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Abstract The cardiovascular diseases depend directly on the blood flow
dynamics. The mathematical modeling and numerical simulations are expected to
play an important role to predict the genesis of the atherosclerosis and the forma-
tion and rupture of the aneurysms. In the present work the numerical solutions for
the oscillatory flow velocity due to the Newtonian and the non-Newtonian (Car-
reau) model are constructed for a straight long tube and for a tube (artery) with
a model aneurysm. The numerical solutions are obtained by the finite-difference
method (FDM) for the straight tube and by the software ANSYS/FLUENT for both
geometries. The numerical results obtained by the ANSYS/FLUENT for a straight
long tube are validated by the analytical and numerical solutions using the FDM for
the Newtonian and Carreau models for differentWomersley numbers, correspondent
to different tube radii. The obtained peak wall shear stresses from the oscillatory flow
in the straight long tube are lower than those in the tube with the model aneurysm,
which can be used as an indicator for further clinical examinations.
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1 Introduction

In most cases the in vivo measurement techniques are unable to prevent the cardio-
vascular diseases evolution, which depends directly on the blood flow dynamics. One
of the most dangerous diseases is that of the formation and rupture of different artery
aneurysms. The study of the blood flow in tubes can be treated as a flow model in
different types of arteries.

The blood is a suspension of particles and plasma, which has a non-Newtonian
character as a fluid. It is a typical representative of the shear thinning fluids with
an apparent viscosity dependent on the shear rate, i.e. its viscosity continuously
decreases or increases with the shear rate increase or decrease reaching two different
upper and lower plateaus independent of the further change of the shear rate. Several
non-Newtonian models are used to express the blood rheology: the Carreau model
[1–5], the Carreau-Yasuda model [1, 6–9], the Casson model [1, 3, 8], the Power law
model [1, 3, 4] and others. Some of these models, such as that of Carreau, give a non-
linear dependence of the shear stress on the shear rate. Since the shear rate changes
significantly in the arteries with non-constant cross section, the viscosity could not be
taken as a constant. Thismeans that there are no analytical solutions for the bloodflow
in arteries. The proper knowledge of the viscosity leads to a proper knowledge of the
Wall Shear Stresses (WSS), which are of a major importance for the prediction of an
aneurysm rupture. The problem becomes more complicated if the pulsatile character
of the blood flow is considered. It occurs that the blood flowcan be approximatedwith
the Newtonian fluid flow in the larger arteries, e.g. in the aorta, while in the narrow
arteries the non-Newtonian character of the blood flow is essential. The analysis of
non-Newtonian flows in infinitely long tubes is very important when studying the
blood flow in different types of arteries. The well known analytical solution proposed
by Womersley [10] is often applied to approximate the pulsative velocity of blood
flow in arteries, when the fluid is regarded as Newtonian. However, if non-Newtonian
models are applied for the blood viscosity, the flow solution can be obtained only
numerically. For example, the Lattice BoltzmannMethod is applied in [8] for the 2D
oscillatory Newtonian and non-Newtonian flows in straight and curved tubes. The
viscosity is given by the models of Casson and Carreau-Yasuda. The authors show
that the difference between the velocity and theWall Shear Stresses (WSS) calculated
by the Newtonian viscosity model and by the non-Newtonian models increases with
the decrease of the Womersley number, which expresses the relation between the
oscillatory inertia and viscous forces.

In this paper we investigate numerically the non-Newtonian oscillatory flow of
blood in a long straight tube and in a tube with a model aneurysm, using the Car-
reau viscosity model. The numerical simulations are performed by the software
ANASYS/FLUENT for different Womersley numbers correspondent to different
tube radii. The obtained solution for the velocity in the straight tube will be compared
with the analytical solution for the Newtonian fluid model and with the numerically
obtained solution (by the FDM) for the Carreau viscosity model given in [11].
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2 Problem Statement

The blood is assumed incompressible with constant density ρ and apparent viscosity
μapp (constant for the Newtonian blood model and defined by a non-linear function
of the shear rate for the non-Newtonian blood model).

Twodifferent axisymmetrical geometries are considered in cylindrical coordinates
(x, r, ϕ), where x is the axial coordinate: a straight circular tube with radius R and a
circular tube with entry radius R and a model aneurysm given by the Gaussian shape
function [12], as shown in Fig. 1:

r(x) = R + H exp(− x2

2W 2
), (1)

where H and W are the aneurysm height and width.
The equations of motion and continuity in a vector form are:

ρ(
∂v
∂t

+ v · ∇v) = −∇p + ∇ · T, (2)

∇ · v = 0, (3)

where v = (u, v,w) is the velocity vector, p is the pressure, T = f (Ṡ) is the viscous
stress tensor, with Ṡ—the shear rate tensor.

For a very long (infinite) tube, we obtain v = w = 0 and u = u(r, t) from the
Eq. (3). In this case the shear stress tensor has only one non-zero term τ = μapp(γ̇ )γ̇ ,

where γ̇ = ∂u

∂r
. The system (2) transforms into a single equation for the axial velocity

u:

ρ
∂u

∂t
= −∂p

∂x
+ 1

r

∂

∂r
(μappr

∂u

∂r
) (4)

Fig. 1 The Gaussian model
of an aneurysm at R = 1,
H = R and W = R
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The boundary conditions for the velocity u are the no-slip condition u = 0 at r = R

and the symmetry condition
∂u

∂r
= 0 at r = 0. For the pressure gradient we consider

the case of an oscillatory function in time −∂p

∂x
= A cos(nt), where A is the pulse

amplitude and n is the angular frequency.
The Carreau model of blood when treated as a non-Newtonian fluid is chosen

with apparent viscosity μapp that is usually given [2] by the following expression -
further denoted by μc:

μc = μ∞ + (μ0 − μ∞)[1 + λ2γ̇ 2](nc−1)/2, (5)

where λ and nc are empirically determined. For human blood [2]: μ0 = 0.056Pas,
μ∞ = 0.00345Pas, λ = 3.313s and nc = 0.3568.

3 Analysis of the Results

3.1 Long Straight Tube

The Eq. (4) is dimensionlized using the following characteristic scales: R as a charac-
teristic length (r = RY ), 1/n as a characteristic time (t = T/n),μ∞ as a characteristic
viscosity (μc = μ̄cμ∞):

1

Y

∂

∂Y
(μ̄cY

∂u

∂Y
) − α2 ∂u

∂T
+ R2A

μ∞
cos(T) = 0, (6)

where 0 ≤ Y ≤ 1,
∂u(0,T)

∂Y
= 0, u(1,T) = 0 and α = R

√
ρn

μ∞
is the Womersley

number.
The analytical solution of Eq. (6) is the so called Womersley solution [10] for the

Newtonian viscosity model:

un = Real

[
iA

nρ

(
J0(i3/2αY)

J0(i3/2α)
− 1

)
exp(iT)

]
, (7)

where J0 is the Bessel function of ‘zero-th’ order.
The presented here results are for a human carotid artery with a radius R =

0.0031m at blood density ρ = 1000kg/m3, pulse frequency of oscillations n = 2.4π
(correspondent to 72 heart beats per minute) and a pressure gradient amplitude
A = 6000Pa/m (45mm mercury column per meter). In this case α = 4.58 and the
maximum Reynolds number achieved during the blood oscillatory flow is around
530. The cross-section mean velocity based on the solution (7) is:



Newtonian and Non-Newtonian Pulsatile Blood Flow … 191

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Y

u 
[m

/s
]

1s

2s

5s

3s

4s

Fig. 2 Comparison between the axial velocities u of the Newtonian model (dotted lines) and of
the Carreau model (solid lines) at different instants of time t: 1, 2, 3, 4, 5 s. (the different colors
correspond to different times)

ūn = 0.5868 sin(T + 0.3605) (8)

For the Carreau viscosity model Eq. (6) is solved numerically by the FDM of
Crank-Nicholson with time and space steps O(10−3) giving relative error O(10−6).
The numerical solution has been approximated to obtain its mean velocity:

ūc = 0.5799 sin(T + 0.3867) (9)

Newtonian andCarreau velocities are presented in Fig. 2 for different times t. It iswell
seen the fast change of the velocity profile in time. However, the Carreau velocities
are quite similar to the Newtonian ones, except in the symmetry axis region, i.e.,
near to Y = 0, which is due to the big difference in viscosities at the small velocity
gradient there. As a whole, the difference between the two solutions increases with
the decrease of the Womersley number, i.e., with the decrease of the tube radius
(artery), found in our previous paper [11]. This has been observed also in the 2D
case [8, 13, 14].

The WSS can be obtained from the velocity solution by the following formula:

WSS = μapp
∂u

∂r
|r=R (10)
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Table 1 Absolute values of the Wall Shear Stress (WSS)

Newtonian (Pa) Carreau (Pa)

1 s 3.25 3.5

2 s 0.88 0.95

3 s 3.75 4

4 s 1.5 1.7

5 s 2.85 3

The absolute values of the WSS for the considered example are given in Table1 for
the times t = 1, 2, 3, 4, 5s.

The obtained peaks of WSS for the human carotid artery are in the experimental
limits [15]: 2.5–4.3Pa. TheWSS of the Carreau model are slightly higher from those
of the Newtonian model and are in a small phase shift, as found in [11].

The full system of equations (2) and (3) have been solved numerically by the
softwareANSYS/FLUENT for a straight long tube (1000 times longer than its radius)
using a mesh of 40000 elements and 84042 nodes. The obtained results for the axial
velocity u have been verified by the Womersley solution Eq. (7) (for the Newtonian
fluid) and by the numerical solution found by the FDM (for the Carreau viscosity
model). The relative error for both cases is less than 4%.

3.2 Artery with Model Aneurysm

The numerical calculations of the Eqs. (2) and (3) in the case of the model aneurysm
given by the shape formula (1) has been performed atH = W = R = 0.0031m. The
aneurysm is situated in the middle of the tube, which is long enough to achieve
the straight tube flow (discussed in the previous subsection) in the regions before
and after the aneurysm. Here the length is taken to be 0.62m, such that the axial
coordinate is −0.31m ≤ x ≤ 0.31m. The used mesh for the calculations with the
ANSYS/FLUENT in this domain consists by 156000 cells and 160040 nodes. The
boundary condition at the inlet of the tube for the velocity is to be equal to the
mean axial velocity un from Eq. (8) for the Newtonian model and by uc from Eq. (9)
for the Carreau model. The other boundary conditions are a constant pressure at
the outlet and the usual no-slip condition on the wall. The results show that besides
the axial velocity u, the velocity vector has also a radial non-zero component v in
the aneurysm region. The appearance of v is connected to the toroidal vortices in the
aneurysm part. This can be seen from Fig. 3, where the velocity vectors are colored
according to the axial velocity magnitude at time t = 5s in the Newtonian viscosity
case.

It is interesting to show the axial velocity distribution along the symmetry axis
r = 0 for different times. In the aneurysm region its character is uneven depending
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Fig. 3 The velocity vectors of the Newtonian model at time t = 5s colored by the magnitude of
the axial velocity u

on the time instant, which is shown in Fig. 4. As it is seen the Newtonian and Carreau
velocity profiles are similar in the straight tube region (before and after the aneurysm),
which is in a good comparison with the corresponding plots in Fig. 2.

TheWSS in the aneurysm region are calculated by the full shear rate, as the radial
velocity as well as its gradient on the wall are non-zeros:

WSS = μapp(
∂v

∂x
+ ∂u

∂r
) |r=R (11)

The obtained absolute values of the WSS (|WSS|) in the tube with the aneurysm
are quite different from those in the straight tube region, which is plotted in Fig. 5
for different times. The comparison between the results in Fig. 5 and those in Table1
shows that some of the peak |WSS| for the aneurysm are more than two times higher
than those of the straight tube. In general the Carreau |WSS| are slightly higher than
the Newtonian ones, but in the aneurysm region they are almost equal in some places
along the aneurysm width, while in others are quite different. This fact can be used
as an indicator for further clinical studies.
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Fig. 4 Comparison between the axial velocities u(x, 0, 0) on the centerline of the Newtonianmodel
(red lines) and of the Carreau model (blue lines) at different instants of time t: (a) 1 s, (b) 2 s, (c) 3 s,
(d) 4 s and (e) 5 s
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Fig. 5 Comparison between the absolute values of the WSS of the Newtonian model (red lines)
and of the Carreau model (blue lines) at different instants of time t: (a) 1 s, (b) 2 s, (c) 3 s, (d) 4 s
and (e) 5 s
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4 Conclusion

The numerical solutions for the oscillatory flow velocity due to the Newtonian
and Carreau model are constructed numerically for a straight long tube and for
a tube (artery) with a model aneurysm. The numerical solutions are obtained
by a finite-difference method (FDM) for the straight tube and using the soft-
ware ANSYS/FLUENT for both cases. The numerical results obtained by the
ANSYS/FLUENT for the velocity and WSS in a straight long tube are validated
with the analytical and numerical solutions by FDM for Newtonian and Carreau
models. The obtained peak WSS from the oscillatory flow in a tube with model
aneurysm are higher than those in a straight long tube.

The obtained results for the Carreau model flow characteristics can be used for
future studies with experimentally registered oscillatory pressure gradient. In order
to predict the real WSS it is necessary to use the geometry of a patient based artery
with aneurysm and to take into account the fluid structure interaction of the blood
flow in a deformable artery, whose characteristics are based on experimental results
of the wall artery structure.
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