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�Introduction

Continuous EEG (cEEG) monitoring has become increas-
ingly utilized as high rates of nonconvulsive seizures (NCS) 
and nonconvulsive status epilepticus (NCSE) in ICU patients 
have become widely recognized. Diagnosis of NCS and 
NCSE requires continuous EEG monitoring [1–3]. Timely 
seizure recognition is important as it may lead to acute 
changes in therapy aimed at suppressing seizures and cor-
recting potential precipitating factors [4, 5].

As continuous EEG monitoring has become more prev-
alent, the time-consuming review necessary by neuro-
physiology experts trained in evaluating these records has 
become taxing and in many cases difficult to maintain. 
Although demand for continuous EEG (cEEG) monitor-
ing has increased dramatically, the number of EEG read-
ers has remained stable [6]. Many facilities that could 
benefit from the availability of cEEG may not have skilled 
EEG interpreters to provide ongoing interpretation of 
cEEG in the ICU. Even when skilled EEG reviewers are 
available, if multiple patients simultaneously undergo 
prolonged cEEG monitoring, interpretation and commu-
nication of findings becomes fragmented, the problem of 
“continuous monitoring and intermittent care” and 
delayed intervention [7].

Routine evaluation of EEG consists of visual inspection 
of the data with an average review time of 20–30 min per 
24-h study, with more detailed analysis taking more time 
[7]. Visual analysis of the raw EEG record may miss grad-
ual trends in EEG that evolve over long periods of time [8]. 
To address these challenges, different quantitative methods 
to evaluate cEEG data have emerged. Advantages, hoped 
for, of quantitative EEG (qEEG) techniques include the 
ability to quantify information within the EEG signal, to 
compress the time scale and shorten the review time, to 
quickly identify events/periods of interest for closer analy-
sis, and to make real-time monitoring more feasible. The 
main impetus for developing qEEG methods in ICU EEG 
has been to assist with rapidly identifying rare/occasional 
seizures in prolonged recordings without the need for 
exhaustive visual screening of each 10-s display window of 
raw EEG [9].

In summary, qEEG has the potential to improve efficiency 
of interpretation and communication in intensive medical 
care [10, 11]. However, qEEG remains a relatively new fam-
ily of technologies, many of which are still in early stages of 
development, validation, and adoption. In this chapter we 
first provide a brief survey of qEEG methods that are in clini-
cal use. We then provide a detailed treatment of one of the 
oldest and most clinically useful qEEG methods, “com-
pressed spectral arrays” or spectrograms.

�Overview of Quantitative EEG Methods

�Amplitude-Based Methods

Amplitude-integrated EEG (aEEG) is a simplified bedside 
continuous EEG monitoring technology that has become 
widely used in the neonatal population over the past two 
decades to monitor for seizures and to assist with prognosti-
cation in neonates with hypoxic-ischemic encephalopathy 
[12]. aEEG is typically based on a limited number of 
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recording channels, the data from which is filtered, rectified, 
and displayed on a semilogarithmic time- and amplitude-
compressed scale [7]. Processed in this way, seizures are 
often evident as sudden increases and then decreases in EEG 
amplitude [13].

Envelope trend-based qEEG displays the median ampli-
tude of all background activity over a specified time interval. 
Seizures can often be identified by an increase in median 
amplitude [9]. One study found that envelope trend analysis 
could accurately identify seizures lasting >1 min by experi-
enced users with 88% sensitivity and few false positives [14].

Spectrograms
Various informative EEG displays may be created from 

the power spectrum as a function of time, also known as the 
compressed spectral array (CSA)) or spectrogram. By show-

ing relatively large stretches of data in a compressed format 
while making changes in background activity salient, spec-
trograms can be used to expedite EEG review (Fig. 4.1) [10]. 
The spectrogram is sometimes referred to as the “FFT of the 
EEG,” though this is a misnomer, as explained in the section 
on the theory of spectrograms.

�Displays Derived from Spectrograms

Asymmetry trends use comparisons in power between 
homologous electrodes in the right and left hemispheres to 
highlight power asymmetries between the hemispheres. The 
comparison can be made based on absolute or relative power. 
This may be helpful to identify lateralized or focal seizures. 

Fig. 4.1  An example compressed spectral array (CSA). Panels, top to 
bottom: left parietal average signal, left temporal average signal, right 
temporal average signal, right parietal average signal, relative asym-
metry index. Inset: region CSA corresponding to the onset of a seizure 

as shown in the native EEG segment. This CSA is an example of regu-
lar flame pattern of seizures. Please see Sect. 5 and Table 4.1 for further 
details
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Asymmetry spectrograms are shown in subsequent sections 
as the fifth panel in the case examples discussed in section 
“Case Vignettes with Example Spectrogram Patterns”. In our 
case examples, red represents greater power in the right 
hemisphere and blue represents greater power in the left 
hemisphere (though in other systems, this color scheme may 
be reversed).

�Methods for Monitoring Burst Suppression

Monitoring burst suppression in ICU patients is another 
area in which qEEG can be informative. Pharmacologically 
induced burst suppression is often used in the treatment of 
refractory status epilepticus. In these cases EEG monitor-
ing is important to ensure that medications can be appropri-
ately titrated in real time to ensure appropriate levels of 
burst suppression while avoiding over- and under-dosing. It 
is also helpful to have such monitoring capabilities in 
patients with pathologically generated burst suppression 
patterns, such as after severe hypoxic-ischemic injury, to 
assess for trends in this background pattern for 
prognostication.

Burst suppression can be quantified using the burst sup-
pression ratio (BSR), defined as the percentage of time 
within an epoch spent in suppression [15], or as the burst 
suppression probability (BSP), defined as the instantaneous 
probability that the EEG is in the suppressed state [15, 16]. 
Under steady-state conditions, the BSR and BSP agree 
closely. However, the BSP algorithm is better suited for 
tracking the depth of burst suppression under dynamic con-
ditions. An example of tracking the BSP in a patient with 
status epilepticus is shown in Fig. 4.2.

�Automated Seizure Detection

One of the ultimate goals of qEEG is to offer the potential for 
automated detection of clinically significant events such as 
seizures and ischemia. Ictal patterns are highly variable and 
thus make the development of such detectors difficult. 
Features that have been used to develop seizure detectors 
include amplitude, frequency, rhythmicity, and degree of 
asymmetry [9]. Most of these algorithms have been designed 
for identification of classic seizure patterns in the setting of 
the epilepsy monitoring unit. However, seizures in ICU 
patients typically have different characteristics than those of 
the EMU population and thus are not as reliably detected 
with standard seizure detection algorithms [9]. Pitfalls in 
qEEG analysis include the high degree of false-positive 
detections due to common ICU artifacts in addition to false 
negatives from very brief, low amplitude of slowly evolving 
seizures. Because seizures occurring in critically ill patients 
frequently exhibit patterns of rhythmicity and evolution that 
are slower than those seen in epileptic patients, existing 
detection programs may be relatively insensitive to certain 
types of ICU ictal patterns [8]. Another challenge is that 
many ICU seizures tend to wax and wane with subtle onset 
and termination rather than the abrupt ictal onset and cessa-
tion patterns of seizures typically seen in the EMU.

�Automated Detection of Other  
Epileptiform Patterns

Recently one group has developed software, called 
NeuroTrend, that attempts to detect patterns in the long-term 
scalp EEGs in the ICU using the standardized EEG 

Fig. 4.2  Burst suppression 
probability (BSP)). (a) EEG 
signal compressed over 
75 min. (b) Ticker plot 
representing each burst. (c) 
BSP increases over time as 
the periods of suppression 
become more frequent as the 
recording progresses
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terminology [17]. Persyst Corp. has also recently developed 
an algorithm for identifying periodic discharges, available in 
version P13 of its software. Details from the algorithms from 
both NeuroTrend and Persyst Corp. are unpublished and pro-
prietary. Rigorous external validation studies remain to be 
performed.

�Fundamentals of Spectrograms

�Motivation for Spectral Analysis

It is often natural to describe oscillatory signals like the EEG 
in the frequency domain. Indeed, this is reflected in the con-
vention of describing clinical EEG recordings in terms of 
activity within frequency bands (e.g., delta, theta, alpha, and 
beta). In this section we briefly review key concepts from the 
mathematical analysis of frequency domain or spectral char-
acteristics of signals. This overview will help the reader to 
better understand common features of spectrograms encoun-
tered in the ICU setting, reviewed in section “Interpretation 
of Spectrograms.”

�Spectral Decomposition: Fourier Transforms 
and the “FFT”

The basic problem of spectral estimation theory is: given a 
finite segment of a signal, estimate how the total power in 
the signal is distributed over a range of frequencies. The 
emphasis on estimation is because the EEG, like many other 
biological signals, is best regarded as composed of signal 
and noise. The noise must be suppressed in some way to 
obtain a clear view of the underlying spectral EEG character-
istics that are of interest.

Before one can understand how to analyze stochastic sig-
nals like the EEG, one first needs to understand the princi-
ples underlying the more basic theory of spectral 
decomposition, which we will review now. Figure 4.3 shows 
the decomposition of a fairly complex 9-s long single-
channel EEG signal into a series of sinusoids of varying 
phases and amplitudes. The black curve in Fig. 4.3a shows 
the original signal, consisting initially of a low-amplitude 
“baseline” period and an epileptiform discharge around t = 4 
s, followed by a larger amplitude oscillating pattern at 
approximately 2 Hz that decays in amplitude while slowing 
in frequency to approximately 1 Hz by the end of the figure 
window.

The overlaid red curve is an approximation to the black 
curve, obtained by adding together a series of 50 sine and 
cosine waves or “components,” with frequencies ranging 
from 0 to 35 Hz spaced evenly at intervals of approximately 
0.7 Hz. The nine components which make the largest contri-

bution to the approximation, i.e., the components with the 
largest amplitudes, sorted by frequency, are displayed in 
Fig. 4.3b.

For the most part, the sum of these sinusoidal components 
faithfully represents the original black signal. Careful scru-
tiny reveals that the approximation succeeds by a delicate 
series of constructive and destructive interferences of peaks 
and troughs. This remarkable balancing act is accomplished 
automatically by a mathematical formula known as the dis-
crete Fourier series. In the examples shown in Figs. 4.3 and 
4.4, the formula used is called the discrete Fourier transform, 
or DFT.

The amplitude spectrum for a signal is obtained by taking 
the geometric mean of the amplitudes of the sine-cosine pair 
for each frequency and plotting these amplitudes as a func-
tion of frequency, as shown in Fig. 4.3c.

For the most part, the red approximation or “reconstruc-
tion” is faithful to the original black signal. However, in 
places, the reconstruction is not accurate. These failures are 
instructive. Note particularly the epileptiform discharge or 
“spike” that occurs at approximately t = 4 s. Here, the recon-
struction is smoother than the original signal. It fails to 
reproduce the abrupt rise in voltage and subsequent abrupt 
decrease that constitute the spike. This is because in this 
reconstruction we deliberately excluded sinusoids above 
35  Hz from the reconstruction. The true bandwidth of the 
signal is evidently greater than 35 Hz. That is, higher fre-
quency components are required in the Fourier sum to cap-
ture the more abrupt transitions or “sharper turns” that make 
up an epileptiform discharge. In this case, had we included 
components for all frequencies up to the Nyquist sampling 
rate (in this case, approximately 100 Hz), the reconstruction 
would have been essentially perfect.

�Signal Sharpening Manifests as Amplitude 
Spectrum Broadening

We further illustrate the important relationship between 
“sharpness” and the presence of higher frequency compo-
nents in the amplitude spectrum in Fig. 4.4. In Fig. 4.4a, we 
show a bell-shaped curve, reminiscent of an EEG “slow 
wave,” together with the components in a frequency decom-
position and the corresponding amplitude spectrum. As in 
the previous figure, there is an underlying black curve and an 
overlaid red curve which approximates the black curve as a 
sum of sinusoids with amplitudes calculated by the formula 
for the DFT. We see that, for a waveform with a blunted or 
non-sharp morphology, the amplitude spectrum is relatively 
narrow. By contrast, Fig.  4.4b shows a narrow, spikelike, 
bell-shaped curve, reminiscent of an epileptiform discharge. 
We see that a broader range of sinusoids extending to a much 
higher range of frequencies is required to faithfully represent 
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a spikelike transient. We will see that this observation, that 
signal “sharpness” manifests in the frequency domain as a 
broadening of the amplitude spectrum, is fundamental in 
interpreting spectrograms in ICU EEG monitoring.

�From Spectra to Spectrograms

Though we have seen that it is possible to decompose com-
plex signals into simple sinusoidal components, there is 
something unnatural about this decomposition for signals like 
the one shown in Fig. 4.3. In particular, the signal appears to 
change character over course of the 9 s shown. It would be 
more natural to break signals like this into smaller segments 
or windows, over which the signal characteristics are approx-
imately constant. In statistical jargon, we desire to break the 
signal into segments that are statistically stationary.

Figure 4.5 shows an example of another signal that shows 
marked nonstationarity. This example shows a 3-min-long 
single-channel EEG signal. Figure  4.5b is the raw signal 
containing a seizure that begins around t = 20 s and ends 
around t = 120 s. The panels in Fig. 4.5a show the power 
spectrum (essentially, the amplitude spectrum squared, 
except for some smoothing—see next below) calculated 
from three different windows centered at t = 20, 60, and 130 
s. The spectra within these three windows differ markedly, 
reflecting the evolution of signal characteristics that typify 
seizure activity.

Figure 4.5c shows the result of repeatedly calculating the 
spectrum of signals in 2-s windows, using a “sliding win-
dow” to obtain a new spectrum every 0.1 s. These spectra 
collectively form an image, or time-frequency spectrogram, 
formed by representing the power spectrum on a colormap. 
In this example, the power is shown in decibel (log) units, 

Fig. 4.3  Spectral 
decomposition. (a) Original 
signal (black) with 
superimposed approximation 
signal (red) composed of sine 
and cosine “components” 
making up the original signal. 
(b) Frequency 
decomposition—nine 
components which make up 
the largest contribution of the 
approximation. (c) Amplitude 
spectrum showing the 
distribution of frequencies 
contributing to the signal with 
higher amplitudes 
contributing more to the 
reconstructed signal
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according to convention. This display convention allows 
simultaneous visualization of the signal power over a wide 
range of frequencies in one image, despite the fact that in 
human EEG the power at different physiologically relevant 
frequencies can vary by an order of magnitude or more. 
Representing this EEG signal as a spectrogram clearly brings 
out the salient dynamical features of the seizure, namely, an 
increase in the dominant frequency of oscillatory activity 
and a sharpening of the signal contour, followed by slowing 
down as the seizure ends. These features are not visible in the 
raw signal at this scale, though they are clearly evident when 
examining the signal within a more conventional 10-s win-
dow used for clinical review of EEG data. By contrast, these 
dynamics are clearly evident in the spectrogram despite the 
“large” 3-min window. The ability of spectrograms to dis-
play salient features of the EEG at a zoomed out or “com-
pressed” scale is a major reason that spectrograms are useful 
in ICU EEG. Further examples at more compressed scales (2 
h) will be discussed in subsequent sections.

�Understanding Spectrograms: Cardinal 
Patterns from Synthetic Signals

The principles of spectral analysis described above are 
exploited to interpret patterns that occur commonly in spec-
trograms from cEEG recordings in the ICU setting. We illus-
trate these patterns using synthetic data in Fig. 4.5, before 
turning to real examples. Figure 4.6a shows a simple signal, 
a “monotonous” or unchanging low-amplitude sinusoid of 
2 Hz. The corresponding spectrogram has a single peak at 
2 Hz within every time window that manifests in the spectro-
gram as a red line at 2 Hz. This signal is reminiscent of the 
common ICU EEG pattern of “delta slowing” seen in patients 
with encephalopathy. Figure 4.6b shows a sinusoidal signal 
with a frequency that begins at 2 Hz, then increases follow-
ing a linear ramp to 5 Hz while increasing also in amplitude, 
and then drops abruptly back to 2 Hz. The evolving portion 
of this pattern is manifest in the spectrogram as an upsloping 
line. This example is reminiscent of the classic pattern of 

Fig. 4.4  Effect of signal “sharpness” on spectral components. (a) Bell-
shaped “slow wave” with its frequency decomposition and amplitude 
spectrum. As with Fig. 4.3, the original signal (black) and approxima-
tion signal (red) are superimposed. Non-sharp morphology results in a 

narrow amplitude spectrum. (b) Narrow “spike-shaped” curve with the 
same functions plotted as in (a). This sharp morphology requires a 
broader range of sinusoids to approximate its signal

J.A. Kim et al.
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evolution characteristic of many epileptic seizures and typi-
fies what we will refer to in a subsequent section as a “flame”-
type seizure.

Figure 4.6c shows a more complex synthetic signal, con-
sisting of a series of sharp discharges of randomly varying 
amplitudes, occurring in a regular or periodic fashion at 
1 Hz. The spectrogram in this case shows high power not 
only at 1 Hz, reflecting the periodicity of the repeating pat-
tern, but also a broadening of the spectrum up to approxi-
mately 5 Hz and beyond. This broadband character of the 
spectrogram reflects the fact that the morphology of the dis-
charges is sharp and thus has a broad amplitude or power 
spectrum, as discussed previously in connection with 
Fig. 4.4b. Figure 4.6d shows another more extreme example, 
a sawtooth wave.

In both Fig. 4.6c, d, the pattern can be characterized as 
broadband monotonous, referring to the repetitive periodic 
nature combined with the relatively broadband of high power 
due to the sharpness of the underlying discharges. As will be 
seen in the real examples below, the broadband-monotonous 
pattern typifies the spectrogram when the underlying EEG is 
in a state of either periodic epileptiform discharges or certain 
closely related states of status epilepticus.

�Technical Considerations: Trade-Offs 
in Spectral Estimation

Our discussion regarding spectral estimation has glossed 
over many important technical details that are critical in cer-
tain applications of spectral estimation. We touch briefly on 
two important fundamental issues that affect the quality of 
spectrograms.

�Trade-Off Between Temporal and Spectral 
Resolution

Consider again the example of a seizure and its spectrogram 
shown in Fig. 4.5. In that example we chose to make the win-
dow size 2 s. This choice in turn dictated a limit to the level 
of detail with which we were able to resolve temporal fea-
tures in the EEG, so that the spectrogram has a certain degree 
of blurring or smoothness across time. If we attempt to obtain 
higher temporal resolution by making the analysis windows 
progressively smaller, we would at the same time see that we 
progressively lose the ability to distinguish detail in the 
frequency domain. This is because decreasing the signal 

Fig. 4.5  Nonstationarity of a 
3-min EEG signal containing 
a seizure. (a) Power spectra 
calculated at three different 
time windows of the 
recording (t = 20, 60, 130 s). 
(b) Raw EEG signal 
compressed over a 3-min 
interval, with box insets 
corresponding to the time 
windows plotted in (a). (c) 
Spectrogram of EEG signal 
from (b) using two sliding 
windows, box insets 
correspond to the time 
windows plotted in (a)

4  Seizures and Quantitative EEG
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segment length (keeping the sampling rate constant) reduces 
the number of frequency components and increases the spac-
ing between components in the DFT. In effect, nearby peaks 
in the spectrum become single peaks, in the same way that 
creating a histogram using wide bins can smooth together 
and obscure peaks in a distribution that has multiple modes.

This consideration highlights a fundamental trade-off that 
exists between the maximal spectral resolution (the level of 
detail with which we can calculate the spectrum, i.e., the spac-
ing between frequency components) and the maximal temporal 
resolution (the smallest window over which we can perform 
spectral analysis on a signal). The mathematical reasons behind 
the trade-off between temporal and spectral resolution are in 
fact identical to those that describe the well-known “Heisenberg 
uncertainty principle,” which describes the inverse relationship 
between the precision with which one can simultaneously mea-
sure the position and velocity of a particle.

�Trade-Off Between Bias and Variance

A second fundamental trade-off arises from the fact that the 
EEG, like many other naturally occurring signals, is best 
regarded as stochastic, containing an underlying signal of 
interest that is corrupted by noise. Consequently, the spec-
trum and hence the spectrogram need to be estimated. This 
fact gives rise to a trade-off between bias and variance.

The bias-variance trade-off in spectral estimation is illus-
trated in Fig. 4.7. In Fig. 4.7a, we show a sample of a sto-
chastic signal generated by a model with a known power 
spectrum, shown as a red curve in Fig. 4.7b–e. This spectrum 
has two peaks, at approximately 11 and 14 Hz. Let us assume 
that we have already chosen a window size for our spectral 
estimates, based on either the maximum window length over 
which the signal can be considered to be statistically station-

Fig. 4.6  Four simulated EEG patterns converted to CSAs. (a) 
Sinusoidal signal at 2 Hz without variation, reminiscent of “delta slow-
ing.” CSA shows a red line, representing a consistent peak at 2 Hz. (b) 
Sinusoidal signal with linear ramp from 2 to 5 Hz followed by an abrupt 
termination, modeling an evolving seizure. CSA shows a rise in the 
power of frequencies up to 5 Hz corresponding to the linear ramp seen 

in the sinusoidal signal and a return back to 2 Hz. (c) Synthetic model 
of periodic sharp discharges at 1 Hz. CSA shows a high-power band at 
1 Hz with a broadening of the spectrogram reflecting the sharpness of 
the discharges as described in Fig. 4.4. (d) Synthetic model of extreme 
sawtooth pattern, which best exemplifies the broadband-monotonous 
pattern described in Table 4.1

J.A. Kim et al.
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ary or the desired level of temporal resolution. In this case 
we have chosen a window size of 15 s.

Given the chosen window length, a common but subopti-
mal way to obtain a spectral “estimate” from this finite-
length signal is simply to calculate the discrete Fourier 
transform, usually using a fast algorithm known as the “fast 
Fourier transform” (FFT), and to then take the squared 
amplitude of the result as an estimate of the power spectrum. 
The result is shown as the blue line in Fig. 4.7b. The spec-
trum appears very noisy. This is not surprising when one 
considers that what we have done amounts to “estimating” a 
quantity using only a single sample. Estimates obtained in 
this way are sometimes called “periodograms.” (We have 
passed over the fact that, technically, to calculate the peri-
odogram, one usually multiplies the signal by a windowing 
function or “data taper” before computing the FFT to reduce 
an effect known as spectral leakage. All spectral estimates 
shown in this chapter have been computed with appropriate 
data tapers.)

Under the right conditions in a laboratory, it might be pos-
sible to obtain numerous repeated sample segments of the 
same signal. Given enough repeated samples, we could 
obtain an accurate estimate of the underlying true spectrum 
by averaging periodograms. However, in ICU EEG monitor-
ing, we of course do not have the luxury of holding the 
patient’s state constant to obtain repeated samples. We are 
thus forced to resort to methods of reducing the variance of 
the spectral estimates, i.e., of making the spectrogram 
smoother. Figure 4.7c–e show progressively more aggressive 
smoothing of the original signal. Smoothing necessarily 
blurs together fine spectral details, as evidenced by the fact 
that beyond a certain point the spectral peaks in this example 
become indistinguishable (Fig. 4.7e).

We operationally define the spectral resolution of the 
estimated power spectrum as the minimum distinguishable 
difference between two narrow peaks that can be distin-
guished in the estimated spectrum. Judging by eye, the 
approximate spectral resolution in Fig. 4.7c–e is <1 Hz, 2 
Hz, and 5 Hz, respectively. The optimal trade-off between 
variance reduction (smoothness) and spectral resolution in 
this example appears to be most closely achieved in 
Fig. 4.6d. Note that the spectral resolution is thus usually 
lower than the maximal spectral resolution discussed in the 
preceding subjection. The maximal spectral resolution 
depended on the window width rather than on statistical 
considerations.

The most appropriate degree of spectral smoothing clearly 
depends on the spectral characteristics and intrinsic smooth-
ness of the underlying processes which generate the signal 
and thus varies depending on the application. In clinical ICU 
EEG monitoring, a spectral resolution of approximately 
0.75 Hz is usually adequate and allows for sufficient spectral 
smoothing to obtain high-quality spectral estimates. This is 
the resolution used for the spectrogram in Fig. 4.5 and in the 
examples shown later.

Fig. 4.7  The bias-variance trade-off. (a) A stochastic signal generated 
by a model with a known power spectrum (red curves, b–e). (b–e) Test of 
varying time windows used for estimating the discrete Fourier transform. 
Short time windows (b) result in noisy estimations, while broad windows 
(e) smooth the data so much as to make peaks indistinguishable

4  Seizures and Quantitative EEG
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Numerous approaches to spectral smoothing have been 
proposed. Common methods include averaging spectra from 
consecutive neighboring windows (“weighted overlapping 
segment averaging,” WOSA) or replacing the amplitudes in 
a “noisy” spectrum obtained from an appropriately com-
puted discrete Fourier transform by locally weighted aver-
ages of neighboring values. Various window functions or 
“kernels” can be used for this “kernel smoothing” method. 
The current state of the art, however, is the method called 
multitaper spectral estimation algorithm (MTSA), which 
involves averaging together the amplitude spectra of multi-
ple discrete Fourier-transformed segments that have been 
pre-multiplied by a specific series of windowing functions or 
“tapers,” known as the discrete prolate spheroidal sequences 
(DPSS). While the technical details of MTSA are beyond the 
score of this chapter, it suffices for our purposes to know that 
MTSA is the solution to a mathematically well-defined opti-
mization problem, designed to achieve a balance between 
spectral resolution (bias) and the variance of spectral esti-
mates. Surprisingly, though it was invented in the early 
1980s, MTSA is not yet in wide use. In fact spectral estima-
tion routines implemented in many commercial products 
produce relatively poor-quality spectrograms, very often 
simply “computing the FFT” [18–20].

As with all smoothing methods, MTSA has adjustable 
parameters that allow one to decide precisely how to balance 
the bias against variance. In the remaining figures shown in 

this chapter, spectrograms are computed with a moving win-
dow length of 4 s, with overlapping windows shifting by 0.1 
s, and a spectral resolution of 0.75 Hz.

�Interpretation of Spectrograms

We now turn from theory to the interpretation of ICU EEG 
recordings. While there is no single pattern on a spectrogram 
that is invariably associated with seizures or other abnormal 
periodic patterns, many events of interest fall into a small 
number of recognizable patterns. In this section we briefly 
review some of the most common spectral patterns associ-
ated with pathological ICU EEG events. In the next section, 
we review a series of actual cases to gain experience with 
spectrogram interpretation.

The most easily recognizable seizures present with an 
abrupt increase in power across a range of frequencies that 
stands out clearly from the surrounding background. Given 
the red and white color typically used to indicate high power 
on a color density spectrogram and the shape of these events 
in the spectrogram, these abrupt changes resemble small 
flames (e.g., Fig.  4.1). We refer to this pattern as regular 
flame, to distinguish it from the less clear-cut pattern of 
choppy flame (see below).

Cyclic seizures are also often easy to recognize as a series 
of repeating regular flame events (e.g., Figs. 4.1, 4.8, and 4.9). 

Fig. 4.8  Cyclic seizures (Case 1). This example is typical of the regu-
lar flame morphology. For Figs. 4.8–4.23, the 2-h CSA panels are dis-
played as follows (from top): left lateral, left central, right central, right 
lateral, and hemisphere asymmetry (a.k.a. relative asymmetry). For the 

top four panels, high power is in red and low power in deep blue. The 
hemisphere asymmetry panel assesses where spectral power of the right 
> left hemisphere (red), left > right hemisphere (blue), or both are equal 
(white)
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Once a cyclic seizure has been verified by review of the raw 
EEG, further seizures can often easily be identified by review 
of the spectrogram alone. It may even be possible for inexpe-
rienced users at the bedside, such as nurses or residents, to 
detect recurrent seizures in these cases.

State changes and decreased sedation may also cause rel-
atively abrupt increases in power that may mimic flame-type 
seizure patterns. However, these changes will often have a 
choppier or more irregular appearance than when an actual 
seizure is present; hence we refer to these as choppy flames 
(e.g., Fig.  4.10). However, in practice, differentiating sei-
zures from other changes without review of the raw EEG can 
be challenging.

Similarly, longer-lasting nonconvulsive seizures or peri-
odic discharges often manifest with a spectral signature that 
is high power across a broadband of frequencies, extending 
from delta up to theta or higher. These patterns are often 
unchanging or “monotonous” over long periods or exhibit 
only changes in their spectral signatures, without a clear 
beginning or end. We refer to these patterns as “broadband 
monotonous.” The broadband-monotonous patterns are high 
power because of their typically high amplitude. They are 
broadband because of the regularity and sharpness of the 
underlying waveforms, as was explained in the synthetic 
examples shown in Fig. 4.6c, d. Other examples are shown in 
the cases that follow (e.g., Figs. 4.11 and 4.12).

As opposed to the broadband-monotonous pattern, dif-
fuse nonrhythmic slowing as is commonly seen in patients 

with encephalopathy who are not having seizures typically 
produces a spectral pattern that is monotonous and relatively 
restricted to the low-frequency part of the power spectrum. 
We refer to this pattern as “narrowband monotonous” (e.g., 
Fig. 4.18).

A final easily recognizable common spectral pattern in 
ICU EEG is that of burst suppression. Burst suppression 
typically appears as a series of colored “stripes,” represent-
ing the bursts, alternating with a blue (low-power) back-
ground, corresponding to the suppression periods (e.g., 
Fig. 4.14).

Very brief or very focal seizures may be missed by spec-
trogram review alone [10, 11]. Because spectrograms com-
press EEG data and display long periods of time on a single 
screen, very brief seizures may not result in an identifiable 
change. Similarly, as spectrograms typically average across 
a number of leads, very focal seizures may also be impossi-
ble to visualize.

�Case Vignettes with Example Spectrogram 
Patterns

In this section, we show several examples of common pat-
terns encountered in EEG spectrograms of ICU patients, 
including seizures, periodic discharges, and artifact. Where 
possible, we will describe these patterns using the categories 
introduced above: regular flame, choppy flame, broadband 

Fig. 4.9  Frequent cyclic seizures (Case 2). Again, this shows the regular flame morphology
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Fig. 4.10  Irregular flame morphology (Case 3). This pattern often represents seizures, but can correspond to waxing and waning periodic dis-
charges or artifacts

Fig. 4.11  Postanoxic status epilepticus (Case 4). A striking example of the broadband-monotonous pattern, often seen with status epilepticus or 
with periodic discharges
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Table 4.1  Proposed nomenclature for common spectrographic patterns

Spectrogram pattern Description Example(s)

Regular flame Sudden rise and subsequent fall in power across a broad range of frequencies in a brief period 
reminiscent of a candle flame
This is the most common seizure pattern observed

Fig. 4.8
Fig. 4.9

Choppy flame Discrete events that stand out against the background, but each event is not as well formed and 
solid as in the regular flame pattern. The flames are more “wispy”
This most often reflects seizures, but can correspond to periodic discharges or artifacts

Fig. 4.10

Broadband monotonous High-power band over a broad range of frequencies across time. Appears as a thick band across 
the spectrogram
This is seen either in status epilepticus or with periodic discharges or less often in high-amplitude 
rhythmic delta activity

Fig. 4.11
Fig. 4.12

Narrowband monotonous High-power band over a narrow range of frequencies across time. Appears as a thin band across 
the spectrogram
This is most commonly seen in focal or generalized slowing

Fig. 4.13

Burst suppression Repetitive dark blue vertical stripes, corresponding to “suppression segments,” alternating with 
brighter (higher power) stripes representing high-power “bursts”

Fig. 4.14

Fig. 4.12  Nonconvulsive status epilepticus (Case 5). A more typical example of the broadband-monotonous pattern

monotonous, narrowband monotonous, and burst suppres-
sion (Table 4.1). We note that while the authors have found 
these terms helpful, they are not presently part of any offi-
cially recognized or validated nomenclature.

�Basic Patterns

Case 1:  (Fig. 4.8)

A 75-year-old woman with a history of dementia and 
anticoagulation for deep venous thrombosis presented with 
seizures in the setting of a left frontoparietal hemorrhage 
secondary to cerebral amyloid angiopathy. Her cEEG 
showed 3–5 electrographic nonconvulsive seizures per hour 
and left centrotemporal and posterior lateralized periodic 
discharges (LPDs).

In this spectrogram one sees three generalized electro-
graphic seizures with clearly defined discrete starting and 
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ending points. This example is very similar to the example in 
Figs.  4.1 and 4.5. The sudden rise and subsequent fall in 
power across a broad range of frequencies in these discrete 
intervals is reminiscent of a candle flame. This is an example 
of the regular flame pattern characteristic of many seizures.

The background EEG between seizures showed general-
ized periodic epileptiform discharges. The corresponding 
spectrogram, not surprisingly, falls into the broadband-
monotonous category (described in Cases 4 and 5), with pro-
longed periods lasting more than 10  min at a time of 
high-power activity extending above 5 Hz.

Case 2:  (Fig. 4.9)
A 75-year-old man presented with a syncopal episode 

resulting in a left frontoparietal skull fracture and an under-
lying parenchymal contusion. His hospital course was com-
plicated by intracranial hypertension and status epilepticus. 
The patient developed repetitive, regularly recurring left 
hemisphere seizures. Seizures started abruptly with 10–12-
Hz low-amplitude (<20-mV) discharges and had no clinical 
correlate. A diagnosis of nonconvulsive status epilepticus 
was made.

The seizures in this example again fit into the category of 
regular flame seizures. The repetitive, periodic nature of 
these events demonstrates a spectrographic pattern of left 
hemisphere cyclic seizures.

The background in the right lateral, left central, and right 
central regions had a narrowband-monotonous pattern 
(described in Case 6), corresponding to diffuse slowing in 
these regions on the raw EEG.

Case 3:  (Fig. 4.10)
A 70-year-old woman with a history of stroke, subarach-

noid hemorrhage, and seizures presented with status epilep-
ticus in the setting of bilateral subdural hematomas. After 
treatment with anticonvulsants, her cEEG revealed bilateral 
independent multifocal sharp waves and recurrent discrete 
nonconvulsive left centrotemporal seizures.

The seizures in this case have a different spectrographic 
thumbprint from the preceding cases. There are still discrete 
events that stand out against the background, but each event 
is not as well formed and solid as in the prior two cases. 
These “flames” are more “wispy,” perhaps reminiscent of 
flames generated by an electric fireplace. We have termed 
this the choppy flame spectrographic pattern. While this pat-
tern often reflects seizures as in this case, it can also corre-
spond to waxing and waning periodic discharges or artifacts 
more often than the regular flame pattern.

Case 4:  (Fig. 4.11)
A 36-year-old woman with a history of alcohol abuse 

presents with coma after cardiac arrest. Despite undergoing 
therapeutic hypothermia, she developed generalized periodic 

discharges at 5 Hz consistent with postanoxic nonconvulsive 
status epilepticus.

This is a striking example of a spectrogram where the 
power is relatively high over a broad range of frequencies, 
which changes slowly with time. In the spectrogram one sees 
a thick orange band going across the left hemisphere spectro-
gram and a lighter yellow band over the right hemisphere 
regions. The thickness of this band remains relatively stable 
across the displayed recording time, waxing and waning 
slowly. Given these features, this pattern can be described as 
broadband monotonous. This pattern can be seen with either 
status epilepticus (as in this case) or with periodic discharges, 
as discussed in connection with Fig. 4.6c, d.

Case 5:  (Fig. 4.12)
A 50-year-old female with developmental delay, familial 

transthyretin amyloidosis, and non-aneurysmal subarach-
noid hemorrhage presented with acute hydrocephalus. The 
patient had near continuous seizures that persisted until an 
intravenous propofol infusion was initiated.

This is a more typical example of the broadband-
monotonous spectrogram pattern. The widening of the red 
stripe corresponds to increased power and sharpness and 
reflects in this case continuous nonconvulsive seizure activ-
ity. The power then shifts back to the lower frequencies as 
propofol is uptitrated. Near the end of the 2-h epoch, the 
EEG has entered a state of burst suppression, as reflected by 
the appearance of a striped pattern in the spectrogram (com-
pare with Case 7, Fig. 4.14).

Case 6:  (Fig. 4.13)
An 83-year-old man with a history of end-stage renal dis-

ease, coronary artery bypass grafts, hypertension, and 
hyperlipidemia presented with aphasia and poor mental sta-
tus. He was found to have a left middle cerebral artery 
stroke. He had some intermittent staring spells, which were 
concerning for seizures, so cEEG monitoring was per-
formed. His EEG showed diffuse slowing without any epi-
leptiform abnormalities.

Here, one can appreciate a thin yellow-orange band that 
continues through the displayed record in the low (<3-Hz)-
frequency range. Unlike the broadband-monotonous pattern, 
this narrowband-monotonous pattern is most commonly 
associated with focal or generalized slowing observed on 
cEEG, rather than periodic discharges or seizures.

Case 7:  (Fig. 4.14)
A 33-year-old man with history of severe traumatic brain 

injury and meningitis status-post ventriculoperitoneal 
shunting presented with status epilepticus due to shunt mal-
function. His EEG showed evidence of recurrent right fron-
totemporal 2–3-Hz sharp waves evolving to 3–4-Hz 
lateralized periodic discharges, unresponsive to second-line 

J.A. Kim et al.



65

Fig. 4.13  Diffuse slowing (Case 6). This is an example of the narrowband-monotonous pattern, often seen in focal or diffuse slowing

Fig. 4.14  Burst suppression on propofol and midazolam (Case 7). Here is an example of what burst suppression patterns look like on CSA
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intravenous anticonvulsants. He was diagnosed with refrac-
tory status epilepticus and treated with intravenous propofol 
and midazolam.

This is an example of a burst suppression on a spectro-
gram. There are repetitive dark blue vertical stripes through-
out the record. The dark blue stripes correspond to the 
“suppression” segments and the light blue stripes with asso-
ciated small red-orange bases represent the higher power 
“bursts.”

Case 7, continued:  (Fig. 4.15)
This is the succeeding epoch of the same case vignette 

above. Here, one can again appreciate dark and light blue 
stripes representing the signature pattern for burst suppres-
sion. However, during this displayed epoch, sedation was 
lightened. As burst suppression lightens, one can appreciate 
that the density of the dark blue stripes lessens. One can also 
appreciate the emergence of at least four regular flame-
shaped seizures “breaking through” as sedation lightens.

�Combination Patterns

Case 8:  (Figs. 4.16–4.18)
An 83-year-old man with a medical history significant for 

chronic kidney disease and atrial fibrillation developed status 

epilepticus after cardiac arrest. The cEEG showed diffuse 
background attenuation associated with generalized periodic 
discharges and myoclonic movements. Sedation was 
increased and the seizures resolved, albeit gradually.

This case example illustrates three different patterns. The 
first (Fig. 4.16) shows very frequent cyclic seizures of the 
regular flame pattern, which become less frequent toward the 
end of the first 2-h window, with further reduction in seizure 
frequency in Fig.  4.17. The seizures stop approximately 
24 min into Fig. 4.17. The spectrogram pattern then changes 
to a broadband-monotonous pattern and then finally narrow-
band monotonous by the third 2-h epoch (Fig. 4.18).

Case 9:  (Figs. 4.19–4.20)
A 38-year-old man with alcoholic cirrhosis presented 

with variceal hemorrhage complicated by sepsis and renal 
failure, managed with ciprofloxacin and meropenem. He 
developed NCSE during his hospitalization. The cEEG 
showed seizures consisting of abrupt onset of beta activity 
every 2–5 min without clinical correlate.

This case example is illustrated across two consecutive 
2-h epochs. In the first epoch (Fig. 4.19), there are regular 
flame seizures in a cyclic pattern that increase in frequency 
and ultimately fuse into a broadband-monotonous pattern, 
consistent with status epilepticus. The patient receives anti-
seizure medication, and the status epilepticus converts into a 

Fig. 4.15  Lifting sedation after burst suppression (Case 7, continued). Here is a continuation of the CSA in Fig. 4.14, showing the burst suppres-
sion pattern lightening and the emergence of regular flame-shaped seizures
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Fig. 4.16  Frequent regular flame-shaped seizures consistent with status epilepticus (Case 8)

Fig. 4.17  Evolution of seizures as sedation increased (Case 8, continued). The CSA begins with regular flame seizures continued from Fig. 4.16, 
with a reduction in frequency followed by a transition to a broadband-monotonous pattern
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Fig. 4.19  Regular flame seizures evolving into broadband-monotonous status epilepticus (Case 9)

Fig. 4.18  Evolution to diffuse slowing (Case 8, continued). A continuation of Fig. 4.17, the CSA now shows a narrowband-monotonous pattern 
suggestive of diffuse slowing
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cyclic seizure pattern with less frequent regular flame sei-
zures, on a narrowband-monotonous background pattern, 
corresponding to generalized slowing on the underlying 
EEG (Fig. 4.20).

Artifacts:
No qEEG method can escape the inherent limitations of 

scalp EEG and this is particularly true in the ICU environ-
ment. Frequent interventions and the use of multiple tech-
nologies make differentiating seizures and other patterns of 
interest from artifact sometimes challenging. We present a 
few examples to illustrate common artifacts seen on spectro-
grams in ICU patients.

Case 7, continued:  (Fig. 4.21)
This spectrogram is from a later 2-h epoch of Case 7 

(Figs. 4.14–4.15). Please refer back to Case 7 for the clinical 
vignette.

At the beginning of the epoch, the spectrogram shows a 
uniform deep blue, reflecting near-complete suppression of 
the EEG background. In this case the suppression is not due 
to pharmacological intervention, but rather reflects the end 
stage of severe diffuse anoxic brain injury. Near the end of 
the 2-h epoch, we see an abrupt change from very low to 
very high, full-bandwidth power, which manifests as a red 
color across the entire bandwidth of the spectrogram. This is 
a typical pattern for disconnection artifact. This pattern 

occurs when the EEG shows high-amplitude voltages due to 
amplifier saturation, due to either disconnection of the elec-
trodes from the scalp or disconnection of all the electrodes 
from the headbox, as in this example.

Case 10:  (Fig. 4.22)
A 51-year-old man presented with subarachnoid hemor-

rhage secondary to aneurysm rupture. An EEG was per-
formed for vasospasm monitoring.

The background spectrographic pattern is intermediate 
between narrowband and broadband monotonous, raising 
the possibility of periodic discharges, although in this case in 
fact the background showed generalized high amplitude 
slowing. Interrupting this background pattern intermittently, 
one can see high-power red stripes that span the entire fre-
quency range. Unlike the above example of disconnection 
artifact, these stripes are of much shorter duration suggesting 
very brief high-amplitude, high-frequency artifact such as is 
generated by movements leading to amplifier saturation or 
temporary EEG disconnection.

Case 11:  (Fig. 4.23)
A 70-year-old man with a history of laryngeal cancer 

treated with radiation developed a delayed right common 
carotid artery rupture requiring carotid artery ligation. 
A cEEG was performed for cerebral perfusion monitoring in 

Fig. 4.20  Antiepileptic drug administration prompting the transition from status epilepticus back to regular flame seizures with a narrowband-
monotonous, diffuse slowing background (Case 9, continued)
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Fig. 4.22  Movement artifact (Case 10). High-amplitude, high-frequency artifacts of much briefer duration than those seen in disconnection 
artifact

Fig. 4.21  Disconnection artifact (Case 7, continued). Seen as abrupt change in CSA from low power to sudden high-amplitude voltages due to 
amplifier saturation
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the setting of a drug-induced hypertension trial. There was 
no deterioration of neurological exam despite carotid liga-
tion and withdrawal of hypertension-inducing medications. 
His EEG showed right frontotemporal slowing but no epi-
leptiform discharges.

This spectrogram represents another typical example of 
frequent movement artifacts. One can imagine how the arti-
facts in the middle of the 2-h epoch might be mistaken for a 
regular flame pattern.

Case 6, continued:  (Fig. 4.13)
On reexamination of the spectrogram in Fig. 4.13 from 

Case 6, in addition to the narrowband-monotonous pattern 
that constitutes the background, we note that there are tran-
sient bursts of yellow at higher frequencies. These events are 
sometimes described as looking like falling rain, rays of sun-
shine, or stalactites hanging from a cave ceiling. This pattern 
is typical of myogenic artifact. A similar myogenic artifact 
event is evident near the beginning of the epoch in Fig. 4.12, 
in the left lateral, right central, and right lateral regions.

There are many other types of artifacts that can give rise 
to unusual spectrogram patterns. For example, oscillating 
beds are characterized by the well-demarcated appearance of 
a high-power band that corresponds to the frequency at 
which the bed is oscillating. Electrical artifact at 55 Hz or 
60 Hz caused by the numerous devices present in an ICU 

occurs at higher frequencies than are routinely displayed on 
spectrograms. Patient cleaning and repositioning may result 
in artifact that appears similar to the movement artifacts 
illustrated above. For patients undergoing active cooling fol-
lowing cardiac arrest, shivering – even minute shivering that 
is not clearly visible – can result in high-frequency move-
ment and myogenic artifact. Some commercially available 
quantitative EEG software includes algorithms to identify 
and reduce artifact or to exclude leads with significant arti-
fact from quantitative analysis and display.

�Clinical Utility Of Quantitative EEG 
and Spectrograms

Determining the validity and utility of qEEG for clinical use 
is important to the continued use and optimization of these 
tools for patient care. Multiple studies have evaluated the 
sensitivity and specificity of various qEEG methods, though 
the most commonly evaluated has been spectrograms, usu-
ally by the terms CSA or DSA in the existing literature.

In a study of qEEG for pediatric ICU EEG data, one group 
compared the diagnostic accuracy of CSA and amplitude-
integrated EEG for seizure identification [21]. For pediatric 
data, they found that sensitivity was relatively similar for 
CSA vs. aEEG (83 vs. 81%). However, overall, more seizures 

Fig. 4.23  Movement artifact (Case 11). Such artifacts can sometimes be mistaken for regular flame seizures
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were completely missed when using CSA (21%) vs. aEEG 
(14%). The most commonly missed seizures were those with 
low-amplitude, short and focal seizures. Other authors have 
also confirmed that CSA-guided review in many different 
protocols can support sensitive screening of critical patho-
logical information in cEEG recordings [10, 12, 14, 21–25].

One study focusing on qEEG for interpretation of adult 
ICU EEG recordings concluded that spectrograms could be 
used as sensitive screening tool for seizures [11]. They 
trained two non-expert electrophysiology reviewers (neurol-
ogy residents) to assess CSA signals for the presence or 
absence of seizures or other clinically important patterns. 
The reviewers were blinded to the presence or absence of 
seizures and were not allowed to view the primary cEEG 
data. An independent experienced electroencephalographer 
reviewed the raw EEG within 60 s on either side of each 
mark and recorded any seizures. Seizures were considered to 
have been detected if the CSA mark was within 60 s of the 
seizure. The CSA reviewers in this study achieved high sei-
zure detection rates, but the study design deliberately allowed 
high false-positive rates to do so.

In a follow-up study, by allowing reviewers to review 
selected segments of raw cEEG data when guided by CSA-
based screening (see Fig. 4.1), the authors hypothesized that 
the time required for review would be significantly less than 
required for conventional review of the entire raw cEEG 
without compromising the sensitivity for seizures or other 
critical pathologies [10]. This method also mirrors the way 
spectrograms are typically used in actual clinical practice by 
EEG experts, i.e., as an addition and aid for reviewing the 
raw EEG. In this study CSA-guided cEEG review identified 
all patients with seizures and detected 87% of all individual 
seizures among the cohort. Using this method, they were 
also able to detect period epileptiform discharges, rhythmic 
delta activity, focal slowing, and generalized slowing in 
>95% of patients. Using this method, they found CSA-
guided screening identified the vast majority of seizures and 
other abnormal patterns while cutting review times by nearly 
75% and missing only rare, brief, highly localized, noncon-
vulsive seizures. The authors concluded that the correlation 
of CSA patterns with the underlying EEG was critical in 
achieving high sensitivity and efficiency.

Given that one of the major limitations of cEEG is the 
limited availability of expert neurophysiologists, it would be 
optimal if qEEG methods could be interpreted by a broader 
audience. Several groups have explored the possibility of 
training non-neurophysiologists to utilize qEEG trends for 
seizure detection. One group evaluated the diagnostic accu-
racy of electrographic seizure detection by neurophysiolo-
gists and non-neurophysiologists using qEEG trend panels. 
They found that in isolated review of a qEEG panel, there 
was an overall sensitivity of 84% and specificity of 69% for 
all reviewer types for the detection of the presence of seizures 

[26]. These results were corroborated by other groups that 
evaluated critical care nurses, residents, and fellows [27]. 
They found that accuracy was not different between nurses 
and physicians after a short training program. Amorim et al. 
favored challenging CSA displays, which included seizures 
(50%) and periodic discharges (35%), a much higher fre-
quency than commonly seen in patients monitored in a neu-
rological ICU [28]. The false-alarm rate for nurses in this 
study was twice as high as for epileptologists in cases involv-
ing periodic discharges without seizures. The false-alarm 
rate in CSA displays with periodic discharges was not sys-
tematically reported in other studies; however, the number of 
displays containing seizures was comparable (30–66%) [27–
30]. These findings suggest that in cases in which separation 
of seizures from periodic discharges is challenging, non-
expert review of CSA would likely benefit from combined 
CSA and raw EEG correlation by neurophysiologists, simi-
larly to what was done in Moura’s protocol [10].

�Quantitative EEG Outside the Realm 
of Seizures

Quantitative ICU EEG also has clinical applications outside 
the realm of seizures and status epilepticus, particularly for 
ischemia detection. Delayed cerebral ischemia (DCI), a 
major complication that occurs after aneurysmal SAH, can 
be seen in up to 50% of patients [31, 32]. Currently, transcra-
nial Doppler ultrasonography (TCD) to assess blood flow 
velocity in the major cerebral arteries is most commonly 
used, but is operator dependent and done at most once per 
day. cEEG can potentially provide continuous real-time data 
for DCI monitoring.

The two features of qEEG that are commonly used to 
detect ischemia are the alpha-delta ratio and the relative 
alpha variability [33]. As cerebral blood flow decreases, pre-
dominantly slower oscillations are seen in the EEG, and 
there is a sequential loss of alpha followed by delta frequen-
cies and subsequent suppression [33]. The alpha-delta ratio 
(ADR) is the ratio of the sum of the power within the alpha 
band (8–13 Hz) and delta band (1–4 Hz). The ADR is typi-
cally displayed as a moving average or histogram. Figure 4.24 
shows an example of how a relative drop in alpha frequency 
power compared to delta frequency power results in a 
decrease in the ADR. Foreman and Claassen showed changes 
in the ADR with changes in GCS, neurological exam, and 
treatment [33]. ADR was found to have a strong association 
with DCI in a retrospective study that looked at qEEG in 34 
high-grade (Hunt and Hess IV and V) SAH patients with 
high sensitivity (100%) and relatively good specificity (76%) 
[34]. Relative alpha variability (RAV) is the other commonly 
used qEEG parameter to detect early ischemia. This method 
uses the alpha-to-total power ratio (8–12 vs. 1–20 Hz). One 
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study evaluated RAV on a poor to excellent scale of 1–4, 
respectively [35]. A decrease in RAV by 1  in at least one 
channel was correlated risk of impending DCI.

Quantitative EEG is also increasingly used to help deter-
mine prognosis in post-cardiac arrest patients with anoxic 
brain injury. The burst suppression ratio, response entropy, 
state entropy, and wavelet sub-band entropy are some of the 
qEEG features that have been investigated in patients with 
anoxic brain injury [36]. The Cerebral Recovery Index (CRI) 
is a recently introduced prognostic index that combines 
power, Shannon entropy, alpha-to-delta ratio, “regularity,” 
and coherence in the delta band. An initial pilot study found 
that higher CRI correlates with better outcomes [37].

�Summary

qEEG can be a useful tool to augment evaluation of raw 
cEEG data in the ICU setting. Properly used, qEEG methods 
can reduce review time while maintaining adequate sensitiv-
ity. qEEG may reduce the burden of raw EEG review by 
expert encephalographers as well, since studies have shown 
that at least some qEEG trends can be evaluated by novices 
with minimal training to identify seizures and other patterns 
of interest. The increased employment of qEEG could poten-
tially make tele-EEG review more feasible, thereby increas-
ing the availability of EEG data at institutions which would 
not otherwise have these resources. Most importantly, the 
use of existing qEEG tools can facilitate real-time monitor-
ing, which is vital to optimizing care of patients in the ICU 
setting.

There are still limitations with using existing qEEG tech-
nology that have proven challenging to overcome thus far. 
One of the most prominent limitations is that unlike EMU 
populations, seizures in critically ill patients frequently 
exhibit patterns of rhythmicity and evolution that are slower 
and may be harder to identify based on current algorithms 
[8]. Additionally, because of the variation in patterns seen in 
ICU patients, it is often difficult to have high expert interra-
ter reliability in review of the raw EEG [38]. Thus, some of 
the limitations in sensitivities of qEEG methods may be 
related to this inherent inconsistency. There is also some 
concern that the false-positive rates for seizure identification 
are of concern as patients may be exposed to anticonvulsive 
therapy or anesthetics unnecessarily. Furthermore, some 
argue that these false-positive identifications may increase 
the burden of electroencephalographers to review the raw 
data and communicate misidentified events to the clinical 
providers. At present, it is still important to avoid using 
qEEG in isolation. Instead, it is best used as an adjunct to 
review of the raw EEG.

There are many directions in which qEEG can advance in 
the near future. A useful first step would be to develop stan-
dardized terminology with which to describe the most com-
mon physiologic and artifactual spectrogram patterns 
observed. By cataloging the common patterns and 
standardizing terminology, studies can better develop and 
cross-validate the sensitivity and specificity of these qEEG 
patterns to the raw EEG patterns. It may also help in the 
development of more uniform training modules for non-
electrophysiology expert staff members who become 
involved in monitoring qEEG data at the bedside. In this 

Fig. 4.24  Alpha-delta ratio (ADR). As the alpha power in a spectrogram decreases relative to delta frequency power, there is a decrease in the 
alpha-delta ratio
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chapter, we introduced the use of some informal terminology 
(regular flame, choppy flame, broadband monotonous, nar-
rowband monotonous) that could perhaps serve as a seed to 
develop such nomenclature.

Another important problem is determining the degree to 
which the information generated by qEEG (or EEG in gen-
eral) impacts intervention and/or outcome in ICU patients. 
One of the main advantages of qEEG is the improved effi-
ciency by which data can be reviewed. Does this or can this 
faster evaluation impact real-time clinical decision making? 
Are patients being clinically reexamined or scanned or 
receiving increased interventions based upon the informa-
tion conveyed, and if so, does this lead to net benefit? A 
related topic is whether such efficiency can be improved by 
training a wider variety of staff members. The studies dis-
cussed above have shown that non-expert reviewers can be 
trained in evaluating qEEG with relatively preserved sensi-
tivity. However, high false-positive rates remain problem-
atic. Would this lead to overtreatment in certain cases? 
Alternatively, would the burden of cross-checking by neuro-
physiologists outweigh any benefit of training non-expert 
readers? Improved training programs for using qEEG tech-
nology will likely improve the clinical utility of qEEG, as 
will the development of a well-calibrated standardized 
terminology.

These issues are vital to the future of qEEG since these 
methods are meant to improve the delivery of care and hope-
fully patient outcomes. There has already been an exponen-
tial growth of interest in qEEG. This will likely continue as 
the field strives to improve qEEG algorithms and increase its 
integration into the real-time assessment of ICU patients.
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