
Chapter 4

Forced Convection

The fundamental question in heat transfer engineering is to determine the relation-

ship between the heat transfer rate and the driving temperature difference. In nature,

many saturated porous media interact thermally with one another and with solid

surfaces that confine them or are embedded in them. In this chapter we analyze the

basic heat transfer question by looking only at forced convection situations, in

which the fluid flow is caused (forced) by an external agent unrelated to the heating

effect. First we discuss the results that have been developed based on the Darcy flow

model and later we address work on the non-Darcy effects. We end this chapter

with a review of current engineering applications of the method of forced convec-

tion through porous media. Some fundamental aspects of the subject have been

discussed by Lage and Narasimhan (2000) and the topic has been reviewed by

Lauriat and Ghafir (2000) and Zheng et al. (2012).

4.1 Plane Wall with Prescribed Temperature

Perhaps the simplest and most common heat transfer arrangement is the flow

parallel to a flat surface that borders the fluid-saturated porous medium. With

reference to the two-dimensional geometry defined in Fig. 4.1, we recognize the

equations governing the conservation of mass, momentum (Darcy flow), and energy

in the flow region of thickness δT:

∂u
∂x

þ ∂v
∂y

¼ 0, ð4:1Þ

u ¼ �K

μ

∂P
∂x

, v ¼ �K

μ

∂P
∂y

, ð4:2Þ

© Springer International Publishing AG 2017

D.A. Nield, A. Bejan, Convection in Porous Media,
DOI 10.1007/978-3-319-49562-0_4

85



u
∂T
∂x

þ v
∂T
∂y

¼ αm
∂2

T

∂y2
: ð4:3Þ

Note the boundary layer-approximated right-hand side of Eq. (4.3), which is

based on the assumption that the region of thickness δT and length x is slender

(δT� x). The fluid mechanics part of the problem statement [namely, Eqs. (4.1) and

(4.2)] is satisfied by the uniform parallel flow

u ¼ U, v ¼ 0, ð4:4Þ

The constant pressure gradient that drives this flow (–dP/dx ¼ μU1/K ) is

assumed known.

The heat transfer rate between the surface at temperature Tw and the saturated

porous medium at far-field temperature T1 can be determined in several ways. The

scale analysis begins with writing ΔT ¼ Tw – T1, so that the order-of-magnitude

counterpart of Eq. (4.3) becomes
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Fig. 4.1 Parallel flow near an isothermal wall (Bejan 1984)
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U1
ΔT
x

� αm
ΔT
δ2T

: ð4:5Þ

From this we can determine the thickness of the thermal boundary layer

δT � xPe�1=2
x , ð4:6Þ

in which Pex is the Péclet number based on U1 and x:

Pex ¼ U1x

αm
: ð4:7Þ

For the local heat flux q00 we note the scale q00 ~ km ΔT/δT, or the corresponding
local Nusselt number

Nux ¼ q
00

ΔT
x

km
� Pe1=2x : ð4:8Þ

Figure 4.1 qualitatively illustrates the main characteristics of the heat transfer

region, namely, the boundary layer thickness that increases as x1/2 and the heat flux
that decays as x�1/2. The exact analytical solution for the same problem can be

derived in closed form by introducing the similarity variables recommended by the

scale analysis presented above:

η ¼ y

x
Pe1=2x , θ ηð Þ ¼ T � Tw

T1 � Tw

: ð4:9Þ

In this notation, the energy equation (4.3) and the boundary conditions of

Fig. 4.1 become

θ
00 þ 1

2
ηθ0 ¼ 0, ð4:10Þ

θ 0ð Þ ¼ 0, θ 1ð Þ ¼ 1: ð4:11Þ

Equation (4.10) can be integrated by separation of variables, and the resulting

expressions for the similarity temperature profile and the surface heat flux are

(Bejan 1984):

θ ¼ erf
η

2

� �
, ð4:12Þ

Nux ¼ q
00

Tw � T1

x

km
¼ 0:564Pe1=2x , ð4:13Þ

The overall Nusselt number based on the heat flux �q
00
averaged from x ¼ 0 to a

given plate length x ¼ L is
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NuL ¼ q00

Tw � T

L

km
¼ 1:128Pe

1=2
L : ð4:14Þ

Cheng (1977c) found the same Nux result by integrating numerically the

equivalent of Eqs. (4.10) and (4.11) for a wider class of problems. The similarity

temperature profile (4.12) has been plotted as (1 – θ) versus η in Fig. 4.2. The

effect of viscous dissipation has been included in the analysis by Magyari et al.

(2003b). An experimental study of forced convection over a horizontal plate in a

porous medium was reported by Afifi and Berbish (1999). A finite-element

study was made by Krishna et al. (1999). Magyari et al. (2001a) presented

some exact analytical solutions for forced convection past a plane or axisymmet-

ric body having a power-law surface distribution. Li and Tu (2008) and Li et al.

(2009) obtained an integral solution for forced convection over an isothermal

plate.
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4.2 Plane Wall with Constant Heat Flux

When the surface heat flux q00 is independent of x the temperature difference Tw –

T1 increases as x in the downstream direction. This can be seen by combining the

heat flux scale q00 ~ km(Tw – T1)/δT with the δT scale (4.6), which applies to the

constant q00 configuration as well. The similarity solution for the temperature

distribution along and near the y ¼ 0 surface was determined numerically by

Bejan (1984),

T x; yð Þ � T1 ¼ q
00
=km

�dθq00 =dη
� �

η¼0

αmx

U

� �1=2

θq00 ηð Þ, ð4:15Þ

in which θq00(η) is the similarity temperature profile displayed in Fig. 4.2. The

similarity variable η is defined on the ordinate of the figure. Since the calculated

slope of the θq00 profile at the wall is (–dθq00/dη)η¼0 ¼ 0.886, the inverse of the local

temperature difference can be nondimensionalized as the local Nusselt number

Nux ¼ q
00

Tw xð Þ � T

x

km
¼ 0:886Pe1=2x : ð4:16Þ

The overall Nusselt number that is based on the average wall temperature �Tw

(specifically, the temperature averaged from x ¼ 0 to x ¼ L ) is

NuL ¼ q
00

�Tw � T

L

km
¼ 1:329Pe

1=2
L : ð4:17Þ

We use this opportunity to communicate the exact solution for the problem of

heat transfer from an embedded wall with uniform heat flux. The closed-form

analytical alternative to the numerical solution (4.15) shown in Fig. 4.2 is

T x; yð Þ � T1
q00 x=km

Pe1=2x ¼ 2π�1=2exp � η2

4

� �
� η erfc

η

2

� �
: ð4:18Þ

The right-hand side of Eq. (4.18) now replaces the function θq00/(–dθq00/dη)η¼0

used earlier in (4.15). This exact solution also reveals the exact values of the

numerical coefficients that appear in Eqs. (4.16) and (4.17), namely 0.886 ¼ π1/2/
2 and 1.329 ¼ (3/4)π1/2.

It is worth reviewing the Nusselt number results (4.13), (4.16), and (4.17), in

order to rediscover the order-of-magnitude trend anticipated in Eq. (4.8). All these

results are valid if δT � x, i.e., when the Péclet number is sufficiently large so that

Pe1=2x � 1. The effect of variation of viscosity with temperature was studied by

Ramirez and Saez (1990) and Ling and Dybbs (1992).

Mahgoub (2013) reported experimental results for the constant flux case.
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4.3 Sphere and Cylinder: Boundary Layers

A conceptually similar forced convection boundary layer develops over any other

body that is imbedded in a porous medium with uniform flow. Sketched in Fig. 4.3

is the thermal boundary layer region around a sphere, or around a circular cylinder

that is perpendicular to the uniform flow with volume-averaged velocity u. The
sphere or cylinder radius is r0 and the surface temperature is Tw.

The distributions of heat flux around the sphere and cylinder were determined by

Cheng (1982), who assumed that the flow obeys Darcy’s law. With reference to the

angular coordinate θ defined in Fig. 4.3, Cheng obtained the following expressions

for the local peripheral Nusselt number:

Sphere:

Nuθ ¼ 0:564
ur0θ

αm

� �1=2
3

2
θ

� �1=2

sin 2θ
1

3
cos 3θ � cos θ þ 2

3

� �1=2

: ð4:19Þ

Cylinder:

Nuθ ¼ 0:564
ur0θ

αm

� �1=2

2θð Þ1=2 sin θ 1� cos θð Þ1=2: ð4:20Þ

Worth noting in these expressions is the Péclet number based on the swept arc

r0θ, namely Peθ ¼ u r0θ/αm. The local Nusselt number is defined as

Nuθ ¼ q
00

Tw � T1

r0 θ

km
: ð4:21Þ

The variation of the local heat flux over the cylinder or sphere circumference is

illustrated in terms of [q00r0/km(Tw – T1)](ur0/αm)
�1/2 versus θ in Fig. 4.4.

Equations (4.19) and (4.20) are valid when the boundary layers are distinct

(thin), i.e., when the boundary layer thickness r0Pe
1=2
θ is smaller than the radius

r0. This requirement can also be written as Pe
1=2
θ � 1, or Nuθ � 1.

u,T•

Tw

r0

θ

Fig. 4.3 The forced-

convection thermal

boundary layer around a

sphere or perpendicular

cylinder embedded in a

porous medium
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The conceptual similarity between the thermal boundary layers of the cylinder

and the sphere (Fig. 4.3) and that of the flat wall (Fig. 4.1) is illustrated further by

the following attempt to correlate the heat transfer results for these three configu-

rations. The heat flux averaged over the area of the cylinder and sphere, �q
00
, can be

calculated by averaging the local heat flux q00 expressed by Eqs. (4.19)–(4.21). We

have done this on this occasion, and the results are:

Sphere : NuD ¼ 1:128Pe
1=2
D , ð4:22Þ

Cylinder : NuD ¼ 1:015Pe
1=2
D : ð4:23Þ

In these expressions, the Nusselt and Péclet numbers are based on the diameter

D ¼ 2r0,

NuD ¼ q00

Tw � T

D

km
, PeD ¼ uD

αm
: ð4:24Þ

Remarkable at this stage is the similarity between theNuD expressions (4.22) and

(4.23), and between this set and the corresponding NuL formula for the isothermal

flat wall, Eq. (4.14). The correlation of these three results is very successful because

in each case the length scale used in the definition of the overall Nusselt number and

the Péclet number is the dimension that is aligned with the direction of flow, the

diameter in Fig. 4.3, and the length L in Fig. 4.1.

In an earlier attempt to correlate the overall heat transfer rates for these three

configurations, as length scale we used Lienhard’s (1973) “swept” length l, namely

l ¼ L for the flat wall and l ¼ πr0 for the cylinder and sphere. We found that this

length scale does not work nearly as well; in other words, the resulting Nul � Pel
expressions change appreciably from one configuration to the next. In defense of

Lienhard’s length scale, however, it must be said that it was originally proposed for

natural convection boundary layers, not forced convection.

The heat transfer by forced convection from a cylinder with elliptic cross section

to the surrounding saturated porous medium was analyzed by Kimura (1988a). This
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geometry bridges the gap between the circular cylinder and the plane wall discussed

in Sect. 4.1. The elliptic cylinder in cross flow is in itself relevant as a model for the

interaction between a uniform flow and a circular cylinder that is not perpendicular

to the flow direction. The extreme case in which the circular cylinder is parallel to

the flow direction was also analyzed by Kimura (1988b). A circular cylinder with

constant heat flux was studied by Kimura and Yoneysa (1992). A problem involv-

ing a magnetic field was treated by Ghadi et al. (2012).

Murty et al. (1990) investigated non-Darcy effects and found that heat transfer

from a cylinder was only weakly dependent on Darcy and Forchheimer numbers for

Da < 10–4, Re < 200.

An experimental study of heat transfer from a cylinder embedded in a bed of

spherical particles, with cross flow of air, was made by Nasr et al. (1994). Agree-

ment with theory based on Darcy’s law and boundary layer approximations was

found to be moderately successful in predicting the data, but improved correlations

were obtained with an equation modified to better account for particle diameter and

conductivity variations. A similar experimental study was made by Afifi and

Berbish (1998).

For axial flow past a cylinder, an experimental study, with water and glass beads,

was carried out by Kimura and Nigorinuma (1991). Their experimental results

agreed well with an analysis, similar to that for the flat plate problem but with the

curvature taken into account. Three exactly solvable cases with axial flow were

studied by Magyari (2013b).

Heat transfer from a large sphere imbedded in a bed of spherical glass beads was

studied experimentally by Tung and Dhir (1993). They concluded that the total rate

of heat transfer could be predicted from the equation

Nu ¼ Nuconduction þ Nuradiation þ Nu3natural þ Nu3forced
� �1=3

, ð4:25Þ

where

Nuforced ¼ 0:29Re0:8Pr1=2, 0:7 � Pr � 5, Re � 2400: ð4:26Þ

where Re is the Reynolds number based on the diameter of the large sphere.

Asymptotic solutions, valid for high or low (respectively) Pe, for the case of a

sphere with either prescribed temperature or prescribed flux, were obtained by

Romero (1994, 1995a). Analytical solutions for large Péclet numbers for flow

about a cylinder or sphere were reported by Pop and Yan (1998). Numerical

simulation of forced convection past a parabolic cylinder was carried out by

Haddad et al. (2002). MHD and viscous dissipation effects for flow past a cylinder

were studied by El-Amin (2003a). Further analysis of forced convection from a

circular cylinder was reported by Al-Sumaily et al. (2012a,b), who studied the

effect of local thermal nonequilibrium. Khadrawi et al. (2005a) studied non-Darcy

convection past a wedge or cone.

Juncu (2014) studied the effect of permeability on unsteady conjugate convec-

tion from a sphere.
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4.4 Point Source and Line Source: Thermal Wakes

In the region downstream from the hot sphere or cylinder of Fig. 4.3, the heated

fluid forms a thermal wake whose thickness increases as x1/2. This behavior is

illustrated in Fig. 4.5, in which x measures the distance downstream from the heat

source. Seen from the distant wake region, the imbedded sphere appears as a point

source (Fig. 4.5, left), while the cylinder perpendicular to the uniform flow (u, T1)

looks like a line source (Fig. 4.5, right).

Consider the two-dimensional frame attached to the line source q0 in Fig. 4.5,

right. The temperature distribution in the wake region, T(x,y), must satisfy the

energy conservation equation

u
∂T
∂x

¼ αm
∂2

T

∂y2
, ð4:27Þ

the boundary conditions T ! T1 as y ! �1, and the integral condition

q0 ¼
ð1
�1

ρcPð Þfu T � T1ð Þdy: ð4:28Þ

Restated in terms of the similarity variable η and the similarity temperature

profile θ,

η ¼ y

x
Pe1=2x , θ ηð Þ ¼ T � T1

q=km
Pe1=2x , ð4:29Þ

in which Pex ¼ ux/αm, the problem statement becomes

�1

2
θ þ ηθ0ð Þ ¼ θ

00
, ð4:30Þ

u,T• u,T•

q
q’

yr

x

T(x,r) T(x,y)

x

Fig. 4.5 The thermal wakes behind a point source (left), and behind a line source perpendicular to
the uniform flow (right)
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θ ! 0 as η ! �1 ð4:31Þð1
�1

θdη ¼ 1: ð4:32Þ

The solution can be determined analytically,

θ ¼ 1

2π1=2
exp � η2

4

� �
: ð4:33Þ

In terms of the physical variables, the solution is

T � T1 ¼ 0:282
q0

km

αm
ux

� �1=2

exp � uy2

4αmx

� �
: ð4:34Þ

In conclusion, the wake temperature distribution has a Gaussian profile in y. The
width of the wake increases as x1/2, while the temperature excess on the centerline

[T(x,0) – T1] decreases as x�1/2.

The corresponding solution for the temperature distribution T(x,r) in the round

wake behind the point source q of Fig. 4.5, left, is

T � T1 ¼ q

4π kmx
exp � ur2

4αmx

� �
, ð4:35Þ

In this case, the excess temperature on the wake centerline decreases as x�1, that

is more rapidly than on the centerline of the two-dimensional wake.

Both solutions, Eqs. (4.34) and (4.35), are valid when the wake region is slender,

in other words when Pex � 1. When this Péclet number condition is not satisfied,

the temperature field around the source is dominated by the effect of thermal

diffusion, not convection. In such cases, the effect of the heat source is felt in all

directions, not only downstream.

In the limit where the flow (u, T1) is so slow that the convection effect can be

neglected, the temperature distribution can be derived by the classic methods of

pure conduction. A steady-state temperature field can exist only around the point

source,

T rð Þ � T1 ¼ q

4π kmr
: ð4:36Þ

The pure conduction temperature distribution around the line source remains

time dependent (all the temperatures rise; e.g., Bejan 1993, p. 181). When the time

t is sufficiently long so that (x2 + y2)/(4αmt)� 1, the excess temperature around the

line source is well approximated by

T r; tð Þ � T1 ffi q0

4π km
ln

4αmt

σ r2

� �
� 0:5772

� 	
: ð4:37Þ

In this expression, r2 is shorthand for (x2 + y2). We will return to the subject of

buried heat sources in Sects. 5.10 and 5.11.
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4.5 Confined Flow

We now consider the forced convection heat transfer in a channel or duct packed with

a porous material (Fig. 4.6). In the Darcy flow regime the longitudinal volume-

averaged velocity u is uniform over the channel cross section. For this reason, when

the temperature field is fully developed, the relationship between the wall heat flux q00

and the local temperature difference (Tw – Tb) is analogous to the formula for fully

developed heat transfer to “slug flow” through a channel without a porousmatrix. The

temperature Tb is the mean or bulk temperature of the stream that flows through the

channel (e.g., Bejan 1984, p. 83). The Tb definition for slug flow reduces to

Tb ¼ 1

A

ð
A

TdA, ð4:38Þ

in which A is the area of the channel cross section.

In cases where the confining wall is a tube with the internal diameter D, the
relation for fully developed heat transfer can be expressed as a constant Nusselt

number (Rohsenow and Choi 1961):

NuD ¼ q
00
xð Þ

Tw � Tb xð Þ
D

km
¼ 5:78 tube; Tw ¼ constantð Þ, ð4:39Þ

NuD ¼ q
00

Tw xð Þ � Tb xð Þ
D

km
¼ 8 tube; q

00 ¼ constant
� �

: ð4:40Þ

When the porous matrix is sandwiched between two parallel plates with the

spacing D, the corresponding Nusselt numbers are (Rohsenow and Hartnett 1973)

NuD ¼ q
00
xð Þ

Tw � Tb xð Þ
D

km
¼ 4:93 parallel plates; Tw ¼ constantð Þ, ð4:41Þ

NuD ¼ q
00

Tw xð Þ � Tb xð Þ
D

km
¼ 6 parallel plates; q

00 ¼ constant
� �

: ð4:42Þ

The forced convection results [Eqs. (4.39)–(4.42)] are valid when the tempera-

ture profile across the channel is fully developed, i.e., sufficiently far from the

x

y or r

u

q”

D

Tw

Fig. 4.6 Heat transfer to

the Darcy flow forced

through the porous medium

confined by the walls of a

channel or duct
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entrance x ¼ 0 (Fig. 4.6). The entrance length, or the length needed for the

temperature profile to become fully developed, can be estimated by recalling

from Eq. (4.6) that the thermal boundary layer thickness scales as (αmx/u)
1/2. By

setting (αmx/u)
1/2 ~ D we obtain the thermal entrance length xT ~ D2u/αm. Inside the

entrance region 0 < x < xT, the heat transfer is impeded by the forced convection

thermal boundary layers that line the channel walls, and can be calculated approx-

imately with the formulas presented in Sects. 4.1 and 4.2.

One important application of the results for a channel packed with a porous

material is in the area of heat transfer augmentation. The Nusselt numbers for fully

developed heat transfer in a channel without a porous matrix are given by expres-

sions similar to Eqs. (4.39)–(4.42), except that the saturated porous medium

conductivity km is replaced by the thermal conductivity of the fluid alone, kf. The
relative heat transfer augmentation effect is indicated approximately by the ratio

hx with porous matrixð Þ
hx without porous matrixð Þ �

km
kf

, ð4:43Þ

in which hx is the local heat transfer coefficient q00/(Tw – Tb). In conclusion, a

significant heat transfer augmentation effect can be achieved by using a high-

conductivity matrix material, so that km is considerably greater than kf.
Forced convection in sintered metals was investigated by Evoshenko and Yaskin

(1976). An experimental study of unsteady heat transfer was reported by Koshelev

et al. (1989). They obtained heat transfer coefficient much smaller than those for

steady conditions. Inaba et al. (1993) reported experiments on convection in a duct

of rectangular cross section, occupied by spherical particles, which was heated from

below and cooled from the top. Experimental investigations were carried out by

Jiang et al. (1997) for a parallel-plate channel and Kahlil et al. (2000) for a pipe. An

experimental study of forced convection through microporous enhanced heat sinks

was reported by Lage et al. (2004b). An experimental study of flow of CO2 at

supercritical pressure was carried out by Jiang et al. (2004i, j). Correlations for

forced convection between two parallel plates or in a circular pipe were obtained by

Haji-Sheikh (2004). A numerical study, using a Green’s function solution method

and dealing with the effects due to a temperature change at the wall and the

contributions of frictional heating, was conducted by Haji-Sheikh et al. (2004a).

The role of longitudinal diffusion in fully developed forced convection slug flow in

a channel was studied by Nield and Lage (1998). Forced convection in a helical

pipe was analyzed by Nield and Kuznetsov (2004b). Curvature of the pipe induces a

secondary flow at first order and increases the Nusselt number at second order,

while torsion affects the velocity at second order and does not affect the Nusslet

number at second order. A numerical study of this problem was made by Cheng and

Kuznetsov (2005). Gaseous slip flow in microchannels was studied by Haddad et al.

(2006c, 2007b), Hooman (2009a, b), and Hashemi et al. (2011a, b). Flow in

rectangular channels was treated by Haji-Sheikh (2006), Haji-Sheikh (2006), and

Hooman (2008b, 2009b). Various flow orientations in a packed channel were

investigated by Ma et al. (2006). Experimental work with metallic foam was
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reported by Dukhan et al. (2013, 2014, 2015). A simulation and analytic validation

for forced convection in metallic foams was investigated by Suleiman and Dukhan

(2014). Thermally developing forced convection in a metal foam-filled elliptical

annulus was studied by Benmerkhi et al. (2016). Torabi et al. (2017) performed heat

transfer and entropy generation analyses using pore scale modeling.

Analytical solutions for ducts of various shapes (semi-circular, sector, super-

elliptical, lens-shaped) were reported by Wang (2008, 2010a, b, 2011b).

4.6 Transient Effects

Most of the existing work on forced convection in fluid-saturated porous media is

concerned with steady-state conditions. Notable exceptions are the papers on time-

dependent forced convection heat transfer from an isothermal cylinder (Kimura

1989a) and from a cylinder with uniform heat flux (Kimura 1988c). Nakayama and

Ebinuma (1990) studied the forced convection heat transfer between a suddenly

heated plate and a non-Darcy flow that starts initially from rest.

These three papers show that the simplest and perhaps most important forced

convection configuration had been overlooked. In that configuration, the

flow through the saturated porous medium is steady, parallel, and uniform

(Bejan and Nield 1991). The flow is driven by a pressure difference that is applied

in the x-direction in Fig. 4.7, and can be either a Darcy flow or a non-Darcy flow in

which the quadratic drag (Forchheimer effect) plays a role in the overall flow

resistance. What distinguishes the Bejan and Nield (1991) configuration from the

one analyzed by Nakayama and Ebinuma (1990) is that the flow is and remains

steady as the embedded plate is suddenly heated or cooled to a different

temperature.

Tw

q’s

u, T∞

y

q’t

L XXs-t0

Fig. 4.7 Forced-convection thermal boundary layer near a plate embedded in a porous medium

with steady, parallel, and uniform flow
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4.6.1 Scale Analysis

Consider the uniform flow, with volume-averaged velocity u, which is parallel to

the wall y ¼ 0 shown in Fig. 4.7. The initial temperature of the fluid-saturated

porous medium is T1. Beginning at time t ¼ 0, the temperature of the wall section

0 < x < L is maintained at a different constant temperature, Tw. In time, the flow in

the fluid-saturated porous medium adjusts to this change by developing a near-wall

region wherein the variation from Tw to T1 is smoothed.

We can develop a feel for the size and history of the near-wall region by

examining the order of magnitude implications of the energy equation for that

region,

σ
∂T
∂t

þ u
∂T
∂x

¼ αm
∂2

T

∂y2
: ð4:44Þ

The temperature boundary conditions are as indicated in Fig. 4.7, specifically

T ¼ Tw at y ¼ 0 ð4:45Þ
T ! T1 as y ! 1 ð4:46Þ

Implicit in the writing of the energy equation (4.42) is the assumption that the

near-wall region is slender, or boundary layer-like. To this assumption we will

return in Eqs. (4.62)–(4.65).

One way to perform the scale analysis is by considering the entire boundary layer

region of length L. The thickness of this thermal boundary layer is denoted by δ. If we
further write ΔT ¼ T1 – Tw, we find the following scales for the three terms of

Eq. (4.42):

σ
ΔT
t
, u

ΔT
L

, αm
ΔT
δ2

:

thermal

inertia

longitudinal

convection

transverse

conduction

ð4:47Þ

At sufficiently short times t, the transverse heating effect is balanced by the

thermal inertia of the saturated porous medium. This balance yields the time-

dependent thickness

δt � αmt

σ

� �1=2

: ð4:48Þ

As t increases, the thermal inertia scale decreases relative to the longitudinal

convection scale, and the energy equation becomes ruled by a balance between

transverse conduction and longitudinal convection. The steady-state boundary layer

thickness scale in this second regime is
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δs � αmL

u

� �1=2

: ð4:49Þ

The time of transition tc, when the boundary layer region becomes convective,

can be estimated by setting δt ~ δs:

tc � σL

u
: ð4:50Þ

Not all of the L-long boundary layer is ruled by the balance between conduction
and inertia when t is shorter than Tc. When t is finite, there is always a short enough
leading section of length x in which the energy balance is between transverse

conduction and longitudinal convection. In that section of length x and thickness

δx, the scales of the three terms of Eq. (4.44) are

σ
ΔT
t
, u

ΔT
x

, αm
ΔT
δ2x

, ð4:51Þ

showing that uΔT=x � αmΔT=δ2x, or

δx � αmx

u

� �1=2

ð4:52Þ

when σ ΔT/t < u ΔT/x, i.e., when

x <
u t

σ
: ð4:53Þ

The boundary layer changes from the convective (steady) section represented by

Eq. (4.52) to the conductive (time-dependent) trailing section of Eq. (4.48). The

change occurs at x ¼ xs�t where

xs�t � u t

σ
: ð4:54Þ

4.6.2 Wall with Constant Temperature

The two-section structure of the thermal boundary layer is indicated in Fig. 4.7. Its

existence was also recognized by Ebinuma and Nakayama (1990b) in the context of

transient film condensation on a vertical surface in a porous medium. The chief

benefit of this insight is that it enables us to delineate the regions in which two

analytical solutions are known to apply, first the steady leading section where

according to Eqs. (4.9)–(4.12)
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T � Tw

T1 � Tw

¼ erf
y

2

u

αmx

� �1=2
" #

x < xs�tð Þ ð4:55Þ

and farther downstream the time-dependent section where

T � Tw

T1 � Tw

¼ erf
y

2

σ

αmt

� �1=2
" #

x > xs�tð Þ: ð4:56Þ

The time-dependent section is no longer present when xs�t ~ L, i.e., when t ~ σL/u,
in accordance with Eq. (4.50).

We see from the condition (4.52) that the temperature distributions (4.55) and

(4.56) match at x ¼ xs�t. The longitudinal temperature gradient ∂T/∂x experiences
a discontinuity across the x ¼ xs�t cut, but this discontinuity becomes less

pronounced as t increases, i.e., as the xs�t cut travels downstream. It also must be

said that neither Eq. (4.55) nor (4.56) is exact at x ¼ xs�t, because at that location

none of the three effects competing in Eq. (4.45) can be neglected.

The instantaneous heat transfer rate (W/m) through the surface of length L can be

deduced by taking the heat transfer rate through the leading (steady-state) section

0 < x < xs�t, cf. Eq. (4.14),

q0s ¼ km T1 � Twð Þ 2

π1=2
u

αm
xs�t

� �1=2

ð4:57Þ

and adding to it the contribution made by the time-dependent trailing section

xs�t < x < L:

q0t ¼ L� xs�tð Þ km T1 � Twð Þ
παmt=σð Þ1=2

: ð4:58Þ

The total heat transfer rate q0 ¼ q0s þ q0t can be compared with the long-time

(steady-state) heat transfer rate of the L-long plate,

q0final ¼ k T1 � Twð Þ 2

π1=2
u

αm
L

� �1=2

ð4:59Þ

and the resulting expression is

q0

q0final
¼ 1þ 1� τ

2τ1=2
: ð4:60Þ

In this expression τ is the dimensionless time

τ ¼ ut

σL
: ð4:61Þ
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According to Eq. (4.50), τ ¼ 1 marks the end of the time interval in which

Eq. (4.60) holds. The beginning of that time interval is dictated by the validity of the

assumption that the leading (steady-state) section of the boundary layer is always

slender, cf. Eq. (4.49),

αmxs�t

u

� �1=2

< xs�t: ð4:62Þ

This requirement translates into

uxs�t

αm
> 1 ð4:63Þ

or, in view of Eqs. (4.54) and (4.61),

τ >
1

PeL
, ð4:64Þ

where PeL is the Péclet number based on L,

PeL ¼ uL

αm
: ð4:65Þ

At times τ shorter than 1/PeL, the leading section is not a forced convection

boundary layer, and the entire L length produces a time-dependent heat transfer rate

of type (4.58):

q0 ¼ L
km T1 � Twð Þ
παmt=σð Þ1=2

: ð4:66Þ

The dimensionless counterpart of this estimate is

q0

q0final
¼ 1

2τ1=2
: ð4:67Þ

In summary, the total heat transfer rate is given by three successive expressions,

each for one regime in the evolution of the temperature field near the suddenly

heated plate:

q0

q0final
¼

1

2τ1=2
, 0 < τ < Pe�1

L

1þ 1� τ

2τ1=2
, Pe�1

L < τ < 1

1 τ > 1:

8>>><>>>: ð4:68Þ

The domain occupied by each regime is indicated on the (PeL, τ) plane of

Fig. 4.8. The approximate solution (4.66) shows that relative to the long-time result

(4.59), the transient heat transfer rate depends on two additional dimensionless

groups, τ and PeL.
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4.6.3 Wall with Constant Heat Flux

The thermal boundary layer formed in the vicinity of a plate with sudden heat flux

q00 can be described in a way that is analogous to the analysis presented between

Eqs. (4.55) and (4.68). The structure shown in Fig. 4.7 is present here as well, and

Eqs. (4.54) and (4.61) continue to hold. The upstream portion 0 < x < xs�t closely

approximates the steady forced convection boundary layer with uniform heat flux

(Sect. 4.2). The downstream section xs�t < x < L is dominated by time-dependent

conduction into a semi-infinite medium with uniform heat flux at the surface.

The history of the L-averaged temperature of the wall or of the L-averaged wall-

medium temperature difference ΔT approaches [cf. Eq. (4.17)] the value

ΔT final ¼ 4

3π1=2
q

00
L

km

uL

αm

� �1=2

: ð4:69Þ

Expressed in dimensionless form, the L-averaged temperature difference is

ΔT
ΔT final

ffi

3

2
τ1=2, 0 < Pe�1

L

3

3
� τ

2

� �
τ1=2, Pe�1

L < τ < 1

l, τ > 1:

8>>><>>>: ð4:70Þ

The solutions (4.66) and (4.68) are based on the assumption that PeL � 1. For

example, Eq. (4.66) shows that the heat transfer ratio q0=q0final experiences a change
of relative magnitudeO Pe�1

L

� �
at τ ¼ Pe�1

L . The same observation applies to theΔT/
ΔTfinal ratio of Eq. (4.68).

1

conduction

convection

convection & conduction

10

100

1000

PeL

0.001 0.01 0.1 1 10 100

τ

Fig. 4.8 The τ-PeL ranges in which the three parts of the solutions (4.66) and (4.68) are applicable
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Unsteady forced convection on a flat plate, with the effect of inertia and thermal

dispersion accounted for, was analyzed by Cheng and Lin (2002). The dispersion

accelerates the rate of unsteady heat transfer but does not affect the response time to

reach a steady state.

4.6.4 Other Configurations

Kimura (1989b) has studied transient forced convection about a vertical cylinder.

He obtained analytic solutions for small time (conduction solution) and large time

(boundary layer solution) and numerical results for the general time situation.

Thevenin (1995) performed other calculations.

Al-Nimr et al. (1994a, b) investigated numerically convection in the entrance

region of either a tube or an annulus, when a timewise step change of wall

temperature is imposed, for Darcy and non-Darcy models. A conjugate problem

involving concentric annuli was studied numerically by El-Shaarawi et al. (1999).

Alkam and Al-Nimr (1998) performed a numerical simulation of transient forced

convection in a circular pipe partly filled with a porous substrate. Unsteady forced

convection about a sphere was studied numerically by Yan and Pop (1998). Fu et al.

(2001a) studied experimentally heat transfer in a channel subject to oscillating flow,

while Mohamad and Karim (2001) reported experiments in a pipe with core and

sheath occupied by different porous materials.

In a series of papers, Kuznetsov (1994, 1995a, b, 1996b, c, d, e, f, 1998e)

investigated the effect of local thermal nonequilibrium on heat transfer, for the

problem when a porous bed is initially at a uniform temperature and then suddenly

subjected to a step increase of fluid inlet temperature. The locally averaged fluid

velocity v is assumed to be uniform in space and constant in time. The analytical

solution obtained by Kuznetsov, using a perturbation method based on the assump-

tion that the fluid-to-solid heat transfer coefficient is large, shows that the temper-

ature of the fluid (Tf) or solid (Ts) phase takes the form of an advancing front, while

the temperature difference Tf � Ts takes the form of an advancing pulse. The

amplitude of that pulse decreases as the pulse propagates downstream. Kuznetsov

treated in turn a one-dimensional semi-infinite region, a one-dimensional finite

region, a two-dimensional rectangular region, a circular tube, a concentric tube

annulus, and a three-dimensional rectangular box. In the one-dimensional semi-

infinite case the wave speed vwave is related to the fluid flow speed v by

vwave ¼ ρcð Þf
φ ρcð Þf þ 1� φð Þ ρcð Þs

v: ð4:71Þ

In the two-dimensional and three-dimensional cases, the amplitude of the pulse

also decreases from the central flow region to the walls of the packed bed.

Kuznetsov’s (1996c) paper deals with a one-dimensional slab with a fluid-to-solid

heat transfer coefficient (something whose value is difficult to determine
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experimentally) that varies about a mean value in a random fashion. He calculated

the mean and standard deviation of Tf � Ts.
The effects of thermal nonequilibrium have been included in numerical simula-

tions by S€ozen and Vafai (1990, 1993), Vafai and S€ozen (1990a, b), Amiri and

Vafai (1994), and Amiri et al. (1995), e.g., in connection with the condensing flow

of a gas or longitudinal heat dispersion in a gas flow in a porous bed. They found

that the local thermal equilibrium condition was very sensitive to particle Reynolds

number and Darcy number, but not to thermophysical properties. Amiri and Vafai

(1998) and Wu and Hwang (1998) performed further numerical simulations.

4.7 Effects of Inertia and Thermal Dispersion: External
Flow

When quadratic drag is taken into account, the Darcy equations (4.2) are replaced

by the approximate equations

uþ χ

v
u2 ¼ �K

μ

∂P
∂x

, v ¼ �K

μ

∂P
∂y

ð4:72Þ

for the case when the primary flow is in the x-direction, so v/u� 1. Here χ ¼ cFK
1/2,

where cF was introduced in Eq. (1.12). Eliminating P from these equations and

introducing the stream-function ψ defined by u ¼ ∂ψ /∂y, v ¼ –∂ψ /∂x so that

Eq. (4.1) is satisfied, we obtain

∂2ψ

∂y2
þ χ

v

∂
∂y

∂ψ
∂y

� �2
" #

¼ 0, ð4:73Þ

and Eq. (4.3) becomes

∂ψ
∂y

∂T
∂x

� ∂ψ
∂x

∂T
∂y

¼ αm
∂2

T

∂y2
: ð4:74Þ

If one considers the case where Tw ¼ T1 + Axλ, U1 ¼ Bxm, where A, B, λ, and
m are constants, one finds that a similarity solution is possible if and only if m ¼ 0

and λ ¼ 1/2. One can check that the similarity solution is given by

ψ ¼ αmU1xð Þ1=2f ηð Þ, ð4:75Þ

T � T1 ¼ Tw � Tð Þθ ηð Þ, ð4:76Þ

η ¼ U1 x

αm

� �1=2y

x
, ð4:77Þ
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provided that f and η satisfy the differential equations

f
00 þ R* f 0ð Þ2

h i
¼ 0, ð4:78Þ

θ
00 ¼ 1

2
f 0θ � f θ0ð Þ, ð4:79Þ

where

R* ¼ χU1
v

: ð4:80Þ

The boundary conditions

y ¼ 0 : T ¼ Tw, v ¼ 0, ð4:81Þ

y ! 1 : T ¼ Tw, u ¼ U1, ð4:82Þ

lead to

θ 0ð Þ ¼ 1, f 0ð Þ ¼ 0, θ 1ð Þ ¼ 0, f 0 1ð Þ ¼ 1: ð4:83Þ

The local wall heat flux is

q
00 ¼ �km

∂T
∂y

� �
y¼0

¼ �kmA
B

αm

� �1=2

θ0 0ð Þ, ð4:84Þ

where θ0(0) ¼ –0.886. We recognize that this is the case of constant wall heat flux.

In nondimensional form this result is precisely the same as Eq. (4.16) and is

independent of the value of R*. Thus in this case quadratic drag has no effect on

the wall heat flux (for fixed U1), but it does have the effect of flattening the

dimensionless velocity profile (Lai and Kulacki 1987).

The effect of thermal dispersion in the same case was discussed by Lai and

Kulacki (1989a). In the present context it is the transverse component that is

important. If one allows for thermal dispersion by adding a term Cudp (where dp
is the mean particle or pore diameter and C is a numerical constant) to αm in the

term αm∂
2T/∂y2 in Eq. (4.3), then Eq. (4.16) is replaced by

Nux ¼ 0:886 1þ CPedð ÞPe1=2x , ð4:85Þ

where Ped ¼ U1dp/αm. Thus thermal dispersion increases the heat transfer because

it increases the effective thermal conductivity in the y direction.
The effect of quadratic drag in the transient situation for the case of constant wall

temperature was examined by Nakayama and Ebinuma (1990), who found that it
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had the effect of slowing the rate at which a steady-state solution is approached.

One can deduce from their steady-state formulas that (as for the constant flux

situation) quadratic drag does not affect the Nux (Pex) relationship, in this book

the formula (4.13).

4.8 Effects of Boundary Friction and Porosity Variation:
Exterior Flow

When one introduces the Brinkman equation in order to satisfy the no-slip condition

on a rigid boundary, one runs into a complex problem. The momentum equation no

longer has a simple solution, and a momentum boundary layer problem must be

treated. For the purposes of this discussion, we follow Lauriat and Vafai (1991) and

take the boundary layer form of the momentum equation

1

φ2
u
∂u
∂x

þ v
∂u
∂y

� �
¼ v

K
U � uð Þ þ cF

K1=2
U2 � u2
� �þ v

φ

∂2
u

∂y2
: ð4:86Þ

For the reasons pointed out in Sect. 1.5, we drop the left-hand side of this

equation at the outset, and in the last term we replace φ�1 by eμ=μ. The condition

on a plane wall is now

u ¼ v ¼ 0, T ¼ Tw for x > 0, y ¼ 0: ð4:87Þ

The remaining equations and boundary conditions are unaltered.

The integral method, as used by Kaviany (1987), provides an approximate

solution of the system. If the velocity profile is approximated by

u ¼ U1
3

2

y

δ
� 1

2

y

δ

� �3
� 	

, ð4:88Þ

one finds that the momentum boundary layer thickness δ is given by

δ2

K=φ
¼ 140

35þ 48cF Rep
� � 1� e�γ x*

� � ð4:89Þ

where

Rep ¼ U1K1=2=v ð4:90Þ

is the pore Reynolds number

γ ¼ 70

13

1

Rep
þ 96

13
cF

� �
φ3=2, ð4:91Þ

106 4 Forced Convection

http://dx.doi.org/10.1007/978-3-319-49562-0_1


and

x∗ ¼ x

K=φð Þ1=2
: ð4:92Þ

The momentum boundary layer thickness δ is almost constant when x* > 5/γ.
Thus the hydrodynamic development length can be taken as

xe ¼ 5

γ

K

φ

� �1=2

ð4:93Þ

and the developed momentum boundary layer thickness is given by

δ ¼ 140

35þ 48cF Rep

� �
K

φ

� 	1=2
: ð4:94Þ

For the developed region, exact solutions have been obtained by Cheng (1987),

Beckermann and Viskanta (1987), and Vafai and Thiyagaraja (1987). They show

that the velocity is constant outside a boundary layer whose thickness decreases as

cF and/or Rep increases, in accordance with Eq. (4.86).

Wall effects caused by nonuniform porosity (Sect. 1.7) have been investi-

gated experimentally by a number of investigators and theoretically by Vafai

(1984, 1986), Vafai et al. (1985), and Cheng (1987). The degree to which

hydrodynamic wall effects influence the heat transfer from a heated wall

depends on the Prandtl number Pr of the fluid. The ratio of the thermal boundary

layer thickness δT to the momentum boundary layer thickness δ is of order Pr�1.

For low Prandtl number fluids (Pr! 0), δ� δT and the temperature distribution,

and hence the heat transfer, is given by the Darcy theory of Sects. 4.1 and 4.2.

For a more general case where the inertial effects are taken into account and for

a variable wall temperature in the form Tw ¼ T1 + Axp, an exact solution was

obtained by Vafai and Thiyagaraja (1987) for low Prandtl number fluids in terms

of gamma and parabolic cylindrical functions. They found the temperature

distribution to be

T ¼ T1 þ AΓ pþ 1ð Þ
	 2pþ1=2 π�1=2 xpexp �αy2=x

� �
D� 2pþ1ð Þ 4αy2=x

� �1=2h in o
, ð4:95Þ

where α ¼ U1/8αm. The corresponding local Nusselt number is

Nux ¼ Γ pþ 1ð Þ
Γ pþ 1=2ð Þ Rep Pre

� �1=2
, Da�1=4

x ¼ Γ pþ 1ð Þ
Γ pþ 1=2ð Þ Pe

1=2
x , ð4:96Þ

which reduces to Eq. (4.13) when p ¼ 0.
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When the Prandtl number is very large, δT � δ and so the thermal boundary

layer lies completely inside the momentum boundary layer. As Pr ! 1 one can

assume that the velocity distribution within the thermal boundary layer is linear and

given by

u ¼ τwy

μf
, ð4:97Þ

where τw is the wall stress which is given by

τw ¼ μfU1
K=φð Þ1=2

1þ 4

3
cF Rep

� �1=2

: ð4:98Þ

This means that the energy equation can be approximated by

y
∂T
∂x

¼ αmμf
τw

∂2
T

∂y2
: ð4:99Þ

We now introduce the similarity variables

η ¼ y
1

9ξx

� �1=3

, θ ηð Þ ¼ T � Tw

T1 � Tw

, ð4:100Þ

where

ξ ¼ αmμf
τw

¼ K

RepPre
φ 1þ 4

3
cFRep

� �� 	�1=2

ð4:101Þ

and where the effective Prandtl number Pre is defined as

Pre ¼ ν

αm
: ð4:102Þ

We then have the differential equation system

θ
00 þ 3η2θ0 ¼ 0, ð4:103Þ

θ 0ð Þ ¼ 0, θ 1ð Þ ¼ 1, ð4:104Þ

which has the solution (Beckermann and Viskanta 1987)

θ ¼ 1

Γ 4=3ð Þ
ð η

0

e�ξ3dξ: ð4:105Þ
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Hence the local Nusselt number is

Nux ¼
km ∂T=∂yð Þy¼0

km Tw � T1ð Þ=x ¼ 1:12
x2

9ξ

� �1=3

¼ 0:538 φ 1þ 4
3
cF Rep

� �
 �1=6 Rep Pre
Dax

� �1=3

ð4:106Þ

and the overall Nusselt number over a length L from the leading edge becomes

Nu ¼ 1:68
L2

9ξ

� �1=3

: ð4:107Þ

Vafai and Thiyagaraja (1987) compared these analytical results with numerical

solutions. They found that the low Prandtl number analytical solution accurately

predicts the temperature distribution for a Prandtl number Pre as high as 8, while the

high-Pre analytical solution is valid for Pre as low as 100 and possibly for somewhat

lower values.

The combined effects of inertia and boundary friction were considered by

Kaviany (1987). He expressed his results in terms of a parameter Γx defined as

the total flow resistance per unit volume (Darcy plus Forchheimer drag) due to the

solid matrix, scaled in terms of8ρU2
1=3φx. He concluded that the “Darcian regime”

where Nux varies as Pr
1=2
e holds when Γx > 0.6 Pre and the “non-Darcian regime”

where Nux varies as Pr
1=3
e holds when 0.07 < Γx < 0.6 Pre. When Γx ¼ 0.07 the

presence of the solid matrix is not significant. Another study is that by Kumari et al.

(1990c).

Vafai et al. (1985) experimentally and numerically investigated the effects of

boundary friction and variable porosity. Their experimental bed consisted of glass

beads of 5 mm and 8 mm diameter saturated with water. They found good

agreement between observation of the average Nusselt number and numerical

predictions when the effect of variable porosity was included (but not otherwise).

Cheng (1987) noted that since their experiments were conducted in the range

100 < Rep < 900, thermal dispersion effects should have been important, and in

fact they neglected these. He pointed out that in their numerical work Vafai et al.

(1985) used a value of thermal conductivity about three times larger than was

warranted, and by doing so they had fortuitously approximated the effect of

transverse thermal dispersion.

Further experimental work was undertaken by Renken and Poulikakos (1989a).

They reported details of thermal boundary layer thickness, temperature field, and

local Nusselt number. Good agreement was found with the numerical results of

Vafai et al. (1985) with the effects of flow inertia and porosity variation accounted

for. Further work was done by Hayes (1990a).

Some further details on the content of this section can be found in the review by

Lauriat and Vafai (1991). Nakayama et al. (1990a) used novel transformed
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variables to produce a local similarity solution for flow over a plate. Vafai and Kim

(1990) analyzed flow in a composite medium consisting of a fluid layer overlaying a

porous substrate that is attached to the surface of a plate. Luna and Mendez (2005a,

b) used a Brinkman model to study analytically and numerically the conjugate

problem of forced convection on a plate with finite thermal conductivity and with

constant heat flux at the extreme boundary.

For the case of cross flow across a cylinder, Fand et al. (1993) obtained empirical

correlation expressions for the Nusselt number. For the same geometry, a numerical

study was made by Nasr et al. (1995). They reported that the effect of decreasing Da

was an increase in Nu, but Lage and Nield (1997) pointed out that this is true only if

the Reynolds number Re is held constant. If the pressure gradient is kept constant,

Nu increases with Da. Nasr et al. (1995) also noted that Nu increased with an

increase of either Re or effective Prandtl number, and that the effect of quadratic

drag on Nu is via the product DaRe.

Heat transfer around a periodically heated cylinder was studied experimentally

(with water and glass beads) and numerically by Fujii et al. (1994). They also

modeled the effects of thermal dispersion and thermal nonequilibrium. Conjugate

flow around a cylinder with internal heat generation was studied by Kadir

et al. (2008).

Unsteady forced convection, produced by small amplitude variations in the wall

temperature and free stream velocity, along a flat plate was studied by Hossain

et al. (1996).

The effect of viscous dissipation was discussed by Aydin and Koya (2008b, c, d),

Rees and Magyari (2008), and Nield (2008a). The effect of variable viscosity and

variable Prandtl number was studied by Pantokratoras (2007c).

4.9 Effects of Boundary Friction, Inertia, Porosity
Variation, Thermal Dispersion, and Axial Conduction:
Confined Flow

In porous channels the velocity field generally develops to its steady-state form in a

short distance from the entrance. To see this, let tc be a characteristic time for

development and uc a characteristic velocity. During development the acceleration

term is of the same order of magnitude as the Darcy resistance term, so uc/tc ~ v uc/K,
and so the development length ~tcuc ~ Kuc/v, which is normally small. [Note that, in

contrast with the argument used by Vafai and Tien (1981), the present argument

holds whether or not the convective inertial term is negligible.] Further, the numerical

results of Kaviany (1985) for flow between two parallel plates show that the entrance

length decreases linearly as the Darcy number decreases. In this section we assume

that the flow is also fully developed thermally.
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We start by considering a channel between two plane parallel walls a distance

2H apart, the boundaries being at y ¼ H and y ¼ �H. For fully developed flow the

velocity is u(y) in the x-direction. We suppose that the governing equations are

G ¼ μu*

K
þ cFρu*

2

K1=2
� eμ d2u*

dy*2
, ð4:108Þ

u*
∂T*
∂x*

¼ km
ρcPð Þf

∂2
T*

∂y*2
: ð4:109Þ

Here the asterisks denote dimensional variables, and G is the applied pressure

gradient. Local thermal equilibrium has been assumed, dispersion is neglected, and

it is assumed that the Péclet number is sufficiently large for the axial thermal

conduction to be insignificant. We define the dimensionless variables

x ¼ x*

H
, y ¼ y*

H
, u ¼ eμu*

GH2
, ð4:110Þ

and write

M ¼ eμ
μ
, Da ¼ K

H2
, F ¼ cFρGH

4

K1=2μ2
: ð4:111Þ

Thus M is a viscosity ratio, Da is a Darcy number, and F is a Forchheimer

number. Then Eq. (4.108) becomes

M
d2u

dy2
� u

Da
� Fu2 þ 1 ¼ 0: ð4:112Þ

This equation is to be solved subject to the boundary/symmetry conditions

u ¼ 0 at y ¼ 1,
du

dy
¼ 0 at y ¼ 0: ð4:113Þ

When F is not zero, the solution can be expressed in terms of standard elliptic

functions (Nield et al. 1996). When F ¼ 0, the solution is

u ¼ Da 1� cosh Sy

cosh S

� �
, ð4:114Þ

where for convenience we introduce

S ¼ 1

MDað Þ1=2
: ð4:115Þ
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We also introduce the mean velocity U* and the bulk mean temperature T*
m

defined by

U* ¼ 1

H

ð H

0

u*dy*, Tm
* ¼ 1

HU*

ð H

0

u*T*dy*: ð4:116Þ

We then introduce further dimensionless variables defined by

bu ¼ u*

U*
, bT ¼ T* � T*

w

T*
m � T*

w

, ð4:117Þ

and the Nusselt number

Nu ¼ 2Hq
00

km T*
m � T*

w

� � : ð4:118Þ

Here T*
w and q00 are the temperature and heat flux on the wall.

For the case of uniform heat flux on the boundary, the first law of thermody-

namics leads to

∂T*

∂x∗
¼ dT∗

m

dx*
¼ q

00

ρcPð ÞfHU*
¼ constant: ð4:119Þ

In this case Eq. (4.109) becomes

d2bT
dy2

¼ �1

2
Nu bu: ð4:120Þ

The boundary conditions for this equation are

bT ¼ 0 at y ¼ 1,
dbT
dy

¼ 0 at y ¼ 0: ð4:121Þ

For the Brinkman model, with u given by Eq. (4.114), we have

bu ¼ S

S� tanh S
1� cosh Sy

cosh S

� �
, ð4:122Þ

bT ¼ S Nu

S� tanh S

1

4
1� y2
� �� cosh S� cosh Sy

2S2cosh S

� 	
: ð4:123Þ

The definition of the dimensionless temperature leads to an identity that we call

the integral compatibility condition (Nield and Kuznetsov 2000), namely
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ð1
0

bubTdy ¼ 1: ð4:124Þ

Substitution from Eqs. (4.122) and (4.123) then leads to

Nu ¼ 12S S� tanh Sð Þ2
2S3 � 15Sþ 15tanh Sþ 3Stanh2 S

, ð4:125Þ

in agreement with an expression obtained by Lauriat and Vafai (1991). As the

Darcy number Da increases from 0 to 1, i.e., as S decreases from 1 to 0, the

Nusselt number Nu decreases from the Darcy value 6 [agreeing with Eq. (4.42)] to

the clear fluid value 210/51 ¼ 4.12. Thus the effect of boundary friction is to

decrease the heat transfer by reducing the temperature gradient at the boundary.

For F 6¼ 0, Vafai and Kim (1989) used a boundary-layer approximation in

obtaining a closed-form solution. This solution becomes inaccurate for hyperporous

media, those for which Da> 0.1. For such media, the Brinkman term is comparable

with the Darcy term throughout the flow (and not just near the walls) and K can no

longer be determined by a simple Darcy-type experiment. A closed-form solution

of the Brinkman–Forchheimer equation, valid for all values of Da, was obtained by

Nield et al. (1996). Some typical results are given in Fig. 4.9.
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Fig. 4.9 Effect of the Forchheimer number, F, on the Nusselt number Nu, for a channel with

isoflux boundaries (Nield et al. 1996)
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The results of Nield et al. (1996) may be summarized as follows. For each type

of thermal boundary condition, the temperature profile is little changed as a result of

variation of M, Da, or F. It is slightly more peaked when Da is small or when F is

large. On the other hand, the Nusselt number is significantly altered, primarily as a

result of the change in velocity profile. The effect of an increase in F is to produce a

more slug-like flow; and because of the way the mean velocity is defined this

decreases (Tw � Tm), and hence increases Nu. In particular, for the case of isoflux

boundaries, the following holds. When simultaneously Da is large and F is small,

the velocity profile is approximately parabolic and the Nusselt number is near 70/17

(a lower bound). When either Da is sufficiently small or F is sufficiently large, the

velocity profile is approximately uniform (apart from a thin boundary layer) and the

Nusselt number is near 6 (an upper bound). For the case of isothermal surfaces the

story is similar, but the Nusselt numbers are smaller [the reason for this is spelled

out in Nield et al. (1996, p. 211)].

An exact analytical solution was also presented by Abbasbandy et al. (2011).

For the case of a circular tube, with H replaced by the radius R of the tube in the

scaling, one finds (Nield et al. 2003b) that the solution can be expressed in terms of

modified Bessel functions:

bu ¼ S I0 Sð Þ � I0 Srð Þ½ 

SI0 Sð Þ � 2I1 Sð Þ , ð4:126Þ

bT ¼ S Nu

SI0 Sð Þ � 2I1 sð Þ
I0 Sð Þ
4

1� r2
� �� I0 Sð Þ � I0 Srð Þ

S2

� 	
, ð4:127Þ

Nu ¼ 8S SI0 Sð Þ � 2I1 Sð Þ½ 
2
S3 � 24S
� �

I0 Sð Þ½ 
2 þ 48I0 Sð ÞI1 Sð Þ þ 8S I1 Sð Þ½ 
2 : ð4:128Þ

When the uniform flux boundary condition is replaced by the uniform temper-

ature condition, one finds that Eq. (4.120) is replaced by

d2bT
dy2

¼ �1

2
Nu bubT : ð4:129Þ

The boundary condition given by Eq. (4.121) still applies. We see that we now

have an eigenvalue problem with Nu as the eigenvalue. Now Eq. (4.124) is satisfied

trivially, and instead of this compatibility condition one uses a differential compat-

ibility condition (previously satisfied trivially), namely

Nu ¼ �2
dbT
dy

1ð Þ: ð4:130Þ

Equation (4.130) enables the amplitude of the eigenfunction to be determined.

For the case of Darcy flow (Da ¼ 0) we have bu ¼ 1, bT ¼ π=2ð Þ cos πy=2ð Þ and

Nu¼ π2/2¼ 4.93. For other values of Da the value of Nu can be found numerically,
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most readily by expressing the second-order differential equation as two first-order

equations and then using a shooting method. Details of the method may be found in

Nield and Kuznetsov (2000).

The above results for symmetric heating can be extended to the case of asym-

metric heating, using a result established by Nield (2004c). The result applies when

the heat flux along each boundary is uniform, or the temperature along each

boundary is uniform. With the Nusselt number defined in terms of the mean wall

temperature and the mean wall heat flux, the value of the Nusselt number is

independent of the asymmetry whenever the velocity profile is symmetric with

respect to the midline of the channel. This means that the above results also apply to

the case of heating asymmetric with respect to the midline. Further work involving

asymmetric heat flux boundary conditions was reported by Mitrovic and Maletic

(2006, 2007) and Cezmer et al. (2011). Experiments with asymmetrically heated

channels filled with glass beads were performed by Jeng et al. (2011). Mondal

(2013) reported an analytical study of thermodynamically consistent limiting

forced convection in an asymmetrically heated channel.

In the case of a circular tube, Eqs. (4.129) and (4.130) are replaced by

d2bT
dr2

þ 1

r

dbT
dr

¼ �Nu bubT , ð4:131Þ

Nu ¼ �2
dbT
dr

1ð Þ: ð4:132Þ

For the case Da ¼ 0 one finds that Nu ¼ λ2 where λ ¼ 2.40483 is the smallest

positive root of the Bessel function J0(x), so that Nu ¼ (2.40483)2 ¼ 5.783, andbT ¼ λJ0 λrð Þ=2J1 λð Þ.
Variable porosity effects in a channel bounded by two isothermal parallel plates

and in a circular pipe were examined numerically by Poulikakos and Renken

(1987), for the case of a fully developed velocity field. They assumed that the

porosity variation had negligible effects on the thermal conductivity, an assumption

that breaks down when there is a large difference between the thermal conductiv-

ities of the two phases (David et al. 1991). Poulikakos and Renken (1987) found

that in the fully developed region the effect of channeling was to produce a Nusselt

number increase (above the value based on the Darcy model) of 12% for a parallel-

plate channel and 22% for a circular pipe.

Renken and Poulikakos (1988) performed an experimental investigation for the

parallel-plate configuration with the walls maintained at constant temperature, with

particular emphasis on the thermally developing region. They also performed

numerical simulations incorporating the effects of inertia, boundary friction, and

variable porosity. Their experimental and numerical findings agreed on predicting

an enhanced heat transfer over that predicted using the Darcy model.

Poulikakos and Kazmierczak (1987) obtained closed-form analytical solutions

of the Brinkman equation for parallel plates and a circular pipe with constant heat

flux on the walls for the case where there is a layer of porous medium adjacent to the
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walls and clear fluid interior. They also obtained numerical results when the walls

were at constant temperature. For all values of Da the Nusselt number Nu goes

through a minimum as the relative thickness of the porous region s varies from 0 to

1. The minimum deepens and is attained at a smaller value of s as Da increases. A
general discussion of Brinkman, Forchheimer, and dispersion effects was presented

by Tien and Hunt (1987). For the Brinkman model and uniform heat flux bound-

aries, Nakayama et al. (1988a, b) obtained exact and approximate solutions.

Analytical studies giving results for small or large Darcy numbers for convection

in a circular tube were reported by Hooman and Ranjbar-Kani (2003, 2004). An

analytical solution for the case of the Poiseuille-Couette combination for entry

profiles was reported by Ansari and Siddiqui (2010).

Hunt and Tien (1988a) have performed experiments that document explicitly the

effects of thermal dispersion in fibrous media. They were able to correlate

their Nusselt number data, for high Reynolds number flows, in terms of a parameter

uaL
1/2K1/4/αm, where ua is the average streamwise Darcy velocity and L is a

characteristic length. Since this parameter does not depend explicitly on the thermal

conductivity, they concluded that dispersion overwhelmed transport from solid

conduction. They were able to explain this behavior using a dispersion conductivity

of the form

kd ¼ ρcPγK
1=2u, ð4:133Þ

where γ is a numerical dispersion coefficient, having the empirically determined

value of 0.025. An analytical study of the effect of transverse thermal dispersion

was reported by Kuznetsov (2000c). A theoretical analysis with the Brinkman

model of the case of a parallel-plate channel with uniform heat flux was made by

Hooman and Dahari (2015).

Hunt and Tien (1988b) modeled heat transfer in cylindrical packed beds such as

chemical reactors by employing a Forchheimer–Brinkman equation. They allowed

the diffusivity to vary across the bed. Marpu (1993) found that the inclusion of axial

conduction leads to a significant increase in Nusselt number in the thermally

developing region of pipes for Péclet number less than 100. In similar circum-

stances, the effect of axial dispersion was found by Adnani et al. (1995) to be

important for Péclet number less than 10.

Cheng et al. (1991) reviewed methods for the determination of effective radial

thermal conductivity and Nusselt number for convection in packed tubes and

channels and reanalyzed some of the previous experimental data in the light of

their own contributions to thermal dispersion theory with variable porosity effects

taken into account. They found that for forced convection in a packed column the

average Nusselt number depends not only on the Reynolds number but also on the

dimensionless particle diameter, the dimensionless length of the tube, the thermal

conductivity ratio of the fluid phase to the solid phase, and the Prandtl number of the

fluid. They summarized their conclusions by noting that in their work [Cheng et al.

1988; Cheng and Hsu 1986a, b; Cheng and Zhu 1987; Cheng and Vortmeyer 1988;

116 4 Forced Convection



Hsu and Cheng 1988, 1990] they had developed a consistent theory for the study of

forced convection in a packed column taking into consideration the wall effects on

porosity, permeability, stagnant thermal conductivity, and thermal dispersion.

These effects become important as the particle/tube diameter ratio is increased.

Various empirical parameters in the theory can be estimated by comparison of

theoretical and experimental results for the pressure drop and heat transfer, but

there is at present a need to perform more experiments on forced convection in

packed columns where both temperature distribution and heat flux are measured to

enable a more accurate determination of the transverse thermal dispersivity.

Chou et al. (1994) performed new experiments and simulations for convection in

cylindrical beds. They concluded that discrepancies in some previous models could

be accounted for by the effect of channeling for the case of low Péclet number and

the effect of thermal dispersion in the case of high Péclet number. Chou et al.

(1992b, c) had reported similar conclusions, on the basis of experiments, for

convection in a square channel.

The effect of suction at permeable walls was investigated by Lan and Khodadadi

(1993). An experimental study of convection with asymmetric heating was reported

by Hwang et al. (1992). Bartlett and Viskanta (1996) obtained analytical solutions

and did experiments for thermally developing convection in an asymmetrically

heated duct filled with a medium of high thermal conductivity.

Lage et al. (1996) performed a numerical study for a device (designed to provide

uniform operating temperatures) consisting of a microporous layer placed between

two sections of a cold plate. The simulation was based on two-dimensional equa-

tions derived from three-dimensional equations by integration over the small

dimension of the layer.

For convection in cylindrical beds, Kamiuto and Saitoh (1994) investigated NuP, κ,
and Γ, where NuP and ReP are Nusselt and Reynolds numbers based on the particle

diameter, while κ is the ratio of thermal conductivity of solid to that of fluid and Γ is the

ratio of bed radius to particle diameter. They found that asRePPr tends to zero,NuP tends

to a constant value depending on both κ and Γ, while for large RePPr the value of NuP
depends on both RePPr and Pr but only to a small extend on κ.

For pipes packed with spheres, Varahasamy and Fand (1996) have presented

empirical correlation equations representing a body of new experimental data.

Experimental studies involving metal foams have been reported by Calmidi and

Mahajan (2000), Hwang et al. (2002), and Zhao et al. (2004b). Further experimental

and theoretical studies of convection in a circular pipe were conducted by

Izadpanah et al. (1998). Extending previous experimental work by Jiang et al.

(1999b), Li et al. (2003), Xu and Jiang (2004), Jiang et al. (2004e, f, h), Jiang and

Liu (2006) studied numerically and experimentally the wall porosity effect for a

sintered porous medium. A similar study of non-sintered material was reported by

Jiang et al. (2004g). Sintered materials also were discussed by Kim and Kim (2000).

Forced convection in microstructures was discussed by Kim and Kim (1999).

Another numerical study in a metallic fibrous material was reported by Angirasa

(2002a), and that was followed with an experimental study by Angirasa (2002b).

An experimental study with aluminum foam in an asymmetrically heated channel
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was made by Kim et al. (2001b). Experimental studies of structured packed beds

were made by Yang et al. (2012a, b, c).

Entropy generation in a rectangular duct was studied by Demirel and Kahraman

(1999). For a square duct, a numerical study of three-dimensional flow was reported

by Chen and Hadim (1999b). Unsteady convection in a square cylinder was studied

numerically by Perng et al. (2011).

The effect of viscous dissipation has been studied numerically by Zhang et al.

(1999c) for a parallel-plate channel and by Yih and Kamioto for a circular pipe. An

analytical study of the effects of both viscous dissipation and flow work in a

channel, for boundary conditions of uniform temperature or uniform heat flux,

was reported by Nield et al. (2004b). These authors specifically satisfied the first

law of thermodynamics when treating the fully developed flow. They also consid-

ered various models for the contribution from the Brinkman term to the viscous

dissipation. Further work involving viscous dissipation was reported by Costa et al.

(2004c), Hooman and Gorji-Bandpy (2004), Hung and Tso (2008, 2009) and (with

nonlinear drag) Rassoulineajad-Mousavi and Yaghoobi (2014).

The effect of axial conduction in channels and tubes was studied by Minkowycz

and Haji-Sheikh (2006, 2009) and Haji-Sheikh et al. (2010a, b). The effect of

Forchheimer quadratic drag in rectangular ducts was examined by Akyidiz and

Siginer (2011).

For a circular tube and the Brinkman–Forchheimer model, asymptotic solutions

for small and large Darcy numbers were reported by Hooman and Gurgenci (2007a,

b, c) while Rassoulinejad-Mousavi and Abbasbandy (2011) obtained results using

spectral homotopy analysis. Barletta et al. (2016) studied unstable forced convec-

tion in a plane porous channel with variable-viscosity dissipation. Zallama et al.

(2016a, b) investigated viscous dissipation generation in an adiabatic cylinder and a

channel.

Some general matters related to the possibility of fully developed convection

were discussed by Nield (2006). An analytical study of heat transfer in Couette flow

was made by Kuznetsov (1998c). An analytical treatment of Couette-Poiseuille

flow was reported by Aydin and Avci (2011). An analytical study of a conjugate

problem, with conduction heat transfer inside the channel walls accounted for, was

made by Mahmud and Fraser (2004a, b). Entropy generation in a channel was

studied analytically and numerically by Mahmud and Fraser (2005b). Vafai and

Amiri (1998) briefly surveyed some of the work done on the topics that here are

discussed mainly in Sects. 4.9 and 4.10.

Convection in a hyperporous medium saturated by a rarefied gas, with both

velocity slip and temperature slip at the boundaries of a parallel-plate channel or a

circular duct, was analyzed by Nield and Kuznetsov (2006a, 2007a) and discussed

by Al-Nimr and Haddad (2006) and Hashemi and Fazeli (2010). They found that

temperature slip leads to decreased transfer, while the effect of velocity slip

depends on the geometry and the Darcy number. Shokouhmand et al. (2010)

reported results for flow in micro- and nanochannels for a wide range of Knudsen

number. Further work on slip flow in microchannels has been done by Chauhan and

Kumar (2009), Hooman et al. (2009b), Meghdadi et al. (2012), Vu et al. (2014), and

Dehghan et al. (2015a).
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4.10 Local Thermal Nonequilibrium

It is now commonplace to employ a two-temperature model to treat forced convec-

tion with local thermal nonequilibrium (LTNE). Authors who have done this

include Vafai and Tien (1989), Jiang et al. (1998, 1999a, b, 2000, 2002), Jiang

and Ren (2001), You and Song (1999), Kim et al. (2000a, 2000b), Kim and Jang

(2002), Muralidhar and Suzuki (2001), Kuwahara et al. (2000), Nakayama et al.

(2001), Foo et al. (2005), Moghari (2008), and Hayes et al. (2008). Haddad et al.

(2006a, 2007a) studied gas flow in microchannels; Chen and Tsao (2011b) studied

the effect of viscous dissipation. Microchannels were also investigated by

Buonomo et al. (2014b). Conjugated heat transfer in a double-pipe filled with

metallic foam was studied numerically by Du et al. (2010). A MHD boundary

layer past a porous substrate was treated by Jat and Chaudhary (2009).

Transient and time-periodic convection in a channel has been treated analyti-

cally by Al-Nimr and Abu-Hijleh (2002), Al-Nimr and Kiwan (2002), Abu-Hijleh

et al. (2004), Khashan et al. (2005), and Forooghi et al. (2011). A further study of

transient convection was conducted by Spiga and Morini (1999). An analysis

involving a perturbation solution was presented by Kuznetsov (1997d). The specific

aspect of LTNE involving steady convective processes was analyzed by Nield

(1998a). The modeling of local nonequilibrium in a structured medium was

discussed by Nield (2002), and a conjugate problem was analyzed by Nield and

Kuznetsov (1999). A problem in a channel with one wall heated was analyzed by

Zhang and Huang (2001); see also the note by Magyari and Keller (2002). The

departure from local thermal equilibrium due to a rapidly changing heat source was

analyzed by Minkowycz et al. (1999). Further analysis was carried out by Lee and

Vafai (1999) and Marafie and Vafai (2001). The particular case of various models

for constant wall heat flux boundary conditions was discussed by Alazmi and Vafai

(2002). The present authors think that the best model is the one where there is

uniform flux over the two phases, as employed by Nield and Kuznetsov (1999).

Alazmi and Vafai (2004) showed that thermal dispersion has the effect of increas-

ing the sensitivity of LTNE between the two phases. The case of a non-Newtonian

fluid was treated numerically by Khashan and Al-Nimr (2005). Most work on

LTNE has been done for confined flows, but Wong et al. (2004) treated finite Péclet

number effects in forced convection past a heated cylinder and Kwan et al. (2008)

studied convection past a sphere at finite Péclet number.

The effect of LTNE on minimal resistance of layered systems was treated by

Leblond and Gosselin (2008). A general criterion for local thermal equilibrium was

proposed by Zhang and Liu (2008) and Zhang et al. (2009a, b, c).

Celli et al. (2010) studied a steady 2D boundary layer flow. They noted that

when the basic flow is high the two thermal fields are described accurately using the

boundary layer approximation. They analyzed the resulting parabolic system ana-

lytically and numerically, and found that the LTNE effects are strongest near the

leading edge and equilibrium is attained at large distances.
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Fully developed forced convection in a tube was further analyzed by Yang et al.

(2011a). Imani et al. (2012) numerically simulated convection through an array of

disconnected conducting cylindrical fins.

Yang and Vafai (2010, 2011a, b, c) have produced analytical solutions for

convection with LTNE based on various alternative boundary conditions. Klinbun

et al. (2012) included the effect of LTNE in their study and the effect of a transient

electromagnetic field on forced convection in a waveguide filled with porous

material. Convection from a circular cylinder was studied by Al-Sumaily et al.

(2013). Dukhan and Al-Rammahi (2012) made an analytical and experimental

study of convection in cylinder occupied by metal foam. A metallic foam was

also studied by Ando et al. (2013), Zhang et al. (2014), Rossi di Schio (2012), and

(for periodic convection) by Rossi di Schio and Barletta (2012). Chen and Tsao

(2012a) performed a thermal resistance analysis of forced convection with viscous

dissipation using an entransy dissipation concept. (It should be noted that the

novelty and utility of this concept have been questioned; see, for example, the

discussion by Herwig (2014), Bejan (2014), Awad (2014), and Chen et al. (2014a,

b, c).) The effect of radiation was included by Mahmoudi (2014), while Mahmoudi

(2015) studied microchannels with internal heating and Mahmoudi and Karimi

(2014) numerically investigated a partly filled pipe. The effect of radiation was also

studied by Wang et al. (2014a, 2015b). A power law fluid was examined by

Thayalan and Hung (2013). A channel with permeable walls was investigated by

Rassoulinejad-Mousavi et al. (2014). Flow through an annulus was studied by Yang

et al. (2011b).

LTNE was treated via a hyperbolic heat conduction model by Khadrawi et al.

(2010). Some exact solutions for LTNE based on an effective porosity were

obtained by Kuwahara et al. (2011). Chen et al. (2013a) treated numerically a

metal foam layer in a horizontal channel with multiple discrete sources.

An analytical study of LTNE in tube heat exchangers was made by Dehghan

et al. (2014a). A perturbation analysis of the LTNE condition in a porous medium

bounded by an isothermal channel was made by Dehghan et al. (2014b). Abedou

and Blouhadef (2015) have compared the practical usefulness of two LTNE criteria.

The effect of anisotropic permeability on heat transfer through a porous river bed

underlying a fluid layer was studied by Yovogan and Degan (2013). Wang et al.

(2014a, b, c) made a numerical study of convection in ordered three-dimensional

media. Abdollahzadeh Jamalabadi (2015) studied the effects of micro- and macro-

scale viscous dissipation on thermally developing forced convection. Heat

exchange in a porous channel with heat generation was investigated by Abedou

et al. (2015). Chee et al. (2015) studied entropy generation in a channel with

asymmetric thermal boundary conditions. Wang et al. (2015a, b, c) obtained an

exact analytical solution for gaseous slip flow in a circular microtube. Xu et al.

(2016) treated analytically slip flow through microfoams in mini/microchannels

with asymmetric wall heat fluxes. Khademi (2016) made a detailed examination of

forced convection in microchannels where the effect of thermal radiation from the

solid phase is taken into account. Note that this paper was retracted because of

plagiarism. Buonomo et al. (2016b) studied convection in microchannels with
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viscous dissipation. Tajik Jamal-Abad et al. (2016) applied an LTNE model to a

channel partly filled with porous material. Abedou et al. (2016) investigated

convection in a self-heating channel.

4.11 Partly Porous Configurations

For complicated geometries numerical studies are needed. The use of porous bodies

to enhance heat exchange motivated the early studies of Koh and Colony (1974)

and Koh and Stevans (1975). Huang and Vafai (1993, 1994a, b, c, d) and Vafai and

Huang (1994), using a Brinkman–Forchheimer model, performed studies of a

composite system made of multiple porous blocks adjacent to an external wall

(either protruding or embedded) or along a wall with a surface substrate. Khanafer

and Vafai (2001, 2005) investigated isothermal surface production and regulation

for high heat flux applications using porous inserts. Cui et al. (2000) conducted an

experimental study involving a channel with discrete heat sources. A linear array of

blocks in open and porous channels was studied by Rizk and Kleinstreuer (1991).

Convection in a parallel-plate channel partially filled with a porous layer was

studied by Jang and Chen (1992). They found that the Nusselt number is sensitive to

the open space ratio and that the Nusselt number is a minimum at a certain porous

layer thickness, dependent on Darcy number. A similar study was reported by Tong

et al. (1993). Srinivasan et al. (1994) analyzed convection in a spirally fluted tube

using a porous substrate approach. Hadim and Bethancourt (1995) simulated

convection in a channel partly filled with a porous medium and with discrete heat

sources on one wall. Chikh et al. (1995b, 1998) studied convection in an annulus

partly filled with porous material on the inner heated wall and in a channel with

intermittent heated porous disks, while Rachedi and Chikh (2001) studied a similar

problem. Ould-Amer et al. (1998) studied numerically the cooling of heat-

generating blocks mounted on a wall in a parallel-plate channel. Fu et al. (1996)

and Fu and Chen (2002) dealt with the case of a single porous block on a heated

wall in a channel. S€ozen and Kuzay (1996) studied round tubes with porous inserts.
Zhang and Zhao (2000) treated a porous block behind a step in a channel. Masuoka

et al. (2004) studied experimentally and numerically, with alternative interface

conditions considered, the case of a permeable cylinder placed in a wind tunnel

of rectangular cross section. Layeghi and Nouri-Borujerdi (2004) discussed forced

convection from a cylinder or an array of cylinders in the presence or absence of a

porous medium. Huang et al. (2004b) studied numerically the enhancement of heat

transfer from multiple heated blocks in a channel using porous covers.

Abu-Hijleh (1997, 2000, 2001b, 2002) numerically simulated forced convection

in various geometries with orthotropic porous inserts, while Abu-Hijleh (2003)

treated a cylinder with permeable fins. A transient problem involving partly filled

channels was studied by Abu-Hijleh and Al-Nimr (2001).

Analytical solutions for some flows through channels with composite materials

were obtained by Al-Hadrami et al. (2001a, b). Pipes with porous substrates were
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treated numerically by Alkam and Al-Nimr (1999a, b, 2001), while parallel-plate

channels were similarly treated by Alkam et al. (2001, 2002). A tubeless solar

collector and an unsteady problem involving an annulus were likewise treated by

Al-Nimr and Alkam (1997a, 1998a). Hamdan et al. (2000) treated a parallel-plate

channel with a porous core. Kim et al. (2003c) studied both a porous core and a

porous sheath in a circular pipe. A Green’s function method was used by Al-Nimr

and Alkam (1998b) to obtain analytical solution for transient flows in parallel-plate

channel. Experimental and numerical investigations of forced convection in chan-

nels containing obstacles were conducted by Young and Vafai (1998, 1999) and

Pavel and Mohamad (2004a, b, c). An analytical solution for the case of an annulus

was found by Qu et al. (2012b). A numerical simulation for turbulent flow in a

channel was reported by Nimvari et al. (2012).

The limitation of the single-domain approach for the computation of convection

in composite channels was exposed by Kuznetsov and Xiong (1999), following on

from the work of Kuznetsov (1997e). The effect of thermal dispersion in a channel

was analyzed by Kuznetsov (2001). Kuznetsov and Xiong (2000) numerically

simulated the effect of thermal dispersion in a composite circular duct.

Kuznetsov (2000a) reviewed a number of analytical studies, including those by

Kuznetsov (1998b, 1999a, c, 2001) for flow induced by pressure gradients, and by

Kuznetsov (1998d, 2000b) and Xiong and Kuznetsov (2000) for Couette flow. The

effect of turbulence on forced convection in a composite tube was discussed by

Kuznetsov et al. (2002, 2003b), Kuznetsov (2004a), and Kuznetsov and Becker

(2004). A numerical study of turbulent heat transfer above a porous wall was

conducted by Stalio et al. (2004). Convection past a circular cylinder sheathed

with a porous annulus, placed perpendicular to a turbulent air flow, was studied

numerically and experimentally by Sobera et al. (2003). Hydrodynamically and

thermally developing convection in a partly filled square duct was studied numer-

ically using the Brinkman model by Jen and Yan (2005). The effects of a transition

layer on forced convection in a channel were studied by Kuznetsov and Nield

(2008a). They obtained an analytical solution involving a novel type of Airy

function. Chen et al. (2008d) performed a numerical analysis based on stress-

jump boundary conditions of flow past a porous square cylinder. Nield and

Kuznetsov (2005d) studied the thermal development of flow in partly occupied

channel or duct. Multi-plate porous insulation was studied by Lim et al. (2007).

Combined convection and radiation in the entry region of circular ducts was studied

by Chen and Sutton (2005). An analytical investigation of the effect of viscous

dissipation on Couette flow in a channel partly occupied by a porous medium was

carried out by Ghazian et al. (2011). A two-equation model was applied to tubes

partly filled with metallic foam by Xu et al. (2011a, b). Umavathi et al. (2006, 2009)

investigated oscillatory flow in a horizontal composite channel. Umavathi et al.

(2010) studied generalized Couette flow in a composite channel.

A boundary-layer analysis of unconfined forced convection with a plate and a

porous substrate was presented by Nield and Kuznetsov (2003d). A more general

analytical investigation of this situation had been presented earlier by Kuznetsov
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(1999b). The same problem for a wedge was treated by Kuznetsov and Nield

(2006a).

Further general studies have been made by Mohais and Bhatt (2009), Huang

et al. (2010), Sousa (2005), Yucel and Guven (2007, 2008), Yuan et al. (2008), Zahi

et al. (2008), Zehforoosh and Hossainpour (2010), Bhargavi et al. (2009), Krishna

(2009), Yang et al. (2009a), Satyamurty and Bhargavi (2010), Bhargavi and

Satyamurty (2011), Shokoumand and Sayehvand (2010), Shokouhamand et al.

(2011), Maerefat et al. (2011), Aguiilar-Madera et al. (2011a, b), Teamah et al.

(2011a, b), Delavar and Hedayatpour (2012), Ucar et al. (2013a), and Cekmer et al.

(2016). Turbulent flow has been further studied by Santos and de Lemos (2006),

Allouache and Chikh (2008), Saati and Mohamad (2007), and Yang and Hwang

(2008). Further studies with porous blocks were conducted by Hooman andMerrikh

(2010), Li et al. (2010a), Shuja et al. (2009a, b), Tzesng (2006), and Tzeng et al.

(2007). More work on fins or pins has been conducted by Do et al. (2007), Hamdan

and Al-Nimr (2010), and Yang et al. (2010b). The case of a centered porous layer

was studied by Cekmer et al. (2012). A variable section axisymmetric channel was

treated by Pilevne and Misirlioglu (2007). A channel or an annulus partly filled with

metallic foams was considered by Xu et al. (2011a, b) and Qu et al. (2012a).

Entropy generation in pipes was studied by Mandavi et al. (2014). Heated oscillat-

ing plates were studied by Panda et al. (2013). An assessment of local thermal

equilibrium in tubes with a porous core or sheath was made by Yang et al. (2012a)

extending the work of Yang et al. (2009a). An exact solution with LTNE in a

channel was reported by Karimi et al. (2014), while Mahmoudi and Maerefat

(2011) also studied LTNE in a partly filled channel. A similar study was made by

Xu et al. (2011a, b, c) for a tube and a parallel-plate channel. Also for a channel,

Mahmoudi et al. (2014) examined the effect of various LTNE boundary conditions

and Torabi et al. (2015a, b) included entropy generation with an LTNE model and

with an internal source. A Lattice Boltzmann method was applied by Nazari et al.

(2013a) to a channel partly filled with a porous block.

Non-Newtonian fluid flow in plane channels with porous blocks was studied by

Nebbali and Bouhadef (2011). An analytical study of the effect of viscous dissipa-

tion in Couette flow in a partly filled channel was made by Ghazian et al. (2011).

Experiments in all metallic wire-woven bulk Kagone sandwich panels were made

by Joo et al. (2011). Valipour and Ghadi (2012) investigated numerically forced

convective heat transfer around and through a porous circular cylinder with internal

heat generation. Rashidi et al. (2013) studied convection round a solid cylinder

wrapped with a porous ring. Rashidi et al. (2015c) compared numerically the use of

stress-jump and stress-continuity interface conditions for flow across a solid cylin-

der with a porous sheath. Chaudhary and Kumar (2014) studied MHD boundary

layer flow in an inclined anisotropic and heterogeneous layer. Karimi et al. (2015)

examined the effects of exothermicity and endothermicity upon the temperature

field in a partly filled channel. Dehghan (2015) studied the effects of heat generation

on the thermal response of partly filled channels. Forchheimer forced convection in

a rectangular channel partly filled with aluminum foam was investigated by Sener

et al. (2016). Tajik Jamal-Abad et al. (2016) applied an LTNE model to a channel
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partly filled with porous material. Lu et al. (2016b) reported an analytical solution

for a parallel-plate channel partly filled with metallic foam. Wang et al. (2016a)

studied gaseous slip flow through a parallel-plate channel with a centered porous

substrate.

4.12 Transversely Heterogeneous Channels and Pipes

Kuznetsov (2000a) reviewed a number of analytical studies, including Kuznetsov

(2000b) and Xiong and Kuznetsov (2000) for Couette flow. The effect of turbulence

on forced convection in a composite tube was discussed by Kuznetsov et al. (2002,

2003b), Kuznetsov (2004a), and Kuznetsov and Becker (2004). A numerical study

of turbulent heat transfer above a porous wall was conducted by Stalio et al. (2004).

Convection past a circular cylinder sheathed with a porous annulus, placed perpen-

dicular to a turbulent air flow, was studied numerically and experimentally by

Sobera et al. (2003). Hydrodynamically and thermally developing convection in a

partly filled square duct was studied numerically using the Brinkman model by Jen

and Yan (2005). Chen et al. (2008d) performed a numerical analysis based on

stress-jump boundary conditions of flow past a porous square cylinder. Nield and

Kuznetsov (2005d) studied the thermal development of flow in partly occupied

channel or duct. Multi-plate porous insulation was studied by Lim et al. (2007).

Combined convection and radiation in the entry region of circular ducts was studied

by Chen and Sutton (2005). An analytical investigation of the effect of viscous

dissipation on Couette flow in a channel partly occupied by a porous medium was

carried out by Ghazian et al. (2011). A two-equation model was applied to tubes

partly filled with metallic foam by Xu et al. (2011a). Umavathi et al. (2010) studied

generalized Couette flow in a composite channel.

A boundary-layer analysis of unconfined forced convection with a plate and a

porous substrate was presented by Nield and Kuznetsov (2003d). A more general

analytical investigation of this situation had been presented earlier by Kuznetsov

(1999b). The same problem for a wedge was treated byKuznetsov andNield (2006a).

Further general studies have been made byMohais and Bhatt (2009), Huang et al.

(2010), Sousa (2005), Yucel and Guven (2007, 2008), Yuan and Chung (2008), Zahi

et al. (2008), Zehforoosh and Hossainpour (2010), Bhargavi et al. (2009),

Satyamurty and Bhargavi (2010), Bhargavi and Satyamurty (2011), Shokoumand

and Sayehvand (2010), Maerefat et al. (2011), Aguiilar-Madera et al. (2011a, b),

Teamah et al. (2011a, b), Turbulent flow has been further studied by Santos and de

Lemos (2006), Allouache and Chikh (2008), Saati and Mohamad (2007), and Yang

and Hwang (2008). Further studies with porous blocks were conducted by Hooman

and Merrikh (2010), Li et al. (2010a), Shuja et al. (2009a, b), Tzeng (2006), and

Tzeng et al. (2007). More work on fins or pins has been conducted by Do et al.

(2007), Hamdan and Al-Nimr (2010), and Yang et al. (2010b).

Analytical studies on the effect on forced convection, in channels and ducts, of

the variation in the transverse direction of permeability and thermal conductivity
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were initiated by Nield and Kuznetsov (2000), who used the Darcy model for local

thermal equilibrium. Both parallel-plate channels and circular ducts were consid-

ered, and walls at uniform temperature and uniform heat flux, applied symmetri-

cally, were treated in turn. Both continuous variation and stepwise variation of

permeability and conductivity were treated. For the parallel-plate channel, this

work was extended to the Brinkman model by Nield and Kuznetsov (2003d). For

the case of a parallel-plate channel with uniform heat flux boundaries,

Sundaravadivelu and Tso (2003) extended the basic analysis to allow for the effect

of viscosity variations. Asymmetric property variation and asymmetric heating in a

parallel-plate channel were considered by Nield and Kuznetsov (2001a). A conju-

gate problem, with either a parallel-plate channel or a circular duct, was treated by

Kuznetsov and Nield (2001). The interaction of thermal nonequilibrium and het-

erogeneous conductivity was studied by Nield and Kuznetsov (2001b). With

application to the experimental results reported by Paek et al. (1999b) in mind,

Nield and Kuznetsov (2003a) treated a case of gross heterogeneity and anisotropy

using a layered medium analysis. A conjugate problem, involving the Brinkman

model and with temperature-dependent volumetric heat inside the solid wall, was

treated analytically and numerically by Mahmud and Fraser (2005). Nield and

Kuznetsov (2013d) discussed arrangements of layers of given material to optimize

the heat transfer. Ucar et al. (2013b) noted circumstances in which the Nusselt

number changes sign. Jogie and Bhatts (2013) studied flow in a channel occupied

by two immiscible fluids. Jamal-Abad et al. (2016) provided a perturbation solution

to a problem with temperature-dependent conductivity.

For illustration, we present the results obtained by Nield and Kuznetsov (2000)

for the effect of heterogeneity on Nusselt number. We first consider the case where

the permeability and thermal conductivity distributions are given by

K ¼ K0 1þ εK
y*j j
H

� 1

2

� �� 

,

k ¼ k0 1þ εk
y*j j
H

� 1

2

� �� 

:

ð4:134Þ

Here the boundaries are at y* ¼ –H and y* ¼ H. The mean values of the

permeability and conductivity are K0 and k0, respectively. The coefficients εK and

εk are each assumed to be small compared with unity. To first order, one finds that

for the case of uniform flux boundaries

Nu ¼ 6 1þ 1

4
εK � 1

8
εk

� �
, ð4:135Þ

and for the case of uniform temperature boundaries,

Nu ¼ π2

2
1þ 2

π2
εK � εkð Þ

� 

: ð4:136Þ
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4.13 Thermal Development

In forced convection in a porous medium, hydrodynamic development is not

normally of importance. This is because the hydrodynamic development length is

readily shown to be of order of magnitude (K/φ)1/2 and usually this is very small

compared with the channel width. In contrast, the thermal development length can

be much greater. An early study was that of Montakhab (1979), who considered a

step change in inlet temperature.

For the Darcy model one has slug flow, and for the case of walls at uniform

temperature the classical Graetz solution for thermal development is applicable. An

analysis based on the Brinkman model was reported by Nield et al. (2004a), for both

a parallel-plate channel and a circular tube. A finite-element numerical investiga-

tion was made by Misirlioglu (2007). The additional effect of a Forchheimer term

has not yet been treated, but one would anticipate that since an increase in

Forchheimer number would produce a more slug-like flow, the effect of quadratic

drag would be similar to that produced by a reduction in Darcy number. The

corresponding case where the walls are at uniform heat flux was treated by Nield

et al. (2003b). The effect of local thermal nonequilibrium was examined by Nield

et al. (2002), and the additional effects of transverse heterogeneity were studied by

Nield and Kuznetsov (2004a, b, c). Thermal development in a channel occupied by

a non-Newtonian power-law fluid was studied by Nield and Kuznetsov (2005a). In

the standard analysis of the Graetz type the axial conduction and viscous dissipation

effects are neglected, but in the studies by Nield et al. (2003a) and Kuznetsov et al.

(2003c) these effects were included, for the cases of a parallel-plate channel and a

circular duct, respectively. For the case of a circular duct, axial conduction effects

and viscous dissipation effects were studied numerically by Hooman et al. (2003)

and Ranjbar-Kani and Hooman (2004), respectively. A porous medium occupied by

a rarefied gas was studied by Kuznetsov and Nield (2009b, 2010f). The case of local

thermal nonequilibrium was examined by Yang and Liu (2006) and Dukhan

(2009b), and thermal nonequilibrium, together with the effect of viscous dissipa-

tion, was studied by Chen and Tsao (2011c) (together with viscous dissipation). The

effect of viscous dissipation was also studied by Hooman et al. (2006, 2007b) and

Tada and Ichimiya (2007b). An entropy generation analysis was performed by

Hooman (2005) and Hooman et al. (2008a).

A numerical study of heat transfer in the thermally developing region in an

annulus was reported by Hsieh and Lu (1998). Thermally developing forced

convection inside ducts of various shapes (including elliptical passages) was ana-

lyzed by Haji-Sheikh and Vafai (2004). Haji-Sheikh et al. (2005) illustrated the use

of a combination of a Green’s function solution and an extended weighted residuals
method in the study of isosceles triangular passages. They noted that their meth-

odology is equally applicable when the boundary conditions are of the first, second,

or third kind. The effect of axial conduction in triangular ducts was studied by

Banerjee et al. (2012). A field synergy principle analysis for the case of uniform

heat generation was reported by Chen and Tsao (2012b). Ouyang et al. (2013b) and
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Dehghan et al. (2016a) (analytically) considered the effect of local thermal

nonequilibrium, while Dehghan et al. (2016d) added to LTNE the effect of internal

heat generation.

Thermally developing forced convection in a metal foam-filled elliptical annulus

was studied by Benmerkhi et al. (2016). An analytic investigation of convection

through the entrance of a microchannel was reported by Dehghan et al. (2016c).

Microchannels were further studied by Dehghan et al. (2016b).

The general feature of thermal development is that the Nusselt number increases

as one moves from the fully developed region toward the entrance region. It is

found that the rate of increase decreases as the Darcy number increases.

4.14 Surfaces Covered with Porous Layers

The hair growth on the skin of a mammal is an example of a saturated porous

medium where, locally, the solid matrix (hair) is not in thermal equilibrium with the

permeating fluid (air). A theory for the heat transfer by forced convection through a

surface covered with hair has been developed by Bejan (1990a). It was tested

subsequently in the numerical experiments of Lage and Bejan (1990). This entire

body of work was reviewed by Bejan and Lage (1991) and Bejan (1992b).

The most essential features of the geometry of an actual surface covered with

hair are retained in the model presented in Fig. 4.9. The skin surface is connected to

a large number of perpendicular strands of hair, the density of which is assumed

constant,

n ¼ number of strands of hair

unit area of skin surface
: ð4:137Þ

The hair population density n is related to the porosity of the “hair + air” medium

that resides above the skin,

φ ¼ airvolume

total volume
¼ 1� nAs: ð4:138Þ

Each strand of hair is modeled as a cylinder with the cross section As.

Parallel to the skin surface and through the porous structure formed by the

parallel hair strands flows a uniform stream of air of velocity U. This stream is

driven longitudinally by the dynamic pressure rise formed over that portion of the

animal’s body against which the ambient breeze stagnates. The longitudinal length

L swept by the air flow is a measure of the linear size of the animal. The constant air

velocityU is a quantity averaged over the volume occupied by air. It is assumed that

the strand-to-strand distances are small enough so that the air flow behaves

according to the Darcy law, with apparent slip at the skin surface.

At every point in the two-dimensional (x,y) space occupied by the porous

medium described above, we distinguish two temperatures: the temperature of the
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solid structure (the local hair strand), Ts, and the temperature of air that surrounds

the strand, Ta. Both Ts and Ta are functions of x and y. The transfer of heat from the

skin to the atmosphere is driven by the overall temperature difference (Tw � T1),

where Tw is the skin temperature and T1 the uniform temperature of the ambient air

that enters the porous structure. The temperature of the interstitial air, Ta, is equal to
the constant temperature T1 in the entry plane x ¼ 0.

For the solid structure, the appropriate energy equation is the classic conduction

equation for a fin (in this case, single strand of hair),

ksAs

∂2
Ts

∂y2
� hps Ts � Tað Þ ¼ 0, ð4:139Þ

where ps is the perimeter of a strand cross section. The thermal conductivity of the

strand, ks, and the perimeter-averaged heat transfer coefficient, h, are both constant.
The constancy of h is a result of the assumed low Reynolds number of the air flow

that seeps through the hair strands.

The second energy conservation statement refers to the air space alone, in which

(ρcP) and ka are the heat capacity and thermal conductivity of air:

ρcPU
∂2

Ta

∂x2
¼ ka

∂2
Ta

∂y2
þ nhps Ts � Tað Þ: ð4:140Þ

On the left-hand side of this equation, we see only one convection term because

the air-space-averaged velocity U points strictly in the x-direction. The first term on

the right-hand side of the equation accounts for air conduction in the transversal

direction (y). By not writing the longitudinal conduction term ka ∂
2Ta/∂x

2, we are

assuming that the flow region in which the effect of transversal air conduction is

important is thin.

The last term in Eq. (4.140) accounts for the “volumetric heat source” effect that

is due to the contact between the air stream and the local (warmer) hair strand. Note

the multiplicative role of the strand density n in the makeup of this term: the product

(nps) represents the total contact area between hair and air, expressed per unit of air
volume. The heat source term of Eq. (4.140) is the air-side reflection of the heat sink

term (the second term) encountered in the fin conduction equation (4.139).

In an air region that is sufficiently close to the skin, the air stream is warmed up

mainly by contact with the skin, i.e., not by the contact with the near-skin area of the

hair strands. Consequently, for this region, in Eq. (4.140) the heat source term

nhps(Ts – Ta) can be neglected. On the other hand, sufficiently far from the skin

most of the heating of the air stream is effected by the hair strands that impede the

flow. In the energy balance of this external flow the vertical conduction term can be

neglected in Eq. (4.140).

For the details of the heat transfer analysis of the two-temperature porous

medium of Fig. 4.10 the reader is referred to the original paper (Bejan 1990a).

One interesting conclusion is that the total heat transfer rate through a skin portion
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of length L is minimized when the hair strand diameter assumes the optimal value

Dopt given by

Dopt

ν

ΔP
ρ

� �1=2

¼ k2zks
2ka

� �1=4
1� φ

φ

� �5=4 L

ν

ΔP
ρ

� �1=2
" #1=2

: ð4:141Þ

That lowest heat transfer rate is

q0min

ka Tw � T1ð Þ ¼ 32
ks
ka

� �1=4

φ3=4 1� φð Þ1=4 L

ν

ΔP
ρ

� �1=2
" #1=2

: ð4:142Þ

These results are based on several additional assumptions, which include a

model of type (1.5) for the permeability of the hair matrix

K ffi D2φ3

kz 1� φð Þ2 , ð4:143Þ

where the constant kz is a number of order 102.

Equation (4.142) shows that the minimum heat transfer rate increases with the

square root of the linear size of the body covered with hair, L1/2. The optimal hair

strand diameter is also proportional to L1/2. This last trend agrees qualitatively with
measurements of the hair sizes of mammals compiled by Sokolov (1982).

Figure 4.11 shows the natural hair strand diameters (D) of ten mammals, with the

length scale of the body of the animal plotted on the abscissa.

0

skin

region next to the wall

external region 

isothermal region 

hair

hair

body x

y

L

T∞

U

ΔP

ΔP

Tw x
0

Fig. 4.10 Two-dimensional model for forced convection through the hair growth near the skin

(after Bejan 1990a)
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The natural design of animal body insulation is an important and visible man-

ifestation of the constructal law of design in nature. Although many natural designs,

animate and inanimate (e.g., river basins, lungs), speak loudly of the natural design

tendency to facilitate flow access, the design of body insulation seems to contradict

this tendency, because it opposes the flow of heat from body to ambient. In fact,

there is no contradiction, because what flows in animal design is animal mass on the

landscape, and the flow of animal mass is facilitated by all the detailed features of

animal design, from the minimization of fluid flow resistance in lung architecture

and vascularized tissues to the maximization of heat flow resistance in body

insulation (Bejan and Lorente 2010, 2011, Bejan and Zane 2012).

Later studies of surfaces covered with fibers focused on the generation of reliable

pressure drop and heat transfer information for low Reynolds number flow through a

bundle of perpendicular or inclined cylindrical fibers (Fowler and Bejan 1994). There

is a general need for data in the low Reynolds number range, as most of the existing

results refer to heat exchanger applications (i.e., higher Reynolds numbers). Fowler

and Bejan (1995) studied numerically the heat transfer from a surface covered with

flexible fibers, which bend under the influence of the interstitial flow. Another study

showed that when the effect of radiation is taken into account, it is possible to

anticipate analytically the existence of an optimal packing density (or porosity) for

minimal heat transfer across the porous cover (Bejan 1992b).

Vafai and Kim (1990) and Huang and Vafai (1993, 1994a, b, c, d) have shown

that a porous coating can alter dramatically the friction and heat transfer charac-

teristics of a surface. This effect was also documented by Fowler and Bejan (1995).

Depending on its properties and dimensions, the porous layer can act either as an

insulator or as a heat transfer augmentation device. The engineering value of this

work is that it makes it possible to "design" porous coatings such that they control

the performance of the solid substrate.

lynx

coyote

bear

bison

101

10

102

10–1

rabbit

beaver

monkey

solenodon

D(µm)

L(m)

rat

pika

Fig. 4.11 The hair strand diameters and body lengths of ten mammals (Bejan and Lage 1991)
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4.15 Designed Porous Media

A potentially revolutionary application of the formalism of forced convection in

porous media is in the field of heat exchanger simulation and design. Heat

exchangers are a century-old technology based on information and concepts stim-

ulated by the development of large-scale devices (see, for example, Bejan 1993,

Chap. 9). The modern emphasis on heat transfer augmentation, and the push toward

miniaturization in the cooling of electronics, have led to the development of

compact devices with much smaller features than in the past. These devices operate

at lower Reynolds numbers, where their compactness and small dimensions

(“pores”) make them candidates for modeling as saturated porous media.

Such modeling promises to revolutionize the nomenclature and numerical sim-

ulation of the flow and heat transfer through heat exchangers. Decreasing dimen-

sions, increasing compactness, and constructal design (Sect. 4.18) make these

devices appear and function as designed porous media (Bejan 2004b; Lorente

2009). This emerging field is outlined in two new books (Bejan 2004a, b; Bejan

et al. 2004).

To illustrate this change, consider Zukauskas’ (1987) classical chart for the

pressure drop in cross flow through arrays of staggered cylinders (e.g., Fig. 9.38

in Bejan 1993). The four curves drawn on this chart for the transverse pitch/cylinder

diameter ratios 1.25, 1.5, 2, and 2.5 can be made to collapse into a single curve, as

shown in Fig. 4.12 (Bejan and Morega 1993a, b). The technique consists of treating

the bundle as a fluid-saturated porous medium and using the volume-averaged

velocity U, the pore Reynolds number UK1/2/ν on the abscissa, and the dimension-

less pressure gradient group (ΔP/L ) K1/2/ρU2 on the ordinate.

The effective permeability of the bundle of cylinders was estimated using

Eq. (4.143) with kz ¼ 100, and Zukauskas’ chart. Figure 4.12 shows very clearly

the transition between Darcy flow (slope �1) and Forchheimer flow (slope 0). The

porous medium presentation of the array of cylinders leads to a very tight collapse

of the curves taken from Zukauskas’ chart. The figure also shows the pressure drop
curve for turbulent flow through a heat exchanger core formed by a stack of parallel

plates. An added benefit of Fig. 4.12 is that it extends the curves reliably into the

low Reynolds number limit (Darcy flow), where classic heat exchanger data are not

available.

This method of presentation (Fig. 4.12) deserves to be extended to other heat

exchanger geometries. Another reason for pursuing this direction is that the heat

and fluid flow process can be simulated numerically more easily if the heat

exchanger is replaced at every point by a porous medium with volume-averaged

properties. An example is presented in Fig. 4.13 (Morega et al. 1995). Air flows

from left to right along a hot horizontal surface (the electronics module) and

through an array of parallel plate fins of rectangular profile (the heat sink). The

plate thickness and plate-to-plate spacing are t/L¼ 0.05 and d/L¼ 0.069, where L is

the length of the plate in the flow direction. The Reynolds number ReL is based on

L and the approach velocity. The air flows through and over the heat sink. The
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corresponding temperature field and the effect of changing the Reynolds number

are illustrated in Morega et al. (1995). One advantage of the numerical model is that

it accounts in a volume-averaged sense for the conduction heat transfer through

each plate, longitudinally and transversally. Another advantage comes from the

relative simplicity and high computational speed, because in the thermal design and

optimization of cooling techniques it is necessary to simulate a large number of

geometric configurations such as Fig. 4.13.

Another important application of porous media concepts in engineering is in the

optimization of the internal spacings of heat exchangers subjected to overall

volume constraints (see Sects. 4.19 and 4.20). Packages of electronics cooled by

forced convection are examples of heat exchangers that must function in fixed

volumes. The design objective is to install as many components (i.e., heat gener-

ation rate) as possible, while the maximum temperature that occurs at a point (hot

spot) inside the given volume does not exceed a specified limit. Bejan and Sciubba

(1992) showed that a very basic trade-off exists with respect to the number of

installed components, i.e., regarding the size of the pores through which the coolant

flows. This trade-off is evident if we imagine the two extremes: numerous compo-

nents (small pores) and few components (large spacings).

When the components and pores are numerous and small, the package functions as

a heat-generating porous medium. When the installed heat generation rate is fixed,

the hot spot temperature increases as the spacings become smaller, because in this

limit the coolant flow is being shut off gradually. In the opposite limit, the hot spot

temperature increases again because the heat transfer contact area decreases as the

component size and spacing become larger. At the intersection of these two asymp-

totes we find an optimal spacing (pore size) where the hot spot temperature is

staggered cylinders
in cross-flow

parallel plate
channel

v

Darcy flow

ΔP
ρU2

UK1/2

K1/2

1

1

L

102

102

10-2

10-2

Fig. 4.12 Porous medium representation of the classic pressure-drop data for flow through

staggered cylinders and stacks of parallel plates (Bejan and Morega 1993a, b)
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minimal when the heat generation rate and volume are fixed. The same spacing

represents the design with maximal heat generation rate and fixed hot spot temper-

ature and volume. Bejan and Sciubba (1992), Bejan (1993), and Morega et al. (1995)

developed analytical and numerical results for optimal spacings in applications with

solid components shaped as parallel plates. Optimal spacings for cylinders in cross

flow were determined analytically and experimentally by Bejan (1995) and Stanescu

et al. (1996). The spacings of heat sinks with square pin fins and impinging flow were

optimized numerically and experimentally by Ledezma et al. (1996). The latest

conceptual developments are outlined in Sect. 4.19.

The dimensionless results developed for optimal spacings (Sopt) have generally
the form

Sopt
L

� Be�n
L ð4:144Þ

where L is the dimension of the given volume in the flow direction, and BeL is the

dimensionless pressure drop that Bhattacharjee and Grosshandler (1988) termed the

Bejan number,

ReL=400

ReL=100

Fig. 4.13 The flow through and over a stack of rectangular parallel-plate fins attached to a base,

and modeled as a porous medium (Morega et al. 1995)
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BeL ¼ ΔP � L2
μf αf

: ð4:145Þ

In this definition ΔP is the pressure difference maintained across the fixed

volume. For example, the exponent n in Eq. (4.144) is equal to 1/4 in the case of

laminar flow through stacks of parallel-plate channels. The Bejan number serves as

the forced convection analog of the Rayleigh number used in natural convection

(Petrescu 1994).

Designed porous media are now an active field of research in constructal theory

and design. The progress on designed porous media was reviewed by Bejan and

Lorente (2006, 2008, 2013).

The design of heat transfer processes in porous media is also an important new

trend in the wider and rapidly growing field of thermodynamic optimization (Bejan

1996a). Noteworthy are two optimal-control papers of Kuznetsov (1997a, c), in

which the heat transfer is maximized during the forced convection transient cooling

of a saturated porous medium. For example, Kuznetsov (1997a) achieved heat

transfer maximization by optimizing the initial temperature of the porous medium

subject to a fixed amount of energy stored initially in the system and a fixed

duration of the cooling process.

Progress on the design and performance of heat exchange structures with porous

media was reported by Kamath et al. (2014), Adewumi et al. (2013), Kundu and Lee

(2015), and Kephart and Jones (2016). Work on constructal design was surveyed in

the book by Rocha (2009).

Alalaimi et al. (2015) developed analytically the formulas for effective perme-

ability in several configurations using the closed-form description of tree networks

designed to provide flow access. The objective was to find the relation between the

permeability and porosity of tree-shaped fissures. They found the effect of the

fracture size on the permeability for fixed number of bifurcation and the results

showed that the permeability of the fracture network increased rapidly with the size

of the fracture. The results have been validated by comparison with experimental

and numerical results. The conclusion is that the permeability formulas do not vary

much from one tree design to the next, suggesting that similar formulas may apply

to naturally fissured porous media with unknown precise details, which occur in

natural reservoirs.

4.16 Other Configurations or Effects

4.16.1 Effect of Temperature-Dependent Viscosity

The study of the effect of a temperature-dependent viscosity on forced convection

in a parallel-plate channel was initiated by Nield et al. (1999). The original analysis

was restricted to small changes of viscosity, carried out to first order in Nield et al.
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(1999) and to second order in Narasimhan et al. (2001b), but the layered medium

analysis of Nield and Kuznetsov (2003b) removed this restriction. For the case of a

fluid whose viscosity decreases as the temperature increases (the usual situation) it

is found that the effect of the variation is to reduce/increase the Nusselt number for

cooled/heated walls. The analysis predicts that for the case of small Darcy number

the effect of viscosity variation is almost independent of the Forchheimer number,

while for the case of large Darcy number the effect of viscosity variation is reduced

as the Forchheimer number increases. Within the limitations of the assumptions

made in the theory, experimental verification was provided by Nield et al. (1999)

and Narasimhan et al. (2001a).

For example, in the case of uniform flux boundaries and Darcy’s law, Nield et al.
(1999) showed that the mean velocity is altered by a factor (1 + N/3) and the Nusselt
number is altered by a factor (1 – 2N/15), where the viscosity variation number N is

defined as

N ¼ q00H
k

1

μ0

dμ

dT

� �
0

, ð4:146Þ

where the suffix 0 indicates evaluation at the reference temperature T0.
The extension to the case where there is a substantial interaction between the

temperature dependence of viscosity and the quadratic drag effect was carried out

in a sequence of papers by Narasimhan and Lage (2001a, b, 2002, 2003, 2004a).

The effect on pump power gain for channel flows was studied by Narasimhan and

Lage (2004b). In these papers the authors developed what they call a Modified

Hazen-Dupuit-Darcy model which they then validated with experiments with PAO

as the convecting liquid and compressed aluminum-alloy porous foam as the porous

matrix. This work on temperature-dependent viscosity was reviewed by

Narasimhan and Lage (2005). Further studies on the effect of temperature-

dependent viscosity were made by Hooman and Mohebpour (2007) and Hooman

and Gurgenci (2008b). The variation of other thermophysical properties was stud-

ied by Pantokratoras (2007a, b).

The effects of a magnetic field and temperature-dependent viscosity on forced

convection past a flat plate, with a variable wall temperature and in the presence of

suction or blowing, were studied numerically by Seddeek (2002, 2005). Entropy

generation studies were made by Hooman (2006), Hooman and Gurgenci (2007a),

and Hooman et al. (2009a, b).The effect of temperature-dependent viscosity on

thermally developing forced convection was studied by Hooman (2009a).

4.16.2 Oscillatory Flows, Counterflows

For an annulus and a pipe, Guo et al. (1997a, b) treated pulsating flow. For a

completely filled channel, Kim et al. (1994) studied a pulsating flow numerically.

Soundalgekhar et al. (Soundalgekar et al. 1991) studied flow between two parallel
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plates, one stationary and the other oscillating in its own plane. Hadim (1994a)

simulated convection in a channel with localized heat sources. A porous annulus

was studied by Rashidi et al. (2014c) using a homotopy analysis method.

S€ozen and Vafai (1991) analyzed compressible flow through a packed bed with

the inlet temperature or pressure oscillating with time about a nonzero mean. They

found that the oscillation had little effect on the heat storage capacity of the bed.

Paek et al. (1999a) studied the transient cool down of a porous medium by a

pulsating flow. Experiments involving steady and oscillating flows were conducted

by Leong and Jin (2004, 2005). Reciprocating flows in channels partly filled with a

porous medium were studied by Habibi et al. (2011).

An analytical treatment of pulsating flow in a channel or tube was presented by

Kuznetsov and Nield (2006b). Pulsating convection from two heat sources mounted

with porous blocks was examined by Huang and Yang (2008). Oscillatory flow of a

non-Newtonian second grade fluid was studied by Hayat et al. (2007b). The effect

of a periodically oscillating driving force on basic microflows was investigated by

Haddad et al. (2006b). Dhahri et al. (2006a) studied pulsating flow in a tube partly

filled with a porous medium, while Dhahri et al. (2006b) made a numerical study of

reciprocating flow in a pipe. Khanafer et al.’s (2007) studied the influence of

pulsatile blood flow on hyperthermia. MHD studies were reported by Mehmood

et al. (2010) and Prasad et al. (2013a). Another flow involving flow oscillation was

studied by Byun et al. (2006). Pulsatile flow of a Burger’s fluid in a circular pipe

was examined by El-Dabe et al. (2010).

Steady counterflow in a parallel-plate channel or a circular tube was studied by

Nield and Kuznetsov (2008a) and Kuznetsov and Nield (2009a). The Nusselt

number is zero when the net flow is zero. Pulsating counterflow in a channel with

small amplitude fluctuations, without phase lag, was treated by Nield and

Kuznetsov (2009a). A similar problem with phase lag was investigated by Nield

and Kuznetsov (Nield and Kuznetsov 2010a, b, c, d, e). Pulsating counterflow in a

circular tube was considered by Kuznetsov and Nield (2009b). Pathak and

Ghiaasiaan (2010) considered the effect of thermal dispersion. Pathak et al.

(2013) investigated a conjugate problem. Ghafarian et al. (2013) studied the case

of metallic foam numerically. Dhahri et al. (2013a, b) treated viscous dissipation

effect on entropy generation in cylindrical packed beds. Dhahri et al. (2008) studied

entropy generation in a composite fluid/porous system.

Al-Sumaily and Thompson (2013) studied convection from a circular cylinder

with pulsating flow, and Al-Sumaily et al. (2013) included the effect of local

thermal nonequilibrium.

4.16.3 Non-Newtonian Fluids

Boundary-layer flow of a power-law fluid on an isothermal semi-infinite plate was

studied by Wang and Tu (1989). The same problem for an elastic fluid of constant

viscosity was treated by Shenoy (1992). These authors used a modified Darcy
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model. A non-Darcy model for a power-law fluid was employed by Shenoy (1993a)

and Hady and Ibrahim (1997) for flow past a flat plate, by Alkam et al. (1998) for

flow in concentric annuli, and by Nakayama and Shenoy (1993b) and Chen and

Hadim (1995, 1998a, b, 1999a) for flow in a channel. These studies showed that in

the non-Darcy regime the effect of increase of power-law index n is to increase the

thermal boundary-layer thickness and the wall temperature and to decrease the

Nusselt number; in the Darcy regime the changes are small. As the Prandtl number

increases, the Nusselt number increases, especially for shear-thinning fluids

(n < 1). As n decreases, the pressure drop decreases. Tian et al. (2016) studied

dissipation effects in a power-law fluid.

An elastic fluid was treated by Shenoy (1993b). A viscoelastic fluid flow over a

nonisothermal stretching sheet was analyzed by Prasad et al. (2002). An experi-

mental study for heat transfer to power-law fluids under flow with uniform heat flux

boundary conditions was reported by Rao (2001, 2002).

A 3D flow in a duct was studied numerically by Nebbali and Bouhadef (2006).

Flow over a flat plate of a power-law fluid in a Brinkman medium was analyzed by

Pantokratoras and Magyari (2010). The effect of viscous dissipation on flow in a

channel occupied by a power-law fluid was studied by Chen and Tsao (2011a). The

effect of local thermal nonequilibrium in a channel lined with porous layers was

examined by Abkar et al. (2010). Attia (2008b) studied the flow of a power-law

fluid with a pressure gradient decaying exponentially with time. Wang et al. (2011)

studied the case of a Gibson-Ashby constitutive model. Power-law slip flows and

plug flows with variable thermophysical properties in parallel-plate and circular

microchannels were investigated by Shojaeian and Kosar (2016).

Gokhale and Fernandez (2016) made a lattice Boltzmann simulation of forced

convection in non-Newtonian fluid through a low permeable porous medium.

Ramesh (2016) studied the effects of slip and convective conditions on the peri-

staltic flow of couple stress fluid in an asymmetric channel.

4.16.4 Bidisperse Porous Media

A bidisperse porous medium (BDPM) was introduced in Sect. 1.10.

Nield and Kuznetsov (2005b) treated forced convection in a parallel-plate

channel occupied by a BDPM, using a two-temperature model similar to

Eqs. (6.54) and (6.55) in this book. Nield and Kuznetsov (2004c) extended the

analysis to the case of a conjugate problem with plane solid slabs bounding the

channel. They found that the effect of the finite thermal resistance due to the slabs is

to reduce both the heat transfer to the porous medium and the degree of local

thermal nonequilibrium. An increase in the value of the Péclet number leads to

decrease in the rate of exponential decay in the downstream direction, but does not

affect the value of a suitably defined Nusselt number. The case of thermally

developing convection in a BDPM was treated by Kuznetsov and Nield (2006c).

The case of asymmetric heating of a channel was studied by Kuznetsov and Nield
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(2010a). Heat transfer in a BDPM has been reviewed by Nield and Kuznetsov

(2005c). A three-velocity three-temperature model of a tri-disperse porous medium

was applied by Nield and Kuznetsov (2011b). Forced convection in a channel partly

occupied by a bidisperse porous medium was studied by Nield and Kuznetsov

(2011h). The hydrodynamic aspect of bidisperse porous media in the context of

thermal management has been studied by Narasimhan et al. (2012). Nield and

Kuznetsov (2013a, b, c, d, e, f, g, h) and Magyari (2013c) discussed the case of

high speed flow. Straughan (2014a, b, c, d) studied bidispersive poroelastic waves.

Hooman et al. (2015) reconsidered the modeling of momentum transfer. Grosan

et al. (2010) studied flow through a spherical porous medium embedded in another

porous medium.

Nield (2015a, b) proposed a more realistic model for a bidisperse porous

medium. This model is based on consideration of unidirectional flow in a stack of

channels with alternating fluid and porous phases, with the Beavers-Joseph bound-

ary condition imposed at the interphase boundaries.

4.16.5 Other Flows, Other Effects

Non-Darcy boundary-layer flow over a wedge was studied using three numerical

methods by Hossain et al. (1994). An application to the design of small nuclear

reactors was discussed by Aithal et al. (1994). Convection with Darcy flow past a

slender body was analyzed by Romero (1995b), while Sattar (1993) analyzed

boundary-layer flow with large suction. The effect of blowing or suction on forced

convection about a flat plate was also treated by Yih (1998d, e). The interaction

with radiation in a boundary layer over a flat plate was studied by Mansour (1997).

A porous medium heated by a permeable wall perpendicular to the flow direction

was studied experimentally by Zhao and Song (2001). The boundary layer at a

continuously moving surface was analyzed by Nakayama and Pop (1993) and Khan

and Pop (2011a, b). The effect of liquid evaporation on forced convection was

studied numerically by Shih and Huang (2002). A vertical wall with a convective

thermal boundary condition was studied by Pantokratoras (2015).

Convection in an asymmetrically heated sintered porous channel was investi-

gated by Hwang et al. (1995). Various types of sintered and un-sintered heat sinks

were compared experimentally by Tzeng and Ma (2004). Convection in a sintered

porous channel with inlet and outlet slots was studied numerically by Hadim and

North (2005). Sung et al. (1995) investigated flow with an isolated heat source in a

partly filled channel. Conjugate forced convection in cross flow over a cylinder

array with volumetric heating in the cylinders was simulated by Wang and

Georgiadis (1996). Heat transfer for flow perpendicular to arrays of cylinders was

examined by Wang and Sangani (1997). An internally finned tube was treated as a

porous medium by Shim et al. (2002). Internal heating has also been studied by Du

and Wang (1999a, 2001) and Yang et al. (2009b). Forced convection in a system of

wire screen meshes was examined experimentally by Ozdemir and Ozguc (1997).
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The effect of anisotropy was examined experimentally by Yang and Lee (1999);

numerically by Kim et al. (2001c), Nakayama et al. (2002), and Kim and Kuznetsov

(2003); and analytically by Degan et al. (2002) and Sultani and Ajamein (2014).

The effect of fins in a heat exchanger was studied numerically by Kim et al. (Kim

et al. 2000a, b, 2002a, b, c) and by Kim and Hyun (2005). Forced convection in a

channel with a localized heat source using fibrous materials was studied numeri-

cally by Angirasa and Peterson (1999). A numerical investigation with a random

porosity model was made by Fu et al. (2001b). Experimental studies involving a

rectangular duct heated only from the top wall were conducted by Demirel et al.

(1999, 2000). A thermodynamic analysis of heat transfer in an asymmetrically

heated annular packed bed was reported by Demirel and Kahraman (2000). A

laboratory investigation of the cooling effect of a coarse rock layer and a fine

rock layer in permafrost regions was reported by Yu et al. (2004). Forced convec-

tion in a rotating channel was examined experimentally by Tzeng et al. (2004) and

analytically by Mohan and Srivastava (1978) (for a free channel bounded by a

permeable bed). Experiments involving a confined slot jet were conducted by Jeng

and Tzeng (2007a, b). Other experiments were performed by Noh et al. (2006),

Tzeng (2007), Tzeng and Jeng (2006), Jeng et al. (2006, 2010), and Leong et al.

(2010). Heat sinks involving nanofluids were studied by Ghazvini and Shokoumand

(2009) and Ghazvini et al. (2009). The forced convection of nanofluids was also

studied by Maghrebi et al. (2012).

Flow, thermal, and entropy generation characteristics inside a porous channel

with viscous dissipation were discussed by Mahmud and Fraser (2005a, b). A

similar problem with wavy enclosures filled with microstructures was studied by

Mahmud et al. (2007). Further entropy studies were made by Abbasssi (2007),

Hooman (2007), Hooman and Ejlali (2007), Hooman and Haji-Sheikh (2007), and

Hooman et al. (2007a, 2008b). Other studies were made by Hooman (2008a),

Hooman and Gorji-Bandpy (2006), Hooman and Merrikh (2006), Ichimiya et al.

(2009), Jiang and Lu (2006, 2007), Lu et al. (2006), and Kamisli (2009). Dukhan

and Hooman (2013) pointed out that the solution in Lu et al. (2006) is flawed

because of an incorrect choice of Bessel function.

Forced convection in structured packed beds with spherical or ellipsoidal particles

was studied computationally and experimentally by Yang et al. (2010a, c). Their

results were compared with experimental data by Yang et al. (2012a, b, c, d, e).

Hadad and Jafapur (2012, 2013) modeled packed beds with spherical pebbles of

arbitrary shape. The effect of radiation in cylindrical packed beds was examined by

Yee and Kamiuto (2005). The effect of radiation, with and without slip flow, was also

studied by Dehghan et al. (2015a, b). Forced convection in parallel flow multilayer

microchannels was treated by Saidi and Khiabani (2007). Flow through a channel

with wire mesh packing was studied by Dyga (2010). The effect of viscous dissipa-

tion in an anisotropic channel with oblique principal axes was studied by Mobedi

et al. (2010). A problem with heat generation was studied by Prakash et al. (2012a).

Dehghan et al. (2015b, c) studied the effect of temperature-dependent conductivity

and radiation in heat exchangers. Miguel and Heiter Reis (2005) studied transient

convection in an isothermal porous layer. Mukhopadhyay et al. (2012) investigated
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the effect of radiation on flow over a porous plate in a Darcy–Forchheimer porous

medium. Rashidi et al. (2014d) simulated convection past a square diamond-shaped

porous cylinder. Wang (2011a) studied flow through a polygonal duct. A numerical

study of heat transfer in ordered three-dimensional porous media was reported by

Wang et al. (2014b). Al-Sumaily (2014) studied convection from a bank of circular

cylinders embedded in a porous medium. A discretely heated convergent channel was

studied by Ghorab (2015a, b). Umavathi and Shekar (2014) studied the flow of a

micropolar fluid induced by symmetric injection through parallel permeable disks.

The influence of permeability on unsteady conjugate convection from a porous

sphere embedded in a porous medium was investigated by Juncu (2014). Convection

in a helical microchannel was treated by Narrein et al. (2015). The effect of rotation

about a parallel axis on developing flow, in a rectangular channel or a partly filled

square channel, was investigated by Alhusseny et al. (2015a, b). The effects of

internal heat sources in porous channels with asymmetric thick walls were studied

by Elliot et al. (2016). Mansour and Dawood (2016) studied numerically forced

convection in wavy channels. Sayehvand et al. (2016) investigated convection from

two cylinders placed in tandem.

A general study of forced convection from a thermodynamics perspective, with a

focus on entropy generation, starting with the pore scale, for the Darcy and

Forchheimer regimes, was reported by Torabi et al. (2016b).

The effects of a magnetic field have been studied by Filippov (1976), Chamkha

(2001b), Eldabe and Sallam (2005a, b), Hayat and Abbas (2008) (second grade

fluid), Rashad and Bakeir (2009), Saidu et al. (2010), Singh (2011a, b), Kumar and

Gupta (2011), Kaya and Aydin (2012), Attia et al. (2012), Raju et al. (2013), Bakar

et al. (2014), Vyas and Ranjan (2015), Ibanez (2015), and Srinivasacharya and

Bindu (2016) (porous annulus, micropolar fluid). Sharma et al. (2016a, b) reported

an entropy analysis of MHD forced convective flow through a circular channel in

the presence of thermal radiation. Torabi and Peterson (2016) examined the effects

of velocity slip and temperature jump on the heat transfer and entropy generation in

microporous channels under a magnetic field. Rabhi et al. (2016) considered

entropy generation, magnetic field, a microduct and local thermal non-equilibrium.

Sehat et al. (2014) and Sadrhosseini et al. (2016) reported an experimental study

with a ferrofluid in a channel or tube. Sheikhnejad et al. (2015) studied convection

in a ferrofluid in a partly filled horizontal tube.

4.17 Heatlines for Visualizing Convection

The concepts of heatfunction and heatlines were introduced for the purpose of

visualizing the true path of the flow of energy through a convective medium

(Kimura and Bejan 1983; Bejan 1984). The heatfunction accounts simultaneously

for the transfer of heat by conduction and convection at every point in the medium.

The heatlines are a generalization of the flux lines used routinely in the field of

conduction. The concept of heatfunction is a spatial generalization of the concept of
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Nusselt number, i.e., a way of indicating the magnitude of the heat transfer rate

through any unit surface drawn through any point on the convective medium.

The heatline method was extended to several configurations of convection through

fluid-saturated porous media (Morega and Bejan 1994). To illustrate the method,

consider the uniform flow with thermal boundary layer, which is shown in Fig. 4.1.

The heatfunctionH(x,y) is defined such that it satisfies identically the energy equation
for the thermal boundary layer, Eq. (4.3). The H definition is in this case

∂H
∂y

¼ ρcPð Þu T � Trefð Þ, ð4:147Þ

�∂H
∂x

¼ ρcPð Þv T � Trefð Þ � km
∂T
∂y

, ð4:148Þ

where the reference temperature Tref is a constant. The flow field (u, v) and the

temperature field (T) are furnished by the solutions to the convective heat transfer

problem. It was pointed out in Trevisan and Bejan (1987a) that Tref can have any

value and that a heatline pattern can be drawn for each Tref value. The most

instructive pattern is obtained when Tref is set equal to the lowest temperature

that occurs in the convective medium that is being visualized. This choice was

made in the construction of Figs. 4.14 and 4.15. In both cases the heatfunction can

be obtained analytically. When the wall is colder (Tw) than the approaching flow

(T1), (Fig. 4.14), the nondimensionalized heatfunction is

eH ex;eyð Þ ¼ ex1=2 ηerf
η

2

� �
þ 2

π1=2
exp � η2

4

� �� 	
, ð4:149Þ

where eH ¼ H=


km T1 � Twð ÞPe1=2l , PeL ¼ U1L=αm,ex ¼ x=L, and η¼

y(U1/αmx)
1/2. In these expressions L is the length of the y ¼ 0 boundary.
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Fig. 4.14 The heatlines of

the boundary layer near a

cold isothermal wall

(Morega and Bejan 1994)
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Figure 4.14 shows that the H ¼ constant curves visualize several features of

convection near a cold wall. The energy that is eventually absorbed by the

wall is brought into the boundary layer (ey ffi 2ex1=2) by fluid from upstream of

the cold section of the wall. The heatlines that enter the wall are denser nearex ¼ 0, i.e., the heat flux is more intense. Finally, the value of the heatfunction

increases along the wall, because the wall absorbs the heat released by the

fluid. The trailing-edge eH value matches the total heat transfer rate through the

wall, Eq. (4.14).

Figure 4.15 shows the corresponding pattern of heatlines when the wall is

warmer than the approaching fluid,

eH ex;eyð Þ ¼ ex 1=2 ηerfc
η

2

� �
� 2

π1=2
exp � η2

4

� �� 	
: ð4:150Þ

The heatlines come out of the wall at an angle because, unlike in Fig. 4.14, the

gradient ∂H/∂y is not zero at the wall. Above the wall, the heatlines are bent even

more by the flow because the effect of transversal conduction becomes weaker. The

higher density of heatlines near ex ¼ 0 indicates once again higher heat fluxes. TheeH value at the wall decreases in the downstream direction because the wall loses

heat to the boundary layer.

Morega and Bejan (1994) displayed the heatlines for two additional configura-

tions: boundary layers with uniform heat flux and flow through a porous layer held

between parallel isothermal plates. As in Figs. 4.14 and 4.15, the heatlines for cold

walls are unlike the heatlines for configurations with hot walls. In other words,

unlike the patterns of isotherms that are used routinely in convection heat transfer

(e.g., Fig. 7.4), the heatline patterns indicate the true direction of heat flow and

distinguish between cold walls and hot walls.
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Fig. 4.15 The heatlines of

the boundary layer near a

hot isothermal wall

(Morega and Bejan 1994)
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Costa (2003) has reported a study of unified streamline, heatline, and massline

methods of visualization of two-dimensional heat and mass transfer in anisotropic

media. His illustrations include a problem involving natural convection in a porous

medium.

Heatlines and masslines are now spreading throughout convection research as the

proper way to visualize heat flow and mass flow. This method of visualization is

particularly well suited for computational work and should be included in commer-

cial computational packages. The growing activity based on the heatlines method was

reviewed in Bejan (2004a) and Costa (2006a). The method is expanding

vigorously, for example, in natural convection and mass transfer (Zhao et al.

2007a, b; Basak and Roy 2008; Dalal and Das 2008; Basak et al. 2009a, b; Singh

et al. 2012), mixed convection (Roy et al. 2015), and porous media with nanofluid

(Bondareva et al. 2016). The heatlines literature was reviewed most recently by

Bejan (2015).

4.18 Constructal Tree Networks: Flow Access
in Volume-to-Point Flow

It was discovered that by reducing systematically the thermal resistance between

one point and a finite-size volume (an infinity of points) it is possible to predict a

most common natural structure that previously was considered nondeterministic:

the tree network (Bejan 1996b, 1997a, b; Ledezma et al. 1997). Tree network

patterns abound in nature, in both animate and inanimate systems (e.g., botanical

trees, lightning, neural dendrites, dendritic crystals). The key to solving this famous

problem was the optimization of the shape of each finite-size element of the flow

volume, such that the flow resistance of the element is minimal. The optimal

structure of the flow—the tree network—then was constructed by putting together

the shape-optimized building blocks. This construction of multiscale, hierarchical

geometry became the starting point of the constructal law of design and evolution

in Nature (Bejan 1997a, b, c, 2000, 2016; Bejan and Zane 2012).

The deterministic power of constructal theory is an invitation to new theoretical

work on natural flow structures that have evaded determinism in the past. This

section is about one such structure: the dendritic shape of the low-resistance

channels that develop in natural fluid flows between a volume and one point in

heterogeneous media (Bejan 1997b, c; Errera and Bejan 1999; Bejan et al. 2004).

Examples of volume-to-point fluid flows are the bronchial trees, the capillary

vessels, and the river drainage basins and deltas.

The deterministic approach outlined in this section is based on the proposition

that a naturally occurring flow structure—its geometric form—is the end result of a

process of geometric optimization. The objective of the optimization process is to

construct the path (or assembly of paths) that provides minimal resistance to flow,

or, in an isolated system, maximizes the rate of approach to equilibrium.
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4.18.1 The Fundamental Volume-to-Point Flow Problem

Consider the fundamentals of evolutionary design toward less and less fluid flow

resistance between one point and a finite-size volume (an infinity of points). For

simplicity we assume that the volume is two-dimensional and represented by the

area A (Fig. 4.16). The total mass flow rate _m 0 (kg/sm) flows through the point M

and reaches (or originates from) every point that belongs to A. We also assume that

the volumetric mass flow rate _m000 (kg/sm3) that reaches all the points of A is

distributed uniformly in space, hence _m 0 ¼ _m 000A.
The space A is filled by a porous medium saturated with a single-phase fluid with

constant properties. The flow is in the Darcy regime. If the permeability of the

porous medium is uniform throughout A, then the pressure field P(x, y) and the flow
pattern can be determined uniquely by solving the Poisson-type problem associated

with the point sink or point source configuration of Fig. 4.16. This classic problem

is not the subject of this section.

Instead, we consider the more general situation where the space A is occupied by

a nonhomogeneous porous medium composed of a material of low permeability

K and a number of layers (e.g., cracks, filled or open) of much higher permeabilities

(K1, K2, . . .). The thicknesses (D1, D2, . . .) and lengths (L1, L2, . . .) of these layers
are not specified.

For simplicity we assume that the volume fraction occupied by the high-

permeability layers is small relative to the volume represented by the K material.

There is a very large number of ways in which these layers can be sized, connected,

and distributed in order to collect and channel _m 0 to the point M. In other words,

there are many designs of composite materials (K, K1, K2, . . .) that can be installed

in A: our objective is to find not only the internal architecture of the composite that

minimizes the overall fluid flow resistance, but also a strategy for the geometric

optimization of volume-to-point flows in general.

The approach we have chosen is illustrated in Fig. 4.16. We regard A as a

patchwork of rectangular elements of several sizes (A0, A1, A2, . . .). We will

show that the shape (aspect ratio) of each such element can be optimized

M

A

...

m¢¢¢, K

A0

Ki, Di, Li

A1

A2
m¢˙

˙

Fig. 4.16 The

two-dimensional flow

between one point (M) and

a finite-size volume (A)
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for minimal flow resistance. The smallest element (A0) contains only

low-permeability material and one high-permeability layer (K0, D0) (Fig. 4.17).

Each successively larger volume element (Ai) is an assembly of elements of the

preceding size (Ai�1), which act as tributaries to the collecting layer (Ki, Di, Li) that
defines the assembly. We will show that the optimally shaped assemblies can be

arranged like building blocks to collect the volumetric flow _m 000 and transform it into

the single stream _m 0 at the point M.

Before presenting the analysis, it is worth commenting on the reasons for doing

it and how it fits next to the vast amount of work that has been done in the same

field. A general characteristic of the existing studies is that they begin with the often

tacit assumption that a fluid tree network exists. Geometric details such as bifurca-

tion (dichotomy) are assumed. No such assumptions are being made in this section.

The problem solved in this section is the minimization of flow resistance between a

finite-size volume and one point. The solution to this problem will show that certain

portions of the optimized volume-to-point path are shaped as a tree network. In

other words, unlike in the existing literature, in the present analysis the tree and its

geometric details are results (predictions), not assumptions. This is a fundamental

difference. It means that the solution to the volume-to-point flow problem sheds

light on the universal design principle that serves as origin for the formation of fluid

tree networks in nature.

4.18.2 The Elemental Volume

In Fig. 4.17 the smallest volume A0 ¼ H0 L0 is fixed, but its shape H0/L0 may vary.

The flow, _m 0
0 ¼ _m 000A0, A0 is collected from the K medium by a layer of much

higher permeability K0 and thickness D0. The flow is driven toward the origin (0, 0)

by the pressure field P(x, y). The rest of the rectangular boundary H0	L0 is

m¢¢¢, K

A0

L0
x

Ppeak,0

-H0/2

H0/2

P = 0
m0
.

.

m¢¢¢, K P (x,y)

m(x)
.

.

y

0

D0 K0
u

v

0

Fig. 4.17 The smallest volume element, with volumetric flow through the K porous medium and

“channel” flow along a high-permeability layer (K0)
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impermeable. Since the flow rate _m 0
0 is fixed, to minimize the flow resistance means

to minimize the peak pressure (Ppeak) that occurs at a point inside A0. The pressure

at the origin is zero.

The analysis is greatly simplified by the assumptions that were mentioned

already (K � K0, D0 � H0), which, as we will show in Eq. (4.148), also mean

that the optimized A0 shape is such that H0 is considerably smaller than L0.
According to these assumptions the flow through the K domain is practically

parallel to the y direction,

P x; yð Þ ffi P yð Þ for H0=2 > yj j > D0=2 ð4:151Þ
while the flow through the K0 layer is aligned with the layer itself P (x, y)ffiP (x)
for jyj<D0/2. Symmetry and the requirement that Ppeak be minimum dictate that

the A0 element has to be oriented such that the K0 layer is aligned with the x axis.
The mass flow rate through this layer is _m 0 xð Þ, with _m 0 0ð Þ ¼ _m 0

0 at the origin (0, 0),

and _m 0 L0ð Þ ¼ 0. The K material is an isotropic porous medium with flow in

the Darcy regime,

v ¼ K

μ
�∂P

∂y

� �
ð4:152Þ

In this equation v is the volume-averaged velocity in the y direction (Fig. 4.17).

The actual flow is oriented in the opposite direction. The pressure field P(x, y) can
be determined by eliminating v between Eq. (4.151) and the local mass continuity

condition

∂v
∂y

¼ _m 000

ρ
ð4:153Þ

and applying the boundary conditions ∂P/∂y ¼ 0 at y ¼ H0/2 and P ¼ P (x, 0) at
y ffi 0 (recall that D0 � H0):

P x; yð Þ ¼ _m 000ν
2K

H0y� y2
� �þ P x; 0ð Þ: ð4:154Þ

Equation (4.154) holds only for y≳0. The corresponding expression for y≳0 is

obtained by replacing H0 with �H0 in Eq. (4.154).

The pressure distribution in the K0 material, namely P(x,0), is obtained similarly

by assuming Darcy flow along a D0-thin path near y ¼ 0,

u ¼ K0

μ
�∂P

∂x

� �
, ð4:155Þ

where u is the average velocity in the x-direction. The flow proceeds toward the

origin, as shown in Fig. 4.17. The mass flow rate channeled through the K0

material is _m 0 xð Þ ¼ �rD0u. Furthermore, mass conservation requires that the
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mass generated in the infinitesimal volume slice (H0 dx) contributes to the _m 0 xð Þ
stream: _m 000H0dx ¼ �d _m 0. Integrating this equation away from the impermeable

plane x ¼ L0 (where _m 0 ¼ 0 ), and recalling that _m 0
0 ¼ _m 000H0L0, we obtain

_m xð Þ ¼ _m 000H0 L0 � xð Þ ¼ _m 0 1� x

L0

� �
: ð4:156Þ

Combining these equations we find the pressure distribution along the x axis

P x; 0ð Þ ¼ _m
0
0 ν

D0K0

x� x2

2L0

� �
: ð4:157Þ

Equations (4.154) and (4.157) provide a complete description of the P(x, y) field.
The peak pressure occurs in the farthest corner (x ¼ L0, y ¼ H0/2):

Ppeak,0 ¼ _m 0
0ν

H0

8KL0
þ L0
2K0D0

� �
: ð4:158Þ

This pressure can be minimized with respect to the shape of the element (H0/L0)
by noting that L0 ¼ A0/H0 and φ0 ¼ D0/H0 � 1. The number φ0 is carried in the

analysis as an unspecified parameter. For example, if the D0 layer was originally a

crack caused by the volumetric shrinking (e.g., cooling, drying) of the K medium,

then D0 must be proportional to the thickness H0 of the K medium. The resulting

geometric optimum is described by

H0

L0
¼ 2 eK0φ0

� ��1=2 eL0 ¼ 2�1=2 eK0φ0

� �1=4

ð4:159Þ

eH0 ¼ 21=2 eK0φ0

� ��1=4

ΔeP 0 ¼ 1

2
eK0φ0

� ��1=2

ð4:160Þ

The nondimensionalization used in Eqs. (4.146) and (4.147) and retained

throughout this section is based on using A
1=2
0 as length scale and K as permeability

scale:

eHi; eLi

� �
¼ Hi; Lið Þ

A
1=2
0

, eKi ¼ Ki

K
, ð4:161Þ

ΔePi ¼ Ppeak, i

_m 000Aiν=K
, φi ¼

Di

Hi
: ð4:162Þ

At the optimum, the two terms on the right side of Eq. (4.158) are equal. The

shape of the A0 element is such that the pressure drop due to flow through the

Kmaterial is equal to the pressure drop due to the flow along the K0 layer. Note also

that the first of Eq. (4.160) confirms the assumptions made about the D0 layer at the
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start of this section: high permeability ( eK0 >> 1 ) and small volume fraction

(φ0 � 1) mean that the optimized A0 shape is slender, H0 � L0, provided thateK0 >> φ�1
0 .

4.18.3 The First Construct

Consider next the immediately larger volume A1 ¼ H1 L1 (Fig. 4.18) which can

contain only elements of the type optimized in the preceding section. The streams _m
0
0

collected by theD0-thin layers are now united into a larger stream _m
0
1 that connects A1

with the point P ¼ 0. The _m
0
1 stream is formed in the new layer (K1, D1, L1).

The problem of optimizing the shape of the A1 rectangle is the same as the A0

problem that we just solved. First, we note that when the number of A0 elements

assembled into A1 is large, the composite material of Fig. 4.18 is analogous to the

composite of Fig. 4.17, provided that the permeability K of Fig. 4.17 is replaced by

an equivalent (volume averaged) permeability (Ke1) in Fig. 4.18. The Ke1 value is

obtained by writing that the pressure drop across an A\0 element [Eq. (4.160)] is

equal to the pressure drop over the distance H1/2 in the Ke1 medium [this second

pressure drop can be read off Eq. (4.154), after replacing H0 with H1, y with H1/2,

and K with Ke1]. The result is Ke1¼K0φ0: this value is then used in place of K0, in

an analysis that repeats the steps executed in Eqs. (4.158)–(4.160) for the A0

optimization problem.

A clearer alternative to this analysis begins with the observation that the peak

pressure (Ppeak.1) in Fig. 4.18 is due to two contributions: the flow through the

upper-right corner element (Ppeak.0) and the flow along the (K1, D1) layer:

KK1

A1
H0 Ppeak,1

K0
D0 L0

L1

m1
. D1

P = 0

H1

Fig. 4.18 The first assembly (A1) of elements of size A0, and the new high-permeability layer K1
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Ppeak,1 ¼ _m 000A0

ν

K

1

2
eK0φ0

� ��1=2

þ _m
0
1 ν

Li
2K1D1

: ð4:163Þ

This expression can be rearranged by using the first of Eqs. (4.160) and

H1 ¼ 2L0:

Ppeak,1

_m 000A1ν=K
¼ 1

4eK0φ0

H1

L1
þ 1

2eK1φ1

L1
H1

: ð4:164Þ

The corner pressure Ppeak,1 can be minimized by selecting the H1/L1 shape of the

A1 rectangle. The resulting expressions for the optimized geometry (H1/L1, eH1, eL1)

are listed in Table 4.1. The minimized peak pressure ΔeP 1

� �
is divided equally

between the flow through the corner A0 element and the flow along the collecting

(K1, D1) layer. In other words, as in the case of the A0 element, the geometric

optimization of the A1 assembly is ruled by a principle of equipartition of pressure

drop between the two main paths of the assembly (Lewins 2003).

4.18.4 Higher-Order Constructs

The assembly and area shape optimization procedure can be repeated for larger

assemblies (A2, A3, . . .). Each new assembly (Ai) contains a number (ni) of assem-

blies of the immediately smaller size (Ai�1), the flow of which is collected by a new

high-permeability layer (Ki,Di, Li). As in the drawing shown in Fig. 4.17 for A1, it is

assumed that the number of constituents ni is sensibly larger than 2. The analysis

begins with the statement that the maximum pressure difference sustained by Ai is

equal to the pressure difference across the optimized constituent (Ai�1) that

occupies the farthest corner of Ai, and the pressure drop along the Ki central layer:

Ppeak, i ¼ Ppeak, i�1 þ _m 0
iν

Li
2KiDi

: ð4:165Þ

The geometric optimization results are summarized in Table 4.1, in which we

used Ci ¼ eKiφi for the dimensionless flow conductance of each layer. The optimal

Table 4.1 The optimized geometry of the elemental area A0 and the subsequent assemblies when

the channel permeabilities are unrestricted (Note: Ci¼Kiφi)

i Hi/Li eHi
eLi ni ¼ Ai/Ai�1 ΔePi

0 2C
�1=2
0 21=2C

�1=4
0 2�1=2C

1=4
0

– 1
2
C
�1=2
0

1 (2C0/C1)
1/2

21=2C
1=4
0 C

�1=4
0 C

1=2
1

(2C1)
1/2 (2C0C1)

�1/2

2 (2C1/C2)
1/2

2C
�1=4
0 C

1=2
1 21=2C

�1=4
0 C

1=2
2

2 (C2/C0)
1/2 (2C1C2)

�1/2

i � 2 (2Ci� 1/Ci)
1/2

2i=2C
�1=4
0 C

1=2
i�1 2 i�1ð Þ=2C�1=4

0 C
1=2
i

2(C1/Ci� 2)
1/2 (2Ci� 1Ci)

�1/2
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shape of each rectangle Hi 	 Li is ruled by the pressure-drop equipartition principle
noted in the optimization of the A0 and A1 shapes.

Beginning with the second assembly, the results fall into the pattern represented

by the recurrence formulas listed for i � 2. If these formulas were to be repeated ad
infinitum in both directions—toward large Ai and small Ai—then the pattern formed

by the high-permeability paths (Ki,Di) would be a fractal. Natural tree-shaped flows

and those predicted by constructal theory are not fractal. In the present solution to

the volume-to-point flow problem, the construction begins with an element of finite

size, A0, and ends when the given volume (A) is covered. Access to the infinity of

points contained by the given volume is not made by making A0 infinitely small.

Instead, all the points of the given volume are reached by a diffusive flow that

bathes A0 volumetrically, because the permeability K of the material that fills A0 is

the lowest of all the permeabilities of the composite porous medium. Constructal

theory is the clearest statement that the geometry of nature is not fractal (Bejan

1997c) and the first theory that predicts the multitude of natural flow structures that

could be described as “fractal-like” structures (Poirier 2003; Rosa et al. 2004).

Figure 4.19 illustrates the minimal-resistance architecture recommended by the

results of Table 4.1. At each level of assembly, the calculated number of constit-

uents ni was rounded off to the closest even number. The optimal design of the

composite porous medium contains a tree network of high-permeability layers (K0,

K1, K2, . . .), where the interstitial spaces are filled with low-permeability material

(K ). The actual shape of the tree depends on the relative size of the flow conduc-

tance parameters Ci. The conductance increase ratio Ci/Ci�1 is essentially equal to

A3

A2

A1

A1

magnified five times

A0

Fig. 4.19 Composite medium tree architecture for minimal volume-to-point flow resistance when

C0 ¼ 100 and Ci/Ci � 1 ¼ 10 for i ¼ 1, 2, and 3
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the permeability ratio Ki/Ki�1, because the volume fraction (φi � 1) is expected to

vary little from one assembly to the next, cf. the comment made above Eq. (4.167).

In other words, the conductance parameters Ci can be specified independently

because the porousmedium characteristics of the materials that fill the high-

permeability channels have not been specified.

Several trends are revealed by constructions such as Fig. 4.19. When the

conductance ratio Ci/Ci�1 is large, the number ni is large, the optimal shape of

each assembly is slender (Hi/Li < 1), and the given volume is covered “fast,” i.e., in

a few large steps of assembly and optimization. When the ratio Ci/Ci�1 is large but

decreases from one assembly to the next, the number of constituents decreases and

the shape of each new assembly becomes closer to square.

Combining the limit Ci/Ci�1 ! 1 with the ni formula of Table 4.1, we see that

the number two (i.e., dichotomy, bifurcation, pairing) emerges as a result of

geometric optimization of volume-to-point flow. Note that the actual value ni ¼ 2

is not in agreement with the ni > 2 assumption that was made in Fig. 4.18 and the

analysis that followed. This means that when Ci/Ci� 1� 1 is of order 1, the analysis

must be refined by using, for example, Fig. 4.18 in which the length of the (K1, D1)

layer is not L1 but (n1/2� 1)H0 +H0/2. In this new configuration the right-end tip of

the (K1, D1) layer is absent because the flow rate through it would be zero. To

illustrate this feature of the tree network, in Fig. 4.19 the zero-flow ends of the

central layers of all the assemblies have been deleted.

4.18.5 The Constructal Law of Design and Evolution
in Nature

The point-to-volume resistance can be minimized further by varying the angle

between tributaries (Di-1) and the main channel (Di) of each new volume assembly.

This optimization principle is well known in physiology where the work always

begins with the assumption that a tree network of tubes exists. It can be shown

numerically that the reductions in flow resistance obtained by optimizing the angles

between channels are small relative to the reductions due to optimizing the shape of

each volume element and assembly of elements. In this section we fixed the angles

at 90
 and focused on the optimization of volume shape. It is the optimization of

shape subject to volume constraint—the consistent use of this principle at every

volume scale—that is responsible for the emergence of a tree network between the

volume and the point. We focused on the optimal shapes of building blocks because

our objective was to discover a single optimization principle that can be used to

explain the origin of tree-shaped networks in natural flow systems. The objective

was to find the physics principle that was missing in the tree-like images generated

by assumed fractal algorithms.

In summary, we solved in general terms the fundamental fluid mechanics

problem of minimizing the flow resistance between one point and a finite-size
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volume. A single optimization principle—the optimization of the shape of each

volume element such that its flow resistance is minimized—is responsible for all the

geometric features of the point-to-volume flow path. One of these features is the

geometric structure—the tree network—formed by the portions with higher per-

meabilities (K0, K1, . . .). The interstices of the network, i.e., the infinity of points of
the given volume, are filled with material of the lowest permeability (K) and are

touched by a flow that diffuses through the K material.

The most important conclusion is that the larger picture, the optimal overall

performance, structure, and working mechanism can be described in a purely

deterministic fashion; that is, if the resistance-minimization principle is recognized

as law. This law can be stated as follows (Bejan 1996a, b, 1997a, 2016):

For a finite-size system to persist in time (to live), it must evolve in such a way that it

provides easier access (less resistance) to the imposed currents that flow through it.

This statement has two parts. First, it recognizes the natural tendency of imposed

global currents to construct paths (shapes, structures) for better access through

constrained open systems. The second part accounts for the evolution of the

structure, which occurs in an identifiable direction that can be aligned with time

itself. Small size and shapeless flow (diffusion) are followed in time by larger sizes

and organized flows (streams). The optimized complexity continues to increase in

time. Optimized complexity must not be confused with maximized complexity.

How important is the constructal approach to the minimal-resistance design, i.e.,

this single geometric optimization principle that allows us to anticipate the tree

architecture seen in so many natural systems? In contemporary physics a significant

research volume is being devoted to the search for universal design principles that

may explain organization in animate and inanimate systems. In this search, the tree

network is recognized as the symbol of the challenge that physicists and biologists

face (Kauffman 1993, pp. 13 and 14): Imagine a set of identical round-topped hills,

each subjected to rain. Each hill will develop a particular pattern of rivulets which

branch and converge to drain the hill. Thus the particular branching pattern will be

unique to each hill, a consequence of particular contingencies in rock placement,

wind direction, and other factors. The particular history of the evolving patterns of

rivulets will be unique to each hill. But viewed from above, the statistical features

of the branching patterns may be very similar. Therefore, we might hope to develop

a theory of the statistical features of such branching patterns, if not of the particular

pattern on one hill.

The constructal approach outlined in this section is an answer to the challenge

articulated so well by Kauffman. It introduces an engineering flavor in the current

debate on natural organization, which until now has been carried out in physics and

biology. By training, engineers begin the design of a device by first understanding

its purposes. The size of the device is always finite, never infinitesimal. The device

must function (i.e., fulfill its purpose) subject to certain constraints. Finally, to

analyze (describe) the device is not sufficient: to optimize it, to construct it, and to

make it work are the ultimate objective. All these features—purpose, finite size,

constraints, optimization, and construction—can be seen in the network
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constructions reported in this section. The resulting tree networks are entirely

deterministic, and consequently they represent an alternative worthy of consider-

ation in fields outside engineering. The progress in this direction is summarized in

Bejan (1997c, 2000), Bejan and Lorente (2008, 2010, 2011), and Bejan and

Zane (2012).

The short discussion here is confined to hydrodynamic aspects. For conduction,

convection, turbulence, and other flows with structure, the reader is referred to the

books that review the growing interest in constructal theory (Bejan 2000; Rosa et al.

2004; Bejan et al. 2004). For example, constructal trees were designed for chem-

ically reactive porous media by Azoumah et al. (2004) and Zhou et al. (2008). The

constructal law was used to predict the basic features and dimensions of Bénard

convection and nucleate boiling (Nelson and Bejan 1998), the sand size and

beachface slope (Reis and Gama 2010), and dust particle clusters (Reis et al. 2006).

The place of the constructal law as a self-standing law in thermodynamics is

firmly established (Bejan and Lorente 2004). The constructal law is distinct from

the second law. For example, with respect to the time evolution of an isolated

thermodynamic system, the second law states that the system will proceed toward a

state of equilibrium (“nothing moves,” maximum entropy at constant energy). In

this second-law description, the system is a black box, without configuration.

With regard to the same isolated system, the constructal law states that the

currents that flow in order to bring the system to equilibrium will seek and develop

paths of maximum access. In this way, the system develops its flow configuration,

which endows the system with the ability to approach its equilibrium the fastest.

The constructal law is the law of design generation, whereas the second law is

the law of entropy generation. The constructal law can be stated in several equiv-

alent ways: a principle of flow access maximization (or efficiency increase), as in

the original statement quoted above, a principle of flow compactness maximization

(miniaturization), and a principle of flow territory maximization, as in the spreading

of river deltas, living species, and empires (Bejan and Lorente 2004).

Applications of constructal design to the regenerators that operate cyclically in

various types of heating or reheating furnaces were made by Bejan et al. (2013). A

thermal analysis of a T-shaped porous fin with radiation effects was undertaken by

Bhanja and Kundu (2013). Radial flow in a heterogeneous porous medium based on

fractal and constructal tree networks was analyzed by Xu et al. (2008a, b).

Using constructal theory, Chen et al. (2014a, b, c, d) investigated flow in a

porous medium with a “disk-point” mass transfer model. They modeled the mass

flow using either the Darcy law or the Hagen-Poiseuille law. They obtained optimal

constructs of radial-pattern and branched-pattern disks with minimization of the

maximum pressure drop as the objective.

Rocha et al. (2012) studied the heat transfer between a pipe assembly and the

soil during the annular temperature cycle. They used constructal design to find the

flow structure that increased the heat transfer. They found that the optimal shapes

change gradually from slender to square as the volume fraction occupied by the

flow assembly increases. They also found that the heat transfer performance

increases as the depth of the structure decreases but the depth has a negligible
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effect on the shape of the structure. The performance also increases as the config-

uration of the ground volume and the buried structure evolves to the most slender

shape possible.

In sum, the constructal law originated from the design of porous and complex

flow structures, and now unites engineering, physics, biology, and social organiza-

tion (Poirier 2003; Rosa et al. 2004; Reis 2006; Bejan and Lorente 2006, 2010,

2011, 2013). Constructal law books for the general public were published by Bejan

and Zane (2012) and Bejan (2016). The use of this law is generating new theories in

domains such as the design of the arterial tree (Silva and Reis 2014), the design of

the termite ant mound (Kasimova et al. 2014), the design of brain vascularization

and oxygenation (Hadjistassou et al. 2015), self-heating and self-cooling (Lee et al.

2013), multilayer insulation (Kang et al. 2013a, b, c), and the design of the

ecohydrological flow architecture in the subsurface (Band et al. 2014).

4.19 Constructal Multiscale Flow Structures: Vascular
Design

The tree-shaped flow structures of Sect. 4.18 are examples of "designed" porous

structures with multiple length scales, which are organized hierarchically and

distributed nonuniformly. These advances are reviewed in Bejan and Lorente

(2008). Another class of designed porous media stems from an early result of

constructal theory: the prediction of optimal spacings for the internal flow structure

of volumes that must transfer heat and mass to the maximum (Bejan 2000;

Sect. 4.15). Optimal spacings have been determined for several configurations,

for example, arrays of parallel plates (e.g., Fig. 4.20). In each configuration, the

reported optimal spacing is a single value, that is, a single length scale that is

distributed uniformly through the available volume.

Is the stack of Fig. 4.20 the best way to pack heat transfer into a fixed volume? It

is, but only when a single length scale is to be used, that is, if the structure is to be

uniform. The structure of Fig. 4.20 is uniform, because it does not change from

x ¼ 0 to x ¼ L0. At the most, the geometries of single-spacing structures vary

periodically, as in the case of arrays of cylinders and staggered plates.

Bejan and Fautrelle (2003) showed that the structure of Fig. 4.20 can be

improved if more length scales (D0, D1, D2,...) are available. The technique consists

of placing more heat transfer in regions of the volume HL0 where the boundary

layers are thinner. Those regions are situated immediately downstream of the

entrance plane x ¼ 0. Regions that do not work in a heat transfer sense either

must be put to work or eliminated. In Fig. 4.20, the wedges of fluid contained

between the tips of opposing boundary layers are not involved in transferring heat.

They can be involved if heat-generating blades of shorter lengths (L1) are installed
on their planes of symmetry. This new design is shown in Fig. 4.21.
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Each new L1 blade is coated by Blasius boundary layers with the thickness δ(x)
ffi 5x(Ux/ν)–1/2. Because δ increases as x1/2, the boundary layers of the L1 blade

merge with the boundary layers of the L0 blades at a downstream position that is

approximately equal to L0/4. The approximation is due to the assumption that the

presence of the L1 boundary layers does not significantly affect the downstream

development (x > L0/4) of the L0 boundary layers. This assumption is made for the

sake of simplicity. The order-of-magnitude correctness of this assumption comes

from geometry: the edges of the L1 and L0 boundary layers must intersect at a

distance of order

L1 ffi 1

4
L0: ð4:166Þ

Note that by choosing L1 such that the boundary layers that coat the L1 blade
merge with surrounding boundary layers at the downstream end of the L1 blade, we
once more invoke the maximum packing principle of constructal theory. We are

being consistent as constructal designers, and because of this every structure with

merging boundary layers will be optimal, no matter how complicated.

The wedges of isothermal fluid (T0) remaining between adjacent L0 and L1
blades can be populated with a new generation of even shorter blades, L2 ffi L1/4.
Two such blades are shown in the upper-left corner of Fig. 4.21. The length scales

U, T0, ΔP

0
L0

Tw

x

H
δ(x)

D0

Fig. 4.20 Optimal package of parallel plates with one spacing (Bejan and Fautrelle 2003)
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become smaller (L0, L1, L2), but the shape of the boundary layer region is the same

for all the blades, because the blades are all swept by the same flow (U ). The

merging and expiring boundary layers are arranged according to the algorithm

Li ffi 1

4
Li�1, Di ffi 1

2
Di�1 i ¼ 1; 2; :::;mð Þ, ð4:167Þ

where we show that m is finite, not infinite. In other words, as in all the constructal

tree structures, the image generated by the algorithm is not a fractal [cf. Bejan

(1997c, p. 765)]. The sequence of decreasing length scales is finite, and the smallest

size (Dm, Lm) is known, as shown in Bejan and Fautrelle (2003) and Bejan et al.

(2004). The global thermal conductance of the multiscale package is

q0

kΔT
ffi 0:36

H

L0
Be1=2 1þ m

2

� �1=2

ð4:168Þ

where q0 is the total heat transfer rate installed in the package (W/m, per unit length

in the direction perpendicular to Fig. 4.21), k is the fluid thermal conductivity, and

0
x

L1

L0

D1

D2

D0

L2

Fig. 4.21 Optimal multiscale package of parallel plates (Bejan and Fautrelle 2003)
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ΔT is the temperature difference between the plates (assumed isothermal) and the

fluid inlet. The dimensionless pressure and difference is

Be ¼ ΔPL20
μα

, ð4:169Þ

where μ and α are the fluid viscosity and thermal diffusivity.

Bejan and Fautrelle (2003) also showed that the optimized complexity increases

with the imposed pressure difference (Be),

2m 1þ m

2

� �1=4
ffi 0:17Be1=4: ð4:170Þ

As Be increases, the multiscale structure becomes more complex and finer. The

monotonic effect of m is accompanied by diminishing returns: each smaller length

scale (m) contributes to global performance less than the preceding length scale

(m � 1). The validity of the novel design concept sketched in Fig. 4.21 was

demonstrated through direct numerical simulations and optimization for multiscale

parallel plates (Bello-Ochende and Bejan 2004) and multiscale parallel cylinders in

cross flow (Bello-Ochende and Bejan 2005a). A related natural convection situation

was treated by Bello-Ochende and Bejan (2005b).

Forced convection was used in Bejan and Fautrelle (2003) only for illustration,

that is, as a language in which to describe the new concept. A completely analogous

multiscale structure can be deduced for laminar natural convection. The complete

analogy that exists between optimal spacings in forced and natural convection was

described by Petrescu (1994). In brief, if the structure of Fig. 4.20 is rotated by 90


counterclockwise and if the flow is driven upward by the buoyancy effect, then the

role of the overall pressure difference ΔP is played by the difference between two

hydrostatic pressure heads, one for the fluid column of height L0 and temperature

T0, and the other for the L0 fluid column of temperature Tw. If the Boussinesq

approximation applies, the effective ΔP due to buoyancy is

ΔP ¼ ρgβΔTL0, ð4:171Þ

where β is the coefficient of volumetric thermal expansion and g is the gravitational
acceleration aligned vertically downward (against x in Fig. 4.20). By substituting

the ΔP expression (4.171) into the Be definition (4.169) we find that the dimen-

sionless group that replaces Be in natural convection is the Rayleigh number Ra

¼ gβΔTL30=αv Other than the Be ! Ra transformation, all the features that are due

to the generation of multiscale blade structure for natural convection should mirror,

at least qualitatively, the features described for forced convection in this section.

The validity of the constructal multiscale concept for volumes packed with natural

convection is demonstrated numerically in da Silva and Bejan (2005).

The hierarchical multiscale flow architecture constructed in this section is a

theoretical comment on fractal geometry. Fractal structures are generated by
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assuming (postulating) certain algorithms. In much of the current fractal literature,

the algorithms are selected such that the resulting structures resemble flow struc-

tures observed in nature. For this reason, fractal geometry is descriptive, not

predictive (Bejan 1997c; Bradshaw 2001). Fractal geometry is not a theory

(Bejan and Zane 2012).

The more recent advances on designed porous media are being dedicated to the

development of vascularized materials with new functionalities distributed

throughout the volume: self-healing, self-cooling, mechanical strength, etc. This

movement is reviewed in Bejan and Lorente (2006, 2008). Chief examples are the

vascular design of solid plates permeated by fluids that provide self-healing (the

fusing of internal fissures) and the volumetric cooling of plates subjected to intense

heating under steady and unsteady conditions (Lorente and Bejan 2006, 2009a, b;

Kim et al. 2006, 2009b; Zhang et al. 2009a, b, c; Combelles et al. 2009, 2012;

Ordonez et al. 2003; Lee et al. 2008a, b, 2009a, b, c; Zeng et al. 2010; Cho et al.

2010a,b; Xu et al. 2008a, b; Wang et al. 2006, 2007c, 2009a, b; Moreno and Tao

2006; Rocha et al. 2009; Revellin et al. 2009; Kim et al. 2006, 2007, 2008d, 2009a,

b). Vascular designs that provide both cooling and mechanical strength were

developed by Wang et al. (2010c), Cetkin et al. (2011a, b), Miguel (2015, 2016),

and Yenigun and Cetkin (2016).

4.20 Optimal Spacings for Plates Separated by Porous
Structures

Taking the concept of Fig. 4.20 even closer to traditional porous media, consider the

optimization of spacings between plates that sandwich a porous medium (Bejan

2004a). For example, the channels may be occupied by a metallic foam such that

the saturated porous medium has a thermal conductivity (km) and a thermal diffu-

sivity (αm) that are much higher than their pure fluid properties (kf, αf). We consider

both natural convection and forced convection with Boussinesq incompressible

fluid and assume that the structures are fine enough that Darcy flow prevails in all

cases. The analysis is another application of the intersection of asymptotes method

(Lewins 2003).

The natural convection configuration is shown in Fig. 4.22. This time each

D-thin space is filled with the assumed fluid-saturated porous structure. The width

in the direction perpendicular to Fig. 4.22 is W. The effective pressure difference

that drives the flow is due to buoyancy:

ΔP ¼ ρHgβ Tw � T0ð Þ: ð4:172Þ
This ΔP estimate is valid in the limit where the spacing D is sufficiently small so

that the temperature in the channel porous medium is essentially the same as the

plate temperature Tw. In this limit, the heat current extracted by the flow from

the H 	 L volume is q ¼ _mcP Tw � T0ð Þ, with _m ¼ ρULW and Darcy’s law,
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U ¼ KΔP/μH, where K is the permeability of the structure. In conclusion, the total

heat transfer rate in the small-D limit is independent of the spacing D,

q ¼ ρcP Tw � T0ð ÞLW KΔPð Þ=μH: ð4:173Þ

In the opposite limit, D is large so that the natural convection boundary layers

that line the H-tall plates are distinct. The heat transfer rate from one boundary

layer is �hHW Tw � T0ð Þ, where �hH=k ¼ 0:888Ra
�1=2
H , and RaH is the Rayleigh

number for Darcy flow, RaH ¼ KgβH(Tw – T0)/αmν. The number of boundary

layers in the H 	 L volume is 2L/D. In conclusion, the total heat transfer rate

decreases as D increases,

q ¼ 1:78 L=Dð ÞWk Tw � T0ð ÞRa1=2H : ð4:174Þ

For maximal thermal conductance q/(Tw – T0), the spacing D must be

smaller than the estimate obtained by intersecting asymptotes (4.173) and

(4.174), cf. Bejan (2013):

Dopt=H � 1:78Ra
�1=2

H ; ð4:175Þ

The simplest design that has the highest possible conductance is the design with

the fewest plates (i.e., the one with the largest Dopt); hence Dopt/Hffi 1.78Ra
�1=2
H for

the recommended design. Contrary to Fig. 4.22, however, q does not remain

q H

po
ro

us
 s

tr
uc

tu
re

D

Tw

kw

αm

T0

g

L

The small-D
asymptote

0
The large-D asymptote

0 Dopt D

Fig. 4.22 Volume filled with vertical heat-generating plates separated by a fluid-saturated porous

medium, and the effect of the channel spacing on the global thermal conductance (Bejan 2004a)
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constant if D decreases indefinitely. There exists a small enough D below which the

passages are so tight (tighter than the pores) that the flow is snuffed out. An estimate

for how large D should be so that Eq. (4.175) is valid is obtained by requiring that

the Dopt value for natural convection when the channels are filled only with fluid,

Dopt/H ffi 2.3 [gβH3(Tw – T0)/αf ν]–1/4 must be smaller than the Dopt value of

Eq. (4.163). We find that this is true when

H2

K

α

αf
> RaH, ð4:176Þ

in which, normally, α/αf � 1 and H2/K � 1.

The forced convection configuration can be optimized similarly (Bejan 2004a).

The flow is driven by the imposed ΔP through parallel-plate channels of length

L and width W. It is found that the forced convection asymptotes have the same

behavior as in Fig. 4.22. The highest conductance occurs to the left of the intersec-

tion of the two asymptotes, when

Dopt=L ≲2:26Be�1=2
p ð4:177Þ

and where Bep is the porous medium Bejan number, Bep¼ (ΔP K)/μαm. This forced
convection optimization is valid when the Dopt estimate for the channel with pure

fluid is smaller than the Dopt value provided by Eq. (4.177) when

L2

K

α

αf
> Bep: ð4:178Þ

In summary, Eqs. (4.175) and (4.177) provide estimates for the optimal spacings

when the channels between heat-generating plates are filled with a fluid-saturated

porous structure. The relevant dimensionless groups are RaH, Bep, K/H
2, K/L2, and

αm/αf. The symmetry between Eqs. (4.175) and (4.177) and between Eqs. (4.176)

and (4.178) reinforces Petrescu’s (1994) argument that the role of the Bejan number

in forced convection is analogous to that of the Rayleigh number in natural

convection.

Optimal spacings are also applied in Sect. 3.7.

These results are most fundamental and are based on a simple model and a

simple analysis: Darcy flow and the intersection of asymptotes method. The same

idea of geometry optimization deserves to be pursued in future studies of “designed

porous media,” based on more refined models and more accurate methods of flow

simulation.
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