
Recent Advances in Graph Partitioning

Aydın Buluç1, Henning Meyerhenke2, Ilya Safro3, Peter Sanders2,
and Christian Schulz2(B)

1 Computational Research Division,
Lawrence Berkeley National Laboratory, Berkeley, USA

2 Institute of Theoretical Informatics,
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

christian.schulz@kit.edu
3 School of Computing, Clemson University, Clemson, SC, USA

Abstract. We survey recent trends in practical algorithms for balanced
graph partitioning, point to applications and discuss future research
directions.

1 Introduction

Graphs are frequently used by computer scientists as abstractions when mod-
eling an application problem. Cutting a graph into smaller pieces is one of the
fundamental algorithmic operations. Even if the final application concerns a dif-
ferent problem (such as traversal, finding paths, trees, and flows), partitioning
large graphs is often an important subproblem for complexity reduction or par-
allelization. With the advent of ever larger instances in applications such as
scientific simulation, social networks, or road networks, graph partitioning (GP)
therefore becomes more and more important, multifaceted, and challenging. The
purpose of this paper is to give a structured overview of the rich literature, with
a clear emphasis on explaining key ideas and discussing recent work that is
missing in other overviews. For a more detailed picture on how the field has
evolved previously, we refer the interested reader to a number of surveys. Bichot
and Siarry [22] cover studies on GP within the area of numerical analysis. This
includes techniques for GP, hypergraph partitioning and parallel methods. The
book discusses studies from a combinatorial viewpoint as well as several applica-
tions of GP such as the air traffic control problem. Schloegel et al. [191] focus on
fast graph partitioning techniques for scientific simulations. In their account of
the state of the art in this area around the turn of the millennium, they describe
geometric, combinatorial, spectral, and multilevel methods and how to combine
them for static partitioning. Load balancing of dynamic simulations, parallel
aspects, and problem formulations with multiple objectives or constraints are
also considered. Monien et al. [156] discuss heuristics and approximation algo-
rithms used in the multilevel GP framework. In their description they focus
mostly on coarsening by matching and local search by node-swapping heuristics.
Kim et al. [119] cover genetic algorithms.

c© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 117–158, 2016.
DOI: 10.1007/978-3-319-49487-6 4

118 A. Buluç et al.

Our survey is structured as follows. First, Sect. 2 introduces the most impor-
tant variants of the problem and their basic properties such as NP-hardness.
Then Sect. 3 discusses exemplary applications including parallel processing, road
networks, image processing, VLSI design, social networks, and bioinformatics.
The core of this overview concerns the solution methods explained in Sects. 4, 5,
6 and 7. They involve a surprising variety of techniques. We begin in Sect. 4 with
basic, global methods that “directly” partition the graph. This ranges from very
simple algorithms based on breadth first search to sophisticated combinatorial
optimization methods that find exact solutions for small instances. Also meth-
ods from computational geometry and linear algebra are being used. Solutions
obtained in this or another way can be improved using a number of heuristics
described in Sect. 5. Again, this ranges from simple-minded but fast heuristics
for moving individual nodes to global methods, e.g., using flow or shortest path
computations. The most successful approach to partitioning large graphs – the
multilevel method – is presented in Sect. 6. It successively contracts the graph to
a more manageable size, solves the base instance using one of the techniques from
Sect. 4, and – using techniques from Sect. 5 – improves the obtained partition
when uncontracting to the original input. Metaheuristics are also important. In
Sect. 7 we describe evolutionary methods that can use multiple runs of other
algorithms (e.g., multilevel) to obtain high quality solutions. Thus, the best
GP solvers orchestrate multiple approaches into an overall system. Since all of
this is very time consuming and since the partitions are often used for parallel
computing, parallel aspects of GP are very important. Their discussion in Sect. 8
includes parallel solvers, mapping onto a set of parallel processors, and migration
minimization when repartitioning a dynamic graph. Section 9 describes issues of
implementation, benchmarking, and experimentation. Finally, Sect. 10 points to
future challenges.

2 Preliminaries

Given a number k ∈ N>1 and an undirected graph G = (V,E) with non-negative
edge weights, ω : E → R>0, the graph partitioning problem (GPP) asks for a
partition Π of V with blocks of nodes Π = (V1, . . . , Vk):

1. V1 ∪ · · · ∪ Vk = V

2. Vi ∩ Vj = ∅ ∀i �= j.

A balance constraint demands that all blocks have about equal weights. More
precisely, it requires that, ∀i ∈ {1, . . . , k} : |Vi| ≤ Lmax:= (1 + ε)
|V |/k� for
some imbalance parameter ε ∈ R≥0. In the case of ε = 0, one also uses the term
perfectly balanced. Sometimes we also use weighted nodes with node weights
c : V → R>0. Weight functions on nodes and edges are extended to sets of such
objects by summing their weights. A block Vi is overloaded if |Vi| > Lmax. A clus-
tering is also a partition of the nodes. However, k is usually not given in advance,
and the balance constraint is removed. Note that a partition is also a clustering of

Recent Advances in Graph Partitioning 119

a graph. In both cases, the goal is to minimize or maximize a particular objective
function. We recall well-known objective functions for GPP in Sect. 2.1. A node v
is a neighbor of node u if there is an edge {u, v} ∈ E. If a node v ∈ Vi has a neigh-
bor w ∈ Vj , i �= j, then it is called boundary node. An edge that runs between
blocks is also called cut edge. The set Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj} is the
set of cut edges between two blocks Vi and Vj . An abstract view of the par-
titioned graph is the so called quotient graph or communication graph, where
nodes represent blocks, and edges are induced by connectivity between blocks.
There is an edge in the quotient graph between blocks Vi and Vj if and only if
there is an edge between a node in Vi and a node in Vj in the original, parti-
tioned graph. The degree d(v) of a node v is the number of its neighbors. An
adjacency matrix of a graph is a |V | × |V | matrix describing node connectivity.
The element au,v of the matrix specifies the weight of the edge from node u to
node v. It is set to zero if there is no edge between these nodes. The Laplacian
matrix of a graph G is defined as L = D − A, where D is the diagonal matrix
expressing node degrees, and A is the adjacency matrix. A cycle in a directed
graph with negative weight is also called negative cycle. A matching M ⊆ E is
a set of edges that do not share any common nodes, i. e., the graph (V,M) has
maximum degree one.

2.1 Objective Functions

In practice, one often seeks to find a partition that minimizes (or maximizes) an
objective. Probably the most prominent objective function is to minimize the
total cut ∑

i<j

ω(Eij). (1)

Other formulations of GPP exist. For instance when GP is used in parallel com-
puting to map the graph nodes to different processors, the communication volume
is often more appropriate than the cut [100]. For a block Vi, the communica-
tion volume is defined as comm(Vi) :=

∑
v∈Vi

c(v)D(v), where D(v) denotes the
number of different blocks in which v has a neighbor node, excluding Vi. The
maximum communication volume is then defined as maxi comm(Vi), whereas
the total communication volume is defined as

∑
i comm(Vi). The maximum com-

munication volume was used in one subchallenge of the 10th DIMACS Challenge
on Graph Partitioning and Graph Clustering [13]. Although some applications
profit from other objective functions such as the communication volume or block
shape (formalized by the block’s aspect ratio [56], minimizing the cut size has
been adopted as a kind of standard. One reason is that cut optimization seems to
be easier in practice. Another one is that for graphs with high structural locality
the cut often correlates with most other formulations but other objectives make
it more difficult to use a multilevel approach.

There are also GP formulations in which balance is not directly encoded in the
problem description but integrated into the objective function. For example, the

120 A. Buluç et al.

expansion of a non-trivial cut (V1, V2) is defined as ω(E12)/min(c(V1), c(V2)). Sim-
ilarly, the conductance of such a cut is defined as ω(E12)/min(vol(V1), vol(V2)),
where vol(S) :=

∑
v∈S d(v) denotes the volume of the set S.

As an extension to the problem, when the application graph changes over
time, repartitioning becomes necessary. Due to changes in the underlying appli-
cation, a graph partition may become gradually imbalanced due to the introduc-
tion of new nodes (and edges) and the deletion of others. Once the imbalance
exceeds a certain threshold, the application should call the repartitioning rou-
tine. This routine is to compute a new partition Π ′ from the old one, Π. In
many applications it is favorable to keep the changes between Π and Π ′ small.
Minimizing these changes simultaneously to optimizing Π ′ with respect to the
cut (or a similar objective) leads to multiobjective optimization. To avoid the
complexity of the latter, a linear combination of both objectives seems feasible
in practice [193].

2.2 Hypergraph Partitioning

A hypergraph H = (V,E) is a generalization of a graph in which an edge (usu-
ally called hyperedge or net) can connect any number of nodes. As with graphs,
partitioning a hypergraph also means to find an assignment of nodes to differ-
ent blocks of (mostly) equal size. The objective function, however, is usually
expressed differently. A straightforward generalization of the edge cut to hyper-
graphs is the hyperedge cut. It counts the number of hyperedges that connect
different blocks. In widespread use for hypergraph partitioning, however, is the
so-called (λ−1) metric, CV (H,Π) =

∑
e∈E(λ(e,Π)−1), where λ(e,Π) denotes

the number of distinct blocks connected by the hyperedge e and Π the partition
of H’s vertex set.

One drawback of hypergraph partitioning compared to GP is the necessity
of more complex algorithms—in terms of implementation and running time,
not necessarily in terms of worst-case complexity. Paying this price seems only
worthwhile if the underlying application profits significantly from the difference
between the graph and the hypergraph model.

To limit the scope, we focus in this paper on GP and forgo a more
detailed treatment of hypergraph partitioning. Many of the techniques we
describe, however, can be or have been transferred to hypergraph partition-
ing as well [33,34,66,162,208]. One important application area of hypergraph
partitioning is VLSI design (see Sect. 3.5).

2.3 Hardness Results and Approximation

Partitioning a graph into k blocks of roughly equal size such that the cut met-
ric is minimized is NP-complete (as decision problem) [79,106]. Andreev and
Räcke [4] have shown that there is no constant-factor approximation for the per-
fectly balanced version (ε = 0) of this problem on general graphs. If ε ∈ (0, 1],
then an O

(
log2 n

)
factor approximation can be achieved. In case an even larger

imbalance ε > 1 is allowed, an approximation ratio of O(log n) is possible [65].

Recent Advances in Graph Partitioning 121

The minimum weight k-cut problem asks for a partition of the nodes into k non-
empty blocks without enforcing a balance constraint. Goldschmidt et al. [88]
proved that, for a fixed k, this problem can be solved optimally in O(nk2

). The
problem is NP-complete [88] if k is not part of the input.

For the unweighted minimum bisection problem, Feige and Krauthgamer [68]
have shown that there is an O

(
log1.5 n

)
approximation algorithm and an O(log n)

approximation for minimum bisection on planar graphs. The bisection problem
is efficiently solvable if the balance constraint is dropped – in this case it is
the minimum cut problem. Wagner et al. [211] have shown that the minimum
bisection problem becomes harder the more the balance constraint is tightened
towards the perfectly balanced case. More precisely, if the block weights are
bounded from below by a constant, i. e., |Vi| ≥ C, then the problem is solvable
in polynomial time. The problem is NP-hard if the block weights are constrained
by |Vi| ≥ αnδ for some α, δ > 0 or if |Vi| = n

2 . The case |Vi| ≥ α log n for some
α > 0 is open. Note that the case |Vi| ≥ αnδ also implies that the general GPP
with similar lower bounds on the block weights is NP-hard.

If the balance constraint of the problem is dropped and one uses a different
objective function such as sparsest cut, then there are better approximation
algorithms. The sparsest cut objective combines cut and balance into a single
objective function. For general graphs and the sparsest cut metric, Arora et al.
[7,8] achieve an approximation ratio of O

(√
log n

)
in Õ(n2) time.

Being of high theoretical importance, most of the approximation algorithms
are not implemented, and the approaches that implement approximation algo-
rithms are too slow to be used for large graphs or are not able to compete with
state-of-the-art GP solvers. Hence, mostly heuristics are used in practice.

3 Applications of Graph Partitioning

We now describe some of the applications of GP. For brevity this list is not
exhaustive.

3.1 Parallel Processing

Perhaps the canonical application of GP is the distribution of work to processors
of a parallel machine. Scientific computing applications such as sparse direct
and iterative solvers extensively use GP to ensure load balance and minimize
communication. When the problem domain does not change as the computation
proceeds, GP can be applied once in the beginning of the computation. This is
known as static partitioning.

Periodic repartitioning, explained in Sect. 2.1, proved to be useful for scientific
computing applications with evolving computational domains such as Adaptive
Mesh Refinement (AMR) or volume rendering [11]. The graph model can be
augmented with additional edges and nodes to model the migration costs, as
done for parallel direct volume rendering of unstructured grids [11], an important
problem in scientific visualization.

122 A. Buluç et al.

Parallel Graph Computations. GP is also used to partition graphs for parallel
processing, for problems such as graph eigenvalue computations [25], breadth-
first search [31], triangle listing [43], PageRank and connected components [181].
In computationally intensive graph problems, such as finding the eigenvectors
and eigenvalues of graphs, multilevel methods that are tailored to the character-
istics of real graphs are suitable [1].

Mesh Partitioning. A mesh or grid approximates a geometric domain by dividing
it into smaller subdomains. Hendrickson defines it as “the scaffolding upon which
a function is decomposed into smaller pieces” [96]. Mesh partitioning involves
mapping the subdomains of the mesh to processors for parallel processing, with
the objective of minimizing communication and load imbalance. A partial dif-
ferential equation (PDE) that is discretized over a certain grid can be solved by
numerous methods such as the finite differences method or the finite elements
method. The discretization also defines a system of linear equations that can be
represented by a sparse matrix. While it is always possible to use that sparse
matrix to do the actual computation over the mesh or grid, sometimes this can
be wasteful when the matrix need not be formed explicitly. In the absence of
an explicit sparse matrix, the GP solvers first define a graph from the mesh.
The right mesh entity to use as the nodes of the graph can be ambiguous and
application dependent. Common choices are mesh nodes, groups of mesh nodes
that need to stay together, and the dual of mesh nodes. Choosing groups of
mesh nodes (such as small regular meshes [74]) with appropriate weighting as
graph nodes makes GP cost effective for large problem sizes when the over-
head for per-node partitioned graphs would be too big. Recent work by Zhou
et al. [222] gives a thorough treatment of extreme-scale mesh partitioning and
dynamic repartitioning using graph models. A variety of solution methodologies
described in Sect. 6, such as the multilevel and geometric methods, has been
successfully applied to mesh partitioning.

3.2 Complex Networks

In addition to the previously mentioned task of network data distribution across
a cluster of machines for fast parallel computations, complex networks introduced
numerous further applications of GPP. A common task in these applications is to
identify groups of similar entities whose similarity and connectivity is modeled
by the respective networks. The quality of the localizations is quantified with
different domain-relevant objectives. Many of them are based on the principle of
finding groups of entities that are weakly connected to the rest of the network.
In many cases such connectivity also represents similarity. In the context of
optimization problems on graphs, by complex networks we mean weighted graphs
with non-trivial structural properties that were created by real-life or modelling
processes [159]. Often, models and real-life network generation processes are not
well understood, so designing optimization algorithms for such graphs exhibit a
major bottleneck in many applications.

Recent Advances in Graph Partitioning 123

Power Grids. Disturbances and cascading failures are among the central prob-
lems in power grid systems that can cause catastrophic blackouts. Splitting a
power network area into self-sufficient islands is an approach to prevent the
propagation of cascading failures [132]. Often the cut-based objectives of the
partitioning are also combined with the load shedding schemes that enhance the
robustness of the system and minimize the impact of cascading events [133].
Finding vulnerabilities of power systems by GPP has an additional difficulty.
In some applications, one may want to find more than one (nearly) minimum
partitioning because of the structural difference between the solutions. Spectral
GP (see Sect. 4.2) is also used to detect contingencies in power grid vulnerability
analysis by splitting the network into regions with excess generation and excess
load [60].

Geographically Embedded Networks. Recent advances of location-aware devices
(such as GPS) stimulated a rapid growth of streaming spatial network data
that has to be analyzed by extremely fast algorithms. These networks model
entities (nodes) tied to geographic places and links that represent flows such as
migrations, vehicle trajectories, and activities of people [54]. In problems related
to spatial data and geographical networks, the cut-based objective of GP (and
clustering) is often reinforced by the spatial contiguity constraints.

Biological Networks. Many complex biological systems can be modeled by graph-
theoretic representations. Examples include protein-protein interactions, and
gene co-expression networks. In these networks nodes are biological entities (such
as genes and proteins) and edges correspond to their common participation in
some biological process. Such processes can vary from simple straightforward
interactions (such as protein-protein interaction and gene-gene co-expression) to
more complex relationships in which more than two entities are involved. Parti-
tioning and clustering of such networks may have several goals. One of them is
related to data reduction given an assumption that clustered nodes behave bio-
logically similarly to each other. Another one is the detection of some biological
processes by finding clusters of involved nodes. For details see [109,154].

Social Networks. Identification of community structure is among the most
popular topics in social network science. In contrast to the traditional GPP,
community detection problems rarely specify the number of clusters a priori.
Notwithstanding this difference, GP methods contributed a lot of their tech-
niques to the community detection algorithms [76]. Moreover, GP solvers are
often used as first approximations for them. We refer the reader to examples of
methods where GP is used for solving the community detection problem [158].

3.3 Road Networks

GP is a very useful technique to speed up route planning [48,52,118,129,138,
153]. For example, edges could be road segments and nodes intersections.1

1 Sometimes more complex models are used to model lanes, turn costs etc.

124 A. Buluç et al.

Lauther [129] introduced the arc-flags algorithm, which uses a geometric
partitioning approach as a preprocessing step to reduce the search space of
Dijkstra’s algorithm. Möhring et al. [153] improved this method in several ways.
Using high quality graph partitions turns out to be one key improvement here
since this reduces the preprocessing cost drastically. One reason is that road
networks can be partitioned using surprisingly small cuts but these are not easy
to find.

Schulz et al. [196] propose a multilevel algorithm for routing based on pre-
computing connections between border nodes of a graph partition. This was one
of the first successful speedup technique for shortest paths. It was outclassed
later by other hierarchy based methods, and, somewhat surprisingly resurfaced
after Delling et al. [48,52] did thorough algorithm engineering for this approach.
Again, a key improvement was to use high quality graph partitions. Since the
approach excels at fast recomputation of the preprocessing information when the
edge weights change, the method is now usually called customizable route plan-
ning. Luxen and Schieferdecker [138] use GP to efficiently compute candidate
sets for alternative routes in road networks and Kieritz et al. [118] parallelize
shortest-path preprocessing and query algorithms. Maue et al. [141] show how
to use precomputed distances between blocks of a partition to make the search
goal directed. Here, block diameter seems more relevant than cut size, however.

3.4 Image Processing

Image segmentation is a fundamental task in computer vision for which GP and
clustering methods have become among the most attractive solution techniques.
The goal of image segmentation is to partition the pixels of an image into groups
that correspond to objects. Since the computations preceding segmentation are
often relatively cheap and since the computations after segmentation work on a
drastically compressed representation of the image (objects rather than pixels),
segmentation is often the computationally most demanding part in an image
processing pipeline. The image segmentation problem is not well-posed and can
usually imply more than one solution. During the last two decades, graph-based
representations of an image became very popular and gave rise to many cut-
based approaches for several problems including image segmentation. In this
representation each image pixel (or in some cases groups of pixels) corresponds to
a node in a graph. Two nodes are connected by a weighted edge if some similarity
exists between them. Usually, the criteria of similarity is a small geodesic distance
which can result in mesh-like graphs with four or more neighbors for each node.
The edge weights represent another measure of (dis)similarity between nodes
such as the difference in the intensity between the connected pixels (nodes).

GP can be formulated with different objectives that can explicitly reflect
different definitions of the segmented regions depending on the applications.
The classical minimum cut formulation of the GP objective (1) can lead in
practice to finding too small segmented objects. One popular modification of the
objective that was adopted in image segmentation, called normalized cut, is given
by ncut(A,B) = ω(EAB)/vol(A) + ω(EAB)/vol(B). This objective is similar to

Recent Advances in Graph Partitioning 125

the conductance objective described in Sect. 2.1. Many efficient algorithms were
proposed for solving GPP with the normalized cut objective. Among the most
successful are spectral and multilevel approaches. Another relevant formulation
of the partitioning objective which is useful for image segmentation is given by
optimizing the isoperimetric ratio for sets [89]. For more information on graph
partitioning and image segmentation see [32,169].

3.5 VLSI Physical Design

Physical design of digital circuits for very large-scale integration (VLSI) systems
has a long history of being one of the most important customers of graph and
hypergraph partitioning, often reinforced by several additional domain relevant
constraints. The partitioning should be accomplished in a reasonable compu-
tation time, even for circuits with millions of modules, since it is one of the
bottlenecks of the design process. The goal of the partitioning is to reduce the
VLSI design complexity by partitioning it into smaller components (that can
range from a small set of field-programmable gate arrays to fully functional inte-
grated circuits) as well as to keep the total length of all the wires short. The
typical optimization objective (see (1)) is to minimize the total weight of connec-
tions between subcircuits (blocks), where nodes are the cells, i.e., small logical or
functional units of the circuit (such as gates), and edges are the wires. Because
the gates are connected with wires with more than two endpoints, hypergraphs
model the circuit more accurately. Examples of additional constraints for the
VLSI partitioning include information on the I/O of the circuit, sets of cells that
must belong to the same blocks, and maximum cut size between two blocks. For
more information about partitioning of VLSI circuits see [45,110].

4 Global Algorithms

We begin our discussion of the wide spectrum of GP algorithms with methods
that work with the entire graph and compute a solution directly. These algo-
rithms are often used for smaller graphs or are applied as subroutines in more
complex methods such as local search or multilevel algorithms. Many of these
methods are restricted to bipartitioning but can be generalized to k-partitioning
for example by recursion.

After discussing exact methods in Sect. 4.1 we turn to heuristic algorithms.
Spectral partitioning (Sect. 4.2) uses methods from linear algebra. Graph growing
(Sect. 4.3) uses breadth first search or similar ways to directly add nodes to a
block. Flow computations are discussed in Sect. 4.4. Section 4.5 summarizes a
wide spectrum of geometric techniques. Finally, Sect. 4.5 introduces streaming
algorithms which work with a very limited memory footprint.

4.1 Exact Algorithms

There is a large amount of literature on methods that solve GPP optimally. This
includes methods dedicated to the bipartitioning case [5,6,28,49,51,69,70,93,94,

126 A. Buluç et al.

111,134,197] and some methods that solve the general GPP [71,198]. Most of
the methods rely on the branch-and-bound framework [126].

Bounds are derived using various approaches: Karisch et al. [111] and
Armbruster [5] use semi-definite programming, and Sellman et al. [197] and
Sensen [198] employ multi-commodity flows. Linear programming is used by
Brunetta et al. [28], Ferreira et al. [71], Lisser and Rendl [134] and by Arm-
bruster et al. [6]. Hager et al. [93,94] formulate GPP in form of a continuous
quadratic program on which the branch and bound technique is applied. The
objective of the quadratic program is decomposed into convex and concave com-
ponents. The more complicated concave component is then tackled by an SDP
relaxation. Felner [70] and Delling et al. [49,51] utilize combinatorial bounds.
Delling et al. [49,51] derive the bounds by computing minimum s-t cuts between
partial assignments (A,B), i. e., A,B ⊆ V and A ∩ B = ∅. The method can
partition road networks with more than a million nodes, but its running time
highly depends on the bisection width of the graph.

In general, depending on the method used, two alternatives can be observed.
Either the bounds derived are very good and yield small branch-and-bound trees
but are hard to compute. Or the bounds are somewhat weaker and yield larger
trees but are faster to compute. The latter is the case when using combinatorial
bounds. On finite connected subgraphs of the two dimensional grid without holes,
the bipartitioning problem can be solved optimally in O

(
n4

)
time [69]. Recent

work by Bevern et al. [19] looks at the parameterized complexity for computing
balanced partitions in graphs.

All of these methods can typically solve only very small problems while having
very large running times, or if they can solve large bipartitioning instances using
a moderate amount of time [49,51], highly depend on the bisection width of
the graph. Methods that solve the general GPP [71,198] have immense running
times for graphs with up to a few hundred nodes. Moreover, the experimental
evaluation of these methods only considers small block numbers k ≤ 4.

4.2 Spectral Partitioning

One of the first methods to split a graph into two blocks, spectral bisection,
is still in use today. Spectral techniques were first used by Donath and Hoff-
man [58,59] and Fiedler [73], and have been improved subsequently by others
[15,26,98,172,200]. Spectral bisection infers global information of the connectiv-
ity of a graph by computing the eigenvector corresponding to the second smallest
eigenvalue of the Laplacian matrix L of the graph. This eigenvector z2 is also
known as Fiedler vector ; it is the solution of a relaxed integer program for cut
optimization. A partition is derived by determining the median value m in z2
and assigning all nodes with an entry smaller or equal to m to V1 and all others
to V2.

The second eigenvector can be computed using a modified Lanczos
algorithm [125]. However, this method is expensive in terms of running time.
Barnard and Simon [15] use a multilevel method to obtain a fast approxima-
tion of the Fiedler vector. The algorithmic structure is similar to the multilevel

Recent Advances in Graph Partitioning 127

method explained in Sect. 6, but their method coarsens with independent node
sets and performs local improvement with Rayleigh quotient iteration. Hendrick-
son and Leland [98] extend the spectral method to partition a graph into more
than two blocks by using multiple eigenvectors; these eigenvectors are compu-
tationally inexpensive to obtain. The method produces better partitions than
recursive bisection, but is only useful for the partitioning of a graph into four
or eight blocks. The authors also extended the method to graphs with node and
edge weights.

4.3 Graph Growing

A very simple approach for obtaining a bisection of a graph is called graph
growing [81,113]. Most of its variants are based on breadth-first search. Its sim-
plest version works as follows. Starting from a random node v, the nodes are
assigned to block V1 using a breadth-first search (BFS) starting at v. The search
is stopped after half of the original node weights are assigned to this block and
V2 is set to V \V1. This method can be combined with a local search algorithm
to improve the partition. Multiple restarts of the algorithm are important to get
a good solution. One can also try to find a good starting node by looking at a
node that has maximal distance from a random seed node [81]. Variations of the
algorithm always add the node to the block that results in the smallest increase
in the cut [113]. An extension to k > 2 blocks and with iterative improvement
is described in Sect. 5.5.

4.4 Flows

The well-known max-flow min-cut theorem [75] can be used to separate two node
sets in a graph by computing a maximum flow and hence a minimum cut between
them. This approach completely ignores balance, and it is not obvious how to
apply it to the balanced GPP. However, at least for random regular graphs with
small bisection width this can be done [29]. Maximum flows are also often used
as a subroutine. Refer to Sect. 5.4 for applications to improve a partition and
to Sect. 6.4 for coarsening in the context of the multilevel framework. There are
also applications of flow computations when quality is measured by expansion
or conductance [3,127].

4.5 Geometric Partitioning

Partitioning can utilize the coordinates of the graph nodes in space, if avail-
able. This is especially useful in finite element models and other geometrically-
defined graphs from traditional scientific computing. Here, geometrically
“compact” regions often correspond to graph blocks with small cut. Partition-
ing using nodal coordinates comes in many flavors, such as recursive coordinate
bisection (RCB) [200] and inertial partitioning [67,221]. In each step of its recur-
sion, RCB projects graph nodes onto the coordinate axis with the longest expan-
sion of the domain and bisects them through the median of their projections.

128 A. Buluç et al.

The bisecting plane is orthogonal to the coordinate axis, which can create par-
titions with large separators in case of meshes with skewed dimensions. Inertial
partitioning can be interpreted as an improvement over RCB in terms of worst
case performance because its bisecting plane is orthogonal to a plane L that
minimizes the moments of inertia of nodes. In other words, the projection plane
L is chosen such that it minimizes the sum of squared distances to all nodes.

The random spheres algorithm of Miller et al. [83,152] generalizes the RCB
algorithm by stereographically projecting the d dimensional nodes to a random
d + 1 dimensional sphere which is bisected by a plane through its center point.
This method gives performance guarantees for planar graphs, k-nearest neighbor
graphs, and other “well-behaved” graphs.

Other representatives of geometry-based partitioning algorithms are space-
filling curves [14,105,171,223] which reduce d-dimensional partitioning to the
one-dimensional case. Space filling curves define a bijective mapping from V
to {1, . . . , |V |}. This mapping aims at the preservation of the nodes’ locality in
space. The partitioning itself is simpler and cheaper than RCB once the bijective
mapping is constructed. A generalization of space-filling curves to general graphs
can be done by so-called graph-filling curves [190].

A recent work attempts to bring information on the graph structure into the
geometry by embedding arbitrary graphs into the coordinate space using a mul-
tilevel graph drawing algorithm [121]. For a more detailed, albeit not very recent,
treatment of geometric methods, we refer the interested reader to Schloegel
et al. [191].

4.6 Streaming Graph Partitioning (SGP)

Streaming data models are among the most popular recent trends in big data
processing. In these models the input arrives in a data stream and has to be
processed on the fly using much less space than the overall input size. SGP
algorithms are very fast. They are even faster than multilevel algorithms but give
lower solution quality. Nevertheless, many applications that require extremely
fast repartitioning methods (such as those that deal with dynamic networks) can
still greatly benefit from the SGP algorithms when an initial solution obtained
by a stronger (static data) algorithm is supplied as an initial ordering. For details
on SGP we refer the reader to [160,203,209].

5 Iterative Improvement Heuristics

Most high quality GP solvers iteratively improve starting solutions. We outline
a variety of methods for this purpose, moving from very fine-grained localized
approaches to more global techniques.

5.1 Node-Swapping Local Search

Local search is a simple and widely used metaheuristic for optimization that iter-
atively changes a solution by choosing a new one from a neighborhood. Defining

Recent Advances in Graph Partitioning 129

the neighborhood and the selection strategy allows a wide variety of techniques.
Having the improvement of paging properties of computer programs in mind,
Kernighan and Lin [117] were probably the first to define GPP and to provide
a local search method for this problem. The selection strategy finds the swap of
node assignments that yields the largest decrease in the total cut size. Note that
this “decrease” is also allowed to be negative. A round ends when all nodes have
been moved in this way. The solution is then reset to the best solution encoun-
tered in this round. The algorithm terminates when a round has not found an
improvement.

A major drawback of the KL method is that it is expensive in terms of
asymptotic running time. The implementation assumed in [117] takes time
O

(
n2 log n

)
and can be improved to O(m max(log n,Δ)) where Δ denotes the

maximum degree [64]. A major breakthrough is the modification by Fiduccia and
Mattheyses [72]. Their carefully designed data structures and adaptations yield
the KL/FM local search algorithm, whose asymptotic running time is O(m).
Bob Darrow was the first who implemented the KL/FM algorithm [72].

Karypis and Kumar [114] further accelerated KL/FM by only allowing
boundary nodes to move and by stopping a round when the edge cut does not
decrease after x node moves. They improve quality by random tie breaking and
by allowing additional rounds even when no improvements have been found.

A highly localized version of KL/FM is considered in [161]. Here, the search
spreads from a single boundary node. The search stops when a stochastic model
of the search predicts that a further improvement has become unlikely. This
strategy has a better chance to climb out of local minima and yields improved
cuts for the GP solvers KaSPar [161] and KaHIP [183].

Rather than swapping nodes, Holtgrewe et al. move a single node at a
time allowing more flexible tradeoffs between reducing the cut or improving
balance [102].

Helpful Sets by Diekmann et al. [55,155] introduce a more general neigh-
borhood relation in the bipartitioning case. These algorithms are inspired by a
proof technique of Hromkovič and Monien [103] for proving upper bounds on
the bisection width of a graph. Instead of migrating single nodes, whole sets of
nodes are exchanged between the blocks to improve the cut. The running time
of the algorithm is comparable to the KL/FM algorithm, while solution quality
is often better than other methods [155].

5.2 Extension to k-way Local Search

It has been shown by Simon and Teng [201] that, due to the lack of global
knowledge, recursive bisection can create partitions that are very far away from
the optimal partition so that there is a need for k-way local search algorithms.
There are multiple ways of extending the KL/FM algorithm to get a local search
algorithm that can improve a k-partition.

One early extension of the KL/FM algorithm to k-way local search uses
k(k − 1) priority queues, one for each type of move (source block, target block)

130 A. Buluç et al.

[97,182]. For a single movement one chooses the node that maximizes the gain,
breaking ties by the improvement in balance.

Karypis and Kumar [114] present a k-way version of the KL/FM algorithm
that runs in linear time O(m). They use a single global priority queue for all
types of moves. The priority used is the maximum local gain, i. e., the maximum
reduction in the cut when the node is moved to one of its neighboring blocks.
The node that is selected for movement yields the maximum improvement for
the objective and maintains or improves upon the balance constraint.

Most current local search algorithms exchange nodes between blocks of the
partition trying to decrease the cut size while also maintaining balance. This
highly restricts the set of possible improvements. Sanders and Schulz [186,195]
relax the balance constraint for node movements but globally maintain (or
improve) balance by combining multiple local searches. This is done by reducing
the combination problem to finding negative cycles in a graph, exploiting the
existence of efficient algorithms for this problem.

5.3 Tabu Search

A more expensive k-way local search algorithm is based on tabu search [86,87],
which has been applied to GP by [16–18,78,175]. We briefly outline the method
reported by Galinier et al. [78]. Instead of moving a node exactly once per
round, as in the traditional versions of the KL/FM algorithms, specific types of
moves are excluded only for a number of iterations. The number of iterations
that a move (v, block) is excluded depends on an aperiodic function f and the
current iteration i. The algorithm always moves a non-excluded node with the
highest gain. If the node is in block A, then the move (v,A) is excluded for f(i)
iterations after the node is moved to the block yielding the highest gain, i. e.,
the node cannot be put back to block A for f(i) iterations.

5.4 Flow Based Improvement

Sanders and Schulz [183,185] introduce a max-flow min-cut based technique to
improve the edge cut of a given bipartition (and generalize this to k-partitioning
by successively looking at pairs of blocks that are adjacent in the quotient graph).
The algorithm constructs an s-t flow problem by growing an area around the
given boundary nodes/cut edges. The area is chosen such that each s-t cut
in this area corresponds to a feasible bipartition of the original graph, i. e., a
bipartition that fulfills the balance constraint. One can then apply a max-flow
min-cut algorithm to obtain a min-cut in this area and hence a nondecreased cut
between the blocks. There are multiple improvements to extend this method, for
example, by iteratively applying the method, searching in larger areas for feasible
cuts, or applying a heuristic to output better balanced minimum cuts by using
the given max-flow.

Recent Advances in Graph Partitioning 131

5.5 Bubble Framework

Diekmann et al. [57] extend graph growing and previous ideas [216] to obtain
an iterative procedure called Bubble framework, which is capable of partitioning
into k > 2 well-shaped blocks. Some applications profit from good geometric
block shapes, e. g., the convergence rate of certain iterative linear solvers.

Graph growing is extended first by carefully selecting k seed nodes that
are evenly distributed over the graph. The key property for obtaining a good
quality, however, is an iterative improvement within the second and the third
step – analogous to Lloyd’s k-means algorithm [135]. Starting from the k seed
nodes, k breadth-first searches grow the blocks analogous to Sect. 4.3, only that
the breadth-first searches are scheduled such that the smallest block receives the
next node. Local search algorithms are further used within this step to balance
the load of the blocks and to improve the cut of the resulting partition, which may
result in unconnected blocks. The final step of one iteration computes new seed
nodes for the next round. The new center of a block is defined as the node that
minimizes the sum of the distances to all other nodes within its block. To avoid
their expensive computation, approximations are used. The second and the third
step of the algorithm are iterated until either the seed nodes stop changing or no
improved partition was found for more than 10 iterations. Figure 1 illustrates the
three steps of the algorithm. A drawback of the algorithm is its computational
complexity O(km).

Subsequently, this approach has been improved by using distance measures
that better reflect the graph structure [144,151,189]. For example, Schamberger
[189] introduced the usage of diffusion as a growing mechanism around the initial
seeds and extended the method to weighted graphs. More sophisticated diffusion
schemes, some of which have been employed within the Bubble framework, are
discussed in Sect. 5.6.

5.6 Random Walks and Diffusion

A random walk on a graph starts on a node v and then chooses randomly the
next node to visit from the set of neighbors (possibly including v itself) based
on transition probabilities. The latter can for instance reflect the importance of
an edge. This iterative process can be repeated an arbitrary number of times.

Fig. 1. The three steps of the Bubble framework. Black nodes indicate the seed nodes.
On the left hand side, seed nodes are found. In the middle, a partition is found by
performing breadth-first searches around the seed nodes and on the right hand side
new seed nodes are found.

132 A. Buluç et al.

It is governed by the so-called transition matrix P, whose entries denote the
edges’ transition probabilities. More details can be found in Lovasz’s random
walk survey [136].

Diffusion, in turn, is a natural process describing a substance’s desire to
distribute evenly in space. In a discrete setting on graphs, diffusion is an iterative
process which exchanges splittable entities between neighboring nodes, usually
until all nodes have the same amount. Diffusion is a special random walk; thus,
both can be used to identify dense graph regions: Once a random walk reaches
a dense region, it is likely to stay there for a long time, before leaving it via one
of the relatively few outgoing edges. The relative size of Pt

u,v, the probability of
a random walk that starts in u to be located on v after t steps, can be exploited
for assigning u and v to the same or different clusters. This fact is used by many
authors for graph clustering, cf. Schaeffer’s survey [188].

Due to the difficulty of enforcing balance constraints, works employing these
approaches for partitioning are less numerous. Meyerhenke et al. [148] present
a similarity measure based on diffusion that is employed within the Bubble
framework. This diffusive approach bears some conceptual resemblance to spec-
tral partitioning, but with advantages in quality [150]. Balancing is enforced by
two different procedures that are only loosely coupled to the actual partitioning
process. The first one is an iterative procedure that tries to adapt the amount of
diffusion load in each block by multiplying it with a suitable scalar. Underloaded
blocks receive more load, overloaded ones less. It is then easier for underloaded
blocks to “flood” other graph areas as well. In case the search for suitable scalars
is unsuccessful, the authors employ a second approach that extends previous
work [219]. It computes a migrating flow on the quotient graph of the partition.
The flow value fij between blocks i and j specifies how many nodes have to be
migrated from i to j in order to balance the partition. As a key and novel prop-
erty for obtaining good solutions, to determine which nodes should be migrated
in which order, the diffusive similarity values computed before within the Bubble
framework are used [146,148].

Diffusion-based partitioning has been subsequently improved by Pellegrini
[165], who combines KL/FM and diffusion for bipartitioning in the tool Scotch.
He speeds up previous approaches by using band graphs that replace unimpor-
tant graph areas by a single node. An extension of these results to k-way parti-
tioning with further adaptations has been realized within the tools DibaP [143]
and PDibaP for repartitioning [147]. Integrated into a multilevel method, dif-
fusive partitioning is able to compute high-quality solutions, in particular with
respect to communication volume and block shape. It remains further work to
devise a faster implementation of the diffusive approach without running time
dependence on k.

6 Multilevel Graph Partitioning

Clearly the most successful heuristic for partitioning large graphs is the multi-
level graph partitioning approach. It consists of the three main phases outlined

Recent Advances in Graph Partitioning 133

in Fig. 2: coarsening, initial partitioning, and uncoarsening. The main goal of the
coarsening (in many multilevel approaches implemented as contraction) phase is
to gradually approximate the original problem and the input graph with fewer
degrees of freedom. In multilevel GP solvers this is achieved by creating a hier-
archy of successively coarsened graphs with decreasing sizes in such a way that
cuts in the coarse graphs reflect cuts in the fine graph. There are multiple pos-
sibilities to create graph hierarchies. Most methods used today contract sets of
nodes on the fine level. Contracting U ⊂ V amounts to replacing it with a single
node u with c(u) :=

∑
w∈U c(w). Contraction (and other types of coarsening)

might produce parallel edges which are replaced by a single edge whose weight
accumulates the weights of the parallel edges (see Fig. 3). This implies that bal-
anced partitions on the coarse level represent balanced partitions on the fine
level with the same cut value.

Coarsening is usually stopped when the graph is sufficiently small to be
initially partitioned using some (possibly expensive) algorithm. Any of the basic
algorithms from Sect. 4 can be used for initial partitioning as long as they are
able to handle general node and edge weights. The high quality of more expensive
methods that can be applied at the coarsest level does not necessarily translate
into quality at the finest level, and some GP multilevel solvers rather run several
faster but diverse methods repeatedly with different random tie breaking instead
of applying expensive global optimization techniques.

Uncoarsening consists of two stages. First, the solution obtained on the coarse
level graph is mapped to the fine level graph. Then the partition is improved, typ-
ically by using some variants of the improvement methods described in Sect. 5.
This process of uncoarsening and local improvement is carried on until the
finest hierarchy level has been processed. One run of this simple coarsening-
uncoarsening scheme is also called a V-cycle (see Fig. 2).

There are at least three intuitive reasons why the multilevel approach works
so well: First, at the coarse levels we can afford to perform a lot of work per node
without increasing the overall execution time by a lot. Furthermore, a single node
move at a coarse level corresponds to a big change in the final solution. Hence,
we might be able to find improvements easily that would be difficult to find on
the finest level. Finally, fine level local improvements are expected to run fast
since they already start from a good solution inherited from the coarse level. Also

un
co

ar
se

ni
ng

 p
ha

segraph
input

... ...

initial

contraction phase

local improvement

uncontract

partitioning

contract

match

output
partition

F−Cycle

W−Cycle

V−Cycle

Fig. 2. The multilevel approach to GP. The left figure shows a two-level contraction-
based scheme. The right figure shows different chains of coarsening-uncoarsening in the
multilevel frameworks.

134 A. Buluç et al.

multilevel methods can benefit from their iterative application (such as chains
of V-cycles) when the previous iteration’s solution is used to improve the qual-
ity of coarsening. Moreover, (following the analogy to multigrid schemes) the
inter-hierarchical coarsening-uncoarsening iteration can also be reconstructed
in such way that more work will be done at the coarser levels (see F-, and
W-cycles in Fig. 2, and [183,212]). An important technical advantage of mul-
tilevel approaches is related to parallelization. Because multilevel approaches
achieve a global solution by local processing only (though applied at different
levels of coarseness) they are naturally parallelization-schemes friendly.

6.1 Contracting a Single Edge

a+b

A+B

a b

A B

Fig. 3. An example matching and
contraction of the matched edges.

A minimalistic approach to coarsening is to
contract only two nodes connected by a sin-
gle edge in the graph. Since this leads to a
hierarchy with (almost) n levels, this method
is called n-level GP [161]. Together with a
k-way variant of the highly localized local
search from Sect. 5.1, this leads to a very
simple way to achieve high quality parti-
tions. Compared to other techniques, n-level partitioning has some overhead
for coarsening, mainly because it needs a priority queue and a dynamic graph
data structure. On the other hand, for graphs with enough locality (e.g. from
scientific computing), the n-level method empirically needs only sublinear work
for local improvement.

6.2 Contracting a Matching

The most widely used contraction strategy contracts (large) matchings, i. e., the
contracted sets are pairs of nodes connected by edges and these edges are not
allowed to be incident to each other. The idea is that this leads to a geomet-
rically decreasing size of the graph and hence a logarithmic number of levels,
while subsequent levels are “similar” so that local improvement can quickly find
good solutions. Assuming linear-time algorithms on all levels, one then gets
linear overall execution time. Conventional wisdom is that a good matching con-
tains many high weight edges since this decreases the weight of the edges in the
coarse graph and will eventually lead to small cuts. However, one also wants a
certain uniformity in the node weights so that it is not quite clear what should
be the objective of the matching algorithm. A successful recent approach is to
delegate this tradeoff between edge weights and uniformity to an edge rating
function [1,102]. For example, the function f(u, v) = ω({u,v})

c(v)c(u) works very well
[102,183] (also for n-level partitioning [161]). The concept of algebraic distance
yields further improved edge ratings [179].

The weighted matching problem itself has attracted a lot of interest moti-
vated to a large extent by its application for coarsening. Although the maximum

Recent Advances in Graph Partitioning 135

weight matching problem can be solved optimally in polynomial time, optimal
algorithms are too slow in practice. There are very fast heuristic algorithms like
(Sorted) Heavy Edge Matching, Light Edge Matching, Random Matching, etc.
[113,191] that do not give any quality guarantees however. On the other hand,
there are (near) linear time matching algorithms that are slightly more expensive
but give approximation guarantees and also seem to be more robust in practice.
For example, a greedy algorithm considering the edges in order of descending
edge weight guarantees half of the optimal edge weight. Preis’ algorithm [173]
and the Path Growing Algorithm [61] have a similar flavor but avoid sorting
and thus achieve linear running time for arbitrary edge weights. The Global
Path Algorithm (GPA) [140] is a synthesis of Greedy and Path Growing achiev-
ing somewhat higher quality in practice and is not a performance bottleneck in
many cases. GPA is therefore used in KaHIP [183,186,187]. Linear time algo-
rithms with better approximation guarantee are available [62,63,140,170] and
the simplest of them seem practical [140]. However, it has not been tried yet
whether they are worth the additional effort for GP.

6.3 Coarsening for Scale-Free Graphs

Matching-based graph coarsening methods are well-suited for coarsening graphs
arising in scientific computing. On the other hand, matching-based approaches
can fail to create good hierarchies for graphs with irregular structure. Consider
the extreme example that the input graph is a star. In this case, a matching
algorithm can contract only one edge per level, which leads to a number of levels
that is undesirable in most cases.

Abou-Rjeili and Karypis [1] modify a large set of matching algorithms such
that an unmatched node can potentially be matched with one of its neighbors
even if it is already matched. Informally speaking, instead of matchings, whole
groups of nodes are contracted to create the graph hierarchies. These approaches
significantly improve partition quality on graphs having a power-law degree dis-
tribution.

Another approach has been presented by Auer and Bisseling [10]. The authors
create graph hierarchies for social networks by allowing pairwise merges of nodes
that have the same neighbors and by merging multiple nodes, i. e., collapsing
multiple neighbors of a high degree node with this node.

Meyerhenke et al. [145,149] presented an approach that uses a modification
of the original label propagation algorithm [174] to compute size-constrained
clusterings which are then contracted to compute good multilevel hierarchies for
such graphs. The same algorithm is used as a very simple greedy local search
algorithm.

Glantz et al. [85] introduce an edge rating based on how often an edge appears
in relatively balanced light cuts induced by spanning trees. Intriguingly, this
cut-based approach yields partitions with very low communication volume for
scale-free graphs.

136 A. Buluç et al.

6.4 Flow Based Coarsening

Using max-flow computations, Delling et al. [50] find “natural cuts” separating
heuristically determined regions from the remainder of the graph. Components
cut by none of these cuts are then contracted reducing the graph size by up to
two orders of magnitude. They use this as the basis of a two-level GP solver that
quickly gives very good solutions for road networks.

6.5 Coarsening with Weighted Aggregation

Aggregation-based coarsening identifies nodes on the fine level that survive in the
coarsened graph. All other nodes are assigned to these coarse nodes. In the general
case of weighted aggregation, nodes on a fine level belong to nodes on the coarse
level with some probability. This approach is derived from a class of hierarchical
linear solvers called Algebraic Multigrid (AMG) methods [41,144]. First results
on the bipartitioning problem were obtained by Ron et al. in [176]. As AMG lin-
ear solvers have shown, weighted aggregation is important in order to express the
likelihood of nodes to belong together. The accumulated likelihoods “smooth the
solution space” by eliminating from it local minima that will be detected instante-
neously by the local processing at the uncoarsening phase. This enables a relaxed
formulation of coarser levels and avoids making hardened local decisions, such
as edge contractions, before accumulating relevant global information about the
graph.

Weighted aggregation can lead to significantly denser coarse graphs. Hence,
only the most efficient AMG approaches can be adapted to graph partitioning
successfully. Furthermore one has to avoid unbalanced node weights. In [179]
algebraic distance [38] is used as a measure of connectivity between nodes to
obtain sparse and balanced coarse levels of high quality. These principles and
their relevance to AMG are summarized in [178].

Lafon and Lee [124] present a related coarsening framework whose goal is
to retain the spectral properties of the graph. They use matrix-based argu-
ments using random walks (for partitioning methods based on random walks see
Sect. 5.6) to derive approximation guarantees on the eigenvectors of the coarse
graph. The disadvantage of this approach is the rather expensive computation
of eigenvectors.

7 Evolutionary Methods and Further Metaheuristics

In recent years a number of metaheuristics have been applied to GPP. Some of
these works use concepts that have already been very popular in other applica-
tion domains such as genetic or evolutionary algorithms. For a general overview
of genetic/evolutionary algorithms tackling GPP, we refer the reader to the
overview paper by Kim et al. [119]. In this section we focus on the descrip-
tion of hybrid evolutionary approaches that combine evolutionary ideas with the
multilevel GP framework [16,17,202]. Other well-known metaheuristics such as

Recent Advances in Graph Partitioning 137

multi-agent and ant-colony optimization [44,122], and simulated annealing [108]
are not covered here. Neither do we discuss the recently proposed metaheuris-
tics PROBE by Chardaire et al. [37] (a genetic algorithm without selection) and
Fusion-Fission by Bichot [23] (inspired by nuclear processes) in detail. Most of
these algorithms are able to produce solutions of a very high quality, but only if
they are allowed to run for a very long time. Hybrid evolutionary algorithms are
usually able to compute partitions with considerably better quality than those
that can be found by using a single execution of a multilevel algorithm.

The first approach that combined evolutionary ideas with a multilevel GP
solver was by Soper et al. [202]. The authors define two main operations, a
combine and a mutation operation. Both operations modify the edge weights
of the graph depending on the input partitions and then use the multilevel
partitioner Jostle, which uses the modified edge weights to obtain a new partition
of the original graph. The combine operation first computes node weight biases
based on the two input partitions/parents of the population and then uses those
to compute random perturbations of the edge weights which help to mimic the
input partitions. While producing partitions of very high quality, the authors
report running times of up to one week. A similar approach based on edge
weight perturbations is used by Delling et al. [50].

A multilevel memetic algorithm for the perfectly balanced graph partition
problem, i. e., ε = 0, was proposed by Benlic and Hao [16,17]. The main idea of
their algorithm is that among high quality solutions a large number of nodes
will always be grouped together. In their work the partitions represent the
individuals. We briefly sketch the combination operator for the case that two
partitions are combined. First the algorithm selects two individuals/partitions
from the population using a λ-tournament selection rule, i. e., choose λ random
individuals from the population and select the best among those if it has not
been selected previously. Let the selected partitions be P1 = (V1, . . . , Vk) and
P2 = (W1, . . . , Wk). Then sets of nodes that are grouped together, i. e.,

U :=
{{V1 ∩ Wσ(1)}, . . . , {Vk ∩ Wσ(k)}

}

are computed. This is done such that the number of nodes that are grouped
together, i. e.,

∑k
j=1 |Vj ∩ Wσ(j)|, is maximum among all permutations σ of

{1, . . . , k}. An offspring is created as follows. Sets of nodes in U will be grouped
within a block of the offspring. That means if a node is in on of the sets of U ,
then it is assigned to the same block to which it was assigned to in P1. Other-
wise, it is assigned to a random block, such that the balance constraint remains
fulfilled. Local search is then used to improve the computed offspring before it is
inserted into the population. Benlic and Hao [17] combine their approach with
tabu search. Their algorithms produce partitions of very high quality, but cannot
guarantee that the output partition fulfills the desired balance constraint.

Sanders and Schulz introduced a distributed evolutionary algorithm, KaFF-
PaE (KaFFPaEvolutionary) [184]. They present a general combine operator
framework, which means that a partition P can be combined with another
partition or an arbitrary clustering of the graph, as well as multiple mutation

138 A. Buluç et al.

operators to ensure diversity in the population. The combine operation uses a
modified version of the multilevel GP solver within KaHIP [183] that will not
contract edges that are cut in one of the input partitions/clusterings. In contrast
to the other approaches, the combine operation can ensure that the resulting off-
spring/partition is at least as good as the input partition P. The algorithm is
equipped with a scalable communication protocol similar to randomized rumor
spreading and has been able to improve the best known partitions for many
inputs.

8 Parallel Aspects of Graph Partitioning

In the era of stalling CPU clock speeds, exploiting parallelism is probably the
most important way to accelerate computer programs from a hardware perspec-
tive. When executing parallel graph algorithms without shared memory, a good
distribution of the graph onto the PEs is very important. Since parallel com-
puting is a major purpose for GP, we discuss in this section several techniques
beneficial for parallel scenarios. (i) Parallel GP algorithms are often necessary
due to memory constraints: Partitioning a huge distributed graph on a single PE
is often infeasible. (ii) When different PEs communicate with different speeds
with each other, techniques for mapping the blocks communication-efficiently
onto the PEs become important. (iii) When the graph changes over time (as
in dynamic simulations), so does its partition. Once the imbalance becomes too
large, one should find a new partition that unifies three criteria for this purpose:
balance, low communication, and low migration.

8.1 Parallel Algorithms

Parallel GP algorithms are becoming more and more important since parallel
hardware is now ubiquitous and networks grow. If the underlying application is
in parallel processing, finding the partitions in parallel is even more compelling.
The difficulty of parallelization very much depends on the circumstances. It is
relatively easy to run sequential GP solvers multiple times with randomized tie
breaking in all available decisions. Completely independent runs quickly lead to
a point of diminishing return but are a useful strategy for very simple initial
partitioners as the one described in Sect. 4.3. Evolutionary GP solvers are more
effective (thanks to very good combination operators) and scale very well, even
on loosely coupled distributed machines [184].

Most of the geometry-based algorithms from Sect. 4.5 are parallelizable and
perhaps this is one of the main reasons for using them. In particular, one can use
them to find an initial distribution of nodes to processors in order to improve the
locality of a subsequent graph based parallel method [102]. If such a “reasonable”
distribution of a large graph over the local memories is available, distributed
memory multilevel partitioners using MPI can be made to scale [40,102,112,213].
However, loss of quality compared to the sequential algorithms is a constant
concern. A recent parallel matching algorithm allows high quality coarsening,

Recent Advances in Graph Partitioning 139

though [24]. If k coincides with the number of processors, one can use parallel
edge coloring of the quotient graph to do pairwise refinement between neighbor-
ing blocks. At least for mesh-like graphs this scales fairly well [102] and gives
quality comparable to sequential solvers. This comparable solution quality also
holds for parallel Jostle as described by Walshaw and Cross [214].

Parallelizing local search algorithms like KL/FM is much more difficult since
local search is inherently sequential and since recent results indicate that it
achieves best quality when performed in a highly localized way [161,183]. When
restricting local search to improving moves, parallelization is possible, though
[2,116,128,149]. In a shared memory context, one can also use speculative
parallelism [205]. The diffusion-based improvement methods described in
Sect. 5.6 are also parallelizable without loss of quality since they are formulated
in a naturally data parallel way [147,168].

8.2 Mapping Techniques

Fundamentals. Parallel computing on graphs is one major application area of
GP, see Sect. 3.1. A partition with a small communication volume translates
directly into an efficient application if the underlying hardware provides uniform
communication speed between each pair of processing elements (PEs). Most
of today’s leading parallel systems, however, are built as a hierarchy of PEs,
memory systems, and network connections [142]. Communicating data between
PEs close to each other is thus usually less expensive than between PEs with a
high distance. On such architectures it is important to extend GPP by a flexible
assignment of blocks to PEs [207].

Combining partitioning and mapping to PEs is often done in two different
ways. In the first one, which we term architecture-aware partitioning, the cost
of communicating data between a pair of PEs is directly incorporated into the
objective function during the partitioning process. As an example, assuming that
block (or process) i is run on PE i, the communication-aware edge cut function
is

∑
i<j ω(Eij) · ωp(i, j), where ωp(i, j) specifies the cost of communicating a

unit item from PE i to PE j [218]. This approach uses a network cost matrix
(NCM) to store the distance function ωp [218, p. 603ff.]. Since the entries are
queried frequently during partitioning, a recomputation of the matrix would be
too costly. For large systems one must find a way around storing the full NCM
on each PE, as the storage size scales quadratically with the number of PEs. A
similar approach with emphasis on modeling heterogeneous communication costs
in grid-based systems is undertaken by the software PaGrid [104]. Moulitsas and
Karypis [157] perform architecture-aware partitioning in two phases. Their so-
called predictor-corrector approach concentrates in the first phase only on the
resources of each PE and computes an according partition. In the second phase
the method corrects previous decisions by modifying the partition according to
the interconnection network characteristics, including heterogeneity.

An even stronger decoupling takes place for the second problem formu-
lation, which we refer to as the mapping problem. Let Gc = (Vc, Ec, ωc) be
the communication graph that models the application’s communication, where

140 A. Buluç et al.

(u, v) ∈ Ec denotes how much data process u sends to process v. Let furthermore
Gp = (Vp, Ep, ωp) be the processor graph, where (i, j) ∈ Ep specifies the band-
width (or the latency) between PE i and PE j. We now assume that a partition
has already been computed, inducing a communication graph Gc. The task after
partitioning is then to find a communication-optimal mapping π : Vc �→ Vp.

Different objective functions have been proposed for this mapping problem.
Since it is difficult to capture the deciding hardware characteristics, most authors
concentrate on simplified cost functions – similar to the simplification of the edge
cut for graph partitioning. Apparently small variations in the cost functions
rarely lead to drastic variations in application running time. For details we refer
to Pellegrini’s survey on static mapping [167] (which we wish to update with this
section, not to replace) and the references therein. Global sum type cost functions
do not have the drawback of requiring global updates. Moreover, discontinuities
in their search space, which may inhibit metaheuristics to be effective, are usually
less pronounced than for maximum-based cost functions. Commonly used is the
sum, for all edges of Gc, of their weight multiplied by the cost of a unit-weight
communication in Gp [167]: f(Gc, Gp, π) :=

∑
(u,v)∈Ec

ωc(u, v) · ωp(π(u), π(v)).
The accuracy of the distance function ωp depends on several factors, one

of them being the routing algorithm, which determines the paths a message
takes. The maximum length over all these paths is called the dilation of the
embedding π. One simplifying assumption can be that the routing algorithm
is oblivious [101] and, for example, uses always shortest paths. When multiple
messages are exchanged at the same time, the same communication link may be
requested by multiple messages. This congestion of edges in Gp can therefore be
another important factor to consider and whose maximum (or average) over all
edges should be minimized. Minimizing the maximum congestion is NP-hard, cf.
Garey and Johnson [80] or more recent work [101,120].

Algorithms. Due to the problem’s complexity, exact mapping methods are only
practical in special cases. Leighton’s book [130] discusses embeddings between
arrays, trees, and hypercubic topologies. One can apply a wide range of opti-
mization techniques to the mapping problem, also multilevel algorithms. Their
general structure is very similar to that described in Sect. 6. The precise dif-
ferences of the single stages are beyond our scope. Instead we focus on very
recent results – some of which also use hierarchical approaches. For pointers to
additional methods we refer the reader to Pellegrini [167] and Aubanel’s short
summary [9] on resource-aware load balancing.

Greedy approaches such as the one by Brandfass et al. [27] map the node vc

of Gc with the highest total communication cost w. r. t. to the already mapped
nodes onto the node vp of Gp with the smallest total distance w. r. t. to the
already mapped nodes. Some variations exist that improve this generic approach
in certain settings [84,101].

Hoefler and Snir [101] employ the reverse Cuthill-McKee (RCM) algorithm
as a mapping heuristic. Originally, RCM has been conceived for the problem
of minimizing the bandwidth of a sparse matrix [81]. In case both Gc and Gp

Recent Advances in Graph Partitioning 141

are sparse, the simultaneous optimization of both graph layouts can lead to
reasonable mapping results, also cf. Pellegrini [166].

Many metaheuristics have been used to solve the mapping problem. Uçar et
al. [210] implement a large variety of methods within a clustering approach, among
them genetic algorithms, simulated annealing, tabu search, and particle swarm
optimization. Brandfass et al. [27] present local search and evolutionary algo-
rithms. Their experiments confirm that metaheuristics are significantly slower
than problem-specific heuristics, but obtain high-quality solutions [27,210].

Another common approach is to partition Gc – or the application graph itself
– simultaneously together with Gp into the same number of blocks k′. This is
for example done in Scotch [164]. For this approach k′ is chosen small enough
so that it is easy to test which block in Gc is mapped onto which block in Gp.
Since this often implies k′ < k, the partitioning is repeated recursively. When the
number of nodes in each block is small enough, the mapping within each block
is computed by brute force. If k′ = 2 and the two graphs to be partitioned are
the application graph and Gp, the method is called dual recursive bipartitioning.
Recently, schemes that model the processor graph as a tree have emerged [36]
in this algorithmic context and in similar ones [107].

Hoefler and Snir [101] compare the greedy, RCM, and dual recursive (bi)par-
titioning mapping techniques experimentally. On a 3D torus and two other real
architectures, their results do not show a clear winner. However, they confirm
previous studies [167] in that performing mapping at all is worthwhile. Bhatele
et al. [21] discuss topology-aware mappings of different communication patterns
to the physical topology in the context of MPI on emerging architectures. Better
mappings avoid communication hot spots and reduce communication times sig-
nificantly. Geometric information can also be helpful for finding good mappings
on regular architectures such as tori [20].

8.3 Migration Minimization During Repartitioning

Repartitioning involves a tradeoff between the quality of the new partition and
the migration volume. Larger changes between the old partition Π and the new
one Π ′, necessary to obtain a small communication volume in Π ′, result in a
higher migration volume. Different strategies have been explored in the literature
to address this tradeoff. Two simple ones and their limitations are described by
Schloegel et al. [192]. One approach is to compute a new partition Π ′ from
scratch and determine a migration-minimal mapping between Π and Π ′. This
approach delivers good partitions, but the migration volume is often very high.
Another strategy simply migrates nodes from overloaded blocks to underloaded
ones, until a new balanced partition is reached. While this leads to optimal
migration costs, it often delivers poor partition quality. To improve these simple
schemes, Schloegel et al. [193] combine the two and get the best of both in their
tool ParMetis.

Migration minimization with virtual nodes has been used in the repartition-
ing case by, among others, Hendrickson et al. [99]. For each block, an additional

142 A. Buluç et al.

node is added, which may not change its affiliation. It is connected to each node
v of the block by an edge whose weight is proportional to the migration cost for
v. Thus, one can account for migration costs and partition quality at the same
time. A detailed discussion of this general technique was made by Walshaw [217].
Recently, this technique has been extended to heterogeneous architectures by
Fourestier and Pellegrini [77].

Diffusion-based partitioning algorithms are particularly strong for repar-
titioning. PDibaP yields about 30–50% edge cut improvement compared to
ParMetis and about 15% improvement on parallel Jostle with a comparable
migration volume [147] (a short description of these tools can be found in
Sect. 9.3). Hypergraph-based repartitioning is particularly important when the
underlying problem has a rather irregular structure [34].

9 Implementation and Evaluation Aspects

The two major factors that make up successful GP algorithms are speed and
quality. It depends on the application if one of them is favored over the other
and what quality means. Speed requires an appropriate implementation, for
which we discuss the most common graph data structures in practice first in
this section. Then, we discuss GP benchmarks to assess different algorithms
and implementations, some widely used, others with potential. Finally, relevant
software tools for GP are presented.

9.1 Sparse Graph Data Structures

The graph data structure used by most partitioning software is the Compressed
Sparse Rows (CSR) format, also known as adjacency arrays. CSR is a cache and
storage efficient data structure for representing static graphs. The CSR represen-
tation of a graph can be composed of two, three, or four arrays, depending upon
whether edges or nodes are weighted. The node array (V) is of size n + 1 and
holds the node pointers. The edge array and the edge weights array, if present,
are of size m each. Each entry in the edge array (E) holds the node id of the
target node, while the corresponding entry in the edge weights array (W) holds
the weight of the edge. The node array holds the offsets to the edge array, mean-
ing that the target nodes of the outgoing edges of the ith node are accessible
from E(V(i)) to E(V(i + 1) − 1) and their respective weights are accessible from
W(V(i)) to W(V(i+1)−1). Both Metis and Scotch use a CSR-like data structure.
Since nodes can also be weighted in graph partitioning, an additional vector of
size n is often used to store node weights in that case. The CSR format can
further be improved and reinforced by rearranging the nodes with one of the
cache-oblivious layouts such as the minimum logarithmic arrangement [42,180].

Among distributed-memory GP solvers, ParMetis and PT-Scotch use a 1D
node distribution where each processor owns approximately n/p nodes and their
corresponding edges. By contrast, Zoltan uses a 2D edge distribution that has
lower communication requirements in theory.

Recent Advances in Graph Partitioning 143

9.2 Benchmarking

The Walshaw benchmark2 was created in 2000 by Soper et al. [202]. This public
domain archive, maintained by Chris Walshaw, contains 34 real-world graphs
stemming from applications such as finite element computations, matrix compu-
tations, VLSI Design and shortest path computations. More importantly, it also
contains for each graph the partitions with the smallest cuts found so far. Sub-
missions are sought that achieve improved cut values for k ∈ {2, 4, 8, 16, 32, 64}
and balance parameters ε ∈ {0, 0.01, 0.03, 0.05}, while running time is not an
issue. Currently, solutions of over 40 algorithms have been submitted to the
archive. It is the most popular GP benchmark in the literature.

There are many other very valuable sources of graphs for experimental
evaluations: the 10th DIMACS Implementation Challenge [12,13], the Florida
Sparse Matrix Collection [46], the Laboratory of Web Algorithms [220], the
Koblenz Network Collection [123], and the Stanford Large Network Dataset
Collection [131]. Many of the graphs are available at the website of the 10th
DIMACS Implementation Challenge [12,13] in the graph format that is used by
many GP software tools.

Aubanel et al. [82] present a different kind of partitioning benchmark. Instead
of measuring the edge cut of the partitions, the authors evaluate the execution
time of a parallel PDE solver to benchmark the partitions produced by differ-
ent GP solvers. The crucial module of the benchmark is parallel matrix-vector
multiplication, which is meaningful for other numerical routines as well.

Many fast methods for GPP are based on approaches in which finding a
global solution is done by local operations only. Testing if such methods are
robust against falling into local optima obtained by the local processing is a
very important task. In [179] a simple strategy for checking the quality of such
methods was presented. To construct a potentially hard instance, one may con-
sider a mixture of graphs with very different structures that are weakly connected
with each other. For example, in multilevel algorithms these graphs can force the
algorithm to contract incorrect edges that lead to uneven coarsening; also, they
can attract a “too strong” refinement to reach a local optimum, which can con-
tradict better optima at finer levels. Examples of real graphs that contain such
mixtures of structures include multi-mode networks [206] and logistics multi-
stage system networks [204]. Hardness of particular structures for GP solvers is
confirmed by generating graphs that are similar to the given ones at both coarse
and/or fine resolutions [91].

9.3 Software Tools

There are a number of software packages that implement the described algo-
rithms. One of the first publicly available software packages called Chaco is
due to Hendrickson and Leland [95]. As most of the publicly available soft-
ware packages, Chaco implements the multilevel approach outlined in Sect. 6

2 http://staffweb.cms.gre.ac.uk/∼wc06/partition/.

http://staffweb.cms.gre.ac.uk/~wc06/partition/

144 A. Buluç et al.

and basic local search algorithms. Moreover, they implement spectral partition-
ing techniques. Probably the fastest and best known system is the Metis family
by Karypis and Kumar [113,114]. kMetis [114] is focused on partitioning speed
and hMetis [115], which is a hypergraph partitioner, aims at partition quality.
PaToH [35] is also a widely used hypergraph partitioner that produces high qual-
ity partitions. ParMetis is a widely used parallel implementation of the Metis
GP algorithm [112]. Scotch [39,40,163] is a GP framework by Pellegrini. It uses
recursive multilevel bisection and includes sequential as well as parallel partition-
ing techniques. Jostle [213,215] is a well-known sequential and parallel GP solver
developed by Chris Walshaw. The commercialised version of this partitioner is
known as NetWorks. It has been able to hold most of the records in the Walshaw
Benchmark for a long period of time. If a model of the communication network
is available, then Jostle and Scotch are able to take this model into account for
the partitioning process. Party [57,155] implements the Bubble/shape-optimized
framework and the Helpful Sets algorithm. The software packages DibaP and its
MPI-parallel variant PDibaP by Meyerhenke [143,147] implement the Bubble
framework using diffusion; DibaP also uses AMG-based techniques for coarsen-
ing and solving linear systems arising in the diffusive approach. Recently, Sanders
and Schulz [186,187] released the GP package KaHIP (Karlsruhe High Quality
Partitioning) which implements for example flow-based methods, more-localized
local searches and several parallel and sequential meta-heuristics. KaHIP scored
most of the points in the GP subchallenge of the 10th DIMACS Implemen-
tation Challenge [13] and currently holds most of the entries in the Walshaw
Benchmark.

To address the load balancing problem in parallel applications, distrib-
uted versions of the established sequential partitioners Metis, Jostle and
Scotch [168,194,215] have been developed. The tools Parkway by Trifunovic and
Knottenbelt [208] as well as Zoltan by Devine et al. [53] focus on hypergraph
partitioning. Recent results of the 10th DIMACS Implementation Challenge [13]
suggest that scaling current hypergraph partitioners to very large systems is
even more challenging than graph partitioners.

10 Future Challenges

It is an interesting question to what extent the multitude of results sketched
above have reached a state of maturity where future improvements become less
and less likely. On the one hand, if you consider the Walshaw benchmark with
its moderately sized static graphs with mostly regular structure, the quality
obtained using the best current systems is very good and unlikely to improve
much in the future. One can already get very good quality with a careful appli-
cation of decade old techniques like KL/FM local search and the multilevel
approach. On the other hand, as soon as you widen your view in some direction,
there are plenty of important open problems.

Bridging Gaps Between Theory and Practice. We are far from understanding
why (or when) the heuristic methods used in practice produce solutions very

Recent Advances in Graph Partitioning 145

close to optimal. This is particularly striking for bipartitioning, where recent
exact results suggest that heuristics often find the optimal solution. In contrast,
theoretical results state that we cannot even find constant-factor approximations
in polynomial time. On the other hand, the sophisticated theoretical methods
developed to obtain approximation guarantees are currently not used in the most
successful solvers. It would be interesting to see to what extent these techniques
can yield a practical contribution. There is a similar problem for exact solvers,
which have made rapid progress for the case k = 2. However, it remains unclear
how to use them productively for larger graphs or in case k > 2, for example
as initial partitioners in a multilevel system or for pair-wise local improvement
of subgraphs. What is surprisingly successful, is the use of solvers with perfor-
mance guarantees for subproblems that are easier than partitioning. For exam-
ple, KaHIP [187] uses weighted matching, spanning trees, edge coloring, BFS,
shortest paths, diffusion, maximum flows, and strongly connected components.
Further research into this direction looks promising.

Difficult Instances. The new “complex network” applications described in
Sect. 3.2 result in graphs that are not only very large but also difficult to han-
dle for current graph partitioners. This difficulty results from an uneven degree
distribution and much less locality than observed in traditional inputs. Here,
improved techniques within known frameworks (e.g., better coarsening schemes)
and even entirely different approaches can give substantial improvements in
speed or quality.

Another area where large significant quality improvements are possible are for
large k. Already for the largest value of k considered in the Walshaw benchmark
(64), the spread between different approaches is considerable. Considering graphs
with billions of nodes and parallel machines reaching millions of processors,
k ≤ 64 increasingly appears like a special case. The multilevel method loses
some of its attractiveness for large k since even initial partitioning must solve
quite large instances. Hence new ideas are required.

Multilevel Approach. While the multilevel paradigm has been extremely suc-
cessful for GP, there are still many algorithmic challenges ahead. The variety
of continuous systems multilevel algorithms (such as various types of multigrid)
turned into a separate field of applied mathematics, and optimization. Yet, mul-
tilevel algorithms for GPP still consist in practice of a very limited number
of multilevel techniques. The situation with other combinatorial optimization
problems is not significantly different. One very promising direction is bridging
the gaps between the theory and practice of multiscale computing and multi-
level GP such as introducing nonlinear coarsening schemes. For example, a novel
multilevel approach for the minimum vertex separator problem was recently pro-
posed using the continuous bilinear quadratic program formulation [92], and a
hybrid of the geometric multigrid, and full approximation scheme for continuous
problem was used for graph drawing, and VLSI placement problems [45,177].
Development of more sophisticated coarsening schemes, edge ratings, and met-
rics of nodes’ similarity that can be propagated throughout the hierarchies are

146 A. Buluç et al.

among the future challenges for graph partitioning as well as any attempt of
their rigorous analysis.

Parallelism and Other Hardware Issues. Scalable high quality GP (with qual-
ity comparable to sequential partitioners) remains an open problem. With the
advent of exascale machines with millions of processors and possibly billions
of threads, the situation is further aggravated. Traditional “flat” partitions of
graphs for processing on such machines implies a huge number of blocks. It is
unclear how even sequential partitioners perform for such instances. Resorting to
recursive partitioning brings down k and also addresses the hierarchical nature
of such machines. However, this means that we need parallel partitioners where
the number of available processors is much bigger than k. It is unclear how to
do this with high quality. Approaches like the band graphs from PT-Scotch are
interesting but likely to fail for complex networks.

Efficient implementation is also a big issue since complex memory hierar-
chies and heterogeneity (e.g., GPUs or FPGAs) make the implementation com-
plicated. In particular, there is a mismatch between the fine-grained discrete
computations predominant in the best sequential graph partitioners and the
massive data parallelism (SIMD-instructions, GPUs,. . .) in high performance
computing which better fits highly regular numeric computations. It is therefore
likely that high quality GP will only be used for the higher levels of the machine
hierarchy, e.g., down to cluster nodes or CPU sockets. At lower levels of the
architectural hierarchy, we may use geometric partitioning or even regular grids
with dummy values for non-existing cells (e.g. [74]).

While exascale computing is a challenge for high-end applications, many
more applications can profit from GP in cloud computing and using tools for
high productivity such as Map/Reduce [47], Pregel [139], GraphLab [137], Com-
binatorial BLAS [30], or Parallel Boost Graph Library [90]. Currently, none of
these systems uses sophisticated GP software.

These changes in architecture also imply that we are no longer interested in
algorithms with little computations but rather in data access with high locality
and good energy efficiency.

Beyond Balanced k-partitioning with Cut Minimization. We have intentionally
fixed our basic model assumptions above to demonstrate that even the classi-
cal setting has a lot of open problems. However, these assumption become less
and less warranted in the context of modern massively parallel hardware and
huge graphs with complex structure. For example, it looks like the assump-
tions that low total cut is highly correlated with low bottleneck cut or com-
munication volume (see Sect. 2.1) is less warranted for complex network [31].
Eventually, we would like a dynamic partition that adapts to the communica-
tion requirements of a computation such as PageRank or BFS with changing
sets of active nodes and edges. Also, the fixed value for k becomes questionable
when we want to tolerate processor failures or achieve “malleable” computations
that adapt their resource usage to the overall situation, e.g., to the arrival or
departure of high priority jobs. Techniques like overpartitioning, repartitioning

Recent Advances in Graph Partitioning 147

(with changed k), and (re)mapping will therefore become more important. Even
running time as the bottom-line performance goal might be replaced by energy
consumption [199].

Acknowledgements. We express our gratitude to Bruce Hendrickson, Dominique
LaSalle, and George Karypis for many valuable comments on a preliminary draft of
the manuscript.

References

1. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law
graphs. In: 20th International Parallel and Distributed Processing Symposium
(IPDPS). IEEE (2006)

2. Akhremtsev, Y., Sanders, P., Schulz, C.: (Semi-)external algorithms for graph
partitioning and clustering. In: 15th Workshop on Algorithm Engineering and
Experimentation (ALENEX), pp. 33–43 (2015)

3. Andersen, R., Lang, K.J.: An algorithm for improving graph partitions. In: 19th
ACM-SIAM Symposium on Discrete Algorithms, pp. 651–660 (2008)

4. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory Comput. Syst.
39(6), 929–939 (2006)

5. Armbruster, M.: Branch-and-cut for a semidefinite relaxation of large-scale min-
imum bisection problems. Ph.D. thesis, U. Chemnitz (2007)

6. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: A comparative
study of linear and semidefinite branch-and-cut methods for solving the mini-
mum graph bisection problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.)
IPCO 2008. LNCS, vol. 5035, pp. 112–124. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-68891-4 8

7. Arora, S., Hazan, E., Kale, S.: O(
√

log n) approximation to sparsest cut in Õ(n2)
time. SIAM J. Comput. 39(5), 1748–1771 (2010)

8. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. In: 36th ACM Symposium on the Theory of Computing (STOC),
pp. 222–231 (2004)

9. Aubanel, E.: Resource-aware load balancing of parallel applications. In: Udoh, E.,
Wang, F.Z. (eds.) Handbook of Research on Grid Technologies and Utility Com-
puting: Concepts for Managing Large-Scale Applications, pp. 12–21. Information
Science Reference - Imprint of: IGI Publishing, May 2009

10. Auer, B.F., Bisseling, R.H.: Graph coarsening and clustering on the GPU. In:
Bader et al. [13], pp. 19–36

11. Aykanat, C., Cambazoglu, B.B., Findik, F., Kurc, T.: Adaptive decomposi-
tion and remapping algorithms for object-space-parallel direct volume render-
ing of unstructured grids. J. Parallel Distrib. Comput. 67(1), 77–99 (2007).
http://dx.doi.org/10.1016/j.jpdc.2006.05.005

12. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.:
Benchmarking for graph clustering and graph partitioning. In: Encyclopedia of
Social Network Analysis and Mining (to appear)

13. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning
and Graph Clustering – 10th DIMACS Impl. Challenge, Contemporary Mathe-
matics, vol. 588. AMS, Boston (2013)

14. Bader, M.: Space-Filling Curves. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-540-68891-4_8
http://dx.doi.org/10.1007/978-3-540-68891-4_8
http://dx.doi.org/10.1016/j.jpdc.2006.05.005

148 A. Buluç et al.

15. Barnard, S.T., Simon, H.D.: A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. In: 6th SIAM Conference on
Parallel Processing for Scientific Computing, pp. 711–718 (1993)

16. Benlic, U., Hao, J.K.: An effective multilevel memetic algorithm for balanced
graph partitioning. In: 22nd IEEE International Conference on Tools with Arti-
ficial Intelligence (ICTAI), pp. 121–128 (2010)

17. Benlic, U., Hao, J.K.: A multilevel memetic approach for improving graph k-
partitions. IEEE Trans. Evol. Comput. 15(5), 624–642 (2011)

18. Benlic, U., Hao, J.K.: An effective multilevel tabu search approach for balanced
graph partitioning. Comput. Oper. Res. 38(7), 1066–1075 (2011)

19. van Bevern, R., Feldmann, A.E., Sorge, M., Suchý, O.: On the parameterized com-
plexity of computing balanced partitions in graphs. CoRR abs/1312.7014 (2013).
http://arxiv.org/abs/1312.7014

20. Bhatele, A., Kale, L.: Heuristic-based techniques for mapping irregular commu-
nication graphs to mesh topologies. In: 13th Conference on High Performance
Computing and Communications (HPCC), pp. 765–771 (2011)

21. Bhatele, A., Jain, N., Gropp, W.D., Kale, L.V.: Avoiding hot-spots on two-level
Direct networks. In: ACM/IEEE Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 76:1–76:11. ACM (2011)

22. Bichot, C., Siarry, P. (eds.): Graph Partitioning. Wiley, Hoboken (2011)
23. Bichot, C.E.: A new method, the fusion fission, for the relaxed k-way graph par-

titioning problem, and comparisons with some multilevel algorithms. J. Math.
Model. Algorithms 6(3), 319–344 (2007)

24. Birn, M., Osipov, V., Sanders, P., Schulz, C., Sitchinava, N.: Efficient paral-
lel and external matching. In: Wolf, F., Mohr, B., Mey, D. (eds.) Euro-Par
2013. LNCS, vol. 8097, pp. 659–670. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40047-6 66

25. Boman, E.G., Devine, K.D., Rajamanickam, S.: Scalable matrix computations on
large scale-free graphs using 2D graph partitioning. In: ACM/IEEE Conference
for High Performance Computing, Networking, Storage and Analysis (SC) (2013)

26. Boppana, R.B.: Eigenvalues and graph bisection: an average-case analysis. In:
28th Symposium on Foundations of Computer Science (FOCS), pp. 280–285
(1987)

27. Brandfass, B., Alrutz, T., Gerhold, T.: Rank reordering for MPI
communication optimization. Comput. Fluids 80, 372–380 (2013).
http://www.sciencedirect.com/science/article/pii/S004579301200028X

28. Brunetta, L., Conforti, M., Rinaldi, G.: A branch-and-cut algorithm for the equi-
cut problem. Math. Program. 78(2), 243–263 (1997)

29. Bui, T., Chaudhuri, S., Leighton, F., Sipser, M.: Graph bisection algorithms with
good average case behavior. Combinatorica 7, 171–191 (1987)

30. Buluç, A., Gilbert, J.R.: The combinatorial BLAS: design, implementation, and
applications. Int. J. High Perform. Comput. Appl. 25(4), 496–509 (2011)

31. Buluç, A., Madduri, K.: Graph partitioning for scalable distributed graph com-
putations. In: Bader et al. [13], pp. 83–102

32. Camilus, K.S., Govindan, V.K.: A review on graph based segmentation. IJIGSP
4, 1–13 (2012)

33. Catalyurek, U., Aykanat, C.: A hypergraph-partitioning approach for coarse-
grain decomposition. In: ACM/IEEE Conference on Supercomputing (SC). ACM
(2001)

http://arxiv.org/abs/1312.7014
http://dx.doi.org/10.1007/978-3-642-40047-6_66
http://dx.doi.org/10.1007/978-3-642-40047-6_66
http://www.sciencedirect.com/science/article/pii/S004579301200028X

Recent Advances in Graph Partitioning 149

34. Catalyurek, U., Boman, E., et al.: Hypergraph-based dynamic load balancing for
adaptive scientific computations. In: 21st International Parallel and Distributed
Processing Symposium (IPDPS). IEEE (2007)

35. Çatalyürek, Ü., Aykanat, C.: PaToH: partitioning tool for hypergraphs. In: Padua,
D. (ed.) Encyclopedia of Parallel Computing. Springer, Heidelberg (2011)

36. Chan, S.Y., Ling, T.C., Aubanel, E.: The impact of heterogeneous multi-core
clusters on graph partitioning: an empirical study. Cluster Comput. 15(3), 281–
302 (2012)

37. Chardaire, P., Barake, M., McKeown, G.P.: A PROBE-based heuristic for graph
partitioning. IEEE Trans. Comput. 56(12), 1707–1720 (2007)

38. Chen, J., Safro, I.: Algebraic distance on graphs. SIAM J. Sci. Comput. 33(6),
3468–3490 (2011)

39. Chevalier, C., Pellegrini, F.: Improvement of the efficiency of genetic algorithms
for scalable parallel graph partitioning in a multi-level framework. In: Nagel, W.E.,
Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 243–252.
Springer, Heidelberg (2006). doi:10.1007/11823285 25

40. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering.
Parallel Comput. 34(6), 318–331 (2008)

41. Chevalier, C., Safro, I.: Comparison of coarsening schemes for multi-level graph
partitioning. In: Proceedings Learning and Intelligent Optimization (2009)

42. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A.,
Raghavan, P.: On compressing social networks. In: 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 219–228 (2009)

43. Chu, S., Cheng, J.: Triangle listing in massive networks and its applications. In:
17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
672–680 (2011)

44. Comellas, F., Sapena, E.: A multiagent algorithm for graph partitioning. In: Roth-
lauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E.,
Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H.
(eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 279–285. Springer, Heidelberg
(2006). doi:10.1007/11732242 25

45. Cong, J., Shinnerl, J.: Multilevel Optimization in VLSICAD. Springer, Heidelberg
(2003)

46. Davis, T.: The University of Florida Sparse Matrix Collection (2008). http://
www.cise.ufl.edu/research/sparse/matrices/

47. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: 6th Symposium on Operating System Design and Implementation (OSDI), pp.
137–150. USENIX (2004)

48. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376–387. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7 32

49. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Exact combina-
torial branch-and-bound for graph bisection. In: 12th Workshop on Algorithm
Engineering and Experimentation (ALENEX), pp. 30–44 (2012)

50. Delling, D., Goldberg, A.V., et al.: Graph partitioning with natural cuts. In:
25th International Parallel and Distributed Processing Symposium (IPDPS), pp.
1135–1146 (2011)

51. Delling, D., Werneck, R.F.: Better bounds for graph bisection. In: Epstein, L.,
Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 407–418. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33090-2 36

http://dx.doi.org/10.1007/11823285_25
http://dx.doi.org/10.1007/11732242_25
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://dx.doi.org/10.1007/978-3-642-20662-7_32
http://dx.doi.org/10.1007/978-3-642-33090-2_36

150 A. Buluç et al.

52. Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci,
V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 30–42. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8 5

53. Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Catalyurek, U.V.: Par-
allel hypergraph partitioning for scientific computing. In: Proceedings of the IEEE
International Parallel and Distributed Processing Symposium, p. 124. IPDPS 2006
(2006). http://dl.acm.org/citation.cfm?id=1898953.1899056

54. Guo, D., Ke Liao, H.J.: Power system reconfiguration based on multi-level graph
partitioning. In: 7th International Conference, GIScience 2012 (2012)

55. Diekmann, R., Monien, B., Preis, R.: Using helpful sets to improve graph bisec-
tions. In: Interconnection Networks and Mapping and Scheduling Parallel Com-
putations, vol. 21, pp. 57–73 (1995)

56. Diekmann, R., Preis, R., Schlimbach, F., Walshaw, C.: Shape-optimized mesh
partitioning and load balancing for parallel adaptive FEM. Parallel Comput. 26,
1555–1581 (2000)

57. Diekmann, R., Preis, R., Schlimbach, F., Walshaw, C.: Shape-optimized mesh par-
titioning and load balancing for parallel adaptive FEM. Parallel Comput. 26(12),
1555–1581 (2000)

58. Donath, W.E., Hoffman, A.J.: Algorithms for partitioning of graphs and computer
logic based on eigenvectors of connection matrices. IBM Tech. Discl. Bull. 15(3),
938–944 (1972)

59. Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM
J. Res. Dev. 17(5), 420–425 (1973)

60. Donde, V., Lopez, V., Lesieutre, B., Pinar, A., Yang, C., Meza, J.: Identification
of severe multiple contingencies in electric power networks. In: 37th N. A. Power
Symposium, pp. 59–66. IEEE (2005)

61. Drake, D., Hougardy, S.: A simple approximation algorithm for the weighted
matching problem. Inf. Process. Lett. 85, 211–213 (2003)

62. Drake Vinkemeier, D.E., Hougardy, S.: A linear-time approximation algorithm
for weighted matchings in graphs. ACM Trans. Algorithms 1(1), 107–122 (2005)

63. Duan, R., Pettie, S., Su, H.H.: Scaling Algorithms for Approximate and Exact
Maximum Weight Matching. CoRR abs/1112.0790 (2011)

64. Dutt, S.: New faster Kernighan-Lin-type graph-partitioning algorithms. In: 4th
IEEE/ACM Conference on Computer-Aided Design, pp. 370–377 (1993)

65. Even, G., Naor, J.S., Rao, S., Schieber, B.: Fast approximate graph partitioning
algorithms. SIAM J. Comput. 28(6), 2187–2214 (1999)

66. Fagginger Auer, B.O., Bisseling, R.H.: Abusing a hypergraph partitioner for
unweighted graph partitioning. In: Bader et al. [13], pp. 19–35

67. Farhat, C., Lesoinne, M.: Automatic partitioning of unstructured meshes for the
parallel solution of problems in computational mechanics. J. Numer. Methods
Eng. 36(5), 745–764 (1993). http://dx.doi.org/10.1002/nme.1620360503

68. Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum
bisection. SIAM J. Comput. 31(4), 1090–1118 (2002)

69. Feldmann, A.E., Widmayer, P.: An O(n4) time algorithm to compute the bisection
width of solid grid graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA
2011. LNCS, vol. 6942, pp. 143–154. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23719-5 13

70. Felner, A.: Finding optimal solutions to the graph partitioning problem with
heuristic search. Ann. Math. Artif. Intell. 45, 293–322 (2005)

http://dx.doi.org/10.1007/978-3-642-38527-8_5
http://dl.acm.org/citation.cfm?id=1898953.1899056
http://dx.doi.org/10.1002/nme.1620360503
http://dx.doi.org/10.1007/978-3-642-23719-5_13
http://dx.doi.org/10.1007/978-3-642-23719-5_13

Recent Advances in Graph Partitioning 151

71. Ferreira, C.E., Martin, A., De Souza, C.C., Weismantel, R., Wolsey, L.A.: The
node capacitated graph partitioning problem: a computational study. Math. Pro-
gram. 81(2), 229–256 (1998)

72. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network
partitions. In: 19th Conference on Design Automation, pp. 175–181 (1982)

73. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and
its application to graph theory. Czech. Math. J. 25(4), 619–633 (1975)

74. Fietz, J., Krause, M.J., Schulz, C., Sanders, P., Heuveline, V.: Optimized
hybrid parallel lattice Boltzmann fluid flow simulations on complex geome-
tries. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par
2012. LNCS, vol. 7484, pp. 818–829. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32820-6 81

75. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8(3),
399–404 (1956)

76. Fortunato, S.: Community Detection in Graphs. CoRR abs/0906.0612 (2009)
77. Fourestier, S., Pellegrini, F.: Adaptation au repartitionnement de graphes d’une

méthode d’optimisation globale par diffusion. In: RenPar’20 (2011)
78. Galinier, P., Boujbel, Z., Fernandes, M.C.: An efficient memetic algorithm for the

graph partitioning problem. Ann. Oper. Res. 191(1), 1–22 (2011)
79. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete prob-

lems. In: 6th ACM Symposium on Theory of Computing, pp. 47–63. STOC, ACM
(1974)

80. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

81. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Upper Saddle River (1981)

82. Ghazinour, K., Shaw, R.E., Aubanel, E.E., Garey, L.E.: A linear solver for bench-
marking partitioners. In: 22nd IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), pp. 1–8 (2008)

83. Gilbert, J.R., Miller, G.L., Teng, S.H.: Geometric mesh partitioning: implemen-
tation and experiments. SIAM J. Sci. Comput. 19(6), 2091–2110 (1998)

84. Glantz, R., Meyerhenke, H., Noe, A.: Algorithms for mapping parallel processes
onto grid and torus architectures. In: Proceedings of the 23rd Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based Processing (2015,
to appear). Preliminary version: http://arxiv.org/abs/1411.0921

85. Glantz, R., Meyerhenke, H., Schulz, C.: Tree-based coarsening and partition-
ing of complex networks. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 364–375. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-07959-2 31

86. Glover, F.: Tabu search – part I. ORSA J. Comput. 1(3), 190–206 (1989)
87. Glover, F.: Tabu search – part II. ORSA J. Comput. 2(1), 4–32 (1990)
88. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem

for fixed k. Math. Oper. Res. 19(1), 24–37 (1994)
89. Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmenta-

tion. IEEE Trans. Pattern Anal. Mach. Intell. 28, 469–475 (2006)
90. Gregor, D., Lumsdaine, A.: The parallel BGL: a generic library for distributed

graph computations. In: Parallel Object-Oriented Scientific Computing (POOSC)
(2005)

91. Gutfraind, A., Meyers, L.A., Safro, I.: Multiscale Network Generation. CoRR
abs/1207.4266 (2012)

http://dx.doi.org/10.1007/978-3-642-32820-6_81
http://dx.doi.org/10.1007/978-3-642-32820-6_81
http://arxiv.org/abs/1411.0921
http://dx.doi.org/10.1007/978-3-319-07959-2_31
http://dx.doi.org/10.1007/978-3-319-07959-2_31

152 A. Buluç et al.

92. Hager, W.W., Hungerford, J.T., Safro, I.: A multilevel bilinear program-
ming algorithm for the vertex separator problem. CoRR abs/1410.4885 (2014).
arXiv:1410.4885

93. Hager, W.W., Krylyuk, Y.: Graph partitioning and continuous quadratic pro-
gramming. SIAM J. Discrete Math. 12(4), 500–523 (1999)

94. Hager, W.W., Phan, D.T., Zhang, H.: An exact algorithm for graph partitioning.
Math. Program. 137(1–2), 531–556 (2013)

95. Hendrickson, B.: Chaco: Software for Partitioning Graphs. http://www.cs.sandia.
gov/bahendr/chaco.html

96. Hendrickson, B.: Graph partitioning and parallel solvers: has the emperor no
clothes? In: Ferreira, A., Rolim, J., Simon, H., Teng, S.-H. (eds.) IRREGULAR
1998. LNCS, vol. 1457, pp. 218–225. Springer, Heidelberg (1998). doi:10.1007/
BFb0018541

97. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In:
ACM/IEEE Conference on Supercomputing 1995 (1995)

98. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm
for mapping parallel computations. SIAM J. Sci. Comput. 16(2), 452–469 (1995)

99. Hendrickson, B., Leland, R., Driessche, R.V.: Enhancing data locality by using
terminal propagation. In: 29th Hawaii International Conference on System Sci-
ences (HICSS 2009), vol. 1, p. 565. Software Technology and Architecture (1996)

100. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.
Parallel Comput. 26(12), 1519–1534 (2000)

101. Hoefler, T., Snir, M.: Generic topology mapping strategies for large-scale parallel
architectures. In: ACM International Conference on Supercomputing (ICS 2011),
pp. 75–85. ACM (2011)

102. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph
partitioner. In: 24th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pp. 1–12 (2010)

103. Hromkovič, J., Monien, B.: The bisection problem for graphs of degree 4 (config-
uring transputer systems). In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp.
211–220. Springer, Heidelberg (1991). doi:10.1007/3-540-54345-7 64

104. Huang, S., Aubanel, E., Bhavsar, V.C.: PaGrid: a mesh partitioner for computa-
tional grids. J. Grid Comput. 4(1), 71–88 (2006)

105. Hungershöfer, J., Wierum, J.-M.: On the quality of partitions based on space-
filling curves. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.)
ICCS 2002. LNCS, vol. 2331, pp. 36–45. Springer, Heidelberg (2002). doi:10.1007/
3-540-47789-6 4

106. Hyafil, L., Rivest, R.: Graph partitioning and constructing optimal decision trees
are polynomial complete problems. Technical report 33, IRIA - Laboratoire de
Recherche en Informatique et Automatique (1973)

107. Jeannot, E., Mercier, G., Tessier, F.: Process placement in multicore clusters:
algorithmic issues and practical techniques. IEEE Trans. Parallel Distrib. Syst.
PP(99), 1–1 (2013)

108. Jerrum, M., Sorkin, G.B.: The metropolis algorithm for graph bisection. Discret.
Appl. Math. 82(1–3), 155–175 (1998)

109. Junker, B., Schreiber, F.: Analysis of Biological Networks. Wiley, Hoboken (2008)
110. Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design - From Graph

Partitioning to Timing Closure. Springer, Heidelberg (2011)
111. Karisch, S.E., Rendl, F., Clausen, J.: Solving graph bisection problems with semi-

definite programming. INFORMS J. Comput. 12(3), 177–191 (2000)

http://arxiv.org/abs/1410.4885
http://www.cs.sandia.gov/bahendr/chaco.html
http://www.cs.sandia.gov/bahendr/chaco.html
http://dx.doi.org/10.1007/BFb0018541
http://dx.doi.org/10.1007/BFb0018541
http://dx.doi.org/10.1007/3-540-54345-7_64
http://dx.doi.org/10.1007/3-540-47789-6_4
http://dx.doi.org/10.1007/3-540-47789-6_4

Recent Advances in Graph Partitioning 153

112. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irreg-
ular graphs. In: ACM/IEEE Supercomputing 1996 (1996)

113. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

114. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
J. Parallel Distrib. Comput. 48(1), 96–129 (1998)

115. Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: 36th
ACM/IEEE Design Automation Conference, pp. 343–348. ACM (1999)

116. Karypis, G., Kumar, V.: Parallel multilevel series k-way partitioning scheme for
irregular graphs. SIAM Rev. 41(2), 278–300 (1999)

117. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(1), 291–307 (1970)

118. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent con-
traction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83–93.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6 8

119. Kim, J., Hwang, I., Kim, Y.H., Moon, B.R.: Genetic approaches for graph par-
titioning: a survey. In: 13th Genetic and Evolutionary Computation (GECCO),
pp. 473–480. ACM (2011). http://doi.acm.org/10.1145/2001576.2001642

120. Kim, Y.M., Lai, T.H.: The complexity of congestion-1 embed-
ding in a hypercube. J. Algorithms 12(2), 246–280 (1991).
http://www.sciencedirect.com/science/article/pii/019667749190004I

121. Kirmani, S., Raghavan, P.: Scalable parallel graph partitioning. In: High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2013. ACM (2013)

122. Korosec, P., Silc, J., Robic, B.: Solving the mesh-partitioning problem with an
ant-colony algorithm. Parallel Comput. 30(5–6), 785–801 (2004)

123. Kunegis, J.: KONECT - the Koblenz network collection. In: Web Observatory
Workshop, pp. 1343–1350 (2013)

124. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: a unified framework for
dimensionality reduction, graph partioning and data set parametrization. IEEE
Trans. Pattern Anal. Mach. Intell. 28(9), 1393–1403 (2006)

125. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Natl Bur. Stand. 45(4), 255–282
(1950)

126. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960)

127. Lang, K., Rao, S.: A flow-based method for improving the expansion or
conductance of graph cuts. In: Bienstock, D., Nemhauser, G. (eds.) IPCO
2004. LNCS, vol. 3064, pp. 325–337. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25960-2 25

128. Lasalle, D., Karypis, G.: Multi-threaded graph partitioning. In: 27th International
Parallel and Distributed Processing Symposium (IPDPS), pp. 225–236 (2013)

129. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Münster GI-Days (2004)

130. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, Burlington (1992)

131. Lescovec, J.: Stanford network analysis package (SNAP). http://snap.stanford.
edu/index.html

132. Li, H., Rosenwald, G., Jung, J., Liu, C.C.: Strategic power infrastructure defense.
Proc. IEEE 93(5), 918–933 (2005)

133. Li, J., Liu, C.C.: Power system reconfiguration based on multilevel graph parti-
tioning. In: PowerTech, pp. 1–5 (2009)

http://dx.doi.org/10.1007/978-3-642-13193-6_8
http://doi.acm.org/10.1145/2001576.2001642
http://www.sciencedirect.com/science/article/pii/019667749190004I
http://dx.doi.org/10.1007/978-3-540-25960-2_25
http://dx.doi.org/10.1007/978-3-540-25960-2_25
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html

154 A. Buluç et al.

134. Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite program-
ming. Math. Program. 95(1), 91–101 (2003)

135. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

136. Lovász, L.: Random walks on graphs: a survey. Comb. Paul Erdös is Eighty 2,
1–46 (1993)

137. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning in the cloud. PVLDB
5(8), 716–727 (2012)

138. Luxen, D., Schieferdecker, D.: Candidate sets for alternative routes in road net-
works. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 260–270. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30850-5 23

139. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: ACM SIGMOD
International Conference on Management of Data (SIGMOD), pp. 135–146. ACM
(2010)

140. Maue, J., Sanders, P.: Engineering algorithms for approximate weighted matching.
In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 242–255. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72845-0 19

141. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using
precomputed cluster distances. ACM J. Exp. Algorithmics 14, 3.2:1–3.2:27 (2009)

142. Meuer, H., Strohmaier, E., Simon, H., Dongarra, J.: June 2013 — TOP500 super-
computer sites. http://top.500.org/lists/2013/06/

143. Meyerhenke, H., Monien, B., Sauerwald, T.: A new diffusion-based multilevel
algorithm for computing graph partitions. J. Parallel Distrib. Comput. 69(9),
750–761 (2009)

144. Meyerhenke, H., Monien, B., Schamberger, S.: Accelerating shape optimizing load
balancing for parallel FEM simulations by algebraic multigrid. In: 20th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), p. 57
(CD) (2006)

145. Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via
size-constrained clustering. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 351–363. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-07959-2 30

146. Meyerhenke, H.: Disturbed diffusive processes for solving partitioning problems
on graphs. Ph.D. thesis, Universität Paderborn (2008)

147. Meyerhenke, H.: Shape optimizing load balancing for MPI-parallel adaptive
numerical simulations. In: Bader et al. [13], pp. 67–82

148. Meyerhenke, H., Monien, B., Schamberger, S.: Graph partitioning and disturbed
diffusion. Parallel Comput. 35(10–11), 544–569 (2009)

149. Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph partitioning for complex
networks. In: Proceeding of the 29th IEEE International Parallel & Distributed
Processing Symposium, (IPDPS 2015) (2015 to appear). Preliminary version:
http://arxiv.org/abs/1404.4797

150. Meyerhenke, H., Sauerwald, T.: Beyond good partition shapes: an analysis of
diffusive graph partitioning. Algorithmica 64(3), 329–361 (2012)

151. Meyerhenke, H., Schamberger, S.: Balancing parallel adaptive FEM computations
by solving systems of linear equations. In: Cunha, J.C., Medeiros, P.D. (eds.)
Euro-Par 2005. LNCS, vol. 3648, pp. 209–219. Springer, Heidelberg (2005). doi:10.
1007/11549468 26

http://dx.doi.org/10.1007/978-3-642-30850-5_23
http://dx.doi.org/10.1007/978-3-540-72845-0_19
http://top.500.org/lists/2013/06/
http://dx.doi.org/10.1007/978-3-319-07959-2_30
http://dx.doi.org/10.1007/978-3-319-07959-2_30
http://arxiv.org/abs/1404.4797
http://dx.doi.org/10.1007/11549468_26
http://dx.doi.org/10.1007/11549468_26

Recent Advances in Graph Partitioning 155

152. Miller, G., Teng, S.H., Vavasis, S.: A unified geometric approach to graph sep-
arators. In: 32nd Symposium on Foundations of Computer Science (FOCS), pp.
538–547 (1991)

153. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speedup Dijkstra’s algorithm. ACM J. Exp. Algorithmics 11, 1–29
(2006, 2007)

154. Mondaini, R.: Biomat 2009: International Symposium on Mathematical and Com-
putational Biology, Brasilia, Brazil, 1–6. World Scientific (2010). http://books.
google.es/books?id=3tiLMKtXiZwC

155. Monien, B., Schamberger, S.: Graph partitioning with the party library: helpful-
sets in practice. In: 16th Symposium on Computer Architecture and High Perfor-
mance Computing, pp. 198–205 (2004)

156. Monien, B., Preis, R., Schamberger, S.: Approximation algorithms for multilevel
graph partitioning. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algo-
rithms and Metaheuristics, chap. 60, pp. 60-1–60-15. Taylor & Francis, Abingdon
(2007)

157. Moulitsas, I., Karypis, G.: Architecture aware partitioning algorithms. In: Bour-
geois, A.G., Zheng, S.Q. (eds.) ICA3PP 2008. LNCS, vol. 5022, pp. 42–53.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-69501-1 6

158. Newman, M.E.J.: Community detection and graph partitioning. CoRR
abs/1305.4974 (2013)

159. Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York
(2010)

160. Nishimura, J., Ugander, J.: Restreaming graph partitioning: simple versatile algo-
rithms for advanced balancing. In: 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD) (2013)

161. Osipov, V., Sanders, P.: n-level graph partitioning. In: Berg, M., Meyer, U. (eds.)
ESA 2010. LNCS, vol. 6346, pp. 278–289. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15775-2 24

162. Papa, D.A., Markov, I.L.: Hypergraph partitioning and clustering. In: Gonzalez,
T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, chap. 61,
pp. 61-1–61-19. CRC Press, Boca Raton (2007)

163. Pellegrini, F.: Scotch home page. http://www.labri.fr/pelegrin/scotch
164. Pellegrini, F.: Static mapping by dual recursive bipartitioning of process and archi-

tecture graphs. In: Scalable High-Performance Computing Conference (SHPCC),
pp. 486–493. IEEE, May 1994

165. Pellegrini, F.: A parallelisable multi-level banded diffusion scheme for computing
balanced partitions with smooth boundaries. In: Kermarrec, A.-M., Bougé, L.,
Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 195–204. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74466-5 22

166. Pellegrini, F.: Scotch and libScotch 5.0 user’s guide. Technical report, LaBRI,
Université Bordeaux I, December 2007

167. Pellegrini, F.: Static mapping of process graphs. In: Bichot, C.E., Siarry, P. (eds.)
Graph Partitioning, chap. 5, pp. 115–136. Wiley, Hoboken (2011)

168. Pellegrini, F.: Scotch and PT-Scotch graph partitioning software: an overview. In:
Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing, pp. 373–406.
CRC Press, Boca Raton (2012)

169. Peng, B., Zhang, L., Zhang, D.: A survey of graph theoretical approaches to image
segmentation. Pattern Recognit. 46(3), 1020–1038 (2013)

170. Pettie, S., Sanders, P.: A simpler linear time 2/3− ε approximation for maximum
weight matching. Inf. Process. Lett. 91(6), 271–276 (2004)

http://books.google.es/books?id=3tiLMKtXiZwC
http://books.google.es/books?id=3tiLMKtXiZwC
http://dx.doi.org/10.1007/978-3-540-69501-1_6
http://dx.doi.org/10.1007/978-3-642-15775-2_24
http://dx.doi.org/10.1007/978-3-642-15775-2_24
http://www.labri.fr/pelegrin/scotch
http://dx.doi.org/10.1007/978-3-540-74466-5_22

156 A. Buluç et al.

171. Pilkington, J.R., Baden, S.B.: Partitioning with space-filling curves. Technical
report CS94-349, UC San Diego, Department of Computer Science and Engineer-
ing (1994)

172. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvec-
tors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

173. Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS,
vol. 1563, pp. 259–269. Springer, Heidelberg (1999). doi:10.1007/3-540-49116-3 24

174. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76(3) (2007)

175. Rolland, E., Pirkul, H., Glover, F.: Tabu search for graph partitioning. Ann. Oper.
Res. 63(2), 209–232 (1996)

176. Ron, D., Wishko-Stern, S., Brandt, A.: An algebraic multigrid based algorithm
for bisectioning general graphs. Technical report MCS05-01, Department of Com-
puter Science and Applied Mathematics, The Weizmann Institute of Science
(2005)

177. Ron, D., Safro, I., Brandt, A.: A fast multigrid algorithm for energy minimization
under planar density constraints. Multiscale Model. Simul. 8(5), 1599–1620 (2010)

178. Ron, D., Safro, I., Brandt, A.: Relaxation-based coarsening and multiscale graph
organization. Multiscale Model. Simul. 9(1), 407–423 (2011)

179. Safro, I., Sanders, P., Schulz, C.: Advanced coarsening schemes for graph parti-
tioning. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 369–380. Springer,
Heidelberg (2012)

180. Safro, I., Temkin, B.: Multiscale approach for the network compression-friendly
ordering. J. Discret. Algorithms 9(2), 190–202 (2011)

181. Salihoglu, S., Widom, J.: GPS: a graph processing system. In: Proceedings of
the 25th International Conference on Scientific and Statistical Database Man-
agement, SSDBM, pp. 22:1–22:12. ACM (2013). http://doi.acm.org/10.1145/
2484838.2484843

182. Sanchis, L.A.: Multiple-way network partitioning. IEEE Trans. Comput. 38(1),
62–81 (1989)

183. Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–
480. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23719-5 40

184. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: 12th
Workshop on Algorithm Engineering and Experimentation (ALENEX), pp. 16–29
(2012)

185. Sanders, P., Schulz, C.: High quality graph partitioning. In: Bader et al. [13], pp.
19–36

186. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph parti-
tioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA
2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38527-8 16

187. Sanders, P., Schulz, C.: KaHIP - Karlsruhe High Quality Partitioning Homepage.
http://algo2.iti.kit.edu/documents/kahip/index.html

188. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64. http://dx.doi.
org/10.1016/j.cosrev.2007.05.001

189. Schamberger, S.: On partitioning FEM graphs using diffusion. In: HPGC Work-
shop of the 18th International Parallel and Distributed Processing Symposium
(IPDPS 2004). IEEE Computer Society (2004)

http://dx.doi.org/10.1007/3-540-49116-3_24
http://doi.acm.org/10.1145/2484838.2484843
http://doi.acm.org/10.1145/2484838.2484843
http://dx.doi.org/10.1007/978-3-642-23719-5_40
http://dx.doi.org/10.1007/978-3-642-38527-8_16
http://dx.doi.org/10.1007/978-3-642-38527-8_16
http://algo2.iti.kit.edu/documents/kahip/index.html
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.cosrev.2007.05.001

Recent Advances in Graph Partitioning 157

190. Schamberger, S., Wierum, J.M.: A locality preserving graph ordering approach
for implicit partitioning: graph-filling curves. In: 17th International Conference
on Parallel and Distributed Computing Systems (PDCS), ISCA, pp. 51–57 (2004)

191. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high-performance
scientific simulations. In: Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy,
K., Torczon, L., White, A. (eds.) Sourcebook of parallel computing, pp. 491–541.
Morgan Kaufmann Publishers, Burlington (2003)

192. Schloegel, K., Karypis, G., Kumar, V.: Multilevel diffusion schemes for reparti-
tioning of adaptive meshes. J. Parallel Distrib. Comput. 47(2), 109–124 (1997)

193. Schloegel, K., Karypis, G., Kumar, V.: A unified algorithm for load-balancing
adaptive scientific simulations. In: Supercomputing 2000, p. 59 (CD). IEEE Com-
puter Society (2000)

194. Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-
constraint graph partitioning. Concurr. Comput.: Pract. Exp. 14(3), 219–240
(2002)

195. Schulz, C.: High quality graph partititioning. Ph.D. thesis. epubli GmbH (2013)
196. Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable

information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX
2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002). doi:10.1007/
3-540-45643-0 4

197. Sellmann, M., Sensen, N., Timajev, L.: Multicommodity flow approximation
used for exact graph partitioning. In: Battista, G., Zwick, U. (eds.) ESA
2003. LNCS, vol. 2832, pp. 752–764. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39658-1 67

198. Sensen, N.: Lower bounds and exact algorithms for the graph partitioning problem
using multicommodity flows. In: Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161,
pp. 391–403. Springer, Heidelberg (2001). doi:10.1007/3-540-44676-1 33

199. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR
2010. LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19328-6 1

200. Simon, H.D.: Partitioning of unstructured problems for parallel processing. Com-
put. Syst. Eng. 2(2), 135–148 (1991)

201. Simon, H.D., Teng, S.H.: How good is recursive bisection? SIAM J. Sci. Comput.
18(5), 1436–1445 (1997)

202. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multi-
level optimisation approach to graph-partitioning. J. Glob. Optim. 29(2), 225–241
(2004)

203. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.
In: 18th ACM SIGKDD International Conference on Knowledge discovery and
data mining (KDD), pp. 1222–1230. ACM (2012)

204. Stock, L.: Strategic logistics management. Cram101 Textbook Outlines, Lightning
Source Inc. (2006). http://books.google.com/books?id=1LyCAQAACAAJ

205. Sui, X., Nguyen, D., Burtscher, M., Pingali, K.: Parallel graph partitioning on
multicore architectures. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.)
LCPC 2010. LNCS, vol. 6548, pp. 246–260. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19595-2 17

206. Tang, L., Liu, H., Zhang, J., Nazeri, Z.: Community evolution in dynamic multi-
mode networks. In: 14th ACM SIGKDD International Conference on Knowledge
discovery and data mining (KDD), pp. 677–685. ACM (2008)

http://dx.doi.org/10.1007/3-540-45643-0_4
http://dx.doi.org/10.1007/3-540-45643-0_4
http://dx.doi.org/10.1007/978-3-540-39658-1_67
http://dx.doi.org/10.1007/978-3-540-39658-1_67
http://dx.doi.org/10.1007/3-540-44676-1_33
http://dx.doi.org/10.1007/978-3-642-19328-6_1
http://dx.doi.org/10.1007/978-3-642-19328-6_1
http://books.google.com/books?id=1LyCAQAACAAJ
http://dx.doi.org/10.1007/978-3-642-19595-2_17
http://dx.doi.org/10.1007/978-3-642-19595-2_17

158 A. Buluç et al.

207. Teresco, J., Beall, M., Flaherty, J., Shephard, M.: A hierarchical partition
model for adaptive finite element computation. Comput. Method. Appl. Mech.
Eng. 184(2–4), 269–285 (2000). http://www.sciencedirect.com/science/article/
pii/S0045782599002315

208. Trifunović, A., Knottenbelt, W.J.: Parallel multilevel algorithms for hypergraph
partitioning. J. Parallel Distrib. Comput. 68(5), 563–581 (2008)

209. Tsourakakis, C.E., Gkantsidis, C., Radunovic, B., Vojnovic, M.: Fennel: streaming
graph partitioning for massive scale graphs. Technical report MSR-TR-2012-113,
Microsoft Research (2000)

210. Ucar, B., Aykanat, C., Kaya, K., Ikinci, M.: Task assignment in heterogeneous
computing systems. J. Parallel Distrib. Comput. 66(1), 32–46 (2006). http://
www.sciencedirect.com/science/article/pii/S0743731505001577

211. Wagner, D., Wagner, F.: Between min cut and graph bisection. In: Borzyszkowski,
A.M., Soko�lowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 744–750. Springer,
Heidelberg (1993). doi:10.1007/3-540-57182-5 65

212. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Ann.
Oper. Res. 131(1), 325–372 (2004)

213. Walshaw, C., Cross, M.: Mesh partitioning: a multilevel balancing and refinement
algorithm. SIAM J. Sci. Comput. 22(1), 63–80 (2000)

214. Walshaw, C., Cross, M.: Parallel mesh partitioning on distributed memory sys-
tems. In: Topping, B. (ed.) Computational Mechanics Using High Performance
Computing, pp. 59–78. Saxe-Coburg Publications, Stirling (2002). Invited chapter

215. Walshaw, C., Cross, M.: JOSTLE: parallel multilevel graph-partitioning software -
an overview. In: Mesh Partitioning Techniques and Domain Decomposition Tech-
niques, pp. 27–58. Civil-Comp Ltd. (2007)

216. Walshaw, C., Cross, M., Everett, M.G.: A localized algorithm for optimizing
unstructured mesh partitions. J. High Perform. Comput. Appl. 9(4), 280–295
(1995)

217. Walshaw, C.: Variable partition inertia: graph repartitioning and load balancing
for adaptive meshes. In: Parashar, M., Li, X. (eds.) Advanced Computational
Infrastructures for Parallel and Distributed Adaptive Applications, pp. 357–380.
Wiley Online Library, Hoboken (2010)

218. Walshaw, C., Cross, M.: Multilevel mesh partitioning for heterogeneous commu-
nication networks. Future Gener. Comp. Syst. 17(5), 601–623 (2001)

219. Walshaw, C., Cross, M., Everett, M.G.: Dynamic load-balancing for parallel adap-
tive unstructured meshes. In: Proceedings of the 8th SIAM Conference on Parallel
Processing for Scientific Computing (PPSC 1997) (1997)

220. Laboratory of Web Algorithms, University of Macedonia: Datasets. http://law.
dsi.unimi.it/datasets.php, http://law.dsi.unimi.it/datasets.php

221. Williams, R.D.: Performance of dynamic load balancing algorithms for unstruc-
tured mesh calculations. Concurr.: Pract. Exp. 3(5), 457–481 (1991)

222. Zhou, M., Sahni, O., et al.: Controlling unstructured mesh partitions for massively
parallel simulations. SIAM J. Sci. Comput. 32(6), 3201–3227 (2010)

223. Zumbusch, G.: Parallel Multilevel Methods: Adaptive Mesh Refinement and Load-
balancing. Teubner, Stuttgart (2003)

http://www.sciencedirect.com/science/article/pii/S0045782599002315
http://www.sciencedirect.com/science/article/pii/S0045782599002315
http://www.sciencedirect.com/science/article/pii/S0743731505001577
http://www.sciencedirect.com/science/article/pii/S0743731505001577
http://dx.doi.org/10.1007/3-540-57182-5_65
http://law.dsi.unimi.it/datasets.php
http://law.dsi.unimi.it/datasets.php
http://law.dsi.unimi.it/datasets.php

	Recent Advances in Graph Partitioning
	1 Introduction
	2 Preliminaries
	2.1 Objective Functions
	2.2 Hypergraph Partitioning
	2.3 Hardness Results and Approximation

	3 Applications of Graph Partitioning
	3.1 Parallel Processing
	3.2 Complex Networks
	3.3 Road Networks
	3.4 Image Processing
	3.5 VLSI Physical Design

	4 Global Algorithms
	4.1 Exact Algorithms
	4.2 Spectral Partitioning
	4.3 Graph Growing
	4.4 Flows
	4.5 Geometric Partitioning
	4.6 Streaming Graph Partitioning (SGP)

	5 Iterative Improvement Heuristics
	5.1 Node-Swapping Local Search
	5.2 Extension to k-way Local Search
	5.3 Tabu Search
	5.4 Flow Based Improvement
	5.5 Bubble Framework
	5.6 Random Walks and Diffusion

	6 Multilevel Graph Partitioning
	6.1 Contracting a Single Edge
	6.2 Contracting a Matching
	6.3 Coarsening for Scale-Free Graphs
	6.4 Flow Based Coarsening
	6.5 Coarsening with Weighted Aggregation

	7 Evolutionary Methods and Further Metaheuristics
	8 Parallel Aspects of Graph Partitioning
	8.1 Parallel Algorithms
	8.2 Mapping Techniques
	8.3 Migration Minimization During Repartitioning

	9 Implementation and Evaluation Aspects
	9.1 Sparse Graph Data Structures
	9.2 Benchmarking
	9.3 Software Tools

	10 Future Challenges
	References

