of Ram. For bd < 0.1, the critical RaDm (the solutal

Rayleigh number for the porous medium layer) and αcm decrease as bd increases, but

when multicellular convection occurs the critical RaDm remains almost constant asbd is increased for fixed Ram. Zhao and Chen (2001) returned to the same problem

but used a one-equation model rather than a two-equation model. They found that

the two models predicted quantitative differences in the critical conditions and flow

streamlines at the onset of convection, and they noted that carefully conducted

520 9 Double-Diffusive Convection

http://dx.doi.org/10.1007/978-3-319-49562-0_6


experiments were needed to determine which model gave the more realistic results.

A further study of the composite problem was conducted by Gobin and Goyeau

(2012) in the context of a general discussion of the validity of one-domain and

two-domain approaches. A vertical composite channel with a wavy interface was

studied by Mehdaoui et al. (2010). A partly filled horizontal enclosure was exam-

ined by Hadidi et al. (2016).

Goyeau et al. (1996b) studied numerically for N > 0 the effect of a thin layer of

low permeability medium, which suppresses the convective mass transfer. Further

numerical studies were reported by Gobin et al. (1998, 2005).

Transient double-diffusive convection in a fluid/porous layer composite was

studied by Kazmierczak and Poulikakos (1989, 1991) numerically and then exper-

imentally. The system considered was one containing a linear stabilizing salt

distribution initially and suddenly heated uniformly from below at constant flux.

In the experiments it was possible to visually observe the flow in the fluid layer but

not in the porous layer. In all the experimentsbd¼ 1, and most of the convective flow

took place in the fluid layer. In general, a series of mixed layers formed in turn,

starting with one just above the porous layer as time increased, as one would expect

if the porous matrix was absent. A corresponding numerical study, with the system

cooled through its top boundary (adjacent to the solid layer), was conducted by

Rastogi and Poulikakos (1993). A numerical study involving two layers of

contrasting permeabilities was conducted by Saghir and Islam (1999). A transient

problem involving double-diffusive convection from a heated cylinder buried in a

saturated porous medium was studied numerically by Chaves et al. (2005).

An experimental study with a clear liquid layer below a layer at porous medium

was performed by Rastogi and Poulikakos (1997). They took the initial species

concentration of the porous layer to be linear and stable and that in the clear fluid

uniform and the system initially isothermal and then cooled from above.

Al-Farhany and Turan (2001) studied a layer bounded by walls of finite thickness.

Baytas et al. (2009) treated an enclosure filled by a step type porous layer. Further

work on fluid/porous regions was performed by Alloui et al. (2008).

Sandner (1986) performed experiments, using salt water and glass beads in a

vertical cylindrical porous bed. In his experiments the salt concentration was

initially uniform. When the system was heated at the bottom, a stabilizing

salinity gradient developed, due to the Soret effect. Some related work is discussed

in Sect. 10.5.

Natural convection in a trapezoidal enclosure was studied numerically by

Nguyen et al. (1997a) (anisotropy) and Younsi (2009) (MHD). A forced convection

flow around a porous medium layer placed downstream on a flat plate was studied

numerically and experimentally by Lee and Howell (1991). Convection in a

parallelogrammic enclosure was studied numerically by Costa (2004). A transient

problem, involving a smaller rectangular cavity containing initially cold fresh fluid

located in the corner of a larger one containing hot salty fluid, was studied

numerically by Saghir (1998). Inclined triangular enclosures were studied by

Chamkha et al. (2010d) (fins, heat generation/absorption) and Mansour et al.
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(2011a) (unsteady convection, heat source/sink, sinusoidal boundary conditions).

The effects of MHD, radiation, and variable viscosity on convection from a vertical

truncated cone were studied by Mandy et al. (2010). A vertical truncated cone with

Soret and Dufour effects was studied by Cheng et al. (2012a). Mansour et al. (2012)

studied a square enclosure with unsteady convection and sinusoidal boundary

conditions.

Melnikov and Shevtsova (2011) studied separation of a binary fluid in a fluid-

porous-fluid system. Srinivasacharya and RamReddy (2011a) treated convection of

a doubly stratified micropolar fluid on a vertical wall. Salama (2011b) studied a

vertical wall with thermophoresis, radiation, and heat generation. The case of a 2D

rectangular cavity with uniform and constant heat and solutal mass fluxes imposed

on the horizontal walls and with impermeable and adiabatic vertical walls was

studied by Bennisaad and Ouazaa (2012). Ahadi et al. (2014) presented an exper-

imental, theoretical, and numerical interpretation of thermo-diffusion separation for

a non-associating binary mixture in liquid/porous layers. Chaves et al. (2015)

studied numerically the heat transfer by double diffusion from a heated buried

cylinder. A spherical shell used to model the Earth’s core was studied by Takahashi
(2014). Convection with cross-diffusion from a frustum or wavy cone with

nonuniform wall temperature and concentration was examined by Cheng (2015b).

9.5 Inclined and Crossed Gradients

The effects of horizontal gradients on thermosolutal stability, for the particular case

where the horizontal thermal and solutal gradients compensate each other as far as

density is concerned, was studied theoretically by Parvathy and Patil (1989) and

Sarkar and Phillips (1992a, b). The more general case for arbitrary inclined thermal

and solutal gradients was treated by Nield et al. (1993) and independently but in a

less detailed manner by Parthiban and Patil (1994). Even when the gradients are

coplanar the situation is complex. The effect of the horizontal gradients may be to

either increase or decrease the critical vertical Rayleigh number, and the favored

mode may be oscillatory or nonoscillatory and have various inclinations to the

plane of the applied gradients according to the signs of the gradients. The horizontal

gradients can cause instability even in the absence of any vertical gradients. The

non-coplanar case was also treated by Nield et al. (1993). A nonlinear stability

analysis was presented by Guo and Kaloni (1995a). Their main theorem was proved

for the coplanar case. Kaloni and Qiao (2000) extended this analysis to the case of

horizontal mass flow. A linear instability analysis for the extension where there is

net horizontal mass flow was reported by Manole et al. (1994).

The case of horizontal temperature and vertical solutal gradients was investi-

gated numerically by Mohamad and Bennacer (2001, 2002) and both analytically

and numerically by Kalla et al. (2001b). Bennacer et al. (2004, 2005) analyzed

convection in a two-layer medium with the lower one thermally anisotropic and

submitted to a uniform horizontal heat flux and a vertical mass flux.
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Mansour et al. (2004, 2006) studied numerically the Soret effect on multiple

solutions in a square cavity with a vertical temperature gradient and a horizontal

concentration gradient. Bourich et al. (2004a) showed that the multiplicity of

solutions is eliminated if the buoyancy ratio N exceeds some critical value that

depends on Le and Ra. A similar problem with a partly heated lower wall was

treated by Bourich et al. (2004b). A vertical slot heated from below and with

horizontal concentration gradients was studied analytically and numerically by

Bahloul et al. (2004a). Convection in a shallow cavity was treated by Bahloul

et al. (2007). Further work with a shallow layer was performed by Mansour et al.

(2007a, b, 2008a, b) and Narayana et al. (2008). A numeral study of an anisotropic

porous medium was conducted by Oueslati et al. (2006). Absolute/convective

stability for the case of Soret-driven convection with inclined thermal and solutal

gradients was studied by Brevdo and Cirpka (2012).

9.6 Mixed Double-Diffusive Convection

9.6.1 Mixed External Convection

9.6.1.1 Vertical Plate

Similarity solutions also can be obtained for the double-diffusive case of Darcy

mixed convection from a vertical plate maintained at constant temperature and

concentration (Lai 1991a). The relative importance of buoyancy and forcing effects

is critically dependent on the values of Le and N. Another study of mixed convec-

tion was made by Yücel (1993). Studies with variable wall temperature and

concentration were made by Yih (1998f). Mixed convection over a vertical plate

with viscosity variation was analyzed by Chamkha and Khanafer (1999). The case

of variable heat and mass flux was studied by Singh (2010).

Darcy-Forchheimer convection over a vertical plate was investigated by Jumar

et al. (2001), and a similar problem with double dispersion was analyzed by Murthy

(2000). For thermally assisted flow, suction increases the local surface heat and

mass transfer rates. The case of transverse spatially periodic suction that produces a

three-dimensional flow was analyzed by Sharma (2005).

The effect of radiation was considered by Murthy et al. (2005) and Salem

(2006a) (viscous dissipation). The effects of viscous dissipation, quadratic drag,

and chemical reaction were considered by Mahdy and Chamkha (2010). Soret and

Dufour effects for the case of a temperature-dependent viscosity were studied by

El-Kabeir (2012). The effect of cross-diffusion was also treated by Sallam (2010),

Shateyi and Motsa (2012a) (chemical reaction), and Srinivasacharya and Surenda

(2014c) (double stratification). Other studies were made by Afifi and Elgazery

(2013) (double dispersion), Khan and Pop (2013) (triple diffusion), Srinivasacharya

and Surenda (2014c) (double stratification), Hemalatha et al. (2015) (melting), and

Rosca et al. (2015).
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A non-Newtonian fluid was studied by Chamkha and Al-Humoud (2007),

Chamkha and Ben-Nakhi (2007), Kairi and Murthy (2010) (double dispersion),

Mahdy (2010b) (cross-diffusion), Patil et al. (2012) (polar fluid, chemical reaction,

internal heating), Srinivasacharya and Swamy Reddy (2012a, b, c, 2013b) (cross-

diffusion, radiation, chemical reaction), Srinivasacharya and Ramreddy (2012,

2013b) (micropolar fluid, double stratification, chemical reaction, radiation),

Srinivasacharya and Kaladhar (2012, 2014) (couple-stress fluid, cross-diffusion),

Mahmoud and Megahed (2013) (cross-diffusion, radiation), and Patil and Chamkha

(2012) (polar fluid, chemical reaction).

The effect of a magnetic field was included by Chamkha and Khaled (1999,

2000a, b), Chamkha (2000), Hsiao (2009) (viscoelastic fluid, stretching sheet), Pal

and Talukdar (2010) (chemical reaction), Abdel-Rahman (2008) (heat generation),

Chamkha and Ben-Nakhi (2008) (cross-diffusion), Shateyi et al. (2010) (cross-

diffusion), Mandy (2010) (non-Newtonian fluid), Kandasamy and Muhaimin

(2010a) (variable viscosity, thermophoresis, stretching sheet), Makinde (2011b),

Srinivasacharya and RamReddy (2011b), Pal and Mondal (2010a, b, 2012a, b, d,

2013) (chemical reaction, cross-diffusion, stretching sheet, nonuniform source, var-

iable viscosity, heat generation, partial slip), Pal and Chatterjee (2011) (micropolar

fluid, cross-diffusion, stretching sheet), Shateyi and Motsa (2011) (radiation,

stretching sheet), Jaber (2011) (transient flow, suction/injection), Mondal and

Mukhopadhyay (2012) (stretching sheet), Aurangzaib et al. (2013a, b) (unsteady

stagnation point flow, micropolar fluid, cross-diffusion), Pal and Chatterjee (2014)

(viscoelastic fluid, stretching sheet, chemical reaction), Nayak et al. (2014b) (cross-

diffusion, stretching sheet, chemical reaction), Najafabadi and Gorla (2014)

(stretching sheet), Khidir and Sibanda (2014a) (stretching sheet, cross-diffusion,

temperature-dependent viscosity), Hussanan et al. (2015) (cross-diffusion, unsteady

flow, Newtonian heating), Waheed et al. (2015) (micropolar fluid, cross-diffusion,

chemical reaction, radiation, slip), Kishan and Jaghadha (2016), (thermophoresis,

radiation), and Karthikeyan et al. (2016) (stagnation point flow, cross-diffusion,

chemical reaction, radiation, heat generation).

Convection over a vertical stretching surface was also studied by Hayat et al.

(2010a) (viscoelastic fluid, cross-diffusion), Tsai and Huang (2009b)

(Hiemenz flow, cross-diffusion), Rashad and El-Khabeir (2010) (unsteady flow),

Pal and Mondal (2012c) (cross-diffusion, chemical reaction, radiation), and

Srinivasacharya and Ramreddy (2013a) (cross-diffusion).

9.6.1.2 Other Surfaces

A wavy vertical surface with cross-diffusion and variable properties was studied by

Srinivasachrya et al. (2015a).

Mixed convection in an inclined layer was analyzed by Rudraiah et al. (1987).

The influence of lateral mass flux on mixed convection over inclined surfaces was

analyzed by Singh et al. (2002) and Bansod et al. (2005).
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Kumari and Nath (1992) studied convection over a slender vertical cylinder,

with the effect of a magnetic field included. The effect of transpiration on mixed

convection past a vertical permeable plate or vertical cylinder was treated numer-

ically by Yih (1997a, b, 1999h). For convection about a vertical cylinder, the entire

mixed convection regime was covered by Yih (1998g, 1999j) and Chamkha et al.

(2011c) studied the case of temperature-dependent viscosity.

Mixed convection over a wedge or a cone with variable wall temperature and

concentration was analyzed by Yih (1998c, f, 1999b, c, 2000b). A cone was also

studied by Mallinkarjuna et al. (2016) (magnetic field, rotation, chemical reaction).

A wedge was also studied by Hassanien et al. (2003a) (uniform heat and mass

flux), Seddeek et al. (2007) (magnetic field, radiation, chemical reaction, variable

viscosity), Muhaimin et al. (2009a, b, 2010a) (magnetic field, chemical reaction,

variable viscosity, thermophoresis), Kandasamy and Muhaimin (2010b) (magnetic

field, suction, thermophoretic particle deposition), Kandaswamy et al. (2007,

2008d) (suction/injection, variable viscosity), Kandasamy et al. (2010b) (variable

viscosity, thermophoresis), and Cheng (2012b, g) (cross-diffusion).

Mixed convection about a sphere with a chemical reaction was studied by

Rashad et al. (2011b).

9.6.2 Mixed Internal Convection

A numerical study of mixed convection with opposing flow in a rectangular cavity

with horizontal temperature and concentration gradients was reported by Younsi

et al. (2002a, b), who noted that for a certain combination of Ra, Le, and N values

the flow has a multicellular structure. Mixed convection driven by a moving lid of a

square enclosure was studied numerically by Khanafer and Vafai (2002) for the

case of insulated vertical walls and horizontal at different constant temperature and

concentration. Convection in a vertical wavy channel with traveling thermal waves

was examined by Muthuraj and Srinivas (2010). A nonuniformly heated vertical

channel with heat sources and dissipation was studied numerically by Nath et al.

(2010). Couette flow of an MHD viscoelastic fluid was treated by Eldabe and

Sallam (2005). Srinivas and Muthuraj (2011) studied the effects of MHD, chemical

reaction, peristalsis, and the special variation of porosity for flow in a vertical

channel with asymmetric boundary conditions. Forced convection, but with

coupled heat and mass transfer, in a channel with chemical reaction was investi-

gated by Bousri et al. (2011) and Li et al. (2013b) (local thermal nonequilibrium).

Convection in a vertical pipe with local thermal nonequilibrium was studied by Bera

et al. (2012a, b). A vertical pipe was also studied by Kapoor et al. (2012). A box with

stratification and injection/suction was studied by Rathish Kumar and Krishna

Murthy (2012b). A vertical pipe with cross-diffusion in a vertical channel was treated

by Alloui and Vasseur (2013b). Convection in a lid-driven box was studied by Misra

et al. (2013). Unsteady flow in a vertical corrugated composite channel was studied

by Umavathi and Shekar (2013). Pulsatile flow in an inclined porous channel with
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chemical reaction was analyzed by Srinivas et al. (2014). The combination of cross-

diffusion and endothermic reaction was studied by Li et al. (2013a, b). A two-sided

lid-driven cavity was examined by Agarwal et al. (2015). Dey and Sekhar (2014)

studied mass transfer and species separation due to oscillatory flow in a pipe.

UnsteadyMHD oscillatory flow of a Casson fluid in a wavy channel was investigated

by Sivaraj and Benazir (2016). A numerical simulation of MHD flow in a lid-driven

cavity was made by Mohan and Satheesh (2016). MHD flow in a vertical channel

with cross-diffusion was studied by Reddy et al. (2016a). Li et al. (2013a, b)

examined forced convection with cross-diffusion, local thermal nonequilibrium,

and endothermic reactions. Bousri et al. (2017) investigated numerically forced

convection with local thermal nonequilibrium. Ghalambaz et al. (2017) studied

mixed convection with triple diffusion in an open cavity.

9.7 Nanofluids

The reader is referred to Sect. 3.8 for an introduction to nanofluids.

Convection in porous media saturated by nanofluids has been reviewed by

Barletta et al. (2015b), Mahdi et al. (2015a), Nield and Kuznetsov (2015a, b) and

Kasaeian et al. (2017).

9.7.1 Forced Convection

Thermally developing forced convection of a nanofluid in a parallel-plate channel

was studied numerically by Maghrebi et al. (2012), who employed the Buongiorno

model with thermophoresis and Brownian motion. They found that the local

Nusselt number is decreased when the Lewis number Le is increased and when

the Schmidt Sc number is increased, these parameters being defined by

Le ¼ αm
ϕ0DB

, Sc ¼ μ

ρDB

, ð9:64Þ

where αm is the effective thermal diffusivity, DB is the Brownian diffusion coeffi-

cient, ϕ0 is the particle fraction at the channel inlet, μ is the nanofluid viscosity, and

ρ is the nanofluid density. Armaghani et al. (2014b) extended this study to include

the effect of local thermal nonequilibrium (LTNE). Further numerical work with

LTNE, first taking into account of particle migration and then using a model in

which the heat flux in each of the phases is considered, was carried out by

Armaghani et al. (2014a, b). LTNE in a microchannel with viscous dissipation

was studied by Ting et al. (2014, 2015a).

On the other hand, in his analytical study of flow in microchannels, Hung (2010)

considered just the variation of thermal conductivity, viscosity, and heat capacity.
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A more general analytical study using the Buongiorno model was made by Nield

and Kuznetsov (2014b). They examined flow in a Darcy porous medium occupying

a parallel-plane channel with uniform heat flux on the boundaries. They found that

the combined effect of Brownian motion and thermophoresis is to reduce the

Nusselt number. The reduction increases as NANB/ε increases, where NA and NB

are defined by

NA ¼ DT

DBT*w
, NB ¼ ε ρcð Þpϕ*0

ρcð Þf
, ð9:65Þ

and so

NANB

ε
¼ DT

DB

ρcð Þpϕ*0
ρcð ÞfT*w

, ð9:66Þ

that is the product of a diffusivity ratio and a heat capacity ratio. Nield and

Kuznetsov (2014b) noted that this reduction in heat transfer due to a modification

of the temperature profile by Brownian motion and thermophoresis would oppose

any increase due to the thermal conductivity of the nanofluid being higher than that

of a regular fluid. This result applies only to the case where the Péclet number based

on the thermophoresis diffusivity is small compared with unity. It was pointed out

by Nield and Kuznetsov (2014c) that net throughflow produces an extra contribu-

tion to the nanoparticle flux and hence an additional term into the thermal energy

equation.

A nanofluid with property variation has been studied by several authors. Matin

and Pop (2013) studied heat and mass transfer with a chemical reaction on the

walls. Nasrin and Alim (2013) and Nasrin et al. (2013a, b) have considered a

problem with an open cavity. Baqaie Saryazdi et al. (2016) studied numerically

flow in a pipe. Dickson et al. (2016) reported first and second law analyses of flow

in a partly filled pipe with the effects of local thermal nonequilibrium and internal

heat sources. The effect of a magnetic field has been studied by Servati et al. (2014),

Sulochansa and Sandeep (2015) (radiation, slendering stretching sheet), Ibanez

et al. (2016) (microchannel, slip, entropy generation, radiation), and Moshizi

(2015) (microchannel, chemical reaction on the walls). Forced convection of a

non-Newtonian fluid in an annulus was examined by Ellahi et al. (2013). Hatami

et al. (2014) studied an asymmetric porous channel with expanding or contracting

wall. A channel with discrete heat sources was investigated by Mashaei and

Hossainalipour (2014). An experimental study with a pipe filled with metallic

foam was reported by Nazari et al. (2014a, b). An analytical study, involving

volume averaging, for convection in metallic foams, was reported by Zhang et al.

(2015b). A numerical study of metallic foams was made by Xu et al. (2015b). Ting

et al. (2015b, c) studied viscous dissipative convection in asymmetrically heated

microchannels with solid-phase heat generation. Torabi et al. (2016a) investigated

entropy generation in a partly filled channel with thermal nonequilibrium. Nazari
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et al. (2014a) reported an experimental study for flow through a pipe filled with

metallic foam. Mashaei et al. (2016b) studied convection in a narrow annulus.

Nojoomizadeh and Karimpour (2016) studied the effects of porosity and perme-

ability on convection in a microchannel with multi-walled carbon nanotubes

suspended in oil. Bayomy and Saghir (2017) experimented with the flow of a

nanofluid through an aluminium foam heat sink. Nazari and Toghraie (2017)

numerically simulated convection of a water-CuO nanofluid in a sinusoidal

channel.

9.7.2 Internal Natural Convection

9.7.2.1 Horizontal Layer

The Horton-Rogers-Lapwood problem was treated using the Buongiorno model by

Nield and Kuznetsov (2009b), Kuznetsov and Nield (2010a, 2011a, b, c) (local

thermal nonequilibrium), Kuznetsov and Nield (2010b) (Brinkman model),

Kuznetsov and Nield (2010c) (double diffusion), Nield and Kuznetsov (2011d)

(vertical throughflow) (corrected by Jaimala and Singh, 2014), Sheu (2011) (vis-

coelastic fluid), Bhadauria and Agarwal (2011a, b), Agarwal and Bhadauria (2011),

and Bhadauria et al. (2011a, b) (nonlinear instability, rotation, local thermal

nonequilibrium), Agarwal et al. (2011) (rotation, anisotropy), Agarwal et al.

(2012) (nonlinear transport), Agarwal (2014) (rotation with a revised model),

Agarwal and Rana (2015a) (rotation, local thermal nonequilibrium), Agarwal and

Rana (2015b, 2016) (binary nanofluid with cross-diffusion, rotation), and Yadav

et al. (2016a, b, d) (dielectic nanofluid, magnetic field, quadratic drag), Chand et al.

(2016) (electroconvection) and Rana et al. (2016) (Rivlin-Eriksen fluid). In these

papers the significant effects were those of Brownian motion and thermophoresis.

An alternative model, incorporating the effects of conductivity and viscosity var-

iation and with cross-diffusion also included, was examined by Nield and

Kuznetsov (2012a, b). The effect of rotation was also studied by Chand and Rana

(2012d). Bioconvection in nanofluids with either gyrotactic or oxytactic microor-

ganisms or both was investigated by Kuznetsov (2012a, b) and Kuznetsov and

Bubnovich (2012), and also by Shaw et al. (2014a, b). Boundary and internal source

effects were treated by Yadav et al. (2012). The problem of double diffusion

combined with variation of thermal conductivity and viscosity was examined by

Yadav et al. (2013a, b). The singular case of a non-Newtonian power-law fluid was

discussed by Nield (2011a, b). The above studies involved bottom heating. The case

of uniform volumetric heating was investigated by Nield and Kuznetsov (2013b).

In this paper, zero particle-flux boundary conditions were employed. The Horton-

Rogers-Lapwood problem was revisited by Nield and Kuznetsov (2014c). This time

they treated the more realistic case of zero particle-flux boundary conditions. They

showed that in this case oscillatory instability was ruled out. They obtained an

approximate expression for the nonoscillatory instability boundary in the form
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Ra ¼ 40� NA þ Le

ε

� 	
Rn, ð9:67Þ

this boundary being attained with a dimensionless wavenumber α¼ 3.16. Here ε
is the porosity, Ra is the usual Rayleigh-Darcy number, Rn is a nanofluid

Rayleigh number, Le is a Lewis number, and NA is a modified diffusivity ratio

now defined by

Ra ¼ ρgβKH T*
h � T*

c

� �
μαm

, ð9:68Þ

Rn ¼ ρp � ρ
� �

ϕ*
0gKH

μαm
, ð9:69Þ

Le ¼ αm
DB

, ð9:70Þ

NA ¼ DT T*
h � T*

c

� �
DBT

*
cϕ

*
0

, ð9:71Þ

where T*
h and T*

c are the temperature at the bottom and top boundaries and ϕ*
0 is a

reference nanoparticle volume fraction. The case of vertical throughflow was

studied using the revised model by Nield and Kuznetsov (2015b). A layer with

internal heating was examined by Nield and Kuznetsov (2013c).

Other studies were made by Shivakumara et al. (2010a, b, c, d) (magnetic fluid),

Bhadauria et al. (2011a) (nonlinear convection), Chand and Rana (2012a) (oscilla-

tory convection), Chand and Rana (2012c) (viscoelastic fluid), Shaw and Sibanda

(2013) (vertical throughflow, convective boundary condition), Umavathi (2013b)

(thermal modulation), Yadav et al. (2013a) (double diffusion, variable viscosity and

conductivity), Bhadauria and Kiran (2014a) (gravity modulation), Chand and Rana

(2014), Kang et al. (2014a) (heterogeneous power-law fluid, horizontal

throughflow), Mahajan and Sharma (2014) (magnetic nanofluid), Rana et al.

(2014a) (double diffusion, rotation), Rana et al. (2014b) (double diffusion, visco-

elastic fluid), Umavathi and Mohite (2014a, b) (cross-diffusion, variable viscosity

and conductivity), Sharma and Singh (double diffusion, magnetic nanofluid),

Yadav and Kim (2014a) (cross-diffusion, rotation, transient convection), Yadav

et al. (2014) (rotation, non-Newtonian fluid, variable viscosity and conductivity),

Chand et al. (2015a) (low Prandtl number fluid), Chand et al. (2015b) (rotation,

variable gravity), Rana and Chand (2015) (double diffusion, viscoelastic fluid),

Shivakumara et al. (2015a) (viscoelastic fluid), Shivakumara and Dhananjaya

(2015) (penetrative convection, anisotropy), Umavathi (2015b) (time-dependent

wall temperature), Umavathi et al. (2015a, b) (nonlinear stability, double diffusion,

viscoelastic fluid, variable viscosity and conductivity, cross-diffusion), Yadav and

Kim (2015a) (transient flow, double diffusion, concentration-dependent viscosity),

Yadav et al. (2015) (internal heating, rotation), Chand et al. (2016) (electro-thermal

convection), Ahuja et al. (2016) (magnetic field), Sharma et al. (2016a, b)
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(magnetic field, double diffusion), and Umavathi and Prathap Kumar (2017)

(Oldroyd-B fluid) Kiran (2014) (viscoelastic fluid, gravity modulation).

The onset of Soret-driven convection in a Hele-Shaw cell or porous medium was

studied by Kim (2014c).

9.7.2.2 Rectangular Box

A rectangular cavity was studied by Sheikhzadeh and Nazari (2013) (square),

Bourantas et al. (2014) (square cavity, sidewall heating), Sheremet and Pop

(2014a) (conjugate problem, Buongiorno model), Sheremet and Pop (2014b) (sinu-

soidal distributions on both sidewalls, Buongiorno model), Sheremet et al. (2014)

(shallow and slender cavities, Buongiorno model), Sheremet et al. (2015b) (square),

Sheremet et al. (2015b) (square), Grosan et al. (2015) (square, Buongiorno model),

Sheremet et al. (2015a) (square, thermal stratification), Sheremet et al. (2015d)

(square, Buongiorno model, 3D convection), Sheremet et al. (2015f) (local thermal

nonequilibrium), Sheremet et al. (2015c) (cubical cavity, Tiwari and Das model),

Hossain et al. (2015) (transient, phase change material), Nguyen et al. (2015),

Shekar and Kishan (2016) (radiation), Kefayati (2016c) (power-law fluid, sidewall

heating), Satheesh and Raj (2016) (sidewall heating, moving sidewalls), Ismael

et al. (2016) (conjugate heat transfer, entropy generation, heated by a triangular

solid), Pop et al. (2016) (square, sidewall heating, local thermal nonequilibrium,

Buongiorno model), Rashad et al. (2017) (magnetic field, internal heat generation),

Ahmed and Rashad (2016) (micropolar fluid, anisotropy), Muthtamilselvan

and Sureshkumar (2016) and Ashorynejad and Mosseinpour (2017) (entropy

generation).

A square cavity heated along a segment of the bottom wall was studied by

Bourantas et al. (2014) .

9.7.2.3 Vertical or Inclined Channel, Vertical Pipe

The case of a vertical channel was studied by Hajipour and Dehkordi (2012a, b)

(partly filled channel), Akbar (2014) (double diffusion, Jeffrey fluid, peristaltic

flow), Chamkha and Ismael (2014) (partly filled, differentially heated), Das et al.

(2015b) (MHD, pseudoplastic fluid, entropy analysis, convective heating), Akbar

(2015) (double diffusion, peristaltic flow, asymmetric channel), Govender (2016a)

(rotation, Buongiorno model), Govender (2016b) (rotation about an axis at a finite

distance) and Umavathi et al. (2017) (Forchheimer-Brinkman model) and Raza et

al. (magnetic field, stretching walls, semi-porous channel. Al-Zamily (2017) stud-

ied entropy generation in a vertical channel with a porous core and a heat-gener-

ating nanofluid. Lopez et al. (2017) analyzed entropy generation in a vertical

microchannel with a magnetic field, nonlinear thermal radiation, slip flow and a

convective-radiative boundary condition.
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An inclined channel was examined by Shaw et al. (2014b) (magnetic field, cross-

diffusion, bioconvection) and Bondareva et al. (2016) (wavy channel, magnetic

field, local heater), and Umavathi et al. (2017) (Forchheimer-Brinkman model) and

Raza et al. (magnetic field, stretching walls, semi-porous channel. Al-Zamily

(2017) studied entropy generation in a vertical channel with a porous core and a

heat-generating nanofluid. Lopez et al. (2017) analyzed entropy generation in a

vertical microchannel with a magnetic field, nonlinear thermal radiation, slip flow

and a convective-radiative boundary condition. Transient convection in an oblique

cavity was studied by Alsabery et al. (2016a) using a thermal nonequilibrium

model. An inclined square enclosure was studied by Yekani Motlagh et al. (2016)

using the Buongiorno model.

Unsteady convection in a vertical pipe with slip was studied by Khamis

et al. (2015).

9.7.2.4 Other Cavities

Double diffusive convection with thermo-diffusion in a square cavity subject to

various heating conditions was studied numerically by Ahadi et al. (2013). A

triangular cavity with a flush mounted heater on a wall was treated numerically

by Sun and Pop (2011, 2014) and Ahmed et al. (2013a, b). A triangular cavity was

also studied by Sheremet and Pop (2015d) (Buongiorno model). A trapezoidal

cavity was studied by Alsabery et al. (2015) (heatline visualization, partly filled

and partly non-Newtonian fluid) and Sheremet et al. (2015d) (Buongiorno model,

right-angled). An inclined trapezoidal cavity was studied by Ahmed (2014a, b).

Conjugate problems, with a cavity heated by a plane or triangular thick wall, were

investigated by Chamkha and Ismael (2013b). Convection in an H-shaped enclo-

sure with mounted heaters on the vertical walls was examined by Mansour et al.

(2014). A cavity with wavy top and bottom and with sinusoidal distributions on

both sidewalls was studied by Sheremet and Pop (2015a, 2016), with the

Buongiorno model in the second paper. A horizontal annulus was treated by

Sheremet and Pop (2015b, c) (Buongiorno model). A parallelogrammic cavity

was treated by Ghalambaz et al. (2015a, b). Unsteady convection in an open cavity

was studied by Sheremet et al. (2015g) (Buongiorno model). Transient convection

in a wavy-walled cavity was investigated by Sheremet et al. (2016a), while

Sheremet et al. (2016b) examined MHD convection, in a wavy open tall cavity,

produced by a corner heater. The effect of radiation and magnetic field on peristaltic

transport in a tapered porous channel was studied by Kothandapani and Prakash

(2015). An inclined square cavity with a magnetic field was treated by Balla et al.

(2016). An inclined square cavity with a centrally placed fluid-filled square hole

was studied by Alsabery et al. (2016b). A wavy open cavity was investigated by

Sheremet et al. (2016a, b, c). A triangular cavity was treated by Sabour and

Ghalambaz (2016) using the Buongiorno model and three heat equations. The

Buongiorno model was also used by Zargartalebi et al. (2016) in their study of an

enclosure containing an inclined porous fin. Double diffusion in a triangular
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enclosure with heat generation was studied by Chowdhury et al. (2016). A partly

open cavity with internal heating was treated by Nithyadevi and Rajarathinam

(2016a, b). A magnetic nanofluid was examined by Sheikholeslami (2016) (curved

enclosure) and Sheikholeslami and Shezad (2017) (heat flux boundary condition).

The effects of finite wall thickness, sinusoidal heating and local thermal non-

equilibrium on convection in a cavity were studied by Alsabery et al. (2017).

Buongiorno’s model was applied to a porous wavy cavity with a thermal dispersion

effect by Sheremet et al. (2017).

9.7.3 External Natural Convection

9.7.3.1 Vertical Plate

The Cheng-Minkowycz problem of boundary layer flow over a vertical plate at

constant temperature was studied by Nield and Kuznetsov (2009a, 2011a) and (with

a revised model, employing zero particle-flux boundary conditions) by Kuznetsov

and Nield (2013a, b), who obtained a linear regression correlation formula for a

Nusselt number of the form

Nuest=Rax
1=2 ¼ 0:444þ CrNrþ CbNbþ CtNt, ð9:72Þ

where the coefficients are functions of Le/ε, given by Table 9.3. Here Le is the

Lewis number defined by Eq. (9.69) and the local Rayleigh number Ra and the

parameters Nr, Nb, and Nt are defined by

Rax ¼
1� ϕ1ð Þρf1βgKx

μαm
, ð9:73Þ

Nr ¼ ρp � ρf1
� �

ϕ1
ρf1β Tw � T1ð Þ 1� ϕ1ð Þ , ð9:74Þ

Table 9.3 Summary of linear

regression coefficients and

error bound for the reduced

Nusselt number, applicable to

Eq. (9.71)

Le/ε Cr Cb Ct ε

5 �0.003 0.004 �0.090 0.030

10 �0.001 0.000 �0.105 0.009

20 �0.001 �0.001 �0.120 0.003

50 �0.002 �0.002 �0.135 0.004

100 �0.002 �0.003 �0.143 0.005

200 �0.003 �0.003 �0.150 0.006

500 �0.003 �0.003 �0.155 0.006

1000 �0.003 �0.003 �0.158 0.007

Here ε is the maximum relative error defined by ε¼ j(Nuest�
Nu)/Nuj, applicable for Nr, Nb, Nt each in [0, 0.5]

532 9 Double-Diffusive Convection



Nb ¼ ε ρcð ÞpDBϕ1
ρcð Þfαm

, ð9:75Þ

Nt ¼ ε ρcð ÞpDT Tw � T1ð Þ
ρcð ÞfαmT1

: ð9:76Þ

It can be seen in the table that the Brownian motion parameter Nb has very little

effect on the Nusselt number and the coefficient of the buoyancy ratio Nr is also

small. The Nusselt number is reduced as the thermophoresis parameter Nt is

increased.

Other studies of a vertical plate were reported by Gorla and Chamkha (2011a)

(nonisothermal plate), Hady et al. (2011b, c) (non-Newtonian fluid, yield stress),

Noghrehabadi et al. (2013c) (prescribed surface heat flux), Ghalambaz and

Noghrehabadi (2014) (prescribed surface heat flux), Tavakoli et al. (2013)

(non-Darcy medium), Aziz et al. (2012) (bioconvection), Khan et al. (2013a)

(non-Newtonian fluid, bioconvection), Uddin et al. (2013a, b) (non-Newtonian

fluid, bioconvection), RamReddy et al. (2014) (stratification), Srinivasacharya

and Surenda (2014d) (double stratification), Noghrehabadi et al. (2014a, b) (vari-

able viscosity and conductivity), Murthy et al. (2013a) (magnetic field,

thermal stratification, convective boundary condition), Uddin et al. (2013c)

(non-Newtonian fluid, internal heating), Uddin and Harmand (2013) (unsteady

flow), RamReddy and Chamkha (2013) (non-Newtonian fluid), Satya Narayana

et al. (2014) (rotation, radiation), RamReddy et al. (2013b) (magnetic field),

Kameswaran and Sibanda (2013) (power-law fluid, thermal dispersion),

Noghrehabadi et al. (2014a, b), Chamkha et al. (2014c) (internal heating), Chamkha

et al. (2014d) (magnetic field), Ali Agha et al. (2014) (magnetic field, radiation),

Chandra et al. (2014a) (suction/injection, internal heating), Chandra et al. (2014b)

(viscous dissipation, convective boundary condition), (Dehsara et al. (2014) (mag-

netic field, radiation), Ghalambaz et al. (2014) (convectively heated plate), Mabood

et al. (2014) (non-Newtonian fluid, bioconvection), Muthtamilselvan et al. (2014a,

b) (transient convection, magnetic field, local thermal nonequilibrium), Surenda

(2014) (double stratification), Srinivasacharya and Surenda (2014d) (cross-

diffusion, double stratification), Uddin et al. (2014a) (double diffusion, radiation,

magnetic field, slip flow), Awad et al. (2015) (double dispersion), Khan et al.

(2015a, b, d, e) (triple diffusion), Zhang et al. (2015a, b, c) (magnetic field,

chemical reaction, radiation), Abou-zeid et al. (2015) (power-law nanoslime),

Agha et al. (2014, 2015) (magnetic field, radiation), (magnetic field, multiple slip

effects, unsteady flow, heat generation, temperature-dependent properties), Hayat

et al. (2015a) (magnetic field, convective boundary conditions), Khan et al. (2015a,

b) (non-Newtonian fluid, bioconvection, slip), Rashidi et al. (2015b) (entropy

generation), Uddin et al. (2015b) (magnetic field), Narayana et al. (2015)

(magnetic field, rotation, heat source), Uddin et al. (2016a, b, d) (Buongiorno

model, radiation, non-Newtonian fluid, magnetic field, stretching sheet), Ahmed

and Mahdy (microorganisms, magnetic field, Buongiorno model), Bouaziz and

Hanini (2016) (double dispersion), Kiran Kumar et al. (2016) (rotation, magnetic
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field, chemical reaction), Aly and Ebaid (2016) (magnetic field, surface tension,

radiation), Mohd Zin et al. (2016) (magnetic field, Jeffrey fluid, oscillating plate),

Haile and Shankar (2016) (magnetic field, radiation), and Kataria and Mittal (2017)

(oscillating plate, magnetic field).

A stretching surface was treated by Ferdows et al. (2012) (magnetic field), Khan

and Pop (2012b), Rosmila et al. (2012), Sheikholeslami and Ganji (2014),

Sheikholeslami et al. (2014), Aly and Hassan (2014) (magnetic field), Khidir and

Sibanda (2014b) (viscous dissipation), Hayat et al. (2014) (convective boundary

condition, exponential stretching), Khalili et al. (2014a), Kameswaran et al. (2014a)

(internal heating),Uddin et al. (2014b) (g-jitter, slip flow, variable viscosity), Hayat

et al. (2015b) (magnetic field, chemical reaction), Yirga and Shankar (2015)

(magnetic field, viscous dissipation, chemical reaction), Uddin et al. (2015a)

(Newtonian heating, radiation, Buongiorno model), Khan et al. (2016a, b) (cross-

diffusion), Reddy and Chamkha (2016) (cross-diffusion, heat generation),

Sulochana et al. (2016) (aligned magnetic field, cross-diffusion, exponential

stretching), Aly (2016b) (magnetic field, radiation) and Ullah et al. (2016b) (mag-

netic field, Casson fluid, radiation, chemical reaction) and Vishnu Ganesh et al.

(2016) (magnetic field, second order slip, viscous dissipation).

Stagnation point flow on a heated permeable stretching surface with heat gen-

eration/absorption was studied by Hamad and Pop (2011). This paper was discussed

by Magyari (2011a, b) and Pop (2011). Stagnation point flow was also studied by

Khan and Pop (2012a, b), Khalili et al. (2014a, b) (magnetic field, stretching

surface, unsteady flow), Yazdi et al. (2014) (magnetic field, radiation, stretching

surface), Pal et al. (2014) (stretching surface), Mabood et al. (2016b) (magnetic

field, radiation, chemical reaction, viscous dissipation), and Shaw et al. (2016)

(stretching sheet, dual solutions, chemical reaction).

Flow over a wavy vertical wall was studied by Mahdy and Ahmed (2012) and

Ahmed and Abd El-Aziz (2013) (local thermal nonequilibrium, unsteady

convection).

9.7.3.2 Horizontal or Inclined Plate or Wedge

The case of a heated upward facing horizontal flat plate was considered by Khan

and Pop (2011a), Gorla and Chamkha (2011b, c), Uddin et al. (2012a, b), Uddin

et al. (2013a, b, c) (power-law fluid, internal heating, bioconvection), Khan et al.

(2013c) (triple diffusion), Rashidi et al. (2014a) (chemical reaction), Zargartalebi

et al. (2015) (variable thermo-physical properties), and Uddin et al. (2016a) (slip).

An inclined plate was investigated by Cheng (2012e) (cross-diffusion), Murthy

et al. (2013b) (double diffusion), Srinivasacharya and Vijay Kumar (2015a) (wavy

surface, radiation), and Srinivasacharya et al. (2016).

An isothermal wedge with cross-diffusion was studied by Kameswaran et al.

(2014c). Flow over a wedge was also studied by Chamkha et al. (2011c) and

Kandasamy et al. (2012, 2013, 2014). Kandasamy et al. (2016) added the effects
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of a magnetic field and thermal radiation energy. A wedge with magnetic field,

suction/injection and viscous dissipation was studied by Pandey and Kumar (2016).

9.7.3.3 Curved Surface

Flow over a vertical cylinder was treated by El-Kabeir et al. (2014). A vertical

cylinder embedded in a thermally stratified porous medium was studied by Rashad

et al. (2014c).

Flow over a horizontal cylinder of elliptical cross section was investigated by

Cheng (2012a). A stretching horizontal cylinder with radiation and suction/injec-

tion was studied by Elbashbeshy et al. (2015). Convection from a horizontal

cylinder in a square enclosure was treated by Saleh and Hashim (2015). A hori-

zontal cylinder with double diffusion was studied by Sudarsana Reddy and

Chamkha (2016b) using the Buongiorno model.

Convection over a vertical cone was examined by Rashad et al. (2011c), Cheng

(2012c), Chamkha and Rashad (2012), Hady et al. (2011a) (non-Newtonian fluid),

Rasekh et al. (2013) (non-Newtonian fluid), Noghrehabadi et al. (2013b), Cheng

(2013a) (double diffusion), Behseresht et al. (2014) (double diffusion), Gorla et al.

(2014), Cheng (2014c), Ghalambaz et al. (2015a, b) (variable conductivity), Khan

et al. (2015d), (power-law fluid, convective boundary conditions), Chamkha et al.

(2013b, 2015a) (permeable cone), Sudarsana Reddy and Chamkha (2016),

Mahdy et al. (2016) (microorganisms), Hady et al. (2016) and Uddin et al.

(2016c) (dilatant nanofluid, multiple convective boundary conditions).

The case of a vertical truncated cone was treated by Cheng (2012f) and (with a

non-Newtonian fluid) by Cheng et al. (2012d). Convection about a sphere was

studied by Chamkha et al. (2011a, d). Hayat et al. (2016a, b) investigated the effect

of variable viscosity and a radial magnetic field on peristalsis in a curved channel.

9.7.4 Mixed Convection

9.7.4.1 Vertical Plate

Mixed convection boundary layer flow over a vertical plate was studied by Ahmad

and Pop (2010), Syakila and Pop (2010), Rashad et al. (2013a) (non-Newtonian

fluid), Yasin et al. (2012) (internal heating, Ferdows et al. (2012) (magnetic field,

stretching sheet), Bég et al. (2013a) (oxytactic microorganisms), Rashad et al.

(2013a) (non-Newtonian fluid), Yasin et al. (2013a) (thermal stratification), Yasin

et al. (2013a, b) (suction/injection), Ramreddy et al. (2013a) (Soret effect, convec-

tive boundary condition), Rashad et al. (2014a) (viscous dissipation), Rosca et al.

(2014), Srinivasacharya and Surenda (2014a) (double stratification), Rashad et al.

(2014b) (viscous dissipation), Pal and Mondal (2014a, 2015) (stagnation point flow,

stretching sheet, chemical reaction, radiation, heat generation, and viscous
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dissipation),Yazdi et al. (2014) (stagnation point flow, magnetic field, stretching

sheet, radiation), Kairi and RamReddy (2015) (melting, power-law fluid), Rashad et

al. (2015) (convective boundary conditions, viscous dissipation), Abdullah and

Ibrahim (2015) (unsteady stagnation point flow, Buongiorno model),

Srinivasacharya et al. (2015e, 2016) (wavy surface, thermophoresis), Ramzan

et al. (2016) (viscoelastic fluid, cross-diffusion), Kameswaren et al.(2016) (wavy

surface, stratification, nonlinear Boussinesq approximation), and Yasin et al. (2016)

(Buongiorno model).

9.7.4.2 Horizontal or Inclined Plate

Flow past a horizontal plate was investigated by Arifin et al. (2012). Mixed

convection from a horizontal plate with Forchheimer drag, but considering only

the effect of the nanoparticle volume fraction parameter, was investigated by Rosca

et al. (2012). Flow over an inclined plate was studied by Rana et al. (2012b), Aly

and Ebaid (2013), Rasekh and Ganji (2013), Matin and Hosseini (2014), and

Srinivasacharya and Vijay Kumar (2015b, c) (wavy surface).

9.7.4.3 Curved Surfaces

The corresponding flow over a horizontal cylinder was examined by Nazar et al.

(2011) and Tham et al. (2013a). A horizontal cylinder with a convective boundary

condition was investigated by Rashad et al. (2013b).

The case of a vertical cylinder was treated by Chamkha et al. (2012), Gorla and

Abdel-Gaied (2011), Gorla and Khan (2012), Gorla and Hossain (2013),

RamReddy et al. (2013a, b) (double diffusion, cross-diffusion), Rohni et al.

(2013), Rashad et al. (2014a, b, c) (thermal stratification), and El-Kabeir et al.

(2014) (radiation).

Convection over a sphere or a horizontal circular cylinder with a nanofluid

containing gyrotactic microorganisms was studied by Tham and Nazar (2012a, b,

2013) and Tham et al. (2013b, c). Flow past a horizontal cylinder was treated using

the Buongiorno model by Tham et al. (2104b, 2016). Flow past a sphere was also

treated by Tham et al. (2014a) and by El-Kabeir et al. (2015a, b) (radiation,

convective boundary condition). Khan et al. (2015c) studied unsteady MHD rear

stagnation point slip flow.

Convection past a vertical cone was treated by Hady et al. (2011a) (non-

Newtonian fluid, heat generation/absorption), Rashad et al. (2011c)

(non-Newtonian fluid), Chamkha and Rashad (2012) (suction/injection), Chamkha

et al. (2013a) (radiation), Rasekh et al. (2013) (non-Newtonian fluid), Cheng

(2013a) (double diffusion), Noghrehabadi et al. (2013b), Noghrehabadi and

Behseresht (2013) (variable properties), Zeeshan et al. (2014) (magnetic field),

Behseresht et al. (2014) (double diffusion, variable properties), Ghalambaz et al.
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(2015a, b) (variable conductivity), and Chamkha et al. (2015a, b) (non-Newtonian

fluid). A truncated cone was studied by Cheng (2012b).

Flow past a wedge was examined by Gorla and Kumari (2011), Gorla et al.

(2011b), Chamkha et al. (2014b), and Kandasamy et al. (2014) (magnetic field,

unsteady convection). Shafie et al. (2016), and Aman et al. (2016) (Poiseuille flow,

magnetic field, radiation, chemical reaction).

9.7.4.4 Vertical, Horizontal, or Inclined Channel

Mixed convection in a vertical channel was studied by Memari et al. (2011a, b)

(viscous heating), Hashemi Amrei and Dehkordi (2014), Matin and Ghanbari

(2014) (Buongiorno model, flow reversal), Hashemi Amrei and Dehkordi (2014)

(partly filled channel), Hajipour and Dehkordi (2014) (experimental study with

partly filled channel) Sheremet et al. (2015a, b, c, d, e, f, g, h) (double diffusion,

open cavity, Buongiorno model), Fersdaou et al. (2015)(MHD, entropy generation),

Makhata et al. (2015) (flow reversal, variable viscosity, convective surface condi-

tion), Sarkar et al. (2015) (wavy channel, peristaltic flow, radiation), Aaiza et al.

(2015) (magnetic field), and Rauf et al. (2016) (stretchable channel, radiation,

microfluid, magnetic field, Buongiorno model).

An inclined channel was studied by Cimpean and Pop (2012), Aly and Ebaid

(2013), Rasekh and Ganji (2013), Sureshkumar and Muthtamilselvan (2016) (mov-

ing top lid), and Hayat et al. (2016a, b) (peristalsis, second-order velocity, and

thermal slips and Nithyadevi et al. (2017) (heated mid-domain moving wall,

sinusoidal heating on a side wall). A horizontal annulus was investigated by Ellahi

et al. (2013).

9.7.4.5 Other Cavities

Convection in a lid-driven cavity was studied by Mittal et al. (2013, 2014)

Nithyadevi and Rajaarthinam (2015) (cross-diffusion) and Sivasankaran et al.

(2016) (two sided drive, partial slip, magnetic field). A problem with various heat

source shapes with constant flux in a rectangular horizontal channel was treated

numerically by Mahdi et al. (2014). Cavities of various geometrical shapes filled

with open cell aluminum foam were studied by Mahdi et al. (2013). Hayat et al.

(2016) studied peristalsis of a MHD Jeffery nanofluid in a curved channel.
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