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Preface to the Fifth Edition

In our preface to the first edition (1992) of this book, we wrote that we had tried to

provide a user-friendly introduction to the topic of convection in porous media. We

assumed that the reader was conversant with the basic elements of fluid mechanics

and heat transfer but otherwise the book was self-contained, with only routine

classic mathematics employed. We hoped that the book would be useful both as a

review (for reference) and as a tutorial work (suitable as a textbook in a graduate

course or seminar). In subsequent editions we retained the basic structure and most

of the text of the previous editions.

Papers on convection in porous media are now being published at the rate of one

a day. In the latest edition there are about 2800 new references. In previous editions

we did not attempt to provide an exhaustive list, but now we have tried to improve

the archival value of our book by making the list more comprehensive, within the

stated scope of our book. To this end we have now cited a number of earlier papers

that, for one reason or another, were not cited in previous editions. Most of the new

publications have been fitted into existing sections, but new subsections have been

provided for those publications involving nanofluids. Our literature survey covers

papers published prior to the end of 2016.

Once again we decided that, except for a brief mention, convection in unsatu-

rated media had to be beyond the scope of this book, and our coverage is mainly

confined to single phase flow. Also, we are aware that there are some topics in the

area of hydrology and geophysics that could be regarded as coming under the

umbrella of the title of our book but are not treated here. Papers solely concerned

with numerical methodology are generally omitted.

We are grateful to a large number of people for their comments on the material

in previous editions. Other colleagues have continued to improve our understanding

of the subject of this book in ways too numerous to mention here.
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We wish to thank our employers, the University of Auckland and Duke

University, for their ongoing support.

Auckland, New Zealand Donald A. Nield
Durham, NC, USA Adrian Bejan
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Preface to the Fourth Edition

Papers on convection in porous media continue to be published at a rate that is now

over 250 per year. This indication of the continued importance of the subject,

together with the wide acceptance of the first, second, and third editions of the

book, has encouraged us to prepare an expanded fourth edition. We have retained

the basic structure and most of the text of the third edition. We have not attempted

to be exhaustive in our choice of references, but nevertheless there are approxi-

mately 1750 new citations to the literature! Again, we have made an effort to

highlight new conceptual developments and engineering applications.

We found that it was possible to fit most of the new material under the existing

section headings. However, we now have new sections on nanofluids, carbon

dioxide sequestration, and the reaction scenarios that arise in a geological context.

Once again we decided that, except for a brief mention, convection in unsatu-

rated media was beyond the scope of this book. Also, we are aware that there are

some topics in the area of hydrology that could be regarded as coming under the

umbrella of the title of our book but are not treated here.

We are grateful to a large number of people for their comments on the material in

previous editions. Other colleagues have continued to improve our understanding of

the subject of this book in ways too numerous to mention here.

We wish to thank our employers, the University of Auckland and Duke Univer-

sity, for their ongoing support.

Once again we relied on the expertise and hard work of Deborah Fraze for the

preparation of our manuscript.

Auckland, New Zealand Donald A. Nield
Durham, NC, USA Adrian Bejan
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Preface to the Third Edition

Papers on convection in porous media continue to be published at the rate what is

now over 200 per year. The indication of the continued importance of the subject,

together with the wide acceptance of the first and second editions of this volume,

has encouraged us to prepare an expanded third edition. We have retained the basic

structure and most of the text of the second edition. We have been somewhat

selective in our choice of references, but nevertheless there are over 1400 new

references. Again, we have made an effort to highlight new conceptual develop-

ments and engineering applications.

We found that it was possible to fit a lot of the new material under the existing

section headings. However, we now have new sections on bidisperse porous media,

local thermal nonequilibrium, electrodiffusion, transverse heterogeneity in chan-

nels, thermal development of forced convection, effects of temperature-dependent

viscosity, constructal multiscale flow structures, optimal spacings for plates sepa-

rated by porous structures, control of convection using vertical vibration, and

bioconvection.

Once again we decided that, except for a brief mention, convection in unsatu-

rated media had to be beyond the scope of this book. Also, we are aware that there

are some topics in the area of hydrology that could be regarded as coming under the

umbrella of the title of our book but are not treated here.

We are grateful to a large number of people who provided us, prior to publica-

tion, with copies of their chapters of books that survey research on various topics.

Other colleagues have continued to improve our understanding of the subject of this

book in ways too numerous to mention here.

We wish to thank our employers, the University of Auckland and Duke Univer-

sity, for their ongoing support.

Once again we relied on the expertise and hard work of Linda Hayes and

Deborah Fraze for the preparation of the electronic version of our manuscript.

Auckland, New Zealand Donald A. Nield
Durham, NC, USA Adrian Bejan
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Preface to the Second Edition

Papers on convection in porous media continue to be published at the rate of over

100 per year. This indication of the continued importance of the subject, together

with the wide acceptance of the first edition, has encouraged us to prepare an

expanded second edition. We have retained the basic structure and most of the

text of the first edition. With space considerations in mind, we have been selective

in our choice of references, but nevertheless there are over 600 new references.

We also made an effort to highlight new conceptual developments and engineering

applications.

In the introductory material, we judged that Chaps. 2 and 3 needed little

alteration (though there is a new Sect. 2.6 on other approaches to the topic), but

our improved understanding of the basic modeling of flow through a porous

medium has led to a number of changes in Chap. 1, both within the old sections

and by the addition of a section on turbulence in porous media and a section on

fractured media, deformable media, and complex porous structures.

In Chap. 4, on forced convection, we have added major new sections on compact

heat exchangers, on heatlines for visualizing convection, and on constructal tree

networks for the geometric minimization of the resistance to volume-to-point flows

in heterogeneous porous media.

In Chap. 5 (external natural convection) there is a substantial amount of new

material inserted in the existing sections. In Chaps. 6 and 7, on internal natural

convection, we now have included descriptions of the effects of a magnetic field

and rotation, and there are new sections on periodic heating and on sources in

confined or partly confined regions; the latter is a reflection of the current interest in

the problem of nuclear waste disposal. In Chap. 8, on mixed convection, there are

no new sections, but in a new subsection we have given some prominence to the

unified theory that has been developed for boundary layer situations. In Chap. 9, on

double-diffusive convection (heat and mass transfer) there is a new section on

convection produced by inclined gradients, a topic that has also been given wider

coverage in the related section in Chap. 7.
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In Chap. 10, which deals with convection with change of phase, we have a new

subsection on the solidification of binary alloys, a research area that has blossomed

in the last decade. We also have a new section on spaces filled with fluid and fibers

coated with a phase-change material. In the first edition we had little to say about

two-phase flow, despite its importance in geothermal and other contexts. We now

have included a substantial discussion on this topic, which we have placed at the

end of Chap. 11 (geophysical aspects). Once again we decided that, except for a

brief mention, convection in unsaturated media had to be beyond the scope of

this book.

D.A.N. again enjoyed the hospitality of the Department of Mechanical Engi-

neering and Materials Science at Duke University while on Research and Study

Leave from the University of Auckland, and both of those institutions again

provided financial support.

We are grateful for comments from GrahamWeir and Roger Young on a draft of

Sect. 11.9, a topic on which we had much to learn. We also are grateful to a large

number of people who provided us with preprints of their papers prior to publica-

tion. Other colleagues have improved our understanding of the subject of this book

in ways too numerous to mention here.

Once again we relied on the expertise and hard work of Linda Hayes for the

preparation of the electronic version of our manuscript, and again the staff at the

Engineering Library of Duke University made our search of the literature an

enjoyable experience.

Auckland, New Zealand Donald A. Nield
Durham, NC, USA Adrian Bejan
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Preface to the First Edition

In this book we have tried to provide a user-friendly introduction to the topic of

convection in porous media. We have assumed that the reader is conversant with the

basic elements of fluid mechanics and heat transfer, but otherwise the book is self-

contained. Only routine classic mathematics is employed. We hope that the book

will be useful both as a review (for reference) and as a tutorial work (suitable as a

textbook in a graduate course or seminar).

This book brings into perspective the voluminous research that has been

performed during the last two decades. The field recently has exploded because

of worldwide concern with issues such as energy self-sufficiency and pollution of

the environment. Areas of application include the insulation of buildings and

equipment, energy storage and recovery, geothermal reservoirs, nuclear waste

disposal, chemical reactor engineering, and the storage of heat-generating materials

such as grain and coal. Geophysical applications range from the flow of ground-

water around hot intrusions to the stability of snow against avalanches.

We believe that this book is timely because the subject is now mature in the

sense that there is a corpus of material that is unlikely to require major revision in

the future. As the reader will find, the relations for heat transfer coefficients and

flow parameters for the case of saturated media are now known well enough for

engineering design purposes. There is a sound basis of underlying theory that has

been validated by experiment. At the same time there are outstanding problems in

the cases of unsaturated media and multiphase flow in heterogeneous media, which

are relevant to such topics as the drying of porous materials and enhanced oil

recovery.

The sheer bulk of the available material has limited the scope of this book. It has

forced us to omit a discussion of convection in unsaturated media and also of

geothermal reservoir modeling; references to reviews of these topics are given. We

also have excluded mention of several hundred additional papers, including some of

our own. We have emphasized reports of experimental work, which are in relatively

short supply (and in some areas are still lacking). We also have emphasized simple

analysis where this illuminates the physics involved. The excluded material
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includes some good early work, which has now been superseded, and some recent

numerical work involving complex geometry. Also excluded are papers involving

the additional effects of rotation or magnetic fields; we know of no reported

experimental work or significant applications of these extensions. We regret that

our survey could not be exhaustive, but we believe that this book gives a good

picture of the current state of research in this field.

The first three chapters provide the background for the rest of the book. Chapters

4 through 8 form the core material on thermal convection. Our original plan, which

was to separate foundational material from applications, proved to be impractical,

and these chapters are organized according to geometry and the form of heating.

Chapter 9 deals with combined heat and mass transfer and Chap. 10 with convec-

tion coupled with change of phase. Geophysical themes involve additional physical

processes and have given rise to additional theoretical investigations; these are

discussed in Chap. 11.

This book was written while D.A.N. was enjoying the hospitality of the Depart-

ment of Mechanical Engineering and Materials Science at Duke University, while

on Research and Study Leave from the University of Auckland. Financial support

for this leave was provided by the University of Auckland, Duke University, and the

United States–New Zealand Cooperative Science Program. We are particularly

grateful to Dean Earl H. Dowell and Prof. Robert M. Hochmuth, both of Duke

University, for their help in making this book project possible.

Linda Hayes did all the work of converting our rough handwritten notes into the

current high-quality version on computer disk. She did this most efficiently and

with tremendous understanding (i.e., patience!) for the many instances in which we

changed our minds and modified the manuscript.

At various stages in the preparation of the manuscript and the figures we were

assisted by Linda Hayes, Kathy Vickers, Jong S. Lim, Jose L. Lage, and Laurens

Howle. Eric Smith and his team at the Engineering Library of Duke University went

to great lengths to make our literature search easier. We are very grateful for all the

assistance we have received.

Auckland, New Zealand Donald A. Nield
Durham, NC, USA Adrian Bejan
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Chapter 1

Mechanics of Fluid Flow Through a Porous
Medium

1.1 Introduction

By a porous medium we mean a material consisting of a solid matrix with an

interconnected void. We suppose that the solid matrix is either rigid (the usual

situation) or it undergoes small deformation. The interconnectedness of the void

(the pores) allows the flow of one or more fluids through the material. In the

simplest situation (single-phase flow) the void is saturated by a single fluid. In

“two-phase flow” a liquid and a gas share the void space.

In a natural porous medium the distribution of pores with respect to shape and

size is irregular. Examples of natural porous media are beach sand, sandstone,

limestone, rye bread, wood, and the human lung (Fig. 1.1 and Table 1.1).

Man-made porous media include ceramics, composite materials, and high porosity

metallic foams. On the pore scale (the microscopic scale) the flow quantities

(velocity, pressure, etc.) will be clearly irregular. But in typical experiments the

quantities of interest are measured over areas that cross many pores, and such

space-averaged (macroscopic) quantities change in a regular manner with respect to

space and time, and hence are amenable to theoretical treatment.

How we treat a flow through a porous structure is largely a question of dis-

tance—the distance between the problem solver and the actual flow structure

(Bejan 2004a, b). When the distance is short, the observer sees only one or two

channels, or one or two open or closed cavities. In this case it is possible to use

conventional fluid mechanics and convective heat transfer to describe what happens

at every point of the fluid- and solid-filled spaces. When the distance is large so that

there are many channels and cavities in the problem solver’s field of vision, the

complications of the flow paths rule out the conventional approach. In this limit,

volume averaging and global measurements (e.g., permeability, conductivity) are

useful in describing the flow and in simplifying the description. As engineers focus

more and more on designed porous media at decreasing pore scales, the problems

tend to fall between the extremes noted above. In this intermediate range, the
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challenge is not only to describe coarse porous structures but also to optimize flow
elements, and to assemble them. The resulting flow structures are designed porous

media (see Bejan et al. 2004; Bejan 2004b).

The usual way of deriving the laws governing the macroscopic variables is to

begin with the standard equations obeyed by the fluid and to obtain the macroscopic

equations by averaging over volumes or areas containing many pores. There are

two ways to do the averaging: spatial and statistical. In the spatial approach, a

macroscopic variable is defined as an appropriate mean over a sufficiently large

Fig. 1.1 Top: Examples of natural porous materials: (a) beach sand, (b) sandstone, (c) limestone,

(d) rye bread, (e) wood, and (f) human lung (Collins 1961, with permission from Van Nostrand

Reinhold). Bottom: Granular porous materials used in the construction industry, 0.5-cm-diameter

Liapor® spheres (left), and 1-cm-size crushed limestone (right) (Bejan 1984)
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representative elementary volume (r.e.v.); this operation yields the value of that

variable at the centroid of the r.e.v. It is assumed that the result is independent of the

size of the representative elementary volume. The length scale of the r.e.v. is much

larger than the pore scale, but considerably smaller than the length scale of the

macroscopic flow domain (Fig. 1.2).

In the statistical approach the averaging is over an ensemble of possible pore

structures that are macroscopically equivalent. A difficulty is that usually the

statistical information about the ensemble has to be based on a single sample, and

this is possible only if statistical homogeneity (stationarity) is assumed.

If one is concerned only with deriving relationships between the space-averaged

quantities and is not concerned about their fluctuation, then the results obtained by

using the two approaches are essentially the same. Thus in this situation one might

as well use the simpler approach, namely the one based on the r.e.v. An example of

Table 1.1 Properties of common porous materials [based on data compiled by Scheidegger

(1974) and Bejan and Lage (1991)]

Material Porosity (φ) Permeability (K[cm2])

Surface per unit

(volume [cm�1])

Agar-agar 2� 10�10–4.4� 10�9

Black slate powder 0.57–0.66 4.9� 10�10–1.2� 10�9 7� 103–8.9� 103

Brick 0.12–0.34 4.8� 10�11–2.2� 10�9

Catalyst (Fischer-Tropsch,

granules only)

0.45 5.6� 105

Cigarette 1.1� 10�5

Cigarette filters 0.17–0.49

Coal 0.02–0.12

Concrete (ordinary mixes) ~0.1

Concrete (bituminous) 1� 10�9–2.3� 10�7

Copper powder

(hot-compacted)

0.09–0.34 3.3� 10�6–1.5� 10�5

Cork board 2.4� 10�7–5.1� 10�7

Fiberglass 0.88–0.93 560–770

Granular crushed rock 0.45

Hair (on mammals) 0.95–0.99

Hair felt 8.3� 10�6–1.2� 10�5

Leather 0.56–0.59 9.5� 10�10–1.2� 10�9 1.2� 104–1.6� 104

Limestone (dolomite) 0.04–0.10 2� 10�11–4.5� 10�10

Sand 0.37–0.50 2� 10�7–1.8� 10�6 150–220

Sandstone (oil sand) 0.08–0.38 5� 10�12–3� 10�8

Silica grains 0.65

Silica powder 0.37–0.49 1.3� 10�10–5.1� 10�10 6.8� 103–8.9� 103

Soil 0.43–0.54 2.9� 10�9–1.4� 10�7

Spherical packings

(well shaken)

0.36–0.43

Wire crimps 0.68–0.76 3.8� 10�5–1� 10�4 29–40
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its use is given in Sect. 3.5. This approach is discussed at length by Bear and

Bachmat (1990). However, a number of problems require a statistical approach

[see, for example, Georgiadis and Catton (1987, 1988a, 1988b) and Georgiadis

(1991)].

For an extensive treatment of the method of volume averaging, the reader is

referred to Whitaker (1999). Civan (2014) pointed out an averaging error in some

previous publications.

1.2 Porosity

The porosity φ of a porous medium is defined as the fraction of the total volume of

themedium that is occupied by void space. Thus 1�φ is the fraction that is occupied

by solid. For an isotropic medium the “surface porosity” (that is, the fraction of void

area to total area of a typical cross section) will normally be equal to φ.
In defining φ in this way we are assuming that all the void space is connected. If

in fact one has to deal with a medium in which some of the pore space is

disconnected from the remainder, then one has to introduce an “effective porosity,”

defined as the ratio of connected void to total volume.

For natural media, φ does not normally exceed 0.6. For beds of solid spheres of

uniform diameter φ can vary between the limits 0.2595 (rhombohedral packing)

and 0.4764 (cubic packing). Nonuniformity of grain size tends to lead to smaller

porosities than for uniform grains, because smaller grains fill the pores formed by

larger grains. For man-made materials such as metallic foams ϕ can approach the

value 1.

Table 1.1 shows a compilation of porosities and other properties of common

porous materials.

Solid

Fluid

Flow domain

Representative
elementary
volume (r.e.v.)

Fig. 1.2 The representative elementary volume (r.e.v.): the figure illustrates the intermediate size

relative to the sizes of the flow domain and the pores
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1.3 Seepage Velocity and the Equation of Continuity

We construct a continuum model for a porous medium, based on the r.e.v. concept.

We introduce a Cartesian reference frame and consider volume elements that are

sufficiently large compared with the pore volumes for reliable volume averages to

be obtained. In other words, the averages are not sensitive to the choice of volume

element. A distinction is made between an average taken with respect to a volume

element Vm of the medium (incorporating both solid and fluid material) and one

taken with respect to a volume element Vf consisting of fluid only. For example, we

denote the average of the fluid velocity over Vm by v¼ (u, v, w). This quantity has

been given various names, by different authors, such as seepage velocity, filtration

velocity, superficial velocity, Darcy velocity, and volumetric flux density. We

prefer the term Darcy velocity since it is short and distinctive. Taking an average

of the fluid velocity over a volume Vf we get the intrinsic average velocity V, which

is related to v by the Dupuit–Forchheimer relationship v¼φV.
Once we have a continuum to deal with, we can apply the usual arguments and

derive differential equations expressing conservation laws. For example, the con-

servation of mass is expressed by the continuity equation

φ
∂ρf
∂t

þ∇ � ρfvð Þ ¼ 0 ð1:1Þ

where ρf is the fluid density. This equation is derived by considering an elementary

unit volume of the medium and equating the rate of increase of the mass of the fluid

within that volume, ∂(φρf)/∂t, to the net mass flux into the volume, �∇�(ρf v),
noting that φ is independent of t.

1.4 Momentum Equation: Darcy’s Law

We now discuss various forms of the momentum equation which is the porous-

medium analog of the Navier–Stokes equation. For the moment we neglect body

forces such as gravity; the appropriate terms for these can be added easily at a later

stage.

1.4.1 Darcy’s Law: Permeability

Henry Darcy’s (1856) investigations into the hydrology of the water supply of

Dijon and his experiments on steady-state unidirectional flow in a uniform medium

revealed a proportionality between flow rate and the applied pressure difference. In

modern notation this is expressed, in refined form, by
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u ¼ �K

μ

∂P
∂x

ð1:2Þ

Here ∂P/∂x is the pressure gradient in the flow direction and μ is the dynamic

viscosity of the fluid. The coefficient K is independent of the nature of the fluid but

it depends on the geometry of the medium. It has dimensions (length)2 and is called

the specific permeability or intrinsic permeability of the medium. In the case of

single-phase flow we abbreviate this to permeability. The permeabilities of com-

mon porous materials are summarized in Table 1.1. It should be noted that in

Eq. (1.2) P denotes an intrinsic quantity, and that although Darcy’s equation is

formally a balance of forces averaged over a r.e.v. the equation cannot be derived

by r.e.v. averaging without a closure assumption being made. Special care needs to

be taken when adding additional terms such as the one expressing a Coriolis force.

One needs to take averages over the fluid phase before introducing a Darcy drag

term (see Sect. 1.5.1).

In three dimensions, Eq. (1.2) generalizes to

v ¼ �μ�1K �∇P; ð1:3Þ

where now the permeabilityK is in general a second-order tensor. For the case of an

isotropic medium the permeability is a scalar and Eq. (1.3) simplifies to

∇P ¼ �μ

K
v: ð1:4Þ

Values ofK for natural materials vary widely. Typical values for soils, in terms of the

unit m2, are: clean gravel 10�7–10�9, clean sand 10�9–10�12, peat 10�11–10�13,

stratified clay 10�13–10�16, and unweathered clay 10�16–10�20.Workers concerned

with geophysics often use as a unit of permeability the Darcy, which equals

0.987� 10�12 m2.

Darcy’s law has been verified by the results of many experiments. Theoretical

backing for it has been obtained in various ways, with the aid of either deterministic

or statistical models. It is interesting that Darcy’s original data may have been

affected by the variation of viscosity with temperature (Lage 1998). A refined

treatment of the mass and momentum conservation equations, based on volume

averaging, has been presented by Altevogt et al. (2003).

Ochoa-Tapia et al. (2007) showed that, when fractional-order gradients are

involved, on volume averaging two new terms appear. One is a traditional convec-

tive term induced by spatial porosity gradients and the other is a fractional correc-

tion of Brinkman type (see Sect. 1.5.3). A new model based on fractal resistance

was proposed by Wu and Yu (2007).
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1.4.2 Deterministic Models Leading to Darcy’s Law

If K is indeed determined by the geometry of the medium, then clearly it is possible

to calculate K in terms of the geometrical parameters, at least for the case of simple

geometry. A great deal of effort has been spent on this endeavor, and the results are

well presented by Dullien (1992).

For example, in the case of beds of particles or fibers one can introduce an

effective average particle or fiber diameter Dp. The hydraulic radius theory of

Carman-Kozeny leads to the relationship

K ¼ D2
p2φ

3

180 1� φð Þ2 ; ð1:5Þ

where

Dp 2 ¼
ð1
0

D3
ph Dp

� �
dDp=

ð1
0

D2
ph Dp

� �
dDp ð1:6Þ

and h(Dp) is the density function for the distribution of diameters Dp. The constant

180 in Eq. (1.5) was obtained by seeking a best fit with experimental results. The

Carman–Kozeny equation gives satisfactory results for media that consist of parti-

cles of approximately spherical shape and whose diameters fall within a narrow

range. The equation is often not valid in the cases of particles that deviate strongly

from the spherical shape, broad particle-size distributions, and consolidated media.

Nevertheless it is widely used since it seems to be the best simple expression

available. A modified Carman–Kozeny theory was proposed by Liu et al. (1994).

A fibrous porous medium was modeled by Davis and James (1996). For randomly

packed monodisperse fibers, the experiments of Rahli et al. (1997) showed that the

Carman-Kozeny “constant” is dependent on porosity and fiber aspect ratio. The

Carman-Kozeny correlation has been applied to compressed expanded natural

graphite, an example of a high porosity and anisotropic consolidated medium, by

Mauran et al. (2001). Li and Park (1998) applied an effective medium approxima-

tion to the prediction of the permeability of packed beds with polydisperse spheres.

1.4.3 Statistical Models Leading to Darcy’s Law

Many authors have used statistical concepts in the provision of theoretical support

for Darcy’s law. Most authors have used constitutive assumptions in order to obtain

closure of the equations, but Whitaker (1986) has derived Darcy’s law, for the case
of an incompressible fluid, without making any constitutive assumption. This

theoretical development is not restricted to either homogeneous or spatially
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periodic porous media, but it does assume that there are no abrupt changes in the

structure of the medium.

If the medium has periodic structure, then the homogenization method can be

used to obtain mathematically rigorous results. The method is explained in detail by

Ene and Polisevski (1987), Mei et al. (1996), and Ene (1997, 2004). The first

authors derive Darcy’s law without assuming incompressibility, and they go on to

prove that the permeability is a symmetric positive-definite tensor.

1.5 Extensions of Darcy’s Law

1.5.1 Acceleration and Other Inertial Effects

Following Wooding (1957), many early authors on convection in porous media

used an extension of Eq. (1.4) of the form

ρf
∂V
∂t

þ V �∇ð ÞV
� �

¼ �∇P� μ

K
v ð1:7Þ

which, when the Dupuit–Forchheimer relationship is used, becomes

ρf φ�1 ∂v
∂t

þ φ�2 v �∇ð Þv
� �

¼ �∇P� μ

K
v: ð1:8Þ

This equation was obtained by analogy with the Navier–Stokes equation. Beck

(1972) pointed out that the inclusion of the (v�∇)v term was inappropriate because

it raised the order (with respect to space derivatives) of the differential equation,

and this was inconsistent with the slip boundary condition (appropriate when

Darcy’s law was employed). More importantly, the inclusion of (v�∇)v is not a

satisfactory way of expressing the nonlinear drag, which arises from inertial effects,

since (v�∇)v is identically zero for steady incompressible unidirectional flow no

matter how large the fluid velocity, and this is clearly in contradiction to experience.

There is a further fundamental objection. In the case of a viscous fluid a material

particle retains its momentum, in the absence of applied forces, when it is displaced

from a point A to a neighboring arbitrary point B. But in a porous medium with a

fixed solid matrix this is not so, in general, because some solid material impedes the

motion and causes a change in momentum. The (v�∇)v term is generally small in

comparison with the quadratic drag term (see Sect. 1.5.2) and then it seems best to

drop it in numerical work. This term needs to be retained in the case of highly

porous media. Also, at least the irrotational part of the term needs to be retained in

order to account for the phenomenon of choking in high-speed flow of a compress-

ible fluid (Nield 1994b). Nield suggested that the rotational part, proportional to the

intrinsic vorticity, be deleted. His argument is based on the expectation that a
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medium of low porosity will allow scalar entities like fluid speed to be freely

advected, but will inhibit the advection of vector quantities like vorticity. It is

now suggested that even when vorticity is being continuously produced (e.g., by

buoyancy), one would expect that it would be destroyed by a momentum dispersion

process due to the solid obstructions. The claim that the (v�∇)v term is necessary to

account for boundary layer development is not valid; viscous diffusion can account

for this. Formal averaging of the Navier–Stokes equation leads to a (v�∇)v term,

but this is deceptive. Averaging methods inevitably involve a loss of information

with respect to the effects of geometry on the flow.

With the (v�∇)v term dropped, Eq. (1.8) becomes

ρf
φ

∂v
∂t

¼ �∇P� μ

K
v: ð1:9Þ

One can now question whether the remaining inertial term (the left-hand side of this

equation) is correct. It has been derived on the assumption that the partial

derivative with respect to time permutes with a volume average, but in general

this is not valid. The inadequacy of Eq. (1.9) can be illustrated by considering an

ideal medium, one in which the pores are identical parallel tubes of uniform circular

cross section of radius a. Equation (1.9) leads to the prediction that in the presence

of a constant pressure gradient any transient will decay like exp[�(μφ/Kρf)t],
whereas from the exact solution for a circular pipe [see, for example, formula

(4.3.19) of Batchelor (1967)] one concludes that the transient should decay approx-

imately like exp � λ21μ=a
2ρf

� �
t

� �
, where λ1¼ 2.405 is the smallest positive root of

J0(λ)¼ 0, and where J0 is the Bessel function of the first kind of order zero. In

general, these two exponential decay terms will not be the same. It appears that the

best that one can do is to replace Eq. (1.9) by

ρfca �
∂v
∂t

¼ �∇P� μ

K
v; ð1:10Þ

where ca is a constant tensor that depends sensitively on the geometry of the porous

medium and is determined mainly by the nature of the pore tubes of largest cross

sections (since in the narrower pore tubes the transients decay more rapidly). We

propose that ca be called the “acceleration coefficient tensor” of the porous

medium. For the special medium introduced above, in which we have unidirec-

tional flow, the acceleration coefficient will be a scalar, ca¼ a2/λ21K. If the Carman–

Kozeny formula (Eq. (1.5)) is valid and if Dp2 can be identified with a/γ where γ is
some constant, then

ca ¼ 180γ2 1� φð Þ2=λ21φ3 ¼ 31:1γ2 1� φð Þ2=φ3: ð1:11Þ

Liu and Masliyah (2005) present an equation, obtained by volumetric averaging,

that does indicate a slower decaying speed than that based on the straight passage
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model. They also say that the decaying speed is expected to be much faster than that

for a medium free from solids, and it is this characteristic that makes the flow in a

porous medium more hydrodynamically stable than that in an infinitely permeable

medium and delayed turbulence is expected.

In any case, one can usually drop the time derivative term completely because in

general the transients decay rapidly. An exceptional situation is when the kinematic

viscosity ν¼ μ/ρf of the fluid is small in comparison with K/t0 where t0 is the

characteristic time of the process being investigated. This criterion is rarely met in

studies of convection. Even for a liquid metal (ν� 10�7 m2 s�1) and a material of

large permeability (K� 10�7 m2) it requires t0� 1 s. However, it is essential to

retain the time derivative term when modeling certain instability problems: see

Vadasz (1999a).

For a porous medium in a frame rotating with angular velocity Ω with respect to

an inertial frame, in Eq. (1.8) P is replaced by P� ρf jΩ� xj2/2, where x is the

position vector, and a term ρfΩ� v/φ is added on the left-hand side.

If the fluid is electrically conducting, then in (1.8) P is replaced by P+ jBj2/2 μm,
where B is the magnetic induction and μm is the magnetic permeability, and a term

(B�∇)B/φ μm is added to the right-hand side. In most practical cases the effect of a

magnetic field on convection will be negligible, for reasons spelled out in Sect. 6.21.

The solution of the momentum equation and equation of continuity is commonly

carried out by using the vector operators div and curl to solve in succession for the

rotational and irrotational parts of the velocity field. The accuracy of the numerical

solution thus obtained depends on the order of performing the operations. Wooding

(2007) showed that taking a certain linear combination of the two solutions pro-

duces a solution of optimal accuracy.

1.5.2 Quadratic Drag: Forchheimer’s Equation

Darcy’s equation (1.3) is linear in the seepage velocity v. It holds when v is

sufficiently small. In practice, “sufficiently small” means that the Reynolds number

Rep of the flow, based on a typical pore or particle diameter, is of order unity or

smaller. As v increases, the transition to nonlinear drag is quite smooth; there is no

sudden transition as Rep is increased in the range 1–10. Clearly this transition is not

one from laminar to turbulent flow, since at such comparatively small Reynolds

numbers the flow in the pores is still laminar. Rather, the breakdown in linearity is

due to the fact that the form drag due to solid obstacles is now comparable with the

surface drag due to friction. According to Joseph et al. (1982) the appropriate

modification to Darcy’s equation is to replace Eq. (1.4) by

∇P ¼ �μ

K
v� cF K

�1=2ρf vj jv; ð1:12Þ
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where cF is a dimensionless form-drag constant. Equation (1.12) is a modification

of an equation associated with the names of Dupuit (1863) and Forchheimer (1901);

see Lage (1998). For simplicity, we shall call Eq. (1.12) the Forchheimer equation

and refer to the last term as the Forchheimer term, but in fact the dependence on

ρfK
�1/2 is a modern discovery (Ward 1964). Ward thought that cF might be a

universal constant, with a value of approximately 0.55, but later it was found that

cF does vary with the nature of the porous medium, and can be as small as 0.1 in the

case of foam metal fibers. Beavers et al. (1973) showed that the bounding walls

could have a substantial effect on the value of cF, and found that their data

correlated fairly well with the expression

cF ¼ 0:55 1� 5:5
d

De

� 	
; ð1:13Þ

where d is the diameter of their spheres andDe is the equivalent diameter of the bed,

defined in terms of the height h and width w of the bed by

De ¼ 2wh

wþ h
: ð1:14Þ

The numerical calculations of Coulaud et al. (1988) on flow past circular cylinders

suggest that cF varies as φ
�1 for φ less than 0.61.

Equation (1.12) is invariant under a rotation of coordinate frame. Kaviany

(1995) gives a form for the Forchheimer term [see his Eq. (2.57)], which does not

have this property, and he gives no evidence for his claim that his form is more in

accordance with the experimental results.

The transition from the Darcy regime to the Forchheimer regime is illustrated in

Fig. 1.3. The data refer to unidirectional isothermal flow with the seepage velocity

v in the direction x. Plotted on the ordinate is the “friction factor” fK, which is based
on K1/2 as length scale. The abscissa belongs to the Reynolds number based on K1/2.

Figure 1.3 shows that the transition occurs in the ReK range 1–10. At higher

Reynolds numbers, the quadratic drag term dominates on the right-hand side of

Eq. (1.12), and fK becomes the same as cF.
Associated with the transition to pore-scale turbulence (something that is not

uniform) the coefficient cF varies with velocity. For a limited range, one can take cF
to be linear in velocity. That means that the drag is cubic in velocity. Experiments

reported by Lage et al. (1997) show this behavior. Extensive experimental data for

flow in packed beds were presented by Achenbach (1995). This sort of cubic

variation is distinct from that which occurs for small values of the pore-based

Reynolds number. Firdaouss et al. (1997) showed that, under fairly general assump-

tions and for periodic porous media whose period is of the same order as that of the

inclusion, the nonlinear correction to Darcy’s law is cubic with respect to the Darcy

number. In this case the quadratic term vanishes. The case of anisotropic media was

discussed by Skjetne and Auriault (1999a). However, Lage and Antohe (2000)

demonstrated that this mathematically valid cubic extension is irrelevant in
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practice, and they suggested an alternative parameter, in place of the Reynolds

number, to characterize the transition from linearity. The replacement of the

quadratic term by a cubic term is attractive mathematically because the expression

for the drag is then an odd function of the velocity. Straughan (2015d) has

employed the cubic term extensively in nonlinear stability analyses of natural

convection problems. A cubic term was included by Adler et al. (2013) in their

study of flow in channels with wavy walls.

A further limit on the applicability of a Forchheimer-type law was noted by

Montillet (2004). The validation of Forchheimer’s law for flow through porous

media with converging boundaries was discussed by Venkataraman and Rao

(2000). An extra term, involving jvj1/2v (effectively the geometric mean of the

two terms on the right-hand side of Eq. (1.12)) was introduced by Hsu and Cheng

(1990). They argued that this modification was necessitated by the need to allow for

the viscous boundary layer effect at intermediate values of the Reynolds number.

The modification is supported by the results of pressure drop experiments reported

by Hsu et al. (1999). However, for practical thermal convection problems the

inclusion of this term in the model leads to relatively little improvement in

explanatory power, and so the term is usually neglected.

The transition from Darcy flow [Eq. (1.4)] to Darcy–Forchheimer flow

[Eq. (1.12)] occurs when ReK is of order 102. This transition is associated with

the occurrence of the first eddies in the fluid flow, for example, the rotating fluid

behind an obstacle or a backward facing step. The order of magnitude ReK ~ 10
2 is

one in a long list of constructal theory results that show that the laminar-turbulent

transition is associated with a universal local Reynolds number of order 102 (Bejan
1984, p. 213).

Fig. 1.3 The transition from the Darcy regime to the Forchheimer regime in unidirectional flow

through an isothermal saturated porous medium (Ward 1964)
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To derive ReK ~ 10
2 from turbulence, assume that the porous structure is made of

three-dimensional random fibers that are so sparsely distributed that φ� 1.

According to Koponen et al. (1998), in this limit the permeability of the structure

is correlated very well by the expression K¼ 1.39D2/[e10.1(1�ϕ)� 1], where D is the

fiber diameter. In this limit the volume-averaged velocity has the same scale as the

velocity of the free stream that bathes every fiber. It is well known that vortex

shedding occurs when ReD¼ uD/ν ~ 102 (e.g., Bejan 2000, p. 155). By eliminating

D between the above expressions for K and ReD, we calculate ReK¼ uK1/2/ν and

find that when eddies begin to appear, the ReK value is in the range 100–200 when φ
is in the range 0.9–0.99.

Equation (1.12) is the form of Forchheimer’s equation that we recommend for

use, but for reference we note that Irmay (1958) derived an alternate equation, for

unidirectional flow, of the form

dP

dx
¼ � βμ 1� φð Þ2ν

d2pφ
3

� αρf 1� φð Þν2
dpφ3

ð1:15Þ

where dp is the mean particle diameter and α and β are shape factors that must be

determined empirically. With α¼ 1.75 and β¼ 150 this equation is known as

Ergun’s equation. The linear terms in Eq. (1.15) and the unidirectional case of

Eq. (1.12) can be made identical by writing

K ¼ d2Pφ
3

β 1� φð Þ2 ð1:16Þ

which is Kozeny’s equation, but it is not possible at the same time to make the

quadratic terms identical, in general. Some authors have forced them to be identical

by taking cF¼ αβ�1/2φ�3/2, and they have then used this expression in their

numerical computations. It should be appreciated that this is an ad hoc procedure.

Either Eq. (1.12) or (1.15) correlates well with available experimental data (see, for

example, Macdonald et al. 1979). A correlation slightly different from that of Ergun

was presented by Lee and Ogawa (1994). Papathanasiou et al. (2001) showed that

for fibrous material the Ergun equation overpredicts the observed friction factor

when the usual Reynolds number (based on the particle diameter) is greater than

unity, and they proposed an alternative correlation, based directly on the

Forchheimer equation and a Reynolds number based on the square root of the

permeability.

For further discussion of the Forchheimer equation, supporting the viewpoint

taken here, see Barak (1987) and Hassanizadeh and Gray (1988). They emphasize

that the averaging of microscopic drag forces leads to a macroscopic nonlinear

theory for flow, but the average of microscopic inertial terms is negligible in typical
practical circumstances. It seems that the need for fluid to flow around solid

particles leads to a reduction in the coherence of the fluid momentum pattern, so

that on the macroscopic scale there is negligible net transfer of momentum in a
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direction transverse to the seepage velocity vector. An analytical development

based on form drag was given by du Plessis (1994). An analysis of the way in

which microscopic phenomena give rise to macroscopic phenomena was presented

by Ma and Ruth (1993).

The ratio of the convective inertia term ρφ�2(v�∇)v to the quadratic drag term is

of order K1/2/cFφ
2 L, where L is the characteristic length scale. This ratio is normally

small, and hence it is expected that the calculations of the heat transfer which have

been made by several authors, who have included both terms in the equation of

motion, are not significantly affected by the convective inertia term. This has been

confirmed for two cases by Lage (1992) and Manole and Lage (1993). Thus it is not

appropriate to retain the convective inertia term but drop the quadratic drag term.

Microscopic flow near the surface of two-dimensional porous media was studied

by Larson and Higdon (1986a, b).

A momentum equation with a Forchheimer correction was obtained using the

method of volume averaging by Whitaker (1996). A generalized Forchheimer

equation for two-phase flow based on hybrid mixture theory was proposed by

Bennethum and Giorgi (1997). Other derivations have been given by Giorgi

(1997) (via matched asymptotic expansions), Chen et al. (2001) (via homogeniza-

tion), and Levy et al. (1999) (for the case of a thermoelastic medium). A generalized

tensor form applicable to anisotropic permeability was derived by Knupp and Lage

(1995). An alternative derivation for anisotropic media was given by Wang et al.

(1999). An attempt to determine the values of the constants in an Ergun-type

equation by numerical simulation for an array of spheres was reported by

Nakayama et al. (1995). A reformulation of the Forchheimer equation, involving

two Reynolds numbers, was made by Teng and Zhao (2000). Lee and Yang (1997)

investigated Forchheimer drag for flow across a bank of circular cylinders. The

effective inertial coefficient for a heterogeneous porous medium was discussed by

Fourar et al. (2005).

Lage et al. (2005) prefer to work in terms of a form coefficient C related to cF by
C¼ cF L/K

1/2, where L is a global characteristic length such as the length of a

channel. They introduce a protocol for the determination of K and C, using Darcy’s
law for a porous medium and Newton’s law of flow round a bluff body as

constitutive equations defining K and C, respectively. Their analysis shows that

the model equation for measuring C requires the separation between the viscous-

drag effect imposed by the porous medium and the viscous effect of the boundary

walls on the measured pressure drop when defining K. Naakteboren et al. (2012)

examined in detail inlet and outlet pressure drop effects on the determination of

permeability and form coefficient. An application to experiments with porous

inserts was studied by Wilson et al. (2006).

The structure of the dependence of the Darcy and Forchheimer coefficients on

porosity has been examined by Straughan (2010c). Bussiere et al. (2006) made

measurements of these coefficients for silica sand beds. An analysis of generalized

Forchheimer flows of compressible fluids was carried out by Aulisa et al. (2011).

The modeling of form drag in a porous medium saturated by a power-law fluid has

been discussed by Nield (2009b) and Tosco et al. (2013). It is recommended that,
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until further experimental work is carried out, the simple quadratic expression for

the form drag be used, on the understanding that the coefficient is not necessarily

given by the Ergun formula. Some practical considerations of the application of the

Forchheimer equation have been studied by Huang and Ayoub (2008) and Panilov

and Fourar (2006).

Care should be taken when modeling high velocity flow in a heterogeneous

medium. Auriault et al. (2007) demonstrated that the Forchheimer law does not

generally survive upscaling the flow at the heterogeneity scale where the

Forchheimer law is assumed to hold. The macroscopic flow is strongly nonlinear

and anisotropic.

Arbogast and Lehr (2006) employed homogenization to model vuggy porous

media. The effective permeability of vuggy or fractured porous media was inves-

tigated using a Darcy–Brinkman approach by Golfier et al. (2015). Teitel (2011)

emphasized the importance of allowing Forchheimer coefficients to vary with

Reynolds number as well as porosity. Zeng and Grigg (2006) recommended that,

rather than the value of a Reynolds number being used as the criterion for

non-Darcy flow, the value of a Forchheimer number, one representing the ratio of

pressure drop caused by liquid–solid interactions to that by viscous resistance, be

used instead because it has wider applicability. To et al. (2015) studied a nonlinear

deviation of Darcy’s law in the domain of high pressure gradient. Chen and Liu

(2016) examined the structural stability for a Brinkman–Forchheimer model with

temperature-dependent solubility.

1.5.3 Brinkman’s Equations

An alternative to Darcy’s equation is what is commonly known as Brinkman’s
equation. With inertial terms omitted this takes the form

∇P ¼ �μ

K
vþ eμ∇2v: ð1:17Þ

We now have two viscous terms. The first is the usual Darcy term and the second is

analogous to the Laplacian term that appears in the Navier–Stokes equation. The

coefficient eμ is an effective viscosity. Brinkman set μ and eμ equal to each other, but

in general that is not true.

Sometimes Eq. (1.17) has been referred to as “Brinkman’s extension of Darcy’s
law” but this is a misleading expression. Brinkman (1947a, 1947b) did not just add

another term. Rather, he obtained a relationship between the permeability K and the

porosity φ for an assembly of spheres a “self-consistent” procedure, which is valid

only when the porosity is sufficiently large, φ> 0.6 according to Lundgren (1972).

This requirement is highly restrictive since, as we have noted earlier, most naturally

occurring porous media have porosities less than 0.6.
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When the Brinkman equation is employed as a general momentum equation, the

situation is more complicated. In Eq. (1.17) P is the intrinsic fluid pressure, so each

term in that equation represents a force per unit volume of the fluid. A detailed

averaging process leads to the result that, for an isotropic porous medium,eμ=μ ¼ 1=φT*, where T * is a quantity called the tortuosity of the medium (Bear

and Bachmat 1990, p. 177). Thuseμ=μdepends on the geometry of the medium. This

result appears to be consistent with the result of Martys et al. (1994), who on the

basis of a study in which a numerical solution of the Stokes’ equation was matched

with a solution of Brinkman’s equation for a flow near the interface between a clear

fluid and a porous medium concluded that the value of eμ=μ had to exceed unity, and
increased monotonically with decreasing porosity. The influence of the value of the

porosity on the effective viscosity was investigated numerically by Kolodziej

(1988) for a channel filled with a porous medium modeled as an array of rods

confined by a lower immovable wall and an upper movable wall. He found that then

the effective viscosity was less than the fluid viscosity. A similar result was

obtained by Koplik et al. (1983). Liu and Masliyah (2005) summarize the current

understanding by saying that the numerical simulations have shown that, depending

upon the type of porous medium, the effective viscosity may be either smaller or

greater than the viscosity of the fluid. On the one hand, straight volume averaging as

presented by Ochoa-Tapia and Whitaker (1995a) gives eμ=μ ¼ 1=φ, greater than
unity. On the other hand, analyses such as that by Saez et al. (1991) give eμ=μ close
to a tortuosity τ, defined as dx/ds where s(x) is the distance along a curve, a quantity
that is less than unity. Liu and Masliyah (2005) suggest that one can think of the

difference between eμ and μ as being due to momentum dispersion. They say that it

has been generally accepted that eμ is strongly dependent on the type of porous

media as well as the strength of flow. They note that there are further complications

if the medium is not isotropic. They also note that it is common practice for eμ to be

taken as equal for μ for high porosity cases. This matter has been further examined

by Valdés-Parada et al. (2007c), who used employed volume averaging of the

Stokes equation with a slip boundary condition.

Experimental checks of Brinkman’s theory have been indirect and few in

number. Lundgren refers to measurements of flows through cubic arrays of spher-

ical beads on wires, which agree quite well with the Brinkman formula for perme-

ability as a function of porosity. Givler and Altobelli (1994) matched theoretical

and observed velocity profiles for a rigid foam of porosity 0.972 and obtained a

value of about 7.5 for eμ=μ. In our opinion the Brinkman model is breaking down

when such a large value of eμ=μ is needed to match theory and experiment. Some

preliminary results of a numerical investigation by Gerritsen et al. (2005) suggest

that the Brinkman equation is indeed not uniformly valid as the porosity tends to

unity.

It was pointed out by Tam (1969) that whenever the spatial length scale is much

greater than eμK=μð Þ1=2 the ∇2v term in Eq. (1.17) is negligible in comparison with

the term proportional to v, so that Brinkman’s equation reduces to Darcy’s equation.
Levy (1981) showed that the Brinkman model holds only for particles whose size is
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of order η3, where η (�1) is the distance between neighboring particles; for larger

particles the fluid filtration is governed by Darcy’s law and for smaller particles the

flow does not deviate from that for no particles. Durlofsky and Brady (1987), using

a Green’s function approach, concluded that the Brinkman equation was valid for

φ> 0.95. Rubinstein (1986) introduced a porous medium having a very large

number of scales and concluded that it could be valid for φ as small as 0.8.

We conclude that for many practical purposes there is no need to include the

Laplacian term. If it is important that a no-slip boundary condition be satisfied, then

the Laplacian term is indeed required, but its effect is significant only in a thin

boundary layer whose thickness is of order eμK=μð Þ1=2, the layer being thin since the
continuum hypothesis requires that K1/2� L where L is a characteristic macro-

scopic length scale of the problem being considered. When the Brinkman equation

is employed, it usually will be necessary to also account for the effects of porosity

variation near the wall (see Sect. 1.7). The thickness of the Brinkman layer has been

measured by Morad and Khalili (2009) for both mono-sized spherical beads and

multi-sized beads. As one would expect, the thickness was found to be of the order

of a characteristic diameter.

There are situations in which some authors have found it convenient to use the

Brinkman equation. One such situation is when one wishes to compare flows in

porous media with those in clear fluids. The Brinkman equation has a parameter

K (the permeability) such that the equation reduces to a form of the Navier–Stokes

equation as K!1 and to the Darcy equation as K! 0. Another situation is when

one wishes to match solutions in a porous medium and in an adjacent viscous fluid.

But usage of the Brinkman equation in this way is not without difficulty, as we point

out in the following section.

Several authors have added a Laplacian term to Eq. (1.12) to form a “Brinkman–

Forchheimer” equation. The validity of this is not completely clear. As we have just

seen, in order for Brinkman’s equation to be valid the porosity must be large, and

there is some uncertainty about the validity of the Forchheimer law at such large

porosity. A scale analysis by Lage (1993a) revealed the distinct regimes in which

the various terms in the Brinkman–Forchheimer equation were important or not.

It is possible to derive a Brinkman–Forchheimer equation by formal averaging,

but only after making a closure that incorporates some empirical material and that

inevitably involves loss of information. Clarifying and correcting earlier work by

Vafai and Tien (1981, 1982) (whose formulation involved a mixture of intrinsic and

volume-averaged quantities), Hsu and Cheng (1990) obtained an equation that in

our notation can be written

ρf
1

φ

∂v
∂t

þ 1

φ
∇

v � v
φ

� 	� �
¼ �∇Pþ μ

φ
∇2v� μ

K
v� cFρf

K1=2
vj jv : ð1:18Þ

For an incompressible fluid, ∇ � v ¼ 0, and so φ�1∇ φ�1v � vð Þ reduces to

φ�1v �∇ v=φð Þ, and then Eq. (1.21) becomes an easily recognizable combination
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of Eqs. (1.8), (1.12), and (1.17). The position of the factor φ in relation to the spatial

derivatives is important if the porous medium is heterogeneous.

If L is the appropriate characteristic length scale, the ratio of the last term in

Eq. (1.17) to the previous term is of the order of magnitude of eμ=μð ÞK=L2, the Darcy
number. Authors who assume that eμ ¼ μ define the Darcy number to be K/L2. The
value of Da is normally much less than unity, but Weinert and Lage (1994) reported

a sample of a compressed aluminum foam 1-mm thick, for which Da was about

8. Nield and Lage (1997) proposed the term “hyperporous medium” for such a

material. The flow in their sample was normal to the smallest dimension, and so,

unlike in Vafai and Kim (1997), the sample was not similar to a thin screen. When

the Brinkman term is comparable with the Darcy term throughout the medium, the

K which appears in Eq. (1.17) can no longer be determined by a simple Darcy-type

experiment.

Koplik et al. (1983) discussed viscosity renormalization in the Brinkman equa-

tion. They found that the effective Brinkman viscosity decreased with the porosity.

They also discussed the relationship between the Brinkman equation and the

Beavers–Joseph boundary condition.

Further work in the spirit of Brinkman has been carried out. For example,

Howells (1998) treated flow through beds of fixed cylindrical fibers. Efforts to

produce consistency between the Brinkman equation and the lattice Boltzmann

method were reported by Marys (2001). An experimental determination of inertial

and viscous contributions in flow in metallic foams was carried out by Madani

et al. (2007).

In the case when the fluid is a rarefied gas and the Knudsen number (ratio of the

mean free path to a characteristic length) has a large value, velocity slip occurs in

the fluid at the pore boundaries. This phenomenon is characteristic of a reduction in

viscosity. Hence in these circumstances one could expect that the Darcy and

Brinkman drag terms (the viscous terms) would become insignificant in comparison

with the Forchheimer drag term (the form drag term). At very large values of the

Knudsen number a continuum model is not appropriate on the pore scale, but on the

REV scale a continuum model may still be useful.

Various mathematical matters related to stability problems, such as conver-

gence, continuous dependence, and structural stability, for each of the Darcy,

Forchheimer and Brinkman models, have been discussed by Payne and Song

(1997, 2000, 2002), Payne and Straughan (1998b, 1999), Payne et al. (1999,

2001), and Song (2002). These discussions have been reviewed by Straughan

(2004b). The convergence and continuous dependence for the Brinkman–

Forchheimer equations was studied by Celebi et al. (2006) and Liu (2009). Such

studies provide assurance that the models are reliable, and so can be used with

confidence. Spatial decay estimates for plane flow in the Brinkman–Forchheimer

model were obtained by Qin and Kaloni (1998).

The domain of validity of Brinkman’s equation was further examined by

Auriault (2009). He concluded that this equation appears to be valid for describing

flows through swarms of fixed particle or fixed beds of fibers at very low
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concentration, only, and under precise conditions. The effective viscosity is then

equal to the viscosity of the fluid. For isotropic and macroscopically homogeneous

classical porous media with connected porous matrices, Darcy’s law is valid up to a

third-order approximation and for such media Brinkman’s equation has no physical
background. The domain of validity of the equation is very restricted. Clear

experimental checking is missing. The main difficulty is that inertial effects are

difficult to avoid and the law to describe these (Forchheimer’s law) is not exact.
There is also a problem involving scaling.

Lesinigo et al. (2011) proposed a multi-scale Darcy-Brinkman model for fluid

flow in fractured porous media. They assumed Darcy’s law in the porous domain

and Stokes–Brinkman equations in the fractures. Marusic-Paloka et al. (2012)

compared the use of Darcy’s law and the Brinkman law for a fracture.

1.5.4 Non-Newtonian Fluid

Shenoy (1994) has reviewed studies of flow in non-Newtonian fluids in porous

media, with attention concentrated on power-law fluids. He suggested, on the basis

of volumetric averaging, that the Darcy term be replaced by (μ*/K*)vn�1v, the

Brinkman term by (μ*/φn)∇{j[0.5 Δ:Δ]1/2jn�1Δ} for an Ostwald-deWaele fluid,

and the Forchheimer term be left unchanged (because it is independent of

the viscosity). Here n is the power-law index, μ* reflects the consistency of the

fluid, K* is a modified permeability, and Δ is the deformation tensor. We would

replace μ* in the Brinkman term by an equivalent coefficient, not necessarily the

same as that in the Darcy term. A similar momentum equation was obtained by

Hayes et al. (1996) using volume averaging.

Some wider aspects have been discussed by Shah and Yortsos (1995). Using

homogenization theory, they show that the macroscopic power law has the same

form as the power law for a single capillary, at low Reynolds numbers (a regime

that is reached at low velocities only if n< 2). However, the power-law permeabil-

ity may depend also on the orientation of the pressure gradient. The homogeniza-

tion method, together with the theory of isotropic tensor function of tensor

arguments, was used by Auriault et al. (2002b) to treat anisotropic media. An

alternative model was proposed by Liu and Masliyah (1998). Numerical modeling

of non-Newtonian fluids in a three-dimensional periodic array was reported by

Inoue and Nakayama (1998).

Various kinds of non-Newtonian fluids have been investigated (see, for example,

the papers cited in Sects. 4.16.3, 5.1.9.2, 6.23, 7.1.6, 9.1.6.4, and 9.2.1). A general

study of unsteady flow of a fluid with yield stress was made by Pascal (1981, 1983).
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1.6 Hydrodynamic Boundary Conditions

In order to be specific, we consider the case where the region y< 0 is occupied by a

porous medium, and there is a boundary at y¼ 0, relative to Cartesian coordinates

(x, y, z). If the boundary is impermeable, then the usual assumption is that the

normal component of the seepage velocity v¼ (u, v, w) must vanish there, i.e.,

v ¼ 0 at y ¼ 0: ð1:19Þ

If Darcy’s law is applicable, then, since that equation is of first order in the spatial

derivatives, only one condition can be applied at a given boundary. Hence the other

components of the velocity can have arbitrary values at y¼ 0; i.e., we have slip at

the boundary.

If instead of being impermeable the boundary is free (as in the case of a liquid-

saturated medium exposed to the atmosphere), then the appropriate condition is that

the pressure is constant along the boundary. If Darcy’s law is applicable and the

fluid is incompressible, this implies that

∂v
∂y

¼ 0 at y ¼ 0: ð1:20Þ

This conclusion follows because at y¼ 0 we have P¼ constant for all x and z, so
∂P/∂x¼∂P/∂z¼ 0, and hence u¼w¼ 0 for all x and z. Hence ∂u/∂x¼∂w/
∂z¼ 0 at y¼ 0. Since the equation of continuity

∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

¼ 0 ð1:21Þ

holds for y¼ 0, we deduce the boundary condition (1.20).

If the porous medium is adjacent to clear fluid identical to that which saturates

the porous medium, and if there is unidirectional flow in the x direction (Fig. 1.4),

then according to Beavers and Joseph (1967) the appropriate boundary condition is

the empirical relationship

∂uf
∂y

¼ αBJ

K1=2
uf � umð Þ; ð1:22Þ

where uf is the velocity in the fluid and um is the seepage velocity in the porous

medium. It is understood that in Eq. (1.22) uf and ∂uf/∂y are evaluated at y¼ 0+ and

um is evaluated at some small distance from the plane y¼ 0, so there is a thin layer

just inside the medium over which the transition in velocity takes place.

The quantity αBJ is dimensionless and is independent of the viscosity of the fluid,

but it depends on the material parameters that characterize the structure of the

permeable material within the boundary region. In their experiments Beavers and
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Joseph found that αBJ had the values 0.78, 1.45, and 4.0 for Foametal having

average pore sizes 0.016, 0.034, and 0.045 inches, respectively, and 0.1 for Aloxite

with average pore size 0.013 or 0.027 inches. More evidence for the correctness of

this boundary condition was produced by Beavers et al. (1970, 1974). Some

historical details have been recorded by Nield (2009c). Sahraoui and Kaviany

(1992) have shown that the value of αBJ depends on the flow direction at the

interface, the Reynolds number, the extent of the clear fluid, and nonuniformities

in the arrangement of solid material at the surface. In their experimental investiga-

tion with a square cavity Liu et al. (2014) found that the value of αBJ varied in the

range 0.307–2.53.

Some theoretical support for the Beavers-Joseph condition is provided by the

results of Taylor (1971) and Richardson (1971), based on an analogous model of a

porous medium, and by the statistical treatment of Saffman (1971). Saffman

pointed out that the precise form of the Beavers–Joseph condition was special to

the planar geometry considered by Beavers and Joseph, and in general was not in

fact correct to order K. Saffman showed that on the boundary

uf ¼ K1=2

αBJ

∂uf
∂n

þ O Kð Þ; ð1:23Þ

where n refers to the direction normal to the boundary. In Eq. (1.22) um isO(K ), and

thus may be neglected if one wishes.

Jones (1973) assumed that the Beavers-Joseph condition was essentially a

relationship involving shear stress rather than just velocity shear, and on this

view Eq. (1.22) would generalize to

∂uf
∂y

þ ∂vf
∂x

¼ αBJ
K1=2

uf � umð Þ ð1:24Þ

permeable interface

impermeable 
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fluid
layer
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Fig. 1.4 Velocity profile

for unidirectional flow

through a fluid channel

bounded by an impermeable

wall and a saturated porous

medium
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for the situation when vf was not zero. This seems plausible, but apparently it has

not yet been confirmed. However, Straughan (2004b) has argued that one should

give consideration to the Jones version, because it and not the original Beavers-

Joseph version is properly invariant under coordinate transformation.

Taylor (1971) observed that the Beavers-Joseph condition can be deduced as a

consequence of the Brinkman equation. This idea was developed in detail by Neale

and Nader (1974), who showed that in the problem of flow in a channel bounded by

a thick porous wall one gets the same solution with the Brinkman equation as one

gets with the Darcy equation together with the Beavers–Joseph condition, provided

that one identifies αBJ with eμ=μð Þ1=2.
Near a rigid boundary the porosity of a bed of particles is often higher than

elsewhere in the bed because the particles cannot pack so effectively right at the

boundary (see Sect. 1.7). One way of dealing with the channeling effect that can

arise is to model the situation by a thin fluid layer interposed between the boundary

and the porous medium, with Darcy’s equation applied in the medium and with the

Beavers-Joseph condition applied at the interface between the fluid layer and the

porous medium. Nield (1983) applied this procedure to the porous-medium analog

of the Rayleigh-Bénard problem. Alternatively, the Brinkman equation, together

with a formula such as Eq. (1.26), can be employed to model the situation.

Haber and Mauri (1983) proposed that the boundary condition v � n¼ 0 at the

interface between a porous medium and an impermeable wall should be replaced by

v � n ¼ K1=2∇t � vt; ð1:25Þ

where v is the velocity inside the porous medium and vt is its tangential component,

and where ∇t is the tangential component of the operator ∇. Haber and Mauri

argue that Eq. (1.25) should be preferred to v � n¼ 0, since the former accords better

with solutions obtained by solving some model problems using Brinkman’s equa-
tion. For most practical purposes there is little difference between the two alterna-

tives, since K1/2 will be small compared to the characteristic length scale L in most

situations.

A difficulty arises when one tries to match the solution of Brinkman’s equation
for a porous medium with the solution of the usual Navier–Stokes equation for an

adjacent clear fluid, as done by Haber and Mauri (1983), Somerton and Catton

(1982), and subsequent authors. In implementing the continuity of the tangential

component of stress they use equations equivalent to the continuity of μ∂u/∂y
across the boundary at y¼ 0. Over the fluid portion of the interface the clear fluid

value of μ∂u/∂ymatches with the intrinsic value of the same quantity in the porous

medium, but over the solid portion of the interface the matching breaks down

because there in the clear fluid μ∂u/∂y has some indeterminate nonzero value

while the porous medium value has to be zero. Hence the average values of μ∂u/
∂y in the clear fluid and in the medium do not match.

Authors who have specified the matching of μ∂u/∂y have overdetermined the

system of equations. This leads to overprediction of the extent to which motion

induced in the clear fluid is transmitted to the porous medium. The availability of
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the empirical constant αBJ in the alternative Beavers–Joseph approach enables one

to deal with the indeterminacy of the tangential stress requirement.

There is a similar difficulty in expressing the continuity of normal stress, which

is the sum of a pressure term and a viscous term. Some authors have argued that the

pressure, being an intrinsic quantity, has to be continuous across the interface. Since

the total normal stress is continuous, that means that the viscous term must also be

continuous. Such authors have overdetermined the system of equations. It is true

that the pressure has to be continuous on the microscopic scale, but on the

macroscopic scale the interface surface is an idealization of a thin layer in which

the pressure can change substantially because of the pressure differential across

solid material. In practice the viscous term may be small compared with the

pressure, and in this case the continuity of total normal stress does reduce to the

approximate continuity of pressure. Also, for an incompressible fluid, the continuity

of normal stress does reduce to continuity of pressure if one takes the effective

Brinkman viscosity equal to the fluid viscosity, as shown by Chen and Chen (1992).

Authors who have formulated a problem in terms of stream function and vorticity

have failed to deal properly with the normal stress boundary condition (Nield

1997a). For a more soundly based procedure for numerical simulation and for a

further discussion of this matter, the reader is referred to Gartling et al. (1996).

Ochoa-Tapia and Whitaker (1995a, b) have expressly matched the Darcy and

Stokes equations using the volume-averaging procedure. This approach produces a

jump in the stress (but not in the velocity) and involves a parameter β to be fitted

experimentally. They also explored the use of a variable porosity model as a

substitute for the jump condition and concluded that the latter approach does not

lead to a successful representation of all the experimental data, but it provides

insight into the complexity of the interface region. Kuznetsov (1996a) applied the

jump condition to flows in parallel-plate and cylindrical channels partially filled

with a porous medium. Huang et al. (1997) reported a re-investigation of laminar

channel flow passing over porous bed. Kuznetsov (1997b) obtained an analytical

solution for flow near an interface. Ochoa-Tapia and Whitaker (1998) included

inertia effects in a momentum jump condition. Questions about mathematical

continuity were discussed by Payne and Straughan (1998a), whose results were

improved by Kelliher et al. (2011). Homogenization of wall-slip gas flow was

treated by Skjetne and Auriault (1999b). Matching using a dissipation function

was proposed by Cieszko and Kubik (1999). Jäger and Mikelič (2000) and Jäger

et al. (2001) employed asymptotic analysis to derive matching conditions. An

asymptotic analysis of the differences between the Stokes–Darcy system with

different interface conditions and the Stokes-Brinkman system was presented by

Chen et al. (2010). Duman and Shavit (2009) showed that the stress-jump could be

taken to be zero if one knew the maximum velocity and chose the effective position

of the interface accordingly. Deng and Martinez (2005) compared results for one-

and two-domain models and found little difference if β had a certain value,

dependent on the Reynolds and Darcy numbers.

A study of flow in a channel with a fluid layer bounded by a porous layer

modeled using the Brinkman equation was made by Rudraiah (1985). Modeling
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of the interface using a transition layer was introduced by Murdoch and Soliman

(1999) and by Goyeau et al. (2003), while Nield and Kuznetsov (2009c) obtained an

analytical solution in closed form for the case where the reciprocal of the perme-

ability varies linearly across a transition layer. Their analysis involved new mod-

ified Airy functions. These Nield-Kuznetsov functions were further applied to a

variable permeability transition layer by Hamdan and Kamel (2011a, b), Abu

Zaytoon et al. (2016a, b), and Alzahrani et al. (2016).

Layton et al. (2003) introduced a finite-element scheme that allows the simula-

tion of the coupled problem to be uncoupled into steps involving porous media and

fluid flow subproblems. (They also proved existence of weak solutions for the

coupled Darcy and Stokes equations.) Numerical treatments of jump conditions

include those by Silva and de Lemos (2003a) and Costa et al. (2004a, b). The

interfacial region was modeled by Stokes flow in a channel partly filled with an

array of circular cylinders beside one wall by James and Davis (2001). Their

calculations show that the external flow penetrates the porous medium very little,

even for sparse arrays, with a velocity um about one quarter of that predicted by the

Brinkman model. Kubik and Cieszko (2005) employed Lagrange multipliers in

their analysis of boundary conditions. Valdés-Parada et al. (2007a, b, 2009a) used

volume averaging to evaluate momentum jump coefficients. Further numerical

work was reported by Discacciati et al. (2002), Miglio et al. (2003), Hanspal

et al. (2006), Yu et al. (2007), Siyyam et al. (2007), Chen et al. (2008a), and

Costa et al. (2008). The case of heterogeneous porous domains was considered by

Das et al. (2005a) and Das and Lewis (2007). An investigation using the lattice

Boltzmann method was carried out by Bai et al. (2009). A general discussion of

one-domain and two-domain models was made by Gobin and Goyeau (2012).

Shavit et al. (2002, 2004) have simulated the interface using a Cantor-Taylor

brush configuration to model the porous medium. They also reported the results of

particle image velocimetry measurements that showed that the concept of apparent

viscosity did not provide a satisfactory agreement. They proposed that the standard

Brinkman equation be replaced by a set of three equations.

Salinger et al. (1994a) found that a Darcy-slip finite-element formulation pro-

duced solutions that were more accurate and more economical to compute than

those obtained using a Brinkman formulation. A further study using a finite-element

scheme was reported by Nassehi (1998).

Similar considerations apply at the boundary between two porous media. Con-

servation of mass requires that the normal component of ρfv, the product of fluid

density and seepage velocity, be continuous across the interface. For media in

which Darcy’s law is applicable only one other hydrodynamic boundary condition

can be imposed and that is that the pressure is continuous across the interface. The

fluid mechanics of the interface region between two porous layers, one modeled by

the Forchheimer equation and the other by the Brinkman equation, were analyzed

by Allan and Hamdan (2002).

A range of hydrodynamic and thermal interfacial conditions between a porous

medium and a fluid layer were analyzed by Alazmi and Vafai (2001). In general it is

the velocity field that is sensitive to variation in boundary conditions, while the
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temperature field is less sensitive and the Nusselt number is even less sensitive.

Goharzadeh et al. (2005) performed experiments and observed that the thickness of

the transition zone is order of the grain diameter, and hence much larger than the

square root of the permeability as predicted by some previous theoretical studies.

Min and Kim (2005) have used the special two-dimensional model of Richardson

(1971) as the basis for an extended analysis of thermal convection in a composite

channel.

The homogenization approach has been followed by both Jäger and Mikelič

(2009) and Auriault (2010a), who differ in the details of their conclusions (see Jäger

and Mikelič (2010) and Auriault (2010b)). The latter states that the experimental

conditions of Beavers and Joseph do not show a good separation of scales, and that

means that the BJ condition is not transposable to different macroscopic conditions.

However, when that separation is good an intrinsic boundary condition can be

obtained using the homogenization technique of multiple scale asymptotic expan-

sions. There is agreement that, as with the Beavers and Joseph approach, the

adherence condition of the free fluid is obtained at the first-order approximation,

but according to Auriault the corrector to the adherence condition is O(ε2) whereas
it is O(ε) in the BJ condition, where ε is the separation of scales. Auriault notes that
an experimental measure of the small corrector is in practice out of reach.

Homogenization was also used by Marciniak-Czochra and Mikelic (2012) to

obtain an analytic expression for the interface pressure jump, and this was con-

firmed by direct numerical simulations at the microscopic level by Carraro

et al. (2013).

Further work on interface conditions has been conducted by Chandesris and

Jamet (2006, 2007, 2009a, b), focusing on a transition zone and the upscaling from

the mesoscopic to the macroscopic level of description. They emphasized the

importance of just where the interface conditions are imposed. The last paper

contains a derivation of jump conditions for a turbulence k�ε model. Based on a

two-step upscaling analysis, Jamet and Chandesris (2009) show that jump param-

eters can be interpreted as surface excess quantities, the value of each of which

depends linearly on the position of the discontinuous interface and is therefore not

an intrinsic property like surface tension. They propose a theoretical approach that

allows the introduction of genuine intrinsic interfacial properties, and they propose

a best choice for the position of the discontinuous interface. The surface excess

concept was further developed by Chandesris and Jamet (2009c). Zhang and Nepf

(2011) reported experimental and numerical work on exchange flow between open

water and floating vegetation.

Jamet et al. (2009) showed that the two-domain approach and discontinuous

one-domain approach are equivalent provided that the latter is interpreted in the

sense of distributions. In particular, interfacial jumps are introduced in the discon-

tinuous one-domain through Dirac delta functions. Some subtle discretization

errors give rise to large variations that can be misinterpreted as the existence of

jump parameters. Duman and Shavit (2009) obtained a solution of the laminar flow

for a gradual transition. They used a one-domain approach with permeability a

function of porosity and adjusting the apparent interface location as an empirical
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measure. Chen and Wang (2014) introduced a refined one-domain approach, one

involving a transition layer, and then presented numerical results justifying their

model as a good approximation to the two-domain Stokes-Darcy model. Valdés-

Parada returned to the volume-averaging approach including a determination of the

position at which the jump conditions should be applied. They found that any

version of the two-domain approach was in agreement with the one-domain

approach in the bulk of the porous medium and the fluid, but the same is not true

for the process of capturing the essential information of the intermediate region.

Chen et al. (2014a) discussed the influence of a stress-jump coefficient.

Morad and Khalili (2009) studied experimentally the transition layer thickness

in a fluid-porous medium involving multi-sized spherical beads. Further investiga-

tions of a transition layer were made by Tao et al. (2013). They noted the need for a

more general formula than the Kozeny-Carman one to model the gradual change

of permeability.

Carotenuto and Minale (2011) made a detailed examination of shear flow over a

porous layer. They applied experimental rheological tests on the velocity profile

in proximity to the interface. They found agreement with the prediction of

Ochoa-Tapia and Whitaker (1995a, b).

A reexamination of interfacial conditions in the context of binary alloy solidi-

fication was made by Bars and Worster (2006). In order to obtain satisfactory

agreement between the single- and multi-domain approaches, they found it neces-

sary to define a viscous transition zone inside the porous domain, where the Stokes

equation still applies, and to impose continuity of pressure and velocities across

it. They then found agreement between the two formulations when there is a

continuous variation of porosity across the interface between a partially solidified

region (mushy zone) and the melt.

Nabovati and Amon (2013) applied the lattice Boltzmann method to simulate the

interface with a fibrous medium. Their predicted results were in agreement with

both the Beavers-Joseph and Ochoa-Tapia and Whitaker models when appropriate

fitting parameters are used.

A situation involving turbulent flow has been examined by Toutant et al. (2009).

Fetzer et al. (2016) examined the effect of turbulence and roughness on coupled

porous medium/free flow exchange processes.

Marciniak-Czochra and Mikelic (2012) used homogenization to obtain the

effective pressure interface for transport between an unconfined fluid and a porous

medium. Carraro et al. (2013) found that a pressure jump interface law for the

Stokes-Darcy coupling was confirmed by direct numerical simulations. Carraro

et al. (2015) used homogenization to obtain effective interface conditions for the

forced infiltration of a viscous fluid into a porous medium.

Narasimhan et al. (2014) performed an experimental and numerical

determination of the interface slip coefficient for a fluid stream exiting a partly

filled porous medium channel. Chen et al. (2016a) made a numerical study of the

slip effect at the porous medium/fluid interface in an enclosure partly filled with a

porous medium.
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Interfacial boundary conditions between a free domain and thin porous layers for

non-Newtonian fluid flows were introduced by Brillard et al. (2014). The interface

condition for the case of a power-law fluid was also discussed, on the basis of

mathematical modeling and numerical calculations, by Silva et al. (2016). A

variational approach to the interface conditions was made by dell’Isola et al.

(2009). The case of periodically curved surfaces was investigated by Dobberschütz
(2014). A nonlinear effective slip interface law for transport phenomena between a

fracture flow and a porous medium was proposed by Marciniak-Czochra and

Mikelić (2014). Antoniadis and Papalexandris (2015, 2016) investigated numeri-

cally the dynamics of shear flows at the interface of a porous medium and a fluid.

In summary, modeling the interface between a porous medium and a fluid clear

of solid material is a complicated problem. Fortunately, in routine problems

involving natural convection the interface tangential stress boundary condition is

less restrictive and less sensitive than the other boundary conditions that are

involved. Our recommendation is that the Beavers-Joseph condition be employed

with the understanding that the coefficient is regarded as an empirical quantity that

should be fitted to the particular situation being investigated.

1.7 Effects of Porosity Variation

In a porous bed filling a channel or pipe with rigid impermeable walls, there is in

general an increase in porosity as one approaches the walls because the solid

particles are unable to pack together as efficiently as elsewhere because of the

presence of the wall. Experiments have shown that the porosity is a damped

oscillatory function of the distance from the wall, varying from a value near unity

at the wall to nearly core value at about five diameters from the wall. These

oscillations are illustrated by the experimental data (the circles) plotted in Fig. 1.5.

The notion of volume averaging over a r.e.v. breaks down near the wall, and

most investigators have assumed a variation of the form (Fig. 1.5).

φ ¼ φ1 1þ C exp �N
y

dp

� 	� �
; ð1:26Þ

where y is the distance from the wall, dp is the particle diameter, and C and N are

empirical constants. Experiments have indicated that appropriate values are C¼ 1.4

and N¼ 5 or 6 for a medium with φ1¼ 0.4.

As a consequence of the porosity increase in the vicinity of the wall, the velocity

of a flow parallel to the wall increases as the wall is approached and goes through a

maximum before it decreases to zero (to satisfy the no-slip condition). In general,

this leads to a net increase in volume flux, i.e., to the phenomenon called the

channeling effect.
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As Georgiadis and Catton (1987) have pointed out, there also is a more general

phenomenon that arises because of porosity variation in association with quadratic

drag. To illustrate this, consider the steady fully developed two-dimensional flow

through a channel. The unidirectional nondimensional velocity profile q(y) for flow
parallel to the x axis is the solution of a boundary value problem of the following

form (Brinkman–Forchheimer):

d2q

dy2
¼ dP

dx
þ Kqþ Λ qj jq, with q �1ð Þ ¼ 0: ð1:27Þ

The quantitiesK and Λ depend on the porosity φ [compare the Irmay-Ergun equation

(1.15)]. The solution of Eq. (1.27), with the boundary layer term omitted, is

q ¼ 3αð Þ1=2
Λ

� K

2Λ
; ð1:28Þ

where

α ¼ � dP

dx

Λ

3
þ K2

12
: ð1:29Þ

The mean flow rate over the channel cross section is given by the spatial average of

Eq. (1.27), and assuming statistical homogeneity this is equivalent to an ensemble

average with φ as the variable. It is easily shown that the function q(φ) of the
random variable φ is convex in the interval [0, 1] if the Ergun relationships hold.

This implies that for the same pressure gradient along the channel the mean flux is

larger when there is a spatial variation of porosity: �q φð Þ > q φð Þ. This means that if

we use the average value φ of the porosity, we obtain only a lower bound for the

Fig. 1.5 The variation of

porosity near the wall

(Cheng et al. 1991, with

permission from Kluwer

Academic Publishers)
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flow rate through the packed bed. Georgiadis and Catton (1987) found that in one

realistic case �q φð Þ could be 9% greater than q φð Þ. Pressure drop/flow rate

measurements therefore would give an effective value for the permeability greater

than that otherwise expected. Fu and Huang (1999) showed that random porosity

led to a negative correlation between local Nusselt number and near-wall local

porosity.

Sakamoto and Kulacki (2008) have examined the effective thermal diffusivity of

porous media in the vicinity of a wall.

1.8 Turbulence in Porous Media

Direct numerical simulation (DNS) on the pore scale is very expensive computa-

tionally, and so has been performed only to a limited extent. Breugem and Boersma

(2005) performed DNS on channel flows over a 3D grid of cubes and concluded that

the continuum approach based on volume averaging could be accurate for flow over

and through a permeable wall. Chandesris et al. (2013) used DNS for turbulent heat

transfer in a channel partly filled with a porous medium. Jin et al. (2015) used DNS

for a staggered arrangement of square cylinders. For engineering applications

macroscopic models are needed, and these are now discussed.

The nonlinear spectral analysis of Rudraiah (1988) was based on a Brinkman

model valid for high porosity only, and so is of questionable use for media in

which the solid material inhibits the formation of macroscopic eddies. Masuoka

and Takatsu (1996) used a volume-averaging procedure to produce a zero-

equation model. Nield (1997c) questioned their basic assumption that the

Forchheimer flow resistance and dispersion are caused mainly by turbulent

mixing, and that the drag force caused by the molecular stress can be equated to

the Darcy term alone. Takatsu et al. (1994), Takatsu and Masuoka (1998), and

Masuoka and Takatsu (2002) further developed their model and conducted exper-

iments on flow through banks of tubes. They persisted with their faulty assump-

tion, based on the assumption that the deviation from Darcy’s law appears at the

same value of the Reynolds number (based on a characteristic particle diameter)

as that at which turbulent vortices appear. Nield (1997c) pointed out that the

experimental work on which Masuoka and Takatsu relied in fact indicates other-

wise. Further experiments were conducted by Seguin et al. (1998) and Patil and

Liburdy (2013).

Travkin and Catton (1994, 1995, 1998, 1999), Gratton et al. (1996), and Catton

and Travkin (1996) developed general models in which the solid-phase morphology

is emphasized. They did not relate their models to critical experiments, and so it is

not clear that this refinement is justified from a practical point of view.

Lee and Howell (1991) performed extensive numerical calculations, of forced

convective heat transfer from a heated plate, using a volume-averaged κ�ε model.

The κ�ε model of Antohe and Lage (1997b), which is more general than the ones

introduced by Lee and Howell (1987) and Prescott and Incropera (1995), is
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promising from a practical aspect. Their analysis leads to the conclusion that, for a

medium of small permeability, the effect of the solid matrix is to damp the

turbulence, as one would expect. This analysis was further extended by Getachew

et al. (2000). Further work with a κ�εmodel was reported by Chen et al. (1998a, b)

and by Laakkonen (2003). Modeling with one energy equation was performed by

Chung et al. (2003). Numerical modeling of composite porous-medium/clear-fluid

ducts has been reported by Kuznetsov and Xiong (2003), Kuznetsov (2004a), and

Yang and Hwang (2003).

Kuwahara et al. (1996) performed numerical modeling of the turbulent flow

within the pores of a porous medium using a spatially periodic array, and obtained

some macroscopic characteristics of that flow. Note that this is different from

turbulence on a macroscopic scale, because the period length in the simulations

(something that is representative of the pore scale) provides an artificial upper

bound on the size of the turbulent eddies that can be generated. This was pointed out

by Nield (1991c, 2001b). The physical reason is that the solid matrix impedes the

transverse transport of momentum and hence impedes the maintenance of eddies. A

cascade of energy from large eddies to smaller eddies is thus impeded. Nield’s
observation was confirmed by the direct numerical simulations carried out by Jin

et al. (2015) and Jouybari et al. (2016). They showed that macroscopic turbulence

cannot occur in a regular porous medium. The pore scale prevalence hypothesis was

further proved by Uth et al. (2016) who used three independent techniques for

analyzing turbulent length scales.

Further numerical modeling using periodic arrays was conducted by Kuwahara

and Nakayama (1998), Kuwahara et al. (1998), Nakayama and Kuwahara (1999,

2000), and Nakayama et al. (2004). With an array of staggered square cylinders,

Teruel and Uddin (2009a) found that the Forchheimer coefficient is weakly depen-

dent on the Reynolds number and strongly dependent on the porosity if the flow is

fully turbulent. Yang et al. (2014a) showed that Nakayama and Kuwahara’s (1999)
correlation can fit well with the results of 3D simulation.

In his discussion of transition to turbulence, Lage (1998) noted the difference in

pressure-drop versus flow-speed relationship between the case of a porous medium

that behaves predominantly like an aggregate of conduits (characterized by a

balance between pressure drop and viscous diffusion) and the case of a medium

that behaves like an aggregate of bluff bodies (characterized by a balance between

pressure drop and form drag).

An alternative approach was extensively developed by de Lemos and coworkers:

de Lemos (2004) (review), de Lemos and Braga (2003), de Lemos and Mesquita

(2003), de Lemos and Pedras (2000, 2001), Rocamora and de Lemos (2000), de

Lemos and Rocamora (2002), de Lemos and Tofaneli (2004), Pedras and de Lemos

(2000, 2001a, b, c, 2003), and Silva and de Lemos (2003b). It is based on volume

averages and a double decomposition concept involving both spatial deviations and

time fluctuations. To a limited extent this approach unifies the work of Masuoka,

Takatsu, Nakayama, and Kuwahara (who applied a time average followed by a

volume average) and Lage and his coworkers and predecessors (who applied the
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two averages in the opposite order). Further modeling was performed by Teruel and

Uddin (2009b, 2010).

Simplified models for turbulence in porous media, or related systems such as

vegetation, have been presented by Wang and Takle (1995), Nepf (1999), Macedo

et al. (2001), Hoffman and van der Meer (2002), Flick et al. (2003), and Alvarez

et al. (2003).

Work on the topic of this section has been reviewed by Lage et al. (2002). A

related paper is the study of hydrodynamic stability of flow in a channel or duct

occupied by a porous medium by Nield (2003). As one would expect from the

conclusions of Antohe and Lage (1997b) cited above, for such flows the critical

Reynolds number for the onset of linear instability is very high. Darcy drag,

Forchheimer drag, and additional momentum dispersion all contribute to a flatten-

ing of the velocity profile in a channel, and thus to increased stability. Also

contributing to increased stability is the rapid decay with time noted in

Sect. 1.5.1. Work to date indicates that turbulence changes the values of drag

coefficients from their laminar flow values but does not qualitatively change

convective flows in porous media except when the porosity is high. Further reviews

of turbulence in porous media have been made by Vafai et al. (2006a, b) and de

Lemos (2005c).

Further numerical modeling using periodic arrays was conducted by Kuwahara

and Nakayama (1998), Kuwahara et al. (2006), Nakayama and Kuwahara (1999,

2000, 2005, 2008), and Nakayama et al. (2004). Studies of turbulence in relation to

the interface between a porous medium and a clear fluid region have been made by

de Lemos (2005b), Assato et al. (2005), and Zhu and Kuznetsov (2005).

Jouybari et al. (2016) noted that another complication is the difficulty of

accurately modeling of turbulent flows near walls. For example, the model of

Nakayama and Kuwahara (1999) predicts an incorrect flow pattern when the

mass flow rate in the pores increases. Consequently macroscopic models have

been developed that are free from turbulence modeling in the pore-scale simulation

(Soulaine and Quintard 2014).

Guo et al. (2006) compared three models. They concluded that the model of

Nakayama and Kuwahara gave the results closest to the experimental data. This

model is able to account for mixing and mass transfer within a randomly packed

column of particles and has been extensively used in recent years. However, it has

been found to overpredict the effects of turbulence for applications in which the

pore-scale Reynolds number is less than 3000 (Nimvari et al. 2014; Jouybari et al.

2014, 2015). Consequently, Jouybari et al. (2016) performed computations to

extend the range of existing models to low-Reynolds number turbulent flows.

The relationship of quadratic drag to turbulence, a matter raised by Nield

(2001b), has been investigated by Skjetne and Auriault (1999a, c), Lasseux et al.

(2011), and Soulaine and Quintard (2014). The recent studies support the use of

generalized Forchheimer-like expressions for moderate Reynolds numbers with a

quadratic dependence on velocity.

Additional work on turbulence in porous media has been reported by Alvarez

et al. (2003), Alvarez and Flick (2007), Braga and de Lemos (2006, 2008, 2009),
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Chandesris et al. (2006), de Lemos (2008, 2009), de Lemos and Dorea (2011), de

Lemos and Fischer (2008), de Lemos and Saito (2008), de Lemos and Silva (2006),

Kazerooni and Hannani (2009), Dorea and de Lemos (2010), Pinson et al. (2006,

2007), Saito and de Lemos (2005a, 2006, 2009, 2010), Carvalho and de Lemos

(2013,2014), and Kundu et al. (2014b).

Much of this work has been summarized in the book by de Lemos (2012b) and

the chapter by de Lemos (2015).

1.9 Fractured Media, Deformable Media, and Complex
Porous Structures

The subject of flow in fractured media is an important one in the geological context.

In addition to continuum models, discrete models have been formulated. In these

models, Monte Carlo simulations and various statistical methods are employed, and

the concepts of percolation processes, universal scaling laws, and fractals are basic

tools. These matters are discussed in detail by Barenblatt et al. (1990) and Sahimi

(1993, 1995). The lattice Boltzmann method is widely employed; see, for example,

Maier et al. (1998) and Wang et al. (2016f). Vujeviĉ and Graf (2015) studied

combined inter- and intra-fracture natural convection in fracture networks embed-

ded in a low-permeability matrix.

Likewise, comparatively little research has been done on convection with

deformable porous media, although some thermoelastic aspects of this subject

have been studied. For example, dual-porosity models (involving two overlapping

continua) have been developed by Bai and Roegiers (1994) and Bai et al. (1994a, b,

1996). Another exception is the discussion of the flow over and through a layer of

flexible fibers by Fowler and Bejan (1995). Some flows in media formed by porous

blocks separated by fissures have been studied by Levy (1990) and Royer et al.

(1995), who employed a homogenization method, and also by Lage (1997). There is

one published study of convection in a saturated fissured medium, that by Kulacki

and Rajen (1991). This paper contains a useful review, an experimental study of

heat transfer in an idealized fissured medium, and supporting numerical work. They

conclude that one interconnected fissure in every one tenth of the domain is

sufficient for an equivalence between a saturated fissure system and a porous

medium, and that the assumption that a fissured system can be treated as a porous

medium leads to an overestimate (i.e., an upper bound) for the heat transfer.

An increasing use of numerical simulation is being used in the study of complex

porous structures, such as geological structures. An interesting development is the

finite-element program that has been used by Joly et al. (1996) to study the onset of

free convections and the stability of two-dimensional convective solutions to three-

dimensional perturbations. Further numerical studies were reported by Ghorayeb

and Firoozabadi (2000a, b, 2001) and by Saghir et al. (2001).
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Biological applications have motivated the investigation of other phenomena

related to convection in porous media. Khaled and Vafai (2003) surveyed some

investigations of diffusion processes within the brain, diffusion during tissue

generation, applications of magnetic resonance to the categorization of tissue

properties, blood flow in tumors, blood flow in perfusion tissues, bioheat transfer

in tissues, and bioconvection. Lage et al. (2004a) have used a porous mediummodel

to investigate the red cell distribution effect on alveolar respiration. Ghosh et al.

(2011) used a porous medium model to discuss drug delivery in interior carcinoma.

Further work on biological material modeled as a porous medium was surveyed by

Khanafer and Vafai (2008) and Khanafer et al. (2008a) and in the book edited

by Vafai (2011). The topic of convection in biological contexts is further discussed

in Sect. 2.6.

1.10 Bidisperse Porous Media

A bidisperse porous medium (BDPM), as defined by Chen et al. (2000b), is

composed of clusters of large particles that are agglomerations of small particles.

Thus there are macropores between the clusters and micropores within them.

Applications are found in bidisperse adsorbent or bidisperse capillary wicks in a

heat pipe. Since the bidisperse wick structure significantly increases the area

available for liquid film evaporation, it has been proposed for use in the evaporator

of heat pipes. In the context of thermoelastic solids, such media are referred to as

double porosity materials.

A BDPM thus may be looked at as a standard porous medium in which the solid

phase is replaced by another porous medium, whose temperature may be denoted

by Tp if local thermal equilibrium is assumed within each cluster. We can then talk

about the f-phase (the macropores) and the p-phase (the remainder of the structure).

An alternative way of looking at the structure is to regard it as a porous medium in

which fractures or tunnels have been introduced. One can then think of the f-phase

as being a “fracture phase” and the p-phase as being a “porous phase.”

Questions of interest are how one can determine the effective permeability and

the effective thermal conductivity of a bidisperse porous medium. Fractal models

for each of these have been formulated by Yu and Cheng (2002a, b). In the first

paper, the authors developed two models for the effective thermal conductivity

based on fractal geometry and the electrical analogy. Theoretical predictions based

on these models were compared with those from a previous lumped-parameter

model and with experimental data for the stagnant thermal conductivity reported by

Chen et al. (2000b). In this paper a three-dimensional model of touching spatially

periodic cubes, which are approximated by touching porous cubes, was used;

Cheng and Hsu (1999b) had previously used a two-dimensional model. On the

basis of their experiments, Chen et al. (2000a, b) concluded that, when the ratio of

solid/fluid thermal conductivity is greater than 100, the effective thermal conduc-

tivity of a bidisperse porous medium is smaller than that of a monodisperse porous

medium saturated with the same fluid, because of the contact resistance at the
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microscale and the higher porosity for the bidisperse medium in comparison with

the monodisperse one.

Extending the Brinkman model for a monodisperse porous medium, Nield and

Kuznetsov (2005a) proposed to model the steady-state momentum transfer in a

BDPM by the following pair of coupled equations for v*f and v*p, where the

asterisks denote dimensional variables,

G ¼ μ

Kf

� 	
v*f þ ζ v*f � v*p


 �
� eμf∇

*2v*f ð1:30Þ

G ¼ μ

Kp

� 	
v*p þ ζ v*p � v*f


 �
� eμp∇

*2v*p: ð1:31Þ

HereG is the negative of the applied pressure gradient, μ is the fluid viscosity, Kf and

Kp are the permeabilities of the two phases, and ζ is the coefficient for momentum

transfer between the two phases. The quantities eμf and eμp are the respective effective

viscosities. From Eqs. (1.30) and (1.31), v	p can be eliminated to give

eμfeμp∇
*4v*f � eμf ζ þ μ=Kp

� �þ eμp ζ þ μ=Kfð Þ� �
∇*2v*f

þ ζμ 1=Kf þ 1=Kp

� �þ μ2=KfKp

� �
v*f ¼ G 2þ μ=Kp

� � ð1:32Þ

and v	p is given by the same equation with subscripts swapped. For the special case

of the Darcy limit one obtains

v*f ¼
μ=Kp þ 2ζ
� �

G

μ2=KfKp þ ζμ 1=Kf þ 1=Kp

� � ; ð1:33Þ

v*p ¼
μ=Kf þ 2ζð ÞG

μ2=KfKp þ ζμ 1=Kf þ 1=Kp

� � : ð1:34Þ

Thus the bulk flow is given by

G ¼ μ=Kð Þv*; ð1:35Þ

where

v* ¼ φv*f þ 1� φð Þv*p; ð1:36Þ

K ¼ φKf þ 1� φð ÞKp þ 2 ζ=μð ÞKfKp

1þ ζ=μð Þ Kf þ Kp

� � ð1:37Þ

Thus, in this case, the effect of the coupling parameter ζ is merely to modify the

effective permeabilities of the two phases, via the parameter ζ/μ. A tridisperse

porous medium was investigated by Nield and Kuznetsov (2011b) and Kuznetsov
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and Nield (2011a). An intensive study of the onset of natural convection in a

BDPM, using both linear and nonlinear stability theory and for both Darcy and

Brinkman models, was presented in Chapter 13 of Straughan (2016). He noted that

the critical Rayleigh number was much greater in a BDPM than in a classical one,

and this strongly indicates that a BDPM will be significantly better to employ in

thermal insulation than a regular one.

A less ad hoc model for a bidisperse porous medium was proposed by Nield

(2015a).

Forced convection in a BDPM is discussed in Sect. 4.16.4 and natural convec-

tion is treated in Sects. 4.16.4 and 7.3.9.
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Chapter 2

Heat Transfer Through a Porous Medium

2.1 Energy Equation: Simple Case

In this chapter we focus on the equation that expresses the first law of thermody-

namics in a porous medium. We start with a simple situation in which the medium

is isotropic and where radiative effects, viscous dissipation, and the work done by

pressure changes are negligible. Very shortly we shall assume that there is local

thermal equilibrium so that Ts¼ Tf¼ T, where Ts and Tf are the temperatures of the

solid and fluid phases, respectively. Here we also assume that heat conduction in the

solid and fluid phases takes place in parallel so that there is no net heat transfer from

one phase to the other. More complex situations will be considered in Sect. 6.5. The

fundamentals of heat transfer in porous media also are presented in Bejan et al.

(2004) and Bejan (2004a).

Taking averages over an elemental volume of the medium we have, for the solid

phase,

1� φð Þ ρcð Þ s
∂Ts

∂t
¼ 1� φð Þ∇ � ks∇Tsð Þ þ 1� φð Þq000

s ð2:1Þ

and, for the fluid phase,

φ ρcPð Þ f
∂Tf

∂t
þ ρcPð Þ fv �∇Tf ¼ φ∇ � kf∇Tfð Þ þ φq

000
f : ð2:2Þ

Here the subscripts s and f refer to the solid and fluid phases, respectively, c is the
specific heat of the solid, cP is the specific heat at constant pressure of the fluid, k is
the thermal conductivity, and q000[W/m3] is the heat production per unit volume.

In writing Eqs. (2.1) and (2.2) we have assumed that the surface porosity is equal

to the porosity. This is pertinent to the conduction terms. For example, �ks∇Ts is
the conductive heat flux through the solid, and thus∇�(ks∇Ts) is the net rate of heat
conduction into a unit volume of the solid. In Eq. (2.1) this appears multiplied by
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the factor (1�φ), which is the ratio of the cross-sectional area occupied by solid to
the total cross-sectional area of the medium. The other two terms in Eq. (2.1) also

contain the factor (1�φ) because this is the ratio of volume occupied by solid to the

total volume of the element. In Eq. (2.2) there also appears a convective term, due to

the seepage velocity. We recognize that V�∇Tf is the rate of change of temperature

in the elemental volume due to the convection of fluid into it, so this, multiplied by

(ρcP)f, must be the rate of change of thermal energy, per unit volume of fluid, due to

the convection. Note further that in writing Eq. (2.2) use has been made of the

Dupuit–Forchheimer relationship v¼φV.
Setting Ts¼ Tf¼ T and adding Eqs. (2.1) and (2.2) we have

ρcð Þm
∂T
∂t

þ ρcð Þfv �∇T ¼ ∇ � km∇Tð Þ þ q
000
m; ð2:3Þ

where

ρcð Þm ¼ 1� φð Þ ρcð Þs þ φ ρcPð Þf ; ð2:4Þ
km ¼ 1� φð Þks þ φkf ; ð2:5Þ
q

000
m ¼ 1� φð Þq000

s þ φq
000
f ð2:6Þ

are, respectively, the overall heat capacity per unit volume, overall thermal con-

ductivity, and overall heat production per unit volume of the medium.

2.2 Energy Equation: Extensions to More Complex
Situations

2.2.1 Overall Thermal Conductivity of a Porous Medium

In general, the overall thermal conductivity of a porous medium depends in a

complex fashion on the geometry of the medium. As we have just seen, if the

heat conduction in the solid and fluid phases occurs in parallel, then the overall

conductivity kA is the weighted arithmetic mean of the conductivities ks and kf:

kA ¼ 1� φð Þks þ φkf : ð2:7Þ

On the other hand, if the structure and orientation of the porous medium is such that

the heat conduction takes place in series, with all of the heat flux passing through

both solid and fluid, then the overall conductivity kH is the weighted harmonic mean

of ks and kf:
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1

kH
¼ 1� φ

ks
þ φ

kf
: ð2:8Þ

In general, kA and kH will provide upper and lower bounds, respectively, on the

actual overall conductivity km. We always have kH� kA, with equality if and only if
ks¼ kf. For practical purposes, a rough and ready estimate for km is provided by kG,
the weighted geometric mean of ks and kf, defined by

kG ¼ k1�φ
s kφ

f : ð2:9Þ

This provides a good estimate so long as ks and kf are not too different from each

other (Nield 1991b). More complicated correlation formulas for the conductivity of

packed beds have been proposed. Experiments by Prasad et al. (1989b) showed that

these formulas gave reasonably good results provided that kf was not significantly
greater than ks. The agreement when kf� ks was not good, the observed conduc-

tivity being greater than that predicted. This discrepancy may be due to porosity

variation near the walls. Since km depends on φ there is an effect analogous to the

hydrodynamic effect already noted in Sect. 1.7. Some of the discrepancy may be

due to the difficulty of measuring a truly stagnant thermal conductivity in this case

(Nield 1991b).

In the case when the fluid is a rarefied gas and the Knudsen number has a large

value, temperature slip occurs in the fluid at the pore boundaries. In these circum-

stances one could expect that the fluid conductivity would tend to zero as the

Knudsen number increases. Then in the case of external heating the heat would

be conducted almost entirely through the solid matrix. In the case of just internal

heating in the fluid the situation is reversed as the fluid phase becomes thermally

isolated from the solid phase. Temperature slip in the context of microfluidics was

discussed in Section 9.4 of Straughan (2015d). Temperature slip at the interface

between porous and fluid layers was investigated by Takatsu and Masuoka (2007).

Further models for stagnant thermal conductivity have been put forward by Hsu

et al. (1994, 1995), Cheng et al. (1999), and Cheng and Hsu (1998, 1999). In

particular, Cheng et al. (1999), and also Hsu (2000), contain comprehensive

reviews of the subject. Volume averaging was used by Buonanno and Carotenuto

(1997) to calculate the effective conductivity taking into account particle-to-parti-

cle contact. Experimental studies have been made by Imadojemu and Porter (1995)

and Tavman (1996). The former concluded that the thermal diffusivity and con-

ductivity of the fluid played the major role in determining the effective conductivity

of the medium. Hsu (1999) presented a closure model for transient heat conduction,

while Hsiao and Advani (1999) included the effect of heat dispersion. Hu et al.

(2001) discussed unconsolidated porous media, Paek et al. (2000) dealt with

aluminum foam materials, and Fu et al. (1998) studied cellular ceramics. Boomsma

and Poulikakos studied the effective thermal conductivity of a three-dimensionally

structured fluid-saturated metal foam. Carson et al. (2005) obtained thermal con-

ductivity bounds for isotropic porous materials.
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A unified closure model for convective heat and mass transfer has been

presented by Hsu (2005). He notes that r.e.v. averaging leads to the introduction

of new unknowns (dispersion, interfacial tortuosity, and interfacial transfer) whose

determination constitutes the closure problem. More experiments are needed to

determine some of the coefficients that are involved. His closure relation for the

interfacial force contains all the components due to drag, lift, and transient inertia to

the first-order approximation. He concludes that the macroscopic energy equations

are expected to be valid for all values of the time scale and Reynolds number, for

the case of steady flows. Further investigations are needed for unsteady flows.

So far we have been discussing the case of an isotropic medium, for which the

conductivity is a scalar. For an anisotropic medium km will be a second-order

tensor. Lee and Yang (1998) modeled a heterogeneous anisotropic porous medium.

A fundamental issue has been raised by Merrikh et al. (2002, 2005a, b) and

Merrikh and Lage (2005). This is the question of how the internal regularity of a

solid/fluid physical domain affects global flow and heat transfer. These authors

have considered a situation (a regular distribution of rectangular solid obstacles in a

rectangular box) that is sufficiently simple for a comparison to be made between the

results of numerical modeling involving a treatment of the fluid and solid phases

considered separately (continuum model) and a standard r.e.v.-averaged porous

medium (porous continuum model). The results for the two models can be substan-

tially different. In other words, the internal regularity can have an important effect.

The authors considered situations where the obstacles were separated from the

boundary walls, and thus some of the difference is due to a channeling effect.

Further contributions have been made by Braga and de Lemos (2005a, b).

The effective thermal conductivity of rough spherical packed beds was studied

by Bahrami et al. (2006). Two effective conductivity models for porous media

composed of hollow spherical agglomerates were proposed by Yu et al. (2006a). A

collocated parameter model was employed by Reddy and Karthikeyan (2009) to

estimate the effective thermal conductivity of two-phase materials, a subject also

studied by Samantray et al. (2006).

Works on the effective thermal conductivity of saturated porous media have

been surveyed by Aichlmayr and Kulacki (2006).

The analogy between dual-phase-lagging and porous-medium conduction was

discussed by Wang et al. (2008d). The analogy permits existence, uniqueness, and

structural stability results established for the former to be applied to the latter.

A comprehensive review of various models for the effective conductivity was

made by Singh (2011a, b), who pointed out that this quantity was dependent not

only on the conductivities and volume fractions of the constituents, the morphology

of the constituent particles, and the structure of the material but also on interphase

interactions. Qu et al. (2012a) introduce an octet-truss lattice unit cell model. Pedras

and de Lemos (2008) studied thermal dispersion in porous media as a function of

solid-fluid conductivity ratio. Yang and Nakayama (2010) provided a synthesis of

the effects of tortuosity and dispersion on effective conductivity. Wang et al.

(2016c) proposed a prediction model for effective thermal conductivity on mono-

sized pebble beds.
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2.2.2 Effects of Pressure Changes and Viscous Dissipation

If the work done by pressure changes is not negligible [i.e., the condition βT(gβ/cPf)
L� 1 is not met], then a term �βT(∂P/∂t+ v�∇P) needs to be added to the left-

hand side of Eq. (2.3). Here β is the coefficient of volumetric thermal expansion,

defined by

β ¼ �1

ρ

∂ρ
∂T

� �
P

: ð2:10Þ

Viscous dissipation is negligible in natural convection if (gβ/cPf)L� 1, which is

usually the case. If it is not negligible, another term must be added to the right-hand

side of Eq. (2.3), as noted first by Ene and Sanchez-Palencia (1982). If Darcy’s law
holds, that term is (μ/K )v � v in the case of an isotropic medium, and μv �K�1 � v if

the medium is anisotropic. To see this, note that the average of the rate of doing

work by the pressure, on a unit volume of an r.e.v., is given by the negative of div

(PφV)¼ div(Pv)¼ v.grad P, since div v¼ 0. The Forchheimer drag term, dotted

with the velocity vector, contributes to the dissipation, despite the fact that the

viscosity does not enter explicitly. This apparent paradox was resolved by Nield

(2000). The contribution of the Brinkman drag term is currently a controversial

topic. Nield (2004b) proposed that the Brinkman term be treated in the same way as

the Darcy and Forchheimer terms, so that the total viscous dissipation remains

equal to the power of the total drag force. Thus the viscous dissipationΦwould then

be modeled by

ϕ ¼ μ

K
v � vþ cP

K1=2

��v��v � v� eμv �∇2v: ð2:11Þ

Al-Hadhrami et al. (2003) prefer a form that remains positive and reduces to that for

a fluid clear of solid material in the case where the Darcy number tends to infinity.

Accordingly, they would add the usual clear fluid term to the Darcy and

Forchheimer terms. Nield (2004b) suggested that the Brinkman equation may

break down in this limit. In most practical situations the Brinkman term will be

small compared with the Darcy term, and so the form of the Brinkman term is then

not important. A derivation from a representative elementary volume was made by

Breugem and Rees (2006). Additional discussion of viscous dissipation in porous

media and the validity of the Brinkman equation can be found in Salama (2011a),

who included an additional term involving the gradient of the porosity. Salama et al.

(2013) compared the effects of various terms on boundary layer flow on a

vertical wall.

Nield (2000) noted that scale analysis, involving the comparison of the magni-

tude of the viscous dissipation term to the thermal diffusion term, shows that

viscous dissipation is negligible if N� 1, where N¼ μU2L2/KkmΔT¼Br/Da,

where the Brinkman number is defined by Br¼ μU2/kmΔT¼EcPr, where the
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Eckert number Ec is defined by Ec¼U2/cPΔT. For most situations the Darcy

number K/L2 is small, so viscous dissipation is important at even modest

values of the Brinkman number. For forced convection the choice of the charac-

teristic velocity is obvious. For natural convection, scale analysis leads to the

estimate U ~ (km/ρcPL )Ra
1/2 and the condition that viscous dissipation is negligible

becomes Ge� 1, where Ge is the Gebhart number defined by Ge¼ gβL/cP. The
above comments on forced convection are made on the assumption that the Péclet

number Pe¼ ρcP UL/km is not large. If it is large, then the proper comparison is one

between the magnitudes of the viscous dissipation term and the convective trans-

port term. This ratio is of order Ec/DaRe, where the Reynolds number Re¼ ρUL/μ.
Further aspects of the effects of viscous dissipation on the flow in porous media are

discussed in the survey by Magyari et al. (2005b).

The question of how the viscous dissipation relates to the pressure work and

other non-Boussinesq effects has been the subject of considerable discussion by

Costa (2009, 2010, 2013), Nield (2007a, b, 2009a), Barletta (2008), and Nield and

Barletta (2010a). Costa argued that the first law of thermodynamics required that

the contributions of viscous dissipation and pressure work had to be in balance.

Nield and Barletta argued that Costa had misapplied the first law to an unsteady

problem which he treated as a steady-state one, and that there are physical situations

where the viscous dissipation is significant and the pressure work is not significant.

2.2.3 Absence of Local Thermal Equilibrium

Usually it is a good approximation to assume that the solid and fluid phases are in

thermal equilibrium but there are situations, such as highly transient problems and

some steady-state problems (Nield 1998a), where this is not so. Now this is

commonly referred to as local thermal nonequilibrium (LTNE), though Vadasz

(2005a, b) prefers the expression lack of thermal equilibrium.

If one wishes to allow for heat transfer between solid and fluid (that is, one no

longer has local thermal equilibrium), then one can, following Combarnous (1972)

and Bories (1987), replace Eqs. (2.1) and (2.2) by

1� φð Þ ρcð Þs
∂Ts

∂t
¼ 1� φð Þ∇ � ks∇Tsð Þ þ 1� φð Þq000

s þ h Tf � Tsð Þ; ð2:12Þ

φ ρcPð Þf
∂Tf

∂t
þ ρcPð Þv �∇Tf ¼ φ∇ kf∇Tfð Þ þ φq

000
f þ h Ts � Tfð Þ; ð2:13Þ

where h is a heat transfer coefficient. See also Eqs. (2.18) and (2.19) later in this

section. A critical aspect of using this approach lies in the determination of the

appropriate value of h. Experimental values of h are found in an indirect manner;

see, e.g., Polyaev et al. (1996). According to correlations for a porous bed of

particle established in Dixon and Cresswell (1979),
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h ¼ afsh
*; ð2:14Þ

where the specific surface area (surface per unit volume) afs is given by

afs ¼ 6 1� φð Þ=dp; ð2:15Þ

and

1

h*
¼ dp

Nufskf
þ dp
βks

ð2:16Þ

where dp is the particle diameter and β¼ 10 if the porous bed particles are of

spherical form. The fluid-to-solid Nusselt number Nufs is, for Reynolds numbers

(based on dp) Rep> 100, well correlated by the expression presented in Handley

and Heggs (1968):

Nufs ¼ 0:255=φð ÞPr1=3Re2=3p ; ð2:17Þ

while for low values of Rep the estimates of Nufs vary between 0.1 and 12.4, these

being based on Miyauchi et al. (1976) and Wakao et al. (1976, 1979). As an

alternative to Eq. (2.17), Wakao and Kaguei (1982) proposed the correlation

Nufs ¼ 2:0þ 1:1Pr1=3Re0:6p ð2:17aÞ

Other authors have used alternative expressions for h* and afs and some of these

were considered by Alazmi and Vafai (2000), who found that the various models

give closely similar results for forced convection channel flow when the porosity is

high or the pore Reynolds number is large or the particle diameters are small.

Theoretical and experimental results reported by Grangeot et al. (1994) indicate

that h* depends weakly on the Péclet number of the flow. This subject is discussed

further in Sects. 6.5 and 6.9.2. The topic in the context of turbulence has been

discussed by Saito and de Lemos (2005b). An experimental study for a metallic

packed bed was reported by Carrillo (2005). The effect of different packings was

investigated experimentally by Yang et al. (2012b). They found that the formula in

Eq. (2.17a) overpredicted their results unless the coefficients 2.0 and 1.1 were

replaced by smaller values. Teruel (2016) pointed out that the interphase heat

transfer coefficient could depend on an entrance effect in a forced convective flow.

A discussion of further aspects of the two-medium approach to heat transfer in

porous media is given by Quintard et al. (1997) and Quintard and Whitaker (2000).

Nield (2002a) noted that Eqs. (2.12) and (2.13) are based on the implicit assumption

that the thermal resistances of the fluid and solid phases are in series. For the case of

a layered medium in a parallel plate channel with fluid/solid interfaces parallel to

the x-direction, he suggested that the appropriate equations in the absence of

internal heating are
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1� φð Þ ρcð Þs
∂Ts

∂t
¼ 1� φð Þ ∂

∂x
k0s
∂Ts

∂x

� �
þ ∂
∂y

ks
∂Ts

∂y

� �� �
þ h Tf � Tsð Þ;

ð2:18Þ

φ ρcPð Þf
∂Tf

∂t
þ ρcPð Þv �∇Tf ¼ φ

∂
∂x

k0f
∂Tf

∂x

� �
þ ∂
∂y

kf
∂Tf

∂y

� �� �
þ h Ts � Tfð Þ;

ð2:19Þ

where k0f ¼ k0s ¼ kH with kH given by Eq. (2.8). Equations (2.12) and (2.13) have to

be solved subject to certain applied thermal boundary conditions. If a boundary is at

uniform temperature, then one has Tf¼ Ts on the boundary. If uniform heat flux is

imposed on the boundary, then there is some ambiguity about the distribution of

flux between the two phases. Nield and Kuznetsov (1999) argued that if the flux is

truly uniform, then it has to be uniform with respect to the two phases, and hence the

flux on the r.e.v. scale has to be distributed between the fluid and solid phases in the

ratio of the surface fractions; for a homogeneous medium that means in the ratio of

the volume fractions, that is in the ratio ϕ: (1� ϕ). This distribution allows the

conjugate problem considered by them to be treated in a consistent manner. The

consequences of other choices for the distribution were explored by Kim and Kim

(2001) and Alazmi and Vafai (2002). The Nield and Kuznetsov (1999) approach is

equivalent to Model 1D in Alazmi and Vafai (2002) and is not equivalent to either

approach used in Kim and Kim (2001). When one examines LTNE at the boundary

of a porous medium, or at an interface with a fluid clear of solid material, the

solution of the differential equation system that arises is undetermined until further

information is available to determine how the total heat flux is split between the two

phases. Two second-order differential equations are involved and so at an interface

one needs four boundary conditions, two involving the temperature and two

involving the heat flux. The conservation of energy imposes just one heat flux

condition, and hence another condition must be sought. For this Yang and Vafai

(2010, 2011a, b, c) and Vafai and Yang (2013) introduced five models for what they

called “heat flux bifurcation,” but they did not clearly distinguish between them.

Nield (2012) argued that this approach was not satisfactory. Rather, one should

distinguish between the heat transfer in the bulk of the porous medium (which

depends on the interphase heat transfer coefficient) and the heat transfer across the

interface (which is affected by what happens on the other side of the interface, i.e.,

outside the porous medium). For example, if the porous medium is bounded by a

solid with high thermal conductivity (effectively a constant-temperature boundary),

then one has LTE at the boundary and one can use the formulation employed by

Nield and Kuznetsov (2011h). Much the same is true if the neighboring region is a

fluid of high conductivity. If the region is a solid of very low conductivity

(an insulating boundary), then there is essentially no boundary flux to be divided

between the two phases. More generally, if the solid boundary is controlled by an

imposed constant flux, then the natural assumption is that just across the interface in

the porous medium the flux is also constant. Thus the splitting occurs so that the flux
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in the fluid phase is the same as in the solid phase. This means that the interfacial

heat transport is divided between the fluid and solid phases in the ratio of ϕ to

(1�ϕ). This was the model employed by Nield and Kuznetsov (1999). Two

approaches to the case of an adiabatic boundary condition were discussed by

Yang et al. (2016).

A pore-scale numerical experiment on the effect of the pertinent parameters on

heat flux splitting at the boundary of a porous medium was carried out by Imani

et al. (2013). A more general study was made by Miansari et al. (2015), who

compared continuum and porous continuum models in a study of natural convec-

tion in a cavity with a random distribution of solid obstacles. They found that

micro- and macroscale results can merge if a proper choice of LTNE and thermal

dispersion models is made, the choice depending of the range of Rayleigh numbers

being investigated. The concept of tangential interfacial thermal resistance was

developed by Ouyang et al. (2013a). Their model involves a conjugate problem.

They validated their model by comparison with pore-scale numerical simulations.

The model involves a conjugate problem with LTNE in each of a porous medium

zone and an impermeable wall zone. For the case of a nanofluid, Nazari et al.

(2014b) compared three possible models.

The particular case of local thermal nonequilibrium in a steady process is

discussed by Nield (1998a). Petit et al. (1999a, b) proposed a local nonequilibrium

model for two-phase flow. A numerical study of the interfacial convective heat

transfer coefficient was reported by Kuwahara et al. (2001). Possible confusion

associated with their proposed correlation was cleared up by Nakayama (2014).

Their results were modified by Pallares and Grau (2010) to produce agreement

between the theoretical results for the Nusselt number and experimental data. An

application of the method of volume averaging to the analysis of heat and mass

transfer in tubes was made by Golfier et al. (2002). An alternative two-equation

model for conduction only was presented by Fourie and Du Plessis (2003a, b).

Vadasz (2005a) demonstrated that, for heat conduction problems, local thermal

equilibrium applies for any conditions that are a combination of constant temper-

ature and insulation. He also questioned whether a linear relationship between the

average temperature difference between the phases and the heat transferred over the

fluid-solid surface was appropriate in connection with conditions of local thermal

nonequilibrium. The exclusion of oscillations in the context of conduction with

LTNE and an associated paradox were discussed by Vadasz (2005b, 2006b, 2007).

(The apparent paradox arises in trying to reconcile the results from two alternative

mathematical approaches to modeling the problem.) This work is surveyed by

Vadasz (2008b), who also shows the relevance of LTNE to the study of nanofluids

and bi-composite media, as well as to the experimental measurement of the

effective thermal conductivity of a porous medium via the transient hot wire

method.

Rees and Pop (2005) surveyed studies of local thermal nonequilibrium with

special attention to natural and forced convection boundary layers and on internal

natural convection. Their survey complements that by Kuznetsov (1998e) for

internal forced convection. The effect of LTNE on conduction in channels with a
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uniform heat source was investigated by Nouri-Borujerdi et al. (2007b). Several

causes of LTNE were discussed by Virto et al. (2009). Some microscopic modeling

of conduction with LTNE was carried out by Rees (2010).

The topic of LTNE was reviewed by Haji-Sheikh and Minkowycz (2008). They

cite references to a number of engineering applications, such as nuclear devices,

fuel cells, electronic systems, and micro devices, in the context of rapid transport of

heat. They include a discussion of the development of the thermal field with a

moving fluid. They summarize experimental results obtained by Nnanna et al.

(2004, 2005) which conform to the observation by Vadasz (2005b, 2006b, 2007)

that the physical conditions for thermal waves to materialize are not obtainable in a

porous slab subject to a combination of constant heat flux and temperature bound-

ary conditions. Virto et al. (2009) discussed several causes of LTNE even in steady

and quasi-steady processes. A general numerical investigation of LTNE in

low-velocity reacting flow was made by Chen et al. (2014b). Analytical consider-

ation for LTNE in metal foams was discussed by Xu et al. (2015a, b). Deléglise

et al. (2007) discussed the use of nonequilibrium theory to predict transient tem-

perature during nonisothermal resin flow in a fibrous porous medium.

Structural stability in the case of LTNE was examined by Passarella et al. (2015).

Xu et al. (2015a, b) investigated a nonequilibrium thermal response of porous

media in unsteady heat conduction with sinusoidally changing boundary

temperature.

Miansari et al. (2015) carried out a pore-scale simulation against which an

independent REV-averaged solver was fine tuned. They found that micro- and

macroscale result can merge if a proper choice of LTNE and thermal dispersion

models are selected, depending on the range of Rayleigh number values being

investigated.

2.2.4 Thermal Dispersion

A further complication arises in forced convection or in vigorous natural convec-

tion in a porous medium. There may be significant thermal dispersion, i.e., heat

transfer due to hydrodynamic mixing of the interstitial fluid at the pore scale. In

addition to the molecular diffusion of heat, there is mixing due to the nature of the

porous medium. Some mixing is due to the obstructions; the fact that the flow

channels are tortuous means that fluid elements starting a given distance from each

other and proceeding at the same velocity will not remain at the same distance

apart. Further mixing can arise from the fact that all pores in a porous medium may

not be accessible to a fluid element after it has entered a particular flow path.

Mixing can also be caused by recirculation caused by local regions of reduced

pressure arising from flow restrictions. Within a flow channel mixing occurs

because fluid particles at different distances from a wall move relative to one

another. Mixing also results from the eddies that form if the flow becomes
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turbulent. Diffusion in and out of dead-end pores modifies the nature of molecular

diffusion. For details, see Greenkorn (1983, p. 190).

Dispersion is thus a complex phenomenon. Rubin (1974) took dispersion into

account by generalizing Eq. (2.3) so that the term∇�(αm∇T), where αm¼ km/(ρc)m
is the thermal diffusivity of the medium, is replaced by ∇�E�∇T where E is a

second-order tensor (the dispersion tensor). In an isotropic medium the dispersion

tensor is axisymmetric and its components can be expressed in the form

Eij ¼ F1δij þ F2ViVj; ð2:20Þ

where Vi(¼vi/φ) is the ith component of the barycentric (intrinsic) velocity vector,

and F1 and F2 are functions of the pore size and the Péclet and Reynolds numbers of

the flow.

At any point in the flow field it is possible to express E with reference to a

coordinate system in which the first axis coincides with the flow direction; when

this is done we have

E11 ¼ η1U þ αm;

E22 ¼ E33 ¼ η2U þ αm; ð2:21Þ
Ei j ¼ 0 for i 6¼ j;

where E11 is the longitudinal dispersion coefficient, E22 and E33 are the lateral

dispersion coefficients, and U is the absolute magnitude of the velocity vector.

If the Péclet number of the flow is small, then η1 and η2 are small and the

molecular thermal diffusivity αm is dominant. If the Péclet number of the flow is

large, then η1 and η2 are large and almost constant. It is found experimentally that

η2¼ η1/30, approximately.

For an account of the treatment of dispersion in anisotropic media in the context

of convection, the reader is referred to Tyvand (1977). In the particular case when

heat conduction is in parallel, Catton et al. (1988) conclude on the basis of their

statistical analysis that the effective thermal conductivity k�zz, for mass and thermal

transport in the z-direction through a bed of uniform spherical beads, is given by

k*z z ¼ 1� φð Þks þ φ
2B

π

� �
Pekf ð2:22Þ

In this expression B is a constant introduced by Ergun (empirically, B¼ 1.75) and

Pe is the Péclet number defined by Pe¼ vdp/αf 1� φð Þ, where dp is the spherical

particle diameter and αf is the thermal diffusivity of the fluid, defined by αf¼ kf/
(ρcP)f.

Thermal dispersion plays a particularly important role in forced convection in

packed columns. The steep radial temperature gradients that exist near the heated or

cooled wall were formerly attributed to channeling effects, but later work has

indicated that thermal dispersion is also involved. For a nearly parallel flow at
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high Reynolds numbers, the thermal dispersivity tensor reduces to a scalar, the

transverse thermal dispersivity. Cheng and his colleagues [see Hsu and Cheng

(1990) and the references given in Section 4.9] assumed that the local transverse

thermal dispersion conductivity k
0
T is given by

k0T
kf

¼ DTPed‘
u

um
: ð2:23Þ

In this equation Ped is a Péclet number defined by Ped¼ um dp/αf, in terms of the

mean seepage velocity um, the particle diameter dp, and fluid thermal diffusivity αf,
while DT is a constant and ‘ is a dimensionless dispersive length normalized with

respect to dp. In later work the dispersive length was modeled by a wall function of

the Van Driest type:

‘ ¼ 1� exp �y=ωdp
� �

: ð2:24Þ

The empirical constants ω and DT depend on the coefficients N and C in the wall

porosity variation formula [Eq. (1.28)]. The best match with experiments is given

by DT¼ 0.12 and ω¼ 1, if N¼ 5 and C¼ 1.4. The theoretical results based on this

ad hoc approach agree with a number of experimental results.

A theoretical backing for this approach has been given by Hsu and Cheng

(1990). This is based on volume averaging of the velocity and temperature devia-

tions in the pores in a dilute array of spheres, together with a scale analysis. The

thermal diffusivity tensor D is introduced as a multiplying constant which accounts

for the interaction of spheres. For the case of high pore Reynolds number flow, Hsu

and Cheng (1990) found the thermal dispersion conductivity tensor k0 to be given

by

k0 ¼ Dkf
1� φ

φ
Ped ð2:25Þ

The linear variation with Ped is consistent with most of the existing experimental

correlations for high pore Reynolds number flow. At low pore Reynolds number

flow they found

k0 ¼ D*kf
1� φ

φ2
Pe2d ð2:26Þ

where D* is another constant tensor. The quadratic dependence on Ped has not yet

been confirmed by experiment.

Kuwahara et al. (1996) and Kuwahara and Nakayama (1999) have studied

numerically thermal diffusion for a two-dimensional periodic model. A limitation

of their correlation formulas as the porosity tends to unity was discussed by Yu

(2004) and Nakayama and Kuwahara (2004). A similar model was examined by

Souto and Moyne (1997a, b). The frequency response model was employed by
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Muralidhar and Misra (1997) in an experimental study of dispersion coefficients.

The role of thermal dispersion in the thermally developing region of a channel with

a sintered porous metal was studied by Hsieh and Lu (2000). Kuwahara and

Nakayama (2005) have extended their earlier numerical studies to the case of

three-dimensional flow in highly anisotropic porous media. Niu et al. (2006)

reported direct measurements of eddy transport and thermal dispersion in a high-

porosity matrix. An equation for thermal dispersion-flux transport was introduced

by Nakayama et al. (2006).

For further information about dispersion in porous media, the reader is referred

to the review by Liu and Masliyah (2005), which deals with the dispersion of mass,

heat, and momentum. Rudraiah and Ng (2007) have reviewed dispersion in porous

media with and without reaction. Experimental studies of thermal dispersion have

been reviewed by Ozgumus et al. (2013). Valdés-Parada et al. (2016) presented a

new formulation of the dispersion tensor in homogeneous porous media.

2.2.5 Cellular Porous Media

Cellular porous media have the property that to a good approximation the effect of

radiation can be modeled using a temperature-dependent thermal conductivity

(Viskanta 2009). For a few situations an analytical solution can be obtained. This

was done by Nield and Kuznetsov (2010a, c) and Nield and Kuznetsov (2010b) for

paradigmatic forced convection, external natural convection, and internal natural

convection problems.

Zhao et al. (2005a, b) and Zhao (2012) investigated natural convection in metal

foams with open cells.

2.2.6 Heat Wave Theory

In most circumstances the Fourier law for conduction is a satisfactory basis for a

constitutive equation. This leads to a parabolic differential equation, and then thermal

waves are ruled out. However, these waves are important for some medical and other

biological problems involving lasers, for planetary and stellar evolution, and for heat

transfer in nanofluids. Then the Fourier law is appropriately replaced by the law

introduced by Cattaneo (1948). The application of the Cattaneo law to convection in

porous media has been extensively studied by Straughan and this work has been

surveyed in Sections 5.3–5.5 of Straughan (2016). The papers cited there are by

Straughan (2010a, b, c, 2015a), Haddad (2013, 2014b), Haddad and Straughan

(2012), Nagouda and Pranesh (2012), and Nagouda and Maruthamanikandan (2013).
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2.3 Oberbeck–Boussinesq Approximation

In studies of natural convection we add the gravitational term ρf g to the right-hand
side of the Darcy equation (1.4) or its appropriate extension. [Note that in Eq. (1.4)

the term∇P denotes an intrinsic quantity, so we add the gravitational force per unit
volume of the fluid.] For thermal convection to occur, the density of the fluid must

be a function of the temperature, and hence we need an equation of state to

complement the equations of mass, momentum, and energy. The simplest equation

of state is

ρf ¼ ρ0 1� β T � T0ð Þ½ �; ð2:27Þ

where ρ0 is the fluid density at some reference temperature T0 and β is the

coefficient of thermal expansion.

In order to simplify the subsequent analysis, one employs the Boussinesq

approximation whenever it is valid. Strictly speaking, one should call this the

Oberbeck–Boussinesq approximation, since Oberbeck (1879) has priority over

Boussinesq (1903), as documented by Joseph (1976). The approximation consists

of setting constant all the properties of the medium, except that the vital buoyancy

term involving β is retained in the momentum equation. As a consequence the

equation of continuity reduces to ∇�v¼ 0, just as for an incompressible fluid. The

Boussinesq approximation is valid provided that density changes Δρ remain small

in comparison with ρ0 throughout the flow region and provided that temperature

variations are insufficient to cause the various properties of the medium (fluid and

solid) to vary significantly from their mean values. Johannsen (2003) discussed the

validity of the Boussinesq approximation in the case of a benchmark problem

known as the Elder problem.

Barletta (2009) introduced a thermodynamic argument to obtain the most appro-

priate form of the approximation. He concluded that no explicit pressure term must

be present in the energy balance.

In an application to heat and brine transport in porous media, Landman and

Schotting (2007) revisited the Oberbeck–Boussinesq approximation in the limiting

case of zero density differences. They found conditions that must be satisfied if

volume changes can still be neglected.

2.4 Thermal Boundary Conditions

Once the thermal conductivity in the porous medium has been determined, the

application of thermal boundary conditions is usually straightforward. At the

interface between two porous media, or between a porous medium and a clear

fluid, we can impose continuity of the temperature (on the assumption that we have

local thermodynamic equilibrium) and continuity of the normal component of the
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heat flux. We note that two conditions are required because the equation of energy

(2.3) contains second-order derivatives.

The heat flux vector is the sum of two terms: a convective term (ρcP)fT v and a

conductive term �k∇T. The normal component of the former is continuous

because both T and the normal component of ρf v are continuous. It follows that

the normal component of k∇T also must be continuous. At an impermeable

boundary the usual thermal condition appropriate to the external environment can

be applied, e.g., one can prescribe either the temperature or the heat flux, or one can

prescribe a heat transfer coefficient.

Sahraoui and Kaviany (1993, 1994) have discussed the errors arising from the

use of approximations of the effective conductivity near a boundary, due to

nonuniformity of the distributions of the solid and fluid phases there. They have

introduced a slip coefficient into the thermal boundary condition to adjust for this,

for the case of two-dimensional media.

Ochoa-Tapia and Whitaker (1997, 1998) have developed flux jump conditions

applicable at the boundary of a porous medium and a clear fluid. These are based on

a nonlocal form of the volume-averaged thermal energy equations for fluid and

solid. The conditions involve excess surface thermal energy and an excess

nonequilibrium thermal source. Min and Kim (2005) have used the special

two-dimensional model of Richardson (1971) in order to obtain estimates of the

coefficients that occur in the thermal and hydrodynamic jump conditions. The jump

conditions were further analyzed by d’Hueppe et al. (2011). Valdés-Parada et al.

(2009a, b) included the effects of adsorption and a chemical reaction. Betchen et al.

(2006) considered a nonequilibrium model. d’Hueppe et al. (2012a, b) discussed the
coupling of a two-temperature model with a one-temperature model at a fluid-

porous interface.

An analogous mass transfer jump condition was formulated by Valencia-Lopez

et al. (2003). The thermal interaction at the interface between a porous medium and

an impermeable wall was studied by Kim and Kim (2001). The role of particle-

particle contact on effective thermal properties in the interfacial region was exam-

ined by Aguilar-Madera et al. (2011b).

2.5 Hele-Shaw Analogy

The space between two plane walls a small distance apart constitutes a Hele-Shaw

cell. If the gap is of thickness h and the walls each of thickness d, then the governing
equations for gap-averaged velocity components (parallel to the plane walls) are

identical with those for two-dimensional flow in a porous medium whose perme-

ability K is equal to h3/[12(h + 2d )], for the case where the heat flow is parallel to

the plane walls (Hartline and Lister 1977). The Hele-Shaw cell thus provides a

means of modeling thermal convection in a porous medium, as in the experiments

by Wooding (1963, 1964), Elder (1967a), and Taunton et al. (1972).
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For the analogy to hold, the three quantities h/δ, Uh2/νδ, and Uh2/αfδ must all be

small compared with unity. Here U is the velocity scale and δ the smallest length

scale of the motion being modeled, while ν and αf are the kinematic viscosity and

thermal diffusivity of the fluid. These conditions ensure that there is negligible

advection of vorticity and rapid diffusion of vorticity and heat across the flow.

The experimental temperature profiles found by Vorontsov et al. (1991) were in

good agreement with the theory. Sch€opf (1992) extended the comparison to the case

of a binary mixture. Specific studies of convection in a Hele-Shaw cell were

reported by Green and Foster (secondary convection), Hartline and Lister (1977,

1981), Griffiths (1981), Ozawa et al. (1992), Nakoryakov et al. (1993), Cooper et al.

(1997, 2001) and Pringle et al. (2002) (double diffusion), Goldstein et al. (1998),

Vadasz (1998a, b, c) (rotation), Gorin et al. (1993,1998), Nguyen-Quang et al.

(2009) (gyrotactic bioconvection), and Vosper et al. (2014) (CO2 dissolution).

The Hele-Shaw cell experiments are especially useful for revealing streamline

patterns when the walls are made of transparent material. The analogy has obvious

limitations. For example, it cannot deal with the effects of lateral dispersion or

instabilities associated with three-dimensional disturbances. The discrepancies

associated with these effects have been examined by Kvernvold (1979) and

Kvernvold and Tyvand (1981) who compared analysis with experiment.

Hsu (2005) has compared the governing equations for the averaged flows and

heat transfer in Hele-Shaw cells with those of porous media and he observed the

following differences: (a) the averaged Hele-Shaw cell is two-dimensional, (b) the

interfacial force in the averaged Hele-Shaw flows is contributed entirely from the

shear force, and (c) there exists no thermal tortuosity for the averaged Hele-Shaw

flows. Thus the Hele-Shaw analogy is good for viscous dominated two-dimensional

flow with negligible thermal tortuosity. However, these simplifications help in the

verification of closure modeling. Furthermore, a three-dimensional numerical sim-

ulation of the convection heat transfer in Hele-Shaw cells may reveal some detailed

physics of heat transfer in porous media that are impossible to tackle due to the

randomness and the complexity of the microscopic solid geometry. Hsu (2005)

illustrates this with results for the case of oscillating flows past a heated circular

cylinder.

Cherkaoui and Wilcock (2001) performed laboratory studies of high Rayleigh

number circulation in an open-top cell with an analogy to mid-ocean ridge hydro-

thermal systems in mind. Babushkin and Demin (2006a) reported an experimental

and theoretical investigation of transient convective regimes. Babushkin et al.

(2012) considered the action of centrifugal forces. Backhaus et al. (2011) investi-

gated the convective instability and mass transport of diffusion layers. Kimura et al.

(2002) experimented with an anisotropic medium heated from the side.

Abdelkareem et al. (2009) performed an experimental study on oscillatory convec-

tion in a Hele-Shaw cell due to an unstably heated side. A study of convection from

a buried pipe with backfill was reported by Ngo and Lai (2007). Temperature

modulation was studied by Souhar et al. (2011). The effect of Coriolis force on

thermosolutal convection in an annular Hele-Shaw cell was investigated by Souhar

and Aniss (2012). Vibrational convection was examined by Babushkin and Demin
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(2006b). Experiments on the effect of a magnetic field were performed by Aniss

et al. (1993), Souhar et al. (1999), Wen et al. (2002), Wen and Su (2005), and Wen

et al. (2010). Erglis et al. (2013) and Kitenbergs et al. (2015) studied magnetic field

driven micro-convection (with in turn a Darcy model and a Brinkman model) and

made a comparison with experiment.

Because of the difficulty in performing experiments in porous media, the above

experimental studies are particularly welcome. We now briefly mention the ana-

lytical studies of Hwang and Chang (1989), Safonov (1991), Braverman (1991),

Graham et al. (1992), Ryland and Nandakumar (1994), Keller and Tarunin (1995),

Aniss et al. (1995, 2005), Hu and Steen (1996), Yang and Krishnamurthi (1999),

Bhadauria et al. (2005), Kim (2014c, 2016b), Yadav and Kim (2015b), Yadav and

Lee (2016), and Yadav et al. (2016). A numerical study of oscillatory convection

was made by Frick and Müller (1983).

2.6 Bioheat Transfer

Convective heat transfer in biological tissues involves a special situation. In some

cases applications of porous media theory are appropriate. Before discussing some

such applications in detail, we remark that porous medium models have recently

been applied to a wide range of biological systems. Narasimhan (2013) discusses

several interesting topics, such as drug delivery, transport of low-density lipopro-

tein across arterial tissues, biomass transport in tissue regeneration, and lung

diffusion. He notes that porous medium theory is applicable on a wide range of

length scales, from organs to cells. Reviews of the literature have been made by

Nicholson (2001), Khaled and Vafai (2003), Khanafer and Vafai (2008, 2009),

Khanafer et al. (2008a, b), Narasimhan (2011), Malviya and Dwivedi (2013), and in

the various chapters in the books edited by Vafai (2011, 2015). Porous media

models for bioheat transfer were placed in a wider context in the review by

Bhownik et al. (2013).

As noted by Narasimhan (2013), living tissues are complex structures in which

the heat transfer is primarily constituted by conduction in tissue, convection

involving flow in vessels, and blood perfusion, and this combination cannot be

properly understood using simplistic models. However, the ensemble can be con-

ceived as a fluid-saturated porous medium in which the effects of perfusion are

incorporated as internal heat generation. It appears that the first published paper

dealing with a porous-medium-type model for bioheat transfer was that by Xuan

and Roetzel (1997), who considered the whole human thermal system. Roetzel and

Xuan (1998) followed this up with a study of the human limb.

A feature of bioheat transfer is that in many situations there is counterflow. For

example, blood flows in adjacent arteries and veins in opposite directions. Nield and

Kuznetsov (2008a, 2009a, 2010b) and Kuznetsov and Nield (2009a, b) modeled

forced convection in a porous medium with counterflow. They employed the

Brinkman model and they allowed for asymmetrical constant heat flux boundary

conditions.
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Bellimoudi (2010), Belmiloudi (2016) examined the effects of blood perfusion

rate on the transient temperature of biological tissues in applications such as

thermotherapy. He established the existence, uniqueness, and regularity of the

solution of the state equation in his generalized bioheat transfer model.

In highly transient conduction in heterogeneous media such as human tissues

(an example is laser irradiation of the retina when a high heat flux is applied for a

short period of time), the Fourier heat model may give insufficiently accurate

results. In these circumstances a dual-phase lag constitutive relation between heat

flux and temperature gradient (such as that proposed by Cattaneo) is needed. This

situation was analyzed by Narasimhan and Sadavisam (2013). They performed

numerical simulations to compare temperature distribution with those obtained by

Narasimhan et al. (2010) using a Fourier model. Dual-phase-lag transfer was also

studied by Yuan et al. (2014) (LTNE) and Askarizadeh and Ahmadikia (2015)

(LTNE).

Zhang (2009) studied generalized dual-phase bioheat transfer using a local

thermal nonequilibrium (LTNE) model. In the model phase lag times were

expressed in terms of properties of the blood and tissue, the interphase heat transfer

coefficient, and the blood perfusion rate.

A LTNE-based bioheat transfer model was derived from first principles (using

volume averaging) by Nakayama and Kuwahara (2008a, b), Nakayama et al. (2009,

2010), and Nakayama et al. (2011). They applied the bioheat equation to

cryoablation therapy for the treatment of malignant cancers. Kuwahara et al.

(2009) applied a porous media approach to bifurcating flow and mass transfer in

a human lung. Vyas et al. (2016) applied to photo thermal therapy a porous media-

based bioheat analysis.

Other aspects relevant to biological tissues were discussed using porous medium

models by Khanafer et al. (2003), Khaled and Vafai (2003), Yao and Gu (2007)

(mixture theory), Wood et al. (2007) (reaction at an interface), Mahjoob and

Vafai (2009, 2010, 2011) (layered material), Shafahi and Vafai (2011)

(human eye), Fan and Wang (2011a, b) (microscale), Wang and Fan (2011)

(macroscale), Rattanadecho and Keangin (2013) (liver tissue), Narasimhan (2014)

(human brain), Shao et al. (2014) (reactive hyperemia, 3D image-based hand

model), Majchrzak and Turchan (2013, 2014) (LTNE), Hassanpour and

Saboonchi (2014) (countercurrent vascular tissue), Wang et al. (2015e)

(radiofrequency ablation), and Wessapan and Rattnanadecho (2016) (exposure to

electromagnetic field).

2.7 Other Approaches, Numerical Methods

Direct numerical simulation of heat and fluid flow, using the full Navier-Stokes

equations at the pore scale, for regularly spaced square or circular rods or spheres

has been conducted by Kuwahara et al. (1994). A direct numerical simulation was

applied by He and Georgiadis (1992) to the study of the effect of randomness on
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one-dimensional heat conduction. Direct numerical simulation has also been

employed by Rahimian and Poushaghagy (2002), Yu et al. (2006b), Pourshaghaghy

et al. (2007), Narasimhan and Raju (2007), Gamrat et al. (2008), and Ma and

Zabaras (2008). Lattice gas cellular automata simulations were performed by

McCarthy (1994) for flow through arrays of cylinders, and by Yoshino and Inamura

(2003) for flow in a three-dimensional structure. Buikis and Ulanova (1996) have

modeled nonisothermal gas flow through a heterogeneous medium using a

two-media approach. A diffuse approximation has been applied by Prax et al.

(1996) to natural convection. Martins-Costa et al. (1992, 1994), Martins-Costa

and Saldanha da Gama (1994), and Martins-Costa (1996) have applied the contin-

uous theory of mixtures to the modeling and simulation of heat transfer in various

contexts. Modeling of convection in reservoirs having fractal geometry has been

conducted by Fomin et al. (2002). Spaid and Phelan (1997) applied lattice

Boltzmann methods to model microscale flow in fibrous porous media. A multiple-

relaxation-time lattice Boltzmann model appropriate for dealing with composite

anisotropic media was presented by Hu et al. (2017). A lattice Boltzmann model

capable of handling solid-liquid phase change was proposed by Wu et al. (2017).

A general discussion of the dynamic modeling of convective heat transfer in

porous media was provided by Hsu (2005). Further simulation studies with a lattice

Boltzmann model were reported by Guo and Zhao (2005a, b) (with the viscosity

independent or dependent on the temperature), Zhao et al. (2010b) (a problem

involving double diffusion), Seta et al. (2006), Rong et al. (2010a), Shokouhmand

et al. (2009), Xu et al. (2005, 2008), Wang et al. (2007a), Yan et al. (2006), Zhao

et al. (2010a, b), Roussellet et al. (2011), and Vishnampet Ramanathan et al. (2011).

Visser et al. (2008a, b) introduced an artificial compressibility method for

buoyancy-driven flow.

Petrasch et al. (2008) described a tomography-based determination of the inter-

facial heat transfer coefficient in reticulate porous dynamics.

Radiative heat transfer in porous media is beyond the scope of this book, but we

mention that a review of this subject was made by Howell (2000).
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Chapter 3

Mass Transfer in a Porous Medium:
Multicomponent and Multiphase Flows

3.1 Multicomponent Flow: Basic Concepts

The term “mass transfer” is used here in a specialized sense, namely, the transport

of a substance that is involved as a component (constituent, species) in a fluid

mixture. An example is the transport of salt in saline water. As we shall see below,

convective mass transfer is analogous to convective heat transfer.

Consider a batch of fluid mixture of volume V and mass m. Let the subscript

i refer to the ith component (component i) of the mixture. The total mass is equal to

the sum of the individual masses mi so m¼Σmi. Hence, if the concentration of

component i is defined as

Ci ¼ mi

V
; ð3:1Þ

then the aggregate density ρ of the mixture must be the sum of all the individual

concentrations,

ρ ¼ ΣCi: ð3:2Þ

Clearly, the unit of concentration is kg m�3. Instead of Ci, the alternative notation ρi
is appropriate if one thinks of each component spread out over the total volume V.

When chemical reactions are of interest, it is convenient to work in terms of an

alternative description, one involving the concept of mole. By definition, a mole is

the amount of substance that contains as many molecules as there are in 12 g of

carbon 12. That number of entities is 6.022� 1023 (Avogadro’s constant). The

molar mass of a substance is the mass of one mole of that substance. Hence, if

there are n moles in a mixture of molar mass M and mass m, then

n ¼ m

M
: ð3:3Þ
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Similarly, the number of moles ni of component i in a mixture is the mass of that

component divided by its molar mass Mi,

ni ¼ mi

Mi
: ð3:4Þ

The mass fraction of component i is

Φi ¼ mi

m
; ð3:5Þ

so clearly ΣΦi¼ 1. Similarly, the mole fraction of component i is

xi ¼ ni
n

ð3:6Þ

and Σxi¼ 1.

To summarize, we have three alternative ways to deal with composition: a

dimensional concept (concentration) and two dimensionless ratios (mass fraction

and mole fraction). These quantities are related by

Ci ¼ ρΦi ¼ ρ
Mi

M
xi ; ð3:7Þ

where the equivalent molar mass (M ) of the mixture is given by

M ¼ ΣMi xi: ð3:8Þ
If, for example, the mixture can be modeled as an ideal gas, then its equation of

state is

PV ¼ mRmT or PV ¼ nRT; ð3:9Þ

where the gas constant of the mixture (Rm) and the universal gas constant (R) are
related by

Rm ¼ n

m
R ¼ R

M
: ð3:10Þ

The partial pressure Pi of component i is the pressure one would measure if

component i alone were to fill the mixture volume V at the same temperature T as

the mixture. Thus

PiV ¼ miRmT or PiV ¼ niRT: ð3:11Þ
Summing these equations over i, we obtain Dalton’s law,

P ¼ ΣPi; ð3:12Þ
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which states that the pressure of a mixture of gases at a specified volume and

temperature is equal to the sum of the partial pressures of the components. Note that

Pi/P¼ xi, and so using Eqs. (3.7) and (3.8) we can relate Ci to Pi.

The nomenclature we have used in this section applies to a mixture in equilib-
rium, that is, to a fluid batch whose composition, pressure, and temperature do not

vary from point to point. In a convection study, we are (out of necessity) involved

with a nonequilibrium mixture which we view as a patchwork of small equilibrium

batches: the equilibrium state of each of these batches is assumed to vary only

slightly as one moves from one batch to its neighbors.

3.2 Mass Conservation in a Mixture

We apply the principle of mass conservation to each component in the mixture.

For the moment, we use the notation ρi instead of Ci for the concentration of

component i. In the absence of component generation, we must have

∂ρi
∂t

þ∇ � ρiVið Þ ¼ 0; ð3:13Þ

where Vi is the (intrinsic) velocity of particles of component i. Summing over i, we
obtain

∂ρ
∂t

þ∇ � ΣρiVið Þ ¼ 0: ð3:14Þ

This is the same as

∂ρ
∂t

þ∇ � ρVð Þ ¼ 0 ð3:15Þ

provided that we identify V with the mass-averaged velocity,

V ¼ 1

ρ
Σ ρiVi : ð3:16Þ

Motion of a component relative to this mass-averaged velocity is called diffusion.
Thus, Vi –V is the diffusion velocity of component i and

ji ¼ ρi Vi � Vð Þ ð3:17Þ

is the diffusive flux of component i. Equation (3.13) now gives

∂ρi
∂t

þ∇ � ρiVð Þ ¼ �∇ � ji: ð3:18Þ
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Reverting to the notation Ci for concentration and assuming that the mixture is

incompressible, we have

DCi

Dt
¼ �∇ � ji ; ð3:19Þ

where D/Dt¼∂/∂t+V�∇.

For the case of a two-component mixture, Fick’s law of mass diffusion is

j1 ¼ �D12∇C1; ð3:20Þ

where D12 is the mass diffusivity of component 1 into component 2, and similarly

for j2. In fact, D12¼D21¼D. The diffusivity D, whose units are m2s�1, has a

numerical value which in general depends on the mixture pressure, temperature,

and composition. From Eqs. (3.19) and (3.20), we have

DC1

Dt
¼ ∇ � D∇C1ð Þ : ð3:21Þ

If the migration of the first component is the only one of interest, then the subscript

can be dropped. For a homogeneous situation we have

DC

Dt
¼ D∇2C : ð3:22Þ

The analogy between this equation and the corresponding energy equation (tem-

perature T, thermal diffusivity αm)

DT

Dt
¼ αm∇2T ð3:23Þ

is obvious. Fourier’s law of thermal diffusion q¼ –k∇T, where q is the heat flux

and k is the thermal conductivity, is analogous to Fick’s law of mass diffusion

j ¼ �D∇C:

So far in this chapter, we have been concerned with the fluid only, but now we

consider a porous solid matrix saturated by fluid mixture. Within the solid, there is

of course neither flow nor any component of the mixture. Thus, in a porous medium
mass transfer is in this respect distinctly different from heat transfer in medium.
Multiplying Eq. (3.21) (with the suffix dropped) by the porosity φ we have

φ
∂C
∂t

þ φV �∇C ¼ φ∇ � D∇Cð Þ :

Recalling the Dupuit–Forchheimer relationship v¼φV, we see that this equation

can be written, if φ is constant, as

60 3 Mass Transfer in a Porous Medium: Multicomponent and Multiphase Flows



φ
∂C
∂t

þ v �∇C ¼ ∇ � Dm∇Cð Þ; ð3:24Þ

where Dm¼φD is the mass diffusivity of the porous medium. Some authors invoke

tortuosity and produce a more complicated relationship between Dm and D. The
diffusive mass flux in the porous medium (rate of flow of mass across unit cross-

sectional area of the medium) is

jm ¼ �Dm∇C ¼ φ j ð3:25Þ

This is consistent with the surface porosity of the medium being equal to φ.
Equation (3.24) also may be derived directly by using as control volume as element

of the medium. If the mass of the substance whose concentration is C is being

generated at a rate _m
000
per unit volume of the medium, then the term _m

000
must be

added to the right-hand side of Eq. (3.24). The result may be compared with

Eq. (2.3).

Recently, there has been an increased interest in more general models in which

the Fourier law is replaced by a Maxwell–Cattaneo or Guyer–Krumhansi constitu-

tive equation. Thermal waves are then possible. Dauby et al. (2002) showed that

with such models, for both gravity-driven and thermo-capillary systems, the insta-

bility can be either stationary or oscillatory. Straughan (2015a, b, c, d) has discussed

non-Fourier models in detail.

3.3 Combined Heat and Mass Transfer

In the most commonly occurring circumstances, the transport of heat and mass

(e.g., salt) is not directly coupled, and both Eqs. (2.3) and (3.24) (which clearly are

uncoupled) hold without change. In double-diffusive (e.g., thermohaline) convec-

tion, the coupling takes place because the density ρ of the fluid mixture depends on

both temperature T and concentration C (and also, in general, on the pressure P).
For sufficiently small isobaric changes in temperature and concentration, the

mixture density ρ depends linearly on both T and C, and we have approximately

ρ ¼ ρ0 1� β T � T0ð Þ � βC C� C0ð Þ½ � ; ð3:26Þ

where the subscript zero refers to a reference state, β is the volumetric thermal

expansion coefficient,

β ¼ �1

ρ

∂ρ
∂T

� �
P,C

; ð3:27Þ

and βC is the volumetric concentration expansion coefficient,
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βC ¼ �1

ρ

∂ρ
∂C

� �
T,P

: ð3:28Þ

Both β and βC are evaluated at the reference state.

In some circumstances, there is direct coupling. This is when cross-diffusion

(Soret and Dufour effects) is not negligible. The Soret effect refers to mass flux

produced by a temperature gradient, and the Dufour effect refers to heat flux

produced by a concentration gradient. For the case of no heat and mass sources

we have, in place of Eqs. (2.3) and (3.24),

ρcð Þm
ρcð Þf

∂T
∂t

þ v �∇T ¼ ∇ � DT∇T þ DTC∇Cð Þ ; ð3:29Þ

φ
∂C
∂t

þ v �∇C ¼ ∇ � DC∇Cþ DCT∇Tð Þ; ð3:30Þ

where DT (¼km/(ρc)f) is the thermal diffusivity, DC (¼Dm) is the mass diffusivity,

DTC/DT is the Dufour coefficient, and DCT/DC is the Soret coefficient of the porous

medium.

The variation of density with temperature and concentration gives rise to a

combined buoyancy force, proportional to β(T – T0) + βC(C–C0). The fact that the

coefficients of Eq. (3.29) differ from those of Eq. (3.30) leads to interesting effects,

such as flows oscillating in time in the presence of steady boundary conditions.

The Soret and Dufour effects are usually minor and can be neglected in simple

models of coupled heat and mass transfer. According to Platten and Legros (1984),

the mass fraction gradient established under the effect of thermal diffusion is very

small. However, it has a disproportionately large influence on hydrodynamic

stability relative to its contribution to the buoyancy of the fluid. They also state

that in most liquid mixtures, the Dufour effect is inoperative, but that this may not

be the case in gases. Mojtabi and Charrier-Mojtabi (2000) confirm this by noting

that in liquids the Dufour coefficient is an order of magnitude smaller than the Soret

effect. They conclude that for saturated porous media, the phenomenon of cross-

diffusion is further complicated because of the interaction between the fluid and the

porous matrix and because accurate values of the cross-diffusion coefficients are

not available.

The thermodiffusion coefficient DTC and the isothermal diffusion coefficient DT

were separately measured by Platten and Costeseque (2004) for both a porous

medium and the corresponding liquid clear of solid material. They found that the

measured value of the ratio of these two quantities (what they call the Soret

coefficient) was the same for the clear fluid as for the porous medium to within

experimental error.

The thermodynamic irreversibility of coupled heat and mass transfer in saturated

porous media is treated based on the method of irreversible thermodynamics in

Bejan et al. (2004). Viskanta (2005) has reviewed studies of combustion and heat

transfer in inert porous media.
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3.4 Effects of a Chemical Reaction

It is not always permissible to neglect the effects of convection in chemical reactors

of porous construction. Suppose that we have a solution of a reagent whose

concentration C is defined as above. If m is the molar mass of the reagent, then

its concentration in moles per unit volume of the fluid mixture is Cm¼C/m.
Suppose that the rate equation for the reaction is

dCm

d t
¼ �kCn

m: ð3:31Þ

The integer power n is the order of the reaction. The rate coefficient k is a function
of the absolute temperature T given by the Arrhenius relationship

k ¼ A exp � E

RT

� �
; ð3:32Þ

where E is the activation energy of the reaction (energy per mole), R is the universal

gas constant, and A is a constant called the preexponential factor.

Assume further that the solid material of the porous medium is inert, that the

reaction produces a product whose mass can be ignored, and that there is negligible

change in volume. Then the rate of increase of C due to the reaction is m dCm/dt. It
follows that Eq. (3.24) is to be replaced by

φ
∂C
∂t

þ v �∇C ¼ ∇ � Dm∇Cð Þ � φAm1�nCnexp � E

RT

� �
: ð3:33Þ

If the consumption of one mole of reagent causes the heat energy to increase by an

amount�ΔH due to the reaction, then the increase in energy per unit volume of the

fluid mixture is (ΔH )dCm/dt. Thus in place of Eq. (2.3), we have

ρcð Þm
∂T
∂t

þ ρcð Þf v �∇T

¼ ∇ � km∇Tð Þ þ _m
000 � φA ΔHð Þm�nCnexp � E

RT

� �
:

ð3:34Þ

Equation (3.33), for the case of a first-order reaction (n¼ 1), is in accord with the

formulation of Kolesnikov (1979). We note that for a zero-order reaction (n¼ 0),

the thermal equation (3.34) is decoupled from Eq. (3.33) in the sense that Eq. (3.34)

does not depend explicitly on C [though C and T are still related by Eq. (3.33)].

These equations are appropriate if the reaction is occurring entirely within the

fluid. Now suppose that we have a catalytic reaction taking place only on the solid

surface of the porous matrix. If the surface porosity is equal to the (volume)

porosity φ, and if the reaction rate is proportional to the mass of the solid material,
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then Eqs. (3.33) and (3.34) should be altered by replacing φA by (1 –φ)ρsA0 where
A0 is a new constant preexponential factor (compare Gatica et al. 1989).

Later papers on the effects of chemical reactions include those by Balakotaiah

and Porlet (1990a, b), Stroh and Balakotaiah (1991, 1992, 1993), Farr et al. (1991),

Gabito and Balakotaiah (1991), Nandakumar and Weinitschke (1992), Salinger

et al. (1994b), Nguyen and Balakotaiah (1995), Subramanian and Balakotaiah

(1995, 1997), Vafai et al. (1993), Kuznetsov and Vafai (1995b), and Chao

et al. (1996).
Work on coupled mass transfer and reaction was surveyed by Quintard and

Whitaker (2005). A detailed analysis based on volume averaging was presented by

Quintard et al. (2006).

3.5 Multiphase Flow

If two or more miscible fluids occupy the void space in a porous medium, then even

if they occupy different regions initially, they mix because of diffusive and other

dispersive effects, leading ultimately to a multicomponent mixture such as what we

just have been considering. If immiscible fluids are involved, the situation is more

complicated. Indeed, the complexities are such that, insofar as convection studies

are concerned, only the simplest situations have been treated. It invariably has been

assumed that Darcy’s law is valid. Consequently, our discussion of the momentum

and energy equations in this section will be comparatively brief. This will enable us

to present a derivation of the basic equations using formal averages. We follow the

presentation of Cheng (1978a, b) based on volume averaging. For a more extensive

treatment, the reader is referred to Whitaker (1999).

We consider “two-phase” fluid flow in a porous medium. This means that we

actually have three phases: two fluids and the solid matrix. The fluids could well

both be liquids, but to simplify the discussion we suppose that we have a liquid

phase (which we can label by the suffix l) and a gas phase (suffix g). As in previous

chapters, the suffix s refers to the solid matrix, which in this section is not

necessarily fixed.

We take a representative elementary volume V occupied by the liquid, gas, and

solid, whose interfaces may move with time, so

V ¼ Vl tð Þ þ Vg tð Þ þ Vs tð Þ: ð3:35Þ

We define the phase average of some quantity ψa as

< ψα >� V�1

ð
V

ψαdV ; ð3:36Þ

where ψa is the value of ψ in the α phase (α¼ l, g, s) and is taken to be zero in the

other phases. The intrinsic phase average of ψa is defined as
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< ψα>
α � V�1

α

ð
Vα

ψαdV ; ð3:37Þ

that is, the integration is carried out over only the α phase. Since ψa is zero in the

other phases, Eq. (3.37) can be rewritten as

< ψα>
α � V�1

α

ð
V

ψαdV: ð3:38Þ

Comparing Eqs. (3.36) and (3.38), we see that

< ψα >¼ εα < ψα>
α ð3:39Þ

where

εα ¼ Vα

V
ð3:40Þ

is the fraction of the total volume occupied by the α phase. In terms of the porosity

φ of the medium, we have

εl þ εg ¼ φ, εs ¼ 1� φ: ð3:41Þ

We define deviations (from the respective average values, for the α phase)

eψα � ψα� < ψα>
α, eχα � χα� < χα>

α ð3:42Þ

and note that in the other phases eψ α and eχα are zero. It is easily shown that

< ψαχα>
α ¼< ψα>

α < χα>
αþ < eψ α eχα>α ð3:43Þ

and

< ψα χα >¼ εα < ψα>
α < χα>

αþ < eψ α eχα > : ð3:44Þ

The following theorems are established by integration over an elementary volume.

Averaging theorem:

< ∇ψα >¼ ∇ < ψα > þV�1

ð
Aα

ψαnαdS: ð3:45Þ

Modified averaging theorem:

< ∇ψα >¼ εα∇ < ψα>
α þ V�1

ð
Aα

eψ αnαdS: ð3:46Þ
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Transport theorem:

<
∂ψα

∂t
>¼ ∂

∂t
< ψα > �V�1

ð
Aα

ψwα � nα dS ð3:47Þ

where Aa denotes the interfaces between the α phase and the other phases, wa is the

velocity vector of the interface, and na is the unit normal to the interface pointing

outward from the α phase.

3.5.1 Conservation of Mass

The microscopic continuity equation for the liquid phase is

∂ρl
∂t

þ∇ � ρ
l
Vl

� � ¼ 0; ð3:48Þ

which can be integrated over an elementary volume to give

<
∂ρl
∂t

> þ < ∇ � ρlVlð Þ >¼ 0; ð3:49Þ

where ρl and Vl are the density and velocity of the liquid. Application of the

transport theorem to the first term and the averaging theorem to the second term

of this equation, with the aid of Eq. (3.44), leads to

∂
∂t

εl < ρl>
l

� �þ∇ ��< ρl>
l <Vl >þ< eρl eVl >

þV�1

ð
Alg

ρl Vl�wlg

� � �nldSþV�1

ð
Als

ρl Vl�wlsð Þ �nldS¼ 0;

ð3:50Þ

where Alg and Als are the liquid–gas and liquid–solid interfaces that move with

velocities wlg and wls. The first integral in Eq. (3.50) represents mass transfer due to

a change of phase from liquid to gas, and in general this is nonzero; but the second

integral vanishes, since there is no mass transfer across the liquid–solid interface.

The dispersive term < eρl eVl > is generally small, and we suppose that it can be

neglected. Accordingly, Eq. (3.50) reduces to

∂
∂t

εl < ρl>
l

� �þ∇ � < ρl>
l < Vl >

� �þ V�1

ð
Alg

ρl Vl � wlg

� � � nldS ¼ 0:

ð3:51Þ
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Similarly, the macroscopic continuity equations for the gas and for the solid are

∂
∂t

εg < ρg>
g

� �þ∇ � < ρg>
g < Vg >

� �þ V�1

ð
Agl

ρg Vg � wg l

� � � ngdS ¼ 0

ð3:52Þ

and

∂
∂t

εs < ρs>
sð Þ þ∇ � < ρs>

s < Vs >ð Þ ¼ 0: ð3:53Þ

The mass gained by change of phase from liquid to gas is equal to the mass lost by

change of phase from gas to liquid. Thus, the surface integrals in Eqs. (3.51) and

(3.52) are equal in magnitude but opposite in sign. The integrals thus cancel each

other when Eqs. (3.51)–(3.53) are added to give

∂
∂t

εl < ρl>
l þ εg < ρg>

g þ εs < ρs>
s

� �
þ∇ � < ρl>

l < Vl>
lþ < ρg>

g < Vg>
gþ < ρs>

s < Vs>
s

� � ¼ 0:

ð3:54Þ

Note that, for example, <Vl>¼ εl<Vl>
l since Vl is taken to be zero in the gas and

solid phases. If the volumetric liquid and gas saturation, Sl and Sg, are defined by

Sl ¼ Vl

Vl þ Vg

, Sg ¼ Vg

Vl þ Vg

ð3:55Þ

so that

Sl þ Sg ¼ 1, εl ¼ φSl, εg ¼ φSg, and εs ¼ 1� φ; ð3:56Þ

then Eq. (3.54) can be rewritten as

∂
∂t

φSl < ρl>
l þ φSg < ρg>

g þ 1� φð Þ < ρs>
s

� �
þ∇ � < ρl>

l < Vl>
lþ < ρg>

g < Vg>
gþ < ρs>

s < Vs>
s

� � ¼ 0:

ð3:57Þ

3.5.2 Conservation of Momentum

The microscopic momentum equation for the liquid phase is

∂
∂t

ρlVlð Þ þ∇ � ρlVlVlð Þ þ∇Pl �∇ � τl � ρlf ¼ 0; ð3:58Þ
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where Pl, τl, and f are, respectively, the pressure, the viscous stress tensor, and the

body force per unit mass of the liquid. If the body force is entirely gravitational,

then

f ¼ g ¼ �∇Φ; ð3:59Þ

where Φ is the gravitational potential. We substitute Eq. (3.59) into Eq. (3.58),

integrate the resulting equation over an elementary volume, apply the transport

theorem to the first term and the averaging theorem to the second, third, and fourth

terms, and use Eq. (3.44). We also make use of the equation of continuity (3.57) and

replace ∇�τl by μl∇2 <Vl> (see Gray and O’Neill, 1976). We get

εl < ρl>
l ∂
∂t

< Vl>
l þ εl < ρl>

l < Vl > �∇ < Vl >

�
þV�1

ð
Al g

ρlVl

�
Vl � wlg

� � nldSþ∇ � < ρl>
l < eVl

eVl >
	 
#

þεl∇ < Pl>
l þ εl < ρl>

l∇ < Φl>
l

þV�1

ð
Al g

ePlþ < ρl>
l eΦl

	 

nldSþ V�1

ð
Al s

ePlþ < ρl>
l eΦl

	 

nldS

�μl∇
2 < Vl > �V�1

ð
Al g

nl � τldS� V�1

ð
Al s

nl � τldS ¼ 0;

ð3:60Þ

where density gradients at the microscopic level have been assumed to be small

compared to the corresponding velocity gradients.

For an isotropic medium, Gray and O’Neill (1976) argued that

V�1

ð
Al g

nl � τldSþ V�1

ð
Al s

nl � τldS ¼ μεlB
�
< Vs>

s� < Vl>
l
� ð3:61Þ

and

V�1

ð
Al g

ePtþ < ρl>
l eΦl

	 

nldSþ V�1

l

ð
Als

ePlþ < ρl>
l eΦl

	 

nldS

¼ F ∇ < Pl>
lþ < ρl>

l∇ < Φl>
l

� � ð3:62Þ

where B and F are constants that depend on the nature of the isotropic medium.

Substituting Eqs. (3.61) and (3.62) into Eq. (3.60) and neglecting the inertia terms

in the square brackets and the term μ∇2<Vl> (compare the discussion in Sect. 1.5)

yields

< Vl>
l� < Vs>

s ¼ � kslK

εl μl
∇ < Pl>

lþ < ρl>
l∇ < Φl>

l
� �

; ð3:63Þ

68 3 Mass Transfer in a Porous Medium: Multicomponent and Multiphase Flows

http://dx.doi.org/10.1007/978-3-319-49562-0_1


where kslK� εl (1 +F)/B. Here, K denotes the intrinsic permeability of the porous

medium, as defined for one-phase flow. The new quantity ksl is the relative

permeability of the porous medium saturated with liquid. It is a dimensionless

quantity.

Similarly, when inertia terms and the term μg∇2<Vg> are neglected, the

momentum equation for the gas phase is

< Vg>
g� < Vs>

s ¼ � ksgK

εgμg
∇ < Pg>

gþ < ρg>
g∇ < Φg>

g
� �

; ð3:64Þ

where ksg denotes the relative permeability of the porous medium saturated with

gas. Equations (3.63) and (3.64) are the Darcy equations for a liquid–gas combi-

nation in an isotropic porous medium. A similar expression for an anisotropic

medium has been developed by Gray and O’Neill (1976). A permeability tensor

is involved. They also obtain an expression for flow in an isotropic medium with

nonnegligible inertial effects.

3.5.3 Conservation of Energy

The microscopic energy equation, in terms of enthalpy for the liquid phase, is

∂
∂t

ρl hlð Þ þ∇ � ρl hlVl � kl∇Tlð Þ � ∂Pl

∂t
þ Vl �∇Pl

� �
¼ 0; ð3:65Þ

where hl and kl are the enthalpy and thermal conductivity of the liquid. In writing

this equation, we have neglected the viscous dissipation, thermal radiation, and any

internal energy generation. Integrating this equation over a representative elemen-

tary volume and applying the transport equations to the first and fourth terms,

Eqs. (3.44) and (3.45) to the second term, Eq. (3.46) to the third term, and Eq. (3.44)

to the fifth term yields

∂
∂t

εl < ρl>
l < hl>lð Þ þ∇ � < ρl>l < h

l
>l < Vl >ð Þ �∇ � εlk

*
l
∇ < Tl>l

	 

� εl

∂
∂t

< Pt>
l

� �þ < Vl > �∇ < Pl > l

� �
þ Qlg þ Q0

lg þ Q0
ls ¼ 0;

ð3:66Þ

where k∗l is the effective thermal conductivity of the liquid in the presence of the

solid matrix. This k∗l is the sum of the stagnant thermal conductivity k
0
l (due to

molecular diffusion) and the thermal dispersion coefficient k
00
l (due to mechanical

dispersion), which in turn are defined by
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�εlk
0
l∇ < Tl>

l ¼ � < kl>
l εl∇ < Tl>

l þ V�1

ð
Al g

eT lnldSþ V�1

ð
Al s

eT lnldS

 !
ð3:67aÞ

and

�∇ � εl k
00
l∇ < Tl>

l
� � ¼ ∇ � ρlehleVl

	 

� < eVl �∇ePl >

þV�1

ð
Al g

ePl
eVl � nldSþ V�1

ð
Al s

ePl
eVl � nldS:

ð3:67bÞ

The integrals in Eq. (3.67a) account for the change in thermal diffusion due to the

microstructure of the solid matrix. The terms Qlg, Q
0
lg, and Q

0
ls are given, respec-

tively, by

Qlg ¼ V�1

ð
Alg

ρlhl � ePl

	 

Vl � wlg

� � � nldS � V�1

ð
Alg

ρlhl Vl � wlg

� � � nldS;
ð3:68aÞ

Q0
lg ¼ V�1

ð
Al g

q � nldS; ð3:68bÞ

Q0
l s ¼ V�1

ð
Al s

q � nldS ¼ Al shlV
�1 Ts � Tlð Þ; ð3:68cÞ

where q in Eqs. (3.68b) and (3.68c) is the conduction heat flux across the interface,

and hl in Eq. (3.68c) is defined as the local volume-averaged heat transfer coeffi-

cient at the liquid–solid interface, which depends on the physical properties of the

liquid and its flow rate.

Similarly, the energy equations for the gas phase and for the solid-matrix phase

are, respectively,

∂
∂t

εg < ρg>
g < hg>

g
� �þ∇ � < ρg>

g < hg>
g <Vg >

� ��∇ � εgk
*
g∇< Tg>

g
	 


� εg
∂
∂t

< ρg>
gþ<Vg > �∇<Pg>

g

� �
þQglþQ0

glþQ0
gs ¼ 0

ð3:69Þ
and

∂
∂t

εs < ρs>
s < hs>

sð Þ þ∇ � < ρs>
s < hs>

s < Vs >ð Þ �∇ � εsk
*
s∇ < Ts>

s
� �

� εs
∂
∂t

< Ps>
sþ < Vs > �∇ < Ps>

s

� �
þ Q

0
sl þ Q

0
sg ¼ 0;

ð3:70Þ

70 3 Mass Transfer in a Porous Medium: Multicomponent and Multiphase Flows



where kg* and ks* are defined analogously to kl* and similarly for the various

Q terms. Note that

Qg l ¼ �Qlg, Q0
g l ¼ �Q0

lg, Q0
sl ¼ �Q0

ls ð3:71Þ

and

Q0
gs ¼ V�1

ð
Ags

q � ngdS ¼ Ag shgV
�1 Ts � Tg

� � ¼ �Q0
sg ð3:72Þ

where hg is the heat transfer coefficient at the gas–solid interface.

The difference between Pg and Pl is called the capillary pressure. In many

circumstances, including most geophysical situations, the capillary pressure can

be neglected, so in this case we have

< Pl>
l ¼< Pg>

g ¼< Ps>
s ¼< P > : ð3:73Þ

Furthermore, we can usually assume local thermodynamic equilibrium and so

< Tl>
l ¼< Tg>

g ¼< Ts>
s ¼< T > : ð3:74Þ

Adding Eqs. (3.66), (3.69), and (3.70) in this case, we get

∂
∂t

φSl < ρl>
l < hl>

lþφSg < ρg>
g < hg>

gþ 1�φð Þ< ρs>
s < hs>

s
� �

þ∇ � < ρl>
l < hl>

l <Vl >þ< ρg>
g < hg>

g <Vg >þ< ρs>
s < hs>

s <Vs >
� �

�∇ � k∇< T>ð Þ� ∂
∂t

<P>þ <Vl >þ<Vg >þVs >
� � �∇<P>

� �
¼ 0;

ð3:75Þ

where k¼φ(Slkl* + Sgkg*) + (1 –φ)ks* is the effective thermal conductivity of the

porous medium saturated with liquid and gas at local thermal equilibrium, with the

heat conduction assumed to be in parallel (see Sect. 2.2.1).

3.5.4 Summary: Relative Permeabilities

The governing equations for two-phase flow, for the case of negligible capillary

pressure and local thermal equilibrium, are Eqs. (3.57), (3.63), (3.64), and (3.75).

Since P and T are independent of phase, we can drop the angle brackets in<P> and

<T>. Also we note that <Vl> is just vl, the seepage velocity for the liquid phase,

etc. Also, in Eq. (3.57), <ρl> <Vl>
l¼ εl

–1 <ρl> <Vl>¼<ρl>
l <Vl>, etc. For a
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gravitational body force, we have ∇Φl¼∇Φg¼ –g. Thus, we can rewrite the four

governing equations, with the angle brackets for intrinsic averages dropped, as

∂
∂t

φSlρl þ φSgρg þ 1� φð Þρs
� �þ∇ � ρlvl þ ρgvg þ ρsvs

� � ¼ 0; ð3:76Þ

vl � εl
εs

vs ¼ � ks lK

μl
∇P� ρlgð Þ ; ð3:77Þ

vg � εg
εs

vs ¼ � ks gK

μg
∇P� ρgg
� �

; ð3:78Þ

∂
∂t

φSlρlhl þ φSgρghg þ 1� φð Þρshs
� �þ∇ � ρlhlvl þ ρghgvg þ ρshsvs

� �
�∇ � k∇Tð Þ � ∂P

∂t
þ vl þ vg þ vg
� � �∇P

� �
¼ 0:

ð3:79Þ

We can now extend Eqs. (3.76) and (3.79) by allowing for source terms q
000
M (rate of

increase of mass per unit volume of the medium) and q
000
E (rate of increase of energy

per unit volume of the medium). At the same time we can introduce AM and AE,

respectively, the mass and energy per unit volume of the medium, and FM and FE,

the mass flux and energy flux in the medium. These are given by

AM ¼ φSlρl þ φSgρg þ 1� φð Þρs; ð3:80Þ
AE ¼ φSlρlhl þ φSgρghg þ 1� φð Þρshs; ð3:81Þ

FM ¼ ρlvl þ ρgvg þ ρsvs; ð3:82Þ
FE ¼ ρlhlvl þ ρghgvg þ ρshsvs � k∇T: ð3:83Þ

We also write

D*P

Dt
¼ ∂P

∂t
þ vl þ vg þ vs
� � �∇P: ð3:84Þ

Thus, D*/Dt is a material derivative based on the sum of vl, vg, and vs, rather than
the mass-weighted average of the velocities. The extended forms of the mass

equation (3.76) and the energy equation (3.79) are

∂AM

∂t
þ∇ � FM ¼ q

000
M ð3:85Þ

and

∂AE

∂t
þ∇ � FE � D*P

Dt
¼ q

000
E: ð3:86Þ
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We are now confronted with the task of solving the Darcy equations (3.77) and

(3.78), the mass equation (3.85), and the energy equation (3.86) subject to

appropriate initial and boundary conditions. In many practical situations, there

will be no source terms q
000
M ¼ q

000
EE ¼ 0

� �
, the solid matrix will be fixed (vs¼ 0),

and the pressure term D*P/Dt will be negligible. Even then the task is not straight-

forward, because the relative permeabilities are not constant.

It is observed experimentally that in general the relative permeability for the

liquid phase ksl increases in a nonlinear fashion from 0 to 1 as the liquid saturation Sl
increases from 0 to 1, and the functional relationship is not single valued. The value

observed as Sl increases differs from that observed as Sl decreases, i.e., one has

hysteresis. Also, ksl may not differ from zero until Sl exceeds some nonzero critical

value Sl0. This last behavior is illustrated in Fig. 3.1.

The complications arise because usually one fluid “wets” the solid and adheres

to its surfaces, and each fluid can establish its own channels of flow through the

medium only to a limited extent. Further, the flow of one fluid can destroy the

connectivity of the pores available for the flow of the other fluid. Another factor

affecting permeability is the difference in viscosity between fluids; one fluid can act

as a lubricant for the other. Also, permeabilities tend to be slightly higher at higher

pressure gradients.

In view of this complexity, it is fortunate that experience has shown that the

main qualitative features of convection flows are not sensitive to the precise form of

the relative permeability versus saturation relationship. For several situations,

satisfactory results have been reported when use has been made of a simple linear

relationship, namely,

ksl ¼ Sl, ksg ¼ Sg ¼ 1 � Slð Þ: ð3:87Þ

For the case when the liquid is oil, Corey et al. (1956) proposed the use of the

semiempirical formulas

ksg

ksl

1–Sg0 1

1

0
0 Sl0

Sl

Fig. 3.1 The general form

of the relative permeability

curves for two-phase flow

through a porous medium

3.5 Multiphase Flow 73



ksl ¼ Ŝ
4

l and ksg ¼ 1� Ŝ l

� �2
1� Ŝ

2

l

	 

; ð3:88aÞ

where

Ŝ l ¼ Sl � Sl 0
1� Sl0 � Sg0

: ð3:88bÞ

The Corey formulas also have been used with water and steam.

A general alternative description of two-phase flow has been proposed by

Hassanizadeh and Gray (1993). An experimental study of relative permeabilities

and the various flow regimes that arise during steady-state two-phase flow was

reported by Avroam and Payatakes (1995). A new model for multiphase,

multicomponent transport in capillary porous media, in which the multiple phases

are considered as constituents of a multiphase mixture, has been developed by

Wang and Cheng (1996). This model is mathematically equivalent to the traditional

model but involves a reduced number of model equations. An experimental and

theoretical study of two-phase flow and heat transfer was conducted by

Jamialahmadi et al. (2005). Some specific situations involving two-phase flows

are discussed in Sect. 11.9.

The concept of relative permeability was critiqued by Spanos (2012).

3.6 Unsaturated Porous Media

Here, we provide introductory references to an important topic that we have not

discussed because of lack of space. The modeling of convection in unsaturated

porous media, with and without boiling or condensation, has been discussed by

Plumb (1991a). The particular topic of drying of porous media has been surveyed

by Bories (1991) and Plumb (1991b, 2000). Some additional references to convec-

tion in unsaturated porous media are given in the general review by Tien and Vafai

(1990a). The subject of multiphase flow and heat transfer in porous media has been

reviewed by Wang and Cheng (1997) and Chang and Wang (2002). These papers

reveal that convection in unsaturated media is a difficult problem.

One difficulty is that because of instabilities, the interface between phases is on

the macroscopic scale often far from being a well-defined smooth surface. A second

difficulty is caused by the effects of surface tension. This produces a pressure

difference that is proportional to the interface curvature on the pore scale, some-

thing that is completely different from the interface curvature on the macroscopic

scale. Since the local pressure difference is affected by contact angle, and this is

dependent on a number of things, there is a fundamental difficulty in calculating the

appropriate average pressure difference on the macroscopic scale. A third difficulty

is that hysteresis is commonly associated with the advance and recession of a phase

interface.
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Some later papers involving the drying of porous media include those by Francis

and Wepfer (1996), Daurelle et al.(1998), Lin et al.(1998), Oliveira and Haghighi

(1998), Mhimid et al. (1999, 2000), Zili and Ben Nasrallah (1999), Coussot (2000),

Landman et al. (2001), Natale and Santillan Marcus (2003), Ploude and Prat (2003),

Salagnac et al. (2004), Nganhou (2004), Dayan et al. (2004), Frei et al. (2004), and

Tao et al. (2005), Erriquble et al. (2006), Izadifar et al. (2006), Dantas et al. (2007),

Lu and Shen (2007), Prat (2007), Sander (2007), Skikiatden and Roberts (2007),

Yiotis et al. (2007), Almubarak et al. (2008), Bennamoun and Belhamri (2008),

Kowalski and Pawlowski (2008), Lehmann et al. (2008), Murugesan et al. (2008),

Salagnac et al. (2008), Sghaier et al. (2008), Sinha et al. (2008), Surasani et al

(2008a,b), Mihoubli and Bellagi (2009), Kowalski et al. (2010), Prommas et al.

(2010), Prommas (2011), Rattanadecho and Klinbun (2012), Dalel et al. (2013),

Kowalski et al. (2013), El Abrach et al. (2014), Khan and Straatman (2016) and

Wang et al. (2016g).

Later papers of other aspects of convection in unsaturated media include those of

Yu et al. (1993), Hanamura and Kaviany (1995), Larbi et al. (1995), Zhu and Vafai

(1996), Dickey and Peterson (1997), Gibson and Charmchi (1997), Bouddour et al.

(1998), Chen et al. (1998a), Figus et al. (1998), Yan et al. (1998), Wang and Cheng

(1998), Moya et al. (1999), Peng et al. (2000), Zhao and Liao (2000), Liu et al.

(2002), Kacur and Van Keer (2003), Shen et al. (2003), Zili-Ghedira et al. (2003),

Jadhav and Pillai (2003), Dos Santos and Mendes (2009a,b), and Najjari and Ben

Nasrallah (2009).

3.7 Electrodiffusion Through Porous Media

Diffusion is a slow process. When the diffusing species are electrically charged,

diffusion can be accelerated by applying externally an electric current or by

imposing a gradient of electrical potential. There are many applications at several

scales, for example, the delivery of drugs by iontophoresis through the human body

and the dechlorination of concrete structures such as bridges contaminated and

corroded by sea water.

The basics of diffusion of ionic species through nonreactive and reactive porous

media were reviewed in the book by Bejan et al. (2004), based on the work of

Frizon et al. (2003) and others. This section is based on the simplest presentation of

electrodiffusion through nonreactive porous media, which was made based on scale

analysis by Lorente and Ollivier (2006).

Instead of the classical Fick diffusion equation (3.22), the presence of electrical

forces requires the use of the more general Nernst–Planck equation

φ
∂Ci

∂t
¼ Di

∂
∂x

∂Ci

∂x
þ zi

F

RT
Ci

∂ψ
∂x

� �
ð3:89Þ
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The subscript i indicates the ionic species that diffuses through the porous medium,

zi is the charge number, F is the Faraday constant, R is the ideal gas constant, T is

the absolute temperature, and ψ is the electric potential created by the ionic species.

In the same equation, Ci is the ionic species concentration and Di is the effective

diffusion coefficient of the species. For simplicity, we consider time-dependent

diffusion in one direction (x). The problem is closed by solving Eq. (3.89) in

conjunction with the current conservation equation,

F
X
i

zi ji ¼ j ð3:90Þ

where ji is the ionic flux through the porous medium,

ji ¼ �Di
∂Ci

∂x
þ zi

F

RT
Ci

∂ψ
∂x

� �
ð3:91Þ

and j is the constant current density applied from the outside. The electric potential

gradient follows from Eqs. (3.90) and (3.91):

∂ψ
∂x

¼ �RT

F

j
F þ

X
i

ziDi
∂Ci

∂xX
i

z2i Di Ci

: ð3:92Þ

As an example, consider a one-dimensional porous medium (a slab) of thickness L.
Initially, the species of interest has Ci¼ 0 throughout the porous medium

(0< x< L ). At the time t¼ 0, a new concentration level is imposed on one face,

Ci ¼ ΔCi at x¼ 0, while the x¼ L face is maintained at Ci¼ 0.

Lorente and Ollivier (2006) established the scales of diffusion in two limits.

When the dominant driving force is the concentration gradient, the scales are those

of classic diffusion, and the time of diffusion penetration over the distance L is

tdiff � φ
L2

Di
: ð3:93Þ

When electrical effects dominate, the time of diffusion over L is

tel � φ
LF

j
ΔCi: ð3:94Þ

The transition between the two regimes is described by the new dimensionless

group

B ¼ FDΔCi

Lj
ð3:95Þ
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which is the ratio of the two characteristic time scales,

B � tel
tdiff

: ð3:96Þ

Lorente and Ollivier (2006) modeled the same one-dimensional time-dependent

electrodiffusion numerically, in a nondimensionalization based on the correct

scales revealed by scale analysis. Numerical simulations conducted for practical

examples (e.g., the extraction of an ionic species from a contaminated block)

validated the predictions based on scale analysis and confirmed the correctness of

both methods. Lorente (2007) showed that the constructal law governs the sequence

in which this phenomenon selects its diffusion mechanism. At any point in time, the

selected mechanism is the one that facilitates flow access.

The progress with the constructal law field was reviewed by Bejan and Lorente

(2006, 2010, 2011 and Lorente (2015)). Auger et al. (2008) used the constructal

design philosophy (Bejan and Lorente, 2008) to develop the geometric configura-

tion of electrodes to facilitate ionic access through a finite size porous medium.

Modeling and measurements of diffusion through cement-based materials,

monomodal materials, and unsaturated materials was reported by Mercado et al.

(2012, 2013), Boher et al. (2013, 2014), Wattez et al. (2013), Mercado-Mendoza

et al. (2014), and Wattez et al. (2015). The ability to predict pore network properties

based on the constructal law was described by Wattez and Lorente (2015).

3.8 Nanofluids

The literature on the effects of nanofluids on convection in porous media has been

reviewed by Nield and Kuznetsov (2015a,d) and Barletta et al. (2015b). Here, the

presentation of Nield and Kuznetsov (2015a) is followed.

We may regard a nanofluid as being a special sort of multicomponent fluid.

Nanofluids are suspensions whose distinctive feature is an unusually small size of

particles suspended in a base fluid (which can be water or an organic solvent);

nanoparticles sizes are typically in the range between 1 and 100 nm. They have

been extensively studied in recent years because of the possibility that they may

lead to enhanced heat transfer. Due to a very small size of suspended nanoparticles,

nanofluids form very stable colloidal systems with very little settling, and signifi-

cant enhancement of effective thermal conductivity in comparison with the base

fluid has been observed in some experiments.

Currently, two distinct approaches are being investigated. One approach, that

employed by Tiwari and Das (2007), is to examine the effect of the variation of

properties such as thermal conductivity and viscosity with nanofluid particle frac-

tion, utilizing expressions obtained using the theory of mixtures. It should be noted

that, as Magyari (2011d) pointed out, a suitable scaling of the governing dimen-

sionless parameters can reduce the nanofluid flow to a corresponding conventional
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fluid flow. This means that when the homogeneous model of Tiwari and Das is

introduced in any analysis of a new problem, a shortcut can often be taken.

A second approach is to follow Buongiorno (2006) who, after considering

alternative agencies, proposed a model incorporating the effects of Brownian

diffusion and the thermophoresis, each of which gives rise to cross-diffusion

terms that are in some ways analogous to the Soret and Dufour terms. These

approaches are now examined in turn.

3.8.1 Property Variations

The theory of mixtures leads to the following equations:

μeff
μf

¼ 1

1� ϕð Þ2:5 ; ð3:97Þ

keff
kf

¼ kp þ 2kf
� �� ϕ kf � kp

� �
kp þ 2kf
� �þ ϕ kf � kp

� � : ð3:98aÞ

Here, ϕ denotes the nanoparticle fraction, μ and k denote the viscosity and

thermal conductivity, respectively, and the suffixes f, p, eff denote the fluid, the

particles, and an effective quantity. Equation (3.97) was obtained by Brinkman

(1952) using ideas due to Einstein, and Eq. (3.98a) is the Maxwell–Garnett

formula for a suspension of spherical particles that dates back to Maxwell

(1904), who considered an analogue between thermal conductivity and electrical

conductivity. An alternative formula for keff, one based on effective medium

theory, was obtained by Bruggeman (1935). This is obtained by solving for keff
the balance equation

ϕ
kp � keff
� �
kp þ keff
� �þ 1� ϕð Þ kf � keffð Þ

kf þ keffð Þ ¼ 0: ð3:98bÞ

Equation (3.98b) applies for particles of general shape, and it can be readily

generalized to the case of more than one type of particle. It yields slightly smaller

values of keff than those given by Eq. (3.98a).

For a convection problem, the specific heat c is important, and it is common

practice to employ the weighted volumetric average value

ceff ¼ 1� ϕð Þcf þ ϕcp: ð3:99aÞ

Alternatively, one can consider a weighted volumetric average of the heat capacity,

ρcð Þeff ¼ 1� ϕð Þ ρcð Þf þ ϕ ρcð Þp: ð3:99bÞ
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More precise models have been proposed, but in any case variation of specific heat

or heat capacity is normally insignificant in comparison with variation of viscosity

or thermal conductivity. For these, Khanafer and Vafai (2011) presented a synthesis

of results, and further discussion was presented in Nield and Kuznetsov (2013a).

3.8.2 Processes Associated with the Smallness
of Nanoparticles

3.8.2.1 The Buongiorno Model

An important study of convective transport in nanofluids was made by Buongiorno

(2006). He focused on the heat transfer enhancement observed in convective

situations. Buongiorno concluded that turbulence is not affected by the presence

of the nanoparticles, so this cannot explain the observed enhancement. Particle

rotation has also been proposed as a cause of heat transfer enhancement, but

Buongiorno calculated that this effect is too small to explain the observed results.

With dispersion, turbulence, and particle rotation ruled out as significant agencies

for heat transfer enhancement, Buongiorno proposed a new model based on the

mechanics of the nanoparticle/base-fluid relative velocity. For completeness, we

now describe this in detail before considering the modifications required by a

porous medium.

Buongiorno (2006) noted that the nanoparticle absolute velocity can be viewed

as the sum of the base fluid velocity and a relative velocity (that he called the slip

velocity). He considered in turn seven slip mechanisms: inertia, Brownian diffu-

sion, thermophoresis, diffusiophoresis, Magnus effect, fluid drainage, and gravity

settling. He concluded that in the absence of turbulent effects, it is the Brownian

diffusion and the thermophoresis that will be important. Buongiorno proceeded to

write down conservation equations based on these two effects.

3.8.2.2 Conservation Equations for a Nanofluid

First we outline the derivation of conservation equations applicable to a nanofluid in

the absence of a solid matrix. Later, we modify these equations to the case of a

porous medium saturated by the nanofluid.

The Buongiorno model treats the nanofluid as a two-component mixture (base

fluid plus nanoparticles) with the following assumptions:

(1) Incompressible flow

(2) No chemical reactions

(3) Negligible external forces

(4) Dilute mixture

(5) Negligible viscous dissipation
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(6) Negligible radiative heat transfer

(7) Nanoparticles and base fluid locally in thermal equilibrium

The continuity equation for the nanofluid is

∇ � v ¼ 0: ð3:100Þ

Here, v is the nanofluid velocity.

The conservation equation for the nanoparticles in the absence of chemical

reactions is

∂ϕ
∂t

þ v �∇ϕ ¼ � 1

ρp
∇ � jp; ð3:101Þ

where ϕ is nanoparticle volume fraction, ρp is the nanoparticle mass density, and jp
is the diffusion mass flux for the nanoparticles, given as the sum of two diffusion

terms (Brownian diffusion and thermophoresis) by

jp ¼ jp,B þ jp,T ¼ �ρpDB∇ϕ� ρpDT

∇T

T
ð3:102aÞ

(Thermophoresis is the “particle” equivalent of the Soret effect in gaseous or liquid

mixtures.)

Here, DB is the Brownian diffusion coefficient given by the Einstein–Stokes

equation

DB ¼ kBT

3πμdp
; ð3:102bÞ

where kB is the Boltzmann’s constant, μ is the viscosity of the fluid, and dp is the
nanoparticle diameter. Use has been made of the expression

VT ¼ �eβ μ

ρ

∇T

T
ð3:103Þ

for the thermophoretic velocity VT. Here, ρ is the fluid density and the proportion-

ality factor eβ is given by

eβ ¼ 0:26
k

2k þ kp
; ð3:104Þ

where k and kp are the thermal conductivities of the fluid and the particle material.

Hence, the thermophoretic diffusion flux is given by

jp,T ¼ ρpϕVT ¼ �ρpDT

∇T

T
; ð3:105Þ
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where the thermophoretic diffusion coefficient is given by

DT ¼ eβ μ

ρ
ϕ: ð3:106Þ

Equations (3.101), (3.102a) and (3.102b) then produce the conservation equation in

the form

∂ϕ
∂t

þ v �∇ϕ ¼ ∇ � DB∇ϕþ DT

∇T

T

� �
: ð3:107Þ

The momentum equation for a nanofluid takes the same form as for a pure fluid, but

it should be remembered that μ is a strong function of ϕ. If one introduces a

buoyancy force and adopts the Boussinesq approximation, then the momentum

equation can be written as

ρ
∂v
∂t

þ v �∇v

� �
¼ �∇pþ μ∇2vþ ρg; ð3:108Þ

where

ρ ¼ ϕρp þ 1� ϕð Þρf : ð3:109Þ

The nanofluid density ρ can be approximated by the base-fluid density ρf when ϕ is

small. Then, when the Boussinesq approximation is adopted, the buoyancy term is

approximated by

ρg ffi ϕρp þ 1� ϕð Þ ρ 1� β T � T0ð Þð Þf g� �
g: ð3:110Þ

The thermal energy equation for a nanofluid can be written as

ρc
∂T
∂t

þ v �∇T

� �
¼ �∇ � qþ hp∇ � jp; ð3:111Þ

where c is the nanofluid specific heat, T is the nanofluid temperature, hp is the

specific enthalpy of the nanoparticle material, and q is the energy flux, relative to a

frame moving with the nanofluid velocity v, given by

q ¼ �k∇T þ hpjp; ð3:112Þ

where k is the nanofluid thermal conductivity. Substituting Eq. (3.112) in

Eq. (3.111) yields

ρc
∂T
∂t

þ v �∇T

� �
¼ ∇ � k∇Tð Þ � cp jp �∇T: ð3:113Þ
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In deriving this equation, use has been made of a vector identity and the fact that

∇hp ¼ cp∇T, where cp is the nanoparticle specific heat of the material constituting

the nanoparticles, while c is the specific heat (at constant pressure) of the fluid. Then
substitution of Eq. (3.101) in Eq. (3.113) gives the final form

ρc
∂T
∂t

þ v �∇T

� �
¼ ∇ � k∇Tð Þ þ ρpcp DB∇ϕ �∇T þ DT

∇T �∇T

T

� �
: ð3:114Þ

Equations (3.107) and (3.114) constitute a coupled pair of equations for

T and ϕ. One observes that the nanofluid terms are similar to the Soret and

Dufour cross-diffusion terms that arise in the case of double diffusion in a binary

fluid.

3.8.2.3 Conservation Equations for a Porous Medium Saturated

by a Nanofluid

We consider a porous medium whose porosity is denoted by ε and permeability

by K. A subscript s will now be used to denote properties of the solid matrix.

The Darcy velocity is denoted by vD. This is related to v by vD ¼ εv. We now have

to deal with the following four field equations (corresponding to Eqs. (3.99a),

(3.99b), (3.108), (3.114), (3.107)), for total mass, momentum, thermal energy,

and nanoparticles, respectively)

∇ � vD ¼ 0; ð3:115Þ

ρ
1

ε

∂vD
∂t

þ 1

ε2
vD �∇vD

� �
¼�∇pþeμ∇2vD� μ

K
vDþ ϕρpþ 1�ϕð Þ ρ 1�β T�T0ð Þð Þf g� �

g;

ð3:116Þ

ρcð Þm
∂T
∂t

þ ρcð ÞfvD �∇T ¼ ∇ � km∇Tð Þ þ ε ρcð Þp DB∇ϕ �∇T þ DT

∇T �∇T

T

� �
;

ð3:117Þ
∂ϕ
∂t

þ 1

ε
vD �∇ϕ ¼ ∇ � DB∇ϕþ DT

∇T

T

� �
: ð3:118Þ

Here, we have introduced the effective viscosity eμ, the effective heat capacity

(ρc)m, and the effective thermal conductivity km of the porous medium. We

regard the effective viscosity as a semiempirical quantity. The matter is discussed

in Sect. 1.5.3.

We now draw attention to a subtlety that was pointed out by Nield and

Kuznetsov (2014c). Equations (3.107) and (3.108) are in the form that was

presented by Buongiorno (2006). As they stand, they are adequate for application

to natural convection problems. However, in the case of forced convection and

mixed convection problems, an additional contribution to the particle flux
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(a convective term) must be taken into account. Equation (3.107) needs no change,

because a convective term is already properly included in that equation. However,

in Eq. (3.114), only the convection of heat is already incorporated, and an additional

thermophoresis term needs to be inserted. An externally applied pressure gradient

leads to a throughflow of the base fluid, and it is the particle flux that results from

this that is involved. Nield and Kuznetsov (2014c) suggested that Eq. (3.114) be

modified to read

ρc
∂T
∂t

þ v �∇T

� �
¼ ∇ � k∇Tð Þ þ ρpcp DB∇ϕ �∇T þ DT

∇T �∇T

T
� ϕ0v0 �∇T

� �
;

ð3:119Þ

where ϕ0 is the mean particle fraction and v0 is the mean velocity. It is being

assumed here that the nanofluid is dilute, and so ϕ0 is small compared with unity. If

the velocity is small, then the new term (the last term in the square brackets) is small

in comparison with the other terms within the square brackets on the right-hand side

of Eq. (3.119). The effect of the new term is to reduce the change in temperature in

the direction of the velocity.

In deriving Eqs. (3.115)–(3.118) from Eqs. (3.111)–(3.114), it has been assumed

that the Brownian motion and thermophoresis processes remain coherent while

volume averages over a representative elementary volume are taken. This assump-

tion can be questioned. In the context of modeling transport in porous media,

Eqs. (3.115) and (3.116) are standard. Equation (3.118) involves just intrinsic

quantities in the sense that the average is being taken over the nanofluid only, and

the solid matrix is not involved. The question thus reduces to whether the terms

within the square brackets on the right-hand side of Eq. (3.117) need modification.

Nield and Kuznetsov (2014c) recalled that in nanofluids, the particles are so small

that for practical purposes they remain in suspension in a uniform manner. They

emphasized that it is assumed that the nanoparticles are suspended in a nanofluid

using either surfactant or surface charge technology, something that prevents

particles from agglomeration and deposition on the porous matrix. Thus, it is

reasonable to assume as a first approximation that no modification to Eq. (3.117)

is necessary. Further, it is being assumed that one has a regular porous medium, one

for which the pore length scale is large compared with the length scale of the

nanoparticles. In these circumstances, one expects that the solid matrix will not to a

significant extent act as a filter for the nanoparticles.

Nield and Kuznetsov (2014c) noted that in a comprehensive treatment, it is

desirable that variations in the dynamic viscosity (due to the significant dependence

on the temperature and the local concentration) should be taken into account. This

means that the viscosity that appears in Eq. (3.116) should be regarded as a variable

quantity in future studies.

Nield and Kuznetsov (2014c) simplified matters by neglecting several things

such as (1) chemical interaction between the porous matrix and the nanofluid and
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the particles, (2) mass transfer between the porous matrix and the nanofluid,

(3) radiation effects between the porous matrix and the nanoparticles.

Analytical studies, involving volumetric averages, have been made by Sakai

et al. (2014) and Zhang et al. (2015c).

Applications to various convection problems are surveyed in Sect. 9.7.
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Chapter 4

Forced Convection

The fundamental question in heat transfer engineering is to determine the relation-

ship between the heat transfer rate and the driving temperature difference. In nature,

many saturated porous media interact thermally with one another and with solid

surfaces that confine them or are embedded in them. In this chapter we analyze the

basic heat transfer question by looking only at forced convection situations, in

which the fluid flow is caused (forced) by an external agent unrelated to the heating

effect. First we discuss the results that have been developed based on the Darcy flow

model and later we address work on the non-Darcy effects. We end this chapter

with a review of current engineering applications of the method of forced convec-

tion through porous media. Some fundamental aspects of the subject have been

discussed by Lage and Narasimhan (2000) and the topic has been reviewed by

Lauriat and Ghafir (2000) and Zheng et al. (2012).

4.1 Plane Wall with Prescribed Temperature

Perhaps the simplest and most common heat transfer arrangement is the flow

parallel to a flat surface that borders the fluid-saturated porous medium. With

reference to the two-dimensional geometry defined in Fig. 4.1, we recognize the

equations governing the conservation of mass, momentum (Darcy flow), and energy

in the flow region of thickness δT:

∂u
∂x

þ ∂v
∂y

¼ 0, ð4:1Þ

u ¼ �K

μ

∂P
∂x

, v ¼ �K

μ

∂P
∂y

, ð4:2Þ
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u
∂T
∂x

þ v
∂T
∂y

¼ αm
∂2

T

∂y2
: ð4:3Þ

Note the boundary layer-approximated right-hand side of Eq. (4.3), which is

based on the assumption that the region of thickness δT and length x is slender

(δT� x). The fluid mechanics part of the problem statement [namely, Eqs. (4.1) and

(4.2)] is satisfied by the uniform parallel flow

u ¼ U, v ¼ 0, ð4:4Þ

The constant pressure gradient that drives this flow (–dP/dx ¼ μU1/K ) is

assumed known.

The heat transfer rate between the surface at temperature Tw and the saturated

porous medium at far-field temperature T1 can be determined in several ways. The

scale analysis begins with writing ΔT ¼ Tw – T1, so that the order-of-magnitude

counterpart of Eq. (4.3) becomes

Heated
wall section

Heat flux
variation, q”~ x-1/2

Porous
medium

Uniform flow U•, T• 

Unheated
wall section

x = 0

y v

u

TW

T•

dT

x

Fig. 4.1 Parallel flow near an isothermal wall (Bejan 1984)
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U1
ΔT
x

� αm
ΔT
δ2T

: ð4:5Þ

From this we can determine the thickness of the thermal boundary layer

δT � xPe�1=2
x , ð4:6Þ

in which Pex is the Péclet number based on U1 and x:

Pex ¼ U1x

αm
: ð4:7Þ

For the local heat flux q00 we note the scale q00 ~ km ΔT/δT, or the corresponding
local Nusselt number

Nux ¼ q
00

ΔT
x

km
� Pe1=2x : ð4:8Þ

Figure 4.1 qualitatively illustrates the main characteristics of the heat transfer

region, namely, the boundary layer thickness that increases as x1/2 and the heat flux
that decays as x�1/2. The exact analytical solution for the same problem can be

derived in closed form by introducing the similarity variables recommended by the

scale analysis presented above:

η ¼ y

x
Pe1=2x , θ ηð Þ ¼ T � Tw

T1 � Tw

: ð4:9Þ

In this notation, the energy equation (4.3) and the boundary conditions of

Fig. 4.1 become

θ
00 þ 1

2
ηθ0 ¼ 0, ð4:10Þ

θ 0ð Þ ¼ 0, θ 1ð Þ ¼ 1: ð4:11Þ

Equation (4.10) can be integrated by separation of variables, and the resulting

expressions for the similarity temperature profile and the surface heat flux are

(Bejan 1984):

θ ¼ erf
η

2

� �
, ð4:12Þ

Nux ¼ q
00

Tw � T1

x

km
¼ 0:564Pe1=2x , ð4:13Þ

The overall Nusselt number based on the heat flux �q
00
averaged from x ¼ 0 to a

given plate length x ¼ L is
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NuL ¼ q00

Tw � T

L

km
¼ 1:128Pe

1=2
L : ð4:14Þ

Cheng (1977c) found the same Nux result by integrating numerically the

equivalent of Eqs. (4.10) and (4.11) for a wider class of problems. The similarity

temperature profile (4.12) has been plotted as (1 – θ) versus η in Fig. 4.2. The

effect of viscous dissipation has been included in the analysis by Magyari et al.

(2003b). An experimental study of forced convection over a horizontal plate in a

porous medium was reported by Afifi and Berbish (1999). A finite-element

study was made by Krishna et al. (1999). Magyari et al. (2001a) presented

some exact analytical solutions for forced convection past a plane or axisymmet-

ric body having a power-law surface distribution. Li and Tu (2008) and Li et al.

(2009) obtained an integral solution for forced convection over an isothermal

plate.

0 0.5
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Uniform heat flux,

Isothermal wall,
(1 − q)
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q q”

y
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x
h 

=
 

q q”

1
0

1

2

3Fig. 4.2 The temperature

distributions in a forced

parallel flow near walls with

constant temperature and

constant heat flux (Bejan

1984)
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4.2 Plane Wall with Constant Heat Flux

When the surface heat flux q00 is independent of x the temperature difference Tw –

T1 increases as x in the downstream direction. This can be seen by combining the

heat flux scale q00 ~ km(Tw – T1)/δT with the δT scale (4.6), which applies to the

constant q00 configuration as well. The similarity solution for the temperature

distribution along and near the y ¼ 0 surface was determined numerically by

Bejan (1984),

T x; yð Þ � T1 ¼ q
00
=km

�dθq00 =dη
� �

η¼0

αmx

U

� �1=2

θq00 ηð Þ, ð4:15Þ

in which θq00(η) is the similarity temperature profile displayed in Fig. 4.2. The

similarity variable η is defined on the ordinate of the figure. Since the calculated

slope of the θq00 profile at the wall is (–dθq00/dη)η¼0 ¼ 0.886, the inverse of the local

temperature difference can be nondimensionalized as the local Nusselt number

Nux ¼ q
00

Tw xð Þ � T

x

km
¼ 0:886Pe1=2x : ð4:16Þ

The overall Nusselt number that is based on the average wall temperature �Tw

(specifically, the temperature averaged from x ¼ 0 to x ¼ L ) is

NuL ¼ q
00

�Tw � T

L

km
¼ 1:329Pe

1=2
L : ð4:17Þ

We use this opportunity to communicate the exact solution for the problem of

heat transfer from an embedded wall with uniform heat flux. The closed-form

analytical alternative to the numerical solution (4.15) shown in Fig. 4.2 is

T x; yð Þ � T1
q00 x=km

Pe1=2x ¼ 2π�1=2exp � η2

4

� �
� η erfc

η

2

� �
: ð4:18Þ

The right-hand side of Eq. (4.18) now replaces the function θq00/(–dθq00/dη)η¼0

used earlier in (4.15). This exact solution also reveals the exact values of the

numerical coefficients that appear in Eqs. (4.16) and (4.17), namely 0.886 ¼ π1/2/
2 and 1.329 ¼ (3/4)π1/2.

It is worth reviewing the Nusselt number results (4.13), (4.16), and (4.17), in

order to rediscover the order-of-magnitude trend anticipated in Eq. (4.8). All these

results are valid if δT � x, i.e., when the Péclet number is sufficiently large so that

Pe1=2x � 1. The effect of variation of viscosity with temperature was studied by

Ramirez and Saez (1990) and Ling and Dybbs (1992).

Mahgoub (2013) reported experimental results for the constant flux case.
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4.3 Sphere and Cylinder: Boundary Layers

A conceptually similar forced convection boundary layer develops over any other

body that is imbedded in a porous medium with uniform flow. Sketched in Fig. 4.3

is the thermal boundary layer region around a sphere, or around a circular cylinder

that is perpendicular to the uniform flow with volume-averaged velocity u. The
sphere or cylinder radius is r0 and the surface temperature is Tw.

The distributions of heat flux around the sphere and cylinder were determined by

Cheng (1982), who assumed that the flow obeys Darcy’s law. With reference to the

angular coordinate θ defined in Fig. 4.3, Cheng obtained the following expressions

for the local peripheral Nusselt number:

Sphere:

Nuθ ¼ 0:564
ur0θ

αm

� �1=2
3

2
θ

� �1=2

sin 2θ
1

3
cos 3θ � cos θ þ 2

3

� �1=2

: ð4:19Þ

Cylinder:

Nuθ ¼ 0:564
ur0θ

αm

� �1=2

2θð Þ1=2 sin θ 1� cos θð Þ1=2: ð4:20Þ

Worth noting in these expressions is the Péclet number based on the swept arc

r0θ, namely Peθ ¼ u r0θ/αm. The local Nusselt number is defined as

Nuθ ¼ q
00

Tw � T1

r0 θ

km
: ð4:21Þ

The variation of the local heat flux over the cylinder or sphere circumference is

illustrated in terms of [q00r0/km(Tw – T1)](ur0/αm)
�1/2 versus θ in Fig. 4.4.

Equations (4.19) and (4.20) are valid when the boundary layers are distinct

(thin), i.e., when the boundary layer thickness r0Pe
1=2
θ is smaller than the radius

r0. This requirement can also be written as Pe
1=2
θ � 1, or Nuθ � 1.

u,T•

Tw

r0

θ

Fig. 4.3 The forced-

convection thermal

boundary layer around a

sphere or perpendicular

cylinder embedded in a

porous medium
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The conceptual similarity between the thermal boundary layers of the cylinder

and the sphere (Fig. 4.3) and that of the flat wall (Fig. 4.1) is illustrated further by

the following attempt to correlate the heat transfer results for these three configu-

rations. The heat flux averaged over the area of the cylinder and sphere, �q
00
, can be

calculated by averaging the local heat flux q00 expressed by Eqs. (4.19)–(4.21). We

have done this on this occasion, and the results are:

Sphere : NuD ¼ 1:128Pe
1=2
D , ð4:22Þ

Cylinder : NuD ¼ 1:015Pe
1=2
D : ð4:23Þ

In these expressions, the Nusselt and Péclet numbers are based on the diameter

D ¼ 2r0,

NuD ¼ q00

Tw � T

D

km
, PeD ¼ uD

αm
: ð4:24Þ

Remarkable at this stage is the similarity between theNuD expressions (4.22) and

(4.23), and between this set and the corresponding NuL formula for the isothermal

flat wall, Eq. (4.14). The correlation of these three results is very successful because

in each case the length scale used in the definition of the overall Nusselt number and

the Péclet number is the dimension that is aligned with the direction of flow, the

diameter in Fig. 4.3, and the length L in Fig. 4.1.

In an earlier attempt to correlate the overall heat transfer rates for these three

configurations, as length scale we used Lienhard’s (1973) “swept” length l, namely

l ¼ L for the flat wall and l ¼ πr0 for the cylinder and sphere. We found that this

length scale does not work nearly as well; in other words, the resulting Nul � Pel
expressions change appreciably from one configuration to the next. In defense of

Lienhard’s length scale, however, it must be said that it was originally proposed for

natural convection boundary layers, not forced convection.

The heat transfer by forced convection from a cylinder with elliptic cross section

to the surrounding saturated porous medium was analyzed by Kimura (1988a). This
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Fig. 4.4 The distribution of

heat flux over a cylinder or

sphere with forced-

convection boundary layer
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geometry bridges the gap between the circular cylinder and the plane wall discussed

in Sect. 4.1. The elliptic cylinder in cross flow is in itself relevant as a model for the

interaction between a uniform flow and a circular cylinder that is not perpendicular

to the flow direction. The extreme case in which the circular cylinder is parallel to

the flow direction was also analyzed by Kimura (1988b). A circular cylinder with

constant heat flux was studied by Kimura and Yoneysa (1992). A problem involv-

ing a magnetic field was treated by Ghadi et al. (2012).

Murty et al. (1990) investigated non-Darcy effects and found that heat transfer

from a cylinder was only weakly dependent on Darcy and Forchheimer numbers for

Da < 10–4, Re < 200.

An experimental study of heat transfer from a cylinder embedded in a bed of

spherical particles, with cross flow of air, was made by Nasr et al. (1994). Agree-

ment with theory based on Darcy’s law and boundary layer approximations was

found to be moderately successful in predicting the data, but improved correlations

were obtained with an equation modified to better account for particle diameter and

conductivity variations. A similar experimental study was made by Afifi and

Berbish (1998).

For axial flow past a cylinder, an experimental study, with water and glass beads,

was carried out by Kimura and Nigorinuma (1991). Their experimental results

agreed well with an analysis, similar to that for the flat plate problem but with the

curvature taken into account. Three exactly solvable cases with axial flow were

studied by Magyari (2013b).

Heat transfer from a large sphere imbedded in a bed of spherical glass beads was

studied experimentally by Tung and Dhir (1993). They concluded that the total rate

of heat transfer could be predicted from the equation

Nu ¼ Nuconduction þ Nuradiation þ Nu3natural þ Nu3forced
� �1=3

, ð4:25Þ

where

Nuforced ¼ 0:29Re0:8Pr1=2, 0:7 � Pr � 5, Re � 2400: ð4:26Þ

where Re is the Reynolds number based on the diameter of the large sphere.

Asymptotic solutions, valid for high or low (respectively) Pe, for the case of a

sphere with either prescribed temperature or prescribed flux, were obtained by

Romero (1994, 1995a). Analytical solutions for large Péclet numbers for flow

about a cylinder or sphere were reported by Pop and Yan (1998). Numerical

simulation of forced convection past a parabolic cylinder was carried out by

Haddad et al. (2002). MHD and viscous dissipation effects for flow past a cylinder

were studied by El-Amin (2003a). Further analysis of forced convection from a

circular cylinder was reported by Al-Sumaily et al. (2012a,b), who studied the

effect of local thermal nonequilibrium. Khadrawi et al. (2005a) studied non-Darcy

convection past a wedge or cone.

Juncu (2014) studied the effect of permeability on unsteady conjugate convec-

tion from a sphere.

92 4 Forced Convection



4.4 Point Source and Line Source: Thermal Wakes

In the region downstream from the hot sphere or cylinder of Fig. 4.3, the heated

fluid forms a thermal wake whose thickness increases as x1/2. This behavior is

illustrated in Fig. 4.5, in which x measures the distance downstream from the heat

source. Seen from the distant wake region, the imbedded sphere appears as a point

source (Fig. 4.5, left), while the cylinder perpendicular to the uniform flow (u, T1)

looks like a line source (Fig. 4.5, right).

Consider the two-dimensional frame attached to the line source q0 in Fig. 4.5,

right. The temperature distribution in the wake region, T(x,y), must satisfy the

energy conservation equation

u
∂T
∂x

¼ αm
∂2

T

∂y2
, ð4:27Þ

the boundary conditions T ! T1 as y ! �1, and the integral condition

q0 ¼
ð1
�1

ρcPð Þfu T � T1ð Þdy: ð4:28Þ

Restated in terms of the similarity variable η and the similarity temperature

profile θ,

η ¼ y

x
Pe1=2x , θ ηð Þ ¼ T � T1

q=km
Pe1=2x , ð4:29Þ

in which Pex ¼ ux/αm, the problem statement becomes

�1

2
θ þ ηθ0ð Þ ¼ θ

00
, ð4:30Þ

u,T• u,T•

q
q’

yr

x

T(x,r) T(x,y)

x

Fig. 4.5 The thermal wakes behind a point source (left), and behind a line source perpendicular to
the uniform flow (right)
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θ ! 0 as η ! �1 ð4:31Þð1
�1

θdη ¼ 1: ð4:32Þ

The solution can be determined analytically,

θ ¼ 1

2π1=2
exp � η2

4

� �
: ð4:33Þ

In terms of the physical variables, the solution is

T � T1 ¼ 0:282
q0

km

αm
ux

� �1=2

exp � uy2

4αmx

� �
: ð4:34Þ

In conclusion, the wake temperature distribution has a Gaussian profile in y. The
width of the wake increases as x1/2, while the temperature excess on the centerline

[T(x,0) – T1] decreases as x�1/2.

The corresponding solution for the temperature distribution T(x,r) in the round

wake behind the point source q of Fig. 4.5, left, is

T � T1 ¼ q

4π kmx
exp � ur2

4αmx

� �
, ð4:35Þ

In this case, the excess temperature on the wake centerline decreases as x�1, that

is more rapidly than on the centerline of the two-dimensional wake.

Both solutions, Eqs. (4.34) and (4.35), are valid when the wake region is slender,

in other words when Pex � 1. When this Péclet number condition is not satisfied,

the temperature field around the source is dominated by the effect of thermal

diffusion, not convection. In such cases, the effect of the heat source is felt in all

directions, not only downstream.

In the limit where the flow (u, T1) is so slow that the convection effect can be

neglected, the temperature distribution can be derived by the classic methods of

pure conduction. A steady-state temperature field can exist only around the point

source,

T rð Þ � T1 ¼ q

4π kmr
: ð4:36Þ

The pure conduction temperature distribution around the line source remains

time dependent (all the temperatures rise; e.g., Bejan 1993, p. 181). When the time

t is sufficiently long so that (x2 + y2)/(4αmt)� 1, the excess temperature around the

line source is well approximated by

T r; tð Þ � T1 ffi q0

4π km
ln

4αmt

σ r2

� �
� 0:5772

� 	
: ð4:37Þ

In this expression, r2 is shorthand for (x2 + y2). We will return to the subject of

buried heat sources in Sects. 5.10 and 5.11.
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4.5 Confined Flow

We now consider the forced convection heat transfer in a channel or duct packed with

a porous material (Fig. 4.6). In the Darcy flow regime the longitudinal volume-

averaged velocity u is uniform over the channel cross section. For this reason, when

the temperature field is fully developed, the relationship between the wall heat flux q00

and the local temperature difference (Tw – Tb) is analogous to the formula for fully

developed heat transfer to “slug flow” through a channel without a porousmatrix. The

temperature Tb is the mean or bulk temperature of the stream that flows through the

channel (e.g., Bejan 1984, p. 83). The Tb definition for slug flow reduces to

Tb ¼ 1

A

ð
A

TdA, ð4:38Þ

in which A is the area of the channel cross section.

In cases where the confining wall is a tube with the internal diameter D, the
relation for fully developed heat transfer can be expressed as a constant Nusselt

number (Rohsenow and Choi 1961):

NuD ¼ q
00
xð Þ

Tw � Tb xð Þ
D

km
¼ 5:78 tube; Tw ¼ constantð Þ, ð4:39Þ

NuD ¼ q
00

Tw xð Þ � Tb xð Þ
D

km
¼ 8 tube; q

00 ¼ constant
� �

: ð4:40Þ

When the porous matrix is sandwiched between two parallel plates with the

spacing D, the corresponding Nusselt numbers are (Rohsenow and Hartnett 1973)

NuD ¼ q
00
xð Þ

Tw � Tb xð Þ
D

km
¼ 4:93 parallel plates; Tw ¼ constantð Þ, ð4:41Þ

NuD ¼ q
00

Tw xð Þ � Tb xð Þ
D

km
¼ 6 parallel plates; q

00 ¼ constant
� �

: ð4:42Þ

The forced convection results [Eqs. (4.39)–(4.42)] are valid when the tempera-

ture profile across the channel is fully developed, i.e., sufficiently far from the

x

y or r

u

q”

D

Tw

Fig. 4.6 Heat transfer to

the Darcy flow forced

through the porous medium

confined by the walls of a

channel or duct
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entrance x ¼ 0 (Fig. 4.6). The entrance length, or the length needed for the

temperature profile to become fully developed, can be estimated by recalling

from Eq. (4.6) that the thermal boundary layer thickness scales as (αmx/u)
1/2. By

setting (αmx/u)
1/2 ~ D we obtain the thermal entrance length xT ~ D2u/αm. Inside the

entrance region 0 < x < xT, the heat transfer is impeded by the forced convection

thermal boundary layers that line the channel walls, and can be calculated approx-

imately with the formulas presented in Sects. 4.1 and 4.2.

One important application of the results for a channel packed with a porous

material is in the area of heat transfer augmentation. The Nusselt numbers for fully

developed heat transfer in a channel without a porous matrix are given by expres-

sions similar to Eqs. (4.39)–(4.42), except that the saturated porous medium

conductivity km is replaced by the thermal conductivity of the fluid alone, kf. The
relative heat transfer augmentation effect is indicated approximately by the ratio

hx with porous matrixð Þ
hx without porous matrixð Þ �

km
kf

, ð4:43Þ

in which hx is the local heat transfer coefficient q00/(Tw – Tb). In conclusion, a

significant heat transfer augmentation effect can be achieved by using a high-

conductivity matrix material, so that km is considerably greater than kf.
Forced convection in sintered metals was investigated by Evoshenko and Yaskin

(1976). An experimental study of unsteady heat transfer was reported by Koshelev

et al. (1989). They obtained heat transfer coefficient much smaller than those for

steady conditions. Inaba et al. (1993) reported experiments on convection in a duct

of rectangular cross section, occupied by spherical particles, which was heated from

below and cooled from the top. Experimental investigations were carried out by

Jiang et al. (1997) for a parallel-plate channel and Kahlil et al. (2000) for a pipe. An

experimental study of forced convection through microporous enhanced heat sinks

was reported by Lage et al. (2004b). An experimental study of flow of CO2 at

supercritical pressure was carried out by Jiang et al. (2004i, j). Correlations for

forced convection between two parallel plates or in a circular pipe were obtained by

Haji-Sheikh (2004). A numerical study, using a Green’s function solution method

and dealing with the effects due to a temperature change at the wall and the

contributions of frictional heating, was conducted by Haji-Sheikh et al. (2004a).

The role of longitudinal diffusion in fully developed forced convection slug flow in

a channel was studied by Nield and Lage (1998). Forced convection in a helical

pipe was analyzed by Nield and Kuznetsov (2004b). Curvature of the pipe induces a

secondary flow at first order and increases the Nusselt number at second order,

while torsion affects the velocity at second order and does not affect the Nusslet

number at second order. A numerical study of this problem was made by Cheng and

Kuznetsov (2005). Gaseous slip flow in microchannels was studied by Haddad et al.

(2006c, 2007b), Hooman (2009a, b), and Hashemi et al. (2011a, b). Flow in

rectangular channels was treated by Haji-Sheikh (2006), Haji-Sheikh (2006), and

Hooman (2008b, 2009b). Various flow orientations in a packed channel were

investigated by Ma et al. (2006). Experimental work with metallic foam was
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reported by Dukhan et al. (2013, 2014, 2015). A simulation and analytic validation

for forced convection in metallic foams was investigated by Suleiman and Dukhan

(2014). Thermally developing forced convection in a metal foam-filled elliptical

annulus was studied by Benmerkhi et al. (2016). Torabi et al. (2017) performed heat

transfer and entropy generation analyses using pore scale modeling.

Analytical solutions for ducts of various shapes (semi-circular, sector, super-

elliptical, lens-shaped) were reported by Wang (2008, 2010a, b, 2011b).

4.6 Transient Effects

Most of the existing work on forced convection in fluid-saturated porous media is

concerned with steady-state conditions. Notable exceptions are the papers on time-

dependent forced convection heat transfer from an isothermal cylinder (Kimura

1989a) and from a cylinder with uniform heat flux (Kimura 1988c). Nakayama and

Ebinuma (1990) studied the forced convection heat transfer between a suddenly

heated plate and a non-Darcy flow that starts initially from rest.

These three papers show that the simplest and perhaps most important forced

convection configuration had been overlooked. In that configuration, the

flow through the saturated porous medium is steady, parallel, and uniform

(Bejan and Nield 1991). The flow is driven by a pressure difference that is applied

in the x-direction in Fig. 4.7, and can be either a Darcy flow or a non-Darcy flow in

which the quadratic drag (Forchheimer effect) plays a role in the overall flow

resistance. What distinguishes the Bejan and Nield (1991) configuration from the

one analyzed by Nakayama and Ebinuma (1990) is that the flow is and remains

steady as the embedded plate is suddenly heated or cooled to a different

temperature.

Tw

q’s

u, T∞

y

q’t

L XXs-t0

Fig. 4.7 Forced-convection thermal boundary layer near a plate embedded in a porous medium

with steady, parallel, and uniform flow
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4.6.1 Scale Analysis

Consider the uniform flow, with volume-averaged velocity u, which is parallel to

the wall y ¼ 0 shown in Fig. 4.7. The initial temperature of the fluid-saturated

porous medium is T1. Beginning at time t ¼ 0, the temperature of the wall section

0 < x < L is maintained at a different constant temperature, Tw. In time, the flow in

the fluid-saturated porous medium adjusts to this change by developing a near-wall

region wherein the variation from Tw to T1 is smoothed.

We can develop a feel for the size and history of the near-wall region by

examining the order of magnitude implications of the energy equation for that

region,

σ
∂T
∂t

þ u
∂T
∂x

¼ αm
∂2

T

∂y2
: ð4:44Þ

The temperature boundary conditions are as indicated in Fig. 4.7, specifically

T ¼ Tw at y ¼ 0 ð4:45Þ
T ! T1 as y ! 1 ð4:46Þ

Implicit in the writing of the energy equation (4.42) is the assumption that the

near-wall region is slender, or boundary layer-like. To this assumption we will

return in Eqs. (4.62)–(4.65).

One way to perform the scale analysis is by considering the entire boundary layer

region of length L. The thickness of this thermal boundary layer is denoted by δ. If we
further write ΔT ¼ T1 – Tw, we find the following scales for the three terms of

Eq. (4.42):

σ
ΔT
t
, u

ΔT
L

, αm
ΔT
δ2

:

thermal

inertia

longitudinal

convection

transverse

conduction

ð4:47Þ

At sufficiently short times t, the transverse heating effect is balanced by the

thermal inertia of the saturated porous medium. This balance yields the time-

dependent thickness

δt � αmt

σ

� �1=2

: ð4:48Þ

As t increases, the thermal inertia scale decreases relative to the longitudinal

convection scale, and the energy equation becomes ruled by a balance between

transverse conduction and longitudinal convection. The steady-state boundary layer

thickness scale in this second regime is
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δs � αmL

u

� �1=2

: ð4:49Þ

The time of transition tc, when the boundary layer region becomes convective,

can be estimated by setting δt ~ δs:

tc � σL

u
: ð4:50Þ

Not all of the L-long boundary layer is ruled by the balance between conduction
and inertia when t is shorter than Tc. When t is finite, there is always a short enough
leading section of length x in which the energy balance is between transverse

conduction and longitudinal convection. In that section of length x and thickness

δx, the scales of the three terms of Eq. (4.44) are

σ
ΔT
t
, u

ΔT
x

, αm
ΔT
δ2x

, ð4:51Þ

showing that uΔT=x � αmΔT=δ2x, or

δx � αmx

u

� �1=2

ð4:52Þ

when σ ΔT/t < u ΔT/x, i.e., when

x <
u t

σ
: ð4:53Þ

The boundary layer changes from the convective (steady) section represented by

Eq. (4.52) to the conductive (time-dependent) trailing section of Eq. (4.48). The

change occurs at x ¼ xs�t where

xs�t � u t

σ
: ð4:54Þ

4.6.2 Wall with Constant Temperature

The two-section structure of the thermal boundary layer is indicated in Fig. 4.7. Its

existence was also recognized by Ebinuma and Nakayama (1990b) in the context of

transient film condensation on a vertical surface in a porous medium. The chief

benefit of this insight is that it enables us to delineate the regions in which two

analytical solutions are known to apply, first the steady leading section where

according to Eqs. (4.9)–(4.12)
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T � Tw

T1 � Tw

¼ erf
y

2

u

αmx

� �1=2
" #

x < xs�tð Þ ð4:55Þ

and farther downstream the time-dependent section where

T � Tw

T1 � Tw

¼ erf
y

2

σ

αmt

� �1=2
" #

x > xs�tð Þ: ð4:56Þ

The time-dependent section is no longer present when xs�t ~ L, i.e., when t ~ σL/u,
in accordance with Eq. (4.50).

We see from the condition (4.52) that the temperature distributions (4.55) and

(4.56) match at x ¼ xs�t. The longitudinal temperature gradient ∂T/∂x experiences
a discontinuity across the x ¼ xs�t cut, but this discontinuity becomes less

pronounced as t increases, i.e., as the xs�t cut travels downstream. It also must be

said that neither Eq. (4.55) nor (4.56) is exact at x ¼ xs�t, because at that location

none of the three effects competing in Eq. (4.45) can be neglected.

The instantaneous heat transfer rate (W/m) through the surface of length L can be

deduced by taking the heat transfer rate through the leading (steady-state) section

0 < x < xs�t, cf. Eq. (4.14),

q0s ¼ km T1 � Twð Þ 2

π1=2
u

αm
xs�t

� �1=2

ð4:57Þ

and adding to it the contribution made by the time-dependent trailing section

xs�t < x < L:

q0t ¼ L� xs�tð Þ km T1 � Twð Þ
παmt=σð Þ1=2

: ð4:58Þ

The total heat transfer rate q0 ¼ q0s þ q0t can be compared with the long-time

(steady-state) heat transfer rate of the L-long plate,

q0final ¼ k T1 � Twð Þ 2

π1=2
u

αm
L

� �1=2

ð4:59Þ

and the resulting expression is

q0

q0final
¼ 1þ 1� τ

2τ1=2
: ð4:60Þ

In this expression τ is the dimensionless time

τ ¼ ut

σL
: ð4:61Þ
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According to Eq. (4.50), τ ¼ 1 marks the end of the time interval in which

Eq. (4.60) holds. The beginning of that time interval is dictated by the validity of the

assumption that the leading (steady-state) section of the boundary layer is always

slender, cf. Eq. (4.49),

αmxs�t

u

� �1=2

< xs�t: ð4:62Þ

This requirement translates into

uxs�t

αm
> 1 ð4:63Þ

or, in view of Eqs. (4.54) and (4.61),

τ >
1

PeL
, ð4:64Þ

where PeL is the Péclet number based on L,

PeL ¼ uL

αm
: ð4:65Þ

At times τ shorter than 1/PeL, the leading section is not a forced convection

boundary layer, and the entire L length produces a time-dependent heat transfer rate

of type (4.58):

q0 ¼ L
km T1 � Twð Þ
παmt=σð Þ1=2

: ð4:66Þ

The dimensionless counterpart of this estimate is

q0

q0final
¼ 1

2τ1=2
: ð4:67Þ

In summary, the total heat transfer rate is given by three successive expressions,

each for one regime in the evolution of the temperature field near the suddenly

heated plate:

q0

q0final
¼

1

2τ1=2
, 0 < τ < Pe�1

L

1þ 1� τ

2τ1=2
, Pe�1

L < τ < 1

1 τ > 1:

8>>><>>>: ð4:68Þ

The domain occupied by each regime is indicated on the (PeL, τ) plane of

Fig. 4.8. The approximate solution (4.66) shows that relative to the long-time result

(4.59), the transient heat transfer rate depends on two additional dimensionless

groups, τ and PeL.
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4.6.3 Wall with Constant Heat Flux

The thermal boundary layer formed in the vicinity of a plate with sudden heat flux

q00 can be described in a way that is analogous to the analysis presented between

Eqs. (4.55) and (4.68). The structure shown in Fig. 4.7 is present here as well, and

Eqs. (4.54) and (4.61) continue to hold. The upstream portion 0 < x < xs�t closely

approximates the steady forced convection boundary layer with uniform heat flux

(Sect. 4.2). The downstream section xs�t < x < L is dominated by time-dependent

conduction into a semi-infinite medium with uniform heat flux at the surface.

The history of the L-averaged temperature of the wall or of the L-averaged wall-

medium temperature difference ΔT approaches [cf. Eq. (4.17)] the value

ΔT final ¼ 4

3π1=2
q

00
L

km

uL

αm

� �1=2

: ð4:69Þ

Expressed in dimensionless form, the L-averaged temperature difference is

ΔT
ΔT final

ffi

3

2
τ1=2, 0 < Pe�1

L

3

3
� τ

2

� �
τ1=2, Pe�1

L < τ < 1

l, τ > 1:

8>>><>>>: ð4:70Þ

The solutions (4.66) and (4.68) are based on the assumption that PeL � 1. For

example, Eq. (4.66) shows that the heat transfer ratio q0=q0final experiences a change
of relative magnitudeO Pe�1

L

� �
at τ ¼ Pe�1

L . The same observation applies to theΔT/
ΔTfinal ratio of Eq. (4.68).

1

conduction

convection

convection & conduction

10

100

1000

PeL

0.001 0.01 0.1 1 10 100

τ

Fig. 4.8 The τ-PeL ranges in which the three parts of the solutions (4.66) and (4.68) are applicable
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Unsteady forced convection on a flat plate, with the effect of inertia and thermal

dispersion accounted for, was analyzed by Cheng and Lin (2002). The dispersion

accelerates the rate of unsteady heat transfer but does not affect the response time to

reach a steady state.

4.6.4 Other Configurations

Kimura (1989b) has studied transient forced convection about a vertical cylinder.

He obtained analytic solutions for small time (conduction solution) and large time

(boundary layer solution) and numerical results for the general time situation.

Thevenin (1995) performed other calculations.

Al-Nimr et al. (1994a, b) investigated numerically convection in the entrance

region of either a tube or an annulus, when a timewise step change of wall

temperature is imposed, for Darcy and non-Darcy models. A conjugate problem

involving concentric annuli was studied numerically by El-Shaarawi et al. (1999).

Alkam and Al-Nimr (1998) performed a numerical simulation of transient forced

convection in a circular pipe partly filled with a porous substrate. Unsteady forced

convection about a sphere was studied numerically by Yan and Pop (1998). Fu et al.

(2001a) studied experimentally heat transfer in a channel subject to oscillating flow,

while Mohamad and Karim (2001) reported experiments in a pipe with core and

sheath occupied by different porous materials.

In a series of papers, Kuznetsov (1994, 1995a, b, 1996b, c, d, e, f, 1998e)

investigated the effect of local thermal nonequilibrium on heat transfer, for the

problem when a porous bed is initially at a uniform temperature and then suddenly

subjected to a step increase of fluid inlet temperature. The locally averaged fluid

velocity v is assumed to be uniform in space and constant in time. The analytical

solution obtained by Kuznetsov, using a perturbation method based on the assump-

tion that the fluid-to-solid heat transfer coefficient is large, shows that the temper-

ature of the fluid (Tf) or solid (Ts) phase takes the form of an advancing front, while

the temperature difference Tf � Ts takes the form of an advancing pulse. The

amplitude of that pulse decreases as the pulse propagates downstream. Kuznetsov

treated in turn a one-dimensional semi-infinite region, a one-dimensional finite

region, a two-dimensional rectangular region, a circular tube, a concentric tube

annulus, and a three-dimensional rectangular box. In the one-dimensional semi-

infinite case the wave speed vwave is related to the fluid flow speed v by

vwave ¼ ρcð Þf
φ ρcð Þf þ 1� φð Þ ρcð Þs

v: ð4:71Þ

In the two-dimensional and three-dimensional cases, the amplitude of the pulse

also decreases from the central flow region to the walls of the packed bed.

Kuznetsov’s (1996c) paper deals with a one-dimensional slab with a fluid-to-solid

heat transfer coefficient (something whose value is difficult to determine
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experimentally) that varies about a mean value in a random fashion. He calculated

the mean and standard deviation of Tf � Ts.
The effects of thermal nonequilibrium have been included in numerical simula-

tions by S€ozen and Vafai (1990, 1993), Vafai and S€ozen (1990a, b), Amiri and

Vafai (1994), and Amiri et al. (1995), e.g., in connection with the condensing flow

of a gas or longitudinal heat dispersion in a gas flow in a porous bed. They found

that the local thermal equilibrium condition was very sensitive to particle Reynolds

number and Darcy number, but not to thermophysical properties. Amiri and Vafai

(1998) and Wu and Hwang (1998) performed further numerical simulations.

4.7 Effects of Inertia and Thermal Dispersion: External
Flow

When quadratic drag is taken into account, the Darcy equations (4.2) are replaced

by the approximate equations

uþ χ

v
u2 ¼ �K

μ

∂P
∂x

, v ¼ �K

μ

∂P
∂y

ð4:72Þ

for the case when the primary flow is in the x-direction, so v/u� 1. Here χ ¼ cFK
1/2,

where cF was introduced in Eq. (1.12). Eliminating P from these equations and

introducing the stream-function ψ defined by u ¼ ∂ψ /∂y, v ¼ –∂ψ /∂x so that

Eq. (4.1) is satisfied, we obtain

∂2ψ

∂y2
þ χ

v

∂
∂y

∂ψ
∂y

� �2
" #

¼ 0, ð4:73Þ

and Eq. (4.3) becomes

∂ψ
∂y

∂T
∂x

� ∂ψ
∂x

∂T
∂y

¼ αm
∂2

T

∂y2
: ð4:74Þ

If one considers the case where Tw ¼ T1 + Axλ, U1 ¼ Bxm, where A, B, λ, and
m are constants, one finds that a similarity solution is possible if and only if m ¼ 0

and λ ¼ 1/2. One can check that the similarity solution is given by

ψ ¼ αmU1xð Þ1=2f ηð Þ, ð4:75Þ

T � T1 ¼ Tw � Tð Þθ ηð Þ, ð4:76Þ

η ¼ U1 x

αm

� �1=2y

x
, ð4:77Þ
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provided that f and η satisfy the differential equations

f
00 þ R* f 0ð Þ2

h i
¼ 0, ð4:78Þ

θ
00 ¼ 1

2
f 0θ � f θ0ð Þ, ð4:79Þ

where

R* ¼ χU1
v

: ð4:80Þ

The boundary conditions

y ¼ 0 : T ¼ Tw, v ¼ 0, ð4:81Þ

y ! 1 : T ¼ Tw, u ¼ U1, ð4:82Þ

lead to

θ 0ð Þ ¼ 1, f 0ð Þ ¼ 0, θ 1ð Þ ¼ 0, f 0 1ð Þ ¼ 1: ð4:83Þ

The local wall heat flux is

q
00 ¼ �km

∂T
∂y

� �
y¼0

¼ �kmA
B

αm

� �1=2

θ0 0ð Þ, ð4:84Þ

where θ0(0) ¼ –0.886. We recognize that this is the case of constant wall heat flux.

In nondimensional form this result is precisely the same as Eq. (4.16) and is

independent of the value of R*. Thus in this case quadratic drag has no effect on

the wall heat flux (for fixed U1), but it does have the effect of flattening the

dimensionless velocity profile (Lai and Kulacki 1987).

The effect of thermal dispersion in the same case was discussed by Lai and

Kulacki (1989a). In the present context it is the transverse component that is

important. If one allows for thermal dispersion by adding a term Cudp (where dp
is the mean particle or pore diameter and C is a numerical constant) to αm in the

term αm∂
2T/∂y2 in Eq. (4.3), then Eq. (4.16) is replaced by

Nux ¼ 0:886 1þ CPedð ÞPe1=2x , ð4:85Þ

where Ped ¼ U1dp/αm. Thus thermal dispersion increases the heat transfer because

it increases the effective thermal conductivity in the y direction.
The effect of quadratic drag in the transient situation for the case of constant wall

temperature was examined by Nakayama and Ebinuma (1990), who found that it
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had the effect of slowing the rate at which a steady-state solution is approached.

One can deduce from their steady-state formulas that (as for the constant flux

situation) quadratic drag does not affect the Nux (Pex) relationship, in this book

the formula (4.13).

4.8 Effects of Boundary Friction and Porosity Variation:
Exterior Flow

When one introduces the Brinkman equation in order to satisfy the no-slip condition

on a rigid boundary, one runs into a complex problem. The momentum equation no

longer has a simple solution, and a momentum boundary layer problem must be

treated. For the purposes of this discussion, we follow Lauriat and Vafai (1991) and

take the boundary layer form of the momentum equation

1

φ2
u
∂u
∂x

þ v
∂u
∂y

� �
¼ v

K
U � uð Þ þ cF

K1=2
U2 � u2
� �þ v

φ

∂2
u

∂y2
: ð4:86Þ

For the reasons pointed out in Sect. 1.5, we drop the left-hand side of this

equation at the outset, and in the last term we replace φ�1 by eμ=μ. The condition

on a plane wall is now

u ¼ v ¼ 0, T ¼ Tw for x > 0, y ¼ 0: ð4:87Þ

The remaining equations and boundary conditions are unaltered.

The integral method, as used by Kaviany (1987), provides an approximate

solution of the system. If the velocity profile is approximated by

u ¼ U1
3

2

y

δ
� 1

2

y

δ

� �3
� 	

, ð4:88Þ

one finds that the momentum boundary layer thickness δ is given by

δ2

K=φ
¼ 140

35þ 48cF Rep
� � 1� e�γ x*

� � ð4:89Þ

where

Rep ¼ U1K1=2=v ð4:90Þ

is the pore Reynolds number

γ ¼ 70

13

1

Rep
þ 96

13
cF

� �
φ3=2, ð4:91Þ
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and

x∗ ¼ x

K=φð Þ1=2
: ð4:92Þ

The momentum boundary layer thickness δ is almost constant when x* > 5/γ.
Thus the hydrodynamic development length can be taken as

xe ¼ 5

γ

K

φ

� �1=2

ð4:93Þ

and the developed momentum boundary layer thickness is given by

δ ¼ 140

35þ 48cF Rep

� �
K

φ

� 	1=2
: ð4:94Þ

For the developed region, exact solutions have been obtained by Cheng (1987),

Beckermann and Viskanta (1987), and Vafai and Thiyagaraja (1987). They show

that the velocity is constant outside a boundary layer whose thickness decreases as

cF and/or Rep increases, in accordance with Eq. (4.86).

Wall effects caused by nonuniform porosity (Sect. 1.7) have been investi-

gated experimentally by a number of investigators and theoretically by Vafai

(1984, 1986), Vafai et al. (1985), and Cheng (1987). The degree to which

hydrodynamic wall effects influence the heat transfer from a heated wall

depends on the Prandtl number Pr of the fluid. The ratio of the thermal boundary

layer thickness δT to the momentum boundary layer thickness δ is of order Pr�1.

For low Prandtl number fluids (Pr! 0), δ� δT and the temperature distribution,

and hence the heat transfer, is given by the Darcy theory of Sects. 4.1 and 4.2.

For a more general case where the inertial effects are taken into account and for

a variable wall temperature in the form Tw ¼ T1 + Axp, an exact solution was

obtained by Vafai and Thiyagaraja (1987) for low Prandtl number fluids in terms

of gamma and parabolic cylindrical functions. They found the temperature

distribution to be

T ¼ T1 þ AΓ pþ 1ð Þ
	 2pþ1=2 π�1=2 xpexp �αy2=x

� �
D� 2pþ1ð Þ 4αy2=x

� �1=2h in o
, ð4:95Þ

where α ¼ U1/8αm. The corresponding local Nusselt number is

Nux ¼ Γ pþ 1ð Þ
Γ pþ 1=2ð Þ Rep Pre

� �1=2
, Da�1=4

x ¼ Γ pþ 1ð Þ
Γ pþ 1=2ð Þ Pe

1=2
x , ð4:96Þ

which reduces to Eq. (4.13) when p ¼ 0.
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When the Prandtl number is very large, δT � δ and so the thermal boundary

layer lies completely inside the momentum boundary layer. As Pr ! 1 one can

assume that the velocity distribution within the thermal boundary layer is linear and

given by

u ¼ τwy

μf
, ð4:97Þ

where τw is the wall stress which is given by

τw ¼ μfU1
K=φð Þ1=2

1þ 4

3
cF Rep

� �1=2

: ð4:98Þ

This means that the energy equation can be approximated by

y
∂T
∂x

¼ αmμf
τw

∂2
T

∂y2
: ð4:99Þ

We now introduce the similarity variables

η ¼ y
1

9ξx

� �1=3

, θ ηð Þ ¼ T � Tw

T1 � Tw

, ð4:100Þ

where

ξ ¼ αmμf
τw

¼ K

RepPre
φ 1þ 4

3
cFRep

� �� 	�1=2

ð4:101Þ

and where the effective Prandtl number Pre is defined as

Pre ¼ ν

αm
: ð4:102Þ

We then have the differential equation system

θ
00 þ 3η2θ0 ¼ 0, ð4:103Þ

θ 0ð Þ ¼ 0, θ 1ð Þ ¼ 1, ð4:104Þ

which has the solution (Beckermann and Viskanta 1987)

θ ¼ 1

Γ 4=3ð Þ
ð η

0

e�ξ3dξ: ð4:105Þ
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Hence the local Nusselt number is

Nux ¼
km ∂T=∂yð Þy¼0

km Tw � T1ð Þ=x ¼ 1:12
x2

9ξ

� �1=3

¼ 0:538 φ 1þ 4
3
cF Rep

� �
 �1=6 Rep Pre
Dax

� �1=3

ð4:106Þ

and the overall Nusselt number over a length L from the leading edge becomes

Nu ¼ 1:68
L2

9ξ

� �1=3

: ð4:107Þ

Vafai and Thiyagaraja (1987) compared these analytical results with numerical

solutions. They found that the low Prandtl number analytical solution accurately

predicts the temperature distribution for a Prandtl number Pre as high as 8, while the

high-Pre analytical solution is valid for Pre as low as 100 and possibly for somewhat

lower values.

The combined effects of inertia and boundary friction were considered by

Kaviany (1987). He expressed his results in terms of a parameter Γx defined as

the total flow resistance per unit volume (Darcy plus Forchheimer drag) due to the

solid matrix, scaled in terms of8ρU2
1=3φx. He concluded that the “Darcian regime”

where Nux varies as Pr
1=2
e holds when Γx > 0.6 Pre and the “non-Darcian regime”

where Nux varies as Pr
1=3
e holds when 0.07 < Γx < 0.6 Pre. When Γx ¼ 0.07 the

presence of the solid matrix is not significant. Another study is that by Kumari et al.

(1990c).

Vafai et al. (1985) experimentally and numerically investigated the effects of

boundary friction and variable porosity. Their experimental bed consisted of glass

beads of 5 mm and 8 mm diameter saturated with water. They found good

agreement between observation of the average Nusselt number and numerical

predictions when the effect of variable porosity was included (but not otherwise).

Cheng (1987) noted that since their experiments were conducted in the range

100 < Rep < 900, thermal dispersion effects should have been important, and in

fact they neglected these. He pointed out that in their numerical work Vafai et al.

(1985) used a value of thermal conductivity about three times larger than was

warranted, and by doing so they had fortuitously approximated the effect of

transverse thermal dispersion.

Further experimental work was undertaken by Renken and Poulikakos (1989a).

They reported details of thermal boundary layer thickness, temperature field, and

local Nusselt number. Good agreement was found with the numerical results of

Vafai et al. (1985) with the effects of flow inertia and porosity variation accounted

for. Further work was done by Hayes (1990a).

Some further details on the content of this section can be found in the review by

Lauriat and Vafai (1991). Nakayama et al. (1990a) used novel transformed
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variables to produce a local similarity solution for flow over a plate. Vafai and Kim

(1990) analyzed flow in a composite medium consisting of a fluid layer overlaying a

porous substrate that is attached to the surface of a plate. Luna and Mendez (2005a,

b) used a Brinkman model to study analytically and numerically the conjugate

problem of forced convection on a plate with finite thermal conductivity and with

constant heat flux at the extreme boundary.

For the case of cross flow across a cylinder, Fand et al. (1993) obtained empirical

correlation expressions for the Nusselt number. For the same geometry, a numerical

study was made by Nasr et al. (1995). They reported that the effect of decreasing Da

was an increase in Nu, but Lage and Nield (1997) pointed out that this is true only if

the Reynolds number Re is held constant. If the pressure gradient is kept constant,

Nu increases with Da. Nasr et al. (1995) also noted that Nu increased with an

increase of either Re or effective Prandtl number, and that the effect of quadratic

drag on Nu is via the product DaRe.

Heat transfer around a periodically heated cylinder was studied experimentally

(with water and glass beads) and numerically by Fujii et al. (1994). They also

modeled the effects of thermal dispersion and thermal nonequilibrium. Conjugate

flow around a cylinder with internal heat generation was studied by Kadir

et al. (2008).

Unsteady forced convection, produced by small amplitude variations in the wall

temperature and free stream velocity, along a flat plate was studied by Hossain

et al. (1996).

The effect of viscous dissipation was discussed by Aydin and Koya (2008b, c, d),

Rees and Magyari (2008), and Nield (2008a). The effect of variable viscosity and

variable Prandtl number was studied by Pantokratoras (2007c).

4.9 Effects of Boundary Friction, Inertia, Porosity
Variation, Thermal Dispersion, and Axial Conduction:
Confined Flow

In porous channels the velocity field generally develops to its steady-state form in a

short distance from the entrance. To see this, let tc be a characteristic time for

development and uc a characteristic velocity. During development the acceleration

term is of the same order of magnitude as the Darcy resistance term, so uc/tc ~ v uc/K,
and so the development length ~tcuc ~ Kuc/v, which is normally small. [Note that, in

contrast with the argument used by Vafai and Tien (1981), the present argument

holds whether or not the convective inertial term is negligible.] Further, the numerical

results of Kaviany (1985) for flow between two parallel plates show that the entrance

length decreases linearly as the Darcy number decreases. In this section we assume

that the flow is also fully developed thermally.
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We start by considering a channel between two plane parallel walls a distance

2H apart, the boundaries being at y ¼ H and y ¼ �H. For fully developed flow the

velocity is u(y) in the x-direction. We suppose that the governing equations are

G ¼ μu*

K
þ cFρu*

2

K1=2
� eμ d2u*

dy*2
, ð4:108Þ

u*
∂T*
∂x*

¼ km
ρcPð Þf

∂2
T*

∂y*2
: ð4:109Þ

Here the asterisks denote dimensional variables, and G is the applied pressure

gradient. Local thermal equilibrium has been assumed, dispersion is neglected, and

it is assumed that the Péclet number is sufficiently large for the axial thermal

conduction to be insignificant. We define the dimensionless variables

x ¼ x*

H
, y ¼ y*

H
, u ¼ eμu*

GH2
, ð4:110Þ

and write

M ¼ eμ
μ
, Da ¼ K

H2
, F ¼ cFρGH

4

K1=2μ2
: ð4:111Þ

Thus M is a viscosity ratio, Da is a Darcy number, and F is a Forchheimer

number. Then Eq. (4.108) becomes

M
d2u

dy2
� u

Da
� Fu2 þ 1 ¼ 0: ð4:112Þ

This equation is to be solved subject to the boundary/symmetry conditions

u ¼ 0 at y ¼ 1,
du

dy
¼ 0 at y ¼ 0: ð4:113Þ

When F is not zero, the solution can be expressed in terms of standard elliptic

functions (Nield et al. 1996). When F ¼ 0, the solution is

u ¼ Da 1� cosh Sy

cosh S

� �
, ð4:114Þ

where for convenience we introduce

S ¼ 1

MDað Þ1=2
: ð4:115Þ
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We also introduce the mean velocity U* and the bulk mean temperature T*
m

defined by

U* ¼ 1

H

ð H

0

u*dy*, Tm
* ¼ 1

HU*

ð H

0

u*T*dy*: ð4:116Þ

We then introduce further dimensionless variables defined by

bu ¼ u*

U*
, bT ¼ T* � T*

w

T*
m � T*

w

, ð4:117Þ

and the Nusselt number

Nu ¼ 2Hq
00

km T*
m � T*

w

� � : ð4:118Þ

Here T*
w and q00 are the temperature and heat flux on the wall.

For the case of uniform heat flux on the boundary, the first law of thermody-

namics leads to

∂T*

∂x∗
¼ dT∗

m

dx*
¼ q

00

ρcPð ÞfHU*
¼ constant: ð4:119Þ

In this case Eq. (4.109) becomes

d2bT
dy2

¼ �1

2
Nu bu: ð4:120Þ

The boundary conditions for this equation are

bT ¼ 0 at y ¼ 1,
dbT
dy

¼ 0 at y ¼ 0: ð4:121Þ

For the Brinkman model, with u given by Eq. (4.114), we have

bu ¼ S

S� tanh S
1� cosh Sy

cosh S

� �
, ð4:122Þ

bT ¼ S Nu

S� tanh S

1

4
1� y2
� �� cosh S� cosh Sy

2S2cosh S

� 	
: ð4:123Þ

The definition of the dimensionless temperature leads to an identity that we call

the integral compatibility condition (Nield and Kuznetsov 2000), namely
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ð1
0

bubTdy ¼ 1: ð4:124Þ

Substitution from Eqs. (4.122) and (4.123) then leads to

Nu ¼ 12S S� tanh Sð Þ2
2S3 � 15Sþ 15tanh Sþ 3Stanh2 S

, ð4:125Þ

in agreement with an expression obtained by Lauriat and Vafai (1991). As the

Darcy number Da increases from 0 to 1, i.e., as S decreases from 1 to 0, the

Nusselt number Nu decreases from the Darcy value 6 [agreeing with Eq. (4.42)] to

the clear fluid value 210/51 ¼ 4.12. Thus the effect of boundary friction is to

decrease the heat transfer by reducing the temperature gradient at the boundary.

For F 6¼ 0, Vafai and Kim (1989) used a boundary-layer approximation in

obtaining a closed-form solution. This solution becomes inaccurate for hyperporous

media, those for which Da> 0.1. For such media, the Brinkman term is comparable

with the Darcy term throughout the flow (and not just near the walls) and K can no

longer be determined by a simple Darcy-type experiment. A closed-form solution

of the Brinkman–Forchheimer equation, valid for all values of Da, was obtained by

Nield et al. (1996). Some typical results are given in Fig. 4.9.
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Fig. 4.9 Effect of the Forchheimer number, F, on the Nusselt number Nu, for a channel with

isoflux boundaries (Nield et al. 1996)
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The results of Nield et al. (1996) may be summarized as follows. For each type

of thermal boundary condition, the temperature profile is little changed as a result of

variation of M, Da, or F. It is slightly more peaked when Da is small or when F is

large. On the other hand, the Nusselt number is significantly altered, primarily as a

result of the change in velocity profile. The effect of an increase in F is to produce a

more slug-like flow; and because of the way the mean velocity is defined this

decreases (Tw � Tm), and hence increases Nu. In particular, for the case of isoflux

boundaries, the following holds. When simultaneously Da is large and F is small,

the velocity profile is approximately parabolic and the Nusselt number is near 70/17

(a lower bound). When either Da is sufficiently small or F is sufficiently large, the

velocity profile is approximately uniform (apart from a thin boundary layer) and the

Nusselt number is near 6 (an upper bound). For the case of isothermal surfaces the

story is similar, but the Nusselt numbers are smaller [the reason for this is spelled

out in Nield et al. (1996, p. 211)].

An exact analytical solution was also presented by Abbasbandy et al. (2011).

For the case of a circular tube, with H replaced by the radius R of the tube in the

scaling, one finds (Nield et al. 2003b) that the solution can be expressed in terms of

modified Bessel functions:

bu ¼ S I0 Sð Þ � I0 Srð Þ½ 

SI0 Sð Þ � 2I1 Sð Þ , ð4:126Þ

bT ¼ S Nu

SI0 Sð Þ � 2I1 sð Þ
I0 Sð Þ
4

1� r2
� �� I0 Sð Þ � I0 Srð Þ

S2

� 	
, ð4:127Þ

Nu ¼ 8S SI0 Sð Þ � 2I1 Sð Þ½ 
2
S3 � 24S
� �

I0 Sð Þ½ 
2 þ 48I0 Sð ÞI1 Sð Þ þ 8S I1 Sð Þ½ 
2 : ð4:128Þ

When the uniform flux boundary condition is replaced by the uniform temper-

ature condition, one finds that Eq. (4.120) is replaced by

d2bT
dy2

¼ �1

2
Nu bubT : ð4:129Þ

The boundary condition given by Eq. (4.121) still applies. We see that we now

have an eigenvalue problem with Nu as the eigenvalue. Now Eq. (4.124) is satisfied

trivially, and instead of this compatibility condition one uses a differential compat-

ibility condition (previously satisfied trivially), namely

Nu ¼ �2
dbT
dy

1ð Þ: ð4:130Þ

Equation (4.130) enables the amplitude of the eigenfunction to be determined.

For the case of Darcy flow (Da ¼ 0) we have bu ¼ 1, bT ¼ π=2ð Þ cos πy=2ð Þ and

Nu¼ π2/2¼ 4.93. For other values of Da the value of Nu can be found numerically,
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most readily by expressing the second-order differential equation as two first-order

equations and then using a shooting method. Details of the method may be found in

Nield and Kuznetsov (2000).

The above results for symmetric heating can be extended to the case of asym-

metric heating, using a result established by Nield (2004c). The result applies when

the heat flux along each boundary is uniform, or the temperature along each

boundary is uniform. With the Nusselt number defined in terms of the mean wall

temperature and the mean wall heat flux, the value of the Nusselt number is

independent of the asymmetry whenever the velocity profile is symmetric with

respect to the midline of the channel. This means that the above results also apply to

the case of heating asymmetric with respect to the midline. Further work involving

asymmetric heat flux boundary conditions was reported by Mitrovic and Maletic

(2006, 2007) and Cezmer et al. (2011). Experiments with asymmetrically heated

channels filled with glass beads were performed by Jeng et al. (2011). Mondal

(2013) reported an analytical study of thermodynamically consistent limiting

forced convection in an asymmetrically heated channel.

In the case of a circular tube, Eqs. (4.129) and (4.130) are replaced by

d2bT
dr2

þ 1

r

dbT
dr

¼ �Nu bubT , ð4:131Þ

Nu ¼ �2
dbT
dr

1ð Þ: ð4:132Þ

For the case Da ¼ 0 one finds that Nu ¼ λ2 where λ ¼ 2.40483 is the smallest

positive root of the Bessel function J0(x), so that Nu ¼ (2.40483)2 ¼ 5.783, andbT ¼ λJ0 λrð Þ=2J1 λð Þ.
Variable porosity effects in a channel bounded by two isothermal parallel plates

and in a circular pipe were examined numerically by Poulikakos and Renken

(1987), for the case of a fully developed velocity field. They assumed that the

porosity variation had negligible effects on the thermal conductivity, an assumption

that breaks down when there is a large difference between the thermal conductiv-

ities of the two phases (David et al. 1991). Poulikakos and Renken (1987) found

that in the fully developed region the effect of channeling was to produce a Nusselt

number increase (above the value based on the Darcy model) of 12% for a parallel-

plate channel and 22% for a circular pipe.

Renken and Poulikakos (1988) performed an experimental investigation for the

parallel-plate configuration with the walls maintained at constant temperature, with

particular emphasis on the thermally developing region. They also performed

numerical simulations incorporating the effects of inertia, boundary friction, and

variable porosity. Their experimental and numerical findings agreed on predicting

an enhanced heat transfer over that predicted using the Darcy model.

Poulikakos and Kazmierczak (1987) obtained closed-form analytical solutions

of the Brinkman equation for parallel plates and a circular pipe with constant heat

flux on the walls for the case where there is a layer of porous medium adjacent to the
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walls and clear fluid interior. They also obtained numerical results when the walls

were at constant temperature. For all values of Da the Nusselt number Nu goes

through a minimum as the relative thickness of the porous region s varies from 0 to

1. The minimum deepens and is attained at a smaller value of s as Da increases. A
general discussion of Brinkman, Forchheimer, and dispersion effects was presented

by Tien and Hunt (1987). For the Brinkman model and uniform heat flux bound-

aries, Nakayama et al. (1988a, b) obtained exact and approximate solutions.

Analytical studies giving results for small or large Darcy numbers for convection

in a circular tube were reported by Hooman and Ranjbar-Kani (2003, 2004). An

analytical solution for the case of the Poiseuille-Couette combination for entry

profiles was reported by Ansari and Siddiqui (2010).

Hunt and Tien (1988a) have performed experiments that document explicitly the

effects of thermal dispersion in fibrous media. They were able to correlate

their Nusselt number data, for high Reynolds number flows, in terms of a parameter

uaL
1/2K1/4/αm, where ua is the average streamwise Darcy velocity and L is a

characteristic length. Since this parameter does not depend explicitly on the thermal

conductivity, they concluded that dispersion overwhelmed transport from solid

conduction. They were able to explain this behavior using a dispersion conductivity

of the form

kd ¼ ρcPγK
1=2u, ð4:133Þ

where γ is a numerical dispersion coefficient, having the empirically determined

value of 0.025. An analytical study of the effect of transverse thermal dispersion

was reported by Kuznetsov (2000c). A theoretical analysis with the Brinkman

model of the case of a parallel-plate channel with uniform heat flux was made by

Hooman and Dahari (2015).

Hunt and Tien (1988b) modeled heat transfer in cylindrical packed beds such as

chemical reactors by employing a Forchheimer–Brinkman equation. They allowed

the diffusivity to vary across the bed. Marpu (1993) found that the inclusion of axial

conduction leads to a significant increase in Nusselt number in the thermally

developing region of pipes for Péclet number less than 100. In similar circum-

stances, the effect of axial dispersion was found by Adnani et al. (1995) to be

important for Péclet number less than 10.

Cheng et al. (1991) reviewed methods for the determination of effective radial

thermal conductivity and Nusselt number for convection in packed tubes and

channels and reanalyzed some of the previous experimental data in the light of

their own contributions to thermal dispersion theory with variable porosity effects

taken into account. They found that for forced convection in a packed column the

average Nusselt number depends not only on the Reynolds number but also on the

dimensionless particle diameter, the dimensionless length of the tube, the thermal

conductivity ratio of the fluid phase to the solid phase, and the Prandtl number of the

fluid. They summarized their conclusions by noting that in their work [Cheng et al.

1988; Cheng and Hsu 1986a, b; Cheng and Zhu 1987; Cheng and Vortmeyer 1988;
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Hsu and Cheng 1988, 1990] they had developed a consistent theory for the study of

forced convection in a packed column taking into consideration the wall effects on

porosity, permeability, stagnant thermal conductivity, and thermal dispersion.

These effects become important as the particle/tube diameter ratio is increased.

Various empirical parameters in the theory can be estimated by comparison of

theoretical and experimental results for the pressure drop and heat transfer, but

there is at present a need to perform more experiments on forced convection in

packed columns where both temperature distribution and heat flux are measured to

enable a more accurate determination of the transverse thermal dispersivity.

Chou et al. (1994) performed new experiments and simulations for convection in

cylindrical beds. They concluded that discrepancies in some previous models could

be accounted for by the effect of channeling for the case of low Péclet number and

the effect of thermal dispersion in the case of high Péclet number. Chou et al.

(1992b, c) had reported similar conclusions, on the basis of experiments, for

convection in a square channel.

The effect of suction at permeable walls was investigated by Lan and Khodadadi

(1993). An experimental study of convection with asymmetric heating was reported

by Hwang et al. (1992). Bartlett and Viskanta (1996) obtained analytical solutions

and did experiments for thermally developing convection in an asymmetrically

heated duct filled with a medium of high thermal conductivity.

Lage et al. (1996) performed a numerical study for a device (designed to provide

uniform operating temperatures) consisting of a microporous layer placed between

two sections of a cold plate. The simulation was based on two-dimensional equa-

tions derived from three-dimensional equations by integration over the small

dimension of the layer.

For convection in cylindrical beds, Kamiuto and Saitoh (1994) investigated NuP, κ,
and Γ, where NuP and ReP are Nusselt and Reynolds numbers based on the particle

diameter, while κ is the ratio of thermal conductivity of solid to that of fluid and Γ is the

ratio of bed radius to particle diameter. They found that asRePPr tends to zero,NuP tends

to a constant value depending on both κ and Γ, while for large RePPr the value of NuP
depends on both RePPr and Pr but only to a small extend on κ.

For pipes packed with spheres, Varahasamy and Fand (1996) have presented

empirical correlation equations representing a body of new experimental data.

Experimental studies involving metal foams have been reported by Calmidi and

Mahajan (2000), Hwang et al. (2002), and Zhao et al. (2004b). Further experimental

and theoretical studies of convection in a circular pipe were conducted by

Izadpanah et al. (1998). Extending previous experimental work by Jiang et al.

(1999b), Li et al. (2003), Xu and Jiang (2004), Jiang et al. (2004e, f, h), Jiang and

Liu (2006) studied numerically and experimentally the wall porosity effect for a

sintered porous medium. A similar study of non-sintered material was reported by

Jiang et al. (2004g). Sintered materials also were discussed by Kim and Kim (2000).

Forced convection in microstructures was discussed by Kim and Kim (1999).

Another numerical study in a metallic fibrous material was reported by Angirasa

(2002a), and that was followed with an experimental study by Angirasa (2002b).

An experimental study with aluminum foam in an asymmetrically heated channel
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was made by Kim et al. (2001b). Experimental studies of structured packed beds

were made by Yang et al. (2012a, b, c).

Entropy generation in a rectangular duct was studied by Demirel and Kahraman

(1999). For a square duct, a numerical study of three-dimensional flow was reported

by Chen and Hadim (1999b). Unsteady convection in a square cylinder was studied

numerically by Perng et al. (2011).

The effect of viscous dissipation has been studied numerically by Zhang et al.

(1999c) for a parallel-plate channel and by Yih and Kamioto for a circular pipe. An

analytical study of the effects of both viscous dissipation and flow work in a

channel, for boundary conditions of uniform temperature or uniform heat flux,

was reported by Nield et al. (2004b). These authors specifically satisfied the first

law of thermodynamics when treating the fully developed flow. They also consid-

ered various models for the contribution from the Brinkman term to the viscous

dissipation. Further work involving viscous dissipation was reported by Costa et al.

(2004c), Hooman and Gorji-Bandpy (2004), Hung and Tso (2008, 2009) and (with

nonlinear drag) Rassoulineajad-Mousavi and Yaghoobi (2014).

The effect of axial conduction in channels and tubes was studied by Minkowycz

and Haji-Sheikh (2006, 2009) and Haji-Sheikh et al. (2010a, b). The effect of

Forchheimer quadratic drag in rectangular ducts was examined by Akyidiz and

Siginer (2011).

For a circular tube and the Brinkman–Forchheimer model, asymptotic solutions

for small and large Darcy numbers were reported by Hooman and Gurgenci (2007a,

b, c) while Rassoulinejad-Mousavi and Abbasbandy (2011) obtained results using

spectral homotopy analysis. Barletta et al. (2016) studied unstable forced convec-

tion in a plane porous channel with variable-viscosity dissipation. Zallama et al.

(2016a, b) investigated viscous dissipation generation in an adiabatic cylinder and a

channel.

Some general matters related to the possibility of fully developed convection

were discussed by Nield (2006). An analytical study of heat transfer in Couette flow

was made by Kuznetsov (1998c). An analytical treatment of Couette-Poiseuille

flow was reported by Aydin and Avci (2011). An analytical study of a conjugate

problem, with conduction heat transfer inside the channel walls accounted for, was

made by Mahmud and Fraser (2004a, b). Entropy generation in a channel was

studied analytically and numerically by Mahmud and Fraser (2005b). Vafai and

Amiri (1998) briefly surveyed some of the work done on the topics that here are

discussed mainly in Sects. 4.9 and 4.10.

Convection in a hyperporous medium saturated by a rarefied gas, with both

velocity slip and temperature slip at the boundaries of a parallel-plate channel or a

circular duct, was analyzed by Nield and Kuznetsov (2006a, 2007a) and discussed

by Al-Nimr and Haddad (2006) and Hashemi and Fazeli (2010). They found that

temperature slip leads to decreased transfer, while the effect of velocity slip

depends on the geometry and the Darcy number. Shokouhmand et al. (2010)

reported results for flow in micro- and nanochannels for a wide range of Knudsen

number. Further work on slip flow in microchannels has been done by Chauhan and

Kumar (2009), Hooman et al. (2009b), Meghdadi et al. (2012), Vu et al. (2014), and

Dehghan et al. (2015a).

118 4 Forced Convection



4.10 Local Thermal Nonequilibrium

It is now commonplace to employ a two-temperature model to treat forced convec-

tion with local thermal nonequilibrium (LTNE). Authors who have done this

include Vafai and Tien (1989), Jiang et al. (1998, 1999a, b, 2000, 2002), Jiang

and Ren (2001), You and Song (1999), Kim et al. (2000a, 2000b), Kim and Jang

(2002), Muralidhar and Suzuki (2001), Kuwahara et al. (2000), Nakayama et al.

(2001), Foo et al. (2005), Moghari (2008), and Hayes et al. (2008). Haddad et al.

(2006a, 2007a) studied gas flow in microchannels; Chen and Tsao (2011b) studied

the effect of viscous dissipation. Microchannels were also investigated by

Buonomo et al. (2014b). Conjugated heat transfer in a double-pipe filled with

metallic foam was studied numerically by Du et al. (2010). A MHD boundary

layer past a porous substrate was treated by Jat and Chaudhary (2009).

Transient and time-periodic convection in a channel has been treated analyti-

cally by Al-Nimr and Abu-Hijleh (2002), Al-Nimr and Kiwan (2002), Abu-Hijleh

et al. (2004), Khashan et al. (2005), and Forooghi et al. (2011). A further study of

transient convection was conducted by Spiga and Morini (1999). An analysis

involving a perturbation solution was presented by Kuznetsov (1997d). The specific

aspect of LTNE involving steady convective processes was analyzed by Nield

(1998a). The modeling of local nonequilibrium in a structured medium was

discussed by Nield (2002), and a conjugate problem was analyzed by Nield and

Kuznetsov (1999). A problem in a channel with one wall heated was analyzed by

Zhang and Huang (2001); see also the note by Magyari and Keller (2002). The

departure from local thermal equilibrium due to a rapidly changing heat source was

analyzed by Minkowycz et al. (1999). Further analysis was carried out by Lee and

Vafai (1999) and Marafie and Vafai (2001). The particular case of various models

for constant wall heat flux boundary conditions was discussed by Alazmi and Vafai

(2002). The present authors think that the best model is the one where there is

uniform flux over the two phases, as employed by Nield and Kuznetsov (1999).

Alazmi and Vafai (2004) showed that thermal dispersion has the effect of increas-

ing the sensitivity of LTNE between the two phases. The case of a non-Newtonian

fluid was treated numerically by Khashan and Al-Nimr (2005). Most work on

LTNE has been done for confined flows, but Wong et al. (2004) treated finite Péclet

number effects in forced convection past a heated cylinder and Kwan et al. (2008)

studied convection past a sphere at finite Péclet number.

The effect of LTNE on minimal resistance of layered systems was treated by

Leblond and Gosselin (2008). A general criterion for local thermal equilibrium was

proposed by Zhang and Liu (2008) and Zhang et al. (2009a, b, c).

Celli et al. (2010) studied a steady 2D boundary layer flow. They noted that

when the basic flow is high the two thermal fields are described accurately using the

boundary layer approximation. They analyzed the resulting parabolic system ana-

lytically and numerically, and found that the LTNE effects are strongest near the

leading edge and equilibrium is attained at large distances.
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Fully developed forced convection in a tube was further analyzed by Yang et al.

(2011a). Imani et al. (2012) numerically simulated convection through an array of

disconnected conducting cylindrical fins.

Yang and Vafai (2010, 2011a, b, c) have produced analytical solutions for

convection with LTNE based on various alternative boundary conditions. Klinbun

et al. (2012) included the effect of LTNE in their study and the effect of a transient

electromagnetic field on forced convection in a waveguide filled with porous

material. Convection from a circular cylinder was studied by Al-Sumaily et al.

(2013). Dukhan and Al-Rammahi (2012) made an analytical and experimental

study of convection in cylinder occupied by metal foam. A metallic foam was

also studied by Ando et al. (2013), Zhang et al. (2014), Rossi di Schio (2012), and

(for periodic convection) by Rossi di Schio and Barletta (2012). Chen and Tsao

(2012a) performed a thermal resistance analysis of forced convection with viscous

dissipation using an entransy dissipation concept. (It should be noted that the

novelty and utility of this concept have been questioned; see, for example, the

discussion by Herwig (2014), Bejan (2014), Awad (2014), and Chen et al. (2014a,

b, c).) The effect of radiation was included by Mahmoudi (2014), while Mahmoudi

(2015) studied microchannels with internal heating and Mahmoudi and Karimi

(2014) numerically investigated a partly filled pipe. The effect of radiation was also

studied by Wang et al. (2014a, 2015b). A power law fluid was examined by

Thayalan and Hung (2013). A channel with permeable walls was investigated by

Rassoulinejad-Mousavi et al. (2014). Flow through an annulus was studied by Yang

et al. (2011b).

LTNE was treated via a hyperbolic heat conduction model by Khadrawi et al.

(2010). Some exact solutions for LTNE based on an effective porosity were

obtained by Kuwahara et al. (2011). Chen et al. (2013a) treated numerically a

metal foam layer in a horizontal channel with multiple discrete sources.

An analytical study of LTNE in tube heat exchangers was made by Dehghan

et al. (2014a). A perturbation analysis of the LTNE condition in a porous medium

bounded by an isothermal channel was made by Dehghan et al. (2014b). Abedou

and Blouhadef (2015) have compared the practical usefulness of two LTNE criteria.

The effect of anisotropic permeability on heat transfer through a porous river bed

underlying a fluid layer was studied by Yovogan and Degan (2013). Wang et al.

(2014a, b, c) made a numerical study of convection in ordered three-dimensional

media. Abdollahzadeh Jamalabadi (2015) studied the effects of micro- and macro-

scale viscous dissipation on thermally developing forced convection. Heat

exchange in a porous channel with heat generation was investigated by Abedou

et al. (2015). Chee et al. (2015) studied entropy generation in a channel with

asymmetric thermal boundary conditions. Wang et al. (2015a, b, c) obtained an

exact analytical solution for gaseous slip flow in a circular microtube. Xu et al.

(2016) treated analytically slip flow through microfoams in mini/microchannels

with asymmetric wall heat fluxes. Khademi (2016) made a detailed examination of

forced convection in microchannels where the effect of thermal radiation from the

solid phase is taken into account. Note that this paper was retracted because of

plagiarism. Buonomo et al. (2016b) studied convection in microchannels with
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viscous dissipation. Tajik Jamal-Abad et al. (2016) applied an LTNE model to a

channel partly filled with porous material. Abedou et al. (2016) investigated

convection in a self-heating channel.

4.11 Partly Porous Configurations

For complicated geometries numerical studies are needed. The use of porous bodies

to enhance heat exchange motivated the early studies of Koh and Colony (1974)

and Koh and Stevans (1975). Huang and Vafai (1993, 1994a, b, c, d) and Vafai and

Huang (1994), using a Brinkman–Forchheimer model, performed studies of a

composite system made of multiple porous blocks adjacent to an external wall

(either protruding or embedded) or along a wall with a surface substrate. Khanafer

and Vafai (2001, 2005) investigated isothermal surface production and regulation

for high heat flux applications using porous inserts. Cui et al. (2000) conducted an

experimental study involving a channel with discrete heat sources. A linear array of

blocks in open and porous channels was studied by Rizk and Kleinstreuer (1991).

Convection in a parallel-plate channel partially filled with a porous layer was

studied by Jang and Chen (1992). They found that the Nusselt number is sensitive to

the open space ratio and that the Nusselt number is a minimum at a certain porous

layer thickness, dependent on Darcy number. A similar study was reported by Tong

et al. (1993). Srinivasan et al. (1994) analyzed convection in a spirally fluted tube

using a porous substrate approach. Hadim and Bethancourt (1995) simulated

convection in a channel partly filled with a porous medium and with discrete heat

sources on one wall. Chikh et al. (1995b, 1998) studied convection in an annulus

partly filled with porous material on the inner heated wall and in a channel with

intermittent heated porous disks, while Rachedi and Chikh (2001) studied a similar

problem. Ould-Amer et al. (1998) studied numerically the cooling of heat-

generating blocks mounted on a wall in a parallel-plate channel. Fu et al. (1996)

and Fu and Chen (2002) dealt with the case of a single porous block on a heated

wall in a channel. S€ozen and Kuzay (1996) studied round tubes with porous inserts.
Zhang and Zhao (2000) treated a porous block behind a step in a channel. Masuoka

et al. (2004) studied experimentally and numerically, with alternative interface

conditions considered, the case of a permeable cylinder placed in a wind tunnel

of rectangular cross section. Layeghi and Nouri-Borujerdi (2004) discussed forced

convection from a cylinder or an array of cylinders in the presence or absence of a

porous medium. Huang et al. (2004b) studied numerically the enhancement of heat

transfer from multiple heated blocks in a channel using porous covers.

Abu-Hijleh (1997, 2000, 2001b, 2002) numerically simulated forced convection

in various geometries with orthotropic porous inserts, while Abu-Hijleh (2003)

treated a cylinder with permeable fins. A transient problem involving partly filled

channels was studied by Abu-Hijleh and Al-Nimr (2001).

Analytical solutions for some flows through channels with composite materials

were obtained by Al-Hadrami et al. (2001a, b). Pipes with porous substrates were

4.11 Partly Porous Configurations 121



treated numerically by Alkam and Al-Nimr (1999a, b, 2001), while parallel-plate

channels were similarly treated by Alkam et al. (2001, 2002). A tubeless solar

collector and an unsteady problem involving an annulus were likewise treated by

Al-Nimr and Alkam (1997a, 1998a). Hamdan et al. (2000) treated a parallel-plate

channel with a porous core. Kim et al. (2003c) studied both a porous core and a

porous sheath in a circular pipe. A Green’s function method was used by Al-Nimr

and Alkam (1998b) to obtain analytical solution for transient flows in parallel-plate

channel. Experimental and numerical investigations of forced convection in chan-

nels containing obstacles were conducted by Young and Vafai (1998, 1999) and

Pavel and Mohamad (2004a, b, c). An analytical solution for the case of an annulus

was found by Qu et al. (2012b). A numerical simulation for turbulent flow in a

channel was reported by Nimvari et al. (2012).

The limitation of the single-domain approach for the computation of convection

in composite channels was exposed by Kuznetsov and Xiong (1999), following on

from the work of Kuznetsov (1997e). The effect of thermal dispersion in a channel

was analyzed by Kuznetsov (2001). Kuznetsov and Xiong (2000) numerically

simulated the effect of thermal dispersion in a composite circular duct.

Kuznetsov (2000a) reviewed a number of analytical studies, including those by

Kuznetsov (1998b, 1999a, c, 2001) for flow induced by pressure gradients, and by

Kuznetsov (1998d, 2000b) and Xiong and Kuznetsov (2000) for Couette flow. The

effect of turbulence on forced convection in a composite tube was discussed by

Kuznetsov et al. (2002, 2003b), Kuznetsov (2004a), and Kuznetsov and Becker

(2004). A numerical study of turbulent heat transfer above a porous wall was

conducted by Stalio et al. (2004). Convection past a circular cylinder sheathed

with a porous annulus, placed perpendicular to a turbulent air flow, was studied

numerically and experimentally by Sobera et al. (2003). Hydrodynamically and

thermally developing convection in a partly filled square duct was studied numer-

ically using the Brinkman model by Jen and Yan (2005). The effects of a transition

layer on forced convection in a channel were studied by Kuznetsov and Nield

(2008a). They obtained an analytical solution involving a novel type of Airy

function. Chen et al. (2008d) performed a numerical analysis based on stress-

jump boundary conditions of flow past a porous square cylinder. Nield and

Kuznetsov (2005d) studied the thermal development of flow in partly occupied

channel or duct. Multi-plate porous insulation was studied by Lim et al. (2007).

Combined convection and radiation in the entry region of circular ducts was studied

by Chen and Sutton (2005). An analytical investigation of the effect of viscous

dissipation on Couette flow in a channel partly occupied by a porous medium was

carried out by Ghazian et al. (2011). A two-equation model was applied to tubes

partly filled with metallic foam by Xu et al. (2011a, b). Umavathi et al. (2006, 2009)

investigated oscillatory flow in a horizontal composite channel. Umavathi et al.

(2010) studied generalized Couette flow in a composite channel.

A boundary-layer analysis of unconfined forced convection with a plate and a

porous substrate was presented by Nield and Kuznetsov (2003d). A more general

analytical investigation of this situation had been presented earlier by Kuznetsov
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(1999b). The same problem for a wedge was treated by Kuznetsov and Nield

(2006a).

Further general studies have been made by Mohais and Bhatt (2009), Huang

et al. (2010), Sousa (2005), Yucel and Guven (2007, 2008), Yuan et al. (2008), Zahi

et al. (2008), Zehforoosh and Hossainpour (2010), Bhargavi et al. (2009), Krishna

(2009), Yang et al. (2009a), Satyamurty and Bhargavi (2010), Bhargavi and

Satyamurty (2011), Shokoumand and Sayehvand (2010), Shokouhamand et al.

(2011), Maerefat et al. (2011), Aguiilar-Madera et al. (2011a, b), Teamah et al.

(2011a, b), Delavar and Hedayatpour (2012), Ucar et al. (2013a), and Cekmer et al.

(2016). Turbulent flow has been further studied by Santos and de Lemos (2006),

Allouache and Chikh (2008), Saati and Mohamad (2007), and Yang and Hwang

(2008). Further studies with porous blocks were conducted by Hooman andMerrikh

(2010), Li et al. (2010a), Shuja et al. (2009a, b), Tzesng (2006), and Tzeng et al.

(2007). More work on fins or pins has been conducted by Do et al. (2007), Hamdan

and Al-Nimr (2010), and Yang et al. (2010b). The case of a centered porous layer

was studied by Cekmer et al. (2012). A variable section axisymmetric channel was

treated by Pilevne and Misirlioglu (2007). A channel or an annulus partly filled with

metallic foams was considered by Xu et al. (2011a, b) and Qu et al. (2012a).

Entropy generation in pipes was studied by Mandavi et al. (2014). Heated oscillat-

ing plates were studied by Panda et al. (2013). An assessment of local thermal

equilibrium in tubes with a porous core or sheath was made by Yang et al. (2012a)

extending the work of Yang et al. (2009a). An exact solution with LTNE in a

channel was reported by Karimi et al. (2014), while Mahmoudi and Maerefat

(2011) also studied LTNE in a partly filled channel. A similar study was made by

Xu et al. (2011a, b, c) for a tube and a parallel-plate channel. Also for a channel,

Mahmoudi et al. (2014) examined the effect of various LTNE boundary conditions

and Torabi et al. (2015a, b) included entropy generation with an LTNE model and

with an internal source. A Lattice Boltzmann method was applied by Nazari et al.

(2013a) to a channel partly filled with a porous block.

Non-Newtonian fluid flow in plane channels with porous blocks was studied by

Nebbali and Bouhadef (2011). An analytical study of the effect of viscous dissipa-

tion in Couette flow in a partly filled channel was made by Ghazian et al. (2011).

Experiments in all metallic wire-woven bulk Kagone sandwich panels were made

by Joo et al. (2011). Valipour and Ghadi (2012) investigated numerically forced

convective heat transfer around and through a porous circular cylinder with internal

heat generation. Rashidi et al. (2013) studied convection round a solid cylinder

wrapped with a porous ring. Rashidi et al. (2015c) compared numerically the use of

stress-jump and stress-continuity interface conditions for flow across a solid cylin-

der with a porous sheath. Chaudhary and Kumar (2014) studied MHD boundary

layer flow in an inclined anisotropic and heterogeneous layer. Karimi et al. (2015)

examined the effects of exothermicity and endothermicity upon the temperature

field in a partly filled channel. Dehghan (2015) studied the effects of heat generation

on the thermal response of partly filled channels. Forchheimer forced convection in

a rectangular channel partly filled with aluminum foam was investigated by Sener

et al. (2016). Tajik Jamal-Abad et al. (2016) applied an LTNE model to a channel
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partly filled with porous material. Lu et al. (2016b) reported an analytical solution

for a parallel-plate channel partly filled with metallic foam. Wang et al. (2016a)

studied gaseous slip flow through a parallel-plate channel with a centered porous

substrate.

4.12 Transversely Heterogeneous Channels and Pipes

Kuznetsov (2000a) reviewed a number of analytical studies, including Kuznetsov

(2000b) and Xiong and Kuznetsov (2000) for Couette flow. The effect of turbulence

on forced convection in a composite tube was discussed by Kuznetsov et al. (2002,

2003b), Kuznetsov (2004a), and Kuznetsov and Becker (2004). A numerical study

of turbulent heat transfer above a porous wall was conducted by Stalio et al. (2004).

Convection past a circular cylinder sheathed with a porous annulus, placed perpen-

dicular to a turbulent air flow, was studied numerically and experimentally by

Sobera et al. (2003). Hydrodynamically and thermally developing convection in a

partly filled square duct was studied numerically using the Brinkman model by Jen

and Yan (2005). Chen et al. (2008d) performed a numerical analysis based on

stress-jump boundary conditions of flow past a porous square cylinder. Nield and

Kuznetsov (2005d) studied the thermal development of flow in partly occupied

channel or duct. Multi-plate porous insulation was studied by Lim et al. (2007).

Combined convection and radiation in the entry region of circular ducts was studied

by Chen and Sutton (2005). An analytical investigation of the effect of viscous

dissipation on Couette flow in a channel partly occupied by a porous medium was

carried out by Ghazian et al. (2011). A two-equation model was applied to tubes

partly filled with metallic foam by Xu et al. (2011a). Umavathi et al. (2010) studied

generalized Couette flow in a composite channel.

A boundary-layer analysis of unconfined forced convection with a plate and a

porous substrate was presented by Nield and Kuznetsov (2003d). A more general

analytical investigation of this situation had been presented earlier by Kuznetsov

(1999b). The same problem for a wedge was treated byKuznetsov andNield (2006a).

Further general studies have been made byMohais and Bhatt (2009), Huang et al.

(2010), Sousa (2005), Yucel and Guven (2007, 2008), Yuan and Chung (2008), Zahi

et al. (2008), Zehforoosh and Hossainpour (2010), Bhargavi et al. (2009),

Satyamurty and Bhargavi (2010), Bhargavi and Satyamurty (2011), Shokoumand

and Sayehvand (2010), Maerefat et al. (2011), Aguiilar-Madera et al. (2011a, b),

Teamah et al. (2011a, b), Turbulent flow has been further studied by Santos and de

Lemos (2006), Allouache and Chikh (2008), Saati and Mohamad (2007), and Yang

and Hwang (2008). Further studies with porous blocks were conducted by Hooman

and Merrikh (2010), Li et al. (2010a), Shuja et al. (2009a, b), Tzeng (2006), and

Tzeng et al. (2007). More work on fins or pins has been conducted by Do et al.

(2007), Hamdan and Al-Nimr (2010), and Yang et al. (2010b).

Analytical studies on the effect on forced convection, in channels and ducts, of

the variation in the transverse direction of permeability and thermal conductivity
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were initiated by Nield and Kuznetsov (2000), who used the Darcy model for local

thermal equilibrium. Both parallel-plate channels and circular ducts were consid-

ered, and walls at uniform temperature and uniform heat flux, applied symmetri-

cally, were treated in turn. Both continuous variation and stepwise variation of

permeability and conductivity were treated. For the parallel-plate channel, this

work was extended to the Brinkman model by Nield and Kuznetsov (2003d). For

the case of a parallel-plate channel with uniform heat flux boundaries,

Sundaravadivelu and Tso (2003) extended the basic analysis to allow for the effect

of viscosity variations. Asymmetric property variation and asymmetric heating in a

parallel-plate channel were considered by Nield and Kuznetsov (2001a). A conju-

gate problem, with either a parallel-plate channel or a circular duct, was treated by

Kuznetsov and Nield (2001). The interaction of thermal nonequilibrium and het-

erogeneous conductivity was studied by Nield and Kuznetsov (2001b). With

application to the experimental results reported by Paek et al. (1999b) in mind,

Nield and Kuznetsov (2003a) treated a case of gross heterogeneity and anisotropy

using a layered medium analysis. A conjugate problem, involving the Brinkman

model and with temperature-dependent volumetric heat inside the solid wall, was

treated analytically and numerically by Mahmud and Fraser (2005). Nield and

Kuznetsov (2013d) discussed arrangements of layers of given material to optimize

the heat transfer. Ucar et al. (2013b) noted circumstances in which the Nusselt

number changes sign. Jogie and Bhatts (2013) studied flow in a channel occupied

by two immiscible fluids. Jamal-Abad et al. (2016) provided a perturbation solution

to a problem with temperature-dependent conductivity.

For illustration, we present the results obtained by Nield and Kuznetsov (2000)

for the effect of heterogeneity on Nusselt number. We first consider the case where

the permeability and thermal conductivity distributions are given by

K ¼ K0 1þ εK
y*j j
H

� 1

2

� �� 
,

k ¼ k0 1þ εk
y*j j
H

� 1

2

� �� 
:

ð4:134Þ

Here the boundaries are at y* ¼ –H and y* ¼ H. The mean values of the

permeability and conductivity are K0 and k0, respectively. The coefficients εK and

εk are each assumed to be small compared with unity. To first order, one finds that

for the case of uniform flux boundaries

Nu ¼ 6 1þ 1

4
εK � 1

8
εk

� �
, ð4:135Þ

and for the case of uniform temperature boundaries,

Nu ¼ π2

2
1þ 2

π2
εK � εkð Þ

� 
: ð4:136Þ
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4.13 Thermal Development

In forced convection in a porous medium, hydrodynamic development is not

normally of importance. This is because the hydrodynamic development length is

readily shown to be of order of magnitude (K/φ)1/2 and usually this is very small

compared with the channel width. In contrast, the thermal development length can

be much greater. An early study was that of Montakhab (1979), who considered a

step change in inlet temperature.

For the Darcy model one has slug flow, and for the case of walls at uniform

temperature the classical Graetz solution for thermal development is applicable. An

analysis based on the Brinkman model was reported by Nield et al. (2004a), for both

a parallel-plate channel and a circular tube. A finite-element numerical investiga-

tion was made by Misirlioglu (2007). The additional effect of a Forchheimer term

has not yet been treated, but one would anticipate that since an increase in

Forchheimer number would produce a more slug-like flow, the effect of quadratic

drag would be similar to that produced by a reduction in Darcy number. The

corresponding case where the walls are at uniform heat flux was treated by Nield

et al. (2003b). The effect of local thermal nonequilibrium was examined by Nield

et al. (2002), and the additional effects of transverse heterogeneity were studied by

Nield and Kuznetsov (2004a, b, c). Thermal development in a channel occupied by

a non-Newtonian power-law fluid was studied by Nield and Kuznetsov (2005a). In

the standard analysis of the Graetz type the axial conduction and viscous dissipation

effects are neglected, but in the studies by Nield et al. (2003a) and Kuznetsov et al.

(2003c) these effects were included, for the cases of a parallel-plate channel and a

circular duct, respectively. For the case of a circular duct, axial conduction effects

and viscous dissipation effects were studied numerically by Hooman et al. (2003)

and Ranjbar-Kani and Hooman (2004), respectively. A porous medium occupied by

a rarefied gas was studied by Kuznetsov and Nield (2009b, 2010f). The case of local

thermal nonequilibrium was examined by Yang and Liu (2006) and Dukhan

(2009b), and thermal nonequilibrium, together with the effect of viscous dissipa-

tion, was studied by Chen and Tsao (2011c) (together with viscous dissipation). The

effect of viscous dissipation was also studied by Hooman et al. (2006, 2007b) and

Tada and Ichimiya (2007b). An entropy generation analysis was performed by

Hooman (2005) and Hooman et al. (2008a).

A numerical study of heat transfer in the thermally developing region in an

annulus was reported by Hsieh and Lu (1998). Thermally developing forced

convection inside ducts of various shapes (including elliptical passages) was ana-

lyzed by Haji-Sheikh and Vafai (2004). Haji-Sheikh et al. (2005) illustrated the use

of a combination of a Green’s function solution and an extended weighted residuals
method in the study of isosceles triangular passages. They noted that their meth-

odology is equally applicable when the boundary conditions are of the first, second,

or third kind. The effect of axial conduction in triangular ducts was studied by

Banerjee et al. (2012). A field synergy principle analysis for the case of uniform

heat generation was reported by Chen and Tsao (2012b). Ouyang et al. (2013b) and
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Dehghan et al. (2016a) (analytically) considered the effect of local thermal

nonequilibrium, while Dehghan et al. (2016d) added to LTNE the effect of internal

heat generation.

Thermally developing forced convection in a metal foam-filled elliptical annulus

was studied by Benmerkhi et al. (2016). An analytic investigation of convection

through the entrance of a microchannel was reported by Dehghan et al. (2016c).

Microchannels were further studied by Dehghan et al. (2016b).

The general feature of thermal development is that the Nusselt number increases

as one moves from the fully developed region toward the entrance region. It is

found that the rate of increase decreases as the Darcy number increases.

4.14 Surfaces Covered with Porous Layers

The hair growth on the skin of a mammal is an example of a saturated porous

medium where, locally, the solid matrix (hair) is not in thermal equilibrium with the

permeating fluid (air). A theory for the heat transfer by forced convection through a

surface covered with hair has been developed by Bejan (1990a). It was tested

subsequently in the numerical experiments of Lage and Bejan (1990). This entire

body of work was reviewed by Bejan and Lage (1991) and Bejan (1992b).

The most essential features of the geometry of an actual surface covered with

hair are retained in the model presented in Fig. 4.9. The skin surface is connected to

a large number of perpendicular strands of hair, the density of which is assumed

constant,

n ¼ number of strands of hair

unit area of skin surface
: ð4:137Þ

The hair population density n is related to the porosity of the “hair + air” medium

that resides above the skin,

φ ¼ airvolume

total volume
¼ 1� nAs: ð4:138Þ

Each strand of hair is modeled as a cylinder with the cross section As.

Parallel to the skin surface and through the porous structure formed by the

parallel hair strands flows a uniform stream of air of velocity U. This stream is

driven longitudinally by the dynamic pressure rise formed over that portion of the

animal’s body against which the ambient breeze stagnates. The longitudinal length

L swept by the air flow is a measure of the linear size of the animal. The constant air

velocityU is a quantity averaged over the volume occupied by air. It is assumed that

the strand-to-strand distances are small enough so that the air flow behaves

according to the Darcy law, with apparent slip at the skin surface.

At every point in the two-dimensional (x,y) space occupied by the porous

medium described above, we distinguish two temperatures: the temperature of the
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solid structure (the local hair strand), Ts, and the temperature of air that surrounds

the strand, Ta. Both Ts and Ta are functions of x and y. The transfer of heat from the

skin to the atmosphere is driven by the overall temperature difference (Tw � T1),

where Tw is the skin temperature and T1 the uniform temperature of the ambient air

that enters the porous structure. The temperature of the interstitial air, Ta, is equal to
the constant temperature T1 in the entry plane x ¼ 0.

For the solid structure, the appropriate energy equation is the classic conduction

equation for a fin (in this case, single strand of hair),

ksAs

∂2
Ts

∂y2
� hps Ts � Tað Þ ¼ 0, ð4:139Þ

where ps is the perimeter of a strand cross section. The thermal conductivity of the

strand, ks, and the perimeter-averaged heat transfer coefficient, h, are both constant.
The constancy of h is a result of the assumed low Reynolds number of the air flow

that seeps through the hair strands.

The second energy conservation statement refers to the air space alone, in which

(ρcP) and ka are the heat capacity and thermal conductivity of air:

ρcPU
∂2

Ta

∂x2
¼ ka

∂2
Ta

∂y2
þ nhps Ts � Tað Þ: ð4:140Þ

On the left-hand side of this equation, we see only one convection term because

the air-space-averaged velocity U points strictly in the x-direction. The first term on

the right-hand side of the equation accounts for air conduction in the transversal

direction (y). By not writing the longitudinal conduction term ka ∂
2Ta/∂x

2, we are

assuming that the flow region in which the effect of transversal air conduction is

important is thin.

The last term in Eq. (4.140) accounts for the “volumetric heat source” effect that

is due to the contact between the air stream and the local (warmer) hair strand. Note

the multiplicative role of the strand density n in the makeup of this term: the product

(nps) represents the total contact area between hair and air, expressed per unit of air
volume. The heat source term of Eq. (4.140) is the air-side reflection of the heat sink

term (the second term) encountered in the fin conduction equation (4.139).

In an air region that is sufficiently close to the skin, the air stream is warmed up

mainly by contact with the skin, i.e., not by the contact with the near-skin area of the

hair strands. Consequently, for this region, in Eq. (4.140) the heat source term

nhps(Ts – Ta) can be neglected. On the other hand, sufficiently far from the skin

most of the heating of the air stream is effected by the hair strands that impede the

flow. In the energy balance of this external flow the vertical conduction term can be

neglected in Eq. (4.140).

For the details of the heat transfer analysis of the two-temperature porous

medium of Fig. 4.10 the reader is referred to the original paper (Bejan 1990a).

One interesting conclusion is that the total heat transfer rate through a skin portion
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of length L is minimized when the hair strand diameter assumes the optimal value

Dopt given by

Dopt

ν

ΔP
ρ

� �1=2

¼ k2zks
2ka

� �1=4
1� φ

φ

� �5=4 L

ν

ΔP
ρ

� �1=2
" #1=2

: ð4:141Þ

That lowest heat transfer rate is

q0min

ka Tw � T1ð Þ ¼ 32
ks
ka

� �1=4

φ3=4 1� φð Þ1=4 L

ν

ΔP
ρ

� �1=2
" #1=2

: ð4:142Þ

These results are based on several additional assumptions, which include a

model of type (1.5) for the permeability of the hair matrix

K ffi D2φ3

kz 1� φð Þ2 , ð4:143Þ

where the constant kz is a number of order 102.

Equation (4.142) shows that the minimum heat transfer rate increases with the

square root of the linear size of the body covered with hair, L1/2. The optimal hair

strand diameter is also proportional to L1/2. This last trend agrees qualitatively with
measurements of the hair sizes of mammals compiled by Sokolov (1982).

Figure 4.11 shows the natural hair strand diameters (D) of ten mammals, with the

length scale of the body of the animal plotted on the abscissa.

0

skin

region next to the wall

external region 

isothermal region 

hair

hair

body x

y

L

T∞

U

ΔP

ΔP

Tw x
0

Fig. 4.10 Two-dimensional model for forced convection through the hair growth near the skin

(after Bejan 1990a)
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The natural design of animal body insulation is an important and visible man-

ifestation of the constructal law of design in nature. Although many natural designs,

animate and inanimate (e.g., river basins, lungs), speak loudly of the natural design

tendency to facilitate flow access, the design of body insulation seems to contradict

this tendency, because it opposes the flow of heat from body to ambient. In fact,

there is no contradiction, because what flows in animal design is animal mass on the

landscape, and the flow of animal mass is facilitated by all the detailed features of

animal design, from the minimization of fluid flow resistance in lung architecture

and vascularized tissues to the maximization of heat flow resistance in body

insulation (Bejan and Lorente 2010, 2011, Bejan and Zane 2012).

Later studies of surfaces covered with fibers focused on the generation of reliable

pressure drop and heat transfer information for low Reynolds number flow through a

bundle of perpendicular or inclined cylindrical fibers (Fowler and Bejan 1994). There

is a general need for data in the low Reynolds number range, as most of the existing

results refer to heat exchanger applications (i.e., higher Reynolds numbers). Fowler

and Bejan (1995) studied numerically the heat transfer from a surface covered with

flexible fibers, which bend under the influence of the interstitial flow. Another study

showed that when the effect of radiation is taken into account, it is possible to

anticipate analytically the existence of an optimal packing density (or porosity) for

minimal heat transfer across the porous cover (Bejan 1992b).

Vafai and Kim (1990) and Huang and Vafai (1993, 1994a, b, c, d) have shown

that a porous coating can alter dramatically the friction and heat transfer charac-

teristics of a surface. This effect was also documented by Fowler and Bejan (1995).

Depending on its properties and dimensions, the porous layer can act either as an

insulator or as a heat transfer augmentation device. The engineering value of this

work is that it makes it possible to "design" porous coatings such that they control

the performance of the solid substrate.

lynx

coyote

bear

bison

101

10

102

10–1

rabbit

beaver

monkey

solenodon

D(µm)

L(m)

rat

pika

Fig. 4.11 The hair strand diameters and body lengths of ten mammals (Bejan and Lage 1991)
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4.15 Designed Porous Media

A potentially revolutionary application of the formalism of forced convection in

porous media is in the field of heat exchanger simulation and design. Heat

exchangers are a century-old technology based on information and concepts stim-

ulated by the development of large-scale devices (see, for example, Bejan 1993,

Chap. 9). The modern emphasis on heat transfer augmentation, and the push toward

miniaturization in the cooling of electronics, have led to the development of

compact devices with much smaller features than in the past. These devices operate

at lower Reynolds numbers, where their compactness and small dimensions

(“pores”) make them candidates for modeling as saturated porous media.

Such modeling promises to revolutionize the nomenclature and numerical sim-

ulation of the flow and heat transfer through heat exchangers. Decreasing dimen-

sions, increasing compactness, and constructal design (Sect. 4.18) make these

devices appear and function as designed porous media (Bejan 2004b; Lorente

2009). This emerging field is outlined in two new books (Bejan 2004a, b; Bejan

et al. 2004).

To illustrate this change, consider Zukauskas’ (1987) classical chart for the

pressure drop in cross flow through arrays of staggered cylinders (e.g., Fig. 9.38

in Bejan 1993). The four curves drawn on this chart for the transverse pitch/cylinder

diameter ratios 1.25, 1.5, 2, and 2.5 can be made to collapse into a single curve, as

shown in Fig. 4.12 (Bejan and Morega 1993a, b). The technique consists of treating

the bundle as a fluid-saturated porous medium and using the volume-averaged

velocity U, the pore Reynolds number UK1/2/ν on the abscissa, and the dimension-

less pressure gradient group (ΔP/L ) K1/2/ρU2 on the ordinate.

The effective permeability of the bundle of cylinders was estimated using

Eq. (4.143) with kz ¼ 100, and Zukauskas’ chart. Figure 4.12 shows very clearly

the transition between Darcy flow (slope �1) and Forchheimer flow (slope 0). The

porous medium presentation of the array of cylinders leads to a very tight collapse

of the curves taken from Zukauskas’ chart. The figure also shows the pressure drop
curve for turbulent flow through a heat exchanger core formed by a stack of parallel

plates. An added benefit of Fig. 4.12 is that it extends the curves reliably into the

low Reynolds number limit (Darcy flow), where classic heat exchanger data are not

available.

This method of presentation (Fig. 4.12) deserves to be extended to other heat

exchanger geometries. Another reason for pursuing this direction is that the heat

and fluid flow process can be simulated numerically more easily if the heat

exchanger is replaced at every point by a porous medium with volume-averaged

properties. An example is presented in Fig. 4.13 (Morega et al. 1995). Air flows

from left to right along a hot horizontal surface (the electronics module) and

through an array of parallel plate fins of rectangular profile (the heat sink). The

plate thickness and plate-to-plate spacing are t/L¼ 0.05 and d/L¼ 0.069, where L is

the length of the plate in the flow direction. The Reynolds number ReL is based on

L and the approach velocity. The air flows through and over the heat sink. The
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corresponding temperature field and the effect of changing the Reynolds number

are illustrated in Morega et al. (1995). One advantage of the numerical model is that

it accounts in a volume-averaged sense for the conduction heat transfer through

each plate, longitudinally and transversally. Another advantage comes from the

relative simplicity and high computational speed, because in the thermal design and

optimization of cooling techniques it is necessary to simulate a large number of

geometric configurations such as Fig. 4.13.

Another important application of porous media concepts in engineering is in the

optimization of the internal spacings of heat exchangers subjected to overall

volume constraints (see Sects. 4.19 and 4.20). Packages of electronics cooled by

forced convection are examples of heat exchangers that must function in fixed

volumes. The design objective is to install as many components (i.e., heat gener-

ation rate) as possible, while the maximum temperature that occurs at a point (hot

spot) inside the given volume does not exceed a specified limit. Bejan and Sciubba

(1992) showed that a very basic trade-off exists with respect to the number of

installed components, i.e., regarding the size of the pores through which the coolant

flows. This trade-off is evident if we imagine the two extremes: numerous compo-

nents (small pores) and few components (large spacings).

When the components and pores are numerous and small, the package functions as

a heat-generating porous medium. When the installed heat generation rate is fixed,

the hot spot temperature increases as the spacings become smaller, because in this

limit the coolant flow is being shut off gradually. In the opposite limit, the hot spot

temperature increases again because the heat transfer contact area decreases as the

component size and spacing become larger. At the intersection of these two asymp-

totes we find an optimal spacing (pore size) where the hot spot temperature is

staggered cylinders
in cross-flow

parallel plate
channel

v

Darcy flow

ΔP
ρU2

UK1/2

K1/2

1

1

L

102

102

10-2

10-2

Fig. 4.12 Porous medium representation of the classic pressure-drop data for flow through

staggered cylinders and stacks of parallel plates (Bejan and Morega 1993a, b)
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minimal when the heat generation rate and volume are fixed. The same spacing

represents the design with maximal heat generation rate and fixed hot spot temper-

ature and volume. Bejan and Sciubba (1992), Bejan (1993), and Morega et al. (1995)

developed analytical and numerical results for optimal spacings in applications with

solid components shaped as parallel plates. Optimal spacings for cylinders in cross

flow were determined analytically and experimentally by Bejan (1995) and Stanescu

et al. (1996). The spacings of heat sinks with square pin fins and impinging flow were

optimized numerically and experimentally by Ledezma et al. (1996). The latest

conceptual developments are outlined in Sect. 4.19.

The dimensionless results developed for optimal spacings (Sopt) have generally
the form

Sopt
L

� Be�n
L ð4:144Þ

where L is the dimension of the given volume in the flow direction, and BeL is the

dimensionless pressure drop that Bhattacharjee and Grosshandler (1988) termed the

Bejan number,

ReL=400

ReL=100

Fig. 4.13 The flow through and over a stack of rectangular parallel-plate fins attached to a base,

and modeled as a porous medium (Morega et al. 1995)
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BeL ¼ ΔP � L2
μf αf

: ð4:145Þ

In this definition ΔP is the pressure difference maintained across the fixed

volume. For example, the exponent n in Eq. (4.144) is equal to 1/4 in the case of

laminar flow through stacks of parallel-plate channels. The Bejan number serves as

the forced convection analog of the Rayleigh number used in natural convection

(Petrescu 1994).

Designed porous media are now an active field of research in constructal theory

and design. The progress on designed porous media was reviewed by Bejan and

Lorente (2006, 2008, 2013).

The design of heat transfer processes in porous media is also an important new

trend in the wider and rapidly growing field of thermodynamic optimization (Bejan

1996a). Noteworthy are two optimal-control papers of Kuznetsov (1997a, c), in

which the heat transfer is maximized during the forced convection transient cooling

of a saturated porous medium. For example, Kuznetsov (1997a) achieved heat

transfer maximization by optimizing the initial temperature of the porous medium

subject to a fixed amount of energy stored initially in the system and a fixed

duration of the cooling process.

Progress on the design and performance of heat exchange structures with porous

media was reported by Kamath et al. (2014), Adewumi et al. (2013), Kundu and Lee

(2015), and Kephart and Jones (2016). Work on constructal design was surveyed in

the book by Rocha (2009).

Alalaimi et al. (2015) developed analytically the formulas for effective perme-

ability in several configurations using the closed-form description of tree networks

designed to provide flow access. The objective was to find the relation between the

permeability and porosity of tree-shaped fissures. They found the effect of the

fracture size on the permeability for fixed number of bifurcation and the results

showed that the permeability of the fracture network increased rapidly with the size

of the fracture. The results have been validated by comparison with experimental

and numerical results. The conclusion is that the permeability formulas do not vary

much from one tree design to the next, suggesting that similar formulas may apply

to naturally fissured porous media with unknown precise details, which occur in

natural reservoirs.

4.16 Other Configurations or Effects

4.16.1 Effect of Temperature-Dependent Viscosity

The study of the effect of a temperature-dependent viscosity on forced convection

in a parallel-plate channel was initiated by Nield et al. (1999). The original analysis

was restricted to small changes of viscosity, carried out to first order in Nield et al.
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(1999) and to second order in Narasimhan et al. (2001b), but the layered medium

analysis of Nield and Kuznetsov (2003b) removed this restriction. For the case of a

fluid whose viscosity decreases as the temperature increases (the usual situation) it

is found that the effect of the variation is to reduce/increase the Nusselt number for

cooled/heated walls. The analysis predicts that for the case of small Darcy number

the effect of viscosity variation is almost independent of the Forchheimer number,

while for the case of large Darcy number the effect of viscosity variation is reduced

as the Forchheimer number increases. Within the limitations of the assumptions

made in the theory, experimental verification was provided by Nield et al. (1999)

and Narasimhan et al. (2001a).

For example, in the case of uniform flux boundaries and Darcy’s law, Nield et al.
(1999) showed that the mean velocity is altered by a factor (1 + N/3) and the Nusselt
number is altered by a factor (1 – 2N/15), where the viscosity variation number N is

defined as

N ¼ q00H
k

1

μ0

dμ

dT

� �
0

, ð4:146Þ

where the suffix 0 indicates evaluation at the reference temperature T0.
The extension to the case where there is a substantial interaction between the

temperature dependence of viscosity and the quadratic drag effect was carried out

in a sequence of papers by Narasimhan and Lage (2001a, b, 2002, 2003, 2004a).

The effect on pump power gain for channel flows was studied by Narasimhan and

Lage (2004b). In these papers the authors developed what they call a Modified

Hazen-Dupuit-Darcy model which they then validated with experiments with PAO

as the convecting liquid and compressed aluminum-alloy porous foam as the porous

matrix. This work on temperature-dependent viscosity was reviewed by

Narasimhan and Lage (2005). Further studies on the effect of temperature-

dependent viscosity were made by Hooman and Mohebpour (2007) and Hooman

and Gurgenci (2008b). The variation of other thermophysical properties was stud-

ied by Pantokratoras (2007a, b).

The effects of a magnetic field and temperature-dependent viscosity on forced

convection past a flat plate, with a variable wall temperature and in the presence of

suction or blowing, were studied numerically by Seddeek (2002, 2005). Entropy

generation studies were made by Hooman (2006), Hooman and Gurgenci (2007a),

and Hooman et al. (2009a, b).The effect of temperature-dependent viscosity on

thermally developing forced convection was studied by Hooman (2009a).

4.16.2 Oscillatory Flows, Counterflows

For an annulus and a pipe, Guo et al. (1997a, b) treated pulsating flow. For a

completely filled channel, Kim et al. (1994) studied a pulsating flow numerically.

Soundalgekhar et al. (Soundalgekar et al. 1991) studied flow between two parallel
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plates, one stationary and the other oscillating in its own plane. Hadim (1994a)

simulated convection in a channel with localized heat sources. A porous annulus

was studied by Rashidi et al. (2014c) using a homotopy analysis method.

S€ozen and Vafai (1991) analyzed compressible flow through a packed bed with

the inlet temperature or pressure oscillating with time about a nonzero mean. They

found that the oscillation had little effect on the heat storage capacity of the bed.

Paek et al. (1999a) studied the transient cool down of a porous medium by a

pulsating flow. Experiments involving steady and oscillating flows were conducted

by Leong and Jin (2004, 2005). Reciprocating flows in channels partly filled with a

porous medium were studied by Habibi et al. (2011).

An analytical treatment of pulsating flow in a channel or tube was presented by

Kuznetsov and Nield (2006b). Pulsating convection from two heat sources mounted

with porous blocks was examined by Huang and Yang (2008). Oscillatory flow of a

non-Newtonian second grade fluid was studied by Hayat et al. (2007b). The effect

of a periodically oscillating driving force on basic microflows was investigated by

Haddad et al. (2006b). Dhahri et al. (2006a) studied pulsating flow in a tube partly

filled with a porous medium, while Dhahri et al. (2006b) made a numerical study of

reciprocating flow in a pipe. Khanafer et al.’s (2007) studied the influence of

pulsatile blood flow on hyperthermia. MHD studies were reported by Mehmood

et al. (2010) and Prasad et al. (2013a). Another flow involving flow oscillation was

studied by Byun et al. (2006). Pulsatile flow of a Burger’s fluid in a circular pipe

was examined by El-Dabe et al. (2010).

Steady counterflow in a parallel-plate channel or a circular tube was studied by

Nield and Kuznetsov (2008a) and Kuznetsov and Nield (2009a). The Nusselt

number is zero when the net flow is zero. Pulsating counterflow in a channel with

small amplitude fluctuations, without phase lag, was treated by Nield and

Kuznetsov (2009a). A similar problem with phase lag was investigated by Nield

and Kuznetsov (Nield and Kuznetsov 2010a, b, c, d, e). Pulsating counterflow in a

circular tube was considered by Kuznetsov and Nield (2009b). Pathak and

Ghiaasiaan (2010) considered the effect of thermal dispersion. Pathak et al.

(2013) investigated a conjugate problem. Ghafarian et al. (2013) studied the case

of metallic foam numerically. Dhahri et al. (2013a, b) treated viscous dissipation

effect on entropy generation in cylindrical packed beds. Dhahri et al. (2008) studied

entropy generation in a composite fluid/porous system.

Al-Sumaily and Thompson (2013) studied convection from a circular cylinder

with pulsating flow, and Al-Sumaily et al. (2013) included the effect of local

thermal nonequilibrium.

4.16.3 Non-Newtonian Fluids

Boundary-layer flow of a power-law fluid on an isothermal semi-infinite plate was

studied by Wang and Tu (1989). The same problem for an elastic fluid of constant

viscosity was treated by Shenoy (1992). These authors used a modified Darcy
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model. A non-Darcy model for a power-law fluid was employed by Shenoy (1993a)

and Hady and Ibrahim (1997) for flow past a flat plate, by Alkam et al. (1998) for

flow in concentric annuli, and by Nakayama and Shenoy (1993b) and Chen and

Hadim (1995, 1998a, b, 1999a) for flow in a channel. These studies showed that in

the non-Darcy regime the effect of increase of power-law index n is to increase the

thermal boundary-layer thickness and the wall temperature and to decrease the

Nusselt number; in the Darcy regime the changes are small. As the Prandtl number

increases, the Nusselt number increases, especially for shear-thinning fluids

(n < 1). As n decreases, the pressure drop decreases. Tian et al. (2016) studied

dissipation effects in a power-law fluid.

An elastic fluid was treated by Shenoy (1993b). A viscoelastic fluid flow over a

nonisothermal stretching sheet was analyzed by Prasad et al. (2002). An experi-

mental study for heat transfer to power-law fluids under flow with uniform heat flux

boundary conditions was reported by Rao (2001, 2002).

A 3D flow in a duct was studied numerically by Nebbali and Bouhadef (2006).

Flow over a flat plate of a power-law fluid in a Brinkman medium was analyzed by

Pantokratoras and Magyari (2010). The effect of viscous dissipation on flow in a

channel occupied by a power-law fluid was studied by Chen and Tsao (2011a). The

effect of local thermal nonequilibrium in a channel lined with porous layers was

examined by Abkar et al. (2010). Attia (2008b) studied the flow of a power-law

fluid with a pressure gradient decaying exponentially with time. Wang et al. (2011)

studied the case of a Gibson-Ashby constitutive model. Power-law slip flows and

plug flows with variable thermophysical properties in parallel-plate and circular

microchannels were investigated by Shojaeian and Kosar (2016).

Gokhale and Fernandez (2016) made a lattice Boltzmann simulation of forced

convection in non-Newtonian fluid through a low permeable porous medium.

Ramesh (2016) studied the effects of slip and convective conditions on the peri-

staltic flow of couple stress fluid in an asymmetric channel.

4.16.4 Bidisperse Porous Media

A bidisperse porous medium (BDPM) was introduced in Sect. 1.10.

Nield and Kuznetsov (2005b) treated forced convection in a parallel-plate

channel occupied by a BDPM, using a two-temperature model similar to

Eqs. (6.54) and (6.55) in this book. Nield and Kuznetsov (2004c) extended the

analysis to the case of a conjugate problem with plane solid slabs bounding the

channel. They found that the effect of the finite thermal resistance due to the slabs is

to reduce both the heat transfer to the porous medium and the degree of local

thermal nonequilibrium. An increase in the value of the Péclet number leads to

decrease in the rate of exponential decay in the downstream direction, but does not

affect the value of a suitably defined Nusselt number. The case of thermally

developing convection in a BDPM was treated by Kuznetsov and Nield (2006c).

The case of asymmetric heating of a channel was studied by Kuznetsov and Nield
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(2010a). Heat transfer in a BDPM has been reviewed by Nield and Kuznetsov

(2005c). A three-velocity three-temperature model of a tri-disperse porous medium

was applied by Nield and Kuznetsov (2011b). Forced convection in a channel partly

occupied by a bidisperse porous medium was studied by Nield and Kuznetsov

(2011h). The hydrodynamic aspect of bidisperse porous media in the context of

thermal management has been studied by Narasimhan et al. (2012). Nield and

Kuznetsov (2013a, b, c, d, e, f, g, h) and Magyari (2013c) discussed the case of

high speed flow. Straughan (2014a, b, c, d) studied bidispersive poroelastic waves.

Hooman et al. (2015) reconsidered the modeling of momentum transfer. Grosan

et al. (2010) studied flow through a spherical porous medium embedded in another

porous medium.

Nield (2015a, b) proposed a more realistic model for a bidisperse porous

medium. This model is based on consideration of unidirectional flow in a stack of

channels with alternating fluid and porous phases, with the Beavers-Joseph bound-

ary condition imposed at the interphase boundaries.

4.16.5 Other Flows, Other Effects

Non-Darcy boundary-layer flow over a wedge was studied using three numerical

methods by Hossain et al. (1994). An application to the design of small nuclear

reactors was discussed by Aithal et al. (1994). Convection with Darcy flow past a

slender body was analyzed by Romero (1995b), while Sattar (1993) analyzed

boundary-layer flow with large suction. The effect of blowing or suction on forced

convection about a flat plate was also treated by Yih (1998d, e). The interaction

with radiation in a boundary layer over a flat plate was studied by Mansour (1997).

A porous medium heated by a permeable wall perpendicular to the flow direction

was studied experimentally by Zhao and Song (2001). The boundary layer at a

continuously moving surface was analyzed by Nakayama and Pop (1993) and Khan

and Pop (2011a, b). The effect of liquid evaporation on forced convection was

studied numerically by Shih and Huang (2002). A vertical wall with a convective

thermal boundary condition was studied by Pantokratoras (2015).

Convection in an asymmetrically heated sintered porous channel was investi-

gated by Hwang et al. (1995). Various types of sintered and un-sintered heat sinks

were compared experimentally by Tzeng and Ma (2004). Convection in a sintered

porous channel with inlet and outlet slots was studied numerically by Hadim and

North (2005). Sung et al. (1995) investigated flow with an isolated heat source in a

partly filled channel. Conjugate forced convection in cross flow over a cylinder

array with volumetric heating in the cylinders was simulated by Wang and

Georgiadis (1996). Heat transfer for flow perpendicular to arrays of cylinders was

examined by Wang and Sangani (1997). An internally finned tube was treated as a

porous medium by Shim et al. (2002). Internal heating has also been studied by Du

and Wang (1999a, 2001) and Yang et al. (2009b). Forced convection in a system of

wire screen meshes was examined experimentally by Ozdemir and Ozguc (1997).
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The effect of anisotropy was examined experimentally by Yang and Lee (1999);

numerically by Kim et al. (2001c), Nakayama et al. (2002), and Kim and Kuznetsov

(2003); and analytically by Degan et al. (2002) and Sultani and Ajamein (2014).

The effect of fins in a heat exchanger was studied numerically by Kim et al. (Kim

et al. 2000a, b, 2002a, b, c) and by Kim and Hyun (2005). Forced convection in a

channel with a localized heat source using fibrous materials was studied numeri-

cally by Angirasa and Peterson (1999). A numerical investigation with a random

porosity model was made by Fu et al. (2001b). Experimental studies involving a

rectangular duct heated only from the top wall were conducted by Demirel et al.

(1999, 2000). A thermodynamic analysis of heat transfer in an asymmetrically

heated annular packed bed was reported by Demirel and Kahraman (2000). A

laboratory investigation of the cooling effect of a coarse rock layer and a fine

rock layer in permafrost regions was reported by Yu et al. (2004). Forced convec-

tion in a rotating channel was examined experimentally by Tzeng et al. (2004) and

analytically by Mohan and Srivastava (1978) (for a free channel bounded by a

permeable bed). Experiments involving a confined slot jet were conducted by Jeng

and Tzeng (2007a, b). Other experiments were performed by Noh et al. (2006),

Tzeng (2007), Tzeng and Jeng (2006), Jeng et al. (2006, 2010), and Leong et al.

(2010). Heat sinks involving nanofluids were studied by Ghazvini and Shokoumand

(2009) and Ghazvini et al. (2009). The forced convection of nanofluids was also

studied by Maghrebi et al. (2012).

Flow, thermal, and entropy generation characteristics inside a porous channel

with viscous dissipation were discussed by Mahmud and Fraser (2005a, b). A

similar problem with wavy enclosures filled with microstructures was studied by

Mahmud et al. (2007). Further entropy studies were made by Abbasssi (2007),

Hooman (2007), Hooman and Ejlali (2007), Hooman and Haji-Sheikh (2007), and

Hooman et al. (2007a, 2008b). Other studies were made by Hooman (2008a),

Hooman and Gorji-Bandpy (2006), Hooman and Merrikh (2006), Ichimiya et al.

(2009), Jiang and Lu (2006, 2007), Lu et al. (2006), and Kamisli (2009). Dukhan

and Hooman (2013) pointed out that the solution in Lu et al. (2006) is flawed

because of an incorrect choice of Bessel function.

Forced convection in structured packed beds with spherical or ellipsoidal particles

was studied computationally and experimentally by Yang et al. (2010a, c). Their

results were compared with experimental data by Yang et al. (2012a, b, c, d, e).

Hadad and Jafapur (2012, 2013) modeled packed beds with spherical pebbles of

arbitrary shape. The effect of radiation in cylindrical packed beds was examined by

Yee and Kamiuto (2005). The effect of radiation, with and without slip flow, was also

studied by Dehghan et al. (2015a, b). Forced convection in parallel flow multilayer

microchannels was treated by Saidi and Khiabani (2007). Flow through a channel

with wire mesh packing was studied by Dyga (2010). The effect of viscous dissipa-

tion in an anisotropic channel with oblique principal axes was studied by Mobedi

et al. (2010). A problem with heat generation was studied by Prakash et al. (2012a).

Dehghan et al. (2015b, c) studied the effect of temperature-dependent conductivity

and radiation in heat exchangers. Miguel and Heiter Reis (2005) studied transient

convection in an isothermal porous layer. Mukhopadhyay et al. (2012) investigated
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the effect of radiation on flow over a porous plate in a Darcy–Forchheimer porous

medium. Rashidi et al. (2014d) simulated convection past a square diamond-shaped

porous cylinder. Wang (2011a) studied flow through a polygonal duct. A numerical

study of heat transfer in ordered three-dimensional porous media was reported by

Wang et al. (2014b). Al-Sumaily (2014) studied convection from a bank of circular

cylinders embedded in a porous medium. A discretely heated convergent channel was

studied by Ghorab (2015a, b). Umavathi and Shekar (2014) studied the flow of a

micropolar fluid induced by symmetric injection through parallel permeable disks.

The influence of permeability on unsteady conjugate convection from a porous

sphere embedded in a porous medium was investigated by Juncu (2014). Convection

in a helical microchannel was treated by Narrein et al. (2015). The effect of rotation

about a parallel axis on developing flow, in a rectangular channel or a partly filled

square channel, was investigated by Alhusseny et al. (2015a, b). The effects of

internal heat sources in porous channels with asymmetric thick walls were studied

by Elliot et al. (2016). Mansour and Dawood (2016) studied numerically forced

convection in wavy channels. Sayehvand et al. (2016) investigated convection from

two cylinders placed in tandem.

A general study of forced convection from a thermodynamics perspective, with a

focus on entropy generation, starting with the pore scale, for the Darcy and

Forchheimer regimes, was reported by Torabi et al. (2016b).

The effects of a magnetic field have been studied by Filippov (1976), Chamkha

(2001b), Eldabe and Sallam (2005a, b), Hayat and Abbas (2008) (second grade

fluid), Rashad and Bakeir (2009), Saidu et al. (2010), Singh (2011a, b), Kumar and

Gupta (2011), Kaya and Aydin (2012), Attia et al. (2012), Raju et al. (2013), Bakar

et al. (2014), Vyas and Ranjan (2015), Ibanez (2015), and Srinivasacharya and

Bindu (2016) (porous annulus, micropolar fluid). Sharma et al. (2016a, b) reported

an entropy analysis of MHD forced convective flow through a circular channel in

the presence of thermal radiation. Torabi and Peterson (2016) examined the effects

of velocity slip and temperature jump on the heat transfer and entropy generation in

microporous channels under a magnetic field. Rabhi et al. (2016) considered

entropy generation, magnetic field, a microduct and local thermal non-equilibrium.

Sehat et al. (2014) and Sadrhosseini et al. (2016) reported an experimental study

with a ferrofluid in a channel or tube. Sheikhnejad et al. (2015) studied convection

in a ferrofluid in a partly filled horizontal tube.

4.17 Heatlines for Visualizing Convection

The concepts of heatfunction and heatlines were introduced for the purpose of

visualizing the true path of the flow of energy through a convective medium

(Kimura and Bejan 1983; Bejan 1984). The heatfunction accounts simultaneously

for the transfer of heat by conduction and convection at every point in the medium.

The heatlines are a generalization of the flux lines used routinely in the field of

conduction. The concept of heatfunction is a spatial generalization of the concept of
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Nusselt number, i.e., a way of indicating the magnitude of the heat transfer rate

through any unit surface drawn through any point on the convective medium.

The heatline method was extended to several configurations of convection through

fluid-saturated porous media (Morega and Bejan 1994). To illustrate the method,

consider the uniform flow with thermal boundary layer, which is shown in Fig. 4.1.

The heatfunctionH(x,y) is defined such that it satisfies identically the energy equation
for the thermal boundary layer, Eq. (4.3). The H definition is in this case

∂H
∂y

¼ ρcPð Þu T � Trefð Þ, ð4:147Þ

�∂H
∂x

¼ ρcPð Þv T � Trefð Þ � km
∂T
∂y

, ð4:148Þ

where the reference temperature Tref is a constant. The flow field (u, v) and the

temperature field (T) are furnished by the solutions to the convective heat transfer

problem. It was pointed out in Trevisan and Bejan (1987a) that Tref can have any

value and that a heatline pattern can be drawn for each Tref value. The most

instructive pattern is obtained when Tref is set equal to the lowest temperature

that occurs in the convective medium that is being visualized. This choice was

made in the construction of Figs. 4.14 and 4.15. In both cases the heatfunction can

be obtained analytically. When the wall is colder (Tw) than the approaching flow

(T1), (Fig. 4.14), the nondimensionalized heatfunction is

eH ex;eyð Þ ¼ ex1=2 ηerf
η

2

� �
þ 2

π1=2
exp � η2

4

� �� 	
, ð4:149Þ

where eH ¼ H=


km T1 � Twð ÞPe1=2l , PeL ¼ U1L=αm,ex ¼ x=L, and η¼

y(U1/αmx)
1/2. In these expressions L is the length of the y ¼ 0 boundary.
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Figure 4.14 shows that the H ¼ constant curves visualize several features of

convection near a cold wall. The energy that is eventually absorbed by the

wall is brought into the boundary layer (ey ffi 2ex1=2) by fluid from upstream of

the cold section of the wall. The heatlines that enter the wall are denser nearex ¼ 0, i.e., the heat flux is more intense. Finally, the value of the heatfunction

increases along the wall, because the wall absorbs the heat released by the

fluid. The trailing-edge eH value matches the total heat transfer rate through the

wall, Eq. (4.14).

Figure 4.15 shows the corresponding pattern of heatlines when the wall is

warmer than the approaching fluid,

eH ex;eyð Þ ¼ ex 1=2 ηerfc
η

2

� �
� 2

π1=2
exp � η2

4

� �� 	
: ð4:150Þ

The heatlines come out of the wall at an angle because, unlike in Fig. 4.14, the

gradient ∂H/∂y is not zero at the wall. Above the wall, the heatlines are bent even

more by the flow because the effect of transversal conduction becomes weaker. The

higher density of heatlines near ex ¼ 0 indicates once again higher heat fluxes. TheeH value at the wall decreases in the downstream direction because the wall loses

heat to the boundary layer.

Morega and Bejan (1994) displayed the heatlines for two additional configura-

tions: boundary layers with uniform heat flux and flow through a porous layer held

between parallel isothermal plates. As in Figs. 4.14 and 4.15, the heatlines for cold

walls are unlike the heatlines for configurations with hot walls. In other words,

unlike the patterns of isotherms that are used routinely in convection heat transfer

(e.g., Fig. 7.4), the heatline patterns indicate the true direction of heat flow and

distinguish between cold walls and hot walls.
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Costa (2003) has reported a study of unified streamline, heatline, and massline

methods of visualization of two-dimensional heat and mass transfer in anisotropic

media. His illustrations include a problem involving natural convection in a porous

medium.

Heatlines and masslines are now spreading throughout convection research as the

proper way to visualize heat flow and mass flow. This method of visualization is

particularly well suited for computational work and should be included in commer-

cial computational packages. The growing activity based on the heatlines method was

reviewed in Bejan (2004a) and Costa (2006a). The method is expanding

vigorously, for example, in natural convection and mass transfer (Zhao et al.

2007a, b; Basak and Roy 2008; Dalal and Das 2008; Basak et al. 2009a, b; Singh

et al. 2012), mixed convection (Roy et al. 2015), and porous media with nanofluid

(Bondareva et al. 2016). The heatlines literature was reviewed most recently by

Bejan (2015).

4.18 Constructal Tree Networks: Flow Access
in Volume-to-Point Flow

It was discovered that by reducing systematically the thermal resistance between

one point and a finite-size volume (an infinity of points) it is possible to predict a

most common natural structure that previously was considered nondeterministic:

the tree network (Bejan 1996b, 1997a, b; Ledezma et al. 1997). Tree network

patterns abound in nature, in both animate and inanimate systems (e.g., botanical

trees, lightning, neural dendrites, dendritic crystals). The key to solving this famous

problem was the optimization of the shape of each finite-size element of the flow

volume, such that the flow resistance of the element is minimal. The optimal

structure of the flow—the tree network—then was constructed by putting together

the shape-optimized building blocks. This construction of multiscale, hierarchical

geometry became the starting point of the constructal law of design and evolution

in Nature (Bejan 1997a, b, c, 2000, 2016; Bejan and Zane 2012).

The deterministic power of constructal theory is an invitation to new theoretical

work on natural flow structures that have evaded determinism in the past. This

section is about one such structure: the dendritic shape of the low-resistance

channels that develop in natural fluid flows between a volume and one point in

heterogeneous media (Bejan 1997b, c; Errera and Bejan 1999; Bejan et al. 2004).

Examples of volume-to-point fluid flows are the bronchial trees, the capillary

vessels, and the river drainage basins and deltas.

The deterministic approach outlined in this section is based on the proposition

that a naturally occurring flow structure—its geometric form—is the end result of a

process of geometric optimization. The objective of the optimization process is to

construct the path (or assembly of paths) that provides minimal resistance to flow,

or, in an isolated system, maximizes the rate of approach to equilibrium.
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4.18.1 The Fundamental Volume-to-Point Flow Problem

Consider the fundamentals of evolutionary design toward less and less fluid flow

resistance between one point and a finite-size volume (an infinity of points). For

simplicity we assume that the volume is two-dimensional and represented by the

area A (Fig. 4.16). The total mass flow rate _m 0 (kg/sm) flows through the point M

and reaches (or originates from) every point that belongs to A. We also assume that

the volumetric mass flow rate _m000 (kg/sm3) that reaches all the points of A is

distributed uniformly in space, hence _m 0 ¼ _m 000A.
The space A is filled by a porous medium saturated with a single-phase fluid with

constant properties. The flow is in the Darcy regime. If the permeability of the

porous medium is uniform throughout A, then the pressure field P(x, y) and the flow
pattern can be determined uniquely by solving the Poisson-type problem associated

with the point sink or point source configuration of Fig. 4.16. This classic problem

is not the subject of this section.

Instead, we consider the more general situation where the space A is occupied by

a nonhomogeneous porous medium composed of a material of low permeability

K and a number of layers (e.g., cracks, filled or open) of much higher permeabilities

(K1, K2, . . .). The thicknesses (D1, D2, . . .) and lengths (L1, L2, . . .) of these layers
are not specified.

For simplicity we assume that the volume fraction occupied by the high-

permeability layers is small relative to the volume represented by the K material.

There is a very large number of ways in which these layers can be sized, connected,

and distributed in order to collect and channel _m 0 to the point M. In other words,

there are many designs of composite materials (K, K1, K2, . . .) that can be installed

in A: our objective is to find not only the internal architecture of the composite that

minimizes the overall fluid flow resistance, but also a strategy for the geometric

optimization of volume-to-point flows in general.

The approach we have chosen is illustrated in Fig. 4.16. We regard A as a

patchwork of rectangular elements of several sizes (A0, A1, A2, . . .). We will

show that the shape (aspect ratio) of each such element can be optimized

M

A

...

m¢¢¢, K

A0

Ki, Di, Li

A1

A2
m¢˙

˙

Fig. 4.16 The

two-dimensional flow

between one point (M) and

a finite-size volume (A)
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for minimal flow resistance. The smallest element (A0) contains only

low-permeability material and one high-permeability layer (K0, D0) (Fig. 4.17).

Each successively larger volume element (Ai) is an assembly of elements of the

preceding size (Ai�1), which act as tributaries to the collecting layer (Ki, Di, Li) that
defines the assembly. We will show that the optimally shaped assemblies can be

arranged like building blocks to collect the volumetric flow _m 000 and transform it into

the single stream _m 0 at the point M.

Before presenting the analysis, it is worth commenting on the reasons for doing

it and how it fits next to the vast amount of work that has been done in the same

field. A general characteristic of the existing studies is that they begin with the often

tacit assumption that a fluid tree network exists. Geometric details such as bifurca-

tion (dichotomy) are assumed. No such assumptions are being made in this section.

The problem solved in this section is the minimization of flow resistance between a

finite-size volume and one point. The solution to this problem will show that certain

portions of the optimized volume-to-point path are shaped as a tree network. In

other words, unlike in the existing literature, in the present analysis the tree and its

geometric details are results (predictions), not assumptions. This is a fundamental

difference. It means that the solution to the volume-to-point flow problem sheds

light on the universal design principle that serves as origin for the formation of fluid

tree networks in nature.

4.18.2 The Elemental Volume

In Fig. 4.17 the smallest volume A0 ¼ H0 L0 is fixed, but its shape H0/L0 may vary.

The flow, _m 0
0 ¼ _m 000A0, A0 is collected from the K medium by a layer of much

higher permeability K0 and thickness D0. The flow is driven toward the origin (0, 0)

by the pressure field P(x, y). The rest of the rectangular boundary H0	L0 is

m¢¢¢, K

A0

L0
x

Ppeak,0

-H0/2

H0/2

P = 0
m0
.

.

m¢¢¢, K P (x,y)

m(x)
.

.

y

0

D0 K0
u

v

0

Fig. 4.17 The smallest volume element, with volumetric flow through the K porous medium and

“channel” flow along a high-permeability layer (K0)
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impermeable. Since the flow rate _m 0
0 is fixed, to minimize the flow resistance means

to minimize the peak pressure (Ppeak) that occurs at a point inside A0. The pressure

at the origin is zero.

The analysis is greatly simplified by the assumptions that were mentioned

already (K � K0, D0 � H0), which, as we will show in Eq. (4.148), also mean

that the optimized A0 shape is such that H0 is considerably smaller than L0.
According to these assumptions the flow through the K domain is practically

parallel to the y direction,

P x; yð Þ ffi P yð Þ for H0=2 > yj j > D0=2 ð4:151Þ
while the flow through the K0 layer is aligned with the layer itself P (x, y)ffiP (x)
for jyj<D0/2. Symmetry and the requirement that Ppeak be minimum dictate that

the A0 element has to be oriented such that the K0 layer is aligned with the x axis.
The mass flow rate through this layer is _m 0 xð Þ, with _m 0 0ð Þ ¼ _m 0

0 at the origin (0, 0),

and _m 0 L0ð Þ ¼ 0. The K material is an isotropic porous medium with flow in

the Darcy regime,

v ¼ K

μ
�∂P

∂y

� �
ð4:152Þ

In this equation v is the volume-averaged velocity in the y direction (Fig. 4.17).

The actual flow is oriented in the opposite direction. The pressure field P(x, y) can
be determined by eliminating v between Eq. (4.151) and the local mass continuity

condition

∂v
∂y

¼ _m 000

ρ
ð4:153Þ

and applying the boundary conditions ∂P/∂y ¼ 0 at y ¼ H0/2 and P ¼ P (x, 0) at
y ffi 0 (recall that D0 � H0):

P x; yð Þ ¼ _m 000ν
2K

H0y� y2
� �þ P x; 0ð Þ: ð4:154Þ

Equation (4.154) holds only for y≳0. The corresponding expression for y≳0 is

obtained by replacing H0 with �H0 in Eq. (4.154).

The pressure distribution in the K0 material, namely P(x,0), is obtained similarly

by assuming Darcy flow along a D0-thin path near y ¼ 0,

u ¼ K0

μ
�∂P

∂x

� �
, ð4:155Þ

where u is the average velocity in the x-direction. The flow proceeds toward the

origin, as shown in Fig. 4.17. The mass flow rate channeled through the K0

material is _m 0 xð Þ ¼ �rD0u. Furthermore, mass conservation requires that the
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mass generated in the infinitesimal volume slice (H0 dx) contributes to the _m 0 xð Þ
stream: _m 000H0dx ¼ �d _m 0. Integrating this equation away from the impermeable

plane x ¼ L0 (where _m 0 ¼ 0 ), and recalling that _m 0
0 ¼ _m 000H0L0, we obtain

_m xð Þ ¼ _m 000H0 L0 � xð Þ ¼ _m 0 1� x

L0

� �
: ð4:156Þ

Combining these equations we find the pressure distribution along the x axis

P x; 0ð Þ ¼ _m
0
0 ν

D0K0

x� x2

2L0

� �
: ð4:157Þ

Equations (4.154) and (4.157) provide a complete description of the P(x, y) field.
The peak pressure occurs in the farthest corner (x ¼ L0, y ¼ H0/2):

Ppeak,0 ¼ _m 0
0ν

H0

8KL0
þ L0
2K0D0

� �
: ð4:158Þ

This pressure can be minimized with respect to the shape of the element (H0/L0)
by noting that L0 ¼ A0/H0 and φ0 ¼ D0/H0 � 1. The number φ0 is carried in the

analysis as an unspecified parameter. For example, if the D0 layer was originally a

crack caused by the volumetric shrinking (e.g., cooling, drying) of the K medium,

then D0 must be proportional to the thickness H0 of the K medium. The resulting

geometric optimum is described by

H0

L0
¼ 2 eK0φ0

� ��1=2 eL0 ¼ 2�1=2 eK0φ0

� �1=4

ð4:159Þ

eH0 ¼ 21=2 eK0φ0

� ��1=4

ΔeP 0 ¼ 1

2
eK0φ0

� ��1=2

ð4:160Þ

The nondimensionalization used in Eqs. (4.146) and (4.147) and retained

throughout this section is based on using A
1=2
0 as length scale and K as permeability

scale:

eHi; eLi

� �
¼ Hi; Lið Þ

A
1=2
0

, eKi ¼ Ki

K
, ð4:161Þ

ΔePi ¼ Ppeak, i

_m 000Aiν=K
, φi ¼

Di

Hi
: ð4:162Þ

At the optimum, the two terms on the right side of Eq. (4.158) are equal. The

shape of the A0 element is such that the pressure drop due to flow through the

Kmaterial is equal to the pressure drop due to the flow along the K0 layer. Note also

that the first of Eq. (4.160) confirms the assumptions made about the D0 layer at the
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start of this section: high permeability ( eK0 >> 1 ) and small volume fraction

(φ0 � 1) mean that the optimized A0 shape is slender, H0 � L0, provided thateK0 >> φ�1
0 .

4.18.3 The First Construct

Consider next the immediately larger volume A1 ¼ H1 L1 (Fig. 4.18) which can

contain only elements of the type optimized in the preceding section. The streams _m
0
0

collected by theD0-thin layers are now united into a larger stream _m
0
1 that connects A1

with the point P ¼ 0. The _m
0
1 stream is formed in the new layer (K1, D1, L1).

The problem of optimizing the shape of the A1 rectangle is the same as the A0

problem that we just solved. First, we note that when the number of A0 elements

assembled into A1 is large, the composite material of Fig. 4.18 is analogous to the

composite of Fig. 4.17, provided that the permeability K of Fig. 4.17 is replaced by

an equivalent (volume averaged) permeability (Ke1) in Fig. 4.18. The Ke1 value is

obtained by writing that the pressure drop across an A\0 element [Eq. (4.160)] is

equal to the pressure drop over the distance H1/2 in the Ke1 medium [this second

pressure drop can be read off Eq. (4.154), after replacing H0 with H1, y with H1/2,

and K with Ke1]. The result is Ke1¼K0φ0: this value is then used in place of K0, in

an analysis that repeats the steps executed in Eqs. (4.158)–(4.160) for the A0

optimization problem.

A clearer alternative to this analysis begins with the observation that the peak

pressure (Ppeak.1) in Fig. 4.18 is due to two contributions: the flow through the

upper-right corner element (Ppeak.0) and the flow along the (K1, D1) layer:

KK1

A1
H0 Ppeak,1

K0
D0 L0

L1

m1
. D1

P = 0

H1

Fig. 4.18 The first assembly (A1) of elements of size A0, and the new high-permeability layer K1
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Ppeak,1 ¼ _m 000A0

ν

K

1

2
eK0φ0

� ��1=2

þ _m
0
1 ν

Li
2K1D1

: ð4:163Þ

This expression can be rearranged by using the first of Eqs. (4.160) and

H1 ¼ 2L0:

Ppeak,1

_m 000A1ν=K
¼ 1

4eK0φ0

H1

L1
þ 1

2eK1φ1

L1
H1

: ð4:164Þ

The corner pressure Ppeak,1 can be minimized by selecting the H1/L1 shape of the

A1 rectangle. The resulting expressions for the optimized geometry (H1/L1, eH1, eL1)

are listed in Table 4.1. The minimized peak pressure ΔeP 1

� �
is divided equally

between the flow through the corner A0 element and the flow along the collecting

(K1, D1) layer. In other words, as in the case of the A0 element, the geometric

optimization of the A1 assembly is ruled by a principle of equipartition of pressure

drop between the two main paths of the assembly (Lewins 2003).

4.18.4 Higher-Order Constructs

The assembly and area shape optimization procedure can be repeated for larger

assemblies (A2, A3, . . .). Each new assembly (Ai) contains a number (ni) of assem-

blies of the immediately smaller size (Ai�1), the flow of which is collected by a new

high-permeability layer (Ki,Di, Li). As in the drawing shown in Fig. 4.17 for A1, it is

assumed that the number of constituents ni is sensibly larger than 2. The analysis

begins with the statement that the maximum pressure difference sustained by Ai is

equal to the pressure difference across the optimized constituent (Ai�1) that

occupies the farthest corner of Ai, and the pressure drop along the Ki central layer:

Ppeak, i ¼ Ppeak, i�1 þ _m 0
iν

Li
2KiDi

: ð4:165Þ

The geometric optimization results are summarized in Table 4.1, in which we

used Ci ¼ eKiφi for the dimensionless flow conductance of each layer. The optimal

Table 4.1 The optimized geometry of the elemental area A0 and the subsequent assemblies when

the channel permeabilities are unrestricted (Note: Ci¼Kiφi)

i Hi/Li eHi
eLi ni ¼ Ai/Ai�1 ΔePi

0 2C
�1=2
0 21=2C

�1=4
0 2�1=2C

1=4
0

– 1
2
C
�1=2
0

1 (2C0/C1)
1/2

21=2C
1=4
0 C

�1=4
0 C

1=2
1

(2C1)
1/2 (2C0C1)

�1/2

2 (2C1/C2)
1/2

2C
�1=4
0 C

1=2
1 21=2C

�1=4
0 C

1=2
2

2 (C2/C0)
1/2 (2C1C2)

�1/2

i � 2 (2Ci� 1/Ci)
1/2

2i=2C
�1=4
0 C

1=2
i�1 2 i�1ð Þ=2C�1=4

0 C
1=2
i

2(C1/Ci� 2)
1/2 (2Ci� 1Ci)

�1/2
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shape of each rectangle Hi 	 Li is ruled by the pressure-drop equipartition principle
noted in the optimization of the A0 and A1 shapes.

Beginning with the second assembly, the results fall into the pattern represented

by the recurrence formulas listed for i � 2. If these formulas were to be repeated ad
infinitum in both directions—toward large Ai and small Ai—then the pattern formed

by the high-permeability paths (Ki,Di) would be a fractal. Natural tree-shaped flows

and those predicted by constructal theory are not fractal. In the present solution to

the volume-to-point flow problem, the construction begins with an element of finite

size, A0, and ends when the given volume (A) is covered. Access to the infinity of

points contained by the given volume is not made by making A0 infinitely small.

Instead, all the points of the given volume are reached by a diffusive flow that

bathes A0 volumetrically, because the permeability K of the material that fills A0 is

the lowest of all the permeabilities of the composite porous medium. Constructal

theory is the clearest statement that the geometry of nature is not fractal (Bejan

1997c) and the first theory that predicts the multitude of natural flow structures that

could be described as “fractal-like” structures (Poirier 2003; Rosa et al. 2004).

Figure 4.19 illustrates the minimal-resistance architecture recommended by the

results of Table 4.1. At each level of assembly, the calculated number of constit-

uents ni was rounded off to the closest even number. The optimal design of the

composite porous medium contains a tree network of high-permeability layers (K0,

K1, K2, . . .), where the interstitial spaces are filled with low-permeability material

(K ). The actual shape of the tree depends on the relative size of the flow conduc-

tance parameters Ci. The conductance increase ratio Ci/Ci�1 is essentially equal to

A3

A2

A1

A1

magnified five times

A0

Fig. 4.19 Composite medium tree architecture for minimal volume-to-point flow resistance when

C0 ¼ 100 and Ci/Ci � 1 ¼ 10 for i ¼ 1, 2, and 3
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the permeability ratio Ki/Ki�1, because the volume fraction (φi � 1) is expected to

vary little from one assembly to the next, cf. the comment made above Eq. (4.167).

In other words, the conductance parameters Ci can be specified independently

because the porousmedium characteristics of the materials that fill the high-

permeability channels have not been specified.

Several trends are revealed by constructions such as Fig. 4.19. When the

conductance ratio Ci/Ci�1 is large, the number ni is large, the optimal shape of

each assembly is slender (Hi/Li < 1), and the given volume is covered “fast,” i.e., in

a few large steps of assembly and optimization. When the ratio Ci/Ci�1 is large but

decreases from one assembly to the next, the number of constituents decreases and

the shape of each new assembly becomes closer to square.

Combining the limit Ci/Ci�1 ! 1 with the ni formula of Table 4.1, we see that

the number two (i.e., dichotomy, bifurcation, pairing) emerges as a result of

geometric optimization of volume-to-point flow. Note that the actual value ni ¼ 2

is not in agreement with the ni > 2 assumption that was made in Fig. 4.18 and the

analysis that followed. This means that when Ci/Ci� 1� 1 is of order 1, the analysis

must be refined by using, for example, Fig. 4.18 in which the length of the (K1, D1)

layer is not L1 but (n1/2� 1)H0 +H0/2. In this new configuration the right-end tip of

the (K1, D1) layer is absent because the flow rate through it would be zero. To

illustrate this feature of the tree network, in Fig. 4.19 the zero-flow ends of the

central layers of all the assemblies have been deleted.

4.18.5 The Constructal Law of Design and Evolution
in Nature

The point-to-volume resistance can be minimized further by varying the angle

between tributaries (Di-1) and the main channel (Di) of each new volume assembly.

This optimization principle is well known in physiology where the work always

begins with the assumption that a tree network of tubes exists. It can be shown

numerically that the reductions in flow resistance obtained by optimizing the angles

between channels are small relative to the reductions due to optimizing the shape of

each volume element and assembly of elements. In this section we fixed the angles

at 90 and focused on the optimization of volume shape. It is the optimization of

shape subject to volume constraint—the consistent use of this principle at every

volume scale—that is responsible for the emergence of a tree network between the

volume and the point. We focused on the optimal shapes of building blocks because

our objective was to discover a single optimization principle that can be used to

explain the origin of tree-shaped networks in natural flow systems. The objective

was to find the physics principle that was missing in the tree-like images generated

by assumed fractal algorithms.

In summary, we solved in general terms the fundamental fluid mechanics

problem of minimizing the flow resistance between one point and a finite-size
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volume. A single optimization principle—the optimization of the shape of each

volume element such that its flow resistance is minimized—is responsible for all the

geometric features of the point-to-volume flow path. One of these features is the

geometric structure—the tree network—formed by the portions with higher per-

meabilities (K0, K1, . . .). The interstices of the network, i.e., the infinity of points of
the given volume, are filled with material of the lowest permeability (K) and are

touched by a flow that diffuses through the K material.

The most important conclusion is that the larger picture, the optimal overall

performance, structure, and working mechanism can be described in a purely

deterministic fashion; that is, if the resistance-minimization principle is recognized

as law. This law can be stated as follows (Bejan 1996a, b, 1997a, 2016):

For a finite-size system to persist in time (to live), it must evolve in such a way that it

provides easier access (less resistance) to the imposed currents that flow through it.

This statement has two parts. First, it recognizes the natural tendency of imposed

global currents to construct paths (shapes, structures) for better access through

constrained open systems. The second part accounts for the evolution of the

structure, which occurs in an identifiable direction that can be aligned with time

itself. Small size and shapeless flow (diffusion) are followed in time by larger sizes

and organized flows (streams). The optimized complexity continues to increase in

time. Optimized complexity must not be confused with maximized complexity.

How important is the constructal approach to the minimal-resistance design, i.e.,

this single geometric optimization principle that allows us to anticipate the tree

architecture seen in so many natural systems? In contemporary physics a significant

research volume is being devoted to the search for universal design principles that

may explain organization in animate and inanimate systems. In this search, the tree

network is recognized as the symbol of the challenge that physicists and biologists

face (Kauffman 1993, pp. 13 and 14): Imagine a set of identical round-topped hills,

each subjected to rain. Each hill will develop a particular pattern of rivulets which

branch and converge to drain the hill. Thus the particular branching pattern will be

unique to each hill, a consequence of particular contingencies in rock placement,

wind direction, and other factors. The particular history of the evolving patterns of

rivulets will be unique to each hill. But viewed from above, the statistical features

of the branching patterns may be very similar. Therefore, we might hope to develop

a theory of the statistical features of such branching patterns, if not of the particular

pattern on one hill.

The constructal approach outlined in this section is an answer to the challenge

articulated so well by Kauffman. It introduces an engineering flavor in the current

debate on natural organization, which until now has been carried out in physics and

biology. By training, engineers begin the design of a device by first understanding

its purposes. The size of the device is always finite, never infinitesimal. The device

must function (i.e., fulfill its purpose) subject to certain constraints. Finally, to

analyze (describe) the device is not sufficient: to optimize it, to construct it, and to

make it work are the ultimate objective. All these features—purpose, finite size,

constraints, optimization, and construction—can be seen in the network
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constructions reported in this section. The resulting tree networks are entirely

deterministic, and consequently they represent an alternative worthy of consider-

ation in fields outside engineering. The progress in this direction is summarized in

Bejan (1997c, 2000), Bejan and Lorente (2008, 2010, 2011), and Bejan and

Zane (2012).

The short discussion here is confined to hydrodynamic aspects. For conduction,

convection, turbulence, and other flows with structure, the reader is referred to the

books that review the growing interest in constructal theory (Bejan 2000; Rosa et al.

2004; Bejan et al. 2004). For example, constructal trees were designed for chem-

ically reactive porous media by Azoumah et al. (2004) and Zhou et al. (2008). The

constructal law was used to predict the basic features and dimensions of Bénard

convection and nucleate boiling (Nelson and Bejan 1998), the sand size and

beachface slope (Reis and Gama 2010), and dust particle clusters (Reis et al. 2006).

The place of the constructal law as a self-standing law in thermodynamics is

firmly established (Bejan and Lorente 2004). The constructal law is distinct from

the second law. For example, with respect to the time evolution of an isolated

thermodynamic system, the second law states that the system will proceed toward a

state of equilibrium (“nothing moves,” maximum entropy at constant energy). In

this second-law description, the system is a black box, without configuration.

With regard to the same isolated system, the constructal law states that the

currents that flow in order to bring the system to equilibrium will seek and develop

paths of maximum access. In this way, the system develops its flow configuration,

which endows the system with the ability to approach its equilibrium the fastest.

The constructal law is the law of design generation, whereas the second law is

the law of entropy generation. The constructal law can be stated in several equiv-

alent ways: a principle of flow access maximization (or efficiency increase), as in

the original statement quoted above, a principle of flow compactness maximization

(miniaturization), and a principle of flow territory maximization, as in the spreading

of river deltas, living species, and empires (Bejan and Lorente 2004).

Applications of constructal design to the regenerators that operate cyclically in

various types of heating or reheating furnaces were made by Bejan et al. (2013). A

thermal analysis of a T-shaped porous fin with radiation effects was undertaken by

Bhanja and Kundu (2013). Radial flow in a heterogeneous porous medium based on

fractal and constructal tree networks was analyzed by Xu et al. (2008a, b).

Using constructal theory, Chen et al. (2014a, b, c, d) investigated flow in a

porous medium with a “disk-point” mass transfer model. They modeled the mass

flow using either the Darcy law or the Hagen-Poiseuille law. They obtained optimal

constructs of radial-pattern and branched-pattern disks with minimization of the

maximum pressure drop as the objective.

Rocha et al. (2012) studied the heat transfer between a pipe assembly and the

soil during the annular temperature cycle. They used constructal design to find the

flow structure that increased the heat transfer. They found that the optimal shapes

change gradually from slender to square as the volume fraction occupied by the

flow assembly increases. They also found that the heat transfer performance

increases as the depth of the structure decreases but the depth has a negligible

4.18 Constructal Tree Networks: Flow Access in Volume-to-Point Flow 153



effect on the shape of the structure. The performance also increases as the config-

uration of the ground volume and the buried structure evolves to the most slender

shape possible.

In sum, the constructal law originated from the design of porous and complex

flow structures, and now unites engineering, physics, biology, and social organiza-

tion (Poirier 2003; Rosa et al. 2004; Reis 2006; Bejan and Lorente 2006, 2010,

2011, 2013). Constructal law books for the general public were published by Bejan

and Zane (2012) and Bejan (2016). The use of this law is generating new theories in

domains such as the design of the arterial tree (Silva and Reis 2014), the design of

the termite ant mound (Kasimova et al. 2014), the design of brain vascularization

and oxygenation (Hadjistassou et al. 2015), self-heating and self-cooling (Lee et al.

2013), multilayer insulation (Kang et al. 2013a, b, c), and the design of the

ecohydrological flow architecture in the subsurface (Band et al. 2014).

4.19 Constructal Multiscale Flow Structures: Vascular
Design

The tree-shaped flow structures of Sect. 4.18 are examples of "designed" porous

structures with multiple length scales, which are organized hierarchically and

distributed nonuniformly. These advances are reviewed in Bejan and Lorente

(2008). Another class of designed porous media stems from an early result of

constructal theory: the prediction of optimal spacings for the internal flow structure

of volumes that must transfer heat and mass to the maximum (Bejan 2000;

Sect. 4.15). Optimal spacings have been determined for several configurations,

for example, arrays of parallel plates (e.g., Fig. 4.20). In each configuration, the

reported optimal spacing is a single value, that is, a single length scale that is

distributed uniformly through the available volume.

Is the stack of Fig. 4.20 the best way to pack heat transfer into a fixed volume? It

is, but only when a single length scale is to be used, that is, if the structure is to be

uniform. The structure of Fig. 4.20 is uniform, because it does not change from

x ¼ 0 to x ¼ L0. At the most, the geometries of single-spacing structures vary

periodically, as in the case of arrays of cylinders and staggered plates.

Bejan and Fautrelle (2003) showed that the structure of Fig. 4.20 can be

improved if more length scales (D0, D1, D2,...) are available. The technique consists

of placing more heat transfer in regions of the volume HL0 where the boundary

layers are thinner. Those regions are situated immediately downstream of the

entrance plane x ¼ 0. Regions that do not work in a heat transfer sense either

must be put to work or eliminated. In Fig. 4.20, the wedges of fluid contained

between the tips of opposing boundary layers are not involved in transferring heat.

They can be involved if heat-generating blades of shorter lengths (L1) are installed
on their planes of symmetry. This new design is shown in Fig. 4.21.
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Each new L1 blade is coated by Blasius boundary layers with the thickness δ(x)
ffi 5x(Ux/ν)–1/2. Because δ increases as x1/2, the boundary layers of the L1 blade

merge with the boundary layers of the L0 blades at a downstream position that is

approximately equal to L0/4. The approximation is due to the assumption that the

presence of the L1 boundary layers does not significantly affect the downstream

development (x > L0/4) of the L0 boundary layers. This assumption is made for the

sake of simplicity. The order-of-magnitude correctness of this assumption comes

from geometry: the edges of the L1 and L0 boundary layers must intersect at a

distance of order

L1 ffi 1

4
L0: ð4:166Þ

Note that by choosing L1 such that the boundary layers that coat the L1 blade
merge with surrounding boundary layers at the downstream end of the L1 blade, we
once more invoke the maximum packing principle of constructal theory. We are

being consistent as constructal designers, and because of this every structure with

merging boundary layers will be optimal, no matter how complicated.

The wedges of isothermal fluid (T0) remaining between adjacent L0 and L1
blades can be populated with a new generation of even shorter blades, L2 ffi L1/4.
Two such blades are shown in the upper-left corner of Fig. 4.21. The length scales

U, T0, ΔP

0
L0

Tw

x

H
δ(x)

D0

Fig. 4.20 Optimal package of parallel plates with one spacing (Bejan and Fautrelle 2003)
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become smaller (L0, L1, L2), but the shape of the boundary layer region is the same

for all the blades, because the blades are all swept by the same flow (U ). The

merging and expiring boundary layers are arranged according to the algorithm

Li ffi 1

4
Li�1, Di ffi 1

2
Di�1 i ¼ 1; 2; :::;mð Þ, ð4:167Þ

where we show that m is finite, not infinite. In other words, as in all the constructal

tree structures, the image generated by the algorithm is not a fractal [cf. Bejan

(1997c, p. 765)]. The sequence of decreasing length scales is finite, and the smallest

size (Dm, Lm) is known, as shown in Bejan and Fautrelle (2003) and Bejan et al.

(2004). The global thermal conductance of the multiscale package is

q0

kΔT
ffi 0:36

H

L0
Be1=2 1þ m

2

� �1=2

ð4:168Þ

where q0 is the total heat transfer rate installed in the package (W/m, per unit length

in the direction perpendicular to Fig. 4.21), k is the fluid thermal conductivity, and

0
x

L1

L0

D1

D2

D0

L2

Fig. 4.21 Optimal multiscale package of parallel plates (Bejan and Fautrelle 2003)
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ΔT is the temperature difference between the plates (assumed isothermal) and the

fluid inlet. The dimensionless pressure and difference is

Be ¼ ΔPL20
μα

, ð4:169Þ

where μ and α are the fluid viscosity and thermal diffusivity.

Bejan and Fautrelle (2003) also showed that the optimized complexity increases

with the imposed pressure difference (Be),

2m 1þ m

2

� �1=4
ffi 0:17Be1=4: ð4:170Þ

As Be increases, the multiscale structure becomes more complex and finer. The

monotonic effect of m is accompanied by diminishing returns: each smaller length

scale (m) contributes to global performance less than the preceding length scale

(m � 1). The validity of the novel design concept sketched in Fig. 4.21 was

demonstrated through direct numerical simulations and optimization for multiscale

parallel plates (Bello-Ochende and Bejan 2004) and multiscale parallel cylinders in

cross flow (Bello-Ochende and Bejan 2005a). A related natural convection situation

was treated by Bello-Ochende and Bejan (2005b).

Forced convection was used in Bejan and Fautrelle (2003) only for illustration,

that is, as a language in which to describe the new concept. A completely analogous

multiscale structure can be deduced for laminar natural convection. The complete

analogy that exists between optimal spacings in forced and natural convection was

described by Petrescu (1994). In brief, if the structure of Fig. 4.20 is rotated by 90

counterclockwise and if the flow is driven upward by the buoyancy effect, then the

role of the overall pressure difference ΔP is played by the difference between two

hydrostatic pressure heads, one for the fluid column of height L0 and temperature

T0, and the other for the L0 fluid column of temperature Tw. If the Boussinesq

approximation applies, the effective ΔP due to buoyancy is

ΔP ¼ ρgβΔTL0, ð4:171Þ

where β is the coefficient of volumetric thermal expansion and g is the gravitational
acceleration aligned vertically downward (against x in Fig. 4.20). By substituting

the ΔP expression (4.171) into the Be definition (4.169) we find that the dimen-

sionless group that replaces Be in natural convection is the Rayleigh number Ra

¼ gβΔTL30=αv Other than the Be ! Ra transformation, all the features that are due

to the generation of multiscale blade structure for natural convection should mirror,

at least qualitatively, the features described for forced convection in this section.

The validity of the constructal multiscale concept for volumes packed with natural

convection is demonstrated numerically in da Silva and Bejan (2005).

The hierarchical multiscale flow architecture constructed in this section is a

theoretical comment on fractal geometry. Fractal structures are generated by
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assuming (postulating) certain algorithms. In much of the current fractal literature,

the algorithms are selected such that the resulting structures resemble flow struc-

tures observed in nature. For this reason, fractal geometry is descriptive, not

predictive (Bejan 1997c; Bradshaw 2001). Fractal geometry is not a theory

(Bejan and Zane 2012).

The more recent advances on designed porous media are being dedicated to the

development of vascularized materials with new functionalities distributed

throughout the volume: self-healing, self-cooling, mechanical strength, etc. This

movement is reviewed in Bejan and Lorente (2006, 2008). Chief examples are the

vascular design of solid plates permeated by fluids that provide self-healing (the

fusing of internal fissures) and the volumetric cooling of plates subjected to intense

heating under steady and unsteady conditions (Lorente and Bejan 2006, 2009a, b;

Kim et al. 2006, 2009b; Zhang et al. 2009a, b, c; Combelles et al. 2009, 2012;

Ordonez et al. 2003; Lee et al. 2008a, b, 2009a, b, c; Zeng et al. 2010; Cho et al.

2010a,b; Xu et al. 2008a, b; Wang et al. 2006, 2007c, 2009a, b; Moreno and Tao

2006; Rocha et al. 2009; Revellin et al. 2009; Kim et al. 2006, 2007, 2008d, 2009a,

b). Vascular designs that provide both cooling and mechanical strength were

developed by Wang et al. (2010c), Cetkin et al. (2011a, b), Miguel (2015, 2016),

and Yenigun and Cetkin (2016).

4.20 Optimal Spacings for Plates Separated by Porous
Structures

Taking the concept of Fig. 4.20 even closer to traditional porous media, consider the

optimization of spacings between plates that sandwich a porous medium (Bejan

2004a). For example, the channels may be occupied by a metallic foam such that

the saturated porous medium has a thermal conductivity (km) and a thermal diffu-

sivity (αm) that are much higher than their pure fluid properties (kf, αf). We consider

both natural convection and forced convection with Boussinesq incompressible

fluid and assume that the structures are fine enough that Darcy flow prevails in all

cases. The analysis is another application of the intersection of asymptotes method

(Lewins 2003).

The natural convection configuration is shown in Fig. 4.22. This time each

D-thin space is filled with the assumed fluid-saturated porous structure. The width

in the direction perpendicular to Fig. 4.22 is W. The effective pressure difference

that drives the flow is due to buoyancy:

ΔP ¼ ρHgβ Tw � T0ð Þ: ð4:172Þ
This ΔP estimate is valid in the limit where the spacing D is sufficiently small so

that the temperature in the channel porous medium is essentially the same as the

plate temperature Tw. In this limit, the heat current extracted by the flow from

the H 	 L volume is q ¼ _mcP Tw � T0ð Þ, with _m ¼ ρULW and Darcy’s law,
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U ¼ KΔP/μH, where K is the permeability of the structure. In conclusion, the total

heat transfer rate in the small-D limit is independent of the spacing D,

q ¼ ρcP Tw � T0ð ÞLW KΔPð Þ=μH: ð4:173Þ

In the opposite limit, D is large so that the natural convection boundary layers

that line the H-tall plates are distinct. The heat transfer rate from one boundary

layer is �hHW Tw � T0ð Þ, where �hH=k ¼ 0:888Ra
�1=2
H , and RaH is the Rayleigh

number for Darcy flow, RaH ¼ KgβH(Tw – T0)/αmν. The number of boundary

layers in the H 	 L volume is 2L/D. In conclusion, the total heat transfer rate

decreases as D increases,

q ¼ 1:78 L=Dð ÞWk Tw � T0ð ÞRa1=2H : ð4:174Þ

For maximal thermal conductance q/(Tw – T0), the spacing D must be

smaller than the estimate obtained by intersecting asymptotes (4.173) and

(4.174), cf. Bejan (2013):

Dopt=H � 1:78Ra
�1=2

H ; ð4:175Þ

The simplest design that has the highest possible conductance is the design with

the fewest plates (i.e., the one with the largest Dopt); hence Dopt/Hffi 1.78Ra
�1=2
H for

the recommended design. Contrary to Fig. 4.22, however, q does not remain

q H

po
ro

us
 s

tr
uc

tu
re

D

Tw

kw

αm

T0

g

L

The small-D
asymptote

0
The large-D asymptote

0 Dopt D

Fig. 4.22 Volume filled with vertical heat-generating plates separated by a fluid-saturated porous

medium, and the effect of the channel spacing on the global thermal conductance (Bejan 2004a)
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constant if D decreases indefinitely. There exists a small enough D below which the

passages are so tight (tighter than the pores) that the flow is snuffed out. An estimate

for how large D should be so that Eq. (4.175) is valid is obtained by requiring that

the Dopt value for natural convection when the channels are filled only with fluid,

Dopt/H ffi 2.3 [gβH3(Tw – T0)/αf ν]–1/4 must be smaller than the Dopt value of

Eq. (4.163). We find that this is true when

H2

K

α

αf
> RaH, ð4:176Þ

in which, normally, α/αf � 1 and H2/K � 1.

The forced convection configuration can be optimized similarly (Bejan 2004a).

The flow is driven by the imposed ΔP through parallel-plate channels of length

L and width W. It is found that the forced convection asymptotes have the same

behavior as in Fig. 4.22. The highest conductance occurs to the left of the intersec-

tion of the two asymptotes, when

Dopt=L ≲2:26Be�1=2
p ð4:177Þ

and where Bep is the porous medium Bejan number, Bep¼ (ΔP K)/μαm. This forced
convection optimization is valid when the Dopt estimate for the channel with pure

fluid is smaller than the Dopt value provided by Eq. (4.177) when

L2

K

α

αf
> Bep: ð4:178Þ

In summary, Eqs. (4.175) and (4.177) provide estimates for the optimal spacings

when the channels between heat-generating plates are filled with a fluid-saturated

porous structure. The relevant dimensionless groups are RaH, Bep, K/H
2, K/L2, and

αm/αf. The symmetry between Eqs. (4.175) and (4.177) and between Eqs. (4.176)

and (4.178) reinforces Petrescu’s (1994) argument that the role of the Bejan number

in forced convection is analogous to that of the Rayleigh number in natural

convection.

Optimal spacings are also applied in Sect. 3.7.

These results are most fundamental and are based on a simple model and a

simple analysis: Darcy flow and the intersection of asymptotes method. The same

idea of geometry optimization deserves to be pursued in future studies of “designed

porous media,” based on more refined models and more accurate methods of flow

simulation.
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Chapter 5

External Natural Convection

Numerical calculation from the full differential equations for convection in an

unbounded region is expensive, and hence approximate solutions are important.

For small values of the Rayleigh number Ra, perturbation methods are appropriate.

At large values of Ra thermal boundary layers are formed, and boundary layer

theory is the obvious method of investigation. This approach forms the subject of

much of this chapter. We follow to a large extent the discussion by Cheng (1985a),

supplemented by surveys by Pop and Ingham (2000, 2001) and Pop (2004).

5.1 Vertical Plate

We concentrate our attention on convection in a porous medium adjacent to a

heated vertical flat plate, on which a thin thermal boundary layer is formed when Ra

takes large values. Using the standard order-of-magnitude estimation, the

two-dimensional boundary layer equations take the form

∂u
∂x

þ ∂v
∂y

¼ 0, ð5:1Þ

u ¼ �K

μ

∂P0

∂x
� ρgβ T � T1ð Þ

� �
, ð5:2Þ

∂P0

∂y
¼ 0, ð5:3Þ

σ
∂T
∂t

þ u
∂T
∂x

þ v
∂T
∂y

¼ αm
∂2

T

∂y2
: ð5:4Þ
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Here the subscript 1 denotes the reference value at a large distance from the

heated boundary and P0 denotes the difference between the actual static pressure

and the local hydrostatic pressure. It has been assumed that the Oberbeck–

Boussinesq approximation and Darcy’s law are valid. For later convenience of

comparison, the x axis has been taken in the direction of the main flow (in this case

vertically upwards, Fig. 5.1, left) and the y axis normal to the boundary surface and

into the porous medium. Near the boundary, the normal component of seepage

velocity (v) is small compared with the other velocity component (u), and deriva-

tives with respect to y of a quantity are large compared with derivatives of that

quantity with respect to x. Accordingly no term in v appears in Eq. (5.3) and the

term in ∂2T/∂x2 has been omitted from Eq. (5.4).

Eliminating P0 between Eqs. (5.2) and (5.3) and introducing the stream function

ψ defined by

u ¼ ∂ψ
∂y

, v ¼ �∂ψ
∂x

, ð5:5Þ

we reduce Eqs. (5.1)–(5.4) to the pair

∂2ψ

∂y2
¼ gβK

ν

∂T
∂y

, ð5:6Þ

∂2
T

∂y2
¼ 1

αm
σ
∂T
∂t

þ ∂ψ
∂y

∂T
∂x

� ∂ψ
∂x

∂T
∂y

� �
: ð5:7Þ

This pair of equations must be solved subject to the appropriate boundary

conditions.
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Fig. 5.1 Dimensionless temperature and vertical velocity versus the similarity variable for natural

convection adjacent to a vertical heated surface (Cheng and Minkowycz 1977)
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5.1.1 Power Law Wall Temperature: Similarity Solution

We now concentrate our attention on the situation when the wall temperature Tw is a

power function of distance along the plate, because in this case a similarity solution

can be obtained. Accordingly, we take

Tw ¼ T1 þ Axλ, x � 0: ð5:8Þ

For x < 0 we suppose that either there is no plate or that Tw ¼ T1 on the plate.

The set of boundary conditions then is

y ¼ 0: v ¼ 0, T ¼ T1 þ Axλ, x � 0, ð5:9Þ

y ! 1: u ¼ 0, T ¼ T1: ð5:10Þ

One can easily check that a steady-state solution of Eqs. (5.6)–(5.10) is given by

ψ ¼ αm Raxð Þ1=2 f ηð Þ, ð5:11Þ

T � T1
Tw � T1

¼ θ ηð Þ, ð5:12Þ

where

η ¼ y

x
Ra1=2x , ð5:13Þ

Rax ¼ gβK Tw � T1ð Þx
ναm

, ð5:14Þ

provided that the functions f(η), and θ(η) satisfy the ordinary differential

equations

f 00 � θ0 ¼ 0, ð5:15Þ

θ00 þ 1þ λð Þ
2

f θ0 � λ f 0θ ¼ 0, ð5:16Þ

and the boundary conditions

f 0ð Þ ¼ 0, θ 0ð Þ ¼ 1, ð5:17Þ

f 0 1ð Þ ¼ 0, θ 1ð Þ ¼ 0: ð5:18Þ
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In terms of the similarity variable η, the seepage velocity components are

u ¼ urf
0 ηð Þ, ð5:19Þ

v ¼ 1

2

αmgβK
�
Tw � T1
νx

� �1=2
1� λð Þη f 0 � 1þ λð Þ f½ �, ð5:20Þ

where the characteristic velocity ur is defined by

ur ¼ gβK Tw � T1ð Þ
ν

: ð5:21Þ

Integrating Eq. (5.15) and using Eq. (5.18) we get

f 0 ¼ θ: ð5:22Þ
This implies that the normalized vertical velocity u/ur and the normalized

temperature θ are the same function of η. Their common graph is shown in

Fig. 5.1. Another implication is that in this context, Eqs. (5.2) and (5.3) formally

may be replaced by

u ¼ gβK

ν
T � T1ð Þ: ð5:23Þ

From Eq. (5.13) we see that the boundary layer thickness δ is given by

δ

x
¼ ηT

Ra
1=2
x

, ð5:24Þ

where ηT is the value of η at the edge of the boundary layer, conventionally defined
as that place where θ has a value 0.01. Values of ηT, for various values of λ, are
given in Table 5.1. For the case of constant wall temperature (λ ¼ 0), δ is

proportional to x1/2.
The local surface heat flux at the heated plate is

q00 ¼ �km
∂T
∂y

� �
y¼0

¼ kmA
3=2 gβK

ναm

� �1=2

x 3 λ�1ð Þ=2 �θ0 0ð Þ½ �: ð5:25Þ

Clearly λ ¼ 1/3 corresponds to uniform heat flux. In dimensionless form,

Eq. (5.25) is

Nux

Ra
1=2
x

¼ �θ0 0ð Þ, ð5:26Þ

where the local Nusselt number is defined by Nux ¼ hx/k and where h is the local

heat transfer coefficient q00/(Tw – T1). The values of [–θ0(0)] also are listed in

Table 5.1. In particular, we note that [–θ0(0)] ¼ 0.444 when λ ¼ 0.
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The total heat transfer rate through a plate of height L, expressed per unit length
in the direction perpendicular to the plane (x, y), is

L �q00 ¼ q0 ¼
ð L

0

q00 xð Þdx ¼ kmA
3=2 gβK

ναm

� �1=2
2

1þ 3λ

� �
L 1þ3λð Þ=2 �θ0 0ð Þ½ �: ð5:27Þ

This result can be rewritten as

Nu

Ra1=2
¼ 2 1þ λð Þ3=2

1þ 3λ
�θ0 0ð Þ½ �, ð5:28Þ

where Nu and Ra are based on the L-averaged temperature difference

Nu ¼ q0

km Tw � T1
� � , Ra ¼ gβKL Tw � T1

� �
ναm

,

Tw � T1
� � ¼ 1

L

ð L

0

Tw � T1ð Þdx:
ð5:29Þ

Xu (2004) treated the same problem by means of homotopy analysis. Na and Pop

(1983) considered both nonuniform temperature and nonuniform flux.

5.1.2 Vertical Plate with Lateral Mass Flux

If the power law variation of wall temperature persists but now we have an imposed

lateral mass flux at the wall given by v ¼ axn, (x ¼ 0), then a similarity solution

exists for the case n ¼ (λ – 1)/2. Equations (5.11)–(5.18) apply, with the exception

that Eq. (5.17) is replaced by

f 0ð Þ ¼ fw ¼ 2a αmgβKA=νð Þ�1=2
1þ λð Þ�1: ð5:30Þ

The thermal boundary layer thickness is still given by Eq. (5.24) but now ηT is an
increasing function of the injection parameter fw (Cheng, 1977b). This problem has

Table 5.1 Values of ηT and

–θ0(0) for various values of
λ for the heated vertical plate

problem (after Cheng and

Minkowycz 1977)

λ ηT –θ0(0) Nu=Ra1=2

–1/3 7.2 0

–1/4 6.9 0.162 0.842

0 6.3 0.444 0.888 Isothermal

1/4 5.7 0.630 1.006

1/3 5.5 0.678 1.044 Uniform flux

1/2 5.3 0.761 1.118

3/4 4.9 0.892 1.271

1 4.6 1.001 1.416
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applications to injection of hot water in a geothermal reservoir. The practical case

of constant discharge velocity at uniform temperature has been treated by different

methods by Merkin (1978) and Minkowycz and Cheng (1982). Bestman (1990)

treated a layer with suction and mass transfer. Mass transfer was also studied by Liu

(1981), Raptis et al. (1981b), Raptis et al. (1982a, b), and Raptis and Perdikis

(1987). Sharma (1992) examined the case of constant suction and constant

heat flux.

The solution for the related problems where the heat flux (rather than the

temperature) is prescribed at the wall can be deduced from the present solution

via a certain change of variables (Cheng 1977a) or obtained directly. Of course we

already have the solution for constant prescribed heat flux, with the wall temper-

ature related to the heat flux, via the parameter A with λ ¼ 1/3, through Eqs. (5.8)

and (5.25). From Eq. (5.24) we see that the boundary layer thickness is proportional

to x1/3 in this case.

Similarity solutions for a vertical permeable surface were developed by

Chaudhary et al. (1995a,b) for the class with heat flux proportional to xμ and

mass flux proportional to x(μ�1)/3, where μ is a constant. Some series solutions

were obtained by Kechil and Hashim (2008)

5.1.3 Transient Case: Integral Method

For transient natural convection in a porous medium, similarity solutions exist for

only a few unrealistic wall temperature distributions. For more realistic boundary

conditions, approximate solutions can be obtained using an integral method. Inte-

grating Eq. (5.4) across the thermal boundary layer and using Eqs. (5.1) and (5.2),

we obtain

σ
∂
∂t

ð1
0

Φ x; y; tð Þdyþ gβK

ν

∂
∂x

ð1
0

Φ2 x; y; tð Þdy ¼ �αm
∂Φ
∂y

� �
y¼0

: ð5:31Þ

whereΦ¼ T – T1. The Karman–Pohlhausen integral method involves assuming an

explicit form of Φ that satisfies the temperature boundary conditions, namely

Φ ¼ Tw – T1 at y ¼ 0 and Φ ! 0 as y ! 1. The integrals in Eq. (5.31) are then

determined and the resulting equation for the thermal boundary layer thickness δ
becomes a first-order partial differential equation of the hyperbolic type which can

be solved by the method of characteristics.

For the case of a step increase in wall temperature, Cheng and Pop (1984)

assume that the temperature distribution is of the form

Φ ¼ Tw � T1ð Þerfc ζð Þ ð5:32Þ
where ζ ¼ y/δ(x,t). The results of the method of characteristics show that during the

interval before the steady state is reached one has

166 5 External Natural Convection



δ ¼ 2
αm t

σ

� 	1=2
, ð5:33Þ

T � T1
Tw � T1

¼ erfc
y

2

σ

αmt

� �1=2" #
¼ νu

gβK Tw � T1ð Þ , ð5:34Þ

q
00
w ¼ k

σ

παmt

� �1=2
Tw � T1ð Þ, ð5:35Þ

for t < Tss, with tss ¼ σx2/αmK1Rax (K1 ¼ 2 – 21/2 ¼ 0.5857), denoting the time at

which steady state is reached. This time interval is related to the propagation of the

leading edge effect, which is assumed to travel with the local velocity. In Eq. (5.34),

u is the x component of the seepage velocity.

Equations (5.33)–(5.35) are independent of x and are similar in form to the

solution for the transient heat conduction problem. During the initial stage when the

leading edge effect is not being felt, heat is transferred by transient one-dimensional

heat conduction. After the steady state is reached, we have

δ

x
¼ 2:61

Ra
1=2
x

, ð5:36Þ

T � T1
Tw � T1

¼ erfc
K

1=2
1 yRa1=2x

2x

 !
¼ νu

gβK Tw � T1ð Þ , ð5:37Þ

q
00
w ¼ k Tw � T1ð Þ

x
K1=πRaxð Þ1=2, ð5:38Þ

Equation (5.38) can be written in dimensionless form as

Nux

Ra
1=2
x

¼ 0:431, ð5:39Þ

which compares favorably with the exact similarity solution where the constant is

equal to 0.444 (see Table 5.1). Comparison of Eq. (5.36) with Eq. (5.24) for λ ¼ 0

shows that the integral method considerably underestimates the steady-state ther-

mal boundary layer thickness. This is due to the error in the assumed temperature

profile in the integral method formulation.

For flow past a suddenly cooled wall, similarity solutions were obtained by

Ingham et al. (1982) for the case of small and large dimensionless times, and

these were joined by a numerical solution. A detailed study of the transient problem

for the case where the wall temperature varies as xλwas made by Ingham and Brown

(1986). They found that for λ < –1/2 no solution of the unsteady boundary layer

equations was possible, and that for –1/2 < λ < 1 the parabolic partial differential

equation governing the flow is singular. For –1/2< λ< –1/3 the velocity achieves its

maximum value within the boundary layer (instead of on the boundary).
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For the case λ ¼ 0, Haq and Mulligan (1990a) have integrated the unsteady

boundary layer equations numerically. Their results confirm that during the initial

stage, before the effects of the leading edge are influential at a location, heat transfer

is governed by conduction. They show that in a Darcian fluid the local Nusselt

number decreases with time monotonically to its steady-state value. The effect of

inertia was considered by Chen et al. (1987). They found that the effect of quadratic

drag increases the momentum and thermal boundary layer thicknesses and reduces

the heat transfer rate at all times (cf. Sect. 5.1.7.2).

The situation where the permeability varies linearly along the plate was treated

by Mehta and Sood (1992a). As one would expect, they found that increase in

permeability results in higher rate of heat transfer at the wall and in decreased time

to reach the steady state at any location on the plate.

The case of wall heating at a rate proportional to xλwas examined by Merkin and

Zhang (1992). The similarity equations that hold in the limit of large t were shown
to have a solution only for λ> –1. Numerical solutions were obtained for a range of

possible values of λ.
Harris et al. (1996, 1997a,b) have treated the case of a jump to a uniform flux

situation and the case where the surface temperature or the surface heat flux

suddenly jumps from one uniform value to another. Pop et al. (1998a) reviewed

work on transient convection heat transfer in external flow. Techniques for solving

the boundary layer equations that arise in such circumstances were discussed by

Harris and Ingham (2004). Khadrawi and Al-Nimr (2005) have examined the effect

of the local inertial term for a domain partly filled with porous material. The

Brinkman model was employed in the numerical study by Kim et al. (2004a).

5.1.4 Effects of Ambient Thermal Stratification

When the porous medium is finite in the x and y directions, the discharge of the

boundary layer into the rest of the medium leads in time to thermal stratification. If

the temperature profile at “infinity” is as in Fig. 5.2, and if T0 – T1,0 remains fixed,

then as the positive temperature gradient γ ¼ dT1/dx increases, the average

temperature difference between the wall and the porous medium decreases. Thus

we should expect a steady decrease in the total heat transfer rate as γ increases. We

apply the integral method to the solution of this problem (Bejan 1984).

The Darcy law relation (5.6) integrates to give

T ¼ ν

gβK
uþ function xð Þ: ð5:40Þ

We assume a vertical velocity profile of the form

u ¼ u0 xð Þexp � y

δT xð Þ
� �

: ð5:41Þ
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Then, using Eq. (5.40) and the temperature boundary conditions

T x; 0ð Þ ¼ T0, T x;1ð Þ ¼ T1, 0 þ γ x, ð5:42Þ
we see that the corresponding temperature profile is

T x; yð Þ ¼ T0 � T1, 0;�γxð Þexp ð�y=δTÞ þ T1, 0 þ γ x ð5:43Þ
and the maximum (wall) vertical velocity is

u0 ¼ gβK

ν
T0 � T1, 0 � γxð Þ: ð5:44Þ

The integral form of the boundary layer energy equation, obtained by integrating

Eq. (5.4) from y ¼ 0 to y ¼ 1, is

v x;1ð ÞT x;1ð Þ þ d

dx

ð1
0

uTdy ¼ �αm
∂T
∂y

� �
y¼0

, ð5:45Þ

where T(x,1) ¼ T1,0 + γx, and from the mass conservation equation,

v x;1ð Þ ¼ � d

dx

ð1
0

udy: ð5:46Þ

Substituting the assumed u and T profile into the energy integral equation (5.46)

yields

dδ*
d x*

¼ 2

δ* 1� bx*ð Þ , ð5:47Þ

in terms of the dimensionless quantities
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Fig. 5.2 Heat transfer from a vertical isothermal wall to a linearly stratified porous medium

(Bejan 1984)

5.1 Vertical Plate 169



b ¼ γH

T0 � T1, 0
, x* ¼ x

H
, δ* ¼ δT

H

gβH3 T0 � T1, 0ð Þ
ναm

� �1=2
: ð5:48Þ

Integrating Eq. (5.47), with δ* (0) ¼ 0, we obtain

δ* x*ð Þ ¼ �4

b
ln 1� bx*ð Þ

� �1=2
: ð5:49Þ

As b ! 0 this gives the expected result δ* ~ x*
1/2. The average Nusselt number

(over the wall height H ) is given by

Nu

Ra
1=2
H

¼
ð 1

0

1� bx*ð Þdx*
� 4=bð Þln 1� bx*ð Þ½ �1=2

, ð5:50Þ

whereNu and RaH are based on the maximum (i.e., starting) temperature difference

Nu ¼ q00H
k T0 � T1, 0ð Þ , RaH ¼ gβKH

ναm
T0 � T1, 0ð Þ: ð5:51Þ

Equation (5.50) is plotted in Fig. 5.2. As expected, Nu=Ra
1=2
H decreases

monotonically as b increases. The above approximate integral solution gives

Nu=Ra
1=2
H ¼ 1 at b ¼ 0, whereas the similarity solution value for this quantity is

0.888, a discrepancy of 12.5%.

A thermally stratified fluid was also examined by Singh and Sharma (1990),

Govindarajulu and Moorthy (1992), and Mondal and Chaudhury (1994).The same

phenomenon was studied numerically, without the boundary layer approximation,

by Angirasa and Peterson (1997b) and Rathish Kumar and Singh (1998). The case

of a power law variation of wall temperature was discussed by Nakayama and

Koyama (1987c) and Lai et al. (1991b). The stratification problem has also been

treated by Tewari and Singh (1992) and (with quadratic drag effects included) by

Singh and Tewari (1993). In their study of an isothermal surface with stratification

on the Brinkman–Forchheimer model, Chen and Lin (1995) found that a flow

reversal is possible in certain circumstances. The same model, with the effect of

variable porosity and thermal dispersion included, was employed by Hung et al.

(1999). The case of variable wall heat flux was analyzed by Hung and Chen (1997).

An MHD problem was analyzed by Chamkha (1997g).

5.1.5 Conjugate Boundary Layers

When one has a vertical wall between two porous media (or between a porous

medium and a fluid reservoir) and a temperature difference exists between the two

systems, we may have a pair of conjugate boundary layers, one on each side of the
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wall, with neither the temperature nor the heat flux specified on the wall but rather

to be found as part of the solution of the problem. Bejan and Anderson (1981) used

the Oseen linearization method to analytically solve the problem of a solid wall

inserted in a porous medium. They found that the coefficient in the Nu=Ra
1=2
H

proportionality decreases steadily as the wall thickness parameter ω increases,

where ω is defined as

ω ¼ W

H

km
kw

Ra
1=2
H : ð5:52Þ

In this dimensionless group W and H are the width and height of the wall cross

section, km and kw are the conductivities of the porous medium and wall material,

respectively, and RaH is the Rayleigh number based on H and the temperature differ-

ence between the two systems, ΔT ¼ T12 – T11. The overall Nusselt number Nu is

based on the wall-averaged heat flux �q00 and the overall temperature differenceΔT,

Nu ¼ �q00H
kmΔT

: ð5:53Þ

The variation of Nu=Ra
1=2
H with ω is shown in Fig. 5.3. In the limit of negligible

wall thermal resistance (ω ! 0) the overall Nusselt number reduces to

Nu ¼ 0:383Ra
1=2
H : ð5:54Þ

The case of wall between a porous medium and a fluid reservoir was solved by

Bejan and Anderson (1983). Their heat transfer results are reproduced in Fig. 5.4.

The value of dimensionless group

0.4

0.2

0
0 5 10

ω

Nu

Ra
H
1/2

Fig. 5.3 Heat transfer through a vertical partition inserted in a fluid-saturated porous medium

(Bejan and Anderson 1981; Bejan 1984)
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B ¼ kmRa
1=2
H

kaRa
1=4
Ha

ð5:55Þ

determines whether the conjugate problem is dominated by porous medium con-

vection (small B) or pure fluid convection (large B). Here ka and RaHa represent the
fluid conductivity and Rayleigh number on the side of the pure fluid (which

typically is air).

Pop and Merkin (1995) showed that the boundary layer equations can be made

dimensionless so that the thermal conductivity ratio is scaled out of the problem,

and thus just one solution of the transformed nonsimilar boundary layer equations

need be computed. This they did by a finite-difference scheme.

The above analysis of Bejan and Anderson is limited to the case of a thin plate.

The thin plate assumption was dropped by Vynnycky and Kimura (1994). They

considered a wall of thickness a and with a segment of height b conducting and the
remainder insulating; the aspect ratio is λ ¼ a/b. They constructed an approximate

one-dimensional solution based on the assumption of a boundary layer of thickness δ.
The average boundary heat flux is given by

q00 ¼ kw
Tc � Tb

� �
a

¼ km
Th � T1

δ
, ð5:56Þ

where Tb is the average interface temperature and Tc is the constant temperature at

the far side of the conducting wall. If Ra denotes the Rayleigh number based on

Tc – T1 and Ra* that is based on �Tb – T1, and θb ¼ T � T1ð Þ= Tc � T1ð Þ, so that

Ra* ¼ Ra θb, then

δ

b
¼ 1:126 Ra*

� ��1=2
, ð5:57Þ
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Fig. 5.4 Heat transfer through the interface between a porous medium and a fluid reservoir (Bejan

and Anderson 1983; Bejan 1984)
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from the isothermal entry in Table 5.1. Combining Eqs. (5.56) and (5.57) one has

σcX
3 þ X2 � 1 ¼ 0 ð5:58Þ

where X ¼ θb
1=2

and σc ¼ λRa1/2/1.126k where k ¼ kw/km. The quantity σc may be

regarded as a conjugate Biot number. Conjugate effects are small if σc � 1. For a

given σc, Eq. (5.58) is readily solved to give θb and then the average Nusselt number

can be obtained from

Nu ¼ q00a
km Tc � T1ð Þ ¼ 0:888

�Tb � T1
Tc � T1

Ra*
� �1=2 ¼ 0:888θ

3=2

b Ra1=2: ð5:59Þ

Vynnycky and Kimura (1994) showed that this formula agrees well with numer-

ical computations in typical cases.

Kimura et al. (1997) show how the same ideas can be applied to the problem of a

wall between two reservoirs, the extension (to a thick partition) of the work of

Bejan and Anderson (1983). Kimura and Pop (1992b, 1994) treated convection

around a cylinder or a sphere in a similar fashion. A transient one-dimensional

model for conjugate convection from a vertical conducting slab was developed by

Vynnycky and Kimura (1995). They obtained analytical solutions for two param-

eter regimes, (a) Ra� 1, Γ � Ra, and (b) Γ � 1, Ra� Γ, where Γ ¼ [(ρc)m/(ρc)f]
(αw/αm). Regime (a) implies that the temperature and velocity within the boundary

layer adjust themselves instantaneously to conditions in the conducting plate and

time dependency arises through variation of the conjugate boundary temperature.

The value of Γ affects the development but not the steady state. Regime

(b) corresponds to the case where conduction dominates convection in the early

stages of flow development in the porous medium. Vynnycky and Kimura (1995)

also checked their analytical solutions against numerical solutions.

The case of conjugate natural convection heat transfer between two porous

media at different temperatures separated by a vertical wall was treated by Higuera

and Pop (1997). They obtained asymptotic and numerical solutions. The

corresponding case for a horizontal wall was examined by Higuera (1997). Conju-

gate convection from vertical fins was studied numerically by Vaszi et al. (2003). A

transient problem involving a vertical plate subjected to a sudden change in surface

heat flux was analyzed by Shu and Pop (1998). Another transient problem involving

the cooling of a thin vertical plate was analyzed by Méndez et al. (2004). The topic

of conjugate natural convection in porous media was reviewed by Kimura et al.

(1997). A further paper is that by Kaya and Aydin (2014).

5.1.6 Higher-Order Boundary Layer Theory

The above boundary layer theory arises as a first approximation for large values of

Rayleigh number, when expansions are made in terms of the inverse one-half power

of the Rayleigh number. At this order, the effects of entrainment from the edge of
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the boundary layer, the axial heat conduction, and the normal pressure gradient are

all neglected.

The magnitudes of these effects have been investigated using higher-order

asymptotic analysis by Cheng and Chang (1979), Chang and Cheng (1983),

Cheng and Hsu (1984), and Joshi and Gebhart (1984). They found that the ordering

of the eigenfunction terms in the perturbation series was dependent on the wall

temperature parameter λ. They also found that the coefficients of the eigenfunctions
cannot be determined without a detailed analysis of the leading edge effect.

Therefore, they truncated the perturbation series at the term where the leading

edge effect first appeared. They found that the effect of entrainments from the edge

of the thermal boundary layer was of second order while those of axial heat

conduction and normal pressure gradient were of third order. For the case of the

isothermal vertical plate with λ ¼ 0, the second-order corrections for both the

Nusselt number and the vertical velocity are zero and the leading edge effect

appears in the third-order terms. For other values of λ, both the second- and third-

order corrections in the Nusselt number are positive and the leading edge effect

appears in the fourth-order terms.

The slight increase in the surface heat flux in the higher-order theories is mainly

due to the fact that entrainments from the outer flow induce a flow parallel to the

heated surface. The higher-order theory has a profound effect on the velocity profiles

but has a relatively small effect on the temperature distribution, and hence on the

surface heat flux. Figure 5.5 illustrates the higher-order effects on the local Nusselt

number Nux. It is evident that for small wall temperature variations (λ ¼ 1/3) the

boundary layer theory is quite accurate even at small Rayleigh numbers.

Pop et al. (1989) have shown that for the case of uniform wall heat flux the

leading edge effects enter the second and subsequent order problems. They cause an

increase of the streamwise vertical velocity near the outer edge of the boundary

layer and a consequent increase in heat transfer rate by an amount comparable with

entrainment effects, the combination producing a 10% increase at Rax ¼ 100 and a

greater amount at smaller Rax.
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5.1.7 Effects of Boundary Friction, Inertia, and Thermal
Dispersion

So far in this chapter it has been assumed that Darcy’s law is applicable and the

effects of the no-slip boundary condition, inertial terms, and thermal dispersion are

negligible. We now show that all of these effects are important only at high Rayleigh

numbers. The effects of boundary friction and inertia tend to decrease the heat

transfer rate while that of thermal dispersion tends to increase the heat transfer rate.

5.1.7.1 Boundary Friction Effects

To investigate the boundary friction effect Evans and Plumb (1978) made some

numerical calculations using the Brinkman equation. They found that the boundary

effect is negligible if the Darcy number Da (Da ¼ K/L2, where L is the length of the

plate) is less than 10�7. For higher values of Da their numerical results yield a local

Nusselt number slightly smaller than those given by the theory based on

Darcy’s law.
Hsu and Cheng (1985b) and Kim and Vafai (1989) have used the Brinkman

model and the method of matched asymptotic expansions to reexamine the problem.

Two small parameters that are related to the thermal and viscous effects govern

the problem. For the case of constant wall temperature these are εT ¼ Ra�1/2 and

εv¼Da1/2, where Ra is the Rayleigh number based on plate length L and temperature

difference Tw – T1, and Da is the Darcy numberK/L2φ. For the case of constant wall
heat flux, εT¼Ra�1/3, where Ra is now the Rayleigh number based on L and the heat

flux q
00
w ; here we concentrate on the case of constant Tw. Cases (a) εv � εT and

(b) εv � εT must be treated separately.

In geophysical and engineering applications it is usually case (a) that applies.

Dimensional analysis shows that three layers are involved: the inner momentum

boundary layer with a constant thickness of O(εv), the middle thermal layer with a

thickness of O(εT), which is inversely proportional to the imposed temperature

difference, and the outer potential region of O(1). The asymptotic analysis of Hsu

and Cheng (1985b) gives the local Nusselt number in the form

Nux ¼ C1Ra
1=2
x � C2RaxDa

1=2
x , ð5:60Þ

where Dax¼ K/x2 is the local Darcy number, and the constants C1 and C2 are related

to the dimensionless temperature gradients at the wall appearing in the first-order

and second-order problems. The values of these constants depend on the wall

temperature. Equation (5.60) can be rewritten as

Nux=Ra
1=2
x ¼ C1 � C3Pnx, ð5:61Þ
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where C3 ¼ C2/C1 and Pnx is the local no-slip parameter given by

Pnx ¼ Ra1=2x Da1=2x ¼ gβK2 Tw � T1ð Þ1=2
ναmx

" #
: ð5:62Þ

Equation (5.61) is plotted in Fig. 5.6. It is clear that the deviation from Darcy’s
law becomes appreciable at high local Rayleigh numbers only for high local Darcy

numbers (i.e., near the leading edge) and for large wall temperature variations. This

conclusion is in accordance with the numerical results of Evans and Plumb (1978)

and is confirmed by further calculations by Hong et al. (1987).

For case (b) where εv � εT, Kim and Vafai (1989) find that the local Nusselt

number Nux is given by

Nux ¼ 0:5027Da�1=4
x Ra1=4x ¼ 0:5027 Raf φð Þ1=4, ð5:63Þ

where Raf is the standard Rayleigh number for a viscous fluid (independent of

permeability), as expected for a very sparse medium. The Brinkman model was also

studied by Huang (1992). Numerical studies using the Brinkman model were

conducted by Bég et al. (1998) and Gorla et al. (1999b). The last study included

the effect of temperature-dependent viscosity applied to the plume above a hori-

zontal line source (either isolated or on an adiabatic vertical wall) as well as to a

vertical wall with uniform heat flux.

5.1.7.2 Inertial Effects

Forchheimer’s equation with a quadratic drag term was introduced into the bound-

ary layer theory by Plumb and Huenefeld (1981). Equation (5.23) is replaced by
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uþ χ

v
u2 ¼ gβK

ν
T � T1ð Þ, ð5:64Þ

in which the coefficient χ has the units [m], and represents the group cFK
1/2 seen

earlier on the right-hand side of Eq. (1.12). In place of Eq. (5.15) one now has

f 00 þ Gr* f 02
� 	0

� θ0 ¼ 0, ð5:65Þ

where

Gr* ¼ gβχK Tw � T1ð Þ
ν2

: ð5:66Þ

It is clear that a similarity solution exists if and only if the Grashof number Gr* is

a constant, which requires that Tw is constant. Plumb and Huenefeld’s results are
displayed in Fig. 5.7, which as expected shows that the effect of quadratic drag is to

slow down the buoyancy-induced flow and so retard the heat transfer rate.

The alternative analysis of Bejan and Poulikakos (1984) is based on the obser-

vation that at sufficiently large Rayleigh numbers, and hence large velocities, the

quadratic term on the left-hand side of Eq. (5.60) will dominate the linear term.

Scale analysis then indicates that the boundary layer thickness δ is of the order

δ � HRa�1=4
1 , ð5:67Þ

where H is a characteristic length scale and the “large Reynolds number limit”

Rayleigh number Ra1 is defined as

Ra1 ¼ gβKH2 Tw � T1ð Þ
χ α2m

: ð5:68Þ
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The introduction of the nondimensional variables

x* ¼ x

H
, y* ¼

y

H
Ra1=41 ,

u* ¼ uH

αmRa
1=2
1

, v* ¼ vH

αmRa
1=4
1

,

θ ¼ T � T1
Tw � T1

,

ð5:69Þ

yields

u*
∂θ
∂x*

þ v*
∂θ
∂y*

¼ ∂2θ

∂y2*
, ð5:70Þ

G
∂u*
∂y*

þ ∂ u2*
� �
∂y*

¼ ∂θ
∂y*

, ð5:71Þ

where G is the new dimensionless group

G ¼ ν χgβK Tw � T1ð Þ½ ��1=2 ¼ Gr*
� ��1=2

: ð5:72Þ

The Forchheimer regime corresponds to G ! 0. Then Eq. (5.71) and the outer

condition θ ! 0 as y ! 1 yields

u* ¼ θ1=2: ð5:73Þ

The appropriate similarity variable is

η ¼ y*

x
1=2
*

: ð5:74Þ

The dimensionless streamfunction ψ defined by u* ¼ ∂ψ /∂y*, v* ¼ –∂ψ /∂x* is
now given by

ψ ¼ x
1=2
* F ηð Þ, ð5:75Þ

where

F ηð Þ ¼
ð η

0

θ 1=2dη: ð5:76Þ

The boundary layer equations reduce to the system

θ1=2 ¼ F0, � 1

2
Fθ0 ¼ θ

00
, ð5:77Þ

with the conditions

178 5 External Natural Convection



θ 0ð Þ ¼ 1,F 0ð Þ ¼ 0, and θ ! 0 as η ! 1: ð5:78Þ

This system is readily integrated using a shooting technique. One finds that

θ0(0) ¼ –0.494, and so the local Nusselt number becomes

Nux ¼ q00x
Tw � T1ð Þkm ¼ 0:494Ra1=41x : ð5:79Þ

On the right-hand side, Ra1x is obtained from expression (5.68) for Ra1 by

replacing H by x. This formula for Nux differs radically from its Darcy counterpart,

listed in Table 5.1, Nux ¼ 0.444 Rax
1/2.

The case of uniform heat flux can be treated similarly. One now finds that the

boundary layer thickness is

δ � HRa
�1=5
1* , ð5:80Þ

where Ra1* is the flux-based Rayleigh number for the large Reynolds number

limit,

Ra1* ¼ gβKH3q00

χ α2mkm
: ð5:81Þ

The corresponding local Nusselt number is

Nux ¼ q00x
Tw � T1ð Þkm ¼ 0:804 Ra

1=5
1*x ð5:82Þ

For intermediate values of the Forchheimer parameter, similarity solutions do

not exist, but nonsimilarity results have been obtained by Bejan and Poulikakos

(1984), Kumari et al. (1985b) (including the effect of wall mass flux), Hong et al.

(1985), Chen and Ho (1986,1987), Hong et al. (1987) (including the effects of

nonuniform porosity and dispersion), Kaviany and Mittal (1987) (for the case of

high permeability media), El-Amin and Gorla (2005, 2007) (unsteady flow), and El

Amin et al. (2007). Inertial effects were also studied, both with a vertical plate and

with a horizontal plate by Huang and Lin (1991). The combination of effects of

inertia and suction on the wall was analyzed by Banu and Rees (2000) and by

Al-Odat (2004a) for an unsteady situation. The combined effect of inertia and

spanwise pressure gradient was examined by Rees and Hossain (1999). In this

case the resulting flow is three-dimensional but self-similar, and the boundary layer

equations are supplemented by an algebraic equation governing the magnitude of

the spanwise velocity field. It was found that the inertial effects serve to inhibit the

spanwise flow near a heated surface.
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5.1.7.3 Thermal Dispersion Effects

A pioneering paper on this topic was that of Weber (1975c).

Following Cheng (1985a) one can introduce the effects of thermal dispersion by

expressing the heat transfer per unit volume, by conduction and dispersion, in the

form

∂
∂x

km þ k0x
� � ∂T

∂x

� �
þ ∂
∂y

km þ k0y
� 	� 	 ∂T

∂y
:

With x denoting the streamwise direction, kx
0 and ky

0 are the longitudinal and

transverse thermal dispersion coefficients, respectively. Cheng (1981a) assumed

that the dispersion coefficients were proportional to the velocity components and to

the Forchheimer coefficient χ, so

k0x ¼ aL
χ

ν
uj j, k0y ¼ aT

χ

ν
vj j, ð5:83aÞ

where aL and aT are constants found by matching with experimental data. With this

formulation, Cheng found that the effect of thermal dispersion was to decrease the

surface heat flux.

On the other hand, Plumb (1983) assumed that the longitudinal coefficient was

negligible and the transverse coefficient was proportional to the streamwise veloc-

ity component,

k0x ¼ 0, k0y ¼ CρcPud: ð5:83bÞ

In the k0y expression, d is the grain diameter and C is a constant found by

matching experimental heat transfer data. In this formulation the surface heat flux is

given by

q
00
w ¼ � k þ k0y

� 	 ∂T
∂y

� �
y¼0

¼ � k þ CρcPu x; 0ð Þd½ � ∂T
∂y

x; 0ð Þ: ð5:84aÞ

The second term inside the square brackets of the last term is always positive

since u(x,0) is positive. In dimensionless form this equation is

Nux

Ra
1=2
x

¼ � 1þ CRad f
0 0ð Þ½ �θ0 0ð Þ ð5:84bÞ

where

θ ¼ T � T1
Tw � T1

, f 0 ηð Þ u

ur
, Rad ¼ gβK Tw � T1ð Þd

ναm
: ð5:85Þ
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The dimensionless velocity slip on the wall f 0(0) and the dimensionless temper-

ature gradient at the wall θ0(0) are functions of Gr* and C Rad. Plumb’s numerical

results are shown in Figs. 5.8 and 5.9. They show that both inertial and dispersion

effects tend to decrease the temperature gradient at the wall but the combined

effects either may increase or decrease the Nusselt number.

Hong and Tien (1987) included the effect of a Brinkman term to account for the

no-slip boundary condition. As expected, this substantially reduces the dispersion

effect near the wall.

The combined effect of dispersion and radiation was studied by Abbas (2008).

The effect of thermal dispersion was further studied by Abbas et al. (2009).
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5.1.8 Experimental Investigations

Evans and Plumb (1978) investigated natural convection about a plate embedded in

a medium composed of glass beads with diameters ranging from 0.85 to 1.68 mm.

Their experimental data, which is shown in Figs. 5.10 and 5.11, is in good

agreement with the theory for Rax < 400. When Rax > 400, temperature fluctua-

tions were observed and the Nusselt number values became scattered.

Similar experiments were undertaken by Cheng et al. (1981) with glass beads of

3 mm diameter in water. They observed that temperature fluctuations began in the

flow field when the non-Darcy Grashof number Gr* attained a value of about 0.017.

They attributed the fluctuations to the onset of non-Darcian flow. After the onset of

temperature fluctuations the experimentally determined Nusselt number began to

level off and deviate from that predicted by the similarity solution based on Darcy’s
law. The decrease in Nux was found to be substantially larger than that predicted by
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natural convection about an

isothermal vertical heated

surface (Evans and Plumb
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182 5 External Natural Convection



Plumb and Huenefeld’s (1981) theory. Cheng (1981a) originally attributed the

decrease in Nux to the effect of thermal dispersion, but in Cheng (1985a) he

announced that this attribution was erroneous. The discrepancy remains ill

understood.

Huenefeld and Plumb (1981) performed experiments on convection about a

vertical surface with uniform heat flux, the medium being glass beads saturated

with water. They observed that temperature fluctuations occurred when the

non-Darcy Grashof number Gr* attained a value of about 0.03. Their results are

illustrated in Fig. 5.12. The experimental data for the larger beads (diameter 5 mm)

are above the predicted values from the Darcy theory, while those of the smaller

beads (diameter 1.5 mm) are below the predicted values.

Kaviany and Mittal (1987) performed experiments with high permeability poly-

urethane foams saturated with air. Except when the permeability was relatively low,

they found good agreement between their results and calculations made using a

Brinkman–Forchheimer formulation. In their experiments inertial effects were not

significant because the Rayleigh numbers were not very high.

Imadojemi and Johnson (1991) reported results of experiments with water-

saturated glass beads or irregular shaped gravel. They found that they were unable

to obtain an effective correlation of the form Nu ¼ A Ran. Rather, they found that

A and n varied with the medium and with the heat flux. The mass transfer

coefficients found experimentally by Rahman et al. (2000) were found to agree

closely with those predicted using a Brinkman model. Rahman and Badr (2002)

repeated this experimental work for the case of a vertical wavy surface. Further

experiments were reported by Aldabbagh et al. (2008b).
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5.1.9 Further Extensions of the Theory

5.1.9.1 Particular Analytical Solutions

An alternative analytical solution, one based on a von Mises transformation, was

given by Govindarajulu andMalarvizhi (1987). The homotopy analysis method was

used by Liao and Pop (2004) to obtain explicit analytical solutions of similarity

boundary layer equations. The case of a vertical plate with wall temperature

(relative to ambient) varying as x�1/3 (i.e., the case m ¼ �1/3) yields a hyperbolic

tangent solution that was shown by Magyari et al. (2003c) to belong to a

one-parameter family of multiple solutions that can be expressed in terms of Airy

functions. Magyari and Keller (2004b) obtained exact analytical solutions for the

cases m ¼ 1 and m ¼ �1/3 for the backward boundary layer that arises over a

cooled (but upward projecting) vertical plate. Kumaran and Pop (2004) presented

some additional solutions for variable temperature and variable heat flux. Some

existence and uniqueness results pertaining to the classic boundary equations were

reported by Belhachmi et al. (2000, 2001). Belhachmi et al. (2003) suggested two

complementary numerical methods to compute similarity solutions. Magyari and

Keller (2000) obtained some special exact analytical solutions for the extended

problem where there is variable lateral mass flux. Further special analytical solu-

tions, for unsteady convection for the cases of exponential and power-law time

dependence of the surface temperature, were obtained by Magyari et al. (2004).

5.1.9.2 Non-Newtonian Fluids

Various types of non-Newtonian fluids have been treated. The simplest model,

which was employed in the earliest studies, is the power-law fluid. The flow of such

a fluid was treated by Hassanien and Hady (1985) (suction), Chen and Chen

(1988a), Haq and Mulligan (1990b) (transient flow), Pascal (1990), Shenoy

(1993a), Hossain and Nakayama (1994), Hady et al. (1994) (unsteady flow),

Beithou et al. (1998) (porosity variation), El-Hakiem and El-Amin (2001b) (mass

transfer, nonuniform flux), Mansour and El-Shaer (2002) (axisymmetric flow,

variable permeability), El-Amin (2003a) (magnetic field, viscous dissipation, var-

iable heat flux), El-Amin et al. (2003) (viscous dissipation) and Hady et al. (2008).

Of these papers, those by Hassanien and Hady (1985), Kim (2001a), and El-Amin

(2003a) included the effect of a magnetic field. Transient convection in an aniso-

tropic medium was studied by Degan et al. (2007a). A thermally stratified medium

was examined by Kairy and Murthy (2009) and Moorthy and Senthilvadivu (2012b)

(temperature-dependent viscosity). The effect of a chemical reaction was treated by

Chamkha et al. (2010c). Boundary conditions of the third kind were incorporated in

the numerical study by Prasad et al. (2014a, b). Salem and Abd El-Aziz (2013)

investigated a problem involving a magnetic field and a temperature jump.
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Viscoelastic fluids of various types have been frequently studied, for example by

Shenoy (1992), Ezzat and Abd-Elaai (1997), Ezzat et al. (1996) (magnetic field),

El-Dabe et al. (2001) (magnetic field), Das et al. (2004) (rotation), Panda et al.

(2006a) (magnetic field, unsteady flow), Nandeppanar et al. (2010) (stretching

sheet, viscous dissipation), Mehra et al. (2013) (magnetic field, oscillatory suction,

and heat source), Mukhopadhyay et al. (2013) (stretching sheet, radiation, unsteady

flow), and Shehzad et al. (2014) (stretching sheet, radiation, variable thermal

conductivity). A second-grade fluid was investigated by Samiulhaq et al. (2014)

(magnetic field, ramped wall temperature). A third grade fluid was studied by Khani

et al. (2009).

A polar fluid was studied by Jain and Taneja (2002), Singh et al. (2009)

(magnetic field, slip flow), Patil (2008) (oscillatory flow), Patil and Kulkarni

(2009) (oscillating suction and temperature), and Abo-Dahab et al. (2010) (mag-

netic field, chemical reaction, internal heating).

Micropolar fluids have also been studied frequently, for example by Kim

(2001a,b) (unsteady flow, magnetic field), Kim (2004) (magnetic field, moving

plate), Singh (2003), Zakaria (2004) (magnetic field), Hassanien et al. (2004e)

(permeable uniform heat flux surface), Hassanien et al. (2005) (viscous dissipation,

dispersion, variable permeability), Al-Azab (2006), Bég et al. (2007), El-Kabeir

and Gorla (2007) (magnetic field), Al-Odat and Damseh (2008) (magnetic field,

unsteady flow), Abdelkhalek (2008b) (magnetic field, radiation, unsteady flow),

Chamkha et al. (2011e) (magnetic field, chemical reaction, radiation, unsteady

flow), Haque et al. (2011) (magnetic field, heat generation, unsteady flow), Shaw

et al. (2013) (stretching sheet, chemical reaction), Loganathan and Sivapoornapriya

(2014a, b) (radiation, chemical reaction, moving plate), Mutlag et al. (2014a) (heat

generation/absorption), Mutlag et al. (2014b) (moving plate with velocity and

thermal slip), and Pal and Chatterjee (2015) (magnetic field, radiation, stretching

sheet).

Couple-stress fluids have been investigated by Hiremath and Patil (1993) (oscil-

latory free stream velocity), Zakaria (2003) (unsteady flow, magnetic field), and

Shantha and Shanker (2010).

Bingham and other yield-stress fluids

A pioneering study of steady convective boundary layer flow of a Bingham fluid

was reported by Rees (2015a). An extension to the case of unsteady flow was made

by Rees and Bassom (2015, 2016). A substantial discussion of the topic is contained

in the chapter by Rees (2015b). Kataria and Patel (2016) studied a Casson fluid with

magnetic field, radiation, chemical reaction, and oscillating plate.

Elgazery and El-Sayed (2014) treated a bi-viscosity fluid with the combined

effects of magnetic field, surface tension, and stretching sheet.
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5.1.9.3 Local Thermal Nonequilibrium

The classical Cheng-Minkowycz theory was extended to a two-temperature model

by Rees and Pop (2000c), using a model introduced by Rees and Pop (1999). The

effect of local thermal nonequilibrium (LTNE) was found to modify substantially

the behavior of the flow relative to the leading edge, where the boundary layer is

composed of two distinct asymptotic regions. At increasing distances from the

leading edge the difference between the temperatures of the solid and fluid phases

decreases to zero, i.e., thermal equilibrium is attained. Mohamad (2001) indepen-

dently treated the same problem. In commenting on this paper Rees and Pop (2002)

emphasized the importance of undertaking a detailed asymptotic analysis of the

leading edge region in order to obtain boundary conditions for the solid-phase

temperature field that are capable of describing accurately its behavior outside the

computational domain.

Rees (2003) solved numerically the full equations of motion, and thus investi-

gated in detail how the elliptical terms in the governing equations are manifested. In

general it is found that at any point in the flow the temperature of the solid phase is

higher than that of the fluid phase, and thus the thermal field of the solid phase is of

greater extent than that of the fluid phase. The extension to the Brinkman model was

made by Haddad et al. (2004), while Haddad et al. (2005a, b) reconsidered flow

with the Darcy model. Rees et al. (2003a) considered forced convection past a

heated horizontal circular cylinder. Rees and Pop (2005) reviewed work on LTNE

in porous media convection. The case of Hiemenz flow was studied by Kokubun

and Fachini (2011). Inertial effects were added by Chamkha and Ahmed (2010).

Both inertial and boundary friction effects were studied by Lee et al. (2001). A

stretching surface was treated by Khan and Pop (2012a, b). A Hiemenz stagnation

point flow was examined by Kokubun and Fachini (2011). The addition of transpi-

ration was studied by Nazari et al. (2013b). The case of a general axisymmetric

body was investigated by Sharmardan et al. (2015).

5.1.9.4 Volumetric Heating due to Viscous Dissipation,

Radiation, or Otherwise

Volumetric heating due to the effect of viscous dissipation was analyzed by

Magyari and Keller (2003a-c). In their first two papers they observed that the

opposing effect of viscous dissipation allows for a parallel boundary layer flow

along a cold vertical plate. In their third paper they considered a quasiparallel flow

involving a constant transverse velocity directed perpendicularly toward the wall.

They observed that even in the case where the wall temperature equals the ambient

temperature thermal convection is induced by the heat released by the viscous

dissipation. They examined in detail the resulting self-sustaining wall jets. The

development of the asymptotic viscous profile that results was studied by Rees et al.

(2003b). The vortex instability of the asymptotic dissipation profile was analyzed
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by Rees et al. (2005a). The case of an exponential wall temperature was studied by

Magyari and Rees (2005). The general effect of viscous dissipation, which reduces

heat transfer, was investigated by Murthy and Singh (1997a), who also took thermal

dispersion effects into account. The effect of variable permeability was added by

Hassanien et al. (2005). A survey of work on the effect of viscous dissipation was

made by Magyari et al. (2005b). Further contributions were made by Modather

et al. (2007), Badruddin et al. (2006b,c), Makinde and Moitsheki (2008), Zueco

(2008), Mohamed and Abo-Dahab (2009), Mohamed et al. (2010), El-Amin and

Ebrahiem (2006), and El-Amin et al. (2010). The case of an exponential distribution

was studied by Magyari and Rees (2006). A further study was reported by Guedda

et al. (2014).

Volumetric heating due to the absorption of radiation was studied by Chamkha

(1997a), Takhar et al. (1998), Mohammadien et al. (1998) (see Pantokratoras

2007a, b, c, 2008a), Mohammadien and El-Amin (2000), Raptis (1998), Raptis

and Perdikis (2004), Hossain and Pop (2001), El-Hakiem (2001a), El-Hakiem and

El-Amin (2001a), Chamkha et al. (2001), Mansour and El-Shaer (2001), Mansour

and Gorla (2000a,c), Israel-Cookey et al. (2003), and Rashad (2009a,b) (see

Pantokratoras 2009a). Some more general aspects of volumetric heating were

considered by Chamkha (1997d), Bakier et al. (1997), Postelnicu and Pop (1999),

Postelnicu et al. (2000), and Ali (2007). Further work on a heat-generating porous

medium was reported by Merkin (2008, 2009, 2012a, b) and Mealey and Merkin

(2008). The combined effect of volumetric heat source with power-law dependence

on the local temperature and horizontal throughflow was studied by Postelnicu

et al. (2009).

5.1.9.5 Anisotropy and Heterogeneity

Periodic permeability variation was studied by Singh et al. (1989) and Singh and

Sharma (2002). Anisotropic permeability effects have been analyzed by Ene (1991)

and Rees and Storesletten (1995). The latter found that the boundary layer thickness

was altered, and a spanwise fluid drift induced, by the anisotropy. As Storesletten

and Rees (1997) demonstrated, anisotropic thermal diffusivity produces no such

drift. An analytical and numerical study of the effect of anisotropic permeability

was reported by Vasseur and Degan (1998).

The effect of variable permeability, enhanced within a region of constant

thickness, was treated analytically and numerically by Rees and Pop (2000a).

They found that near the leading edge the flow is enhanced and the rate of heat

transfer is much higher than in the uniform permeability case. Further downstream

the region of varying permeability is well within the boundary layer, and in this case

the flow and heat transfer is only slightly different from that in the uniform case.

Convection over a wall covered with a porous substrate was analyzed by Chen and

Chen (1996). Convection from an isothermal plate in a porous medium layered in a

parallel fashion, with discrete changes in either the permeability or the diffusivity of
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the medium, was studied by Rees (1999). He supplemented his numerical work

with an asymptotic analysis of the flow in the far-downstream limit.

Further work on heterogeneous media was done by Beithou et al. (2001) (double

layer), Singh (2008), Singh and Gorla (2010), and Singh et al. (2011c).

5.1.9.6 Wavy Surface

The case of a wavy surface has been analyzed by Rees and Pop (1994a, 1995a,b,

1997). In the last paper they considered the full governing equations and derived the

boundary layer equations in a systematic way. They found that, for a wide range of

values of the distance from the leading edge, the boundary layer equations for the

three-dimensional flow field are satisfied by a two-dimensional similarity solution.

An MHD problem was studied by Mahdy (2009). Shalini and Rathish Kumar

(2007) considered the influence of variable heat flux.

5.1.9.7 Time-Dependent Gravity or Time-Dependent Heating,
Unsteady Flow

A pulsating temperature was studied by Raptis (1983d) and Raptis and Perdikis

(1985b). The effect of g-jitter was analyzed by Rees and Pop (2000b, 2003) for the

cases of small and large amplitudes. Their numerical and asymptotic solutions show

that the g-jitter effect is eventually confined to a thin layer embedded within the

main boundary layer, but it becomes weak at increasing distances from the leading

edge. The case of time-periodic surface temperature oscillating about a constant

mean was studied by Jaiswal and Soundalgekar (2001). The more general case of

oscillation about a mean that varies as the nth power of the distance from the

leading edge was analyzed by Hossain et al. (2000). They considered low- and high-

frequency limits separately and compared these with a full numerical solution, for

n � 1. They noted that when n ¼ 1 the flow is self-similar for any prescribed

frequency of modulation. Temperature oscillations also were studied using a

Forchheimer model by El-Amin (2004b). A vertical wall with suction varying in

the horizontal direction and with a pulsating wall temperature was studied by

Chaudhary and Sharma (2003). A nonequilibrium model was used by Saeid and

Mohamad (2005a) in their numerical study of the effect of a sinusoidal plate

temperature oscillation with respect to time about a nonzero mean.

Various other aspects of unsteady flow have been examined. Pop and Raptis

(1982) studied transient convection of icy water. Baghei et al. (1992) investigated

unsteady flow in a rotating medium. Ezzat (1994a,b) employed a state space

approach involving a Laplace transform. Jha (1995) treated oscillatory flow with

mass transfer and radiation. Ahmed and Sarma (1997) studied three-dimensional

convection with periodic suction. Chaudary and Sharma (2003) investigated three-

dimensional unsteady flow. Jain et al. (2008) treated fluctuating mass flux with
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chemical reaction, rotation, and periodic temperature variation. Al-Khliefat and

Duwairi (2015) studied velocity and temperature jump effects.

5.1.9.8 Other Thermal Boundary Conditions

The case of surface heating with a boundary condition of the third kind was studied

by Lesnic et al. (1999) and Pop et al. (2000). They obtained fully numerical,

asymptotic, and matching solutions. A further contribution was made by Nazar

et al. (2006).

In the case of a prescribed inverse linear surface heat flux, Magyari (2006)

investigated an apparent paradox. Temperature-dependent boundary conditions

were studied by Merkin and Pop (2010). Cimpean et al. (2006) considered temper-

ature distribution involving a ramp between two levels.

5.1.9.9 Moving Plate

Despite the fact that a stretching sheet has a negligible effect on flow in a practical

porous medium, papers on this topic have been published by Cortell (2005, 2012a),

Abel et al. (2010a,b, 2011), Attia (2007a), Boutros et al. (2006), Damseh et al.
(2008), Dash et al. (2008), Hamad and Pop (2011) (see the discussion by Magyari

(2011a,c) and Pop (2011)), Kiwan and Ali (2008), Liu (2006), Mahmoud and

Megahed (2006), Noor and Hashim (2010), Pal and Hiremath (2010), Rahman

and Sattar (2006), Sajid et al. (2009), Tamayol et al. (2010), Senapati and Dhal

(2011), Rosali et al. (2011b), Singh et al. (2011b), Hayat et al. (2011a, b, c) and

Abou-zeid (2011), Attia et al. (2012a), Huang et al. (2012), Mukhopadhyay and

Layek (2012), Sharma (2012), Khader and Megahed (2012, 2014a,b), Khader

(2014), Manjunatha et al. (2013), Merkin et al. (2014), Muthtamilselvan et al.

(2014b), Zueco et al. (2014), Darzi et al. (2015), and Singh and Bhargava (2015).

Other studies involving a moving wall are those by Singh and Rai (1987),

Chaudhary and Jain (2010), Bég et al. (2008b). Khan et al. (2011) (who considered

MHD convection with an oscillating plate), and Dubey et al. (2012) (dusty fluid).

Singh et al. (2011a) studied the effects of periodic permeability and suction on

three-dimensional convection. Loganathan and Sivapoornapriya (2013) studied the

case of an impulsively started semi-infinite plate while Sharma and Ishak (2013)

numerically simulated transient convection using the Forchheimer model.

5.1.9.10 Magnetic Field

In general the extra drag due to a magnetic field is of no practical significance. For a

regular porous medium (exceptions are when the fluid is a ferrofluid or the medium

is a mushy zone such as that which forms during the solidification of a binary alloy)

it is not possible to produce a magnetic field strong enough for the magnetic drag to
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be significant in comparison with the Darcy drag. Nevertheless a very large number

of papers have been published on this topic. Several of these (involving a non-

Newtonian fluid) have been cited in Sect. 5.1.9.2. Others dealing with boundary

layer flow on a vertical plate are now mentioned briefly.

It appears that the earliest publications are those by Raptis (1983b), Raptis and

Ram (1984) (rotation), Johri (1985) (rotation), Sahoo and Sahoo (1986) (acceler-

ated plate), El Dabe (1986) (unsteady flow), Ram (1988, 1989, 1990) (unsteady

flow), Hassanien (1989) (oscillating flow), Ram and Jain (1990), Jha (1990, 1991a,

b, c), Jha and Prasad (1991) (heat source), Hady and Mohamed (1994) (radiation),

and Kandaswami et al. (1994).

Later papers (listed alphabetically by first author) are those by Abd El-Naby

et al. (2004), Abdou and El-Kabeir (2007), Abid et al. (2013), Abo-Eldahab and El

Aziz (2005b), Abo-Eldahab and El Gendy (2001), Abdul Gaffer et al. (2016),

Acharya et al. (2014), Ahmed (2014a, b), Ahmed and Kalita (2013), Ali et al.

(2013a, b), Amakiri and Ogulu (2006), Anand Rao et al. (2012), Anitha (2013),

Arthur et al. (2015), Baramia et al. (2009), Barik et al. (2014), Butt and Ali (2013a,

b), Chaudhary and Jain (2008), Chaudhary et al. (2015), Choudhury and

Purkayastha (2014), Das et al. (2010,2011), Dehsara et al. (2012), El-dabe et al.

(2013), Ferdows et al. (2007), Ghasemi et al. (2012), Gireesha et al. (2016), Gorla

et al. (2015), Gundagani et al. (2013), Hazarika and Phukan (2016), Hussanan et al.

(2014), Jadon and Yadav (2011), Jadon et al. (2014), Jat and Jhankal (2003),

Khadrawi and Odat (2005), Khalid et al. (2015), Khan et al. (2011, 2014b, 2012,

2016a), Kundu et al. (2014a), Mabood and Khan (2014a), Makinde et al. (2016),

Mohamed et al. (2009), Mohammed et al. (2012), Mandal and Mukhopadhyay

(2012), Naroua et al. (2005), Osman et al. (2011a, b), Pal and Mondal (2014b),

Panda et al. (2011), Prakash et al. (2012b,c, 2014, 2016a, b, c), Rajvanshi et al.

(2014), Ramana Reddy et al. (2016a, b), Rani (2014), Rao et al. (2012a, b), Rashidi

et al. (2015a), Reddy et al. (2013, 2016b, c), Rubio Hernandez and Zueco (2013),

Sahin et al. (2014), Samiulhaq et al. (2012a, b), Sandeep and Sugunamma (2014),

Seth et al. (2014, 2013, 2015b, 2016d), Shanker et al. (2010), Sharma et al. (2011,

2007a, b), Sheri and Srinivasa Raju (2016) (see the comment by Pantokratoras

(2016a)), Shehzad et al. (2016), Sobha and Ramakrisna (2003), Srinivasa Raju et al.

(2015), Taklifi and Afghanajafi (2012), Ulhaq et al. (2013), Vedavathi et al. (2014),

and Vyas and Srivastava (2012).

5.1.9.11 Radiation, Chemical Reaction, Internal Heating

The effect of radiation was examined by Takhar et al. (2005). The combined effect

of thermal dispersion and radiation was studied by Abbas et al. (2008). The effect of

chemical reaction was treated by Mahapatra et al. (2010). A variable internal heat

source, with and without radiation flux, was investigated by Achemial et al. (2012,

2013). Flow resulting from a heat/source sink was analyzed by Mondal and

Mukhopadhyay (2012). A heat-generating medium with constant surface heat flux

was studied by Merkin (2012a, b) (constant heat flux) and Merkin (2013, 2014,
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2016) (unsteady flow near a stagnation point, with and without the effect of an outer

flow, modified Arrhenius kinetics). Bhattacharya et al. (2013b) studied the diffusion

of a chemically reactive species. The case of radiation was treated using a

homotopy analysis method by Maboob and Khan (2014b).

5.1.9.12 Other Aspects

A comprehensive listing of similarity solutions, including some for special transient

situations, was presented by Johnson and Cheng (1978). A partly insulated plate

was studied by Pop and Takhar (1983). The cases of arbitrary wall temperature and

arbitrary heat flux have been treated using a Merk series technique by Gorla and

Zinalabedini (1987) and Gorla and Tornabene (1988). Variable wall heat flux was

also studied by Dutta and Seetharamu (1987). A permeable plate with a prescribed

power-law temperature distribution and a special power-law mass-flux distribution

was studied by Cortell (2012b). A boundary condition of the third kind was applied

by Bocharova and Plaksina (2001) (with asymptotic expansions in powers of the

Darcy number) and by You et al. (2014). The case of a heated plate was simulated

numerically by Achemial et al. (2014).

Merkin and Needham (1987) have discussed the situation where the wall is of

finite height and the boundary layers on each side of the wall merge to form a

buoyant wake. Singh et al. (1988) have studied the problem when the prescribed

wall temperature is oscillating with time about a nonzero mean. Zaturska and Banks

(1987) have shown that the boundary layer flow is stable spatially.

The asymptotic linear stability analysis of Lewis et al. (1995) complements the

direct numerical simulation of Rees (1993) in showing that the flow is stable at

locations sufficiently close to the leading edge. In the asymptotic regime also the

wave disturbances decay, but the rate of decay decreases as the distance down-

stream of the leading edge increases.

The effect of temperature-dependent viscosity has been examined theoretically

by Jang and Leu (1992) and El Amin et al. (2013) (thermal dispersion), for a steady

flow, and by Mehta and Sood (1992b) and Rao and Pop (1994), for a transient flow.

Temperature-dependent properties were also examined by Vajravelu et al. (2011).

An MHD problem was studied by Afifi (2007b) and Pantokratoras (2006).

For the case of prescribed heat flux, Kou and Huang (1996a, b) have shown how

three cases are related by a certain transformation, and Wright et al. (1996) treated

another special case. Ramanaiah and Malarvizhi (1994) have shown how three

situations are related. Nakayama and Hossain (1994) have shown that both local

similarity and integral methods perform excellently for a nonisothermal plate. A

perturbation approach to the nonuniform heat flux situation was used by

Seetharamu and Dutta (1990) and Dutta and Seetharamu (1993). Bradean et al.

(1996, 1997a) have given an analytical and numerical treatment for a periodically

heated and cooled vertical or horizontal plate. For a vertical plate, a row of counter-

rotating cells forms close to the surface, but when the Rayleigh number increases
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above about 40 the cellular flow separates from the plate. For a horizontal plate the

separation does not occur.

Merkin and Needham (1987) have discussed the situation where the wall is of

finite height and the boundary layers on each side of the wall merge to form a

buoyant wake. Singh et al. (1988) have studied the problem when the prescribed

wall temperature is oscillating with time about a nonzero mean.

Seetharamu and Dutta (1990) used a perturbation approach to treat the case of

arbitrary wall temperature. Herwig and Koch (1990, 1991) examined the asymp-

totic situation when the porosity tends to unity. Ramanaiah and Malarvizhi (1991a)

presented some exact solutions for certain cases. Chandrasekhara et al. (1992) and

Chandrasekhara and Nagaraju (1993) have treated a medium with variable porosity,

with surface mass transfer or radiation. The effect of variable porosity was also

studied by Attia (2007b). Pop and Herwig (1992) presented an asymptotic approach

to the case where fluid properties vary, while Na and Pop (1996) presented a new

accurate numerical solution of the Cheng-Minkowycz equation equivalent to

(5.15)–(5.18). Rees (1997b) discussed the case of parallel layering, with respect

to either permeability or thermal diffusivity, of the medium. The numerical solution

of the nonsimilar boundary layer equations was supplemented by an asymptotic

analysis of the flow in the far-downstream limit. Rees (1997b) examined the three-

dimensional boundary layer on a vertical plate where the surface temperature varies

sinusoidally in the horizontal direction. The effect of an exothermic reaction was

studied by Minto et al. (1998). Ezzat (1994a, b) applied a state space approach to

unsteady convection.

The study of the influence of higher-order effects, on convection in a wedge

bounded by a uniformly heated plane and one cold or insulated, by Storesletten and

Rees (1998), revealed that generally instability occurs too close to the leading edge

for the basic flow to be represented adequately either by the leading order boundary

layer theory used in previous papers or even by the most accurate higher-order

theory obtained using matched expansions.

The effect of lateral mass flux was studied analytically and numerically by

Dessaux (1998). Unsteady convection was studied by Al-Nimr and Massoud

(1998), and also with the effect of a magnetic field by Helmy (1998). Convection

along a vertical porous surface consisting of a bank of parallel plates with constant

gaps was studied experimentally by Takatsu et al. (1997). A problem involving Hall

current and a slip condition was studied by Hayat et al. (2007a). A nonlinear

variation of density with temperature was investigated by Prasad et al. (2011).
Slip flow was also studied by Duwairri and Al-Khliefat (2014). Stagnation point

flow with a fluid having a density maximum was treated by Merkin and Kumaran

(2011). The effect of viscous dissipation in a transient situation was studied by

Salama et al. (2011) and El-Amin et al. (2012b). Another transient situation,

involving suction and blowing and variable viscosity, was studied by Husnain

et al. (2012a, b). A problem with two isothermally heated elements on an adiabatic

vertical plate was treated numerically by Saied (2006b). The flow of air past a

porous foam layer attached to a plate was studied by Wen et al. (2011).
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The effect of thermophoresis particle deposition was studied by Bakier and

Mansour (2007), Rashad (2008), Damseh and Duwairi (2008), and Mahdy (2013b).

The case of a nanofluid was examined by Gorla and Chamkha (2011a, b). The case of

icy water was investigated by Kumaran and Pop (2006).

A bidisperse porous medium was studied by Nield and Kuznetsov (2008b,

2011c) and Rees et al. (2008b).

An entrainment theorem relating to a permeable plate was proved by Magyari and

Rees (2008). Exponentially decaying boundaries were examined by Liao andMagyari

(2006) as limiting cases of algebraically ones. Consequences of the transition invari-

ance on the Darcy natural convection were investigated by Magyari (2010a).

A general study of a rotating medium was reported by Kang et al. (2015).

Slip velocity and temperature jump effects were investigated by Duwairi and

Al-Khliefat (2016). Unsteady convection with a fractional Oldroyd-B fluid was

examined by Zhao et al. (2017).

5.2 Horizontal Plate

For high Rayleigh number natural convection flow near the edge of an upward-

facing heated plate a similarity solution was obtained by Cheng and Chang (1976),

for the case of a power law wall temperature distribution given by Eq. (5.8). This

leads to the formulas

δ

x
¼ ηT

Ra
1=3
x

, ð5:86Þ

Nux

Ra
1=3
x

¼ �θ0 0ð Þ, ð5:87Þ

Nu

Ra1=3
¼ 3 1þ λð Þ4=3

1þ 4λð Þ �θ0 0ð Þ½ �, ð5:88Þ

for the thermal boundary layer thickness δ, the local Nusselt number Nux, and the

overall Nusselt number Nu. Table 5.2 lists values of ηT and [–θ0(0)] for selected
values of λ. It should be noted that in practice the assumption of quiescent flow

outside the boundary layer on an upward-facing heated plate is unlikely to be

justified, and such a boundary layer is better modeled as a mixed convection

problem.

One would expect a natural convection boundary layer to form on a cooled plate

facing upward or on a warm plate facing downward. This situation was analyzed by

Kimura et al. (1985). Relative to a frame with x axis horizontal and y axis vertically
upward, we suppose that the plate is at –l � x � l, y ¼ 0 and is at constant

temperature Tw (Tw < T1). The plate length is 2l.
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The mass and energy equations (5.1) and (5.4) still stand, but now the Darcy

equations are

u ¼ �K

μ

∂P0

∂x
, ð5:89Þ

v ¼ �K

μ

∂P0

∂y
þ ρgβ T1 � Tð Þ

� �
: ð5:90Þ

Eliminating P0 we get

∂u
∂y

¼ gβK

ν
∂
∂x

T1 � Tð Þ: ð5:91Þ

The boundary conditions are

y ¼ 0 : v ¼ 0 and T ¼ Tw,

y ! 1 : u ¼ 0, T ¼ T1 and
∂T
∂y

¼ 0:
ð5:92Þ

The appropriate Rayleigh number is based on the plate half-length l,

Ra ¼ gβKl T1 � Twð Þ
ναm

: ð5:93Þ

Scaling analysis indicates that the boundary layer thickness must be of order

δ � lRa�1=3 ð5:94Þ

The Nusselt number defined by

Nu ¼ q0

km T1 � Twð Þ , ð5:95Þ

in which q0 [W/m] is the heat transfer rate into the whole plate, is of order

Nu � Ra1=3: ð5:96Þ

This is in contrast to the Nu ~ Ra1/2 relationships for a vertical plate. Kimura

et al. (1985) solved the boundary layer equations approximately using an

Table 5.2 Values of ηT and

–θ0(0) for various values of
λ for an upward-facing heated

horizontal plate (Cheng and

Chang 1976)

λ ηT – θ0(0)
0 5.5 0.420

1/2 5.0 0.816

1 4.5 1.099

3/2 4.0 1.351

2 3.7 1.571
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integral method. Their numerical results shown in Fig. 5.13 confirm the theoretical

trend (5.92).

Ramaniah and Malarvizhi (1991a) noted a case in which an exact solution could

be obtained. The case of a prescribed heat transfer coefficient was studied by

Ramanaiah and Malarvizhi (1991b), while Ramaniah and Malarvizhi (1991c)

studied an axisymmetric boundary layer on a permeable surface with injection.

A permeable surface with radiation and mixed boundary conditions was investi-

gated by Saleh et al. (2011c). Wang et al. (2003c) reported an explicit, totally

analytic and uniformly valid solution of the Cheng–Chang equation that agreed

well with numerical results. The homotopy analysis method was applied by

Moghaddam et al. (2009). Modifications of the Cheng and Chang (1976) analysis

include those made by Chen and Chen (1987), and Gorla and Kumari (2004) for a

non-Newtonian power-law fluid, by Lin and Gebhart (1986) for a fluid whose

density has a maximum as the temperature is varied, by Minkowycz et al.

(1985b) for the effect of surface mass flux, and by Vedha-Nayagam et al. (1987)

for the effects of surface mass transfer and variation of porosity. The combination

of power-law fluid and thermal radiation was considered by Mohammadein and

El-Amin (2001). A power-law fluid with internal heat generation was studied by

Bagai and Nishad (2012a). Khan and Gorla (2011a, b, c, d, 2012a, b) presented a

second law analysis of convection with a non-Newtonian fluid, with either pre-

scribed surface temperature or prescribed heat flux.

Ingham et al. (1985a) examined the transient problem of a suddenly cooled plate.

Harris et al. (2000) studied analytically and numerically the transient convection

induced by a sudden change in surface heat flux.

Merkin and Zhang (1990a) showed that for the case of wall temperature

proportional to xm a solution of the similarity equations is possible only for

m > –2/5. For a non-Newtonian power-law fluid, Mehta and Rao (1994) treated

the case of a power law wall temperature and Chamkha (1997c) studied the case

of uniform wall heat flux, while the effect of surface mass flux was added by Gorla

and Kumari (2003). Pop and Gorla (1991) studied a heated horizontal surface, the

fluid being a gas whose thermal conductivity and dynamic viscosity are

10
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1000
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Nu ~ Ra1
/3

Fig. 5.13 Nusselt number

versus Rayleigh number for

convection on a cooled

horizontal plate of finite

length facing upward

(Kimura et al. 1985)
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proportional to temperature. They obtained a similarity solution for the case of

constant wall temperature. The effect of temperature-dependent viscosity also

was studied by Kumari (2001a, b), and by Postelnicu et al. (2001) for the case of

internal heating already treated by Postelnicu and Pop (1999). Similarity solutions

for convection adjacent to a horizontal surface with an axisymmetric temperature

distribution were given by Cheng and Chau (1977), and El-Amin et al. (2004)

added the effects of a magnetic field and lateral mass flux. Lesnic et al. (2000,

2004) studied analytically and numerically the case of a thermal boundary con-

dition of mixed type (Newtonian heat transfer). The case of wall temperature

varying as a quadratic function of position was studied, as a steady or unsteady

problem, by Lesnic and Pop (1998a).

The singularity at the edge of a downward-facing heated plate was analyzed by

Higuera and Weidman (1995) and the appropriate boundary condition deduced.

They considered both constant temperature and constant flux boundary conditions

and they treated a circular disk as well as an infinite strip. They also gave solutions

for a slightly inclined plate maintained at constant temperature. Convection below a

downward-facing heated horizontal surface also was treated numerically by

Angirasa and Peterson (1998b). Convection from a heated upward-facing finite

horizontal surface was studied numerically by Angirasa and Peterson (1998a).

Two-dimensional flows were found for 40 � Ra � 600, and the correlation

Nu ¼ 3.092 Ra0.272 was obtained. At higher Rayleigh numbers the flow becomes

three dimensional with multiple plume formation and growth.

Rees and Bassom (1994) found that waves grow beyond a nondimensional

distance 28.90 from the leading edge, whereas vortices grow only beyond 33.47.

This stability analysis was based on a parallel flow approximation. Because of the

inadequacy of this approximation, Rees and Bassom (1993) performed numerical

simulations of the full time-dependent nonlinear equations of motion. They found

that small-amplitude disturbances placed in the steady boundary layer propagated

upstream much faster than they were advected downstream. With the local growth

rate depending on the distance downstream, there is a smooth spatial transition to

convection. For the problem where the temperature of the horizontal surface is

instantaneously raised above the ambient, they found a particularly violent fluid

motion near the leading edge. A strong thermal plume is generated, which is

eventually advected downstream. The flow does not settle down to a steady or

time-periodic state. The evolving flow field exhibits a wide range of dynamic

behavior including cell merging, the ejection of hot fluid from the boundary

layer, and short periods of relatively intense fluid motion accompanied by boundary

layer thinning and short wavelength waves.

Rees (1996a) showed that when the effects of inertia are sufficiently large, the

leading order boundary layer theory is modified, and he solved numerically the

resulting nonsimilar boundary layer equations. He showed that near the leading

edge inertia effects then dominate, but Darcy flow is reestablished further down-

stream. The effects of inertia in the case of a power-law distribution of temperature

were analyzed by Hossain and Rees (1997).
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The Brinkman model was employed by Rees and Vafai (1999). They showed

that for a constant temperature surface, both the Darcy and Rayleigh numbers can

be scaled out of the boundary layer equations leaving no parameters to vary. They

studied these equations using both numerical and asymptotic methods. They found

that near the leading edge the boundary layer has a double-layer structure: a near-

wall layer where the temperature adjusts from the wall temperature to the ambient

and where Brinkman effects dominate and an outer layer of uniform thickness that

is a momentum adjustment layer. Further downstream, these layers merge, but the

boundary layer eventually regains a two-layer structure; in this case a growing outer

layer exists, which is identical to the Darcy flow case for the leading order term and

an inner layer of constant thickness resides near the surface where the Brinkman

term is important.

Convection induced by a horizontal wavy surface was analyzed by Rees and

Pop (1994b). They focused their attention on the case where the waves have an

O(Ra�1/3) amplitude, where Ra is based on the wavelength and is assumed large.

They found that a thin near-wall boundary layer develops within the basic boundary

layer as the downstream distance is increased and they gave an asymptotic analysis

that determines the structure of this layer. They found that when the wave ampli-

tude is greater than approximately 0.95 Ra�1/3, localized regions of reversed flow

occur at the heated surface.

The case of a sinusoidally (lengthwise) heated and cooled horizontal surface was

studied by Bradean et al. (1995a), when at large distances from the plate there is

either constant temperature or zero heat flux. Bradean et al. (1996, 1997a) examined

cases of unsteady convection from a horizontal (or vertical) surface that is suddenly

heated and cooled sinusoidally along its length. They obtained an analytical

solution valid for small times and any value of Ra, and a numerical solution

matching this to the steady-state solution (when this exists). The flow pattern is

that of a row of counter-rotating cells situated close to the surface. When the surface

is vertical and for Ra > 40 (approximately), two recirculating regions develop at

small times at the point of collision of two boundary layers that flow along the

surface. However, for 40 < Ra < 150 the steady-state solution is unstable and at

very large time the solution is periodic in time. When the surface is horizontal, the

collision of convective boundary layers occurs without separation. As time

increases, the height of the cellular flow pattern increases and then decreases to

its steady-state value. The heat penetrates infinitely into the porous medium and the

steady state is approached later in time as the distance from the surface increases.

Numerical and similarity solutions for the boundary layer near a horizontal

surface with nonuniform temperature and mass injection or withdrawal were

reported by Chaudhary et al. (1996). In their study the temperature and mass flux

varied as xμ and x(μ�2)/3, respectively, where μ is a constant. The conjugate problem
of boundary layer natural convection and conduction inside a horizontal plate of

finite thickness was solved numerically by Lesnic et al. (1995). The conjugate

problem for convection above a cooled or heated finite plate was studied numeri-

cally by Vaszi et al. (2001a, 2002a).
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Flow over a rotating disk was studied by Attia (2006a,b,c, 2008a). A rotating

system was also treated by Guria et al. (2010). Flow over a stretching surface was

examined by Mehmood (2008). Postelnicu (2007b) studied the effects of

thermophoresis particle deposition. The case of a porous medium saturated by a

nanofluid containing microorganisms (bioconvection) was treated by Aziz

et al. (2012).

5.3 Inclined Plate, Wedge

Again we take the x axis along the plate and the y axis normal to the plate. In the

boundary layer regime ∂T/∂x � ∂T/∂y, and the equation obtained by eliminating

the pressure between the two components of the Darcy equation, reduces to

∂2ψ

∂y2
¼ gxβK

ν

∂T
∂y

, ð5:97Þ

where gx is the component of g parallel to the plate. This is just Eq. (5.6) with

g replaced by gx. With this modification, the analysis of Sect. 5.5.1 applies to the

inclined plate problem unless the plate is almost horizontal, in which case gx is
small compared with the normal component gy.

The case of small inclination to the horizontal was analyzed by Ingham et al.

(1985b) and Rees and Riley (1985). Higher-order boundary layer effects, for the

case of uniform wall heat flux, were incorporated by Ingham and Pop (1988). Jang

and Chang (1988d) performed numerical calculations for the case of a power

function distribution of wall temperature. They found that, as the inclination to

the horizontal increases, both the velocity and temperature boundary layer thick-

nesses decrease, and the rate of surface heat transfer increases. Jang and Chang

(1989) have analyzed the case of double diffusion and density maximum.

In their experiments on natural convection from an upward-facing inclined

isothermal plate to surrounding water-filled glass beads, Cheng and Ali (1981)

found that large amplitude temperature fluctuations exist in the flow field at high

Rayleigh numbers, presumably because of the onset of vortex instability. Cheng

(1985a) also reported on experiments by himself, R. M. Fand, and H. M. Lee for a

downward-facing isothermal plate with inclinations of 29	 and 45	. Their results
are presented in Fig. 5.14, which shows a leveling off of the local Nusselt number

Nux from the Rax
1/2 dependence at high values of the local Rayleigh number Rax.

The effect of lateral surface mass flux, with a power law variation of lateral

surface velocity and wall temperature, was studied by Dwiek et al. (1994). The use

of a novel inclination parameter enabled Pop and Na (1997) to describe all cases of

horizontal, inclined, and vertical plates by a single set of transformed boundary

layer equations. Hossain and Pop (1997) studied the effect of radiation. Shu and Pop

(1997) obtained a numerical solution for a wall plume arising from a line source

embedded in a tilted adiabatic plane. MHD convection with thermal stratification
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was studied by Chamkha (1997e) and Takhar et al. (2003a, b). The effects of

variable porosity and solar radiation were discussed by Chamkha et al. (2002a,

b). The effects of lateral mass flux and variable permeability were analyzed by

Rabadi and Hamdan (2000). Conjugate convection from a slightly inclined plate

was studied analytically and numerically by Vaszi et al. (2001b). Lesnic et al.

(2004) studied analytically and numerically the case of a thermal boundary condi-

tion of mixed type (Newtonian heat transfer) on a nearly horizontal surface.

The linear stability of a thermal boundary layer with suction in an anisotropic

porous medium was discussed by Rees and Storesletten (2002). The effects of

inertia and nonparallel flow were incorporated in the analysis of Zhao and Chen

(2002). These effects stabilize the flow.

Variations on this theme have been studied by Ferdows et al. (2009a, b), Kayhani
et al. (2011a, b), Hassanien and Eliaw (2007) (effect of variable permeability), Lee

et al. (2008a, b) (radiation), Mansour et al. (2009) (stretching surface), Mansour

et al. (2010b) (MHD and chemical reaction effects), Salem (2009, 2010)

(temperature-dependent viscosity), El-Kabeir et al. (2008a, b) (MHD, unsteady,

stretching surface), Tomer et el. (2011) (magnetic field, temperature-dependent

viscosity), Bhuvaneswari et al. (2012) (radiation, internal heat generation),

Postelnicu (thermophoresis particle deposition), Ismail et al. (2013) (radiation,

magnetic field), Khalili et al. (2013) (internal heating), Cheng (2013a, b, c, d)

(wavy surface, bidisperse medium), Khan et al. (2014a, b, c, d) (conjugate flow,

wall shear stress, magnetic field, ramped wall temperature), and Foisal and Alam

(2015, 2016) (magnetic field, thermal stratification, steady or unsteady flow).
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Fig. 5.14 Local Nusselt number versus local Rayleigh number for a downward-facing heated

inclined plate (Lee 1983; Cheng 1985a, with permission from Hemisphere Publishing

Corporation)
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For flow over a wedge (and a cone), Al-Harbi (2005) studied numerically the

effects of variable viscosity and thermal radiation, and for a wedge with suction/

injection, Muhaimin et al. (2010b) studied the effect of a magnetic field.

5.4 Vortex Instability

For an inclined or a horizontal upward-facing heated surface embedded in a porous

medium, instability leading to the formation of vortices (with axes aligned with the

flow direction) may occur downstream as the result of the top-heavy situation. Hsu

et al. (1978) and Hsu and Cheng (1979) applied linear stability analysis for the case

of a power law variation of wall temperature, on the assumption that the basic state

is the steady two-dimensional boundary layer flow discussed above. They showed

that the length scale of vortex disturbances is less than that for the undisturbed

thermal boundary layer, and as a result certain terms in the three-dimensional

disturbance equations are negligible.

The simplified equations for the perturbation amplitudes were solved on the

basis of local similarity assumptions (the disturbances being allowed to have a weak

dependence in the streamwise direction). It was found that the critical value for the

onset of vortex instability in natural convection about an inclined isothermal

surface with inclination α0 to the vertical is given by

Rax,atan
2α0 ¼ 120:7, ð5:98Þ

where

Rax,a ¼ gβK Tw � T1ð Þ cos α0ð Þx
ναm

: ð5:99Þ

It follows that the larger the inclination angle with respect to the vertical, the

more susceptible the flow to vortex instability, and in the limit of zero inclination

angle (vertical heated surface) the flow is stable to this type of disturbance.

For the case of a horizontal heated plate, a similar analysis shows that the critical

value is Rax ¼ 33.4, where Rax is defined as in Eq. (5.14). More precise calcula-

tions, including pressure and salinity effects, and including the effect of the normal

component of the buoyancy force in the main flow, were made by Jang and Chang

(1987, 1988a). Chang and Jang (1989a,b) examined the non-Darcy effects. The

effect of inertia is to destabilize the flow to the vortex mode of disturbance, while

the other non-Darcy terms lead to a stabilizing effect. The effect of inertia was also

considered by Lee et al. (2000) in their study involving an inclined plate. Jang and

Chen (1993a,b, 1994) studied the effect of dispersion (which stabilizes the vortex

mode) and the channeling effect of variable porosity (which destabilizes it). The

effect of variable viscosity was studied by Jang and Leu (1993) and Leu and Jang

(1993). Nield (1994c) pointed out that their implication that this property variation
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produced a destabilizing effect was invalid. Jang and Lie (1992) and Lie and Jang

(1993) treated a mixed convection flow. For a horizontal plate, Hassanien et al.

(2004b, c) considered the effect of variable permeability for the case of variable

wall temperature, and the effect of inertia in the case of surface mass flux.

The above studies have been made on the assumption of parallel flow. Bassom

and Rees (1995) pointed out the inadequacy of this approach and reexamined the

problem using asymptotic techniques that use the distance downstream as a large

parameter. The parallel-flow theories predict that at each downstream location there

are two possible wavenumbers for neutral stability, and one of these is crucially

dependent on nonparallelism within the flow. The nonparallel situation and inertial

effects have been treated analytically and numerically by Zhao and Chen (2002,

2003) for the case of horizontal and inclined pates. They found that the nonparallel

flow model predicts a more stable flow than the parallel flow model. They also

noted that as the inclination relative to the horizontal increases, or the inertia effect

as measured by a Forchheimer number increases, the surface heat transfer rate

decreases and the flow becomes more stable.

Comprehensive and critical reviews of thermal boundary layer instabilities were

made by Rees (1998, 2002c). In the first study he pointed out an inconsistency in the

analysis of Jang and Chang (1988a, 1989) and Jang and Lie (1992) that negates their

claim that their analysis is valid for a wide range of inclinations; rather, it applies

for a near-horizontal surface only. Rees (1998) also noted that the analysis of Jang

and Chen (1993a, b) involves a nongeneric formula for permeability variation. The

basic difficulty is that a contradiction is entertained by asserting simultaneously that

x, the nondimensional streamwise distance, is asymptotically large (so that the

boundary layer approximation is valid) and that finite values of x are to be

computed as a result of approximating the stability equations, and in general this

critical value of x is far too small for the boundary layer approximation to be valid.

One way out of the impasse is to carry out fully elliptic simulations. This was the

avenue taken by Rees and Bassom (1993) in their description of wave instabilities

in a horizontal layer. The second way out is to consider heated surfaces that are very

close to the vertical but which remain upward facing. In such cases the critical

distance recedes to large distances from the leading edge, and therefore instability

arises naturally in a regime where the boundary layer approximation is valid. This

was the avenue taken by Rees (2001, 2002a) in his study of the linear and nonlinear

evolution of vortex instabilities in near-vertical surfaces. Rees found that even

under these favorable circumstances the concept of neutral stability is difficult to

define. The reason is that the evolution of vortices is governed by a parabolic partial

differential equation system rather than an ordinary differential equation system.

As a result the point at which instability is “neutral” depends on whether instability

is defined as the value of x at which the thermal energy has a local minimum as

x increases, or where the surface rate of heat transfer or the maximum disturbance

temperature has a minimum. Whenever vortices grow, they attain a maximum

strength and then decay again, and there is an optimum disturbance amplitude

that yields the largest possible response downstream. When applied to developing

flows such as boundary layers these three criteria yield different results. In addition
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to the wavelength of the vortex, the location of the initiating disturbance and its

shape also alter the critical value of x.
The linear and nonlinear evolution of vortex instabilities in near-vertical sur-

faces was studied by Rees (2001, 2002a). He found that the strength of the resulting

convection depends not only on the wavelength of the vortex disturbance but also

on the amplitude of the disturbance and its point of introduction into the boundary

layer. Whenever vortices grow, they attain a maximum strength and then decay

again. There is an optimum disturbance amplitude that yields the largest possible

response downstream. The later study by Rees (2004b) involved the destabilizing of

an evolving vortex using subharmonic disturbances. He found that the onset of the

destabilization is fairly sudden, but its location depends on the size of the distur-

bance. Rees also looked at the evolution of isolated thermal vortices. He found then

that developing vortices induce a succession of vortices outboard of the current

local pattern until the whole spanwise domain is filled with a distinctive wedge-

shaped pattern.

The effect of variable permeability for the case of a horizontal or inclined plate

was studied by Hassanien et al. (2003a, b), Elaiw (2008), Elaiw and Ibrahim (2008),

Elaiw et al. (2007, 2009, 2010) and Ibrahim (2009), and discussed by Rees and Pop

(2010). Temperature-dependent viscositywas examined byElaiw et al. (2011, 2012a,

b). The effect of a magnetic field was examined by Jang and Hsu (2007, 2009b).

For the case of uniform surface suction, the nonlinear development of vortex

instabilities has been studied by Rees (2009b), for the case where the Péclet number

based on the external velocity is sufficiently large. He found that the resulting

thermal boundary layer develops in a nonsimilar manner until it attains an asymp-

totic state which is independent of the streamwise coordinate, x, when it is domi-

nated by surface suction. For sufficiently large but moderate Ra this boundary layer

becomes unstable to streamwise vortex disturbance, and he used a parabolic solver

to determine how such disturbances, when placed very close to the leading edge,

evolve with x. He defined neutral stability to be when a suitable energy functional

ceases to decay/grow as x increases. He thus mapped out a neutral curve based on

the behavior of this functional. He then extended his linearized analysis into the

nonlinear domain and ascertained the effect of different magnitudes of distur-

bances. He found a rich variety of vortex patterns, including wavy vortices and

abrupt changes in perceived wavelength, something which is sometimes sensitively

dependent on the values of the governing parameters.

5.5 Horizontal Cylinder

5.5.1 Flow at High Rayleigh Number

We now consider steady natural convection about an isothermal cylinder, at

temperature Tw and with radius r0, embedded in a porous medium at temperature

T1. We choose a curvilinear orthogonal system of coordinates, with x measured
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along the cylinder from the lower stagnation point (in a plane of cross section),

y measured radially (normal to the cylinder), and φ the angle that the y axis makes

with the downward vertical. This system is presented in Fig. 5.15.

If curvature effects and the normal component of the gravitational force are

neglected, the governing boundary layer equations are

∂2ψ

∂y2
¼ gβK

ν
sinφ

∂
∂y

T � T1ð Þ ð5:100Þ

αm
∂2

T

∂y2
¼ ∂ψ

∂y
∂T
∂x

� ∂ψ
∂x

∂T
∂y

: ð5:101Þ

It is easily checked that the solution of Eqs. (5.100) and (5.101), subject to the

boundary conditions (5.9) and (5.10) with λ ¼ 0, is given by

ψ ¼ gβK

ν
Tw � T1ð Þαmr0

� �1=2
1� cosφð Þ1=2f ηð Þ, ð5:102Þ

T � T1 ¼ Tw � T1ð Þθ ηð Þ, ð5:103Þ

η ¼ gβK Tw � T1ð Þ
ναmr0

� �1=2 y sinφ

1� cosφð Þ1=2
, ð5:104Þ

where f and θ satisfy Eqs. (5.15)–(5.18) with λ ¼ 0. Accordingly, the local surface

heat flux is
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Fig. 5.15 Local Nusselt
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horizontal cylinder and a
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q
00
w ¼ �km

∂T
∂y

� �
y¼0

¼ 0:444km Tw � T1ð Þ3=2 gβK

ναmr0

� �1=2
sinφ

1� cosφð Þ1=2
,

ð5:105Þ
which can be expressed in dimensionless form as

Nuφ

Ra
1=2
D

¼ 0:628
sinφ

1� cosφð Þ1=2
, ð5:106Þ

where

Nuφ ¼ q
00
wD

km Tw � T1ð Þ ð5:107Þ

and

RaD ¼ gβK Tw � T1ð ÞD
ναm

, ð5:108Þ

with D denoting the diameter of the cylinder. This result is plotted in Fig. 5.15. The

average surface heat flux is

�q00 ¼ 1

π

ð π

0

q
00
w φð Þdφ ¼ 0:565km Tw � T1ð Þ3=2 gβK

ναmD

� �1=2
, ð5:109Þ

which in dimensionless form is

Nu

Ra
1=2
D

¼ 0:565, ð5:110Þ

where

Nu ¼ �q00D
k

Tw � T1ð Þ: ð5:111Þ

The present problem is a special case of convection about a general

two-dimensional heated body analyzed by Merkin (1978). The generalization to a

non-Newtonian power-law fluid was made by Chen and Chen (1988b) and for the

Forchheimer model by Kumari and Jayanthi (2004).

Pop and Raptis (1985) examined a cylinder with internal sources/sinks. The

conjugate steady convection from a horizontal circular cylinder with a heated core

was investigated by Kimura and Pop (1992b). Gorin et al. (1993) studied a

cylinder with a narrow slot. The method of matched asymptotic expansions was

applied by Pop et al. (1993a) to the transient problem with uniform temperature.

They found that vortices then form at both sides of the cylinder. An extension of
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this work to a cylinder of arbitrary cross section was reported by Tyvand (1995).

For the circular cylinder, a numerical treatment was reported by Bradean et al.

(1997b), and further work on transient convection was discussed by Bradean et al.

(1998a). They found that, as convection becomes more dominant, a single hot cell

forms vertically above the cylinder and then rapidly moves away. Conjugate

convection from a circular cylinder was studied by Shigeo and Pop (1992). Free

convection about a cylinder of elliptic cross section was treated by Pop et al.

(1992b). Transient convection about a cylinder with constant surface flux heating

was dealt with by Pop et al. (1996). A problem involving unsteady convection

driven by an nth-order irreversible reaction was examined by Nguyen et al.

(1996). Natural and forced convection around line sources of heat and heated

cylinders was analyzed by Kurdyumov and Li~nán (2001). Convection near the

stagnation point of a two-dimensional cylinder, with the surface temperature

oscillating about a mean above ambient, was analyzed by Merkin and Pop

(2000). An analysis of soil heating systems was made by Ngo and Lai (2009).

The case of LTNE was studied by Saied (2006a) and by Cheng (2007b) , who

extended his study of cylinders of elliptic cross section (Cheng 2006b), and by

Al-Sumaily and Thompson (2014) and Al-Sumaily et al. (2014). The nonlinear

development of vortex instabilities with uniform suction was studied by Rees

(2009b). The effect of variable permeability was examined by Elaiw (2008), Elaiw

and Ibrahim (2008), and Eliaw et al. (2007, 2009). The effect of a magnetic field was

studied by Jang and Hsu (2007, 2009a, b), Hassanien et al. (2003a, b) (elliptical

cylinder), and Makanda et al. (2015) (radiation, Casson fluid, partial slip). A cylinder

wrapped with a porous layer was studied by Ait Saada et al. (2007) and

Bhattacharyya and Singh (2009). Unsteady flow over a cylinder was treated by

Kumari and Nath (2009c). The case of a nanofluid and a cylinder of elliptic cross

section was studied by Cheng (2012c). Emeana et al. (2016) conducted an experi-

mental and numerical study of the thermal regime around a buried submarine high-

voltage cable.

Empirical heat transfer correlation equations, with viscous dissipation taken into

account, were reported by Fand et al. (1994). Experiments on heat transfer from a

cylinder were conducted by Jamin and Mohamad (2008). A transient flow of a non-

Newtonian fluid was studied by El-Amin et al. (2012a). An unsteady flow was

examined by Younis and Mohamad (2012). Atia and Mohammedi (2015) and

Prasad et al. (2015) studied numerically the case of a Jeffreys fluid.

5.5.2 Flow at Low and Intermediate Rayleigh Number

The experimental results obtained by Fand et al. (1986) on heat transfer in a porous

medium consisting of randomly packed glass spheres saturated by either water or

silicone oil suggested the division of the Rayleigh number range into a low Ra (and

hence low Reynolds number Re) Darcy range and a high Ra Forchheimer range.

Fand et al. (1986) proposed the following correlation formulas:
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For (0.001 < Remax ¼ 3),

NuPr0:0877 ¼ 0:618Ra0:698 þ 8:54
 106Ge sechRa, ð5:112Þ
while for (3 < Remax ¼ 100),

NuPr0:0877 ¼ 0:766Ra0:374
C1D

C2

� �0:173

: ð5:113Þ

In these correlations,

Remax ¼ Dvmax

V
, Nu ¼ hD

km
, Pr ¼ μcP

km
, Ge ¼ gβD

cP
,

Ra ¼ gβKD Tw � T1ð Þ
ναm

ð5:114Þ

where D is the diameter of the cylinder, vmax is the maximum velocity, h is the heat
transfer coefficient, and C1 and C2 are the dimensional constants appearing in

Forchheimer’s equation expressed in the form

�dP

dx
¼ C1μuþ C2 ρu

2 ð5:115Þ

The correlation formulas (5.112) and (5.113) may be compared with the Darcy

model boundary layer formula

Nu ¼ 0:565Ra1=2 ð5:116Þ
and the Forchheimer model boundary layer formula found by Ingham and

quoted by Ingham and Pop (1987c),

Nu / Ra1=4
vDχ

αmK

� �1=2

: ð5:117Þ

The effect of d/D, the ratio of particle diameter to cylinder diameter, was

investigated experimentally by Fand and Yamamoto (1990). They noted that the

reduction in the heat transfer coefficient due to wall porosity variation increases

with d/D.
Ingham and Pop (1987c) performed finite-difference calculations for stream-

lines, isotherms, and Nusselt numbers for Ra up to 400. Their results for an average

Nusselt number Nu defined by

Nu ¼ � 1

2π

ð 2π

0

∂Θ
∂r






r¼1

dθ ð5:118Þ

are given in Fig. 5.16. The dimensionless temperature difference is defined as

Θ ¼ (T – T1)/(Tw – T1).

206 5 External Natural Convection



5.6 Sphere or Spherical Annulus

5.6.1 Flow at High Rayleigh Number

With the x and y axes chosen in a vertical diametral plane of the sphere, and with

x measured along the sphere from the lower stagnation point and y measured

radially outward from the surface (Fig. 5.15), the governing boundary layer equa-

tions are

1

r

∂2ψ

∂y2
¼ gβK sinφ

ν
∂
∂y

T � T1ð Þ, ð5:119Þ

αm
∂2

T

∂y2
¼ 1

r

∂ψ
∂y

∂T
∂x

� ∂ψ
∂x

∂T
∂y

� �
: ð5:120Þ

The streamfunction ψ is defined by

r u ¼ ∂ψ
∂y

, r v ¼ �∂ψ
∂x

, ð5:121Þ

where r¼ r0 sin φ and r0 is the radius of the sphere. Again, the boundary conditions
are given by Eqs. (5.9) and (5.10), with λ ¼ 0. The problem admits the similar

solution (Cheng 1985a)

+
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Fig. 5.16 The variation of the mean Nusselt number with Rayleigh number. Solid line, numerical

solution; dashed line, boundary layer solution; dotted dashed line, small Rayleigh number

solution; bullet, open triangle, plus symbol, experimental results using spheres of diameter 2, 3,

and 4 mm, respectively (Ingham and Pop 1987c, with permission from Cambridge University

Press)
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ψ ¼ αm
gβK Tw � T1ð Þ r30

ναm
cos 3φ

3
� cosφþ 2

3

� �� �1=2
f ηð Þ, ð5:122Þ

T � T1
Tw � T1

¼ θ ηð Þ, ð5:123Þ

η ¼ y

r0

gβK Tw � T1ð Þ r0
ναm

� �1=2
sin 2φ

cos 3φð Þ=3� cosφþ 2=3½ � 1=2
, ð5:124Þ

where f and θ satisfy Eqs. (5.15)–(5.18) with λ ¼ 0. Accordingly the local surface

heat flux is given by

qw
00 ¼ 0:444km Tw � T1ð Þ3=2 gβK

ναmr0

� �1=2
sin 2φ

cos 3φð Þ=3� cosφþ 2=3½ �1=2
ð5:125Þ

which in dimensionless form is

Nuφ

Ra
1=2
D

¼ 0:628
sin 2φ

cos 3φð Þ=3� cosφþ 2=3½ �1=2
: ð5:126Þ

This result is plotted in Fig. 5.15, which shows that the local heat transfer rate for

a sphere is higher than that for a horizontal cylinder except near the upper stagna-

tion point. The average surface heat flux is

�q00 ¼ 1

4π r20

ð π

0

2π r20 qw
00 φð Þ sinφdφ

¼ 0:888

31=2
km Tw � T1ð Þ3=2 gβK

ναmr0

� �1=2

,

ð5:127Þ

which in dimensionless form reduces to

Nu

Ra
1=2
D

¼ 0:724: ð5:128Þ

This problem is a special case of the natural convection about a general axisym-

metric heated body embedded in a porous medium, analyzed byMerkin (1979). The

extension to include the effect of normal pressure gradients on convection in a

Darcian fluid about a horizontal cylinder and a sphere has been provided by Nilson

(1981). The extension to a non-Newtonian power law theory was made by Chen and

Chen (1988b). A sphere was also studied by Ganapathy and Purushothaman

(1990a). The effect of LTNE was investigated by Cheng (2013b).

Conjugate steady convection from a solid sphere with a heated core of uniform

temperature was investigated by Kimura and Pop (1994). The transient problem,
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where either the temperature or the heat flux of the sphere is suddenly raised and

subsequently maintained at a constant value, was treated numerically for both small

and large values of the Rayleigh number by Yan et al. (1997). A transient situation

was also studied by Ganapathy (1997a, b, 2005). An unsteady flow from a rotating

sphere was examined by Hassanien et al. (2004). Unsteady convection from a

sphere with variable surface temperature was studied by Rahimi and Jalali (2005).

The analogous problem of convective mass transfer from a sphere was studied

experimentally by Rahman (1999). MHD convection over a permeable sphere with

internal heat generation/absorption was analyzed by Yih (2000a), Bég et al.

(2009d), and Moghimi et al. (2011). Chamkha et al. (2011a) studied the case of a

nanofluid. Mukhopadhyay (2008) examined flow over a sphere in the presence of a

heat source/sink near a stagnation point. The presence of a heat source/sink near the

stagnation point was treated by Mukhopadhyay (2008). Flow of a Casson fluid with

partial slip was investigated by Prasad et al. (2013a).

5.6.2 Flow at Low Rayleigh Number

This topic was first studied by Yamamoto (1974). When Ra is small, we can use a

series expansion in powers of Ra. Using a spherical polar coordinate system (r, θ, φ)
and a Stokes streamfunction ψ , we can write the governing equations in

nondimensional form, for the case of constant surface temperature Tw,

1

sin θ

∂2ψ

∂r2
þ 1

r2
∂
∂θ

1

sin θ

∂ψ
∂θ

� �
¼ Ra cos θ

∂Θ
∂r

þ r sin θ
∂Θ
∂r

� �
: ð5:129Þ

∂ψ
∂θ

∂Θ
∂r

� ∂ψ
∂r

∂Θ
∂θ

¼ sin θ
∂
∂r

r2
∂Θ
∂r

� �
þ ∂
∂θ

sin θ
∂Θ
∂θ

� �
: ð5:130Þ

In these equations we have used the definitions

Θ ¼ T � T1
Tw � T1

, Ra ¼ gβKa Tw � T1ð Þ
ναm

, ð5:131Þ

and r is the nondimensional radial coordinate scaled with a, the radius of the sphere.
The boundary and symmetry conditions are

r ¼ 1 : Θ ¼ 1,
∂ψ
∂θ

¼ 0,

r ! 1 : Θ ¼ 0,
∂ψ
∂θ

¼ 0,
∂ψ
∂r

¼ 0,

θ ¼ 0, π :
∂Θ
∂θ

¼ 0,
∂ψ
∂r

¼ 0,
∂
∂θ

1

sin θ

∂ψ
∂θ

� �
¼ 0:

ð5:132Þ
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The solution is obtained by writing

ψ ;Θð Þ ¼ ψ0;Θ0ð Þ þ Ra ψ1;Θ1ð Þ þ Ra2 ψ2;Θ2ð Þ þ . . . , ð5:133Þ

substituting and solving in turn the problems of order 0, 1, 2,... in Ra. One finds that

ψ0 ¼ 0, Θ0 ¼ 1

r
, ð5:134Þ

ψ1 ¼
1

2
r � r�1
� �

sin 2 θ, Θ1 ¼ 1

4
2r�1 � 3r�2 þ r�3
� �

cos θ, ð5:135Þ

ψ2 ¼
1

24
4r � 9þ 6r�1 � r2
� �

sin 2θ cos θ, ð5:136Þ

Θ2 ¼ � 13

180
r�1 þ 11

240
r�3ln r þ 31

224
r�3 � 13

144
r�4

þ 27

1120
r�5 þ 5

48
r�1 � 3

8
r�2 þ 11

80
r�3ln r

�
þ 223

672
r�3 � 1

12
r�4 þ 5

224
r�5

�
cos 2θ:

ð5:137Þ

Working from the second-order approximation ψ ¼ Ra ψ1 + Ra2 ψ2, Ene and

Poliševski (1987) found that, whereas for Ra < 3 the streamline pattern was

unicellular, for Ra > 3 a second cell appears below the sphere. This is apparently

an artifact of their solution, resulting from the nonconvergence of the series for

Ra > 3. No second cell was found by Pop and Ingham (1990).

For convection around a sphere that is suddenly heated and subsequently

maintained at a constant heat flux or constant temperature, asymptotic solutions

were obtained by Sano and Okihara (1994), Sano (1996), and Ganapathy (1997a, b).

5.6.3 Flow at Intermediate Rayleigh Number

In addition to obtaining a second-order boundary layer theory for large Ra, Pop and

Ingham (1990) used a finite-difference scheme to obtain numerical results for finite

values of Ra. Their results are shown in Table 5.3 and Fig. 5.17. They expressed

their heat transfer results in terms of a mean Nusselt surface Nu defined by

Nu ¼ �1

2

ð π

0

∂Θ
∂r

� �
r¼1

sin θdθ, ð5:138Þ
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5.7 Vertical Cylinder

For the problem of natural convection about a vertical cylinder with radius r0,
power law wall temperature, and embedded in a porous medium, similarity solu-

tions do not exist. An approximate solution was obtained by Minkowycz and Cheng

(1976). For a given value of the power law exponent λ, Eq. (5.8), they found that the

Table 5.3 The overall

Nusselt number for an

isothermal sphere embedded

in a porous medium (Pop

and Ingham 1990)

1
2
RaD Boundary layer solution Numerical solution

1 0.5124 2.1095

10 1.6024 2.8483

20 2.2915 3.2734

40 3.2407 3.9241

70 4.2870 5.0030

100 5.1240 5.8511

150 6.2756 7.0304

200 7.2464 8.2454

a c

b d

Fig. 5.17 The streamlines

in the vicinity of a sphere:

(a) Ra ¼ 1, (b) Ra ¼ 10, (c)
Ra ¼ 100, and (d)
asymptotic solution (Pop

and Ingham 1990, with

permission from

Hemisphere Publishing

Corporation)
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ratio of local surface heat flux of a cylinder (qc
00) to that of a flat plate (q00) is a nearly

linear function of a curvature parameter ξ,

qc
00

q00
¼ 1þ C0ξ, ð5:139Þ

where

ξ ¼ 2x

r0Ra
1=2
x

, ð5:140Þ

where x denotes the vertical coordinate along the axis of the cylinder and q00 is given
by Eq. (5.25). The values of the positive constant C0 are given in Table 5.4.

The ratio of average heat fluxes �qc
00=�q00 turns out to be independent of λ, and is

given approximately by

�qc
00

�q00 ¼ 1þ 0:26ξL, ð5:141Þ

where ξL ¼ 2L/r0 RaL
1/2, and L is the height of the cylinder. The average heat flux

for the vertical plate (�q00) is given by Eq. (5.27).

A detailed solution was obtained by Merkin (1986). Finite-difference solutions

and improved perturbation solutions were obtained by Kumari et al. (1985a).

Magyari and Keller (2004a) showed that the flow induced by a nonisothermal

vertical cylinder approaches the shape of Schlichting’s round jet as the porous

radius tends to zero. The effects of surface suction or blowing were examined by

Yucel (1984) and Huang and Chen (1985); suction increases the rate of heat

transfer. The transient problem has been analyzed by Kimura (1989b). The case

of a power-law non-Newtonian fluid was studied by Pascal and Pascal (1989).

Asymptotic analyses and numerical calculations for this problem were reported

by Bassom and Rees (1996). They showed that when λ < 1, the asymptotic flow

field for the leading edge of the cylinder takes on a multiple layer structure.

However, for λ > 1, only a simple single layer is present far downstream, but a

multiple layer structure exists close to the leading edge of the cylinder.

Table 5.4 Values of the constant C
0
in Eq. (5.139) for various values of the

power law exponent λ (Cheng 1985a)

λ C
0

0 0.30

1/4 0.23

1/3 0.21

1/2 0.20

3/4 0.17

1 0.15
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Inertial effects and those of suction were analyzed by Hossain and Nakayama

(1993). The case of suction with a non-Newtonian fluid (for a vertical plate or a

vertical cylinder) was investigated by Pascal and Pascal (1997). The transient

problem has been analyzed by Kimura (1989b), while Libera and Poulikakos

(1990) and Pop and Na (2000) have treated a conjugate problem. The effect of

thermal stratification was added by Chen and Horng (1999) and Takhar et al.

(2002). An analogous mass transfer problem was studied experimentally by

Rahman et al. (2000). The effect of LTNE was investigated by Rees et al.

(2003a) and Shakeri et al. (2012). The effect of radiation was studied numerically

by Yih (1999e). The problem with thermophoresis was examined by Chamkha et al.

(2004a, b, c), while El-Hakiem and Rashed (2007) included the effects of radiation

and temperature-dependent viscosity. The effect of a magnetic field on convection

over a permeable vertical cylinder was investigated by van Gorde and Vajravelu

(2011). A stretching surface with a magnetic field was studied by Chauhan et al.

(2012), Abbas et al. (2013), and Yusof et al. (2013). The case of variable porosity

was examined by Sammouda et al. (2012). A nonsimilar boundary layer analysis for

the case of a bidisperse porous medium was supplied by Cheng (2014a, b, c, d). An

experimental study of mass transfer from embedded cylinders of varying aspect

ratio was reported by Rahman et al. (2006). The effects of radiation and magnetic

field on transient convection were studied by Reddy (2014b). Corasaniti and Gori

(2017) performed experiments on convection around a vertical cylinder. Bég et al.

(2016) simulated micropolar wall plumes.

5.8 Cone or Wedge

We consider an inverted cone with semi-angle γ and take axes in the manner

indicated in Fig. 5.18. The boundary layer develops over the heated frustum

x ¼ x0. In terms of the streamfunction ψ defined by

u ¼ 1

r

∂ψ
∂y

, v ¼ �1

r

∂ψ
∂x

, ð5:142Þ

the boundary layer equations are

1

r

∂2ψ

∂y2
¼ gβK

ν

∂T
∂y

, ð5:143Þ

1

r

∂ψ
∂y

∂T
∂x

� ∂ψ
∂x

∂T
∂y

� �
¼ αm

∂2
T

∂y2
: ð5:144Þ

For a thin boundary layer we have approximately r ¼ x sin γ. We suppose that

either a power law of temperature or a power law of heat flux is prescribed on the

frustum. Accordingly, the boundary conditions are
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y ! 1 : u ¼ 0, T ¼ T1,

y ¼ 0, x0 � x < 1 : u ¼ 0, andeither T ¼ Tw ¼ T1 þ x� x0ð Þλ ð5:145Þ

or� km
∂T
∂y






y¼0

¼ qw
00 ¼ A x� x0ð Þλ:

For the case of a full cone (x0 ¼ 0) a similarity solution exists. In the case of

prescribed Tw, we let

ψ ¼ αmrRa
1=2
x f ηð Þ, ð5:146Þ

T � T1 ¼ Tw � T1ð Þθ ηð Þ, ð5:147Þ

η ¼ y

x
Ra1=2x , ð5:148Þ

where

Rax ¼ gβK cos γ Tw � T1ð Þx
ναm

: ð5:149Þ

r(x) u

v

g

x = x0

x

y
0

γ

Fig. 5.18 Coordinate

system for the boundary

layer on a heated frustum of

a cone (Cheng et al. 1985)
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The dimensionless momentum and energy equations are

f 0 ¼ θ, ð5:150Þ

θ00 þ λþ 3

2

� �
f θ0 � λf 0 θ ¼ 0, ð5:151Þ

with boundary conditions

f 0ð Þ ¼ 0, θ 0ð Þ ¼ 1, θ 1ð Þ ¼ 0: ð5:152Þ
The local Nusselt number is given by

Nux ¼ Ra1=2x �θ0 0ð Þ½ �, ð5:153Þ
for which computed values of θ0(0) are given in Table 5.5.

The case of a cone with prescribed uniform heat flux qw
00 is handled similarly. We

begin with the dimensionless variables

ψ ¼ αmr bRa1=3 f bηð Þ, ð5:154Þ

T � T1 ¼ qw
00x
km

bRa�1=3
x

bθ bηð Þ: ð5:155Þ

bη ¼ y

x
bRa1=3x , ð5:156Þ

where the Rayleigh number is based on heat flux,

bRax ¼ gβK cos γ q
00
wx

2

ναmkm
: ð5:157Þ

The governing equations become

bf ¼ bθ, ð5:158Þ

bθ 00 þ λþ 5

2

� �bf 0 bθ 0 � 2λþ 1

3

� �bf 0 bθ ¼ 0, ð5:159Þ

subject to

Table 5.5 Values of

θ0(0) and bθ 0ð Þ for calculating
the local Nusselt number on a

vertical cone embedded in a

porous medium (Cheng et al.

1985)

λ θ0(0) bθ 0ð Þ
0 –0.769 1.056

1/3 –0.921 0.992

1/2 –0.992 0.965
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bf 0 0ð Þ ¼ 0, bθ 0 0ð Þ ¼ �1, bθ 1ð Þ ¼ 0: ð5:160Þ
The local Nusselt number solution to this problem is

Nux ¼ bRa1=3 bθ 0ð Þ
h i�1

, ð5:161Þ

with the computed values of bθ 0ð Þ given in Table 5.5. The local Nusselt number

is defined in the usual way: Nux ¼ q00x/km(Tw – T1). Note that in the present

(constant q00) configuration the cone temperature Tw is a function of x.
No similarity solution exists for the truncated cone, but Cheng et al. (1985)

obtained results using the local nonsimilarity method. Pop and Cheng (1986)

included the curvature effects that become important when the cone is slender.

Vasantha et al. (1986) treated non-Darcy effects for a slender frustum, and

Nakayama et al. (1988a) have also considered inertial effects.

A cone with a point heat source at the apex was considered by Afzal and Salam

(1990). A wedge or cone subjected to a mixed thermal boundary condition was

studied by Ramanaih and Kumaran (1992) using a Brinkman model. Pop and Na

(1994, 1995) studied convection on an isothermal wavy cone or frustum of a wavy

cone, for large Ra, under the assumption that the wavy surface has amplitude and

wavelength of order one. They presented results for the effect of the sinusoidal

surface on the wall heat flux.

Rees and Bassom (1991) examined convection in a wedge-shaped region

bounded by two semi-infinite surfaces, one heated isothermally and the other

insulated. For the particular cases (a) a vertical heated surface with a wedge angle

of π, and (b) a horizontal upward-facing surface with a wedge angle of 3π/2, the
equations on the Darcy model reduce to the classic ordinary differential equations.

The case of a wedge with a power-law fluid was studied by Kim (2000) and

Chamkha et al. (2004a, b, c) (radiation). A wedge with a Casson fluid was

investigated by Mukhopadhay and Mandal (2014). A wedge with slip, appropriate

to a rarefied fluid, s was examined by Das (2014).

Hydromagnetic convection over a cone or wedge was studied by Kafousias

(1992) and Chamkha (1996). Other MHD studies were conducted by Mahdy

et al. (2008) for a wavy cone, by Mahmoud and Megahed (2009) for a non-

Newtonian fluid, and by Sedeek (2007) for a cone or wedge with radiation.

Dispersion effects and a non-Newtonian fluid were treated by Rishi Raj (2011). A

non-Newtonian fluid was also studied by Mahmoud (2012a, b) (radiation, heat

generation) and Makanda et al. (2013) (viscoelastic fluid, viscous dissipation). A

cone with a power-law fluid, blowing/suction, radiation, and heat generation/

absorption was studied by Waheed and Abu Alnaja (2015). A rotating cone and

an anisotropic medium were examined by Bég et al. (2016).

Variable viscosity and thermal conductivity effects on convection from a cone or

wedge were studied numerically by Hassanien et al. (2003b). For convection over a

cone, the effect of uniform lateral mass flux was studied by Yih (1997a, b, 1998b)

for the case of Newtonian or non-Newtonian fluids, and with a Forchheimer effect
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by Kumari and Jayanthi (2005) for a non-Newtonian fluid. Mahmoud (2011)

included the effect of variable viscosity of a power-law fluid. Convection over a

horizontal cone was studied by Kumari and Nath (2010). The homotopy analysis

method was applied to a vertical cone by Sohouli et al. (2008, 2010). The

HPM-Padé method was applied by Baramia et al. (2011). He’s variational iteration
method was applied by Ganji and Sajjafi (2011). The rational Chebyshev-tau

method was applied by Parand et al. (2011). The case of a vertical cone with a

power-law fluid and viscous dissipation was treated numerically by Mahmoud

(2012b). A vertical cone with a non-Newtonian fluid and radiation was studied by

Mahmoud (2012a). A cone (truncated or whole) in a bidisperse medium was studied

by Cheng (2013c, e). A cone in a tridisperse medium was examined by Cheng

(2015a, b). An experimental study of convective mass transfer was reported by

Rahman et al. (2007).

5.9 General Two-Dimensional or Axisymmetric Surface

It appears that the first study of boundary layer analysis involving a body of

arbitrary shape was that by Taunton and Lightfoot (1970). Nakayama and Koyama

(1987a) showed how it is possible to obtain similarity solutions to the boundary

layer equations for flow about heated two-dimensional or axisymmetric bodies of

arbitrary shape provided that the wall temperature is a power function of a variable

ξ, which is a certain function of the streamwise coordinate x. Then the governing

equations reduce to those for a vertical flat plate. They thus generalized Merkin’s
(1979) results for the isothermal case.

A simple analysis of convection about a slender body of revolution with its axis

vertical was given by Lai et al. (1990c). In terms of cylindrical polar coordinates

with x in the axial direction and r in the radial direction, the governing boundary

layer equations are

∂
∂r

1

r

∂ψ
∂r

� �
¼ gβK

ν

∂T
∂r

, ð5:162Þ

∂ψ
∂r

∂T
∂x

� ∂ψ
∂x

∂T
∂r

¼ αm
∂
∂r

r
∂T
∂r

� �
: ð5:163Þ

The boundary conditions at the body surface [r ¼ R (x)] and far from the surface

(r ! 1) are, respectively,

T ¼ Tw xð Þ ¼ T1 þ Axλ, v ¼ 0, ð5:164Þ

T ¼ T1, u ¼ 0: ð5:165Þ
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Suitable similarity variables are defined by

η ¼ Rax
r

x

� 	 2

, ð5:166Þ

ψ ¼ αm xf ηð Þ, ð5:167Þ

T � T1 ¼ Tw � T1ð Þθ ηð Þ, ð5:168Þ
where

Rax ¼ gβK Tw � T1ð Þx
ναm

: ð5:169Þ

If we set η ¼ anc, where anc is a numerically small constant, we have prescribed

the surface of a slender body, given by

r ¼ ναmanc
gβKA

� �1=2
x 1�λð Þ=2: ð5:170Þ

This represents a cylinder when λ¼ 1, a paraboloid when λ¼ 0 and a cone when

λ ¼ –1. The resulting equations are

2f 0 ¼ θ, ð5:171Þ

2ηθ
00 þ 2þ fð Þθ0 � λ f 0 θ ¼ 0 ð5:172Þ

with boundary conditions

η ¼ anc : θ ¼ 1, f þ λ� 1ð Þηf 0 ¼ 0, ð5:173Þ

η ! 1 : θ ¼ 0, f 0 ¼ 0: ð5:174Þ

These equations can be easily solved numerically and the local Nusselt number

is then given by

Nu

Ra1=2
¼ �2a1=2nc θ0 ancð Þ: ð5:175Þ

Further studies were made by Nakayama and Koyama (1987a,b) and

Lakshinarayana and Gopalakrishnan (1988). Inertial effects were examined by

Ingham (1986) and Nakayama et al. (1989, 1990). Merkin and Pop (1987b) dealt

with the case of uniform heat flux. The effects of a stratified medium were discussed

by Nakayama and Koyama (1989) and those of viscous dissipation by Nakayama

and Pop (1989). Convection from a nonisothermal axisymmetric surface was

analyzed by Mehta and Sood (1994). Flow of non-Newtonian power-law fluids

over nonisothermal bodies of arbitrary shape was studied by Nakayama and
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Koyama (1991) and also, for the case of permeable bodies, by Wang et al. (2002).

Certain wall temperature distributions lead to similarity solutions. A general trans-

formation procedure, for the transient problem and the Forchheimer model, was

presented by Nakayama et al. (1991). With this the local similarity assumption was

adapted to produce solutions for a range of geometries. Power-law fluid flow, with

or without yield stress, was also discussed by Yang and Wang (1996). Power-law

fluids were also treated by El-Amin et al. (2011b) and Abdel-Gaied and Eid (2011).

Similarity solutions for convection due to internal heating were obtained by Bagai

(2003, 2004) for the cases of constant or variable viscosity. Unsteady stagnation

point flow over a 3D body was studied by Hassanien et al. (2006). A problem with

variable viscosity, a non-Newtonian fluid, and internal heat generation was studied

by Bagai and Nishad (2012b).

5.10 Horizontal Line Heat Source

5.10.1 Flow at High Rayleigh Number

5.10.1.1 Darcy Model

At high Rayleigh number the flow about a horizontal line source of heat takes the

form of a vertical plume. For steady flow the governing boundary layer equations

are again Eqs. (5.6) and (5.7). The boundary conditions (5.10) still apply, but

Eq. (5.9) is replaced by the symmetry conditions

y ¼ 0 :
∂2ψ

∂y2
¼ ∂T

∂y
¼¼ 0: ð5:176Þ

We now have a homogeneous system of equations, and a nontrivial solution

exists only if a certain constraint holds. In the present problem this arises from the

global conservation of energy and takes the form

q0 ¼ ρ1 cP

ð1
1

∂ψ
∂y

T � T1ð Þdy, ð5:177Þ

where q0 is the prescribed heat flux per unit length and cP is the specific heat of the
convected fluid at constant pressure. Consistent with the boundary layer approxi-

mation, the axial heat conduction term is omitted from Eq. (5.173).

It is easily checked that the solution of the present problem is (Wooding 1963)

ψ ¼ αmbRa1=3x f ηð Þ, ð5:178Þ

T � T1 ¼ q0

ρ1cPαm
bRax�1=3θ ηð Þ, ð5:179Þ
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η ¼ y

x
bRa1=3x , ð5:180Þ

where

bRax ¼ gβKq0 x=μα2mcP: ð5:181Þ
The functions f and θ satisfy the differential equations

f 0 � θ ¼ 0, ð5:182Þ

θ00 þ 1

3
f θð Þ0 ¼ 0, ð5:183Þ

the boundary conditions

f 0ð Þ ¼ θ0 0ð Þ ¼ 0, ð5:184Þ

f 0 �1ð Þ ¼ θ �1ð Þ ¼ 0, ð5:185Þ
and the constraint ð1

�1
f 0 ηð Þθ ηð Þdη ¼ 1: ð5:186Þ

The nontrivial solution of Eqs. (5.182)–(5.186) is

ψ ¼ αm bRa1=3x Btanh
Bη

6

� �
, ð5:187Þ

T � T1 ¼ q0

ρ1cPαm
bRa�1=3

x

B2

6
sec h2

Bη

6

� �
, ð5:188Þ

where B ¼ (9/2)1/3 ¼ 1.651. The dimensionless temperature profile θ(η) is illus-
trated in Fig. 5.19.

The problem of a line source situated at the vertex of a solid wedge, together

with higher-order boundary layer effects, was analyzed by Afzal (1985). A problem

involving a vertical discontinuity was examined by Shaw and Dawe (1985).

The effect of material anisotropy on convection induced by point or line sources

was studied by Rees et al. (2002). They showed that the path of the plume centerline

is strongly affected by the anisotropy and the presence of impermeable bounding

surfaces. A line source situated in an anisotropic medium also was studied by

Degan and Vasseur (2003). They noted that the minimum (maximum) intensity

of the plume is attained if the medium is oriented with its principal axis with high

permeability parallel (perpendicular) to the vertical. An experimental study of

convection in a packed bed containing a line source was reported by Young et al.

(1986). They had in mind the transport of air in a coal dump with a hot spot.
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Bassom et al. (2001) examined the effects of asymmetrically placed boundaries

on convective plumes, while Rees et al. (2008c) studied the linear vortex instability

of a near-vertical line source plume, the source being embedded in a flat plate that is

aligned at a small angle to the horizontal. Shu (2012) investigated the case where

the plate is inclined at an arbitrary angle.

5.10.1.2 Forchheimer Model

When quadratic drag is taken into account, Eq. (5.23) is replaced by

uþ χ

v
u2 ¼ βK

ν
T � T1ð Þ, ð5:189Þ

where u ¼ ∂ψ /∂y. Following Ingham (1988), we introduce nondimensional quan-

tities defined by

x ¼ Xl, y ¼ Y l
FobRa

� �1=5
, ð5:190Þ

ψ ¼ αm
bRa
Fo

 !1=5

Ψ, T � T1 ¼ χa2m
gβKl2

bRa
Fo

 !4=5

Θ, ð5:191Þ

bRa ¼ gβKlq0

ναmkm
, Fo ¼ χ αm

ν l
, ð5:192Þ

Fig. 5.19 Dimensionless

temperature profiles for

plume rise above a

horizontal line source of

heat in a porous medium

(Lee 1983; Cheng 1985a,

with permission from

Hemisphere Publishing

Corporation)
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where l is a characteristic length scale. Substitution into Eq. (5.189) and the steady-
state form of Eq. (5.7) gives

∂ψ
∂Y

� �2
¼ Θ, ð5:193Þ

∂ψ
∂Y

∂Θ
∂X

� ∂ψ
∂X

∂Θ
∂Y

¼ ∂2Θ
∂Y2

, ð5:194Þ

whena termbRa�2/5Fo�3/5∂Ψ/∂Y inEq. (5.193) has been neglected.Since the boundary

layer thickness is of order l Fo=bRa� 	1=5
, we are requiring that bRaFo�1 � 1 andbRa2=5Fo3=5 � 1. The boundary conditions and the source energy constraint are

Y ¼ 0 : ∂2Ψ

∂Y2
¼ 0,

∂Θ
∂Y

¼ 0,

Y ! 1 :
∂Ψ
∂Y

! 0, Θ ! 0,ð1
�1

∂Ψ
∂Y

ΘdY ¼ 1:

ð5:195Þ

We now introduce the similarity transformation

Ψ ¼ X2=5f ηð Þ, Θ ¼ X�2=5g ηð Þ, η ¼ Y=X3=5, ð5:196Þ
and then the system (5.193)–(5.195) becomes

f 0ð Þ2 ¼ g, ð5:197Þ

g00 ¼ �2

5
f 0gþ f g0ð Þ, ð5:198Þ

g0 0ð Þ ¼ 0, f 0 1ð Þ ¼ 0,

ð1
�1

f 0gdη ¼ 1: ð5:199Þ

These equations have the analytical solution

f ¼ Ctanh
C

10
η, g ¼ C4

100
sech4

C

10
η, ð5:200Þ

where C ¼ (8 
 103/2/3)1/4 ¼ 3.03. Comparison of Eq. (5.200) with Eq. (5.188)

shows that a sech2 function is replaced by a sech4 function and this means that the

Forchheimer model leads to a more sharply peaked temperature profile than does

the Darcy model.
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This conclusion is in accordance with the experiments reported by Cheng

(1985a), carried out by himself, R. M. Fand, and D. K. Chui, on the plume rise

from a horizontal line source of heat embedded in 3-mm diameter glass beads

saturated with silicone oil. Their results are presented in Figs. 5.19 and 5.20.

The work of Ingham (1988) was extended by Rees and Hossain (2001) to interme-

diate distances from the source by computing the smooth transition between the

inertia-dominated and the inertia-free regimes.

An experimental and analytic study of the buoyant plume above a concentrated

heat source in a stratified porous medium was made by Masuoka et al. (1986a, b). In

experiments with a two-layer system two kinds of glass spheres of different

diameter were employed, with water as the saturating fluid. They found that their

similarity solution broke down near the interface.

The effect of dispersion was added by Lai (1991b). The wall plume was studied

by Leu and Jang (1994) using a Brinkman-Forchheimer model. The wall plume has

a lower peak velocity and a higher maximum temperature than the corresponding

free plume. The case of a non-Newtonian power-law fluid was examined by

Nakayama (1993b).

Masuoka et al. (1995b) reported an experimental and analytical study of the

effects of a horizontal porous layer on the development of the buoyant plume

arising from a line heat source in an infinite fluid space. They observed an

expansion of the plume at the lower interface and a contraction at the upper

interface of the permeable layer. Their theoretical model incorporated the

Beavers-Joseph slip boundary condition and they interpreted the fairly good agree-

ment between their experimental and numerical results as confirming the validity of

that condition.

A problem that leads to curved plume paths was studied by Brambles and

Rees (2007).
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Fig. 5.20 Dimensionless temperature versus local Rayleigh number for plume rise above a

horizontal line source of heat in a porous medium (Lee 1983; Cheng 1985a, with permission

from Hemisphere Publishing Corporation)

5.10 Horizontal Line Heat Source 223



5.10.2 Flow at Low Rayleigh Number

Following Nield and White (1982) we introduce polar coordinates (r,θ) with origin
at the source and the plane θ ¼ 0 horizontal. The seepage velocity is (vr, vθ). The
equations for mass conservation, Darcy flow, and transient energy conservation are

∂
∂r

rvrð Þ þ ∂vθ
∂θ

¼ 0, ð5:201Þ

vr ¼ �K

μ

∂P
∂r

þ ρg sin θ

� �
, ð5:202Þ

vθ ¼ �K

μ

1

r

∂P
∂θ

þ ρg cos θ
�� �

, ð5:203Þ

1

αm
σ
∂T
∂t

þ vr
∂T
∂r

þ vθ
r

∂T
∂θ

� �
¼ ∂2

T

∂r2
þ 1

r

∂T
∂r

þ 1

r2
∂2

T

∂θ2
: ð5:204Þ

Introducing the streamfunction ψ(r,θ) by

vr ¼ 1

r

∂ψ
∂θ

, vθ ¼ �∂ψ
∂r

ð5:205Þ

and eliminating the pressure between the two Darcy equations, we obtain, in

nondimensional form,

r*
∂2ψ*

∂r2*
þ ∂ψ*

∂r*
þ 1

r*

∂2ψ*

∂θ2
¼ bRa sin θ

∂T*

∂θ
� r* cos θ

∂T*

∂r*

� �
: ð5:206Þ

∂T*

∂t*
þ 1

r*

∂ψ*

∂θ
∂T*

∂r*
� ∂ψ*

∂r*

∂T
∂θ

� �
¼ ∂2

T*

∂r2*
þ 1

r*

∂T*

∂r*
þ 1

r2*

∂2
T*

∂θ2
, ð5:207Þ

where

t* ¼ tαm
Kσ

, r* ¼ r

K1=2
, T* ¼ T � T1ð Þkm

q0
, ψ* ¼

ψ

αm
, ð5:208Þ

bRa ¼ gβK3=2q0

ναmkm
: ð5:209Þ

The initial conditions, boundary conditions, and energy balance constraint are

t ¼ 0 : vr ¼ vθ ¼ 0, T ¼ T1, ð5:210Þ

r ! 1 : vr ¼ vθ ¼ 0, T ¼ T1, ð5:211Þ
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θ ¼ �π

2
: vθ ¼ ∂vr

∂θ
¼ ∂T

∂θ
¼ 0, ð5:212Þ

lim

r ! 0
�km 2π rð Þ ∂T

∂r

� �
¼ q0: ð5:213Þ

The last equation implies that T is of order ln r as r ! 0, and Eq. (5.204) then

implies that vr is of order r
�1 ln r and vθ is of order r

�1. The above conditions are

readily put in nondimensional form.

For sufficiently small values of Ra we can expand ψ* and T* as power series in Ra,

ψ*; T*ð Þ ¼ ψ*0; T*0ð Þ þ Ra ψ*1; T*1ð Þ þ Ra2 ψ*2; T*2ð Þ þ . . . ð5:214Þ
When we substitute the above equations, collect the terms of the same power of

Ra, and solve in terms the problems of order 0, 1, 2,... in Ra, we find the zero-order

conduction solution

ψ*0 ¼ 0, T*0 ¼ � 1

4π
Ei �η2
� �

, ð5:215Þ

with

η ¼ r*

2 t
1=2
*

, ð5:216Þ

and then the first-order solution

ψ*1 ¼
t
1=2
*

4π
cos θ

exp �η2ð Þ � 1

η
þ ηEi �η2

� �� �
, ð5:217Þ

T*1 ¼ t
1=2
*

sin θ

16π2
ln ηð Þ γ � 2ð Þη� η3

� �þ η ln ηð Þ2 þ η
2� γ

2
þ η3

3� γ

2
þ . . .

 �
,

ð5:218Þ
where γ ¼ 0.5772... is Euler’s constant. In Fig. 5.21 a set of streamlines ψ*/t*

1/2

have been plotted. We see that the flow pattern for small Rayleigh numbers consists

of an expanding vortex whose radius increases with time as t*
1/2 and whose core is

situated at η ¼ 0.567 in the horizontal plane containing the source.

Since the momentum equation is linear, we can superpose solutions for sources

and use the method of images to deduce the flow field due to the presence of a line

source near an insulated vertical wall. We assume that the insulated vertical wall is

given by the y axis of a Cartesian system and the line source is located at x ¼ d,
y¼ 0. The flow field is equivalent to that produced by a pair of line sources, of equal

strength, positioned at x ¼ �d, y ¼ 0. The expression for ψ*1 is now

ψ*1 ¼ τ1=2

4π
Sþ þ S�ð Þ, ð5:219Þ
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where

S� ¼ 2τ1=2 X � 1ð Þ
X � 1ð Þ2 þ Y2

exp � X � 1ð Þ2 þ Y2

4τ

" #
� 1

( )

� X � 1

2τ1=2

ð1
X�1ð Þ2þY2½ �=4 τ

exp �ξð Þ
ξ

dξ,

ð5:220Þ

where τ ¼ tαm/d, X ¼ x/d, Y ¼ y/d. From this expression the streamlines were

plotted in Fig. 5.22. Since the energy equation is nonlinear, it is not possible to

superpose the solutions for T*1.
Degan et al. (2005) studied the effects of anisotropy.

5.11 Point Heat Source

5.11.1 Flow at High Rayleigh Number

Following Wooding (1963) and Bejan (1984), we consider the slender plume above

a point source of constant strength, placed at an impermeable horizontal boundary.

We take cylindrical polar coordinates (r,θ,z) with the origin at the source and the

z axis vertically upward. The problem has axial symmetry, and the seepage velocity

(vr,0,vz) is given in terms of a Stokes streamfunction Ψ by

0.050

0.075

= 0.025

1

0

t*

ψ*1 η
1/2

Fig. 5.21 Streamlines drawn at constant increments of ψ∗1/t*
1/2, for transient natural convection

around a horizontal line heat source (Nield and White 1982)
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vr ¼ 1

r

∂ψ
∂z

, vz ¼ �1

r

∂ψ
∂r

: ð5:221Þ

The boundary layer equations for momentum and energy and the boundary

conditions are

1

r

∂2ψ

∂r2
¼ � gβK

ν

∂T
∂r

, ð5:222Þ

∂ψ
∂z

∂T
∂r

� ∂ψ
∂r

∂T
∂z

¼ αm
∂
∂r

r
∂T
∂r

� �
, ð5:223Þ

r ¼ 0 :
∂ψ
∂z

¼ ∂T
∂r

¼ 0, ð5:224Þ

r ! 1 :
∂ψ
∂r

¼ 0, T ¼ T1, ð5:225Þ

z ¼ 0 :
∂ψ
∂r

¼ 0: ð5:226Þ

If q [W] is the strength of the source, energy conservation requires that

q ¼
ð1
0

ρ1cPvz T � T1ð Þ2πrdr: ð5:227Þ

4

2
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ψ
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Fig. 5.22 Streamlines drawn at constant increments of ψ∗1, for transient natural convection

around a pair of line heat sources of equal strength, at (1,0) and (�1,0) at time τ∗ ¼ 1 (Nield

and White 1982)
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These equations admit the similarity solution

Ψ ¼ �αmz f ηð Þ, ð5:228Þ

T � T1 ¼ q

kmr
eRa�1=2θ ηð Þ, ð5:229Þ

η ¼ eRa1=2r
z
, ð5:230Þ

where eRa is the Rayleigh number based on source strength,

eRa ¼ gβKq

ναmkm
: ð5:231Þ

The functions f and θ satisfy the differential equations

f 00 � θ0 ¼ 0, ð5:232Þ

η2θ00 þ η f � 1ð Þθ0 þ 1� f þ η f 0ð Þθ ¼ 0, ð5:233Þ
the boundary conditions

f 0ð Þ ¼ θ 0ð Þ ¼ 0, ð5:234Þ

f 00 1ð Þ ¼ f 0 1ð Þ ¼ θ 1ð Þ ¼ 0, ð5:235Þ
and the constraint ð1

0

f 0θ
η

dη ¼ 1

2π
: ð5:236Þ

When the boundary conditions (5.231) are utilized, Eq. (5.228) integrates to give

f 0 ¼ θ, and so Eq. (5.229) becomes

d

dη
f 00 � f 0

η
þ f f 0

η

� �
¼ 0: ð5:237Þ

Integrating this equation and invoking Eq. (5.230), we have

f f 0 ¼ f 0 � η f 00: ð5:238Þ
The solution satisfying the boundary conditions is

f ¼ Cηð Þ2
1þ Cη=2ð Þ2 , ð5:239Þ
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and the constraint (5.236) requires that C ¼ π�1/2/4 ¼ 0.141. Wooding (1985) has

extended the boundary layer equations to account for large density differences,

dispersion, and convection in the presence of tidal oscillations.

Lai (1990b) showed that a similarity solution could be found for the case of a

power law variation of centerline temperature. The problem was also studied by

Afzal and Yahya Salam (1990). The problem was treated using the Forchheimer

model by Degan and Vasseur (1995). As one would expect, inertial effects tend to

reduce the buoyancy-induced flow. Inertial effects, together with those of thermal

dispersion, also were discussed by Leu and Jang (1995). The case of a

non-Newtonian power-law fluid was examined by Nakayama (1993a). Higuera

and Weidman (1998) noted that the case of natural convection far downstream of

a heat source on a solid wall led to a parameter-free differential equation problem.

Zhang et al. (2010) studied transient and steady convection from a heat source

embedded in a thermally stratified layer. A pulsating point source in an infinite

dusty Darcy medium was investigated by Kannan and Venkataraman (2013).

Buoyant convection from a discrete source in a leaky porous medium was studied

by Roes et al. (2014).

5.11.2 Flow at Low Rayleigh Number

We now consider a point heat source of strength q [W] in an unbounded domain.

We introduce spherical polar coordinates (r,θ,φ), with θ the “colatitude” and φ the

“longitude,” and with the line θ ¼ 0 vertically upward. We have an axisymmetric

problem with no dependence on φ. The equations for mass conservation, Darcy

flow, and transient energy conservation are

∂
∂r

r2 vr sin θ
� �þ ∂

∂θ
r vθ sin θð Þ ¼ 0, ð5:240Þ

vr ¼ �K

μ

∂P
∂r

þ ρg cos θ

� �
, ð5:241Þ

vθ ¼ �K

μ

1

r

∂P
∂θ

� ρg sin θ

� �
, ð5:242Þ

1

αm
σ
∂T
∂t

þ vr
∂T
∂r

þ vθ
r

∂T
∂θ

� �
¼ 1

r2
∂
∂r

r2
∂T
∂r

� �
þ 1

r2 sin θ

∂
∂θ

sin θ
∂T
∂t

� �
:

ð5:243Þ
Introducing the Stokes streamfunction Ψ(r,θ) by

vr ¼ 1

r2 sin θ

∂Ψ
∂θ

, vθ ¼ � 1

r sin θ

∂Ψ
∂r

, ð5:244Þ
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and eliminating the pressure between the two Darcy equations, we get, in

nondimensional variables,

1

r2*

∂
∂θ

1

sin θ

∂Ψ *

∂θ

� �
þ 1

sin θ

∂2Ψ *

∂r2*
¼ eRa cos θ

∂T*

∂θ
þ r* sin θ

∂T*

∂r*

� �
, ð5:245Þ

∂T*

∂t*
þ 1

r2* sin θ

∂Ψ *

∂θ
∂T*

∂r*
� ∂Ψ *

∂r*

∂T*

∂θ

� �
¼ 1

r2*

∂
∂r*

r2*
∂T*

∂r*

� �
þ 1

r2* sin θ

∂
∂θ

sin θ
∂T*

∂θ

� �
,

ð5:246Þ

where

t* ¼ tαm
Kσ

, r* ¼ r

K1=2
, T* ¼ T � T1ð ÞkmK1=2

q

Ψ * ¼ Ψ

αmK1=2
, eRa ¼ gβKq

ναmkm
:

ð5:247Þ

The initial conditions for this transient problem are

t ¼ 0 : vr ¼ vθ ¼ 0, T ¼ T1:

The appropriate boundary conditions are

r ! 1 : vr ¼ vθ ¼ 0, T ¼ T1,

θ ¼ 0, π : vθ ¼ ∂vr
∂θ

¼ ∂T
∂θ

¼ 0,
ð5:248Þ

together with the fact that vr, vθ, and T are of order 1/r as r! 0. This is required by

the balance of terms in the above differential equations, together with the energy

balance constraint

lim
r!0

�km 4π r2
� � ∂T

∂r

� �
¼ q: ð5:249Þ

The above conditions are readily put in nondimensional form. For sufficiently

small values of eRa we can expand Ψ* and T* as power series in eRa,
Ψ *; T*ð Þ ¼ Ψ *0; T*0ð Þ þ eRa Ψ *1; T*1ð Þ þ � � �: ð5:250Þ

We can then substitute into the above equations and equate terms in like powers

of eRa, thus obtaining subproblems at order eRa0, eRa1, eRa2, . . .. The zero-order

problem yields the conduction solution

T*0 ¼ 1

4π r
erfcη, ð5:251Þ
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Ψ *0 ¼ 0, ð5:252Þ

where η ¼ r*/2t*
1/2. The first-order problem yields (Bejan 1978)

Ψ 1* ¼ 1

8π
t
1=2
* sin 2θ 2ηerfcηþ 1

η
erf η� 2

π1=2
e�η2

� �
, ð5:253Þ

T*1 ¼
cos θ

64π2 t1=2*

1

η
� 4

3π1=2
þ 6

5π1=2
η2 � 16

45π
η3 � 152

315π1=2
η4 þ � � �

� �
: ð5:254Þ

Figure 5.23, based on Eq. (5.253), shows that as soon as the heat source is turned

on a vortex ring forms about the source. The radius of the core of the vortex is given

by η¼ 0.881, i.e., the physical radius grows with time as the group 1.762(αm t/σ)1/2.
Unlike the line-source problem of Sect. 5.1.9.2, the present point source problem

has a steady-state small eRa solution with

ψ* ¼
r*
8π

sin 2θ eRaþ 1

24π
sin θ sin 2θ eRa2 � 5

18432π3
8cos 4θ � 3
� � eRa3 þ � � �

� �
,

ð5:255Þ

T* ¼ 1

4π r*
1þ 1

8π
cos θ eRaþ 5

768π2
cos 2θ eRa2�

þ 1

55296π3
cos θ 47cos 2θ � 30

� � eRa3 þ � � �
�
:

ð5:256Þ

0

1

h

Fig. 5.23 Transient natural convection flow pattern about a point heat source. The lines corre-

spond to equal increments of ψ∗1/t
1/2

∗ (Bejan 1978, 1984)
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This solution gives valid results for source strength Rayleigh numbers eRa up to

about 20. The temperature field is illustrated in Fig. 5.24 in which a curve represents

the isothermal surface T* ¼ 1/4πR*, where R* is a fixed nondimensional distance

from the origin. The figure shows that the warm region, originally spherical about

the point source, shifts upward and becomes elongated like the flame of a candle aseRa increases.
Whereas Bejan (1978) used the source condition (5.249), which requires the heat

flux to be uniformly distributed over an isothermal source, Ene and Poliševski

(1987) took

lim
r!0

ð
sr

�km
∂T
∂r

� �
dσ ¼ q, ð5:257Þ

where Sr is the sphere of radius r. Equation (5.257) implies that ∂T/∂r varies with θ
in a special way (determined by the overall problem) as r ! 0. It appears to be the

more appropriate condition. Both Eqs. (5.249) and (5.257) are based on the

assumption that the convective heat transport at the source is negligible [compare

Eq. (5.264)].

Hickox (1981) has utilized the fact that the momentum equation is linear in Ra to

investigate certain other geometries by superposing sources. Ganapathy and

Purushothaman (1990b) discussed the case of an instantaneous point source. The

0

0

5

10

Ra=15

1 r*/R*

~Fig. 5.24 Steady

temperature distribution

around a point heat source;

the lines represent the

(4πR∗)θ ¼ 1 isotherm, for

increasing values of Ra

(Bejan 1978, 1984)
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Brinkman term affects the solution at radial distances up to O(K1/2) from the source,

where at small times it slows the rate of momentum transfer. Purushothaman et al.

(1990) dealt with a pulsating point heat source. Ganapathy (1992) treated an

instantaneous point source which is enveloped by a solid sphere that is itself

surrounded by a porous medium.

5.11.3 Flow at Intermediate Rayleigh Number

For the steady situation Hickox and Watts (1980) obtained results for arbitrary

values of eRa, for both the semi-infinite region considered by Wooding and Bejan

and the infinite region. For the infinite region, with spherical polar coordinates and

the streamfunction defined as in Eq. (5.244), one can put

η ¼ cos θ, ψ ¼ αmr f ηð Þ, T � T1 ¼ αm
gKβ

g ηð Þ
r

: ð5:258Þ

The problem reduces to the solution of the differential equations

f 00 ¼ � ηgð Þ0, ð5:259Þ

f gð Þ0 ¼ g00 � η2 g0
� �0

, ð5:260Þ

subject to the symmetry and boundary conditions

f 1ð Þ ¼ 0, f �1ð Þ ¼ 0, ð5:261Þ

g, g0 bounded as η ! �1, ð5:262Þ
and the constraint ð 1

�1

1� f 0ð Þgdη ¼ 2π eRa: ð5:263Þ

The last equation arises from the requirement that the energy flux, integrated

over a sphere centered at the origin, should equal q, soð π

0

ρcPð Þfvr T � T1ð Þ � km
∂T
∂r

� �
2π r2 sin θdθ ¼ q: ð5:264Þ

Hickox and Watts (1980) integrated Eqs. (5.259)–(5.263) numerically. They

treated the semi-infinite region in a similar fashion, but using a different similarity

transformation. Some representative plots of isotherms and streamlines are

presented in Figs. 5.25 and 5.26.
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5.12 Other Configurations

5.12.1 Fins Projecting from a Heated Base

The problem of high Rayleigh number convection about a long vertical thin fin with

a heated base can be treated as a conjugate conduction-convection problem.

Various geometries have been considered. Pop et al. (1985) obtained a similarity

solution for a vertical plate fin projecting downward from a heated horizontal plane

base at constant temperature for the case of the conductivity-fin thickness product

varying as a power function of distance from a certain specified origin. They also

dealt with the similar problem of a vertical plate extending from a heated horizontal

cylindrical base at constant temperature.

Pop et al. (1986) used a finite-difference numerical method for the former

geometry but with constant conductivity and fin thickness, and Liu and Minkowycz

(1986a, b) investigated the influence of lateral mass flux in this situation. Liu et al.

(1986a) studied a conjugate mixed convection problem. Gill and Minkowycz

(1988) examined the effects of boundary friction and quadratic drag. A fin embed-

ded in a thermally stratified medium was studied by Nakayama and Koyama

(1986). Hung et al. (1989) have incorporated non-Darcy effects in their study of a

transient problem. The above studies all have been of a vertical plate fin. The case

of a vertical cylindrical fin was analyzed by Liu et al. (1986b, 1987b); again the

effect of lateral mass flux was included. A conjugate problem with a circular pin

was studied by Chen and Chen (1993a, b). Convection from a slender needle, for the

case where the axial wall thickness varies as a power function of distance from the

leading edge, was analyzed by Peng et al. (1992). Convection around an array of

needles was examined by Gori et al. (1995). Conjugate convection from vertical

fins was studied by Vaszi et al. (2003).

Conjugate convection about a vertical plate fin was studied by Hung (1991)

using the Brinkman–Forchheimer model. The same problem but with icy water was

treated by Pop and Hossain (1995). Chen and Chiou (1994) added the effects of

thermal dispersion and nonuniform porosity. Conjugate convection of a non-New-

tonian fluid about a vertical plate was studied by Pop and Nakayama (1994), while

the corresponding problem for a vertical cylindrical fin was treated by Hossain et al.

(1995). Further work on conjugate convection from vertical plate fins was reported

by Vaszi et al. (2002b, 2004a, b) and Pop and Nakayama (1999). An array of fins

projecting from a cylinder was studied by Jamin and Mohamad (2008). Convection

and radiation in porous fins were studied by Darvishi et al. (2013, 2016).

Further work involving fins was conducted by Kiwan (2007a, b), Seyf and

Layeghi (2010), Sathiyamoorthy and Narasimman (2011), and Gorla and

Bakier (2011).
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5.12.2 Flows in Regions Bounded by Two Planes

The Darcy flow in a corner region bounded by a heated vertical wall and an

insulated inclined wall was analyzed by Daniels and Simpkins (1984), while

Riley and Rees (1985) analyzed the non-Darcy flow in the exterior region bounded

by a heated inclined wall and an inclined wall that was either insulated or cooled. In

each of these two publications the heated wall was at constant temperature. Hsu and

Cheng (1985a) analyzed the Darcy flow about an inclined heated wall with a power

law of variation of temperature and an inclined unheated isothermal wall.

The particular case of the Darcy flow in the “stably heated” corner between a

cold horizontal wall and a hot vertical wall situated above the horizontal wall

(or between a hot horizontal wall and a cold vertical wall situated below the

horizontal wall) was studied by Kimura and Bejan (1985). Their scale analysis

and numerical solutions showed that the single-cell corner flow becomes increas-

ingly more localized as the Rayleigh number increases. At the same time the mass

flow rate engaged in natural convection and the conduction-referenced Nusselt

number increase.

Liu et al. (1987a) found a local similarity solution for flow in the corner formed

by two mutually perpendicular vertical plates for the case when both plates are at

the same constant wall temperature. Earlier solutions by Liu and Ismail (1980) and

Liu and Guerra (1985) (the latter with an arbitrary angle between the vertical plates)

had been obtained under an asymptotic suction assumption. Two other problems

involving perpendicular planes were studied by Ingham and Pop (1987a, b). Pop

et al. (1997) performed calculations for convection in a Darcian fluid in a horizontal

L-shaped corner, with a heated isothermal vertical plate joined to a horizontal

surface that is either adiabatic or held at ambient temperature. Three-dimensional

flow at a rectangular corner was studied by Ozoe et al. (1990).

5.12.3 Other Situations

The problem of the cooling of a circular plate situated in the bottom plane boundary

of a semi-infinite region was analyzed as a boundary layer problem by McNabb

(1965). The boundary layer flow near the edge of a horizontal circular dish in an

unbounded region was studied by Merkin and Pop (1989). A numerical study on

various models of convection in open-ended cavities was reported by Ettefagh

et al. (1991).

The subject of conjugate natural convection in porous media has been reviewed

by Kimura et al. (1997). They discussed various configurations including slender

bodies, rectangular slabs, horizontal cylinders, and spheres. Three-dimensional

stagnation point convection on a surface on which heat is released by an exothermic

reaction was analyzed by Pop et al. (2003). The topic of chemically driven

convection in porous media was reviewed by Pop et al. (2002); other relevant
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papers include those by Mahmood and Merkin (1998) and Merkin and Mahmood

(1998). The effect of LTNE or g-jitter on convective stagnation point flow was

analyzed by Rees and Pop (1999, 2001). Convection from a cylinder covered with

an orthotropic porous layer in cross-flow was investigated numerically by

Abu-Hijleh (2001a).

Convection in a triangular cavity filled with a porous medium saturated with a

nanofluid, and with a flush mounted heater on a wall, was studied by Sun and

Pop (2011).

5.13 Surfaces Covered with Hair

The two-temperatures porous medium model described in Sect. 4.10 was also used

in the theoretical study of natural convection heat transfer from surfaces covered

with hair (Bejan 1990b). With reference to a vertical surface (Fig. 5.27) the

boundary layer equations for energy conservation and Darcy flow are written as

air boundary layer

length of fin conduction

hair strands

skin, Tw
Ts(x) Ts ≅ T∞

air, T∞

g

Ta ≅ T∞

0
0 x

V
U

H

y

Ta(x,y)

Fig. 5.27 Vertical skin

area, air boundary layer, and

hair strands that act as fins

(Bejan 1990b)
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ρcP U
∂Ta

∂x
þ V

∂Ta

∂y

� �
¼ ka

∂2
Ta

∂x2
þ nhps Ts � Tað Þ, ð5:265Þ

∂V
∂x

¼ gβK

νφ

∂Ta

∂x
: ð5:266Þ

The porosity φ appears in the denominator in Eq. (5.266), because in this model

V is the air velocity averaged only over the space occupied by air. The rest of the

notation is defined in Fig. 5.27 and Sect. 4.10. For example, n is the hair density

(strands/m2).

The boundary layer heat transfer analysis built on this model showed that the

total heat transfer rate through a skin area of height H is minimized when the hair

strand diameter reaches the optimal value

Dopt

H
¼ 1� φ

0:444

� �1=2 ks
ka

f 2
φ f 1 Raf

� �1=4
: ð5:267Þ

The Raf factor in the denominator is the Rayleigh number for natural convection

in open air, Raf ¼ gβH3(Tw – T1)/ναa. The minimum heat transfer rate that

corresponds to Dopt is

q0min

ka Tw � T1ð Þ ¼ 1:776 1� φð Þ1=2 φ f 1f 2
ks
ka
Raf

� �1=4
: ð5:268Þ

The factors f1 and f2 are both functions of porosity, and result from having

modeled the permeability and strand-air heat transfer coefficient by

K ¼ D2 f 1 φð Þ, h ¼ ka
D

f 2 φð Þ: ð5:269Þ

It is important to note that since Raf is proportional to H
3, Eq. (5.267) states that

the optimal strand diameter is proportional to H1/4. The theoretical results for a

vertical surface covered with hair were tested in an extensive series of numerical

experiments (Lage and Bejan 1991).

Analogous conclusions are reached in the case where instead of the vertical

plane of Fig. 5.27, the skin surface has the shape of a long horizontal cylinder of

diameter Do. The optimal hair strand diameter is

Dopt

Do
¼ 1:881 1� φð Þ1=2 ks

ka

f 2
φ f 1Rafo

� �1=4
, ð5:270Þ

where Rafo ¼ gβDo
3(Tw – T1)/ναa. In the case where the body shape approaches a

sphere of diameter Do, the optimal hair strand diameter has a similar form,
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Dopt

Do
¼ 2:351 1� φð Þ1=2 ks

ka

f 2
φ f 1Rafo

� �1=4
: ð5:271Þ

Equations (5.270) and (5.271) show that Dopt increases as Do
1/4. Combined with

Eq. (5.267), they lead to the conclusion that when the heat transfer mechanism is

boundary layer natural convection, the optimal hair strand diameter increases as the

vertical dimension of the body (H, or Do) raised to the power 1/4.
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Chapter 6

Internal Natural Convection: Heating
from Below

Detailed studies of some material in this chapter have been made in the books by

Straughan (2008, 2015a, b, c, d).

6.1 Horton-Rogers-Lapwood Problem

We start with the simplest case, namely that of zero flow through the fluid-saturated

porous medium. For an equilibrium state the momentum equation is satisfied if

�∇Pþ ρfg ¼ 0: ð6:1Þ
Taking the curl of each term yields

∇ρf � g ¼ 0: ð6:2Þ
If the fluid density ρf depends only on the temperature T, then this equation

implies that∇T� g¼ 0. We conclude that a necessary condition for equilibrium is

that the temperature gradient is vertical (or zero). Intrapore convection may

increase effective conductivity of the medium. We thus have a special interest in

the problem of a horizontal layer of a porous medium uniformly heated from below.

This problem, the porous-medium analog of the Rayleigh–Bénard problem, was

first treated by Horton and Rogers (1945) and independently by Lapwood (1948).

As recorded in the historical note by Nield and Kuznetsov (2013h), these were

the first published studies of convection in a porous medium. They were followed

by the investigations of Morrison et al. (1949), Rogers and Morrison (1950), Rogers

et al. (1951), Morrison and Rogers (1952), and Rogers (1953). The first experimen-

tal study (with unconsolidated sands) was that of Morrison et al. (1949).

With reference to Fig. 6.1, we take a Cartesian frame with the z axis vertically
upward. We suppose that the layer is confined by boundaries at z¼ 0 and z¼ H, the
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lower boundary being at uniform temperature T0 + ΔT and the upper boundary at

temperature T0. We thus have a layer of thickness H and an imposed adverse

temperature gradient ΔT/H. We suppose that the medium is homogeneous and

isotropic, that Darcy’s law is valid, and that the Oberbeck-Boussinesq approxima-

tion is applicable, and we also make the other standard assumptions (local thermal

equilibrium, negligible heating from viscous dissipation, negligible radiative

effects, etc.). The appropriate equations are, cf. Eqs. (1.1), (1.10), (2.3), and (2.20),

∇ � v ¼ 0, ð6:3Þ

ca ρ0
∂v
∂t

¼ �∇P� μ

K
vþ ρfg, ð6:4Þ

ρcð Þm
∂T
∂t

þ ρcPð Þfv �∇T ¼ km∇2T, ð6:5Þ

ρf ¼ ρ0 1� β T � T0ð Þ½ �: ð6:6Þ
The reader is reminded that v is the seepage velocity, P is the pressure, μ the

dynamic viscosity, K the permeability, c the specific heat, km the overall thermal

conductivity, and β the thermal volume expansion coefficient.

We observe that Eqs. (6.3)–(6.6) have a basic steady-state solution, which

satisfies the boundary conditions T ¼ T0 + ΔT at z ¼ 0 and T ¼ T0 at z ¼ H. That
solution is

vb ¼ 0, ð6:7Þ

Tb ¼ T0 þ ΔT 1� z

H

� �
, ð6:8Þ

Pb ¼ P0 � ρ0g zþ 1

2
βΔT

z2

H
� 2z

� �� �
: ð6:9Þ

It describes the “conduction state,” one in which the heat transfer is solely by

thermal conduction.

Porous Medium

T=T0

T=T0+ΔT

z=H

z

z=0
x

y

g

Fig. 6.1 The Horton-

Rogers-Lapwood problem:

infinite horizontal porous

layer heated from below
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6.2 Linear Stability Analysis

We now examine the stability of this solution and assume that the perturbation

quantities (those with primes) are small. We write

v ¼ vb þ v0, T ¼ Tb þ T0, P ¼ Pb þ P0: ð6:10Þ
When we substitute into Eqs. (6.3)–(6.5) and neglect second-order small quan-

tities we obtain the linearized equations [note v0 ¼ (u0, v0,w0)].

∇ � v0 ¼ 0, ð6:11Þ

caρ0
∂v0

∂t
¼ �∇P0 � μ

K
v0 � βρ0T

0g, ð6:12Þ

ρcð Þm
∂T0

∂t
� ρcPð Þf

ΔT
H

w0 ¼ km∇2T0: ð6:13Þ

Nondimensional variables are introduced by choosingH, σH2/αm, αm/H,ΔT, and
μαm/K as scales for length, time, velocity, temperature, and pressure, respectively.

Here αm is a thermal diffusivity defined by

αm ¼ km
ρcPð Þf

¼ km
kf

αf , ð6:14aÞ

where αf ¼ kf/(ρcP)f is the thermal diffusivity of the fluid phase. It is convenient to

define the heat capacity ratio

σ ¼ ρcð Þm
ρcPð Þf

ð6:14bÞ

and put

bx ¼ x

H
, bt ¼ αmt

σH2
, bv ¼ Hv0

αm
,

bT ¼ T

ΔT
, bP ¼ KP0

μαm
, ð6:15Þ

with bx ¼ (x, y, z). Substituting Eqs. (6.11)–(6.13) we get

∇ � bv ¼ 0, ð6:16Þ

γa
∂bv
∂bt ¼ �∇bP � bv þ RabTk, ð6:17Þ

∂bT
∂bt � bw ¼ ∇2bT , ð6:18Þ
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where k is the unit vector in the z direction and

Ra ¼ ρ0gβKHΔT
μαm

, Prm ¼ μ

ρ0αm
, γa ¼

caK

σPrmH
2
: ð6:19Þ

In Eq. (6.19) Ra is the Rayleigh–Darcy number (or Rayleigh number, for short),

Prm is an overall Prandtl number, and γa is a nondimensional acceleration coeffi-

cient. In most practical situations the Darcy number K/H2 will be small and as a

consequence γa also will be small. Accordingly we take γa ¼ 0 unless otherwise

specified. Note that the Rayleigh–Darcy number is the product of the Darcy number

and the usual Rayleigh number for a clear viscous fluid.

Operating on Eq. (6.17) twice with curl, using Eq. (6.16) and taking only the

z component of the resulting equation, we obtain

1þ γa∂=∂tð Þ∇2bw ¼ Ra∇2
H
bT , ð6:20Þ

where ∇2
H ¼ ∂2

=∂x2 þ ∂2
=∂y2. Equations (6.18) and (6.20) contain just two

dependent variables, bw and bt. Since the equations are linear, we can separate the

variables. Writing

bw; bT� �
¼ W bzð Þ; θ bzð Þ½ �exp sbt þ ilbx þ imby� 	 ð6:21Þ

and substituting into Eqs. (6.18) and (6.20), we obtain

D2 � α2 � s
� 	

θ ¼ �W, ð6:22Þ

1þ γasð Þ D2 � α2
� 	

W ¼ �α2Ra θ ð6:23aÞ
where

D � d

dbz and α ¼ l2 þ m2
� 	1=2

: ð6:23bÞ

In these equations α is an overall horizontal wavenumber. This pair of ordinary

differential equations forms a fourth-order system, which must be solved subject to

four appropriate boundary conditions.

Various types of boundaries can be considered. If both boundaries are imper-

meable and are perfect thermal conductors, then we must have w0 ¼ 0 and T0 ¼ 0 at

z ¼ 0 and z ¼ H, and so

W ¼ θ ¼ 0 at bz ¼ 0 and bz ¼ 1: ð6:24Þ
The homogeneous equations (6.22) and (6.24) form an eigenvalue system in

which Ra may be regarded as the eigenvalue. In order for the solution to remain

bounded as x, y !�1, the wavenumbers l and m must be real, and hence the

overall wavenumber α must be real. In general s can be complex, s ¼ sr + iω. If
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sr > 0, then perturbations of the form (6.21) grow with time, i.e., we have

instability. The case sr ¼ 0 corresponds to marginal stability. In general ω gives

the frequency of oscillations, but in the present case it is easily proven that ω ¼ 0

when sr > 0, so when the disturbances grow with time they do so monotonically. In

other words, the so-called principle of exchange of stabilities is valid.

For the case of marginal stability we can put s ¼ 0 in Eqs. (6.22) and (6.23a),

which become

D2 � α2
� 	

θ ¼ �W, ð6:25Þ

D2 � α2
� 	

W ¼ �α2Ra θ: ð6:26Þ

Eliminating θ we have

D2 � α2
� 	 2

W ¼ α2RaW, ð6:27Þ
with

W ¼ D2W ¼ 0 at bz ¼ 0 and bz ¼ 1: ð6:28Þ
We see immediately that W ¼ sin (jπbz) is a solution, for j ¼ 1, 2, 3,. . ., if

Ra ¼ j2π2 þ α2
� 	2

α2
: ð6:29Þ

Clearly Ra is a minimum when j¼ 1 and α¼ π, i.e., the critical Rayleigh number

is Rac ¼ 4π2 ¼ 39.48 and the associated critical wavenumber is αc ¼ π. For the
higher-order modes ( j ¼ 2, 3,. . .), Raj ¼ 4π2j2 and αcj ¼ jπ. An alternative to the

derivation of critical Rayleigh number is constructal theory (Nelson and Bejan

1998; Bejan 2000), which yields Rac ¼ 12π ¼ 37.70 (see Sect. 6.26).

In conclusion, for Ra < 4π2 the conduction state remains stable. When Ra is

raised above 4π2, instability appears as convection in the form of a cellular motion

with horizontal wavenumber π.
In this way linear stability theory predicts the size of the convection cells but it

says nothing about their horizontal planform, because the eigenvalue problem is

degenerate. The (x, y) dependence can be given by any linear combination of terms

of the form exp. (ilx + imy) where l2 + m2 ¼ α2. In particular, dependence on sin αx
corresponds to convection rolls whose axes are parallel to the y axis; dependence on

sin(αx/
ffiffiffi
2

p
)sin(αy/

ffiffiffi
2

p
) corresponds to cells of square plan form, and dependence on

cos αx + 2 cos(αx/2)�cos( ffiffiffi
3

p
αy/2) corresponds to cells of hexagonal plan form. In

each case the nondimensional horizontal wavelength is 2π/αc ¼ 2. Since the height

of the layer is 1, this wavelength is the width of a pair of counter-rotating rolls of

square vertical cross section. Further, linear theory does not predict whether, in a

hexagonal cell, fluid rises in the center and descends near the sides or vice versa;

nonlinear theory is needed to predict which situation will occur.
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Equation (6.29) has been obtained for the case of impermeable conducting

boundaries. For other boundary conditions the eigenvalue problem must in general

be solved numerically, but there is one other case when a numerical calculation is

not necessary. It is made possible by the fact that the critical wavenumber is zero,

and so an expansion in powers of α2 works.
That special case is when both boundaries are perfectly insulating, i.e., the heat

flux is constant on the boundaries. When the boundaries are also impermeable, we

have

W ¼ Dθ ¼ 0 at bz ¼ 0 and bz ¼ 1: ð6:30Þ
Writing

W; θ;Rað Þ ¼ W0; θ0;Ra0ð Þ þ α2 W1; θ1;Ra1ð Þ þ � � � ð6:31Þ
substituting Eqs. (6.25), (6.26), and (6.30) and equating powers of α2, we obtain in

turn systems of various orders. For the zero-order system we find that

D2W0 ¼ 0, D2θ0 þW0 ¼ 0,

W0 ¼ Dθ0 ¼ 0 at bz ¼ 0, 1

This system has the solution W0 ¼ 0, θ0 ¼ constant, and without loss of

generality we can take θ0 ¼ 1. The order α2 system is

D2W1 ¼ W0 � Ra0θ0 ¼ �Ra0, D2θ1 þW1 ¼ θ0 ¼ 1,

W1 ¼ Dθ1 ¼ 0 at bz ¼ 0, 1:

With the arbitrary factor suitably chosen, these equations yield in succession

W1 ¼ �1

2
Ra0 bz2 �bz� 	

1þ 1

2
Ra0 bz2 � bz� 	� �

¼ 0:

This implies that Ra0 ¼ 12. From the order α4 system Ra1 can be calculated. It

turns out to be positive, so it follows that Rac ¼ 12, αc ¼ 0.

More generally, one can impose boundary conditions

DW � KlW ¼ 0, Dθ � Llθ at bz ¼ 0, ð6:32Þ

DW þ KuW ¼ 0, Dθ þ Luθ ¼ 0 at bz ¼ 1:

The subscripts l and u refer to lower and upper boundaries, respectively. Here Ll
and Lu are Biot numbers, taking the limit values 0 for an insulating boundary and1
for a conducting boundary. The coefficients Kl and Ku take discrete values, 0 for a
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boundary at constant pressure (as for the porous medium bounded by fluid), and1
for an impermeable boundary. Critical values for various combinations are given in

Table 6.1 after Nield (1968), with a correction. [The traditional term “insulating”

refers to perturbations. This is somewhat confusing terminology, so following Rees

(2000)we now refer to this as the constant heat flux condition. Also, strictly speaking,

the constant pressure condition refers to a hydrostatic situation in the exterior region.]

As one would expect, Rac and αc both decrease as the boundary conditions are

relaxed. A permeable boundary was investigated by Klein (1978). Calculations for

intermediate values of the Biot numbers Ll and Lu were reported by Wilkes (1995)

and Barletta et al. (2015a). The onset of gas convection in a moist porous layer with

the top open to the atmosphere was analyzed by Lu et al. (1999). They found that the

critical Rayleigh number was then less than the classical value of π2. The open-top
problem for a vertical fault was analyzed by Malkovsky and Pek (2004).

Tyvand (2002) demonstrated that the open boundary condition, traditionally

known as the constant pressure boundary condition, corresponds to requiring that

the surrounding fluid is hydrostatic. Just as the kinematic condition on an imper-

meable boundary is n�v ¼ 0, the condition on an open boundary is v�n ¼ 0. The

effect of conducting boundary plates, which lead to a conjugate convection-con-

duction problem, was studied by Mojtabi and Rees (2011) and Saleh et al. (2011b).

6.3 Weak Nonlinear Theory: Energy and Heat
Transfer Results

The nonlinear nondimensional perturbation equations are

γa
∂v
∂t

¼ �∇P� vþ RaTk, ð6:33Þ

Table 6.1 Values of the

critical Rayleigh number Rac
and the corresponding critical

wavenumber αc for various
boundary conditions (after

Nield 1968)

Kl Ku Ll Lu Rac αc
IMP IMP CON CON 39.48 ¼ 4π2 3.14 ¼ π

IMP IMP CON CHF 27.10 2.33

IMP IMP CHF CHF 12 0

IMP FRE CON CON 27.10 2.33

IMP FRE CHF CON 17.65 1.75

IMP FRE CON CHF 9.87 ¼ π2 1.57 ¼ π/2

IMP FRE CHF CHF 3 0

FRE FRE CON CON 12 0

FRE FRE CON CHF 3 0

FRE FRE CHF CHF 0 0

The terms free, conducting, and insulating are equivalent to

constant pressure, constant temperature, and constant heat flux,

respectively

IMP: impermeable (K¼1); FRE: free (K¼ 0); CON: conducting

(L ¼ 1) CHF: constant heat flux (L ¼ 0)
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∂T
∂t

� wþ v �∇T ¼ ∇2T ð6:34Þ

in which, for convenience, we have dropped the carets. These equations can be

compared with the linear set (6.17) and (6.18).

We can obtain equations involving energy balances by multiplying Eqs. (6.33)

and (6.34) by v and θ, respectively, and averaging over the fluid layer. We use the

notation

fh i ¼
ð 1

0

�fdz,

where the bar denotes an average over (x, y) values at a given value of z. Using the

fact that all expressions that can be written as a divergence vanish because of the

boundary conditions and because contributions from the sidewalls become negli-

gible in the limit of an infinitely extended layer, we obtain

1

2
γa

∂
∂t

v � vh i ¼ RawTh i � v � vh i, ð6:35Þ

1

2

∂
∂t

T2
 � ¼ wTh i � ∇Tj j2

D E
: ð6:36Þ

For steady or statistically stationary convection the left-hand sides of these two

equations are zero. Then Eq. (6.35) expresses the balance between the work done by

the buoyancy force and the viscous dissipation, while Eq. (6.36) represents a similar

relationship between the convective heat transfer and the entropy production by

convection.

That hwTi represents the convective part of the heat transport can be demon-

strated as follows. The horizontal mean of Eq. (6.34) is

∂T
∂t

þ ∂
∂z

wT
� 	 ¼ ∂2

T

∂z2
: ð6:37Þ

For a steady temperature field, integration with respect to z and use of the

boundary conditions gives

∂T
∂z

¼ wT � wTh i: ð6:38Þ

Since the normal component of the velocity (w) vanishes at the boundary, the

entire heat flux is transported by conduction at the boundary. Thus the expression

�∂T
∂z

����
z¼1

¼ wTh i
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represents the convective contribution to the heat transport. The Nusselt number Nu

is defined as the ratio of the heat transports with and without convection. Therefore

we conclude that

Nu ¼ 1þ wTh i: ð6:39Þ
From Eq. (6.35) it follows that under stationary conditions hwTi ¼ 0 and so

Nu ¼ 1. Also, under the same conditions, we see from Eqs. (6.35) and (6.36) that

Ra ¼
vj j2

D E
∇Tj j 2

D E
wTh i2 : ð6:40Þ

The right-hand side has a positive minimum value, and it follows that steady or

statistically stationary convection can exist only above a certain positive value of

Ra. The right-hand side can be interpreted as a functional of the trial fields v and T.
When this functional is minimized subject to the constraints of the continuity

Eq. (6.16) and the boundary conditions, the energy stability limit RaE is obtained.

No steady or statistically stationary form of convection is possible for Ra< RaE;

further details on this are given by Joseph (1976). The Euler equations

corresponding to the variational problem that determine RaE turn out to be math-

ematically identical to the linearized steady version of Eqs. (6.16)–(6.18). Thus

finite amplitude “subcritical instability” is not possible, and the criterion Ra ¼ Rac
provides not only a sufficient condition for instability but also a necessary one.

We also note that the total nondimensional mean temperature gradient ∂Ttotal/∂z
is given by

∂T total

∂z
¼ �1þ wT � wTh i ð6:41Þ

and that it is related to the conduction-referenced Nusselt number,

Nu ¼ � ∂T total

∂z

���� ����
z¼0

: ð6:42Þ

We also note that the effect of convection is to increase the temperature gradient

near each boundary and decrease it in the remainder of the layer.

From Eq. (6.34) in the steady case we haveð1
0

wT
∂T total

∂z
dz ¼ T∇2T

 �
and after using Eq. (6.41),

wTh i þ T∇2T
 � ¼ ð 1

0

wT
� 	2

dz� wTh i2: ð6:43Þ

6.3 Weak Nonlinear Theory: Energy and Heat Transfer Results 249



If we now substitute for w and T the solutions of the linearized equations, we

obtain an expression for the amplitude A of the disturbances corresponding to the

jth mode,

A ¼ Ra� Racj
� 	1=2

: ð6:44Þ
At the same time we can compute the Nusselt number from Eq. (6.39).

If we assume that the various modes contribute independently to the Nusselt

number, we then obtain

Nu ¼ 1þ
X1
j¼1

kj 1� Rac j

Ra

� �
, ð6:45Þ

where Racj ¼ 4j2π2, kj ¼ 2 for Ra > Racj, and kj ¼ 0 for Ra < Racj, for the case of

two-dimensional rolls. As Rudraiah and Srimani (1980) showed, other plan forms

lead to smaller values of k1, and hence may be expected to be less favored at slightly

supercritical Rayleigh numbers. The Nusselt number relationship (6.45) is plotted

in Fig. 6.2. It predicts values of Nu that generally are lower than those observed. It

leads to the asymptotic relationship Nu ! (2/3π)Ra1/2 as Ra ! 1 (Nield 1987b).

Similar results for the case of constant flux boundaries rather than isothermal

boundaries were obtained by Salt (1988). As expected, this change leads to an

increase in Nu, the change becoming smaller as Ra increases (because more and

more modes then contribute).

Expression (6.45) may be compared with the result of Palm et al. (1972),

who performed a perturbation expansion in powers of a perturbation parameter ζ
defined by

ζ ¼ 1� Rac

Ra

� �1=2

:
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Fig. 6.2 The theoretical

relationship Nu(Ra) given

by (6.45) (Bories 1987, with

permission from Kluwer

Academic Publishers)
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Their sixth-order result is

Nu ¼ 1þ 2λ ζ2 þ 1� 17

24
λ

� �
ζ4 þ 1� 17

24
λþ 191

288
λ2

� �
ζ6

� �
, ð6:46Þ

where λ ¼ (1 – ζ6)�1. Equation (6.46) predicts well the observed heat transfer for

Ra/Rac < 5.

Using a variational formulation based on the Malkus hypothesis that the physical

realizable solution is the one that maximizes the heat transport (see also Sect. 6.24),

Busse and Joseph (1972) and Gupta and Joseph (1973) obtained upper bounds on

Nu. These were found to be in good agreement with the experimental data of

Combarnous and Le Fur (1969) and Buretta and Berman (1976) for Ra values up

to 500 (see Sect. 6.9). Further work on bounds on heat transport was reported by

Doering and Constantin (1998), Vitanov (2000), Wei (2007), and Wen et al. (2012).

An expansion in powers of (Ra � Rac)
1/2 to order 34 was carried out by

Grundmann and Mojtabi (1995) and Grundmann et al. (1996). They thus computed

with great precision the values of Nu at a few values of Ra.
Kimura et al. (2016) employed a pseudospectral numerical method to examine

pattern selection in a square box heated from below and cooled at the top. They

found that the pattern maximizing heat transfer at fixed Rayleigh number is most

stable against other patterns, something that is consistent with Bejan’s constructal
law and the Malkus maximum entropy production hypothesis. They also found that

once a certain pattern is selected then it persists unless sufficient disturbances are

introduced into the system.

6.4 Weak Nonlinear Theory: Further Results

We briefly outline the perturbation approach that is applicable to convection in both

clear fluids and in porous media. It has been presented in detail by Busse (1985).

The analysis starts with the series expansions

v ¼ ε v 0ð Þ þ εv 1ð Þ þ ε2v 2ð Þ þ :::
h i

, ð6:47Þ

Ra ¼ Rac þ εRa 1ð Þ þ ε2Ra 2ð Þ þ :::, ð6:48Þ
and analogous expressions for T and P, and involves the successive solutions of

linear equations corresponding to each power of ε. These expressions are

substituted into Eqs. (6.16)–(6.18). Since only steady solutions are examined, the

∂/∂t terms vanish and in the order ε1 problem we have the same equations as for the

linear problem treated in Sect. 6.2. The general solution to that problem is

expressed as

w 0ð Þ ¼ f z; αð Þ
X
n

cnexp ikn � rð Þ, ð6:49Þ
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where r is the position vector and the horizontal wavenumber vectors kn satisfy

jknj ¼ α for all n.
In the order ε2 and higher-order problems, inhomogeneous linear equations

arise, and the solvability condition determines the coefficients Ra(n) and provides

constraints on the choice of coefficients cn. In this fashion possible solutions,

representing two-dimensional rolls and hexagons, are determined. There still exist

many such solutions. The stability of each of these is examined by superposing

arbitrary infinitesimal disturbances ev, eT on the steady solution v, T. By subtracting

the steady equations from the equations for v + ev, T + eT , the following stability

problem is obtained:

σ γav ¼ �∇eP þ RaeTk� ev, ð6:50aÞ

eσeT þ ev �∇T þ v � eT ¼ ew þ∇2 eT ð6:50bÞ

∇ � ev ¼ 0, ð6:50cÞ

ew ¼ eT ¼ 0 at bz ¼ 0:1: ð6:50dÞ
These equations are based on the observation that since the stability problem is

linear, the time dependence can be assumed to be of the form exp. (eσ t). The steady
solution is unstable when an eigenvalue eσ with a positive real part exists.

The eigenvalue problem (6.50) can be solved by expanding ev, eT , eσ and as power

series in ε analogous to Eq. (6.47). By considering coefficients up to eσ 2ð Þ in the

series for eσ , one can demonstrate that all steady solutions are unstable with the

exception of two-dimensional rolls. Moreover, it is found that at small but finite

values of Ra – Rac rolls corresponding to a finite range of wavenumbers are stable.

The main conclusion to be drawn from such results is that a spectrum of different

steady convection modes is physically realizable and the asymptotic state of a

convection layer in general will depend on the initial conditions. Walch and Dulieu

(1980) calculated the amplitudes of several modes for supercritical Rayleigh

numbers.

Although two-dimensional rolls are favored when the physical problem has

vertical symmetry about the mid-plane it is found that hexagons are favored

when there is a significant amount of asymmetry, whether it is due to different

boundary conditions at top and bottom or due to property variations with temper-

ature or other heterogeneities. Hexagons also are favored when the basic temper-

ature profile is not linear, as when convection is produced by a volume distribution

of heat sources rather than by heating from below. Two-dimensional rolls rarely

have been observed in experiments on Rogers-Horton-Lapwood (HRL) convection,

even in circumstances when they might have been expected [as in one experiment

reported by Lister (1990)]. Bus and Cserepes (1994) showed that the three-

dimensional form of convection depends on the boundary conditions. They found

that when both boundaries were impermeable and isothermal a symmetric mode
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was favored, but with a permeable top or an isoflux bottom new asymmetric forms

appeared.

The direction of motion in a hexagonal cell is influenced by property variations.

Other things being equal, motion at the center of a cell is in the direction of

increasing kinematic viscosity. In liquids the kinematic viscosity decreases as the

temperature increases, so the liquid rises in the center of a cell. In gases the reverse

is the case, so gas sinks in the center of a cell. Further reading on this is provided by

Joseph (1976, p. 112).

We conclude this section with the results of a study of the stability of convection

rolls to three-dimensional disturbances made by Joseph and Nield and reported in

Joseph (1976, Chapter XI). The various types of possible disturbances are graph-

ically labeled as parallel rolls, cross-rolls, sinuous (or zig-zag) rolls, and varicose

rolls. Joseph and Nield found that the sinuous rolls and the cross-rolls are the ones

that effectively restrict the range α1(ε) < α(ε) < α2(ε) for which the convection

rolls of wavenumber α(ε) are stable. For the case of impermeable conducting

boundaries, the stability boundary for cross-rolls in the neighborhood of the critical

point (αc, Rac), where αc ¼ π, Rac ¼ 4π2, is given by

Ra

Rac
� 1 ¼ 10

3

α

αc
� 1

� �2

ð6:51Þ

and that for the sinuous rolls is given by

Ra

Rac
� 1 ¼ 12

191=2
1� α

αc

� �1=2

, α < αc: ð6:52Þ

For comparison, the neutral curve for the basic conduction solution is

Ra

Rac
� 1 ¼ α

αc
� 1

� �2

: ð6:53Þ

Equation (6.52) determines the lower limit of the range of wavenumbers for

stable rolls and Eq. (6.51) the upper limit for Ra values near Rac (Fig. 6.3).

For larger values of Ra numerical calculations are necessary to determine the

range of wavenumbers for stability. In this way Straus (1974) calculated a balloon-

shaped curve in the (α, Ra) plane. The points situated inside the balloon correspond
to stable rolls (Fig. 6.4).

The stability of two-dimensional convection has been analyzed further by De la

Torre Juárez and Busse (1995) for Ra values up to 20 times the critical. Some of

their results are displayed in Figs. 6.5, 6.6, and 6.7. In Fig. 6.5, the Nusselt number

is plotted against Ra for fixed α¼ αc. At Ra¼ 391� 1 the steady solution becomes

unstable and is replaced by an oscillatory solution with a higher Nusselt

number; the frequency also is given in the figure. At Ra ¼ 545 this even solution

becomes unstable. For a given Rayleigh number, the Nusselt number varies with the

wavenumber as shown in Fig. 6.6. The results of stability analysis are
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shown in Fig. 6.7. This figure shows that there is an oscillatory instability predicted

for small wavenumbers α � αc. This oscillatory state has been observed in exper-

iments with Hele-Shaw cells.

De la Torre Ju�arez and Busse also carried out direct numerical integrations in

time of the solutions in the unstable regions. They found that the Eckhaus instability

limiting the band of stable wavenumbers at low supercritical Rayleigh numbers is

replaced by a sideband instability corresponding to odd-parity perturbations as the

Rayleigh number increases. This instability leads to a 3:1 jump in the wavelength.

A third instability of oscillatory character occurs at high wavenumbers, which is

also related to a 3:1 resonance mechanism and tends to change the wavelength by a

finite amount. The fourth instability yields an oscillatory state of even parity for low

wavenumbers and for Rayleigh numbers above Ra¼ 218. In the region where even

oscillatory solutions exist, they lose stability through the growth of odd oscillatory

modes. In one case the odd modes grow while the existing even oscillatory solution

Fig. 6.6 Value of the

Nusselt number of the

steady solutions as a

function of the wavenumber

α for different values of the

Rayleigh number (De la

Torre Juárez and Busse

1995, with permission from

Cambridge University

Press)
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Fig. 6.5 Average value of

the Nusselt number of the

steady and oscillatory

solutions as a function of

the Rayleigh number for a

fixed wavenumber α ¼ αc.
The unstable stationary

solutions are represented by

dots. The frequency of the

oscillatory solutions is

denoted by squares (De la

Torre Juárez and Busse

1995, with permission from

Cambridge University

Press)
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persists, yielding a non-centrosymmetric state with several temporal frequencies. In

a second case, occurring at Ra above 790, steady convection bifurcates into a

regular oscillatory state where the odd modes dominate the even modes; this is

related to an asymmetry between the rising hot and the falling cold plumes.

Nisse and Néel (2005) have investigated the stability of rolls with intermediate

wavelength (those not unstable to the cross-roll, Eckhaus and zig-zag instabilities).

They proved that such rolls are spectrally stable.

The effect of quadratic drag was studied by Rees (1996b). He found that rolls

with a wavenumber less than the critical value are no longer unconditionally

unstable. Also the Eckhaus (parallel-roll) and zigzag (sinuous) stability bounds

are less restrictive than in the absence of quadratic drag, but the opposite is true for

the cross-roll instability.

The results discussed so far in this section have been based on the assumption

that the porous medium is bounded by impermeable isothermal (perfectly

conducting) planes. Riahi (1983) has shown that when the boundaries have finite

thermal conductivity, the convection phenomenon is different. He found that cells

of square plan form are preferred in a bounded region Γ of the (λb, λt) space, where
λb and λt are the ratios of the thermal conductivities of the lower and upper

boundaries to that of the fluid and two-dimensional rolls are favored only outside Γ.
For the case of uniform heat flux on the boundaries, Néel and Lyubimov (1995)

proved the existence of periodic solutions for a class of nonlinear regular vector

fields.

The results in this section bear on the choice of wavenumber to use in numerical

simulations. Since the theory does lead to a unique value and since the Malkus
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0 2 4
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R
a

Fig. 6.7 Regions of stability of the steady solutions as a function of the Rayleigh number and the

wavenumber. The neutral curve is the outer solid line; the Eckhaus instability is plotted as a line

with solid circles; the transitions to the different oscillatory instabilities are plotted as a solid line
with squares at high wavenumbers and as a solid line at low wavenumbers; the stability limits of

the stationary oscillatory solutions are plotted as a solid line with open circles (De la Torre Juárez
and Busse 1995, with permission from Cambridge University Press)
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hypothesis (that the selected wavenumber is that which maximizes heat transfer) is

now known to be unsatisfactory, Nield (1997b) suggested that in most cases it is

probably satisfactory to take α ¼ αc in the simulations.

Adomian’s decomposition method and weak nonlinear theory were compared by

Vadasz (1999a), who explained the experimental observation of hysteresis from

steady convection to chaos to steady state (see also Auriault 1999; Vadasz 1999b).

The Adomian method was further used by Vadasz and Olek (1999a, 2000a) to

discuss convection for low and moderate Prandtl number, and its application to the

solution of the Lorenz equations was investigated by Vadasz and Olek (2000b).

Weak turbulence in small and moderate Prandtl number convection was reviewed

and elucidated by Vadasz (2003). The computational recovery of the homoclinic

orbit was discussed by Vadasz and Olek (1999b), while the compatibility of

analytical and computational solutions was discussed by Vadasz (2001b). The

question of whether the transitions involved in porous media natural convection

could be smooth was examined by Vadasz et al. (2005). The results of their

examination suggest that the transitions inevitably are sudden. The phenomenon

of hysteresis was studied by Vadasz (2006a). A comprehensive review of the

subject of weak turbulence and transitions to chaos was made by Vadasz (2000b).

The Vadasz-Olek model was examined as a system of coupled oscillators by

Magyari (2010c). The “butterfly effect” in a porous slab was studied by Magyari

(2006). The case of Cattaneo heat flux was studied by Straughan (2010b). The

selection of steady states was analyzed by Tsybulin et al. (2006) and Tsybulin and

Karasozen (2008). Vadasz (2014) produced an analytical prediction of the transi-

tion point to weak turbulent convection in a porous layer subject to feedback

control, and this was further examined by Vadasz (2015b). The work on feedback

control was surveyed by Vadasz (2015a).

Some other studies of feedback control are cited in Sect. 8.11.3.

An unconditional stability result for the case of a cubic dependence of density on

temperature, with the Forchheimer equation, was obtained by Carr (2003a). Previ-

ously Gentile and Rionero (2000) had studied global nonlinear stability for pene-

tration with fluids of cubic density. Structural stability in resonant penetrative

convection in a Forchheimer porous channel was studied by Gentile and Straughan

(2013). Further work on oscillatory convection regimes was reported by

Holzbecher (2001), while Holzbecher (2004b) treated a mixed boundary condition

appropriate for open-top enclosures. He noted that at 16.51 the critical Rayleigh

number is then much lower than the classical value. Holzbecher (2005a) studied

both free and forced convection for open-top enclosures. Co-symmetric families of

steady states and their collision were investigated by Karasozen and Tsybulin

(2004). Linear and nonlinear analyses for an unbounded medium saturated by

miscible fluids were made by Kim and Yadav (2014). The case of eddy heat

conduction was analyzed by Eliasson (2014) using a finite spectral method.

A review of some aspects of nonlinear convection was made by Rudraiah et al.

(2003). A comprehensive review of other matters, including methods for calculat-

ing eigenvalues, is contained in the books by Straughan (2004b, 2008). Work on the
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analytical transition to weak turbulence and chaotic natural convection was sur-

veyed by Vadasz (2008a).

A Legendre spectral element for eigenvalues was introduced by Hill

and Straughan (2006). The effect of conducting boundaries was studied by Rees

and Mojtabi (2011). Their aim was to identify the identity of the post-critical

convection patterns as a function of the thicknesses and conductivities of the

bounding plates relative to the porous layer. They presented regions in parameter

space where convection in the form of rolls is unstable and within which cells with

square planform form the preferred pattern. Further results were presented by

Mohammad et al. (2016). Siddheswar and Vanishree (2016) obtained Lorenz and

Ginzburg-Landau equations for a medium with heat source.

6.5 Effects of Solid-Fluid Heat Transfer: Local Thermal
Nonequilibrium

At sufficiently large Rayleigh numbers, and hence sufficiently large velocities, one

can expect that local thermal equilibrium will break down, so that the temperatures

Ts and Tf in the solid and fluid phases are no longer identical. Instead of a single

energy equation (2.3) or (6.5) one must revert to the pair of Eqs. (2.1) and (2.2).

Following Bories (1987), we consider the case of constant conductivities ks and kf
and no heat sources, but we modify Eqs. (2.1) and (2.2) by allowing for heat transfer

between the two phases. Accordingly we have

1� φð Þ ρcð Þs
∂T*

s

∂t*
¼ kes∇*2T*

s � h T*
s � T*

f

� 	
, ð6:54Þ

φ ρcPð Þf
∂T*

f

∂t*
þ ρcPð Þfv* �∇*T*

f ¼ kef∇*2T*
f � h T*

f � T*
s

� 	
: ð6:55Þ

In these equations asterisks denote dimensional quantities and h is a heat transfer
coefficient, while kes and kef are effective conductivities. In the purely thermal

conduction limit kes ¼ (1 – φ)ks and kef ¼ φkf. Equations (6.3), (6.4), and (6.6) still

stand. We choose H for length scale, (ρc)mH
2/km for time scale, km/(ρcP)fH for

velocity scale, ΔT for temperature scale, and μkm/K(ρcP)m for pressure scale. Then

Eqs. (6.54) and (6.55) take nondimensional forms:

1� φMð Þ 1þ Λð Þ∂Ts

∂t
¼ ∇2Ts � Λχ Ts � Tfð Þ, ð6:56Þ

φM 1þ Λ�1
� 	∂Tf

∂t
þ 1þ Λ�1
� 	

v �∇Tf ¼ ∇2Tf � χ Tf � Tsð Þ, ð6:57aÞ
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where

M ¼ ρcPð Þf
ρcð Þm

, Λ ¼ ke f
ke s

, χ ¼ hH2

φkf
: ð6:57bÞ

Combarnous (1972) calculated the Nusselt number Nu as a function of Ra, Λ,
and χ. He found that for a given value of Λ, Nu is an increasing value of χ which

tends, when h ! 1, toward the value given in the local equilibrium model. This

trend is expected, because the limit corresponds to perfect transfer between solid

and fluid phase.

When the parameter χ defined in Eq. (6.58) is maintained constant, Nu tends

toward the local equilibrium value as Λ increases, i.e., as the contribution of

heat conduction by the solid phase becomes negligible. When heat conduction

through the solid phase becomes very large, the Nusselt number decreases; in

fact, Nu ! 1 as Λ ! 0.

The computed temperature distributions show that jTs – Tfj takes relatively large
values in the upper part of the upward current and the lower part of the downward

current. This illustrates the role of the solid phase as a heat exchanger. Another

point follows from the fact that χ is the product of a local heat transfer factor h dp
2/φ

kf and (H/dp)
2, where dp is the pore scale. When the scale factor H/dp is large, the

porous medium behaves as a thorough blend of solid and fluid phases. When it is

small, the porous medium is effectively more heterogeneous. A further study of

local nonequilibrium was made by Petit et al. (1999a, b).

Banu and Rees (2002) demonstrated that both the critical Rayleigh number and

the wavenumber are modified by thermal nonequilibrium. For intermediate values

of the interphase heat transfer coefficient, the critical wavenumber is always greater

than π, the classic value. Postelnicu and Rees (2003) incorporated form drag and

boundary effects. For the case of stress-free boundaries they obtained the

expression

Ra ¼ π2 þ α2ð Þ2
α2

1þ Da π2 þ α2
� 	� � π2 þ α2ð Þ þ χ 1þ γð Þ

π2 þ α2 þ γχð Þ
� �

, ð6:58Þ

where γ ¼ ϕΛ/(1 – ϕ). The critical Rayleigh number is obtained on minimization

with respect to variation of α. Clearly Rac is an increasing function of Da, and for

Da ¼ 0 it is an increasing function of χ from the base value 4π2 with the amount of

increase decreasing as γ increases.
The case of isoflux boundary conditions was studied by Barletta and Rees

(2012a) for the case of boundary walls of high conductivity. Their linear perturba-

tion analysis led to a one-dimensional eigenvalue problem which they solved

numerically to determine a neutral stability condition. They obtained analytical

solutions for the limit of small wavenumbers and in the region where the solid

conductivity is much larger than the fluid conductivity. They found that the critical

wavenumber is zero only when the interphase heat transfer coefficient is suffi-

ciently large.
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Boundary effects were also considered by Malashetty et al. (2005a). The situa-

tion where there is heat generation in the solid phase in a square enclosure was

studied numerically by Baytas (2003, 2004a). An anisotropic layer was considered

by Malashetty et al. (2005b).

Global nonlinear stability was studied by Straughan (2006). Chaotic convection

was treated by Sheu (2006).

Further work on local thermal nonequilibrium has been conducted by Khashan

et al. (2006), Fichot et al. (2006), Postelnicu (2008), and Shivakumara et al. (2010b, c).

Vadasz (2012) has studied a layer heated from below via a constant heat flux. The

Cattaneo effect has been discussed by Straughan (2013), Shivakumara et al.

(2015d, e) (thermal nonequilibrium, ferroconvection), and Eltayeb (2015). The

LTNE model was applied by Yuan (2008, 2009) and Yuan et al. (2014) to

biological tissue during hyperthermal therapy. The case of imposed heat flux

boundary conditions was examined by Celli et al. (2013, 2014) and Barletta

et al. (2014c). The effects of free surface and convective boundary conditions

were explored by Barletta et al. (2015c). A thermal lattice Boltzmann model with

LTNE was employed by Gao et al. (2014).

6.6 Non-Darcy, Dispersion, and Viscous Dissipation Effects

Corresponding to the Darcy equation (6.17), the linear Brinkman equation is

γa
∂v
∂t

¼ �∇P� vþ eDa∇2vþ Raθk: ð6:59Þ

Here eDa is a Darcy number defined by

eDa ¼ eμ
μ

K

H2
¼ eμ

μ

K

d2p

dp
H

� �2

ð6:60Þ

and dp is a characteristic length on the pore scale. From the Carman-Kozeny

equation (1.5) we see that K/dp
2 is of the order of unity unless φ is close to

1. Also eμ=μ is of the order of unity, while dp/H is small if the porous medium is

properly represented by a continuum. It follows that eDa is normally very small, and

thus the Brinkman term is important only in boundary layers where∇2v is large. In

conclusion, in naturally occurring media the net effect of the Brinkman term is to

alter the critical Rayleigh number by a small amount. An apparent exception to this

statement was reported by Lebon and Cloot (1986); they failed to distinguish

between a constant-pressure boundary and a stress-free boundary. Detailed calcu-

lations are given byWalker and Homsy (1977), and Fig. 6.8. The Darcy result holds

if the Darcy number Da¼ K/H2< 10�3. For Da> 10, Ra� 1708 Da, the clear fluid

limit. Qin and Kaloni (1992) discussed the existence and uniqueness of steady

convection with the Brinkman model. Other studies with the Brinkman model were
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made by Rudraiah and Masuoka (1982), Rudraiah and Balachandra Rao (1982,

1983), and Rudraiah (1984b). Rees (2002b) performed a perturbation analysis for

small Darcy number (defined to include the viscosity ratio) and obtained the

approximation

Rac ¼ 4π2 þ 8π2Da1=2 þ 8π4 þ 12π2 þ 4π331=2tanh 31=2π=2
� �h i

Da, ð6:60aÞ

ac ¼ π þ πDa1=2 ð6:60bÞ

The case of a Brinkman medium with Cattaneo-Christov heat flux was

investigated by Haddad (2014a, b), who thus extended the analysis of Straughan

(2010b).

The Forchheimer equation that replaces Eq. (6.17) is

γa
∂v
∂t

¼ �∇P� v� F vj jvþ Raθk, ð6:61Þ

where F is a Forchheimer coefficient defined by

F ¼ cFρfK
1=2αm

μH
Q ¼ cF

Prf

km
kf

K

H2

�1=2
 

Q: ð6:62Þ

In these equations Prf¼ μ/ρfαf is the Prandtl number of the fluid andQ is a Péclet

number expressing the ratio of a characteristic velocity of the convective motion to

the velocity scale αm/H (with which we are working). In particular, if we take Q to

108

106

104

10–6 10–4 10–2 1
B

R
af

Fig. 6.8 Critical fluid Rayleigh number Raf ¼ RaH2 /K versus the Brinkman coefficient

B ¼ eμ=μð ÞK=H2 ¼ eμ=μð ÞDa ¼ eDa. The figure illustrates the transition from the Darcy limit to

the clear fluid limit (Walker and Homsy 1977)
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be the r.m.s. average �Q, then we can use information given by Palm et al. (1972) to

deduce that (see Table 6.2):

�Q ¼ Ra Nu� 1ð Þ½ �1=2: ð6:63Þ
We can conclude that the Forchheimer term can be significant, even for modest

Rayleigh numbers, for thin layers of media for which Prf (kf/km) is small. For

example, if we take the values cF ¼ 0.1, K ¼ 10�3 cm2, H ¼ 1 cm, which are

appropriate for a 1-cm-thick layer of a medium of metallic fibers, and the value

Ra ¼ 300 that is typical for a transition to oscillatory convection (Sect. 6.8), then

quadratic drag is significant if Prfkf/km is of order 0.1 or smaller. In other situations

rather large Rayleigh numbers are needed before quadratic drag becomes

important.

The effect of quadratic drag was shown by Nield and Joseph (1985) to cause the

nose of the bifurcation curve in the (Ra,ε) plane to be sharpened; the standard

pitchfork bifurcation is modified to straight lines intercepting the zero amplitude

axis. Here ε is a measure of the amplitude of the disturbance. He and Georgiadis

(1990) confirmed the sharpening. Rees (1996b) undertook a third-order analysis

that showed that at higher Rayleigh numbers the usual square root behavior is

restored. He also developed a full weakly nonlinear stability analysis and found that

inertia causes some wavenumbers less than the critical value to regain stability, but

the cross-roll instability is more effective and reduces the stable wavenumber range.

The effect of quadratic drag on higher-order transitions was studied numerically by

Strange and Rees (1996). They expressed their results in terms of a parameter

G ¼ F/Q. They found that at Rayleigh numbers below a second critical value a

steady cellular pattern exists, but the amplitude of the motion and the corresponding

rate of heat transfer decrease sharply as G increases. At the second critical Rayleigh

number, whose value increases almost linearly with G, the preferred mode of

convection is time periodic. The mechanism of Kimura et al. (1986), where

waves orbit each cell, also applies when quadratic drag is present. The form drag

effect and Hopf bifurcation in a shallow layer were investigated numerically and

analytically by Rebhi et al. (2014). They showed that for a pure Dupuit medium the

value of the Nusselt number was 5, in contrast to the value 6 for a pure Darcy

medium, and the flow intensity varies as the cube root of the modified Prandtl

number. The critical Rayleigh number for Hopf instability increases as the Prandtl

number decreases.

Table 6.2 Approximate

values showing the

dependence of Nusselt

number Nu and

nondimensional

r.m.s. velocity �Q on the

Rayleigh number Ra (Nield

and Joseph 1985)

Ra Nu �Q

102 3 15

3 � 102 6 40

103 10 100

3 � 103 14 200

104 20 340
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Néel (1998) considered how a horizontal pressure gradient affects convection in

the presence of inertia and boundary friction effects. Her formulation leads to a

cubic (rather than quadratic) drag term, and she found that this inertial effect leads

to an increase in the critical Rayleigh number.

We saw in Sect. 2.2.3 that the effect of thermal dispersion was to increase the

effective conductivity of the porous medium. Instead of Eq. (6.18) we now have

∂T
∂t

� bw ¼ ∇ � 1þ D*
� 	

∇bTh i
: ð6:64Þ

where D* is the ratio of dispersive to stagnant conductivity. According to the model

for a packed bed of beads adopted by Georgiadis and Catton (1988a, b),D*¼Di jvj,
where

Di ¼ Cdb
1� φð ÞH : ð6:65Þ

Here db is the mean bead diameter and C is a dispersion coefficient whose value

depends on the type of packing. Georgiadis and Catton performed calculations with

the value C ¼ 0.36, which was chosen to give the best fit to experimental data. The

effect of dispersion was made explicit by Rubin (1975a, c).

Since the term D*∇T¼Di |v|∇T is of second order, it is clear that dispersion

does not affect the critical Rayleigh number but it does have nonlinear effects that

decrease the overall Nusselt number significantly for coarse materials (Neichloss

and Degan 1975). Kvernvold and Tyvand (1980) showed that dispersion expands

the stability balloon of Straus (1974) (Fig. 6.4), i.e., it causes two-dimensional rolls

to remain stable to cross-roll instabilities for Rayleigh numbers larger than those in

the absence of dispersion. The effect of dispersion associated with the natural flow

of aquifers was studied by Hassanzadeh et al. (2009a, b).

The effect of viscous dissipation and inertia on hexagonal cell formation was

studied by Magyari et al. (2005b). They show that when viscous dissipation is

present the temperature profile loses its up/down symmetry when convection

occurs, and this causes hexagonal cells rather than parallel rolls to occur in the

case of a layer of infinite horizontal extent. This is because the lack of symmetry

allows two rolls, whose axes are at 60	 to one another, to interact and reinforce a

roll at 60	 to each of them, thus providing the hexagonal pattern. Hexagonal

convection is subcritical, i.e., it appears at Rayleigh numbers below 4π2. However,
when Ra is sufficiently above 4π2 the rolls are re-established as the preferred pattern
of convection. When the Forchheimer terms are included, the range of Rayleigh

numbers over which hexagons exist and are stable decreases, and the hexagons are

eventually extinguished. This result is qualitatively similar to that resulting when

the layer is tilted at increasing angles from the horizontal, although there are two

main orientations of hexagonal solutions in this case. The rolls that form when

hexagons are destabilized are longitudinal rolls that may be regarded as streamwise

vortices like those considered by Rees et al. (2005).
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Further work on the effect of viscous dissipation, in situations involving either

horizontal throughflow or vertical throughflow, was carried out by Barletta et al.

(2009a, b, 2010a, b, 2011b). In the case where a boundary is adiabatic the instability

can arise even in the absence of bottom heating. The effect of bottom heating was

added by Barletta and Storesletten (2010b). The case of an open boundary with a

prescribed temperature gradient was examined by Barletta and Storesletten

(2010a). The case of local thermal nonequilibrium was studied by Barletta and

Celli (2011). Transverse heterogeneity effects in the case of dissipation-induced

instability were treated by Barletta et al. (2011a).

6.7 Non-Boussinesq Effects

So far we have neglected the work done by pressure changes. When we allow for

this we replace Eq. (6.5) by

ρcð Þm
∂T
∂t

þ ρcPð Þfv �∇T þ βT
∂P
∂t

þ v �∇P

� �
¼ km∇2T, ð6:66Þ

where the coefficient of thermal expansion β and isothermal compressibility βP are
given by

β ¼ �1

ρ

∂ρ
∂T

� �
P

, ð6:67Þ

βP ¼ 1

ρ

∂ρ
∂P

� �
T

: ð6:68Þ

The basic steady-state solution is given by the hydrostatic equations

vb ¼ 0, ð6:69aÞ

Tb ¼ T0 þ ΔT 1� z

H

� �
, ð6:69bÞ

dPb

dz
¼ �ρbg, ð6:69cÞ

dρb
dz

¼ βPbρb
dPb

dz
� βbρb

dTb

d z
¼ �βPbρ

2
bgþ βbρb

ΔT

H
: ð6:69dÞ

The two-dimensional linearized time-independent perturbation equations are

∂u0

∂x
þ ∂w0

∂z
þ w0 βb

ΔT

H
� βPbρbg

� �
¼ 0, ð6:70Þ

264 6 Internal Natural Convection: Heating from Below



ρbw
0 �cPb

ΔT

H
þ βbTbg

� �
¼ km

∂2
T0

∂x2
þ ∂2

T0

∂z2

 !
: ð6:71Þ

∂P0

∂x
þ μb

u0

K
¼ 0, ð6:72Þ

∂P0

∂z
þ μb

w0

K
¼ �ρ0g, ð6:73Þ

ρ0 ¼ βPbρbP
0 � βbρbT

0: ð6:74Þ
In the Boussinesq approximation the term –βbρbT0 in the equation for ρ0 is

retained, but otherwise βb and βPb are set equal to zero, while ρb, cPb, Tb, and μb
are regarded as constants. As a second approximation, one also can retain the

term βbTbg in Eq. (6.71), the left-hand side of which can be written as

ρbcPb(βbTbg/cPb–ΔT/H )w0.
The end result is that the critical Rayleigh number value is the same as before,

provided that in the definition of Rayleigh number one replaces the applied

temperature gradient ΔT/H by the difference between that and the adiabatic

gradient βbTb g/cPb. Thus the prime effect of compressibility is stabilizing, and

the other non-Boussinesq effects have only a comparatively minor effect on the

critical Rayleigh number. Details for the case when the fluid is water are discussed

by Straus and Schubert (1977) and for the case of an ideal gas by Nield (1982), who

corrected the conclusion of Saatdjian (1980). Polonski (1995) found that with

miscible fluids compressibility significantly increases equilibrium stability with

respect to oscillatory perturbations only. For a moist ideal gas of 100% humidity,

flow and heat transfer are strongly coupled. Zhang et al. (1994), using a perturbation

analysis, showed that Rac then depends heavily on the vapor pressure; the moist gas

is much less stable than a dry gas, because of the large latent heat carried by the

former. A rarefied gas was considered by Parthiban and Patil (1996), but their

analysis is flawed (see Nield 2001c). A finite amplitude analysis was reported by

Staufer et al. (1997). The impact of thermal expansion on transient convection was

studied by Vadasz (2001c, d). Heat transfer in a gas at high pressures was inves-

tigated by Avduyevsiy et al. (1978). Adiabatic heating and convection in a porous

medium filled with a near-critical fluid was studied by Soboleva (2009). Saatdjian

and Caltagirone (1980) studied numerically a layer in which a part is decomposed

exothermically into gaseous products. Ramazanov (2014) studied numerically

conditions for the occurrence of convection in a compressible gas.

It is usually a straightforward adjustment to allow for the variations of fluid

properties with temperature. This is exemplified by the numerical investigations of

Gartling and Hickox (1985). The effect of viscosity variation was explicitly

examined by Kassoy and Zebib (1975), Zebib and Kassoy (1977), Blythe and

Simpkins (1981), and Patil and Vaidyanathan (1981). Morland et al. (1977) exam-

ined variable property effects in an elastic porous matrix. The effect of significant
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fluid property changes was investigated by Masuda et al. (1991a). Nonlinear

stability analysis for the case of temperature-dependent viscosity was reported by

Richardson and Straughan (1993) and Qin and Chadam (1996), incorporating

Brinkman and inertial terms, respectively. Payne and Straughan (2000b) addressed

the Forchheimer equation and obtained unconditional nonlinear stability bounds

close to the linear stability ones using a viscosity linear in the temperature.

They also extended the analysis to a viscosity quadratic in temperature and to a

penetrative convection situation. For the Forchheimer model nonlinear stability was

analyzed using Lyapunov’s direct method by Capone (2001).

Nield (1996) showed that the effect of temperature-dependent viscosity on the

onset of convection was generally well taken into account provided the Rayleigh

number was defined in terms of the viscosity at the average temperature.

(An exception occurs when very large temperature differences are involved

(Kassoy and Zebib 1975).) This result is in accord with the concept of effective

Rayleigh number Raeff introduced by Nield (1994c); for this parameter the quan-

tities appearing in the numerator of Ra are replaced by their arithmetic mean values

and those that appear in the denominator are replaced by their harmonic mean

values. Capone and Rionero (1999) conducted a nonlinear stability study with

time-dependent viscosity. A detailed theoretical and numerical study of the effect

of temperature-dependent viscosity was reported by Lin et al. (2003). Further work

on the effect of temperature-dependent viscosity was reported by Hooman and

Gurgenci (2008a, c) and Rong et al. (2010b) (using a lattice Boltzmann method).

Rashidi and Bahrami (2000) studied a layer in which the viscosity varies because of

gas dissolution. Rajagopal et al. (2011) analyzed the case of viscosity varying with

pressure and temperature.

The effect of pressure work was studied by Nield and Barletta (2009).

6.8 Finite-Amplitude Convection: Numerical Computation
and Higher-Order Transitions

Starting with Holst and Aziz (1972), the governing equations for natural convection

have been solved using a range of numerical techniques (finite differences, finite

element, spectral method). Out of necessity, these calculations must be made in a

finite domain, so a preliminary decision must be made about conditions on lateral

boundaries. It is presumed that these vertical boundaries are placed to coincide at

the cell boundaries, where the normal (i.e., horizontal) component of velocity and

the normal component of heat flux are both zero.

Caltagirone et al. (1981) performed calculations using the spectral method and

obtained the following results:

(a) For Ra < 4π2, the perturbation induced by initial conditions decreased and the

system tended to the pure conduction solution, as expected.

(b) For 4π2 < Ra < 240–300 the initial perturbation developed to give a stable

convergent solution that does not depend on the intensity or nature of this
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perturbation. Various stable convective rolls were observed: counter-rotating

rolls (two-dimensional), superposition of counter-rotating rolls (three-

dimensional), and polyhedral cells (three-dimensional).

(c) For Ra > 240–300 a stable regime was not reached.

Transition to the fluctuating convection regime is characterized by an increase of

heat transfer relative to the stable solutions. The oscillations appear to be caused by

the instability of the thermal boundary layers at the horizontal boundaries.

The existence of the oscillating state had been deduced from a stability analysis

of finite-amplitude two-dimensional solutions by Straus (1974), whose results are

illustrated in Fig. 6.3. It was also demonstrated through numerical calculations by

Horne and O’Sullivan (1974a). The oscillations have been shown by Caltagirone

(1975) and Horne and Caltagirone (1980) to be associated with the continuous

creation and disappearance of cells.

Or (1989) has extended the computations to the situation where the viscosity is

allowed to be temperature dependent. The vertical asymmetry thereby introduced

makes mixed modes significant. Or (1989) also examined stability with respect to a

class of disturbances that have a π/2 phase shift relative to the basic state. He found
little difference in transition parameters for the in-phase and phase-shifted oscilla-

tory instabilities. It is noteworthy that the temperature dependence of viscosity

provides a mechanism for generating a mean flow.

Further studies of higher-order transitions have been made by Aidun (1987),

Aidun and Steen (1987), Kimura et al. (1986, 1987), Caltagirone et al. (1987), Steen

and Aidun (1988), and Caltagirone and Fabrie (1989). The last study, based on a

pseudospectral method, concluded that in a two-dimensional square cavity the

following sequence occurs: From the second bifurcation, occurring at Ra ¼ 390,

the flow becomes periodic. Between 390 and 600 the phenomenon is single-

periodic and only the frequency f2 incommensurable with f1 introduces a quasipe-
riodic regime QP1. When Ra increases further, the flow again becomes periodic

(state P2) up to Ra ¼ 1000, where the appearance of frequencies f2 and f3 give a

second quasiperiodic regime QP2.

The second regime QP2 can be maintained up to Ra ¼ 1500, after which the

single convecting roll splits up into two unsteady convecting rolls by entering a

chaotic restructuring regime. This sequence is subject to hysteresis as Ra is

lowered. The frequency f1 varies as Ra
2, f2 as Ra

5/2, and f3 as Ra
3/2.

The periodic window between Ra ¼ 600 and 1000 corresponds to third-order

locking of the oscillators corresponding to f1 and f2. The oscillators spring up and

develop within the thermal boundary layer near the horizontal walls, and the

evolution with Ra2 of f1 corroborates the fact that the observed instabilities are

due to the loss of stability in the boundary layer. The earlier study by Kimura et al.

(1987) revealed a rather different picture; for example, the second quasiperiodic

regime was not found, and f1 varied as Ra7/8. The work of Kladias and Prasad

(1990) suggests that when non-Darcy effects are taken into account the second

quasiperiodic regime does not exist.
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Kladias and Prasad (1989b, 1990) have made numerical studies of oscillatory

convection using a Brinkman-Forchheimer equation. They found that whereas the

channeling effect (due to porosity variation) substantially reduced the critical

Rayleigh number for the onset of steady convection, the opposite occurred with

the critical Rayleigh number for the transition to oscillatory convection. This is

primarily due to the fact that the core of the cavity becomes more or less stagnant,

whereas the thermal activity and fluid motion is concentrated within thin boundary

layers along the walls. While the effects of mean porosity and specific heat ratio are

insignificant for steady convection, they are quite significant in the random fluctu-

ating regime. In a square cavity steady convection is characterized by a single cell,

but the flow pattern for fluctuating convection is complex and dependent on

the fluid Prandtl number Prf. For example, four cells can exist with pairs on the

diagonals alternately attaching and detaching with time. This results in a large

variation in Nusselt number with time. Generally an increase in Prf (>10) increases

the amplitude of fluctuation, whereas a decrease in Prf(<0.1) results in a

more stable flow. Otero et al. (2004) have studied numerically the case of infinite

Darcy-Prandtl number and high Rayleigh number. Their results include a derivation

of an upper bound on the heat transport: Nu 
 0.0297 � Ra.

For the special case of constant flux imposed on the horizontal boundaries the

situation is markedly different. The analytical and numerical study of Kimura et al.

(1995) revealed that the unicellular set up when Ra exceeds 12 remains a stable

mode as the aspect ratio A increases, in contrast to the constant-temperature case

where multicellular convection is the preferred mode for A > 21/2. Further, the

unicellular flow remains as Ra increases to 311.53, above which nonoscillatory

longitudinal disturbances can grow. At sufficiently large Ra (above about 640 for

A ¼ 8, with a critical frequency f ¼ 22.7) there is a transition to oscillatory flow,

according to the numerical calculations; linear stability theory predicts a Hopf

bifurcation with transverse disturbances at Ra ¼ 506.07 with frequency f ¼ 22.1.

Vadasz and Olek (1998) have shown that when a Darcy equation with timewise

inertia term is taken, and with suitable scaling, the system of partial differential

equations can be approximated by the same famous system of ordinary equations

treated by Lorenz but with different values of the parameters. Their work described

for centrifugally driven convection extends to the gravitational situation. The

butterfly effect was studied by Siri et al. (2014). Chaotic convection under temper-

ature modulation was studied by Kiran and Bhadauria (2015a).

Further numerical studies using a unified finite approach exponential-type

scheme have been reported by Llagostera and Figueiredo (1998) and Figueiredo

and Llagostera (1999). Bilgen and Mbaye (2001) have treated a cavity with warm

bottom and warm top and with additional lateral cooling.

Politano (1985) studied numerically the interaction between two competing

modes. Dharma Rao et al. (1998) applied Prandtl’s analogy to convection at high

Rayleigh numbers. Large-scale thermal convection was studied by Goldobin and

Shklyaeva (2008). Scenarios of unsteady regimes were examined by Govorukhin

and Shevchenko (2006). Nemtsev and Tsibulin (2007) numerically investigated the

first transition in the three-dimensional problem. Govorukhin and Shevchenko
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(2005) investigated the second transition in a plane problem. A numerical study of

planar convection at supercritical Rayleigh number was made by Trubitsyn et al.

(1993). Using a piecewise variation iteration method, Mousa et al. (2009) examined

a transition from steady convection to chaos. Finite-amplitude convection in the

porous methane soaked regolith of Titan was studied by Czechowski and

Kossacki (2012).

The stability of columnar convection was investigated by Hewitt et al. (2013b),

while Hewitt et al. (2012, 2013a) studied the ultimate regime and the phenomenon

of convective shutdown at high Rayleigh number. The structures of convection at

large Rayleigh number was examined by Wen et al. (2015).

This discussion of finite-amplitude convection is continued in Sect. 6.15.1.

6.9 Experimental Observations

6.9.1 Observations of Flow Patterns and Heat Transfer

Qualitative results for two-dimensional free convection were obtained using the

Hele-Shaw cell analogy by Elder (1967a) and Bories (1970a, b). In a Hele-Shaw

cell the isothermal lines can be observed by interferometry by using the fact that the

refractive index of a liquid is a function of density and so of temperature. The

streamlines can be visualized by strioscopy, i.e., by using light diffracted from

aluminum particles suspended in the liquid. These experiments confirmed the

theoretical value for the critical wavenumber and the fact that the wavenumber

increases with Ra in accordance with calculations based on the Malkus hypothesis.

Direct visualization of three-dimensional flow in a porous medium was made by

Bories and Thirriot (1969). They observed the accumulation of aluminum scattered

on a thin liquid layer overlying the medium. The cells appeared to have approxi-

mately hexagonal cross section (away from the lateral boundaries) with the fluid

rising in the center of each cell. The observations were checked by in situ temper-

ature recordings. For slightly supercritical Rayleigh number values the dimensions

of the cells were about the same as those predicted by linear theory. Howle et al.

(1997) reported further visualization studies.

Many authors have performed experimental work in layers bounded by imperme-

able isothermal planes using conventional experimental cells (Schneider 1963; Elder

1967a, b; Katto and Masuoka 1967; Combarnous and Le Fur 1969; Bories 1970a;

Combarnous 1970; Yen 1974; Kaneko et al. 1974; Buretta and Berman 1976).

These have been concerned largely with heat transfer, but some experimenters have

measured temperatures in the median plane of the layer in order to observe the

boundaries of convective cells. In experiments reported by Combarnous and Bories

(1975) it was found that the cells were not as regular as those obtainedwith a fluid clear

of solid material. Again, polygons were observed away from the lateral boundaries;

the cell sizeswere consistent with linear theory and thewavenumber increased slightly
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with Rayleigh number. This change of wavenumber is consistent with the observa-

tions in a Hele-Shaw cell (see two paragraphs above) but it is in the opposite direction

to that found in experiments with a clear fluid.

Nield (1997b) tentatively ascribed this difference to an effect of thermal

dispersion. This idea is now developed further. The coefficient for thermal disper-

sion is intrinsically anisotropic. The longitudinal component (in the direction of

the local velocity) is greater than the transverse component (see Sect. 2.2.4).

Consequently the horizontal heat transfer is increased at the expense of the vertical

heat transfer when a cell is extended horizontally. Applying the Malkus hypothesis

that the preferred wavenumber is the one that maximizes the vertical heat transfer,

one infers that the effect of thermal dispersion is to increase the favored

wavenumber.

The experimental heat transfer results of several of these workers, together with

curves showing results from the upper bound analysis of Gupta and Joseph (1973)

and the numerical calculations of Straus (1974) and Combarnous and Bia (1971),

are displayed in Fig. 6.9. The theoretical results are in agreement with experimental

results for glass-water, glass-oil, and heptane-sand systems, but considerably

overestimate the heat transfer for steel-oil, lead-water, and ethanol-sand systems.

Possible reasons for this discrepancy are discussed below.

We note that the theoretical critical Rayleigh number Rac � 40 (defined as the

Ra value for which Nu departs from the value 1) is confirmed by numerous

experiments. A precise test for Rac was made by Katto and Masuoka (1967), who

Fig. 6.9 Compilation of experimental, analytical, and numerical results of Nusselt number versus

Rayleigh number for convective heat transfer in a horizontal layer heated from below (Cheng

1978a, b, with permission from Academic Press)
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used nitrogen as the saturating fluid in order to reduce the temperature difference

required for a large variation in Rayleigh number, and thus reduce the effect of

property variation with temperature. Both the kinematic viscosity and thermal

diffusivity of a gas are almost inversely proportional to the pressure, and so Ra

can be varied through a large range by varying the pressure. Katto and Masuoka

found satisfactory agreement between theory and experiment. Kaneko et al. (1974)

observed Rac� 28 for ethanol-sand systems, but it is likely that the reduction in Rac
was due to a nonlinear basic temperature profile (see Sect. 6.11). Close et al. (1985)

found that Rac remains near 40 even when the layer depth is as small as two particle

diameters.

When Ra is slightly supercritical, Nu increases linearly with Ra. For some

systems (e.g., glass-water) the range of linearity is quite extensive, and for these

Elder (1967a) proposed the correlation

Nu ¼ Ra

40
: ð6:75Þ

An extensive investigation, using glass beads, lead spheres, and sand as solids

and silicone oil and water as fluids, was carried out by Combarnous and Le Fur

(1969). This study showed that when the Rayleigh number reaches 240–280, there

was a noticeable increase in the slope of the Nu versus Ra curve. Caltagirone et al.

(1971) noted that it was apt to call the new regime the “fluctuating convective state”

since the temperature field was continually oscillating. This fluctuating state also

was observed in Hele-Shaw cell experiments by Horne and O’Sullivan (1974a). The
transition is in accord with the numerical results discussed in Sect. 6.8. We recall

that the transition is caused by instability of boundary layers at the horizontal

boundaries, and that the fluctuating state is one in which convection cells contin-

ually appear and disappear, the number of cells doubling and halving.

Lein and Tankin (1992a) used the Christiansen filter concept to visualize

the convection in test sections with different aspect ratios. They found that the

width-to-height ratio of the convection cells did not vary with Ra for an imperme-

able upper boundary, but it did increase significantly for a permeable upper

boundary.

Further experiments were conducted by Kazmierczak and Muley (1994). They

found an increased heat transfer for a “clear top layer” compared with that for a

completely packed layer, the increase being due to channeling and which Nield

(1994a) showed was consistent with predictions based on the model of a clear fluid

layer on top of the porous medium layer (Sect. 6.19.1). They also did experiments

with the bottom wall temperature changed cyclically and found that the modulation

could either increase or decrease the heat transfer.

Using magnetic resonance imaging, a noninvasive technique that yields

quantitative velocity information, Shattuck et al. (1997) examined the onset of

convection in a bed packed with mono-disperse spheres in circular rectangular and

hexagonal planforms. Disordered media, prepared by pouring spheres into a

container, are characterized by regions of close packing separated by grain barriers
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and isolated defects that lead to locally larger porosity and permeability, and so to

spatial variations in Ra. The authors found that stable localized convective regions

exist for Ra < Rac, and these remain as pinning sites for convection patterns in the

ordered regions as Ra increases above Rac up to 5Rac, the highest value studied in

such media. In ordered media, with deviations from close packing only near the

vertical walls, stable localized convection appears at 0.5Rac in the wall regions.

Different stable patterns are observed in the bulk for the same Ra after each

recycling below Rac, even for similar patterns of small rolls in the wall regions.

As expected, roll-like structures are observed that relax rapidly to stable patterns

between Rac and 5Rac, but the observed wavenumber was found to be 0.7π
instead of the π predicted from linear stability theory. As Ra grows above Rac it

was found that the volume of upflowing to the volume of downflowing regions

decreases and leads to a novel time-dependent state, rather than the expected

cross-rolls; this state begins at 6Rac and is observed up to 8Rac, the largest Ra

studied, and is probably linked to departures from the Boussinesq approximation.

Further, it was found that the slope (S) of the Nusselt number curve is 0.7 rather

than the predicted value of 2. [For comparison, Elder (1967a) found S ¼ 1. Howle

et al. (1997) found a slope between 0.53 and 1.35, depending on the medium, while

Close et al. (1985) found that S decreases as d/H increases.] Further experiments

involving nuclear magnetic resonance plus numerical simulations were reported by

Weber et al. (2001), Kimmich et al. (2001), and Weber and Kimmich (2002).

In related work, Howle et al. (1997) used a modified shadowgraphic technique to

observe pattern formation at the onset of convection. They found that for ordered

porous media, constructed from grids of overlapping bars, convective onset is

characterized by a sharp bifurcation to straight parallel rolls whose orientation is

determined by the number of bar layers, Nb; for odd Nb the roll arc is perpendicular

to the direction of the top and bottom bars, but for even Nb they are at 45	 to the

bars. In a disordered system, produced by stacking randomly drilled disks separated

by spaces, a rounded bifurcation to convection, with localized convection near

onset, is observed, and the flow patterns take on one of several different cellular

structures after each recycling through onset. The observations suggest that the

mechanism of Zimmerman et al. (1993) (involving spatial fluctuations in Ra) and of

Braester and Vadasz (1993) (involving continuous spatial variations of permeabil-

ity and thermal diffusivity) may both be operating. Howle (2002) has reviewed

work on convection in ordered and disordered porous layers.

6.9.2 Correlations of the Heat Transfer Data

The outstanding question posed by the experimental results is how one can best

explain the spread of points in the Nu versus Ra plot, Fig. 6.6. There are two

theoretical approaches to the matter. The first explanation, put forward by

Combarnous (1972), elaborated by Combarnous and Bories (1974) and modified

by Chan and Banerjee (1981), is based on the effect of solid-fluid heat transfer

272 6 Internal Natural Convection: Heating from Below



(see Sect. 6.5). A drawback to using this approach is that it is difficult to make an

independent assessment of the heat transfer coefficient h. It turns out that this

theory predicts some but not all of the observed reduction in Nu values

(below those predicted from the simple Darcy local-thermal equilibrium model).

For this reason Prasad et al. (1985) decided that the solid-fluid heat transfer

model was of limited use. They proposed the use of an effective conductivity:

ke ¼ ωkf þ 1� ωð Þkm, ð6:76Þ
where (1�ω) is the ratio obtained by dividing the overall pure-conduction heat

transfer estimate by the total heat transfer rate. This procedure, which is based on

the argument that somehow or other the influence of the porous medium conduc-

tivity km decreases and that of the fluid-phase conductivity kf increases, is quite

successful in correlating the data, but it is ad hoc.

The second explanation is that put forward by Somerton (1983), Catton (1985),

and Georgiadis and Catton (1986). These authors showed that the data spread can

be substantially reduced by taking into account the effect of fluid inertia

(the quadratic drag) which inevitably becomes increasingly important as Ra

increases. Jonsson and Catton (1987) presented a power-law correlation of Nu in

terms of Ra and Pre, where Pre is an effective Prandtl number that can be defined,

in terms of the quantities that appear in Eq. (6.62), by

Pre ¼ Prf

cF

kf
km

K

H2

� �1=2

: ð6:77Þ

Close (1986) suggested that the data be brought in line with theory by means of

the formula

Nu

Nui
¼ 1:572� 10�2 � Ra0:344f

kf
ks

� �0:227 H

dp

� �0:446 φ

1� φ

� �0:496

Pr0:279f , ð6:78Þ

where Nui is given by expression (6.45) and Raf is a standard (non-Darcy) Rayleigh

number based on the properties of the fluid and a layer thickness dp (the pore

diameter). Formula (6.78) is successful for Nu < 10, but there are discrepancies for

Nu > 10. Close noted that the near equality of the exponents of kf/ks and Prf in

Eq. (6.78) meant that Somerton’s claim that it is neglect of inertial terms rather than

solid-fluid heat transfer that causes the spread of data is not necessarily correct, and

it is likely that both are involved.

Wang and Bejan (1987) strengthened the case for the inertial explanation by

introducing the dimensionless group

Prp ¼ Pre
H2

K
ð6:79Þ

which arises naturally from the following scale analysis. At large Ra the quadratic

drag term dominates over the linear term in the Forchheimer equation
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vþ χ

ν
vj jv ¼ K

μ
�∇Pþ ρfgð Þ, ð6:80Þ

where χ ¼ cFK
1/2 and ν ¼ μ/ρf. The flow consists of a core counterflow

plus boundary layers as shown in Fig. 6.10. In the core the vertical inertia scales

Fig. 6.10 (a) Convective roll dimensions. (b) The asymptotes of the function Nu(Ra, Prp)

suggested by scale analysis. (c) Heat transfer data, for convective heat transfer in a horizontal

layer heated from below (Wang and Bejan 1987)

274 6 Internal Natural Convection: Heating from Below



as χv2/ν and the boundary term scales as (K/μ)ρgβΔT, so the momentum balance

requires

χ

ν
v2 � K

μ
ρgβΔT: ð6:81Þ

The energy equation (Bejan 1984) is a balance between upward enthalpy flow

gradient (v ΔT/H) and lateral thermal diffusion between the two branches of the

counterflow αmΔT/L2, so

v
ΔT
H

� αm
ΔT
L 2

: ð6:82Þ

The balance between vertical enthalpy flow through the core (ρvLcPΔT ) and
vertical thermal diffusion through the end region of height δH and width L requires

ρvLcP T � keLΔT=δH: ð6:83Þ
The scales that emerge as solutions to the system (6.81)–(6.83) are

L � αmHð Þ1=2 χ

gβKΔT

� �1=4

, ð6:84Þ

v � gβKΔT
χ

� �1=2

, ð6:85Þ

δH � αm
χ

gβKΔT

� �1=2

: ð6:86Þ

We note in passing that these equations imply that L/H varies as Ra–1/4 and

v varies as Ra1/2. The heat transfer rate in the Forchheimer flow limit therefore must

scale as

Nu � H

δH
� RaPrp
� 	1=2

: ð6:87Þ

In contrast, heat flow in the Darcy flow limit scales as

Nu � 1

40
Ra: ð6:88Þ

Thus the transition from Darcy to Forchheimer flow occurs at the intersection of

Eqs. (6.87) and (6.88),

Ra � Prp ð6:89Þ
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from which we deduce

Nu

Prp
� 1

40

Ra

Prp
, 40 < Ra < Prp, ð6:90Þ

Nu

Prp
� Ra

Prp

� �1=2

, Ra > Prp: ð6:91Þ

An important feature of Eqs. (6.90) and (6.91) is that they are both of the form

Nu/Prp ¼ f(Ra/Prp). This motivates the plotting of Nu/Prp against Ra/Prp to produce

the graph shown in the lower part of Fig. 6.10. The agreement is good, with the

notable exception of Schneider’s (1963) data for Prp ¼ 12 in the top right corner of

the figure. A line through this subset of data has the correct slope but is clearly too

high and possibly the deduced Prp value of 12 is not correct. With this subset

ignored, Wang and Bejan obtained the correlation

Nu ¼ Ra

40

� �n

þ c RaPrp
� 	1=2h in� �1=n

: ð6:92aÞ

where n and c are two empirical constants,

n ¼ �1:65 and c ¼ 1896:4: ð6:92bÞ
The simplicity of Eq. (6.92) in comparison with Eq. (6.78) is obvious.

We note that Kladias and Prasad (1989a, b, 1990) published the results of

numerical calculations of the Nusselt number in which they have investigated the

effects of Darcy number, Prandtl number, and conductivity ratio. They presented

their results in terms of a fluid Rayleigh number and a fluid Prandtl number. We find

this unhelpful for our present purpose, which is to summarize how the various

effects act in concert rather than in isolation. Kladias and Prasad made an important

advance by showing that allowance for porosity variations brings the computed

Nusselt numbers in better agreement with experimental observations. However,

their (1989b) claim that Rac increases as Pr decreases was refuted by Lage et al.

(1992), who showed numerically that Rac is independent of Pr, as the linear stability

analysis indicates. [As Rees (2000) pointed out, this result is obvious when the

momentum equation is scaled so that Pr appears only in the nonlinear terms, but it is

not so obvious with other scalings.] Lage et al. proposed the correlation (accurate to

within 2%)

Nu� 1

Ra=Rac � 1
¼ C1Pr

2
� 	�m þ C�m

2

� ��m
, ð6:93aÞ

where

φ ¼ 0:4, C1 ¼ 172Da�0:516, C2 ¼ 0:295Da�0:121, m ¼ 0:4, ð6:93bÞ
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φ ¼ 0:7, C1 ¼ 30Da�0:501, C2 ¼ 1:21Da�0:013, m ¼ 0:7: ð6:93cÞ

On the basis of scale analysis, Lage (1993a) obtained the following general scale

for the Nusselt number:

Nu � L=Hð Þ
2

σ

τ
þ�Πþ Π2 þ 2φ2RaPrE

� � 1=2
2E

( )1=2

, ð6:94aÞ

where

E ¼ 1þ φJA Prð ÞPrþ 0:143φ1=2

Da1=2
ð6:94bÞ

Π ¼ φ

τ
þ φ2Pr

Da
þ φJA Prð ÞPrσ

τ
, ð6:94cÞ

and the function A(Pr) takes the value 1 for Pr � 1 and Pr�1 for Pr < 1, and L and

H are horizontal and vertical length scales, respectively, while τ is the characteristic
time and J denote the viscosity ratio μ/μeff. The coefficient 0.143 arises from the

assumption that cF takes a form proposed by Ergun (1952). As Rees (2000) pointed

out, the criterion for the onset of convection depends on Da/φ rather than just Da,

and this dependence also may be observed in Eqs. (6.94a), (6.94b), and (6.94c).

Additional experimental work has been reported by Ozaki and Inaba (1997). Some

asymptotic approximations for large Ra obtained by Kochbar and Chandrasekhara

(1984) were in agreement with the experimental results of Schneider (1963).

Vadasz (2010b) derived analytical solutions which confirmed the experimental

and numerical results revealing a widespread dispersion of heat flux data in natural

convection in porous media. He used the weak nonlinear method of solution to

evaluate the heat flux in a porous layer heated from below and subject to weak

boundary and domain imperfections. Previously little attention had been paid to the

effect that the lower branch of the imperfect bifurcation curve has on the average

heat flux. The results presented by Vadasz demonstrate the latter effect and explain

the reason behind the dispersion of data. The comparison of his results with existing

experimental and numerical data confirms the findings. In addition he showed that

the latter effect is shown to be essential in one’s ability to control heat transfer

enhancement via natural convection in porous metal foams, for example.

6.9.3 Further Experimental Observations

Experiments by Lister (1990) in a large porous slab (3 m in diameter, 30 cm thick),

using two quite different media (a matrix of rubberized curled coconut fiber and

clear polymethylmethacrylate beads), have revealed several new phenomena. With

the clear beads it was possible to visually observe the flows at the upper boundary.
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The boundary conditions were symmetrical (both impermeable and conducting)

and so rolls were to be expected. Lister found that convection began in a hexagonal

pattern and there was only a slight tendency to form rolls at slightly supercritical

Rayleigh numbers.

Lister suggested that the asymmetry of the onset (one boundary maintained at a

constant temperature, the other slightly heated) and the shape of the apparatus

(hexagonal) could both be involved in the appearance of hexagons rather than rolls.

At higher Rayleigh numbers the pattern of convection became very complex,

irregular, and three-dimensional, without developing any obvious temporal insta-

bilities. The visualization provided direct confirmation that the horizontal

wavenumber of the convection cells increased with the Rayleigh number, approx-

imately as (Ra + C)0.5, where C is a constant.

The Nu versus Ra curves obtained with the two media were substantially

different. This conclusion was unexpected. The only feature that they had in

common was a central section where the slope on a log/log graph was slightly

over 0.5. On the graph for the fiber experiment this section was preceded by a slope

close to 1 and followed by a slope close to 0.33. This last value is about the same as

other experimenters have observed for convection in a clear liquid, so the result

is expected because the fiber-filled medium had a porosity close to 100%.

The temperature measured at a point in the fill 25 mm below the top boundary

was unsteady at conditions representative of the upper two segments of the graph.

On the other hand, the Nusselt number for the bead fill jumps upward just above

onset (where Ra¼ 4π2), rapidly settles to a slope of 0.52, and then gradually breaks
upward again to a slope greater than 1 at the highest values (about 2000) for Ra

reached in the experiment. Lister reported that increases in conductivity and

permeability close to the boundary were not large enough to cause this increase

in slope. He concluded that a new phenomenon, lateral thermal dispersion, appears

to be responsible.

The phenomenon becomes important when the boundary layers become

comparable in size with the diffusion length of the lateral dispersion, namely the

bead size. The pores between beads are interlacing channels, i.e., they continually

join and separate again, occasionally juxtaposing flows that would otherwise be

separated by a substantial thermal-diffusion distance. This greatly enhances

interchannel thermal contact, and the use of beads with an irregular shape (they

were slightly rounded short cylinders of 3 mm diameter and length in Lister’s
experiment) means that there will be some actual flow exchange between channels.

In this way the effective thermal diffusivity can be raised, but only if the flow

velocity is sufficient to juxtapose channel streamlines more frequently than they

would diffuse into equilibrium with each other by conduction. This means that

lateral thermal dispersion has no effect on heat transfer at the onset of convection

nor when the pores are sufficiently fine.

Seki et al. (1980) studied a bed at high Rayleigh number. Shina et al. (2007)

investigated the onset of convection in a medium of high porosity composed of thin

cylindrical rods. Davidson et al. (2009) reported experiments in water-saturated

reticulated vitreous carbon foam. Keene and Goldstein (2015) reported work on

thermal convection at high Rayleigh numbers.
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6.10 Effect of Net Mass Flow

6.10.1 Horizontal Throughflow

On the Darcy model, if the basic flow is changed from zero velocity to a uniform

flow in the x direction with speed U, then the eigenvalue problem of linear stability

analysis is not altered if dispersion is negligible, since all the equations involved are

invariant to a change to coordinate axes moving with speed U, a result noted

by Prats (1966). Now some degeneracy is removed in that now longitudinal rolls

(i.e., rolls with axes parallel to the x axis) are favored over other patterns of

convection, in other words, such disturbances grow faster than other disturbances

for the same Rayleigh number and overall horizontal wavenumber.

On the Forchheimer model the situation is different, as Rees (1998) pointed out.

Now, for the usual boundary conditions

Rac ¼ π2 1þ Fð Þ1=2 þ 1þ 2Fð Þ1=2
h i2

: ð6:95aÞ

where F is given by Eq. (6.62) with the Péclet number Q based on the throughflow.

The critical wave number is given by

αc ¼ π
1þ 2F

1þ F

� �1=4

: ð6:95bÞ

Rees noted that this result provides a means of testing the validity of Eq. (1.12)

compared with, for example, Eq. (2.57) of Kaviany (1995). Ene and Polisevski

(1990) examined steady convection. Kubitscheck and Weidman (2003) have

analyzed a problem where the bottom wall is heated by forced convection.

(See the corrigendum in Weidman and Kubitschek (2013).) Delache et al. (2002)

have studied the effect of inertia and transverse aspect ratio on the pattern of flow.

Time-periodic convective patterns have been studied numerically and analytically

by Néel (1998) and Dufour and Néel (1998, 2000). Here various end-wall boundary

conditions are imposed and the resulting flow patterns investigated. They found an

entry effect whereby increasing flow rates yield increasing distances before strong

travel-wave convection is obtained. A nonlinear instability study using the

Brinkman model was performed by Lombardo and Mulone (2003). Further

nonlinear analysis was carried out by Delache et al. (2007) and Delache and

Quarzazi (2008). An experimental study related to aquifer thermal energy storage

was performed by Nagano et al. (2002a, b). Numerical simulations related to

diagenesis in layers of sedimentary rock were reported by Raffensperger and

Vlassopoulos (1999), but it appears that they ignored the possibility of longitudinal

rolls. The case of constant-flux boundary conditions was treated by Park et al.

(2006). The effects of viscous heating and an applied horizontal temperature

gradient were studied by Nield and Barletta (2010b) and Barletta and Nield

(2010). The effect of viscous heating with icy water was investigated by
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Storesletten and Barletta (2009). A viscoelastic fluid was studied by Hirata and

Quarzazi (2010a, b) and a power-law fluid was examined by Barletta and Nield

(2011a). The effect of local thermal nonequilibrium was investigated by Postelnicu

(2007a, 2010b). The analytical development of a disturbed matrix eigenvalue

problem was applied by Ben Hamed and Bennacer (2008). The onset of convection

in horizontally partitioned porous layers was studied by Genç and Rees (2011). The

effects of combined horizontal and vertical heterogeneity on the onset of stability

with horizontal throughflow were examined by Nield and Kuznetsov (2011i). The

case of a channel subject to symmetrical wall heat fluxes was studied by Barletta

(2012). The effect of conducting boundaries was investigated by Rees and Mojtabi

(2013). Dodgson and Rees (2013) showed that the value of Rac is raised above its

classical value when the Prandtl-Darcy number is finite. Variable viscosity effects

on the viscous dissipation instability were treated by Barletta and Nield (2012b).

Barletta (2014b) showed that for instability induced by viscous dissipation the

governing parameter is the product of a Gebhart number and the square of a Péclet

number. Alves and Barletta (2015) studied the transition from convective instability

to absolute instability in the Prats flow of a power-law fluid. Barletta and Alves

(2017) applied a toy model to an investigation of absolute instability. Sphaier and

Barletta (2014) examined the problem with heating from below and an insulated

top. Kang et al. (2014b) studied the case of a heterogeneous power-law fluid.

Barletta and Celli (2014) investigated the effect of variable viscosity and dissipa-

tion in a plane channel with horizontal throughflow. Tayari et al. (2016a) made a

second-law analysis of Poiseuille-Bénard channel flow. Zhao et al. (2015) studied

the linear stability of one-dimensional non-Darcy flow in broken rocks.

6.10.2 Vertical Throughflow

The effect of net mass flow with mean speed U in the z direction was studied by

Sutton (1970) and Homsy and Sherwood (1976). This effect is more significant,

because this alters the dimensionless temperature gradient from �1 to F(z) where

F zð Þ ¼ � Pe exp Pe zð Þ
exp Peð Þ � 1

, ð6:96Þ

where Pe is the Péclet number for the flow,

Pe ¼ UH

αm
: ð6:97Þ

Equation (6.26) is unchanged, but Eq. (6.25) is replaced by

D2 � α2 � PeD
� 	bθ ¼ F zð Þ bW : ð6:98Þ
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Before discussing quantitative results, we consider some qualitative ones. When

Pe is large, the effect of the throughflow is to confine significant thermal gradients

to a thermal boundary layer at the boundary toward which the throughflow is

directed. The effective vertical length scale L is then the small boundary layer

thickness rather than the thickness H of the porous medium, and so the effective

Rayleigh number, which is proportional to L, is much less than the actual Rayleigh

number Ra. Larger values of Ra thus are needed before convection begins. Thus the

effect of large throughflow is stabilizing.

Within the bulk of the medium a large part of the heat transport can be affected

by the throughflow alone, and the value of the temperature gradient at which

convection cells are required is increased. The effective Rayleigh number is largely

independent of the boundary conditions at the boundary from which the

throughflow comes.

The situation for small values of Pe is more complex. The case of insulating

boundaries is readily amenable to approximate analysis. On the assumption that

the effect of Pe does not appreciably alter the shape of the eigenfunctions, one

can obtain analytical formulas for the critical Rayleigh number for various combi-

nations of boundary conditions.

For example, for the case in which both boundaries are impermeable and

insulating, Nield (1987a) obtained the formula

Rac ¼ 2Pe2

Pe coth Pe=2ð Þ � 2
: ð6:99Þ

Clearly Rac is an even function of Pe and for positive Pe is an increasing function

of Pe. Hence throughflow is stabilizing for all values of Pe, and the direction of flow

does not matter. For small values of Pe we have

Rac ¼ 12þ 1

5
Pe2: ð6:100Þ

On the other hand, when the lower boundary is impermeable and insulating and

the upper boundary is insulating and free (at constant pressure),

Rac ¼ 2Pe exp Peð Þ � 1½ �
2Peþ 2þ Peð Þ2exp Peð Þ : ð6:101Þ

For small values of Pe:

Rac ¼ 3 1� 1

8
Pe

� �
ð6:102Þ

showing that the case of downflow (Pe < 0) is stabilizing and that upflow of small

magnitude is destabilizing. A similar picture is painted by the numerical results for

conducting boundaries by Jones and Persichetti (1986).
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For symmetrical situations, where the lower and upper boundaries are of the

same type, Rac is an even function of Pe and throughflow is stabilizing by a degree

that is independent of the flow direction. When the boundaries are of different

types, throughflow in one direction is clearly destabilizing for small values of Pe

since dRac/dPe at Pe ¼ 0 is not zero. The destabilization occurs when the

throughflow is away from the more restrictive boundary. The throughflow then

decreases the temperature gradient near the restrictive boundary and increases it in

the rest of the medium. Effectively the applied temperature drop acts across a layer

of smaller thickness, but the stabilizing effect of this change is more than made up

by the destabilization produced by changing the effective boundary condition to a

less restrictive one. A similar phenomenon, arising when the vertical symmetry is

removed by the temperature dependence of viscosity or by some nonuniformity of

the permeability, was found by Artem’eva and Stroganova (1987). Khalili and

Shivakumara (1998, 2003), Shivakumara (1999), Shivakumara and Nanjundappa

(2001), and Khalili et al. (2002) have extended the linear stability theory to

consider the effects of internal heat generation and anisotropy and also boundary

and inertial effects. A study of the stability of the solutions given by linear stability

theory, together with a numerical study to confirm the findings, was conducted by

Zhao et al. (1999b).

Wu et al. (1979) have used numerical methods to study the case of maximum

density effects with vertical throughflow, while Quintard and Prouvost (1982)

studied throughflow with viscosity variations that lead to Rayleigh–Taylor insta-

bility. The nonlinear stability analysis of Riahi (1989) for the case of large Pe shows

that subcritical instability exists and this is associated with up-hexagons, which are

stable for amplitude ε satisfying |ε| ¼ 0.35. For |ε| ¼ 0.4, squares too are stable, and

the realized flow pattern depends on initial conditions. A general nonlinear analysis

was reported by van Duijn et al. (2002). Their predictions were in good agreement

with the results of laboratory experiment with Hele-Shaw cells of Wooding et al.

(1997a, b). A transient problem was studied by Pieters and van Duijn (2006).

Global stability was studied by Hill (2007) and Hill et al. (2007) (penetrative

convection).

Nield and Kuznetsov (2011g) analyzed the effect of vertical throughflow on the

onset of convection in a rectangular box. The effect of strong vertical throughflow

was studied by Nield and Kuznetsov (2011f). Double-diffusive convection in a

heterogeneous vertical cylinder was treated by Kuznetsov and Nield (2012c).

Kiran and Bhadauria (2015b) combined the effects of throughflow and thermal

modulation. The effect of pulsating throughflow was investigated by Nield and

Kuznetsov (2016b). Throughflow with a power-law fluid was examined by Barletta

and Storesletten (2016).

The effects of vertical throughflow and variable gravity on Hadley-Prats flow

were examined by Deepika and Narayana (2015). Harfash and Alshara (2015c)

studied an anisotropic medium.
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6.11 Effect of Nonlinear Basic Temperature Profiles

6.11.1 General Theory

Nonlinear basic temperature profiles can arise in various ways, notably by rapid

heating or cooling at a boundary or by a volumetric distribution of heat sources.

When the former is the case, the profile is time-dependent, but one can investigate

instability on the assumption that the profile is quasi-static, i.e., it does not change

significantly on the timescale of the growth of small disturbances. It is found that

with a curved temperature profile it is possible for the critical Rayleigh number to

be less than that for a linear profile. Indeed, in the case of the parabolic profile

arising from a uniform volume distribution of sources, the critical value Rac can be

arbitrarily small. But when the profiles are restricted to ones in which the gradient

does not change sign, the question of which profile leads to the least Rac is not

trivial. The question can be answered readily for the case of insulating (constant

heat flux) boundaries because then an analytic expression for Rac can be found.

The problem is to minimize Rac with respect to the class of nondimensional

adverse temperature gradients f bzð Þ satisfying

f bzð Þ � 0, f bzð Þh i ¼ 1: ð6:103Þ
where f bzð Þh i denotes the integral of f bzð Þwith respect tobz, frombz¼ 0 tobz¼ 1. Nield

(1975) shows that the problem reduces to maximizing hW0θ0 f(bz)i where W0 and

θ0 are normalized eigenfunctions. For example, in the case of impermeable insu-

lating boundaries it is found that W0 ¼ bz – bz2, θ0 ¼ 1, and

Rac ¼ 2bz �bz2ð Þ f bzð Þh i : ð6:104Þ

The expression (bz � bz2) has its maximum when bz ¼ 1/2, and consequently the

function f bzð Þ, which minimizes Rac subject to the constraints (6.103), is the Dirac

delta function

f bzð Þ ¼ δ bz � 1

2

� �
:

The corresponding minimum value is Rac ¼ 8. This may be compared with the

value Rac ¼ 12 for the linear temperature profile. More generally, the step-function

temperature profile whose gradient is f bzð Þ ¼ δ bz � εð Þ gives

Rac ¼ 2

ε� ε2
: ð6:105Þ

For piecewise linear temperature profiles whose gradient is of the form

f bzð Þ ¼ ε�1, 0 
 bz < ε
0, ε < bz 
 1

�
ð6:106Þ
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one finds that

Rac ¼ 12

3ε� 2ε2
, ð6:107Þ

The case of the linear temperature profile is given by ε ¼ 1, Rac ¼ 12, as

expected. As ε varies the minimum of expression (6.107) is attained at ε ¼ 3/4, and

then Rac ¼ 32/3. Nield (1975) showed that this provides the minimum for Rac
subject to

f zð Þ � 0, df=dbz 
 0 almost everywhereð Þ, f bzð Þh i ¼ 1: ð6:108Þ
An extension of the above theory, incorporating the Brinkman term, was made

by Vasseur and Robillard (1993). An extension to the case of permeable boundaries

was reported by Thangaraj (2000).

6.11.2 Internal Heating

When a volumetric heat source q000 is present, Eq. (6.5) is replaced by

ρcð Þm
∂T
∂t

þ ρcPð Þfv �∇T ¼ km∇2T þ q000: ð6:109Þ

The steady state is given by

vb ¼ 0 and km∇2Tb ¼ �q000: ð6:110Þ
If q000 is constant, then the basic steady-state temperature distribution is

parabolic,

Tb ¼ � q000z2

2km
þ q000H

2km
� ΔT

H

� �
zþ T0 þ ΔT: ð6:111Þ

In place of Eq. (6.13), one has

ρcð Þm
∂T0

∂t
þ ρcð Þf

q000

2km
H � 2zð Þ � ΔT

H

���� ����w0 ¼ km∇2T0: ð6:112Þ

Equations (6.11) and (6.12) still stand. If instead of ΔT we now choose RaΔT as

temperature scale then in terms of the new nondimensional variables one has, for

monotonic instability,

∇2bw ¼ ∇2
H
bbT , ð6:113Þ
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∇2
H
bbT ¼ RaI 1� 2bzð Þ � Ra½ �bw, ð6:114Þ

where
bbT ¼ Ra bT . The new nondimensional parameter is the internal Rayleigh

number RaI defined by

RaI ¼ H2 q000

2kmΔT
Ra ¼ gβKH3q000

2ναmkm
: ð6:115Þ

We can refer to the original Ra as the external Rayleigh number, to distinguish it

from the internal Rayleigh number RaI.

Equations (6.113) and (6.114), which now contain a nonconstant coefficient,

may be solved numerically by using, for example, the Galerkin method. The

stability boundary in the (Ra, RaI) plane, Fig. 6.11, was calculated by Gasser and

Kazimi (1976) for the case of impermeable conducting boundaries. When RaI ¼ 0,

the critical value of Ra is 4π2. When Ra ¼ 0, the critical value of RaI is 235.

Changing the thermal boundary condition at the lower boundary has a marked

effect on the critical value of RaI; Buretta and Berman (1976) gave the estimate

32.8 for the case of an insulating lower boundary. Within experimental error, this

was in agreement with their experiments, which involved a copper sulfate solution

saturating a bed of spherical glass beads.

These experiments by Buretta and Berman revealed an interesting effect. Their

Nu versus Ra diagram showed a bifurcation into two branches with different slopes.

There was also a jump from the lower branch to the upper at some Ra value that

increased with bead size. Subsequent experiments by Hardee and Nilson (1977),

Rhee et al. (1978), and Kulacki and Freeman (1979) failed to reproduce the jump.

The data obtained by Kulacki and Freeman tended to correlate with the lower

branch of Buretta and Berman’s curve, but those of the other experimenters tended

to correlate with the upper branch (Fig. 6.12). It appears that the discrepancy is still

unresolved, but it may be related to the unusual bifurcation structure found by He
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and Georgiadis (1990), which arises from the effect of hydrodynamic dispersion in

the case of uniform volumetric heating.

Various authors have made analytical or numerical extensions of the problem.

Kulacki and Ramchandani (1975) varied the thermal boundary conditions. Tveitereid

(1977) carried out a nonlinear stability analysis. He found that down-hexagons

(downward flow in the centers of the cells) were stable for Ra up to 8 Rac,

up-hexagons were stable for all values of Ra, and two-dimensional rolls were stable

for 3Rac < Ra< 7Rac. His computed Nu versus Ra curves correlated quite well with

the upper branch of Buretta and Berman’s curve. Rudraiah et al. (1980, 1982b) carried
out calculations of RaIc for various boundary conditions using the Brinkman equation.

Somerton et al. (1982) made a numerical study of wavenumber predictions. Rudraiah

and Srimani (1980) also studied finite-amplitude cellular convection. A nonlinear

(energy) stability analysis was carried out by Ames and Cobb (1994), who thereby

estimated the Ra band for possible subcritical instabilities.

Somerton et al. (1984) performed calculations that indicated that the wave

number for convection decreases with increasing internal Rayleigh number.

Kaviany (1984a) discussed a transient case when the upper surface temperature is

decreasing linearly with time. Hadim and Burmeister (1988, 1992) have modeled a

solar pond by allowing q
000
to vary exponentially with depth, including the effect of

vertical throughflow. Rionera and Straughan (1990) added the effect of gravity

varying in the vertical direction. Their analysis, based on the energy method,

revealed the possibility of subcritical convection. Sumar et al. (2011) and Harfash

(2014e) also studied a variable gravity field. Adnani et al. (1991) studied the effect

of hydrodynamic dispersion. Stubos and Buchlin (1993) numerically simulated the

transient behavior of a liquid-saturated core debris bed with internal dissipation.

Parthiban and Patil (1995) extended the theory to the case of inclined gradients

(see Sect. 7.9). A bifurcation study employing the Brinkman model was carried out

by Choi et al. (1998). The Brinkman model was also employed by Shivakumara and

Nanjundappa (2001). Wang et al. (2007d) studied numerically convection in a

square enclosure.

Fig. 6.12 Comparison of

heat transfer results for

internal heating (Kulacki

and Freeman 1979)
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A square cavity with partially thermal active sidewalls was investigated numer-

ically by Wu et al. (2014a, b, c). Islam et al. (1990) studied the case of icy water.

Kolesnikov (1978) studied a problem in which the internal heating was due to a

chemical reaction. A chemical reaction was also investigated by Andres and

Cardoso (2011). Riahi (1984) examined nonlinear convection with internal heat

sources. Rionero and Straughan (1990) studied variable gravity effects. Vortmeyer

et al. (1989) treated a problem involving radiative transfer. The problem with a fluid

undergoing a zero-order exothermic reaction was analyzed by Malashetty et al.

(1994): the chemical reaction leads to increased instability. With determination of

the conditions for the spontaneous combustion of a coal stockpile in mind,

Bradshaw et al. (1991) used an approximate analysis to obtain convection patterns.

They found that down-hexagons and two-dimensional rolls are the stable plan

forms, and using a continuation procedure they obtained a simple criterion for the

point of ignition in the layer, one given by a Frank-Kamenetskii parameter exceed-

ing 5.17.

Lu and Zhang (1997) studied the onset of convection in a mine waste dump, in

which there is active oxidation of pyritic materials, the rock being filled with moist

gas. They took into account the effects of compressibility, latent heat, and a

volumetric heat source varying exponentially with depth. Royer and Flores

(1994) presented a novel way of dealing with Darcy flow in an anisotropic and

heterogeneous medium. The combination of internal heat sources and vertical

throughflow was treated by Yoon et al. (1998). A study involving external radiative

incidence and imposed downward convection was reported by Liu (2003).

A general study of radiative heat transfer was reported by Park et al. (1996).

The case where the volumetric heating is due to the selective absorption of

radiation was studied by Vortmeyer et al. (1989) and also by Hill (2003, 2004a, b),

employing both linear and nonlinear stability analysis and also numerically, for

each of the Darcy, Forchheimer, and Brinkman models. Convection with a

non-Newtonian (power law) fluid at a large internal Rayleigh number was treated

numerically by Kim and Hyun (2004).

Transient effects and heat transfer correlations for turbulent heat transfer were

reported by Kim et al. (2002a, b). Jimenez-Islas et al. (2004) conducted a numerical

study of natural convection with grain in cylindrical silos.

The effect of thermal nonequilibrium was studied by Baytas (2007),

Nouri-Borujerdi et al. (2007c), and Saravanan (2009b), who treated a density

maximum. Low Prandtl number chaotic convection was studied by Jawdat and

Hashim (2010). A problem involving a layer of gas underlying a layer of oil was

investigated by Kim et al. (2007). Steady finite Rayleigh number flows were

examined by Mealey and Merkin (2009). The effects of anisotropy were included

in a study of unsteady convection by Slimi et al. (2005).

The case of a low Prandtl number fluid was studied by Israel-Cookey et al.

(2010). Patil and Rees (2013) investigated the effect of local thermal

nonequilibrium on the linear instability of a horizontal thermal boundary layer

formed by the throughflow. The effect of local thermal nonequilibrium in an

internally heated layered porous medium was studied by Kuznetsov and Nield
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(2015). A layered medium was also investigated by Kuznetsov and

Nield (Kuznetsov and Nield 2013a, b, c). Nield and Kuznetsov (2013b) studied

the effect of weak heterogeneity. The combination of local thermal nonequilibrium

and heterogeneity was treated by Kuznetsov and Nield (2014). Heterogeneity and

vertical throughflow were examined by Kuznetsov and Nield (2013a, b, c). De Luca

(2015) studied global nonlinear stability and “cold convection instability” of

nonconstant throughflows. Vanishree (2014) combined internal heat generation

and anisotropy. Kiran and Bhadauria (2015b) combined throughflow and thermal

modulation. Saravanan and Senthil Nayaki (2014) treated local thermal

nonequilibrium with temperature-dependent viscosity. Govorukhin (2014) studied

numerically a case of co-symmetry leading to various steady and periodic motions.

The effects of time-periodic thermal boundary conditions were studied by

Bhadauria et al. (2013b). Nield and Kuznetsov (2016a) studied the case where the

volumetric source strength varies in the vertical direction. Harfash (2016b)

conducted three-dimensional simulations for convection induced by selective

absorption of radiation. Celli et al. (2016b) combined a uniform internal heat source

with heating from below with an isoflux condition. Three-dimensional convection

in a rectangular box was investigated by Mishra et al. (2016).

6.11.3 Time-Dependent Heating

The case where the temperature imposed on the lower boundary is timewise

periodic was analyzed by Chhuon and Caltagirone (1979). The thermal boundary

conditions are now T ¼ T0 at z ¼ H and

T ¼ T0 þ ΔT 1þ β sinω*t
� 	

at z ¼ 0: ð6:116Þ
For the basic state the nondimensional equations, expressed in terms of the same

scales as in Sect. 6.2, are vb ¼ 0 and

∂bTb

∂bt ¼ ∂2bTb

∂bz2 , ð6:117Þ

bTb ¼ 1 at bz ¼ 1, ð6:118Þ

bTb ¼ 1þ β sinωbt at bz ¼ 0, ð6:119Þ

ω ¼ σH 2

αm
ω*: ð6:120Þ

The solution of the system of Eqs. (6.117)–(6.120) is

bTb ¼ 1� bzð Þ þ βα bzð Þ sin ω tþ φ bzð Þð Þ ð6:121Þ
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where

α bzð Þ ¼ qj j, φ bzð Þ ¼ Argq,

q bzð Þ ¼ sinh k 1þ ið Þ 1� bzð Þ½ �
sinh k 1þ ið Þ½ � , k ¼ ω

2

� �1=2
: ð6:122Þ

If we take perturbations on this steady state and, instead of Eq. (6.23a), take

bw; bT� �
¼ W bz;bt� 	

; θ bz;bt� 	� �
exp i lbx þ imbyð Þ, ð6:123Þ

we obtain

∂θ

∂bt ¼ D2 � α2
� 	

θ �W
∂bTb

∂bz , ð6:124Þ

γa
∂

∂bt D2 � α2
� 	

W ¼ �Raα2θ � D2 � α2
� 	

W: ð6:125Þ

In the case of impermeable isothermal boundaries the boundary conditions are

W ¼ θ ¼ 0 at bz ¼ 0 and bz ¼ 1: ð6:126Þ
Chhuon and Caltagirone then set γa¼ 0, solved the system (6.124)–(6.126) using

the Galerkin method, and examined the stability of solutions of the resulting

ordinary differential equations using the Floquet theory. In this way they obtained

the value of a critical Rayleigh number Ract as a function of wavenumber α,
amplitude β, and frequency f ¼ 2π/ω. They also performed experiments

and compared their observations with their Floquet theory calculations and with

calculations based on linear theory by Caltagirone (1976a), shown in Fig. 6.13.

In comparing the theories there is the problem that for the linear theory the

stability criterion taken was a(t) < 0, a(t) being the amplitude of the temperature

perturbation. Both theories give the frequency range 1–100 as that over which Ract

40

Ract

30

20

0 1
β

2

convection
conduction

Fig. 6.13 Critical Rayleigh

numbers versus amplitude

for frequency f ¼ 4.23;
black circle, white circle
experiment, dashed line
linear theory, solid line
Floquet theory (Chhuon and

Caltagirone 1979)
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varies significantly, but whereas in the Floquet theory Ract varies only slightly

with f, in the linear theory Ract varies from 40 as f ! 1 to 40/(β + 1) at f ¼ 0.

Both theories predict destabilization from the stationary case. The Floquet theory

breaks down when f ! 0, since the critical Rayleigh numbers must necessarily

approach 4π2/(β + 1).

As Fig. 6.13 shows, convective phenomena are observed for Rayleigh numbers

between those given by the two theories. Additional numerical calculations by

Chhuon and Caltagirone showed that during part of the period of oscillation, the

effect of convection is that the initial perturbation is attenuated considerably and

then it increases. At high frequencies both theories agree that the temperature

oscillation has no effect on the stability of the layer.

The Brinkman model was employed by Rudraiah and Malashetty (1990). They

concluded that modulation could advance or delay the onset of convection

according to whether the variation of top and bottom temperatures was in phase

or out of phase. An extension to the Forchheimer model was made by Malashetty

and Wadi (1999), while Malashetty and Basavaraja (2002) combined an oscillatory

wall temperature with an oscillatory gravitational field. Néel and Nemrouch (2001)

examined the stability of a layer with an open top and a pulsating temperature

imposed at the upper boundary, using the Darcy model. The case of an oscillatory

thermal condition at the top was also studied numerically by Holzbecher (2004c).

The effect of temperature modulation on the onset of convection in a Hele-Shaw

cell was studied by Souhar et al. (2011). Temperature modulation with a variable

viscosity liquid in an anisotropic medium was studied by Bhadauria and Kiran

(2013). Misra and Kumar (2015) provided a weakly nonlinear stability analysis for

an anisotropic cavity under time-periodic temperature modulation. Synchronous

and asynchronous boundary temperature modulations were analyzed by

Siddheswar et al. (2013).

Other authors have been concerned with situations where the imposed surface

temperature varies monotonically with time. Now amplification of disturbances

inevitably occurs at some stage, and the interest is in determining an onset time by

which the growth factor has reached some specified criterion, say 1000. Caltagirone

(1980) investigated the case when the lower surface is subjected to a sudden rise in

temperature. He used linear theory, energy-based theory, and a two-dimensional

numerical model. Quintard (1984) studied the case where the lower part of the layer

is suddenly heated and the case of injection of hot water. Kaviany (1984a) made a

theoretical and experimental investigation of a layer with a lower surface temper-

ature increasing linearly with time. His second paper (Kaviany 1984b) involved

both time-dependent cooling of the upper surface and uniform internal heating. An

alternative treatment of this problem was reported by Yoon et al. (1992), following

on from Yoon and Choi (1989). They predicted an onset time τc given by

τc ¼ 6:55 DaRað Þ�2=3
, ð6:127Þ

where Da ¼ K/φH2, and found that the experimental data of Kaviany (1984b)

indicated that the convection is detectable at time 4τc. The fact that this onset time is
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significantly larger than tc suggests that the fastest growing modes will be the ones

that are observed. A study of the most unstable disturbance corresponding to

momentary instability, based on an optimization over the range of possible initial

conditions, was made by Green (1990). A prediction of the time required for the

onset of convection in a porous medium saturated with oil with a layer of gas

underlying the oil was made by Rashidi et al. (2000). Propagation theory was

employed by Kim et al. (2004a, b) to study the onset of convection in a transient

situation with a suddenly applied constant heat flux at the bottom of the layer.

A further theoretical study was reported by Kim and Kim (2005). Linear and global

stability analyses of the extension of the Caltagirone (1980) problem to the case of

an anisotropic medium were made by Ennis-King et al. (2005), for both thin and

thick slabs. For a thick slab they found that the increase of τc as γ (the ratio of

vertical permeability to horizontal permeability) decreases is given approximately

by (1 + √γ)4/16γ2. Their study is applicable to the geological storage of carbon

dioxide, for which the timescale can vary from less than a year (for high-

permeability formations) to decades or centuries (for low-permeability ones).

The topic of the previous paragraph, in the context of an unsteady boundary layer

formed when the temperature or solute at a plane boundary is changed instanta-

neously to a new level, was discussed in detail in the review paper by Rees et al.

(2008d). In this situation the thermal/solutal field which then forms is unsteady and it

spreads outwards uniformly by diffusion. When the less dense fluid lies below the

more dense fluid the evolving system is stable at first but eventually becomes

unstable, and so one is interested in determining the critical time at which the system

is deemed to be unstable. Many methods have been used to do this, with varying

results illustrated in Table 6.3. We now briefly discuss these methods in turn.

Table 6.3 Critical times and wavenumbers obtained by different methods

Case τc tc kc Reference

QS1 12.9439 167.544 0.06963 Selim and Rees (2007a)

QS2 7.4559 55.590 0.05834 Rees et al. (2008d)

QS3 12.43 154.5 0.0736 Yoon and Choi (1989)

QS4 7.27 52.85 0.07428 Kim et al. (2003a, b, c, d)

LR1 46.5520 2261.2 0.06607 Tan et al. (2003)

LR2 9.8696 97.409 0.07958 Rees et al. (2008d)

ES1* ~9.6 ~96 Caltagirone (1980)

ES2* ~5.5 ~30 Ennis-King et al. (2005)

AT1 8.9018 79.242 0.07807 Selim and Rees (2007a)

AT2* ~8.9 ~80 Caltagirone (1980)

AT3a* 8.7 75 0.066 Ennis-King et al. (2005)

AT3b 10.56 111.5 0.0752 Ennis-King et al. (2005)

AT4 12.1 147 0.07 Riaz et al. (2006)

AT5* 8.671 75.19 0.06529 Xu et al. (2006)

AT6* 7.75 60 0.05 Hassanzadeh et al. (2006)

QS quasi-static, LR local Rayleigh number, ES energy stability, AT amplitude theory

Results marked with an asterisk are extrapolated from finite thickness calculations. (After Rees

et al. 2008d) (Here τ¼ t1/2, where t is the time scaled in terms of the thermal/solutal diffusion time)
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The quasi-static assumption is made by assuming that all time derivatives in the

eigenvalue problems are zero. If this is done before a similarity coordinate trans-

formation then one has propagation theory (case QS1), while if it is done afterwards

one has the frozen time method (case QS2). Each method involves an essentially

arbitrary strong constraint on which disturbances are allowable. The results of Yoon

and Choi (1989) (QS3) were obtained using propagation theory applied to a finite

layer, which gives deep pool results when the Rayleigh number is large. Kim et al.

(2003a) (QS4) employ propagation theory with a stress-free boundary condition

applied at the lower surface.

The local Rayleigh number analysis (cases LR1 and LR2) is a rough and ready

method which uses the basic Horton-Rogers-Lapwood results with a Rayleigh

number based on the current thickness of the boundary layer. Hence it gives just

ball-park estimates. The large value for the critical time obtained by Tan et al.

(2003) is obviously anomalous and in fact Nield (2004a) pointed out that their work

is flawed in a number of respects.

The idea behind energy stability analysis (cases ES1 and ES2) is to find a time

before which no disturbances grow. Variational methods are used to find the earliest

time before which an appropriately defined energy functional is stationary. In

Table 6.3 the results for case ES1 have been obtained by extrapolating the results

of Caltagirone (1980) for a finite layer. Ennis-King et al. (2005) extended

Caltagirone’s results to anisotropic media. Their isotropic results are at variance

with Caltagirone’s in predicting a much earlier time and currently there is insuffi-

cient information to resolve the matter.

The amplitude method (case AT) (also called dominant-mode analysis) uses

solutions of the full parabolic disturbance equations. It is necessary to specify the

initial perturbation whose evolution is then determined. This has been undertaken

using either Galerkin methods for a finite thickness layer (Caltagirone 1980; Ennis-

King et al. 2005; Xu et al. 2005) or in the deep-pool context by Galerkin methods

(Ennis-King et al. 2005) or by finite-difference methods (Selim and Rees 2007a).

A means of determining the amplitude of the evolving perturbation also has to be

defined, and various options have been used in the literature. In all cases the chosen

measure is evaluated at each timestep and the times at which the time derivative is

zero are noted together with the wavenumber k. Hassanzadeh et al. (2006) used

the same methodology as Ennis-King et al. (2005) and Xu et al. (2006) but varied

the initial conditions and the boundary conditions.

For further discussion and critical comment on this complicated matter the

reader is referred to Rees et al. (2008d). They conclude tentatively that the results

of Caltagirone (1980) and Selim and Rees (2007a) should be regarded as definitive,

at least for amplitude theory. Rees et al. (2008d) also draw attention in this context

to the studies of anisotropy by Ennis-King et al. (2005), of ramped heating by

Kim and Kim (2005) and Hassanzadeh et al. (2006), of internal heat sources

by Kim et al. (2002a), and of local thermal nonequilibrium by Nouri-Borujerdi

et al. (2007c). Generally it was found that the critical time decreases as the degree of

LTNE increases. This may be attributed to the fact that the convecting fluid does not

have to impart heat to the solid phase, and thus by the fluid’s experience of what
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might be called a thermal drag. The double-diffusion extension of this topic is of

importance in the study of carbon dioxide sequestration (see, for example, the study

by Kim and Choi (2012) in Sect. 11.11). We add that Kim and Choi (2007) and Kim

(2010) have employed a modified energy theory (they call it relaxed energy

stability analysis). They obtained the values tc ¼ 83.72, kc ¼ 0.067. We note that

this value for the critical time is consistent with the results of Caltagirone (1980)

and Selim and Rees (2007a).

The situation where the permeability varies periodically across the vertical

thickness of a saline aquifer was investigated by Daniel et al. (2015). The stability

of gravitationally unstable transient boundary layers is then affected as follows. If

the boundary layer thickness is greater than the permeability wavelength, then

instability decreases with permeability variation. If the boundary layer thickness

is less than the permeability wavelength, then the behavior varies with permeability

variation. This is the result of the interaction of two modes of vorticity production

related to the coupling of concentration and velocity perturbations with the magni-

tude and gradient, respectively, of the permeability variation. When the permeabil-

ity variance is large, then small changes in the permeability field can lead to large

changes in the onset times for convection.

The possibility of feedback control of the conduction state was demonstrated

theoretically by Tang and Bau (1993). The temperature perturbation θ0 at some

horizontal cross section is monitored. The controller momentarily modifies the

perturbation temperature distribution of the heated base in proportion to a linear

combination of θ0 and its time derivative. Thus the controller slightly reduces/

increases the bottom temperature at locations where the fluid tends to ascend/

descend. Once the disturbance has disappeared, the bottom temperature is restored

to its nominal value. This simple procedure suppresses the first even mode and so

delays the onset of convection until the first odd mode is unstable, giving a fourfold

increase in the critical Rayleigh number. More general issues were discussed by

Bau (1993). The feedback control of chaotic convection was studied by Vadasz

(2002a, b, 2010a), Mahmud and Hashim (2010, 2011), and Roslan et al. (2011).

The effects of a sinusoidal temperature distribution, as a wave with wavelength

that of the incipient Bénard cells superimposed on the hot temperature of the lower

plate, were studied numerically by Mamou et al. (1996). For a given value of Ra,

the cells move with the imposed wave if the velocity of the latter remains below a

critical value, but at higher velocity the cell motion is irregular and fluctuates.

Ganapathy and Purushothaman (1992) had analyzed previously a similar problem

with a moving thermal boundary condition at the upper surface. The effects of

adding small-amplitude traveling thermal waves, of the same amplitude and phase

at the top and bottom boundaries, were examined by Banu and Rees (2001).

At sufficiently low Rayleigh numbers Ra the induced flow follows the motion of

the thermal wave, but at higher Ra this form of convection breaks down and there

follows a regime where the flow travels more slowly on the average and does not

retain the forcing periodicity. At much higher Ra (or for large wave speeds at

moderate Ra) two very different timescales appear in the numerical simulations.

Hossain and Rees (2003) treated the variant problem where the sidewalls have
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the same cold temperature as the upper surface. Now the flow becomes weaker as

the Darcy number decreases from the pure fluid limit toward the Darcy flow limit,

and the number of cells that form in the cavity varies primarily with the aspect ratio

and is always even due to the symmetry imposed by the cold sidewalls.

Nogrehabadi et al. (2013a, b, c) studied the linear stability of a developing thermal

front induced by a constant heat flux.

The onset of convection induced by volumetric heating, with the source strength

varying exponentially with depth and also varying with time, was analyzed by

Nield (1995a); he added a term

q000eβ z=H�1ð Þ 1þ ε eiω t�t
00ð Þh i

ð6:128Þ

to the right-hand side of Eq. (6.5), and showed that, for the case of conducting

boundaries, instability occurs when

Raþ RaI f βð Þ 4π2ε 16π2 þ ω2
� 	�1=2 � 1

h i
> 4π2, ð6:129Þ

where f(β) ¼ 2(1 – e–β)/(4π2 + β2), RaI is given by Eq. (6.115), and ω is given by

Eq. (6.120), the most unstable conduction-state temperature profile occurring at the

end of the cooling phase of a cycle if β is positive. Nield also gave results for other

thermal boundary conditions. He also investigated the case of square-wave periodic

heating, both for a steady state and the transient situation after the heating is

suddenly switched on. He showed that the square-wave time-periodic source

leads to a more unstable situation than a sinusoidal time-periodic source of the

same amplitude, and that transient on-off heating leads to greater instability than the

corresponding steady state.

Kohl et al. (2008) and Kim and Choi (2013) examined transient problems

theoretically. An experimental investigation was reported by Cooper et al. (2014).

A general study of nonmodal linear instability theory, involving the optimization of

perturbations that maximize amplification over a specified time interval, was

reported by Daniel et al. (2013). Using a comparison of stability characteristics,

Kim and Choi (2015) established the validity of the quasi-steady-state approxima-

tion. Suthar et al. (2016) applied matrix differential operator theory to thermally

modulated convection. Malveev (2016) considered the effect of impurity transport

on developed convection. He proposed a model similar to a dual-porosity model.

He examined two flow configurations (a chain of rolls and a lattice of hexagons) and

steady or unsteady flow. Engstrom and Nordell (2016) investigated numerically

temperature-driven groundwater convection in cold climates, at temperatures less

than 4 	C, at various seasons. A problem in which the boundary layer is induced by

varying the temperature of a horizontal boundary sinusoidally with time about the

ambient temperature (thus modelling diurnal heating and cooling from above in

subsurface groundwater) was studied by Bidin and Rees (2016).
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6.11.4 Penetrative Convection, Icy Water, Quadratic Density
Model, Resonance

The case of icy water, where the density goes through a maximum as the temper-

ature changes, is particularly interesting because it gives rise the phenomena of

penetrative convection and resonance. These phenomena are discussed in detail in

Chaps. 6 and 14 of the book by Straughan (2015d). By resonance Straughan means

the situation where instability in one part of a fluid layer may occur simultaneously

with instability in another part of the layer. This can lead to unusually high critical

Rayleigh numbers at the onset of thermal convection.

Experiments with a layer of icy water were reported by Sugawara et al. (1987)

and Spatz and Poulikakaos (1988). Theoretical investigations were made by Patil

(1982b) and by Kumar and Kazarinoff (1987). A numerical study of three-

dimensional convection in a box was made by Altimir (1984). He showed that in

the lower portion of the box the heat transfer was chiefly convective, while in the

upper potion it was primarily conductive. Mamou et al. (1999) used linear stability

analysis with the Brinkman model to study the onset of convection in a rectangular

porous cavity saturated by icy water. They also obtained numerical results for

finite-amplitude convection. These results indicate that subcritical convection is

possible when the upper stable layer extends over more than one half of the cavity

depth and demonstrate the existence of multiple solutions for a certain parameter

range. Penetrative convection in a horizontally isotropic porous layer was investi-

gated by Carr and de Putter (2003) using alternatively an internal heat sink model or

a quadratic temperature law. They performed linear and nonlinear stability analyses

and showed that their two models led to the same predicted instability boundaries.

Carr and Straughan (2003) numerically calculated the onset of convection in

two-layer system with icy water underlying a porous medium with patterned ground

in mind.

Straughan (2004a) studied an interesting resonant situation where the density is a

quadratic function of the temperature. He considered a problem where there is

volumetric heating and the upper boundary is held at 4 	C. He showed that there is a
parametric range in which the convection may switch from the lower part of the

layer to being prominent in the upper part of the layer. At an intermediate stage

convection can occur in each mode and there is coupling between the two modes.

The continuous dependence on the heat source in resonant natural convection was

investigated by Straughan (2011a). Whereas Straughan (2004a) use a quadratic

Forchheimer theory to control the cubic nonlinearity which arises in the energy

stability analysis, Straughan (2015d, Sect. 14.2) employed a cubic one. He then

treated a case where there is also a constant heat source present. He presented in

turn a linear instability analysis and a global nonlinear stability analysis. For a

certain range of wavenumber the solution has an oscillatory branch, but for a

constant heat source and quadratic density the instability is always by stationary

convection when Darcy’s law holds. Three-dimensional simulations in a layered

cubical enclosure were made by Guerrero-Martinez et al. (2017). Straughan
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(2015c) further examined the problem. He found that whether or not resonance

occurs depends crucially on whether the Brinkman or Darcy law holds.

Mahidjiba et al. (2000b, c, 2002, 2003) applied linear stability analysis to an

anisotropic porous medium saturated with icy water. They introduced an inversion

parameter γ and an orientation θ of the principal axes. They found that the presence
of a stable layer near the upper boundary for γ < 2 changes drastically the critical

Rayleigh number, and an asymptotic situation is reached when γ 
 1. For that

asymptotic solution, and with θ ¼ 0 or 90	, the incipient flow field consists of

primary convective cells near the lower boundary with superposed layers of

secondary cells. For 0	 < θ < 90	, primary and secondary cells coalesce to

form obliquely elongated cells. Structural stability in relationship to a Forchheimer

coefficient was studied by Liu (2012) and Muthtamilselvan (2011). Kim and Choi

(2014a, b) examined transient cases. Resonant penetrative convection with the

effect of an internal heat source/sink was investigated by Harfash (2016c).

The local thermal nonequilibrium situations for this problem and the

corresponding one involving uniform heat generation were discussed in Sects. 6.1

and 6.2 of Straughan (2015d), but detailed numerical calculations of stability/

instability are not currently available.

6.11.5 Imperfect Heat Transfer

Hitchen and Wells (2016a, b) investigated the impact of imperfect heat transfer

produced by exchange with a heat sink on the convective instability of a thermal

boundary layer. They considered a deep porous medium cooled from above with a

linearized thermal exchange at the upper surface, such as that which arises with the

growth of sea ice. This produces a growing thermal boundary layer. They showed

that the system depends on a Biot number which characterizes the ratio of the

effective thermal conductivity of heat exchange with the surface heat sink, com-

pared with thermal conduction in the porous media. Stability also depends on a

porous-medium Rayleigh number representing the relative strength of buoyancy

forcing versus dissipative mechanisms. Both the Biot number and the Rayleigh

number increase with time as the thermal boundary layer (and hence available

potential energy) grows.

6.12 Effects of Anisotropy

The material in this section and the next is based on the review by McKibbin

(1985). The criterion for the onset of convection in a layer with anisotropic

permeability and which has impermeable upper and lower boundaries was obtained

by Castinel and Combarnous (1975). They also reported results from experiments
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using glass fiber materials saturated with water. The experimental values of Rac
agreed reasonably well with the predictions.

Epherre (1975) allowed both permeability and thermal conductivity to be aniso-

tropic. If one defines Ra in terms of the vertical permeability KV and the vertical

thermal conductivity kV of the medium, so that

Ra ¼ gβKVHΔT

ναV
, ð6:130Þ

where αV ¼ kV/(ρcP)f, then the critical value of Ra for the onset of two-dimensional

convection (rolls) of cell width/depth ratio L is

Rac Lð Þ ¼ π2 ξþ L2
� 	

ηþ L2
� 	

ξL2
, ð6:131Þ

where ξ ¼ KH/KV and η ¼ kH/kV. The subscript H refers to quantities measured in

the horizontal direction. As L varies, the minimum value of Ra is attained when

L ¼ Lc ¼ (ξη)1/4,

Rac,min ¼ π2 1þ η

ξ

� �1=2
" # 2

: ð6:132Þ

Castinel and Combarnous (1977) studied theoretically and experimentally both

horizontal and inclined layers.

These analyses were extended by Kvernvold and Tyvand (1979) to steady finite-

amplitude convection. They found that for two-dimensional flow the Nusselt

number Nu depends on ξ and η only in the ratio ξ/η. They also found that if Nu is

graphed as a function of Ra/Rac, the various curves start out from the point (1, 1) at

the same slope, which is equal to 2.0 (Fig. 6.14). Nield (1997b) pointed out that

Eq. (6.132) is equivalent to RaEc ¼ 4π2, where RaE is an equivalent Rayleigh
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number defined as in Eq. (6.19) but with K/αm replaced by the square harmonic-

mean square root of KV/αV and KH/αH, and in Fig. 6.14 the quantity Ra/Rac,min is

equivalent to RaE/4π
2. Zhang and Sun (1996) (numerically) and Shina and Hishida

(2007) (analytically) used the Brinkman model. Masuda et al. (1991b) studied

numerically convection in a square box. Yusuf and Singh (1991) considered the

possibility of oscillatory convection.

Wooding (1978) noted that in a geothermal system with a ground structure

composed of many successively laid down strata of different permeabilities, the

overall horizontal permeability may be up to ten times as large as the vertical

component. He extended the linear analysis to three-dimensional convection in a

layer in which the permeability is anisotropic and also may vary with depth. He

treated both impermeable and free (constant-pressure) upper boundaries. As

expected, the free boundaries yield a smaller Rac than the impermeable boundaries,

but the difference becomes small when ξ ¼ KH/KV becomes large because then

vertical flow is more difficult than horizontal flow.

A study of the fraction r of the total flow that recirculates within an anisotropic

layer at the onset of convection was conducted by McKibbin et al. (1984).

It was extended by McKibbin (1986a) to include a condition of the form

P + λ∂P/∂n ¼ 0 at the upper boundary, where λ is a parameter taking the limiting

values 0 for a constant-pressure boundary and1 for an impermeable boundary. He

found that there is always some recirculation of the fluid within the porous layer

provided that λ is finite (Fig. 6.15a). In the case λ ¼ 0 there is a stagnation point on

the surface as well as in the interior of the layer (Fig. 6.15b). McKibbin calculated

Rac,min, Lc, σ*, and r for various values of λ, as functions of ξ/η. The results

show that the recirculation diminishes as ξ/η ! 0 and there is full recirculation as

ξ/η ! 1. Here σ* is the slope coefficient which appears in the heat transfer

relationship (for slightly supercritical conditions)

a b

Fig. 6.15 Streamline patterns at the onset of convection in an anisotropic layer with a kinematic

boundary condition of the form P + λ ∂ P/∂n¼ 0 at the upper surface, for the case ξ¼ 2, η¼ 1, and

L ¼ 1. (a) λ ¼ 1, recirculating fraction of flow ¼ 0.869; (b) λ ¼ 0, recirculating fraction of flow ¼
0.290. The stagnation point is marked with an asterisk (McKibbin 1985; after McKibbin 1986a)
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Nu ¼ 1þ σ*
Ra

Rac
� 1

� �
: ð6:133Þ

The effects of dispersion, in addition to anisotropic permeability, were studied

by Tyvand (1977, 1981). He found that the combined effects of anisotropy and

dispersion may be much stronger than the separate effects.

Tyvand and Storesletten (1991) have analyzed the situation when the anisotropic

permeability is transversely isotropic but the orientation of the longitudinal princi-

pal axes is arbitrary. The flow patterns now have either a tilted plane of motion or

tilted cell walls if the transverse permeability is larger or smaller than the longitu-

dinal permeability. Storesletten (1993) treated a corresponding problem where

there is anisotropic thermal diffusivity. Zhang et al. (1993) studied numerically

convection in a rectangular cavity with inclined principal axes of permeability.

A nonlinear stability analysis of the situation of Tyvand and Storesletten (1991),

but with a quadratic density law, was conducted by Straughan and Walker (1996a).

They obtained the dramatic result that, in contrast to the Boussinesq situation, the

effect of anisotropy is to make the bifurcation into convection occur via an

oscillatory instability.

The effect of anisotropy of the dispersive part of the effective thermal conduc-

tivity tensor, with a Forchheimer term included in the momentum equation, was

investigated using numerical simulation by Howle and Georgiadis (1994), for

two-dimensional steady cellular convection. They used the formula of Lage et al.

(1992), Eq. (6.93), to determine experimental values of Rac and then plotted Nu

versus Ra/Rac, thereby greatly reducing the divergence of experimental results

found for the usual Nu versus Ra plot. They found that dispersion increased the

net heat transfer after a Rayleigh number �100–200, and as the degree of anisot-

ropy is increased, the wall averaged Nusselt number is decreased.

Joly and Bernard (1995) have computed values of Rac for an anisotropic porous

medium bounded by anisotropic impermeable domains. Qin and Kaloni (1994)

computed Rac values for the case of anisotropic permeability on the Brinkman

model. A numerical study of the effects of anisotropic permeability and layering in

seafloor hydrothermal systems was made by Rosenberg et al. (1993).

Linear stability analysis was applied to a conjugate problem with solid boundary

plates by Gustafson and Howle (1999), and the results compared favorably with

experiment. Mahidjiba et al. (2000c) applied linear and weak nonlinear analysis to a

layer of finite lateral extent, and Mamou et al. (1998a) treated a layer for the case of

constant heat flux on the boundaries. The effects of anisotropy on convection in

both horizontal and inclined layers were studied by Storesletten (2004). The effects

of nonuniform thermal gradient and transient effects were studied by Degan and

Vasseur (2003), who studied a layer heated from the bottom with a constant heat

flux and with the other surfaces insulated. The effect of radiative transfer was

studied by Devi et al. (2002).

Anisotropy effects in general have been reviewed by Storesletten (1998). The

later survey by Storesletten (2004) discussed various models for the anisotropy.

It was noted that for horizontal layers, anisotropy affects the critical Rayleigh
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number and the critical wavenumber, but even the inclusion of three-dimensional

anisotropy does not lead to any essentially new flow patterns at the onset of

convection, provided that one of the principal axes of anisotropy is normal to the

layer. When none of the principal axes are vertical, then new flow patterns, either

with tilted plane of motion or with tilted as well a curved lateral walls, appear.

For inclined layers, anisotropy has a strong influence on the preferred flow structure

at the onset of convection. When the permeability is transversely isotropic, there

are two cases. A permeability minimum in the longitudinal direction leads to

longitudinal rolls for all inclinations. A permeability maximum in the longitudinal

direction leads to transverse rolls when the inclination is less than a critical value

and longitudinal rolls when the inclination is greater than that critical value. In the

general case with anisotropy both in permeability and thermal diffusivity, either

longitudinal rolls are favored for all inclinations or there is a transition from

transverse rolls at lower inclinations to longitudinal rolls at higher inclinations

via oblique rolls.

Hong and Kim (2008) and Kim (2013a) studied a transient situation.

Shivakumara et al. (2011a, b, c, d, e, f, g, h, i, j, k, l) treated the case of local

thermal nonequilibrium. Tyvand and Storesletten (2015) studied fully

three-dimensional anisotropy with the restriction that one principal axis for

permeability and one for diffusivity point in the vertical direction. Anisotropic

convective heat transfer in microlattice materials was investigated by Roper et al.

(2013). Heterogeneous media were studied by Capone et al. (2012), Haddad

(2014a, b), and (for penetrative convection) by Harfash (2014e). The effect of

viscosity variation with temperature was added by Fatemeh and Rezvantalab

(2015). High Rayleigh number convection was studied by Hewitt et al. (2014a,

b). A layer with multiple horizontal partitions was studied by Patil and Rees (2014)

(linear stability), Rees et al. (2014) (weakly nonlinear stability), and Straughan

(2014a, b, c, d) (nonlinear stability). Linear stability with internal heat sources was

investigated by Shalbaf et al. (2013). Three-dimensional convection with continu-

ous periodic horizontal stratification of permeability was studied by Rees and

Barletta (2014) using Floquet theory. Adanhounme and Olodo (2015) found some

exact solutions.

6.13 Effects of Heterogeneity

6.13.1 General Considerations

Extending previous work by Donaldson (1962), McKibbin (1983) calculated the

criterion for the onset of convection and estimates of preferred cell width and heat

transfer for two-dimensional convection in a system consisting of a permeable layer

overlying an impermeable layer, the base of the impermeable layer being isother-

mal. McKibbin’s results showed that, compared with a homogeneous permeable

system of the same total depth, the presence of the impermeable layer increases the
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overall temperature difference required for instability, as well as reducing the

subsequent heat flux when convection occurs. The critical value of a Rayleigh

number based on the parameters of the permeable stratum is decreased by the

presence of the impermeable layer, because of the relaxation of the thermal

boundary condition at the base of the permeable stratum.

The marginal stability for a layer in which the thermal conductivity and the

reciprocal of the permeability both vary linearly with depth (to an arbitrary extent)

was studied by Green and Freehill (1969). Ribando and Torrance (1976) carried out

numerical calculations of finite-amplitude convection for an exponential variation

with depth of the ratio μ/K of viscosity to permeability. As expected, the strongest

convection takes place in regions of small μ/K. A more general formulation of the

onset problem where both the group μ/K and the thermal diffusivity vary with depth

was made by Rubin (1981). A further study is that by Malkovski and Pek (1999).

A numerical investigation of a hydrothermal system was reported by Kuhn et al.

(2006). Weatherill et al. (2004) studied numerically convection in various infinite,

finite, and inclined porous layers.

6.13.2 Layered Porous Media

Studies of convection in general layered systems have been made by several

investigators starting with Masuoka et al. (1977, 1978), Richard and Combarnous

(1977), Richard and Gounot (1981), and Rana et al. (1979). The most comprehen-

sive are those by McKibbin and O’Sullivan (1980, 1981), who studied both the

onset of convection and subsequent heat transfer for a multilayered system bounded

below by an isothermal impermeable surface and above by an isothermal surface

that was either impermeable or at constant pressure. Two-dimensional flow patterns

and associated values of Rac, cell width, and initial slope σ* of the Nusselt number

graph were calculated for two- and three-layer systems over a range of layer

thickness and permeability ratios. The results show that significant permeability

differences are required to force the layered system into an onset mode different

from that for a homogeneous system. They also show that increasing contrasts

ultimately lead to transition from “large-scale” convection (occurring through the

entire system) to “local” convection confined mainly to fewer layers. Another

conclusion is that σ* depends strongly on the cell width (Fig. 6.16). An experimen-

tal study, using a Hele-Shaw cell modeling a three-layered system, by Ekholm

(1983) yielded results in qualitative agreement with the theory of McKibbin and

O’Sullivan (1980). The assumption of two dimensionality used by many authors

was examined by Rees and Riley (1990), who found criteria governing when the

preferred flow patterns are three-dimensional and presented detailed results of the

ranges of stable wavenumbers.

Gjerde and Tyvand (1984) studied a layer with permeability K(z) of the form

K(z) ¼ KV/(1 + a sin Nπz), where KV, a, and N are constants. They found that local

convection never occurs in this smoothly stratified model. A case where the
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permeability exponentially decreases with depth was analyzed by Mal’kovskii and
Pek (1999).

Masuoka et al. (1988) made a numerical and theoretical examination of convec-

tion in layers with peripheral gaps. Hickox and Chu (1990) numerically simulated a

geothermal system using a model involving three horizontal layers of finite hori-

zontal extent. Masamoto and Honda (1992) discussed heterogeneous and aniso-

tropic hydrothermal models. Delmas and Arquis (1995) reported an experimental

and numerical investigation of convection in a layer with solid conductive inclu-

sions. Kolchanova and Lyubimova (2016) studied the instability of superposed

layers of methane hydrate deposits of variable permeability under a permafrost

condition.

For permeability fields that are anisotropic, layered, or both, Rosenberg and

Spera (1990) performed time-dependent numerical simulations in a

two-dimensional square box. They found that the time to steady state was
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Fig. 6.16 Variation of Rac and σ∗ with system width L for two-layer systems. The lower layer

occupies a fraction r1 of the total depth, and the permeability contrast between upper and lower

layers is K2/K1. (a), (b) Closed top, K2/K1 ¼ 0.1, (c), (d) open top, K2/K1 ¼ 10 (McKibbin 1985;

after McKibbin and O’Sullivan 1981)
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proportional to the square root of the kinetic energy. Their heat transfer results were

consistent with previous results.

Masuoka et al. (1991a, b, 1994, 1995a) made experimental and theoretical

studies of the use of a thermal screen, consisting of a row of heat pipes with a

very high screen suppressing the onset of convection by making the temperature

field more uniform. Chaotic behavior in a multilayered system was studied by

Masuoka et al. (2003).

A lumped system approach using an effective Rayleigh number was investigated

by de Vaik and Raats (1995) and Leong and Lai (2001) who performed numerical

calculations with two layers. Their results were generally anticipated by Nield

(1994c). A similar study for a layered vertical porous annulus was made by Ngo

and Lai (2000). Leong and Lai (2004) studied two or four layers in a rectangular

cavity whose aspect ratio was either 0.2 or 5.0. They found that the convection is

always initiated in the more permeable sublayer, and this convection penetrates to

the less permeable sublayer as the Rayleigh number is further increased.

The effect of vertically stratified porosity was studied by Rionero (2011a, b).

The effects of local thermal nonequilibrium and nonuniform basic temperature

gradient on the onset of convection in a heterogeneous medium were treated by

Shivakumara et al. (2011i). The effect of vertical heterogeneity on the onset of

convection in the case of a prescribed horizontal temperature gradient was studied

by Barletta et al. (2012).

The onset of convection in a horizontal layer whose permeability is a continuous

periodic function of the horizontal coordinate was studied by Rees and Tyvand

(2009). They employed Floquet theory to determine the favored two-dimensional

mode of convection and used a matrix eigenvalue method to find the critical

Rayleigh number. They supplemented this by a multiscales analysis of the large

period limit, and a brief consideration of the anisotropic limit for very short periods.

The thermal instability of a system consisting of two horizontal porous layers

separated by a conductive partition was studied by Jang and Tsai (1988). The onset

of convection in porous layers with multiple horizontal thin impermeable partitions

was investigated by Rees and Genç (2011) using linear stability analysis. They

treated the cases of two and three sublayers explicitly and investigated the general

case. They found that the neutral stability curves tend to form themselves into

natural groups of N members when there are N sublayers. When the disturbance

wavenumber k is large, each member of any group lies within an O(k�1) distance of

all other members but an O(1) distance of other groups. When the number of

sublayers is large, the system tends to one with critical Rayleigh number 12 and

critical wavenumber zero (as for a single porous layer with constant flux bound-

aries). They also used an asymptotic analysis to determine the critical wavenumber

and its associated wavenumber when the number of sublayers is large.

Patil and Rees (2014) extended the theory to the case where the partitions are of

finite thickness. They found that the neutral curves are always unimodal and each

has a well-defined single minimum. Rees (2016b) studied numerically the case of

nonlinear convection with a centrally placed partition. He found that the

wavenumber for which the maximum rate of heat transfer is attained increases

from about 2.33 at onset (when Ra ¼ 27.1 approximately) to 6.26 when Ra ¼ 200.
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Straughan (2014d) investigated the case of local thermal nonequilibrium. He

showed that for a wide class of such problems (Darcy or Brinkman models,

isotropic or anisotropic media, LTE or LTNE) no subcritical instability is possible.

The effect of vertical throughflow was added by Nield and Kuznetsov (2013c)

while Nield and Kuznetsov (2014a) added the effect of local thermal

nonequilibrium.

6.13.3 Analogy Between Layering and Anisotropy

Wooding (1978) noted that there is a correspondence between layering and anisot-

ropy in porous media. In a system in which the permeability K varies with the

vertical coordinate z, the average horizontal and vertical permeabilities, in a layer of

thickness H, are given by

�KH ¼ 1

H

ð H
0

K zð Þdz, �KV ¼ H=

ð H
0

dz

K zð Þ ð6:134Þ

and so, since the arithmetic mean exceeds the harmonic mean,

ξ ¼
�KH

�KV

> 1: ð6:135Þ

A similar result applies for thermal conductivity. It implies that layering implies

anisotropy with ξ> 1, η > 1. The result holds whether the layering is continuous or

not, but the question is whether or not a transition to local convection will cause the

analogy to break down. McKibbin and Tyvand (1982) explored this question. They

concluded that the analogy is likely to be reliable in a continuously layered system,

and also in a discretely layered system provided that the contrast between the layers

is not too great.

McKibbin and Tyvand (1983, 1984) studied systems in which every second

layer is very thin. If these thin layers have very small permeability (i.e., the layers

are “sheets”), convection is large scale except when the sheets are almost imper-

meable. If the thin layers have very high permeability (i.e., the layers are “cracks”),

then local convection is almost absent, so the analogy is more likely to be reliable

for modeling. However, there is one feature of the crack problem that has no

counterpart in the anisotropic model: there is a strong horizontal flow in the cracks

(Fig. 6.17) and this affects the analogy.

6.13.4 Heterogeneity in the Horizontal Direction

The configuration where the porous medium consists of a number of homogeneous

vertical slabs or columns of different materials is more difficult to study in
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comparison with the horizontally layered problem, and so far few studies have been

published. McKibbin (1986b) calculated critical Rayleigh numbers, streamlines,

and the variation of heat flux across the surface for a few examples involving

inhomogeneity of permeability and thermal conductivity. His results are shown in

Figs. 6.18, 6.19, and 6.20. Here Rai denotes the Rayleigh number for material i,

Rai ¼ gβKiHΔT
ναmi

: ð6:136Þ

In the caption to Fig. 6.19, L is the horizontal to vertical aspect ratio of the entire

system and ri is the fraction of the total width occupied by material i.
Figure 6.18 shows that as the permeability contrast increases, so does Ra1c,

indicating, as expected, that a larger overall temperature gradient is required to

destabilize the conductive state of the system. One example of the streamline flow

pattern is illustrated in Fig. 6.19a. Here the small amount of flow in the less

permeable layer is reflected in the small and almost even increase in heat transfer

at the surface due to convection. At the same time, the stronger flow in the more

permeable section has a marked effect on the surface heat flux. Figure 6.19b

Fig. 6.17 Streamlines at onset of convection in a system with thin, very permeable layers

(cracks). The ratio of the thickness of each crack to that of the intervening material layers is

0.02 and the equivalent induced anisotropy in each case is ξ ¼ 10 (McKibbin and Tyvand 1984,

with permission from Pergamon Press)
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Fig. 6.19 Streamline patterns at the onset of convection and typical Nusselt number at the surface,

for slightly supercritical flow. In each case the overall aspect ratio L ¼ 1. The subscripts 1 and

2 indicate regions numbered from left to right. R ¼ Ra/4π2, where Ra is the Rayleigh number. (a)
Permeability ratio K2/K1 ¼ 0.1, R1c ¼ 3.132, R2c ¼ 0.313; (b) Thermal conductivity ratio k2/
k1 ¼ 1.2, R1c ¼ 1.084, R2c ¼ 0.903 (McKibbin 1986b, with permission from Kluwer Academic

Publishers)
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Fig. 6.18 The critical Rayleigh number R1c ¼ Ra1c/4π
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illustrates a small thermal conductivity contrast. The strength of flow is slightly

greater in the less conductive region. The jump in heat flux is due to the greater

conductivity of material 2.

In the case of a thin, more permeable stratum cutting an otherwise homogeneous

medium, as the thin stratum becomes more permeable there is a sudden transition

from approximately square flow cells to a flow pattern where a very strong flow

takes place up (or down) the permeable fault. For a narrower fault the permeability

contrast needed for transition is greater. An example is shown in Fig. 6.20. The

contrast between the flow patterns and the surface heat flux patterns is remarkable.

This is different from the case of horizontal layering, where the spatial distribution

of surface heat flux remains basically the same for all configurations, even though

permeability and/or conductivity contrasts are great (McKibbin and Tyvand 1984).

An approximate analysis of convective heat transport in vertical slabs or

columns of different permeabilities was made by Nield (1987b). He took advantage

of the fact that, when Darcy’s law is applicable, one can superpose solutions of the

eigenvalue problem for a single slab to obtain a feasible solution of the equations

for the overall problem with the slabs placed side by side. This is, of course, an

artificial flow since extra constraints have been imposed on the eigenvalue problem.

In general, the actual flow will be one in which the convection induced in one slab

will penetrate into adjacent slabs; one would expect that the actual flow would be

more efficient at transporting heat than the artificial flow. This procedure leads to a

lower bound for the true overall heat flux and an upper bound on a critical Rayleigh

number.

Fig. 6.20 Streamline patterns and Nusselt number at the surface for the case of a centrally placed

narrow stratum, permeability ratio K2/K1 ¼ 100, and K3 ¼ K1. (a) r2 ¼ 0.1, R1c ¼ 0.267,
R2c ¼ 26.7; (b) r2 ¼ 0.04, R1c ¼ 0.665, R2c ¼ 66.5, where R ¼ Ra/4π2 (McKibbin 1986b, with

permission from Kluwer Academic Publishers)
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Nield discussed some sample situations and also established a general result.

If the heat transfer is given by Nu ¼ g(Ra), then for sufficiently large values of Ra
the second derivative g00(Ra) is usually negative. It then follows that if Ra is

supercritical everywhere, then for small and gradual variations in Ra with

horizontal position the effect of inhomogeneity is to decrease the heat flux by a

factor

1þ g
00 �Rað Þ

2g �Rað Þ
� �

σ2Ra ð6:137Þ

relative to that for an equivalent homogeneous layer with the same Rayleigh

number average �Ra. In the above expression, σ2Ra is the variance of the Rayleigh

number distribution. In particular, if we take g(Ra) ¼ αRaβ, where 0 < β < 1, then

the reduction factor is

1� 1

2
β 1� βð Þσ

2
Ra

�Ra2
: ð6:138Þ

Gounot and Caltagirone (1989) analyzed the effect of periodic variations in

permeability. They showed that short-scale fluctuations had the same effect on

stability as anisotropy. As expected, the variability causes the critical Rayleigh

number based on the mean permeability to be raised and the Nusselt numbers to be

lowered relative to the homogeneous values.

Vadasz (1990) used weakly nonlinear theory to obtain an analytic solution of

the bifurcation problem for a heterogeneous medium for the case of heat

leakage through the sidewalls. He showed that if the effective conductivity

function km(x, y, z) is not of the form f(z)h(x, y) then horizontal temperature

gradients (and hence natural convection) always must be present. A comprehen-

sive study of convection in a layer with small spatial variations of permeability

and effective conductivity was made by Braester and Vadasz (1993). For certain

conductivity functions a motionless state is possible, and the stability of this was

examined using weak nonlinear theory. A smooth transition through the critical

Rayleigh number was found. Heterogeneity of permeability plays a relatively

passive role compared with heterogeneity of thermal conductivity. For a certain

range of supercritical Ra, symmetry of conductivity function produces symmetry

of flow.

Convective stability for a horizontal layer containing a vertical porous segment

having different properties was studied by Wang (1994). Convection in a rectan-

gular box with a fissure protruding part way down from the top was treated

numerically by Debeda et al. (1995).

A cavity with three adiabatic walls and one partially thermal active under local

thermal nonequilibrium was studied by Wu et al. (2014a, b, c) while one with

partially cooling sidewalls was treated by Wu et al. (2014b).
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6.13.5 Heterogeneity in Both Horizontal and Vertical
Directions

In a series of papers Nield and Kuznetsov (2007b, c, d, e, 2008d), with the aid of a

two-dimensional Galerkin method, obtained analytical results for the case of weak

heterogeneity in both the horizontal and vertical directions. The cases of a

bidisperse medium and an anisotropic medium were considered in turn, and in

one paper the case of constant flux boundaries was treated. A related problem,

involving an enclosure of varying width or height, was studied by Nield and

Kuznetsov (2007f) with the same methodology. Transient convection was exam-

ined by Nield and Kuznetsov (2008d), while Nield and Kuznetsov (2011e) added

the effect of vertical throughflow. This work was surveyed by Nield (2008c). A case

involving moderate heterogeneity was treated by Nield and Kuznetsov (2008c).

The effect of horizontal throughflow was added by Nield and Kuznetsov (2011a, b,

c, d, e, f, g, h, i).

6.13.6 Strong Heterogeneity

Nield and Simmons (2007) discussed the applicability of a Rayleigh number as a

criterion for determining the onset of convection in a strongly heterogeneous

medium. In such a medium a single Rayleigh number based on averaged quantities

is no longer useful, and so Nield et al. (2010), Kuznetsov et al. (2010), and Nield

et al. (2009) introduced a Stability Exploration Package for Strong Heterogeneity.

This computer package examines in turn various possible subdomains of a porous

medium. Simmons et al. (2010) discussed the geologic implications of these

results. The case of a transient basic temperature profile was examined by

Kuznetsov et al. (2011). The case of strong throughflow was studied by Kuznetsov

and Nield (2012b) and Nield and Kuznetsov (2012b). The case of anisotropy with

nonhomogeneous porosity, thermal diffusivity, and variable gravity was investi-

gated by Harfash (2014f). Fracture loops, considered as a special case of heteroge-

neous media, were discussed by Nield (2015b). The combined effects of local

thermal nonequilibrium and throughflow with vertical layering were studied by

Nield and Kuznetsov (2015c). Niederau et al. (2017) investigated the impact of

heterogeneous permeability on convection in the Perth basin, Australia.

6.14 Effects of Nonuniform Heating

O’Sullivan and McKibbin (1986) have performed a perturbation analysis and

numerical calculations to investigate the effect of small nonuniformities in heating

on convection in a horizontal layer. They found that O(ε3) variations in heating of
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the bottom generally produce variations of the same order in convection amplitude.

However, if the distribution of the heating nonuniformity happens to have a

wavelength equal to the wavelength of the preferred convection mode, then O(ε3)
variations in heating produce an O(ε) effect on the amplitude of convection at

Rayleigh numbers within O(ε2) of the critical Rayleigh number Rac. This produces

a smoothing of the Nu versus Ra curve in the vicinity of the critical Rayleigh

number, as shown in Fig. 6.21.

Rees and Riley (1989a) and Rees (1990), using weakly nonlinear theory, have

considered in turn the consequences of excitation of near-resonant wavelength,

nonresonant wavelength, and long-wavelength forms. When the modulations on the

upper and lower boundaries are in phase, at the near-resonant wavelength, steady

rolls with spatially deformed axes or spatially varying wavenumbers evolve. Rolls

with a spatially varying wavenumber also evolve when the modulations are π out of

phase. For a wide range of nonresonant wavelengths, a three-dimensional motion

with a rectangular planform results from a resonant interaction between a pair of

oblique rolls and the boundary forcing. Symmetric modulations of large wavelength

can result in patterns of transverse and longitudinal rolls that do not necessarily

have the same periodicity as the thermal forcing, but the most unstable transverse

roll does have the same periodicity. For certain ranges of values of modulation

wavelength the first mode to appear as Ra is increased is a rectangular cell of

large-aspect-ratio planform. This mode is a linear superposition of two rolls equally

aligned at a small angle away from the direction of the longitudinal roll.

Perdikis (1983) studied convection induced in a horizontal channel by uniform

axial temperature variation along the walls. The effect of slightly nonuniform

heating at the bottom of a parallelepipedic box on the onset of convection was

analyzed by Néel (1992). Depending on the symmetry or otherwise of the heating,

Fig. 6.21 Effect of

nonuniform heating on heat

transfer. The calculations

refer to a two-dimensional

square container (length-to-

height ratio ¼ 1) with

impermeable top and

bottom and with insulated

sidewalls. The

dimensionless temperature

distribution on the bottom is

assumed to be T (x, 0)
¼ 1 + θ1 cos πx, (0
 x
 1).

(O’Sullivan and McKibbin

1986)
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the nonuniformity can change, for a particular choice of aspect ratios, the predicted

pattern of steady convection, or even result in oscillatory convection.

A perturbation method was employed by Riahi (1993a) to study three-dimensional

convection resulting when a nonuniform temperature with amplitude L* is prescribed
at the lower wall. When the wavelength γbn of the nth mode of modulation is equal to

the critical wavelength γc for all n, regular or nonregular solutions in the form of

multimodal pattern convection can become preferred in some range of L*, provided
the wave vectors of such pattern are contained in the set of wave vectors representing

the boundary temperature. There can be critical values L*c of L* below which the

preferred pattern is different from the one for L* > L*c . For γbn equal to a constant

different from γc, some three-dimensional solution in the form of multimodal convec-

tion can be preferred, even if the boundary modulation is one-dimensional, provided

that the wavelength of the modulation is not too small. There are qualitatively similar

results when the location (rather than the temperature) of the bottom boundary (and

hence the depth) is modulated.

Riahi (1996) then extended his analysis to the case of a continuous finite

bandwidth of modes. He found that the results were qualitatively similar to

those for the discrete case. He also noted that large-scale flow structures are quite

different from the small-scale flow structures in a number of cases and in particular

they can exhibit kinks and can be nonmodal in nature. The resulting flow patterns

can be affected accordingly, and they can provide quite unusual and nonregular

three-dimensional preferred patterns. In particular, they are multiples of irregular

rectangular patterns and they can be nonperiodic.

Rees and Riley (1986) conducted a two-dimensional simulation of convection in

a symmetric layer with wavy boundaries. In this case the onset of convection is

abrupt and is delayed by the presence of the nonuniformity. However, the onset of

time-periodic flow takes place at much smaller Rayleigh numbers than those

corresponding to the uniform layer. The mechanism generating unsteady flow is

no longer a thermal boundary layer instability but rather a cyclical interchange

between two distinct modes that support each other via the imperfection, and its

onset is not a Hopf bifurcation. At relatively high amplitudes of the wavy surface,

the basic flow may bifurcate directly to unsteady flow. Also, Riahi (1999), Rathish

Kumar et al. (1997, 1998), Rathish Kumar (2000), and Rathish Kumar and Shalini

(2003b, 2004c) have studied convection in a cavity with a wavy surface. The

undulations generally lead to a reduced heat transfer. Lai and Kulacki (1991a, b, c,

d, e) performed an experimental study in a horizontal layer with multiple heat

sources.

Yoo and Schultz (2003) analyzed the small Rayleigh number convection in a

layer whose lower and upper walls have sinusoidal temperature distributions with a

phase difference. They found that for a given wavenumber, an out-of-phase con-

figuration yields minimum heat transfer on the walls, and that maximum heat

transfer occurs at the wavenumber value 2.286 with an in-phase configuration.

Capone and Rionero (2003) considered the nonlinear stability of a vertical steady

flow driven by a horizontal periodic temperature gradient. Mehdaoui et al. (2009)
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studied the effect of thermal conductivity ratio on convection in a partly porous

cavity. Khandelwal and Bera (2012a, b) investigate the influence of a nonuniform

sinusoidal periodic boundary condition on convection in an anisotropic enclosure.

Adamou-Graham and Daniels (2012) examined plume flows driven by horizontal

differential heating. Harfash (2016b) performed three-dimensional simulations on

the Brinkman model for convection induced by the selective absorption of radia-

tion. Lam and Arul Prakash (2014) studied numerically entropy generation in an

enclosure with heat sources placed on the top and bottom. Hdhiri et al. (2015)

investigated the effects of internal heat generation or absorption for a partly heated

square enclosure. Meshram et al. (2016a) examined numerically convection

and entropy generation inside a square enclosure with a sinusoidally heated wall.

The effect of variable gravity with an impressed horizontal gradient was studied by

Roy and Murthy (2016).

6.15 Rectangular Box or Channel

6.15.1 Linear Stability Analysis, Bifurcation Theory,
and Numerical Studies

In a horizontal layer, with vertical heating, the lateral boundaries of the convection

cells are vertical and there is no heat transfer across them. This means that,

assuming that slip is allowed on a rigid wall, an impermeable insulating barrier

can be placed at a cell boundary without altering the flow. Consequently, Rac
remains at 4π2 (for the case of impermeable conducting horizontal boundaries) if

the nondimensional width and breadth (Lx/H ¼ h1 and Ly/H ¼ h2, for the box

0¼ x¼ Lx, 0¼ y¼ Ly, 0¼ z¼H ) of a rectangular box are integral multiples of 2π/
αc. For other values of width and breadth the value of Rac is raised above 4π2. This
is because the minimization of (π2 + α2)2/α2, where α2 ¼ l2 + m2, is now over

discrete values of the wavenumbers l and m rather than over continuous values.

Eigenmodes are represented by the stream functions

Ψpq r ¼ sin pπ
bx
h1

sin qπ
by
h2

sin rπbz ð6:139Þ

for integers p, q, and r. The corresponding Rayleigh numbers are

Rapq r ¼ π2 bþ r2

b

� �2

, ð6:140Þ

where

b ¼ p

h 1

� �2

þ q

h 2

� �2
" # 1=2

: ð6:141Þ
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Thus the critical Rayleigh number is given by

Rac ¼ π2
min

p; q; rð Þ bþ r2

b

� �2

¼ π2
min

p; qð Þ bþ 1

b

� �2

: ð6:142Þ

The minimization problem over the sets of nonnegative integers p and q for a set
of values h1 and h2 has been solved by Beck (1972) and the results are displayed in

Figs. 6.22 and 6.23. Figure 6.22 shows that the value of Rac rapidly approaches 4π
2

as either h1 or h2 becomes large, so that the lateral walls have little effect on the

critical Rayleigh number except in tall boxes with narrow bases, for which h1 1 and
h2  1. The preferred cellular mode ( p, q) as a function of (h1, h2) is shown in

Fig. 6.23. Note the symmetry with respect to the line h1 ¼ h2. The modal exchange

between the rolls ( p, 0) and ( p + 1, 0) occurs at h1¼ [p( p + 1)]1/2. Two-dimensional

rolls are preferred when the height is not the smallest dimension (i.e., when h1 < 1

or h2 < 1) and that a roll that has the closest approximation to a square cross section

is preferred.

Using techniques of bifurcation theory, Riley and Winters (1989) have investi-

gated themechanics ofmodal exchanges as Ra and h1� h vary, for a two-dimensional

cavity. They use a synthesis of degree theory, symmetry arguments, and continuation

methods. They show that as h increases for fixed Ra, primary bifurcations (from

conduction states) occur and then secondary bifurcations. At a secondary bifurcation,

Fig. 6.22 Variation of the critical Rayleigh number Rac in an enclosed three-dimensional porous

medium as a function of h1 and h2 (Beck 1972)
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a previously unstable mode can regain stability. Thus the behavior of physical

bifurcations is intimately connected with that of unphysical ones, and the stability

boundary for one-cell flows turns out to be quite complicated. Impey et al. (1990)

extended the work of Riley andWinters (1989) to include the effects of small tilt and

small sidewall heat flux.

Beck’s work has been extended to other types of boundary conditions. Tewari

and Torrance (1981) considered the case of a permeable upper boundary; their

results are as expected. A general feature is that when both breadth and width

become small, αc becomes large and Rac� α2c . In this case the perturbation

quantities w and θ vary only slowly with the vertical coordinate z, and the horizontal
components are negligible. When the lateral boundaries are not insulating, new

features appear. Chelghoum et al. (1987) found that if lateral boundaries are

conducting rather than insulating, Rac is raised and two-dimensional rolls [modes

of type ( p, 0) and (0, q)] are eliminated in favor of modes of type ( p, 1) and (1, q),
and when h1 and h2 are not small, the modal picture is complicated.

Florio (2014) and Florio et al. (2015) made a detailed mathematical study of the

interaction of convection modes in a box.

Convection in rectangular boxes has been the topic of many numerical studies.

Some of this work has been referred to in Sect. 6.8. Wolanski (1974) searched for

subcritical instability but found none. For the two-dimensional case, Horne and

O’Sullivan (1978a) and Horne and Caltagirone (1980) reported studies of oscilla-

tory convection, while Schubert and Straus (1979, 1982), for a square cavity, found

Fig. 6.23 Preferred cellular mode (p, q) as a function of h1 and h2 in a three-dimensional box filled

with a porous medium (Beck 1972)
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a succession of transitions as Ra is increased. Gary and Kassoy (1981) also

performed computations for a square box.

The three-dimensional case has been studied by Horne (1979), Straus and

Schubert (1979, 1981), and Caltagirone et al. (1981). A noteworthy discovery

was that different steady structures develop with time, the final form depending

on the initial conditions. An analytical study by Steen (1983) has complemented

and corrected results of the numerical studies. The top and bottom of the box are

taken to be isothermal and the sides insulated. Steen showed that for a cubic box

convection first occurs at Ra ¼ 4π2, and then a two-dimensional roll cell grows to a

finite-amplitude pattern with Ra increasing. Immediately above criticality it is the

only stable pattern; the three-dimensional state found by Zebib and Kassoy (1978)

is unstable. Another three-dimensional pattern comes into existence as a linear

mode grows at Ra ¼ 4.5π2. It remains unstable from birth until Ra ¼ 4.87π2, when
it gains stability and begins to compete with the two-dimensional pattern. These

two- and three-dimensional patterns remain the only stable states up to a value of

Ra (about 1.5 Rac) when other modes become important. Steen calculated that,

provided all disturbances of unit norm are equally likely, there is a 21% chance that

the three-dimensional pattern will be selected at Ra ¼ 50.

Other work on pattern selection and bifurcation in rectangular boxes has been

reported by Steen (1986), Kordylewski and Borkowska-Pawlak (1983),

Borkowska-Pawlak and Kordylewski (1982, 1985), Kordylewski et al. (1987),

Vincourt (1989a, b), and Néel (1990a, b). The study by Riley and Winters (1991)

focused on the destabilization, through Hopf bifurcations (leading to time-periodic

convection), of the various stable convective flow patterns. There is a complex

evolution of the Hopf bifurcation along the unicellular branch as the aspect ratio

h increases. Steady unicellular flow is stable for a range of Ra values that is (4π2,
390.7) at h ¼ 1 and becomes increasingly narrow and finally disappears when

h exceeds 2.691. Riley and Winters also obtained an upper stability bound for

steady multicellular flows. They found that stable m cells exist only for

h < 2.691 m.
An argument of Howard type, based on the Bénard-Rayleigh instability in

boundary layers at the top and bottom surfaces, leads to the asymptotic scaling

laws Nu�Ra and f�Ra2 for the mean Nusselt number and the characteristic

frequency f. For convection in a square, Graham and Steen (1994) computationally

studied the regime from Ra ¼ 600 to 1250. They found that as Ra increases a series

of traveling waves with spatial wavenumber n appear, each born at a Hopf bifur-

cation. Modal interactions of these lead to quasiperiodic mixed modes (whose

complicated behavior was studied by Graham and Steen (1992)). The Ra range

studied is characterized by thermal plumes and overall follows the asymptotic

scaling behavior, but the plumes drive resonant instabilities that lead to windows

of quasiperiodic, subharmonic, or weakly chaotic behavior. The plume formation is

disrupted in these windows, causing deviations from the simple scaling behavior.

The instability is essentially a phase modulation of the plume formation process.

Graham and Steen argue that each instability corresponds to a parametric resonance

between the timescale for plume formation and the characteristic convection
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timescale of the flow. Graham et al. (1992) observed a diagonal oscillation in Hele-

Shaw slots. A computational comparison between classic Galerkin and approxi-

mate inertial manifold methods was made by Graham et al. (1993). Extensions of

this work involving Gevrey regularity were conducted by Ly and Titi (1999) and

Oliver and Titi (2000). A stability analysis based on a generalized integral trans-

form technique involving transitions in the number of cells was carried out by Alves

et al. (2002).

Rees (2004a, b) considered convection in cavities with conducting boundaries.

In this case linear stability analysis leads to a Helmholtz equation that governs the

critical Rayleigh number and makes it independent of the orientation of the porous

cavity. They numerically solved the eigenvalue equation for cavities of various

shapes. Rees and Tyvand (2004c) found that for a two-dimensional cavity with one

lateral wall thermally conducting and the other thermally insulating and open, the

mode of onset of convection is oscillatory in time, corresponding to a disturbance

traveling as a wave through the box from the impermeable wall to the open wall. A

further study of convection in a cavity with an open sidewall, now with various sets

of boundary conditions treated in turn, was studied by Nygard and Tyvand (2011b).

General surveys of this subject have been done by Rees (2000), Tyvand (2002),

and Straughan (2004b). Straughan (2001a) has discussed the calculations of eigen-

values associated with porous convection. In particular, Tyvand (2002) considered

a two-dimensional rectangular container with closed and conducting top and

bottom and with various combinations of kinematic and thermal boundary condi-

tions on the left- and right-hand walls. His results for the values of the critical

Rayleigh number are presented in Table 6.4. The corresponding streamline patterns

may be found in Tyvand (2002). For a three-dimensional box with general lateral

boundary conditions no simple analytical solution is possible. The case of a

channel with rectangular cross section of various aspect ratios, with permeable

side boundaries and with uniform flux heating from below, was investigated by

Barletta et al. (2013).

Table 6.4 Values of the critical Rayleigh number Rac for various lateral boundary conditions, for

the onset of convection in a rectangle of height H and width L

Left-hand wall Right-hand wall Rac

IMP/INS IMP/INS π2 min [(nH/L)+(L/nH)]2

FRE/CON FRE/CON π2 min [(nH/L)+(L/nH)]2

IMP/CON IMP/CON 4π2 [1+H2/L2]

FRE/INS FRE/INS 4π2 [1+H2/L2]

IMP/INS FRE/CON π2 min [(nH/2 L)+(2 L/nH)]2

IMP/INS IMP/CON 4π2 [1+H2/4L2]

FRE/CON IMP/CON 4π2 [1+H2/4L2]

FRE/CON FRE/INS 4π2 [1+H2/4L2]

IMP/INS FRE/INS 4π2 [1+H2/4L2]

FRE/INS IMP/CON See Rees and Tyvand (2004c)

The top and bottom are assumed impermeable and conducting (after Tyvand 2002)

IMP: impermeable (closed), FRE: free (open), CON: conducting, INS: insulating
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Following earlier work by Schubert and Straus (1979) and Horne and O’Sullivan
(1978a), three-dimensional convection in a cube was treated by Kimura et al.

(1989). They found a transition from a symmetric steady state (S) to a partially

nonsymmetric steady state (S0, vertical symmetry only) at Ra about 550. At Ra of

575 the flow became oscillatory (P(1)) with a single frequency that increased with

Ra. It became quasiperiodic at a value of Ra between 650 and 680, returned to

a simple periodic state in a narrow range about Ra ¼ 725, and then became

quasiperiodic again. Thus the three-dimensional situation was similar to the

two-dimensional one, except for the higher critical Ra at the onset of oscillations

(575 vs. 390) and a corresponding higher frequency (175 vs. 82.5) and except for

the transition S ! S0; however, this was dependent on step size and it was possible

that it might not occur prior to S! P(1) for sufficiently small steps in Ra. They also
noted that the (time-averaged) Nusselt number for the three-dimensional flows was

generally greater than that for the two-dimensional flows.

The transition from steady to oscillatory convection in a cube was found by

Graham and Steen (1991) to occur at Ra ¼ 584 and to involve a traveling wave

instability in which seven pairs of thermal blobs circulate around the cube. They

also observed a correspondence between the three-dimensional convection and

two-dimensional flow in a box of square planform but with aspect ratio 2–1/2.

Further numerical calculations for convection in a cube were performed by

Stamps et al. (1990). For the case of insulated vertical sides, they found simply

periodic oscillations with frequency f / Ra3.6 appearing for Ra between 550 and

560 and irregular fluctuations once Ra exceeded a value between 625 and 640.

When heat is transferred through the vertical sides of the cube, three different flow

patterns could occur, depending on Ra and the rate of heat transfer. Sezai (2005)

used the Brinkman-Forchheimer model in his treatment of a cube with impermeable

adiabatic walls. He carried out computations for Ra up to 1000. He observed a total

of ten steady flow patterns, of which five show oscillatory behavior for some

Rayleigh number range.

The general topic of oscillatory convection in a porous medium has been

reviewed by Kimura (1998). Analysis of the onset of convection in a sector-shaped

box [analogous to that of Beck (1972) for a rectangular box] was reported by Wang

(1997). The case of a box with a rigid top or a constant pressure top and with

constant flux bottom heating was analyzed by Wang (1999b, 2002). A tall box

modeling a vertical fault was studied by Malkovsky and Pek (1997).

High Rayleigh number convection in a box was studied by Hewitt et al. (2014a, b).

Multiple flow solutions in a square box were examined by Henry et al. (2012).

6.15.2 Thin Box or Slot

Geological faults can be modeled by boxes that are short in one horizontal dimen-

sion but long in the other two dimensions. Convection in such boxes has been

studied by Lowell and Shyu (1978), Lowell and Hernandez (1982), Kassoy and
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Zebib (1978), and Murphy (1979). Lowell and Shyu (1978) were concerned with

the effect of a pair of conducting lateral boundaries (the other pair being insulated).

Lowell and Hernandez (1982) used finite-difference techniques to investigate finite-

amplitude convection. They found that in containers with prescribed wall temper-

atures the flow was weakly three-dimensional but with the general appearance of

two-dimensional transverse rolls. In containers bounded by impermeable blocks of

finite thermal conductivity, a flow pattern similar to that for containers with

prescribed wall temperatures tended to be set up, but asymmetrical initial pertur-

bations tended to give rise to slowly evolving flows. Kassoy and Zebib (1978)

studied the development of an isothermal slug flow entering the fault at large depth.

An entry solution and the subsequent approach to the fully developed slows were

obtained for the case of large Rayleigh number.

Convection in a thin vertical slot has been analyzed by Wolanski (1973),

Rudraiah and Nagaraj (1977), Rudraiah et al. (1982c, 1983), Kassoy and Cotte

(1985), Weidmann and Kassoy (1986), and Wang et al. (1987). They found that the

appearance of slender fingerlike convection cells is characteristic of motion in this

configuration, and the streamline pattern is extremely sensitive to the value of

Ra. For the case of large wavenumber and insulated sidewalls, Lewis et al.

(1997) present asymptotic analyses for weakly nonlinear and highly nonlinear

convection. They found that three separate nonlinear regimes appear as the Ray-

leigh number increases but convection remains unicellular. On the other hand, for

the case of perfectly conducting boundaries and with a linearly decreasing temper-

ature profile imposed at the sidewalls, Rees and Lage (1996) found that for all cell

ratios the onset problem is degenerate in the sense that any combination of an odd

mode and an even mode is destabilized simultaneously at the critical Rayleigh

number This degeneracy persists even into the nonlinear regime. For the case of

particular linear distributions of temperature on the vertical walls, Storesletten and

Pop (1996) obtained an analytical solution. Some implications for hydrothermal

circulation along mid-ocean ridges or for the thermal regime in crystalline base-

ments and for heat recovery experiments were discussed by Rabinowicz et al.

(1999) and Tournier et al. (2000). Panda et al. (2006b) added the effect of a

magnetic field. Shankar et al. (2016) emphasized the effect of inertia in their linear

instability analysis. Shankar et al. (2017) studied magnetohydrodynamic stability of

convection in a vertical slab. Convection in tall and shallow rectangular enclosures

was investigated by Alloui and Vasseur (2016).

6.15.3 Additional Effects

The effect of large-scale dependence of fluid density on heat transfer has been

numerically investigated by Marpu and Satyamurty (1989). Nilsen and Storesletten

(1990) have analyzed two-dimensional convection in horizontal rectangular chan-

nels with the lateral walls (as well as the horizontal boundaries) impermeable and
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conducting. They have treated both isotropic and anisotropic media. They showed

that Rac depends on the anisotropy-aspect ratios ξ and η defined by

ξ ¼ KH

KV

H

L

� �2

, η ¼ αmH

αmV

H

L

� �2

, ð6:143Þ

where KH, and KV are the horizontal and vertical permeabilities, αmH and αmV are

the horizontal and vertical thermal diffusivities, and L and H are the horizontal and

vertical dimensions of the channel.

For the case ξ ¼ η, which includes the isotropic situation,

Rac ¼ 4π2 1þ ξð Þ: ð6:144Þ
This may be compared with the result Rac ¼ 4π2 for insulating walls; as

expected, the effect of conductivity of the walls is stabilizing. There are two

possible cell patterns, each with symmetrical streamlines. For n ¼ 2,3,4,. . ., they
consist of n and n + 1 cells, respectively, if

n� 1ð Þ2 � 1 < ξ�1 
 n2 � 1: ð6:145Þ
The conclusion of weakly nonlinear stability analysis is that both structures are

stable against two-dimensional perturbations. Compositions of this pair of flow

patterns are possible, so the flow is not uniquely determined by the boundary

conditions.

The situation is similar for the case ξ 6¼ η, but now there is only a single steady

flow pattern (stable against two-dimensional disturbances) which consists of n cells
if ξ < η and n + 1 cells if ξ > η, where

n� 1ð Þ2 � 1 < ξηð Þ�1=2 < n2 � 1: ð6:146Þ
The problem of convection induced by internal heat generation in a box was

given a theoretical and experimental treatment by Beukema and Bruin (1983).

The theory in this section has been based on the assumption that the sidewalls are

perfectly insulating. Vadasz et al. (1993) showed that for perfectly conducting

sidewalls convection occurs regardless of the Rayleigh number and regardless of

whether the fluid is heated from below, except for a particular sidewall temperature

variation. When there is no temperature difference between the sidewalls, and with

heating from below, a subcritical flow results mainly near the sidewalls and

this amplifies and extends over the entire domain under supercritical conditions.

The authors treated cases with heating from above as well as heating from below.

Weak nonlinear theory was applied by Vadasz and Braester (1992a) to the case

of imperfectly insulated sidewalls. There is now a smooth transition of the ampli-

tude of convection with increase of Ra from subcritical values, but a three branch

bifurcation develops at higher Ra values, with two branches stable. For slightly

supercritical Ra, the amplitude and direction of the convection currents are

uniquely determined by the heat leakage through the lateral walls. In this situation
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there is weak convection at relatively low Rayleigh numbers and this grows sharply

in strength near the classical critical Rayleigh number; a second stable flow exists

within the weakly nonlinear regime if the Rayleigh number is sufficiently large.

Convection in a square box with a wavy bottom was studied numerically by

Murthy et al. (1997). They found flow separation and attachment on the walls of the

box for Ra around 50 and above, with the manifestation of cycles of unicellular and

bicellular clockwise and counterclockwise flows. The counterflow on the wavy wall

hinders heat transfer into the system by an amount that increases with wave

amplitude or wave number. The case of a box with a heated bottom with sinusoidal

variation of temperature was studied by Khandelwal et al. (2012). Masuda et al.

(1994) examined numerical the stability of convection patterns in a cube.

The effect of harmonic oscillation of the gravitational acceleration was studied

numerically by Khallouf et al. (1996). Numerical studies involving a transient

situation or an oscillating boundary were reported by Jue (2001a, b).

The onset of convection in a box or cylinder with sidewalls that are partly

conducting and partly penetrative was studied by Nygard and Tyvand (2010,

2011a). Barletta and Storesletten (2012a) carried out a three-dimensional study of

a box with partially conducting lateral walls. Barletta and Storesletten (2012b)

studied a rectangular channel of finite or infinite length with thermal boundary

conditions of the third kind on the top and bottom. Alhashhash et al. (2013b)

examined numerically the effect of conduction in the bottom wall of an enclosure

with localized heating and lateral cooling. Sheremet (2015) studied numerically

unsteady conjugate convection in a three-dimensional box. Leppinen (2002)

applied an integral transform method to investigate transient flow in three-

dimensional cavities.

The effect of distributing a fixed amount of solid constituent in the interior of an

enclosure was studied by Merrikh and Lage (2004). If the solid is in one piece then,

as one would expect, heat transfer is maximized when the solid is placed at the

center of the circulation eddy. Heat transfer is increased if the solid is split up into

little bits dispersed away from the boundary layers at the heated and cooled walls.

Ahmad and Rees (2016) investigated the effect of conducting sidewalls of finite

thickness for a two-dimensional cavity for which the outer boundaries of the

sidewalls were either perfectly insulating or perfectly conducting. He presented a

unified theory for the transition from the Darcy-Bénard problem to the degenerate

system studied by Rees and Tyvand (2004b). The effect of an embedded heat-

conducting solid block, centrally placed, on the onset of convection in a porous

cavity, was investigated by Rees and Nield (2016).

Malkovsky and Pek (2015) studied the onset of convection in a horizontal rock

layer bounded by two vertical faults, with the lower boundary impermeable and the

upper one open and each at fixed temperature with the lower at the higher temper-

ature. Pek and Malkovsky (2016) applied the concept of fault-bounded convection

to a geophysical situation.

Maryshev (2015) examined the effect of sorption on linear stability for the

solutal problem. Maryshev et al. (2016a, b) studied the effect of solute immobili-

zation on stability, first for a diffusion front and then in a closed region. Maryshev

(2017) investigate the stability of vertical flow in a filter with clogging.
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6.16 Cylinder or Annulus

6.16.1 Vertical Cylinder or Annulus

A pioneering study of convection in a vertical annulus was made by Wooding

(1958). He compared the results of an experiment involving the convection of water

in saturated sand with those obtained by a perturbation analysis.

Following Wooding (1959), for the case of a thin circular cylinder one can

assume that θ and w are independent of z, and then Eq. (6.17) gives

dP

dbz ¼ Ra bT � bw ¼ C, ð6:147Þ

where C is a “separation of variables” constant that can be taken as zero. For

marginal stability, Eq. (6.18) reduces to

∇2
H
bT ¼ �bw: ð6:148Þ

Eliminating bw from Eqs. (6.145) and (6.146) gives

∇2
H
bT þ Ra bT ¼ 0: ð6:149Þ

The solutions of this equation, which are periodic functions of φ and are finite atbr ¼ 0, where (br , φ) are polar coordinates, have the form
bTn ¼ CnJn λbrð Þ cos nφ n ¼ 0; 1; 2; :::ð Þ, ð6:150Þ

where λ ¼ Ra1/2 and Jn is the Bessel function of order n. The eigenvalues for this
problem are determined by the temperature boundary conditions. For example, if

we have an insulated surface at br ¼ r0/H, so that ∂bT=∂br ¼ 0, then

J0n λ
r0
H

� �
¼ 0: ð6:151Þ

The smallest possible value of λ is attained when n ¼ 1 (corresponding to flow

antisymmetric with respect to a diameter) and the critical Rayleigh number is

Rac ¼ λ21
H2

r20
¼ 3:390

H2

r20
: ð6:152Þ

This can be written as eRac ¼ 3.390, where

eRa ¼ Ra
r20
H2

¼ gβKr20ΔT
Hναm

: ð6:153Þ

Further analysis of convection in a vertical cylinder was reported by Deltour

et al. (1977), Zebib (1978), Bejan (1980b), and Bories and Deltour (1980) (who
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considered the effects of finite conduction in the surrounding medium) for the case

of impermeable boundaries and by Bau and Torrance (1982b) for the case of a

permeable upper boundary. The variation of Rac versus aspect (radius to height)

ratio γ for the latter case is shown in Fig. 6.24. The preferred mode is asymmetric

except for a limited range of γ. Experiments by Bau and Torrance (1982b) for

situations with γ in the range 0.2–0.3 confirmed the prediction that the mode of

onset of convection was asymmetric. Their heat transfer data for moderately

supercritical convection was in accord with their calculations. When Ra reached a

value 5.5 Rac, there was a transition to oscillatory convection (like that occurring in

a horizontal layer).

Convection in the annulus between vertical coaxial cylinders was analyzed by

Bau and Torrance (1981). Again the preferred mode of convection is asymmetric.

Experiments with this geometry, with constant heat flux on the inner cylinder and

constant temperature on the outer and with a permeable, constant pressure upper

surface, were reported by Reda (1983). The measured distribution of temperature

was in accord with numerical predictions. These results are pertinent to the design

of nuclear waste repositories.

A numerical and experimental study of two-dimensional convection was

reported by Charrier-Mojtabi et al. (1991). The experiments, in which the

Christiansen effect was employed for visualization, were in good agreement with

the numerical results.

The onset of convection in a cylindrical enclosure with constant flux bottom

heating and either an impermeable or permeable top was analyzed byWang (1998b,

1999c). Convection in a cylindrical enclosure filled by a heat-generating porous

medium was studied numerically by Das et al. (2003). Tyvand (2002) noted that the

lateral boundary conditions employed in the papers by Zebib (1978), Bau and

Torrance (1982b), and Wang (1998b) are identical and that the transformation

(Ra/4π2, πx, πy) ! (Ra/27.21, 2.33x, 2.33y) allows one to deduce the results of

the second and third papers from the results of the first. The same transformation

35

Rac

30

25
0 1

Radius/height ratio, γ = r0/H

2

27.1
(1,1) (2,1) (3,1) (4,1)(0,2) (1,2)

Fig. 6.24 Critical Rayleigh

number and the preferred

convective modes (m, p) at
the onset of convection in a

vertical cylinder. The

temperature perturbation is

of the form θ ¼ Θ(z
Jm(Zmpr/γ) cos m φ, where
Zmp is the pth zero of Jm0(x).
The dashed line indicates

the value for an infinite

horizontal layer with

isothermal boundaries, the

lower impermeable and the

upper permeable (Bau and

Torrance 1982b)
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allows the results of Tewari and Torrance (1981) to be deduced from those of Beck

(1972). Tyvand (2002) also studied convection in a vertical hexagonal cylinder with

impermeable boundaries, a conducting top and bottom, and insulating lateral walls.

Bringedal et al. (2011) combined linear stability analysis with high-order numer-

ical simulations using pseudospectral methods to examine convection cells and

their preferred planform in a vertical annulus. They found that variations in the

Rayleigh number affect the convection modes and their stability in a complex

manner. They identified some stable secondary modes and some overlapping

stability regimes.

Barletta and Storesletten (2011a) studied the onset of convective rolls in a

circular porous duct with external heat transfer to a thermally stratified environ-

ment. Experimental work with water-saturated metal foam was conducted by

Kathare et al. (2008). Kim et al. (2008b) considered the onset of convection in a

liquid-saturated cylindrical porous layer supported by a gas layer. Sammouda et al.

(2011) considered the effect of variable porosity. Kuznetsov and Nield (2012c)

studied the onset of double-diffusive convection in a vertical cylinder occupied by a

heterogeneous porous medium with vertical throughflow. Kim (2013b) examined a

transient situation. Barletta and Storesletten (2013) studied the effect of a finite

external heat transfer coefficient. Karasozen et al. (2012) and Trofimova and

Tsibulin (2014) investigated the branching of a family of steady states.

6.16.2 Horizontal Cylinder or Annulus or Spherical Annulus

Lyubimov (1975) considered Rayleigh–Benard convection in a circular horizontal

porous cylinder but he did continue the analysis to identify preferred modes and

the critical Rayleigh number. Storesletten and Tveitereid (1987) analyzed

two-dimensional convective motion in a circular horizontal cylinder. They calcu-

lated Rac to be 46.265, where Ra is now defined as

Ra ¼ gβΔTKr0
ναm

, ð6:154Þ

where r0 is the radius of the cylinder andΔT is the temperature difference across the

vertical diameter. At moderately supercritical Rayleigh numbers they found two

steady flow patterns, consisting of two or three cells, respectively, both structures

being stable. The first mode involves two counter-rotating cells with strictly vertical

motions (upward or downward) in the middle. The second mode consists of three

cells: one dominating central roll occupying most of the area, flanked by two

smaller rolls. In their numerical study, Robillard et al. (1993) obtained 46.6 as the

critical value. The situation for a cylinder of length L with insulated ends was

studied by Storesletten and Tveitereid (1991). For L > 0.86, a unique three-

dimensional flow appears at the onset of convection, while for L < 0.86 the flow

is two dimensional with two or three rolls, each flow being stable, but with thermal
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forcing the flow is uniquely determined. The effect of weak rotation was studied by

Zhao et al. (1996).

Convection in a thin porous ring of elliptical shape, with inclined heating, was

studied by Ramazanov (2000), while Ramazanov (2012, 2013) studied convection

in a near-critical van der Waals gas in a thin porous ring or thin annular cylinder.

A bifurcation study of two-dimensional convection was made by Bratsun and

Lyubimov (1995). The degeneracy (infinite number of solutions) is removed when

fluid seeps through the boundaries either vertically or horizontally. At large Ra a

quasiperiodic solution branches from a limit cycle for both types of seepage. The

reduction of heat transfer in horizontal eccentric annuli, involving a transition from

tetracellular to bicellular flow patterns, was studied numerically by Barbosa Mota

and Saatdjian (1997). A numerical treatment of a horizontal annulus filled with an

anisotropic porous medium was reported by Aboubi et al. (1998). Convection in a

thin horizontal shell of finite length with impermeable walls was examined by

Tyvand (2002), who also considered a similar problem with a thin spherical shell.

A spherical shell was also studied by Pradahan and Patra (1987) and Polisevski

(1985a, b, c).

6.17 Internal Heating in Other Geometries

In Sect. 6.11.2 we discussed internal heating in an infinite horizontal layer. We now

discuss internal heating in other geometrical configurations.

Blythe et al. (1985a) analyzed two-dimensional convection driven by uniformly

distributed heat sources within a rectangular cavity whose vertical sidewalls are

isothermal and whose horizontal boundaries are adiabatic. In the limit of large

internal Rayleigh number RaI [defined in Eq. (6.114)] they found that boundary

layers of thickness of order RaI
–1/3 formed on the sidewalls, the internal core being

stratified in the vertical direction. Further work on this geometry is the numerical

studies by Haajizadeh et al. (1984) and Prasad (1987). The latter obtained heat

transfer results for RaI up to 104 and for aspect ratios A in the range 0.5–20. These

authors reported unicellular flow for the entire range of RaI and A and stratification

in the upper layers of the cavity. Prasad (1987) also examined the effect of changing

the boundary conditions on the horizontal walls from adiabatic to isothermally

cooled.

Banu et al. (1998) noted that in the situation described by Blythe et al. (1985a)

the upper part of the cavity is unstably stratified and so the flow described by Blythe

et al. is unlikely to be realized in practice. The numerical study of Banu (1998)

showed that incipient unsteady flow occurs at values of RaI that are highly

dependent on the aspect ratio of the cavity. The convective instabilities of the

time-dependent motion are confined to the top of the cavity and for tall thin cavities

the critical RaI is proportional to the inverse third power of the aspect ratio. For a

shallow cavity the flow may become chaotic and it loses left/right symmetry. In this
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situation downward-pointing plumes are generated whenever there is sufficient

room near the top of the cavity and subsequently travel toward the nearer sidewall.

Vasseur et al. (1984b) discussed convection in the annular space between

horizontal concentric cylinders. Their calculations showed that at small RaI values

a more or less parabolic temperature profile is established across the annulus,

resulting in two counter-rotating vortices (both with axes centered on the horizontal

mid-plane) in each half cavity. Under the effect of weak and moderate convection,

the maximum temperature within the porous medium can be considerably higher

than that induced by pure conduction. At large RaI values, the flow structure

consists of a thermally stratified core and two boundary layers, with a thickness

and heat transfer rate of the order of RaI
–1/3 and RaI

1/3, respectively. Now the inner

radius replaces H in the definition of RaI.

Numerical studies of two-dimensional convection in a horizontal annulus with

flow across a permeable outer or inner boundary were reported by Burns and

Stewart (1992) and Stewart and Burns (1992), while the case where both boundaries

are permeable was treated by Stewart et al. (1994).

Convection in a vertical cylinder of finite height was studied by Stewart and

Dona (1988). They took the bottom to be adiabatic and the remaining boundaries

isothermal. Their numerical results for height (H ) to radius (R) ratio 2 showed

compression of isotherms near the top and side of the cylinder as RaI increased.

They defined RaI with R
2H replacing H 3 in Eq. (6.115). They found that single-cell

flow occurred until RaI was about 7000. At higher RaI a smaller reverse flow region

formed near the top and axis, and the transition was accompanied by the position of

maximum temperature moving off the axis. Dona and Stewart (1989) treated the

same problem, but including the effects of quadratic drag and the variation of

density and viscosity with temperature for RaI values up to 7000. For such values

the property variations have a significant effect, but the effect of quadratic drag is

small.

Prasad and Chui (1989) made a numerical study of convection in a vertical

cylinder with the vertical wall isothermal and the horizontal boundaries either

adiabatic or isothermally cooled. When the horizontal walls are insulated, the

flow in the cavity is unicellular and the temperature field in the upper region is

highly stratified. However, if the top boundary is cooled, there may exist a

multicellular flow and an unstable thermal stratification in the upper region of the

cylinder. Under the influence of weak convection, the maximum temperature in

the cavity can be considerably higher than that induced by pure conduction (as in

the horizontal annulus problem mentioned above). The local heat flux on the wall is

generally a strong function of RaI, the aspect ratio, and the wall boundary

conditions.

The effect of water density maximum on heat transfer in a vertical cylinder, with

adiabatic bottom and isothermal sides and top, was modeled numerically by Weiss

et al. (1991). A linear stability analysis of convection in a vertical annulus was

presented by Saravanan and Kandaswamy (2003a).

Weinitschke et al. (1990) and Islam and Nandakumar (1990) have conducted

studies of two-dimensional bifurcation phenomena in rectangular ducts with
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uniform heat generation. Multiple steady states appear as the internal Rayleigh

number is increased up to several thousand. In the second paper the evaluation with

time of these multiple states is examined. The solution structure is complicated. The

effect of tilt was treated by Ryland and Nandakumar (1992). A bifurcation study of

convection generated by an exothermic chemical reaction was made by Islam

(1993). Heat and mass transfer in a semi-infinite cylindrical enclosure, with per-

meable or impermeable boundaries, were treated by Van Dyne and Stewart (1994).

A numerical study using the Brinkman model for eccentric or oval enclosures was

reported by Das et al. (2003).

A problem related to astrophysics was studied by Zhang et al. (2005a). This

problem is concerned with pore water convection within carbonaceous chondrite

parent bodies. These are modeled as spherical bodies within which the gravitational

field is radial and varies with radial distance and the viscosity is allowed to vary

with temperature. The linear stability analysis leads to the determining of a critical

Rayleigh number as a function of the central temperature. Zhang et al. (2005a, b)

found that the nonlinearity from the viscosity-temperature dependence removed a

degeneracy in the azimuthal variation of the mode of convection.

The effect of asymmetry on steady convection in a vertical torus was studied by

Adrian and Nicoleta (2005). Kandaswamy et al. (2008b) investigated transient

convection in icy water with internal heat generation. Muthamilselvan et al.

(2010) studied convection in a lid-driven heat-generating cavity with various

boundary conditions. Grosan et al. (2009) examined magnetic field and internal

heat generation effects in a rectangular cavity.

6.18 Localized Heating

Numerical calculations are called for in more complex situations, as when only part

of the bottom boundary of a container is heated. The prototypical problem is

convection in a rectangular cavity of height H and width 2 L, of which the central

section (of the bottom) of width 2D is heated. One can define the aspect ratio of the

half cavity A and the heated length fraction s by

A ¼ L

H
, s ¼ D

L
: ð6:155Þ

The boundaries are assumed to be impermeable. Various thermal boundary

conditions can be considered in turn (see Table 6.5). If, for example, one considers

the boundary conditions of Prasad and Kulacki (1986), and the nondimensional

variables are taken to be

X ¼ x

H
, Y ¼ y

H
, θ ¼ T � Tc

Th � Tc

, Ψ ¼ ψ

αm
, τ ¼ αmt

σH2
: ð6:156Þ
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then one has to solve

1

A2

∂2Ψ
∂X2

þ ∂2Ψ
∂Y2

¼ Ra
∂θ
∂X

, ð6:157Þ

∂θ
∂τ

þ ∂Ψ
∂X

∂θ
∂Y

� ∂Ψ
∂Y

∂θ
∂X

¼ ∂2θ

∂X2
þ A2 ∂

2θ

∂Y2
ð6:158Þ

subject to appropriate initial conditions (for the nonsteady problem) and the bound-

ary conditions.

θ ¼ 1 for 0 
 Xj j < s,Y ¼ 0,

∂θ
∂Y

¼ 0 for s < Xj j 
 1, Y ¼ 0,

θ ¼ 0 for Y ¼ 1,

∂θ
∂X

¼ 0 for X ¼ �1 or 1: ð6:159Þ

This system is readily solved using finite differences. Because of the symmetry

of the problem, computations need be made for only the right half of the domain.

The pioneering numerical and experimental study by Elder (1967a) for steady

convection demonstrated that more than one cell exists in the half cavity for s¼ 1.5

and the Nusselt number is a function of s and the number of cells. Elder (1967b)

also studied the transient problem. He noted (see Fig. 6.25) an alternation between

periods of slow gradual adjustment and periods of rapid change of flow patterns.

The numerical results of Horne and O’Sullivan (1974a) for time-dependent

boundary conditions indicate that when the lower boundary is partially heated,

the system is self-restricting and it settles down into a steady multicellular flow or a

periodic oscillatory flow, depending on Ra and the amount of boundary that is

heated. At high Ra oscillatory flow is the norm. Typical flow patterns are shown in

Fig. 6.26. Approximately mushroom-shaped isotherms predominate. The effects of

Table 6.5 Thermal boundary conditions for localized heating in a rectangular cavity

Central

bottom

Outer

bottom Sides Top

Elder (1967a, b) T ¼ Th T ¼ Tc T ¼ Tc T ¼ Tc
Horne and O’Sullivan (1974a,

1978b)

T ¼ Th T ¼ Tc ∂T
∂n

¼ 0
T ¼ Tc

Prasad and Kulacki (1986, 1987),

Robillard et al. (1988)

T ¼ Th ∂T
∂n

¼ 0
∂T
∂n

¼ 0
T ¼ Tc

Rajen and Kulacki (1987) ∂T
∂n

¼ � q
00

km

∂T
∂n

¼ 0
∂T
∂n

¼ 0
T ¼ Tc

El-Khatib and Prasad (1987) T ¼ Th T ¼ Tc T ¼ Tc þ y

H
Tt � Tcð Þ T ¼ Tt
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temperature-dependent viscosity and thermal expansion coefficient on the temper-

ature and flow fields were studied by Horne and O’Sullivan (1978b). They found

that in some cases the acceleration of the flow in certain areas, due to a decrease in

viscosity, causes localized thermal instabilities.

Fig. 6.25 Streamlines and isotherms for a localized heater problem at various times; Ra ¼ 400,

A ¼ 2, s ¼ 0.5 (Elder 1967b, with permission from Cambridge University Press)
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Further numerical calculations were reported by Prasad and Kulacki (1986, 1987).

For the case D/H > 1, they noted the appearance at small Ra of a circulation near the

heated segment and the development of further cells as Ra increases. Further increase

of Ra does not increase the number of cells, but it strengthens existing cells and leads

Fig. 6.26 Plots of

computed isotherms during

a single oscillation for a

localized heating problem;

Ra ¼ 750, A ¼ 1, s ¼ 0.5
(Horne and O’Sullivan
1974a, with permission

from Cambridge University

Press)
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to the formation of boundary layers. The outermost cell extends to the sidewall.Within

the inner cells plumes are formed at large Ra, the isotherms taking the characteristic

mushroom shape (as with uniform heating). Because Prasad and Kulacki considered

only the steady problem, they did not observe any oscillatory behavior.

Prasad and Kulacki (1986, 1987) also made calculations of heat transfer rates. As

expected, the local Nusselt number has peaks where hot fluid rises. The peak value

increases with the size of heat source until a new cell is formed. The overall Nusselt

number based on the heated segment (Nus) decreases with s (for fixed Ra > 1000)

until s¼ 0.4 and then remains steady, the steadiness indicating that the heat transfer

rate is then proportional to the area of the heat source. The overall Nusselt number

based on the entire cavity width (NuL) increases monotonically with s. Both overall
Nusselt numbers increase with Ra, the rate of increase being approximately uniform

(on a log–log scale) when Ra > 100, the boundary layer regime. In this regime the

slope of the ln(NuL) versus ln(Ra) curve increases gradually with s. When s is close
to 1, the overall Nusselt numbers increase rapidly with Ra in the vicinity of

Ra ¼ 40, as expected.

El-Khatib and Prasad (1987) extended the calculations to include the effects of

linear thermal stratification, expressed by the parameter

S ¼ Tt � Tc

Th � Tc

: ð6:160Þ

See the last line of Table 6.3 for definitions of Tt, Tc, and Th. El-Khatib and

Prasad did calculations for A ¼ 1, s ¼ 0.5, 0 ¼ S ¼ 10, and Ra up to 1000. They

found that an increase in S for a fixed Ra reduces the convective velocities, and

hence the energy lost by the heat source. In fact, for sufficiently large S at least part
of the heated segment may gain energy. A similar situation pertains to the top

surface. For S > 1 the energy gained by the upper surface is almost independent

of Ra.

Rajen and Kulacki (1987) reported experimental and numerical results for

A ¼ 16 or 4.8, and s ¼ 1, 1/2, or 1/12, with the boundary conditions given in

Table 6.3. Their observations of Nusselt number values were in very good agree-

ment with the predicted values. Robillard et al. (1988) performed calculations for

the case when the heat source is not symmetrically positioned. Merkin and Zhang

(1990b) treated numerically a similar situation. A variant of the Elder short heater

problem with a spatially sinusoidal distribution along the hot plate was studied

numerically by Saeid (2005). A fluid-superposed porous layer locally heated from

below was studied by Bagchi and Kulacki (2011). The effect of variable viscosity

on convection in a horizontal porous channel with a partly heated or cooled bottom

wall was treated by Pop et al. (2008). Partly heated surfaces were also treated by

Pakdee and Rattanadecho (2006, 2009). Linear stability analysis was applied by

Hong et al. (2008) to a layer subject to time-dependent heating. The effect of a

nonlinear concentration profile, and initial and boundary conditions, on the stability

of a horizontal layer, was studied by Hassanzadeh et al. (2006). Impulsively heated

layers were examined by Kohl et al. (2008). Nield and Kuznetsov (2010d) studied a
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transient temperature profile in a heterogeneous medium. The nonmodal growth of

perturbations was studied by Rapaka et al. (2008), while Rapaka et al. (2009)

investigated the onset of convection over a transient base state in anisotropic and

layered media. Saleh et al. (2013) studied numerically a square box whose top is

cooled, the mid-section of the bottom is heated, and the other walls are adiabatic.

Sathiyamoorthy (2013) investigated a square cavity with a sinusoidally heated top.

For a low Prandtl number fluid, Bhattachara and Basak (2013) examined multiple

steady states arising from nonuniformity of wall temperature. A transient flow in a

rectangular cavity with localized heating from below and thermal stratification was

studied by Kumari and Nath (2014). Localized heating was also studied by Molla

et al. (2012).

Numerical simulations of a modified Elder problem were employed by Lu et al.

(2016a) to study kinetic mass transfer effects on unstable density driven flow and

transport processes. Numerical experiments for a heterogeneous thermal Elder

problem were reported by Nguyen et al. (2016).

6.19 Superposed Fluid and Porous Layers, Partly Porous
Configurations

Convection in a system consisting of a horizontal layer of porous medium and a

superposed clear fluid layer has been modeled in two alternative ways. In the

two-domain approach the porous medium and clear fluid are considered separately

and the pair of solutions is coupled using matching conditions at the interface. In the

single-domain approach the fluid is considered as a special case of a porous

medium, the latter being modeled using a Brinkman-Forchheimer equation. The

second approach is subject to the caveat about use of the Brinkman equation

mentioned in Sect. 1.6, but in most situations discussed in this section the two

approaches are expected to yield qualitatively equivalent results for the global

temperature and velocity fields. An exception is when the depth of the porous

layer is not large in comparison with the particle/pore diameter. The subject is

reviewed in the book by Bagchi and Kulacki (2014).

6.19.1 Onset of Convection

6.19.1.1 Formulation

We start by considering a porous layer of depth dm superposed by clear fluid of

depth df, the base of the porous medium being at temperature Tl and the top of the

clear fluid region at temperature Tu (Fig. 6.27a). We suppose that flow in the porous

medium is governed by Darcy’s equation and that in the clear fluid by the
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Navier-Stokes equation. The combined system has a basic steady-state conduction

solution given by

V ¼ 0, T ¼ Tb � Tu � βf z� dm � dfð Þ, P ¼ Pb for the fluid, ð6:161Þ

vm ¼ 0, Tm ¼ Tbm � Tl � βmz, Pm ¼ Pbm for the porous layer: ð6:162Þ
Here βf and βm are the temperature gradients. Continuity of temperature and heat

flux at the interface requires that

Tu þ βfdf ¼ Tl � βmdm ¼ Ti ð6:163aÞ
and

kfβf ¼ kmβm, ð6:163bÞ
where Ti is the interface temperature, and hence

βf ¼
km Tl � Tuð Þ
kmdf þ kfdm

, ð6:164aÞ

βm ¼ kf Tl � Tuð Þ
kmdf þ kfdm

: ð6:164bÞ

In terms of perturbations from the conduction state, T0 ¼ T – Tb, P
0 ¼ P – Pb, etc.,

the linearized perturbation equations in time-independent form are

∇ � V0 ¼ 0, ð6:165aÞ

1

ρ0
∇P0 ¼ ν∇2V0 þ gβT0k, ð6:165bÞ

fluid layer df

dm

2dm

df

dffluid layer

fluid layer

rigid or free
rigid or free

rigid or free
rigid

porous layer

porous layer

g

z

z
x

g

Tu<Tl

Tl Tl

Tu<Tl

a bFig. 6.27 Composite fluid-

layer porous-layer systems
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βfw
0 þ αf∇2T 0 ¼ 0, ð6:165cÞ

∇ � v0m ¼ 0, ð6:166aÞ

1

ρ0
∇P0

m ¼ � v

K
v0m þ gβT0

mk, ð6:166bÞ

βmw
0
m þ αm∇2T 0

m ¼ 0: ð6:166cÞ
In the fluid layer appropriate nondimensional variables are

bx ¼ x� dmkð Þ
df

, bV ¼ dfV
0

αf
, bP ¼ d2fP

0

μαf
, bT ¼ T0

βfdf
: ð6:167Þ

Substituting Eq. (6.163) and dropping the carets we have for the fluid layer

∇ � V ¼ 0, ð6:168aÞ

∇P ¼ ∇2Vþ RafTk, ð6:168bÞ

wþ∇2T ¼ 0, ð6:168cÞ
where

Raf ¼ gββfd
4
f

ναf
: ð6:169Þ

Eliminating P, we reduce the equations for the fluid layer to

∇4wþ Ra∇2
HT ¼ 0, ð6:170aÞ

wþ∇2T ¼ 0: ð6:170bÞ

Here ∇H
2 denotes the horizontal Laplacian as in Eq. (6.20). Similarly, for the

porous medium, we put

bxm ¼ x

dm
, bvm ¼ dmv

0

αm
, bPm ¼ KP0

m

μαm
, bTm ¼ T0

m

βmdm
: ð6:171Þ

Substituting Eq. (6.162), dropping the carets, and eliminating Pm, we have for

the porous medium

∇2
mwm � Ram∇2

HmTm ¼ 0, ð6:172aÞ

wm þ∇2
mTm ¼ 0, ð6:172bÞ
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where

Ram ¼ gββmKd
2
m

ναm
: ð6:173Þ

We now separate the variables by letting

w
T

� �
¼ W zð Þ

θ zð Þ
� �

f x; yð Þ, wm

Tm

� �
¼ wm zmð Þ

θm zmð Þ
� �

fm xm; ymð Þ, ð6:174Þ

where

∇2
H f þ α2f ¼ 0, ∇2

Hm fm þ α2m fm ¼ 0: ð6:175Þ
Since the dimensional horizontal wavenumber must be the same for the fluid

layer and the porous medium if matching is to be achieved, the nondimensional

horizontal wavenumbers α and αm are related by α/df ¼ αm/dm, and so

αm ¼ bdα, where bd ¼ dm=df : ð6:176Þ
The reader should not be confused by the use (in this section only) of the symbol

αm for both thermal diffusivity and horizontal wavenumber. He or she should note

that Chen and Chen (1988c, 1989) have used bd to denote df/dm. Equations (6.164)
and (6.166) yield

D2 � α2
� 	2

W � Rafα
2θ ¼ 0, ð6:177aÞ

D2 � α2
� 	

θ þW ¼ 0 ð6:177bÞ
and

D2
m � α2m

� 	
Wm þ Ramα

2
mθm ¼ 0, ð6:178aÞ

D2
m � α2m

� 	
θm þWm ¼ 0, ð6:178bÞ

where D ¼ d/dz and Dm ¼ d/dzm. We match the solutions of Eqs. (6.177)

and (6.178) at the fluid/porous-medium interface by invoking the continuity of

temperature, heat flux, normal velocity (note that it is the Darcy velocity and not

the intrinsic velocity which is involved), and normal stress. The Beavers-Joseph

condition supplies the fifth matching condition. Thus we have at zm ¼ 1 (or z ¼ 0),

T ¼ εTTm, ð6:179aÞ

∂T
∂z

¼ ∂Tm

∂zm
, ð6:179bÞ
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εTw ¼ wm, ð6:179cÞ

εTbd3Da 3∇2
H

∂w
∂z

þ ∂3
w

∂z3

 !
¼ �∂wm

∂zm
, ð6:179dÞ

εT bd ∂w
∂z

� Δ
∂2

w

∂z2

 !
¼ �∂wm

∂zm
, ð6:179eÞ

where εT ¼ βmdm/βf df ¼ kf dm/kmdf ¼ bd=bk,
Da ¼ K

d2m
, Δ ¼ bd Da1=2

αBJ
, bd ¼ dm

df
, bk ¼ km

kf
: ð6:180Þ

Equation (6.179d) is derived from the condition

�Pþ 2μ
∂w
∂z

¼ �Pm ð6:181Þ

and Eq. (6.179e) is derived from the Beavers-Joseph condition

∂u
∂z

¼ αBJ

K1=2
u� umð Þ: ð6:182Þ

The remaining boundary conditions come from the external conditions. For

example, if the fluid-layer/porous-medium system is bounded above and below

by rigid conducting boundaries, then one has

w ¼ ∂w
∂z

¼ T ¼ 0 at z ¼ 1, ð6:183aÞ

wm ¼ Tm ¼ 0 at zm ¼ 0: ð6:183bÞ

The tenth-order system (6.176) and (6.178) now can be solved subject to the ten

constraints (6.179) and (6.180). Note that the fluid Rayleigh number Raf and the

Rayleigh–Darcy number Ram are related by

Ram ¼ bdε2TDaRaf ¼ bd4bk�2 DaRaf : ð6:184Þ
Hence the critical Rayleigh–Darcy number Ram can be found as a function of

four parameters, bd , bk, Da, and αBJ, or, alternatively, bd , εT, Da, and Δ.
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6.19.1.2 Results

As in Sect. 6.2, the case of constant heat flux boundaries yields a closed form for the

stability criterion. The critical wavenumber is zero and the stability criterion for the

case of a free top and an impermeable bottom is given by (Nield 1977)

εT 3þ 24Δþ Dabd2 84þ 384bd þ 300εTbd þ 720Δbd 1þ εTð Þ
h in o

Rafc

þ bd2 320þ 960Δþ Dabd2 960þ 240bd� �h
þ ε�1

T 300þ 720Δþ 720Dabd2
� �i

Ramc

¼ 960þ 2880Δþ 2880Dabd2 1þ bd� �h i
εT þ bd2
� �

: ð6:185Þ

If we let bd ! 1 with εT, Da, and Δ finite, Eq. (6.185) gives Ramc ! 12, the

expected value for a porous medium between two impermeable boundaries.

A similar analysis has been performed for a system consisting of a porous

medium layer of thickness 2dm sandwiched between two fluid layers, each of

thickness df, Fig. 6.24b. The following stability criteria have been obtained.

Rigid top and rigid bottom (Nield 1983):

εT 8þ 18Δþ 15þ 45Δð ÞεT½ �Raf c þ 120 1þ Δð Þbd2 þ 180bd þ 60
bd
εT

(

þ 1

Da

30þ 120Δbd
� �

þ 15þ 45Δbd εT
� �� ��

Ramc ¼ 360 1þ Δð Þ εT þ bd2
� �

:

ð6:186Þ
Free top and free bottom (Pillatsis et al. 1987):

εT 192þ 360Δ 1þ 2bd� �
þ 720Dabd3 þ 300bdh i

Rafc

þ bd2 480þ 60

Dabd4

� �
5þ 8bd þ 12Δ 1þ 2bd� �

þ 24bd3Da
h i� �

Ramc

¼ 1440 εT þ bd2
� �

: ð6:187Þ

As bd ! 0 (with Δ ! 0), Eqs. (6.186) and (6.187) yield Rafc ¼ 45 and 7.5, the

critical Rayleigh numbers for a fluid layer of depth 2df between rigid-rigid and

free-free boundaries, respectively. As bd ! 1 they yield Ramc ¼ 3, the critical

Rayleigh–Darcy number for a porous layer of depth 2dm between impermeable

boundaries. These results are as expected. Figure 6.28 shows the results of

calculations based on Eqs. (6.186) and (6.187).
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For isothermal boundaries the critical wavenumber is no longer zero, and

numerical calculations are needed. Pillatsis et al. (1987) and Taslim and Narusawa

(1989) have employed power series in z to obtain the stability criterion.

They treated the fluid/porous-medium, the fluid/porous-medium/fluid, and the

porous-medium/fluid/porous-medium situations. The results are in accord with

expectations. A rigid boundary at the solid-fluid interface suppresses the onset of

convection compared with a free boundary. The presence of a fluid layer increases

instability in the porous medium and αmc decreases as the effect of the fluid layer

becomes more significant, as it does when the fluid layer thickens. The parameter

αBJ has a significant effect only when the Darcy number is large. The effect of the

Jones modification to the Beavers-Joseph condition is minimal.

Nield (1994a) has shown that the above theory is consistent with observations of

increased heat transfer due to channeling reported by Kazmierzak and Muley

(1994). Further calculations by Chen and Chen (1988c) show that the marginal

stability curves are bimodal for a fluid/porous-medium system with df/dm small

(Fig. 6.29). The critical wavenumber jumps from a small to a large value as df/dm
increases from 0.12 to 0.13. Chen and Chen noted that the change correlated with a

switch from porous-layer-dominated convection to fluid-layer-dominated convec-

tion. Numerical calculations for supercritical convection by Kim and Choi (1996)

are in good agreement with the predictions from linear stability theory.

The experiments of Chen and Chen (1989) generally confirmed the theoretical

predictions. They employed a rectangular enclosure with 3-mm glass beads and

a glycerin-water solution of varying concentrations to produce a system with

0 
 df/dm 
 1. They observed that Ramc does decrease significantly as df/dm

3

2

Ramc

1

10–5 10–4 10–3

Da1/2

10–2 10–1

A

B

C

Fig. 6.28 Critical Rayleigh number for a porous layer sandwiched between twofluid layers (Fig. 6.24)

for the constant flux case. (a) bd ¼ dm=df ¼ 500, (b) bd ¼ 100, (c) bd ¼ 10; kf =km ¼ 1 and Δ¼ 0.05
for all curves; solid line rigid boundaries, dashed line free boundaries, dotted dashed line Ramc ¼ 3

corresponding to the case of a porous layer alone. The vertical bars denote the range of Ramc when the

conductivity ratio kf/km is varied from 10 to 0.1 (Pillatsis et al. 1987)
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increases. They also estimated the size of convective cells from temperature

measurements. They found that the cells were three-dimensional and that the critical

wavenumber increased eightfold when df/dm was increased from 0.1 to 0.2.

Somerton and Catton (1982) used the Brinkman equation. Their results are

confined to high Darcy numbers, K/(df + dm)
2 > 37 � 10�4, and thick fluid layers,

df/dm ¼ 0.43. Vasseur et al. (1989) also employed the Brinkman equation in their

study of a shallow cavity with constant heat flux on the external boundaries. An

extra isothermal condition at the interface mentioned in their paper was in fact not

used in the calculations.

A nonlinear computational study, using a Brinkman-Forchheimer equation, was

made by Chen and Chen (1992). The effect of rotation on the onset of convection

was analyzed by Jou et al. (1996). The effect of vertical throughflow was treated by

Chen (1991). The effect of anisotropy was studied by Chen et al. (1991) and Chen

and Hsu (1991a, b) and that of viscosity variation by Chen and Lu (1992b). A fluid

layer sandwiched between two porous layers of different permeabilities was ana-

lyzed by Balasubramanian and Thangaraj (1998, 1999). The case where the bottom

boundary is heated by a constant flux was analyzed by Wang (1999a), who found

that the critical Rayleigh number for the porous layer increases with the thickness of

the solid layer, a result opposite to that when the heating is at constant temperature.

Reacting fluid and porous layers were analyzed by McKay (1998a). The effect of

property variation was incorporated by Straughan (2002). A comparison of the one

and two domains approaches to handling the interface was made by Valencia-
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López and Ochoa-Tapia (2001). Significant differences between the predicted

overall average Nusselt numbers were found when the Rayleigh and Darcy numbers

were large enough. The characteristic-based split algorithm was used in the numer-

ical study of interface problems by Massarotti et al. (2001).

6.19.2 Flow Patterns and Heat Transfer

Heat transfer rates for a fluid-layer/porous-layer system were calculated by

Somerton and Catton (see Catton 1985) using the power integral method. Both

streamlines and heat transfer rates were calculated by numerical integration of the

time-dependent equations by Poulikakos et al. (1986) and Poulikakos (1987a).

Laboratory experiments, in a cylindrical cavity heated from below, have been

reported by Catton (1985), Prasad et al. (1989a), and Prasad and Tian (1990).

Prasad and his colleagues performed both heat transfer and flow visualization

experiments, the latter with transparent acrylic beads and a liquid matched for

index of refraction. There is qualitative agreement between calculations and obser-

vations. For example, in a cell of aspect ratio and df/dm¼ 1 there is a transition from

a two-cell pattern to a four-cell pattern with an increase in Rayleigh number or

Darcy number. In the two-cell pattern the flow extends well into the porous layer,

while in the four-cell pattern the flow is concentrated in the fluid layer.

Once convection starts, the Nusselt number Nu always increases with Rayleigh

number for fixed η, where η denotes the fraction of the depth occupied by the porous
medium. For small particle size γ and/or small Rayleigh number, Nu decreases

monotonically with η; otherwise the dependence of Nu on η is complex. The

complexity is related to the variation in the number of convection cells that

occur. In general, Nu depends on at least six parameters: Ra, Pr, γ, km/kf, η, and A.
Further experiments, involving visualization as well as heat transfer studies,

were made by Prasad et al. (1991). They found that flow channels through large

voids produce highly asymmetric and complicated flow structures. Also, Nu first

decreases from the fluid heat transfer rates with an increase in η and reaches a

minimum at ηmin. Any further increase in porous layer height beyond ηmin augments

the heat transfer rate and the Nu curves show peaks. Prasad (1993) observed the

effects of varying thermal conductivity and Prandtl number.

Even more complicated is the situation when one has volumetric heating of the

porous medium as well as an applied vertical temperature gradient. This situation

was studied numerically, using the Brinkman equation, by Somerton and Catton

(1982) and Poulikakos (1987a, b); the latter also included the Forchheimer term.

Poulikakos studied convection in a rectangular cavity whose bottom was either

isothermal or adiabatic. For the aspect ratio H/L ¼ 0.5, he noted a transition from

two to four cells as RaI and Da increase. Related experiments were reported by

Catton (1985) and others. Further experimental and numerical work was conducted

by Schulenberg and Müller (1984). Serkitjis (1995) conducted experimental (and

numerical) work on convection in a layer of polystyrene pellets, of spherical or
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cylindrical shape, below a layer of air. He found that the occurrence of natural

convection in the air space has only a marginal effect on heat transfer in the porous

medium. A numerical study of transient convection in a rectangular cavity was

reported by Chang and Yang (1995).

The subject of this section was extensively reviewed by Prasad (1991). Further

complexity arises if chemical reactions are involved. Examples are found in the

papers by Hunt and Tien (1990) and Viljoen et al. (1990). Chemically driven

convection was also studied by Viljoen and Hlavacek (1987) and Gatica

et al. (1987).

Later nonlinear stability studies were carried out by Hill and Straughan (2009a)

and Hill and Carr (2010a, b).

6.19.3 Other Configurations and Effects

A hydrothermal crystal growth system was modeled by Chen et al. (1999b), on the

assumption that the growth process is quasi-steady. A similar system was modeled

by Popov et al. (2006). The flow through a fluid-sediment interface in a benthic

chamber was computed by Basu and Khalili (1999). The addition of vertical

throughflow was studied by Khalili et al. (2003). Horizontal throughflow of

Poiseuille type was studied by Chang (2006), Chang et al. (2006), and by Hill

and Straughan (2008, 2009b). Convective instability in a layer saturated with oil

and a layer of gas underlying it was analyzed by Kim et al. (2003a).

Convection in a square cavity partly filled with a heat-generating porous medium

was studied analytically and numerically by Kim et al. (2001a). Convection

induced by the selective absorption of radiation was analyzed by Chang (2004).

Penetrative convection resulting from internal heating was studied by Carr (2004).

It was found that a heat source in the fluid layer has a destabilizing effect on the

porous medium but one in the fluid has a stabilizing effect on the fluid, while the

effects on their respective layers depend strongly on the overall temperature

difference and the strength and type of heating in the opposite layer. It also was

found that the initiating cell pattern is not necessarily the strongest one. A horizon-

tal plane Couette flow problem was analyzed by Chang (2005).

A surface tension (Marangoni) effect on the onset of convection was analyzed by

Nield (1998c). A similar situation was treated by Hennenberg et al. (1997),

Saghir et al. (1998), Rudraiah and Prasad (1998), Straughan (2001b), Desaive

et al. (2001), and Saghir et al. (2002, 2005b) using the Brinkman model. The last

authors reported numerical studies for the combined buoyancy and surface tension

situation. Kozak et al. (2004) included the effect of evaporation at the free surface.

Straughan (2004b) pointed out that the results of Chen and Chen (1988c) lend much

support for the two-layer model of Nield (1998c). The effect of a deformable free

surface was studied by Shivakumara and Chavaraddi (2007). Further studies of

Marangoni convection have been made by Shivakumara et al. (2006b, 2009a,

2010a, 2011a, 2012b), Mokhtar et al. (2008, 2009b, 2010, 2011), Liu et al.
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(2008a), and Zhao et al. (2008e, 2010c, 2011b), Arifin and Pop (2009) (boundary

slab of finite conductivity), and Gangadharaiah (2016) (anisotropic porous mate-

rial). Alizadeh et al. (2014) studied numerically convection in a space of triangular

cross section.

Further studies of the effect of interface boundary conditions were made by

Hirata et al. (2007a, b, 2009b). The stability problem has been investigated using

integral transforms by Hirata et al. (2006). The double-diffusive problem was

treated by Hirata et al. (2009a). A problem involving heat generation was studied

by Jimenez-Islas et al. (2009). A cavity with porous layers on the top and bottom

walls was examined by Chen et al. (2009a). Experimental work with superposed

metal foam and water layers was conducted by Kathare et al. (2009). Alloui and

Vasseur (2010) studied the case of Neumann boundary conditions at the horizontal

walls. The effect of a magnetic field was included by Banjer and Abdullah (2012).

Throughflow effects were studied by Suma et al. (2012).

A layer of a porous medium sandwiched by two fluid layers was used by Nield

(1983) to investigate the limitations of the Brinkman equation. A similar model was

used by Bogorodski and Nagurnyi (2000) in the context of under-ice meltwater

puddles. They demonstrated that the melting of Arctic ice was accelerated by the

fact that melting occurred at the lower boundary. A cavity with porous layers on the

top and bottom walls was investigated by Chen et al. (2009a). The case of an

anisotropic and heterogeneous porous layer was studied by Chen and Hsu (1991a,

b). Experimental work has been carried out by Kathare et al. (2010) and Bagchi and

Kulacki (2012). Jang et al. (2012) studied the effect of a conductive partition.

Linear and nonlinear regimes were studied by Kolchanova et al. (2013). The effect

of a magnetic field in both layers was examined by Bukhari et al. (2007). An

application to a Hall-Héroult cell was studied by Das (2012). A thermo-mechanical

model for flows of superposed porous and liquid layers with interphase heat and

mass exchange was proposed by Papalexandris and Antoniadis (2015). The onset of

convection in a liquid-saturated anisotropic pipe supported by a gas phase was

investigated by Kim (2014b).

Gobin and Goyeau (2008) and Bagchi and Kulacki (2014) reviewed the topic of

convection in partly porous media.

6.20 Layer Saturated with Water Near 4 	C

Poulikakos (1985b) reported a theoretical investigation of a horizontal porous layer

saturated with water near 4 	C, when the temperature of the top surface is suddenly

lowered. The onset of convection has been studied using linear stability analysis

(Sun et al. 1970) and time-dependent numerical solutions of the complete

governing equations (Blake et al. 1984). In both studies, the condition for

the onset of convection is reported graphically or numerically for a series of discrete

cases. The numerical results of Blake et al. (1984) for layers with Tc ¼ 0 	C on the

top and 5 	C ¼ Th ¼ 8 	C on the bottom can be used to derive (Bejan 1987)

6.20 Layer Saturated with Water Near 4 	C 341



gKH

ναm
> 1:25� 105exp exp 3:8� 0:446Thð Þ½ � ð6:188Þ

as an empirical dimensionless criterion for the onset of convection. In this criterion

the bottom temperature Th is expressed in degrees Celsius.

Finite-amplitude heat and fluid flow results for Rayleigh numbers gγK(Th–Tc)
2

H/ναm of up to 104 (i.e., about 50 times greater than critical) have also been reported

by Blake et al. (1984). In the construction of this Rayleigh number γ is

the coefficient in the parabolic model for the density of cold water, ρ ¼ ρref [1–γ
(T–3.98 	C)2], namely γ ¼ 8 � 10�6(	C)�2.

Nonlinear changes in viscosity (as well as density) were treated numerically by

Holzbecher (1997). He found that a variety of flow patterns (e.g., two or four cells in

a two-dimensional square domain) are possible, depending on the choice of max-

imum and minimum temperatures. Mixed boundary conditions were treated by

Mahidjiba et al. (2006). Convection in a cavity was studied by Eswaramurthi

et al. (2008).

6.21 Effects of a Magnetic Field or Electric Field,
Ferromagnetic Fluid

6.21.1 MHD Effects

Despite the near absence of experimental work (the case of a mushy layer is an

exception) and a general lack of practical applications (the case of ferromagnetic

fluids is an exception), a large number of theoretical papers, including those by Patil

and Rudraiah (1973), Rudraiah and Vortmeyer (1978), Sharma and Singh (1980),

Rudraiah (1984a), and Sharma and Bhrdwaj (1994), have been published on

magnetohydrodynamic convection in a horizontal layer. The simplest case is

that of an applied vertical magnetic field and electrically conducting boundaries.

Oscillatory convection is a possibility under certain circumstances, but this is ruled

out if the thermal diffusivity is smaller than the magnetic resistivity, and this

condition is met by a large margin under most terrestrial conditions. On the

Darcy model, for the case of thermally conducting impermeable boundaries, the

Rayleigh number at the onset of nonoscillatory instability for disturbances of

dimensionless wavenumber a is given by

Ra ¼ π2 þ α2ð Þ π2 þ α2 þ Qπ2ð Þ
α2

, ð6:189Þ

where

Q ¼ σB2K

μ
: ð6:190Þ
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Here B is the magnetic induction and σ is the electrical conductivity. The

parameter Q has been called the Chandrasekhar-Darcy number; it is the Darcy

number K/H2 times the usual Chandrasekhar number, which in turn is the square of

the Hartmann number. Some workers use a Hartmann-Darcy number equal to Q1/2.

It is clear that the effect of the magnetic field is stabilizing. The critical Rayleigh

number again is found by taking a minimum as α varies. Because of the practical

difficulties of achieving a large magnetic field, Q is almost always much less than

unity, and so the effect of the magnetic field is negligible. Bergman and Fearn

(1994) discussed an exceptional situation, namely convection in a mushy zone at

the Earth’s inner-outer core boundary. They concluded that the magnetic field may

be strong enough to act against the tendency for convection to be in the form of

chimneys, and that is confirmed by the experimental work of Bergman et al. (1997).

The effect of rotation was studied by Sekar and Vaidyanathan (1993),

Vaidyanathan et al. (2002c), Krishna et al. (2002), Sunil et al. (2003a) (throughflow),

Desaive et al. (2004), Al-Qurashi (2012), Al-Qurashi and Bukhari (2012) (super-

posed fluid and porous layers), Sunil et al. (2006b) (micropolar fluid), Sunil and

Mahajan (2009a) (nonlinear stability), Aggarwal and Verma (2014) (viscoelasticity,

compressibility, suspension), and Vijayaraghavan (2015). A nonlinear magnetic

field with rotation was studied by Allehiany and Abdullah (2009).

An anisotropic medium was studied by Ramanathan and Surendra (2003),

Ramanathan and Suresh (2004), and Nanjundappa et al. (2011b).

The problem for the case of the Brinkman model and isoflux boundaries was

treated by Alchaar et al. (1995a). In this paper and in Bian et al. (1996a) the effect of

a horizontal magnetic field was studied, but these treatments are incomplete

because only two-dimensional disturbances were considered and so the most

unstable disturbance may have been overlooked. Further studies of MHD convec-

tion have been reported by Goel and Agrawal (1998) for a viscoelastic dusty fluid,

by Sunil and Singh (2000) for a Rivlin-Ericksen fluid, by Sunil et al. (2003a) with

throughflow and rotation effects, by El-Kholy and Gorla (2005), by Shivakumara

et al. (2010d) for a nanofluid, by Krakov and Nikiforov (3D convection patterns in a

cube), by Idris and Hashim (2010) (chaos with a low Prandtl number fluid), by

Mokhtar et al. (2009a) (nonuniform temperature gradient and magnetic field), by

Roussellet et al. (2011) (temperature sensitive magnetic fluid), by Tahat et al.

(2012) (local thermal nonequilibrium, periodic convection), and by Alloui et al.

(2013) (nonconstant magnetic field). Harfash (2014d, g) studied the structural

stability for a reacting fluid. A variable gravity field was included by Harfash

(2014c), while Harfash (2016a) investigated a reacting fluid with a combination

of linear and nonlinear stability theory and three-dimensional numerical simulation.

Kumar et al. (2016) investigated the effects of a horizontal magnetic field and

rotation on thermal instability of a couple-stress fluid. Capone and Rionero (2016a)

reported a nonlinear stability analysis which provides, in simple algebraic closed

forms, necessary and sufficient conditions for the onset of steady and oscillatory

convection. Capone and Rionero (2016b) explored the effect of the Brinkman

viscous term. They showed that linear stability also guarantees unconditional

nonlinear stability of the conduction solution.
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6.21.2 Ferrofluid

The case of a ferrofluid with a magnetic-field-dependent viscosity has been

extensively studied, starting with Vaidyanathan et al. (1991) for a Darcy model.

The Brinkman model was used by Vaidyanathan et al. (2002a), Sunil et al. (2004a),

and Nanjundappa et al.(2010, 2011c) (with internal heat generation). A nonlinear

analysis was performed by Qin and Chadam (1995). Other work was reported by

Sunil et al. (2006b, c) (micropolar fluid), Sunil and Mahajan (2008b, 2009b), and

Sunil et al. (2009b). Various boundary conditions were considered by Shivakumara

et al. (2009b). Penetrative convection was studied by Nanjundappa et al. (2011a,

2012) and Lee and Shivakumara (2011). The case of thermal nonequilibrium was

treated by Lee et al. (2011a, b), Srivastava et al. (2011, 2012) (anisotropy),

Shivakumara et al. (2011f, k), and Sunil et al. (2010a) (nonlinear stability).

Anisotropy was also studied by Ravisha (2014). Further work on ferrofluids was

reported by Shivakumara et al. (2013a), Prakash (2013a), and Aggarwal and

Makhija (2014) (horizontal magnetic field), Nanjundappa and Savitha (2013),

Nanjundappa and Naturaj (2013) (micropolar fluid), Nanjundappa et al. (2014a)

(temperature-dependent viscosity and surface tension), Kumar et al. (2014),

Prakash (2014), Prakash (2013b), Sivakumara et al. (2011d), and Nanajundappa

et al. (2014b, c) (rotation), Shivakumara et al. (2014a) (rotation, local

thermal nonequilibrium), Nanjundappa et al. (2015) (vertical throughflow), and

Shivakumara et al. (2011b, 2014b, 2015c) (heterogeneity, local thermal

nonequilibrium). The effect of dust particles on ferroconvection was added by

Sunil et al. (2004d, 2005b, c, d, 2006a, 2010) and by Mittal and Rana (2009) who

treated a micropolar fluid. Kumar et al. (2015c) studied a ferromagnetic fluid with

compressibility, internal heat source, and rotation. Nanjundappa et al. (2016)

investigated the effect of cubic temperature profiles on ferro convection. Prakash

and Bala (2016) estimated complex growth rates of convection for the case of

magnetic-field-dependent viscosity with rotation.

6.21.3 Electroconvection

Electroconvection problems were studied by Ene and Ungureanu-David (1980),

Rudraiah et al. (2007) (thermal modulation), Bhadauria (2007a) (thermal modula-

tion and rotation), Rudraiah and Gayathri (2009) (thermal modulation),

Shivakumara et al. (2011c, g, l) (rotation), Nagouda and Maruthamanikandan

(2013) (nonclassical heat conduction), Swamy (2014b) and Swamy et al. (2014)

(gravity modulation, anisotropy)
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6.22 Effects of Rotation

6.22.1 Coriolis and Centrifugal Effects

The subject of flow in rotating porous media has been reviewed by Vadasz (1997a,

1998b, 2000a, 2002a, b) and in particular in the book by Vadasz (2016). On the

Darcy model, constant density flow in a homogeneous porous medium is irrota-

tional, and so the effect of rotation on forced convection is normally unimportant.

For natural convection, and when the medium is heterogeneous, the situation is

different.

For a homogeneous medium the momentum equation (with Forchheimer and

Brinkman terms omitted) can be written in the dimensionless form

Da

φPr

∂v
∂t

¼ �∇p� RaT∇ eg:X
� 	þ RaωT eω � eω � Xð Þ þ 1

Ek
eω � v: ð6:191Þ

Here eg and eω are unit vectors in the direction of gravity and rotation, respec-

tively, and X is the position vector. The new parameters are the rotational Rayleigh

number Raω and the Ekman-Darcy number Ek defined by

Raω ¼ ω2H

g

� �
Ra, Ek ¼ φμ

2ωρK
, ð6:192Þ

where ω is the dimensional angular velocity of the coordinate frame with respect to

which motion is measured. Normally Ek � 1 and then the Coriolis term

is negligible, but it can cause secondary flow in an inhomogeneous medium.

Generally the Coriolis effect is analogous to that of anisotropy (Palm and Tyvand

1984). The appearance of the porosity in the expression for Ek should be noted,

because some authors have overlooked this factor. This error was pointed out by

Nield (1999), who also discussed the analogy between (a) Darcy flow in an

isotropic porous medium with a magnetic or rotation effect present, and (b) flow

in a medium with anisotropic permeability. For an isothermal but heterogeneous

medium the coefficients of the second and third terms in Eq. (6.191) are different;

see Eq. (2.12) of Vadasz (2016). The reciprocal of the coefficient of the time-

derivative term that appears on the left-hand side of Eq. (6.191) was called the

Vadasz number (denoted by Va) by Straughan (2001c).

A study of the effect of centrifugal force has been largely confined to Vadasz,

and his work is surveyed in Chap. 4 of Vadasz (2016). For the case Ra/Raω  1,

i.e., when the centrifugal force dominates over gravity, Vadasz (1992, 1994b)

considered a two-dimensional problem for a rectangular domain with heating

from below and rotation about a vertical boundary, and thus the temperature

gradient is perpendicular to centrifugal force. He first showed that for small height-

to-breadth aspect ratio H/L, the Nusselt number is given approximately by
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Nu ¼ 1

24
H=Lð ÞRaω: ð6:193Þ

He then relaxed this condition, reduced the problem to that of solving an

ordinary differential equation, and found that Nu increases faster with Raω than

Eq. (6.191) would indicate.

Then he considered some cases in which the temperature gradients are collinear

with the centrifugal force, first for a narrow layer adjacent to the axis of rotation

(Vadasz 1994a) and then for one distant from the axis of rotation (Vadasz 1996a).

The latter required the introduction of two centrifugal Rayleigh numbers, one

representing the contribution to the buoyancy of the offset distance from the

rotation axis and the other number the contribution of the location within the

layer. A linear analysis is performed by Vadasz (1996a). A nonlinear stability

analysis by Vadasz and Olek (1998) provided information about the values of the

convection amplitudes and the average rate of heat transfer. When the location of

the rotation axis falls within the boundaries of the porous layer the centrifugal

acceleration changes sign. This situation was studied by Vadasz (1996b). The

results are summarized in Sect. 4.3 of Vadasz (2016).

The Coriolis effect on the Horton-Rogers-Lapwood problem has been investi-

gated by several authors. On the Darcy model, one finds that the critical Rayleigh

number is given by

Rac ¼ π2 1þ Ek�2
� 	1=2 þ 1
h i2

: ð6:194Þ

Using the Brinkman model, Friedrich (1983) performed a linear stability anal-

ysis and a nonlinear numerical study. On this model, convection sets in as an

oscillatory instability for a certain range of parameter values. Patil and

Vaidyanathan (1983) dealt with the influence of variable viscosity on linear stabil-

ity. A nonlinear energy stability analysis was performed by Qin and Kaloni (1995).

A study of the heat transfer produced in nonlinear convection was made by Riahi

(1994), following the procedure of Gupta and Joseph (1973). In terms of a Taylor-

Darcy number Ta defined by Ta ¼ 4/Ek2, he found the following results.

For Ta  O(1), the rotational effect is not significant. For O(1)  Ta  O(Ra1/2

log Ra), the Nusselt number Nu decreases with increasing Ta for a given Ra. For

O(Ra1/2 log Ra)  Ta  O(Ra), Nu is proportional to (Ra/Ta) log (Ra/Ta).

For Ta ¼ O(Ra), Nu becomes O(1) and the convection is inhibited entirely by

rotation for Ta > Ra/π2.
The comprehensive weak nonlinear analysis of Vadasz (1998b), based on the

Darcy model extended to include the time-derivative term, showed that, in contrast

to the clear fluid case, overstable convection is possible for all values of Pr (not just

Pr< 1) and that the critical wavenumber in the plane containing the streamlines for

stationary convection is dependent on rotation. It also showed that the effect of

viscosity is destabilizing for high rotation rates. As expected, there is a pitchfork

bifurcation for stationary convection and a Hopf bifurcation for overstable
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convection and rotation retards heat transfer (except for a narrow range of small

values of φPr/Da, where rotation enhances the heat transfer associated with

overstable convection). Further details on the way in which the stability depends

on the value of the Vadasz number are presented in Sect. 5.2 of Vadasz (2016).

The combination of centrifugal and centripetal forces was studied by Vadasz and

Govender (1998, 2001), work that is also presented in Sect. 6.1 of Vadasz (2016).

Qualitative experimental confirmation of these results was presented by Vadasz and

Heerah (1998a, b).

Vadasz and Govender (2001) and Govender (2003a, c) treated in turn the

Coriolis effect for monotonic convection and oscillating convection induced by

gravity and centrifugal forces, each in a rotating porous layer distant from the axis

of rotation.

Bounds on convective heat transfer in a rotating porous layer were obtained by

Wei (2004). A sharp nonlinear threshold for instability was obtained by Straughan

(2001c). Bresch and Sy (2003) presented some general mathematical results for

convection in rotating porous media.

Experimental confirmation and analytical results for centrifugally driven con-

vection were reported by Vadasz (1998c) and Vadasz and Heerah (1998a, b).

A study of Coriolis effects on the filtration law in rotating porous media was

made by Auriault et al. (2002a). Alex and Patil (2000a) analyzed an anisotropic

medium. Desaive et al. (2002) included a study of Küppers-Lortz instability for the
case of Coriolis effects. The Küppers-Lortz instability was also studied by

Rameshwar et al. (2013). The case of a rotating porous disk on a solid substrate

was studied by Baev et al. (2006). Transient heating was studied by Jou and Liaw

(1987a, b).

The effect of anisotropy was included in the studies by Govender (2006a, b),

Govender and Vadasz (2007) (thermal nonequilibrium), Malashetty and Swamy

(2007c), Saravanan (2009a) (MHD), Saravanan and Brindha (2011a) (nonlinear

stability), Vanisree and Siddheswar (2010), and Bhadauria et al. (2011a, b) (internal

heat generation).

The effect of local thermal nonequilibrium was also studied by Malashetty et al.

(2007), Malashetty and Swamy (2010a), Saravanan and Brindha (2013), and

Shivakumara et al. (2015b).

The effect of thermal modulation was investigated by Bhadauria (2007d),

Bhadauria and Suthar (2009), Malashetty and Swamy (2007c), and Suthar and

Bhadauria (2009). Modulation of rotation frequency was treated by Suthar et al.

(2009, 2011). Gravity modulation was discussed by Malashetty and Swamy (2011a,

b). Saravanan and Brindha (2011b) studied the effect of a magnetic field on

nonlinear stability.

Shivakumara et al. (2009c, 2011b, d) included in turn some bifurcation analysis,

throughflow and quadratic drag effects. Falsaperla et al. (2010, 2011) studied a case

with prescribed heat flux and then inertial effects. A further nonlinear stability

analysis was performed by Babu et al. (2012). Capone and Rionero (2013) included

the inertial effect on the onset of convection.
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Following on from the early work of Chakrabarti and Gupta (1981) and by

Rudraiah et al. (1986), the effect of double diffusion has been studied by many

authors and this work is cited in Sect. 9.1. Studies involving a nanofluid are

surveyed in Sect. 9.7.

6.22.2 Rotating Non-Newtonian Fluids

Various non-Newtonian fluids have been considered. A Rivlin-Ericksen fluid was

analyzed by Krishna (2001). A micropolar fluid was treated by Sharma and Kumar

(1998) and (with MHD effect) by Reena and Rana (2008). A couple-stress fluid was

studied by Sunil et al. (2002), Shivakumara et al. (2011h), and Banyal and Khanna

(2013) (magnetic field). A viscoelastic fluid was studied by Malashetty et al.

(2010b), Kang et al. (2011), Wei (2010) (local thermal nonequilibrium), Kumar

and Bhadauria (2011a) (anisotropy), Rana and Sharma (2012), Chand (2013a, b)

(variable gravity), Gupta and Gupta (2014) (stratified dusty fluid), and

Thirumurugan and Vasanthakumari (2014) (magnetic field).

6.23 Non-Newtonian and Other Types of Fluids

6.23.1 Power-Law Fluids

The onset of convection in a power-law fluid has some anomalous features that

were discussed by Nield (2011b, c). Other works on the topic are those by Kong

et al. (2001), Alloui et al. (2012), and Alves and Barletta (2013).

6.23.2 Micropolar Fluids

The onset of convection in a horizontal layer of a medium saturated with a

micropolar fluid was studied by Sharma and Gupta (1995). Coupling between

thermal and micropolar effects may introduce oscillatory motions. A nonlinear

analysis with a micropolar medium was reported by Siddheshwar and Krishna

(2003). The MHD problem with a micropolar fluid was studied by Sharma and

Kumar (1997) and Nanjundappa and Naturaj (2013). The corresponding problem

with a non-Newtonian power-law fluid, with constant-flux boundary conditions,

was treated analytically and numerically by Amari et al. (1994). The effect of

suspended particles was treated by Mackie (2000).
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6.23.3 Viscoelastic Fluids

Viscoelastic fluids, of various kinds, were studied by Rudraiah et al. (1990a, b),

Prakash and Kumar (1999a), Sri Krishna (2002), and Yoon et al. (2003, 2004), and

also by Prakash and Kumar (1999a, b) for the case of variable gravity, Sharma and

Kango (1999) for the MHD case, by Kumar (1999) with the addition of suspended

particles, while Kim et al. (2003b) conducted a nonlinear analysis.

Other studies are those by Kumar and Singh (2006) and Bertola and Cafaro

(2006) (as initial-value problems), by Kumar (2012a) (magnetic field, compressible

dusty fluid), by Kumar (2013), by Kumar and Kumar (2013) (magnetic field,

rotation), by Fu et al. (2007) (square box), by Idris and Hashim (2011) (cubic

temperature profile), by Malashetty and Swamy (2007d) (anisotropy), by

Malashetty et al. (2006b) (thermal modulation), by Niu et al. (open top layer), by

Sheu et al. (2008a, b) (chaotic convection), by Shivakumara and Sureshkumar

(2007) (throughflow), by Shivakumara et al. (2006a, 2011i), (local thermal

nonequilibrium, thermal modulation), by Zhang et al. (2007c) (cylinder), by

Kumar and Mohan (2012a) (heterogeneity), by Bhadauria and Kiran (2014a, b, c)

(temperature modulation), by Rana et al. (2012a) and Rana and Sharma (2012)

(rotation), by Rana and Kumar (2012) (rotation, variable gravity, suspension), by

Shu et al. (2014) (open top medium), by Jena et al. (2014) (rotation, magnetic field,

radiation), and by Hirata et al. (2015) (nonlinear pattern selection in a layer or box).

Chaotic convection of a viscoelastic fluid with a heat source was investigated by

Bhadauria (2016). Taleb et al. (2016) presented an analytical and numerical

analysis for bifurcation of thermal convection of a viscoelastic fluid of Oldroyd-B

type in a square box.

Oldroyd B fluids were examined by Malashetty et al. (2006a) (thermal

nonequilibrium), by Nui et al. (2010b) (Newtonian heating), by El-Sayed (2008)

(electroconvection), by Zhang et al. (2008) (nonlinear stability), by Kumar and

Mohan (2012b) (heterogeneity), by Niu et al. (2013) (open top medium), by Yin

et al. (2013a) (fluid-porous system), and by Alves et al. (2014), who studied the

effect of viscous dissipation on convection with horizontal throughflow.

Maxwell fluids were treated by Tan and Masuoka (2007), Malashetty and

Kulkarni (2009) (thermal nonequilibrium, Yin et al. (2012) (constant flux heating),

Akbar et al. (2013) (chemical reaction), and Gaikwad and Javaji (2016)

(anisotropy).

6.23.4 Couple-Stress Fluids

Couple-stress fluids were studied by Malashetty et al. (2009b), Shivakumara

(2010), Shivakumara et al. (2012c) (nonuniform temperature gradient), Rana and

Thakur (2012) (suspension), Kumar and Devi (2012) (global stability, temperature

and pressure-dependent viscosity), Sunil et al. (2013, 2014a, b) (rotation,
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temperature and pressure-dependent viscosity, local thermal nonequilibrium), Rana

(2014) (magnetic field), Kumar et al. (2015a, b, c, d, e) (magnetic field, dusty fluid,

variable gravity), and Mehta et al. (2016) (magnetic field).

6.23.5 Other Fluids

A second grade fluid, with magnetic field and rotation, was studied by Hayat et al.

(2008a) and VeeraKrishna and Reddy (2016). A Green-Naghdi fluid with thermal

nonequilibrium was analyzed by Straughan (2010a). A general study of thermal

oscillations was made by Haddad and Straughan (2012). Haddad (2013) treated a

Cattaneo-Fox material with Guyer-Krumhansel effects. A study of nonlinear sta-

bility in a microfluidic problem involving cubic drag, anisotropy, and local thermal

nonequilibrium was made by Straughan (2014a, b, c, d). Christov-Morro theory was

applied by Gentile and Straughan (2016) to hyperbolic diffusion of a solute.

Peristaltic transport of a Bingham fluid was studied by Satyanarayana et al. (2016).

A nanofluid was studied by Kuznetsov and Nield (2011b), Bhadauria

and Agarwal (2011a), Agarwal and Bhadauria (2011) (thermal nonequilibrium,

rotation), Sheu (2011), and Agarwal et al. (2011).

Other papers involving non-Newtonian fluids have been mentioned in the

previous section.

6.24 Effects of Vertical Vibration and Variable Gravity

The subject of thermovibrational convection is of current interest in connection

with the study of the behavior of materials in a microgravity environment as on a

spacecraft, where residual accelerations (g-jitter) may have undesirable effects.

The term thermovibrational convection refers to the appearance of a mean flow in

a fluid-filled cavity having temperature heterogeneities. In this case, by proper

selection of frequency and amplitude of vibration one may observe significant

modifications in the stability threshold of convective motions in the direction of

increased stability. Historically, there have been two schools of thought on treating

this type of problem. The first group apply linear stability analysis to the system of

hydrodynamic equations in its original form, and thus obtain a set of coupled

linear differential equations with periodic coefficients. The second group apply

the time-averaging method and now a periodic coefficient does not appear

explicitly in the governing equations. In this approach, which is valid for the case

of high frequency and small amplitude, the temperature, pressure, and velocity

fields may be decomposed into two parts, the first of which varies slowly with time,

while the second part varies rapidly with time and has a zero mean over

a vibrational period. This method leads to substantial simplifications in the

mathematical formulation and even in some cases provides us with analytical
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relationships for the onset of convection. It enables a more in-depth analysis of the

control parameters and consequently a better understanding of vibrational effect.

The validity of the time-averaged method has been proved mathematically as well

as experimentally, c.f. Gershuni and Lyubimov (1998). Several theoretical papers,

including those of Zenkovskaya (1992), Zenkovskaya and Rogovenko (1999) (who

considered a variable direction of vibration, and found that only the vertical

vibration always has a stabilizing effect), and Bardan and Mojtabi (2000) have

been published on thermovibrational convection in porous media by applying this

method. The simplest case is that of an infinite horizontal porous layer with height

H that undergoes a vertical vibration of sinusoidal form, which is characterized by

amplitude (b) and frequency (ω). As a first step, the simultaneous effects of

vibration and gravitational acceleration may be considered; the vibration vector is

parallel to the gravitational acceleration. The boundaries of the layer are kept at

constant but different temperatures. Adopting the Darcy model, the Rayleigh

number at the onset of stationary convection, can be expressed as:

Ra ¼ π2 þ α2ð Þ2
α2

þ Rav
α2

α2 þ π2
, ð6:195Þ

where

Rav ¼ RRað Þ2
2Bω*2

: ð6:196Þ

and α is the dimensionless wave number.

Here R is an acceleration ratio (bω2/g), B may be considered as a sort of inverse

Darcy-Prandtl number (B ¼ a*K/ενσH2), and ω* is the dimensionless frequency.

The stability diagram in the Rac–R plane reveals that vibration increases the

stability threshold and reduces the critical wave number. Another interesting result

obtained from Eq. (6.195) is that under microgravity conditions the layer is linearly/

infinitely stable. It was shown mathematically by Zenkovskaya (1992) that the

transition toward an oscillatory convection in this case is not possible. This problem

was also treated by Pedram Razi et al. (2002) by using the direct method. In these

papers, the authors showed that the stability analysis led to a Mathieu equation. An

analogy between the stability behaviors of the thermofluid problem with that of an

inverted pendulum under the effect of vertical vibration was made, cf. Pedram Razi

et al. (2005). It may be recalled that vertical vibration may stabilize an inverted

pendulum, which is in an unstable position. Based on a scale analysis reasoning, the

domain of validity of time-averaged method was found. Pedram Razi et al.

explained why the transient term should be kept in the momentum equation at

high frequency. In addition, they argued that the time-averaged method only gives

the harmonic response and they predicted the existence of a subharmonic response.

Thus these studies bridged the gap between the two schools of thought on

thermovibrational problems. The outcome of these analyses can be interpreted in

the context of constructal theory (Bejan 2000) as follows: among the many com-

binations between frequency and amplitude of vibration it is the high frequency and

small amplitude that provide the stabilizing effect.
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The finite amplitude case was studied by Bardan and Mojtabi (2000), Mojtabi

(2002), Bardan et al. (2004), and Pedram Razi et al. (2005). Their weakly nonlinear

analysis shows that the bifurcation at the transition point is of the supercritical

pitchfork type. Mojtabi et al. (2004) examined the case of variable directions of

vibration in the limiting case of high frequency and small amplitude. They con-

cluded that when the direction of vibration is perpendicular to the temperature

gradient, the vibration has a destabilizing effect. They also predicted the onset of

convection in microgravity conditions. Charrier-Mojtabi et al. (2006) revisited the

horizontal layer and confined cavity problems and found a relationship between

the stability analyses of these two problems via a Mathieu equation. A summary of

new predictive high-frequency thermovibrational modes was made by Pedram

Razi et al. (2009).

The alternative school of thought is represented by the papers by Malashetty and

Padmavathi (1997, 1998) (who included Brinkman and Forchheimer effects) and

Govender (2004b, 2005c, d, e, f). The latter presented the results of both linear

and weak nonlinear analysis with emphasis on the transition from synchronous to

subharmonic motions, and he treated the cases of low frequency and a layer heated

from above. Govender’s linear stability analysis was performed with the aid of

Mathieu stability charts and showed that gravity modulation stabilizes the convec-

tion for the region of synchronous solutions but slowly destabilizes it for the regions

of subharmonic solutions. The transition from synchronous to subharmonic solu-

tions occurs at the value 1225 (approximately) of the frequency scaled in terms of

layer depth and thermal conductivity. Govender found that his numerical results

revealed that increasing the frequency of vibration causes the amplitude of the

convection to approach zero. This work was extended to the ace of solidifying

mushy layers by Pillay and Govender (2005). A review of work on natural

convection in gravity-modulated porous layers was made by Govender (2008b).

The effect of anisotropy was studied by Malashetty and Basavaraja (2003),

Saravanan and Purusothaman (2009), Saravanan and Arunkumar (2010), and

Saravanan and Sivakumar (2011a, b). Govender (2007a, b, c) noted an analogy

between a gravity-modulated layer heated from below and an inverted pendulum

with an oscillating pivot point. In addition he noted that a roll cell behaves in a

manner similar to a very long pendulum. The Brinkman model was employed by

Saravanan and Sivakumar (2010). The case of a Maxwell fluid was studied

by Malashetty and Begum (2011b). The effect of local thermal nonequilibrium

was treated by Saravanan and Sivakumar (2011b). The effects of nonuniform

temperature gradient and local thermal nonequilibrium were examined by Lee

et al. (2011a). Anisotropy and variable viscosity effects were studied by

Siddheshwar et al. (2012a). A nonlinear stability analysis for the case of a rotating

anisotropic medium was reported by Bhadauria et al. (2012a), while Bhadauria

et al. (2012b) included the effect of internal heating. Convection in a cylindrical

porous layer was studied by Govender (2006c). The case of a binary fluid has been

extensively studied, and this work is surveyed in Sect. 9.1.6.4. Thermal vibration

convection in a porous medium saturated by either a pure or binary fluid was

surveyed by Pedram Razi et al. (2008). The case of a couple-stress fluid was studied

352 6 Internal Natural Convection: Heating from Below

http://dx.doi.org/10.1007/978-3-319-49562-0_9


by Saravanan and Premalatha (2012). Nonlinear stability with superposed fluid and

porous layers was investigated by Lyubomov et al. (2015). Local thermal

nonequilibrium was investigated by Siraev (2014).

Herron (2001) analyzed the onset of convection in a porous medium heated

internally and with the gravitational field varying with distance through the layer.

He proved that oscillatory instability is not possible as long as the gravity field and

the integral of the heat sources have the same sign. Kim et al. (2005) studied the

transient convection resulting from a sudden imposition of gravity. The effect of

couple stress was examined by Saravan and Premalatha (2012). Saravanan and

Brinda (2013) studied thermovibrational convection in memory fluids.

The influence of vibrations on the convective stability of reaction fronts was

studied by Aatif et al. (2010) and (for quasiperiodic modulation) by Allali et al.

(2012). The effect of gravitational modulation on the stability of reaction fronts was

studied by Allali and Belhaq (2013a, b). The combination of internal heating and

g-jitter was investigated by Bhadauria et al. (2013a) and Srivastava et al. (2013)

(anisotropy, variable viscosity). The case of a viscoelastic fluid was treated by

Bhadauria et al. (2012c), Bhadauria and Kiran (2014a, b, c), and Gaikwad and

Begum (2014) (rotation, superposed fluid and porous layers) and Swamy et al.

(2013) (anisotropy). Variable gravity effects on a rotating layer, at or away from the

axis of rotation, were studied by Govender (2010, 2013). Thermo-bioconvection

with microorganisms was treated by Kumar and Sharma (2014). The effect of

vibrations on nonlinear convection (chaotic and periodic, weakly turbulent) was

studied by Vadasz et al. (2013, 2014). The effect of throughflow and gravity

modulation, with and without internal heating effects, was investigated by Kiran

(2016a, b). Convection in a heterogeneous porous layer underlying a fluid layer was

examined by Kolchanova and Kolchanov (2017).

Nield and Kuznetsov (2013f) studied the effect of pulsating deformation on the

onset of convection.

6.25 Bioconvection

Bioconvection is concerned with pattern formation in suspensions of microorgan-

isms, such as bacteria and algae, due to up-swimming of the microorganisms. The

microorganisms are denser than water and on the average they swim upward. When

they congregate the system becomes top-heavy and instability as convection may

result. Microorganisms respond to various stimuli. Gravitaxis refers to swimming in

the opposite sense as gravity. Gyrotaxis is swimming directed by the balance

between the torque due to gravity acting on a bottom-heavy cell and the torque

due to viscous forces arising from local shear flows. Oxytaxis corresponds to

swimming up an oxygen concentration gradient.

Kuznetsov and co-workers have analyzed various aspects of bioconvection in a

porous medium, sufficiently sparse so that the microorganisms can swim freely.

Gravitaxis was considered by Kuznetsov and Jiang (2001, 2003) and Kuznetsov
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and Avramenko (2003a) with and without cell deposition and declogging.

Further studies of gravitaxis were conducted by Nguyen et al. (2004) and

Nguyen-Quang et al. (2005). A falling plume involving the bioconvection of

oxytactic bacteria was treated by Kuznetsov et al. (2003a, 2004). The stability

of oxytactic bioconvection was treated by Kuznetsov and Avramenko (2003c). The

oxytactic situation with superposed fluid and porous layers was studied by

Avramenko and Kuznetsov (2005). A falling plume was also studied numerically

by Becker et al. (2004). A square cavity was studied by Sheremet and Pop (2014c).

Gyrotaxis was studied by Kuznetsov and Avramenko (2002, 2003b, 2005), Nield

et al. (2004c), and Avramenko and Kuznetsov (2004). Work on bioconvection in

porous media was reviewed by Kuznetsov (2005, 2008).

The effect of vertical throughflow in the case of gyrotactic organisms and

superposed fluid and porous layers was studied by Avramenko and Kuznetsov

(2006). The effect of vertical vibration was treated by Kuznetsov (2006b).

Thermo-bioconvection was studied by Kuznetsov (2006a, c).

Gravitactic bioconvection was further investigated by Nguyen-Quang (2008) for

an anisotropic medium and by Nguyen-Quang et al. (2008) for the case of double

diffusion. Experimental work involving a protozoan culture was reported by

Nguyen-Quang et al. (2009). This work was reviewed by Nguyen-Quang et al.

(2011) and in the book chapter by Alloui and Nguyen-Quang (2015).

The effect of a nanofluid was studied by Kuznetsov (2012a, b) and Kuznetsov

and Bubnovich (2012) (simultaneous gyrotactic and oxytactic microorganisms).

6.26 Constructal Theory of Bénard Convection

In this section we take a closer look at the phenomenon of convection in a porous

layer heated from below. Our objective is to show that most of the features of the

flow can be determined based on a simple method: the intersection of asymptotes

(Bejan 1984; Nelson and Bejan 1998). This method was originally used for the

optimization of spacings for compact cooling channels for electronics (Bejan

1984); see also Lewins (2003) and Bejan et al. (2004).

Assume that the system of Fig. 6.30 is a porous layer saturated with fluid and that

if present the flow is two dimensional and in the Darcy regime. The height H is

fixed, and the horizontal dimensions of the layer are infinite in both directions. The

fluid has nearly constant properties such that its density-temperature relation is

described well by the Boussinesq linearization. The volume averaged equations that

govern the conservation of mass, momentum, and energy are

∂u
∂x

þ ∂v
∂y

¼ 0 ð6:197Þ

∂u
∂y

� ∂v
∂x

¼ �Kgβ

ν

∂T
∂x

ð6:198Þ
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u
∂T
∂x

þ v
∂T
∂y

¼ αm
∂2

T

∂x2
þ ∂2

T

∂y2

 !
ð6:199Þ

The horizontal length scale of the flow pattern (2Lr), or the geometric aspect

ratio of one roll, is unknown. The method consists of analyzing two extreme flow

configurations—many counterflows vs. few plumes—and intersecting these asymp-

totes for the purpose of maximizing the global thermal conductance of the flow

system, i.e., by invoking the constructal law (Bejan 1997c, 2000).

6.26.1 The Many Counterflows Regime

In the limit Lr ! 0 each roll is a very slender vertical counterflow, Fig. 6.31.

Because of symmetry, the outer planes of this structure (x ¼ � Lr) are adiabatic:

they represent the center planes of the streams that travel over the distance H.
The scale analysis of the H � (2Lr) region indicates that in the Lr/H ! 0 limit the

horizontal velocity component u vanishes. This scale analysis is not shown because
it is well known as the defining statement of fully developed flow. Equations

(6.197)–(6.199) reduce to

∂v
∂x

¼ Kgβ

ν

∂T
∂x

, ð6:200Þ

v
∂T
∂y

¼ αm
∂2

T

∂x2
, ð6:201Þ

Quiescent,
thermally stratified
fluid

Cooled

g

Cellular
flow
pattern
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L

NuH>1NuH = 1

2Lr

H

Th

Tc

Fig. 6.30 Horizontal porous layer saturated with fluid and heated from below (Nelson and Bejan

1998)

6.26 Constructal Theory of Bénard Convection 355



which can be solved exactly for v and T. The boundary conditions are ∂T/∂x ¼ 0 at

x ¼ � Lr, and the requirement that the extreme (corner) temperatures of the

counterflow region are dictated by the top and bottom walls, T(�Lr, H ) ¼ Tc and
T(Lr, 0) ¼ Th. The solution is given by

v xð Þ ¼ αm
2H

RaH � πH

2Lr

� �2
" #

sin
πx

2Lr

� �
ð6:202Þ

T x; yð Þ ¼ ν

Kgβ
v xð Þ þ ν

Kgβ
2
y

H
� 1

� �αm
2H

RaH � πH

2Lr

� �2
" #

þ Th � Tcð Þ 1� y

H

� �
,

ð6:203Þ
where the porous-medium Rayleigh number RaH ¼ KgβH(Th – Tc)/(αmν) is a

specified constant. The right side of Fig. 6.31 shows the temperature distribution

along the vertical boundaries of the flow region (x¼� Lr): the vertical temperature

gradient ∂T/∂y is independent of altitude. The transversal (horizontal) temperature

difference (ΔTt) is also a constant,

ΔTt ¼ T x ¼ Lrð Þ � T x ¼ �Lrð Þ ¼ ν

Kgβ

αm
H

RaH � πH

2Lr

� �2
" #

: ð6:204Þ
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y

ΔTt

ΔTt
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2
ΔTt

Lr
x

0

0

0
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warm, upcold,
down

H

2Lr

Fig. 6.31 The extreme in which the flow consists of many vertical and slender counterflows

(Nelson and Bejan 1998)
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The counterflow convects heat upward at the rate q0, which can be calculated

using Eqs. (6.202) and (6.203):

q0 ¼
ðL
�L

ρcPð Þf vT dx ð6:205Þ

The average heat flux convected in the vertical direction, q00 ¼ q0/(2Lr), can be

expressed as an overall thermal conductance

q
00

ΔT
¼ km

8HRaH
RaH � πH

2Lr

� �2
" #2

: ð6:206Þ

This result is valid provided the vertical temperature gradient does not

exceed the externally imposed gradient, (�∂T/∂y) < ΔT/H. This condition

translates into

Lr
H

>
π

2
Ra

�1=2
H , ð6:207Þ

which in combination with the assumed limit Lr/H ! 0 means that the domain of

validity of Eq. (6.206) widens when RaH increases. In this domain the thermal

conductance q00/ΔT decreases monotonically as Lr decreases, cf. Figure 6.32.

6.26.2 The Few Plumes Regime

As Lr increases, the number of rolls decreases and the vertical counterflow is

replaced by a horizontal counterflow in which the thermal resistance between Th
and Tc is dominated by two horizontal boundary layers, as in Fig. 6.33. Let δ be the

few cells
many
cells

q′′

0

0

Lr, opt Lr

Fig. 6.32 The intersection of asymptotes method: the geometric maximization of the thermal

conductance of a fluid-saturated porous layer heated from below (Nelson and Bejan 1998)
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scale of the thickness of the horizontal boundary layer. The thermal conductance

q00/ΔT can be deduced from the heat transfer solution for natural convection

boundary layer flow over a hot isothermal horizontal surface facing upward or a

cold surface facing downward. The similarity solution for the horizontal surface

with power-law temperature variation (Cheng and Chang 1976) can be used to

develop an analytical result, as we show at the end of this section.

A simpler analytical solution can be developed in a few steps using the integral

method. Consider the slender flow region δ � (2Lr), where δ  2Lr, and integrate

Eqs. (6.197) to (6.199) from y ¼ 0 to y ! 1, that is, into the region just above the

boundary layer. The surface temperature is Th, and the temperature outside the

boundary layer is T1 (constant). The origin x¼ 0 is set at the tip of the wall section

of length 2Lr. The integrals of Eqs. (6.197) and (6.199) yield

d

dx

ð1
0

u T � T1ð Þdy ¼ �αm
∂T
∂y

� �
y¼0

ð6:208Þ

The integral of Eq. (6.198), in which we neglect ∂v/∂x in accordance with

boundary layer theory, leads to

u0 xð Þ ¼ Kgβ

ν

d

dx

ð1
0

T dy, ð6:209Þ

where u0 is the velocity along the surface, u0 ¼ u(x,0). Reasonable shapes for the

u and T profiles are the exponentials

u x; yð Þ
u0 xð Þ ¼ exp � y

δ xð Þ
� �

¼ T x; yð Þ � T1
Th � T1

ð6:210Þ

which transform Eqs. (6.208) and (6.209) into

0 x
0

y

2Lr

L

Th = Tc + ΔT

δ

Tc

T∞

Fig. 6.33 The extreme in which the flow consists of a few isolated plumes (Nelson and Bejan

1998)
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d

dx
u0δð Þ ¼ 2αm

δ
ð6:211Þ

u0 ¼ Kgβ

ν
Th � T1ð Þ dδ

dx
ð6:212Þ

These equations can be solved for u0(x) and δ (x),

δ xð Þ ¼ 9αmν

Kgβ Th � T1ð Þ
� �1=3

x2=3: ð6:213Þ

The solution for u0(x) is of the type u0 � x – 1/3, which means that the horizontal

velocities are large at the start of the boundary layer and decrease as x increases.

This is consistent with the geometry of theH� 2Lr roll sketched in Fig. 6.33, where
the flow generated by one horizontal boundary layer turns the corner and flows

vertically as a relatively narrow plume (narrow relative to 2Lr), to start with high

velocity (u0) a new boundary layer along the opposite horizontal wall.

The thermal resistance of the geometry of Fig. 6.33 is determined by estimating

the local heat flux k(Th – T1)/δ(x) and averaging it over the total length 2Lr:

q
00 ¼ 3

4

� �1=3 kmΔT
H

Th � T1
ΔT

� �4=3

Ra
1=3
H

H

Lr

� �2=3

: ð6:214Þ

The symmetry of the sandwich of boundary layers requires Th–T1 ¼ (1/2)ΔT,
such that

q
00

ΔT
¼ 31=3k

4H
Ra

1=3
H

H

Lr

� �2=3

: ð6:215Þ

The goodness of this result can be tested against the similarity solution for a hot

horizontal surface that faces upward in a porous medium and has an excess

temperature that increases as xλ. The only difference is that the role that was played
by (Th – T1) in the preceding analysis is now played by the excess temperature

averaged over the surface length 2Lr. If we use λ ¼ 1/2, which corresponds to

uniform heat flux, then it can be shown that the solution of Cheng and Chang (1976)

leads to the same formula as Eq. (6.215), except that the factor 31/3 ¼ 1.442 is

replaced by 0.816(3/2)4/3¼ 1.401. Equation (6.215) is valid when the specified RaH
is such that the horizontal boundary layers do not touch. We write this geometric

condition as δ(x ¼ 2Lr) < H/2 and, using Eq. (6.213), we obtain

Lr
H

<
1

24
Ra

1=2
H : ð6:216Þ

Since in this analysis Lr/H was assumed to be very large, we conclude that the

Lr/H domain in which Eq. (6.215) is valid becomes wider as the specified RaH
increases. The important feature of the “few rolls” limit is that the thermal
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conductance decreases as the horizontal dimension Lλ increases. This second

asymptotic trend has been added to Fig. 6.32.

6.26.3 The Intersection of Asymptotes

Figure 6.32 presents a bird’s-eye view of the effect of flow shape on thermal

conductance. Even though we did not draw completely q00/ΔT as a function of Lr,
the two asymptotes tell us that the thermal conductance is maximum at an optimal

Lr value that is close to their intersection. There is a family of such curves, one

curve for each RaH. The q
00/ΔT peak of the curve rises and the Lr domain of validity

around the peak becomes wider as RaH increases. Looking in the direction of small

RaH values we see that the domain vanishes (and the cellular flow disappears) when

the following requirement is violated

1

24
HRa

1=2
H � π

2
HRa

�1=2
H � 0: ð6:217Þ

This inequality means that the flow exists when RaH � 12π ¼ 37.70. This

conclusion is extraordinary: it agrees with the stability criterion for the onset of

two-dimensional convection, Eq. (6.29), namely RaH > 4π2 ¼ 39.5, which was

derived based on a lengthier analysis and the assumption that a flow structure exists:

the initial disturbances (Horton and Rogers 1945; Lapwood 1948).

We obtain the optimal shape of the flow, 2Lr,opt/H, by intersecting the asymp-

totes (6.206) and (6.215), cf. Bejan (2013):

π2
H

2Lr, opt
Ra

�1=2
H

� �2

þ 25=631=6
H

2Lr, opt
Ra�1

H

� �1=3

¼ 1: ð6:218Þ

Over most of the RaH domain where Eq. (6.217) is valid, Eq. (6.218) is

approximated well by its high RaH asymptote:

2Lr, opt
H

ffi πRa�1=2
H : ð6:219Þ

The maximum thermal conductance is obtained by substituting the Lr,opt value in
either Eq. (6.215) or Eq. (6.206). This estimate is an upper bound, because the

intersection is above the peak of the curve. In the high-RaH limit (6.219) this upper

bound assumes the analytical form

q
00

ΔT

� �
max

H

km

 31=3

24=3 π2=3
Ra

2=3
H ð6:220Þ

Toward lower RaH values the slope of the (q00/ΔT )max curve increases such that

the exponent of RaH approaches 1. This behavior is in excellent agreement with the
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large volume of experimental data collected for Bénard convection in saturated

porous media (Cheng 1978a, b). The less-than �1 exponent of RaH in the empirical

Nu(RaH) curve, and the fact that this exponent decreases as RaH increases, has

attracted considerable attention from researchers during the last two decades, as we

showed earlier in this chapter.

The intersection of asymptotes method and its applications are reviewed in

Bejan (2013).

6.27 Bidisperse Porous Media, Cellular Porous Media

Bidisperse porous media (BDPM) have been introduced in Sect. 4.16.4. In the

context of the Horton-Rogers-Lapwood (HRL) problem these were studied by

Nield and Kuznetsov (2006b) and Straughan (2009). Their results were extended

to a tridisperse porous medium by Kuznetsov and Nield (2011a). These results were

further extended by Straughan (2015d) in Chap. 13 of this book. There he presented

in turn linear and nonlinear stability analysis for a Brinkman medium and then for a

Darcy medium.

Radiative transfer in cellular porous materials was overviewed by Viskanta

(2009, 2015). A noteworthy feature of these materials is that often one can, to a

good approximation, treat the radiation term as an additional thermal conduction

term with temperature-dependent conductivity. In general this complication pre-

vents an analytical treatment, but in the case of the HRL problem an analytical

solution was obtained by Nield and Kuznetsov (2010a).
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Chapter 7

Internal Natural Convection: Heating
from the Side

Enclosures heated from the side are most representative of porous systems that

function while oriented vertically, as in the insulations for buildings, industrial

cold-storage installations, and cryogenics. As in the earlier chapters, we begin with

the most fundamental aspects of the convection heat transfer process when the flow

is steady and in the Darcy regime. Later, we examine the special features of flows

that deviate from the Darcy regime, flows that are time dependent, and flows that

are confined in geometries more complicated than the two-dimensional rectangular

space shown in Fig. 7.1. Some of the topics of this chapter have been reviewed by

Oosthuizen (2000).

7.1 Darcy Flow Between Isothermal Side Walls

7.1.1 Heat Transfer Regimes

Consider the basic scales of the clockwise convection pattern maintained by the

side-to-side heating of the porous medium defined in Fig. 7.1. In accordance with

the homogeneous porous medium model, we begin with the equations for the

conservation of mass, Darcy flow, and the conservation of energy in the H � L
space:

∂u
∂x

þ ∂v
∂y

¼ 0, ð7:1Þ

u ¼ �K

μ

∂P
∂x

, ð7:2Þ
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v ¼ �K

μ

∂P
∂y

þ ρg

� �
, ð7:3Þ

u
∂T
∂x

þ v
∂T
∂y

¼ αm
∂2

T

∂x2
þ ∂2

T

∂y2

 !
: ð7:4Þ

Note that in contrast to the system used in Sect. 5.1, the y axis is now vertically

upward. By eliminating the pressure P between Eqs. (7.2) and (7.3) and by invoking

the Boussinesq approximation ρ ffi ρ0[1 � β(T � T0)] in the body force term ρg of

Eq. (7.3), we obtain a single equation for momentum conservation:

∂u
∂y

� ∂v
∂x

¼ �Kgβ

v

∂T
∂x

: ð7:5Þ

In this equation ν is the kinematic viscosity μ/ρ0, which is assumed constant

along with the other properties, the permeability K, the coefficient of volumetric

thermal expansion β, and the porous-medium thermal diffusivity αm ¼ km/(ρcP)f.
The three Eqs. (7.1), (7.4), and (7.5) hold in the entire domain H � L subject to

the boundary conditions indicated in the figure. The four walls are impermeable and

the side-to-side temperature difference is Th � Tc ¼ ΔT. Of special interest are the
scales of the vertical boundary layers of thickness δ and height H. In each δ � H
region, the order-of-magnitude equivalents of Eqs. (7.1), (7.4), and (7.5) are
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wall
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u

g

v

y

0

0 x L

H
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Fig. 7.1 Two-dimensional

rectangular porous layer held

between differently heated

side walls (Bejan 1984)
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mass :
u

δ
� y

H
, ð7:6Þ

energy : u
ΔT
δ

; v
ΔT
H

� �
� αm

ΔT
δ2

; αm
ΔT
H2

� �
, ð7:7Þ

momentum :
u

H
;
v

δ

� �
� Kgβ

v

ΔT
δ

: ð7:8Þ

To begin with, the mass balance (7.6) shows that the two scales on the left-hand

side of Eq. (7.7) are of the same order, namely v ΔT/H. On the right-hand side of

Eq. (7.7), the second scale can be neglected in favor of the first, because the δ � H
region is a boundary layer (i.e., slender),

δ � H: ð7:9Þ
In this way, the energy conservation statement (7.7) reduces to a balance

between the two most important effects, the conduction heating from the side,

and the convection in the vertical direction,

v
ΔT
H

longitudinal convection

� αm
ΔT
δ2

lateral conduction

ð7:10Þ

Turning our attention to the momentum scales (7.8), we see that the mass

balance (7.6) implies that the ratio between (u/H ) and (v/δ) is of the order (δ/H )2

� 1. We then neglect the first term on the left-hand side of Eq. (7.8) and find that

the momentum balance reduces to

v

δ
� Kgβ

v

ΔT
δ

, ð7:11Þ

Equations (7.10), (7.11), and (7.6) imply that the scales of the vertical boundary

layer (Bejan 1985) are

v � Kgβ

v
ΔT � αm

H
Ra, ð7:12Þ

δ � HRa�1=2, ð7:13Þ

u � αm
H

Ra1=2, ð7:14Þ

where Ra is the Rayleigh number based on height,

Ra ¼ gβKHΔT
vαm

: ð7:15Þ
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The total heat transfer rate from one side wall to the other is simply

q0 � kmH
ΔT
δ

� kmΔTRa1=2: ð7:16Þ

This heat transfer rate is expressed per unit length in the direction perpendicular

to the plane H � L. It can be nondimensionalized as the overall Nusselt number

Nu ¼ q0

q0c
� kmΔTRa1=2

kmHΔT=L
� L

H
Ra1=2, ð7:17Þ

in which q0c ¼ km H ΔT/L is the true heat transfer rate in the pure-conduction limit

(i.e., in the absence of convection).

Two requirements must be met if the results Eqs. (7.12)–(7.17) are to be valid.

First, the vertical boundary layers must be slender, which in view of Eqs. (7.9) and

(7.13) means

Ra � 1: ð7:18Þ
Second, the vertical boundary layers must be distinct, i.e., thinner than the layer

itself, δ� L. This second requirement can be rewritten [cf. Eq. (7.13)] as

Ra1=2 � H

L
: ð7:19Þ

The domain Ra, H/L in which the vertical boundary layers are distinct is

indicated to the right of the rising dashed line in Fig. 7.2.

The fluid completes its clockwise circulation in Fig. 7.1 by flowing along the

horizontal boundaries. Whether or not these horizontal jets are distinct (thinner than

H ) can be determined using the scaling results (7.12)–(7.14). The volumetric flow

rate of the horizontal jet is the same as that of the vertical boundary layer, namely

vδ. The two horizontal jets form a counterflow that carries energy by convection

from left to right in Fig. 7.1, at the rate

q0 !ð Þ � vδ ρcPð ÞfΔT: ð7:20Þ
The heat transfer rate by thermal diffusion between these two jets, from top to

bottom in Fig. 7.2, is

q0 #ð Þ � km L
ΔT
H

: ð7:21Þ

One horizontal jet travels the entire length of the porous layer (L ) without

experiencing a significant change in its temperature when the vertical conduction

rate (7.21) is small relative to the horizontal convection rate (7.20). The inequality

q0(#)� q0(!) yields

H

L
� Ra�1=2 ð7:22Þ
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as the criterion for the existence of distinct horizontal layers. The parametric

domain in which Eq. (7.22) is valid is indicated to the right of the descending

dashed line in Fig. 7.2. The structure of the horizontal layers contains additional

features that have been analyzed systematically by Daniels et al. (1982). Further

studies were made by Staicu (1977, 1979).

Figure 7.2 summarizes the four regimes that characterize the heat transfer

through a porous layer heated from the side. The results derived in this section

recommend the adoption of the following heat transfer scales:

I. Pure conduction (no distinct boundary layers):

Nu ffi 1, q0 ffi kmH
ΔT
L

: ð7:23Þ

II. Tall layers (distinct horizontal boundary layers only):

Nu e> 1, q0 e> kmH
ΔT
L

: ð7:24Þ

III. High-Ra convection (distinct vertical and horizontal boundary layers):

Nu � L

H
Ra1=2, q0 � kmH

ΔT
H

: ð7:25Þ
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Fig. 7.2 The four heat transfer regimes for natural convection in a two-dimensional porous layer

heated from the side (Bejan 1984)

7.1 Darcy Flow Between Isothermal Side Walls 367



IV. Shallow layers (distinct vertical boundary layers only):

Nue<L

H
Ra1=2, q0 e<kmH

ΔT
δ

: ð7:26Þ

In the remainder of this section we focus on regimes III and IV, in which the heat

transfer rate can be significantly greater than the heat transfer rate associated with

pure conduction. A more detailed classification of the natural convection regimes

that can be present in a porous layer heated from the side was developed by Blythe

et al. (1983).

7.1.2 Boundary Layer Regime

Weber (1975b) developed an analytical solution for the boundary layer regime by

applying the Oseen linearization method. The focus of the analysis is the vertical

boundary layer region along the left wall in Fig. 7.1, for which the momentum and

energy equations are

∂2ψ*

∂x2*
¼ ∂T*

∂x*
, ð7:27Þ

∂ψ*

∂x*

∂T*

∂y*
� ∂ψ*

∂y*

∂T*

∂x*
¼ ∂2

T*

∂x2*
: ð7:28Þ

These equations involve the streamfunction ψ now defined by u ¼ �∂ψ /∂y and
v ¼ ∂ψ /∂x and the dimensionless variables

x* ¼ x

H
Ra1=2, y* ¼

y

H
, ð7:29Þ

ψ* ¼
ψ

αmRa1=2
, T* ¼ T � Th þ Tcð Þ=2

Th � Tc

ð7:30Þ

The solution begins with treating ∂ψ*/∂y* (the entrainment velocity) and ∂T*/∂y*
as functions of y* only. This leads to the exponential profiles

ψ* ¼ ψ1 1� e�λx*
� �

, ð7:31Þ

T* ¼ T1 þ 1

2
� T

� �
e�λx* , ð7:32Þ

in which the core temperature T1, the core streamfunction ψ1, and the boundary

layer thickness 1/λ are unknown functions of y*. These unknowns are determined

368 7 Internal Natural Convection: Heating from the Side



from three conditions, the equations obtained by integrating Eqs. (7.27) and (7.28)

across the boundary layer,

λψ1 ¼ 1

2
� T1, ð7:33Þ

d

dy*

1

2λ

1

2
� T1

� �2
" #

þ ψ
dT1
dy*

¼ λ
1

2
� T1

� �
, ð7:34Þ

and the centrosymmetry of the entire flow pattern. The latter implies that ψ1 must

be an even function of z¼ y* – 1/2 and that T1must be an odd function of altitude z.
Note that z is measured away from the horizontal midplane of the rectangular space.

The solution is expressed by

ψ* ¼ C 1� q2
� �

1� exp � x*
2C 1þ qð Þ

� 	
 �
, ð7:35Þ

T* ¼ 1

2
qþ 1� qð Þexp � x*

2C 1þ qð Þ
� 	
 �

, ð7:36Þ

where q is an implicit odd function of z:

z ¼ C2 q� 1

3
q3

� �
: ð7:37Þ

Weber (1975b) determined the constant C by invoking the impermeable top and

bottom conditions ψ* ¼ 0 at z ¼ �1/2 and obtained C ¼ 31/2/2 ¼ 0.866. The

patterns of streamlines and isotherms that correspond to this solution were drawn

later by Bejan (1984) and are reproduced in Figs. 7.3 and 7.4. These figures show a

vertical boundary layer flow that discharges itself horizontally into a thermally

stratified core region. The total heat transfer rate between the two side walls can be

expressed as the conduction-referenced Nusselt number defined in Eq. (7.17), now

given by

Nu ¼ 0:577
L

H
Ra1=2: ð7:38Þ

The agreement between Weber’s solution (7.38) and the order of magnitude

prediction (7.17) is evident. Figure 7.5 shows a comparison between Eq. (7.38) and

experimental and numerical data collected from three sources (Schneider 1963;

Klarsfeld 1970; Bankvall 1974). The proportionality between Nu and (L/H )Ra1/2

anticipated from Eqs. (7.17) and (7.38) appears to be correct in the high Rayleigh

number limit. It is important to also note that the boundary layer theory (7.38)

consistently overpredicts the Nusselt number, especially at high Rayleigh numbers.

Bejan (1979) showed that the discrepancy between theory and empirical results

can be attributed to the way in which the constant C was determined for the
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solutions (7.35)–(7.37). His alternative was to simultaneously invoke the imperme-

able and adiabatic wall conditions at z ¼ �1/2. This was approximately accom-

plished by setting the total vertical energy flow rate (convection + conduction)

equal to zero at the top and the bottom of the porous layer. The C value that results

from this condition is given implicitly by

C ¼ 1� q2e
� ��2=3

Ra�1=6 H

L

� ��1=3

ð7:39Þ

in which qe is itself a function of C,

1

2
¼ C2 qe �

1

3
q3e

� �
: ð7:40Þ

Figure 7.6 shows the emergence of Ra(H/L )2 as a new dimensionless group that

differentiates between various boundary layer regimes. The constant C approaches

Weber’s value 31/2/2 as this new group approaches infinity. The same figure shows

that the Nusselt number is generally below the value calculated with Eq. (7.38),
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Fig. 7.3 The streamlines

near the heated wall in the

boundary layer regime

(Bejan 1984)
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Fig. 7.5 Theoretical, numerical, and experimental results for the heat transfer rate through a

porous layer heated from the side (Bejan 1984)
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where 0.577 ¼ 3–1/2. An alternative presentation of this heat transfer information is

given in Fig. 7.7, which shows that in the boundary layer regime Nu depends not

only on Ra(L/H )2, cf. Eq. (7.17), but also on the aspect ratio H/L. This secondary
effect is a reflection of the new group Ra(H/L )2 identified in Fig. 7.6.

An integral boundary layer solution that incorporates the same zero vertical

energy flow condition was reported by Simpkins and Blythe (1980). The structure

of the vertical boundary layer region near the top and bottom corners—neglected in

the work reviewed here—was analyzed by Blythe et al. (1982). A numerical study

of high Ra convection, yielding correlations for the heat transfer rate, was reported

by Shiralkar et al. (1983). For tall cavities, Rao and Glakpe (1992) proposed a

correlation of the form Nu ¼ 1 + a(Ra)L/H, for H/L > Hm(Ra), where a(Ra) and
Hm(Ra) are quantities determined numerically. Ansari and Daniels (1993, 1994)

treated flow in tall cavities, taking into account the nonlinear flow that occurs near

each end of the cavity. Their second study, which was concerned with the case of

Ra and aspect ratio large and of the same order, led to the prediction of a position of

minimum heat transfer across the cavity. A further study using a boundary domain

integral method was reported by Jecl and Skerget (2000). Another study involving a

tall cavity was made by Ben Yedder and Erchiqui (2009).

Masuoka et al. (1981) performed experiments with glass beads and water, the

results of which were in agreement with a boundary layer analysis extended to take
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Fig. 7.6 The effect of the group Ra(H/L)2 on the solution for boundary layer natural convection in
a porous layer heated from the side (Bejan 1979)
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account of the vertical temperature gradient in the core and the apparent wall-film

thermal resistance which is caused by a local increase in porosity near the wall.

7.1.3 Shallow Layer

Like the high-Ra regime III described in the preceding subsection, the natural

convection in shallow layers (regime IV, Fig. 7.2) also can be characterized by

heat transfer rates that are considerably greater than the heat transfer rate in the

absence of a buoyancy effect. Regime IV differs from regime III in that the

horizontal boundary layers are not distinct. The main characteristics of natural

convection in a shallow layer are presented in Fig. 7.8: the vertical end layers are

distinct and a significant temperature drop is registered across the “core,” that is,

along the horizontal counterflow that occupies most of the length L.
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Fig. 7.7 The heat transfer rate in the boundary layer regime (Nu > 1) in a porous layer heated

from the side (Bejan 1979)
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The first studies of natural convection in shallow porous layers were published

independently by Bejan and Tien (1978) and Walker and Homsy (1978). These

studies showed that in the core region the circulation consists of a purely horizontal

counterflow:

u ¼ �αm
H

Ra
H

L
K1 y* �

1

2

� �
ð7:41Þ

v ¼ 0, ð7:42Þ
in which y* ¼ y/H. As shown in the lower part of Fig. 7.8, the core temperature

varies linearly in the horizontal direction, while the degree of vertical thermal

stratification is independent of x,

T � Tc

Th � Tc

¼ K1

x

L
þ K2 þ Ra

H

L

� �2

K2
1

y2*
4
� y3*

6

� �
: ð7:43Þ

The conduction-referenced Nusselt number for the total heat transfer rate from

Th to Tc is
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Fig. 7.8 The structure of a horizontal porous layer subjected to an end-to-end temperature

difference (Bejan and Tien 1978)
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Nu ¼ q0

kmΔT=L
¼ K1 þ 1

120
K3

1 Ra
H

L

� �2

: ð7:44Þ

Parameters K1 and K2 follow from matching the core flows (7.41)–(7.43) to the

vertical boundary layer flows in the two end regions. Bejan and Tien (1978)

determined the function K1(H/L, Ra) parametrically by matching the core solution

to integral solutions for the end regions. Their result is given implicitly by the

system of equations

1

120
δe Ra

2K3
1

H

L

� �3

¼ 1� K1, ð7:45Þ

1

2
K1

H

L
δe δ�2

e � 1
� � ¼ 1� K1, ð7:46Þ

in which δe is the ratio end-region thickness/H. The Nusselt number based on this

K1 function and Eq. (7.44) has been plotted in Fig. 7.9, next to the numerical results

Hickox and
Garling (1981)
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Fig. 7.9 The heat transfer rate in a shallow porous layer with different end temperatures

(Bejan 1984)
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published subsequently by Hickox and Gartling (1981), who also reported repre-

sentative patterns of streamlines and isotherms. Additional patterns can be seen in

the paper by Daniels et al. (1986). In the infinitely shallow layer limit H/L! 0, the

horizontal counterflow accounts for the entire temperature drop from Th to Tc
and K1 approaches 1. In the same limit Nu also approaches 1, cf. Eq. (7.44),

with K1 ¼ 1:

Nu ¼ 1þ 1

120
Ra

H

L

� �2

,
H

L
! 0

� �
: ð7:47Þ

It is important to note that the shallow-layer solution of Fig. 7.9 and

Eqs. (7.44)–(7.47) approaches a proportionality of type Nu � (L/H )Ra1/2 as Ra

increases, which is in agreement with the scaling law (7.17). That proportionality

(Bejan and Tien 1978),

Nu ¼ 0:508
L

H
Ra1=2 Ra ! 1ð Þ, ð7:48Þ

is nearly identical to Weber’s (1975b) solution (7.38) for the high-Ra regime. In

conclusion, the Nu(Ra,H/L ) solution represented by Eqs. (7.44)–(7.48) and Fig. 7.9
is adequate for heat transfer calculations in both shallow and tall layers, at low and

high Rayleigh numbers. This conclusion is stressed further in Fig. 7.10, which

shows the full effect of the aspect ratio when the Rayleigh number based on the

horizontal dimension RaL ¼ gβKLΔT/ναm is fixed (Bejan 1980a). The heat transfer

rate reaches a maximum when the rectangular domain is nearly square.
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Fig. 7.10 The effect of the height of the enclosure on the heat transfer rate through a porous layer

heated from the side
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This conclusion is relevant to the design of vertical double walls filled with

fibrous or granular insulation held between internal horizontal partitions with the

spacing H. In this design, the wall-to-wall spacing L is fixed while the number and

positions of the horizontal partitions can change. The conclusion that the maximum

heat transfer rate occurs when H is of order L also holds when the enclosure does

not contain a porous matrix. In that case, the vertical spacing between partitions that

corresponds to the maximum heat transfer rate is given approximately by

H/L � 0.1–1 (Bejan 1980a).

Blythe et al. (1985b) and Daniels et al. (1989) have analyzed the merged-layer

regime which is defined by L/H ! 1 at fixed R2 ¼ Ra H2/L2. In this limit the

boundary layers on the horizontal walls merge and completely fill the cavity. The

regime is characterized by a nonparallel core flow that provides the dominant

structure over a wide range of R2 values. The use of R2 leads to the heat transfer

correlation shown in Fig. 7.11. Further studies of shallow cavity flow, incorporating

a stably stratified medium, were made by Daniels (2006, 2007). Hill (2006) also

studied horizontal convection.

7.1.4 Stability of Flow

Gill (1969) showed that linear stability analysis using the Darcy equation with no

inertial terms leads to the prediction that the basic flow produced by differential

Fig. 7.11 Variation of

Nu2 ¼ NuH2/L2 versus

R
�1=2
2 ¼ Ra�1=2L=H.

The solid line defines
the merged-layer solution.

Dashed lines show the

asymptotic solutions (a)

Nu2 � 0:515R
1=2
2 , (b)

Nu2 � R2
2=120, and (c) Nu2

	 R2
2=120 (1 � 3σ1R2)

where σ1 	 �0.07. Results
from numerical solutions by

Hickox and Gartling (1981)

and Prasad and Kulacki

(1984b) are shown for

various values of Ra and L/
H: black square L/H ¼ 2;

black circle L/H ¼ 5; and

black triangle L/H ¼ 10

(Daniels et al. 1989)
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heating of the walls of a vertical slab of infinite height is stable. Georgiadis and

Catton (1985) claimed that instability was predicted when one included the time-

wise acceleration term in the momentum equation, but Rees (1988) showed that

their analysis contained an error. The nonlinear analysis of Straughan (1988)

predicts that the basic flow is stable provided that the initial disturbance is

smaller than a certain threshold that is proportional to the inverse of the Rayleigh

number.

The situation is dramatically changed when boundary friction is accounted for

by means of the Brinkman equation. Kwok and Chen (1987) performed a linear

stability analysis that led to predicted values Rac ¼ 308.0, αc ¼ 2.6 if viscosity

variations are ignored and Rac ¼ 98.3, αc ¼ 1.6 if viscosity variations are taken

into account. However, an extremely large (and perhaps physically unrealistic)

temperature difference is required for instability according to linear stability

theory. In their experiment they observed a value 66.2 for the critical Rayleigh

number Rac, which is based on the width L. They did not measure the critical

vertical wavenumber αc. The instability appears to be related to the fact that the

basic vertical velocity profile is no longer linear. The disagreement between

predicted and observed values of Rac presumably is due to the effect of porosity

variation. A nonlinear analysis on the Brinkman model was performed by Qin

and Kaloni (1993) for rigid or stress-free boundaries.

Barletta (2015a) has shown that convection in a porous slab with the Darcy

model may also be unstable in the case of isothermal permeable boundaries. He

showed that transverse rolls may occur when the Rayleigh number exceeds

197.081.

Riley (1988) has studied the effect of spatially periodic boundary imperfections.

He found that out-of-phase imperfections enhance the heat transfer significantly.

Lipchin (1990) also investigated stability in a vertical layer.

The stability problem that arises for a rotating medium occupying a vertical slot,

for which there is a horizontal body force due to the centrifugal acceleration and a

positive temperature gradient in the same direction, was studied analytically by

Vadasz (1994a). Convection in the form of superposed convection cells appears

when a centrifugal Rayleigh number exceeds a certain value. Govender and Vadasz

(1995) have shown that there is an analogy between this problem and natural

convection in an inclined layer subject only to gravity. The results of experiments

in a Hele-Shaw cell by Vadasz and Heerah (1998a, b) showed qualitative agreement

with the theory.

Rees and Lage (1996) considered a rectangular container where the imperme-

able bounding walls are held at a temperature that is a linearly decreasing function

of height, the local temperature drop across the container being zero. They consid-

ered containers of finite aspect ratio and those of asymptotically large aspect ratio.

For both cases, they found that modes bifurcate in pairs as the linear stability

equations admit an infinite set of double eigenvalues. They analyzed the weakly

nonlinear evolution of the primary pair of eigenmodes and found that the resulting

steady-state flow is dependent on the form of the initial disturbance. For
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asymptotically tall boxes, their numerical and asymptotic analysis produced no

evidence of persistently unsteady flow.

Kimura (1992) numerically studied convection in a square cavity with the upper

half of a vertical wall cooled and the lower half heated, so that a cold current

descends and fans out over a rising hot current. The unstable layer so formed

appears to be associated with the onset of oscillations at Ra ¼ 200. The effects of

temperature-dependent thermal diffusivity and viscosity were included in a

nonlinear stability analysis by Flavin and Rionero (1999).

The effect of local thermal nonequilibrium on the stability of convection in a

vertical channel, heated and cooled from the sides, was investigated by Rees

(2011). His energy stability analysis showed that the system remains uncondition-

ally stable to small-amplitude disturbances. Also for the case of local thermal

nonequilibrium, Scott and Straughan (2013a) performed a nonlinear stability anal-

ysis. Further stability analysis in terms of stratification parameters was performed

by Bahloul (2006).

Barletta and Storesletten (2014) studied what they call adiabatic eigenflows,

in a vertical channel with adiabatic and impermeable walls and with a uniform

heat source so that a stable state with uniform throughflow is possible. These are

unstable unless the source supplies zero power. For a vertical Hele-Shaw cell,

Kim (2015a) performed linear and nonlinear stability analyses.

7.1.5 Conjugate Convection

Conjugate convection in a rectangular cavity surrounded by walls of high relative

thermal conductivity was examined by Chang and Lin (1994a). They reported

that wall heat conduction effects decrease the heat transfer rate. A problem with a

slab on one wall was studied by Naylor and Oosthuizen (1996). The heat transfer

through a vertical partition separating porous–porous or porous–fluid reservoirs

at different temperatures was studied by Kimura (2003) on the basis of a simple

one-dimensional vertically averaged model on the assumption that there is a

linear increase in temperature in both of the reservoirs and the partition. He

obtained results that are in general agreement with experiment. The steady-state

heat transfer characteristics of a thin vertical strip with internal heat generation

placed in a porous medium were studied by Méndez et al. (2002). A conjugate

convection problem involving a thin vertical strip of finite length, placed in a

porous medium, was studied by Martı́nez-Suástegui et al. (2003) using numerical

and asymptotic techniques. A conjugate convection problem in a square cavity

with horizontal conductive walls of finite thickness was studied numerically by

Baytas et al. (2001). Mohamad and Rees (2004) have examined numerically

conjugate convection in a porous medium attached to a wall held at a constant

temperature. Conjugate convection in a vertical layer of a box sandwiched by

walls of finite thickness was studied by Saeid (2008), with the last paper treating

thermal nonequilibrium. Unsteady convection in a square enclosure was
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examined by Aleshova and Sheremet (2010). A steady-state problem was studied

by Al-Amiri et al. (2008). Chamkha and Ishmael (2013a) studied a cavity heated

by a triangular thick wall.

7.1.6 Non-Newtonian Fluid

Flow of a viscoelastic fluid in a vertical channel with heat sources was studied by

Dash and Biswal (1989). Convection in a rectangular cavity filled by a

non-Newtonian power law fluid was studied theoretically and numerically by

Getachew et al. (1996). They employed scaling arguments to delineate heat

transfer regimes analogous to those discussed in Sect. 7.1.1 and verified their

results using numerical calculations. A numerical study on the Brinkman–

Forchheimer model was carried out by Hadim and Chen (1995). A further

numerical study, using the boundary element method, was reported by Jecl and

Skerget (2003). A numerical study of flow involving a couple-stress fluid was

published by Umavathi and Malashetty (1999), but the authors did not explain

how the couple-stress is maintained on the scale of a representative elementary

volume. A couple-stress fluid was also studied by Muthuraj et al. (2012) (wavy

walls, chemical reaction, temperature-dependent heat source). The effect of the

macroscopic inertial term was highlighted by Abuzaid et al. (2005). Beg et al.

(2008a) investigated the case of a third grade viscoelastic fluid. Hayat et al.

(2011c) (radiation) and Rassoulinejad-Mousavi et al. (2014) treated a Maxwell

fluid with a magnetic field. Singh et al. (Singh et al. 2014a, b) added the effect of

radiation. Kumar and Gupta (2012) studied a micropolar fluid with a magnetic

field. A power-law fluid with viscous dissipation was treated by Tian et al.

(2015). Barletta and Alves (2014) studied Gill’s stability problem for a power-

law fluid. An inflexion point in the velocity profile now appears but the flow

remains stable. Unsteady flow of a second-order fluid with heat generation was

examined by Das et al. (2005a, b). Oscillatory flow of a viscoelastic fluid in a

rotating channel was studied by Chand et al. (2013). Flow in an open-top cavity

with constant heat flux was treated by Niu et al. (2015). Rees (2016a) and Nash

and Rees (2016) studied the convection of a Bingham fluid in a differentially

heated cavity. Adesanya and Makinde (2015) incorporated the effects of couple

stresses on entropy generation in a channel with convective heating. Baag et al.

(2015) investigated the effect of a magnetic field on flow of a viscoelastic fluid

between parallel plates with time-dependent suction. Garg et al. (2015) examined

oscillatory MHD flow of a second-order fluid in a vertical rotating channel with

slip and radiation. Span-wise fluctuating convective MHD flow of a viscoelastic

fluid was studied by Singh (2016). Flow of a Jeffrey fluid in a deformable

medium was investigated by Sreenath et al. (2016). The stability of convection

with an Oldroyd B fluid in a vertical slab was examined by Shankar and

Shivakumara (2016).
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7.1.7 Other Situations

For flows in a vertical channel, for Darcy or Brinkman models, Cai and Zhang

(2002), Cai et al. (2005), and Cai and Liu (2008) obtained some explicit analytical

solutions.

Convective heat transfer through porous insulation in a vertical slot with leakage of

mass at the walls was analyzed by Burns et al. (1977). Masuoka et al. (1986a, b)

studied natural convection in a stratified porous medium heated from the side.

Convection in a shallow cavity with variable properties was investigated by Mey

and Merker (1987). The effects of pressure stratification on multiphase transport

across a vertical slotwere studied byTien andVafai (1990b). The effect of imperfectly

heated sidewalls was examined byVadasz andBraester (1992b). The effect of rotation

was included by Sacheti and Singh (1992). Penetrative convection in a vertical

channel was studied by Srimani and Sudhakar (1996). Satya Sai et al. (1997a) applied

finite element analysis to a vertical enclosure with the Brinkman model.

Tien and Chiang (1999) investigated numerically the case of partially permeable

side walls. Oscillatory convection with slip flow and variable suction on the walls of

a vertical channel was studied by Umavathi and Palaniappan (2000). The case of icy

water was treated by Benhadji et al. (2002). A numerical study based on the

Brinkman model was made by Krishna and Prasada Rao (2002). The sidewall

heating in shallow cavities with icy water was treated by Leppinen and Rees

(2004). They considered a case in which the density maximum occurs somewhere

between the side walls, and they treated the situation using asymptotic analysis

valid in the limit of vanishing aspect ratio and Rayleigh number of O(1). In this case

the flow is divided into two counter-rotating cells whose size depends on the

temperature giving the density maximum and the temperatures of the side walls.

Icy water in rectangular boxes of various aspect ratios was studied by Doh and

Muthtamilselvan (2016). Combined radiation and convection were discussed by

Talukdar et al. (2004). A square cavity with a sinusoidally heated sidewall was

investigated by Saeid and Mohamad (2005a, b, c). Icy water was treated in terms of

heatlines by Varol et al. (2010b). The heatline approach was also employed by

Kaluri et al. (2009), Kaluri and Basak (2010b), Basak et al. (2012a, b, c), and

Waheed (2009). Further studies involving entropy production were carried out by

Kaluri and Basak (2010a, 2011a), Basak et al. (2012b) (for sinusoidal heating),

Singh et al. (2015b), and Datta et al. (2016) (square adiabatic block centrally placed

in a square enclosure). Thermal convection in a vertical slot with a spatially

periodic thermal boundary condition was analyzed by Yoo (2003). Numerical

studies of various problems involving lateral heating of square cavities were

reported by Nithiarasu et al. (1999a, b, 2002). Unevenly heated side walls were

studied by Wu et al. (2013a, b). The effect of local thermal nonequilibrium was

included in the studies by Rees et al. (2008a) (with injection of hot fluid), Slimi

(2009) (with radiation), Vadasz (2011c), Foudil et al. (2012) (experimentally), and

Wu et al. (2015a, b) (unevenly heated side walls). 3D convection in a vertical

channel was studied by Guria et al. (2009). A problem involving sinusoidal g-jitter
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was investigated by Ghosh and Ghosh (2009). Developing convective gas flow in

an open-ended vertical channel was treated by Haddad et al. (2005a, b). For an

open-ended channel, the combination of convection and radiation was studied by

Jbara et al. (2011). The lattice Boltzmann method was applied to an open-ended

square cavity by Haghshenas et al. (2010). A partly open cavity was examined by

Oztop et al. (2011b). For a system of equations modeling differentially heated side

walls and with a thermal source, Akyildiz et al. (2012a, b) obtained some existence,

uniqueness, and concavity results. The effect of anisotropy was studied by Kimura

and Masuda (1993), Kimura and Okajima (2000), Kimura et al. (2002), Nithiarasu

et al. (2000), Sayed Mojtaba and Shahnazari (2008), Harzallah et al. (2010) and

Ahmed and Aly (2014) (each with finite thickness walls), Kapoor and Dera (2012)

(sinusoidal side heating), and Chandra and Satyamurty (2012). The feedback

control of flows in a square enclosure with nonuniform internal heating was treated

by Saleh et al. (2012). Bhuvaneswari et al. (2011) investigated convection in boxes

with various aspect ratios and with various heating and cooling zones on the vertical

walls. Akyildiz et al. (2012a, b) obtained approximate analytical solution for

convection in a vertical channel. Govonukhin and Shevchenko (2013) performed

numerical experiment for a rectangular vessel for various aspect ratios and various

initial temperature distributions. The effect of radiation has also been studied by

Mahapatra et al. (2012) and Hossain et al. (2013a, b). Transient convection in a

square cavity heated and cooled on adjacent walls was studied by Selemat et al.

(2012a). A cavity with sinusoidal heating on both side walls was examined by

Sivasankaran and Bhuvaneswari (2013). Flow in a vertical rectangular cavity, with

uniform or temperature-dependent viscosity and thermal conductivity, was studied

by Umavathi (2013a, 2015a). A differential transform semi-numerical analysis for a

suspension of biofluid particles was performed by Bég et al. (2013b). Numerical

simulation and upper bound analysis were applied by Wen et al. (2013) to narrowly

spaced plumes formed in a channel at large Rayleigh number. Square cavities with

discrete heat sources on bottom and side walls were studied by Kalaoka and

Witayangkum (2014a). Discrete sources in a vertical channel filled by metallic

foam were studied experimentally by Kamath et al. (2014). Yang et al. (2015a, b, c)

performed a numerical and experimental study of convection in a cubic enclosure

containing a randomly deposited porous medium, with constant different temper-

atures on the side walls. For wide enclosures heated form the side, Qui et al. (2013)

obtained correlation formulas for the prediction of the Nusselt number. Shankar

et al. (2015) studied the effect of a horizontal alternating electric current on the

stability of natural convection in a vertical channel saturated by a dielectric fluid.

The effect of Navier slip on entropy generation in a vertical channel was investi-

gated by Eegunjobi and Makinde (2012). Wu et al. (2015b, c, 2016a, b, c) simulated

natural convection in a cavity with linear or sinusoidal distributions on the walls for

the case of local thermal nonequilibrium. Imani and Hooman (2016) used lattice

Boltzmann pore scale simulation to study convection in a differentially heated

enclosure filled with a detached or attached bidisperse porous medium. Saravanan

and Nayaki (2017) studied convection in a cubical porous cavity with partially

active lateral walls.
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A large number of published studies involve the effect of a magnetic field. Since

in most practical situations the magnetic drag is not significant in comparison with

the Darcy drag, these theoretical studies are just mentioned briefly here. For a

vertical channel, investigations have been made by Raptis et al. (1982a, b), Singh

(2002), Mahmud and Fraser (2004b), Chaturvedi and Shrivasatav (2013) (radia-

tion), Manglesh and Gorla (2013) (radiation), Das et al. (2014) (radiation, oscilla-

tory flow), Kar et al. (2013) (chemical reaction, heat source), Panda (2015)

(radiation, unsteady flow), Rawat et al. (2014) (suspension), Rudraiah et al.

(2014) (chiral fluid, viscous dissipation but with a faulty expression). For a rectan-

gular cavity, studies have been made by Krakov and Nikiforov (2005), Zeng et al.

(2007, 2009) (diamagnetic fluid), Shehadeh and Duwairi (2009a, b, 2010),

Ashorynejad et al. (2012) and Djebali et al. (2012) (each using a Lattice Boltzmann

method), Costa et al. (2012) (magnetic field induced by two parallel vertical electric

currents), Ahmed et al. (2014a) (radiation, viscous dissipation), Jiang et al. (2012a,

b, c, 2014a, b, c, d, 2015a, b) (influence of a coil on a cubic enclosure with

microgravity), Hemalatha and Sivaprava (2012) (ferrofluid, magnetic-field-depen-

dent viscosity, anisotropy), Jin and Zhang (2013) (temperature-sensitive magnetic

fluid), and Pekmen and Tezer-Sezgin (2013, 2015a) (DRBEM solution). A study of

entropy production for an MHD situation was made byMahmud and Fraser (2004b)

and by Torabi and Zhang (2015) (channels with thick walls). Ma et al. (2015) used a

lattice Boltzmann method to study convection in a square cavity with heated bottom

and cooled other walls. Unsteady MHD Couette flow with chemical reaction and

radiation absorption in a vertical channel was investigated by Ajibade and Umar

(2016). Peristaltic transport of a Jeffrey fluid through a finite vertical channel was

studied by Vajravelu et al. (2016).

7.2 Side Walls with Uniform Flux and Other Thermal
Conditions

In the field of thermal insulation engineering, a more appropriate description for the

side heating of the porous layer is the model where the heat flux q00 is distributed
uniformly along the two side walls. In the high Rayleigh number regime (regime

III, Fig. 7.2), the overall Nusselt number is given by (Bejan 1983b)

Nu ¼ q00H
kmHΔT=L

¼ 1

2

L

H

� �4=5

Ra
2=5
* , ð7:49Þ

In this Nu definition ΔT is the height-averaged temperature difference that

develops between the two side walls, Th � Tc

� �
, while Ra* is the Rayleigh number

based on heat flux,

Ra* ¼ gβKH2q00

vαmkm
: ð7:50Þ
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Formula (7.49) is based on a matched boundary layer analysis that combines

Weber’s (1975b) approach with the zero energy flow condition for the top and

bottom boundaries of the enclosure (Bejan 1979). The solution obtained also

showed that

1. the vertical boundary layers have a constant thickness of order H Ra
�1=3
* ;

2. the core region is motionless and linearly stratified, with a vertical temperature

gradient equal to q00=kmð ÞRa�1=5
* H=Lð Þ2=5;

3. the temperature of each side wall increases linearly with altitude at the same rate

as the core temperature, and so the local temperature difference between the side

walls is independent of altitude; and

4. in any horizontal cut through the layer, there exists an exact balance between the

net upflow of enthalpy and the net downward heat conduction.

The conditions that delineate the parametric domain in which Eq. (7.49) and

regime III are valid are Ra
�1=3
* < H=L < Ra

1=3
* . This solution and the special flow

features revealed by it are supported by numerical experiments performed in the

range 100 ¼ Ra ¼ 5000 and 1 ¼ H/L ¼ 10, which also are reported in Bejan

(1983b).

The heat transfer by Darcy natural convection in a two-dimensional porous layer

with uniform flux along one side and uniform temperature along the other side was

investigated numerically by Prasad and Kulacki (1984a). Their set of thermal

boundary conditions is a cross between those of Weber (1975b) and Bejan

(1983b). An extension to the Forchheimer model was made by Poulikakos

(1985d). The corresponding heat transfer process in a vertical cylindrical annulus

with uniform heat flux on the inner wall and uniform temperature on the outer wall

was studied experimentally by Prasad et al. (1986) and numerically by Prasad

(1986). Dawood and Burns (1992) used a multigrid method to deal with three-

dimensional convective heat transfer in a rectangular parallelepiped. Convection in

a square cavity, with one sidewall heated and the other cooled, with the heated wall

assumed to have a spatial sinusoidal temperature variation about a constant mean

value, was treated numerically by Saeid and Mohamad (2005a, b, c).

An analytical and numerical study of the multiplicity of steady states that can

arise in a shallow cavity was made by Kalla et al. (1999). The linear stability of the

natural convection that arises in either a tall or shallow cavity was analyzed by

Prud’homme and Bougherara (2001) and Prud’homme et al. (2003). Inverse prob-

lems, requiring the determination of an unknown sidewall flux, were treated by

Prud’homme and Jasmin (2001, 2006) and Prud’homme and Nguyen (2001).

Various boundary conditions were examined by Basak et al. (2006) and

Zahmatkesh (2008). The effect of radiation was included by Badruddin et al.

(2006b, 2007b) (with viscous dissipation and thermal nonequilibrium). A problem

involving discrete heating was studied by Sivasankaran et al. (2011). An experi-

mental study of the dynamic behavior of a porous medium submitted to a wall heat

flux in view of the thermal energy storage by sensible heat was carried out by

Dhifaoui et al. (2007). Sakamoto and Kulacki (2007) reported measurements of
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heat transfer coefficients in steady convection on a vertical constant flux plate.

Various asymmetric boundary conditions were studied by Zueco et al. (2011a, b).

Numerical simulations of convection in a partially heated or cooled enclosure were

performed by Kalaoka and Witayangkum (2014b) and Ma et al. (2014). A further

numerical study was made by Abbas et al. (2015a, b).

7.3 Other Configurations and Effects of Property
Variation

7.3.1 Internal Partitions

The effect of horizontal and vertical internal partitions on natural convection in a

porous layer with isothermal side walls was investigated numerically by Bejan

(1983a). As an example, Fig. 7.12 shows the effect of a horizontal partition on the

flow and temperature fields in regime III. In Fig. 7.12a the partition is absent and

natural circulation is clearly in the boundary layer regime. When the horizontal

midlevel partition is complete, the heat transfer rate decreases in predictable

fashion as the height of each vertical boundary layer drops from H in Fig. 7.12a

to H/2 in Fig. 7.12c. With the horizontal partition in place, the Nusselt number

continues to scale as in Eq. (7.17); however, this time H/2 replaces H, and the

Rayleigh number is based on H/2.
The insulation effect of a complete midplane vertical partition is illustrated in

Fig. 7.13. The partition reduces the overall heat transfer rate by more than 50 % as

the Rayleigh number increases and vertical boundary layers form along all the

vertical boundaries. This change can be expected in an order-of-magnitude sense:

relative to the original system (without partitions), which has only two vertical

boundary layers as thermal resistances between Th and Tc, the partitioned system

(Nuν in Fig. 7.13) has a total of four thermal resistances. The two additional

resistances are associated with the conjugate boundary layers that form on the two

sides of the partition. The thermal insulation effect associated solely with the

conjugate boundary layers has been documented in Bejan and Anderson (1981)

and in Sect. 5.1.5 of this book. Mbaye and Bilgen (1992, 1993) have studied

numerically steady convection in a solar collector system that involves a porous

wall. Analysis of variable spaced embedded plates was conducted by Beithou

(2008). Khansila and Witayangkum (2014) performed a numerical study of

convection in a square enclosure nonuniformly heated from partitions. Saleh and

Hashim (2013a, b) presented heatlines for conjugate heat transfer in a square

enclosure with a partition.
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7.3.2 Effects of Heterogeneity and Anisotropy

The preceding results apply to situations in which the saturated porous medium can

be modeled as homogeneous. Poulikakos and Bejan (1983a) showed that the

nonuniformity of permeability and thermal diffusivity can have a dominating effect

on the overall heat transfer rate. For example, if the properties vary so much that the
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Fig. 7.12 Streamlines and isotherms in a porous layer with a horizontal diathermal partition

(Ra ¼ 400, H/L ¼ 2) (Bejan 1983a)
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porous layer can be modeled as a vertical sandwich of vertical sublayers of

different permeability and diffusivity (Fig. 7.14a), an important parameter is the

ratio of the peripheral sublayer thickness (d1) to the thermal boundary layer

thickness (δ1) based on the properties of the d1 sublayer. Note that according

to Eq. (7.14), δ1 scales as HRa
�1=2
1 , where Ra1 ¼ gβK1H(Th � Tc)/ναm,1 and the

subscript 1 represents the properties of the d1 sublayer.
If the sublayer situated next to the right wall (dN) has the same properties as the

d1 sublayer, and if δ1 < d1 and δΝ < dN, then the overall heat transfer rate can be

estimated with the methods of Sect. 7.1 provided both Nu and Ra are based on the

properties of the peripheral layers. An example of this kind is illustrated numeri-

cally in Fig. 7.15, where there are only three sublayers (N¼ 3), and the permeability
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Fig. 7.13 The reduction in overall heat transfer rate caused by a vertical diathermal partition

(Bejan 1983a)
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of the core is five times greater than the permeability of the peripheral sublayers.

The permeable core seems to “attract” the flow; this property renders the stream-

lines and isotherms almost horizontal and results in a vertically stratified core.

When the porous-medium inhomogeneity is such that the H � L system resem-

bles a sandwich of N horizontal sublayers (Fig. 7.14b), the overall Nusselt number

in the convection dominated regime is approximated by the correlation (Poulikakos

and Bejan 1983a)

Nu � 2�3=2 Ra
1=2
1

L

H

XN
i¼1

ki
k1

Kidiαm,1
K1d1αm, i

� �1=2

, ð7:51Þ

where both Nu and Ra1 are based on the properties of the bottom sublayer (d1). This
correlation was tested numerically in systems that contain two sublayers (N¼ 2). A

sample of the computed streamlines and isotherms is presented in Fig. 7.16, for a

case in which the upper half of the system is five times more permeable than the

lower half. This is why the upper half contains most of the circulation. The

discontinuity exhibited by the permeability K across the horizontal mid-plane

causes cusps in the streamlines and the isotherms. The effect of nonuniformities

in the thermal diffusivity of the porous medium in the two configurations of

Fig. 7.14 also has been documented by Poulikakos and Bejan (1983a). A boundary

-11.2
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Fig. 7.15 Streamlines and isotherms in a sandwich of three vertical porous layers heated from the

side (Ra1 ¼ 200, H/L ¼ 2, K2/K1 ¼ 5, K1 ¼ K3, N ¼ 3, and αm,1 ¼ αm,2 ¼ αm,3) (Poulikakos and

Bejan 1983a)
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layer analysis for a medium vertically layered in permeability was reported by

Masuoka (1986). The effect of variable porosity was studied by Chandrasekhara

and Radha (1988). Property changes at high pressures and temperatures were

incorporated by Masuda et al. (1992).

In all the geometries discussed so far in this chapter, the walls that surrounded

the saturated porous medium were modeled as impermeable. As a departure from

the classic problem sketched in Fig. 7.8, the heat transfer through a shallow porous

layer with both end surfaces permeable was predicted by Bejan and Tien (1978).

Their theory was validated by subsequent laboratory measurements and numerical

solutions conducted for Ra values up to 120 (Haajizadeh and Tien 1983).

Lai and Kulacki (1988c) discussed convection in a rectangular cavity with a

vertical permeable interface between two porous media of permeabilities K1, K2

and thermal conductivity k1, k2, respectively. The first medium was bounded by a

heated face at constant heat flux and the second was bounded by a cooled isothermal

face. The results of their calculations are generally in line with our expectations

based on the material discussed in Sect. 6.13, but their finding of the existence of a

second recirculating cell when K/K2 < 1, k1/k2 < 1 is very surprising. A similar

situation was treated numerically by Merrikh and Mohamad (2002) using a

Brinkman–Forchheimer model. They confirmed the dual-cell phenomenon. A cav-

ity with variable porosity and Darcy number was studied by Oliveski and

Macrczak (2008).

Ni and Beckermann (1991a) have computed the flow in an anisotropic medium

occupying a square enclosure. The horizontal permeability is denoted by Kx and the
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Fig. 7.16 Streamlines and

isotherms in a sandwich of

two horizontal porous layers

heated from the side

(Ra1 ¼ 150, H/L ¼ 0.5,
K2/K1 ¼ 5, N ¼ 2, and

αm,1 ¼ αm,2) (Poulikakos

and Bejan 1983a)
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vertical permeability by Ky, and kx, ky are the corresponding thermal conductivities.

Relative to the situation when the medium is isotropic with permeability Kx and

thermal conductivity kx, large Ky/Kx causes channeling along the vertical (isother-

mal) walls, a high flow intensity, and consequently a higher heat transfer rate Nu

across the enclosure. Similarly, small Ky/kx causes channeling along the horizontal

(adiabatic) boundaries and a smaller Nu. Large ky/kx causes a greater flow intensity

and a smaller Nu but small ky/kx has very little effect on the heat transfer pattern.

The effect of anisotropy has also been treated by Kumar and Bera (2009) (with

nonuniform heating of the bottom wall), and by Krishna et al. (2009) (with a finite

heat source at the bottom wall).

Non-Boussinesq variable-property effects were studied numerically by Peirotti

et al. (1987) for the case of water or air. They found that these had a considerable

impact on Nu. Kimura et al. (1993) presented an analysis, based on a perturbation

method for small Ra, a rectangular cavity with anisotropy of permeability and

thermal diffusivity. A numerical study for a rectangular cavity with a wall conduction

effect and for anisotropic permeability and thermal diffusivity was performed by

Chang and Lin (1994b). Degan et al. (1995) have treated analytically and numerically

a rectangular cavity, heated and cooled with constant heat flux from the sides, with

principal axes for permeability oblique to gravity and those for thermal conductivity

aligned with gravity. They found that a maximum (minimum) heat transfer rate is

obtained if the high permeability axis is parallel (perpendicular) to gravity, and that a

large thermal conductivity ratio causes a higher flow intensity but a lower heat

transfer. Degan and Vasseur (1996, 1997) and Degan et al. (1998a, b) presented a

boundary layer analysis for the high Ra version of this problem and a numerical study

on the Brinkman model. Egorov and Poleshaev (1993) made a comprehensive

theoretical (Darcy model) and experimental study for the anisotropic permeability

problem. They found good agreement between their numerical results and experi-

mental data for multilayer insulation. Vasseur and Robillard (1998) reviewed the

anisotropy aspects. The case of icy water was studied by Zheng et al. (2001). Further

theoretical work, supplemented by experiments with a Hele-Shaw cell, was reported

by Kimura and Okajima (2000) and Kimura et al. (2000, 2002).

Naylor and Oosthuizen (1996) studied a conjugate problem. Marvel and Lai

(2010a, b) examined in turn anisotropic and heterogeneous media with nonuniform

layering. Chandra and Satyamurty (2011) investigated anisotropy with the

Brinkman model. Singh et al. (Singh et al. 2011d) analyzed asymmetric heating/

cooling of the walls of a vertical channel for unsteady hydromagnetic flow.

Fahs et al. (2015) presented a numerical benchmark solution for convection in a

heterogeneous square cavity. Harfash (2014a) reported on three-dimensional sim-

ulations for an anisotropic medium with heterogeneous porosity, thermal conduc-

tion, and variable gravity effects. Umavathi (2011) studied a composite medium

(two immiscible fluids) in a vertical channel. Tasnim et al. (2013) examined a

square enclosure with internal obstructions.
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7.3.3 Cylindrical or Annular Enclosure

7.3.3.1 Horizontal Cylinder

Related to the two-dimensional convection phenomenon discussed so far in this

chapter is the heat transfer through a porous medium confined by a horizontal

cylindrical surface (Fig. 7.17a). The disk-shaped ends of the system are maintained

at different temperatures. A parametric solution for heat transfer in this geometry

was reported by Bejan and Tien (1978). The corresponding phenomenon in the

porous medium between two horizontal concentric cylinders with different tem-

peratures (Fig. 7.17b) was analyzed by Bejan and Tien (1979). A further investi-

gation was made by Siraev and Yakushin (2008). A study involving entropy

generation was reported by Mahmud and Fraser (2003a). A horizontal cylinder of

elliptical cross section was studied by Cheng (2006c, 2007b). A network numerical

analysis of magneto-micropolar convection was made by Zueco et al. (2009a, b, c).

7.3.3.2 Vertical Cylinder

Rao and Wang (1991) studied both low and high Ra convection induced by internal

heat generation in a vertical cylinder. Convection at large Ra is characterized by a

homogeneous upward flow in the central part of the cylinder and a thin downward

boundary layer at the cooled wall, with the effect of curvature of the boundary being

negligible. This means that after introduction of a change of variable the results can

be applied to enclosures with other than circular boundaries. Chang and Hsiao

(1993) studied numerically convection in a vertical cylinder filled with an aniso-

tropic medium with uniform high temperature on all boundaries except the cooler

bottom. Lyubimov (1993) summarized earlier Soviet work on the bifurcation

analysis of two-dimensional convection in a cylinder of arbitrary shape, with the

temperature specified on the boundary. A vertical tube with suction and nonuniform

wall temperature was studied by Makinde and Tay (1998). The onset of convection
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Fig. 7.17 Confined porous medium with different end temperature: horizontal cylindrical enclo-

sure (a) and horizontal cylindrical enclosure with annular cross section (b)
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in a vertical cylinder with a conducting wall was analyzed by Haugen and Tyvand

(2003). Transient convection in a vertical cylinder with suddenly imposed or time-

periodic wall heat flux was studied numerically by Slimi et al. (1998) and Amara

et al. (2000). Transient convection in a vertical channel with the effect of radiation

was studied numerically by Slimi et al. (2004). Barletta and Storesletten (2015)

studied the onset of convection in a vertical cylinder with a permeable and

conducting boundary. Further studies for a vertical cylinder were conducted by

Ameziani et al. (2008), Degan et al. (2007b, 2008) (with anisotropy), Tada and

Ichimiya (2007a), Zueco et al. (2009b) (network numerical analysis, magneto-

micropolar fluid), and Arpino et al. (2013) (porous and partly porous domains).

7.3.3.3 Horizontal Annulus

A basic configuration in the field of thermal insulation engineering is the horizontal

annular space filled with fibrous or granular material (Fig. 7.18a). In this configu-

ration the heat transfer occurs between the two concentric cylindrical surfaces of

radii ri and ro, unlike in Fig. 7.17b where the cylindrical surfaces were insulated.

Experimental measurements and numerical solutions for the overall heat transfer

rate in the geometry of Fig. 7.18a have been reported by Caltagirone (1976b, 1978),

Burns and Tien (1979), and Facas and Farouk (1983). The data of Caltagirone

(1976b) in the range 1.19 
 ro/ri 
 4 were correlated by Bejan (1987) on the basis

of the scale-analysis procedure described in Bejan (1984, p. 194):

Nu ¼ q0

q0c
ffi 0:44Ra1=2ri

ln ro=rið Þ
1þ 0:916 r i=roð Þ1=2

: ð7:52Þ

In the definition of the overall Nusselt number, the denominator is the conduc-

tion heat transfer rate q0c ¼ 4πkm Th � Tcð Þ=ln ro=rið Þ. The Rayleigh number is

based on the inner radius, Rari ¼ gβKri Th � Tcð Þ=ναm. The correlation (7.52) is

a

g
g

b

Tc
Tc

Th

Th H

ro ro

ri
ri

Fig. 7.18 Radial heat

transfer:horizontalcylindrical

annulusorsphericalannulus

(a)andverticalcylindrical
annulus(b)
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valid in the convection dominated regime, i.e., when Nu� 1. Further studies

were made by Brailovskaya et al. (1978, 1980), Vasseur et al. (1984a) (nonlinear

density effects), Sen and Torrance (1987), and Muralidhar and Kulaki (1988)

(Brinkman–Forchheimer model).

Transitions in the flow field in a horizontal annulus have been analyzed using a

Galerkin method by Rao et al. (1987, 1988a, b). As Ra is increased two-dimensional

modes with one, two, and three cells on each side of the annulus appear in

succession and the average Nusselt number increases with the number of cells.

The extra cells appear near the top of the annulus. Three-dimensional modes also

are possible with secondary flows in which the streamlines form a coaxial double

helix, and these produce enhancement of the overall heat transfer resulting from a

higher maximum local heat transfer rate in the upper part of the annulus.

Himasekhar and Bau (1988b) made a detailed bifurcation analysis for radii ratio

values, 2, 21/2, 21/4, and 21/8. Barbosa Mota and Saatdjian (1994, 1995a, b) reported

accurate numerical solutions for the Darcy model. For a radius ratio above 1.7 and

for Rayleigh numbers above a critical value, they observed a closed hysteresis

curve, indicating two possible solutions (two- or four-cell pattern) depending on

initial conditions. For a radius ratio below 1.7 and as Ra is increased, the number of

cells in the annulus increases without bifurcation and no hysteresis is observed. For

very small radius ratios, steady-state regimes containing 2, 4, 6, and 8 cells are

obtained in succession. For a radius ratio of 2, they found good agreement with

experiment.

Charrier-Mojtabi and Mojtabi (1994, 1995, 1998) and Charrier-Mojtabi et al.

(1998) have numerically investigated both two- and three-dimensional flows for the

Darcy model. They found that three-dimensional spiral flows are described in the

vicinity of the transition from two-dimensional unicellular flows. They determined

numerically the bifurcation points between two-dimensional unicellular flows and

either two-dimensional multicellular flows or three-dimensional flows. Linear and

nonlinear stability analyses were also performed by Charrier-Mojtabi and Mojtabi

(1998). These show that subcritical instability becomes increasingly likely as the

radius ratio increases away from the value unity. For the cases of either isothermal

or convective boundary conditions, Rajamani et al. (1995) studied the effects of

both aspect ratio and radius ratio. They found that Nu always increases with radius

ratio and Ra and it exhibits a maximum when the aspect ratio is about unity, the

maximum shifting toward lesser aspect ratios as Ra increases.

For the case of the Darcymodel and small dimensionless gap width ε¼ (ri� ro)/ri,
Mojtabi and Charrier-Mojtabi (1992) obtained an approximate analytical solution

leading to the formula

Nu ¼ 1þ 17

40, 320
Ra2 ε2 � ε3
� �

, ð7:53Þ

where

Ra ¼ gβK Ti � Toð Þ ri � roð Þ=ναm: ð7:54Þ
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A development up to order ε15 was given by Charrier-Mojtabi and Mojtabi

(1998). Convection in a horizontal annulus with vertical eccentricity has been

analyzed by Bau (1984a, c) for small Ra and by Himasekhar and Bau (1986) for

large Ra for the case of steady two-dimensional flow. At low Ra there is an

optimum eccentricity that minimizes the heat transfer, but generally the heat

transfer decreases with eccentricity, independently of whether the heated inner

cylinder is centered below or above the axis of the cooled outer cylinder. Highly

accurate computations for this problem were reported by Barbosa Mota et al.

(1994). A transient convection problem in an elliptical horizontal annulus was

reported by Chen et al. (1990). Oscillatory behavior was reported by Tanigawa

and Masuoka (2001). A further numerical study of convection in such annuli was

reported by Barbosa Mota et al. (2000) and Sekr and Berbish (2012).

Conjugate convection in a horizontal annulus was studied by Kimura and Pop

(1991, 1992a). In their first paper they had isothermal boundaries but with a jump in

heat flux at the fluid–solid interface, while in their second paper they used a

Forchheimer model to study the case of the inner surface maintained at one

temperature and the outer at a lower temperature.

Effects of rotation about the axis of a horizontal annulus were studied by

Robillard and Torrance (1990) and Aboubi et al. (1995a). The former treated

weak rotation, which generates a circulation relative to the solid matrix and thereby

reduces the overall heat transfer. The latter examined the effect of a centrifugal

force field for the case when the outer boundary is heated by a constant heat flux

while the inner boundary is insulated. They performed a linear stability analysis and

finite amplitude calculations which indicated the existence of multiple solutions

differing by the number of cells involved.

Pan and Lai (1995, 1996) studied convection in a horizontal annulus with two

sub-annuli for different permeabilities. They corrected (by satisfying the interface

conditions more closely) the work by Muralidhar et al. (1986), thereby producing

better agreement with experimental data. They noted that using a harmonic average

permeability gives a better approximation to Nu than does an arithmetic average.

Convection in a horizontal annulus with azimuthal partitions was studied numeri-

cally by Nishimura et al. (1996). Aboubi et al. (1995b) studied numerically con-

vection in a horizontal annulus filled with an anisotropic medium, with principal

axes of permeability inclined to the vertical. Three-dimensional anisotropy was

incorporated into the model studied by Bessonov and Brailovskaya (2001). Con-

vective flow driven by a constant vertical temperature gradient in a horizontal

annulus was analyzed by Scurtu et al. (2001). The effect of gravitational modulation

was investigated by Belabid and Allali (2017).

The case of a medium of variable permeability was treated by Aldoss (2009).

A partly filled horizontal annulus was studied by Khanafer et al. (2008a, b), Kiwan

and Zeitoun (2008) (fins), Saada et al. (2009, 2010), and Nasir et al. (2012) (time-

dependent injection). Gas convection was examined by Ramazanov (2010).

Unsteady convection was considered by Kumari and Nath (2008). Multicellular

flows were studied by Belabid and Cheddadi (2013, 2014). Both circular and square

cylinders were studied by Moukalled et al. (2016).
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7.3.3.4 Vertical Annulus

The heat transfer through an annular porous insulation oriented vertically

(Fig. 7.18b) was investigated numerically by Havstad and Burns (1982), Takata

et al. (1982b, 1983), Hickox and Gartling (1985), Prasad and Kulacki (1984c,

1985), Hasnaoui et al. (1994), and Dharma Rao et al. (1996a, b) (non-Darcy

effects), and experimentally by Prasad et al. (1985). Havstad and Burns (1982)

correlated their results with the five-constant empirical formula

Nu ffi 1þ a1
ri
ro

1� ri
ro

� �� 	a2
Raa4ro

H

ro

� �a5

exp �a3
ri
ro

� �
, ð7:55Þ

in which

a1 ¼ 0:2196, a4 ¼ 0:9296,

a2 ¼ 1:334, a5 ¼ 1:168

a3 ¼ 3:702, Raro ¼ gβKro Th � Tcð Þ=vαm:
ð7:56Þ

The overall Nusselt number is defined as in Eq. (7.52), Nu ¼ q/qc, where
qc ¼ 2πkmH(Th � Tc)/ln(ro/ri). The above correlation fits the numerical data in

the range 1 ¼ H/ro ¼ 20, 0 ¼ Raro < 150, 0 < ri/ro ¼ 1, and 1 < Nu < 3.

For the convection-dominated regime (high Rayleigh numbers and Nu� 1), the

scale analysis of the boundary layers that form along the two cylindrical surfaces of

Fig. 7.18b recommends the following correlation (Bejan 1987):

Nu ¼ c1
ln ro=rið Þ
c2 þ ro=ri

ro
H
Ra1=2: ð7:57Þ

The Nusselt number is defined as in Eq. (7.52) and the Rayleigh number is based

on height, Ra¼ gβKH(Th – Tc)/ναm. Experimental and numerical data are needed in

the convection regime (Nu� 1) in order to determine the constants c1 and c2.
Havstad and Burns’ (1982) data cannot be used because they belong to the inter-

mediate regime 1< Nu< 3 in which the effect of direct conduction from Th to Tc is
not negligible.

The experimental and numerical studies of Reda (1986a, b) treated a two-layered

porous medium in a vertical annulus, with constant heat flux on the inner cylinder

and constant temperature on the outer. Quasisteady convection in a vertical annu-

lus, with the inner wall heated by a constant heat flux and the other walls adiabatic,

was treated analytically and numerically by Hasnaoui et al. (1995). An open-ended

annulus was studied by Al-Nimr (1995a, b) (magnetic field). Also for a vertical

annulus, Marpu (1995), Dharma Rao et al. (1996a, b), and Satya Sai et al. (1997a)

reported on numerical studies on the Brinkman–Forchheimer model. An asymptotic

analysis for a shallow vertical annulus was presented by Pop et al. (1998b) and

Leppinen et al. (2004). Passive heat transfer augmentation in an annulus was
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studied by Iyer and Vafai (1999). The effect of local thermal nonequilibrium in

convection in a vertical annulus was studied by Deibler and Bortolozzi (1998) and

Bortolozzi and Deibler (2001). Numerical studies of transient convection in a

vertical annulus were reported by Shivakumara et al. (2002) and Jha et al. (2012).

Convection in a vertical annulus with an isothermal outer boundary and with a

mixed inner boundary condition was treated by Jha (2005). Conjugate convection

from a vertical cylindrical fin in a cylindrical enclosure was studied numerically by

Naidu et al. (2004b). Convection in an elliptical vertical annulus was studied

numerically by Saatdjian et al. (1999). The Brinkman model was employed by

Rossi di Schio et al. (2011). Discrete heating was investigated by Sankar et al.

(2011b). An anisotropic medium was studied by Thansekhar et al. (2009).

Badruddin et al. (2006a) studied the effect of thermal nonequilibrium. The case

of a power-law variation of temperature on the inner wall was studied by Badruddin

et al. (2006e). The effect of viscous dissipation and radiation was studied by

Badruddin et al. (2007a). The effect of radiation was also treated by Patil et al.

(2013). The use of porous inserts in a vertical annulus was treated by Kiwan and

Alzahrany (2008). Heat generation in a porous annulus was studied by Reddy and

Narasimhan (2010). The case of an annulus between square cylinders was treated

by Badruddin et al. (2012b, c). Peristaltic flow was investigated by Vajravelu et al.

(2007). Discrete heating was investigated by Sankar et al. (2013, 2014). The effect

of rotation, with a regular or viscoelastic fluid, was studied by Kang et al. (2013a,

b). Bhowmik et al. (2015) studied the stability of nonisothermal Poiseuille flow. An

enclosure with heat generation was examined by Taherzadeh and Saidi (2015).

Convection of variable viscosity fluids inside an eccentric annulus was treated by

Wu et al. (2016d). A cylinder with variable wall temperature and with viscous

dissipation considered was studied by Nagaradhika and Subbha Rao (2016).

7.3.3.5 Other Annuli

Convection in an inclined annulus was studied numerically by Takata et al. (1981)

and experimentally by Takata et al. (1984). Convection in a spherical annulus, with

and without property variation, was studied by Sangita et al. (2013, 2014, 2016). An

elliptical horizontal annulus with eccentricity was treated by Boulechfar et al.

(2014). An annular sector duct was investigated by Iqbal and Afaq (2015).

7.3.4 Spherical Enclosure

Another geometry that is relevant to the design of thermal insulations is the porous

medium shaped as a spherical annulus (Fig. 7.18a). Heat is transferred radially

between the two spherical walls that hold the porous material. Numerical heat

transfer results for discrete values of the Rayleigh number and the geometric ratio

ri/ro have been reported graphically by Burns and Tien (1979). From that set, the
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data that correspond to the convection-dominated regime were correlated based on

scale analysis by Bejan (1987),

Nu ¼ q

qc
ffi 0:756Ra1=2r i

1� ri=ro

1þ 1:422 r i=roð Þ3=2
: ð7:58Þ

The definitions used in Eq. (7.58) are qc ¼ 4πkm Th � Tcð Þ= r�1
i � r�1

o

� �
and

Rari ¼ gβKr i Th � Tcð Þvαm. The correlation (7.56) agrees within 2 % with Burns

and Tien’s (1979) data for the convection regime represented by Nu≳ 1.5.

It is interesting to note that the scaling-correct correlation (7.58) can be restated

in terms of the Rayleigh number based on insulation thickness,

Raro�ri ¼
gβK ro � rið Þ Th � Tcð Þ

vαm
: ð7:59Þ

The resulting expression that replaces Eq. (7.58) is

Nu ffi 0:756 Ra1=2ro�ri

ri=ro � ri=roð Þ2
h i1=2
1þ 1:422 ri=roð Þ3=2

: ð7:60Þ

This form can be differentiated to show that when Raro�ri is fixed, the overall

heat transfer rate (Nu) reaches a maximum value when ri/ro ¼ 0.301. The existence

of such a maximum was noted empirically by Burns and Tien (1979). An explana-

tion for this maximum is provided by the boundary layer scale analysis on which the

correlation (7.58) is based (Bejan 1987). This maximum is the spherical-annulus

analog of the maximum found in Fig. 7.10 for the heat transfer through a

two-dimensional layer heated from the side. Future studies may show that similar

Nu maxima occur in the cylindrical-annulus configurations of both Fig. 7.18a, b,

when the Rayleigh number based on porous layer thickness Raro�ri is constant.

Convection in spherical annular sectors defined by an adiabatic radial wall was

studied numerically by Baytas et al. (2002). Prakash et al. (2010, 2011) performed

an analysis of convection, diffusion, and reaction inside a spherical porous pellet in

the presence of oscillatory flow.

Tyvand (2002, Sect. 4.7.1) studied a thin spherical shell with closed walls at a

given temperature. He found that for nonzero longitudinal variation the streamlines

are compressed. This has a stabilizing effect and it gives a higher critical Rayleigh

number for the spherical shell than for a cylindrical shell with horizontal axis for a

given choice of shell thickness.

7.3.5 Porous Medium Saturated with Water Near 4 �C

One class of materials that departs from the linear-density model used in the

Boussinesq approximation (7.5) is the porous media saturated with cold water.
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The density of water at atmospheric pressure exhibits a maximum near 4 �C. The
natural convection in a cold water-saturated medium confined by the rectangular

enclosure of Fig. 7.1 was described by Poulikakos (1984). As the equation of state

in the Boussinesq approximation he used

ρm � ρ ¼ γρm T � Tmð Þ2 ð7:61Þ

with Tm ¼ 3.98 �C and γ ffi 8 � 10�6 K�2 for pure water at atmospheric pressure.

This parabolic density model is valid at temperatures ranging from 0 to 10 �C.
Bejan (1987) showed that in the convection-dominated regime the Nusselt number

correlation must have the form

Nu ¼ c3
L=H

Ra
�1=2
γh þ c4Ra

�1=2
γc

, ð7:62Þ

where the two Rayleigh numbers account for how Th and Tc are positioned relative

to the temperature of the density maximum Tm:

Raγh ¼ gγKH Th � Tmð Þ2
ναm

, Raγc ¼ gγKH Tm � Tcð Þ2
ναm

: ð7:63Þ

The overall Nusselt number Nu is referenced to the case of pure conduction,

Nu ¼ q0=q0c.
Poulikakos (1984) reported numerical Nu results in tabular form for the

convection-dominated regime, primarily for the case Tc ¼ 0 �C, Th ¼ 7.96 �C.
By relying on these data, Bejan (1987) showed that when Tc and Th are

positioned symmetrically around Tm (i.e., when Raγh ¼ Raγc) the correlation

(7.62) reduces to

Nu ffi 0:26
L

H
Ra

1=2
γh : ð7:64Þ

In other words, this set of data indicates that in this case the two constants that

appear in the general correlation (7.60) must satisfy the relationship c3 ffi 0.26

(1 + c4) in which, by symmetry, c4 ¼ 1. More experimental data for the high

Rayleigh number range with asymmetric heating (Raγh 6¼ Raγc) are needed in order

to determine c3 uniquely. A numerical study of convection in a rectangular cavity

saturated by icy water, with various boundary thermal boundary conditions on the

side walls, was reported by Benhadji et al. (2003). The numerical study by Baytas

et al. (2004) treated the case of a square cavity and a more complicated density state

equation. The case where one vertical wall is heated differentially by an isothermal

discrete heater and the other vertical wall is cooled to a constant temperature, with

adiabatic horizontal walls, was studied numerically by Saeid and Pop (2004c). The

case of variable side-wall temperatures was treated by Kandaswamy and
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Eswaramurthi (2008). The effect of thermal nonequilibrium was studied by Saeid

(2007c). Experiments involving flow visualization were reported by Chelliah and

Viskanta (1987). Leppinen and Rees (2014) investigated 2D convection in a

shallow cavity, with the one wall held at a temperature less than that which gives

the density maximum, and the other wall held at a temperature greater than that

which gives the density maximum, using an asymptotic analysis in terms of the

small aspect ratio.

7.3.6 Triangular Enclosure

In a saturated porous medium confined by a wedge-shaped impermeable enclosure

cooled along the sloped wall (Fig. 7.19) the convective flow consists of a single cell.

Like all the flows in porous media heated or cooled from the side, this particular

flow exists even in the limit Ra ! 0. The flow intensifies as the Rayleigh number

based on height (Ra) increases. The bottom wall is heated, while the vertical wall is

insulated.

The numerical solutions reported by Bejan and Poulikakos (1982) and

Poulikakos and Bejan (1983b) show the development of a Bénard-type instability

at sufficiently high Rayleigh numbers. This instability is due to the heated bottom

wall. In an enclosure with the aspect ratio H/L ¼ 0.2, the instability occurs in the

vicinity of Ra � 620. This critical Rayleigh number increases as H/L increases.

Convection in trapezoidal enclosures was simulated using parallel computation by

Rathish Kumar and Kumar (2004). An overview of natural and forced convection in

an attic space was made by Wahlgren (2007).

Other triangular enclosures were studied by Basak et al. (2008a, b, c, 2010a, b, c, d)

(isosceles and right-angled, heatline approach), Oztop et al. (2008, 2009) (wall

g

L

L0
0

102

2

1

+

+ 3.37

Ψ = 16.65

H

H

Tc
Tb

Fig. 7.19 The flow pattern in an attic-shaped porous medium cooled the inclined wall (H/L¼ 0.5,
Ra ¼ 1000) (Poulikakos and Bejan 1983b)

7.3 Other Configurations and Effects of Property Variation 399



conduction, icy water), Varol (2011) (centered conducting body), Varol and Oztop

(2009) (embedded thin plate), Varol et al. (2006, 2008b, c, d, h, 2009a, b, c, d, e, f)

(inclined enclosure, partitioned enclosure, conjugate problem, square divided diago-

nally), Wang et al. (2010a, b) (conducting bottom wall), Zeng et al. (2013), Bhardwaj

and Dalal (2013a, b, 2015), Siri and Ibrahim (2014), and Mortazavi and Hassanipour

(2014) (effect of apex angle, porosity, permeability). A triangular enclosure with a fin

attached was treated byVarol et al. (2007a, b). Anandalakshmi et al. (2011) and Basak

et al. (2012a) studied heatline-based management and entropy generation within a

right-angled triangular enclosure with various thermal conditions on the walls.

A right-angled enclosure, with a convex or concave hypotenuse, was studied by

Basak et al. (2013a). An isosceles triangular enclosure with magnetic field and

nonuniformly heated side walls was investigated by Javed et al. (2015). Entropy

generation during convection within entrapped porous triangular cavities during hot

pf cold fluid disposal was analyzed by Rathnam et al. (2016). The role of various

concave/convex walls exposed to solar heating or entropy generation during natural

convection within porous right angled triangular enclosures was studied by Biswal

and Basak (2016).

7.3.7 Other Enclosures

For the case of very small Rayleigh number, Philip (1982a, b, 1988) has obtained

exact solutions for the flow pattern for a variety of two-dimensional (rectangular,

elliptical, triangular, etc.) and axisymmetric (cylindrical, toroidal) cavities, for the

case of uniform horizontal temperature gradient (which is radial for the axisym-

metric situation). These were obtained under the assumption of negligible convec-

tive heat transfer and so are of limited use on their own. They may be useful as the

first stage in a perturbation analysis. Campos et al. (1990) studied numerically on

the Brinkman model convection in a vertical annular enclosure partly filled with a

vertical annular volume occupied by a porous medium. Asako et al. (1992) and

Yamaguchi et al. (1993) reported numerical solutions with a Darcy model for three-

dimensional convection in a vertical layer with a hexagonal honeycomb core that is

either conducting or adiabatic. Chen and Wang (1993a, b) performed a convection

instability analysis for a porous enclosure with either a horizontal or vertical baffle

projecting part way into the enclosure. Lai (1993a,b, 1994) has performed calcula-

tions for the effects of inserting baffles of various sorts (radial and circumferential

in horizontal annuli or pipes). Shin et al. (1994), with the aid of a transformation to

bicylindrical coordinates, studied numerically two-dimensional convection in a seg-

ment of a circle, with the boundary inclined to the vertical. A square enclosure with

two media divided by a vertical wall was examined by Jafari et al. (2010).

A rectangular enclosure with a baffle along a diagonal was studied by Li et al.

(2015a, b).

Convection in a truncated circular sector was studied by Pop and Lai (1990).

Convection in a cavity with a dome (circular, elliptical, parabolic, etc.) on top was
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treated numerically by Das and Morsi (2003, 2005). Convection in a hemispherical

medium with a flat bottom was studied by Ganapathy (2014). Conjugate convection

heat transfer from a vertical cylindrical fin in a cylindrical enclosure was treated

numerically by Naidu et al. (2004a). A differentially heated cavity with a thin

porous fin attached to the hot wall was studied by Khanafer et al. (2015). A

numerical solution procedure to study convection in a two-dimensional enclosure

of arbitrary geometry was presented by Singh et al. (2000). Convection in an

inclined trapezoidal enclosure with cylindrical top and bottom surfaces was studied

numerically by Baytas and Pop (2001). Further work on trapezoidal enclosures was

done by Basak et al. (2009a) (inclined enclosures), Basak et al. (2009b,c, 2010a)

(nonuniform bottom heating, various inclinations), Maimun et al. (2010b), Saleh

et al. (2011a) (inclined magnetic field), Varol (2010) (divided cavities), Varol et al.

(2008f, 2010a) (inclined enclosure, maximum density effects), and Al-Azmi

(2011). Numerical investigations of convection in insulating layers in attics were

carried out by Shankar and Hagentoft (2000). Convection in embankments built in

permafrost has been modeled by Goering and Kumar (1996), Goering (2003), Jiang

et al. (2004d), Sun et al. (2005a,b, 2007, 2009), Lai et al. (2006a,b) and Zhang et al.

(2005b, 2006a,b, 2007b, 2009b), Yang et al. (2012d), and Bian et al. (2012) (forced

convection characteristics).

Lebeau and Konrad (2016) studied the effect of non-Darcy flow and thermal

radiation on embankment modelling. Convection in a porous toroidal thermo-

syphon has been studied numerically by Jiang and Shoji (2002). Fluid flow and

heat transfer in partly divided cavities was studied numerically by Jue (2000).

Convection in a reentrant recto-polygonal cavity was studied numerically and

experimentally by Phanikumar and Mahajan (2002). Radiative effects on an

MHD flow between infinite parallel plates with time-dependent suction were

studied analytically by Alagoa et al. (1999). Natural convection in a cavity with

wavy vertical walls was studied by Misirlioglu et al. (2005) and Srinivas and

Muthuraj (2010b) (MHD flow with slip effects and temperature-dependent heat

source). Convection driven by differential heating of the upper surface of a rectan-

gular cavity was studied numerically and analytically by Daniels and Punpocha

(2004, 2005). The case of a square cavity where one vertical wall is heated

differentially by an isothermal discrete heater and the other vertical wall is cooled

to a constant temperature, with adiabatic horizontal walls, was studied numerically

by Saeid and Pop (2005b). A two temperature model was applied by Sanchez et al.

(2005b) to a problem with symmetrically connected fluid and porous layers. A

square enclosure with nonuniformly heated walls was investigated by Basak et al.

(2007). A rectangular enclosure was studied by Varol et al. (2007c, 2008g) (square

body). A non-Newtonian power-law fluid was treated numerically by Hadim

(2006). Convection in a horizontal elliptical annulus was studied numerically and

experimentally by Sakr and Berbish (2012). Optimal convection in the space

between a vertical polygonal duct and a heated core was examined by Wang

(2012). Conjugate convection in an open-ended square cavity with conducting

side walls was studied by Saleh and Hashim (2013a). Conjugate convection in an

enclosure sandwiched by finite walls under the influence of nonuniform heat
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generation and radiation was investigated by Alhashash et al. (2013a). Convection

in a partially open square cavity was examined by Saleh et al. (2014). A square

enclosure with a cylinder covered by a porous layer was studied by Hu et al. (2016).

A heat generating truncated conical porous bed placed in a fluid-filled enclosure

was investigated numerically by Chakravarty et al. (2016a). A conical cylinder with

partial heating was examined by Khan et al. (2016).The effect of viscous dissipation

in a vertical annulus was studied by Ameerahamad and Athani (2016). Transient

convection in a partly porous vertical annulus was investigated by Arpino et al.

(2016).

Enclosures with wavy walls were studied by Rathish Kumar and Shalini (2003a,

2004a) (thermal stratification), Misirlioglu et al. (2006a,b) (heat generation,

inclined enclosure), Sultana and Hyder (2007), Chen et al. (2008c), Zeng et al.

(2008), Varol and Oztop (2008) (inclined solar collectors), Khanafer et al. (2009),

Tiwari and Singh (2010), Mansour et al. (2011b) (with thermal nonequilibrium),

Rathish Kumar and Krishna Murthy (2013b), Prathap Kumar et al. (2014) (visco-

elastic fluid, double-passage channel), Sojoudi et al. (2014) (unsteady flow), Singh

et al. (2014a, b) (one wavy wall, magnetic field), Prathap Kumar and Umavathi

(2014) (open-ended channel, conducting thin baffle), Prathap Kumar et al. (2014)

(thin baffle, viscoelastic fluid), Hussein et al. (2015) (asymmetric convective

boundary conditions), Bhardwaj et al. (2015) (triangular enclosure with a wavy

wall, nonuniform heating, entropy generation) and Biswal and Basak (2016)

(entropy generation)

The case of a rhombic annulus was treated by Moukalled and Darwich (2010). A

study of local thermal nonequilibrium in porous heat sinks using fin theory was

made by Jeng et al. (2006). An enclosure problem where the left wall is at constant

flux, the right wall is adiabatic, and there is a heat sink on the top wall was studied

by Villemure et al. (2008). A conical cylinder was examined by Ahmed et al.

(2009). A parallelogrammic enclosure was studied by Han and Hyun (2008). A

vertical layer with two thermal sources was studied by Saeid (2006b). Support

vector mechanics was applied to a cavity with discrete sources by Varol et al.

(2008a). Open-ended (or partly capped) cavities were studied by Weidman and

Medina (2008) and Wang (2009). Kaluri and Basak (2011b) studied energy gener-

ation in discretely heated square cylinders. Entropy generation in rhombic enclo-

sures was studied by Anandalakshmi and Basak (2012a, b, 2013a, c). A rhombic

enclosure with either an isothermal hot side or bottom wall was also studied by

Anandalakshmi and Basak (2012a, b, 2013b) (nonisothermal hot bottom wall or

isothermal hot side). General trapezoidal cavities were studied by Mamun et al.

(2010) (magnetic field), Basak et al. (2013b) (entropy generation, nonisothermal

heating), Ramakrishna et al. (2013a, 2014) (heatlines, entropy generation), and

Biswal et al. (2016a) (entropy production). A cavity with vertical side walls, a flat

bottom, and a sloping top was studied by Tiwari et al. (2012). Khanafer (2013)

treated a box with one wall concave and of variable elasticity. Chowdhury et al.

(2016) studied the effect of a magnetic field on convection produced by a heated

square body placed in a porous equilateral triangular enclosure. Das et al. (2016)

investigated the role of quadratic drag in the visualization of convection in
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enclosures of various shapes. Studies of natural convection within enclosures of

various shapes have been reviewed by Das et al. (2017).

7.3.7.1 Loops

Convection in a two-dimensional porous loop was studied by Robillard et al.

(1986). Convection in a thin circular porous ring was investigated by

Magomedbekov and Ramazanov (1994). Linear stability analysis for fluid in a

horizontal annular cavity was performed by Magomedbekov and Ramazanov

(1996). Convection in a thin porous elliptical ring, located in an impermeable

rock mass and subject to an inclined geothermal gradient, was treated by

Ramazanov (2000). The effect of asymmetry on steady convection in a vertical

annulus was studied. Some general features of convection in fracture loops were

discussed by Nield (2015a, b).

7.3.8 Internal Heating

An internally heated vertical channel was examined by Arora and Agarwal (1981).

An internally heated horizontal annulus was studied by Vasseur et al. (1984b).

Steady natural convection in a two-dimensional cavity with uniform heat genera-

tion was simulated numerically by Du and Bilgen (1992) for the case of adiabatic

horizontal walls and isothermal vertical walls at different temperatures. A further

numerical treatment was reported by Das and Sahoo (1999). Steady convection in a

rectangular enclosure with the top and one sidewall cold and the other

nonisothermal and with the bottom heated at constant temperature was studied

numerically by Hossain and Wilson (2002). Convection in a two-dimensional

vertical cylinder with either (1) insulated top and bottom and cooled lateral walls

or (2) all walls isothermally cooled was given a numerical treatment by Jiménez-

Islas et al. (1999). A transient convection problem with sidewall heating was

studied by Jue (2003). A dual reciprocity boundary element method was applied

to a differentially and internally heated rectangular enclosure by Sarler (2000) and

Sarler et al. (2000a,b, 2004a,b). A numerical and experimental study of three-

dimensional convection in an anisotropic medium in a rectangular cavity was

carried out by Suresh et al. (2005). An internally heated box with viscous dissipa-

tion was studied by Costa (2006b). Internal heat generation in a tall cavity was

studied by Ansari (2007), Jha and Ajibade (2009) (periodic heat input), and Jha and

Musa (2012) (unsteady flow). Barletta et al. (2008b) treated the effect of viscous

heating in a vertical circular duct. Natural convection in metal foam strips was

studied by Hetsroni et al. (2008). Convection in a partly heat generating rod bundle

inside an enclosure was treated by Krishna et al. (2010). An internally heated

triangular enclosure was studied by Saha and Gu (2011). The effect of a magnetic

field was introduced by Revnic et al. (2011). Ejlali and Hooman (2011) studied the
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cooling of a coal stockpile. A conjugate problem for a box with a conductive wall

and temperature-dependent internal heating rate was examined by Saleh and

Hashim (2012a). The effect of a magnetic field was added by Saleh and Hashim

(2012b). The stability of flow in a vertical channel with a nonuniform distribution of

heat sources and with temperature-dependent viscosity and thermal conductivity

was studied by Saravanan and Meenasaranya (2014).

7.3.9 Bidisperse Porous Media, Other Situations

Convection in a bidisperse porous medium enclosure was studied by Narasimhan

and Reddy (2010, 2011a, b), Revnic et al. (2009a), and Jamalud-Din et al. (2010)

(using a network model and numerical simulations inside an enclosure with dis-

tributed solid blocks). Rashidi et al. (2016) studied magnetic effects on flow over a

pair of cylinders each wrapped with a porous layer. A square cavity filled with a

tridisperse porous medium was investigated by Ghalambaz et al. (2016a).

Khansila and Witayangkum (2012) studied numerically convection in an enclo-

sure with a sinusoidal temperature on one side, with the lower part heated and the

upper part cooled. Maryshev et al. investigated convection in an enclosure

subjected to horizontal seepage and gravity modulation. Pippal and Bera (2013)

considered convection due to lateral convection in a square or slender enclosure

with local thermal nonequilibrium. Wu and Zhou (2016) and Wu et al. (2016e)

studied the local thermal nonequilibrium effect with spatial sinusoidal heating.

Ramakrishna et al. (2013b) performed a heatlines analysis of convection in a square

enclosure with various aspect ratios and thermal boundary conditions. Jiao et al.

(2016) studied Marangoni convection of a power-law fluid with heat generation,

using a new heat transfer constitutive equation. Sivaraj and Sheremet (2016)

studied convection coupled with thermal radiation in a square porous cavity

containing a horizontal or vertical heated plate. Sreenath et al. (2015) studied

MHD convection flow of a couple stress fluid through a vertical slab. Malomar

et al. (2016) examined a square cavity with both side walls thermally modulated.

Sivaraj and Sheremet (2017) investigated MHD convection in an inclined square

cavity with a centrally placed heat conducting block.

7.4 Penetrative Convection

In this section we turn our attention to buoyancy-driven flows that only partially

penetrate the enclosed porous medium. One basic configuration in which this

flow can occur is shown in Fig. 7.20a. The saturated porous medium is a

two-dimensional layer of height H and length L, confined by a rectangular bound-

ary. Three of the walls are impermeable and at the same temperature (for example,

Tc), while one of the side walls is permeable and in communication with a fluid
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reservoir of a different temperature, Th. In Fig. 7.20b the same layer is oriented

vertically. In both cases, natural convection penetrates the porous medium over a

length dictated by the Rayleigh number alone and not by the geometric ratio of the

layer, H/L (Bejan 1980a, 1981). The remainder of the porous layer contains

essentially stagnant and isothermal fluid.

7.4.1 Lateral Penetration

First consider the horizontal layer of Fig. 7.20a, in which the lateral penetration

distance Lx is unknown. According to Eqs. (7.1), (7.4), and (7.5), the order-of-

magnitude balances for mass, energy, and momentum are

mass :
u

Lx
� v

H
, ð7:65Þ

energy : u
ΔT
Lx

� αm
ΔT
H2

, ð7:66Þ

momentum :
u

H
� Kgβ

v

ΔT
Lx

: ð7:67Þ

In writing balances we have assumed that the penetration length Lx is greater than
the vertical dimension H. The temperature difference ΔT is shorthand for Th – Tc.

Equations (7.65)–(7.67) can be solved easily for the unknown scales u, v, and Lx.
For example, the penetration length is (Bejan 1981)

Lx � HRa1=2, ð7:68Þ

(a) (b)

g

Permeable
end

Permeable end

g

Tc

Lx

Ly

Ly

Tc

Tc
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Th
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ro

Fig. 7.20 Lateral penetration (a) and vertical penetration (b) of natural convection into an

isothermal porous space with one and permeable
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in which Ra is the Darcy modified Rayleigh number based on H and ΔT. The
corresponding heat transfer rate q0 (W/m) between the lateral fluid reservoir Th and
the Tc boundary of the porous medium scales as

q0 � ρcPð ÞfuHΔT � kmΔTRa
1=2: ð7:69Þ

The heat transfer rate q0 is expressed per unit length in the direction normal to the

plane of Fig. 7.20a. All these results demonstrate that the actual length of the porous

layer (L) has no effect on the flow and the heat transfer rate: Lx and q
0 are set by the

Rayleigh number. The far region of length L � Lx is isothermal and filled with

stagnant fluid.

The actual flow and temperature fields associated with the lateral penetration

phenomenon have been determined analytically as a similarity solution (Bejan

1981). Figure 7.21 shows the dimensionless streamfunction and temperature for

only the region of length Lx. The penetration length and heat transfer rate predicted
by this solution are

Lx ¼ 0:158HRa1=2, ð7:70Þ

q0 ¼ 0:319kmΔTRa
1=2: ð7:71Þ

The results presented in this subsection are valid when Lx< L and Lx�H, which
translates into the following Ra range:

1 � Ra <
L

H
: ð7:72Þ

In the same paper, Bejan (1981) also documented the lateral penetration in an

anisotropic porous medium in which the principal thermal conductivities are

Streamlines
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Fig. 7.21 Streamlines and isotherms in the region of lateral penetration into a two-dimensional

porous layer (Bejan 1981)
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different and aligned with the x and y axes, km,x 6¼ km,y. He also showed that a

similar partial penetration phenomenon occurs when the temperature of each of the

two horizontal walls (Fig. 7.20a) varies linearly from Th at one end to Tc at the
other.

7.4.2 Vertical Penetration

In the vertical two-dimensional layer of Fig. 7.20b, it is the bottom or the top side

that is permeable and in communication with a fluid reservoir of different temper-

ature. In Chap. 6 we saw that in porous layers heated from below or cooled from

above convection is possible only above a critical Rayleigh number. In the config-

uration of Fig. 7.20b, however, fluid motion sets in as soon as the smallest ΔT is

imposed between the permeable horizontal boundary and the vertical walls. This

motion is driven by the horizontal temperature gradient of order ΔT/L.
If we write Ly for the unknown distance of vertical penetration and if we assume

that Ly� L, we obtain the following order-of-magnitude balances

mass :
u

L
� v

Ly
, ð7:73Þ

energy : u
ΔT
L

� αm
ΔT
L2

, ð7:74Þ

momentum :
v

L
� Kgβ

ν

ΔT
L

: ð7:75Þ

The vertical penetration distance that results from this system of equations is

(Bejan 1984)

Ly � LRaL, ð7:76Þ
in which RaL is the Rayleigh number based on the thickness L: RaL¼ gβKLΔT/ναm.
The scale of the overall heat transfer rate q0 (W/m) through the permeable side of

the porous layer is

q0 � ρcPð ÞfvLΔT � kmΔTRaL: ð7:77Þ
Once again, the physical extent of the porous layer (H ) does not influence the

penetrative flow, as long as H is greater than the penetration distance Ly. The latter
is determined solely by the transversal dimension L and the imposed temperature

difference ΔT. The vertical penetration distance and total heat transfer rate are

proportional to the Rayleigh number based on the thickness L.
The vertical penetration of natural convection also was studied in the cylindrical

geometry of Fig. 7.22, as a model of certain geothermal flows or the flow of air
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through the grain stored in a silo (Bejan 1980a). The vertical penetration distance

and the total heat transfer rate q (W) are

Ly
ro

¼ 0:0847Raro , ð7:78Þ

q ¼ 0:255ro kmΔTRaro , ð7:79Þ
where ro is the radius of the cylindrical cavity filled with saturated porous material

andRaro is the Rayleigh number based on radius,Raro ¼ gβKroΔT=ναm. Figure 7.22
shows the streamlines in the region of height Ly, which is penetrated by natural

convection. The region of heightH� Ly, which is situated above this flow and is not

shown in Fig. 7.22, is isothermal and saturated with motionless fluid.

The results presented in this subsection are valid when the penetrative flow is

slender, Ly� (L, ro), and when Ly is shorter than the vertical dimension of the

0.5
TcTc

y = Ly

y = 0

Tc

Th

ro

0.75

1

0.25

0

Fig. 7.22 Streamlines in

the region of vertical

penetration into a

cylindrical space filled with

porous medium (Bejan

1980a, b)
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confined porous medium, Ly < H. These restrictions limit the Rayleigh number

domain that corresponds to these flows:

1 � Ra L;roð Þ <
H

L; roð Þ : ð7:80Þ

7.4.3 Other Penetrative Flows

Two types of penetrative flows that are related to those of Fig. 7.20a, b are presented

in Fig. 7.23. Poulikakos and Bejan (1984a) showed that in a porous medium that is

heated and cooled along the same vertical wall the flow penetration can be either

horizontal (Fig. 7.23a) or vertical (Fig. 7.23b). In the case of horizontal penetration,

the penetration distance Lx and the total heat transfer rate q
0 are of the same order as

in Eqs. (7.66) and (7.67). These scales are valid in the range 1�Ra< L/H, the
Rayleigh number Ra being based on height. The scales of vertical penetration in

Fig. 7.23b are different,

Ly � H
L

H

� �2=3

Ra�1=3, ð7:81Þ

q0 � km Th � Tcð Þ L

H
Ra

� �1=3

: ð7:82Þ

in which Ra is again based on H. These scales are valid when Ra > H/L. The two
penetrative flows of Fig. 7.23 occur only when the heated section is situated above

the cooled section of the vertical wall. When the positions of the Th and Tc sections
are reversed, the buoyancy-driven flow fills the entire H � L space (Poulikakos and

Bejan 1984a).

In a semi-infinite porous medium bounded from below or from above by a

horizontal wall with alternating zones of heating and cooling (Fig. 7.24) the

buoyancy-driven flow penetrates to a distance Ly into the medium (Poulikakos

and Bejan 1984b). This distance scales as λRa1=2λ , where λ is the spacing between

Th
Th

Lx
L

Ly
H

g

a b

g

HTc
Tc

Fig. 7.23 Incomplete

horizontal penetration (a)
and vertical penetration (b)
in a porous layer heated and

cooled along the same

vertical side
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a heated zone and the adjacent cooled zone, and Raλ ¼ gβKλ(Th � Tc)/ναm.
Figure 7.24 shows a sample of the numerical results that have been developed for

the range 1 
 Raλ 
 100.

7.5 Transient Effects

The work reviewed in the preceding sections dealt with steady-state conditions in

which the flow is slow enough to conform to the Darcy model. In this section, we

drop the steady-flow restriction and examine the time scales and evolution of the

buoyancy-driven flow. The equations that govern the conservation of mass,
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Fig. 7.24 Streamlines and isotherms for the vertical penetration of natural convection in a semi-

infinite porous medium bounded by a horizontal wall with alternating hot and cold spots

(Raλ ¼ 100) (Poulikakos and Bejan 1984b)
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momentum, and energy in Fig. 7.1 are, in order, Eqs. (7.1), (7.5), and, in place

of (7.4),

σ
∂T
∂t

þ u
∂T
∂x

þ v
∂T
∂y

¼ αm
∂2

T

∂x2
þ ∂2

T

∂y2

 !
: ð7:83Þ

Consider the two-dimensional saturated porous medium shown in Fig. 7.1,

which is initially isothermal at Tavg ¼ (Th + Tc)/2 and saturated with motionless

fluid. At the time t ¼ 0, the temperatures of the two side walls are changed to

Th ¼ Tavg + ΔT/2 and Tc ¼ Tavg � ΔT/2, while the top and bottom walls remain

insulated. All the walls are impermeable. Of special interest is the time needed by

the flow and heat transfer to reach steady state, i.e., the time interval after which the

flow regimes described in Sect. 7.1 become valid. This basic transient convection

problem was studied by Poulikakos and Bejan (1983c).

By focusing on the vertical boundary layer that develops along the left-hand side

of the rectangular system of Fig. 7.1, we note that initially the time-dependent

thickness of this boundary layer δ(t) grows by pure conduction. With respect to the

region of thickness δ and height H, the energy equation (7.83) dictates a balance

between the side heating effect and the thermal inertia of the saturated porous

medium,

σ
ΔT
t

� αm
ΔT
δ2

: ð7:84Þ

This balance yields the well-known penetration distance of pure conduction:

δ � αmt

σ

� �1=2

: ð7:85Þ

The growth of the conduction layer gives rise to a horizontal temperature

gradient of order ∂T/∂x � ΔT/δ. This development makes the buoyancy term in

the momentum balance (7.5) finite. In fact, the scales of the three terms appearing in

Eq. (7.5) are

u

H
;
v

δ

� �
� Kgβ

v

ΔT
δ

: ð7:86Þ

The mass conservation scaling (7.6) shows that the ratio of the two scales on the

left-hand side of Eq. (7.86) is

u=H

v=δ
� δ

H

� �2

, ð7:87Þ

in other words, that u/H is negligible relative to v/δ. In conclusion, the momentum

balance reduces to Eq. (7.11) and the vertical velocity scale turns out to be identical

to the scale listed in Eq. (7.12) for the steady state. An interesting feature of the
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transient flow is that the vertical velocity scale is independent of time. The vertical

flow rate however, vδ, grows in time as t1/2.
As soon as fluid motion is present, the energy equation (7.83) is ruled by the

competition among three different scales:

σ
ΔT
t

Inertia t�1ð Þ
, v

ΔT
H

Convection t0ð Þ
� αm

ΔT
δ2

Conduction t�1ð Þ
, ð7:88Þ

The time dependence of each scale also is shown. Since the lateral conduction

effect is always present, the convection scale eventually overtakes inertia on the

left-hand side of Eq. (7.88). The time t when this changeover takes place, i.e., when
the vertical boundary layer becomes convective, is given by

σ
ΔT
t

� v
ΔT
H

, ð7:89Þ

which in view of the v scale (7.12) yields

t � σ

αm
H2Ra�1: ð7:90Þ

It is easy to verify that the boundary layer thickness (7.85), which corresponds to

(and after) this time, is the steady-state scale determined earlier in Eq. (7.13). In

conclusion, this transient-convection analysis reconfirms the criterion (7.19) for

distinct vertical boundary layers.

By following the same approach Poulikakos and Bejan (1983c) traced the

development of the horizontal boundary layers along the top and bottom walls of

the enclosure. They found that the horizontal layers become “developed” earlier

than the vertical layers when the enclosure is tall enough so that

H

L
> Ra1=6: ð7:91Þ

The criterion for distinct horizontal boundary layers turns out to be the same as

the inequality (7.22). In summary, the analysis of the time-dependent development

of natural circulation in the two-dimensional system of Fig. 7.1 provides an

alternative way to construct the four-regime map seen earlier in Fig. 7.2.

A very early study of transient convection between two vertical plates, incorpo-

rating the effect of local thermal nonequilibrium, was carried out by Slater and

Evans (1971). Another early work was the numerical study by Christopher (1986).

A comprehensive study of transient convection between parallel vertical plates

on the Brinkman–Forchheimer model has been carried out by Nakayama et al.

(1993). They obtained asymptotic solutions for small and large times and a bridging

numerical solution for intermediate times. An MHD problem with suction or

injection on one plate was treated by Chamkha (1997b). For convection in a

rectangular enclosure, Lage (1993b) used scale analysis to obtain general heat
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transfer correlations. A further numerical study was reported by Merrikh and

Mohamad (2000). An analytic study using Laplace transforms was conducted by

Jha (1997). The effect of variable porosity was examined by Paul et al. (2001).

Saeid and Pop (2004a, b) considered a transient problem arising from the sudden

heating of one side wall and the sudden cooling of the other, with and without the

effect of viscous dissipation. They found that the heat transfer was reduced as a

result of the dissipation. Convection in a non-Newtonian power-law fluid was

studied numerically by Al-Nimr et al. (2005). Ghosh and Ghosh (2007) studied

convection in a square cavity under a transverse oscillatory microgravity field. The

effect of a magnetic field was studied by Rajput and Sahu (2011) and Seth et al.

(2015a, b, c) (rotation, heat absorption). Computations for convection in a deep

cavity at large Rayleigh number were reported by Pandit et al. (2014). For a square

cavity a range of Rayleigh number values was studied by Faghiri et al. (2013). The

effect of radiation on entropy generation in a box was studied by Jbara et al.

(2013b).

A transient problem for convection between two concentric spheres was studied

by Pop et al. (1993b). They obtained solutions, valid for short time, of the Darcy

and energy equations using the method of matched asymptotic expansions. Nguyen

et al. (1997b) treated a similar problem with a central fluid core surrounded by a

porous shell. They performed numerical calculations on the Brinkman model. They

found remarkable effects along the porous medium–fluid interface, but the overall

heat flux was sensitive only to the ration of thermal conductivity of the solid matrix

to that of the fluid.

Transient convection in a vertical annulus for various thermal boundary condi-

tions was studied by Al-Nimr and Darabseh (1995) for the Brinkman model.

Transient convection in a horizontal annulus, with the inner and outer cylinders

maintained at uniform temperatures, was examined by Pop et al. (1992a). They

used the method of matched asymptotic expansions to obtain a solution valid for

short times. Sundfor and Tyvand (1996) studied convection in a horizontal cylinder

with a sudden change in wall temperature. An investigation of the effect of local

thermal nonequilibrium was reported by Ben Nasrallah et al. (1997). Further

numerical studies of the effect of local thermal nonequilibrium were carried out

by Khadrawi and Al-Nimr (2003b) and Krishnan et al. (2004). A hybrid numerical-

analytical solution for two-dimensional transient convection in a vertical cavity,

based on a generalized transform technique, was presented by Alves and Cotta

(2000). Similar three-dimensional studies were made by Neto et al. (2002, 2004)

and Cotta et al. (2005). Convection in a square cavity with an oscillating wall

temperature was studied by Saeid (2006c). The case of an impulsive change of

temperature on a side wall was treated by Kumari and Nath (2009b). Another

unsteady problem with side heating was examined by Aldabbagh et al. (2008a).

A situation arising in the storage of granular material was studied by Avila-

Acevedo and Tsotsas (2008). A vibration effect on heat transfer and entropy

generation in an elliptical cavity was investigated by Mahmud and Frazer (2006).

The effects of strong compressibility with a near-critical fluid were studied by

Soboleva (2008). Unsteady convection in square cavity and with temperature-

dependent viscosity was studied by Astanina et al. (2015).
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7.6 Departure from Darcy Flow

7.6.1 Inertial Effects

The behavior of the flow and heat transfer process changes substantially as the flow

regime departs from the Darcy limit. The effect of the quadratic drag on the heat

transfer through the most basic configuration that opened this chapter (Fig. 7.1) was

demonstrated by Poulikakos and Bejan (1985). In place of the momentum equation

(7.5) they used the Forchheimer modification of Darcy’s law,

∂
∂y

Buð Þ � ∂
∂x

Bvð Þ ¼ � gβK

ν

∂T
∂x

: ð7:92Þ

This follows from Eq. (1.12) by eliminating the pressure between the x and

y momentum equations and by writing

B ¼ 1þ χ

v
u2 þ v2
� �1=2

: ð7:93Þ

The Forchheimer term coefficient χ has the units (m) and is used as shorthand for

the group cFK
1/2, where cF is defined by Eq. (1.12). The same notation was used in

Eq. (5.64), in the analysis of the flow near a single vertical wall.

Poulikakos and Bejan (1985) analyzed the Darcy–Forchheimer convection phe-

nomenon using three methods: scale analysis, a matched boundary layer analysis,

and case-by-case numerical finite-difference simulations. The main results of the

scale analysis for the convection regime III are summarized in Table 7.1, next to the

scales derived for the Darcy limit in Sect. 7.1.1. The transition from Darcy flow to

Forchheimer flow, i.e., to a flow in which the second term dominates on the right-

hand side of Eq. (7.93), takes place when the dimensionless number G is smaller

than O(1),

G ¼ ν χgβK Th � Tcð Þ½ ��1=2: ð7:94Þ
In the Forchheimer regime G� 1, the appropriate Rayleigh number is the large

Reynolds number limit version encountered already in Eq. (5.64),

Table 7.1 The scales of the vertical natural convection boundary layer in a porous layer heated

from the side (Poulikakos and Bejan 1985)

Forchheimer regime Darcy regime

G� 1 G� 1

Boundary layer thickness HRa�1=4
1 HRa–1/2

Vertical velocity αm
H

Ra1=21
αm
H

Ra

Heat transfer rate kmΔTRa
1=2
1 kmΔTRa1/2
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Ra1 ¼ gβKH2 Th � Tcð Þ
χα2m

: ð7:95Þ

The important heat transfer conclusion of the scale analysis is that the overall

(conduction-referenced) Nusselt number defined in Eq. (7.17) scales as L=Hð ÞRa1=41
in the limit in which the effect of inertia dominates. A more accurate estimate was

provided by an analytical solution in which Oseen linearized solutions for the two

vertical boundary layers were matched to the same stratified core (Poulikakos and

Bejan 1985):

Nu ¼ 0:889
L

H
Ra1=41 , G � 1ð Þ: ð7:96Þ

This solution is the Forchheimer regime counterpart of the Oseen linearized

solution derived by Weber (1975b) for the Darcy limit, namely Eq. (7.38). By

intersecting Eq. (7.96) with Eq. (7.38) we learn that the transition from Darcy flow

to Forchheimer flow occurs when Ra1=21 � Ra, which is another way of saying

G�O(1). In fact the groupG defined in Eq. (7.94) is the same as the ratioRa1=21 =Ra.
Figure 7.25 shows Poulikakos and Bejan’s (1985) finite-difference calculations

for the overall heat transfer rate in the intermediate regime represented by

0.1 
 G 
 10. In these calculations, the momentum equation contained the Darcy

and Forchheimer terms shown in Eqs. (7.92)–(7.93). The numerical data agree well

with Weber’s formula in the Darcy limit G ! 1. In the opposite limit, the

numerical data fall slightly below the theoretical asymptote (7.96). This behavior

has been attributed to the fact that the group (H/L ) Ra�1=4
1 , whose smallness

Analytical

0.01
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L
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R
a1/

4
¥

H

0.1
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100

Forchheimer regime
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0.577 G-1/2

0.889

Numerical

Fig. 7.25 Numerical results for the total heat transfer rate through a porous layer heated from the

side, in the intermediate Darcy–Forchheimer range (H/L ¼ 2, Ra ¼ 4000, and 1.6 � 105


 Ra1 
 1.6 � 109) (Poulikakos and Bejan 1985)
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describes the goodness of the boundary layer approximation built into the analysis

that produced Eq. (7.96), increases steadily as G decreases at constant Ra (note that

in Fig. 7.25 Ra¼ 4000). In other words, constant-Ra numerical experiments deviate

steadily from the boundary layer regime as G decreases. Indeed, Poulikakos and

Bejan (1985) found better agreement between their G < 1 numerical data and

Eq. (7.96) when the Rayleigh number was higher, Ra ¼ 5000.

In a subsequent numerical study, Prasad and Tuntomo (1987) contributed addi-

tional numerical results for natural convection in the configuration treated by

Poulikakos and Bejan (1985), which confirmed the reported theoretical scaling

trends. Specifically, Prasad and Tuntomo included the Darcy and Forchheimer

terms in the momentum equation and covered the range 1 
 H/L 
 20,

10 
 Ra 
 104. They also pointed out that the progress toward the inertia-

dominated regime (G ! 0 in Fig. 7.25) is accompanied by a proportional increase

in the pore Reynolds number. This can be shown here by using the volume-

averaged vertical velocity scale listed in Table 7.1, v � αm=Hð ÞRa1=21 . The

corresponding pore velocity scale is vp ¼ v=φ � αm=φHð ÞRa1=21 . The pore Reyn-

olds number is

Rep ¼ vpDp

ν
, ð7:97Þ

in which Dp is the pore size. This Reynolds number can be rewritten in terms of

G and the particle size dp by invoking Eqs. (7.94) and (1.13):

Rep � Dp

dp

β1=2

cF

1� φð Þ
φ5=2G

: ð7:98Þ

Taking β¼ 150, cFffi 0.55,Dp/dp�O(1), and φ¼ 0.7 as representative orders of

magnitude in Eq. (7.96), the pore Reynolds number becomes approximately

ReP � C

G
, ð7:99Þ

where C is a dimensionless coefficient of order 10.

This last Rep expression reconfirms the notion that the effect of inertia becomes

important when Rep � O(10), because G < 1 is the inertia-dominated domain

revealed by Poulikakos and Bejan’s (1985) theory. The pore Reynolds number

domain Rep > 300, in which the flow becomes turbulent (Dybbs and Edwards

1984), corresponds to the range G < 0.03 at constant Ra. Prasad and Tuntomo

(1987), however, went too far when they claimed that “the Forchheimer extended

Darcy equation of motion will become invalid when G decreases below 0.1. The

flow is then unsteady and chaotic (p. 311).” Their assertion is incorrect, because

quadratic drag is a macroscopic phenomenon that does not change qualitatively

(except to the extent that the coefficient is no longer constant) when the flow in the

pores becomes turbulent.
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A numerical study of convection in a square cavity using the Forchheimer model

was conducted by Saeid and Pop (2005a). They confirmed the expectation that

inertial effects slow down the convection currents and reduce the Nusselt number

for a fixed value of the Rayleigh number.

7.6.2 Boundary Friction, Variable Porosity, Local Thermal
Nonequilibrium, Viscous Dissipation, and Thermal
Dispersion Effects

The effects of boundary friction incorporated in the Brinkman model has been

studied by several authors, starting with Chan et al. (1970). For the shallow porous

layer, with isothermal lateral walls and adiabatic top and bottom, the top being

either rigid or free, Sen (1987) showed that the Brinkman term does not signifi-

cantly affect the heat transfer rate until the Darcy number Da¼ K/H4 exceeds 10–1/4

, and then the Nusselt number Nu decreases as Da increases. As one would expect,

the reduction is smaller for the case of a free upper surface than that of a rigid upper

surface. Also, for a shallow cavity with various combinations of rigid or free upper

and lower boundaries, Vasseur et al. (1989) studied the case of lateral heating with

uniform heat flux, exploiting the fact that in this situation there is parallel flow in

the core.

For cavities with aspect ratios of order unity, Tong and Subramanian (1985)

performed a boundary layer analysis and Tong and Orangi (1986) carried out

numerical calculations. Vasseur and Robillard (1987) studied the boundary layer

regime for the case of uniform heat flux. The vertical cavity case was treated

numerically by Lauriat and Prasad (1987). Again the chief result is that, because

of the reduction in velocity near the wall, the Nusselt number Nu decreases as Da

increases, the effect increasing as Ra increases. The variation porosity near the wall

partly cancels the boundary friction effect. Numerical studies of this effect were

conducted by Nithiarasu et al. (1997a, 1998) and Marcondes et al. (2001).

The combined effects of boundary friction and quadratic drag were studied

numerically by Beckermann et al. (1986), David et al. (1988, 1991), Lauriat and

Prasad (1989), and Prasad et al. (1992) for rectangular cavities; by Kaviany (1986)

and Murty et al. (1989) for horizontal annuli (concentric and eccentric, respec-

tively); and by David et al. (1989) for vertical annuli. The studies by David et al.

(1988, 1989) included the effect of variable porosity, which increases the rate of

heat transfer. The last paper reported excellent agreement between the numerical

results and experimental data obtained by Prasad et al. (1985) for water-glass media

at high Rayleigh numbers and large particle sizes. Extensive reviews of the topic of

boundary friction, quadratic drag, and variable porosity were made by Prasad and

Kladias (1991) and Lauriat and Prasad (1991). These authors noted that there

remained a discrepancy between theory and experiment for the case of media
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with a highly conductive solid matrix, such as steel beads. The theoretical values

were some 20–25 % too high.

The comparative numerical studies of a heated square cavity on Darcy,

Brinkman, and Brinkman–Forchheimer models by Misra and Sarkar (1995) con-

firmed that boundary friction and quadratic drag lead to a reduction in heat transfer.

Further numerical studies were conducted by Satya Sai et al. (1997b), Jecl et al.

(2001), and Jecl and Škerget (2004). Sathiyamoorthy et al. (2007) studied the

situation where one or both side walls were linearly heated. An MHD problem

was treated by Sathiyamoorthy (2011). A thin fin on the left-hand heated wall was

added by Sathiyamoorthy and Narasimman (2011), while Sathiyamoorthy et al.

(2011) studied the case of a sinusoidally heated bottom wall with linearly heated

sidewall and the top wall adiabatic.

The case of local thermal nonequilibrium was treated by Alazmi and Vafai

(2000), Mohamad (2000), Al-Amiri (2002), Baytas and Pop (2002), and Kayhani

et al. (2011b). For a square enclosure heated at the left wall, the maximum

difference between the fluid- and solid-phase temperatures occurs in the bottom

left and upper right corners. Further treatments of local thermal nonequilibrium

were reported by Alhashash et al. (2014) (square enclosure, viscous dissipation),

Wu et al. (2015d) (rectangular enclosure, sinusoidal temperature distribution on the

side walls), Omara et al. (2016) (square cavity, partly heated side walls), and Chen

et al. (2016b) (square cavity). Carvalho and de Lemos (2014a) studied passive

laminar heat transfer across cavities using an LTNE model.

Rees (2004a) showed that the effect of viscous dissipation could result in single-

cell convection being replaced by a two-cell flow as the dissipation parameter

increases. At higher values of this parameter the maximum temperature within

the cavity begins to exceed the highest boundary temperature and subsequently the

flow becomes time-periodic.

Thermal dispersion effects were studied numerically by Beji and Gobin (1992)

and de Medeiros et al. (2006) on the Brinkman–Forchheimer model. These cause a

significant increase in the overall heat transfer, and when they are included a better

agreement with the experimental data is obtained, particularly when the thermal

conductivities of the fluid and the solid matrix are similar.

7.7 Fluid and Porous Regions

Several authors, all using the Brinkman equation, have calculated the flow in a

laterally heated rectangular container partly filled by clear fluid and partly with a

porous medium saturated by that fluid. In most of these studies the porous medium

forms a vertical layer; the interface can be either impermeable to fluid or permeable.

Sathe et al. (1987) reported experimental results for a box divided in two with a

vertical impermeable partition bounding the porous medium, which agreed with

calculations made by Tong and Subramanian (1986). Sathe and Tong (1989)

compared these results with calculations by Sathe et al. (1988) for the same problem
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with a permeable interface and with results for a cavity completely filled with

porous medium and with a partitioned cavity containing solely clear fluid. Heat

transfer is reduced by the presence of porous material having the same thermal

conductivity as the fluid and by the presence of a partition. At low Da (¼10�4) the

first mechanism is more prominent while for high Da the second produces a greater

insulating effect. The differences become accentuated at large Ra. Experiments by

Sathe and Tong (1988) confirmed that partly filling an enclosure with porous

medium may reduce the heat transfer more than totally filling it.

The case of a rectangular cavity with a porous medium occupying the lower half,

the interface being permeable, was studied numerically by Nishimura et al. (1986).

The results agreed well with previous experiments by those authors. As one would

expect, most of the flow and the heat transfer occurs in the fluid region. Further

calculations were made by Arquis et al. (1986), Tatsuo et al. (1986), and

Beckerman et al. (1987).

The most comprehensive study available of flow and temperature fields is that by

Beckermann et al. (1988). They performed calculations and experiments for the

configurations shown in Fig. 7.26. In the experiments the beads were of glass or

aluminum and the fluid was water or glycerin. A sample result is illustrated in

Fig. 7.27. In all cases investigated, the temperature profiles indicated strong con-

vection in the fluid layer but little in the porous layer. Figure 7.27 illustrates a

situation with large beads of high thermal conductivity. For smaller aluminum

beads (smaller Darcy number) there is less flow in the porous layer. For the case

of glass beads (of small thermal conductivity) the situation is accentuated; for small

beads there is almost no flow in the porous layer but for large beads there is a

substantial amount of flow at the top and bottom of the porous layer, with the eddy

centers in the fluid layer displaced toward the upper right and lower left corners.

A configuration similar to that of Fig. 7.27 is the vertical slot filled with air and

divided along its vertical midplane by a permeable screen (Zhang et al. 1991). The

screen is a venetian blind system made out of horizontal plane strips that can be

rotated. In the nearly “closed” position, the strips almost touch and the air flow that
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Fig. 7.26 Definition sketch for fluid and porous regions in a vertical cavity
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leaks through it behaves as in Darcy or Forchheimer flow. On both sides of the

partition the air circulation is driven by the temperature difference maintained

between the two vertical walls of the slender enclosure. Zhang et al. showed

numerically that there exists a ceiling value for the air flow conductance through

the screen: above this value the screen pressure drop does not have a perceptible

effect on the overall heat transfer rate. This ceiling value can be used for design

Fig. 7.27 Experimental and predicted results for the configuration 2 shown in Fig. 7.26, with

water and 6.35-mm aluminum breads: (a) photograph of interference fringe patterns; (b) predicted
isotherms (equal increments); and (c) predicted streamlines (equal increments). S/L ¼ 0.33,
Raf ¼ 3.70 � 106, DaL ¼ 1.534 � 10�5, Prf ¼ 6.44, and Km/Kf ¼ 37.47 (Beckermann et al.

1988, with permission from Cambridge University Press)
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purposes, e.g., in the calculation of the critical spacing that can be tolerated between

two consecutive strips in the screen.

Du and Bilgen (1990) performed a numerical study of heat transfer in a vertical

rectangular cavity partially filled with a vertical layer of uniform heat-generating

porous medium and with lateral heating. They varied the aspect ratio of the cavity

and the thickness and position of the porous layer.

Structures with solid walls separating cavities filled with porous materials and

spaces filled with air are being contemplated in the advanced design of cavernous

bricks and walls of buildings (Vasile et al. 1998; Lorente et al. 1996, 1998; Lorente

and Bejan 2002).

A numerical treatment of convection in a fluid-filled square cavity with differ-

entially heated vertical walls covered by thin porous layers was studied numerically

by Le Breton et al. (1991). They showed that porous layers having a thickness of the

order of the boundary layer thickness were sufficient to reduce the overall Nusselt

number significantly (by an amount that increased with increase of Ra) and thicker

porous layers produced only a small additional decrease in heat transfer.

Three-dimensional convection in a rectangular enclosure containing a fluid layer

overlying a porous layer was treated numerically on the Brinkman model by Singh

et al. (1993). A comparison study of the Darcy, Brinkman, and Brinkman–

Forchheimer models was carried out by Singh and Thorpe (1995). Convection in

a rectangular cavity with a porous medium occupying half the lateral distance from

heated to cooled wall was studied both theoretically (with an anisotropic medium

incorporated) and experimentally (using perforated plates for the solid matrix

which allowed flow visualization with the aid of dye) by Song and Viskanta

(1994). An anisotropic medium was also studied by Semma et al. (2010). Convec-

tion in a partly filled inclined rectangular enclosure, with uniform or localized

heating of the bottom, was studied by Naylor and Oosthuizen (1995). They found

that flow patterns were sensitive to small angles of inclination to the horizontal and

that dual solutions were possible. Masuoka et al. (1994) investigated the channeling

effect (due to porosity variation) with a model involving a thin fluid layer adjacent

to a vertical porous medium layer. They found that convection was generally

enhanced by the channeling effect, but for weak convection it is reduced by the

thermal resistance near the wall.

A study that involves turbulence is that by Chen et al. (1998b). They applied a κ–ε
model to the fluid part of a partly filled enclosure. They found that when the flow is

turbulent in the fluid region, the heat transfer in the porous region is dominated by

convection and the penetration of the fluid into the porous region is more intensive

than in the case of laminar flow.

A closed-form solution for natural convection in a rectangular cavity including a

layer of porous medium adjacent to the heated side, with uniform heat flux from the

sides, was obtained by Weisman et al. (1999). Mercier et al. (2002) obtained

analytical expressions for a developing flow in similar circumstances. Fully devel-

oped convection in partly filled open-ended vertical channels was analyzed by

Al-Nimr and Haddad (1999a); see also Nield (2001a). MHD convection in such
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channels was analyzed by Al-Nimr and Hader (1999b) and Chauhan and

Agarwal (2012).

Paul and Singh (1998) studied convection in partly filled vertical annuli. An

analytical study of convection in a partly filled vertical channel was performed by

Paul et al. (1998). A numerical study of transient convection in a partly filled

vertical channel was studied numerically by Paul et al. (1999). An experimental

study for a vertical annulus, horizontally divided into fluid and porous sections of

different permeability, with the inner surface at constant flux and the outer at

constant temperature, was carried out by El-Shazly (2000).

Transient convection in various domains partly filled with porous media was

investigated analytically using Laplace transforms by Al-Nimr and Khadrawi

(2003). Further studies of convection in partly filled vertical channels were made

by Khadrawi and Al-Nimr (2003a), Singh and Gorla (2008), Singh et al. (2011a)

(Forchheimer-Brinkman model, transient effects), Liu and Chen (2011), Chen et al.

(2012), Chauhan and Rastogi (2010) (magnetic field, rotation, radiation), Chauhan

and Agarwal (2012) (magnetic field), Hajipour and Dehkordi (2012b) (transient

flow, viscous dissipation, inertial effect), and Piller and Stalio (2012) (metal

foams). A square box was treated by Hamimid et al. (2012). Pseudosteady-state

convection inside a spherical container partly filled with a porous medium was

studied numerically by Zhang et al. (1999a). Conjugate convection in a partly filled

horizontal annulus was investigated by Aldoss et al. (2004) and Qu et al. (2013)

(local thermal nonequilibrium). A two temperature model was applied by Sanchez

et al. (2005a, b) to a problem with symmetrically connected fluid and porous layers.

Convection in an annulus with a porous sleeve was studied by Leong and Lai

(2006). Saada et al. (2007) studied convection around a solid horizontal cylinder

wrapped with a layer of fibrous or porous material. Avtar and Srivastava (2006)

modeled the convective flow of fluid in the anterior chamber of the eye as a region

partly filled by a porous medium. Free-convective Couette flow in a composite

channel was studied by Jha et al. (2011). They noted that when non-Darcy and

dispersion effects are negligible the overall Nusselt number is independent of the

inclination. Heat transfer between natural convection in a porous medium and

forced convection in a clear fluid, separated by an impermeable vertical wall of

finite thickness and height, was studied by Mosaad (2012).

Chen et al. (2009b) reported numerical analysis of the flow past a trapezoidal

cylinder based on a stress-jump boundary condition. A vertical pipe partly filled by

a porous medium was studied by Qu et al. (2012c) (local thermal nonequilibrium,

conjugate) and Sheremet and Trifonova (2013, 2014) (unsteady, conjugate).

Chandran et al. (2013) investigated numerically flow in a rectangular cavity, partly

filled with a porous medium, with a ramped temperature distribution on one wall.

Valipour et al. (2014) studied MHD flow around a solid cylinder wrapped in a

porous sheath. Cai et al. (2016) investigated numerically the effect of variable heat

flux conditions. Wang et al. (2015c) examined the effect of surface radiation in a

cavity containing a horizontal porous layer. Yang et al. (Yang et al. 2015a, b, c) also

studied the effect of radiation. Abd Elmaboud (2016) treated a varying magnetic

field in a semi-porous vertical channel. Massarotti et al. (2016) presented new
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benchmark solutions for transient convection in partly porous annuli. Turbulent

convection in a rectangular enclosure partly filled with a porous medium, with

thermal radiation, was studied by Wang et al. (2016d). Chakravarty et al. (2016b)

examined entropy generation in a cylindrical enclosure with a truncated conical,

heat-generating porous bed.

7.8 Sloping Porous Layer or Enclosures

The topic of this section has features discussed in Chap. 6 as well as those noted in

the present chapter. We shall concentrate our attention on convection in the

rectangular box shown in Fig. 7.28. Unless otherwise specified, the plane z ¼ 0 is

heated and the plane z ¼ H is cooled, and the other faces of the box are insulated.

(Thus φ ¼ π corresponds to a box heated from above.)

We first consider the extension of the Horton–Rogers–Lapwood problem. The

thermal boundary conditions are as in Sect. 6.1, namely T ¼ To + ΔT at z ¼ 0 and

T ¼ To at z ¼ H. The differential equations (6.3)–(6.6) have the basic steady-state
solution given by Eqs. (6.8) and (6.9) and [in place of Eq. (6.7)]

vb ¼ gβKΔT
ν

1

2
� z

H

� �
sinφ i, ð7:100Þ

This describes a unicellular flow with an upward current near the hot plate and a

downward current near the cold plate.

The perturbation equation (6.16) is unchanged, but Eqs. (6.17) and (6.18) are

replaced by

W
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g
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Fig. 7.28 Definition sketch for a tilted box. Oy is horizontal and φ measures the inclination of Ox
above the horizontal
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γa
∂v

∂bt ¼ �∇bP � bv þ RabT sinφ iþ cosφ kð Þ, ð7:101Þ

∂bT
∂bt þ Ra sin φð Þ 1

2
� bz� �

∂bT
∂bx � bw ¼ ∇2bT ð7:102Þ

and instead of Eqs. (6.22) and (6.23) we now have

D2 � a2 � s� ik Ra sinφð Þ 1

2
� bz� �� 	

θ ¼ �W, ð7:103Þ

1þ γasð Þ D2 � a2
� �

W ¼ �Ra a2 cosφð Þθ þ ik sinφð ÞDθ� 
: ð7:104Þ

Eliminating W, one gets

1þ γasð Þ D2 � a2
� �

D2 � a2 � s
� �

θ � Raα2 cosφð Þθ

�ikRa sinφ 1þ γasð Þ 1

2
� bz� �

D2 � α2
� �

θ � 2Dθ

� 	
þ Dθ


 �
¼ 0:

ð7:105Þ

For the case of conducting impermeable boundaries,

θ ¼ D2θ ¼ 0 at bz ¼ 0 and bz ¼ 1: ð7:106Þ
The system (7.105) and (7.106) can be solved by the Galerkin method

(Caltagirone and Bories 1985) but an immediate result can be obtained for the

case k ¼ 0, because then the eigenvalue problem reduces to that for the horizontal

layer but with Ra replaced by Ra cos φ. This case corresponds to longitudinal rolls

(with axes up the slope) superposed on the basic flow, i.e., longitudinal helicoidal

cells. A detailed examination shows that the basic unicellular flow is indeed stable

for Ra cos φ ¼ 4π2. Caltagirone and Bories found that convection appears in the

form of polyhedral cells for small inclinations φ and as longitudinal helicoidal cells

for larger values of φ, for the range 4φ2 < Ra cos φ < 240–280. When Ra cos φ
exceeds 240–280 for small φ, one has a transition to a fluctuating regime charac-

terized by the continuous creation and disappearance of cells (as for the horizontal

layer), while for larger φ the transition is to oscillating rolls whose boundaries are

no longer parallel planes. Experiments by Bories and Combarnous (1973), with a

medium composed of glass beads and water, produced general agreement with the

theory. The situation is summarized in Fig. 7.29. However, Nield (2011a) pointed

out that the region marked (B) in the figure was incorrectly labeled. The theory

does not predict that polyhedral cells should be expected in a layer with small

slope.

Additional experimental results reported by Hollard et al. (1995) were in agree-

ment with the prediction (based on scale analysis) of Bories (1993) that the

inclination angle φτ for the transition between polyhedral cells (or transverse

rolls) and longitudinal rolls is given by solving the equation
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Ra sinφ ¼ 23=2M Ra cosφ� 4πð Þ1=2, ð7:107Þ

where M ¼ 0.82, 23/2, or 2, for hexagonal cells, transverse roll, or square cells,

respectively. Hollard et al. (1995) also investigated the transition between the

stationary and nonstationary flows by means of a spectral analysis of the temper-

ature field.

In the above discussion we have assumed that the inclination φ is fixed prior to

the experiment. When one changes φ with Ra held constant one observes hysteresis

with respect to flow pattern transition (Kaneko et al. 1974) but the overall heat

transfer appears to be almost independent of flow pattern. As predicted by the

analysis of Weber (1975a), the Nusselt number correlates well with Ra cos φ. End
effects modify the transition criteria, increasing the domain of stability of the basic

flow (Jaffrenou et al. 1974). Kolesnikov and Lyubimov (1975) treated both constant

temperature and constant flux boundaries. Walch and Dulieu (1979) studied con-

vection in a rectangular slightly inclined box, with either the lower plate heated or

the upper plate heated. In the latter case a boundary layer is formed if the Rayleigh

number is high. Walch and Dulieu (1982) treated convection in a slightly inclined

layer as a first-order phase transition.

Fig. 7.29 The different

types of convective motion

experimentally observed in

a tilted porous layer: (a)
unicellular flow; (b)
polyhedral cells; (c)
longitudinal stable coils; (d)
fluctuating regime; and (e)
oscillating longitudinal

coils (Combarnous and

Bories 1975, with

permission from Academic

Press)
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Inaba et al. (1988) performed experiments using media of several different

materials for 0� 
 φ 
 180�, 5 
 L/H 
 32.7, and 0.074 
 dp/H 
 1.0, where dp
is the particle diameter. These and previous experiments indicated the existence of a

maximum heat transfer rate at φ ¼ 45–60� for Ra ¼ 350. This motivates the

following correlation formulas of Inaba et al. (1988), in which Pr ¼ ν/αm.
For 60 
 Ra cos (φ � 60�) 
 4.5 � 102, 0� 
 φ 
 15�,

Nu ¼ 0:053Pr0:13
dp
H

� ��0:20

Ra cos φ� 60�ð Þ½ �0:72: ð7:108Þ

For 60 
 Ra cos (φ – 60�) 
 4.5 � 102, 15� 
 φ 
 120�,

Nu ¼ 0:024Pr0:13
L

H

� ��0:34

Ra cos φ� 60�ð Þ½ �0:52: ð7:109Þ

For 4.5 � 102 
 Ra cos φ 
 3 � 104, 0 
 φ 
 60�,

Nu ¼ 0:067Pr0:13
dp
H

� ��0:65

Ra cosφð Þ0:52: ð7:110Þ

For 4.5 � 102 
 Ra sin φ 
 3 � 104, 60� 
 φ 
 120�,

Nu ¼ 0:062Pr0:13
L

H

� ��0:52

Ra sinφð Þ0:46: ð7:111Þ

The case of large L/H, W/H was examined numerically by Moya et al. (1987).

They found that for small φ multiple solutions were possible. In addition to

“natural” unicellular convection with flow up the heated wall and down the cooled

wall, there also can exist an “antinatural” motion with circulation in the opposite

direction. A bifurcation study by Riley and Winters (1990) shows that the appear-

ance of the antinatural mode is associated with an isola. The various modal

exchanges that occur as the aspect ratio of the tilted cavity varies were studied by

Impey and Riley (1991).

There are further complications when L/H and W/H are of order unity. Pien and

Sen (1989) showed by numerical calculation that there was hysteresis in the

transition from an up-slope roll pattern to a cross-slope roll pattern as φ is varied,

the Nusselt number being affected.

Detailed studies of the onset of convection in an inclined layer heated from

below were reported by Rees and Bassom (1998, 2000). They included a full

numerical solution of the linearized disturbance equations, and the results were

used to motivate various asymptotic analyses. They found that at large Rayleigh

numbers a two-dimensional instability only can arise when the angle that the layer

makes with the horizontal is less than or equal to 31.30�, while the maximum

inclination below which this instability may be possible is the slightly greater value

31.49�, which corresponds to a critical Rayleigh number of 104.30.
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So far in our discussion the heated and cooled boundaries have been isothermal.

Problems involving constant-flux heating have also been considered. For

90� < φ < 180� and the limit L/H ! 1 an analytic parallel-flow solution was

obtained by Vasseur et al. (1987). This solution is a good predictor of Nu for

L/H ¼ 4. Sen et al. (1987, 1988) have investigated the multiple steady states that

occur when φ is small and all four faces of a rectangular enclosure are exposed to

uniform heat fluxes, opposite faces being heated and cooled, respectively. Vasseur

et al. (1988) showed that in the case 90� < φ < 180� the maximum temperature

within the porous medium can be considerably higher than that induced by pure

conduction. In this case the convection is considerably decreased when L/H is either

very large or very small. A further study of constant-flux heating was made by Alex

and Patil (2000b), using the Brinkman model.

The effect of the Brinkman boundary friction on heat transfer in an inclined box

or layer was first calculated by Chan et al. (1970) and later by Vasseur et al. (1990).

The additional effects of viscous dissipation were studied analytically by

Malashetty et al. (2001). Flow in between concentric inclined cylinders was studied

numerically and experimentally by Takata et al. (1982a) for isothermal heating and

by Wang and Zhang (1990) for constant flux on the inner cylinder.

The problem for a non-Newtonian (power-law) fluid was studied by Bian et al.

(1994a, b). For a Newtonian fluid, the effect of a magnetic field was examined by

Alchaar et al. (1995b) and Bian et al. (1996b). Because they considered

two-dimensional disturbances only, their treatment may be incomplete. Other

studies of the effect of a magnetic field were reported by Wang et al. (2007b),

Shehadeh and Duwairi (2009a, b), Revnic et al. (2009b) (heated and cooled

adjacent walls), Mansour et al. (2010a, b) (heat source in the solid phase), Prakash

et al. (2012c) (dusty viscoelastic stratified fluid with variable viscosity), Hussein

et al. (2012) (trapezoidal enclosure), Ahmed (2013) (internal heating), and Heidary

and Hosseini (2014) (entropy generation).

The quasisteady convection produced by heating one side of a porous slab was

studied by Robillard and Vasseur (1992). The case of a porous layer adjacent to a

wall of finite thickness was investigated by Mbaye et al. (1993). A porous layer with

an off-center diathermal partition was examined by Jang and Chen (1989). A

numerical solution for convection in a cavity with a discrete heat source on one

wall was obtained by Hsiao et al. (1994). An experimental investigation of a layer

bounded by impervious domains of finite thermal conductivity in the presence of a

vertical temperature gradient was conducted by Chevalier et al. (1996). The

expected transition from two-dimensional to three-dimensional convection, as Ra

increases, was found. A further numerical and experimental study of this configu-

ration was reported by Chevalier et al. (1999).

Convection and dispersion in a reservoir with tilted fractures was studied

theoretically and experimentally by Luna et al. (2004) under the assumption that

the fluid thermal conductivity is very small compared with the rock conductivity.

A novel approach to convection in anisotropic inclined porous layers, which is

able to deal with nonsymmetric multilayered systems, was presented by Trew and

McKibbin (1994). The method involves the numerical summation of a series.
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A further study of the effect of anisotropic permeability on convection flow patterns

was made by Storesletten and Tveitereid (1999). A layer anisotropic with respect to

both permeability and diffusivity was analyzed by Rees and Postelnicu (2001) and

Postelnicu and Rees (2001); the second paper was concerned with small angles to

the horizontal. They found that often there is a smooth rather than an abrupt

transition between longitudinal and transverse rolls as the governing parameters

are varied. The effect of anisotropy also was studied numerically by Cserepes and

Lenkey (2004) for the case of an unconfined aquifer. The effect of the Forchheimer

drag was added by Rees et al. (2006a). They found that in general the critical

Rayleigh number increases substantially as the form drag effects strengthen but the

wavenumber increases by only a small amount. They supplemented their numerical

study by a brief asymptotic analysis of the case where the Forchheimer terms

dominate, and they showed that then the critical Rayleigh number increases in

direct proportion to the form drag parameter.

The effects of Taylor dispersion and diagenesis in a tilted layer were studied by

Linz and Woods (1992). The effects of variable porosity and thermal dispersion

were investigated numerically by Hsiao (1998). An analytical and experimental

study of low-Rayleigh-number convection in long tilted fractures, embedded in an

impermeable solid subjected to a vertical temperature gradient, was reported by

Medina et al. (2002). Detailed numerical calculations for steady-state convection in

an inclined porous cavity were made by Baytas and Pop (1999) and calculations of

entropy generation were reported by Baytas (2004b) and Baytas and Baytas (2005).

MHD problems were studied numerically by Khanafer and Chamkha (1998) and

Khanafer et al. (2000).

Combined Rayleigh–Bénard and Tollmien–Schlichting instability in an inclined

fluid layer bounded by two permeable beds was examined by Rudraiah and Wilfred

(1982). Poiseuille-Couette flow in a composite porous medium in an inclined

channel was treated by Liu et al. (2012). Heat transfer in inclined tall cavities

bounded by porous layers was studied by Hasnaoui et al. (1993). The case of

volumetric heating in a porous bed adjacent to a fluid layer in an inclined enclose

was investigated numerically by Chen and Lin (1997). In this case multiple steady-

state solutions are possible. The effect of a magnetic field was added by Mansour

et al. (2010a) and by Al-Badawi and Duwairi (2010). The combined effects of

inclination, anisotropy, and internal heat generation on the linear stability of the

basic parallel flow were analyzed by Storesletten and Rees (2004). They found that

the preferred motion at the onset of convection depends strongly on the anisotropy

ratio ξ ¼ KL/KT. When ξ < 1 the preferred motion is longitudinal rolls for all

inclinations. When ξ > 1 transverse rolls are preferred for small inclinations but at

high inclinations longitudinal rolls are preferred, while at intermediate inclinations

the preferred roll orientation varies smoothly between these two extremes. The case

of an anisotropic medium with oblique principal axes was examined by Rees et al.

(2006b). They found that when the principal axes are not aligned with the coordi-

nate directions and when the ratios of principal permeabilities or diffusivities are

not too small or too large, there is always a smooth transition in the orientation of

the most dangerous mode of instability as the inclination increases from the
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horizontal, but in the more extreme cases there may be sudden changes in orienta-

tion, Rayleigh number, and wavenumber.

Convection in tilted cylindrical cavities embedded in rocks subject to a uniform

temperature gradient was studied theoretically by Sanchez et al. (2005a, b). Passive

dispersion in symmetrically interconnected layers was studied by Sanchez and

Medina (2006).

Weak 2D convective plumes in a sloping porous layer were studied by

McKibbin (2009), while convection in layered sloping warm-water aquifers was

treated by McKibbin et al. (2011), and the instability of this flow was examined by

McKibbin (2012, 2014). The linear stability of the problem with isoflux boundaries

was analyzed by Rees and Barletta (2011). For a rectangular channel heated from

below with uniform flux, Barletta and Storesletten (2011b) examined linear stabil-

ity to transverse and longitudinal roll disturbances. They found that the onset of

transverse rolls occurs when the Darcy–Rayleigh number exceeds a critical value

that increases with the inclination angle. The critical Darcy–Rayleigh number is

discontinuous at the inclination angle 23.4749� above the horizontal. They also

showed that, when the inclination angle exceeds 31.3618�, either the transverse

rolls are stable or a second discontinuous transition to a higher branch of instability

occurs. The longitudinal rolls may be unstable for every inclination except for the

vertical.

The case of local thermal nonequilibrium was analyzed by Barletta and Rees

(2015). The effect of viscous dissipation on the onset of convection in an inclined

layer was studied by Nield et al. (2011). The unstable buoyant flow produced by an

internal heat source was studied by Barletta et al. (2014c).

Oztop (2007) studied convection in partly cooled inclined rectangular enclo-

sures. Convection in an open-ended inclined channel was treated by Kiwan and

Khadier (2008), Dai et al. (2011), and Oztop et al. (2012a). Time-periodic boundary

conditions were treated by Wang et al. (2007b, c, e, 2008a, b, 2010b). Entropy

variation for a case of unsteady convection with radiation was treated by Slimi

(2006). Other unsteady flows were studied by Zeng et al. (2011) (experimentally)

and Tian et al. (2014) (heat generation). Further studies of convection in tilted

cavities were carried out by Báez and Nicolás (2006, 2007), Basak et al. (2013c)

(heatlines, entropy generation minimization), Saleh et al. (2013) (rotation), Saleh

and Hashim (2013a, b) (heatlines, sinusoidal boundary conditions), Selamat and

Hashim (2013) (inclined trapezoidal cavity), and Yang et al. (2008) (inclined cube

enclosure, temperature oscillation). The case of a bilayered medium and

nonsymmetrical heating was studied by Ould-Amer and Bennacer (2012). The

control of convection and entropy generation was examined by Heidary et al.

(2012). Spatial sidewall temperature variations were incorporated by Selemat

et al. (201b). An enclosure with a sinusoidal hot wall was investigated by

Janalizadeh et al. (2013). An inclined trapezoidal cavity was studied by Cheong

et al. (2014). Radiation in a box with a corner heater was examined by Ahmed et al.

(2014a, b). Ahmed et al. (2016a, b) studied conjugate convection in a square

enclosure with finite wall thickness and partly heated left sidewall. Osman and

Duwairi (2014, 2015) applied the Forchheimer model to an inclined box. Singh
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et al. (2015a) presented heatlines and thermal management analysis for convection

in inclined square cavities. Heidary et al. (2016) studied the effect of a partition and

a magnetic field on convection and entropy generation in an inclined cavity.

Adekeye et al. (2016) studied the effect of a magnetic field on convection in an

inclined elliptical enclosure with localized heating. Guerrero-Martinez et al. (2016)

reported some three-dimensional numerical modelling. An analysis incorporating

heatlines and entropy generation was carried out by Biswal et al. (2016b). The case

of a bidisperse medium was investigated by Falsaperla et al. (2016). Entropy

generation in an inclined square enclosure was studied by Meshram et al. (2016b).

The combined effects of heterogeneity (the case of a layered medium) and local

thermal nonequilibrium were investigated by Nield et al. (2016).

7.9 Inclined Temperature Gradient

We now discuss an extension to the Horton–Rogers–Lapwood problem. We sup-

pose that a uniform horizontal temperature gradient βH is imposed on the system, in

addition to the vertical temperature gradient ΔT/H. The boundary conditions used

in Sect. 6.1 are now replaced by

T ¼ To þ ΔT � βHx at z ¼ 0, T ¼ To � βHx at z ¼ H: ð7:112Þ
The basic steady-state solution, in nondimensional form, is now given by

ub ¼ bβHRa bz � 1

2

� �
, ð7:113Þ

Tb ¼ To

ΔT
þ 1� bβHbx �bz � 1

12
bβ2
H Ra bz � 3bz2 þ 2bz3� �

, ð7:114Þ

where

bβH ¼ βHH

ΔT
: ð7:115Þ

Equation (6.23) is unchanged, but (Eq. 6.22) is replaced by

D2 � α2 � s� i lub
� �

θ þ ibβH

l

α2

� �
DW �WDTb ¼ 0: ð7:116Þ

The system (6.22), (6.24), and (7.116) can be solved using the Galerkin method.

Some approximate results based on a low-order approximation and with γa assumed

negligible were obtained by Nield (1991a). He found that longitudinal stationary

modes (l¼ 0, s¼ 0) are the most unstable modes. For the first such mode the critical

values are
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α1 ¼ π, Ra1 ¼ 4π2 þ Ra2H
4π2

, ð7:117Þ

where the horizontal Rayleigh number RaH is defined by

RaH ¼ bβHRa ¼
gβKH2βH

ναm
: ð7:118Þ

For small bβH, Eq. (7.117) agrees with the approximation obtained by Weber

(1974), namely

Ra ¼ 4π2 1þ bβ2
H

� �
: ð7:119Þ

For the second mode, the critical values are

α2 ¼ 2π, Ra2 ¼ 16π2 þ Ra2H
16π2

: ð7:120Þ

We see that Ra2 > Ra1 for RaH < 8π2, but Ra2 < Ra1 when RaH > 8π2. Thus
there is a transition from the first mode to the second as RaH increases.

The effect of increasing RaH is stabilizing because it distorts the basic temper-

ature profile away from the linear one and ultimately changes the sign of its slope in

the center of the channel. More accurate results, reported by Nield (1994d), showed

that as RaH increases the critical value of Ra reaches a maximum and passes

through zero. This means that the Hadley flow becomes unstable, even in the

absence of an applied vertical gradient, when the circulation is sufficiently intense.

The flow pattern changes from a single layer of cells to two or more superimposed

layers of cells (superimposed on the Hadley circulation) as RaH increases. Yet more

accurate results, together with the results of a nonlinear energy stability analysis,

were reported by Kaloni and Qiao (1997). Two very accurate methods for deter-

mining the eigenvalues and eigenfunctions involved with such problems were

discussed by Straughan and Walker (1996b).

Direct numerical simulations of supercritical Hadley circulation, restricted to

transverse secondary flow, were performed by Manole and Lage (1995) and Manole

et al. (1995). The results are in general accord with the linear stability analysis.

Beyond a threshold value of RaH the Hadley circulation evolves to a time-periodic

flow and the vertical heat transfer increases. The secondary flow emerges in the

form of a traveling wave aligned with the Hadley flow direction. At low supercrit-

ical values of Ra, this traveling wave is characterized by the continuous drifting of

two horizontal layers of cells that move in opposite directions. As Ra increases, the

traveling wave becomes characterized by a single layer of cells drifting in the

direction opposite to the applied horizontal temperature gradient. The extension to

the anisotropic case, or to include the effect of internal heat sources, was made by

Parthiban and Patil (1993, 1995).
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Nield (1990) also investigated the effect of adding a net horizontal mass flux

Q in the x direction. This is destabilizing and at sufficiently large values of

Q instability is possible in the absence of a vertical temperature gradient. Q also

has the effect of smoothing out the transition from one mode to the next. More

accurate results and a supplementary nonlinear analysis were reported by Qiao and

Kaloni (1997). In this connection new computational methods described by

Straughan and Walker (1996b) are useful. The effect of vertical throughflow was

incorporated by Nield (1998b). This study was extended to include absolute and

convective instabilities by Brevdo (2009) and Brevdo and Ruderman (2009a, b).

The effect of a gravitational field varying with distance in the layer and with the

additional effects of vertical throughflow, or volumetric heating with or without

anisotropy, was analyzed by Alex et al. (2001), Alex and Patil (2002a, b), and

Parthiban and Patil (1997). Nonlinear instability studies, for the cases of vertical

throughflow and variable gravity, were conducted by Qiao and Kaloni (1998) and

Kaloni and Qiao (2001). Horizontal mass flux and variable gravity effects were

considered by Saravanan and Kandaswamy (2003b). The topic of this section has

been reviewed by Lage and Nield (1998).

The linear instability of the Darcy-Hadley flow in an inclined layer was studied

by Barletta and Rees (2012b). They found that longitudinal modes are selected.

They treated three regimes: (1) upward-cooling, (2) upward-heating, (3) buoyancy

balanced. In regime 3 the basic state is one of zero velocity and vertical temperature

gradient. In regime 1, with fixed RaH, increasing the inclination angle φ leads to a

destabilizing effect. When φ exceeds a value that depends of RaH the basic solution

becomes unstable for every Ra. In regime 2 increasing φ leads to stabilization.

Vertical heterogeneity was added by Barletta and Nield (2012a).

The effect of viscous dissipation on the Hadley–Prats problem (with horizontal

throughflow) was studied by Barletta and Nield (2010). The effect of vertical

heterogeneity on the Hadley flow was investigated by Barletta and Nield (2012a).

The case of a horizontal temperature gradient with asymmetric thermal boundary

conditions was studied by Barletta and Rossi di Schio (2012).

7.10 Periodic Heating

Lage and Bejan (1993) showed that when an enclosed saturated porous medium is

heated periodically from the side, the buoyancy-induced circulation resonates to a

well-defined frequency of the pulsating heat input. The resonance is characterized

by maximum fluctuations in the total heat transfer rate through the vertical

midplane of the enclosure. Lage and Bejan (1993) demonstrated this principle for

an enclosure filled with a clear fluid and an enclosure filled with a fluid-saturated

porous medium. They showed that the resonance frequency can be anticipated

based on theoretical grounds by matching the period of the pulsating heat input to

the period of the rotation (circulation) of the enclosed fluid. Below we outline Lage

432 7 Internal Natural Convection: Heating from the Side



and Bejan’s (1993) scale analysis of the resonance frequency in the Darcy and

Forchheimer flow regimes.

Consider the two-dimensional configuration of Fig. 7.1 and assume that the

flow is in the Darcy regime. The period of the fluid wheel that turns inside the

enclosure is

w � 4H

ν
ð7:121Þ

where v is the scale of the peripheral velocity of the wheel and 4H is the wheel

perimeter in a square enclosure. The velocity scale is given by Eq. (7.12),

v � αm
H

Ra ð7:122Þ

where Ra ¼ gβKH �Th � Tcð Þ= ναmð Þ is the Darcy modified Rayleigh number based

on the average side-to-side temperature difference �Th � Tcð Þ. The hot-side temper-

ature (Th) varies in time because the heat flux through that wall is administered in

pulses that vary between q
00
M (maximum) and zero. The cold-side temperature (Tc) is

fixed.

The v scale can be restated in terms of the flux Rayleigh number Ra* ¼ gβKH2

q
00
M= ναmkmð Þ by noting that Ra ¼ Ra*=Nu, where in accordance with Eq. (7.49)

Nu ¼ q
00
MH

k �Th � Tcð Þ � Ra
2=5
* ð7:123Þ

Combining the relations listed between Eqs. (7.121) and (7.123) we obtain

v � (αm/H ) Ra
3=5
* and the critical period for resonance (Lage and Bejan 1993):

w � 4
H2

αm
Ra

�3=5
* Darcyð Þ ð7:124Þ

At higher Rayleigh numbers, when the Forchheimer term (χ/ν)v2 is greater than
the Darcy term (v) on the left side of Eq. (7.90), the vertical velocity scale is

(cf. Table 7.1):

v � αm
H

Ra1=21 : ð7:125Þ

In this expression Ra1 ¼ gβKH2 �Th � Tcð Þ= χ α2m
� �

is the Forchheimer-regime

Rayleigh number. Next, we introduce the flux Rayleigh number for the

Forchheimer regime, Ra1* ¼ gβKH3q
00
M= χ α2mkm
� �

, and note that Ra1 ¼ Ra1*=

Nu and Nu � Ra
1=5
1*. These relations produce the following scaling law for the

critical period (Lage and Bejan 1993):

w � 4
H2

αm
Ra

�2=5
1* Forchheimerð Þ ð7:126Þ
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Three findings were extended and strengthened by subsequent numerical and

theoretical studies of the resonance phenomenon. Antohe and Lage (1994) gener-

alized the preceding scale analysis and produced a critical-frequency scaling law

that unites the Darcy and Forchheimer limits [Eqs. (7.124) and (7.126)] with the

clear fluid limit, which had been treated separately in Lage and Bejan (1993). The

effect of the pulse amplitude was investigated by Antohe and Lage (1996), who

showed that the convection intensity within the enclosure increases linearly with

the heating amplitude. The convection intensity decreases when the fluid Prandtl

number increases or decreases away from a value of order one (Antohe and Lage

1997a).

The corresponding phenomenon in forced convection was analyzed theoretically

and numerically by Morega et al. (1995). Their study covered both the clear fluid

(all Pr values) and saturated porous medium limits of the flow parallel to a plane

surface with pulsating heating. The critical heat pulse period corresponds to the

time scale of one sweep over the surface, i.e., the time of boundary layer renewal.

The effect of local thermal nonequilibrium was studied by Khadrawi et al.

(2005b). Convection in a square cavity with an oscillating wall temperature was

studied by Saeid (2006d). Mirehei and Lage (2016) studied numerically, with a

continuum approach, convection in a box with four large square solid obstacles

symmetrically placed, with a time-periodic high temperature on one vertical wall

and a constant low temperature on the other. They observed a boundary-layer

interference phenomenon.

7.11 Sources in Confined or Partly Confined Regions

The problem of nuclear waste disposal has motivated a large number of studies of

heat sources buried in the ground. An early review of the subject is that by Bau

(1986a, b).

The analyses of Bau (1984b) for small Ra and Farouk and Shayer (1988) for Ra

up to 300 apply to a cylinder in the semi-infinite region bounded by a permeable

plane. This geometry is applicable to the experiments conducted by Fernandez and

Schrock (1982). The numerical work is aided by a preliminary transformation to

bicylindrical coordinates.

Himasekhar and Bau (1987) obtained analytical and numerical solutions for

convection induced by isothermal hot or cold pipes buried in a semi-infinite

medium with a horizontal impermeable surface subject to a Robin thermal bound-

ary condition. Himasekhar and Bau (1988a) made a theoretical and experimental

study of convection around a uniform-flux cylinder embedded in a box. They found

a transition from a two-dimensional steady flow to a three-dimensional oscillatory

flow as the Rayleigh number increased. A similar problem with a sheath of different

permeability surrounding the pipe was examined numerically and experimentally

by Ngo and Lai (2005, 2007). Hsiao et al. (1992) studied two-dimensional transient

convection numerically on the Brinkman–Forchheimer model with thermal
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dispersion and nonuniform porosity allowed for. The effects of these two agencies

increase the predicted heat flux, bringing it more in line with experimental data.

Murty et al. (1994a) used the Brinkman et al. Forchheimer model to study numer-

ically convection around a buried cylinder using a penalty function method.

Muralidhar (1992) summarized some analytical and numerical results for the

temperature distribution around a cylinder (or an array of cylinders), for free or

forced convection, with temperature or heat flux prescribed on the cylinder and

Darcy’s law assumed. Muralidhar (1993) made a numerical study of heat and mass

transfer for buried cylinders with prescribed heat flux and leach rates. He obtained

the temperature and concentration distributions on the surface of the containers

under a variety of conditions. The case of a buried elliptic heat source with a

permeable surface was studied numerically on the Darcy model by Facas (1995b).

An ellipse with its minor axis horizontal yields much higher heat transfer rates than

one with its major axis horizontal. The heat transfer depends little on the burial

depth. A numerical study using the Brinkman–Forchheimer model of steady and

transient convection from a corrugated plate of finite length placed in a square

enclosure was performed by Hsiao and Chen (1994) and Hsiao (1995).

Anderson and Glassner (1990) fitted experimental steady-state temperature

measurements in a porous medium containing a buried heater to a theoretical

model vertical cylindrical source of finite height placed in a box with a pyramid

lid, with a constant heat transfer coefficient at the upper free surface. They derived a

simple one-dimensional model relating power input to surface temperature

irrespective of the values of permeability, source size, and depth, and they showed

that this was useful in monitoring the self-heating in stockpiles of coal, for example,

and was consistent with the experiments.

Numerical modeling on the Brinkman–Forchheimer model, of convection

around a horizontal circular cylinder, was carried out by Christopher and Wang

(1993). They found that the presence of an impermeable surface above the cylinder

significantly alters the flow field and reduces the heat transfer from the cylinder,

while recirculating zones may develop above the cylinder, creating regions of low

and high heat transfer rates. As expected, the Forchheimer term reduces the flow

velocity and heat transfer, especially for the case of large Da.

Facas (1994, 1995a) has investigated numerically on the Darcy model convec-

tion around a buried pipe with two horizontal baffles attached and with a permeable

bounding surface. They handled the complicated geometry using a body-fitted

curvilinear coordinate system.

The case of a horizontal line heat source placed in an enclosure of rectangular

cross section was studied numerically on the Darcy model by Desrayaud and

Lauriat (1991). Their results indicated that the heat fluxes transferred to the walls

and the source temperature vary strongly with the thermal conductivity of the side

walls and the convective boundary condition at the ground. Further, for burial

depths larger than the width of the cavity, the flow may be unstable to small

disturbances and as a result the thermal plume may be deflected toward one of

the side walls.
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Oosthuizen and Naylor (1996a) studied numerically heat transfer from a cylinder

placed on the vertical centerline of a square enclosure partially filled with a porous

medium. Oosthuizen and Paul (1992), Oosthuizen (1995), and Oosthuizen and

Naylor (1996b) used a finite element method to study heat transfer from a heated

cylinder buried in a frozen porous medium in a square container, the flow being

steady, two-dimensional, and with Darcy’s law applicable and with either uniform

temperature or heat flux specified on the cylinder and with one or more of the walls

of the enclosure held at some subfreezing point temperature (or temperatures).

The inverse determination of a heat source from natural convection in a cavity

was investigated by Wong and Xie (2011), while Sankar et al. (2011a) studied

convection in a cavity with partly thermally active side walls. A conjugate problem,

involving a three-dimensional enclosure with a source, was studied by Sheremet

and Trifonova (2014). Convection from a buried pipeline was examined by Rossi di

Schio et al. (2016).

7.12 Effects of Rotation

The problem of stability of free convection in a rotating porous slab with lateral

boundaries at different temperatures and rotation about a vertical axis so that the

temperature gradient is collinear with the centrifugal body force was treated analyt-

ically by Vadasz (1994a, 1996a, b), first for a narrow slab adjacent to the center of

rotation and then distant from the center of rotation. In the limit of infinite distance

from the axis of rotation, the problem is analogous to that of gravitational buoyancy-

induced convection with heating from below, the critical value of the centrifugal

Rayleigh numberRaω0
(defined as in Eq. (6.190)) being 4π2 for the case of isothermal

boundaries. At finite distance from the axis of rotation, a second centrifugal Rayleigh

number Raω1
(one proportional to that distance) enters the analysis. The stability

boundary is given by the equation Raω1
=7:81π2ð Þ þ Raω0

=4π2ð Þ ¼ 1. The convec-

tion appears in the form of superimposed rolls.

The case where the axis of rotation is within the slab so that the centrifugal body

force alternates in direction was treated by Vadasz (1996b). He found that the flow

pattern was complex and that the critical centrifugal Rayleigh number and

wavenumber increase significantly as the slab’s cold wall moves significantly

away from the rotation axis. This leads eventually to unconditional stability when

the slab’s hot wall coincides with the rotation axis. Unconditional stability is

maintained when the axis of rotation moves away from the porous domain, so

that the imposed temperature gradient opposes the centrifugal acceleration. Cen-

trifugal convection with a magnetic fluid was analyzed by Saravanan and

Yamaguchi (2005).

A further extension in which gravity and centrifugal forces are taken was made

by Vadasz and Govender (1998). They considered a laterally heated vertical slab far
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away from the axis of rotation and calculated critical values of Raω0
for various

values of a gravitational Rayleigh number Rag.

A related problem involving a slowly rotating (large Ekman number) long box

heated above and rotating about a vertical axis was analyzed by Vadasz (1993).

Now the applied temperature gradient is orthogonal to the centrifugal body force

and the interest is on the Coriolis effect. Vadasz employed an expansion in terms of

small aspect ratio and small reciprocal Ekman number. He showed that secondary

flow in a plane orthogonal to the leading free convection plane resulted. The

controlling parameter is Raω/Ek. The Coriolis effect in a long box subject to

uniform heat generation was investigated analytically by Vadasz (1995). A

nonlinear analysis using the Adomian decomposition method was employed by

Olek (1998). An MHD study incorporating the effect of Hall current was done by

Singh and Kumar (2009). A rotating channel with magnetic field and radiation was

studied by Singh and Garg (2010). Conjugate convection in a three-dimensional

enclosure with a source was studied using various models by Sheremet and

Trifonova (2014).

7.12 Effects of Rotation 437



Chapter 8

Mixed Convection

8.1 External Flow

8.1.1 Inclined or Vertical Plane Wall

We already have discussed one form of mixed convection in a horizontal layer,

namely the onset of convection with throughflow when the heating is from below

(see Sect. 6.10). In this chapter we discuss some more general aspects of mixed

convection. Since we have dealt with natural convection and forced convection in

some detail, our treatment of mixed convection in a porous medium [first treated by

Wooding (1960b)] can be brief. It is guided by the surveys by Lai et al. (1991a) and

Lai (2000). We endorse the statement by Lai (2000) that despite the increased

volume of research in this field, experimental results are still very few. In particular

experimental data on thermal dispersion are very scarce and this is hindering the

study of the functional relationship between effective thermal conductivity and

thermal dispersion.

We start with a treatment of boundary layer flow on heated plane walls inclined

at some nonzero angle to the horizontal. The foundational study is that by Cheng

(1977c). This configuration is illustrated in Fig. 8.1. The boundary layer equations

[compare Eqs. (5.5) and (5.6)] for steady flow are

∂2ψ

∂y2
¼ � gxβK

ν

∂T
∂y

ð8:1Þ

∂ψ
∂y

∂T
∂x

� ∂ψ
∂x

∂T
∂y

¼ ∂
∂y

αm
∂T
∂y

� �
: ð8:2Þ

Here �gx is the component of g in the positive x direction, i.e., the direction of

the stream velocity U/ at infinity. The + sign corresponds to the case where the

buoyancy force has a component “aiding” the general flow and the � sign to the
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“opposing” case. We seek a similarity solution and allow for suction/injection at the

wall. Hence we take as boundary conditions the set

y ¼ 0 : T ¼ T1 � Axλ, v ¼ �∂ψ
∂x

¼ axn, ð8:3Þ

y ! 1 : T ¼ T1, u ¼ ∂ψ
∂y

¼ U1 ¼ Bxm, ð8:4Þ

where A, a, and B are constants. The exponentm is related to the angle of inclination

γπ/2 (to the incident free-stream velocity) by the relation γ ¼ 2m/(m + 1).

We find that a similarity solution does exist if λ ¼ m and n ¼ (m � 1)/2. The

range of possibilities includes the cases

λ ¼ m ¼ 0, n ¼ �1/2 (vertical isothermal wall, injection / x�1/2),

λ ¼ m ¼ 1/3, n ¼ �1/3 (wall at 45� inclination, constant heat flux),
λ ¼ m ¼ 1, n ¼ 0 (stagnation flow normal to vertical wall (Fig. 1.1e), linear

temperature variation, uniform injection).

With the similarity variables

η ¼ U1x

αm

� �1=2y

x
, f ηð Þ ¼ ψ

αmU1xð Þ1=2
, θ ηð Þ ¼ T � T1

Tw � T1
ð8:5Þ

and the wall suction parameter

f w ¼ �2a= mþ 1ð Þ αmBð Þ1=2, ð8:6Þ

U•

U•

U•

U•

U•

y

y

y
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x x
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γ π
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2
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Fig. 8.1 Definition sketch for mixed convection over an inclined surface
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we obtain the system

f
00 ¼ �Rax

Pex
θ0, ð8:7Þ

θ
00 ¼ � λþ 1

2
f θ0 þ λf 0θ, ð8:8Þ

θ 0ð Þ ¼ 1, f 0ð Þ ¼ fw, θ 1ð Þ ¼ 0, f 0 1ð Þ ¼ 1: ð8:9Þ

The numbers Rax and Pex are defined in Eq. (8.14). The quantity Ra/Pe has been

called the mixed convection parameter by Holzbecher (2004a). For the case when

this parameter is in the range [�3/2, 0] and the plate temperature varies inverse-

linearly with distance, exact dual solutions were obtained byMagyari et al. (2001b).

Such solutions were first investigated by Merkin (1985). Other early studies were

made by Raptis and Perdikis (1986), Seetharamu and Dutta (1988), and Sattar

(1992). A special case that leads to a self-similar solution was studied by Magyari

et al. (2002). Abbasbandy and Shivanian (2011) presented a pseudo-spectral col-

location method capable of dealing with multiple solutions of the boundary layer

problem.

A positive fw indicates withdrawal of fluid. The case of forced convection

corresponds to letting Rax !1. The case of natural convection requires a different

similarity variable. Lai and Kulacki (1990d) obtained and solved these equations.

Their results for the Nusselt number are shown in Fig. 8.2 for the case λ ¼ 0. Those

for λ ¼ 1/3 and λ ¼ 1 are qualitatively similar; the effect of increasing λ is to raise

the Nusselt number slightly. The case of adiabatic surfaces was analyzed by Kumari

et al. (1988a, b).
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Fig. 8.2 Nusselt numbers for aiding and opposing flow with injection and suction on a vertical flat

plate (Lai and Kulacki 1990d)
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The effects of flow inertia and thermal dispersion were studied by Lai and

Kulacki (1988a). Now Eq. (8.1) is replaced by

∂2ψ

∂y2
þ χ

ν

∂
∂y

∂ψ
∂y

� �2

¼ � gxβK

ν

∂T
∂y

, ð8:10Þ

where χ ¼ cF K1/2, and in Eq. (8.2) αm is replaced by αe, the sum of a molecular

diffusivity α0 and a dispersive term α0 ¼ Cudp, where dp is the mean pore diameter

and C is a constant. We treat an isothermal vertical plate, and we suppose that there

is no suction. Equations (8.7)–(8.9) thus are replaced by

f
00 þ FoxRex f 0ð Þ2

h i0
¼ �Rax

Pex
θ0, ð8:11Þ

θ
00 þ 1

2
f θ0 þ CPed f

00
θ0 þ f 0θ

00
� �

¼ 0, ð8:12Þ

θ 0ð Þ ¼ 1, f 0ð Þ ¼ 0, θ 1ð Þ ¼ 0, f 0 1ð Þ ¼ 1: ð8:13Þ

where

Fox ¼ cFK
1=2

x
, Rex ¼ U1x

ν
, Pex ¼ U1x

αm
, Ped ¼ U1dp

αm
, ð8:14Þ

Rax ¼ gxβKx Tw � T1ð Þ
ναm

, Rad ¼
gxβKdp Tw � T1ð Þ

ναm
:

The local Nusselt number Nux is given by

Nux

Pe1=2x

¼ Rax

Pe1=2x

 !1=2

� 1þ CRadf
0 0ð Þ½ � θ0 0ð Þf g: ð8:15Þ

The results of the calculations of Lai and Kulacki (1988a) are shown in Figs. 8.3

and 8.4. The effect of quadratic drag is to reduce the aiding or opposing effect of

buoyancy in increasing Nux=Pe
1=2
x , while that of thermal dispersion is (as expected)

to increase the heat transfer. Non-Darcy effects also were treated by Gorin et al.

(1988), Kodah and Al-Gasem (1998), Tashtoush and Kodah (1998), Elbashbeshy

and Bazid (2000b) with variable surface heat flux, Elbashbeshy (2003) with suction

or injection, and Murthy et al. (2004a) with suction or injection and the effect of

radiation. The effect of variable permeability was studied by Mohammadien and

El-Shaer (2004).

For a vertical surface, higher-order boundary layer theory (for Darcy flow) has

been developed by Merkin (1980) and Joshi and Gebhart (1985). Merkin pointed

out that in the case of opposing flow there is separation of the boundary layer

downstream of the leading edge. Ranganathan and Viskanta (1984) included the
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effects of inertia, porosity variation, and blowing at the surface. They reported the

rather unexpected result that porosity variation affected the Nusselt number by no

more than 1%. Chandrasekhara and Namboodiri (1985) have studied the effect of

variation of permeability and conductivity. Lai and Kulacki (1990c) have examined

the effect of viscosity variation with temperature. They found that for liquids the

Nusselt number values are greater than those for the constant viscosity case and for

gases the reverse holds. Ramaniah and Malarvizhi (1990) have obtained a similarity

solution for the combination of lateral mass flux and inertia when the linear Darcy

drag term is negligible in comparison with the quadratic drag.

Chen and Chen (1990a) have studied the combined effects of quadratic drag,

boundary friction, thermal dispersion, and nonuniform porosity and the consequent

10a b
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Fig. 8.3 Nusselt numbers for aiding and opposing flow on a vertical plate with inertia effects (Lai

and Kulacki 1988a)
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Fig. 8.4 Nusselt numbers for aiding and opposing flow on a vertical plate with inertia and

dispersion effects (Lai and Kulacki 1988a)
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nonuniform conductivity for the case of aiding flow on a vertical surface. As

expected, boundary friction reduces the velocity at the wall, inertia generally

reduces the velocity, thermal dispersion has negligible effect on the velocity, and

nonuniform porosity substantially increases the velocity just out from the wall. The

temperature gradient at the wall is reduced by boundary friction and quadratic drag

and increased by variable porosity; the overall effect is reduction. Consequently,

the local Nusselt number is reduced by boundary friction and quadratic drag and

increased by variable porosity; the overall effect is little change. The local Nusselt

number Nux is increased about threefold by thermal dispersion. The effect of

increase of Rax/Pex is to increase Nux and increase the amount of channeling. The

effects of thermal dispersion and stratification were considered by Hassanien et al.

(1998), while Ibrahim and Omer (2001) and Hassanien and Omer (2002a, b)

considered the effect of variable permeability. Further work on variable porosity

was done by Pal and Mondal (2009, 2010a) (radiation, MHD, stretching sheet). The

case of icy water was studied by Raptis and Pop (1982), Ling et al. (2007a, b, 2009),

Pantokratoras (2009b) (sinusoidal surface temperature distribution), Guedda et al.

(2011) (magnetic field), and by Khan and Gorla (2012a). The effect of suction

(which increases heat transfer) was treated by Hooper et al. (1994b) and Weidman

and Amberg (1996). Conjugate convection was studied by Pop et al. (1995b) and

Shu and Pop (1999).

Comprehensive nonsimilarity solutions were presented by Hsieh et al. (1993a,

b). For a vertical plate, numerical work on non-Darcy models has been reported by

Takhar et al. (1990), Lai and Kulacki (1991a), Yu et al. (1991), Shenoy (1993a),

Chen et al. (1996), Kodah and Duwairi (1996), and Takhar and Bég (1997b).

The numerical studies by Karabis et al. (1995), Gorla et al. (1996), and Chen

(1997a) have discussed the effect of such things as thermal dispersion, porosity

variation, and variable conductivity. Heterogeneous porosity and thermal diffusiv-

ity were studied by Veerraju et al. (2012). Thermal dispersion and viscous dissipa-

tion was discussed by Murthy and Singh (1997b) and Murthy (1998, 2001). The

effect of thermal dispersion was also examined by Sobha et al. (2010). The case of

the plate temperature oscillating with time about a nonzero mean was studied by

Vighnesan et al. (2001). Volumetric heating due to radiation was discussed by

Bakier (2001a, b), Prasad and Hemalatha (2010), and Narayana et al. (2013a)

(viscous dissipation). The case of a piecewise heated wall was studied by Saeid

and Pop (2005c). A stratified fluid was treated by Ishak et al. (2008b). Variable

viscosity was examined by Chin et al. (2007). An anisotropic medium was studied

by Bachok et al. (2010b). The effect of viscous dissipation was treated by Aydin

and Koya (2006, 2008a). For comment on the second paper see Rees and Magyari

(2008) and Nield (2008a). The effect of variable viscosity was examined by Chin

et al. (2007) and Jayanthi and Kumari (2006, 2007) (regular fluid, non-Newtonian

fluid). Further work involving a stretching sheet was done by Kiwan (2006), Hayat

et al. (2008b, 2010a, b), Mukhopadhyay (2009) (radiation, unsteady flows), Pal and

Mondal (2011c) (radiation), and Pantokratoras (2014b). The case of exponential

variation of outer flow or surface temperature was studied by Ramli et al. (2015).

Various aspects of the solutions of the boundary layer equations were studied by
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Guedda (2005a), Brighi and Hoernel (2006), Magyari and Aly (2006a, b), and

Hammouch and Guedda (2013). Ahmed and Das (2013) studied three-dimensional

flow in the presence of a heat sink and a transverse sinusoidal suction velocity.

The case of permeability periodic in the horizontal direction was studied by

Vyas and Tak (2009). A bidisperse medium with and without a wavy wall was

investigated by Cheng (2014d, 2015c). Unsteady convection for the case of non-

uniform slot suction/injection was examined by Samyuktha et al. (2016).

The combined effects of thermophoresis and electrophoresis on particle deposi-

tion onto a vertical plate were studied by Tsai and Huang (2010). The

thermophoresis effect was also studied by Duwairi and Damseh (2008a), Damseh

et al. (2009) (magnetic field), and Seddeek (2006) (viscous dissipation). The effect

of a temperature slip boundary condition was studied by Merkin et al. (2012a). Slip

flow was also studied by Bhattacharya et al. (2013a) (stretching sheet) and

Mukhopadhyay et al. (2014). Convective boundary conditions were treated by

Merkin et al. (2013), Lok et al. (2013), Magyari (2013a), and Pantokratoras

(2014c). Linear and nonlinear stratification effects were studied by RamReddy

et al. (2015). Convection of a ferrofluid over a permeable stretching sheet was

investigated by Zeeshan and Majeed (2016). A detailed numerical study of a

Brinkman porous medium was carried out by Pantokratoras (2016b).

8.1.1.1 Stagnation Point Flow

Stagnation point flow with suction or injection was treated by Yih (1999a, i, j).

Further work on stagnation point flow was reported by Asghar et al. (2008) (some

exact solutions), Harris et al. (2009), Ishak et al. (2008a), Hassanien and Al-Arabi

(2009) (radiation, variable viscosity, unsteady flow), Hayat et al. (2009, 2010a),

Bachok et al. (2010a), Rohni et al. (2012a), and Rosali and Ishak (stretching sheet).

The last authors studied unsteady convection with suction and temperature effects.

In this connection Magyari (2012) found that the solutions bifurcated into a

non-denumerable infinity of solutions, with the corresponding Nusselt number

becoming indeterminate. This he interpreted as a further insufficiency of the

boundary layer approximation. Pal and Chatterjee (2012a, b) studied a micropolar

fluid with radiation and a stretching sheet.

8.1.1.2 Magnetic Field

Despite the fact that the effect of a magnetic field is usually insignificant in a regular

porous medium, MHD studies were conducted by Gorla and Takhar (1991) (tem-

perature-dependent viscosity), Aldoss et al. (1995), Takhar and Bég (1997a),

Chamkha (1998), Chamkha et al. (2002b) (transpiration, viscous heating), Damseh

(2006), Cheng (2007a) (integral solution), Damseh and Tahat (2009)

(thermophoresis particle deposition), Sharma et al. (2007a, b) (heat source/sink),

El-Kabeir et al. (2007) (moving wall, unsteady flow), with comment by
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Pantokratoras (2009a, b), and by Elgazery and Elazem (2009) (non-Newtonian

fluid, unsteady flow), Srinivas and Muthuraj (2010a) (radiation), Pal (2010) (vari-

able porosity), Rashad et al. (2010), Singh et al. (2010) (rotating system), Oztop

et al. (2011a), Ahmed and Kalita (2010) (heat source, oscillatory flow), Pal and

Talukdar (2011) (radiation, chemical reaction, viscous dissipation), Kaya (2012)

(conjugate problem), Reddy (2014c) (radiation, chemical reaction, slip flow),

Abdou et al. (2015) (stagnation point flow, viscoelastic fluid, stretching sheet,

heat generation, radiation), Bhukta et al. (2016) (stretching sheet, nonuniform

heat source, viscous dissipation), Hemalatha and Prasad (2015) (melting, radiation,

viscous dissipation), Hari et al. (2015) (stagnation point flow, chemical reaction,

radiation, heat generation), Ramana Reddy et al. (2016a, b) (oscillatory suction,

radiation, chemical reaction), Barik (2016), RamReddy and Pradeepa (2016)

(chemical reactions, micropolar fluid, convective boundary condition) and Ullah

et al. (2016a) (Casson fluid, stretching sheet, unsteady flow, chemical reaction, heat

generation, convective boundary condition).

8.1.1.3 Transient Convection

Transient convection resulting from a sudden change in wall temperature was

studied by Harris et al. (1998, 1999, 2002). The last paper allowed for a thermal

capacity effect. They made a complete analysis of the steady-state solution (large

times), obtained a series solution for small times, and then linked the two by a

numerical solution for intermediate times. Transient convection near stagnation

point flow was treated by Nazar et al. (2003a) and, using a homotopy analysis

method that produces accurate uniformly valid series solutions, by Cheng et al.

(2005), and also by Rosali et al. (2014). A transient problem involving suction or

injection was studied by Al-Odat (2004b). Unsteady stagnation point flow with a

power-law temperature distribution was examined by Khuri (2007). Some exact

solutions for the case of unsteady flow with temperature slip were found by Fang

et al. (2012) and Merkin et al. (2012a). Unsteady flow past a stretching sheet with

a heat source was studied by Imran et al. (2012). Transient convection with

internal heat generation and oscillating temperature was treated by Duwairi

et al. (2007).

8.1.1.4 Inclined Plate

Flow over an inclined plate was studied by Jang and Ni (1992), Rashidi et al. (2010)

(DTM-Pade method) (see the discussion by Magyari (2011b)), Aydin and Koya

(2011) (magnetic field, radiation), Moradi et al. (2013) (radiation), Mohamed et al.

(2013a, b) (thermophoresis, chemical reaction, radiation, temperature-dependent

viscosity), Rashidi et al. (2012) (generalized differential transform method), and

Rach et al. (2015) (analytical solution, injection/suction).
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8.1.1.5 Non-Newtonian Fluids

Various types of non-Newtonian fluids of have been studied. The case of a

non-Newtonian power-law fluid has been treated by Wang et al. (1990b),

Nakayama and Shenoy (1992, 1993a), Gorla and Kumari (1996, 1998, 1999a, b,

c), Kumari and Gorla (1996), Gorla et al. (1997b), Mansour and Gorla (2000b),

Ibrahim (2001) (variable heat flux), Ibrahim et al. (2000), El-Hakiem (2001a, b),

and Kumari and Jayanthi (2008). A viscoelastic fluid has been studied by Shenoy

(1992), Mastroberardino and Mahableshwar (2013) (stretching sheet), and Abdou

et al. (2015) (magnetic field, stretching sheet, radiation, heat generation). A

micropolar fluid was treated by Bhargava et al. (2003) (stretching sheet),

Abo-Eldahab and El Aziz (2005a) (stretching sheet), Panda et al. (2008) (magnetic

field, radiation, unsteady flow), Mahmoud and Waheed (2012) (stratified medium,

stretching sheet), and Swapna et al. (2014) (magnetic field, stretching sheet,

variable viscosity). A polar fluid was studied by Patil et al. (2012).

8.1.2 Horizontal Wall

For horizontal surfaces the situation is similar to that for vertical surfaces but now

Rax=Pe
3=2
x replaces Rax/Pex as a measure of buoyancy to nonbuoyancy effects.

Cheng (1977d) provided similarity solutions for the cases of (a) horizontal flat plate

at zero angle of attack with constant heat flux and (b) stagnation point flow about a

horizontal flat plate with wall temperature Tw varying as x2.
Minkowycz et al. (1984) dealt with Tw varying as xλ for arbitrary λ, using the

local nonsimilarity method. Chandrasekhara (1985) extended Cheng’s results to the
case of variable permeability (which increases the heat transfer rate). Lai and

Kulacki (1987, 1989a, 1990b) treated quadratic drag (for uniform Ux with Tw
varying as x1/2), thermal dispersion, and flow-injection/withdrawal, respectively.

As in the case of the vertical wall, Nux is decreased by inertial effects and

substantially increased by thermal dispersion effects; it is also enhanced by with-

drawal of fluid across the surface. Chandrasekhara and Nagaraju (1988) and Bakier

and Gorla (1996) included the effect of radiation. Kumari et al. (1990a) treated

quadratic drag and extended the work of Lai and Kulacki (1987) to obtain some

nonsimilarity solutions. The singularity associated with certain outer velocity pro-

files was investigated by Merkin and Pop (1997). Some new similarity solutions for

specific outer velocity and wall temperature distributions were reported by Magyari

et al. (2003a).
Ramaniah et al. (1991) and Elbashbeshy (2001) examined the effect of wall

suction or injection. For the Forchheimer model, Yu et al. (1991) presented a

universal similarity transformation. For the case of variable wall flux, calculations

on the Brinkman model were performed by Aldoss et al. (1994b), while Chen

(1996) used the Brinkman-Forchheimer model and also included the effects of
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porosity variation and thermal dispersion. On the Darcy model and for various

thermal boundary conditions, Aldoss et al. (1993a, b, 1994a) presented

nonsimilarity solutions for a comprehensive set of circumstances. A comprehensive

analysis on the Brinkman-Forchheimer model was presented by Chen (1997b). The

effect of velocity-dependent dispersion was studied by Thiele (1997).

Nonsimilarity solutions were obtained for the case of variable surface heat flux

by Duwairi et al. (1997) and Chen (1998a) and for the case of variable surface

temperature by Chen (1998b). Non-Newtonian fluids were treated by Kumari et al.

(1997), Gorla et al. (1997a, 1998), and Kumari and Nath (2004a). The effect of

radiative flux was added by Kumari and Nath (2004b). The effect of temperature-

dependent viscosity was discussed by Kumari (2001a). Convection above or below

a horizontal plate was discussed by Lesnic and Pop (1998b).

Renken and Poulikakos (1990) presented experimental results of mixed convec-

tion about a horizontal isothermal surface embedded in a water-saturated bed of

glass spheres. They measured the developing thermal boundary layer thickness and

the local surface heat flux. Renken and Poulikakos (1989b) studied a packed bed

adjacent to an isothermal surface. Hayes (1990b) reported a numerical and exper-

imental study of convection at the wall of a packed bed, taking into account the

variation of porosity.

The onset of vortex instability for horizontal and inclined impermeable surfaces

was studied by Hsu and Cheng (1980a, b). They found that the effect of the external

flow is to suppress the growth of vortex disturbances in both aiding and opposing

flows. For the inclined surfaces, aiding flows are more stable than opposing flows

(for the same value of Rax/Pex). For the horizontal surfaces, stagnation point aiding

flows are more stable than parallel aiding flows. A case of unsteady convection near

a stagnation point was analyzed by Nazar and Pop (2004). Jang et al. (1995) showed

that the effect of blowing at the surface is to decrease Nu and make the flow more

susceptible to vortex instability, while suction results in the opposite. The effect of

variable permeability was treated by Hassanien et al. (2003c, 2004a). The effect of

surface mass flux was studied by Murthy and Singh (1997c), together with thermal

dispersion effects, and by Hassanien et al. (2004c) and Hassanien and Omer (2005).

Entropy generation in non-Newtonian fluids was examined by Khan and Gorla

(2011a). The case of a nanofluid was studied by Rosca et al. (2012).

The above theoretical papers have dealt with walls of infinite length. The case of

a wall of finite length was studied analytically and numerically, on the Darcy

model, by Vynnycky and Pop (1997). They observed flow separation for both

heating and cooling.

8.1.3 Cylinder or Sphere

For an isothermal sphere or a horizontal cylinder in the presence of an otherwise

uniform vertically flowing stream, Cheng (1982) obtained boundary layer equations

in the form
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1

rn
∂2ψ

∂y2
¼ gβK

ν
sin

x

r0

� �
∂T
∂y

, ð8:16Þ

1

rn
∂ψ
∂y

∂T
∂x

� ∂ψ
∂x

∂T
∂y

� �
¼ αm

∂2
T

∂y2
, ð8:17Þ

where

u ¼ 1

rn
∂ψ
∂y

, v ¼ � 1

rn
∂ψ
∂x

: ð8:18Þ

In these equations n ¼ 0 for a horizontal cylinder, n ¼ 1 for a sphere, and r ¼ ro
sin (x/ro) where ro is the radius of the sphere or cylinder. These apply when x is

measured from the lower stagnation point and y is in the normal (radial) direction.

This configuration is sketched in Fig. 8.5.

The appropriate boundary conditions are

y ¼ 0 : T ¼ Tw,
∂ψ
∂x

¼ 0, ð8:19Þ

y ! 1 : T ¼ T1,
1

rn
∂ψ
∂y

¼ U xð Þ ¼ U1An sin
x

r0

� �
, ð8:20Þ

where U(x) is the tangential velocity on the surface (given by potential theory), so

A0 ¼ 2 and A1 ¼ 3/2. The introduction of nondimensional variables defined by

ψ ¼ αr no AnU1r0=αmð ÞGn χð Þf ηð Þ, ð8:21Þ

ro

0 x

y

χ

g

TW

U• T•

Fig. 8.5 Definition sketch

for mixed convection over a

horizontal cylinder or a

sphere
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θ ¼ T � T1
Tw � T1

, ð8:22Þ

η ¼ AnU1ro=αmð Þ1=2 y=roð ÞHn χð Þ, ð8:23Þ

where

χ ¼ x=ro, G0 χð Þ ¼ 1� cos χð Þ1=2, G1 χð Þ ¼ cos 3χ
3

� cos χ þ 2
3

� �1=2
H0 χð Þ ¼ sin χ=G0 χð Þ, H1 χð Þ ¼ sin 2χ=G1 χð Þ,

ð8:24Þ

reduces the problem to finding the solution of

f
00 ¼ Ra

Pe
θ0, θ

00 ¼ �1

2
f θ0, ð8:25Þ

f 0ð Þ ¼ 0, θ 0ð Þ ¼ 1, f 0 1ð Þ ¼ 1, θ 1ð Þ ¼ 0, ð8:26Þ

which is the set [Eqs. (8.7)–(8.9)] for λ¼ 0, fw ¼ 0. Here Ra and Pe are based on r0.
Thus the solution for an isothermal sphere or horizontal cylinder can be deduced

from that for a vertical plate.

Following the same approach, Huang et al. (1986) obtained the solution for the

constant heat flux case. Minkowycz et al. (1985a) obtained approximate solutions

for a nonisothermal cylinder or sphere using the local nonsimilarity method.

Kumari et al. (1987) made more precise calculations for flow about a sphere.

Badr and Pop (1988) considered aiding and opposing flows over a horizontal

isothermal cylinder using a series expansion plus a finite-difference scheme. They

found that for opposing flows there exists a recirculating flow zone just above the

cylinder. For a similar situation, Badr and Pop (1992) studied the effect of varying

the stream direction.

For horizontal cross flow over a horizontal cylinder below an impermeable

horizontal surface, Oosthuizen (1987) performed a numerical study. He found

that the presence of the surface has a negligible effect on heat transfer when the

depth of the cylinder is greater than three times its diameter. The heat transfer is a

maximum when the depth of the axis is about 0.6 times the diameter. The presence

of the surface increases local heat transfer coefficients on the upper upstream

quarter of the cylinder and decreases it on the upper downstream quarter, while

buoyancy increases it on the upper upstream quarter and decreases it on the lower

downstream quarter. The experiments by Fand and Phan (1987) were confined to

finding correlations for overall Nusselt number data for horizontal cross flow over a

horizontal cylinder. A horizontal cylinder was also studied by Hassanien and

Rashed (2010, 2011) (variable viscosity and thermal conductivity) and Kumari

and Pop (2009) (bidisperse medium).

The problem of longitudinal flow past a vertical cylinder was analyzed by

Merkin and Pop (1987a), who found that a solution of the boundary layer equations
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was possible only when Ra/Pe¼�1.354, and that there is a region of reversed flow

when Ra/Pe < �1. Here the minus sign indicates opposing flow. Reda (1988)

performed experiments and a numerical analysis (without a boundary layer approx-

imation) for opposing flow along a vertical cylinder of finite length. He found that

buoyancy-induced upflow disappeared when |Ra/Pe| ¼ 0.5. Ingham and Pop

(1986a, b) analyzed the boundary layers for longitudinal flow past a vertical

cylinder and horizontal flow past a vertical cylinder. For the case of a permeable

vertical thin cylinder an exact solution was found by Magyari et al. (2005a). A

three-dimensional problem involving the combined effects of wake formation and

buoyancy on convection with cross flow about a vertical cylinder was numerically

simulated by Li and Kimura (2005a, b). The effect of nonuniform suction or

injection was studied by Kumari et al. (2007).

Inertial effects on heat transfer along a vertical cylinder, with aiding or opposing

flows, were analyzed by Kumari and Nath (1989a). As expected, their results show

that inertial effects reduce heat transfer. Heat transfer still increases with buoyancy

increase for aiding flows and decreases for opposing flows. Kumari and Nath (1990)

have studied inertial effects for aiding flow over a nonisothermal horizontal cylin-

der and a sphere. For a vertical cylinder, numerical studies on the Brinkman-

Forchheimer model, with the effects of porosity variation and transverse thermal

dispersion included, were reported by Chen et al. (1992) and for conjugate convec-

tion by Chen and Chen (1991), while nonsimilarity solutions were found by Hooper

et al. (1994b) and Aldoss et al. (1996). The magnetohydrodynamic case was treated

by Aldoss (1996) and Duwairi and Al-Kablawi (2006) (conjugate problem, vertical

hollow cylinder). Kumari et al. (1993) included the effect of thermal dispersion. A

problem involving variable surface heat flux was analyzed by Pop and Na (1998).

Further numerical studies by Zhou and Lai (2002) revealed that oscillatory flows

occur for opposing flows at high Grashof number to Reynolds number ratios. The

case of a non-Newtonian fluid was discussed by Mansour et al. (1997). Convection

about a cylinder rotating about its axis was studied by Kamath et al. (1992). A

numerical simulation was performed by Li and Kimura (2005a, b). Kaya (2011)

studied a conjugate problem with convection about a vertical slender hollow

cylinder embedded in a porous medium of high porosity. A bidisperse porous

medium was treated by Cheng (2014b). A stretching cylinder was examined by

Mukhopadhyay (2012) and Khalili et al. (2013) (heat generation or absorption).

The double-diffusive and MHD problem for an unsteady (oscillatory or uniform

acceleration) vertical flow over a horizontal cylinder and a sphere was analyzed by

Kumari and Nath (1989b). MHD convection from a horizontal cylinder was also

treated by Aldoss and Ali (1997). A substantial study of convection from a suddenly

heated horizontal cylinder was reported by Bradean et al. (1998b). A correction to

their results was pointed out by Diersch (2000). The Brinkman model was applied

to the case of a horizontal cylinder by Nazar et al. (2003b). Convection around line

sources and heated horizontal cylinders was studied by Oberlack (2001).

An experimental and numerical investigation around a circular cylinder through

rectangular and trapezoidal open-cell aluminum foams was reported by Mahdi et al.

(2015a, b).
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For convection over a sphere, Tung and Dhir (1993) performed experiments and

Nguyen and Paik (1994) carried out further numerical work. The latter considered

variable surface temperature and variable surface heat flux conditions and they

noted that recirculation was possible when the forcing flow opposed the flow

induced by buoyancy, as in the case of cylinders. Unsteady convection around a

sphere at low Péclet numbers for the case of sudden heating was analyzed by Sano

and Makizono (1998). Unsteady mass transport from a sphere at finite Péclet

numbers was studied by Feng and Michaelides (1999). Transient conjugate con-

vection from a sphere with pure saline water was treated numerically by Paik et al.

(1998). Radiation effects on convection over a nonisothermal sphere or cylinder

were studied by Duwairi (2006). Khan et al. (2013a, b, c) investigated the case of a

cylinder. The case of a vertical cylinder with a nanofluid was studied by Gorla et al.

(2011a) and Rohni et al. (2012a, b). For a cylinder or sphere, the case of a non-

Newtonian fluid was studied by Al-Hamad and Duwairi (2007). Convection around

a sphere was also studied by Fauzi et al. (2014) (heat source or sink) and Bell et al.

(2014) (low Péclet number). The boundary layer flow near the lower stagnation

point of a cylinder was studied using a thermal nonequilibrium model by Rosali

et al. (2016).

8.1.4 Other Geometries

Introducing a general transformation, Nakayama and Koyama (1987b) showed that

similarity solutions are possible for two-dimensional or axisymmetric bodies of

arbitrary shape provided the external free-stream velocity varies as the product of

the streamwise component of the gravitational force and the wall-ambient temper-

ature difference. Examples are when Tw � T1 varies as the same power function as

U1 for a vertical wedge or a vertical cone. In these cases the problem can be

reduced to the vertical plate problem solved by Cheng (1977c).

Invoking the slender body assumption, Lai et al. (1990c) have obtained similar-

ity solutions for two other problems, namely accelerating flow past a vertical

cylinder with a linear temperature variation along the axis and uniform flow over

a paraboloid of revolution at constant temperature. They found that Nux=Pe
1=2
x

decreases with an increase in the dimensionless radius of a cylinder, but for

paraboloids of revolution this is so only when Rax/Pex is not too large.

Chen and Chen (1990b) have studied the flow past a downward projecting plate

fin in the presence of a vertically upward free stream, incorporating the effects of

quadratic drag, boundary friction, variable porosity, and thermal dispersion. A

vertical cylindrical fin was investigated by Gill et al. (1992) and Aly et al. (2003).

For mixed convection in the thermal plume over a horizontal line heat source,

Cheng and Zheng (1986) obtained a local similarity solution. They performed

calculations for the thermal and flow fields and for heat transfer with the effects

of transverse thermal dispersion and quadratic drag included. Further studies of this
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problem were reported by Lai (1991c) and Pop et al. (1995a). A line heat source

embedded at the leading edge of a vertical adiabatic surface was examined by Jang

and Shiang (1997). A heat source/sink effect onMHD convection in stagnation flow

on a vertical plate was studied numerically by Yih (1998a).

Vargas et al. (1995) employed three different methods of solution for mixed

convection on a wedge in a porous medium with Darcy flow. The methods were

local nonsimilarity, finite elements in a boundary layer formulation, and finite

elements in a formulation without boundary layer approximations. For wedges

with uniform wall temperature in the range 0.1 � Rax/Pex � 100, the three

methods produced results that are in very good agreement. New solutions were

reported for wedges with half angles of 45�, 60�, and 90�. Convection over a

wedge also has been treated by Kumari and Gorla (1997) for the case of a

nonisothermal surface, by Mansour and Gorla (1998) and Mansour and

El-Shaer (2004) for the case of a power-law fluid with radiation, by Gorla and

Kumari (2000) for a non-Newtonian fluid and with variable surface heat flux, and

by Hassanien (2003) for variable permeability and with variable surface heat flux.

Studies for the entire regime were carried out by Ibrahim and Hassanien (2000)

for variable permeability and a nonisothermal surface and by Yih (2001a) with a

radiation effect included. Transient convection resulting from impulsive motion

from rest and a suddenly imposed wedge surface temperature was studied numer-

ically by Bhattacharyya et al. (1998). Steady MHD convection with variable

permeability, surface mass transfer, and viscous dissipation was investigated by

Kumari et al. (2001). Further work with a wedge was done by Al-Odat et al.

(2005) (radiation), Khan and Gorla (2010a, b, c, 2011b, c) (icy water, power-law

fluid), Muhaimin et al. (2012) and Rashidi et al. (2014b) (magnetic field, visco-

elastic fluid, radiation). A second law analysis for a non-Newtonian fluid was

reported by Gorla et al. (2012). A wedge with thermophoresis particle deposition

was studied by Muhaimin et al. (2013a, b, c) (note that the last paper was

retracted). A wedge with nonuniform slot suction/injection and a magnetic field

was examined by Ganapathirao et al. (2016).

Ingham and Pop (1991) treated a cylinder embedded to a wedge. Oosthuizen

(1988b) studied a horizontal plate buried beneath an impermeable horizontal

surface. Kimura et al. (1994) investigated heat transfer to ultralarge-scale heat

pipes placed in a geothermal reservoir. Thermal dispersion effects on non-Darcy

convection over a cone were studied by Murthy and Singh (2000). MHD convection

from a rotating cone was studied by Chamkha (1999). The effect of radiation on

convection from an isothermal cone was studied by Yih (2001b). The entire regime

for convection about a cone was investigated by Yih (1999g). The case of a cone

with radiation and variable permeability was studied by El-Amin et al. (2011a).

A cone with radiation-conduction interaction was investigated by Kaya (2014). A

cone in a tridisperse porous medium was examined by Cheng (2015a, b).

A special geometry was considered in the early numerical and experimental

study by Jannot et al. (1973). Heat transfer over a continuously moving plate was

treated numerically by Elbashbeshy and Bazid (2000a). Convection over a

wavy vertical surface with radiation and variable properties was studied by

Srinivasacharya et al. (2015b).
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8.1.5 Unified Theory

We now present the unified theory of Nakayama and Pop (1991) for mixed

convection on the Forchheimer model about plane and axisymmetric bodies of

arbitrary shape. The boundary layer equations are

1

r*

∂r*u
∂x

þ ∂v
∂y

¼ 0, ð8:27Þ
ν

K
uþ cF

K1=2
u2 ¼ ν

K
u1 þ cF

K1=2
u21 þ gxβ T � T1ð Þ, ð8:28Þ

u
∂T
∂x

þ v
∂T
∂y

¼ αm
∂2

T

∂y2
, ð8:29Þ

with the boundary conditions

y ¼ 0 : v ¼ 0, T ¼ Tw xð Þ, ð8:30aÞ

y ¼ 1 : u ¼ u1 xð Þ or T ¼ T1, ð8:30bÞ

where

r* ¼ 1, planebody,

r xð Þ, axisymmetric body

(
ð8:31Þ

and

gx ¼ g 1� dr

dx

� �2
" #1=2

: ð8:32Þ

For the case of axisymmetric bodies, it is assumed that the body radius r(x) is
large relative to the boundary layer thickness, so the transverse radial pressure

gradient is negligible. Horizontal flat surfaces are excluded here; these require

separate treatment.

The convective inertia term has been dropped from Eq. (8.28) because a scaling

argument shows that the influence of this term is felt only very close to the leading

edge, except for flow in highly permeable media. Nakayama (1995, 1998) also

argued that for most porous materials the viscous boundary layer is confined for

almost the entire surface to a thin layer close to the wall, so that the temperature

distribution is essentially free from boundary viscous effects, and hence it is

reasonable to drop the Brinkman term. However, Rees (private communication)

noted that the analysis reported in Rees and Vafai (1999) for a uniformly heated
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horizontal plate indicates that the situation is more complicated, at least at inter-

mediate values of x, than implied by Nakayama and Pop. Equation (8.28) gives

u ¼ ν

2cFK
1=2

1þ 2ReKð Þ2 þ 4GrK
T � T1
Tw � T1

� �� �1=2
� 1

( )
, ð8:33Þ

where

ReK xð Þ ¼ cFK
1=2u1 xð Þ=ν, ð8:34Þ

and

GrK xð Þ ¼ cFK
3=2gx xð Þβ Tw xð Þ � T1½ �=ν2: ð8:35Þ

From Eqs. (8.30a) and (8.33), the wall velocity is

uw ¼ ν

2cFK
1=2

1þ 2ReKð Þ2 þ 4GrK

h i1=2
� 1

� 	
, ð8:36Þ

Nakayama and Pop (1991) argued that it is this velocity, which depends on both

external flow, that essentially determines convective heat transfer from the wall,

and they introduced a modified Péclet number,

Pex* ¼ uwx

αm
¼ Pex

1þ 2ReKð Þ2 þ 4GrK

h i1=2
� 1

2ReK
, ð8:37Þ

since the usual Péclet number is defined by

Pex ¼ u1x

αm
: ð8:38Þ

The energy Eq. (8.29) yields the scaling

uw
Tw � T1

x
� αm

Tw � T1
δ2T

, ð8:39Þ

where δT is the thermal boundary layer thickness. Hence one expects that, for all

convection modes,

Nux � x

δT
� Pe*1=2x , ð8:40Þ

where the local Nusselt number is defined as

Nux ¼ q
00
x

km Tw � T1ð Þ : ð8:41Þ
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Nakayama and Pop (1991) also define

Rax* ¼ K1=4 gxβ Tw � T1ð Þ½ �1=2x
c
1=2
F αm

ð8:42Þ

and then identify the following regimes:

Regime I (Forced convection regime):

Nu2x � Pe*x ¼ Pex for ReK þ Re2K >> GrK: ð8:43aÞ
Regime II (Darcy natural convection regime):

Nu2x � Pe*x ¼ Rax for ReK << GrK << 1: ð8:43bÞ

Regime III (Forchheimer natural convection regime):

Nu2x � Pe*x ¼ Rax for ReK þ Re2K << GrK and GrK >> 1: ð8:43cÞ
Regime IV (Darcy mixed convection regime):

Nu2x � Pe*x ¼ Pex þ Rax for ReK � GrK << 1: ð8:43dÞ
Regime V (Darcy-Forchheimer natural convection regime):

Nu2x � Pe*x ¼ Rax
1þ 4GrKð Þ1=2 � 1

2GrK
for GrK � 1 and ReK << 1: ð8:43eÞ

Regime VI (Forchheimer mixed convection regime):

Nu2x � Pe*x ¼ Pe2x þ Ra*2x

 �1=2

for GrK � ReK >> 1: ð8:43fÞ

The situation is summarized in Fig. 8.6. The three macroscale parameters Pex,

Rax, Ra
*
x and the two microscale parameters ReK, GrK are related by

Rax

Pex
¼ GrK

ReK
,

Rax

Ra*x
¼ Gr

1=2
K : ð8:44Þ

Nakayama and Pop (1991) then introduce the general transformations

f x; ηð Þ ¼ ψ

αmr* Pe*xI

 �1=2 , ð8:45Þ

θ x; ηð Þ ¼ T � T1
Tw � T1

, ð8:46Þ
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η ¼ y

x

Pe*x
I

� �1=2

, ð8:47Þ

where

I ¼

ð x

0

Tw � T1ð Þ2uwr*2dx
Tw � T1ð Þ2uwr*2x

: ð8:48Þ

The momentum and energy equations reduce to

f ¼

ð η

0

1þ 2ReKð Þ2 þ 4ReKθ
h i1=2

dη� η

1þ 2ReKð Þ2 þ 4ReKθ
h i1=2

� 1

, ð8:49Þ

and

θ
00 þ 1

2
� mTI

� �
f θ0 � mTI θ f

0 ¼ I x f 0
∂θ
∂x

� θ0
∂f
∂x

� �
, ð8:50Þ
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Press)
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where

mT xð Þ ¼ dln Tw � T1ð Þ
dlnx

¼ x

Tw � T1ð Þ
dTw

dx
: ð8:51Þ

The transformed boundary conditions are

η ¼ 0 : θ ¼ 1, ð8:52aÞ

η ! 1 : θ ¼ 0: ð8:52bÞ

Once the set of Eqs. (8.49) and (8.50) subject to Eqs. (8.52a) and (8.52b) have

been solved, the local Nusselt number may be evaluated from

Nux ¼ �θ0 x; 0ð Þ Pe2x
I

� �1=2

: ð8:53Þ

Nakayama and Pop (1991) then proceed to consider regimes I through VI in turn,

seeking similarity solutions. In general these exist if and only if Tw � T1 is a power

function of the downstream distance variable ξ. They recover various results reported
above in Chap. 4 (forced convection; regime I) and Chap. 5 (natural convection;

regimes II, III, and V). For their other results, the reader is referred to the original

paper and also the reviews byNakayama (1995, 1998). These reviews include related

material on the cases of convection over a horizontal plane, convection from line or

point heat sources (Nakayama 1993b, 1994), and also a study of forced convection

over a plate on the Brinkman-Forchheimer model (Nakayama et al. 1990a).

8.1.6 Other Aspects of External Flow

The combination of thermal dispersion effects and viscous dissipation effects on

external flow was studied by Nasser and Duwairi (2016). The effect of a magnetic

field and quadratic density variation on stagnation point flow towards a permeable

shrinking sheet was investigated by Kumar and Sood (2016).

8.2 Internal Flow: Horizontal Channel

8.2.1 Horizontal Layer: Uniform Heating

The problem of buoyancy-induced secondary flows in a rectangular duct filled with

a saturated porous medium through which an axial flow is maintained was exam-

ined experimentally by Combarnous and Bia (1971) for the case of a large
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horizontal to vertical aspect ratio denoted by A. As predicted by linear stability

theory (see Sect. 6.10), the axial flow did not affect the critical Rayleigh number for

the onset of convective secondary flow nor the heat transfer. For Péclet numbers Pe

less than about 0.7, cross rolls rather than longitudinal rolls were usually (but not

always) the observed secondary motion. For larger values of Pe longitudinal rolls

were always observed.

Islam and Nandakumar (1986) made a theoretical investigation of this problem.

They used the Brinkman equation for steady fully developed flow and assumed

negligible axial conduction, a constant rate of heat transfer per unit length, and an

axially uniform heat flux, thus reducing the problem to a two-dimensional one that

they solved numerically. Since axial conduction was neglected, their solutions are

valid for large Pe values only. To save computational effort they assumed symme-

try about the vertical midline of the duct, thus permitting only an even number of

buoyancy-induced rolls. In our opinion this assumption is probably not justified; for

the aspect ratios used (0.6 < A < 3) we would expect that the physically significant

solution would sometimes be a single vortex roll. They treated two cases: bottom

heating and heating all around the periphery. For each case they found a transition

from a two-vortex pattern to a four-vortex pattern as the Grashof number Gr

increased, with both two- and four-vortex solutions existing in a certain range of

Gr. Further investigations by Nandakumar et al. (1987) indicated that the number of

possible solutions depends sensitively on the aspect ratio. Islam and Nandakumar

(1988) extended their analysis by including quadratic drag. The flow of icy water

was studied by Takhar and Perdikis (1986).

For a rectangular channel, Chao and Hwang (1991) studied a horizontal Darcy

channel with uniform axial heat flux, and Chou et al. (1992a) reported experimental

and numerical work on the Brinkman-Forchheimer model and with variable poros-

ity and thermal dispersion allowed for, while Chou and Chung (1995) allowed for

the effect of variation of effective thermal conductivity. Hwang and Chao (1992)

investigated numerically the case of finite wall conductivity. Flow in a rectangular

enclosure was also studied by Waheed et al. (2011). Chou et al. (1994) studied

numerically the effect of thermal dispersion in a cylindrical tube. Islam (1992)

investigated numerically the time evolution of the multicellular flows. His results

show the presence of periodic, quasiperiodic, and chaotic behavior for increasingly

high Grashof numbers (or Rayleigh numbers). The effect of a magnetic field was

studied by Raptis (1983d), Takhar and Ram (1994), Singh et al. (2011e) (radiation,

unsteady flow), and Pal and Talukdar (2012b) (micropolar fluid, chemical reaction).

Llagostera and Figueiredo (2000) numerically simulated mixed convection in a

two-dimensional horizontal layer with a cavity of varying depth on the bottom

surface and heated from below. Yokoyama et al. (1999) studied numerically and

experimentally convection in a duct whose cross section has a sudden expansion

with heating on the lower downstream section. Mixed convection in a semi-porous

open cavity was investigated by Chaves et al. (2008). Kurtbas and Celik (2009)

reported an experimental investigation of a foam-filled horizontal rectangular

channel. A numerical study involving a horizontal channel was reported by

Ozgen et al. (2013). Yin et al. (2013b) studied a horizontal plane Couette flow of
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a viscoelastic fluid. Rathish Kumar et al. (2010) and Rathish Kumar and Krishna

Murthy (2013a) investigated a square enclosure with vertical throughflow, with and

without sinusoidally varying temperature on one vertical wall.

For flow in a heated channel, Westbrook (1969) obtained, in terms of a Reynolds

number and a Rayleigh number, a universal criterion for stability. The onset of

vortex instability in a layer, heated below with a stepwise change on the bottom

boundary and with thermal dispersion, was studied using propagation theory by

Chung et al. (2002). A spatiotemporal instability was studied using linear and

weakly nonlinear theory by Chung et al. (2009). A stability analysis of dual

adiabatic flows was made by Barletta and Rees (2009). They examined the effect

of viscous dissipation in a layer with adiabatic and impermeable boundaries. They

found that there exist two stationary and parallel solutions for each prescribed pair

of Gebhart and Péclet number values if the Gebhart number is less than a certain

limit. Their linear stability analysis revealed that one of the branches in the dual

solution space is more stable than the other. The thermal stability of a reactive

viscous flow in a channel with convective boundary conditions was studied by

Makinde (2009b). Numerical modeling of the thermal characteristics in a micro-

structure was discussed by Bhuiyan et al. (2016).

8.2.2 Horizontal Layer: Localized Heating

Prasad et al. (1988) and their colleagues have conducted a series of

two-dimensional numerical studies to examine the effects of a horizontal stream

on buoyancy-induced velocity and temperature fields in a horizontal porous layer

discretely heated over a length D at the bottom and isothermally cooled at the top.

The heated portion consisted of one or more sections of various sizes

(nondimensional length A¼ D/H) and the heating was either isothermal or uniform

flux. Darcy’s equation was used. The computations were carried out for the range

1 � Ra � 500, 0 � Pe � 50, the Rayleigh and Péclet numbers being based on the

layer height. The domain was taken sufficiently long so that at the exit the flow

could be assumed parallel and axial conduction could be neglected.

The results for the case of a single source of length A ¼ 1 indicate that when the

forced flow is weak (Pe small) a thermal plume rises above the heat source and a

pair of counter-rotating cells is generated above the source, the upstream cell being

higher than the downstream one. The temperature field is approximately symmetric,

fore and aft. As Pe is increased the isotherms lose their symmetry, the strength of

the two recirculating cells becomes weaker, and the convective rolls and plume

move downstream, the downstream roll being weaker than the upstream one. This is

so for small values of Ra, but when Ra¼ 500 there are two pairs of convective rolls

alongside each other.

The overall Nusselt number Nu increases monotonically with Pe as long as

Ra ¼ 10, the increase being significant when Pe > 1, but for Ra ¼ 100 the Nusselt

number goes through a minimum before increasing when forced convection
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becomes dominant. The apparent reason for the decrease initially is because the

enhancement in heat transfer by an increase in forced flow is not able to compensate

for the reduction in buoyancy-induced circulation.

Further studies (Lai et al. 1987a) indicated that Nu is increased significantly if

the heat source is located on an otherwise isothermally cooled (rather than adia-

batic) bottom surface, because this results in stronger buoyancy effects, but the

effect is small if either buoyancy or forced convection dominates the other.

Additional investigation (Lai et al. 1987b) revealed that flow structure, temperature

field, and heat transfer coefficients change significantly with the size of the heat

source. If Ra is small, only two recirculating cells are produced, one near the

leading edge and the other at the trailing edge of the heat source. At large Ra, the

number of cells increases with the size of the source. All are destroyed by sufficient

increase in forced flow. The transient problem has been discussed by Lai and

Kulacki (1988b).

The extension to multiple heat sources was undertaken by Lai et al. (1990a). For

the convective regime each source behaves more or less independently and the

contributions to heat transfer are approximately additive. With the introduction of

forced flow interaction occurs. Ultimately as Pe increases the buoyancy cells

weaken and disappear, but at certain intermediate values of Ra and Pe the flow

becomes oscillatory as cells are alternately generated and destroyed. A similar

phenomenon was observed in the case of a long heat source. In general, the

dependence of Nu on Ra and Pe for multiple sources is similar to that for a single

source. The minimum in Nu that occurs at intermediate values of Pe is accentuated

for large numbers of heat sources and tends to be associated with the oscillatory

behavior; both effects involve an interaction between forcing flow and buoyancy.

Experiments performed by Lai and Kulacki (1991b) corroborated to a large

extent the numerical results. In particular the observed overall Nusselt number data

agreed quite well with the predicted values. When an effective thermal conductivity

was introduced, the experimental data were correlated by

NuD

Pe0:5D

¼ 1:895þ 0:200
RaD

Pe1:5D

� �� � 0:375

, ð8:54Þ

where the subscript D denotes numbers based on the heater length D. This is very
close to the correlation obtained from the numerical solutions,

NuD

Pe0:5D

¼ 1:917þ 0:210
RaD

Pe1:5D

� �� � 0:372

: ð8:55Þ

The experiments also verified the occurrence of oscillatory behavior. This was

observed by recording the fluctuations in temperatures. A precise criterion for the

appearance of oscillatory flow could not be determined, but the data available show

that RaD has to exceed 10. A numerical study of oscillatory convection was reported

by Lai and Kulacki (1991c). The experimental and numerical study by Yokoyama
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and Kulacki (1996) of convection in a duct with a sudden expansion just upstream

of the heated region showed that the expansion had very little effect on the Nusselt

number. A problem involving uniform axial heating and peripherally uniform wall

temperature was studied numerically by Chang et al. (2004). Entropy analysis for

mixed convection in a discretely heated porous square cavity was reported by

Maougai and Bessiah (2013).

8.2.3 Horizontal Cylinder or Annulus

The problem of mixed convection in a horizontal annulus with isothermal walls,

the inner heated and the outer cooled, was studied by Muralidhar (1989). His

numerical results for radius ratio ro/ri ¼ 2 and Ra ¼ 500, Pe ¼ 10 indicate that

forced convection dominates in an entry length x < (ro � ri). Buoyancy increases

the rate at which boundary layers grow and it determines the heat transfer rate once

the annular gap is filled by the boundary layer on each wall.

Vanover and Kulacki (1987) conducted experiments in a porous annulus with ro/
ri ¼ 2, with the inner cylinder heated by constant heat flux and the outer cylinder

isothermally cooled. The medium consisted of 1- and 3-mm glass beads saturated

with water. In terms of Pe and Ra based on the gap width (ro � ri) and the

temperature scale q00(ro � ri)/km, their experimental data covered the range

Pe < 520 and Ra < 830. They found that when Ra is large the values of Nu for

mixed convection may be lower than the free convection values. They attributed

this to restructuring of the flow as forced convection begins to play a dominant role.

Muralidhar (1989) did not observe this phenomenon since he dealt only with

Pe ¼ 10. Vanover and Kulacki obtained the following correlations:

Mixed convection 6 < Pe < 82ð Þ : Nu ¼ 0:619 Pe0:177 Ra0:092, ð8:56Þ

Forced convection Pe > 180ð Þ : Nu ¼ 0:117 Pe0:657, ð8:57Þ

where the overall Nusselt number is normalized with its conduction value

Nuc ¼ 1.44 for an annulus with ro/ri ¼ 2. Convection within a heat-generating

horizontal annulus was studied numerically by Khanafer and Chamkha (2003). An

experimental study of convection in a horizontal or inclined tube was reported by

Tahseen (2011).

8.2.4 Horizontal Layer: Lateral Heating

The flow produced by an end-to-end pressure difference and a horizontal temper-

ature gradient in a horizontal channel was studied by Haajizadeh and Tien (1984)

using perturbation analysis and numerical integration. The parameters are the
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Rayleigh number Ra, the channel aspect ratio L (length/height), and the dimen-

sionless end-to-end pressure difference P which is equivalent to a Péclet number.

Their results show that in the range Ra2/L3 � 50 and P � 1.5, the heat transfer

enhancement due to the natural convection and the forced flow can be simply added

together. Even a small rate of throughflow has a significant effect on the temper-

ature distribution and heat transfer across the channel. For P/Ra � 0.2 the contri-

bution of the natural convection to the Nusselt number is negligible.

8.3 Internal Flow: Vertical Channel

8.3.1 Vertical Layer: Uniform Heating

Mixed convection with a viscoelastic fluid was examined by Mohapatra and Devi

(1979). Mixed convection in vertical rectangular channels was studied by

Raghavacharyulu (1986). Hadim and Govindarajan (1988) calculated solutions

of the Brinkman-Forchheimer equation for an isothermally heated vertical channel

and examined the evolution of mixed convection in the entrance region. Viscous

dissipation effects were analyzed by Ingham et al. (1990), for the cases of

symmetric and asymmetrically heated walls. Further calculations on the

Brinkman-Forchheimer model were performed by Kou and Lu (1993a, b) for

various cases of thermal boundary conditions, by Chang and Chang (1996) for

the case of a partly filled channel, by Chen et al. (2000a) for the case of uniform

heat flux on the walls, and by Hadim (1994b) for the development of convection in

a channel inlet. Wu and Lue (2000) also employed a non-Darcy model. Mahmud

and Fraser (2003b) studied entropy generation in a channel with radiation.

Umavathi et al. (2005) included the effect of viscous dissipation in their numerical

and analytic study using the Brinkman-Forchheimer model and with various

combinations of boundary conditions. They noted that viscous dissipation

enhances the flow reversal in the case of downward flow and counters the flow

in the case of upward flow. Pantokratoras (2008c) pointed out that this paper

needed a corrigendum. An MHD convection problem with heat generation or

absorption was studied numerically by Chamkha (1997f). The effect of local

thermal nonequilibrium was investigated by Saeid (2004) and Khandelwal and

Bera (2012a, b). An experimental study for the case of asymmetric heating of the

opposing walls was conducted by Pu et al. (1999). The results indicated the

existence of three convection regimes: natural convection, 105 < Ra/Pe; mixed

convection, 1 < Ra/Pe < 105; and forced convection, Ra/Pe < 1. Multiple

solutions associated with the case of a linear axial temperature distribution were

observed by Mishra et al. (2002).

A linear stability analysis of the mixed convection flow was reported by Chen

and Chung (1998) and Chen (2004). It was found that the fully developed shear flow

can become unstable under only mild heating conditions in the case of large Darcy

8.3 Internal Flow: Vertical Channel 463



number values (1 and 10�2), and the critical Rayleigh number drops steeply when

the Reynolds number reaches a threshold value that depends on the values of the

Darcy and Forchheimer numbers. The critical Rayleigh number increases substan-

tially for Da ¼ 10�4. For the case of an anisotropic channel, a linear stability

analysis was conducted by Bera and Khalili (2002b). The convective cells may then

be unicellular or bicellular. Further studies of stability were made by Bera and

Khalili (2006, 2007) (influence of Prandtl number, dependence on permeability),

Kumar et al. (2010b), and Kubitschek and Weidman (2006a, b).

For an anisotropic channel, aiding mixed convection was studied by Degan

and Vasseur (2002). The effect of viscous dissipation was analyzed by

Al-Hadhrami et al. (2002). For the case of wall temperature decreasing linearly

with height, they found that at any value of the Rayleigh number there were two

solutions mathematically, but only one of them is physically acceptable. The

effects of a porous manifold on thermal stratification in a liquid storage tank were

treated numerically by Yee and Lai (2001). Problems involving multiple porous

blocks were studied by Bae et al. (2004) and Huang et al. (2004a). The optimal

mixed convection for maximal energy recovery in a solar wall was studied by

Boutin and Gosselin (2009). An experimental study of flow-assisted mixed

convection in high porosity foams was reported by Kamath et al. (2011). The

case of boundary conditions of the third kind was treated numerically by

Umavathi and Veershetty (2012) and Umavathi et al. (2012b) (volumetric heat

source). Convection in a long vertical channel containing porous and fluid layers

bounded by a corrugated wall and a smooth wall was studied by Umavathi et al.

(2012a). A wavy channel with a micropolar fluid was investigated by Hung et al.

(2013). A study of entropy generation with a couple-stress fluid was made by

Makinde and Eegunjobi (2013). Convection of a Williamson fluid with slip and

radiation was simulated by Jamalabadi et al. (2016). An entropy study of entropy

generation in unsteady magnetic flow in a pipe was presented by Chinyoka

et al. (2013).

Transient flow in a channel with an open cavity was studied by Buonomo et al.

(2012). Transient flow in a channel with an open cavity was studied by Buonomo

et al. (2012). A vertical microchannel with bilateral heating was treated by Jha et al.

(2013a, b). Stability of flow in a channel with uniform heat flux was investigated by

Barletta (2013). Convection in an anisotropic mediumwas studied by Vajravelu and

Prasad (2014). Convection in a vertical channel with boundary conditions of the

third kind and with a heat source/sink was examined by Umavathi et al. (2012a, b).

Unsteady flow in a channel with suction/injection and a magnetic field was studied

byMakinde and Chinyoka (2013). The effect of an inserted porous layer in a vertical

channel was investigated by Celik and Mobedi (2015). Entropy generation with

uniformly and nonuniformly heated walls was investigated by Chattopadhyay and

Pandit (2016). A thermal nonequilibriummodel for nonisothermal Poiseuille flow in

a vertical channel was employed by Bera and Khandelwar (2016).

Porous channel flows with spontaneous broken symmetry were studied by

Magyari (2013d).
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8.3.2 Vertical Layer: Localized Heating

Lai et al. (1988) performed a numerical study of the case when the heat source is a

strip of heightH (equal to the layerwidth) on an otherwise adiabatic vertical wall. The

other wall was isothermally cooled; aiding or opposing Darcy flow was considered.

In the absence of a forced flow, a convection cell extends from near the bottom

edge of the source to well above the top edge, and the higher the Rayleigh number

Ra the larger is its extent and the stronger the circulation. When the forced flow is

weak, buoyancy forces generally dominate the velocity field, but the acceleration

caused by buoyancy forces deflects the main flow toward the heat source, so the

circulation zone is pushed to the cold wall side. One consequence is that the vertical

velocity in a thin layer on the heated segment increases. The aiding flow reattaches

to the cold wall far downstream.

An increase in Pe moves the convective cell upward and this delays the separa-

tion of the main flow from the cold wall. When Pe becomes large, the strength of the

circulation decreases substantially, the reattachment point moves upstream, and the

center of the cell is pushed toward the cold wall. At a sufficiently high Péclet

number (Pe> 10) the main flow does not separate from the cold wall and the effects

of buoyancy forces become negligible.

The opposite trends are present when the forced flow is downward (opposing).

When the main flow is weak, there is a circulation in the hot wall region and the

main flow is directed toward the cold wall. As Pe increases both the separation and

reattachment points move closer to the heat source, so that circulation is confined to

the neighborhood of the source and the heat transfer is reduced from its free

convection value. As Pe increases further, the circulation disappears and the heat

transfer coefficient increases with Pe.

For both aiding and opposing flows, the average Nusselt number Nu increases

with Ra, it being greater for aiding flows than for opposing flows. It increases

monotonically with Pe for aiding flows, but for opposing flows it decreases with Pe

until a certain value (which increases with Ra and increases from then on). The

boundary layer formula for an isothermally heated vertical flat plate overpredicts

the values of Nu for a channel if the flow is aiding and underpredicts them if the

flow is opposing, the error being small in the forced convection regime. Further

numerical work was reported by Hadim and Chen (1994a, b). A theoretical study of

convection in a thin vertical duct with suddenly applied localized heating on one

wall was reported by Pop et al. (2004). Kumar et al. (2005) studied numerically the

case of a micropolar fluid. A problem involving discrete heat sources was studied

by Bensouici and Bessiah (2010).

8.3.3 Vertical Cylinder or Annulus: Uniform Heating

Muralidhar (1989) has performed calculations for aiding Darcy flow in a vertical

annulus with height to gap ratio ¼ 10 and ro/ri ¼ 2, for Ra < 100, Pe < 10, with
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isothermal heating and cooling on the inner and outer walls, respectively. As

expected, the average Nusselt number Nu increases with Ra and/or

Pe. Muralidhar found a sharp change in Nu as Pe changed from 0 to 1. According

to him, the circulation that exists at Pe ¼ 0 is completely destroyed when Pe > 0,

and is replaced by thin thermal boundary layers that give rise to large heat transfer

rates. Hence, the jump in Nu from Pe ¼ 0 to Pe ¼ 1 is essentially a phenomenon

related to inlet conditions of flow, and the jump can be expected to reduce as the

length of the vertical annulus is reduced.

Parang and Keyhani (1987) solved the Brinkman equation for fully developed

aiding flow in an annulus with prescribed constant heat flux q
00
i and q

00
o on the inner

and outer walls, respectively. They found that the Brinkman term has a negligible

effect if Da/φ ¼ 10�5. For larger values of Da/φ it had a significant effect, which is

more pronounced at the outer wall where the temperature is raised and the Nusselt

number is reduced, the relative change increasing with Gr/Re.

In their experimental and numerical study, Clarksean et al. (1988) considered an

adiabatic inner cylinder and an isothermally heated outer wall, with a radius ratio of

about 12. Their numerical and experimental data showed the Nusselt number to be

proportional to (Ra/Pe)�0.5 in the range 0.05< Ra/Pe< 0.5, wherein heat transfer is

dominated by forced convection.

Choi and Kulacki (1992b) performed experimental and numerical work (on the

Darcy model) that agreed in showing that Nu increases with either Ra or Pe when

the imposed flow aids the buoyancy-induced flow, while when the imposed flow is

opposing Nu goes through a minimum as Pe increases. They noted that under

certain circumstances Nu for a lower Ra may exceed that for a higher Ra value.

Good agreement was found between predicted and measured Nusselt numbers,

which are correlated by expressing Nu/Pe1/2 in terms of Ra/Pe3/2.

Further numerical work, including non-Darcy effects, was reported by

Kwendakwema and Boehm (1991), Choi and Kulaki (1993), Jiang et al. (1996)

and Kou and Huang (1997) (for various thermal boundary conditions), and also by

Du and Wang (1999b) and Kumar et al. (2011). The experimental and numerical

work of Jiang et al. (1994), for an inner wall at constant heat flux and the outer wall

adiabatic, was specifically concerned with the effect of thermal dispersion and

variable properties. Choi and Kulacki (1992a) reviewed work in this area. Density

inversion with icy water was studied numerically by Char and Lee (1998) using the

Brinkman-Forchheimer model. The effect of thermal nonequilibrium was studied

by Ahmed et al. (2011a, b). A medium with variable viscosity was investigated by

Kaurangini and Jha (2011). The stability of flow in a vertical circular duct with

uniform wall heat flux was examined by Barletta (2014a, b). Time-periodic thermal

boundary conditions were studied by Jha et al. (2016a, b). Flow in a microporous

annulus was studied by Jha and Aina (2015). The effect of nonequilibrium adsorp-

tion was investigated by Ramazanov and Bulgakova (2015). A two-temperature

model was applied to convection in a vertical annulus by Al-Rashad et al. (2016)

and Salman Ahmed et al. (2016).
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8.3.4 Vertical Annulus: Localized Heating

Choi et al. (1989) have made calculations based on the Darcy model for convection

in a vertical porous annulus, when a finite heat source (of height H equal to the

annulus gap) is located on the inner wall. The rest of the inner wall is adiabatic and

the outer wall is cooled at a constant temperature. They found that for both aiding

and opposing flows the strength of the circulation decreases considerably as the

radius ratio γ ¼ (ro � ri)/ri increases (with Ra and Pe fixed). Under the same

circumstances the center of the cell moves toward the cold wall. The variations in

Nu as Ra and Pe change are similar to those for the vertical layer channel. As γ
increases, Nu increases toward the asymptotic value appropriate for a vertical

cylinder. The following correlations were found.

Isothermal source, aiding flow:

Nu

Pe0:5
¼ 3:373þ γ0:566

 �

0:0676þ 0:0320
Ra

Pe

� �0:489

: ð8:58Þ

Isothermal source, opposing flow:

Nu

Pe0:5
¼ 2:269þ γ0:511

 �

0:0474þ 0:0469
Ra

Pe

� �0:509

: ð8:59Þ

Constant-flux source, aiding flow:

Nu

Pe0:5
¼ 7:652þ γ0:892

 �

0:0004þ 0:0005
Ra

Pe2

� �0:243

: ð8:60Þ

Constant-flux source, opposing flow:

Nu

Pe0:5
¼ 4:541þ γ0:787

 �

0:0017þ 0:0021
Ra

Pe2

� �0:253

, ð8:61Þ

where Nu, Ra, and Pe are defined in terms of the annular gap and either the

temperature difference (for the isothermal source) or the temperature scale q00H/km
(for the constant-flux source). Nield (1993) noted that the final exponents in

(8.31)–(8.34) are better replaced by 1/2, 1/2, 1/4, 1/4, since Nu should be

independent of Pe as Ra tends to infinity. For the same reason, the final exponents

in (8.27) and (8.28) should be 1/3.

The numerical and experimental study performed by Reda (1988) qualitatively

supports the observations of Choi et al. (1989). In Reda’s experiment the medium

extended vertically from z/Δr ¼ 0 to 4 and the heater from z/Δr¼ 1.9 to 3.1, where

Δr ¼ ro � ri, the remainder of the inner wall being insulated, and the outer wall

isothermally cooled. The forced flow was downward. Since the radius ratio was
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large (ro/ri approximately equal to 23) the effects of the outer wall on the temper-

ature and flow fields were small. Reda found that buoyancy-induced circulation

disappeared when Ra/Pe is approximately equal to 0.5, independent of the source

length or power input.

The effects of quadratic drag and boundary friction were studied by Choi and

Kulacki (1990). Their numerical results show that quadratic drag has a negligible

effect on Nu, but boundary friction significantly changes the flow and tempera-

ture fields near the boundary and in highly porous media, as expected. For aiding

flows the reduction of Nu becomes pronounced as either Ra or Pe increases. For

opposing flows the interaction is complex. The effect of a radially varying

magnetic field was studied by Barletta et al. (2008a, 2009c). The flow patterns

arising from the effects of thermal spot configurations were studied by

Bortolozzo and Deiber (2005).

8.4 Other Geometries and Other Effects

8.4.1 Partly Porous Configurations

Mixed convection in a partly filled channel was numerically simulated by Jaballah

et al. (2006, 2008) (regular, irregular heating). Jaballah et al. (2012) employed a

thermal nonequilibrium model to study a channel partly filled with multiple porous

layers. Further studies were carried out by Kumar et al. (2009b, 2010a), Malashetty

et al. (2005a, b) (inclined channel), Moraga et al. (2010) (vented enclosure,

unsteady flow), Srivasatava and Singh (2010) (vertical channel), Chauhan and

Kumar (2011) (vertical channel, radiation), Hajipour and Dehkordi (2011) (viscous

dissipation, inertial effects), Huang and Chen (2012), and Buonomo et al. (2014a)

(external heat losses on the upper plate).

Convection in a channel (horizontal or inclined) with heated porous blocks of

various shapes was studied by Guerrouddj and Kahalerras (2010), 2012). Convec-

tion in a vertical annulus with porous layers was studied by Zahrani and Kiwan

(2009) and Al Zahrani and Kiwan (2009). A vertical channel with a nanofluid was

treated by Hajipour and Dehkordi (2012a). Unsteady flow in a vertical channel with

one wavy wall and fluid and porous layers was studied by Umavathi and Shekar

(2015). A vented enclosure was treated by Alshuriaan (2013). A partly occupied

cavity of square cross section with an inner rotating cylinder was studied by

Chamkha et al. (2016). Upward and downward conjugate convection in a

two-dimensional boundary-driven enclosure with a thick vertical wall was investi-

gated by Bourouis et al. (2016). A convergent horizontal channel with discrete heat

sources was treated numerically by Ghorab (2015b).
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8.4.2 Jet Impingement

Jet impingement cooling of a horizontal surface in a confined porous medium was

studied by Saeid and Mohamad (2006). Saeid and Pop (2006) treated periodic

mixed convection in a horizontal porous layer heated from below by an isoflux

heater. Further work involving jets was done by Saeid (2007b), Wong and Saeid

(2009a, b, c, d, e), Wong et al. (2009), Marafie et al. (2008), and Sivasamy et al.

(2010a, b, 2011). Aspects studied by these authors include the effect of local

thermal nonequilibrium, a conjugate solid layer of finite thickness, and unsteady

convection of a confined jet in a fluid-superposed medium. Rosali et al. (2011a)

studied stagnation point flow past a vertical plate with prescribed heat flux. Saeid

(2015) studied cooling of a rectangular solid heat source immersed in a porous

layer. Buonomo et al. (2016a) numerically investigated laminar slot-jet imaging in

a confined porous medium with local thermal nonequilibrium.

The topic of impinging jets in porous media was reviewed by Buonomo

et al. (2015).

8.4.3 Other Aspects

Lid-driven flow was studied by Khanafer and Chamkha (1999) (unsteady flow,

internal heating), Kandaswamy et al. (2008c), Oztop (2006), Oztop and Varol

(2009), Vishnuvardhanarao and Das (2008, 2009, 2010), Muthtamilselvan et al.

(2010) (magnetic field), Basak et al. (2010a, 2012c) (variously heated walls),

Kumari and Nath (2011) (with internal heat generation), Oztop et al. (2012a)

(partially cooled), Sivasankaran and Pan (2012) (nonuniform heating on both

sidewalls), Hasanpour et al. (2012) (magnetic field), Sivasankaran and

Bhuvaneshwari (2014) (icy water), Bourouis and Omara (2013) (fluid and porous

layers), Al-Amiri (2013), Nayak et al. (2014a), Pekmen and Tezer-Sezgin (2014,

2015b), Chattopadhyay et al. (2016) (sinusoidal heating) and Teamah et al. (2015),

Pandit et al. (2015) (entropy generation), Rahman et al. (2015) (unsteady convec-

tion, semi-circular heaters), Ahmed (2016) (anisotropy) and Selimefendigil (2016)

(time-periodic heating zone).

The effect of a solid cylinder rotating within a square cavity was studied by

Misirlioglu (2006). A square duct with suction on a boundary was investigated by

Kumar et al. (2010d), Krishna Murthy et al. (2010a, b), and Rathish Kumar and

Krishna Murthy (2010a). A vertical channel with inertial effects was studied by

Kumar et al. (2010e). Vented square enclosures were also studied by Mahmud and

Pop (2006) and Ghazanfarian and Abbassi (2007). Convection in an obstructed

open ended cavity was studied by Shi and Vafai (2010). Convection in a vertical

pipe was treated by Kumar et al. (2010d) and Chinyoka et al. (2013) (entropy

analysis, unsteady flow, magnetic field). A square enclosure with a multiple suction

effect was studied by Krishna Murthy and Rathish Kumar (2011). Dukhan (2009a)
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proposed an engineering estimate for plug-flow convection. Dukhan and Ratowski

(2010) presented a new two-dimensional solution for convection in a channel. A

square enclosure with all walls isothermal or just the left wall isothermal and the

others adiabatic was studied by Bhuiyan et al. (2016). A cubical enclosure with

suction/injections was investigated by Krishna Murthy et al. (2015). Entropy

generation in square cavities with moving walls was analyzed by Roy et al.

(2016b). Irreversibility analysis incorporating viscous dissipation was presented

by Tayari et al. (2016b).

Mixed convection between inclined plates was studied by Cimpean et al. (2009)

(fully developed convection), Barletta et al. (2008c), Hasnain et al. (2015) (mag-

netic field), Sphaier et al. (2015) (buoyancy aided and opposed regimes), Tayari

et al. (2015) (second law analysis), Barletta and Celli (2016) (uniform and sym-

metrical heat fluxes, hybrid-analytical method), and Jha et al. (2015c) (time-

periodic boundary conditions). Barletta et al. (2008a) studied mixed convection

with heating effects in a vertical porous annulus with a radially varying magnetic

field, while Barletta et al. (2009c) found closed form solutions for mixed convection

with a magnetohydrodynamic effect in a vertical porous annulus surrounding an

electric cable. Barletta and Storesletten (2011a) studied the onset of convective

rolls in a circular duct with external heat transfer in a thermally stratified environ-

ment. Barletta (2015b) (horizontal throughflow) and Barletta (2016) investigated

the instability of stationary two-dimensional convection with pressure and temper-

atures between the boundaries of a vertical porous layer. Celli et al. (2016a)

reported a nonlinear stability analysis for the effect of viscous dissipation in a

rectangular channel, with walls adiabatic except for an isothermal top.

Basak et al. (2011a) and Ramakrishna et al. (2012) used a finite element based

heatline approach to study convection in a square cavity with various wall thermal

boundary conditions. Kumar et al. (2009b) investigated numerically convection in a

cavity with various non-Darcy models. Hayat et al. (2011a) studied Falkner-Skan

wedge flow of a power-law fluid, but Pantokratoras (2014a) pointed out a flaw in

their analysis. The combined effect of magnetic field and thermal dispersion on a

non-Darcy mixed convection was studied by Oztop et al. (2011a). Unsteady flow of

a reactive variable-viscosity non-Newtonian fluid in a channel with convective

boundary conditions was studied by Makinde et al. (2011) and Rundora and

Makinde (2013). Rundora and Makinde (2015) investigated the effect of Navier

slip on unsteady flow of a reactive variable-viscosity non-Newtonian fluid. Flow

past a heated square porous cylinder placed in a horizontal channel of varying

height was investigated byWu andWang (2011). Convection in a vertical tube with

time-periodic boundary conditions was studied by Jha et al. (2015a). Krol et al.

(2014) analyzed various scenarios for convection in contaminated porous media.

Unsteady flow of reactive non-Newtonian fluid in a channel with suction/injection

was studied by Chinyoka and Makinde (2015). Unsteady MHD Couette flow of a

heat absorbing fluid was examined by Seth et al. (2016c). MHD convection with

partly active zones in a square domain was investigated by Nayak et al. (2016).

Convection in a vertical tube with a time-periodic boundary condition and heat

generation/absorption was studied by Jha et al. (2016a, b). Roy et al. (2016a, b)
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reported finite element simulations on heatline trajectories for convection in a

porous square enclosure with moving walls. Mohammed and Dawood (2016)

investigated mixed convection heat transfer in a ventilated enclosure with and

without a saturated porous medium. Ahmed et al. (2016a, b) studied the effects of

a magnetic field and viscous dissipation on entropy generation in a lid-driven cavity

with corner heater.

Experimental studies of mixed convection in a vertical duct were carried out by

Venugopal et al. (2010a, b) and Jiang et al. (2006a, b, 2008) (CO2 at supercritical

pressure).
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Chapter 9

Double-Diffusive Convection

In this chapter we turn our attention to processes of combined (simultaneous) heat

and mass transfer that are driven by buoyancy. The density gradients that provide

the driving buoyancy force are induced by the combined effects of temperature and

species concentration nonuniformities present in the fluid-saturated medium. The

present chapter is guided by the review of Trevisan and Bejan (1990), which began

by showing that the conservation statements for mass, momentum, energy, and

chemical species are the equations that have been presented here in Chaps. 1–3.

In particular the material in Sect. 3.3 is relevant. The new feature is that beginning

with Eq. (3.26) the buoyancy effect in the momentum equation is represented by

two terms, one due to temperature gradients and the other to concentration gradi-

ents. Useful review articles on double-diffusive convection include those by

Mojtabi and Charrier-Mojtabi (2000, 2005), Mamou (2002b), Diersch and Kolditz

(2002), and Mojtabi et al. (2015).

9.1 Vertical Heat and Mass Transfer

9.1.1 Horton-Rogers-Lapwood Problem

The interesting effects in double-diffusive (or thermohaline, if heat and salt are

involved) convection arise from the fact that heat diffuses more rapidly than a

dissolved substance. Whereas a stratified layer involving a single-component fluid

is stable if the density decreases upward, a similar layer involving a fluid consisting

of two components, which can diffuse relative to each other, may be dynamically

unstable. If a fluid packet of such a mixture is displaced vertically, it loses any

excess heat more rapidly than any excess solute. The resulting buoyancy may act

to either increase the displacement of the particle, and thus cause monotonic

instability, or reverse the direction of the displacement and so cause oscillatory
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instability, depending on whether the solute gradient is destabilizing and the

temperature gradient is stabilizing or vice versa.

The double-diffusive generalization of the Horton-Rogers-Lapwood problem

was studied by Nield (1968). In terms of the temperature T and the concentration

C, we suppose that the density of the mixture is given by Eq. (3.26),

ρf ¼ ρ0 1� β T � T0ð Þ � βC C� C0ð Þ½ �: ð9:1Þ

In this equation βC ¼ �ρf
�1∂ρf/∂C is a concentration expansion coefficient

analogous to the thermal expansion coefficient β ¼ �ρf
�1∂ρf/∂T. We assume that

βC and β are constants. In most practical situations βC will have a negative value.

As shown in Fig. 9.1, we suppose that the imposed conditions on C are

C ¼ C0 þ ΔC at z ¼ 0 and C ¼ C0 at z ¼ H: ð9:2Þ

The conservation equation for chemical species is

φ
∂C
∂t

þ v �∇C ¼ Dm∇2C ð9:3Þ

and the steady-state distribution is linear:

Cs ¼ C0 þ ΔC 1� z

H

� �
: ð9:4Þ

Proceeding as in Sect. 6.2, choosing ΔC as concentration scale and puttingbC ¼ C0=ΔC, and writing

bC ¼ γ zð Þexp sbt þ ilbx þ imby� �
, ð9:5Þ

we obtain

Le�1 D2 � α2
� �� φ

σ
s

h i
γ ¼ �W: ð9:6Þ

Porous
Medium

H
C0T0

T0 + DT C0 + DC

g

z

0

Fig. 9.1 Infinite horizontal

porous layer with linear

distributions of temperature

and concentration
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In place of Eq. (6.23) we now have, if γa is negligible,

D2 � α2
� �

W ¼ �α2Ra θ þ Nγð Þ, ð9:7Þ

while Eq. (6.22) remains unchanged, namely

D2 � α2 � s
� �

θ ¼ �W: ð9:8Þ

The nondimensional parameters that have appeared are the Rayleigh and Lewis

numbers

Ra ¼ gβKHΔT
ναm

, Le ¼ αm
Dm

, ð9:9Þ

and the buoyancy ratio

N ¼ βCΔC
βΔT

: ð9:10Þ

If both boundaries are impermeable, isothermal (conducting), and isosolutal

(constant C), then Eqs. (9.6)–(9.8) must be solved subject to

W ¼ θ ¼ γ ¼ 0 at bz ¼ 0 and bz ¼ 1: ð9:11Þ

Solutions of the form

W; θ; γð Þ ¼ W0; θ0; γ0ð Þ sin jπbz ð9:12Þ

are possible if

J J þ sð Þ J þ Φsð Þ ¼ Ra α2 J þ Φsð Þ þ RaDα
2 J þ sð Þ, ð9:13Þ

where

J ¼ j2π2 þ α2, Φ ¼ φ

σ
Le, RaD ¼ NLeRa ¼ gβCKHΔC

νDm

: ð9:14Þ

At marginal stability, s ¼ iω where ω is real, and the real and imaginary parts of

Eq. (9.13) yield

J2 �Φω2 ¼ Raþ RaDð Þα2, ð9:15Þ

ω J2 1þΦð Þ � ΦRaþ RaDð Þα2� � ¼ 0: ð9:16Þ
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This system implies either ω ¼ 0 and

Raþ RaD ¼ J2

α2
, ð9:17Þ

or

ΦRaþ RaD ¼ 1þ Φð Þ J
2

α2
, ð9:18Þ

and

Φ
ω2

α2
¼ J2

α2
� Raþ RaDð Þ: ð9:19Þ

Since J2/α2 has the minimum value 4π2, attained when j ¼ 1 and α ¼ π, we
conclude that the region of stability in the (Ra, RaD) plane is bounded by the lines

Raþ RaD ¼ 4π2, ð9:20Þ

ΦRaþ RaD ¼ 4π2 1þ Φð Þ, ð9:21Þ

Equation (9.20) represents the boundary for monotonic or stationary instability,

and Eq. (9.21) is the boundary for oscillatory instability with frequency ω given by

Φ
ω2

π2
¼ 4π2 � Raþ RaDð Þ: ð9:22Þ

Clearly the right-hand side of Eq. (9.22) must be nonnegative in order to yield a

real value for ω.
If Φ ¼ 1, then the lines (9.20) and (9.21) are parallel, with the former being

nearer the origin. Otherwise they intersect at

Ra ¼ 4π2Φ

Φ� 1
, RaD ¼ 4π2

1� Φ
, ð9:23Þ

Illustrated in Fig. 9.2 is the case Φ > 1, which corresponds to Le > σ/φ.
The cases of other combinations of boundary conditions can be treated in a

similar manner. If the boundary conditions on the temperature perturbation θ are

formally identical with those of the solute concentration perturbation γ, then the

monotonic instability boundary is a straight line:

Raþ RaD ¼ Rac: ð9:24Þ
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One can interpret Ra as the ratio of the rate of release of thermal energy to the

rate of viscous dissipation of energy and a similar interpretation applies to RaD.

When the thermal and solutal boundary conditions are formally identical, the

eigenfunctions of the purely thermal and purely solutal problems are identical,

and consequently the thermal and solutal effects are additive. When the two sets of

boundary conditions are different, the coupling between the thermal and solutal

agencies is less than perfect and one can expect that the monotonic instability

boundary will be concave toward the origin, since then Ra + RaD � Rac with

equality occurring only when Ra ¼ 0 or RaD ¼ 0.

When Ra and RaD are both positive the double-diffusive situation is qualitatively

similar to the single-diffusive one. When Ra and RaD have opposite signs there

appear interesting new phenomena: multiple steady- and unsteady-state solutions,

subcritical flows, periodic or chaotic oscillatory flows, traveling waves in relatively

large aspect ratio enclosures, and axisymmetric flow structures. Such phenomena

arise generally because the different diffusivities lead to different time scales for the

heat and solute transfer. But similar phenomena can arise even when the thermal

and solutal diffusivities are nearly equal because of the factor φ/σ (often called the

normalized porosity). This is because heat is transferred through both the fluid and

solid phases but the solute is necessarily transported through the fluid phase only

since the porous matrix material is typically impermeable.

Experiments with a Hele-Shaw cell by Cooper et al. (1997, 2001) and Pringle

et al. (2002) yielded results in agreement with the theory.

In his study of gas/vapor mixtures, Davidson (1986) allowed for the temperature

dependence of mixture properties. Murty et al. (1994b) studied numerically the

stability of thermohaline convection in a rectangular box. Nield (1995b) pointed out

that they had overlooked the possibility of oscillatory instability.

Some asymptotic formulas were presented by Rosenberg and Spera (1992).

Forsyth and Simpson (1991) presented a two-phase, two-component model.

Stable
regime

Stationary
convection

RaD = N Le Ra

4π2

4π2 Ra

Oscillatory
convection

Fig. 9.2 The stability and

instability domains for

double-diffusive convection

in a horizontal porous layer
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The special case of isoflux boundary conditions was discussed by Nield and

Kuznetsov (2016c). In this case convection occurs at a very small wavenumber and

oscillatory convection is inhibited.

9.1.2 Nonlinear Initial Profiles

Since the diffusion time for a solute is relatively large, it is particularly appropriate

to discuss the case when the concentration profile is nonlinear, the basic concen-

tration distribution being given by

Cs ¼ C0 þ ΔC 1� Fc bzð Þ½ �: ð9:25Þ
The corresponding nondimensional concentration gradient is f c bzð Þ ¼ F0

c bzð Þ,
and satisfies < f 0c bzð Þ >¼ 1, where the angle brackets denote the vertical average.

Then, in place of Eq. (9.6) one now has

Le�1 D2 � α2
� �� φ

σ
s

h i
γ ¼ �f c bzð ÞW: ð9:26Þ

In the case of impermeable conducting boundaries, the Galerkin method of

solution (trial functions of the form sin lπbz with l ¼ 1, 2,. . .) gives as the first

approximation to the stability boundary for monotonic instability,

Raþ 2RaD < f c bzð Þsin 2π2bz >¼ 4π2: ð9:27Þ
For example, for the cosine profile with Fc(bz) ¼ (1 � cosπẑ)/2, and hence with

fc ¼ (π/2) sinπẑ, we get

Raþ 4

3
RaD ¼ 4π2: ð9:28Þ

Similarly, for the step-function concentration, with Fc(ẑ) ¼ 0 for 0 � ẑ < ½ and

Fc(ẑ) ¼ 1 for ½ < ẑ � 1, so that fc(ẑ) ¼ δ(ẑ � ½), we have

Raþ RaD ¼ 4π2: ð9:29Þ
The approximation leading to this result requires that jRaDj be small.

9.1.3 Finite-Amplitude Effects

Experiments in viscous fluids have shown that monotonic instability, associated

with warm salty water above cool fresh water, appears in the form of “fingers” that

grow downward from the upper part of the layer. More generally, fingering occurs
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when the faster diffusing component is stabilizing and the slower diffusing com-

ponent is destabilizing. This situation is referred to as the fingering regime. On the

other hand, oscillatory instability, associated with warm salty water below cool

fresh water, gives rise to a series of convecting layers that form in turn, each on top

of its predecessor. This situation is referred to as the diffusive regime.

In the case of a porous medium the questions are whether the fingers form fast

enough before they are destroyed by dispersive effects and whether their width is

large enough compared to the grain size for Darcy’s law to be applicable. Following

earlier work by Taunton et al. (1972), these questions were examined by Green

(1984), who, on the basis of his detailed analysis, predicted that fluxes associated

with double-diffusive fingering may well be important but horizontal dispersion

may limit the vertical coherence of the fingers. In their visualization and flux

experiments using a sand-tank model and a salt-sugar system, Imhoff and Green

(1988) found that fingering did indeed occur but it was quite unsteady, in contrast to

the quasisteady fingering observed in a viscous fluid (Fig. 9.3). Despite the unstead-

iness, good agreement was attained with the theoretical predictions. Imhoff and

Green (1988) concluded that fingering could play a major role in the vertical

transport of contaminants in groundwater.

(It should be noted that these fingers are distinct from those studied extensively by

Wooding (1959, 1960a, b, 1962a, b, 1964, 1969). The spacing of the double-diffusive

fingers is determined by the critical wavenumber determined by the Rayleigh–Bćnard

instability theory while the monodiffusive fingers investigated by Wooding arise

from Rayleigh–Taylor instability and the spacing is on a smaller length scale. In this

case the hydrological situation can be complex (Xie et al. 2012).)

That layered double-diffusive convection is possible in a porous medium was

shown by Griffiths (1981). His experiments with a two-layer convecting system in a

Hele–Shaw cell and a porous medium of glass spheres indicated that a thin

“diffusive” interface is maintained against diffusive thickening, despite the lack

of inertial forces. The solute and thermal buoyancy fluxes are approximately in the

ratio r ¼ φ Le�1/2. Griffiths explained the behavior of the heat flux in terms of a

coupling between purely thermal convection within each convecting layer and

220 mint = 60 min 460 min 908 min

Fig. 9.3 A series of pictures of finger growth. Dyed sugar solution (light color) overlies heavier
salt solution (Imhoff and Green 1988, with permission from Cambridge University Press)
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diffusion through the density interface. Further experiments in a Hele–Shaw cell by

Pringle and Glass (2002) explored the influence of concentration at a fixed buoy-

ancy ratio.

Rudraiah et al. (1982a) applied nonlinear stability analysis to the case of a

porous layer with impermeable, isothermal, and isosolutal boundaries. They

reported Nusselt and Sherwood numbers for Ra values up to 300 and RaD values

up to 70. Their results show that finite-amplitude instability is possible at subcritical

values of Ra.

Brand and Steinberg (1983a, b) and Brand et al. (1983) have obtained amplitude

equations appropriate for the onset of monotonic instability and oscillatory insta-

bility and also for points in the vicinity of the lines of monotonic and oscillatory

instability. Brand et al. (1983) found an experimentally feasible example of a co-

dimensional-two bifurcation (an intersection of monotonic and oscillatory instabil-

ity boundaries). Brand and Steinberg (1983b) predicted that the Nusselt number and

also the “Froude” (Sherwood) number should oscillate with a frequency twice that

of the temperature and concentration fields. Small-amplitude nonlinear solutions in

the form of standing and traveling waves and the transition to finite-amplitude

overturning convection, as predicted by bifurcation theory, were studied by

Knobloch (1986). Rehberg and Ahlers (1985) reported heat transfer measurements

in a normal-fluid He3–He4 mixture in a porous medium. They found a bifurcation to

steady or oscillatory flow, depending on the mean temperature, in accordance with

theoretical predictions.

Murray and Chen (1989) have extended the linear stability theory, taking into

account effects of temperature-dependent viscosity and volumetric expansion coef-

ficients and a nonlinear basic salinity profile. They also performed experiments with

glass beads in a box with rigid isothermal lower and upper boundaries. These

provide a linear basic-state temperature profile but only allow a nonlinear and

time-dependent basic-state salinity profile. With distilled water as the fluid, the

convection pattern consisted of two-dimensional rolls with axes parallel to the

shorter side. In the presence of stabilizing salinity gradients, the onset of convection

was marked by a dramatic increase in heat flux at a critical temperature difference

ΔT. The convection pattern was three-dimensional, whereas two-dimensional rolls

are observed for single-component convection in the same apparatus. WhenΔTwas

then reduced from supercritical to subcritical values the heat flux curve completed a

hysteresis loop.

For the case of uniform flux boundary conditions, Mamou et al. (1994) have

obtained both analytical asymptotic and numerical solutions, the latter for various

aspect ratios of a rectangular box. Both uniform flux and uniform temperature

boundary conditions were considered by Mamou and Vasseur (1999) in their linear

and nonlinear stability, analytical, and numerical studies. They identified four

regimes dependent on the governing parameters: stable diffusive, subcritical con-

vective, oscillatory, and augmenting direct regimes. Their results indicated that

steady convection can arise at Rayleigh numbers below the supercritical value for

linear stability, indicating the development of subcritical flows. They also demon-

strated that in the overstable regime multiple solutions can exist. Also, their
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numerical results indicate the possible occurrence of traveling waves in an infinite

horizontal enclosure.

A nonlinear stability analysis using the Lyapunov direct method was reported by

Lombardo et al. (2001) and Lombardo and Mulone (2002). A numerical study of the

governing and perturbation equations, with emphasis on the transition from steady

to oscillatory flows and with an acceleration parameter taken into consideration,

was conducted by Mamou (2003). The numerical and analytic study by Mbaye and

Bilgen (2001) demonstrated the existence of subcritical oscillatory instabilities. The

numerical study byMohamad et al. (2004) for convection in a rectangular enclosure

examined the effect of varying the lateral aspect ratio. Schoofs et al. (1999)

discussed chaotic thermohaline convection in the context of low-porosity hydro-

thermal systems. Schoofs and Spera (2003) in their numerical study observed that

increasing the ratio of chemical buoyancy to thermal buoyancy, with the latter kept

fixed, led to a transition from steady to chaotic convection with a stable limit cycle

appearing at the transition. The dynamics of the chaotic flow is characterized by

transitions between layered and nonlayered patterns as a result of the spontaneous

formation and disappearance of gravitationally stable interfaces. These interfaces

temporally divide the domain in layers of distinct solute concentration and lead to a

significant reduction of kinetic energy and vertical heat and solute fluxes. A scale

analysis, supported by numerical calculations, was presented by Bourich et al.

(2004c) for the case of bottom heating and a horizontal solutal gradient. The case

of mixed boundary conditions (constant temperature and constant mass flux, or vice

versa) was studied numerically by Mahidjiba et al. (2000a). They found that when

the thermal and solute effects are opposing the convection patterns differ markedly

from the classic Bénard ones.

Mulone and Straughan described an operative method to obtain necessary and

sufficient stability conditions. An extension to the case of systems with spatially

dependent coefficients (such as the case of a concentration based internal heat

source) was made by Hill and Malashetty (2012). Falsaperla et al. (2012) studied

rotating porous media under general boundary conditions. Peterson et al. (2010)

performed a multiresolution simulation of double-diffusive convection. Umla et al.

(2010) examined roll convection of binary fluid mixtures. Global stability for

penetrative convection was studied by Hill (2008). A differential equation approach

to obtain global stability for radiation-induced convection was introduced by Hill

(2009). Lo Jacono et al. (2010) studied the origin and properties of time-

independent spatially localized convection, computing using numerical continua-

tion different types of single and multipulse states. Rionero (2012d) re-examined

global nonlinear stability in double-diffusive convection in the light of hidden

symmetries. Diaz and Brevdo (2011, 2012) examined the absolute/convective

instability dichotomy at the onset of convection with either horizontal or vertical

solutal and inclined thermal gradients and with horizontal throughflow.

The effect of form drag on nonlinear convection and Hopf bifurcation (that

characterizes the transition from steady to unsteady convection) was studied by

Rebhi et al. (2016a, b). They found that hysteresis could be induced by the form

drag, and that a bistability phenomenon arose when the subcritical instability

threshold was close to the threshold for supercritical instability.
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9.1.4 Soret and Dufour Cross-Diffusion Effects

In the case of steep temperature gradients the cross coupling between thermal

diffusion and solutal diffusion may no longer be negligible. The tendency of a

solute to diffuse under the influence of a temperature gradient is known as the Soret

effect.

In its simplest expression, the conservation equation for C now becomes

φ
∂C
∂t

þ v �∇C ¼ Dm∇2Cþ DCT∇2T, ð9:30Þ

where the Soret coefficient DCT is treatable as a constant. If the Soret parameter S is
defined as

S ¼ � βCDCT

βDm

, ð9:31Þ

then the equation for the marginal state of monotonic instability in the absence of an

imposed solutal gradient is

Ra ¼ 4π2

1þ S 1þ Leð Þ : ð9:32Þ

The corresponding equation for marginal oscillatory instability is

Ra ¼ 4π2 σ þ φLeð Þ
Le φþ σSð Þ : ð9:33Þ

The general situation, with both cross-diffusion and double diffusion (thermal

and solutal gradients imposed), was analyzed by Patil and Rudraiah (1980). Taslim

and Narusawa (1986) showed that there is an analogy between cross-diffusion

(Soret and Dufour effects) and double diffusion in the sense that the equations

can be put in mathematically identical form. A general study of the Soret effect in

multicomponent flow was made by Lacabanne et al. (2002).

The linear analysis of Lawson et al. (1976), based on the kinetic theory of gases

and leading to a Soret effect, was put forward to explain the lowering of the critical

Rayleigh number in one gas due to the presence of another. This effect was

observed in a binary mixture of helium and nitrogen by Lawson and Yang

(1975). Lawson et al. (1976) observed that the critical Rayleigh number may be

lower or greater than for a pure fluid layer depending upon whether thermal

diffusion induces the heavier component of the mixture to move toward the cold

or hot boundary, respectively. Brand and Steinberg (1983a) pointed out that with

the Soret effect it is possible to have oscillatory convection induced by heating from

above. Bedrikovetskii et al. (1993) included the effect of pressure work. Rudraiah
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and Siddheshwar (1998) presented a weak nonlinear stability analysis with cross-

diffusion taken into account. Ouarzazi et al. (2002) studied pattern formation in the

presence of horizontal throughflow. Gaillard et al. (2003) investigated oscillatory

convection in a geological environment. Costesèque et al. (2002) presented a

synthesis of experimental and numerical studies.

The experimental and numerical study of Benano-Melly et al. (2001) was

concerned with Soret coefficient measurement in a medium subjected to a horizon-

tal thermal gradient. The onset of convection in a vertical layer subject to uniform

heat fluxes along the vertical walls was treated analytically and numerically by Joly

et al. (2001). The Soret effect also was included in the numerical study by Nejad

et al. (2001). Sovran et al. (2001) studied analytically and numerically the onset of

Soret-driven convection in an infinite horizontal layer with an applied vertical

temperature gradient. They found that for a layer heated from above, the motionless

solution is infinitely linearly stable in N> 0, while a stationary bifurcation occurs in

N < 0. For a layer heated from below, the onset of convection is steady or

oscillatory depending on whether N is above or below a certain value that depends

on Le and the normalized porosity. The numerical study of Faruque et al. (2004) of

the situation where fluid properties vary with temperature, composition, and pres-

sure showed that for lateral heating the Soret effect was weak, but with bottom

heating the Soret effect was more pronounced.

Further studies of Soret convection, building on studies discussed in Sect. 1.9,

were reported by Jiang et al. (2004a, b, c) and by Saghir et al. (2005a). Attention has

been placed on thermo-gravitational convection, a topic treated by Estebe and

Schott (1970). This refers to a coupling effect when a fluid mixture saturating a

vertical porous cavity in a gravitational field is exposed to a uniform horizontal

thermal gradient, and thermo-diffusion produces a concentration gradient that leads

to species separation. The porous media situation has been considered by Jamet

et al. (1992) and Marcoux and Charrier-Mojtabi (1998). The numerical results of

Marcoux and Mojtabi show the existence of a maximum separation corresponding

to an optimal Rayleigh number as expected, but there remains a difference between

the numerical results for that optimal value and experimental results of Jamet et al.

(1992). The study by Jiang et al. (2004b) concentrated on the two-dimensional

simulation of thermo-gravitation convection in a laterally heated vertical column

with space-dependent thermal, molecular, and pressure diffusion coefficients taken

as functions of temperature using the irreversible thermodynamics theory of Shukla

and Firoozabadi. The numerical results reveal that the lighter fluid component

migrates to the hot side of the cavity, and as the permeability increases the

component separation in the thermal diffusion process first increases, reaches a

peak, and then decreases. Jiang et al. (2004b) reported values of a separation ratio

for a methane and n-butane mixture. Further studies of separation have been made

by Er-Raki et al. (2008a, b) (vertical enclosure), Elhajjar et al. (2008, 2009, 2010)

(horizontal or inclined cell), Bennacer et al. (2009) (multidomain separation), and

Charrier-Mojtabi et al. (2011) (horizontal slot submitted to a heat flux) and Abahri

et al. (2017) (horizontal annulus). Jiang et al. (2004c) explicitly investigated the

effect of heterogeneous permeability, something that strongly affects the Soret
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coefficient. Saghir et al. (2005a) have reviewed some aspects of thermo-diffusion in

porous media.

Soret-driven convection in a shallow enclosure and with uniform heat (or both

heat and mass) fluxes was studied analytically and numerically by Bourich et al.

(2002, 2004e, f, 2005a, b), Er-Raki et al. (2005), and Bourich et al. (2016)

(magnetic field). Depending on the values of Le and N, subcritical stationary

convection may or may not be possible and parallel convective flow may or may

not be possible. Convection in a shallow enclosure was also studied by Bourich

et al. (2005a, b).

Enclosures heated and salted from the sides were studied by Er-Raki et al.

(2006a, 2007, 2008, 2009, 2011). In this situation subcritical convection is possible.

An analytical and numerical study of convection in a horizontal layer with

uniform heat flux applied at the horizontal walls, and with or without constant

mass flux at those walls, was reported by Bahloul et al. (2003) and Boutana et al.

(2004). A structural stability result was reported by Straughan and Hutter (1999).

Abbasi et al. (2011) studied the thermo-diffusion of carbon dioxide in various

binary mixtures. Theoretical predictions of effective thermo-diffusion coefficients

were made by Davarzani et al. (2010). A ternary mixture was examined by Jaber

et al. (2008). Heterogeneous media were analyzed numerically by Jiang et al.

(2006a). A doubly stratified medium was studied by Narayana and Murthy

(2007). Nonlinear convection due to compositional and thermal buoyancy was

treated by Tagare and Babu (2007). A strongly endothermic chemical reaction

system was studied by Li et al. (2006a). Saravanan and Jegajoth (2010) examined

a stationary fingering stability with coupled molecular diffusion and thermal

nonequilibrium. Soret-driven convection in a cavity with perfectly conducting

boundaries was analyzed by Lyubimov et al. (2011). Soret-driven convection in a

horizontal layer in the presence of a heat or concentration source was studied by

Goldobin and Lyubimov (2007). An analytical and numerical stability analysis of

Soret-driven convection in a horizontal layer was made by Charrier-Mojtabi et al.

(2007). A square cavity heated and salted from below was studied by Khadiri et al.

(2010a). A square cavity with icy fluid was treated by Alloui et al. (2010a). The

effect of anisotropy on linear and nonlinear convection in a horizontal layer was

examined by Gaikwad et al. (2009a, b), while Gaikwad and Prasad (2011) studied

the case of a couple-stress fluid. A study of stationary and oscillatory convection of

binary fluids was made by Augustin et al. (2010).

Other studies involving cross-diffusion were made by Mansour et al. (2007a, b)

(horizontal heat flux balanced by Soret mass flux), Motsa (2008), Rawat and

Bhargava (2009) (micropolar fluid), Ahmed et al. (2011a, b) (vertical channel

with magnetic field and chemical reaction), Jaimala and Goyal (viscoelastic

fluid), Malashetty and Biradar (2012) (nonlinear stability), Gaikwad and Kamble

(2012), Gaikwad and Kousar (2012) (rotation and chemical reaction), Patil and

Parvathy (1989) (anisotropy), Malashetty and Biradar (2011b) (viscoelastic fluid),

Gaikwad and Dhanraj (2014b) (viscoelastic fluid), Goyal and Jaimala (2012)

(micropolar fluid), Gaikwad and Kamble (2014), (rotation, anisotropy), Saravanan

and Keerthana (2012) (rotation), Rionero (2013a, b, c) (rotation), Ouattara et al.
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(2012) (conducting boundary plates), Ferdows et al. (2013) (velocity and thermal

slip, temperature-dependent viscosity, concentration-dependent diffusivity), Basu

and Layek (2013) (heating and salting from above), Nik-Ghazali et al. (2014)

(square annulus with cold inner surface and hot outer surface), Sekar et al. (2006)

(ferrofluid), Li et al. (2013a) (endothermic reaction), Hidouri et al. (2013) (square

cavity, entropy generation), Khidir and Sibanda (magnetic field, rotation), Sekar

and Raju (2014) (ferrofluid, magnetic field dependent viscosity, anisotropy),

Chamkha et al. (2014a) (rectangular duct, inclined magnetic field), Ajibade

(2014) (vertical microchannel, dual-phase lag, unsteady flow), Altawallbeh et al.

(2013a) (nonlinear stability, anisotropy, internal heat source), Wang et al. (2014a)

(horizontal cavity), Roy and Murthy (2015) (horizontal channel, viscous dissipa-

tion), Augustin et al. (2015) (review), Yacine et al. (2016) (separation of binary

mixtures, cross-heat fluxes), and Larabi et al. (2016) (ternary mixture).

The possible role of the Soret effect on the development of salinity gradients in

geologic basins was discussed by Nield et al. (2013).

The topic of thermo-gravitational diffusion in a binary fluid was surveyed by

Mojtabi et al. (2015).

9.1.5 Flow at High Rayleigh Number

The interaction between the heat transfer and mass transfer processes in the

regime of strong convection was investigated on the basis of a two-dimensional

model by Trevisan and Bejan (1987b). They used scale analysis to back up their

numerical work. Figure 9.4 shows the main characteristics of the flow, temperature,

and concentration fields in one of the rolls that form. This particular flow is heat

transfer-driven in the sense that the dominant buoyancy effect is one due to

temperature gradients (N ¼ 0). The temperature field (Fig. 9.4b) shows the

formation of thermal boundary layers in the top and bottom end-turn regions of

the roll. The concentration field is illustrated in Fig. 9.4b–d. The top and bottom

concentration boundary layers become noticeably thinner as Le increases from

1 to 20.

The overall Nusselt numbers Nu and overall Sherwood number Sh are defined by

Nu ¼ �q00

kmΔT=H
, Sh ¼

�j

DmΔC=H
ð9:34Þ

where �q00 and �j are the heat and mass fluxes averaged over one of the horizontal

boundaries. In heat transfer-driven convection, jNj<< 1, it is found that the Nusselt

number scales as

Nu ¼ Ra=4π2
� �1=2

: ð9:35Þ
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In the same regime the mass transfer scales are

Sh � Le1=2 Ra=4π2
� �7=8

if Le > Ra=4π2
� �1=4

, ð9:36aÞ
Sh � Le2 Ra=4π2

� �1=2
if Ra=4π2

� ��1=4
< Le < Ra=4π2

� �1=4
, ð9:36bÞ

Sh � 1 if Le < Ra=4π2
� �1=4

: ð9:36cÞ

The scales of mass transfer-driven flows, jNj >> 1, can be deduced from these

by applying the transformation Ra ! RaD, Nu ! Sh, Sh ! Nu, and Le ! Le�1.

The results are

Sh � RaD=4π
2

� �1=2
, ð9:37Þ

and

Nu � Le�1=2 RaD=4π
2

� �7=8
if Le < RaD=4π

2
� ��1=4

, ð9:38aÞ
Nu � Le�2 RaD=4π

2
� �1=2

if RaD=4π
2

� ��1=4
< Le < RaD=4π

2
� �1=4

, ð9:38bÞ
Nu � 1 if Le > RaD=4π

2
� �1=4

: ð9:38cÞ

These estimates agree well with the results of direct numerical calculations.

Rosenberg and Spera (1992) performed numerical simulations for the case of a

fluid heated and salted from below in a square cavity. As the buoyancy ratio

a b c d

Fig. 9.4 Two-dimensional numerical simulation for heat transfer-driven (N ¼ 0) convection in a

horizontal porous layer (Ra ¼ 200, H/L ¼ 1.89). (a) Streamlines; (b) isotherms, also isosolutal

lines for Le ¼ 1; (c) isosolutal lines for Le ¼ 4; and (d) isosolutal lines for Le ¼ 20 (Trevisan and

Bejan 1987b)
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N increases, the dynamics changes from a system that evolves to a well-mixed

steady state, to one that is chaotic with large amplitude fluctuations in composition,

and finally to one that evolves to a conductive steady state. Their correlations for Nu

and Sh were in good agreement with the results of Trevisan and Bejan (1987b).

Schoofs and Spera (2002) studied the transition to chaos.

Sheridan et al. (1992) found that their experimentally measured heat transfer

data correlated well with Nu ~ (Ra Da N )0.294Ja�0.45. Here Ja is the Jakob number,

defined by Ja ¼ cpΔT/hfg Δm, where hfg is the enthalpy of evaporation and m is the

saturated mass ratio (vapor/gas).

9.1.6 Other Effects

9.1.6.1 Dispersion

If a net horizontal flow is present in the porous layer, it will influence not only the

vertical solutal gradient but also the phenomenon of solute dispersion. Thermal

dispersion also can be affected. In most applications αm is greater than Dm, and as a

consequence the solutal dispersion is more sensitive to the presence of through

flow. The ultimate effect of dispersion is that the concentration distribution

becomes homogeneous.

The stability implications of the anisotropic mass diffusion associated with an

anisotropic dispersion tensor were examined by Rubin (1975b) and Rubin and Roth

(1978, 1983). The dispersion anisotropy reduces the solutal stabilizing effect on the

inception of monotonic convection and at the same time enhances the stability of

the flow field with respect to oscillatory disturbances. Monotonic convection

appears as transverse rolls with axes perpendicular to the direction of the horizontal

net flow, while oscillatory motions are associated with longitudinal rolls (axes

aligned with the net flow), the rolls of course being superposed on that net flow.

Certain geological structures contain some pores and fissures of large sizes. In such

cavernous media even very slow volume-averaged flows can deviate locally from the

Darcy flow model. The larger pores bring about an intensification of the dispersion of

solute and heat and because of the high pore Reynolds numbers, Rep, the effect of

turbulence within the pores. Rubin (1976) investigated the departure from the Darcy

flow model and its effect on the onset of convection in a horizontal layer with

horizontal through flow. This study showed that in the case of laminar flow through

the pores (Rep<< 1), the net horizontal flow destabilizes the flow field by enhancing

the effect of solutal dispersion. A stabilizing effect is recorded in the intermediate

regime (Rep � 1). In the inertial flow regime (Rep >> 1) the stability characteristics

become similar to those of monodiffusive convection, the net horizontal flow

exhibiting a stabilizing effect.
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9.1.6.2 Anisotropy and Heterogeneity

The onset of thermohaline convection in a porous layer with varying hydraulic

resistivity (r ¼ μ/K ) was investigated by Rubin (1981). If one assumes that the

dimensionless hydraulic resistivity ξ ¼ r/r0 varies only in the vertical direction and

only by a relatively small amount, the linear stability analysis yields the monotonic

marginal stability condition

Raþ RaD ¼ π2 ξ1=2H þ ξ1=2V

� �2

: ð9:39Þ

In this equation ξΗ and ξV are the horizontal and vertical mean resistivities

ξH ¼
ð 1

0

dbz
ξ

� 	�1

, ξV ¼
ð 1

0

ξdbz, ð9:40Þ

and so ξΗ � ξV. The right-hand side of Eq. (9.39) can be larger or smaller than 4π2

depending on whether Ra is based on ξV or ξΗ. A similar conclusion is reached with

respect to the onset of oscillatory motions.

The Galerkin method has been used by Rubin (1982a) in an analysis of the

effects of nonhomogeneous hydraulic resistivity and thermal diffusivity on stabil-

ity. The effect of simultaneous vertical anisotropy in permeability (hydraulic

resistivity), thermal diffusivity, and solutal diffusivity was investigated by Tyvand

(1980) and Rubin (1982b).

Chen (1992) and Chen and Lu (1992b) analyzed the effect of anisotropy and

inhomogeneity on salt-finger convection. They concluded that the critical Rayleigh

number for this is invariably higher than that corresponding to the formation of

plumes in the mushy zone during the directional solidification of a binary solution

(see Sect. 10.2.3). A numerical study of double-diffusive convection in layered

anisotropic porous media was made by Nguyen et al. (1994).

Viscosity variations and their effects on the onset of convection were considered

by Patil and Vaidyanathan (1982), who performed a nonlinear stability analysis

using the Brinkman equation, assuming a cosine variation for the viscosity. The

variation reduces the critical Rayleigh number based on the mean viscosity.

Bennacer (2004) treated analytically and numerically a two-layer (one anisotropic)

situation with vertical through mass flux and horizontal through heat flux. Nield and

Kuznetsov (2013e) investigated a two-layer system with internal heating. Nield

et al. (2015) studied the effect of local thermal nonequilibrium in a two-layer

system.

Heterogeneity effects were also studied by Alloui et al. (2009a), Jaber and

Saghir (2011), Kuznetsov and Nield (2008b), Sammouda et al. (2013) (nonuniform

porosity), and Elbouzidi et al. (2014a, b). The case of depth-dependent viscosity

and permeability was studied by Rionero (2014b).

Anisotropy was also treated by Malashetty (1993), Malashetty and Gaikwad

(2002), Malashetty and Swamy (2010b), Malashetty and Biradar (2011a), while
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Subramanian and Patil (1991) combined anisotropy with cross-diffusion. Harfash

(2016d) combined heterogeneity and anisotropy.

9.1.6.3 Brinkman Model

The effect of porous medium coarseness on the onset of convection was

documented by Poulikakos (1986). With the Brinkman equation the critical Ray-

leigh number for the onset of monotonic instability is given by

Raþ RaD ¼ α2c þ π2
� �2

α2c
α2c þ π2
� �eDaþ 1
h i

, ð9:41Þ

where the critical dimensionless horizontal wavenumber (αc) is given by

α2c ¼
π2eDaþ 1

� �1=2

9π2eDaþ 1
� �1=2

� π2eDa� 1

4eDa
: ð9:42Þ

In terms of the effective viscosity eμ introduced in Eq. (1.17), the Darcy numbereDa is defined by

eDa ¼ eμ
μ

K

H2
: ð9:43Þ

Nonlinear energy stability theory was applied to this problem by Guo and Kaloni

(1995b). Fingering convection, with the Forchheimer term as well as the Brinkman

term taken into account, was treated numerically by Chen and Chen (1993a, b).

With Ra fixed, they found a transition from steady to time-periodic (and then to

quasiperiodic) convection as RaD increases. An analytical solution based on a

parallel flow approximation and supported by numerical calculations was presented

by Amahmid et al. (1999a). They showed that there is a region in the (N, Le) plane

where a convective flow of this type is not possible for any Ra and Da values. A

linear and nonlinear stability analysis leading to calculations of Nusselt numbers,

streamlines, isotherms, and isohalines was presented by Shivakumara and Sumithra

(1999). The Brinkman model was also used by Wang and Tan (2009). Further work

with the Brinkman model and a horizontal cavity was done by Alloui et al. (2010b).

The ultimate boundedness and stability of triply diffusive mixtures in rotating

layers was studied by Capone and de Luca (2012b). Kaloni and Guo (1996)

obtained a weak nonlinear solution and investigate the existence, regularity, and

uniqueness of a solution. The structural stability for Brinkman convection, with a

chemical reaction in which the solubility depends on temperature, was investigated

by Straughan and Al Sulaimi (2014).
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9.1.6.4 Additional Effects

Multicomponent Convection

Triple diffusion was treated by Rudraiah and Vortmeyer (1982), Poulikakos

(1985c), and Tracey (1996), who obtained some unusual neutral stability curves,

including a closed approximately heart-shaped oscillatory curve disconnected from

the stationary neutral curve, and thus requiring three critical values of Ra to

describe the linear stability criteria. For certain values of parameters the minima

on the oscillatory and stationary curves occur at the same Rayleigh number but

different wavenumbers. Tracey (1998) studied the case of penetrative convection.

Further studies were made by Chand (2012) (magnetized ferrofluid with internal

angular momentum), Bulgarkova (2012) (rectangular box, modulation of the con-

centration gradient), Chand (Chand 2013a, Chand 2013b) (micropolar ferromag-

netic fluid), Capone and De Luca (2012a), Wang et al. (2014a, b) (Maxwell

viscoelastic fluid, heated from below or internally), and Rionero (2011c, 2012a,

b, 2013c, 2014a, b, 2015) (global nonlinear stability, depth-dependent viscosity,

and permeability). A multicomponent fluid was investigated numerically by Kantur

and Tsibulin (2004). Multiple diffusion results for ultimate boundedness, absence

of subcritical instability, and global nonlinearity were obtained by Rionero (2013a,

b, c). Rionero (2014a) studied a multicomponent fluid in a rotating horizontal layer

heated from below and salted partly from below and partly from above, with

emphasis on the conditions for the instability of the thermal conduction solution

irrespective of the temperature gradient. Prakash et al. (2016c) discussed the

limitations of linear growth rates in triply diffusive convection. Prakash et al.

(2016d) treted convection in a cylindrical slab for the case of large viscosity

variation.

Magnetic Field

A ferromagnetic fluid was treated by Vaidyanathan et al. (1995), Sekar et al. (1998)

(rotation), Sunil et al. (2004b, 2005a, b, c, 2007, 2009a, 2010b), Divya et al. (2005),

Sunil and Sharma (2005a, b, c, d, e, f, g), Sunil and Mahajan (2008a, 2009a, b),

and Sekar and Raju (2015) (micropolar fluid). These papers covered both linear and

nonlinear stability and the various effects of rotation, micropolar fluid, magnetic-

field-dependent viscosity, suspended dust particles, and local thermal

nonequilibrium.

When the fluid is not a ferrofluid, the effect of a magnetic field is usually

unimportant for a regular porous medium (an exception is a mushy zone) because

it is not possible to produce a magnetic field strong enough for the magnetic drag to

be significant in comparison with the Darcy drag. We briefly mention the papers by

Sharma and Sharma (1980), Sharma and Kumari (1992) (rotation), Sharma and

Bhardwaj (1993) (rotation), Sunil (1994, 1999, 2001) (compressibility), Prakash
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and Manchanda (1994) (partly ionized plasma), Khare and Sahai (1993) (hetero-

geneity), Chamkha and Al-Naser (2002) (binary gas), Ramanbason and Vasseur

(2007), Shihari and Rao (2008), Bourich et al. (2008) (external shear stress),

Srivastava et al. (2012) (anisotropy, Soret effect), Salem and Fathy (2012),

Altawallbeh et al. (2013b, d) (heating from below, cooling from the side), Haque

et al. (2013) (rotation, unsteady flow), Benerji Babu et al. (2014) (nonlinear

stability), Harfash and Alshara (2015a, b) (throughflow, anisotropy, internal

heating, and then chemical reaction, variable gravity), Harfash and Alshara

(2015b) (throughflow, internal heating, anisotropy), Kumar et al. (2015e) (triple

diffusion, viscoelastic fluid), and Bourich et al. (2016) (Soret effect, uniform fluxes

of heat and mass). Shekar et al. (2016) (inclined square, cross-diffusion) and

Prakash and Gupta (2016) (conditions for the nonexistence of oscillatory motions)

and Zhao et al. (2016) (fractional Maxwell fluid).

Papers on MHD convection with a non-Newtonian fluid are those by Sharma and

Sharma (1990, 2000), Sharma and Kumar (1996), Sharma and Thakur (2000),

Sharma and Kishor (2001), Sharma et al. (2001), Sunil et al. (2001), Kumar and

Mohan (2011, 2012c), Kumar (2012b), Kumar et al. (2013c) (rotation), Rana (2013,

2014) (viscoelastic fluid, suspension, variable gravity, rotation), Kumar et al.

(2013c) (viscoelastic fluid, rotation), Kumar (2016) (micropolar fluid, radiation,

chemical reaction).

Rotation

The effect of rotation was included by Chakrabarti and Gupta (1981), Raptis

(1983a), Rudraiah et al. (1986), (anisotropic media), Patil et al. (1989, 1990)

(anisotropy), Malashetty and Begum (2011a) (anisotropy), Saravanan and

Keerthana (2012), Falsaperla et al. (2012) (general boundary conditions), Gaikwad

and Begum (2013) (reaction-convection, anisotropy), Bhadauria et al. (2013c)

(cross-diffusion, anisotropy), Rionero (2014d) (nonlinear stability), Capone and

De Luca (2014b) (vertical throughflow), Alhusseny and Turan (2015a, b) (long

rotating channel), and Gaikwad and Kamble (2016) (couple-stress fluid, cross-

diffusion, anisotropy).

Non-Newtonian Fluid

Papers involving a rotating non-Newtonian fluid are those by Sharma et al. (1998,

1999a) and Sharma and Rana (2001, 2002), Reena and Rana (2009), Kumar and

Bhadauria (2011c), Malashetty and Swamy (2010b, 2011a), b, Bhadauria (2011),

Malashetty et al. (2013), Rana and Thakur (2013a) (suspension), Rana and Thakur

(2013b) (couple-stress fluid), and Rana et al. (2012c) (compressible Walters model

B0 fluid).
Non-Newtonian fluids permeated with suspended particles have been studied by

Sharma et al. (1999b), Sunil et al. (2003b, 2004d), Sharma and Sharma (2004), and
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Rana et al. (2012c). Other papers on non-Newtonian fluids of various sorts are those

by Sharma and Kumari (1993), Awad et al. (2010) (Maxwell fluid), Malashetty

et al. (2009c, e, 2010b, 2011), (viscoelastic fluid, anisotropy), Kumar and

Bhadauria (2011b) (viscoelastic fluid, thermal nonequilibrium), Malashetty and

Swamy (2011a, b) (viscoelastic fluid, rotation, anisotropy), Malashetty and Kollur

(2011) (couple-stress fluid, anisotropy), Malashetty et al. (2010a) (couple-stress

fluid), Wang and Tan (2008c, 2011) (Maxwell fluid, cross-diffusion), Shivakumara

et al. (2011j, 2013b) (couple-stress fluid), Narayana et al. (2012a) (Maxwell fluid),

Swamy et al. (2012) (viscoelastic fluid), Swamy et al. (2012), Ben Khelifa et al.

(2012), Delenda et al. (2012) (viscoelastic fluid), Chand and Rana (2012b) (cross-

diffusion, viscoelastic fluid), Gaikwad and Birada (2013), Gaikwad and Kouser

(2013), Srivastava and Bera (2013) (couple-stress fluid, chemical reaction), Liu and

Umavathi (2013) (micropolar fluid), Gaikwad and Kouser (2013, 2014) (internal

heating, viscoelastic and couple-stress fluid), Zhao et al. (2014b) (internal heat

source, nonlinear stability), Gaikwad and Dhanraj (2014b) (anisotropy, internal

heat source), and Zhu et al. (2017a) (power-law fluid, anisotropy, unsteady flow, 3D

numerical investigation), Zhu et al. (2017b) (power law fluid, entropy production,

heterogeneity), Zheng et al (2016) (Marangoni effect, volumetric heat generation,

chemical reaction) and Thirumurugan and Vasanthakumari (2016) (Walters visco-

elastic fluid, suspension. A viscoelastic fluid with local thermal nonequilibrium was

examined by Malashetty et al. (2012a) and Yang et al. (2013).

Local Thermal Nonequilibrium

The effect of thermal nonequilibrium was added by Malashetty et al. (2008, 2009a),

Malashetty and Heera (2008a, b, 2009), and Chen et al. (2011).

Throughflow

The effect of vertical throughflow was studied by Shivakumara and Khalili (2001),

Shivakumara and Nanjundappa (2006) (quadratic drag), Shivakumara and

Sureshkumar (quadratic drag, Oldroyd-B fluid), Pieters and Schuttlelaars (2008)

(nonlinear dynamics), Capone et al. (2013, 2014), Capone and De Luca (2014a, b)

(nonlinear stability, variable diffusivities), Harfash and Hill (2014) (internal

heating, anisotropy, 3D simulation), Kiran (2015b, 2016c) (nonuniform effects,

g-jitter effects), and Deepika and Narayana (2016) (nonlinear stability,

concentration-based internal heat source). The effect of horizontal through flow

was investigated by Joulin and Ouarzazi (2000), Lyubimov et al. (2008a), Matta

et al. (2016a, b) (variable gravity, internal heat source, nonlinear stability), and

Deepika et al. (2016) (concentration-based internal heat source).
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Thermal Modulation

The effect of temporally fluctuating temperature on instability was analyzed by

Ouarzazi and Bois (1994), Ouarzazi et al. (1994), McKay (1998b, 2000),

Ramazanov (2001), and Malashetty and Basavaraja (2004). The last study included

the effect of anisotropy. The studies by McKay make use of Floquet theory. He

demonstrated that the resulting instability may be synchronous, subharmonic, or at

a frequency unrelated to the heating frequency.

The effect of modulated temperature at the boundaries was considered by

Ramazanov (2001), Bhadauria (2007b, c), Bhadauria and Sherani (2008b), and

Bhadauria and Srivastava (2010) (MHD). Chaotic behavior induced by thermal

modulation was studied by Malasoma et al. (1999). Resonance induced by sinu-

soidal heat was investigated by El Ayachi et al. (2010). Periodic heating of a square

enclosure with crossed temperature and concentration gradients was examined by

Abourida et al. (2011).

Vibration

The effect of vertical vibration was studied analytically and numerically by Sovran

et al. (2000, 2002) and Jounet and Bardan (2001). Depending on the governing

parameters, vibrations are found to delay or advance the onset of convection, and

the resulting convection can be stationary or oscillatory. An intensification of the

heat and mass transfers is observed at low frequency for sufficiently high vibration

frequency. The onset of Soret-driven convection with a vertical variation of gravity

was analyzed by Alex and Patil (2001) and Charrier-Mojtabi et al. (2004, 2005).

The latter considered also horizontal vibration and reported that for both monotonic

and oscillatory convection the vertical vibration has a stabilizing effect while the

horizontal vibration has a destabilizing effect on the onset of convection. A further

study of the effect of vibration was made by Strong (2008a, 2009). The effect of

vibration on a system with a horizontal layer of clear fluid overlying a horizontal

porous layer was studied by Lyubimov et al. (2008b).

The effect of g-jitter with a viscoelastic fluid and local thermal nonequilibrium

was studied by Suthar et al. (2012). The effect of g-jitter with a composite fluid/

porous layer was investigated by Swamy (2014a). The combination of thermal and

gravity modulation was treated by Siddheswar et al. (2012b).

Groundwater Studies

The problem of convection in groundwater below an evaporating salt lake was

studied in detail by Wooding et al. (1997a, b) and Wooding (2007). Now the

convection is driven by the evaporative concentration of salts at the land surface,

leading to an unstable distribution of density, but the evaporative groundwater

discharge dynamically can stabilize this saline boundary layer. The authors
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investigated the nature, onset, and development (as fingers or plumes) of the

convection. They reported the result of linear stability analysis, numerical simula-

tion, and laboratory experimentation using a Hele-Shaw cell. The results indicate

that in typical environments, convection will predominate in sediments whose

permeability exceeds about 10�14 m2, while below this threshold the boundary

layer should be stabilized, resulting in the accumulation of salts at the land surface.

A numerical model simulating this situation was presented by Simmons et al.

(1999). A related problem involving the evaporation of groundwater was studied

analytically and numerically by Gilman and Bear (1996). The groundwater flow

pattern in the vicinity of a salt lake also has been studied numerically by Holzbecher

(2005b). A numerical study of convection above a salt dome was made by

Holzbecher et al. (2010). A stability aspect of hot springs was studied by Bera

et al. (2011). The onset of convection in groundwater wells was examined by Love

et al. (2007). The onset of convection in under-ice melt ponds was investigated by

Hirata et al. (2012).

Chemical Reaction

The situation in which one of the components undergoes a slow chemical reaction

was analyzed by Patil (1982a), while a convective instability that is driven by a fast

chemical reaction was studied by Steinberg and Brand (1983, 1984). Further work

involving chemical reactions was carried out by Subramanian (1994), Malashetty

et al. (1994), and Malashetty and Gaikwad (2003).

The effects of chemical reaction with double dispersion were examined by

El-Amin et al. (2008). Li et al. (2006a, b, c, 2007, 2013a, b) examined various

combinations of cross-diffusion, endothermic reactions, local thermal

nonequilibrium, and forced convection. The onset of convection driven by a

catalytic surface reaction was studied by Postelnicu (2009) and Scott and Straughan

(2011); in the latter paper it was shown that if the reaction parameter exceeds a

certain value then convection appears as oscillatory (rather than stationary) con-

vection. Prichard and Richardson (2007) studied the effect of temperature-

dependent solubility. The case of strong exothermic chemical reaction with local

thermal nonequilibrium was studied by Bousri et al. (2012). Scott (2012a, b) studied

the case of a layer with an exothermal surface reaction at the lower boundary, with

and without the Soret effect. The effect of a reaction at the surface of a porous

medium was also studied by Scott (2013a, b) and Scott and Straughan (2013b). Kim

and Choi (2014b) studied the effect of first-order chemical reaction on gravitational

instability. Al-Sulaimi (2015) presented an energy stability analysis. A case where

the dissolved reaction component concentration is a function of temperature was

studied by Straughan (2015b). A nonlinear stability analysis for a problem with

chemical reaction was presented by Al-Sulaimi (2016) and Gaikwad and Dhanraj

(2016) (anisotropy).
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Internal Heating

The critical conditions for the onset of convection in a doubly diffusive porous layer

with internal heat generation were documented by Selimos and Poulikakos (1985).

The effect of heat generation or absorption was also studied by Chamkha (2002).

Heat generation with anisotropy was studied by Bhadauria (2012) and Gaikwad and

Dhanraj (2015). A case with local nonuniform thermal equilibrium was dealt with

by Zhang et al. (2015a, b, c). The effects of local thermal equilibrium and vertical

heterogeneity were analyzed by Kuznetsov et al. (2015).

Composite Domains

Fluid-porous composite media were studied by Gobin and Goyeau (2010), Hill and

Carr (2013a, b) (stability of solar ponds), Jena et al. (2013c), and Olali (2013)

(selective absorption of radiation).

Other Studies

Convective stability of a binary mixture in a fractured porous medium was studied

by Bedrikovetskii et al. (1994). An experimental study involving an electrochem-

ical effect when horizontal temperature and concentration gradients are imposed

was reported by Chen (1998d). A transport correlation was presented by Yoon et al.

(2001). Flow transitions in three-dimensional fingering were studied by Sezai

(2002). Younsi et al. (2002a, b) studied a 2D box with horizontal gradients and

opposing flow. Carr (2003b) modeled the evolution of under-ice melt ponds.

Kalla et al. (2001a) studied a situation involving imposed vertical heat and mass

fluxes and a horizontal heat flux that they treated as a perturbation leading to

asymmetry of the bifurcation diagram. Multiple steady-state solutions, with differ-

ent heat and mass transfer rates, were found to coexist. Two and three-dimensional

multiple steady states were studied by Khadiri et al. (2011). Multiple steady states

in an enclosure partly heated and fully salted from below were examined by Alloui

et al. (2009b). In their analytical studies Masuda et al. (1999, 2002) found that there

is a range of buoyancy ratios N for which there is an oscillation between two types

of solution, temperature dominated and concentration dominated. Some mathemat-

ical aspects were studied by Franchi and Straughan (1993), Lin and Payne (2007),

Rionero (2007, 2010, 2012c), and Rionero and Vergori (2010). The boundary

domain integral method was used by Kramer et al. (2007) and Jeci et al. (2009).

Convection in an enclosure with partial or localized heating and salting was studied

by Zhao et al. (2008b, c). Turbulent convection was treated by Tofaneli and de

Lemos (2009). Lin (1992) studied numerically a transient problem. For the case of a

cavity heated and salted from below, Khadiri et al. (2010b) made a comparison of

two-dimensional and three-dimensional models. The effect of viscous dissipation

was examined by Barletta and Nield (2011b). Tipping points for convection with a

9.1 Vertical Heat and Mass Transfer 495



Cattaneo–Christov fluid were studied by Straughan (2011b). Umla et al. (2011)

studied three-dimensional pattern formation. Kim and Choi (2012) studied the

effect of an impulsive change in concentration at the upper boundary. Convection

due to a wavy horizontal surface was investigated by Narayana and Sibanda

(2012). Kuznetsov and Nield (2012c) studied the onset of double-diffusive con-

vection in a vertical cylinder occupied by a heterogeneous porous medium with

vertical throughflow. Convection in a cavity for the case of a density maximum

was treated by Muthtamilselvan and Das (2012). Benerji Babu et al. (2012b)

studied linear and weakly nonlinear stability in the presence of radiation. Musuuza

et al. (2012) studied a box with a partly heated bottom. Bahadori and Rezvantalab

(2014) investigated the effects of viscosity dependent on temperature and concen-

tration. Altawallbeh et al. (2013c) examined a cavity partly heated from below and

partly heated from the side. Lo Jacono et al. (2013) studied three-dimensional

spatially localized binary convection. Straughan (2014a) investigated an aniso-

tropic inertia effect in microfluidic convection. Jamshidzadeh et al. (2013) studied

the thermohaline extension of the Henry and Elder problems (unevenly heated

bottom wall) with dispersion effects. The effect of variable gravity on linear and

nonlinear stability of Hadley flow was investigated by Matta and Lakshmi

Narayana (2016).

9.2 Horizontal Heat and Mass Transfer

9.2.1 Boundary Layer Flow and External Natural
Convection

The most basic geometry for simultaneous heat and mass transfer from the side is

the vertical wall embedded in a saturated porous medium. Specified at the wall are

the uniform temperature T0 and the uniform concentration C0. The temperature and

concentration sufficiently far from the wall are T1 and C1.

The Darcy flow driven by buoyancy in the vicinity of the vertical surface can

have one of the four two-layer structures shown in Fig. 9.5. The thicknesses δ,
δT, and δC indicate the velocity, thermal, and concentration boundary layers.

The relative size of these three thicknesses is determined by the combination

(N, Le).

The heat and mass transfer from the vertical surface was determined first based

on scale analysis (Bejan 1984, pp. 335–338) and later based on the boundary layer

similarity method (Bejan and Khair 1985). The results of the scale analysis are

summarized in Table 9.1. Each row in this table corresponds to one of the quadrants

of the (N, Le) domain covered by Fig. 9.5. The v scale represents the largest vertical

velocity, which in Darcy flow occurs right at the wall. By writing this time �q00 and �j
for the heat and mass fluxes averaged over the wall heightH, the overall Nusselt and
Sherwood numbers are defined as
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Nu ¼ �q00

km T0 � T1ð Þ=H , Sh ¼
�j

Dm C0 � C1ð Þ=H : ð9:44Þ

The similarity solution to the same problem was obtained by Bejan and Khair

(1985) by selecting the nondimensional similarity profiles recommended by the

scale analysis (Table 9.1).

u ¼ �αm
x
Rax f

0 ηð Þ, ð9:45Þ

v ¼ �αm
2x

Ra1=2x f � ηf 0ð Þ, ð9:46Þ

θ ηð Þ ¼ T � T1
T0 � T1

, η ¼ y

x
Ra1=2x , ð9:47Þ

c ηð Þ ¼ C� C1
C0 � C1

: ð9:48Þ

Heat transfer
driven flow
 |N|<<1

Mass transfer
driven flow
 |N|>>1

Le>>1 Le<<1

Le>>1

dC dC

d

d

d

d

dT

dC dT

dT

dCdT

Le<<1

Fig. 9.5 The four regimes

of boundary layer heat and

mass transfer near a vertical

surface embedded in a

porous medium (Bejan and

Khair 1985)

Table 9.1 The flow, heat, and mass transfer scales for the boundary layer near a vertical wall

embedded in a porous medium (Bejan 1984, Bejan and Khair 1985)

Driving mechanism v Nu Sh Le domain

Heat transfer (αm/H ) Ra Ra1/2 (Ra Le)1/2 Le >> 1

(jNj << 1) (αm/H ) Ra Ra1/2 Ra1/2 Le Le << 1

Mass transfer (αm/H ) RajNj (RajNj)1/2 (RajNjLe)1/2 Le << 1

(jNj >> 1) (αm/H ) RajNj Le�1/2(RajNj)1/2 (RajNjLe)1/2 Le >> 1

9.2 Horizontal Heat and Mass Transfer 497



In this formulation, x is the distance measured along the wall and the Rayleigh

number is defined by Rax ¼ gβ Kx(T0 � T/)/ναm. The equations for momentum,

energy, and chemical species conservation reduce to

f 00 ¼ �θ0 � Nc0, ð9:49Þ

θ00 ¼ 1

2
f θ0, ð9:50Þ

c00 ¼ 1

2
f c0Le, ð9:51Þ

with the boundary conditions f ¼ 0, θ ¼ 1, and c ¼ 1 at η ¼ 0, and ( f, θ, c) ! 0 as

η ! 1. Equations (9.49)–(9.51) reinforce the conclusion that the boundary layer

phenomenon depends on two parameters, N and Le.

Figure 9.6 shows a sample of vertical velocity and temperature

(or concentration) profiles for the case Le ¼ 1. The vertical velocity increases

and the thermal boundary layer becomes thinner as jNj increases. The same

similarity solutions show that the concentration boundary layer in heat transfer-

driven flows (N ¼ 0) becomes thinner as Le increases, in good agreement with the

trend anticipated by scale analysis.

The effect of wall inclination on the two-layer structure was described by Jang

and Chang (1988b, c). Their study is a generalization of the similarity solution

N=4
N=-4
N=0

N=4
N=0
N=-4

0 7
0

0 7

(b)(a)

0.5

θ,c

η η

1

Le=1

0

-2

-4

f '

Fig. 9.6 The buoyancy ratio effect on the Le ¼ 1 similarity profiles for boundary layer heat and

mass transfer near a vertical wall embedded in a porous medium. (a) Velocity profiles

and (b) temperature and concentration profiles (Bejan and Khair 1985)
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approach employed by Bejan and Khair (1985). The heat and mass transfer scales

that prevail in the extreme case when the embedded H-long surface is horizontal

are summarized in Table 9.2. A related study was reported by Jang and Ni (1989),

who considered the transient development of velocity, temperature, and concentra-

tion boundary layers near a vertical surface. Further studies were made by

Bestman (1989).

The effect of flow injection on the heat and mass transfer from a vertical plate

was investigated by Lai and Kulacki (1991d): see also the comments by Bejan

(1992a). Raptis et al. (1981a, b) showed that an analytical solution is possible in the

case of an infinite vertical wall with uniform suction at the wall-porous medium

interface. The resulting analytical solution describes flow, temperature, and con-

centration fields that are independent of the vertical coordinate. This approach was

extended to the unsteady boundary layer flow problem by Raptis and Tzivanidis

(1984). Raptis et al. (1981a, b) and Raptis (1983c) studied the case of constant

suction with time-dependent temperature. Das et al. (2006) studied constant suction

and a source/sink. For the case of a non-Newtonian (power-law) fluid, an analytical

and numerical treatment was given by Rastogi and Poulikakos (1995). The case of a

thermally stratified medium was studied numerically by Angirasa et al. (1997).

Nonsimilar solutions for the case of two prescribed thermal and solutal boundary

conditions were obtained by Aly and Chamkha (2010).

The physical model treated by Bejan and Khair (1985) was extended to the case

of a boundary of arbitrary shape by Nakayama and Hossain (1995). A further scale

analysis of natural convection boundary layers driven by thermal and mass diffu-

sion was made by Allain et al. (1992), who also made some corroborating numer-

ical investigations. They noted the existence of flows that are heat driven even

though the amplitude of the solutal convection is dominant. Bansod and Jadhav

(2010) obtained an analytical solution of the Bejan-Khair equation. Aouachria

(2009), using an integral method, obtained results agreeing with those of Bejan

and Khair (1985).

An analytical-numerical study of hydrodynamic dispersion in natural convection

heat and mass transfer near vertical surfaces was reported by Telles and Trevisan

(1993). They considered flows due to a combination of temperature and concentra-

tion gradients and found that four classes of flows are possible according to the

relative magnitude of the dispersion coefficients.

Table 9.2 The flow, heat, and mass transfer scales for the boundary layer near a horizontal wall

embedded in a saturated porous medium (Jang and Chang 1988b)

Driving

mechanism u Nu Sh

Le

domain

Heat transfer (αm/H )Ra2/3 Ra1/3 Ra1/3Le1/2 Le >> 1

(jNj << 1) (αm/H )Ra2/3 Ra1/3 Ra1/3Le Le << 1

Mass transfer (αm/H ) � (RajNj)2/3Le�1/3 (RajNj)�1/3Le�1/6 (RajNjLe)1/3 Le << 1

(jNj >> 1) (αm/H ) � (RajNj)2/3Le�1/3 (RajNj)�1/3Le�2/3 (RajNjLe)1/3 Le >> 1
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For convection over a vertical plate, the Forchheimer effect was analyzed by

Murthy and Singh (1999); dispersion effects were studied by Khaled and Chamkha

(2001), Chamkha and Quadri (2003), and El-Amin (2004a), and the effect of double

stratification was discussed by Bansod et al. (2002) and Murthy et al. (2004b).

Chamkha (2001a) treated a nonisothermal permeable plate. Using homotopy anal-

ysis and the Forchheimer model, an analytic solution was obtained by Wang et al.

(2003a). The effect of thermophoresis particle deposition was analyzed by

Chamkha and Pop (2004), Ganesan et al. (2014) (stratification), and Kameswaran

et al. (2014b). Three-dimensional flow was treated by Singh (2005), Chamkha et al.

(2006a), and Duwairi and Damseh (2008b, 2009) (radiation, mixed convection).

The case of density depending on temperature and concentration in a nonlinear

manner was studied by Partha (2010) and Bég et al. (2009c) (time dependence,

radiation). Other studies were made by Singh and Queeny (1997), Singh (2007),

Singh et al. (2007) (periodic permeability, variable suction), Ferdows et al. (2008)

(cross-diffusion), El-Arabawy (2009) (cross-diffusion, variable wall temperature),

(variable conductivity, slip), Moorthy and Senthilvadivu (2012a), c) (variable

viscosity, cross-diffusion), Srinivasacharya et al. (2015c, d) (double stratification,

spectral quasilinearization), Srinivasacharya and Surenda (2016) (cross-diffusion,

double stratification), Huang (2016a, b) (cross-diffusion, radiation, internal

heating), and Loganathan and Sivapoornapriya (2016b) (impulsively started plate,

chemical reaction).

9.2.1.1 Magnetic Field

Except when the fluid is ferrofluid or the medium is a mushy zone, the effect of

convection in a regular fluid is generally insignificant. It is not possible to produce a

magnetic field strong enough for the magnetic drag to become significant in

comparison with the Darcy drag. Nevertheless a large number of theoretical papers

involving a magnetic field have been published.

MHD convection was treated for a vertical plate by Singh et al. (1991) (rotation,

unsteady flow), Cheng (1999, 2005), Chamkha and Khaled (2000c, d), Acharya

et al. (2000), Hassanien and Allah (2002) (pulsating permeability), Takhar et al.

(2003a, b) (unsteady flow), Kim (2004) (micropolar fluid, moving plate), Postelnicu

(2006), Chaudhary and Jain (2007a) (oscillating plate), Chaudhary and Jain (2007b)

(micropolar fluid, radiation, variable permeability, slip flow), Afifi (2007a) (cross-

diffusion, temperature-dependent viscosity), Ahmed (2007) (unsteady flow), Prasad

and Reddy (2008) (transient), Eldabe et al. (2008) (Eyring-Powell fluid), Das et al.

(2009a, b) (oscillatory suction), Al-Odat et al. (2009) (transient), Sudheer Babu and

Satya Narayana (2009) (chemical reaction, radiation absorption, variable suction),

Singh and Kumar (2010) (transient), Sharma et al. (2010) (transient), Jang and Hsu

(2009a) (Hall effect), Kamel (2001) (unsteady flow), Makinde (2009a, 2011a,

2012) (radiation, chemical reaction, stagnation point flow), Makinde and Sibanda

(2008), Postelnicu (2004) (double diffusion), Jain et al. (2009) (radiation, slip),

Ferdows and Chen (2009) (cross-diffusion), Kishan et al. (2009) (double
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stratification, viscous dissipation), Dash et al. (2009a, b) (viscoelastic fluid, rota-

tion, chemical reaction), Kairi et al. (2009) (double dispersion), Dash et al. (2011)

(Oldroyd fluid, rotation), Ramana Reddy et al. (2010), Tak et al. (2010a, b) (cross-

diffusion, radiation), Hayat et al. (2010c) (unsteady flow), Ramachandra Prasad

et al. (2011) (cross-diffusion), Rashad et al. (2011a) (chemical reaction, stretching

sheet), Osman et al. (2011a, b), Kesavaiah et al. (2011a, b) (chemical reaction,

radiation absorption, unsteady flow, moving plate with suction, heat source),

Al-Odat and Al-Ghamdi (2012) (cross-diffusion, unsteady flow), Sahoo and Dash

(2012), Salem and Fathy (2012) (stagnation point flow, stretching sheet, radiation,

variable viscosity and conductivity), Shawky (2012) (Casson fluid, stretching

sheet), Husnain et al. (2012a, b) (unsteady flow, variable viscosity and conductiv-

ity), Motsa and Shateyi (2012), Shateyi and Motsa (2012b) (unsteady flow,

stretching sheet, chemical reaction, radiation, suction/injection), Chand and

Kumar (2012) (viscoelastic fluid, oscillation, slip), Srinivasacharya et al. (2014)

(cross-diffusion, stratification), Ahmed et al. (2013a, b) (cross-diffusion, oscillating

plate), Anjalidevi and Kyalvizhi (2013) (stretching sheet, radiation, heat source),

Das (2013) (moving surface, chemical reaction), Rubio Hernandez and Zueco

(2013) (network numerical analysis of radiation absorption and chemical effects

for unsteady flow), Harish Babu and Satya Narayana (2013) (variable permeability,

micropolar fluid, moving plate), Hussaini et al. (2013) (unsteady flow, variable

suction), Prakash et al. (2013) (cross-diffusion, radiation, unsteady flow), Rath et al.

(2013) (chemical reaction, periodic permeability), Zafariyan et al. (2013) (second-

ary effects) Salem (2013) (micropolar fluid, chemical reaction, stretching sheet),

Ali et al. (2013a, b), Ganghadhar and Bhaskar Reddy (2013) (chemical reaction,

moving plate with suction), Mishra et al. (2013) (viscoelastic fluid, oscillatory

suction, and heat source), Ali and Alam (2014) (cross-diffusion, stretching sheet,

heat generation), Govindarajan et al. (2014), (chemical reaction, unsteady flow,

heat sink), Pal and Mondal (2014c) (cross-diffusion, radiation, stretching sheet,

radiation, viscous dissipation), Ramaprasad and Varma (2014) (chemical reaction,

heat generation, radiation, unsteady flow), Sarma et al. (2014) (rotation, moving

plate), Hsiao et al. (2014) (cross-diffusion, thermophoretic particle deposition),

Malga and Kishan (2014) (polar fluid, unsteady flow), Raju and Varma (2014)

(cross-diffusion), Ojjela and Naresh Kumar (2014) (cross-diffusion, couple-stress

fluid, chemical reaction, Hall and ion slip effects), Seth et al. (2015c) (rotation,

radiation, moving plate, heat absorption), Mohanty et al. (2015) (micropolar fluid,

stretching sheet), Choudhury and Das (2014) (viscoelasticity, chemical reaction,

radiation), Seth and Sarkar (2015) (rotation, chemical reaction, radiation, moving

plate), Seth et al. (2015a, b, c) (rotation, moving plate), Pattnaik et al. (2015)

(radiation, accelerated plane), Anand Rao et al. (2015) (cross-diffusion, radiation,

heat source, unsteady flow), Khan et al. (2015f) (radiation, unsteady flow),

Loganathan and Sivapoornapriya (2014b) (impulsively started plate), Mahanta

and Shaw (2015) (double diffusion, Casson fluid, unsteady flow, convective bound-

ary condition), Swain and Senapati (2015) (radiation, impulsively started plate),

Singh and Kumar (2015) (micropolar fluid, chemical reaction, double stratifica-

tion), Marneni et al. (2015) (ramped wall temperature, cross-diffusion), Mabood
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et al. (2016a) (cross-diffusion, stretching sheet, micropolar fluid, radiation),

Prakash et al. (2016a, b, c) (cross-diffusion, radiation, chemical reaction), Uddin

et al. (2016b) (stretching sheet, velocity, and thermal slip), Loganathan and

Sivapoornapriya (2016a) (viscous dissipation), Madhava Reddy et al. (2016)

(cross-diffusion, stratification, impulsively started plate), Seth et al. (2016a, b)

(ramped plate temperature, radiation, and either chemical reaction or rotation,

heat absorption, and an accelerated plate), Ibrahim and Suneetha (2016) (Soret

effect, heat source, chemical reaction, viscous dissipation), Sarma and Pandit

(2016) (Soret effect, accelerated plate, rotation about a normal to the plate),

Uddin et al. (2016g) (multiple slips, variable properties), Zhao et al. (2016a, b)

(fractional Maxwell fluid, cross-diffusion), Singh et al. (2016) (rotation, exponen-

tially accelerated plate) and Mabood and Ibrahim (2016) (stretching sheet, cross-

diffusion, micropolar fluid, radiation).

For a horizontal surface, Moorthy et al. (2013) studied cross-diffusion and

variable viscosity effects. For an inclined plane, studies were made by Ferdows

et al. (2009a, b), Reddy and Reddy (2011), Pal and Chatterjee (2013) (cross-

diffusion, power-law fluid, variable conductivity), Uddin and Enamul Karim

(2013) (cross-diffusion, heat generation, thermophoresis), Ali et al. (2013a, b)

(conjugate effects), and Ismail et al. (2014) (rotation, unsteady flow).

The effects of MHD, radiation, and variable viscosity on convection from a

vertical truncated cone were studied by Mandy et al. (2010). Flow past a sphere

with cross-diffusion was investigated by Vasu et al. (2012). Stagnation point flow

past a horizontal cylinder with radiation was studied by Uddin and Kumari (2011).

9.2.1.2 Non-Newtonian Fluid

A power-law non-Newtonian fluid was studied by Jumar and Majumdar (2000,

2001), Cheng (2006c, 2011b) (yield stress, cross-diffusion), Cheng (2007a, c,

2009a) (vertical wavy surface), El-Hakiem (2009a) (radiation), Ibrahim et al.

(2010) (yield stress), Hirata et al. (2010) (yield stress, chemical reaction, cross-

diffusion), Narayana et al. (2009a) (yield stress, cross-diffusion), Tai and Char

(2010) (cross-diffusion, radiation), Srinivasacharya and Swamy Reddy (2012a, b,

2013a, b, c) (cross-diffusion, chemical reaction, radiation, stratification), Narayana

et al. (2009b, 2013b) (cross-diffusion, stratification), and Murthy and Kairi (2009)

(cross-diffusion, melting), and Yih and Huang (2015) (internal heating).

A viscoelastic fluid was treated by Choudhury and Dey (2010) (periodic perme-

ability), Salem (2006b) (cross-diffusion), and Malashetty et al. (2012a) (local

thermal nonequilibrium). Flow of a viscoelastic fluid over a vertical cone and a

flat plate was examined by Kumar and Sivaraj (2013). A polar fluid with chemical

reaction and internal heat generation was studied by Patil and Kulkarni (2008) (for a

comment, pointing out an error in modeling viscous dissipation, see Rees (2009a)).

A micropolar fluid was studied by Chamkha et al. (2004a, b, c) (chemical reaction)

and Rashad et al. (2014a) (chemical reaction, radiation). A couple-stress fluid was
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investigated by Malashetty et al. (2012b) (cross-diffusion). A Casson fluid was

examined by Benazir et al (2016) (magnetic field).

9.2.1.3 Cross-Diffusion

For a vertical wall, cross-diffusion was also studied by Partha et al. (2006, 2008,

2009), Postelnicu (2007c, 2010a) (chemical reaction, stagnation point flow), Tsai

and Huang (2009a), El-Arabawy (2009), Rathish Kumar and Krishna Murthy

(2010b, 2012b) (wavy boundary, double stratification), Awad et al. (2011a, b)

(radiation), Murthy and El-Amin (2011) (stratification), Moorthy and Seethilvadivu

(2012a) (variable viscosity), and El-Kabeir et al. (2015a, b) (moving plate, chem-

ical reaction).

Cheng (2012d) studied cross-diffusion with an inclined plate. El-Kabeir (2011)

examined cross-diffusion with a stretching cylinder and chemical reaction. Rashad

and Chamkha (2014) treated cross-diffusion about a truncated cone.

9.2.1.4 Moving Surface, Stretching Sheet

For a regular porous medium, a moving surface such as a stretching sheet does not

have a significant effect in the bulk of the medium. Nevertheless a large number of

theoretical papers on this topic have been published, and these we briefly mention.

Flow over a stretching sheet was studied by Abel and Ueera (1998), Abel et al.

(2001) (viscoelastic fluid), Salem (2006b) (viscoelastic fluid), Mansour et al.

(2008a, b) (chemical reaction, thermal stratification, MHD, cross-diffusion), Aly

et al. (2011) (cross-diffusion), Beg et al. (2009a) (MHD, cross-diffusion),

Elbashbeshy et al. (2010) (unsteady flow, heat source/sink, variable heat flux),

Pal and Chaterjee (2010) (MHD, micropolar fluid, nonuniform heat source, thermal

radiation), Pal and Mondal (2010b) (MHD, radiation), Pal and Mondal (2012b)

(MHD, Forchheimer drag, nonuniform heat source/sink, variable viscosity), Abdou

(2010) (temperature-dependent viscosity), Rahman and Al-Lawatia (2010) (chem-

ical reaction, micropolar fluid), Chamkha et al. (2010b) (unsteady flow, chemical

reaction), Kandasamy et al. (2010a) (thermophoresis, temperature-dependent vis-

cosity), Chamkha and Aly (2011) (stagnation point flow, polar fluid, cross-

diffusion), Huang et al. (2011) (inclined surface, chemical reaction), Rahman

(2012) (chemical reaction, heat generation, variable viscosity and conductivity),

Hayat et al. (2015c) (cross-diffusion, exponential stretching, chemical reaction,

heat source), and Baoku et al. (2015) (viscoelastic second-grade fluid).

9.2.1.5 Horizontal or Inclined Wall

Li and Lai (1998), Bansod (2003), and Bansod et al. (2005) examined convection

from horizontal plates. Also for a horizontal plate, Wang et al. (2003b) obtained an
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analytical solution for Forchheimer convection with surface mass flux and thermal

dispersion effects, Bansod and Jadhav employed an integral treatment, while

Narayana and Murthy (2008), Murthy and Narayana (2010), and Narayana et al.

(2012b) studied the effect of cross-diffusion. Triple diffusion along a horizontal

plate with a convective boundary condition was investigated by Khan et al. (2014c).

For an inclined wall, Durga Prasad et al. (2016) investigated cross-diffusion with a

magnetic field. Jhansi Rani et al. (2015) considered a magnetic field and an

impulsively started plate while Choudhury and Das (2016) treated a viscoelastic

fluid, a magnetic field, and a chemical reaction. A moving vertical cylinder was

examined by Loganathan and Eswari (2016).

9.2.1.6 Wavy Surface

Convection over a wavy vertical plate or cone was studied by Cheng (2000c, d),

Rathish Kumar and Shalini (2004b), Narayana and Sibanda (2010) (cross-

diffusion), and Krishna Murthy et al. (2011) (cross-diffusion). Convection from a

wavy wall in a thermally stratified enclosure with mass and thermal stratification

was treated numerically by Rathish Kumar and Shalini (2005a, b). A vertical wavy

wall with double stratification was also studied by Neagu (2011).

An inclined wavy surface was treated by Cheng (2010b). A corrugated surface

with cross-diffusion was studied by Rathish Kumar and Krishna Murthy (2010b).

A vertical wavy cone with cross-diffusion was examined by Cheng (2011a).

9.2.1.7 Cone or Wedge or Cylinder or Sphere

A cone, truncated or otherwise, with variable wall temperature and concentration

was analyzed by Yih (1999a, d) and Cheng (2000a). For a cone or wedge, convec-

tion was treated by Chamkha et al. (2000). A cylinder or a cone with heat generation

or absorption effects was examined by Chamkha and Quadri (2001, 2002).

A vertical cone was also treated by Kumari and Nath (2009a), Awad et al.

(2011a, b) (cross-diffusion), and Cheng (2009c, d, f, 2010d, 2011a) (non-Newto-

nian fluid, cross-diffusion, variable wall temperature and concentration, variable

wall heat and mass fluxes), Kairi (2011) (power-law fluid), Mahmoud (2013)

(non-Newtonian fluid, chemical reaction, heat generation, radiation, variable vis-

cosity), Kairi and Ramreddy (2014), (power-law fluid), Khan and Sultan (2015)

(double diffusion, Eyring-Powel fluid) and Benazir et al. (2016) (Casson fluid,

magnetic field). A truncated cone was studied by Chamkha et al. (2006b) (icy

water), Cheng (2007c) (nonsimilar solutions), Cheng (2007c, 2008, 2009b, e,

2010a) (non-Newtonian fluid, wavy wall, variable viscosity), Mahdy (2010a, b)

(chemical reaction, variable viscosity), Kairy and Murthy (2011) and Uddin et al.

(2016e) (rotation, anisotropy, slip).

A vertical cylinder was studied by Yücel (1990). Convection above a near-

horizontal surface and convection along a vertical permeable cylinder were
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analyzed by Hossain et al. (1999a, b). A vertical cylinder was also treated by Cheng

(2010c), El-Aziz (2007) (MHD, permeable surface), Singh and Chandarki (2009),

Chamkha et al. (2011c), and Reddy (2014a) (radiation, magnetic field). Flow over a

slender body of revolution was studied by Lai et al. (1990b). Non-Darcy effects on

flow over a two-dimensional or axisymmetric body were treated by Kumari et al.

(1988a, b), while Kumari and Nath (1989c, d) dealt with the case where the wall

temperature and concentration vary with time. A numerical study of convection in

an axisymmetric body was reported by Nithiarasu et al. (1997b).

Flow over a horizontal cylinder, with the concentration gradient being produced

by transpiration, was studied by Hassan and Mujumdar (1985). A horizontal

permeable cylinder was considered by Yih (1999f). Flow over a horizontal cylinder

was also studied by El-Kabeir et al. (2008a, b) (MHD, cross-diffusion, non-New-

tonian fluid), Zueco et al. (2009a), Prasad et al. (2012b) (magnetic field, radiation,

variable viscosity), and Prasad et al. (2013b) (cross-diffusion). Flow over an

elliptical horizontal cylinder was treated by Cheng (2006a, 2011b).

Flow over a wedge with a chemical reaction was investigated by Kandasamy and

Palanima (2007), Kandasamy et al. (2008a), and Muhaimin et al. (2009a, b) (MHD,

mixed convection, thermophoresis).

The case of a heated sphere was analyzed by Lai and Kulacki (1990a),

Ganapathy (2012), and Prasad et al. (2012a) (magnetic field, radiation, variable

porosity).

9.2.1.8 Other Situations

A doubly stratified medium was studied by Narayana and Murthy (2006), Rathish

Kumar and Shalini (2005a, b) (wavy boundary), Srinivasacharya and RamReddy

(2010), and Srinivasacharya et al. (2011). Convection past a curved surface with

variable permeability was treated by Mohammadein and Al Shear (2011). Aziz

et al. (2014) treated boundary layer slip. Cao and Cui (2015) studied a case in which

viscosity, thermal conductivity, and mass diffusivity were power-law functions.

The effect of melting on convection about an axisymmetric stagnation point with

cross-diffusion and temperature-dependent viscosity was studied by Modather et al.

(Sect. 9.2.1).

9.2.2 Enclosed Porous Medium: Channel or Box

As the simplest configuration of simultaneous heat and mass transfer in an enclosed

porous medium consider the two-dimensional system defined in Fig. 9.7. The

uniform temperature and concentration are maintained at different levels along

the two side walls. The main engineering challenge is the calculation of the overall

heat and mass transfer rates expressed by Eq. (9.44).
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Relative to the single-wall problem (Fig. 9.5) the present phenomenon depends

on the geometric aspect ratio L/H as an additional dimensionless group next to

N and Le. These groups account for the many distinct heat and mass transfer

regimes that can exist. Trevisan and Bejan (1985) identified these regimes on the

basis of scale analysis and numerical experiments. Figure 9.8 shows that in the case

of heat transfer-driven flows (jNj << 1) there are five distinct regimes, which are

labeled I–V. The proper Nu and Sh scales are listed directly on the [Le, (L/H )2Ra]

subdomain occupied by each regime.

Five distinct regimes also are possible in the limit of mass transfer-driven flows,

jNj>> 1. Figure 9.9 shows the corresponding Nusselt and Sherwood number scales

and the position of each regime in the plane [Le, (L/H )2 RajNj]. Had we used the

plane [Le�1, (L/H )2 RajNj Le] then the symmetry with Fig. 9.8 would have been

apparent. The Nu and Sh scales reported in Figs. 9.8 and 9.9 are correct within a

numerical factor of order 1. Considerably more accurate results have been devel-

oped numerically and reported in Trevisan and Bejan (1985).

The most striking effect of varying the buoyancy ratio N between the extremes

represented by Figs. 9.8 and 9.9 is the suppression of convection in the vicinity of

N ¼ �1. In this special limit, the temperature and concentration buoyancy effects

are comparable in size but have opposite signs. Indeed, the flow disappears

completely if Le ¼ 1 and N ¼ �1. This dramatic effect is illustrated in Fig. 9.10,

which shows how the overall mass transfer rate approaches the pure diffusion level

(Sh ¼ 1) as N passes through the value �1.

When the Lewis number is smaller or greater than 1, the passing of N through the

value �1 is not accompanied by the total disappearance of the flow. This aspect is

illustrated by the sequence of streamlines, isotherms, and concentration lines

displayed in Fig. 9.11. The figure shows that when N is algebraically greater than

approximately �0.85, the natural convection pattern resembles the one that would

Porous
mediumH

T1
C1

0

L

x

C0

T0

g

y Adiabatic and impermeableFig. 9.7 Enclosed porous

medium subjected to heat

and mass transfer in the

horizontal direction
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(V) Sh ~ (L/H)(Ra |N| Le)1/2

(II) Sh ~ (L/H)(Ra |N| Le)1/2Nu ~ 1

Nu ~ 1

Nu ~ (L/H)(Ra |N|)1/2
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Fig. 9.9 The heat and mass transfer regimes when the buoyancy effect in the system of Fig. 9.7 is

due mainly to concentration gradients, |N| 	 1 (Trevisan and Bejan 1985)
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Fig. 9.8 The heat and mass transfer regimes when the buoyancy effect in the system of Fig. 9.7 is

due mainly to temperature gradients, jNj 
 1 (Trevisan and Bejan 1985)
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be expected in a porous layer in which the opposing buoyancy effect is not the

dominant driving force. The circulation is reversed at N values lower than approx-

imately �1.5. The flow reversal takes place rather abruptly around N ¼ �0.9, as is

shown in Fig. 9.11b. The core, which exhibited temperature and concentration

stratification at N values sufficiently above and below �0.9, is now dominated by

nearly vertical constant T and C lines. This feature is consistent with the tendency of

both Nu and Sh to approach their pure diffusion limits (e.g., Fig. 9.10).

A compact analytical solution that documents the effect of N on both Nu and Sh

was developed in a subsequent paper by Trevisan and Bejan (1986). This solution is

valid strictly for Le¼ 1 and is based on the constant-flux model according to which

both sidewalls are covered with uniform distributions of heat flux and mass flux.

The overall Nusselt number and Sherwood number expressions for the high Ray-

leigh number regime (distinct boundary layers) are

Nu ¼ Sh ¼ 1

2

H

L

� 	1=5

Ra
2=5
* 1þ Nð Þ2=5, ð9:52Þ

where Ra* is the heat flux Rayleigh number defined by Ra* ¼ gβKH2q00/ναmkm.
These theoretical Nu and Sh results agree well with numerical simulations of the

heat and mass transfer phenomenon.

0–1–5
0

20

opposing aiding

Ra = 200

Le
0.1
1

10

40

Sh

4

N

Fig. 9.10 The effect of the buoyancy ratio on the overall mass transfer rate through the enclosed

porous medium shown in Fig. 9.7 (Ra ¼ 200, H/L ¼ 1) (Trevisan and Bejan 1985)
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Another theoretical result has been developed by Trevisan and Bejan (1986) for

the large Lewis numbers limit in heat transfer-driven flows (jNj << 1). In this limit

the concentration boundary layer can be described by means of a similarity solu-

tion, leading to the following expression for the overall Sherwood number:

Sh ¼ 0:665
L

H

� 	1=10

Le1=2Ra
3=10
* : ð9:53Þ

The mass flux j used in the Sh definition, Sh ¼ jH/Dm ΔC, is constant, while ΔC
is the resulting concentration-temperature difference between the two sidewalls.

Equation (9.53) is also in good agreement with numerical experiments.

Fig. 9.11 Streamlines, isotherms, and isosolutal lines for natural convection in the enclosed

porous medium of Fig. 9.7, showing the flow reversal that occurs near N ¼ �1 (Ra ¼ 200,

Le ¼ 10, H/L ¼ 1). (a) N ¼ �0.85; (b) N ¼ �0.9; and (c) N ¼ �1.5 (Trevisan and Bejan 1985)
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It has been shown that the constant-flux expressions (9.52) and (9.53) can be

recast in terms of dimensionless groups (Ra, Nu, Sh) that are based on temperature

and concentration differences. This was done in order to obtain approximate

theoretical results for the configuration of Fig. 9.7, in which the sidewalls have

constant temperature and concentrations (Trevisan and Bejan 1986). Similarly,

appropriately transformed versions of these expressions can be used to anticipate

the Nu and Sh values in enclosures with mixed boundary conditions, that is,

constant T and j, or constant q00 and C on the same wall. Numerical simulations

of the convective heat and mass transfer across enclosures with mixed boundary

conditions are reported by Trevisan and Bejan (1986).

An analytical and numerical study of convection in vertical slots due to pre-

scribed heat flux at the vertical boundaries was made by Alavyoon (1993), whose

numerical results showed that of any value of Le> 1 there exists a minimum aspect

ratio A below which the concentration field in the core region is rather uniform and

above which it is linearly stratified in the vertical direction. For Le > 1 the thermal

layers at the top and bottom of the enclosure are thinner than their solutal counter-

parts. In the boundary layer regime and for sufficiently large A the thicknesses of

the vertical boundary layers of velocity, concentration, and temperature were found

to be equal. The case of opposing fluxes was studied by Alavyoon et al. (1994).

They found that at sufficiently large values of Ra, Le, and A there is a domain of

N in which one obtains oscillating convection, while outside this domain the

solution approaches steady-state convection.

Numerical simulations based on an extension to the Brinkman model for the case

of cooperating thermal and solutal buoyancy forces in the domain of positive N and

for Le > 1 were reported by Goyeau et al. (1996a). The Brinkman model was also

employed by Mamou et al. (1998a).

The studies reviewed in this subsection are based on the homogeneous and

isotropic porous medium model. The effect of medium heterogeneity on the heat

and mass transfer across an enclosure with constant-flux boundary conditions is

documented byMehta and Nandakumar (1987). They show numerically that the Nu

and Sh values can differ from the values anticipated based on the homogeneous

porous medium model.

For the case N¼�1, a purely diffusive solution exists for suitable geometry and

boundary conditions. Charrier-Mojtabi et al. (1997, 1998) have studied this case for

a rectangular slot with constant temperature imposed on the side walls. The onset of

convection for which γ ¼ Leθ occurs when Ra jLe � 1j exceeds a certain critical

value, depending on the aspect ratio A. The critical value is 184.06 for a square

cavity (A ¼ 1) and 105.33 for a vertical layer of infinite extent; the corresponding

critical wavenumber has the value 2.51. For A ¼ 1, they also performed numerical

simulations, the results of which confirmed the linear instability results. They

observed that the bifurcation to convection was of the transcritical type and that

the bifurcation diagrams indicated the existence of both symmetrical and asym-

metrical subcritical and supercritical solutions.

A numerical study for a square cavity, comparing the Darcy, Forchheimer, and

Brinkman models, was made by Karimi-Fard et al. (1997). They found that Nu and
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Sh increase with Da and decrease with increase of a Forchheimer parameter. The

quadratic drag effects are almost negligible, but the boundary effect is important. A

further numerical study, for the case of opposing buoyancy effects, was reported by

Angirasa and Peterson (1997a). Effects of porosity variation were emphasized in

the numerical study by Nithiarasu et al. (1996). Three-dimensional convection in a

cubic or rectangular enclosure with opposing horizontal gradients of temperature

and concentration was studied numerically by Sezai and Mohamad (1999) and

Mohamad and Sezai (2002). A numerical treatment with a random porosity model

was reported by Fu and Ke (2000).

The various studies for the case N ¼ �1 have demonstrated that there exists a

threshold for the onset of monotonic convection, such that oscillatory convection

occurs in a narrow range of values of Le (close to 1, applicable for many gases)

depending on the normalized porosity. For the case of an infinite layer, the

wavelength at the onset of stationary convection is independent of the Lewis

number but this is not so for overstability. When the Lewis number is close to

unity the system remains conditionally stable provided that the normalized porosity

is less than unity. For a vertical enclosure with constant heat and solute fluxes, the

particular case N ¼ �1 + ε case (where ε is a very small positive number) was

studied by Amahmid et al. (2000). In this situation multiple unicellular convective

flows are predicted.

A non-Newtonian fluid was studied theoretically and numerically by Getachew

et al. (1998) and by Benhadji and Vasseur (2003), and by Ben Khelifa et al. (2012).

El-Sayed et al. (2011) studied the effect of chemical reaction with a non-Newtonian

fluid in a vertical peristaltic tube. Convection in a couple-stress fluid in a horizontal

wavy channel was investigated by Muthuraj et al. (2013).

An electrochemical experimental method was demonstrated by Chen et al.

(Chen et al. 1999a, b). An inverse method, leading to the determination of an

unknown solute concentration on one wall given known conditions for temperature

and concentration on the remaining faces, was reported by Prud’homme and

Jiang (2003).

A cavity with a freely convecting wall was studied by Nithiarasu et al. (1997c).

The case of constant heat and mass fluxes was investigated by Masuda et al. (1997).

A numerical study of the effect of thermal stratification on convection in a square

enclosure was made by Rathish Kumar et al. (2002). Convection in a square cavity,

or a horizontal layer with the Soret effect included, under crossed heat and mass

fluxes was studied analytically and numerically by Bennacer et al. (2001a, 2003b).

Entropy production in a square cavity was treated by Mchirgui et al. (2012).

Convection in a vertically layered system, with a porous layer between two clear

layers, was studied by Mharzi et al. (2000). Anisotropic cavities were studied

analytically and numerically by Tobbal and Bennacer (1998), Bera et al. (1998,

2000), Bera and Khalili (2002a), and Muasovi and Shahnazari (2008). Explicit

algebraic analytical solutions were presented by Cai et al. (2003) and Cai and Liu

(2008). The effect of a magnetic field was studied by Robillard et al. (2006) and

Ahmed and Zueco (2011) (rotation, Hall current). Akbal and Baytas (2008) inves-

tigated the effects of nonuniform porosity on convection in a cavity with a partly
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permeable wall. A cavity with icy water was studied by Kandasamy et al. (2008a),

Sivasankaran et al. (2008), and Eswaramurthi and Kandaswamy (2009). Unusual

oscillations in a box with opposing heat and mass fluxes on the vertical walls were

investigated numerically by Masuda et al. (2008, 2010, 2013). A box subjected to

heat and mass fluxes was studied analytically and numerically by Bennisaad and

Ouazaa (2012)A heterogeneous cavity was examined by Choukairy and Bennacer

(2012). Mimouni et al. (2014) studied two- and three-dimensional transitions in an

elongated horizontal enclosure. A shallow cavity heated and salted from the sides

with cross-diffusion was studied by Alloui and Vasseur (2013a). They found

multiple solutions when the buoyancy ratio is close to unity. A cavity with partly

active vertical walls was studied by Jena et al. (2013a). A highly accurate numerical

solution for Brinkman convection in a box was reported by Shao et al. (2016).

Triple diffusion in a square cavity was studied by Ghalambaz et al. (2016).

Unsteady convection in a box with nonuniform boundary conditions was inves-

tigated by Mondal and Sibanda (2015). Three-dimensional convection in a cubic

box was examined by Amel et al. (2014) and Hadidi et al. (2016) (partly filled

layer). Local thermal nonequilibrium was investigated by Bousri et al. (2012)

(chemical reaction) and Bera et al. (2014) (square cavity). An anisotropic box

with nonuniform temperature and concentration on the lower wall was studied by

Kumar et al. (2015d). For horizontal rectangular enclosures and heterogeneous

media, with the horizontal and vertical walls subject to different mass and heat

transfer, Choukairy et al. (2016) discussed the limitation of the 2D parallel flow

assumption for 2D-3D transition. A rectangular box with walls partly thermally

active was studied by Saberi and Nikbakhti (2016).

Analytical and numerical studies of convection in a vertical layer were reported

by Amahmid et al. (1999b, c, 2000, 2001), Bennacer et al. (2001b), Mamou et al.

(1998a), and Mamou (2002a). A vertical layer or slot was also treated by Asbik

et al. (2002) (evaporation), Mharzi et al. (2002) (vertical layering), Dash et al.

(2010) (second-order fluid), Li et al. (2006b) (transient convection, gas diffusion),

Rawat et al. (2009) (transient convection, MHD, micropolar fluid, variable thermal

conductivity, heat source), Zhao et al. (2007b) (thermal and solutal source), Liu

et al. (2008b) (concentrated energy and solute sources), Er-Raki et al. (2010) (cross-

diffusion), Kheilifa et al. (2012) (non-Newtonian fluid), Kumar et al. (2013b)

(micropolar fluid, magnetic field, radiation), Harzallah et al. (2014), (walls of finite

thickness, anisotropy, local thermal nonequilibrium), Manglesh et al. (2014),

(cross-diffusion, magnetic field), Umavathi (2015a, b, c) (chemical reaction, vari-

able viscosity and conductivity), Mathew and Singh (2015) (span-wise fluctuation,

radiation, chemical reaction), Ojjela and Naresh Kumar (2016) (unsteady MHD

flow, cross-diffusion, chemical reaction, couple-stress fluid) Usman et al. (2016)

(radiation, slip condition), Doh et al. (2016) (micropolar fluid, transient flow,

boundary conditions of the third kind), and Reddy et al. (2016a, b, c) (magnetic

field, rotation, viscoelastic fluid, radiation). An inclined box was studied by

Chandra Shekhar and Kishan (2015) (cross-diffusion), Abdelkrim and Mahfoud

(2014), Kefayati (2016a, b) (cross-diffusion, power-law fluid), and Mondal and

Sibanda (2016) (unsteady flow, radiation). For a vertical asymmetric channel and a
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Maxwell fluid, cross-diffusion, radiation, and chemical reaction, Noreen and

Saleem (2016) investigated peristaltic flow. Aly (2016a) and Aly and Asai (2016)

used the incompressible smooth particle hydrodynamic numerical method to study

an enclosure containing a sloshing rod and also an annulus or enclosure with cross-

diffusion and anisotropy. A numerical study within a horizontal partly porous

enclosure was made by Hadidi et al. (2016). Unsteady convection in an inclined

rectangular enclosure was investigated by Mondal and Sibanda (2016b).

9.2.3 Transient Effects

Another basic configuration in which the net heat and mass transfer occurs in the

horizontal direction is the time-dependent process that evolves from a state in

which two (side-by-side) regions of a porous medium have different temperatures

and species concentrations. In time, the two regions share a counter-flow that brings

both regions to a state of thermal and chemical equilibrium. The key question is

how parameters such as N, Le, and the height-length ratio of the two-region

ensemble affect the time scale of the approach to equilibrium. These effects have

been documented both numerically and on the basis of scale analysis by Zhang and

Bejan (1987).

As an example of how two dissimilar adjacent regions come to equilibrium by

convection, Fig. 9.12 shows the evolution of the flow, temperature, and concentra-

tion fields of a relatively high Rayleigh number flow driven by thermal buoyancy

effects (N¼ 0). As the time increases, the warm fluid (initially on the left-hand side)

migrates into the upper half of the system. The thermal barrier between the two

thermal regions is smoothed gradually by thermal diffusion. Figure 9.12c, d show

that as the Lewis number decreases the sharpness of the concentration dividing line

disappears as the phenomenon of mass diffusion becomes more pronounced.

In the case of heat transfer-driven flows, the time scale associated with the end of

convective mass transfer in the horizontal direction is

bt ¼ φ

σ

L

H

� 	2

Ra�1 if LeRa >
φ

σ

L

H

� 	2

, ð9:54Þ

bt ¼ φ

σ

L

H

� 	2

Le if LeRa <
φ

σ

L

H

� 	2

: ð9:55Þ

The dimensionless time bt is defined as

bt ¼ αmt

σH2
: ð9:56Þ

Values ofbt are listed also on the side of each frame of Fig. 9.12. The time criteria

(9.54)–(9.56) have been tested numerically along with the corresponding time
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Fig. 9.12 The horizontal spreading and layering of thermal and chemical deposits in a porous

medium (N ¼ 0, Ra ¼ 1000, H/L ¼ 1, Φ/σ ¼ 1). (a) Streamlines; (b) isotherms, or isosolutal lines

for Le ¼ 1; (c) isosolutal lines for Le ¼ 0.1; and (d) isosolutal lines for Le ¼ 0.01 (Zhang and

Bejan 1987)
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scales for approach to thermal equilibrium in either heat transfer-driven or mass

transfer-driven flows.

The transient problem for the case of a vertical plate, with a simultaneous step

change in wall temperature and wall concentration, was treated numerically using a

Brinkman-Forchheimer model by Jang et al. (1991). They found that the time to

reach steady state decreases with increase of Da or magnitude of the buoyancy ratio

N, increases with increase of the inertia coefficient cF, and passes through a

minimum as Le increases through the value 1. Earlier Pop and Herwig (1990)

had shown that when just the concentration was suddenly changed at an isothermal

vertical plate, the local Sherwood number decreases with time and approaches its

steady-state value. Cheng (2000b) analyzed a problem involving transient heat and

mass transport from a vertical plate on which the temperature and concentration are

power functions of the streamwise coordinate. The influence of fluctuating thermal

and mass diffusion on unsteady MHD buoyancy-driven convection past a vertical

plate with variable wall heat and mass fluxes was studied by Pal and Talukdar

(2012a).

Milne and Butler (2007) carried out a numerical investigation of the effects of

compositional and thermal buoyancy on transient plumes in a porous layer.

9.2.4 Stability of Flow

The stability of the steady Darcy flow driven by differential heating of the isother-

mal walls bounding an infinite vertical slab with a stabilizing uniform vertical

salinity gradient was studied independently by Gershuni et al. (1976, 1980) and

Khan and Zebib (1981). Their results show disagreement in some respects. We

believe that Gershuni et al. are correct. The flow is stable if jRaDj is less than

RaD1 ¼ 2.486 and unstable if jRaDj > RaD1. The critical wavenumber αc is zero for
RaD1 < jRaDj < RaD2 where RaD2 � 52 for the case N ¼ 100, σ ¼ 1, and nonzero

for jRaDj > RaD2. As jRaDj ! 1; either monotonic or oscillatory instability can

occur depending on the values of N and σ. If, as in the case of aqueous solutions,

N and N/σ are fairly large and of the same order of magnitude, then monotonic

instability occurs and the critical values are

Rac ¼ 2π1=2

N � 1j j RaDj j3=4, αc ¼ π

2

� �1=2

RaDj j1=4: ð9:57Þ

Mamou et al. (1995a) have demonstrated numerically the existence of multiple

steady states for convection in a rectangular enclosure with vertical walls. Mamou

et al. (1995b) studied analytically and numerically convection in an inclined slot.

Again multiple solutions were found. Convection in an inclined cavity with a

temperature-dependent heat source or sink was studied by Chamkha and

Al-Mudhaf (2008a, b).
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Two-dimensional convection produced by an endothermic chemical reaction

and a constant heat flux was examined by Basu and Islam (1996). They identified

various routes to chaos. The onset of convection in a rectangular cavity with

balanced heat and mass fluxes applied to the vertical walls was analyzed by

Marcoux et al. (1999a). An analytical and numerical study of a similar situation

was reported by Mamou et al. (1998d).

9.3 Concentrated Heat and Mass Sources

9.3.1 Point Source

Poulikakos (1985a) considered the transient flow as well as the steady flow near a

point source of heat and mass in the limit of small Rayleigh numbers based on the

heat source strength q[W], eRa ¼ gβKq/ναm km. The relative importance of thermal

and solutal buoyancy effects is described by the “source buoyancy ratio”

Ns ¼ βCm=Dm

βq=km
, ð9:58Þ

in which m[kg/s] is the strength of the mass source.

Figure 9.13 shows Poulikakos’ (1985a) pattern of streamlines for the time-

dependent regime. The curves correspond to constant values of the special group

ψ*t*
�1/2(1 � Ns), in which

0.001

0.01

0.02
0.025

1

0+

1

h

+

Fig. 9.13 The time-

dependent flow field around

a suddenly placed point

source of heat and mass

(A ¼ 1) (Poulikakos 1985a,

with permission from

Pergamon Press)
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ψ* ¼
ψ

αm
K�1=2, t* ¼ αmt

σK
, ð9:59Þ

and where ψ[m3/s] is the dimensional streamfunction. The radial coordinate η is

defined by

η ¼ r

2

σ

αmt

� 	1=2

, ð9:60Þ

showing that the flow region expands as t1/2. Figure 9.13 represents the special case
A ¼ 1, where A is shorthand for

A ¼ φ

σ
Le

� �1=2

: ð9:61Þ

Poulikakos (1985a) showed that the A parameter has a striking effect on the flow

field in cases where the two buoyancy effects oppose one another (Ns > 0 in his

terminology). Figure 9.14 illustrates this effect for the case N ¼ 0.5 and A ¼ 0.1;

when A is smaller than 1, the ring flow that surrounds the point source (seen also in

Fig. 9.13) is engulfed by a far-field unidirectional flow. The lines drawn on Fig. 9.14

correspond to constant values of the group 2πψ*t*
�1/2.
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–0.005Fig. 9.14 The effect of a

small Lewis number

(or small A) on the transient

flow near a point source of

heat and mass (N ¼ 0.5,
A¼ 0.1) (Poulikakos 1985a,
with permission from

Pergamon Press)
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In the steady state and in the same small-eRa limit, the flow, temperature, and

concentration fields depend only on eRa, Ns, and Le. Figure 9.15 shows the migration

of one streamline as the buoyancy ratio Ns increases from �0.5 to 0.5, that is, as the

buoyancy effects shift from a position of cooperation to one of competition. When the

buoyancy effects oppose one another, N ¼ 0.5, the vertical flow field is wider and

slower. The curves drawn in Fig. 9.15 correspond toψ*¼RaR*/8π, whereR*¼ R/K1/2

and R is a reference radial distance. Asymptotic analytical solutions for the steady-

state temperature and concentration fields also are reported by Poulikakos (1985a).

Ganapathy (1994a) treated the same problem using the Brinkman model. For the case

of large Rayleigh numbers, a boundary layer analysis was carried out by Nakayama

and Ashizawa (1996). They showed that for large Le the solute diffuses some distance

from the plume centerline and the mass transfer influences both velocity and temper-

ature profiles over awide range. For largeLe the solute diffuseswithin a narrow region

along the centerline. A strongly peaked velocity profile then appears for positive

buoyancy ratio N, while a velocity defect emerges along the centerline for negativeN.
A finite element model for a leaking third species migration from a heat source

buried in a porous medium was demonstrated by Nithiarasu (1999). An inverse

problem, namely the determination from temperature measurement of an unknown

volumetric heat source that is a function of the solute concentration, was discussed

by Prud’homme and Jasmin (2003) and Jasmin and Prud’homme (2005). Hill

(2005) has considered the linear and nonlinear stability of a layer in which there

is a concentration-dependent internal volumetric heat source. Ganapathy and

Mohan (2016) studied a concentrated source with cross-diffusion.

5

0

5

r*/R*

0 0.5

Ns = –0.5
Fig. 9.15 The steady-state

flow near a point source of

heat and mass (eR a ¼ 5,

Le ¼ 1), and the effect of

the source buoyancy ratio

(Poulikakos 1985a, with

permission from Pergamon

Press)
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9.3.2 Horizontal Line Source

The corresponding heat and mass transfer processes in the vicinity of a horizontal

line source were analyzed by Larson and Poulikakos (1986). The source buoyancy

ratio in this case is

Ns
0 ¼ βCm

0=Dm

βq0=km
, ð9:62Þ

where q0 [W/m] and m0 [kg/m/s] are the heat and mass source strengths. All the

features described in the preceding sections also are present in the low Rayleigh

number regime of the line source configuration. The Rayleigh number for the line

source is based on the heat source strength q0,

bRa ¼ gβK3=2q0

ναmkm
: ð9:63Þ

In addition to developing asymptotic solutions for the transient and steady states,

Larson and Poulikakos (1986) illustrated the effect of a vertical insulated wall

situated in the vicinity of the horizontal line source. An instantaneous point source

was treated by Ganapathy (1994a). An analysis using the Brinkman model was

reported by Ganapathy (1994b).

The high Rayleigh number regime was studied by Lai (1990a). He obtained a

similarity solution and made calculations for a range of Le and N values. For the

special case Le ¼ 1 he obtained a closed form solution analogous to that given by

Eqs. (5.192)–(5.196). The study of Nakayama and Ashizawa (1996) mentioned in

the previous section covered the case of a line source also.

9.4 Other Configurations and Effects

Natural convection in a horizontal shallow layer induced by a finite source of

chemical constituent was given a numerical treatment by Trevisan and

Bejan (1989).

Convection in a vertical annulus was studied analytically and numerically by

Marcoux et al. (1999b) (analytically and numerically), Beji et al. (1999) (who

analyzed the effect of curvature on the value of N necessary to pass from clockwise

to anticlockwise rolls), Bennacer (2000), Bennacer et al. (2000), (Brinkman model),

Benzeghiba et al. (2003) (partly porous annulus), Bahloul et al. (2004b) (separation

of components with uniform wall heat fluxes), Bennacer and Lakhal (2005) (ther-

mal diffusion), Cheng (2006a) (asymmetric wall temperatures and concentrations),

Bahloul et al. (2006) (tall annulus), Kalita and Dass (2011) (higher order compact

simulation), Sankar et al. (2012a, b) (discrete heat and solute source), Sankar et al.
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(2012a, b), Badruddin et al. (2012a, b, c), Reddy and Rao (2012) (cross-diffusion,

quadratic density variation), Mallikarjuna et al. (2014) (cross-diffusion, heat

sources), and Jha et al. (2015e) (cross-diffusion).

A horizontal annulus was treated by Al-Amiri et al. (2006) (pulsating heating),

Alloui and Vasseur (2011a, b) (centrifugal force field), Moukalled and Darwish

(2013), and Boulechfar and Djezzar (2014) (elliptical annulus) and Abahri et al.

(2017) (thermogravitational separation). A rhombic annulus was studied by

Moukalled and Darwish (2013, 2015). A thin vertical ring was investigated by

Magomedbekov (1997). A rectangular horizontal annulus, with inner/outer walls at

high/low temperature and concentration, was studied by Jena et al. (2013b).

A problem involving a vertical enclosure with two isotropic or anisotropic

porous layers was studied numerically by Bennacer et al. (2003a), while convection

in a partly filled rectangular enclosure was studied numerically by Goyeau and

Gobin (1999), Singh et al. (1999), and Younsi et al. (2001). Unsteady convection in

a vertical enclosure with radiation was investigated by Jbara et al. (2013a). Thermal

enhancement in storage silos (internally heated vertical open-ended cylinders) with

periodic wall heating was studied numerically by Himrane et al. (2016).

The onset of convection in an inclined layer has been studied using linear

stability analysis and numerically by Karimi-Fard et al. (1998, 1999), who obtained

parameter ranges for which the first primary bifurcation is a Hopf bifurcation

(oscillatory convection). The same problem was studied numerically by Mamou

et al. (1998c) and Mamou (2004) using a finite element method and by Chamkha

and Al-Naser (2001) using a finite-difference method. An inclined layer was also

investigated by Chamkha and Abdulgafoor (2006), Al-Farhany and Turan (2012),

Hadidi et al. (2013, 2015) (bi-layered), Chamkha et al. (2011b), Mchirgui et al.

(2014) (second law analysis), and Rtibi et al. (2013, 2014) (cross-diffusion),

Chamkha and Al-Mudhaf (2008a, b) studied inclined cavities with various aspect

ratios, with a temperature-dependent source or sink, and Siavashi et al. (2017)

(entropy generation, various source configurations).

The composite fluid layer over a porous substrate was studied theoretically by

Chen (1990), who extended to a range of Ram (the thermal Rayleigh number in the

porous medium as defined in Eq. (6.167)) the calculations initiated by Chen and

Chen (1988c) for the salt-finger situation. For small Ram (¼0.01) there is a jump in

αc as the depth ratiobd¼ df /dm increases (the jump is fivefold asbd increases between
0.2 and 0.3). For large Ram (¼1) there is no sudden jump. Convection occurs

primarily in the fluid layer if bd is sufficiently large. When this is so, multicellular

convection occurs for sufficiently large Ram. The cells are superposed and their

number increases with increase of Ram. For bd < 0.1, the critical RaDm (the solutal

Rayleigh number for the porous medium layer) and αcm decrease as bd increases, but

when multicellular convection occurs the critical RaDm remains almost constant asbd is increased for fixed Ram. Zhao and Chen (2001) returned to the same problem

but used a one-equation model rather than a two-equation model. They found that

the two models predicted quantitative differences in the critical conditions and flow

streamlines at the onset of convection, and they noted that carefully conducted
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experiments were needed to determine which model gave the more realistic results.

A further study of the composite problem was conducted by Gobin and Goyeau

(2012) in the context of a general discussion of the validity of one-domain and

two-domain approaches. A vertical composite channel with a wavy interface was

studied by Mehdaoui et al. (2010). A partly filled horizontal enclosure was exam-

ined by Hadidi et al. (2016).

Goyeau et al. (1996b) studied numerically for N > 0 the effect of a thin layer of

low permeability medium, which suppresses the convective mass transfer. Further

numerical studies were reported by Gobin et al. (1998, 2005).

Transient double-diffusive convection in a fluid/porous layer composite was

studied by Kazmierczak and Poulikakos (1989, 1991) numerically and then exper-

imentally. The system considered was one containing a linear stabilizing salt

distribution initially and suddenly heated uniformly from below at constant flux.

In the experiments it was possible to visually observe the flow in the fluid layer but

not in the porous layer. In all the experimentsbd¼ 1, and most of the convective flow

took place in the fluid layer. In general, a series of mixed layers formed in turn,

starting with one just above the porous layer as time increased, as one would expect

if the porous matrix was absent. A corresponding numerical study, with the system

cooled through its top boundary (adjacent to the solid layer), was conducted by

Rastogi and Poulikakos (1993). A numerical study involving two layers of

contrasting permeabilities was conducted by Saghir and Islam (1999). A transient

problem involving double-diffusive convection from a heated cylinder buried in a

saturated porous medium was studied numerically by Chaves et al. (2005).

An experimental study with a clear liquid layer below a layer at porous medium

was performed by Rastogi and Poulikakos (1997). They took the initial species

concentration of the porous layer to be linear and stable and that in the clear fluid

uniform and the system initially isothermal and then cooled from above.

Al-Farhany and Turan (2001) studied a layer bounded by walls of finite thickness.

Baytas et al. (2009) treated an enclosure filled by a step type porous layer. Further

work on fluid/porous regions was performed by Alloui et al. (2008).

Sandner (1986) performed experiments, using salt water and glass beads in a

vertical cylindrical porous bed. In his experiments the salt concentration was

initially uniform. When the system was heated at the bottom, a stabilizing

salinity gradient developed, due to the Soret effect. Some related work is discussed

in Sect. 10.5.

Natural convection in a trapezoidal enclosure was studied numerically by

Nguyen et al. (1997a) (anisotropy) and Younsi (2009) (MHD). A forced convection

flow around a porous medium layer placed downstream on a flat plate was studied

numerically and experimentally by Lee and Howell (1991). Convection in a

parallelogrammic enclosure was studied numerically by Costa (2004). A transient

problem, involving a smaller rectangular cavity containing initially cold fresh fluid

located in the corner of a larger one containing hot salty fluid, was studied

numerically by Saghir (1998). Inclined triangular enclosures were studied by

Chamkha et al. (2010d) (fins, heat generation/absorption) and Mansour et al.
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(2011a) (unsteady convection, heat source/sink, sinusoidal boundary conditions).

The effects of MHD, radiation, and variable viscosity on convection from a vertical

truncated cone were studied by Mandy et al. (2010). A vertical truncated cone with

Soret and Dufour effects was studied by Cheng et al. (2012a). Mansour et al. (2012)

studied a square enclosure with unsteady convection and sinusoidal boundary

conditions.

Melnikov and Shevtsova (2011) studied separation of a binary fluid in a fluid-

porous-fluid system. Srinivasacharya and RamReddy (2011a) treated convection of

a doubly stratified micropolar fluid on a vertical wall. Salama (2011b) studied a

vertical wall with thermophoresis, radiation, and heat generation. The case of a 2D

rectangular cavity with uniform and constant heat and solutal mass fluxes imposed

on the horizontal walls and with impermeable and adiabatic vertical walls was

studied by Bennisaad and Ouazaa (2012). Ahadi et al. (2014) presented an exper-

imental, theoretical, and numerical interpretation of thermo-diffusion separation for

a non-associating binary mixture in liquid/porous layers. Chaves et al. (2015)

studied numerically the heat transfer by double diffusion from a heated buried

cylinder. A spherical shell used to model the Earth’s core was studied by Takahashi
(2014). Convection with cross-diffusion from a frustum or wavy cone with

nonuniform wall temperature and concentration was examined by Cheng (2015b).

9.5 Inclined and Crossed Gradients

The effects of horizontal gradients on thermosolutal stability, for the particular case

where the horizontal thermal and solutal gradients compensate each other as far as

density is concerned, was studied theoretically by Parvathy and Patil (1989) and

Sarkar and Phillips (1992a, b). The more general case for arbitrary inclined thermal

and solutal gradients was treated by Nield et al. (1993) and independently but in a

less detailed manner by Parthiban and Patil (1994). Even when the gradients are

coplanar the situation is complex. The effect of the horizontal gradients may be to

either increase or decrease the critical vertical Rayleigh number, and the favored

mode may be oscillatory or nonoscillatory and have various inclinations to the

plane of the applied gradients according to the signs of the gradients. The horizontal

gradients can cause instability even in the absence of any vertical gradients. The

non-coplanar case was also treated by Nield et al. (1993). A nonlinear stability

analysis was presented by Guo and Kaloni (1995a). Their main theorem was proved

for the coplanar case. Kaloni and Qiao (2000) extended this analysis to the case of

horizontal mass flow. A linear instability analysis for the extension where there is

net horizontal mass flow was reported by Manole et al. (1994).

The case of horizontal temperature and vertical solutal gradients was investi-

gated numerically by Mohamad and Bennacer (2001, 2002) and both analytically

and numerically by Kalla et al. (2001b). Bennacer et al. (2004, 2005) analyzed

convection in a two-layer medium with the lower one thermally anisotropic and

submitted to a uniform horizontal heat flux and a vertical mass flux.
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Mansour et al. (2004, 2006) studied numerically the Soret effect on multiple

solutions in a square cavity with a vertical temperature gradient and a horizontal

concentration gradient. Bourich et al. (2004a) showed that the multiplicity of

solutions is eliminated if the buoyancy ratio N exceeds some critical value that

depends on Le and Ra. A similar problem with a partly heated lower wall was

treated by Bourich et al. (2004b). A vertical slot heated from below and with

horizontal concentration gradients was studied analytically and numerically by

Bahloul et al. (2004a). Convection in a shallow cavity was treated by Bahloul

et al. (2007). Further work with a shallow layer was performed by Mansour et al.

(2007a, b, 2008a, b) and Narayana et al. (2008). A numeral study of an anisotropic

porous medium was conducted by Oueslati et al. (2006). Absolute/convective

stability for the case of Soret-driven convection with inclined thermal and solutal

gradients was studied by Brevdo and Cirpka (2012).

9.6 Mixed Double-Diffusive Convection

9.6.1 Mixed External Convection

9.6.1.1 Vertical Plate

Similarity solutions also can be obtained for the double-diffusive case of Darcy

mixed convection from a vertical plate maintained at constant temperature and

concentration (Lai 1991a). The relative importance of buoyancy and forcing effects

is critically dependent on the values of Le and N. Another study of mixed convec-

tion was made by Yücel (1993). Studies with variable wall temperature and

concentration were made by Yih (1998f). Mixed convection over a vertical plate

with viscosity variation was analyzed by Chamkha and Khanafer (1999). The case

of variable heat and mass flux was studied by Singh (2010).

Darcy-Forchheimer convection over a vertical plate was investigated by Jumar

et al. (2001), and a similar problem with double dispersion was analyzed by Murthy

(2000). For thermally assisted flow, suction increases the local surface heat and

mass transfer rates. The case of transverse spatially periodic suction that produces a

three-dimensional flow was analyzed by Sharma (2005).

The effect of radiation was considered by Murthy et al. (2005) and Salem

(2006a) (viscous dissipation). The effects of viscous dissipation, quadratic drag,

and chemical reaction were considered by Mahdy and Chamkha (2010). Soret and

Dufour effects for the case of a temperature-dependent viscosity were studied by

El-Kabeir (2012). The effect of cross-diffusion was also treated by Sallam (2010),

Shateyi and Motsa (2012a) (chemical reaction), and Srinivasacharya and Surenda

(2014c) (double stratification). Other studies were made by Afifi and Elgazery

(2013) (double dispersion), Khan and Pop (2013) (triple diffusion), Srinivasacharya

and Surenda (2014c) (double stratification), Hemalatha et al. (2015) (melting), and

Rosca et al. (2015).
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A non-Newtonian fluid was studied by Chamkha and Al-Humoud (2007),

Chamkha and Ben-Nakhi (2007), Kairi and Murthy (2010) (double dispersion),

Mahdy (2010b) (cross-diffusion), Patil et al. (2012) (polar fluid, chemical reaction,

internal heating), Srinivasacharya and Swamy Reddy (2012a, b, c, 2013b) (cross-

diffusion, radiation, chemical reaction), Srinivasacharya and Ramreddy (2012,

2013b) (micropolar fluid, double stratification, chemical reaction, radiation),

Srinivasacharya and Kaladhar (2012, 2014) (couple-stress fluid, cross-diffusion),

Mahmoud and Megahed (2013) (cross-diffusion, radiation), and Patil and Chamkha

(2012) (polar fluid, chemical reaction).

The effect of a magnetic field was included by Chamkha and Khaled (1999,

2000a, b), Chamkha (2000), Hsiao (2009) (viscoelastic fluid, stretching sheet), Pal

and Talukdar (2010) (chemical reaction), Abdel-Rahman (2008) (heat generation),

Chamkha and Ben-Nakhi (2008) (cross-diffusion), Shateyi et al. (2010) (cross-

diffusion), Mandy (2010) (non-Newtonian fluid), Kandasamy and Muhaimin

(2010a) (variable viscosity, thermophoresis, stretching sheet), Makinde (2011b),

Srinivasacharya and RamReddy (2011b), Pal and Mondal (2010a, b, 2012a, b, d,

2013) (chemical reaction, cross-diffusion, stretching sheet, nonuniform source, var-

iable viscosity, heat generation, partial slip), Pal and Chatterjee (2011) (micropolar

fluid, cross-diffusion, stretching sheet), Shateyi and Motsa (2011) (radiation,

stretching sheet), Jaber (2011) (transient flow, suction/injection), Mondal and

Mukhopadhyay (2012) (stretching sheet), Aurangzaib et al. (2013a, b) (unsteady

stagnation point flow, micropolar fluid, cross-diffusion), Pal and Chatterjee (2014)

(viscoelastic fluid, stretching sheet, chemical reaction), Nayak et al. (2014b) (cross-

diffusion, stretching sheet, chemical reaction), Najafabadi and Gorla (2014)

(stretching sheet), Khidir and Sibanda (2014a) (stretching sheet, cross-diffusion,

temperature-dependent viscosity), Hussanan et al. (2015) (cross-diffusion, unsteady

flow, Newtonian heating), Waheed et al. (2015) (micropolar fluid, cross-diffusion,

chemical reaction, radiation, slip), Kishan and Jaghadha (2016), (thermophoresis,

radiation), and Karthikeyan et al. (2016) (stagnation point flow, cross-diffusion,

chemical reaction, radiation, heat generation).

Convection over a vertical stretching surface was also studied by Hayat et al.

(2010a) (viscoelastic fluid, cross-diffusion), Tsai and Huang (2009b)

(Hiemenz flow, cross-diffusion), Rashad and El-Khabeir (2010) (unsteady flow),

Pal and Mondal (2012c) (cross-diffusion, chemical reaction, radiation), and

Srinivasacharya and Ramreddy (2013a) (cross-diffusion).

9.6.1.2 Other Surfaces

A wavy vertical surface with cross-diffusion and variable properties was studied by

Srinivasachrya et al. (2015a).

Mixed convection in an inclined layer was analyzed by Rudraiah et al. (1987).

The influence of lateral mass flux on mixed convection over inclined surfaces was

analyzed by Singh et al. (2002) and Bansod et al. (2005).
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Kumari and Nath (1992) studied convection over a slender vertical cylinder,

with the effect of a magnetic field included. The effect of transpiration on mixed

convection past a vertical permeable plate or vertical cylinder was treated numer-

ically by Yih (1997a, b, 1999h). For convection about a vertical cylinder, the entire

mixed convection regime was covered by Yih (1998g, 1999j) and Chamkha et al.

(2011c) studied the case of temperature-dependent viscosity.

Mixed convection over a wedge or a cone with variable wall temperature and

concentration was analyzed by Yih (1998c, f, 1999b, c, 2000b). A cone was also

studied by Mallinkarjuna et al. (2016) (magnetic field, rotation, chemical reaction).

A wedge was also studied by Hassanien et al. (2003a) (uniform heat and mass

flux), Seddeek et al. (2007) (magnetic field, radiation, chemical reaction, variable

viscosity), Muhaimin et al. (2009a, b, 2010a) (magnetic field, chemical reaction,

variable viscosity, thermophoresis), Kandasamy and Muhaimin (2010b) (magnetic

field, suction, thermophoretic particle deposition), Kandaswamy et al. (2007,

2008d) (suction/injection, variable viscosity), Kandasamy et al. (2010b) (variable

viscosity, thermophoresis), and Cheng (2012b, g) (cross-diffusion).

Mixed convection about a sphere with a chemical reaction was studied by

Rashad et al. (2011b).

9.6.2 Mixed Internal Convection

A numerical study of mixed convection with opposing flow in a rectangular cavity

with horizontal temperature and concentration gradients was reported by Younsi

et al. (2002a, b), who noted that for a certain combination of Ra, Le, and N values

the flow has a multicellular structure. Mixed convection driven by a moving lid of a

square enclosure was studied numerically by Khanafer and Vafai (2002) for the

case of insulated vertical walls and horizontal at different constant temperature and

concentration. Convection in a vertical wavy channel with traveling thermal waves

was examined by Muthuraj and Srinivas (2010). A nonuniformly heated vertical

channel with heat sources and dissipation was studied numerically by Nath et al.

(2010). Couette flow of an MHD viscoelastic fluid was treated by Eldabe and

Sallam (2005). Srinivas and Muthuraj (2011) studied the effects of MHD, chemical

reaction, peristalsis, and the special variation of porosity for flow in a vertical

channel with asymmetric boundary conditions. Forced convection, but with

coupled heat and mass transfer, in a channel with chemical reaction was investi-

gated by Bousri et al. (2011) and Li et al. (2013b) (local thermal nonequilibrium).

Convection in a vertical pipe with local thermal nonequilibrium was studied by Bera

et al. (2012a, b). A vertical pipe was also studied by Kapoor et al. (2012). A box with

stratification and injection/suction was studied by Rathish Kumar and Krishna

Murthy (2012b). A vertical pipe with cross-diffusion in a vertical channel was treated

by Alloui and Vasseur (2013b). Convection in a lid-driven box was studied by Misra

et al. (2013). Unsteady flow in a vertical corrugated composite channel was studied

by Umavathi and Shekar (2013). Pulsatile flow in an inclined porous channel with
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chemical reaction was analyzed by Srinivas et al. (2014). The combination of cross-

diffusion and endothermic reaction was studied by Li et al. (2013a, b). A two-sided

lid-driven cavity was examined by Agarwal et al. (2015). Dey and Sekhar (2014)

studied mass transfer and species separation due to oscillatory flow in a pipe.

UnsteadyMHD oscillatory flow of a Casson fluid in a wavy channel was investigated

by Sivaraj and Benazir (2016). A numerical simulation of MHD flow in a lid-driven

cavity was made by Mohan and Satheesh (2016). MHD flow in a vertical channel

with cross-diffusion was studied by Reddy et al. (2016a). Li et al. (2013a, b)

examined forced convection with cross-diffusion, local thermal nonequilibrium,

and endothermic reactions. Bousri et al. (2017) investigated numerically forced

convection with local thermal nonequilibrium. Ghalambaz et al. (2017) studied

mixed convection with triple diffusion in an open cavity.

9.7 Nanofluids

The reader is referred to Sect. 3.8 for an introduction to nanofluids.

Convection in porous media saturated by nanofluids has been reviewed by

Barletta et al. (2015b), Mahdi et al. (2015a), Nield and Kuznetsov (2015a, b) and

Kasaeian et al. (2017).

9.7.1 Forced Convection

Thermally developing forced convection of a nanofluid in a parallel-plate channel

was studied numerically by Maghrebi et al. (2012), who employed the Buongiorno

model with thermophoresis and Brownian motion. They found that the local

Nusselt number is decreased when the Lewis number Le is increased and when

the Schmidt Sc number is increased, these parameters being defined by

Le ¼ αm
ϕ0DB

, Sc ¼ μ

ρDB

, ð9:64Þ

where αm is the effective thermal diffusivity, DB is the Brownian diffusion coeffi-

cient, ϕ0 is the particle fraction at the channel inlet, μ is the nanofluid viscosity, and

ρ is the nanofluid density. Armaghani et al. (2014b) extended this study to include

the effect of local thermal nonequilibrium (LTNE). Further numerical work with

LTNE, first taking into account of particle migration and then using a model in

which the heat flux in each of the phases is considered, was carried out by

Armaghani et al. (2014a, b). LTNE in a microchannel with viscous dissipation

was studied by Ting et al. (2014, 2015a).

On the other hand, in his analytical study of flow in microchannels, Hung (2010)

considered just the variation of thermal conductivity, viscosity, and heat capacity.
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A more general analytical study using the Buongiorno model was made by Nield

and Kuznetsov (2014b). They examined flow in a Darcy porous medium occupying

a parallel-plane channel with uniform heat flux on the boundaries. They found that

the combined effect of Brownian motion and thermophoresis is to reduce the

Nusselt number. The reduction increases as NANB/ε increases, where NA and NB

are defined by

NA ¼ DT

DBT*w
, NB ¼ ε ρcð Þpϕ*0

ρcð Þf
, ð9:65Þ

and so

NANB

ε
¼ DT

DB

ρcð Þpϕ*0
ρcð ÞfT*w

, ð9:66Þ

that is the product of a diffusivity ratio and a heat capacity ratio. Nield and

Kuznetsov (2014b) noted that this reduction in heat transfer due to a modification

of the temperature profile by Brownian motion and thermophoresis would oppose

any increase due to the thermal conductivity of the nanofluid being higher than that

of a regular fluid. This result applies only to the case where the Péclet number based

on the thermophoresis diffusivity is small compared with unity. It was pointed out

by Nield and Kuznetsov (2014c) that net throughflow produces an extra contribu-

tion to the nanoparticle flux and hence an additional term into the thermal energy

equation.

A nanofluid with property variation has been studied by several authors. Matin

and Pop (2013) studied heat and mass transfer with a chemical reaction on the

walls. Nasrin and Alim (2013) and Nasrin et al. (2013a, b) have considered a

problem with an open cavity. Baqaie Saryazdi et al. (2016) studied numerically

flow in a pipe. Dickson et al. (2016) reported first and second law analyses of flow

in a partly filled pipe with the effects of local thermal nonequilibrium and internal

heat sources. The effect of a magnetic field has been studied by Servati et al. (2014),

Sulochansa and Sandeep (2015) (radiation, slendering stretching sheet), Ibanez

et al. (2016) (microchannel, slip, entropy generation, radiation), and Moshizi

(2015) (microchannel, chemical reaction on the walls). Forced convection of a

non-Newtonian fluid in an annulus was examined by Ellahi et al. (2013). Hatami

et al. (2014) studied an asymmetric porous channel with expanding or contracting

wall. A channel with discrete heat sources was investigated by Mashaei and

Hossainalipour (2014). An experimental study with a pipe filled with metallic

foam was reported by Nazari et al. (2014a, b). An analytical study, involving

volume averaging, for convection in metallic foams, was reported by Zhang et al.

(2015b). A numerical study of metallic foams was made by Xu et al. (2015b). Ting

et al. (2015b, c) studied viscous dissipative convection in asymmetrically heated

microchannels with solid-phase heat generation. Torabi et al. (2016a) investigated

entropy generation in a partly filled channel with thermal nonequilibrium. Nazari
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et al. (2014a) reported an experimental study for flow through a pipe filled with

metallic foam. Mashaei et al. (2016b) studied convection in a narrow annulus.

Nojoomizadeh and Karimpour (2016) studied the effects of porosity and perme-

ability on convection in a microchannel with multi-walled carbon nanotubes

suspended in oil. Bayomy and Saghir (2017) experimented with the flow of a

nanofluid through an aluminium foam heat sink. Nazari and Toghraie (2017)

numerically simulated convection of a water-CuO nanofluid in a sinusoidal

channel.

9.7.2 Internal Natural Convection

9.7.2.1 Horizontal Layer

The Horton-Rogers-Lapwood problem was treated using the Buongiorno model by

Nield and Kuznetsov (2009b), Kuznetsov and Nield (2010a, 2011a, b, c) (local

thermal nonequilibrium), Kuznetsov and Nield (2010b) (Brinkman model),

Kuznetsov and Nield (2010c) (double diffusion), Nield and Kuznetsov (2011d)

(vertical throughflow) (corrected by Jaimala and Singh, 2014), Sheu (2011) (vis-

coelastic fluid), Bhadauria and Agarwal (2011a, b), Agarwal and Bhadauria (2011),

and Bhadauria et al. (2011a, b) (nonlinear instability, rotation, local thermal

nonequilibrium), Agarwal et al. (2011) (rotation, anisotropy), Agarwal et al.

(2012) (nonlinear transport), Agarwal (2014) (rotation with a revised model),

Agarwal and Rana (2015a) (rotation, local thermal nonequilibrium), Agarwal and

Rana (2015b, 2016) (binary nanofluid with cross-diffusion, rotation), and Yadav

et al. (2016a, b, d) (dielectic nanofluid, magnetic field, quadratic drag), Chand et al.

(2016) (electroconvection) and Rana et al. (2016) (Rivlin-Eriksen fluid). In these

papers the significant effects were those of Brownian motion and thermophoresis.

An alternative model, incorporating the effects of conductivity and viscosity var-

iation and with cross-diffusion also included, was examined by Nield and

Kuznetsov (2012a, b). The effect of rotation was also studied by Chand and Rana

(2012d). Bioconvection in nanofluids with either gyrotactic or oxytactic microor-

ganisms or both was investigated by Kuznetsov (2012a, b) and Kuznetsov and

Bubnovich (2012), and also by Shaw et al. (2014a, b). Boundary and internal source

effects were treated by Yadav et al. (2012). The problem of double diffusion

combined with variation of thermal conductivity and viscosity was examined by

Yadav et al. (2013a, b). The singular case of a non-Newtonian power-law fluid was

discussed by Nield (2011a, b). The above studies involved bottom heating. The case

of uniform volumetric heating was investigated by Nield and Kuznetsov (2013b).

In this paper, zero particle-flux boundary conditions were employed. The Horton-

Rogers-Lapwood problem was revisited by Nield and Kuznetsov (2014c). This time

they treated the more realistic case of zero particle-flux boundary conditions. They

showed that in this case oscillatory instability was ruled out. They obtained an

approximate expression for the nonoscillatory instability boundary in the form
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Ra ¼ 40� NA þ Le

ε

� 	
Rn, ð9:67Þ

this boundary being attained with a dimensionless wavenumber α¼ 3.16. Here ε
is the porosity, Ra is the usual Rayleigh-Darcy number, Rn is a nanofluid

Rayleigh number, Le is a Lewis number, and NA is a modified diffusivity ratio

now defined by

Ra ¼ ρgβKH T*
h � T*

c

� �
μαm

, ð9:68Þ

Rn ¼ ρp � ρ
� �

ϕ*
0gKH

μαm
, ð9:69Þ

Le ¼ αm
DB

, ð9:70Þ

NA ¼ DT T*
h � T*

c

� �
DBT

*
cϕ

*
0

, ð9:71Þ

where T*
h and T*

c are the temperature at the bottom and top boundaries and ϕ*
0 is a

reference nanoparticle volume fraction. The case of vertical throughflow was

studied using the revised model by Nield and Kuznetsov (2015b). A layer with

internal heating was examined by Nield and Kuznetsov (2013c).

Other studies were made by Shivakumara et al. (2010a, b, c, d) (magnetic fluid),

Bhadauria et al. (2011a) (nonlinear convection), Chand and Rana (2012a) (oscilla-

tory convection), Chand and Rana (2012c) (viscoelastic fluid), Shaw and Sibanda

(2013) (vertical throughflow, convective boundary condition), Umavathi (2013b)

(thermal modulation), Yadav et al. (2013a) (double diffusion, variable viscosity and

conductivity), Bhadauria and Kiran (2014a) (gravity modulation), Chand and Rana

(2014), Kang et al. (2014a) (heterogeneous power-law fluid, horizontal

throughflow), Mahajan and Sharma (2014) (magnetic nanofluid), Rana et al.

(2014a) (double diffusion, rotation), Rana et al. (2014b) (double diffusion, visco-

elastic fluid), Umavathi and Mohite (2014a, b) (cross-diffusion, variable viscosity

and conductivity), Sharma and Singh (double diffusion, magnetic nanofluid),

Yadav and Kim (2014a) (cross-diffusion, rotation, transient convection), Yadav

et al. (2014) (rotation, non-Newtonian fluid, variable viscosity and conductivity),

Chand et al. (2015a) (low Prandtl number fluid), Chand et al. (2015b) (rotation,

variable gravity), Rana and Chand (2015) (double diffusion, viscoelastic fluid),

Shivakumara et al. (2015a) (viscoelastic fluid), Shivakumara and Dhananjaya

(2015) (penetrative convection, anisotropy), Umavathi (2015b) (time-dependent

wall temperature), Umavathi et al. (2015a, b) (nonlinear stability, double diffusion,

viscoelastic fluid, variable viscosity and conductivity, cross-diffusion), Yadav and

Kim (2015a) (transient flow, double diffusion, concentration-dependent viscosity),

Yadav et al. (2015) (internal heating, rotation), Chand et al. (2016) (electro-thermal

convection), Ahuja et al. (2016) (magnetic field), Sharma et al. (2016a, b)
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(magnetic field, double diffusion), and Umavathi and Prathap Kumar (2017)

(Oldroyd-B fluid) Kiran (2014) (viscoelastic fluid, gravity modulation).

The onset of Soret-driven convection in a Hele-Shaw cell or porous medium was

studied by Kim (2014c).

9.7.2.2 Rectangular Box

A rectangular cavity was studied by Sheikhzadeh and Nazari (2013) (square),

Bourantas et al. (2014) (square cavity, sidewall heating), Sheremet and Pop

(2014a) (conjugate problem, Buongiorno model), Sheremet and Pop (2014b) (sinu-

soidal distributions on both sidewalls, Buongiorno model), Sheremet et al. (2014)

(shallow and slender cavities, Buongiorno model), Sheremet et al. (2015b) (square),

Sheremet et al. (2015b) (square), Grosan et al. (2015) (square, Buongiorno model),

Sheremet et al. (2015a) (square, thermal stratification), Sheremet et al. (2015d)

(square, Buongiorno model, 3D convection), Sheremet et al. (2015f) (local thermal

nonequilibrium), Sheremet et al. (2015c) (cubical cavity, Tiwari and Das model),

Hossain et al. (2015) (transient, phase change material), Nguyen et al. (2015),

Shekar and Kishan (2016) (radiation), Kefayati (2016c) (power-law fluid, sidewall

heating), Satheesh and Raj (2016) (sidewall heating, moving sidewalls), Ismael

et al. (2016) (conjugate heat transfer, entropy generation, heated by a triangular

solid), Pop et al. (2016) (square, sidewall heating, local thermal nonequilibrium,

Buongiorno model), Rashad et al. (2017) (magnetic field, internal heat generation),

Ahmed and Rashad (2016) (micropolar fluid, anisotropy), Muthtamilselvan

and Sureshkumar (2016) and Ashorynejad and Mosseinpour (2017) (entropy

generation).

A square cavity heated along a segment of the bottom wall was studied by

Bourantas et al. (2014) .

9.7.2.3 Vertical or Inclined Channel, Vertical Pipe

The case of a vertical channel was studied by Hajipour and Dehkordi (2012a, b)

(partly filled channel), Akbar (2014) (double diffusion, Jeffrey fluid, peristaltic

flow), Chamkha and Ismael (2014) (partly filled, differentially heated), Das et al.

(2015b) (MHD, pseudoplastic fluid, entropy analysis, convective heating), Akbar

(2015) (double diffusion, peristaltic flow, asymmetric channel), Govender (2016a)

(rotation, Buongiorno model), Govender (2016b) (rotation about an axis at a finite

distance) and Umavathi et al. (2017) (Forchheimer-Brinkman model) and Raza et

al. (magnetic field, stretching walls, semi-porous channel. Al-Zamily (2017) stud-

ied entropy generation in a vertical channel with a porous core and a heat-gener-

ating nanofluid. Lopez et al. (2017) analyzed entropy generation in a vertical

microchannel with a magnetic field, nonlinear thermal radiation, slip flow and a

convective-radiative boundary condition.
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An inclined channel was examined by Shaw et al. (2014b) (magnetic field, cross-

diffusion, bioconvection) and Bondareva et al. (2016) (wavy channel, magnetic

field, local heater), and Umavathi et al. (2017) (Forchheimer-Brinkman model) and

Raza et al. (magnetic field, stretching walls, semi-porous channel. Al-Zamily

(2017) studied entropy generation in a vertical channel with a porous core and a

heat-generating nanofluid. Lopez et al. (2017) analyzed entropy generation in a

vertical microchannel with a magnetic field, nonlinear thermal radiation, slip flow

and a convective-radiative boundary condition. Transient convection in an oblique

cavity was studied by Alsabery et al. (2016a) using a thermal nonequilibrium

model. An inclined square enclosure was studied by Yekani Motlagh et al. (2016)

using the Buongiorno model.

Unsteady convection in a vertical pipe with slip was studied by Khamis

et al. (2015).

9.7.2.4 Other Cavities

Double diffusive convection with thermo-diffusion in a square cavity subject to

various heating conditions was studied numerically by Ahadi et al. (2013). A

triangular cavity with a flush mounted heater on a wall was treated numerically

by Sun and Pop (2011, 2014) and Ahmed et al. (2013a, b). A triangular cavity was

also studied by Sheremet and Pop (2015d) (Buongiorno model). A trapezoidal

cavity was studied by Alsabery et al. (2015) (heatline visualization, partly filled

and partly non-Newtonian fluid) and Sheremet et al. (2015d) (Buongiorno model,

right-angled). An inclined trapezoidal cavity was studied by Ahmed (2014a, b).

Conjugate problems, with a cavity heated by a plane or triangular thick wall, were

investigated by Chamkha and Ismael (2013b). Convection in an H-shaped enclo-

sure with mounted heaters on the vertical walls was examined by Mansour et al.

(2014). A cavity with wavy top and bottom and with sinusoidal distributions on

both sidewalls was studied by Sheremet and Pop (2015a, 2016), with the

Buongiorno model in the second paper. A horizontal annulus was treated by

Sheremet and Pop (2015b, c) (Buongiorno model). A parallelogrammic cavity

was treated by Ghalambaz et al. (2015a, b). Unsteady convection in an open cavity

was studied by Sheremet et al. (2015g) (Buongiorno model). Transient convection

in a wavy-walled cavity was investigated by Sheremet et al. (2016a), while

Sheremet et al. (2016b) examined MHD convection, in a wavy open tall cavity,

produced by a corner heater. The effect of radiation and magnetic field on peristaltic

transport in a tapered porous channel was studied by Kothandapani and Prakash

(2015). An inclined square cavity with a magnetic field was treated by Balla et al.

(2016). An inclined square cavity with a centrally placed fluid-filled square hole

was studied by Alsabery et al. (2016b). A wavy open cavity was investigated by

Sheremet et al. (2016a, b, c). A triangular cavity was treated by Sabour and

Ghalambaz (2016) using the Buongiorno model and three heat equations. The

Buongiorno model was also used by Zargartalebi et al. (2016) in their study of an

enclosure containing an inclined porous fin. Double diffusion in a triangular
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enclosure with heat generation was studied by Chowdhury et al. (2016). A partly

open cavity with internal heating was treated by Nithyadevi and Rajarathinam

(2016a, b). A magnetic nanofluid was examined by Sheikholeslami (2016) (curved

enclosure) and Sheikholeslami and Shezad (2017) (heat flux boundary condition).

The effects of finite wall thickness, sinusoidal heating and local thermal non-

equilibrium on convection in a cavity were studied by Alsabery et al. (2017).

Buongiorno’s model was applied to a porous wavy cavity with a thermal dispersion

effect by Sheremet et al. (2017).

9.7.3 External Natural Convection

9.7.3.1 Vertical Plate

The Cheng-Minkowycz problem of boundary layer flow over a vertical plate at

constant temperature was studied by Nield and Kuznetsov (2009a, 2011a) and (with

a revised model, employing zero particle-flux boundary conditions) by Kuznetsov

and Nield (2013a, b), who obtained a linear regression correlation formula for a

Nusselt number of the form

Nuest=Rax
1=2 ¼ 0:444þ CrNrþ CbNbþ CtNt, ð9:72Þ

where the coefficients are functions of Le/ε, given by Table 9.3. Here Le is the

Lewis number defined by Eq. (9.69) and the local Rayleigh number Ra and the

parameters Nr, Nb, and Nt are defined by

Rax ¼
1� ϕ1ð Þρf1βgKx

μαm
, ð9:73Þ

Nr ¼ ρp � ρf1
� �

ϕ1
ρf1β Tw � T1ð Þ 1� ϕ1ð Þ , ð9:74Þ

Table 9.3 Summary of linear

regression coefficients and

error bound for the reduced

Nusselt number, applicable to

Eq. (9.71)

Le/ε Cr Cb Ct ε

5 �0.003 0.004 �0.090 0.030

10 �0.001 0.000 �0.105 0.009

20 �0.001 �0.001 �0.120 0.003

50 �0.002 �0.002 �0.135 0.004

100 �0.002 �0.003 �0.143 0.005

200 �0.003 �0.003 �0.150 0.006

500 �0.003 �0.003 �0.155 0.006

1000 �0.003 �0.003 �0.158 0.007

Here ε is the maximum relative error defined by ε¼ j(Nuest�
Nu)/Nuj, applicable for Nr, Nb, Nt each in [0, 0.5]
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Nb ¼ ε ρcð ÞpDBϕ1
ρcð Þfαm

, ð9:75Þ

Nt ¼ ε ρcð ÞpDT Tw � T1ð Þ
ρcð ÞfαmT1

: ð9:76Þ

It can be seen in the table that the Brownian motion parameter Nb has very little

effect on the Nusselt number and the coefficient of the buoyancy ratio Nr is also

small. The Nusselt number is reduced as the thermophoresis parameter Nt is

increased.

Other studies of a vertical plate were reported by Gorla and Chamkha (2011a)

(nonisothermal plate), Hady et al. (2011b, c) (non-Newtonian fluid, yield stress),

Noghrehabadi et al. (2013c) (prescribed surface heat flux), Ghalambaz and

Noghrehabadi (2014) (prescribed surface heat flux), Tavakoli et al. (2013)

(non-Darcy medium), Aziz et al. (2012) (bioconvection), Khan et al. (2013a)

(non-Newtonian fluid, bioconvection), Uddin et al. (2013a, b) (non-Newtonian

fluid, bioconvection), RamReddy et al. (2014) (stratification), Srinivasacharya

and Surenda (2014d) (double stratification), Noghrehabadi et al. (2014a, b) (vari-

able viscosity and conductivity), Murthy et al. (2013a) (magnetic field,

thermal stratification, convective boundary condition), Uddin et al. (2013c)

(non-Newtonian fluid, internal heating), Uddin and Harmand (2013) (unsteady

flow), RamReddy and Chamkha (2013) (non-Newtonian fluid), Satya Narayana

et al. (2014) (rotation, radiation), RamReddy et al. (2013b) (magnetic field),

Kameswaran and Sibanda (2013) (power-law fluid, thermal dispersion),

Noghrehabadi et al. (2014a, b), Chamkha et al. (2014c) (internal heating), Chamkha

et al. (2014d) (magnetic field), Ali Agha et al. (2014) (magnetic field, radiation),

Chandra et al. (2014a) (suction/injection, internal heating), Chandra et al. (2014b)

(viscous dissipation, convective boundary condition), (Dehsara et al. (2014) (mag-

netic field, radiation), Ghalambaz et al. (2014) (convectively heated plate), Mabood

et al. (2014) (non-Newtonian fluid, bioconvection), Muthtamilselvan et al. (2014a,

b) (transient convection, magnetic field, local thermal nonequilibrium), Surenda

(2014) (double stratification), Srinivasacharya and Surenda (2014d) (cross-

diffusion, double stratification), Uddin et al. (2014a) (double diffusion, radiation,

magnetic field, slip flow), Awad et al. (2015) (double dispersion), Khan et al.

(2015a, b, d, e) (triple diffusion), Zhang et al. (2015a, b, c) (magnetic field,

chemical reaction, radiation), Abou-zeid et al. (2015) (power-law nanoslime),

Agha et al. (2014, 2015) (magnetic field, radiation), (magnetic field, multiple slip

effects, unsteady flow, heat generation, temperature-dependent properties), Hayat

et al. (2015a) (magnetic field, convective boundary conditions), Khan et al. (2015a,

b) (non-Newtonian fluid, bioconvection, slip), Rashidi et al. (2015b) (entropy

generation), Uddin et al. (2015b) (magnetic field), Narayana et al. (2015)

(magnetic field, rotation, heat source), Uddin et al. (2016a, b, d) (Buongiorno

model, radiation, non-Newtonian fluid, magnetic field, stretching sheet), Ahmed

and Mahdy (microorganisms, magnetic field, Buongiorno model), Bouaziz and

Hanini (2016) (double dispersion), Kiran Kumar et al. (2016) (rotation, magnetic
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field, chemical reaction), Aly and Ebaid (2016) (magnetic field, surface tension,

radiation), Mohd Zin et al. (2016) (magnetic field, Jeffrey fluid, oscillating plate),

Haile and Shankar (2016) (magnetic field, radiation), and Kataria and Mittal (2017)

(oscillating plate, magnetic field).

A stretching surface was treated by Ferdows et al. (2012) (magnetic field), Khan

and Pop (2012b), Rosmila et al. (2012), Sheikholeslami and Ganji (2014),

Sheikholeslami et al. (2014), Aly and Hassan (2014) (magnetic field), Khidir and

Sibanda (2014b) (viscous dissipation), Hayat et al. (2014) (convective boundary

condition, exponential stretching), Khalili et al. (2014a), Kameswaran et al. (2014a)

(internal heating),Uddin et al. (2014b) (g-jitter, slip flow, variable viscosity), Hayat

et al. (2015b) (magnetic field, chemical reaction), Yirga and Shankar (2015)

(magnetic field, viscous dissipation, chemical reaction), Uddin et al. (2015a)

(Newtonian heating, radiation, Buongiorno model), Khan et al. (2016a, b) (cross-

diffusion), Reddy and Chamkha (2016) (cross-diffusion, heat generation),

Sulochana et al. (2016) (aligned magnetic field, cross-diffusion, exponential

stretching), Aly (2016b) (magnetic field, radiation) and Ullah et al. (2016b) (mag-

netic field, Casson fluid, radiation, chemical reaction) and Vishnu Ganesh et al.

(2016) (magnetic field, second order slip, viscous dissipation).

Stagnation point flow on a heated permeable stretching surface with heat gen-

eration/absorption was studied by Hamad and Pop (2011). This paper was discussed

by Magyari (2011a, b) and Pop (2011). Stagnation point flow was also studied by

Khan and Pop (2012a, b), Khalili et al. (2014a, b) (magnetic field, stretching

surface, unsteady flow), Yazdi et al. (2014) (magnetic field, radiation, stretching

surface), Pal et al. (2014) (stretching surface), Mabood et al. (2016b) (magnetic

field, radiation, chemical reaction, viscous dissipation), and Shaw et al. (2016)

(stretching sheet, dual solutions, chemical reaction).

Flow over a wavy vertical wall was studied by Mahdy and Ahmed (2012) and

Ahmed and Abd El-Aziz (2013) (local thermal nonequilibrium, unsteady

convection).

9.7.3.2 Horizontal or Inclined Plate or Wedge

The case of a heated upward facing horizontal flat plate was considered by Khan

and Pop (2011a), Gorla and Chamkha (2011b, c), Uddin et al. (2012a, b), Uddin

et al. (2013a, b, c) (power-law fluid, internal heating, bioconvection), Khan et al.

(2013c) (triple diffusion), Rashidi et al. (2014a) (chemical reaction), Zargartalebi

et al. (2015) (variable thermo-physical properties), and Uddin et al. (2016a) (slip).

An inclined plate was investigated by Cheng (2012e) (cross-diffusion), Murthy

et al. (2013b) (double diffusion), Srinivasacharya and Vijay Kumar (2015a) (wavy

surface, radiation), and Srinivasacharya et al. (2016).

An isothermal wedge with cross-diffusion was studied by Kameswaran et al.

(2014c). Flow over a wedge was also studied by Chamkha et al. (2011c) and

Kandasamy et al. (2012, 2013, 2014). Kandasamy et al. (2016) added the effects
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of a magnetic field and thermal radiation energy. A wedge with magnetic field,

suction/injection and viscous dissipation was studied by Pandey and Kumar (2016).

9.7.3.3 Curved Surface

Flow over a vertical cylinder was treated by El-Kabeir et al. (2014). A vertical

cylinder embedded in a thermally stratified porous medium was studied by Rashad

et al. (2014c).

Flow over a horizontal cylinder of elliptical cross section was investigated by

Cheng (2012a). A stretching horizontal cylinder with radiation and suction/injec-

tion was studied by Elbashbeshy et al. (2015). Convection from a horizontal

cylinder in a square enclosure was treated by Saleh and Hashim (2015). A hori-

zontal cylinder with double diffusion was studied by Sudarsana Reddy and

Chamkha (2016b) using the Buongiorno model.

Convection over a vertical cone was examined by Rashad et al. (2011c), Cheng

(2012c), Chamkha and Rashad (2012), Hady et al. (2011a) (non-Newtonian fluid),

Rasekh et al. (2013) (non-Newtonian fluid), Noghrehabadi et al. (2013b), Cheng

(2013a) (double diffusion), Behseresht et al. (2014) (double diffusion), Gorla et al.

(2014), Cheng (2014c), Ghalambaz et al. (2015a, b) (variable conductivity), Khan

et al. (2015d), (power-law fluid, convective boundary conditions), Chamkha et al.

(2013b, 2015a) (permeable cone), Sudarsana Reddy and Chamkha (2016),

Mahdy et al. (2016) (microorganisms), Hady et al. (2016) and Uddin et al.

(2016c) (dilatant nanofluid, multiple convective boundary conditions).

The case of a vertical truncated cone was treated by Cheng (2012f) and (with a

non-Newtonian fluid) by Cheng et al. (2012d). Convection about a sphere was

studied by Chamkha et al. (2011a, d). Hayat et al. (2016a, b) investigated the effect

of variable viscosity and a radial magnetic field on peristalsis in a curved channel.

9.7.4 Mixed Convection

9.7.4.1 Vertical Plate

Mixed convection boundary layer flow over a vertical plate was studied by Ahmad

and Pop (2010), Syakila and Pop (2010), Rashad et al. (2013a) (non-Newtonian

fluid), Yasin et al. (2012) (internal heating, Ferdows et al. (2012) (magnetic field,

stretching sheet), Bég et al. (2013a) (oxytactic microorganisms), Rashad et al.

(2013a) (non-Newtonian fluid), Yasin et al. (2013a) (thermal stratification), Yasin

et al. (2013a, b) (suction/injection), Ramreddy et al. (2013a) (Soret effect, convec-

tive boundary condition), Rashad et al. (2014a) (viscous dissipation), Rosca et al.

(2014), Srinivasacharya and Surenda (2014a) (double stratification), Rashad et al.

(2014b) (viscous dissipation), Pal and Mondal (2014a, 2015) (stagnation point flow,

stretching sheet, chemical reaction, radiation, heat generation, and viscous
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dissipation),Yazdi et al. (2014) (stagnation point flow, magnetic field, stretching

sheet, radiation), Kairi and RamReddy (2015) (melting, power-law fluid), Rashad et

al. (2015) (convective boundary conditions, viscous dissipation), Abdullah and

Ibrahim (2015) (unsteady stagnation point flow, Buongiorno model),

Srinivasacharya et al. (2015e, 2016) (wavy surface, thermophoresis), Ramzan

et al. (2016) (viscoelastic fluid, cross-diffusion), Kameswaren et al.(2016) (wavy

surface, stratification, nonlinear Boussinesq approximation), and Yasin et al. (2016)

(Buongiorno model).

9.7.4.2 Horizontal or Inclined Plate

Flow past a horizontal plate was investigated by Arifin et al. (2012). Mixed

convection from a horizontal plate with Forchheimer drag, but considering only

the effect of the nanoparticle volume fraction parameter, was investigated by Rosca

et al. (2012). Flow over an inclined plate was studied by Rana et al. (2012b), Aly

and Ebaid (2013), Rasekh and Ganji (2013), Matin and Hosseini (2014), and

Srinivasacharya and Vijay Kumar (2015b, c) (wavy surface).

9.7.4.3 Curved Surfaces

The corresponding flow over a horizontal cylinder was examined by Nazar et al.

(2011) and Tham et al. (2013a). A horizontal cylinder with a convective boundary

condition was investigated by Rashad et al. (2013b).

The case of a vertical cylinder was treated by Chamkha et al. (2012), Gorla and

Abdel-Gaied (2011), Gorla and Khan (2012), Gorla and Hossain (2013),

RamReddy et al. (2013a, b) (double diffusion, cross-diffusion), Rohni et al.

(2013), Rashad et al. (2014a, b, c) (thermal stratification), and El-Kabeir et al.

(2014) (radiation).

Convection over a sphere or a horizontal circular cylinder with a nanofluid

containing gyrotactic microorganisms was studied by Tham and Nazar (2012a, b,

2013) and Tham et al. (2013b, c). Flow past a horizontal cylinder was treated using

the Buongiorno model by Tham et al. (2104b, 2016). Flow past a sphere was also

treated by Tham et al. (2014a) and by El-Kabeir et al. (2015a, b) (radiation,

convective boundary condition). Khan et al. (2015c) studied unsteady MHD rear

stagnation point slip flow.

Convection past a vertical cone was treated by Hady et al. (2011a) (non-

Newtonian fluid, heat generation/absorption), Rashad et al. (2011c)

(non-Newtonian fluid), Chamkha and Rashad (2012) (suction/injection), Chamkha

et al. (2013a) (radiation), Rasekh et al. (2013) (non-Newtonian fluid), Cheng

(2013a) (double diffusion), Noghrehabadi et al. (2013b), Noghrehabadi and

Behseresht (2013) (variable properties), Zeeshan et al. (2014) (magnetic field),

Behseresht et al. (2014) (double diffusion, variable properties), Ghalambaz et al.
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(2015a, b) (variable conductivity), and Chamkha et al. (2015a, b) (non-Newtonian

fluid). A truncated cone was studied by Cheng (2012b).

Flow past a wedge was examined by Gorla and Kumari (2011), Gorla et al.

(2011b), Chamkha et al. (2014b), and Kandasamy et al. (2014) (magnetic field,

unsteady convection). Shafie et al. (2016), and Aman et al. (2016) (Poiseuille flow,

magnetic field, radiation, chemical reaction).

9.7.4.4 Vertical, Horizontal, or Inclined Channel

Mixed convection in a vertical channel was studied by Memari et al. (2011a, b)

(viscous heating), Hashemi Amrei and Dehkordi (2014), Matin and Ghanbari

(2014) (Buongiorno model, flow reversal), Hashemi Amrei and Dehkordi (2014)

(partly filled channel), Hajipour and Dehkordi (2014) (experimental study with

partly filled channel) Sheremet et al. (2015a, b, c, d, e, f, g, h) (double diffusion,

open cavity, Buongiorno model), Fersdaou et al. (2015)(MHD, entropy generation),

Makhata et al. (2015) (flow reversal, variable viscosity, convective surface condi-

tion), Sarkar et al. (2015) (wavy channel, peristaltic flow, radiation), Aaiza et al.

(2015) (magnetic field), and Rauf et al. (2016) (stretchable channel, radiation,

microfluid, magnetic field, Buongiorno model).

An inclined channel was studied by Cimpean and Pop (2012), Aly and Ebaid

(2013), Rasekh and Ganji (2013), Sureshkumar and Muthtamilselvan (2016) (mov-

ing top lid), and Hayat et al. (2016a, b) (peristalsis, second-order velocity, and

thermal slips and Nithyadevi et al. (2017) (heated mid-domain moving wall,

sinusoidal heating on a side wall). A horizontal annulus was investigated by Ellahi

et al. (2013).

9.7.4.5 Other Cavities

Convection in a lid-driven cavity was studied by Mittal et al. (2013, 2014)

Nithyadevi and Rajaarthinam (2015) (cross-diffusion) and Sivasankaran et al.

(2016) (two sided drive, partial slip, magnetic field). A problem with various heat

source shapes with constant flux in a rectangular horizontal channel was treated

numerically by Mahdi et al. (2014). Cavities of various geometrical shapes filled

with open cell aluminum foam were studied by Mahdi et al. (2013). Hayat et al.

(2016) studied peristalsis of a MHD Jeffery nanofluid in a curved channel.
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Chapter 10

Convection with Change of Phase

In the examples of forced and natural convection discussed until now, the fluid that

flowed through the pores did not experience a change of phase, no matter how

intense the heating or cooling effect. In this chapter, we turn our attention to

situations in which a change of phase occurs, for example, melting or evaporation

upon heating and solidification or condensation upon cooling. These convection

problems constitute a relatively new and active area in the field of convection in

porous media.

10.1 Melting

10.1.1 Enclosure Heated from the Side

The first analysis of melting dominated by natural convection in a porous matrix

saturated with a phase-change material and heated from the side was performed by

Kazmierczak et al. (1986). Their study was based on a simple model in which

(a) the liquid flow was assumed to be slow enough to conform to the Darcy regime

and (b) the melting front that separates the region saturated with solid from the

region saturated with liquid was modeled as a surface (i.e., as a region of zero

thickness and at the melting point).

These modeling assumptions also have been made in the simplest studies of the

geometry illustrated in Fig. 10.1 (Jany and Bejan 1988a), in which the porous

medium is confined by an impermeable boundary and is heated through one of its

side walls. On the problem considered by Kazmierczak et al. (1986), we will focus

in Sect. 10.1.5, because that problem is in one way more general than the config-

uration addressed in this section.

Consider the two-dimensional system illustrated schematically in Fig. 10.1.

Initially, the walls are all insulated and the cavity is filled with porous medium

© Springer International Publishing AG 2017
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(PM) and phase-change material (PCM) in the solid state, both at the fusion

temperature Tf. For times t¼ 0, the left vertical wall is heated and maintained at

constant temperature, Tw, so that Tw> Tf. In the domain occupied by liquid PCM,

the conservation of mass, momentum, and energy is governed by the equations

∂u
∂x

þ ∂v
∂y

¼ 0; ð10:1Þ

u ¼ �K

μ

∂P
∂x

; ð10:2Þ

v ¼ �K

μ

∂P
∂y

þ ρg 1� β T � Tfð Þ½ �
� �

; ð10:3Þ

σ
∂T
∂t

þ u
∂T
∂x

þ v
∂T
∂y

¼ αm
∂2

T

∂x2
þ ∂2

T

∂y2

 !
: ð10:4Þ

Equations (10.1)–(10.4) are based on the following assumptions: (1) two-dimensional

flow, (2) Darcy flow model [see also assumption (a) above], (3) local thermodynamic

equilibrium between PCM and PM, (4) negligible viscous dissipation, (5) isotropic

PM, and (6) constant thermophysical properties, with the exception of the

assumed linear relation between density and temperature in the buoyancy term

of Eq. (10.3) (the Oberbeck–Boussinesq approximation). The boundary condi-

tions for Eqs. (10.1)–(10.4) are

y ¼ 0; y ¼ H : v ¼ 0,
∂T
∂y

¼ 0; ð10:5Þ

x ¼ 0 : u ¼ 0, T ¼ Tw; ð10:6Þ

x ¼ L : u ¼ 0,
∂T
∂x

¼ 0; ð10:7Þ

H
liquid PCM

v

u

s Tf

solid PCM

PM

g

y

0

0 x L

TW

Fig. 10.1 Melting in a two-

dimensional porous

medium heated from the

side (after Jany and Bejan

1988a)
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x ¼ s < Lð Þ : u ¼ 0, T ¼ Tf ; ð10:8Þ

∂s
∂t

¼ � αmcP
hsf

∂T
∂x

� ∂s
∂y

∂T
∂y

� �
; ð10:9Þ

where hsf is the latent heat of melting of the phase-change material. Equation (10.9)

represents the energy balance at the interface between the liquid and solid saturated

regions, while neglecting the difference between the densities of liquid and solid at

the melting point.

The melting process was simulated numerically by Jany and Bejan (1988a)

based on the streamfunction formulation u¼∂ψ /∂y, v¼�∂ψ /∂x, and in terms of

the following dimensionless variables:

Θ ¼ T � Tf

Tw � Tf

, X ¼ x

H
, Y ¼ y

H
; ð10:10Þ

S ¼ s

H
, U ¼ u

H

αm
, V ¼ ν

H

αm
ð10:11Þ

Ψ ¼ Ψ

αm
, Fo ¼ αmt

H2
: ð10:12Þ

The transformed, dimensionless equations involve the Fourier number Fo, the

aspect ratio L/H, and the Rayleigh and Stefan numbers defined below,

Ra ¼ gβKH Tw � Tfð Þ
ναm

, Ste ¼ cP Tw � Tfð Þ
hsf

ð10:13Þ

They assumed that in the case of small Stefan numbers, the interface moves

relatively slowly, so that ∂S/∂Fo�U,V. Therefore, it was reasonable to assume

that the liquid flow is not disturbed by the interface motion. Said another way, the

interface motion results from a fully developed state of natural convection in the

liquid. This “quasistationary front” approximation implies a fixed melting domain

[S¼ S(Y )] during each time interval, hence a stepwise motion of the interface.

Details of the finite-difference numerical procedure are presented in Jany and Bejan

(1988a, b).

Figure 10.2 shows the evolution of the melting front in a square cavity.

Because of the quasistationary front assumption, the Stefan and Fourier numbers

appear always as a product, Ste Fo. The two-graph sequence of Fig. 10.2 illustrates

the strong influence of natural convection on the melting velocity and on the

melting front shape. The deviation from the pure heat conduction (vertical inter-

faces) increases with the dimensionless time (Ste Fo) and with the Rayleigh

number.
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The transition from a heat transfer regime dominated by conduction to one

dominated by convection is illustrated in Fig. 10.3. Isotherms are plotted for a

square domain for each of the Rayleigh numbers, 12.5 and 800. The existence of

distinct boundary layers is evident in Fig. 10.3 (right), while the nearly equidistant

isotherms of Fig. 10.3 (left) suggest a heat transfer mechanism dominated by

conduction.

For the same values of Rayleigh number, Fig. 10.4 shows the transition of the

flow field from the conduction-dominated regime to the boundary layer (convec-

tion) regime. The flow pattern is qualitatively similar to what is found in cavities

without porous matrices. However, the velocity and flow rate scales depend greatly

on the properties of the fluid-saturated porous medium. These scales are addressed

in the next subsection.
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Fig. 10.2 The evolution of
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An important quantitative measure of the intensity of the flow and heat transfer

process is the overall Nusselt number, which is defined as

Nu ¼ q0

km Tw � Tfð Þ ¼ �
ð 1
0

∂Θ
∂X

� �
x¼0

dY: ð10:14Þ

The numerator in this definition, q0, is the heat transfer rate per unit length measured

in the direction perpendicular to the (x,y) plane. The results of this calculation are
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Fig. 10.3 Patterns of isotherms in the melting process of Fig. 10.1 (L/H¼ 1). Left: Ra¼ 12.5, Ste

Fo¼ 0.125; right: Ra¼ 800, Ste Fo¼ 0.0452 (Jany and Bejan 1988a)
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shown in Fig. 10.5 as Nu versus the time number Ste Fo for different Rayleigh

numbers and L/H¼ 1. The “knee” point marked on each curve represents the first

arrival of the liquid–solid interface at the right vertical wall. This figure shows that

the Nusselt number departs significantly from the pure conduction solution (Ra¼ 0)

as the Rayleigh number increases above approximately 50. At Ra values of order

200 and higher, the Nu(Ste Fo) curve has a minimum at “short times,” i.e., before

the melting front reaches the right wall.

Another overall measure of the evolution of the melting process is the melt

fraction or the mean horizontal dimensionless position of the melting front:

Sav ¼
ð 1
0

SdY: ð10:15Þ

This quantity is also a measure of the total energy storage and is related to Nu by

dSav
d SteFoð Þ ¼ Nu: ð10:16Þ

Numerical Sav results are presented in Fig. 10.6 for a square cavity at five different

Ra values. The melting process is accelerated as Ra increases. On the other hand,

the Sav(Ste Fo) curves collapse onto a single curve as Ste Fo approaches zero.

Similar results are revealed by calculations involving rectangular cavities.

Figure 10.7 shows the evolution of the melting front in a shallow space (L/
H¼ 4) for the Ra values 12.5 and 800. For example, it is evident that the

Ra¼ 12.5 solution represents a case dominated by conduction. Also worth noting

is the severe tilting of the liquid–solid interface during the convection-dominated

case Ra¼ 800.
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Nu
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Fig. 10.5 The Nusselt

number as a function of

time and Rayleigh number

(L/H¼ 1) (Jany and Bejan

1988a)
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10.1.2 Scale Analysis

The numerical results have features that are similar to those encountered in

the classical problem of melting in a cavity without a porous matrix (Jany and

Bejan 1988b). In the present problem, it is convenient to identify first the four
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Fig. 10.6 The average

melting front location as a

function of time and

Rayleigh number (L/H¼ 1)

(Jany and Bejan 1988a)
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regimes I–IV whose main characteristics are sketched in Fig. 10.8. The “conduc-

tion” region (I) is ruled by pure thermal diffusion and covered by the classical

Neumann solution

Θ Foð Þ ¼ 1� erf X=2Fo1=2
� �
erf Cð Þ , S Foð Þ ¼ 2CFo1=2; ð10:17Þ

where C is the root of the equation

Cerf Cð Þ
exp �C2
� � ¼ Ste

π1=2
: ð10:18Þ

The “transition” regime (II) is where the flow carves its own convection-dominated

zone in the upper part of the liquid region, while the lower part remains ruled by

conduction. The “convection” regime (III) begins when the convection-dominated

zone of the preceding regime fills the entire height H. Finally, the arrival of the

liquid–solid interface at the right vertical wall marks the beginning of the “variable-

height” regime (IV).

The scales of regimes I and II become apparent if we focus on the transition

regime II, where ztr is the height of the convection-dominated upper zone. The

boundary layer thickness scale in this upper zone is (e.g., Bejan 1984, p. 392)

δT � ztrRa
�1=2
ztr

� ztr Ra
ztr
H

� ��1=2

: ð10:19Þ

where Raztr ¼ gβKztr Tw � Tfð Þ=ναm. The convection-dominated zone is such that

at its lower extremity, δT is of the same order as the width of the conduction-

dominated zone of height (H� ztr); in other words,

ztr Ra
ztr
H

� ��1=2

� H SteFoð Þ1=2; ð10:20Þ

which means that ztr�H Ra Ste Fo.

z z

z

δT

ztr

(I) (II) (III) (IV)

zH

Fig. 10.8 The four regimes for the scale analysis of melting in a porous medium heated from the

side (Jany and Bejan 1988a)
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The scale of the overall Nusselt number is obtained by adding the conduction

heat transfer integrated over the height (H�ztr) to the convection heat transfer

integrated over the upper portion of height ztr. The result is

Nu � H � ztrð Þs�1 þ
ð ztr
0

δ�1
T dz � SteFoð Þ�1=2 þ Ra SteFoð Þ1=2 ð10:21Þ

or in terms of the average melting front location [Eqs. (10.15) and (10.16)],

Sav � SteFoð Þ1=2 þ Ra SteFoð Þ3=2: ð10:22Þ

The transition regime II expires when ztr becomes of order H, i.e., at a time of order

Ste Fo�Ra�1.

The most striking feature of this set of scaling results is the Nu minimum

revealed by Eq. (10.21). Setting ∂Nu/∂(Ste Fo)¼ 0, we find that the minimum

occurs at a time of order:

SteFoð Þmin � Ra�1; ð10:23Þ

and that the minimum Nusselt number scale is

Numin � Ra1=2: ð10:24Þ

The Numin scale is supported very well by the heat transfer data of Fig. 10.5 in

which the actual values obey the relationship Numinffi 0.54 Ra1/2 in the Ra range

200–1200 (Jany and Bejan 1988a).

In the convection regime III, the heat transfer and the melting front progress are

controlled by the two thermal resistances of thickness δT,

Nu �
ð H
0

δ�1
T dz � Ra1=2; ð10:25Þ

Sav � Ra1=2 SteFo: ð10:26Þ

The convection regime begins at a time of order Ste Fo�Ra�1 and expires when

the melting front reaches the right wall (at the “knee” points in Figs. 10.5 and 10.6).

In the entire Ra domain 12.4–800, the Nu/Ra1/2 ratio during the convection regime

is roughly equal to 0.5. It is interesting that the value of Nu/Ra1/2 is extremely close

to what we expect in the convection regime in a rectangular porous medium,

namely, 0.577 (Weber 1975b).

The scales of melting and natural convection during the variable-height regime

IV are discussed in Jany and Bejan (1988a).
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10.1.3 Effect of Liquid Superheating

In this section, we review a theoretical solution to the problem of melting in the

presence of natural convection in a porous medium saturated with a phase-change

material (Bejan 1989). The porous medium is held in a rectangular enclosure, which

is being heated from the side (Fig. 10.9 or Fig. 10.1). The porous medium is initially

saturated with solid phase-change material; its initial temperature is uniform and

equal to the melting point of the phase-change material. The heating from the side

consists of suddenly raising the side wall temperature and maintaining it at a

constant level above the melting point.

We begin with the analysis of the convection-dominated regime. The main

features of the temperature distribution in the liquid space are the two distinct

boundary layers that line the heated wall and the solid–liquid interface. The core

region of the liquid space is thermally stratified: its temperature is represented by

the unknown function Tc (y). The horizontal boundary layers that line the top and

bottom walls and the details of the flow in the four corners are being neglected.

The analysis consists of first obtaining temperature and flow field solutions for

the two vertical boundary layer regions and then meshing these solutions with a

third (unique) solution for the core region. The key results of the analytical solution

are
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Fig. 10.9 The boundary

layer regime in the melt

region of a porous medium

heated from the right (Bejan

1989)
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eδ ¼ A 1� τð Þ 1þ τ2Ste
� ��1=2

; ð10:27Þ

eλ ¼ Aτ 1þ τ2Ste
� ��1=2

; ð10:28Þ

ey ¼ A2

4Ste

τ 1þ τSteð Þ
1þ τ2Ste

� tan �1 τSte1=2
� �

Ste1=2

" #
; ð10:29Þ

where A depends only on the Stefan number,

A ¼ 2Ste1=2 1� tan �1 Ste1=2
� �

Ste1=2

" #�1=2

: ð10:30Þ

The dimensionless variableseδ,eλ, and τ represent the thickness of the cold boundary
layer, the thickness of the warm boundary layer, and the temperature in the core

region (cf. Fig. 10.9), respectively,

eδ;eλ� �
¼ δ, λð Þ

H
Ra1=2; ð10:31Þ

τ ¼ Tc � Tm

ΔT
, ey ¼ y

H
: ð10:32Þ

The left-hand side of Fig. 10.10 shows the solution obtained for the cold boundary

layer thickness. The function eδ eyð Þ increases monotonically in the flow direction

(downward); its bottom value eδ 0ð Þ is finite. The cold boundary layer thickness

increases substantially as the Stefan number increases.

Figure 10.11 illustrates the manner in which the core temperature distribution

responds to changes in the Stefan number. The core temperature distribution is

symmetric about the midheight level only when Ste¼ 0. The core temperature

decreases at all levels as Ste increases above zero. Said another way, the average

core temperature in the melting and natural convection problem (finite Ste) is

always lower than the average core temperature in the pure natural convection

problem (Ste¼ 0).

The thickness of the warm boundary layer has been plotted on the right-hand

side of Fig. 10.10. We learn in this way that the warm boundary layer becomes

thinner as the Stefan number increases. The Ste effect on the warm layer, however,

is less pronounced than on the boundary layer that descends along the solid–liquid

interface.

The useful feature of this analytical solution is the ability to predict the rate at

which the melting and natural convection process draws heat from the right wall of

the system. This heat transfer rate through the right-hand side of Fig. 10.9 is
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q0r ¼ km

ð H
0

∂T
∂x

� �
xr¼0

dy ð10:33Þ

or, as an overall Nusselt number,

Nur ¼ q0r
kmΔT

¼ Ra1=2Fr Steð Þ ð10:34Þ

with

Fr ¼
ð 1
0

1� τeλ dey ¼ Ste3=4

Ste1=2 � tan �1 Ste1=2ð Þ½ �1=2

� Ste� 1ð Þ Steþ 1ð Þ1=2 � 2Ste

Ste Steþ 1ð Þ þ Ste�3=2ln Ste1=2 þ Steþ 1ð Þ1=2
h i( )

:

ð10:35Þ

The approximate proportionality Nur�Ra1/2 that is revealed by Eq. (10.34) is

expected from the scale analysis shown in the preceding section. The new aspect

unveiled by the present solution is the effect of the Stefan number. Representative

Fr values constitute the top curve in Fig. 10.12. These values show that the heat

transfer rate in the quasisteady regime increases gradually as the Stefan number

increases.

One quantity of interest on the cold side of the liquid-saturated region is the

overall heat transfer rate into the solid–liquid interface,

q0 ¼ km

ð H
0

∂T
∂x

� �
x¼0

dy ð10:36Þ

or the left-hand side Nusselt number

Nu ¼ q0

kmΔT
¼ Ra1=2F Steð Þ ð10:37Þ

with

F ¼
ð 1
0

τeδ dey ¼ Ste�3=4

Ste1=2 � tan �1 Ste1=2ð Þ½ �1=2

� ln Ste1=2 þ Steþ 1ð Þ1=2
h i

� Ste
Steþ1

� �1=2
� 	

:

ð10:38Þ

The behavior of F(Ste) is illustrated in Fig. 10.12. We see that the left-hand side

Nusselt number decreases dramatically as the Stefan number increases.

10.1 Melting 551



In summary, the effect of increasing the Stefan number is to accentuate the

difference between the heat transfer administered to the right wall (Nur) and the

heat transfer absorbed by the solid–liquid interface (Nu). The difference between

the two heat transfer rates is steadily being spent on raising the temperature of the

newly created liquid up to the average temperature of the liquid-saturated zone.

Another quantity that can be anticipated based on this theory is the average

melting rate. Writing u0 for the local rate at which the solid–liquid interface

migrates to the left in Fig. 10.9 and ũ0 for the nondimensional counterpart,

eu0 ¼ u0
αm=H

Ra�1=2 ¼ Ste
τeδ ð10:39Þ

leads to

eu0,av ¼ Ste

ð 1
0

τeδ dey ¼ SteF: ð10:40Þ

The function eu0,av depends only on the Stefan number, as is shown by Fig. 10.12.

In closing, it is worth commenting on the use of (1 + Ste) as abscissa in

Fig. 10.12. This choice has the effect of making the F and Fr curves appear nearly

straight in the logarithmic plane, improving in this way the accuracy associated

with reading numerical values directly off Fig. 10.12. This observation leads to two

very simple formulas,

1
0.1

1

Fr

F

(1 + Ste)
10

Fig. 10.12 The effect of

liquid superheating on

melting in the convection-

dominated regime (Bejan

1989)
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Fr ffi 3�1=2 1þ 1:563Steð Þ0:107 ð10:41Þ

F ffi 3�1=2 1þ 0:822Steð Þ�0:715 ð10:42Þ

which approach within 0.5% the values calculated based on Eqs. (10.35) and

(10.38).

In the very beginning of the melting process, the liquid-saturated region is

infinitely slender and the heat transfer mechanism is that of pure conduction.

With reference to the slender liquid zone sketched in Fig. 10.13, the history of

the thickness X is described by the well-known Neumann solution [Eqs. (10.17) and

(10.18)], which can be written here as

X ¼ 2Λ αm fð Þ1=2, exp �Λ2
� �

erf Λð Þ ¼ π1=2
Λ
Ste

: ð10:43Þ

According to the same solution, the excess temperature of the liquid-saturated

porous medium depends on t and x1 (and not on y), where x1 is chosen such that

it increases toward the left in Fig. 10.13 (note that here T¼ 0 on the melting front),

T ¼ ΔT 1� 1

erf Λð Þerf
x1

2 αmtð Þ1=2
" #

: ð10:44Þ

y

H

conduction

x1 X 0

T = 0

T = ΔT

q'
c , convection

Fig. 10.13 Combined

conduction and convection

during the earliest stages of

melting due to heating from

the side (Bejan 1989)
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The overall heat transfer rate delivered through the heated wall (q
0
r or Nur) is also

well known. For example, in the limit Ste¼ 0, the overall Nusselt number decays as

Nur ¼ 2�1=2τ�1=2, τ ¼ αm t

H2
Ste: ð10:45Þ

Bejan (1989) showed that it is possible to develop an analytical transition from the

short-time Nusselt number (10.45) to the long-time expression of the quasisteady

regime (10.34). In other words, it is possible to develop a heat transfer theory that

holds starting with τ¼ 0 and covers the entire period during which the heat transfer

mechanism is, in order, pure conduction, conduction and convection, and finally

convection.

This theoretical development is based on the observation that even in the limit

τ! 0 when the liquid region approaches zero thickness, there is liquid motion in

the liquid saturated region. The incipient convective heat transfer contribution is

q0c ¼
ð X
0

ρcfvTdx ¼ ρcf
gβKΔT

v
ΔTXB; ð10:46Þ

where the function B(Ste) is the integral

B Steð Þ ¼
ð1
0

ð Λ
0

erf mð Þdm
Λerf Λð Þ � erf nΛð Þ

erf Λð Þ

2664
3775 1� erf nΛð Þ

erf Λð Þ

 �

dn: ð10:47Þ

This function was evaluated numerically. In the conduction regime, the effect of q
0
c

on the overall heat transfer rate is purely additive because the top and bottom ends

of the liquid-zone temperature field (the only patches affected by the flow are

negligible in height when compared with the rest of the system (height H )).

Therefore, the instantaneous total heat transfer rate through the right wall is

q0r ¼ kmH � ∂T
∂x1

� �
x1¼0

þ q0c ð10:48Þ

where the first term on the right-hand side accounts for the dominant conduction

contribution. Employing the Nur notation defined in Eq. (10.34), expression (10.48)

translates into

Nur ¼ G0τ
�1=2 þ GcRaτ

1=2: ð10:49Þ
The functions G0 and Gc depend only on the Stefan number,

G0 ¼ Ste1=2

π1=2erf Λð Þ , Gc ¼ 2ΛBSte�1=2; ð10:50Þ
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and are presented in Fig. 10.14. The Stefan number has a sizeable effect on both G0

and Gc. For fixed values of τ and Ra, the effect of increasing the Stefan number is to

diminish the relative importance of the convection contribution to the overall

Nusselt number.

In view of the reasoning on which Eq. (10.49) is based, we must keep in mind

that this Nur expression cannot be used beyond the moment τ when the second

(convection) term begins to outweigh the first (conduction) term. This condition,

G0 τ
�1=2 > GcRaτ

1=2; ð10:51Þ

yields the following time criterion for the domain of validity of Eq. (10.49),

τRa <
G0

Gc
; ð10:52Þ

The solid lines of Fig. 10.15 show the Nusselt number history predicted by

Eq. (10.49) all the way up to the time limit (10.52). That limit, or the point of

expiration of each solid curve, is indicated by a circle. Plotted on the ordinate is the

group Nur Ra
�1/2: this group was chosen in order to achieve a Ra correlation of the

Nusselt number in the convection limit.

The horizontal dash lines of Fig. 10.15 represent the Nusselt number values that

prevail at long times in the boundary layer regime, Eq. (10.34). It is remarkable that

two different and admittedly approximate theories [Eqs. (10.34) and (10.49)]

provide a practically continuous description for the time variation of the overall

Nusselt number. Only when Ste increases above 5 does a mismatch of a few

percentage points develop between the Nur Ra
�1/2 values predicted by the two

theories at the transition time (10.52).

1
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G0

Gc
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(1 + Ste)

Fig. 10.14 The effect of

liquid superheating on the

combined conduction and

convection regime (Bejan

1989)
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10.1.4 Horizontal Liquid Layer

In the convection-dominated regime, the melting front acquires a characteristic

shape, the dominant feature of which is a horizontal layer of melt that grows along

the top boundary of the phase-change system. The slenderness of the horizontal

layer increases with the time and Rayleigh number (Figs. 10.2, 10.3, 10.4 and 10.7).

With these images in mind, the liquid-saturated region can be viewed as the

union of two simpler regions, an upper zone that is a horizontal intrusion layer and a

lower zone that houses a vertical counterflow (as in Fig. 10.9). These two zones are

labeled A2 and A1 in Fig. 10.16.

It is possible to describe the shape and propagation of the horizontal intrusion

layer by means of a similarity solution of the boundary layer type (Bejan et al.

1990). In addition to the features of the Darcy flow model described in Sect. 10.1.1,

this similarity solution was based on the assumption that the depth of the intrusion

layer (δ) is considerably smaller than the distance of horizontal penetration of the

leading edge (L ). The melting speed U¼ dL/dt was assumed small relative to the

horizontal velocity in the liquid-saturated region: this particular assumption holds

in the limit Ste� 1. Finally, it was assumed that the melting front shape is

preserved in time, i.e., in a frame attached to the leading edge of the intrusion.

The main result of the intrusion layer analysis is the theoretical formula

L

H
¼ 0:343Ra1=2 SteFoð Þ3=4 ð10:53Þ

conduction and
convection

boundary
layer

convection

Ste = 0

Ste = 5

0

0.1
( τ Ra)1/2

0.1

1

10

1 10 100

1
5

1

N
u r
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a1

/2

Fig. 10.15 The evolution of the Nusselt number during the conduction, mixed, and convection

regimes (Bejan 1989)
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that describes the evolution of the length of horizontal penetration L(t). This
formula agrees very well with the L(t) read off numerical plots such as those of

Fig. 10.7 (bottom), in the Ra range 200–800.

Another result of the intrusion layer analysis is that the volume (area A2 in

Fig. 10.16) of the upper region of the liquid-saturated porous medium increases

with both Ra and Ste Fo as

A2

H2
¼ 0:419Ra1=2 SteFoð Þ5=4: ð10:54Þ

This estimate can be added to the one for area A1, which accounts for the regime of

boundary layer convection in the vertical slot, cf. Eq. (10.34) and Fig. 10.12 at

Ste¼ 0,

A1

H2
¼ 0:577Ra1=2 SteFo ð10:55Þ

in order to calculate the total cross-sectional area of the region saturated by liquid:

A2 þ A1

H2
¼ 0:577Ra1=2SteFo 1þ 0:725 Ste Foð Þ1=4

h i
: ð10:56Þ

The relative effect of the horizontal intrusion layer on the size of the melt region is

described by the group (Ste Fo)1/4. When the order of magnitude of the group

(Ste Fo)1/4 is greater than 1, the size of the melt fraction is ruled by the horizontal

intrusion layer. When this group is less than 1 (as in the numerical experiments of

Sect. 10.1.1), the melt fraction is dominated by the boundary layer convection that

erodes the nearly vertical portion of the two-phase interface (area A1).

H

Tmax

Savg liquid and porous matrix

g

A2

A1 T = 0

solid and
porous matrix

LFig. 10.16 Two-zone

model (A1 +A2) for the melt

region of a rectangular

system heated from the side

(Bejan et al. 1990)
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10.1.5 Vertical Melting Front in an Infinite Porous Medium

Kazmierczak et al.’s (1986) analysis of melting with natural convection applies to the

configuration shown on the left-hand side of Fig. 10.17. The melting front is vertical

and at the melting point the temperature is Tm. The coordinate system x� y is

attached to the melting front: in it, the porous medium flows to the right, with a

melting (or blowing) velocity across the x axis. The melting front is modeled as a

vertical plane.

The geometry of Fig. 10.17 is more general than in the systems analyzed until

now because the temperature of the solid region is below the melting point,

T0< Tm. On the right-hand side of the melting front, the liquid is superheated,

T1> Tm. A vertical boundary layer flow on the liquid side smooths the transition

from Tm to T1. Because of the presence of solid subcooling, the Stefan number Ste

of Eq. (10.13) is now replaced by the “superheating and subcooling” number

M ¼ cf T1 � Tmð Þ
hsf þ cs Tm � T0ð Þ ; ð10:57Þ

where cf and cs are the specific heats of the liquid and solid.

The flow and temperature fields on the liquid side of the melting front were

determined in the form of a similarity solution. Figure 10.17 shows the dimension-

less streamfunction profile f(η), which is defined by

ψ ¼ αmRa
1=2
x f ηð Þ, η ¼ y

x
Ra1=2x ; ð10:58Þ

-2

-1

0
5

0.0
0.5
1
2
5
10

M

h
10

1

f
g

y,v

x,u

T0 (< Tm) T¥ (> Tm)

Solid

Tm

a b

Liquid

2

Fig. 10.17 The dimensionless streamfunction for boundary layer convection on the liquid side of

a vertical melting front in a porous medium (Kazmierczak et al. 1986, with permission from

Hemisphere Publishing Corporation)

558 10 Convection with Change of Phase



and Rax ¼ gβK T1 � Tmð Þx=ναm. The streamfunction is defined in the usual way,

by writing u¼∂ψ /∂y and v¼�∂ψ /∂x. The figure shows that the number M can

have a sizeable impact on the flow. The limit M¼ 0 corresponds to the case of

natural convection near a vertical impermeable plate embedded in a fluid-saturated

porous medium (Cheng and Minkowycz 1977), discussed earlier in Sect. 5.1.

The superheating and subcooling parameter M also has an effect on the local

heat transfer flux through the melting front (q
00
x) and on the melting rate v(x,y)¼ 0.

The two are related by

x

αm
v x; 0ð Þ ¼ MNux; ð10:59Þ

where Nux is the local Nusselt number q
00
x x=km T1 � Tmð Þ. It was found that the

Nusselt number varies in such a way that the ratio Nux/Rax
1/2 is a function of

M only. Originally that function was calculated numerically and tabulated in

Kazmierczak et al. (1986). It was shown (Bejan 1989) that the same numerical

results are correlated within 1 % by an expression similar to Eqs. (10.41) and

(10.42):

Nux

Ra
1=2
x

¼ 0:444 1þ 0:776Mð Þ�0:735: ð10:60Þ

Combining Eqs. (10.59) and (10.60), we note that the melting velocity v(x,0)
increases with M and that its rate of increase decreases as M becomes comparable

with 1 or greater.

Kazmierczak et al. (1986) also treated the companion phenomenon of boundary

layer natural convection melting near a perfectly horizontal melting front in an

infinite porous medium. They demonstrated that the same parameter M has a

significant effect on the local heat flux and melting rate.

10.1.6 A More General Model

An alternative to the Darcy flow model (outlined in Sect. 10.1.1 and used in all the

studies discussed until now) was developed by Beckermann and Viskanta (1988a).

One advantage of this general model is that the resulting governing equations apply

throughout the porous medium, i.e., in both the liquid-saturated region and the solid

region. Because of this feature, the same set of equations can be solved in the entire

domain occupied by the porous medium, even in problems with initial solid

subcooling (i.e., time-dependent conduction in the solid). Another advantage of

this model is that it can account for the inertia and boundary friction effects in the

flow of the liquid through the porous matrix.
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The model is based on the volume averaging of the microscopic conservation

equations. In accordance with Fig. 10.18a, the saturated porous medium is

described by three geometric parameters, two of which are independent:

ε ¼ Vf

V
, pore fraction in volume element previously labeled φð Þ ð10:61Þ

γ tð Þ ¼ V1 tð Þ
Vf

, liquid fraction in pore space ð10:62Þ

δ tð Þ ¼ V1 tð Þ
V

εγ, liquid fraction in volume element: ð10:63Þ

Next, the melting “front” actually can have a finite width even when the phase-

change substance has a well-defined melting point Tm because the phase-change

region can be inhabited at the same time by solid and liquid in the pores

(Fig. 10.18b). The liquid fraction γ varies from 0 to 1 across this region, while

Liquid
Liquid

Solid & Liquid

Solid

Solid

0

0
Tm - DT Tm + DTTm

g

g

0.5

1

a b

c

1

Porous
matrix

Fig. 10.18 A more general model for melting in a saturated porous medium: (a) element used for

volume averaging; (b) the coexistence of liquid and solid in the pores in the phase-change region;

and (c) the assumed variation of the liquid fraction with the local temperature (after Beckermann

and Viskanta 1988a)

560 10 Convection with Change of Phase



the average temperature of the saturated porous medium in this zone is Tm,
Fig. 10.18c.

In addition to these ideas, Beckermann and Viskanta’s (1988a) model is based

on the assumptions that the flow and temperature fields are two-dimensional, the

properties of the solid matrix and the phase-change material (liquid or solid) are

homogeneous and isotropic, local thermal equilibrium prevails, the porous matrix

and the solid phase-change material are rigid, the liquid is Boussinesq incompress-

ible and the properties of the liquid and solid phases are constant, the dispersion

fluxes due to velocity fluctuations are negligible, and the solid and liquid phases of

the phase-change material have nearly the same density ρ. Under these circum-

stances, the volume-averaged equations for mass and momentum conservation

become

∇ � u ¼ 0; ð10:64Þ

ρ

δ

∂u
∂t

þ ρ

δ2
u �∇ð Þu ¼ �∇Pþ μl

δ
∇2u� μl

K
þ ρcF

K1=2

��u��� �
u� ρgβ T � Trefð Þ

ð10:65Þ

where u is the Darcian velocity u¼ δul, and ul is the average liquid velocity through
the pore.

The third group on the right-hand side of Eq. (10.65) accounts for the Darcy term

and the Forchheimer inertia correction, in which cFffi 0.55 (Ward 1964). For a bed

of spherical beads of diameter d, the permeability K can be calculated with the

Kozeny–Carman relation (Eq. (1.16)), in which dp¼ d and φ¼ δ. The permeability

is therefore equal to K(δ¼ ε) in the liquid-saturated region, K(δ¼ 0)¼ 0 in the solid

region, and takes in-between values in the phase-change region (Fig. 10.18b).

The volume-averaged equation for energy conservation is (Beckermann and

Viskanta 1988a)

ρc
∂T
∂t

þ ρcl u �∇Tð Þ ¼ ∇ � keff∇Tð Þ � ερΔh
∂γ
∂t

; ð10:66Þ

in which cl is the liquid specific heat, Δh is the latent heat of melting (labeled hsf in
the preceding sections), and ρc is the average thermal capacity of the saturated

porous medium,

ρc ¼ ερ γcl þ 1� γð Þcs½ � þ 1� εð Þ ρcð Þm: ð10:67Þ

The subscript ()m refers to properties of the solid matrix. The effective thermal

conductivity keff can be estimated using Veinberg’s (1967) model,

keff þ εk1=3eff

km � kls

k
1=3
ls

� km ¼ 0; ð10:68Þ
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where kls is the average conductivity of the phase-change material (liquid and solid

phases):

kls ¼ γkl þ 1� γð Þks: ð10:69Þ

The above model was used by Beckermann and Viskanta (1988a) in the process of

numerically simulating the evolution of the melting process in the porous medium

geometry shown in Fig. 10.19. The two side walls are maintained at different

temperatures, Th and Tc. Because of the mixed region recognized in Fig. 10.18b,

the melting front is a region of finite thickness in Fig. 10.19. These numerical

simulations agreed with a companion set of experimental observations in a system

consisting of spherical glass beads (d¼ 6 mm) and gallium (Tm¼ 29.78 	C). The
numerical runs were performed for conditions in which the Rayleigh number Ra

varied from 9.22 to 11.52. Because of the low Ra range, the calculated shape of the

melting region was nearly plane and vertical, resembling the melting front shapes

exhibited here in Fig. 10.2 (top). In the same numerical runs, the Darcy term

dominated the Forchheimer and Brinkman terms on the right-hand side of

Eq. (10.65).

10.1.7 Further Studies

Kazmierczak et al. (1988) analyzed the melting process in a porous medium in

which the frozen phase-change material (PCM) is not the same substance as the

warmer liquid that saturates the melt region. They considered a vertical melting

front and showed the formation of a liquid counterflow along the melting front.
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Fig. 10.19 The finite

thickness of the melting

front according to the model

of Fig. 10.18 (after

Beckermann and Viskanta

1988a)

562 10 Convection with Change of Phase



Adjacent to the solid is the liquid formed as the PCM melts: in this first layer the

liquid rises along the solid–liquid interface. The second layer bridges the gap

between the first layer (liquid PCM) and the warmer dissimilar liquid that drives

the melting process. In this outer boundary layer, the dissimilar liquid flows

downward. The corresponding problem in which the heat transfer in the dissimilar

fluid is by forced convection was considered by Kazmierczak et al. (1987). Subli-

mation of a frozen semi-infinite medium was studied by Fey and Boies (1987).

Zhang (1993) performed a numerical study on the Darcy model of an ice–water

system in a rectangular cavity heated laterally, using the Landau transformation to

immobilize the interface and a finite-difference technique. He reported that local

maximum and minimum average Nusselt numbers occur at heating temperatures of

5 	C and 8 	C, respectively. If the heating temperature is less than 8 	C, the melt

region is wider at the bottom than at the top, while the reverse is true for higher

heating temperatures. The numerical study of Sasaguchi (1995) was concerned with

a cavity with one heated sidewall and three insulated walls, a transient problem. The

further numerical study by Zhang et al. (1997) dealt with the case of anisotropic

permeability with the principal axes oriented at an angle θ to the gravity vector. The
effect of a magnetic field on melting from a vertical plate was treated by Tashtoush

(2005) using the Forchheimer model.

The research discussed so far in this chapter has dealt with heating from the side.

Zhang et al. (1991a, b) havemade a theoretical investigation of themelting of ice in a

cavity heated from below. They found that the convection that arises in the unstable

layer can penetrate into the stable region but cannot reach the melting front, and this

results in a flatter solid–liquid interface than that produced in the absence of a stable

layer. They also found that in transition from onset to final state, the convection

pattern passes through several intermediate forms, each change being accompanied

by a sudden increase (which is followed by a subsequent decline) in the heat transfer

rate and in the displacement velocity of the solid–liquid interface. Zhang and

Nguyen (1990, 1994) have found that melting from above is more effective than

melting from belowwhen the heating temperature is between 0 and 8 	C, convection
arises earlier, themelting process is faster, and the total melt at steady state is thicker.

The time for the onset of convection is a minimum and the heat transfer rate is a

maximum when the upper boundary is at 6 	C, and at this temperature the heat

transfer rate is a maximum. Hguyen (sic) and Nguyen and Zhang (1992) studied the
penetrative convection that occurs during the melting of a layer of ice heated either

above or below. They found that convection starts to play an increasingly important

role as the melt thickness attains a certain value corresponding to the critical

Rayleigh number for the onset of convection. The new convection cells have an

approximately square form. As time passes, these cells become more slender and

suddenly break up sequentially. The breaking-up process is quite short and is

associated with a sharp jump in the curve of Nusselt number versus time.

The melting of ice has also been considered by Kazmierczak and Poulilkakos

(1988). They dealt with both vertical and horizontal interfaces. Plumb (1994a)

developed a simple model for convective melting of particles in a packed bed

with throughflow and solved it numerically in one dimension to predict melting
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rates for a single substance and a system in which the liquid phase at elevated

temperature enters a packed bed of the solid phase at the melting temperature. He

found that the thickness of the melting zone increases with Péclet number and

Prandtl number for systems dominated by convection.

Melting around a horizontal cylinder was studied numerically on the Darcy

model by Christopher and Wang (1994). They found that heat transfer from the

cylinder is minimized at some value of the burial depth that is a function of Ra and

the dimensionless phase-change temperature. The influence of density inversion on

thawing round a cylinder was treated by Smith (2006). Chang and Yang (1996)

studied numerically, on the Brinkman–Forchheimer model, the melting of ice in a

rectangular enclosure. They noted that as time goes on, heat transfer on the hot side

decreases and that on the cold side increases. A lattice Boltzmann simulation on

natural convection-dominated melting in a rectangular cavity was performed by

Gao and Chen (2011).

Ellinger and Beckerman (1991) reported an experimental study of melting of a

pure substance (n-octadecane) in a rectangular enclosure that is partially occupied

by horizontal or vertical layers of a relatively high thermal conductivity medium

(glass or aluminum beads). They found that though such a porous layer may cause a

faster movement of the solid–liquid interface, the effect of low permeability causes

a reduction in melting and heat transfer rates compared with the case without the

porous layer. Tong et al. (1996) demonstrated the enhancement of heat transfer by

inserting a metal matrix into a phase-change material. Pak and Plumb (1997)

studied numerically and experimentally the melting of a mixture that consists of

melting and non-melting components, with heat applied to the bottom of the bed.

Thermosolutal convection was examined by Oueslati et al. (2008b). Lafdi et al.

(2007) performed experiments on the influence of foam porosity and pore size on

the melting of phase-change materials.

Mixed convection with melting from a vertical plate was analyzed by Bakier

(1997) and Gorla et al. (1999a). They noted that the melting phenomenon decreases

the local Nusselt number at the solid–liquid surface. Horizontal forced and mixed

convection with local thermal nonequilibrium melting was studied experimentally

and theoretically by Hao and Tao (2003a, b). The topic of local thermal

nonequilibriummelting was further addressed by Harris et al. (2001), Agwu Nnanna

et al. (2004), and Lindner et al. (2015) (vertical channels). Transient mixed convec-

tion was studied by Cheng and Lin (2006, 2007, 2009). The effect of radiation with a

non-Newtonian fluid was treated by Chamkha et al. (2010a). The topic of metal

foams as passive control systems was surveyed by Krishnan et al. (2008). In

particular, they discussed the two-temperature model employed by Krishnan et al.

(2005). Mixed convection and melting with a vertical plate were further studied by

Ahmad and Pop (2014) and Merkin et al. (2015) (respectively for opposing and

aiding cases). Numerical studies were reported by Damronglerd and Zhang (2010)

and Cheng and Lin (2012). Heat and mass transfer was investigated by Khan et al.

(2014a; b; c; d) (unsteady flow, thermal dispersion). The Soret effect was studied by

Kairi and Murthy (2013). The Soret and Dufour effects were included by Jha et al.

(2013a, b) and Jha and Mohammed (2014) (free and mixed convection). A medium

with variable permeability was examined by Kameswaran et al. (2016). Mixed
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convection with a non-Newtonian fluid was investigated by Kairi and Murthy

(2012), Mahdy (2013a), and Sara Ram Prasad and Hemalatha (2016) (magnetic

field). Stagnation point flow of a micropolar fluid with heat generation/absorption

was studied by Mahmoud and Waheed (2014). Mixed MHD convection of a non-

Newtonian fluid past a vertical plate embedded in a non-Darcy porous medium was

examined by Sura Ram Prasad and Hemalatha (2016).

Hong et al. (2007) studied the onset of buoyancy-driven convection in a porous

medium heated from below. An analysis of melting under pulsed heating was

carried out by Krishnan et al. (2007). A numerical simulation of melting via a

modified temperature-transforming model was undertaken by Damronglerd and

Zhang (2006).

A related problem, involving a phase-change front at the interface between a

diminishing solid volume and an increasing fluid volume, has been treated by

Rocha et al. (2001) and Bejan et al. (2004). This involves a layer of porous medium

impregnated by solid methane hydrate material. The clathrate (endowed with a

lattice) hydrates are solid crystals of water and methane at sufficiently high pres-

sures and low temperatures. When the layer is depressurized suddenly on its lower

plane, the methane hydrate material progressively dissociates into methane gas plus

liquid water. Further studies of melting with volume change, of phase-change

materials in metal foams, were made by Yang and Garimella (2010) (with volume

change) and Li et al. (2012). Tian and Zhao (2011a) reported a numerical investi-

gation of heat transfer in phase-change material embedded in porous metals. Tian

and Zhao (2011b) reported a parametric study involving both conduction and

convection. They found that metal foams significantly improve heat conduction

in the solid region while suppressing natural convection in the liquid region. For a

heterogeneous medium, a lattice Boltzmann simulation of heat transfer with phase

change was carried out by Shao et al. (2011). A mixed convection boundary layer

on a vertical melting front was studied by Fauzi et al. (2016). A thermal

nonequilibrium model was applied by Nima (2016) in a numerical study study of

phase change characteristics in a vertical or inclined channel.

10.2 Freezing and Solidification

10.2.1 Cooling from the Side

10.2.1.1 Steady State

In a study that deals with both freezing and melting, Oosthuizen (1988a) considered

the steady state in the two-dimensional configuration of Fig. 10.20. The porous

medium is heated from the left and cooled from the right in such a way that the

melting point of the phase-change material falls between the temperatures of the

two side walls, Th> Tm> Tc.
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In the steady state, the freezing front takes up a stationary position and the

freezing and melting at the front ceases. This is why in the steady state the latent

heat of the phase-change material (hsf) does not play a role in the heat transfer

process or in deciding the position and shape of the melting front. The heat transfer

from Th to Tc is one of conjugate convection and conduction: specifically, convec-

tion through the zone saturated with liquid and conduction through the zone with

pores filled by solid phase-change material.

Oosthuizen (1988a) relied on the finite element method in order to simulate the

flow and heat transfer through the entire H� L domain of Fig. 10.20. The porous

medium model was the same as the one outlined in the first part of Sect. 10.1.1. The

parametric domain covered by this study was 0¼Ra¼ 500, 0.5¼H/L¼ 2, and

1¼ kF/kU¼ 3. The thermal conductivities kF and kU refer to the frozen and the

unfrozen zones, respectively. They are both of type km, i.e., thermal conductivities

of the saturated porous medium. The Rayleigh number is defined as

Ra ¼ gβKH Th � Tcð Þ=ναm.

Th TcUnfrozen

Unfrozen

Frozen

Frozen
Ra

kF/kU:

3

2

1

300
0

Ra = 0

a

b c

10

30
100

300

Fig. 10.20 (a) Steady-state convection and heat transfer in a porous medium with differentially

heated sidewalls. (b) The effect of Ra on the freezing front (θc¼ 0.5, kF¼ kU). (c) The effect of kF/kU
on the freezing front (θc¼ 0.5) (Oosthuizen 1988a)
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Besides Ra, H/L, and KU, the fourth dimensionless group that governs the steady

state is the dimensionless temperature difference ratio,

θc ¼ Tm � Tc

Th � Tc

; ð10:70Þ

which describes the position of Tm relative to Th and Tc. Figure 10.20b shows the

effect of increasing the Rayleigh number when kF¼ kU and θc¼ 0.5. In this case, in

the absence of natural convection (Ra¼ 0), the melting front constitutes the vertical

midplane of the H� L cross-section. The melting front becomes tilted, S-shaped,
and displaced to the right as Ra increases. The effect of natural convection is

important when Ra exceeds approximately 30.

The effect of the conductivity ratio kF/kU is illustrated in Fig. 10.20c, again for

the case when Tm falls right in the middle of the temperature interval Tc� Th (i.e.,
when θc¼ 0.5). The figure shows that when the conductivity of the frozen zone is

greater than that of the liquid-saturated zone (kF/kU> 1), the frozen zone occupies a

greater portion of the H� L cross-section. The effect of the kF/kU ratio is felt at both

low and high Rayleigh numbers.

The melting-point parameter θc has an interesting effect, which is illustrated in

Fig. 10.21. The ordinate shows the value of the overall Nusselt number, which is the

ratio of the actual heat transfer rate to the pure-conduction estimate,

Nu ¼ q0= kU Th � Tcð Þ=L½ �. On the abscissa, the θc parameter decreases from

θc¼ 1 (or Tm¼ Tc) to θc¼ 0 (or Tm¼ Tc). The figure shows that when kF/kU> 1,

there exists an intermediate θc value for which the overall heat transfer rate is

1
0

3

6

0.5

qc

Ra = 30

300

KF/KU = 3

Nu

0

Fig. 10.21 The effect of

the melting-point parameter

θc on the overall heat

transfer rate through the

system of Fig. 10.20a

(Oosthuizen 1988a)
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minimum. This effect is particularly evident at high Rayleigh numbers, where

convection plays an important role in the unfrozen zone.

10.2.1.2 Other Studies

Weaver and Viskanta (1986) experimented with a cylindrical capsule (7.3 cm

diameter, 15.9 cm length) filled with spherical beads and distilled water. Freezing

was initiated by cooling the outer wall of the capsule. Experiments were conducted

using either glass beads or aluminum beads, with the capsule oriented vertically or

horizontally. Weaver and Viskanta (1986) complemented their measurements with

a computational solution in which the heat transfer process was modeled as

one-dimensional pure conduction. The computed thickness of the frozen zone

agreed well with the experimental data for the combination of glass beads and

distilled water, in which the difference between thermal conductivities is small. The

agreement was less adequate when the aluminum beads were used. These observa-

tions lead to the conclusion that the effective porous-medium thermal conductivity

model is adequate when the solid matrix and pore material have similar conduc-

tivities and that the local thermal equilibrium model breaks down when the two

conductivities differ greatly.

The breakdown of the local thermal equilibrium assumption was studied further

by Chellaiah and Viskanta (1987, 1989a). In the first of these experimental studies,

Chellaiah and Viskanta examined photographically the freezing of water or water-

salt solutions around aluminum spheres aligned inside a tube surrounded by a pool

of the same phase-change material. They found that the freezing front advances

faster inside the tube. When water was used, they found that the leading aluminum

sphere is covered at first by a thin layer of ice of constant thickness. This layer was

not present when the phase-change material was a water-salt solution.

In their second study of freezing of water, Chellaiah and Viskanta (1989a)

showed that the water is supercooled (i.e., its temperature falls below the freezing

point) before freezing is initiated. The degree of supercooling was considerably

smaller than the one observed in the freezing of water in the absence of the porous

matrix (glass or aluminum beads).

Chellaiah and Viskanta (1989b, 1990a, b) found good agreement between

calculations using the Brinkman–Forchheimer’s equation and experiments using

water and glass beads in a rectangular enclosure suddenly cooled from the side.

They investigated the effects of imposed temperature difference and the superheat

defined by S ¼ cP Th � Tfð Þ=hsf , where Tf is the fusion temperature. For small S,
the flow is weak and the interface is almost planar. The larger S convection modifies

the shape of the interface. Further numerical results for lateral transient freezing

were reported by Sasaki et al. (1990). A further numerical and experimental study

was performed by Sasaki and Aiba (1992).

A boundary layer solution, appropriate for high Rayleigh number, for freezing

on the exterior of a vertical cylinder was obtained numerically by Wang et al.

(1990a, b). Transient freezing about a horizontal cylinder was studied numerically
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by Bian and Wang (1993). Experiments with an inclined bed of packed spheres

were performed by Yang et al. (1993a, b). Solidification around a horizontal

cylinder, with natural or forced convection, was studied by Tsuchiya and

Okada (1995).

A generalized formulation of the Darcy–Stefan problem, one valid for irregular

geometries with irregular subregions and not requiring the smoothness of the

temperature, was proposed by Rodrigues and Urbano (1999). A comprehensive

theoretical and experimental study of lateral freezing with an aqueous salt solution

as the fluid, and taking into account anisotropy and the formation of dendrite arrays,

was made by Song and Viskanta (2001). They found that the porous matrix phase

affected the freezing of the aqueous salt solution by offering an additional resis-

tance to the motion of the fluid and migration of separate crystals. The amount of

macrosegregation was found to be mainly controlled by the porous matrix perme-

ability in the direction of gravity, while macrosegregation was decreased when the

permeabilities of the porous matrix phase and/or dendrite arrays were decreased.

Natural convection between vertical plates, with solidification taking place on one

plate, was studied by Lipnicki and Weigand (2008). A numerical study by Ma and

Wang (1999) for freezing in a vertical cylindrical cavity with a boundary condition

of the third kind indicated a fractal interface. A double multiple-relaxation time

lattice Boltzmann model for solid–liquid phase change was proposed by Liu and

He (2015).

10.2.2 Cooling from Above

Experiments on layers cooled from above were performed by Sugawara et al.

(1988). They employed water and beads of either glass or steel. Their main interest

was in predicting the onset of convection. Experimental and numerical work was

reported by Lein and Tankin (1992b). The experimental work involved visualiza-

tion. The authors reported that the convection process is controlled by the mean

Rayleigh number and weakens as the freezing process proceeds. They examined

results for various aspect ratios, and they found that these agreed reasonably well

with the formula of Beck (1972), Fig. 6.20. A nonlinear stability analysis was

presented by Karcher and Müller (1995). The analysis shows that due to the

kinematic conditions at the solid–liquid interface, hexagons having upflow in the

center are stable near the onset of convection, but for sufficiently supercritical

Rayleigh numbers rolls are the only stable mode. The transition from hexagons to

rolls is characterized by a hysteresis loop. A numerical study of a superheated fluid-

saturated porous medium in a rectangular cavity, with the bottom and side walls

insulated and the top wall maintained at a constant temperature below the freezing

point, was reported by Zhang and Nguyen (1999). A substantial numerical and

experimental study was reported by Kimura (2005). The case of a time-varying

surface temperature was studied by Kimura et al. (2006) and Kim et al. (2009a, b).
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10.2.3 Solidification of Binary Alloys

When a binary mixture solidifies from a solid boundary, the planar solidification

front often becomes unstable due to constitutional undercooling and the result is a

mushy layer, separating the completely liquid phase from the completely solid

phase. The mushy layer has been modeled as a reactive porous medium. A feature

of the mushy zone is that it contains columnar solid dendrites, and so the porous

medium is anisotropic. One principal axis for the anisotropic permeability is

commonly, but not necessarily, approximately aligned with the temperature

gradient.

The solidification of aqueous solutions of binary substances (notably ammonium

chloride) is analogous in many ways to the solidification of metallic alloys, so

experiments are often done with aqueous solutions. A pioneering study of solidifi-

cation in a vertical container was carried out by Beckermann and Viskanta (1988b).

Fundamental experimental work on solidification produced by cooling from the

side in a rectangular cavity has been performed by Choi and Viskanta (1993) and

Matsumoto et al. (1993, 1995), while Cao and Poulikakos (1991a, b) and Choi and

Viskanta (1992) observed solidification with cooling from above and Song et al.

(1993) observed cooling from below. Okada et al. (1994) did experiments on

solidification around a horizontal cylinder.

The simplest model for the momentum equation, Darcy’s law, was introduced in

this context by Mehrabian et al. (1970). Subsequent modeling has been based on

either a mixture theory in which the mushy zone is viewed as an overlapping

continuum (e.g., Bennon and Incropera 1987) or on volume averaging (e.g.,

Beckermann and Viskanta 1988b; Ganesan and Poirier 1990—the latter was more

explicit about underlying assumptions). The second approach requires more work,

but in relating macroscopic effects to microscopic effects it leads to greater insight

about the physical processes involved. The averaging approach also allows the

incorporation of the effects of thermal or chemical nonequilibrium or a moving

solid matrix Ni and Beckermann (1991b). Felicelli et al. (1991) investigated the

effect of spatially varying porosity but found that that had no significant effect on

the convection pattern. They did find that the effect of remelting in part of the

mushy zone was important. Poirier et al. (1991) showed that for relatively large

solidification rate and/or thermal gradients, the effects of heat of mixing need to be

incorporated in the energy equation. Using the mixture continuum model modified

to include the effect of shrinkage induced flow, Chiang and Tsai (1992) analyzed

solidification in a two-dimensional rectangular cavity with riser. For the same

geometry, Schneider and Beckermann (1995) used numerical simulation to com-

pare two types (Scheil and lever rule) of microsegregation models; the predicted

macrosegregation patterns were found to be similar although the predicted eutectic

fraction is significantly higher with the Scheil model. They noted that the predicted

pattern is sensitive to the permeability function assumed in the model.

Ni and Incropera (1995a, b) produced a new model that retains the computa-

tional convenience of the mixture continuum model while allowing for the
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inclusion of important features of the volume-average two-phase model. They

relaxed several assumptions inherent in the original formulation of the two-phase

model, making it possible to account for the effects of solutal undercooling,

solidification shrinkage, and solid movement.

The effect of anisotropy of permeability has been investigated by Sinha et al.

(1992, 1993) and Yoo and Viskanta (1992). A three-phase model, in which the

release of dissolved gas from the alloy is taken into account, was developed by

Kuznetsov and Vafai (1995a).

Prescott and Incropera (1995) introduced the effect of turbulence in the context

of stirring produced by an oscillating magnetic field. Their results indicate that

turbulence decreases the propensity for channel development and macrosegregation

by enhancing mixing and reducing the effective Lewis number from a large value to

near unity. For modeling the turbulence, they employed an isotropic low-Reynolds

number k–ε model. The turbulence is produced via a shear-production source term.

They carried out numerical calculations for comparison with experiments with a

lead–tin alloy. The turbulence occurs in the liquid and near the liquidus interface; it

is strongly dampened in the mushy zone. Prescott and Incropera remark that

turbulence can survive in the mush only in regions with porosity about 0.99 or

higher, and there slurry conditions are likely to occur in practice. However, this

assumption may be an artifact of an assumption of the model (Lage 1996), and

turbulence may penetrate further into the mushy layer than this model predicts.

Compositional convection can occur in a mushy layer cooled from below when

unstable density gradients are formed as a result of rejection of the lighter compo-

nent of the mixture upon solidification. There is an interaction among convection,

heat transfer, and solidification that can lead to the formation of “chimneys,” or

localized channels devoid of solid through which buoyant liquid rises. An analytical

investigation of chimneys was made by Roberts and Loper (1983), who used

equations formulated by Hills et al. (1983). Observations of chimneys led to

stability analyses. Fowler (1985) modeled the mushy layer as a nonreacting porous

layer, while the linear stability analysis of Worster (1992) included the effects of

the interaction of convection and solidification. Linear stability analysis had been

applied previously by Nandapurkar et al. (1989). Worster identified two direct

modes of convective instability: one driven from a narrow compositional boundary

layer about the mush–liquid interface and the other driven from the interior of the

mushy layer. The graph of Rayleigh number versus wavenumber has two minima.

The boundary-layer mode results in fine-scale convection in the melt above the

mushy layer and leaves the interstitial fluid in the mushy layer virtually stagnant.

The mushy-layer model causes perturbations to the solid fraction of the mushy layer

that are indicative of a tendency to form chimneys. Good quantitative agreement

was found with the experimental results of Tait and Jauport (1992) for the onset of

the mushy-layer mode of convection. These authors and Tait et al. (1992) discussed

geophysical implications of their experimental results.

The linear stability analysis of Emms and Fowler (1994) involved a time-

dependent basic state that included the effect of finger-type convection in the liquid.
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However, their analysis indicated that the onset of convection in the mushy layer is

little affected by vigorous convection in the melt.

Worster’s (1991, 1992) analysis was extended by Chen et al. (1994) to the case

of oscillatory modes. They found that when stabilizing thermal buoyancy is present

in the liquid, the two steady modes of convection can separate by way of an

oscillatory instability. They noted that the oscillatory instability occurred only

when the buoyancy ratio (thermal to solutal) in the liquid region was nonzero, so

they associated the oscillatory instability with the interaction of the double-diffu-

sive convection in the liquid region with the mushy-layer convective mode. Their

results showed that the steady modes became unstable before the oscillatory mode.

Chen et al. (1994) also performed experiments with ammonium chloride solution

which confirmed that during the progress of solidification, the melt in the mush is in

a thermodynamic equilibrium state except at the melt–mush interface where most

of the solidification occurs.

A weakly nonlinear analysis based on the assumption that the mushy layer is

decoupled from the overlying liquid layer and the underlying solid layer was

performed by Amberg and Homsy (1993). They made progress by considering

the case of small growth Péclet number, small departures from the eutectic point,

and infinite Lewis number. Their analysis, which revealed the structure of possible

nonlinear, steady convecting states in the mushy layer, was extended by Anderson

and Worster (1995) to include additional physical effects and interactions in the

mushy layer. They employed a near-eutectic approximation and considered the

limit of large far-field temperature, so that their model involved small deviations

from the classic HRL problem. The effects of asymmetries in the basic state and the

nonuniform permeability lead to transcritically bifurcating convection with hexag-

onal planform. They produced a set of amplitude equations that described the

evolution of small-amplitude convecting states associated with direct modes of

instability. Analysis of these revealed that either two-dimensional rolls or hexagons

can be stable, depending on the relative strengths of different physical mechanisms.

They determined how to adjust the control parameters to minimize the degree of

subcriticality of the bifurcation and hence render the system more stable globally.

Moreover, their work suggested the possibility of an oscillatory mode of instability

despite the lack of any stabilizing thermal buoyancy, in contrast with the results of

Chen et al. (1994).

The linear instability analysis of Anderson and Worster (1996) was designed to

investigate this new oscillatory instability. Their model contained no double-diffu-

sive effects and no region in which a statically stable density gradient exists. They

considered the limit of large Stefan number, which incorporates a key balance for

the existence of the oscillatory instability. They discovered that the mechanism

underlying the oscillatory instability involves a complex interaction between heat

transfer, convection, and solidification. Further work on the oscillatory modes of

nonlinear convection has been reported by Riahi (2002b, 2004). The modes take the

form of two- and three-dimensional traveling and standing waves. For most of the

parameter range studied, supercritical simple traveling waves are stable. Riahi

(1998a) examined the structure of an unsteady convecting mushy layer. He
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identified four regimes corresponding to high or low Prandtl number melt and

strongly or weakly dependent flow. He found that strongly time-dependent flow

can lead to nonvertical chimneys and for weakly time-dependent flow of a low

Prandtl number melt vertical chimneys are possible only when the chimneys have

small radius.

Some of the experimental results reported by Chen (1995) confirm the theoret-

ical predictions, while others reveal phenomena not observed hitherto.

The effects of rotation about a vertical axis were included in the linear stability

analysis of Lu and Chen (1997). They noted that very high rotation rates were

necessary to significantly increase the critical Rayleigh number, but smaller rates

could change the most critical convection mode. They found their results to be

sensitive to the value of a buoyancy ratio defined as Γατ/(αs�Γατ), where ατ, αs are
the thermal, solutal expansion coefficients, respectively, and Γ is the slope of the

solidus. The effect of rotation also was studied by Guba and Boda (1998), Riahi

(1993b, 1997), Sayre and Riahi (1996, 1997), and Riahi and Sayre (1996). The

latter investigated nonlinear natural convection under a high gravity environment,

where the rotation axis is inclined to the high gravity vector. They found that for

some particular moderate rotation range, the vertical velocity in the chimneys

decreases rapidly with increasing rotation rate and appears to have opposite signs

across some rotation-dependent vertical level. Inclined rotation was also studied by

Chung and Chen (2000a; b; c). A study of the stability of solutal convection in a

rotating mushy layer solidifying from a vertical surface was made by Govender

(2011b).

The study by Guba (2001) concentrated on the way rotation controls the bifur-

cating convection with various planforms. Govender and Vadasz (2002a, b) have

reported a weak nonlinear analysis of moderate Stefan number stationary convec-

tion in rotating layers. Further linear stability studies were made by Govender and

Vadasz (2002c), Maharaj and Govender (2005), and Govender (2003b; 2005a; b; c;

g; 2007a; b; c; 2008a, b). The results show that generally the oscillatory mode is the

most dangerous mode for intermediate values of the Stefan number at sufficiently

large Taylor number values, while the stationary mode is the most dangerous for

very small and very large values of the Stefan number. Further finite amplitude

studies of convection have been carried out by Govender (2003d, e, 2004c) to

consider factors such as large Stefan number or small variations in retardability.

Other studies by Riahi (2003a, b) on effects of rotation have dealt with oscillatory

modes of convection and with nonlinear steady convection. Some aspects of the

topic were reviewed by Riahi (1998b, 2002a).

A numerical study of the effects of rotation was made by Neilson and Incropera

(1993). They found that slow, steady rotation had insignificant effect on channel

formation, but with intermittent rotation corresponding to successive spin-up and

spin-down of the mold in their numerical study channel nucleation was confined to

the centerline and outer radius of the casting. They attributed the elimination of

channels from the core of the casting to the impulsive change in angular frequency

associated with spin-up and its effect on establishing an Ekman layer along the
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liquidus front, the front being washed by flow within the layer, thereby eliminating

the perturbations responsible for channel nucleation.

Further work involving the effects of rotation has been reported by Riahi (2005,

2006b, 2007a, b) and Okhuysen and Riahi (2008).

A flow-focusing instability, driven by expansion or contraction upon solidifica-

tion, was analyzed by Chiareli and Worster (1995), and comparisons were made

with acid-etching instabilities in porous rocks. They concluded that though the

potential for instability exists, it is unlikely to occur in practice.

For the case of unidirectional solidification, Krane and Incropera (1996)

performed a scaling analysis that showed that Darcy’s law was adequate in the

mushy zone except in the region near the liquidus isotherm, and that advection

dominates the solute transport throughout the mush, though in the denser regions of

the solid–liquid region the liquid velocities are so small as to have a negligible

effect of macrosegregation.

The review byWorster (1997) contains a summary of a theory of an ideal mushy

layer. When use is made of the linear liquidus relationship

T ¼ TE þ Γ C� CEð Þ; ð10:71Þ

where Γ is a constant and the subscript E refers to the eutectic point, the equation of

state (Eq. (9.1)) reduces to

ρf ¼ ρ0 þ β* C� C0ð Þ; ð10:72Þ

where

β* ¼ �βΓ � βC: ð10:73Þ

Consequently, an appropriate Rayleigh number is

Ram ¼ ρ0gβ*K0ΔC
μV

¼ ρ0gβ*K0LΔC

μαm
ð10:74Þ

where K0 is a reference permeability and V is the rate of solidification and the

thermal length scale L is defined by L¼ αm/V. Convection in the ideal mushy layer

is governed by Ram together with a Stefan number and a compositional ratio.

Experimental results such as those by Bergman et al. (1997) confirm that Ram is

indeed a governing parameter.

Worster’s (1997) review also includes a discussion of explanations of why

chimneys may or not form. The explanation of Worster and Kerr (1994) is that

interfacial undercooling causes a strengthening of the boundary-layer mode of

convection, which retards growth of the mushy layer, increases its solid fraction,

and decreases the compositional contract across it. These three effects combine to

reduce Ram, and as time progresses, Ram may reach a maximum less than that

required for chimneys to form. Worster (1997) also mentions experiments related to

the formation of a mushy zone in sea ice (Wettlaufer et al. 1997), as well as

applications to solidifying magmas and the molten outer core of the Earth. The
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topic of sea ice was discussed in detail by Feltham et al. (2006), Notz and Worster

(2009), and Hunke et al. (2011). The development of chimneys has been further

studied numerically by Schulze and Worster (1998, 1999) and by Emms (1998). An

alternative model for mush–chimney convection was proposed by Loper and

Roberts (2001).

Further work on plume formation in mushy layers has been reported by Chung

and Chen (2000a) and Chung andWorster (2002). Chung and Chen (2000b) studied

convection in directionally solidifying alloys under inclined rotation. The effect of

initial solutal concentration on the evolution of the convection pattern during the

solidification of a binary mixture was examined experimentally by Skudarnov et al.

(2002). An experimental study of the solidification of a ternary alloy was reported

by Thompson et al. (2003). A model for the diffusion-controlled solidification of

ternary alloys was described by Anderson (2003). A morphological instability due

to a forced flow in the melt was analyzed by Feltham and Worster (1999) and

Chung and Chen (2001). An alternative hybrid model of a mushy zone has been

proposed by Mat and Ilegbusi (2002). An experimental study of the suppression of

natural convection by an additive to increase the viscosity of the fluid was reported

by Nishimura and Wakamatsu (2000). Convection in ternary alloys was further

examined by Anderson and Schulze (2005), Anderson et al. (2010), and Riahi

(2016) (rotation at a low rate). Magnetic resonance studies were reported by

Aussillous et al. (2006).

Further complexities of alloy solidification are discussed in the reviews by

Beckermann and Viskanta (1993), Beckermann and Wang (1995), and Prescott

and Incropera (1996). Experimental work has been reported by Solomon and

Hartley (1998). A numerical investigation of the macrosegregation during the

thin strip casting of carbon steel was made by Kuznetsov (1998a). An expository

article on the solidification of fluids was presented by Worster (2000). Adnani and

Hsiao (2005) have reviewed transport phenomena in liquid composites modeling

processes and their roles in process control and optimization.

Roberts et al. (2003) have considered the convective instability of a plane mushy

layer that advances as heat is withdrawn at a uniform rate from the bottom of an

alloy. They assumed that the solid that forms is composed entirely of the denser

constituent, making the residual liquid compositionally buoyant, and thus prone to

convective motion. They focused on the large-scale mush mode of instability,

quantified the minimum critical Rayleigh number, and determined the structure of

the convective modes of motion within the mush and the associated deflections of

the mush–melt and mush–solid boundaries.

The effect of a magnetic field has been studied by Bhatta et al. (2010). Numerical

modeling of convection in a reactive porous medium with a mobile mush–liquid

interface was conducted by Butler et al. (2006). Further studies of the onset of

convection were reported by Gook (2001) and Gook and Choi (2008, 2009). The

implications of interfacial conditions were discussed by Le Bars and Worster

(2006a), while Le Bars and Worster (2006b) carried out finite-element single-

domain simulation and presented new benchmark solutions. Guba and Worster

(2006a) studied natural convection in laterally solidifying mushy regions, and Guba
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and Worster (2006b) further studied nonlinear oscillatory convection. The effect of

vertical vibration in a cylindrical layer was studied by Govender (2011a). Gravity

modulation was treated by Pillay and Govender (2005, 2007c) and Srivastava and

Bhadauria (2011). The effect of shear flow was considered by Neufeld and

Wettlaufer (2008, 2011). A nonlinear evolution approach to the subject was

reported by Riahi (2010) and Bhatta et al. (2012) (for an active layer), while

Riahi (2006a) investigated the effect of permeability in a dendrite layer. A mushy

layer with a permeable interface was studied by Okhuysen and Riahi (2009) and

Riahi (2013) (nonlinear evolution analysis), while the effect of viscous dissipation

was added by Riahi (2012b). Some experiments on steady-state mushy layer were

reported by Peppin et al. (2007, 2008). The simulation of directional solidification,

thermochemical convection, and chimney formation in a Hele-Shaw cell was

reported by Katz and Worster (2008). Convection forced by sidewall heat losses

was studied by Roper et al. (2007), while Roper et al. (2011) studied localization of

convection in mushy layers with weak background flow. Saija et al. (2011)

discussed the modeling of freckle segregation with mesh adaptation. The linear

stability of solutal convection in a mushy layer subjected to gravity modulation was

studied by Srivastava and Bhadauria (2011). A variation principle for solidification

problems, involving maximal potential energy transport, was presented by Wells

et al. (2010). Wells et al. (2013) studied nonlinear mushy layer convection with

chimneys with respect to stability and optimal solute fluxes. A numerical simulation

of the effect of Forchheimer drag on columnar convection was reported by Kumar

et al. (2013a; b; c). They found that the inertial effects caused a significant decrease

in the predicted channel segregation. The topic of flows involving phase change has

been surveyed by Huppert and Worster (2012). The influence of inertia on channel

segregation during columnar solidifaction was studied by Kumar et al. (2012).

Finite-sample size effects were studied by Zhong et al. (2012). A problem involving

transient natural convection was investigated numerically by Cheng et al. (2012a).

The effect of a vertical magnetic field on nonlinear convection was examined by

Muddamallappa et al. (2009) and Riahi (2012a). Studies of the linear stability

of compositional convection were reported by Gook (2012, 2013, 2014)

(time-dependent solidification system, constant solidification velocity). Rees

Jones and Worster (2013) studied fluxes through steady chimneys during solidifi-

cation, while Rees Jones and Worster (2015) discussed the thermodynamic bound-

ary conditions of a solidifying mushy layer with outflow. Further stability analyses

were performed by Alexandrov and Ivanov (2000) (changeover to oscillatory

instability) and Alexandrov et al. (2014) (nonlinear analysis). Three-dimensional

nonlinear convection in ternary solidification was studied by Riahi (2014). Verma

and Dewan (2016) evaluated different mushy zone models.

A related problem involving dissolution-driven convection was investigated by

Hallworth et al. (2005). They considered experimentally and theoretically the heating

from above of an initially homogeneous layer of solid crystals, saturated liquid, and

glass ballotini. The heat flux causes crystals at the top of the layer to dissolve, forming

liquid that, being more concentrated, drives convection in the lower layer. Mixing of

this concentrated liquid into the lower layer leads to precipitation, thereby releasing
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latent heat that raises the temperature of the lower layer. There results a three-layered

system: clear fluid, clear fluid plus close-packed ballotini, and a mixture of solid

crystals, ballotini, and saturated liquid. The theoretical model used is based on the

concept that the heat supplied from above is used entirely for the dissolution of solid

crystals at the upper boundary of the lower layer. The resulting compositional

convection redistributes the dissolved salt uniformly through the lower layer where

it partly recrystallizes to restore chemical equilibriums.

10.3 Boiling and Evaporation

10.3.1 Boiling and Evaporation Produced by Heating
from Below

When boiling begins in a fluid-saturated porous medium heated from below, a

two-layer system is formed with a liquid region overlying a two-phase region, as

sketched in Fig. 10.22. Experiments by Sondergeld and Turcotte (1977) and Bau

and Torrance (1982a) have shown that the liquid regime temperature profile may be

conductive or convective, but the two-phase region is essentially isothermal at the

saturation temperature. The two-phase region may be liquid dominated or vapor

dominated. Heat is transported across the two-phase region by vertical

counterpercolation of liquid and vapor; liquid evaporates on the heating surface

and vapor condenses at the interface between the liquid and two-phase regions.

Experiments have indicated that thermal convection in the liquid region may occur

before the onset of boiling or after the onset of boiling. Visualization experiments

(Sondergeld and Turcotte 1978) reveal that after the onset of convection, the liquid

region streamlines penetrate the two-phase region. The convection in the liquid

region is in the form of polyhedral cells whose dimensions vary with the heat flux.

With the liquid region overlying the two-phase region, there are two mechanical

mechanisms for instability: buoyancy and gravitational instability, the latter due to

the heavier liquid region overlying the lighter two-phase region. The gravitational

instability differs from the classical Rayleigh–Taylor instability of superposed

fluids because the interface is now permeable and therefore permits both heat and

mass transfer across it. Schubert and Straus (1977) noted that convection also can

be driven by a phase-change instability mechanism. If steam and water stay in

thermal equilibrium, then thermal perturbations lead to pressure variations that tend

to move the fluid against the frictional resistance of the medium. Because of

conservation of mass, horizontal divergence is accompanied by vertical contrac-

tion, and phase change takes place so that the vertical forces stay in balance. In a

porous medium containing saturated liquid or a liquid–vapor mixture, convection

occurs more readily by the phase-change mechanism than it would with ordinary

liquid driven by buoyancy. Phase-change-driven convection is concentrated toward

the bottom of the porous layer, and the cells are narrow in comparison with their
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depth. The model used by Schubert and Straus (1977) is valid only for a mixture

with small amounts of steam.

Schubert and Straus (1980) also considered the stability of a vapor-dominated

system with a liquid region overlying a dry vapor region. Their analysis predicts

that such systems are stable provided that the permeability is sufficiently small. The

stability arises because when liquid penetrates the interface, that interface is

distorted so the system remains on the Clapeyron curve, and this results in a

pressure gradient that acts to restore equilibrium.

O’Sullivan (1985b) described some numerical experiments modeling a geother-

mal reservoir in which the level of heat input at the base of a layer is varied. As the

heat input is increased, the flow changes from conduction to single-phase convec-

tion, then to convection with an increasingly larger boiling zone, and finally to an

irregular oscillatory two-phase convection.

The onset of two-dimensional roll convection in the configuration of Fig. 10.22

was studied using linear stability analysis by Ramesh and Torrance (1990). They

assumed that the relative permeabilities of liquid and vapor were linear functions of

the liquid saturation S. Their analysis reveals that the important parameters are the

Rayleigh numbers Ra and Ra2ϕ in the liquid and two-phase regions and the

dimensionless heat flux Qb at the lower boundary. The parameters are defined by

Ra ¼ gβlKH Ts � T0ð Þ
νlαml

, Ra2φ ¼ 1� ρvð ÞKH
νlαml

,

Qb ¼
q

00
bH

km Ts � T0ð Þ ; ð10:75Þ

where q
00
b is the heat flux at the lower boundary, Ts is the saturation temperature, T0

is the temperature at the top boundary,ρv is the ratio of vapor to liquid densities, while
λ (see Fig. 10.23) is defined to be hfg= cPl Ts � T0ð Þ½ �, where hfg is the latent heat.
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sketch for boiling produced
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For sufficiently large Qb, there is dryout of the liquid phase region in the

two-phase region. For smaller values of Qb, there are two S values for each value

of Qb (Fig. 10.23). The smaller value (S< 0.17 for water) corresponds to a vapor-

dominated system and the larger value to a liquid-dominated system. For a liquid-

dominated system, the solution map (for water) is shown in Fig. 10.24. The picture

is approximate because it is based on a single wavenumber, α¼ π. We are primarily

interested in values Qb¼ 1 because 1/Qb is the ratio of the mean depth of the

interface to the total depth of the medium.

The onset of boiling is indicated by the curve ABE. For Qb values above this

curve, boiling occurs with a liquid layer overlying a two-phase zone. For Qb values

0
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below ABE, boiling does not occur. The onset of convection in the liquid is denoted
by the curve CBD; convection occurs only to the right of this curve. Its nose defines
the critical Rayleigh number as Qb varies for α¼ π. (As Qb and α both vary, the

minimum value of Ra is 14.57, attained at Qb¼ 1.35, α¼ 1.9.) In laboratory

experiments, boiling occurs when the temperature at the bottom reaches the satu-

ration temperature Ts. The branch AB corresponds to Qb¼ 1 and represents the

onset of boiling before the onset of convection, while the branch BE represents the

onset of boiling after convection already exists within a liquid-filled layer.

We consider experiments conducted on a porous medium with constant proper-

ties by varying the bottom heat flux. At low Ra (as indicated by line 1–10), the liquid
region is conductive before and after the onset of boiling. This is consistent with the

experiments of Bau and Torrance (1982a) on low permeability porous beds

(K¼ 11� 10�12 m2). At higher Ra (as indicated by line 2–20), the liquid region is

conductive before the onset of boiling but becomes convective almost immediately

when boiling starts, which is in agreement with the observations of Sondergeld and

Turcotte (1977), (K¼ 70� 10�12 m2). For large Ra (as indicated by line 3–30), the
liquid region becomes convective before the onset of boiling and stays convective

after the onset of boiling, which is consistent with the experiments of Bau and

Torrance (1982c) on high-permeability beds (K¼ 1600� 10�12 m2). They

observed that at large heat fluxes the liquid region reverts back to a conductive

state, which is consistent with Fig. 10.24.

For vapor-dominated systems, the density difference between the liquid and

two-phase regions is large, and as we noted above we can expect gravitational

instability to dominate over buoyancy effects. If the buoyancy effects are negligible

(Ra¼ 0), the stability diagram shown in Fig. 10.25 is obtained. This applies for

water with T0¼ 30 	C and Ts¼ 100 	C. For α¼ π, the minimum value of Ra2ϕ is

18.95, occurring for Qb¼ 1.4.
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The minimum value of S on the curve BD in Fig. 10.24 is approximately equal to

0.98. The maximum value of S on the curve in Fig. 10.25 is about 0.02. We

conclude that if the rest-state value of S lies in the range 0.02–0.98, then the rest

state is stable according to linear theory.

However, the numerical study of Ramesh and Torrance (1993) indicates that

finite-amplitude instability is possible in this range. This study involved convection

and boiling in a two-dimensional rectangular region with length-to-height aspect

ratio equal to 2. In order to model experiments in a Hele-Shaw cell, a volumetric

cooling term (to take account of heat losses from the front and back walls of the

cell) was allowed for in equations for the temperature and saturation. The results

indicate three solution regimes: conduction-dominated, steady convection-

dominated, and oscillatory convection. In some cases, the solutions exhibit a

dependence on initial conditions and perturbations. As Figure 10.26 indicates, the

finite amplitude solutions agree with the linear stability analysis.

Ramesh and Torrance (1993) also reported that their numerical results agree

with prior laboratory experiments, including those of Echaniz (1984) on the oscil-

latory convection, which is observed for high-permeability beds (i.e., high Ra).

Such solutions are generated numerically for high Ra by introducing asymmetric
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Fig. 10.26 Comparison of numerical solutions (symbols) and linear stability theory (solid lines) in
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layer—no boiling; II, a convective liquid layer—no boiling; III, a conductive liquid layer overly-

ing a two-phase layer; IV, a convective liquid layer overlying a two-phase layer. The numerically

observed solutions are: (asterisk), steady convective liquid layer—no boiling, (downward trian-
gle), steady conductive liquid layer over a two-phase layer; ( filled diamond), steady convective

liquid layer overlying a two-phase layer; (plus), steady or oscillatory convective liquid layer,

overlying a two-phase layer; (multiplication), steady conductive or steady convective liquid layer

overlying a two-phase layer (Ramesh and Torrance 1993, with permission from Cambridge

University Press)
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perturbations into a one-dimensional initial conduction field (initial symmetric

disturbances lead to steady-state solutions). The time period in oscillations

decreases with increase of Qb. Heat transfer rates are drastically increased by the

onset of oscillatory convection. Echaniz (1984) concluded that the oscillations are

caused by thermals (pairs of small vortices) that originate at the heating surface

where the cold fluid descends, grow, and then disappear either at the top boundary

or in the two-phase region.

Ramesh and Torrance (1993) also showed that when steady convection had its

onset after the onset of boiling, the preferred computed convective mode is two

cells symmetric about the centerline. The interface moves up as the heat flux is

increased and is depressed in the center (indicating downflow of cold fluid there)

and raised at the sides (or vice versa). The center of the cell lies in the liquid region,

where the buoyancy production term is present. When the onset of convection

precedes that of boiling, the stable two-cell convection pattern is retained after

boiling if Ra is low, but at larger Ra, a transition from a two-cell to a four-cell

structure occurs, in qualitative agreement with the experiment of Tewari (1982).

[The stable three cells also observed by Tewari (1982), not replicated in the

computations, may have been due to experimental nonuniformities.] The steady-

state heat fluxQtop for the numerical two-cell solutions was found to vary with heat-

flux Rayleigh number Raf (¼Ra �Qb) according to Qtop / Raf
0.6, in approximate

accord with the experimental correlation Nu / Raf
.0.5 reported by Echaniz (1984).

In connection with the testing of a new two-phase mixture model introduced by

Wang and Beckermann (1993), Wang et al. (1994a, b) have made a numerical study

of boiling in a layer of capillary porous medium heated from below. Their numer-

ical procedure employs a fixed grid and avoids tracking explicitly the moving

interface between the liquid and two-phase regions. Also on the new mixture

model, Wang and Beckerman (1995) performed a two-phase boundary layer anal-

ysis, and Easterday et al. (1995) studied numerically and experimentally two-phase

flow and heat transfer in a horizontal porous formation with horizontal water

throughflow and partial heating from below. The latter found that the resulting

two-phase structure and flow patterns are strongly dependent on the water inlet

velocity and the bottom heat flux. They reported qualitative agreement between

numerical and experimental results. Wang et al. (1994a) studied numerically

transient natural convection and boiling in a square cavity heated from below.

They observed boiling-induced natural convection, flow transition from a unicel-

lular to a bicellular pattern with the onset of boiling, and flow hysteresis as the

bottom heat flux first increases and then decreases. This subject has been reviewed

by Wang (1998a). A numerical study of boiling with mixed convection in a vertical

porous layer was made by Najjari and Ben Nasrallah (2002), while Najjari and Ben

Nasrallah (2005) similarly studied the effect of aspect ratio on natural convection in

a rectangular cavity. Najjari and Ben Nasrallah (2006, 2008) treated mixed con-

vection in a discretely heated layer and the effects of latent heat storage on heat

transfer in a forced flow in a layer. A three-dimensional simulation of phase-change

heat transfer in an asymmetrically heated channel was carried out by Li et al.

(2010b), while Li et al. (2010c, d) examined some transient situations. Li and
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Leong (2011) performed an experimental and numerical study of single and two-

phase flow and heat transfer in aluminum foams. Damronglerd and Zhang (2006)

studied transient fluid flow and heat transfer in a layer with partial heating and

evaporation at the upper surface.

Stemmelen et al. (1992) noted that large-amplitude oscillations are observed in a

boiling porous medium with high heat fluxes, and they presented a simplified linear

stability analysis that they carried out to determine the stability criterion. The

stability of the liquid-dominated and vapor-dominated solutions was studied by

Sahli et al. (2010).

For discussion of some wider aspects of boiling and two-phase flow in porous

media, the reader is referred to the reviews by Dhir (1994, 1997).

10.3.2 Film Boiling and Evaporation

It was observed by Parmentier (1979) that, because of the nature of the (P,T ) phase
diagram, the thin film of water vapor that forms adjacent to a vertical surface is

separated from the liquid water by a sharp interface with no mixed region in

between. The assumption that the vapor and liquid form adjacent boundary layers

(as in Fig. 10.26), with a stable smooth interface, is mathematically convenient and

has been adopted in most theoretical studies of film boiling. In reality, the interface

may be wavy or unsteady due to the formation and detachment of bubbles.

If one assumes, following Cheng and Verma (1981), that the Oberbeck–

Boussinesq approximation and Darcy’s law are applicable and variables are defined

as in Fig. 10.27, then the governing equations for the region saturated with

superheated vapor (subscript v), y< δv, are

x
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0
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T¥
dv
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Vapor
Liquid

Fig. 10.27 Definition

sketch for film boiling
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∂uv
∂x

þ ∂vv
∂y

¼ 0; ð10:76Þ

uv ¼ �K

μ
ρv � ρ1ð Þg; ð10:77Þ

uv
∂Tv

∂x
þ vv

∂T
∂y

¼ αm
∂2

Tv

∂y2
; ð10:78Þ

while those for the region filled with subcooled liquid (subscript l), y> δv, are

∂ul
∂x

þ ∂vl
∂y

¼ 0; ð10:79Þ

ul ¼ ρgβl1K Tl � T1ð Þ
μl

; ð10:80Þ

ul
∂Tl

∂x
þ vl

∂Tl

∂y
¼ αml

∂2
Tl

∂y2
: ð10:81Þ

The boundary conditions are

y ¼ 0 : vv ¼ 0, Tv ¼ Tw; ð10:82Þ

y ! 1 : ul ¼ 0, Tl ¼ T1; ð10:83Þ

where the saturation temperature Ts satisfies Tw> Ts¼ T1. At the vapor–liquid

interface y¼ δv, we have

Tv ¼ Ts ¼ Tl; ð10:84Þ

ρv vv � uv
dδv
dx

� �
¼ ρl vl � ul

dδv
dx

� �
¼ _m δ; ð10:85Þ

�kmv

∂Tv

∂y
¼ _m δ hfv � kml

∂Tl

∂y
; ð10:86Þ

where km is the effective thermal conductivity of the porous medium, and hfv is the
latent heat of vaporization of the liquid at Ts. Equation (10.86) states that the energy
crossing the interface is partly used to evaporate liquid at a rate _m δ.

We introduce the streamfunctions ψv, ψ l defined by

uv ¼ ∂ψv

∂y
, vv ¼ �∂ψv

∂x
; ð10:87Þ
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ul ¼ ∂ψ l

∂y
, vl ¼ �∂ψ l

∂x
; ð10:88Þ

and the similarity variables defined by

ηv ¼ Raxvð Þ1=2y=x, ηl ¼ Raxlð Þ1=2 y� δvð Þ=x; ð10:89Þ

ψv ¼ αmv Raxvð Þ1=2f v ηvð Þ,ψ l ¼ αml Raxlð Þ1=2f l ηlð Þ; ð10:90Þ

Tv � Ts ¼ Tw � Tsð Þθv ηvð Þ, Tl � Ts ¼ Ts � T1ð Þθl ηlð Þ; ð10:91Þ

where

Raxv ¼ ρ� ρvð ÞgKx
μvαmv

, Raxl
ρgβlK Ts � T1ð Þx

μlαml

: ð10:92Þ

We then have

f 0v ¼ 1, f 0l ¼ θ; ð10:93Þ

2θ
00
v þ f vθ

0
v ¼ 0, 2θ

00
l þ f l θ

0
l ¼ 0; ð10:94Þ

f v 0ð Þ ¼ 0, f 0l 1ð Þ ¼ 0; ð10:95Þ

θv 0ð Þ ¼ 1, θl 1ð Þ ¼ 0 ð10:96Þ

and at the interface, which is given by y¼ δv, and therefore by

ηv ¼ ηvδ ¼ Ra1=2xv δv=x, ηl ¼ 0; ð10:97Þ

we have

θv ηvδð Þ ¼ 0, θl 0ð Þ ¼ 0; ð10:98Þ

f l 0ð Þ ¼ � _m δ2x
1=2

ρ αmlρ1gβlK Ts � T1ð Þ=μl½ �1=2
¼ R

Sc1=2
ηvδ; ð10:99Þ

Shθ0v ηvδð Þ ¼ Sc3=2

R
θ0l 0ð Þ � ηvδ

2
: ð10:100Þ

Here,

Sc ¼ cPl Ts � T1ð Þ=hfv, Sh ¼ cPv Tw � Tsð Þ=hfv ð10:101Þ

are “Jakob numbers” measuring, respectively, the degree of subcooling of the fluid

and the superheating of the vapor, and R is defined by
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R ¼ ρv
ρ1

μlαmv ρ1 � ρvð ÞcPl
μvαmlρ1 βlhfv


 �1=2
: ð10:102Þ

Equation (10.99), which is related to the rate of evaporation, determines ηvδ. The
remaining equations in fv, θv, fl, and θl constitute a sixth-order eigenvalue problem.

Those in fv, θv have the exact solution

f v ¼ ηv, θv ¼ 1� erf ηv=2ð Þ
erf ηvδ=2ð Þ ð10:103Þ

while those in fl, θl reduce to the problem discussed in Sect. 5.1.2 if the values of

ηvδ, R, and Sc are prescribed.

We define the local Nusselt number Nux in terms of the wall heat flux q
00
w, so

Nux ¼ q
00
wx

kmv Tw � Tsð Þ ; ð10:104Þ

and then

Nux

Ra
1=2
xv

¼ �θ0v 0ð Þ ¼ 1

π1=2erf ηvδ=2ð Þ : ð10:105Þ

The value of θ
0
v(0) can be obtained numerically, and results are shown in Fig. 10.27.

In particular, we have the asymptotic result

Nux

Ra
1=2
xv

! 0:564 as Sh ! 1: ð10:106Þ

Results for other geometrical configurations are readily attained (Cheng et al.

1982). For example, for a horizontal cylinder of diameter D, we have

Eq. (5.120), modified by the replacement of the coefficient 0.628 with the expres-

sion 21/2[– θ
0
v(0)]. Likewise, Eq. (5.122), similarly modified, applies for a sphere of

diameter D. For a cone of half-angle α with axis vertical and vertex downward,

Nux

Ra
1=2
xv

¼ 31=2 �θ0v 0ð Þ � ð10:107Þ

where now g cos α replaces g in the definition of Raxv, while for a wedge the same

applies except that the factor 31/2 is absent.

Nakayama et al. (1987) have extended the boundary layer theory to general

two-dimensional and axisymmetric bodies. They show that an accurate approxi-

mate formula is
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Nux

Ra=Ið Þ1=2
¼ π�1 þ 2Shþ 0:444

Sc

Rn

� �2
 !1=2

� 0:444
Sc

Rn

24 35�28<:
9=;

1=2

ð10:108Þ

where

Rn ¼ ρvαmv

ρlαml

αmlvl ρl � ρvð Þ
αmvvvρvβv Ts � T1ð Þ

 �1=2

; ð10:109Þ

I xð Þ ¼

ð x
0

gxr*
2 dx

gx r*
2x

; ð10:110Þ

r* ¼
I f or plane flow,

r xð Þ f or axisymmetric flow;

(
ð10:111Þ

gx ¼ g I � dr

dx

� �2
" #1=2

: ð10:112Þ

Here, r(x) defines the surface, where x is measured along the surface from a

stagnation point. Thus, for example, I¼ 1 for a vertical plate and I¼ 1/3 for a

vertical cone pointing downward.

Subcooled forced convection film boiling over a vertical plate was analyzed by

Nakayama and Koyama (1988b), and similarity solutions for the vertical plate,

horizontal circular cylinder, and sphere were found by Nakayama and Koyama

(1988a). A theoretical and experimental study of film boiling over a sphere or a

horizontal cylinder was performed by Orozco et al. (1988). Film boiling of a binary

mixture over a vertical plate was studied analytically and experimentally (with

good agreement between the results) by Essome and Orozco (1991). A theoretical

study of mixed convection film boiling of a binary mixture over a horizontal

cylinder was reported by Orozco and Zhu (1993). The effect of liquid evaporation

on mixed convection from a vertical plate was treated by Shih et al. (2005). A

mixed convection problem with a non-Newtonian fluid was studied by Shih et al.

(2008). A uniform transpiration effect on coupled heat and mass transfer in mixed

convection about inclined surfaces was studied by Yih (1999d).

Heat and mass transfer together were studied by Leu et al. (2006, 2009), while

Leu et al. (2011) examined non-Darcy effects and inlet conditions on forced

convection.

An analytical study was made by Kokubun and Fachini (2012) of Heimenz

(stagnation point) flow with the aim of modeling heat supplied to a low-volatility

fluid in a porous medium by a hot impinging gas, something applicable to the steam

injection process for oil recovery. They included the effect of local thermal
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nonequilibrium required by their assumption of high rates of heat transfer between

gas and solid and between liquid and solid. They thus extended the previous study

(with thermal equilibrium) by Zhao (1999).

10.4 Condensation

Several authors have used a one-dimensional model to analyze condensation in

porous media. For example, Vafai and Sarkar (1986, 1987) have reported a transient

analysis of moisture migration and condensation in porous and partially porous

enclosures, and S€ozen and Vafai (1990) have analyzed the transient forced con-

vective condensing flow of a gas through a packed bed, with quadratic drag effects

incorporated. A two-dimensional transient model was employed by Vafai and

Whitaker (1986) to study the accumulation and migration of moisture in an

insulation material; this involved a porous slab.

The only problem that has been studied in depth is that of film condensation.

This problem is analogous to that of film boiling discussed in the previous section.

The roles of the liquid and the vapor are reversed and heating is replaced by

cooling, but the mathematical analysis is the same provided that the liquid–vapor

interface remains sharp, i.e., there is no intervening two-phase region, provided that

capillary effects are negligible. In the literature, the analysis has been developed in

parallel with that discussed in Chap. 5. Hence our discussion will be brief.

The original study by Cheng (1981b) for steady condensation outside a wedge or

cone embedded in a porous medium filled with a dry saturated vapor was extended

by Cheng and Chui (1984) to the transient situation. Liu et al. (1984) extended the
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Fig. 10.28 Heat transfer results for film boiling (Cheng and Verma 1981, with permission from

Pergamon Press)

588 10 Convection with Change of Phase

http://dx.doi.org/10.1007/978-3-319-49562-0_5


analysis to treat general two-dimensional and axisymmetric bodies and to allow for

the effect of lateral mass flux. Close (1983) pointed out that, with natural convec-

tion, a condensing component could lead to increased conductivity.

White and Tien (1987) employed the Brinkman equation to account for

boundary friction and also the effect of variable porosity at the wall. Lai and

Kulacki (1989b) allowed for the effect of temperature-dependent viscosity; this

can significantly increase the heat transfer rate if the wall temperature is close to

the saturation temperature. Ebinuma and Nakayama (1990a, b, 1997) have

included the effect of quadratic drag for the transient problem (the additional

drag increases the time required to reach the steady state) and the transient

problem with lateral mass flux. Li and Wang (1998) investigated analytically

the influence of an effective thermal conductivity change adjacent to the cooling

wall. The effect of a transient suction effect at the porous layer interface was

studied by Ma and Wang (1998). The effect of suction on condensation on a

finite-sized horizontal flat medium was studied theoretically by Wang et al.

(2003d). A further study incorporating non-Darcian effects was reported by

Masoud et al. (2000).

The effects of surface tension on film condensation were analyzed by Majumdar

and Tien (1990). Now the thermodynamics of phase equilibria requires the exis-

tence of a two-phase zone lying between the liquid and vapor regions. In this zone,

solutions of the conservation equations indicate a boundary layer profile for the

capillary pressure. Majumdar and Tien considered various models for the boundary

conditions. They concluded that the best results are attained if one assumes that

there is no shear at the interface between liquid and the two-phase zone. Results

obtained using this model are shown in Fig. 10.29. The parameter Rσ, the Rayleigh

number Ra, and the Jakob number Ja are defined here by

10-210-4

10-2

102

Ja=0.151

Ja=0.001 0
10
102

103 = Rs

Model 1

Nux
Ra

1021

1

x
Ra K1/2

Fig. 10.29 Heat transfer

results for film condensation

(Majumdar and Tien 1990)
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Rσ ¼ σ* Kφð Þ1=2
μlαm

, Ra ¼ g ρl � ρvð ÞK3=2

μlαm
,

Ja ¼ cP Ts � Twð Þ
hfg

; ð10:113Þ

where σ* is the surface tension and the other quantities are as in Sect. 10.3.2.

Condensation on a vertical surface was investigated experimentally and numer-

ically by Chung et al. (1992). Their numerical model assumed a distinct two-phase

zone existing between liquid and vapor zones and included the effect of vapor flow

in that two-phase zone. Their experiments were performed for steam condensing in

packed beds of glass beads of three different sizes. They reported good agreement

between numerical and experimental results. They found that the calculated liquid

film thicknesses are of the order of the diameter of the glass beads.

Nakayama (1991) used the Forchheimer model in his analytical treatment of

film condensation in the presence of both gravity and externally forced flow. He

introduced a similarity transformation involving a modified Péclet number based

on the resultant velocity of the condensate. Microscale Grashof and Reynolds

numbers based on the square root of the permeability govern the delineation of

four limiting regions, namely (1) Darcy forced convection, (2) Forchheimer

forced convection, (3) Darcy natural convection, and (4) Forchheimer natural

convection.

An experimental and numerical investigation on the Brinkman model of con-

densation of a downward flowing vapor on a horizontal cylinder embedded in a

vapor-saturated porous medium was carried out by Orozco (1992). Good agreement

was found between predicted and measured values of Nu and condensate thickness.

Renken and Aboye (1993a, b) have reported numerical and experimental studies

of film condensation within thin inclined porous coatings. The experiments

involved a condensate region overlaying metallic permeable coating adhered to

an isothermal copper block. Reduced gravity measurements were obtained by

condensing saturated steam containing small concentrations of noncondensables

on surfaces with effective body forces between 0.3 and 1 g. They also investigated

the effects of surface subcooling. The presence of the coating enhanced the heat

transfer substantially. The previous work of Renken et al. (1989) involved a

numerical study of a porous coating on a vertical surface. The subsequent work

by Renken et al. (1994) involved further numerical investigation on the Brinkman–

Forchheimer model or coatings on inclined surfaces. Experiments on forced con-

vection past porous coatings placed parallel to saturated steam flow were reported

by Renken and Raich (1996).

Wang and Beckermann (1995) performed a two-phase boundary layer analysis

based on a two-phase mixture model for buoyancy-driven two-phase flow (con-

densing or boiling) in capillary porous media. They used the solution to reveal the

capillary effect.

For film condensation on a vertical plate, Al-Nimr and Alkam (1997a) obtained

closed-form expressions for the condensate film thickness and flow rate and for the
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convective heat transfer coefficient. They found that the liquid film thickness is

proportional to x1/4 in a thin porous domain as the permeability tends to infinity, but

it is proportional to x1/2 in a thick porous domain as the permeability tends to zero.

Masoud et al. (2004) extended this analysis to a transient problem. The effect of

thermal dispersion was studied by Asbik et al. (2007).

Char and Lin (2001) and Char et al. (2001) treated conjugate film condensation

in natural and mixed convection between two porous media separated by a vertical

plate. Further conjugate problems were studied by Mosaad (1999) and Bautista

et al. (2008). Heat and mass transfer with condensation in a fibrous insulation slab

was studied experimentally and analytically by Murata (1995). Forced convection

film condensation on a vertical porous-layer coated surface was studied analytically

by Toda et al. (1998) and Asbik et al. (2003). Entropy generation was studied by

Bin-Mansoor et al. (2005).

10.5 Spaces Filled with Fluid and Fibers Coated
with a Phase-Change Material

It has been shown that polyethylene glycols (polyols) can be bonded stably on

fibrous materials and that the resulting composites—the “thermally active” fibers—

exhibit reproducible energy storage and release properties (e.g., Vigo and Bruno

1987). The energy storage and release are due to the large latent heat of melting and

crystallization of the polyols affixed to the fibers. A fundamental model for heat

transfer through a space filled with polyol-coated fibers surrounded by air was

described by Lim et al. (1993), who also reviewed the applications of this new class

of materials. In this model, the fibers and the phase-change material (polyol, liquid,

or solid) constitute the matrix of the porous medium, while air is the fluid that flows

through the interstitial spaces.

It is worth noting that this model differs fundamentally from the one used in

earlier studies of melting and solidification in porous media (e.g., Sect. 10.1.1). In

the earlier studies, the melted phase-change material was the fluid that filled the

pores, and therefore there was no flow through regions saturated with solid phase-

change material. In the model for spaces filled with thermally active fibers, the fluid

(air) flows through the entire matrix regardless of whether the polyol coatings are

liquid or solid.

The model of Lim et al. (1993) is based on the homogeneous porous medium and

local thermal equilibrium assumptions. The composition of the porous medium is

described by the porosity, φ (about 80 %), and the fraction of the matrix occupied

by polyol, ε (about 20 %). This means that a unit volume is distributed in the

following proportions: ϕ¼ air, (1 –ϕ)¼matrix (fibers and polyol), (1�ϕ)ε¼
polyol, and (1�ϕ)(1� ε)¼ fibers. The average heat capacity of the porous

medium is
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ρcð Þm ¼ φ ρcPð Þa þ 1� φð Þ ε ρcð ÞP þ 1� εð Þ ρcð Þf
 �

; ð10:114Þ

in which the subscripts m, a, p, and f refer to the averaged porous medium, air,

polyol, and fibers, respectively.

Lim et al. (1993) applied the model to melting and freezing in three confi-

gurations, which were analyzed numerically: one-dimensional conduction,

one-dimensional convection, and two-dimensional natural convection due to

heating or cooling from the side. In each case, the focus was on the relation between

the time of complete melting or solidification of the polyol coatings and the various

dimensions and external parameters of the enclosure. For example, in a

two-dimensional space with time-dependent melting by natural convection

(Fig. 10.1), the time-dependent flow and heat transfer are ruled by four independent

groups: Ra ¼ gβKH Th � Tið Þ=ναm,H=L, S ¼ 1 � ϕð Þερpλ= ρcð Þm Th � Tið Þ,
andθm ¼ Tm � Tið Þ= Th � Tið Þwhere Th, Ti, Tm, and λ are the temperature of the

heated side wall, the uniform initial temperature of the system, the melting tem-

perature, and the latent heat of melting, respectively. Note that in the corresponding

configuration of Sect. 10.1.1, the phenomenon was described by only two indepen-

dent groups, Ra and H/L.
The shape and evolution of the melting front has the same features as in

Fig. 10.2. Several effects are presented in condensed form in Fig. 10.30, which

shows the average position of the melting front

�M τHð Þ ¼ 1
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versus the dimensionless time τH¼ αmt/σH
2, where σ is the heat capacity ratio

σ¼ (ρc)m/(ρCP)a. The dimensions s(y,t), H, and L are defined in Fig. 10.1. Each of

the curves plotted in Fig. 10.30 is terminated at the time when the melting front has

traveled the distance L along the top of the enclosure. The inflection of each curve is

considerably more pronounced than in Fig. 10.6.

The effect of the latent heat parameter S is also shown in Fig. 10.30. A larger

latent heat (larger S) means a longer time until the coating melts on the fibers

located the farthest from the heated wall. The melting times decrease sensibly as the

Rayleigh number becomes greater than approximately 5. The effects of changing

θm and H/L are further documented in Lim et al. (1993).

The solidification process in the same two-dimensional configuration is analo-

gous to the melting process discussed until now. In solidification, the H� L region

is initially isothermal (Ti) and all the fibers are coated with liquid polyol, Ti> Tm.
The temperature of one of the side walls is lowered suddenly to Tc, which is lower

than Tm. The movement of the solidification front is similar to that of Fig. 10.2: the

shape of the front can be visualized by imagining the mirror image of Fig. 10.2,

where the role of mirror is played by one of the horizontal walls. Figure 10.30

continues to be valid subject to the new definitions Ra ¼ γβKH(Ti� Tc)/ναm and

θm¼ (Ti� Tm)/(Ti� Tc).
Further work on convection in composite systems with phase-change material

has been performed by Mbaye and Bilgen (2006) and Nayak et al. (2006).
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Chapter 11

Geophysical Aspects

Most of the studies of convection in porous media published before 1970 were

motivated by geophysical applications and many published since have geophysical

ramifications; see, for example, the reviews by Cheng (1978a, b, 1985b). On the

other hand, geothermal reservoir modeling involves several features that are outside

the scope of this book, and it usually involves specialist computer packages and

techniques. Relevant reviews include those by Donaldson (1982), Grant (1983),

O’Sullivan (1985a), Bodvarsson et al. (1986), Bjornsson and Stefansson (1987),

McKibbin (1998, 2005), and O’Sullivan et al. (2000, 2001). An important book

dealing with geological fluid dynamics is that by Phillips (2009). In this book, the

emphasis is on flow patterns and specifically geological processes, involving

dissolution, chemical reaction, and deposition. Some examples are discussed

below in Sect. 11.12. Another important book is that by Woods (2014).

In this chapter, we discuss a number of topics that involve additional physical

processes or have led to theoretical developments beyond those that we have

already covered.

11.1 Snow

It is not uncommon for an unstable air density gradient to be found in a dry snow

cover, because the base is often warmer than the upper surface. The geothermal heat

flux, the heat release due to seasonal lag, and the release of heat if the soil freezes

are factors that tend to keep the bottom boundary of a snow cover near 0 �C. In
contrast, the upper boundary is usually near the ambient air temperature, which in

cold climates can be below 0 �C for long periods of time.

When the unstable air density gradient within the snow becomes sufficiently

great, convection occurs and the rate of transport of both heat and vapor increases

and the snow undergoes metamorphosis. For example, a strong vertical temperature

gradient favors the growth of ice particles. These may grow to 1 or 2 cm in
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diameter. As the particles increase in size, their number decreases so rapidly that the

density of the snow decreases, relative to that in the absence of a temperature

gradient. At the same time there is a change in the shape of ice crystals. The strength

of the snow against shear stresses is lowered and on sloping terrain this can lead to

slab avalanches.

Thermal convection has been observed in snow both in laboratory experiments

and in the field. These experiments indicate that natural convection should be fairly

common under subarctic conditions.

The particular feature of convection in snow that distinguishes it from convec-

tion in other porous media is the fact that the energy balance is significantly affected

by the phase change due to the transport of water vapor from particle to particle in

snow. This has been studied by Palm and Tveitereid (1979). Their analysis was

refined by Powers et al. (1985). The latter assume that the Boussinesq approxima-

tion is valid and that the equation of state for vapor at saturation can be taken as

ρv ¼ ρ0exp B T � T0ð Þ½ �: ð11:1Þ

The heat flux is incremented by Ljv, where L is the latent heat and jv is the

diffusive flux of vapor, given by jv ¼ �Deff∇ρv where Deff is an effective mass

diffusivity. At the same time, there is an additional energy transport term resulting

from the convection of vapor (for details, see Powers et al. 1985). As a conse-

quence, one ends up with an energy equation in the form

LρvBþ ρcPð Þa
� �

v �∇T ¼ ∇ � km þ LDeffρvBð Þ∇T½ �, ð11:2Þ

where the subscript a denotes air and v is the mass-averaged seepage velocity

(which is approximately equal to the air velocity because the density of vapor is

much less than that of air). If the various coefficients in Eq. (11.2) can be approx-

imated by constant values, this takes the form

v �∇T ¼ αe∇2T, ð11:3Þ

where

αe ¼ αm
1þ γ

1þ aγ

� �
, ð11:4Þ

where in turn

αm ¼ km
ρcPð Þa

, γ ¼ LDeff

km

dρv
dT

� �
, a ¼ α

Deff

: ð11:5Þ

We see that the primary effect of the diffusion of water vapor (which arises from

the variation of saturation vapor density with temperature) is to change the value of

the effective thermal diffusivity.

596 11 Geophysical Aspects



To Eq. (11.3), we can add the equations of continuity, momentum, and state:

∇ � v ¼ 0, ð11:6Þ

�∇P� μ

K
vþ ρag ¼ 0, ð11:7Þ

ρa ¼ ρ0 1� β T � T0ð Þ½ �, ð11:8Þ

and appropriate boundary conditions to formulate a variant of the Horton–Rogers–

Lapwood problem. Powers et al. (1985) solved this system for the two-dimensional

case using finite differences and calculated the heat transfer for Rayleigh numbers

just above critical. They treated various types of boundary conditions, and they

briefly discussed the case of inclined layers.

We note that the effect of water vapor is destabilizing if a > 1 and stabilizing if

a< 1. In practice, the value of a can vary widely, but typical values are in the range of
0.5–2. This means that the critical Rayleigh number is in the range 25–35 for the case

of an isothermal permeable top and an isothermal impermeable bottom boundary.

Sommerfeld and Rocchio (1993) reported experiments on the permeability of

snow. They noted that while calculated, Rayleigh numbers have exceeded those

thought critical for natural convection in snow; field experiments by Sturm and

Johnson (1991) indicate that extreme thermal gradients are necessary for even

intermittent convection. Sturm and Johnson, however, concluded that convection

occurred almost continuously during two of the three winters during which they

made their experiments.

Comparing the results of a numerical model with a field experiment where air

was forced through a natural snowpack, Albert (1995) concluded that the airflow

through the pack was sufficient to produce advection-dominated heat transfer

throughout most of the pack. Aspects of the convective instability of air in snow

cover treated as a two-layered system were discussed by Zhekamukhov and

Zhekamukhova (2002). A nonequilibrium treatment of heat and mass transfer in

alpine snowcovers was reported by Bartelt et al. (2004).

11.2 Patterned Ground

There are many places in arctic or mountainous regions where the surface of the

ground takes the form of a regular pattern of circles, stripes, or polygons. These are

made prominent because of the segregation of stones and fines resulting from

diurnal, seasonal, or other recurrent freeze–thaw cycles in water-saturated soils.

These patterns also are found underwater, in shallow lakes, or near shores. The

diameter of sorted polygons may vary from 0.1 to 10 m. A variety of photographs is

included in the article by Krantz et al. (1988).
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When frozen soil thaws, the potential for convection exists because of the

density inversion for water between 0 and 4 �C. More dense water at a few degrees

above its freezing point can overlie less dense water at 0 �C. But convection
currents alone are too weak to move either the stones or the soil.

Ray et al. (1983) provided the following explanation of the formation of

patterned ground. Once gravitationally induced convection occurs, it typically

forms hexagonal cells in horizontal ground and roll cells or helical coils in sloped

terrain. These regular cellular flow patterns can then be impressed on the underlying

ice front, because in areas of downflow the warmer descending water causes extra

melting, whereas in areas of upflow the rising cooler water hinders melting of the

ice front. Consequently, the ice level is lowered under descending currents and

raised over ascending currents, relative to the mean level. Thus, a pattern of

regularly spaced peaks and troughs is formed on the underlying ice front that

mirrors the cellular convection patterns in the thawed layer. This pattern is trans-

ferred to the ground surface through the process of mechanisms such as frost push

or frost pull. The width of the flow cell at the onset of convection then determines

the width W of the observed stone patterns. The height H of the thawed layer at the

onset of convection is assumed to correspond to the sorting depth D. Linear
instability theory thus predicts the value ofW/D. This tallies well with observations
(Gleason et al. 1986). The model also provides an explanation for the transition

from polygons on horizontal ground to stripes on sloped terrain.

The direction of fluid circulation determines whether the stones concentrate over

the ice troughs or peaks. Gleason et al. (1986) report results of weakly nonlinear

stability theory that shows that under most conditions the determining temperature-

dependent property for convection arising from thawing frozen soil is the coeffi-

cient of thermal expansion. This decreases from 3.5 � 10�5/�C to 0 as the

temperature increases from 0 to 4 �C, and this decrease implies cell circulation

with upflow in the cell center and downflow along the polygonal borders. The

underlying ice front then should have isolated ice peaks and continuous polygonal

troughs. If stones tend to concentrate over troughs during sorting, this would lead to

stone-bordered polygons. In fact these are the most frequently observed patterns. If

kinematic viscosity was the dominant temperature-dependent property, then the

decrease in kinematic viscosity as the temperature increases would imply the

opposite direction of circulation and this would lead to stone pits. These are

occasionally observed.

Rock conducts heat better than soil does. Thus, if in the freeze following the

thaw period wherein the convection was initiated, the sorting process moves some

stones over the convection-induced ice troughs; then during the next thaw period

the conductive heat transfer will be largest in precisely those regions. Thus, heat

conduction will act to accentuate the previous pattern.

George et al. (1989) state that three conditions are believed to be essential for the

formation of stone polygons: the existence of freeze–thaw cycles within the soil, the

saturation of the soil with water for at least part of the year, and the presence of an

impermeable ice barrier underlying the active layer. Once these conditions are

satisfied, the formation of polygonal ground follows a five-step process. Stone
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polygons have been grown in the laboratory by reproducing these five steps,

namely: (1) Permeability enhancement as the result of the formation of needle ice

and frost heaving in the soil. (2) Onset of buoyancy-driven convection in the water

saturated soil. (3) Formation of a tessellated surface in the permafrost. (4) Genesis

of polygonal ground through frost heaving. (5) Perpetuation of the hexagonal

pattern.

Gleason et al. (1986) claimed that the two forms of convection cells that can

occur in sloped terrain have widely different width-to-depth ratios, 2.7 for

two-dimensional rolls (which occur for small downslope flow), and 3.8 for helical

coils (which occur for large downslope flow). They have not published the analysis

that leads to these values. We would expect the values to be practically the same.

The value 2.7 would correspond to an impermeable conducting bottom and a

permeable conducting top surface.

George et al. (1989) also have extended the theoretical analysis of the onset of

convection in several respects. Whereas Ray et al. (1983) approximated the density

versus temperature relationship by a linear expression. George et al. (1989) worked

with a more accurate parabolic expression. George et al. (1989) also allowed for a

permeability that varies linearly with depth, and they contributed a nonlinear

analysis based on the method of energy. They found that their theoretical pre-

dictions of W/D agreed well with field studies when a constant-flux condition is

imposed at the upper boundary and an upwardly stratified permeability is chosen.

Theoretical extensions to include the effects of solar radiation, phase change, cubic

density law, and overlying water have been made by McKay (1992, 1996) and

McKay and Straughan (1991, 1993), respectively. In particular, McKay (1992)

presented a linear analysis involving Floquet theory, a nonlinear energy analyis,

and extensive numerical results.

Experimental work, together with the results of a theoretical investigation of

heterogeneity effects, was reported by Zimmerman et al. (1998). The mathematical

aspects of the pattern formation were emphasized in the review by Straughan

(2004b). The self-organization aspect of the phenomenon was discussed by Kessler

and Werner (2003).

Thompson and Daniels (2010) modeled the formation of patterns in grass subject

to chill damage in terms of convective instability in porous media. Ackerson et al.

(2015) studied the way in which ground level air convection produces frost damage

patterns in turf grass.

11.3 Thawing Subsea Permafrost

During the ice age (18,000 years ago), the sea level was some 100 m lower than it is

at present and the lower ambient temperatures led to substantial permafrost forming

around arctic shores. With the rise of sea levels, the permafrost has responded to the

relatively warm and salty sea, which has created a thawing front and a layer of salty

sediments beneath the sea bed. Those off the coast of Alaska have been extensively
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studied. It is believed that convection is taking place in the layer between the sea

bed and the permafrost. (This belief is based on the fact that although conduction

appears to be the dominant heat transfer mechanism, the molecular diffusion of salt

is too slow to explain the observed rate of thawed layer development. Also the

salinity Rayleigh number is supercritical; salinity gradients in the thawed layer are

small except for a boundary layer near the bottom, and the pure water pressure is

different from hydrostatic.) A buoyancy mechanism is provided by the release of

relatively fresh and therefore buoyant water liberated by thawing at the base of the

layer.

The analysis of Swift and Harrison (1984) is of interest because of the way in

which they were able to replace a moving boundary (Stefan) problem with one

essentially on a fixed domain, using the facts that the convection is salt dominated

and the climatic interface advance is slow (2–5 cm/year). The argument is as

follows.

On the moving boundary z ¼ D, Stefan conditions hold for the temperature and

salinity fields. At z ¼ D,

LV
dD

dt
¼ �km

∂T
∂z

����
D�

and S Dð ÞdD
dt

¼ �αs
∂S
∂z

����
D�

, ð11:9Þ

where S is the salinity, km the thermal conductivity, LV is the latent heat per unit

volume of the salty thawed layer, and αs is the diffusivity of salt. Because salinity is
the driving mechanism, the temperature profile can be assumed linear throughout,

and hence the temperature gradient can be replaced by [T(D) � T0]/D, where T0 is
the sea-bed temperature. The requirement for phase equilibrium is that S(D) is

proportional to �T(D), and so we can write S(D)/Sr ¼ T(D)/T0, where Sr is the

salinity of water that would begin to freeze at temperature T0. Here, T(D) < T0 < 0

and so S(D)> Sr. Now dD/dt can be eliminated from Eq. (11.9), and we end up with

the nonlinear boundary condition

∂S
∂z

¼ kmT0

LvαsD
S

S

Sr
� 1

� �
at z ¼ D: ð11:10Þ

The other boundary conditions are the usual ones, and the problem is reduced to

a standard linear stability problem on a fixed domain.

Swift and Harrison (1984) went on to solve this problem numerically for solute

Rayleigh numbers 1750 and 17500 (which we recall are well in excess of the critical

value for the onset of convection, which is about 40). Galdi et al. (1987) reexamined

this problem, using both linear and nonlinear analysis. They used an energy method

to determine a critical Rayleigh number below which convection cannot develop.

Payne et al. (1988) also have applied an energy method to this problem. They

assumed that the downward permafrost interface movement is negligible, and they

allowed the density to vary quadratically with temperature.

Subsequent studies have shown that salt fingering may play a major role in the

thawing of the permafrost. The salt gradient is produced partly by salts rejected
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during sea ice growth producing concentrated brine near the sea bed and partly by

salts rejected during sediment freezing near the sea bed causing the formation of a

concentrated brine layer within the deeper and yet unfrozen sediments. Gosink and

Baker (1990) report theoretical, laboratory, and field investigations. The theoretical

ones are based on timescale balances related to the result of Wooding (1959) that

convective instability in the form of fingering takes place when the magnitude of

the salinity Rayleigh number exceeds a certain critical value (3.390 in the case of a

vertical cylinder, the Rayleigh number being based on the radius of the cylinder;

compare Sect. 6.16.1). The results of Gosink and Baker suggest that downward salt

fingering will occur at Prudhoe Bay whenever the density gradient in the thawed

subsea sediments exceeds 6.2 < 10�5 g cm�4. The maximum predicted velocity of

fingering is about 2 m/day, and this is consistent with estimates made from

measurements of pressure gradients and numerical modeling in the thawing per-

mafrost. The energy dissipated by viscous force in the thawed layer balances the

energy added to the layer by the salt fingers caused by concentrated brines at the

seabed.

Hutter and Straughan (1997) have employed a realistic equation of state and

have imposed a linear temperature gradient. For this case, they have developed

linear and fully nonlinear stability analyses. They found that the refinements to the

equation of state led to a reduction in critical Rayleigh number. An unconditional

nonlinear stability bound (close to that of linear theory) was found by Budu (2001).

A further study was carried out by Hutter and Straughan (1999). Their multi-scale

perturbation analysis verified the observed thaw rates with a parabolic-in-time

phase boundary retreat and enabled an investigation of possible currents induced

by the ocean circulation overlying the thawed permafrost layer. Their analysis

indicates that the phase boundary beneath the sea bed and below the thawing

layer has a parabolic shape, something that is observed in practice. The topic of

this section has been reviewed by Straughan (2004b), who concludes that the

nonlinear stability thresholds will be extremely close to the linear instability ones

for any practical choice of the density equation of state.

11.4 Magma Production and Magma Chambers

In general, the flow of magma can be treated like that of a viscous fluid subject to

the Navier–Stokes equation, but there are two situations where Darcy’s equation is

applicable. The first is when crystallization leads to a porous structure near the walls

of a magma chamber. The second is when a partial melt is formed during magma

genesis, and the melt products tend to concentrate along interconnected grain

boundaries. Lowell (1985) has applied double-diffusive stability analysis to each

of these situations.

The partial melt problem involves a layer whose thickness varies with time, and

so the associated boundary condition is of Stefan type. Lowell (1985) obtains as an

approximate expression for the critical thermal Rayleigh number

11.4 Magma Production and Magma Chambers 601

http://dx.doi.org/10.1007/978-3-319-49562-0_6


Rac ¼ 4π2 1� Q2

2π2

� �
, ð11:11Þ

where Q is determined as the root of

π1=2Qerf Qð Þexp Q2
� � ¼ Ste, ð11:12Þ

where the Stefan (or Jakob) number Ste ¼ ΔT cP/φLh. Here, ΔT is the difference

between the basal temperature of the layer and the eutectic temperature (the starting

temperature for the melting process), cP is the specific heat of the solid/melt

mixture, φ is the melt fraction (porosity), and Lh the latent heat. In the present

context, Q is a small parameter, so the dynamics of the melt front can be decoupled

from the double-diffusive effects. Thus, the basic stability results of Nield (1968)

are applicable. The critical thickness can vary from about 800 m to a few centime-

ters, depending on the composition of the magma. Lowell concluded that convec-

tive processes will tend to homogenize the melt before it separates from the source

zone, but the vigor of mixing is dependent upon the composition of the source.

Lowell’s (1985) other problem concerns the structure of the porous boundary

layer that forms as a result of side-wall crystallization in a convecting magma

chamber. His examination of the steady-state boundary layer equations shows that

the structure may be one of two types. If upon crystallization at the wall, the

residual melt fraction has negative compositional buoyancy, or if the negative

thermal buoyancy at the cold wall exceeds the positive compositional buoyancy

of the residual melt, then the flow across the whole boundary layer will be

downward. Then if the residual melt fraction has negative compositional buoyancy,

the magma chamber will become stratified as the result of the accumulation of a

layer of dense cold liquid on the floor, while if the melt fraction has positive

compositional buoyancy, the boundary layer fluid will tend to be remixed into the

interior of the magma chamber. If, on the other hand, the positive compositional

buoyancy exceeds the negative thermal buoyancy, counter-flowing boundary layers

will occur, and the compositional buoyancy liquid will tend to be fractionated

towards the top of the magma chamber.

11.5 Diagenetic Processes

Diagenetic processes involve reactions between pure water and mineral phases

during which unstable minerals are dissolved and more stable phases are precipi-

tated, resulting in changes in porosity and permeability. If fluid flow is involved,

then the dissolution and precipitation occur in different parts of the medium. Davis

et al. (1985) have computed the flow pattern and the resulting diagenetic contours

(of v � ∇T) for convection in a folded porous layer (sand) bounded by an
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impermeable medium (shale) heated from below and held at a constant temperature

above. (Following Dr. James Wood, the quantity v � ∇T has been called the rock

alteration index by Phillips (2009), who discusses its use in a number of related

situations.) They assumed that the dip angles are small and the convection is weak,

so that the temperature field can be uncoupled from the fluid flow. Their results are

shown in Fig. 11.1. The direction of circulation, and hence the region of precipi-

tation, depends on whether the conductivity of the porous medium (km) is less than
or greater than the conductivity of the impermeable medium (ks). If km/ks < 1, the

precipitation of quartz takes place on the lower flanks of the porous layer, because

the solubility increases with temperature, and hence the material is leached from the

--

- -

++

+ +

a

b

Fig. 11.1 Streamlines in a folded porous layer. In (a) the thermal conductivity ratio km/ks is 0.8,
where m refers to the porous layer (sandstone) and s to the surrounding impermeable material

(shale). In (b) the ratio is 1.25. The plus signs denote the loci of maximum precipitation of quartz

and the minus signs the loci of maximum dissolution (Davis et al. 1985, with permission from the

American Journal of Science)
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porous matrix in regions where the fluid is being heated and precipitated in regions

where it is cooled.

The rate of mass transfer is radically increased if the critical Rayleigh number is

exceeded and multicellular convection occurs. Palm (1990) has modified the

analysis which Palm and Tveitereid (1979) developed for convection in snow

(see Sect. 11.1) to slightly supercritical two-dimensional flow in a sloping layer

in order to determine the rate of change of mean porosity ϕ (averaged with respect

to the upslope coordinate). Palm (1990) showed that

∂φ
∂t

¼ 4π
ρw
ρs

dCs

dT

����
�T

αm
ΔT
H2

Ra� Rac

Ra
sin

2πz

H

� �
, ð11:13Þ

where ρw is the density of water while Cs is the mass fraction of the transported

material in water, in this case silica quartz, and ρs is its density. The other quantities
are as in Sect. 7.8. We note that the maximal changes in porosity occur at z¼ (1/4)H
and z¼ (3/4)H. This work was applied to the sedimentary basin under the North Sea

by Bjørlykke et al. (1988).

The book by Phillips (1991, Chap. 7) contains further extensions. Phillips pre-

sents detailed analysis of convective flow at small Rayleigh number in submerged

banks of slowly varying thickness or in compact platforms or reefs. He also treats

flow patterns at intermediate Rayleigh number and scale ratio.

A computation of porosity redistribution resulting from thermal convection in

slanted porous layers was made by Gouze et al. (1994). Implications for hydrother-

mal circulation at mid-ocean ridges, resulting from permeability changes due to

diagenesis in the fractured crust, were studied by Fontaine et al. (2001).

Ritchie and Prichard (2011) studied the evolution of a reactive porous medium,

one in which the permeability varies with both time and space because of dissolu-

tion and precipitation. Ward et al. (2014a) investigated dissolution-driven convec-

tion in the presence of a chemical reaction. Slim (2014) examined numerically

solutal-convection regimes, the way in which fingers grow and merge, in a

two-dimensional porous medium in which the top is either permeable or partly

permeable. Sandeep et al. (2016) investigated permeability and flow field evolution

due to the dissolution of calcite in 3-D porous rock under geothermal gradient and

throughflow.

11.6 Oceanic Crust

11.6.1 Heat Flux Distribution

Measurements of heat flow on the ocean floor near the Galapagos spreading center

have revealed a spatial periodicity with a wavelength of about 7 km, peaks of

12 HFU (where 1 HFU � 1 μcal cm�2 s�1 is the “heat flux unit”), and troughs of
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2 HFU, i.e., a peak-to-trough ratio of 6. Ribando et al. (1976) calculated this ratio

for various values of a Rayleigh number Ra based on heat flux, for the cases of

permeable and impermeable upper boundary and for exponentially decreasing and

constant permeability. The heat flux distributions for permeable and impermeable

tops are similar and in the parameter range of interest the peak-to-trough ratio is not

sensitive to whether the permeability is constant or exponentially decreasing, taking

the value 6 for Ra ¼ 100. For a cell depth of 3.5 km, this corresponds to a

permeability of 4.5 � 10�12 cm2, in accordance with other estimates of the

permeability of oceanic basalts.

11.6.2 Topographical Forcing

Convection in oceanic crust has motivated studies of convection initiated by

topography giving rise to horizontal temperature gradients and also of the extent

to which topography influences the wavelength of convection cells produced by

vertical temperature gradients. Lowell (1980) studied the first aspect. He assumed

that the topography is two-dimensional, of uniform wavelength L and amplitude d,
with d/L� 1, as shown in Fig. 11.2. This allows the temperature boundary condi-

tion to be changed from T ¼ 0 at the surface to

T ¼ dΔT
2H

1þ cos kxð Þ at z ¼ 0, ð11:14Þ

where k ¼ 2π/L. The other boundary conditions are taken as

z

x

H

L

d

Fig. 11.2 Definition sketch for low amplitude, wavelike crustal topography
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∂w
∂z

¼ 0 at z ¼ 0, and w ¼ T ¼ 0 at z ¼ H: ð11:15Þ

The linearized momentum and energy equations for steady flow take the form

∇2w ¼ gβK

ν

∂2
T

∂x2
, ð11:16Þ

∇2T ¼ ΔT
Hαm

w: ð11:17Þ

This system of equations can be solved iteratively. The first-order solution is

T1 ¼ dΔT
2H

1þ cos kx
sinh k h� zð Þ

sinh kH
� z

H

	 

, ð11:18Þ

w1 ¼ � gβKdΔT
4νHsinh kH

cos kx 1þ kHtanh khð Þsinh k H � zð Þ � k H � zð Þcosh k H � zð Þ½ �:
ð11:19Þ

The last equation shows that the fluid descends at topographic troughs and

ascends beneath topographic peaks as expected. The vertical velocity is propor-

tional to the topographic amplitude d, but the convective heat flux ρcPw1T1 is

proportional to d2. Lowell (1980) also analyzed the case when the topography is

covered with a layer of sediment.

The extent to which boundary topography can control the pattern of convection

in a porous layer was examined by Hartline and Lister (1981). Their experiments

using a Hele-Shaw cell indicate that for supercritical values of Ra, the topography

does not control the convection pattern except when the topographic wavelength is

comparable to the depth of water penetration, the nondimensional wave number

2πH/L taking values between 2.5 and 4.8. We note that this range brackets π, the
critical wave number for a slab with planar, isothermal, and impermeable bound-

aries. Topographies within this range control the circulation pattern perfectly, with

downwelling under troughs and upwelling aligned with peaks. Other topographies

do not force the pattern, although in some cases the convection wave number may

be a harmonic of the topographic wave number. Unforced convection cells wander

and vary in size. Hartline and Lister (1981) conclude that where the submarine

circulation correlates with bottom topography, it may be because the topographic

wavelength is comparable to the depth to which water penetrates the porous crust.
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11.7 Geothermal Reservoirs: Injection and Withdrawal

Geothermal reservoir modeling has motivated many numerical studies of problems

involving the withdrawal and injection of fluids. It is often convenient to formulate

such problems in terms of pressure and temperature. For example, Cheng and

Teckchandani (1977) studied the transient response in a liquid-dominated geother-

mal reservoir resulting from sudden heating and the withdrawal of fluids. They

considered a two-dimensional rectangular reservoir confined by caprock at the top,

heated by bedrock from below, and recharged continuously through vertical bound-

aries from the sides, with withdrawal from either a centrally placed line sink or a

vertical plane sink. The characteristic feature is the contraction of isotherms in the

neighborhood of the sink (see Fig. 11.3). Oscillatory convection starts at Ra ¼ 200,

a lower Rayleigh number than in the absence of cold water recharge from the sides.

In other studies, the withdrawal and recharge of fluid has been through a

permeable top. The numerical results of Horne and O’Sullivan (1974b) showed

that fluid withdrawal can increase or decrease the rate of heat transfer from the

bottom (heated) surface depending on its position relative to the heat source. A

two-temperature model was used by Turcotte et al. (1977) to simulate hot springs.

Fluid is assumed to enter an upper permeable boundary at ambient temperature.

That leaving is at a temperature greater than ambient temperature. At large Ra, the

significant temperature differences between fluid and solid are restricted to a thin

layer near the upper boundary. Further work on this topic has been reviewed by

Cheng (1978a, b, 1985b).

a

b
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Fig. 11.3 Contraction of isotherms in a geothermal reservoir resulting from fluid withdrawal

from (a) a point sink and (b) a vertical line sink. Here θ is the nondimensional temperature, and

D ¼ Ra/βΔT (Cheng and Teckchandani 1977)
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11.8 Other Aspects of Single-Phase Flow

In the vicinity of the fluid critical point, the intensity of natural convective circu-

lation can increase dramatically. Dunn and Hardee (1981) presented laboratory data

that show that in a porous medium, heat transfer rates can increase by a factor of

70 in the vicinity of the critical point. They also showed that the conditions for this

type of superconvection are compatible with expected geological conditions above

magma bodies in the Earth’s crust. Numerical experiments on convective heat

transfer at near-critical conditions were reported by Cox and Pruess (1990). The

heat transfer rates obtained in the simulations were considerably smaller than those

reported by Dunn and Hardee (1981). Cox and Pruess suggested that possible

causes of the discrepancy are the effects of pressure variation, channeling, and

vertical asymmetry of the temperature field. Ingebritsen and Hayba (1994) observed

that singularities in the equations of state of water at its critical point could be

avoided by switching to a pressure–enthalpy formulation. Their numerical simula-

tions showed that there was little near-critical enhancement in heat transfer for

systems in which flow is driven by fixed pressure drops. However, in density-driven

systems, there can be an enhancement of heat transfer by a factor 102 or more, with

convection occurring in narrow cells, if the permeability is sufficiently high. The

restriction to high permeability environments within a fairly narrow pressure–

enthalpy window indicates that superconvection may be quite rare in natural

near-magma systems.

In order to discuss convective flow patterns in ground water near salt domes,

Evans and Nunn (1989) made some calculations of double-diffusive convection.

They did not invoke the Boussinesq approximation. They found that along a salt

flank the flow can be either up or down, the sense of direction depending mainly on

the value of the buoyancy ratio N [defined in Eq. (9.10)] and how sharply the

isotherms are pulled up near the salt dome. These factors depend in turn on the

regional salinity variation, the time since diaparism, and the thermal conductivity of

water-saturated sediments.

A time-dependent numerical model of heat transfer across a thickening conduc-

tive boundary layer, between a crystallizing magma chamber and a single-pass

hydrothermal system in the ocean crust, was developed by Lowell and Burnell

(1991) and applied to sea-floor black smokers. General discussions of submarine

hydrothermal systems were presented by Lowell (1991) and Lowell et al. (1995),

Wilcock (1998), and Jupp and Schultz (2000, 2004). High Rayleigh number

convection in an open top porous layer (or Hele-Shaw cell) heated from below

was studied by Cherkaoui and Wilcock (1999, 2001).

Convection in a mushy zone at the Earth’s inner–outer core boundary was

discussed by Bergman and Fearn (1994). They concluded that the magnetic field

may be strong enough to act against the tendency for convection to be in the form of

narrow chimneys.
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The interaction of thermally driven convective circulation in a steeply dipping

fault zone and groundwater flow through the surrounding rock that is driven by a

regional topographic gradient was examined by López and Smith (1995). Three-

dimensional thermoconvection in an anisotropic inclined sedimentary layer was

numerically simulated by Ormond and Genthon (1993).

Numerical modeling was used by Mullis (1995) to check the usefulness of the

analytical solution given by Eq. (7.100). He found that for a homogeneous aquifer,

this solution is a good approximation provided that the inclination of the layer is

replaced by the inclination of the isotherms. He also numerically modeled convec-

tion in wedges and lenses.

A general discussion based on numerical simulation of the patterns of flow

induced by geothermal sources in deep ground was presented by Holzbecher and

Yusa (1995). A geological thermosyphon, where the convection in a closed loop is

coupled to conduction in the surrounding earth, was simulated numerically by

Paterson and Schlanger (1992). They found that at a Rayleigh number above

1, convection leads to a temperature reduction near the source.

The problem of confinement of nuclear wastes in places like Yucca Mountain in

which the temperature and humidity inside emplacement drifts are of interest has

led to new numerical simulations by Webb et al. (2003) and Itamura et al. (2004).

An analytical assessment of the impact of covers on the onset of air convection in

mine wastes was reported by Lu (2001).

Studies of the successive formation and evolution of layered structures in porous

media resulting from heating a compositionally stable stratified fluid from below

were made by Schoofs et al. (1998, 2000a). Thermochemical convection in and

between intra-cratonic basins was studied by Schoofs et al. (2000b). The depletion

of a brine layer at the base of ridge-crest hydrothermal systems was simulated by

Schoofs and Hansen (2000). Numerical simulations of mid-ocean ridge hydrother-

mal circulation including the phase separation of sea water were made by Kawada

et al. (2004). A comprehensive study of NaCl–H2O convection in the Earth’s crust
was reported by Geiger et al. (2005) who employed a novel finite element–finite

volume numerical method. They allowed for phase separation. To characterize the

onset of convection with a non-Boussinesq situation, they introduced a fluxibility

parameter (a scaled energy flux) and a local Rayleigh number. Further studies of

mid-ocean ridges and seafloor spreading were carried out by Lowell (2007) and

Wilson and Ruppel (2007). Coupled process models of fluid flow and heat transfer

in hydrothermal systems in three dimensions were presented by Kuhn and Gessner

(2009). Numerical simulation of magmatic hydrothermal systems was reviewed by

Ingebritsen et al. (2010).

Using finite-element numerical modeling, Zhao et al. (1997, 1998a, 1999c,d,

2000a, 2001a,b) treated a range of situations. Zhao et al. (1998b, 1999a) studied

high Rayleigh number steady-state heat transfer in media heated from below. The

first paper dealt with the effect of geological inhomogeneity with both heat and

mass transfer and the second with the effect of medium thermoelasticity,
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mineralization, and deformable media. Zhao et al. (2003a) transformed a magma

solidification problem with a moving boundary into a problem without the moving

boundary but with an equivalent heat source. Kissling and Weir (2005) proposed an

explanation of the spatial distribution of the geothermal fields in the Taupo Volca-

nic Zone (TVZ), New Zealand, while Kissling et al. (2009) modeled convective

flows in a TVZ-like zone with a brittle/ductile transition. Fluid flows through some

geological discontinuities were studied by Ingham et al. (2006).

Steady-state heat transfer through mid-crustal vertical cracks with upward

throughflow in hydrothermal systems was analyzed by Zhao et al. (2002). The

onset of convective flow in three-dimensional fluid-saturated faults was analyzed

by Zhao et al. (2003a, b, 2004a, 2005a). Further interesting studies of thermohaline

convection, involving layering or plume separation, have been carried out by

Oldenburg and Pruess (1998, 1999). Additional work on the numerical simulation

of double diffusive convection with rock alteration was reported by Zhao et al.

(2006a, b). This work is summarized in the book by Zhao et al. (2008a). Zhao et al.

(2011a, b) reported a computational simulation of convective flow in the Earth’s
crust with consideration of dynamic crust–mantel interactions. Zhao et al. (2016a)

presented a computational simulation of seepage instability in porous rocks with

application to the control of mineralization patterns.

Convection in continental faulted rifts was modeled by McLellan et al. (2010).

Simmons et al. (2008) investigated various modes of convection in fractured porous

media. Nield et al. (2008c) studied episodic convection beneath an evaporating salt

lake. This followed work by Massmann et al. (2006) on a theoretical analysis of

mixed convection in a stably stratified fresh surface water saline groundwater

discharge zone. Van Dam et al. (2009) documented the occurrence in the field of

natural convection in groundwater. Further evidence of natural convection in

groundwater was found by Stevens et al. (2009) in field-based experiments near

wind-tidal flats. Voss et al. (2010) established a three-dimensional benchmark for

variable-density flow and transport simulation by matching semi-analytic stability

modes for steady unstable convection in an inclined porous box. The importance of

anisotropy and layered heterogeneity in brackish aquifers in the variable-density

modeling of multiple-cycle aquifer storage and recovery was pointed out by Ward

et al. (2008). Various aspects of groundwater flow in fractured rock were studied by

Graf and Therrien (2007a, b, 2009).

The influence of free convection on soil salinization in arid regions was studied

by Gilman and Bear (1996). Their paper contains a linear stability analysis. A

numerical technique useful for such problems was supplied by Payne and Straughan

(2000a). Straughan (2004b) noted that a nonlinear energy theory for this problem

was lacking, but Payne et al. (1999) used energy-like techniques to derive contin-

uous dependence and convergence results for the basic equations arising from the

Gilman and Bear (1996) theory. Numerical modeling of reaction-induced cavities

in a porous rock was conducted by Ormond and Ortoleva (2000). Solute transport in

a peat moss layer produced by buoyancy-driven flow was discussed by Rappoldt

et al. (2003). Thermal convection in faulted extensional sedimentary basins was

simulated by Simms and Garven (2004). Phase separation together with convection
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in hydrothermal systems was studied by Emmanuel and Berkovitz (2006a, 2007b).

Continuous time random walks were applied to heat transfer in porous media by

Emmanuel and Berkovitz (2007a), while Emmanuel and Berkovitz (2006b) studied

the suppression and stimulation of seafloor hydrothermal convection by exothermic

mineral hydration. Ritchie and Prichard (2011) studied natural convection and the

evolution of a reactive porous medium.

Highly heterogeneous geologic systems have received special attention from

Simmons et al. (2001) and Prasad and Simmons (2003). They pointed out that in

many geologic systems, hydraulic properties such as the hydraulic conductivity of

the system under consideration can vary by many orders of magnitude and some-

times rapidly over small spatial scales. Geologic systems, characterized by frac-

tured rock environments or lenticular mixes of sand and clay, are common in many

hydrogeologic systems. Such heterogeneity occurs over many spatial scales, and

variable density flow phenomena may be triggered, grow, and decay over a very

large mix of different spatial and temporal scales. Dense plume problems in these

geologic environments in general are expected to be inherently transient in nature

and often may involve sharp plume interfaces whose spatiotemporal development is

very sensitive to initial conditions. Importantly, the onset of instability in transient,

sharp interface problems is controlled by very local conditions in the vicinity of the

evolving boundary layer and not by the global layer properties or some average

property of that macroscopic layer. Simmons et al. (2001) and Prasad and Simmons

(2003) pointed out that any averaging process is likely to remove the very structural

controls and physics that are important in controlling the onset, growth, and/or

decay of instability in a highly heterogeneous system. These authors, together with

Schincariol et al. (1997), reported that in the case of dense plume migration in

highly heterogeneous environments, the application of an average global Rayleigh

number based upon average hydraulic conductivity of the medium was problem-

atic. In these cases, an average Rayleigh number appears to be unable to predict the

onset of instability accurately because the system is characterized by unsteady

flows and large amplitude perturbations. For statistically equivalent geologic sys-

tems, and hence average global Ra, dense plume behavior was observed by

Simmons et al. (2001) and Prasad and Simmons (2003) to vary between highly

unstable to highly stable. Heterogeneity effects on a possible salinity-driven natural

convective flow in low-permeability strata were studied by Sharp and Shi (2009).

Travis and Schubert (2005) studied hydrothermal convection in carbonaceous

chondrite parent bodies. The stability of thermal convection in the porous methane-

soaked regolith of Titan was investigated by Czechowski and Kossacki (2009).

Dempsey et al. (2012) modeled the effects of silica deposition and fault rupture on

natural geothermal systems.
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11.9 Two-Phase Flow

11.9.1 Vapor–Liquid Counterflow

For a geothermal field, the solid (rock) is at rest and the gas is the vapor. With

subscript v (for vapor) replacing g, Eqs. (3.77)–(3.78) reduce to

vl ¼ � klK

μl
∇P� ρlgð Þ ð11:20Þ

vv ¼ � kvK

μv
∇P� ρvgð Þ ð11:21Þ

Here, it is assumed that K is constant. Likewise, Eqs. (3.82)–(3.83) reduce to

JM ¼ ρlvl þ ρvvv, ð11:22Þ

JE ¼ ρlhlvl þ ρvhvvv � k∇T ð11:23Þ

Under the two-phase conditions, the pressure P and temperature T are function-

ally related through the saturation line relation T ¼ Tsat (P). It is customary to take

the z-axis in the vertically downward direction. In the absence of source terms, and

with the pressure term there negligible, Eqs. (3.85)–(3.86) give for vertical flow,

∂AM

∂t
þ ∂JM

∂z
¼ 0, ð11:24Þ

∂AE

∂t
þ ∂JE

∂z
¼ 0, ð11:25Þ

where AM (P, S), AE (P, S), JM (P, ∂P/∂z, S),and JE (P, ∂P/∂z, S) and S is the liquid
saturation. The relative permeabilities kl (S) and kv (S) are assumed to be monotonic

increasing and decreasing, respectively, and to satisfy the conditions

kl Sð Þ ¼ 0 for 0 < S < S* ð11:26Þ

kv Sð Þ ¼ 0 for S* < S < 1, ð11:27Þ

where S* and 1 � S* denote the residual liquid saturation and vapor saturation,

respectively. From Eqs. (11.20)–(11.24), it follows that for the case of negligible

conduction,
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JM ¼ �Fþ GM, ð11:28Þ

JE ¼ �hFþ GE, ð11:29Þ

where the gravitational terms are

GM ¼ ρ2l Kkl
μl

þ ρ2vKkv
μv

� �
g, ð11:30Þ

GE ¼ ρ2l Kklhl
μl

þ ρ2vKkvhv
μv

� �
g, ð11:31Þ

The mass mobility F is given by

F ¼ K
ρlkl
μl

þ ρvkv
μv

� �
, ð11:32Þ

and the flowing enthalpy h is given by

h P; Sð Þ ¼ ρlklhl=μl þ ρvkvhv=μv
ρlkl=μl þ ρvkv=μv

: ð11:33Þ

Substituting Eqs. (11.28)–(11.29) into Eqs. (11.24)–(11.25) and eliminating

second derivatives of the pressure, one obtains a first-order wave equation of the

form

∂S
∂t

þ c
∂S
∂z

¼ f l S;P;∂P=∂t;∂P=∂zð Þ, ð11:34Þ

where f1 is a forcing term and the wave-speed c (whose reciprocal is an eigenvalue

of the differential system) is given by

c ¼ 1

ES

∂h
∂S

JM � ∂G
∂S

� �
, ð11:35Þ

where in turn, for the case of negligible conduction,

G ¼ hGM � GE, ð11:36Þ

ES ¼ ∂AE

∂S
� h

∂AM

∂S
: ð11:37Þ
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Equation (11.34) may be analyzed by the standard method of characteristics.

Rankine–Hugoniot equations, expressing conservation of mass and energy, relate

the shock velocity to changes in densities and flows:

U ¼ JM½ �
AM½ � ¼

JE½ �
AE½ � , ð11:38Þ

where [ ] denotes a jump across the shock. It can be verified that for the case of zero

conduction, the second equality in the last equation is equivalent to the continuity of

a volumetric flux vector JQ given by

JQ ¼ �K

μ

∂P
∂z

� ρg

� �
, ð11:39Þ

where μ and ρ are defined by

1

μ
¼ kl

μl
þ kv
μv

,
ρ

μ
¼ klρl

μl
þ kvρv

μv
: ð11:40Þ

On the basis of analysis and numerical simulations, Kissling et al. (1992b)

concluded that although the phases can travel in opposite directions (counterflow),

information travels either up or down, depending on the sign of the wave-speed c.
Wave-speed, saturation, and other quantities are defined on a two-sheeted surface

over the mass–energy flow plane, with the sheets overlapping in the counterflow

region. [For counterflow, there are either two or zero solutions of Eq. (11.34), for

the case of zero conduction.] Most saturations are of the wetting type, i.e., they

leave the environment more saturated after their passage. In fact, when the flow is

horizontal all shocks are wetting, but in vertical two-phase flow there also exist

drying shocks for sufficiently small mass and energy flows.

A general analytical treatment of three-dimensional flow was given by Weir

(1991). He showed that when both phases were mobile, the generalization of

Eq. (11.34) is of the form

∂S
∂t

þ c �∇S ¼ f , ð11:41Þ

where

c ¼ 1

ES

∂h
∂S

JM � ∂G
∂S

k

� �
, ð11:42Þ

where k is the unit vector in the z-direction. Weir (1991) showed that at each point

in space, flows are essentially two-dimensional, in the sense that JM, JE, JQ, and

c all lie in a vertical plane. Here, JQ is the vector generalization of the scalar in

Eq. (11.39). Further, gravity establishes a vertical hierarchy; the volumetric,

614 11 Geophysical Aspects



energy, and mass flux vectors (listed in descending order) can never point below a

lower member of this triple.

For a one-dimensional horizontal two-phase flow, Eqs. (11.41)–(11.42) give,

analogous to Eqs. (11.34)–(11.35) with zero gravity,

∂S
∂t

þ c
∂S
∂x

¼ f 1 S;P;∂P=∂t;∂P=∂xð Þ, ð11:43Þ

where

c ¼ � F

ES

∂h
∂S

∂P
∂x

: ð11:44Þ

Equation (11.44) is formally similar to the Buckley–Leverett equation (of oil

recovery theory) describing isothermal flow of a two-component single-phase fluid

in a porous medium when capillarity can be ignored. However, in the present

situation, the saturation equation (11.44) is strongly coupled to the nonlinear diffu-

sion equation, for P, obtained by eliminating ∂S/∂t from the conservation equations:

∂P
∂t

� D
∂2

P

∂x2
¼ f 2 S;P;∂S=∂x;∂P=∂xð Þ, ð11:45Þ

where

D ¼ � ESF

∂M
∂S

∂E
∂P

� ∂E
∂S

∂M
∂P

: ð11:46Þ

Kissling et al. (1992a) solved Eqs. (11.45) and (11.43) in turn under the assump-

tion that pressure disturbances diffuse to steady state faster than saturation changes

convect. They performed numerical simulations for a block of porous material with

pressure and saturation given constant values at the ends of the block. When pressure

diffusion occurs much faster than saturation convection, the numerical results can be

described in terms of either saturation expansion fans or isolated saturation shocks.

When pressure diffusion and saturation convection occur on the same timescale,

initial simple shock profiles evolve into multiple shocks.

In the work discussed so far conduction has been neglected. Weir (1994a) has

shown that this is certainly valid for sufficiently high temperatures and sufficiently

high permeabilities. Young (1993b) has shown that even when conduction has been

included, the geothermal saturation wave-speed is formally identical to the

Buckley–Leverett wave-speed when the latter is written as the saturation derivative

of a volumetric flow.

For the case of two-phase brine mixtures, one has to add an equation expressing

conservation of salt. Young (1993a) presented a model in which the flows are

described by a parabolic equation for the pressure with a derivative coupling to a

pair of equations for saturation and salt concentration. He showed that the wave-
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speed matrix for the hyperbolic part of the coupled system is formally identical to

the corresponding matrix in the polymer flood model for oil recovery. Indeed, for a

class of strongly diffusive hot brine models, the wave phenomena in geothermal

reservoirs can be predicted from the polymer flood model.

The two-phase geothermal theory has been extended byWeir (1994b) to the case

where non-reacting chemical transport (of CO2, for example) is added. He derived a

natural factorization of the system of equations into diffusive and wave equations.

Each wave equation allows for the corresponding variable to be discontinuous or

equivalently for shock propagation to occur. In general, there now are more than the

usual two (vapor and liquid dominated) saturations for a given mass, energy, and

chemical flux in steady flow.

A further extension of the theory to the case of withdrawal of fluid at a constant

rate was made by Young and Weir (1994). They defined a parameter α,

α ¼ μvW

Kgρl ρl � ρvð Þ , ð11:47Þ

where W is the rate of withdrawal (mass per unit area per unit time). They

concluded that for large α, fluid withdrawal is a mining process, a vapor-dominated

zone spreads out from the production level, and production enthalpies tend toward

steam values. For small α, gravity predominates and buoyancy forces can lead to

the formation of a steam bubble that escapes from the production boundary and

rises toward the surface. Then production enthalpy may remain at the liquid value

over long periods. In addition, certain saturation ranges at the sink may be forbid-

den as a consequence of the constant rate boundary condition and then saturation

shocks also may occur.

A more general study of vapor–liquid counterflow is that of Satik et al. (1991).

They considered a situation in which the counterflow is inclined to the vertical and

their analysis included capillarity, heat conduction, and Kelvin effects (the lowering

of the vapor pressure due to capillarity). They treated a three-zone model in which

the counterflow zone is sandwiched between two zones (one containing mainly

vapor and one containing mainly liquid) in which there is no flow. They found that

the critical heat flux (above which dryout occurs) increases with decreasing per-

meability and that a threshold permeability exists below which steady states may

not exist. In this context, the critical heat flux is dependent on the pressure and the

temperature and so is not precisely defined. As special cases of their general theory,

they considered what they called the “heat pipe” and “geothermal” problems. In the

former, the flow is driven by capillary pressure, and the Kelvin effects are of

significance only over a narrow boundary layer at the vapor-phase boundary. In

the latter, the flow is driven by gravity.

The effect of capillary heterogeneity induced by variation in permeability was

analyzed by Stubos et al. (1993b). They found that the heterogeneity acts as a

spatially varying body force that may enhance or diminish gravity effects on heat

pipes. A detailed numerical investigation of a transient problem involving a self-

heated porous bed was conducted by Stubos et al. (1997). Another investigation of a
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heterogeneous medium, one involving oscillatory instability, was made by Xu and

Lowell (1998).

For the axially symmetric problem of constant-strength heat source embedded in

an infinite homogeneous medium with uniform initial conditions, Doughty and

Pruess (1990, 1992) obtained a similarity solution in terms of the variable r/t1/2. In
their second paper, they included an air component and investigated vapor-pressure

lowering, pore-level phase change effects, and an effective continuum representa-

tion of fractured porous media.

A model taking into account latent heat, vertical flow, and heat conduction

terms, and so involving a new parameter representing a combination of those

quantities, was presented by Pestov (1997, 1998).

11.9.2 Heat Pipes

A heat pipe is a system in which a very efficient heat transfer process is effected by

vapor–liquid counterflow and associated evaporation and condensation effects with

transfer of latent heat. Vapor and liquid may flow in opposite directions due to

gravity or capillary action, or both. If heat is injected into such a system, the liquid

phase will vaporize, causing pressurization of the vapor phase and vapor flow away

from the heat source. In cooler regions the vapor condenses and deposits its latent

heat. In the case of a heat pipe depending on capillary action, this sets up a

saturation profile, with liquid-phase saturations increasing away from the heat

source and capillary forces then cause backflow of the liquid toward the heat source.

For a vertical heat pipe, McGuinness et al. (1993) showed that the steady-state

values of JE and ∂P/∂z are given by

JE
K

μl
ρlkl

þ μv
ρvkv

� �
¼ JM

K

μlhl
ρlkl

þ μvhv
ρvkv

� �
� g hv � hlð Þ ρl � ρvð Þ, ð11:48Þ

∂P
∂z

ρlkl
μl

þ ρvkv
μv

� �
¼ �JM

K
þ ρ2l kl

μl
þ ρ2vkv

μv

� �
: ð11:49Þ

If the simplification kl + kv¼ 1 is assumed (this is a good approximation in many

situations), the value of the wave-speed that appears in Eq. (11.34) is, for the case

JM ¼ 0 (which is appropriate for a heat pipe),

c ¼ A
μlk

2
v

ρl
� μvk

2
l

ρv

� �
, ð11:50Þ

where A defined by
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A ¼ K ∂kl=∂Sð Þg ρl � ρvð Þ
klμv þ kvμlð Þ klμv=ρv þ kvμl=ρlð Þ , ð11:51Þ

is always positive. Hence, c is normally negative for a steady liquid-dominated pipe

(kv 	 0) and normally positive for a steady vapor-dominated pipe (kl 	 0). This

fixes the direction of information flow and hence tells one at which end of the pipe

one should impose flux values in numerical simulations of geothermal systems and

at which end one should specify the saturation and pressure. For the vapor-

dominated solution, the pressure and saturation should be fixed at depth and the

heat and mass flux specified at the top. These boundary conditions are appropriate

for a laboratory heat pipe but they are questionable for geothermal systems.

An extension of this work was made by McGuinness (1996), who pointed out

that the three-zone model used by Satik et al. (1991) limits the possible range of

heat flow values through the heat pipe and also limits solutions to those with a

smooth transition from pure vapor to pure liquid. The single-zone model of

McGuinness allowed these restrictions to be removed. He used a singular pertur-

bation approach (valid for K > 10�15 m2, so that the heat flow is convection

dominated), allowing for capillary boundary layers in the temperature–saturation

phase plane. He found that in the geothermal context, and with heat flow that is

dominated by convection, phase-plane trajectories of temperature versus saturation

track zero-capillarity (gravity driven) solutions (one liquid-dominated and one

vapor-dominated) when they exist. Which of the two solutions is selected depends

on the boundary conditions. In the case of bottom heating, it is the liquid-dominated

solution that should be selected. Whereas the work of Satik et al. (1991) suggested

that only the vapor-dominated solution is typically obtained, the results of

McGuinness (1996) explain why Bau and Torrance (1982a) and others obtained

only liquid-dominated solutions in their laboratory experiments. McGuinness

(1996) also calculated bounds (maxima) for the lengths of heat pipes in cases

where previous work had predicted unbounded lengths.

The work of Satik et al. (1991) and Stubos et al. (1993a, b) was developed in the

context of laboratory experiments, and care needs to be exercised in extending their

theory to geothermal systems. For further discussion, the reader is referred to

Young (1996a, b, 1998a, b).

The quadratic drag (Forchheimer) effect was included in the analysis by Zhu and

Vafai (1999). The dynamics of submarine geothermal heat pipes was investigated

by Bai et al. (2003). A further study of the stability of heat pipes in vapor-dominated

systems was reported by Amili and Yortsos (2003).
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11.9.3 Other Aspects

A numerical investigation of two-phase fluid flow and heat transfer in a porous

medium heated from the side was conducted by Waite and Amin (1999). A general

local thermal nonequilibrium model for two-phase flows with phase change in

porous media was proposed by Duval et al. (2004). Two-phase flow in porous-

channel heat sinks was studied by Peterson and Chang (1997, 1998). Buoyancy

effects together with phase change have been discussed by Zhao et al. (1999e,

2000b). A review of several aspects of liquid and vapor flow in superheated rock

was made by Woods (1999). Geiger et al. (2006a, b) studied multiphase thermo-

haline convection in the Earth’s crust, combining a new finite element–finite

volume solution technique with a new equation of state for NaCl–H2O. Nasrabadi

et al. (2006) investigated two-phase multicomponent diffusion and convection for

reservoir initialization.

11.10 Cracks in Shrinking Solids

The earth’s crust is a cracked porous medium with multiple scales, which result

from erosion and from periodic shrinking due to volumetric cooling and drying. In

spite of the apparent diversity of crack sizes and locations, there is pattern. For

example, wet soil exposed to the sun and the wind becomes drier, shrinks superfi-

cially, and develops a network of cracks. The loop in the network has a character-

istic length scale. The loop is round, more like a hexagon or a square, not slender.

The loop is smaller (i.e., cracks are denser) when the wind blows harder, that is,

when the drying rate is higher.

The characteristic scales of cracks in volumetrically shrinking solids were

deduced from constructal theory (Bejan et al. 1998; Bejan 2000). They were

deduced by invoking the constructal law: the maximization of access for the mass

transfer from wet and cracked soil to the ambient. In Bejan et al. (1998), model was

a heat transfer analog in which a one-dimensional solid slab of thickness L is

initially at the high temperature TH and has the property of shrinking on cooling.

The coolant is a single-phase fluid of temperature TL.
The question is how to maximize the thermal contact between the solid and the

fluid or how to minimize the overall cooling time. This objective makes it necessary

to allow the fluid to flow through the solid. In Fig. 11.4, the cracks are spaced

uniformly, but their spacing R is arbitrary. The channel width D increases in time,

as each solid piece R shrinks. The fluid is driven by the pressure difference ΔP,
which is maintained across the solid thickness L. The imposed ΔP is an essential

aspect of the channel spacing selection mechanism. For example, in the air cooling

of a hot solid layer, the scale of ΔP is set at 1=2ð ÞρfU2
1, where ρf and U1 are the

density and the free-stream velocity, respectively, of the external air flow.
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To examine the effect of the channel spacing R on the time needed for cooling

the solid, we consider the asymptotes R! 0 and R!1. The approach is known as

the intersection of asymptotes method (Lewins 2003). When the number of chan-

nels per unit length is large, the spacing R is small and so is the eventual shrinkage

that is experienced by each R element. This means that when R! 0, we can expect

D ! 0 and laminar flow through each D-thin channel, such that the channel mass

flow rate is _m0 ¼ ρfDU 
 ρfD
3 ΔP/(μL). In the same limit, R is small enough so

that the solid conduction is described by the lumped thermal capacitance model.

The solid piece R has a single temperature T, which decreases in time from the

initial level TH to the inlet temperature of the fluid TL. This cooling effect is

governed by the energy balance ρcRL(dT/dt)¼ � q
0
, where ρ and c are the density

and the specific heat, respectively, of the solid. The cooling effect (q
0
) provided by

the flow through the channel is represented well by q0 ¼ _m0 cp T � TLð Þ, where cp is
the specific heat of the coolant. We obtain the order-of-magnitude statement

ρcRL ΔT=tð Þ 
 _m0 cpΔT, where ΔT is the scale of the instantaneous solid excess

temperature T � TL. Finally, by using the scale, we find the cooling time scale:

t 
 ρc

ρfcp

μRL2

D3ΔP
R ! 0ð Þ ð11:52Þ

solid
r, c, k

T(t)

TH
L

D R

,

coolant
.
m', TL, DP, rf, cp, kf

Fig. 11.4 Cracks in a shrinking solid cooled by forced convection (Bejan et al. 1998)
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In the opposite limit, R is large and the shrinkage (the channel width D) is

potentially very large in proportion to R. The fluid present at one time in the channel

is mainly isothermal at the inlet temperature TL. The cooling of each solid side of

the crack is ruled by one-dimensional thermal diffusion into a semi-infinite

medium. The cooling time in this regime is the same as the time of thermal

diffusion

t 
 R2

α
R ! 1ð Þ ð11:53Þ

where α ¼ k/(ρc) and k is the thermal conductivity of the solid.

To summarize, in the limit R! 0, the cooling time is proportional to R/D3 or R�2

because we expect a proportionality between D and R, namely, D/R
 βΔT� 1,

whereΔT
 TH – TL and β is the coefficient of thermal contraction of the solid. In the

opposite limit, R ! 1, the cooling time is proportional to R2. Put together, these

proportionalities suggest that the cooling time possesses a sharp minimum with

respect to R or the channel density. Intersecting the two asymptotes, we find that

the optimal crack distance for fastest cooling is

Ropt 
 k

kf

αfνL2

U2
1 βΔTð Þ3

" #1:4

: ð11:54Þ

The optimal crack distance decreases as the external pressure (or flow) is

intensified. This is in accord with observations that mud cracks become denser

when the wind speed increases. The Ropt result predicts a higher density of cracks

(a smaller Ropt) as the solid excess temperature ΔT increases, again in agreement

with observations.

An important geometric aspect of the Ropt scale is that the optimal distance

between consecutive cracks must increase as L1/2. This is relevant to predicting the

length scale of the lattice of vertical cracks formed in a horizontal two-dimensional

surface cooled (or dried) from above, under the influence of external forced

convection. As the air flow direction changes locally from time to time and as the

material (its graininess) is such that cracks may propagate in more than one

direction, we arrive at the problem of cooling a two-dimensional terrain (area A,
when seen from above) with cracks of length L and associated area elements of

width Ropt.

Figure 11.5 shows the two extremes in which Lmay find itself in relation to Ropt.

First, when L is considerably shorter than Ropt, it is impossible to cover the area

A exclusively with patches of size L � Ropt. The reason is that when two cracks of

length L are joined at an angle, the elemental area 
L2 trapped between them is too

small to accommodate the amount of ideally cooled solid material. When L is

considerably longer than Ropt, any lattice of cracks will fail to cover the area

A completely. Now the trapped elemental area (
L2) is considerably larger than

the amount of ideally cooled solid (
LRopt): most of the interior of the area element
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of size L2 would require a cooling time that is considerably longer than the

minimum time determined in the preceding analysis.

In conclusion, maximum access for the global heat current is achieved by covering

the A cross section with L � Ropt elements, in which L 
 Ropt. The optimal pattern is

one with relatively round or square loops, not slender loops. Combining L
 Ropt with

the Ropt expression, we find the optimal length scale of the loop in the network of

cracks that will minimize the cooldown time: Ropt 
 (αfνk/kf)1/2/[U1(βΔT)3/2]. Once
again, in agreement with observations, the lattice length scale Ropt must decrease as

the wind speed and the initial excess temperature increase.

Further, geophysical applications of constructal theory are explored in Bejan

et al. (2005).

11.11 Carbon Dioxide Sequestration

The important practical problem of the storage of excess carbon dioxide, a green-

house gas, in response to global warming has motivated a large number of recent

studies. Of special interest is the convection that may be induced in native saline

water as CO2 dissolves into it near the CO2–brine interface. Work on various

aspects of carbon dioxide sequestration has been surveyed by Michael et al.

(2009), Neufeld and Huppert (2009) (gravity currents into multiple layers), Huppert

and Neufeld (2014) (fluid mechanics aspects), Riaz and Cinar (2014) (modeling of

salinity trapping), Cinar and Riaz (2014) (multiphase flow modeling), Abidoye

et al. (2015) (two-phase flow), and Emami-Meybodi et al. (2015) (modeling and

Ropt

Ropt

L
L

A A

a b

L << Ropt L >> Ropt

Fig. 11.5 Two extremes in covering a two-dimensional solid (A) with cracks (L ) and optimally

shaped volume elements (L � Ropt) (Bejan et al. 1998)
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experiments on convective dissolution). In the following brief survey, we concen-

trate on the modeling aspect of single-phase flow and on convection.

The modeling of convective mixing in CO2 storage has been discussed by

Hassanzadeh et al. (2005, 2006, 2007), Pruess and Zhang (2008), and Ghesmat

et al. (2011a, b). The leakage of CO2 from geologic storage as a result of secondary

accumulation at shallow depth was investigated by Pruess (2008). Ennis-King and

Paterson (2003, 2005, 2007), Ennis-King et al. (2005), Riaz et al. (2006), Xu et al.

(2006), and Islam et al. (2014b) studied the coupling of geochemical reaction with

convective mixing. This and some related work has been discussed in Sect. 6.11.3

in the context of unsteady boundary layers. Linear stability analysis was also

applied by Javaheri et al. (2009, 2010), Wessel-Berg (2009), and Andres and

Cardoso (2011). Slim and Ramakrishnan (2010) have studied the onset and cessa-

tion of dissolution-driven convection in a time-dependent situation. This situation

was reexamined by Kim and Choi (2012), who compared the stability characteris-

tics obtained with and without the quasi-steady state approximation for the problem

of an initially quiescent layer, kept isothermal, while a solute diffuses due to an

impulse change in concentration at an upper boundary. Farajzadeh et al. (2013)

applied an asymptotic expansion technique to obtain an approximate analytic

solution to a gravitationally unstable layer below a thin diffusive layer. The effect

of interface movement and viscosity variation on the stability of a diffusive

interface was studied by Meulenbroek et al. (2013).

The effect of dispersion on the onset of convection during CO2 sequestration was

investigated byHidalgo andCarrera (2009) andHassanzadeh et al. (2009a). Javadpour

and Nicot (2011) studied the effect of nanoparticles on enhanced storage and seques-

tration in the context of commingled disposal of depleted uranium and CO2.

Other studies of instability were made by Bestehorn and Firoozabadi (2012)

(effect of fluctuations), Myint and Firoozabadi (2013) (Cartesian and cylindrical

geometries), Bouzgarrou et al. (2013) (unsteady double diffusive convection), Azin

and Raad (2013) (scaling relationships, perturbed boundary), Tilton et al. (2013)

(initial transient period), Tsai et al. (2013) (inclined boundary), Daniel and Riaz

(2014) (effect of viscosity contrast), Islam et al. (2014a) (non-modal growth of

perturbations, heterogeneity), and Kim (2015b) (various boundary conditions),

while Ward et al. (2014b) studied high Rayleigh number convection in a reactive

solute. Reactive transport in a North Sea site was studied by Audigane et al. (2007).

Tilton and Riaz (2014) investigated the nonlinear stability of gravitational unstable

transient diffusive boundary layers. Emami-Meybodi and Hassanzadeh (2013a)

used an analytic model, based on Taylor dispersion theory and incorporating a

passive scalar, to study steady and transient mixing. Two-phase convective mixing

was studied by Emami-Meybodi and Hassanzadeh (2013b) (in the presence of a

capillary transition zone) and Emami-Meybodi and Hassanzadeh (2015) (under a

buoyant plume of CO2). Kim (2016a) studied the effect of swelling on the onset of

convection during the CO2 dissolution process.

The dissolution process has been studied by Yang and Gu (2006) (accelerated

mass transfer), Hassanzadeh et al. (2009b), Neufeld et al. (2010), MacMinn et al.

(2012) (spreading in vertically confined horizontal aquifers), Nazari Moghaddam
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et al. (2012, 2013) (rate quantification) (see the discussion between Emami-

Meybodi (2012a, b) and those authors), Zhang (2013a, b) (enhanced dissolution),

Emami-Meybodi et al. (2015) (background flow of deep saline aquifers), Bolster

(2014) (fluid mechanics), and Li et al. (2015a) (effects of nitrogen). Vosper et al.

(2014) questioned whether numerical modeling has reliably reproduced the key

stabilization process.

The development of gravity currents in porous layers has been studied by

Huppert and Woods (1995), Hesse et al. (2007, 2008), and Szulczewski and

Juanes (2013).

The development of a diffusive interface, a subject originally studied by

Wooding (1969) and which was examined experimentally by Green and Foster

(1975), Fernandez et al. (2002), and Graf et al. (2002), was investigated in the

context of CO2 storage by Meulenbroek et al. (2013). The evolution of plumes

during the injection of CO2 was studied analytically by Nordbotten et al. (2005) and

Nordbotten and Celia (2006). The effect of hydrodynamic dispersion on instability

of the Rayleigh–Taylor type, with first-order chemical reaction, was examined by

Barba Rossa et al. (2016).

Pattern formation during convective mixing was studied by Fu et al. (2013,

2015) (coarsening dynamics, three-dimensional mixing, geological shutdown).

High resolution simulation and characterization of density-driven flow in CO2

storage in saline aquifers were carried out by Pau et al. (2010), following on from

related work by Farajzadeh et al. (2007). Yang et al. (2011c) numerically simulated

the convective stability of the short-term storage of CO2. Other numerical work was

reported by Fard (2010) (CO2 at supercritical pressure falling vertically in porous

tubes), Ouakad (2013) (lattice Boltzmann method), Yuan and Zhang (2013) (adap-

tive finite element methods), Islam et al. (2013), Meng and Jiang (2014) (solubility

trapping in geological formations) Abbasi and Kwon (2014), and Chevalier et al.

(2015) (numerical sensitivity analysis with respect to different modeling and

boundary conditions). The quantification of CO2 masses trapped through a free

convection process in an isothermal brine saturated reservoir has been made by

Islam and Sun (2015).

Green et al. (2009) and Green and Ennis-King (2010) investigated the effect of

vertical heterogeneity on the long-term migration of CO2 in saline aquifers. The

effect of heterogeneity on the character of density-driven convection of carbon

dioxide overlying a brine layer was investigated by Farajzadeh et al. (2011) and

Ranganathan et al. (2012). Heterogeneity effects were also studied by Kong and

Saar (2013). The effect of anisotropy was investigated by Cheng et al. (2012b),

Chen et al. (2013b) (also heterogeneity), Green and Ennis-King (2014), Hill and

Morad (2014), Yadav and Kim (2014a, b), Woods et al. (2015), and De Paoli et al.

(2016). The stability of a diffusion layer involving two miscible fluids was analyzed

by Kim (2014d).

Laboratory flow experiments for visualizing carbon-dioxide-induced, density-

driven brine convection were conducted by Kneafsey and Pruess (2010). Natural

convection in a layer with two miscible phases was studied experimentally by

Suekane et al. (2012). Other experimental work was conducted by Shi et al.
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(2006) (supercritical CO2), Farajzadeh et al. (2009), Slim et al. (2013) (dissolution-

driven convection), Faisal et al. (2013, 2015) (using a vertical Hele-Shaw cell), and

Seyyedi et al. (2014) (Hele-Shaw cell visualization and quantitative experiments at

elevated pressure). An experimental approach to the scaling analysis of convective

mixing was presented by Nazari Moghaddam et al. (2015). Yue and Lipinski (2015)

presented a numerical model of transient phenomena solid–gas reacting system for

CO2 capture applications. Numerical experiments on carbon dioxide saturated brine

migration in heterogeneous two-dimensional geologic fabric materials were

reported by Islam et al. (2016). Wang et al. (2016b) used X-ray computer tomog-

raphy to visualize the formation of Rayleigh–Bénard fingers, thus modeling con-

vection between heavier CO2 loaded brine and brine with little or no CO2. Zhang

et al. (2011) simulated the convection process using a simple two-dimensional

model based on the mineralogical composition in the Songliao Basin in China.

The impact of thermal convection on CO2 flows across the earth–atmosphere

boundary in high-permeability soils was studied by Ganot et al. (2014).

11.12 Reaction Scenarios

In Sect. 11.5, we have discussed one example of a flow-controlled chemical

reaction. In this section, we follow Chap. 5 of Phillips (2009) and discuss various

other geological scenarios that involve changes in composition due to flow-

controlled reaction resulting from the fact that the rates of reaction (such as

dissolution, combination, or replacement) may be limited by the rate at which the

flow can deliver dissolved solutes to the reaction site. For example, when dissolved

contaminants in a surface aquifer are absorbed or react with the enclosing matrix, a

patch of contaminant moves considerably more slowly than does the interstitial

fluid.

11.12.1 Reaction Fronts

We illustrate this phenomenon by an example. Consider the calcite–dolomite

replacement reaction

2CaCO3 þMg2þ $ CaMg CO3ð Þ2 þ Ca2þ

that occurs when sea–water, rich in magnesium, seeps through a calcite bed. The

pattern of decreasing magnesium ion Mg2+ in solution is set up within the time that

it takes for the individual fluid elements to move through the matrix a distance of

two or three times the equilibration length, i.e., over a span of a few to a few tens of

years. Then the distribution of concentration of the Ca2+ in solution produced in the

reaction also stabilizes, being essentially zero at the entry point, increasing with
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increasing path length, and ultimately reaching equilibrium with the matrix after a

travel distance of the order of the equilibrium length.

Consider the calcite–dolomite replacement reaction

2CaCO3 þMg2þ $ CaMg CO3ð Þ2 þ Ca2þ

that occurs when sea–water, rich in magnesium, seeps through a calcite bed. The

pattern of decreasing magnesium ion Mg2+ in solution is set up within the time that it

takes for the individual fluid elements to move through the matrix a distance of two or

three times the equilibration length, i.e., over a span of a few to a few tens of years.

Suppose that one has an initially pristine water-saturated permeable region, and

that at some initial instant a uniform stream of chemically distinct water enters the

region and as it percolates through it begins to dissolve or react with the solid

matrix. The incoming fluid infiltrates into the region at the mean interstitial fluid

velocity �vand gradually tends toward a local equilibrium with the solid phase within

a contact time γ�1 where γ is the kinetic rate constant, and during this time the fluid

elements have moved a distance (called the equilibration length)

lE ¼ �v=γ:

Near the boundary, the incoming fluid is far from saturation and the rate of

dissolution of the matrix (or generation of reactant) is greater, but it decreases with

distance from the interface as the interstitial fluid approaches saturation. An order-

of-magnitude estimate of the time needed to develop a separate front is given by

considering the amount of water it takes to flush the products of reaction from the

slice of the matrix adjacent to the boundary with thickness lE and unit cross-

sectional area. If 2s0 is the number of moles of calcite per unit volume initially in

the solid medium, then the number per unit area in the slice is

2s0lE 	 2s0�v=γ:

Half of the calcium has to be removed from the reaction site in the form of

aqueous Ca with concentration (number of moles of Ca per unit mass of water) c0.
This requires a volume V per unit cross-sectional area such that c0V¼ s0lE, so that

V¼ (s0/c0)lE, which is very much greater than the equilibration length. Since the

transport velocity is ϕ �vwhere ϕ is the porosity, the requisite volume V of water per

unit cross-sectional area is supplied in time T such that c0V¼ s0lE. Consequently,
the time needed for a front to form is

T 
 V

ϕ�v
¼ s0

c0

lE
ϕ�v


 s0
ϕγc0

:

This is independent of the mean interstitial fluid velocity since the equilibration

length is proportional to �v. Now s0 is the number of moles of the solid reactant,

calcite, per unit volume, and c0 is the number of moles in aqueous solution, smaller

by a factor of order 10�5–10�6. Thus s0/c0 
 10�5–10�6 , the porosity ϕ 
 0.2–0.3
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and the reaction rate γ 
 1 year�1 with much scatter. The time for the formation of a

reaction front is then estimated to be about 105–106 year, a huge multiple of the time

that it takes for the fluid element to travel a distance equal to the equilibration

length.

The morphological evolution of a three-dimensional chemical dissolution front

was simulated numerically by Zhao et al. (2008a, b, c, d). The stability of reaction

fronts was studied by Allali et al. (2007), Allali and Belhaq (2013a, b) (gravitational

modulation), Aatif et al. (2010) (vibration), Andres and Cardoso (2012) (nonlinear

dynamics), Almarcha et al. (2013) (exothermic acid–base reaction), Wangen (2012,

2013) and Nekhamkina and Sheintuch (2014) (experimental and numerical inves-

tigation of spinning patterns).

11.12.2 Gradient Reactions

The equilibrium concentration of a solute is generally a function of temperature and

(to some extent) total pressure, and this means that if the temperature and total

pressure vary spatially in a region then so does the local concentration of dissolved

species. Even if there is local equilibrium if the fluid is at rest, when interstitial

fluids move through the matrix the fluid elements find themselves in regions of

different temperature and pressure, and for the fluid to move toward s a new local

equilibrium with the matrix, reactions must occur between the fluid and the

surrounding matrix. In general, the concentration of solute in each fluid element

must change at a rate proportional to (1) the interstitial fluid velocity, (2) the

variation of equilibrium concentration with temperature (for example), and

(3) the spatial temperature gradient along the flow path. This is called the gradient

reaction scenario, identified by Wood and Hewett (1982). It has a number of

characteristics that distinguish it from the passage of a reaction front in a porous

medium. Reaction occurs throughout the region simultaneously, but more rapidly

along cracks or fractures that provide effective flow paths across isotherms. Gradi-

ent reactions can be expected particularly in geothermal regions where the temper-

ature field may provide both the buoyancy distribution that drives the flow and the

spatial temperature gradient that alters the equilibrium concentration along flow

paths. Reactions proceed more slowly in relatively less permeable inclusions where

the interstitial flow is reduced. A consequence is that a gradient reaction may slowly

modify the mineral composition in a region. For example, in a closed circulating

flow the processes of dissolution in some regions and deposition in others can

redistribute minerals spatially along the flow paths.
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11.12.3 Mixing Zones

Alterations in mineral composition or precipitation or dissolution can also occur by

the mixing of different interstitial waters, though in a porous medium this is a

slower process than in a fluid clear of solid material. The usual sequence of

turbulent eddy sizes is inhibited.in a classical permeable medium, but fractures

can provide pathways for rapid flow and local mixing. Simple mixing of water types

inside a permeable region occurs predominantly in a few particular flow situations,

such as freshwater–saltwater interfaces. When the equilibrium concentrations of a

solute are different in fresh and saline waters, their mixture may produce dissolu-

tion or deposition.
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Heat Transfer (eds. S. Kakaç, R. K. Shah, and W. Aung), Chapter 16, Wiley, New York. [6.20,

7.3.3, 7.3.4, 7.3.5]

662 References



Bejan, A. 1989 Theory of melting with natural convection in an enclosed porous medium. ASME
J. Heat Transfer 111, 407–415. [10.1.3, 10.1.5]

Bejan, A. 1990a Theory of heat transfer from a surface covered with hair. ASME J. Heat Transfer
112, 662–667. [4.14]

Bejan, A. 1990b Optimum hair strand diameter for minimum free-convection heat transfer from a

surface covered with hair. Int. J. Heat Mass Transfer 33, 206–209. [5.13]
Bejan, A. 1992a Comments on “Coupled heat and mass transfer by natural convection from

vertical surfaces in porous media.” Int. J. Heat Mass Transfer 35, 3498. [9.2.1]
Bejan, A. 1992b Surfaces covered with hair: optimal strand diameter and optimal porosity for

minimum heat transfer. Biomimetics 1, 23–38. [4.14]
Bejan, A. 1993 Heat Transfer, 2nd ed., Wiley, New York. [4.4, 4.15]

Bejan, A. 1995 The optimal spacing for cylinders in cross flow forced convection. J. Heat Transfer
117, 767–770. [4.15]

Bejan, A. 1996a Entropy Generation Minimization, CRC Press, Boca Raton, FL. [4.15]

Bejan, A. 1996b Street network theory of organization in nature. J. Adv. Transportation 30,
85–107. [4.18]

Bejan, A. 1997a Constructal-theory network of conducting paths for cooling a heat generating

volume. Int. J. Heat Mass Transfer 40, 799–816. [4.18]
Bejan, A. 1997b Constructal tree network for fluid flow between a finite-size volume and one

source or sink. Rev. Gén. Thermique 36, 592–604. [4.18]
Bejan, A. 1997c Advanced Engineering Thermodynamics, 3rd ed., Wiley, New York. [4.19, 6.26]

Bejan, A. 2000 Shape and Structure, from Engineering to Nature, Cambridge University Press,

Cambridge, UK. [1.5.2, 4.18, 6.2, 6.26, 11.10]

Bejan, A. 2004a Convection Heat Transfer, 3rd ed., Wiley, New York. [1.5.2, 2.1, 4.17, 4.18, 4.20]

Bejan, A. 2004b Designed porous media: maximal heat transfer density at decreasing length

scales. Int. J. Heat Mass Transfer 47, 3073–3083. [4.15]
Bejan, A. 2012 Convection Heat Transfer, 4th ed. Wiley, Hoboken. [6.26.3]

Bejan, A. 2014 ‘Entransy’ and its lack of content in physics. ASME J. Heat Transfer 136, 055501.
[4.10]

Bejan, A. 2015 Constructal law: Optimization as design evolution. ASME J. Heat Transfer 137,
061003. [4.18.5]

Bejan, A. 2016 The Physics of Life: The Evolution of Everything. St Martin’s Press. [4.18.5]
Bejan, A. and Anderson, R. 1981 Heat transfer across a vertical impermeable partition imbedded

in a porous medium. Int. J. Heat Mass Transfer 24, 1237–1245. [5.1.5, 7.3.1]
Bejan, A. and Anderson, R. 1983 Natural convection at the interface between a vertical porous

layer and an open space. ASME J. Heat Transfer 105, 124–129. [5.1.5]
Bejan, A. and Fautrelle, Y. 2003 Constructal multi-scale structure for maximal heat transfer

density. Acta Mech. 163, 39–49. [4.19]
Bejan, A. and Khair, K. R. 1985 Heat and mass transfer by natural convection in a porous medium.

Int. J. Heat Mass Transfer 28, 909–918. [9.2.1]
Bejan, A. and Lage, J. L. 1991 Heat transfer from a surface covered with hair. Convective Heat and
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Luna, E., Medina, A., Pérez-Rosales, C. and Trevi~no, C. 2004 Convection and dispersion in a

naturally fractured reservoir. J. Porous Media 7, 303–316. [7.8]
Luna, N. and Mendez, F. 2005 Forced convection on a heated horizontal flat plate with finite

thermal conductivity in a non-Darcian porous medium. Int. J. Thermal Sci. 44, 656–664. [4.8]
Luna, N. and Mendez, F. 2005 Forced convection on a heated horizontal flat plate with finite

thermal conductivity in a non-Darcian porous medium. Int. J. Thermal Sci. 44, 556–664. [4.8]
Lundgren, T. S. 1972 Slow flow through stationary random beds and suspensions of spheres.

J. Fluid Mech. 51, 273–299. [1.5.3]
Ly, H. V. and Titi, E. S. 1999 Global Gevrey regularity for the Bénard convection in a porous

medium with zero Darcy-Prandtl number. J. Nonlinear Sci. 9, 333–362. [6.15.1]
Lyubimov, D. V. 1975 Convective motions in a porous medium heated from below. J. Appl. Mech.

Tech. Phys. 16, 257–261. [6.16.2]

References 807



Lyubimov, D. V. 1993 Dynamical properties of thermal convection in porous medium. In

Instabilities in Multiphase Flows (G. Gouesbet and A. Berlement, eds.) Plenum, New York,

289–295. [7.3.3]

Lyubimov, D. V., Lyubimova, T. P., Mojtabi, A. and Sadilov, E. S. 2008a Thermosolutal

convection in a horizontal porous layer heated from below in the presence of horizontal

through flow. Phys. Fluids 20, #044109. [9.1.6.4]
Lyubimov, D. V., Lyubimova, T. P., Muratov, I. D. and Shishkina, E. A. 2008b Vibration effect on

convection onset in a system consisting of a horizontal pure liquid layer and a layer of liquid-

saturated porous medium. Fluid Dynamics 43, 789–798. [9.1.6.4]
Lyubimov, D., Gavrilov, K. and Lyubimova, T. 2011 Soret-driven convection in a porous cavity

with perfectly conducting boundaries. C. R. Mecanique 339, 297–302. [9.1.4]
Lyubimov, D., Kolchanova, E. and Lyubimova, T. 2015 Vibration effect on the nonlinear regimes

of thermal convection in a two-layer system of fluid and saturated porous medium. Transp.
Porous Media 106, 237–257. [6.24]

Ma, B. S., Wang, G. and Guo, Y. L. 2014 Numerical study of natural convection in a porous cavity

with partially heated wall. J. Engng. Thermophys. 35, 346–349. [7.2]
Ma, H. and Ruth, D. W. 1993 The microscopic analysis of high Forchheimer number flow in

porous media. Transport Porous Media 13, 139–160. [1.5.2]
Ma, J. and Wang, B. X. 1999 Natural convection and its fractal for liquid freezing in a vertical

cavity filled with porous medium. Heat Transfer Asian Res. 28, 165–171. [10.2.1.2]
Ma, W. P., Tzeng, S. C. and Jwo, W. J. 2006 Flow resistance and forced convective heat transfer

effects for various flow orientations in a packed channel. Int. Comm. Heat Mass Transfer 33,
319–326. [4.5]

Ma, X. and Zabaras, N. 2008 A stabilized stochastic finite-element second-order projection

method for modeling natural convection in random porous media. J. Comput. Phys. 227,
8448–8471. [2.7]

Ma, X. H. and Wang, B. X. 1998 Suction effect of a vertical coated plain porous layer on film

condensation heat transfer enhancement. Heat Transfer 1998, Proc. 11th IHTC 5, 387–391.
[10.4]

Ma, Z., Duan, L., Yao, S. and Jia, X. 2015 Numerical study of natural convection heat transfer in

porous media square cavity with multiple cold walls based on LBM Int. J. Heat Tech. 33,
69–76. [7.1.7]

Mabood, F. and Ibrahim, S. M. 2016 Effects of Soret and non-uniform heat source on MHD non-

Darcian convective flow over a stretching sheet in a dissipative micropolar fluid with radiation.

J. Appl. Fluid Mech. 9, 2503–2513. [9.2.1]
Mabood, F. and Khan, W. A. 2014a Approximate analytical solutions for influence of heat transfer

on MHD stagnation point flow in porous medium. Comput. Fluids 100, 72–78. [5.1.9.10]
Mabood, F. and Khan, W. A. 2014b Homotopy analysis method for boundary layer flow and heat

transfer over a permeable flat plate in a Darcian porous medium with radiation effects.

J. Taiwan Inst. Chem. Engrs. 45, 1217–1224. [5.1.9.11]
Mabood, F., Ibrahim, S. M., Rashidi, M. M., Shadloo, M. S. and Lorenzini, G. 2016a Non-uniform

heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet

in a micropolar fluid with radiation. Int. J. Heat Mass Transfer 93, 674–682. [9.2.1]
Mabood, F., Khan, W. A. and Ismail, A. I. M. 2014 Analytic modelling of free convection of

non-Newtonian nanofluids flow in porous media with gyrotactic microorganisms using

OHAM. AIP Conf. Proc. 1635, 131–137. [9.7.3]
Mabood, F., Khan, W. A. and Ismail, A. I. M. 2015 Analytical investigation for free convective

flow of non-Newtonian nanofluids flow in porous media with gyrotactic microorganisms.

J. Porous Media 18, 653–663. [9.7.3]
Mabood, F., Shateyi, S., Rashidi, M. M., Moniat, E. and Freidoonmehr, N. 2016b MHD stagnation

point flow and heat transfer of nanofluids in porous media with radiation, viscous dissipation

and chemical reaction. Adv. Powder Tech. 27, 742–749. [9.7.3]
Macdonald, I. F., El-Sayed, M. S., Mow, K. and Dullien, F. A. L. 1979 Flow through porous

media: The Ergun equation revisited. Ind. Chem. Fundam. 18, 199–208. [1.5.2]

808 References



MacDonald, M. J., Chu, C. F., Guillot, P. P. and Ng, K. M. 1991 A generalized Blake-Kozeny

equation for multisized spherical particles. AIChE J. 37, 1583–1588. [1.4.2]
Macedo, H. H., Costa, U. M. S. and Almeido, M. P. 2001 Turbulent effects on fluid flow through

disordered porous media. Physica A 299, 371–377. [1.8]
Mackie, C. 2000 Thermal convection in a sparsely packed porous layer saturated with suspended

particles. Int. Comm. Heat Mass Transfer 27, 315–324. [6.23]
Mackie, C., Desai, P. and Myers, C. 1999 Rayleigh-Bénard stability of a solidifying porous

medium. Int. J. Heat Mass Transfer 42, 3337–3350. [10.2.2]
MacMinn, C. W., Neufeld, J. A., Hesse, M. A. and Huppert, H. E. 2012 Spreading and convective

dissolution of carbon dioxide in vertically confined, horizontal aquifers.Water Resources Res.
48, W11516. [11.11]

Madani, B., Tobin, F., Rigollet, F. and Tadrist, L. 2007 Flow laws in metallic foams: Experimental

determination of inertial and viscous contributions. J. Porous Media 10, 51–70. [1.5.3]
Madhava Reddy, C., Iyengar, T. K. V. and Krishna Gandhi, B. 2016 The effects of cross-diffusion

and stratification in the Brinkman porous medium in unsteady natural convection currents on

past started vertical plate. Global J. Pure Appl. Math. 12, 449–456. [9.2.1]
Maerefat, M., Mahmoudi, S. Y. and Mazaheri, K. 2011 Numerical simulation of forced convection

enhancement in a pipe by porous inserts. Heat Transfer Engng. 32, 45–56. [4.11]
Maghrebi, M. J., Nazari, M. and Armaghansi, T. 2012 Forced convection heat transfer of

nanofluids in a porous channel. Transp. Porous Media 93, 401–413. [4.16.5]
Magomedbekov, Kh. G. 1997 Free convection flow of binary mixture in thin porous ring. Fluid

Dyn. 32, 841–849. [9.4]
Magomedbekov, Kh. G. and Ramazanov, M. M. 1994 Hydrothermal convection in a thin porous

ring. Fluid Dyn. 29, 740–744. [7.3.3]
Magomedbekov, Kh. G. and Ramazanov, M. M. 1996 Linear analysis of convective instability of

fluid in horizontal annular cavity occupied by a porous medium. Fluid Dyn. 31, 350–355.
[7.3.3]

Magyari, E. 2006 Paradox of the Darcy free convection over vertical plate with prescribed inverse

linear surface heat flux. J. Porous Media 9, 663–670. [5.1.9.8]
Magyari, E. 2011b Comment on “A novel analytical solution of mixed convection about an

inclined flat plate embedded in a porous medium using the DTM-Pade” by M. M. Rashidi,

N. Laraqi and S. M. Sadri, Int. J. Thermal Sciences 49 (2010) 2406–2412. Int. J. Therm. Sci. 50,
1339–1342. [8.1.1]

Magyari, E. 2012 Spontaneous breakdown of the definiteness in some convective heat transfer

problems. Transp. Porous Media 92, 527–539. [8.1.1]
Magyari, E. 2013a A new insight into the convective boundary condition. Transp. Porous Media

99, 55–71. [8.1.1]
Magyari, E. 2013b Forced convection heat transfer from a heated cylinder in an axial background

flow in a porous medium: Three exactly soluble cases. Transp. Porous Media 96, 483–493.
[4.3]

Magyari, E. 2013c Normal mode analysis of the high speed channel flow in a bidisperse porous

medium. Transp. Porous Media 97, 345–352. [4.16.4]
Magyari, E. 2013d Porous channel flows with spontaneous broken symmetry. Transp. Porous

Media 100, 441–458. [8.3.1]
Magyari, E. 2009a Comment on “Combined forced and free convective flow in a vertical porous

channel: The effects of viscous dissipation and pressure work” by A. Barletta and D. A. Nield,

Transport in Porous Media. DOI 10.10075/11242-008-9320-y. 2009. Transp. Porous Media
80, 389–395. [8.3.2]

Magyari, E. 2009b Further comments on “Combined forced and free convective flow in a vertical

porous channel: The effects of viscous dissipation and pressure work”. Transp. Porous Media
80, 399–400. [8.3.2]

Magyari, E. 2010a Consequences of the transition invariance on the Darcy free convection flow

past a vertical surface. Transp. Porous Media 85, 757–769. [5.1.9.12]
Magyari, E. 2010b The “butterfly effect” in a porous slab. Transp. Porous Media 84, 711–715.

[6.4]

References 809



Magyari, E. 2010c The Vadasz-Olek model regarded as a system of coupled oscillators. Transp.
Porous Media 85, 415–435. [6.4]

Magyari, E. 2011a Note on the “Scaling transformations for boundary layer flow near the

stagnation point on a heated permeable stretching surface in a porous medium saturated with

a nanofluid and heat generation/absorption effects.” Transp. Porous Media 87, 41–48. [5.1.9.9]
Magyari, E. 2011b Erratum. A novel analytical solution of mixed convection about an inclined flat

plate embedded in a porous medium using the DTM-Padé by M. M.Rashidi, N Laraqi, and
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Martı́nez-Suástegui, L., Trevino, C. and Méndez, F. 2003 Natural convection in a vertical strip

immersed in a porous medium. Europ. J. Mech. B/ Fluids 22, 5454–553. [7.1.5]
Martins-Costa, M. L. 1996 A local model for a packed-bed heat exchanger with a multiphase

matrix. Int. Comm. Heat Mass Transfer 23, 1133–1142. [2.7]
Martins-Costa, M. L. and Saldanha da Gama, R.M. 1994 Local model for the heat transfer process

in two distinct flow regions. Int. J. Heat Fluid Flow 15, 477–485. [2.7]

Martins-Costa, M. L., Sampaio, R. and Saldanha da Gama, R.M. 1992 Modelling and simulation

of energy transfer in a saturated flow through a porous medium. Appl. Math. Model. 16, 589–
597. [2.7]

Martins-Costa, M. L., Sampaio, R. and Saldanha da Gama, R.M. 1994 Modeling and simulation of

natural convection flow in a saturated porous cavity. Meccanica 29, 1–13. [2.7]

References 821



Martys, N., Bentz, D. P. and Garboczi, E. J. 1994 Computer simulation study of the effective

viscosity in Brinkman equation. Phys. Fluids 6, 1434–1439. [1.5.3]
Marusic-Paloka, E. Pazanin, I. and Marusic, S. 2012 Comparison between Darcy and Brinkman

laws in a fracture. Appl. Math. Comput. 218, 7538–7545. [1.5.3]
Marvel, R. L. and Lai, F. C. 2010a Homogeneous anisotropic model for natural convection in

nonuniform layered porous cavities. J. Thermophys. Heat Transfer 24, 331–339. [7.3.2]
Marvel, R. L. and Lai, F. C. 2010b Natural convection from a porous cavity with sublayers of

nonuniform thickness: A lumped parameter analysis. ASME J. Heat Transfer 132, #032602.
[7.3.2]

Marys, N. S. 2001 Improved approximation of the Brinkman equation using a lattice Boltzmann

method. Phys. Fluids 13, 1807–1810. [1.5.3]
Maryshev, B. S. 2015 The effect of sorption on linear stability for the solutal Horton-Rogers-

Lapwood problem. Transp. Porous Media 109, 747–764. [6.15.3]

Maryshev, B. S. 2017 The linear stability of vertical mixture seepage into the close porous filter

with clogging. Fluid Dyn. Res. 49, 105501. [6.15.3]
Maryshev, B., Lyubimova, T. and Lyubimov, D. 2013 Two-dimensional thermal convection in

porous enclosure subjected to the horizontal seepage and gravity modulation. Phys. Fluids
25, 084105. [7.3.9]

Maryshev, B., Lyubimova, T. and Lyubimov, D. 2016a The effect of solute immobilization on the

stability of a diffusion front in porous media under gravity field. Transp. Porous Media
111, 239–251. [6.15.3]

Maryshev, B. S., Lyubimova, T. P. and Lyubimov, D. V. 2016b Stability of homogeneous seepage

of a liquid mixture through a closed region of the saturated porous medium in the presence of

the solute immobilization. Int. J. Heat Mass Transfer 102, 113–121. [6.15.3]
Masamoto, H. and Honda, S. 1992 Anisotropic modelings of the hydrothermal convection in

layered porous media. J. Phys. Earth 40, 555–564. [6.13.2]

Mashaei, P. R., and Hossainalipour, S. M. 2014 A numerical study of nanofluid forced convection

in a porous channel with discrete heat sources J. Porous Media 17, 548–561. [9.7.1]

Mashaei, P. R., Shahryari, M. and Madani, S. 2016 Numerical hydrothermal analysis of water-Al2
O3 nanofluid forced convection in a narrow annulus filled by porous medium considering

variable properties: Application to cylindrical heat pipes. J. Thermal Anal. Calor. 126,
891–904. [9.7.1]

Masoud, S. A., Al-Nimr, M. A. and Alkam, M. K. 2000 Transient film condensation on a vertical

plate imbedded in porous medium. Transport Porous Media 40, 345–354. [10.4]

Massarotti, N., Ciccolella, M., Cortellessa, G. and Mauro, A. 2016 New benchmark solutions for

transient natural convection in partially porous annuli. Int, J. Numer. Meth. Heat Fluid Flow
26, 1187–1225. [7.7]

Massarotti, N., Nithiarasu, P. and Zienkiewicz, O. C. 2001 Natural convection in porous medium-

fluid interface problems – A finite element analysis by using the CBS procedure. Int. J. Numer.
Meth. Heat Fluid Flow 11, 473–490. [6.19.1]

Massmann, G., Simmons, C., Love, A., Ward, J. and James-Smith, J. 2006 On the variable density

surface water-groundwater interaction: a theoretical analysis of mixed convection in a stably-

stratified fresh surface water saline groundwater discharge zone. J. Hydrol. 329, 390–402.
[11.8]

Mastroberardino, A. and Mahableshwar, U. S. 2013 Mixed convection in viscoelastic flow due to a

stretching sheet in a porous medium. J. Porous Media 16, 483–500. [8.1.1]

Masuda, Y., Kimura, S. and Hayashi, K. 1991a Natural convection heat transfer in a porous matrix

with significant fluid property changes. Trans. Japan Soc. Mech. Engnrs. B. 57, 2065–2069.
[6.7]

Masuda, Y., Kimura, S. and Hayashi, K. 1991b Natural convection heat transfer in an anisotropic

porous matrix heated from below. Trans. Japan Soc. Mech. Engnrs. B. 57, 4203–4208. [6.12]
Masuda, Y., Kimura, S. and Hayashi, K. 1992 Natural-convection heat transfer in a porous matrix

with significant fluid property changes. Heat Transfer Japanese Res. 21, 305–316. [7.3.2]

822 References



Masuda, Y., Kimura, S. and Hayashi, K. 1994 Three-dimensional numerical analysis of natural

convection in a saturated porous matrix (stability of convection patterns). Trans. Japan Soc.
Mech. Engnrs. B. 60, 960–964. [6.15.3]

Masuda, Y., Yoneda, M., Ikeshoji, T., Kimura, S., Alavyoon, F., Tsukada, T. and Hozawa,

M. 2002 Oscillatory double-diffusive convection in a porous enclosure due to opposing heat

and mass fluxes on the vertical walls. Int. J. Heat Mass Transfer 45, 1365–1369. [9.1.6.4]
Masuda, Y., Yoneda, M., Sumi, S., Kimura, S. and Alavyoon, F. 1999 Double-diffusive natural

convection in a porous medium under constant heat and mass fluxes. Heat Transfer Asian Res.
28, 255–265. [9.1.6.4]

Masuda, Y., Yoneya, M, Suzuki, A. and Alavyoon, F. 2008 Numerical analysis of double-diffusive

convection in a porous enclosure due to opposing heat and mass fluxes on the vertical walls.

Why does peculiar oscillation occur? Int. J. Heat Mass Transfer 51, 383–388. [9.2.2]
Masuda, Y., Yoneya, M, Suzuki, A., Kimura, S. and Alavyoon, F. 2010 Numerical analysis of

re-oscillation and non-centrosymmetric convection in a porous enclosure due to opposing heat

and mass fluxes on the vertical walls. Int. Comm. Heat Mass Transfer 37, 250–255. [9.2.2]
Masuda, Y., Yoneya, M. and Kimura, S. 2013 Multiple solutions of double-diffusive convection in

porous media due to opposing heat and mass fluxes on vertical walls. J. Therm. Sci. Tech.
8, 533–542. [9.2.2]

Masuda, Y., Yoneya, M., Sumi, S. I., Kimura, S. and Alavyoon, F. 1997 Double-diffusive natural

convection in a porous medium under constant heat mass fluxes. Trans. Japan Soc. Mech.
Engnrs. B. 63, 1734–1740. [9.2.2]

Masuoka, T. 1986 Natural convection in stratified porous media heated from the side.(In Japanese)

Trans. ASME B 52, 866–869. [7.3.2]

Masuoka, T. and Takatsu, Y. 1996 Turbulence model for flow through porous media. Int. J. Heat
Mass Transfer 39, 2803–2809. [1.8]

Masuoka, T. and Takatsu, Y. 2002 Turbulence characteristics in porous media. In Transport
Phenomena in Porous Media II (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford,

pp. 231–256. [1.8]

Masuoka, T., Kakimoto, Y., Nomura, A. and Ooba, M. 2004 Fluid flow through a permeable

porous obstacle. In Applications of Porous Media (ICAPM 2004), (eds. A. H. Reis and A. F.
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