
Engineering a Lightweight and Efficient Local
Search SAT Solver

Adrian Balint and Uwe Schöning(B)

Institute of Theoretical Computer Science, Ulm University,
89069 Ulm, Germany

{adrian.balint,uwe.schoening}@uni-ulm.de

Abstract. One important category of SAT solver implementations use
stochastic local search (SLS, for short). These solvers try to find a satis-
fying assignment for the input Boolean formula (mostly, required to be
in CNF) by modifying the (mostly randomly chosen) initial assignment
by bit flips until a satisfying assignment is possibly reached. Usually such
SLS type algorithms proceed in a greedy fashion by increasing the num-
ber of satisfied clauses until some local optimum is reached. Trying to
find its way out of such local optima typically requires the use of random-
ness. We present an easy, straightforward SLS type SAT solver, called
probSAT, which uses just one simple strategy being based on biased
probabilistic flips. Within an extensive empirical study we evaluate the
current state-of-the-art solvers on a wide range of SAT problems, and
show that our approach is able to exceed the performance of other solv-
ing techniques.

1 Introduction

The SAT problem is one of the most studied NP-complete problems in computer
science. One reason is the wide range of SAT’s practical applications ranging
from hardware verification to planning and scheduling. Given a propositional
formula in CNF with variables {x1, . . . , xn} the SAT-problem consists in finding
an assignment for the variables such that all clauses are satisfied.

Stochastic local search (SLS) solvers operate on complete assignments and
try to find a solution by flipping variables according to a given heuristic. Most
SLS solvers are based on the following scheme: Initially, a random assignment
is chosen. If the formula is satisfied by the assignment the solution is found. If
not, a variable is chosen according to a (possibly probabilistic) variable selection
heuristic, which is further called pickVar. The heuristics mostly depend on some
score, which counts the number of satisfied/unsatisfied clauses, as well as other
aspects like the “age” of variables, and others. It was believed that a good
flip heuristic should be designed in a very sophisticated way to obtain a really
efficient solver. We show in the following that it is worth to “come back to
the roots” since a very elementary and (as we think) elegant design principle

c© Springer International Publishing AG 2016
L. Kliemann and P. Sanders (Eds.): Algorithm Engineering, LNCS 9220, pp. 1–18, 2016.
DOI: 10.1007/978-3-319-49487-6 1

2 A. Balint and U. Schöning

for the pickVar heuristic just based on probability distributions will do the job
extraordinary well.

It is especially popular (and successful) to pick the flip variable from an
unsatisfied clause. This is called focused local search in [14]. In each round, the
selected variable is flipped and the process starts over again until a solution is
eventually found.

Most important for the flip heuristic seems to be the score of an
assignment, i.e. the number of satisfied clauses. Considering the process of flip-
ping one variable, we get the relative score change produced by a candidate
variable for flipping as: (score after flipping minus score before flipping) which
is equal to make minus break. Here make means the number of newly satisfied
clauses which come about by flipping the variable, and break means the number
of clauses which become false by flipping the respective variable. To be more
precise, we will denote make(x, α) and break(x, α) as functions of the respec-
tive flip variable x and the actual assignment α (before flipping). Notice that
in case of focused flipping mentioned above the value of make is always
at least 1.

Most of the SLS solvers so far, if not all, follow the strategy that whenever
the score improves by flipping a certain variable from an unsatisfied clause, they
will indeed flip this variable without referring to probabilistic decisions. Only if
no improvement is possible as is the case in local minima, a probabilistic strat-
egy is performed. The winner of the SAT Competition 2011 category random
SAT, Sparrow, mainly follows this strategy but when it comes to a probabilistic
strategy it uses a probability distribution function [2]. The probability distribu-
tion in Sparrow is defined as an exponential function of the score value. In this
chapter we analyze several simple SLS solvers which are based only on proba-
bility distributions.

2 The New Algorithm Paradigm

We propose a new class of solvers here, called probSAT, which base their prob-
ability distributions for selecting the next flip variable solely on the make and
break values, but not necessarily on the value of the score = make − break, as
it was the case in Sparrow. Our experiments indicate that the influence of make
should be kept rather weak – it is even reasonable to ignore make completely,
like in implementations of WalkSAT [13]. The role of make and break in these
SLS-type algorithms should be seen in a new light. The new type of algorithm
presented here can also be applied for general constraint satisfaction problems
and works as follows.

Engineering SLS for SAT 3

Algorithm 1. ProbSAT
Input : Formula F , maxTries, maxFlips
Output: satisfying assignment α or UNKNOWN

1 for i = 1 to maxTries do
2 α ← randomly generated assignment
3 for j = 1 to maxFlips do
4 if (α is model for F) then
5 return α

6 Cu ← randomly selected unsatisfied clause
7 for x in Cu do
8 compute f(x, α)

9 var ← random variable x according to probability f(x,α)∑
z∈Cu

f(z,α)

10 α ← flip(var) in α

11 return UNKNOWN;

The idea here is that the function f should give a high value to variable
x if flipping x seems to be advantageous, and a low value otherwise. Using f
the probability distribution for the potential flip variables is calculated. The flip
probability for x is proportional to f(x, α). Letting f be a constant function
leads in the k-SAT case to the probabilities (1

k , . . . , 1
k) morphing the probSAT

algorithm to the random walk algorithm that is theoretically analyzed in [15]. In
all our experiments with various functions f we made f depend on break(x, α)
and possibly on make(x, α), and no other properties of x and α nor the history
of previous search course. In the following we analyze experimentally the effect
of several functions to be plugged in for f .

2.1 An Exponential Function

First we considered an exponential decay, 2-parameter function:

f(x, α) =
(cm)make(x,α)

(cb)break(x,α)

The parameters of the function are cb and cm. Because of the exponential func-
tions used here (think of cx = e

1
T x) this is reminiscence of the way Metropolis-

like algorithms (see [17]) select a variable. Also, this is similar to the Softmax
probabilistic decision for actions in reinforcement learning [19]. We call this the
exp-algorithm. The separation into the two base constants cm and cb will allow
us to find out whether there is a different influence of the make and the break
value – and there is one, indeed.

It seems reasonable to try to maximize make and to minimize break. There-
fore, we expect cm > 1 and cb > 1 to be good choices for these parameters.
Actually, one might expect that cm should be identical to cb such that the above
formula simplifies to cmake−break = cscore for an appropriate parameter c.

4 A. Balint and U. Schöning

To get a picture on how the performance of the solver varies for different
values of cm and cb, we have done a uniform sampling of cb ∈ [1.0, 4.0] and
of cm ∈ [0.1, 2.0] for this exponential function and of cm ∈ [−1.0, 1.0] for the
polynomial function (see below). We have then run the solver with the different
parameter settings on a set of randomly generated 3-SAT instances with 1000
variables at a clause to variable ratio of 4.26. The cutoff limit was set to 10 s.
As a performance measure we use PAR10: penalized average runtime, where a
timeout of the solver is penalized with 10·(cutoff limit). A parameter setting
where the solver is not able to solve anything has a PAR10 value of 100 in
our case.

In the case of 3-SAT a very good choice of the parameters is cb > 1 (as
expected) and cm < 1 (totally unexpected), for example, cb = 3.6 and cm = 0.5
(see Fig. 1 left upper diagram and the survey in Table 1) with small variation

Fig. 1. Parameter space performance plot: The left plots show the performance
of different combinations of cb and cm for the exponential (upper left corner) and the
polynomial (lower left corner) functions. The darker the area the better the runtime of
the solver with that parameter settings. The right plots show the performance variation
if we ignore the make values (correspond to the cut in the left plots) by setting cm = 1
for the exponential function and cm = 0 for the polynomial function.

Engineering SLS for SAT 5

depending on the considered set of benchmarks. In the interval cm ∈ [0.3, 1.8]
the optimal choice of parameters can be described by the hyperbola-like function
(cb − 1.3) · cm = 1.1. Almost optimal results were also obtained if cm is set to
1 (and cb to 2.5), see Fig. 1, both upper diagrams. In other words, the value of
make is not taken into account in this case.

As mentioned, it turns out that the influence of make is rather weak, there-
fore it is reasonable, and still leads to very good algorithms – also because the
implementation is simpler and has less overhead – if we ignore the make value
completely and consider the one-parameter function:

f(x, α) = (cb)−break(x,α)

We call this the break-only-exp-algorithm.

2.2 A Polynomial Function

Our experiments showed that the exponential decay in probability with growing
break value might be too strong in the case of 3-SAT. The above formulas have
an exponential decay in probability comparing different (say) break values. The
relative decay is the same when we compare break = 0 with break = 1, and
when we compare, say, break = 5 with break = 6. A “smoother” function for
high values would be a polynomial decay function. This led us to consider the
following, 2-parameter function (ε = 1 in all experiments):

f(x, α) =
(make(x, α))cm

(ε + break(x, α))cb

We call this the poly-algorithm. The best parameters in case of 3-SAT turned
out to be cm = −0.8 (notice the minus sign!) and cb = 3.1 (See Fig. 1, lower
part). In the interval cm ∈ [−1.0, 1.0] the optimal choice of parameters can be
described by the linear function cb + 0.9cm = 2.3. Without harm one can set
cm = 0, and then take cb = 2.3, and thus ignore the make value completely.

Ignoring the make value (i.e. setting cm = 0) brings us to the function

f(x, α) = (ε + break(x, α))−cb

We call this the break-only-poly-algorithm.

2.3 Some Remarks

As mentioned above, in both cases, the exp- and the poly-algorithm, it was a
good choice to ignore the make value completely (by setting cm = 1 in the
exp-algorithm, or by setting cm = 0 in the poly-algorithm). This corresponds to
the vertical lines in Fig. 1, left diagrams. But nevertheless, the optimal choice in
both cases, was to set cm = 0.5 and cb = 3.6 in the case of the exp-algorithm
(and similarly for the poly-algorithm.) We have 0.5make

3.6break ≈ 3.6−(break+make/2).

6 A. Balint and U. Schöning

This can be interpreted as follows: instead of the usual score = make − break a
better score measure is −(break + make/2).

The value of cb determines the greediness of the algorithm. We concentrate
on cb in this discussion since it seems to be the more important parameter.
The higher the value of cb, the more greedy is the algorithm. A low value of
cb (in the extreme, cb = 1 in the exp-algorithm) morphs the algorithm to a
random walk algorithm with flip probabilities (1

k , . . . 1
k) like the one considered

in [15]. Examining Fig. 1, almost a phase-transition can be observed. If cb falls
under some critical value, like 2.0, the expected run time increases tremendously.
Turning towards the other side of the scale, increasing the value of cb, i.e. making
the algorithm more greedy, also degrades the performance but not with such an
abrupt rise of the running time as in the other case. These observations have
also been made empirically by Hoos in [9], where he proposed to approximate
the noise value from above, rather from below.

3 Experimental Analysis of the Functions

To determine the performance of our probability distribution based solver we
have designed a wide variety of experiments. In the first part of our experiments
we try to determine good settings for the parameters cb and cm by means of
automatic configuration procedures. In the second part we will compare our
solver to other state-of-the-art solvers.

3.1 The Benchmark Formulae

All random instances used in our settings are uniform random k-SAT problems
generated with different clause to variable ratios, denoted with r. The class
of random 3-SAT problems is the best studied class of random problems and
because of this reason we have four different sets of 3-SAT instances.

1. 3sat1k [21]: 103 variables at r = 4.26 (500 instances)
2. 3sat10k [21]: 104 variables at r = 4.2 (500 instances)
3. 3satComp1: all large 3-SAT instances from the SAT Competition 2011 cate-

gory random with variables range 2 · 103 . . . 5 · 104 at r = 4.2 (100 instances)
4. 3satExtreme: 105 . . . 5 · 105 variables at r = 4.2 (180 instances)

The 5-SAT and 7-SAT problems used in our experiments come from [21]: 5sat500
(500 variables at r = 20) and 7sat90 (90 variables at r = 85). The 3sat1k,
3sat10k, 5sat500 and 7sat90 instance classes are divided into two equal sized
classes called train and test. The train set is used to determine good parameters
for cb and cm and the second class is used to report the performance. Further
we also include the set of satisfiable random and crafted instances from the SAT
Competition 2011.

1 www.satcompetition.org.

www.satcompetition.org

Engineering SLS for SAT 7

3.2 Good Parameter Setting

The problem that every solver designer is confronted with is the determination
of good parameters for its solvers. We have avoided to accomplish this task by
manual tuning but instead have used an automatic procedure.

As our parameter search space is relatively small, we have opted to use a mod-
ified version of the iterated F-Race [5] configurator, which we have implemented
in Java. The idea of F-race is relatively simple: good configurations should be
evaluated more often than poor ones which should be dropped as soon as possi-
ble. F-Race uses a familywise Friedman test (see Test 25 in [18] for more details
about the test) to check if there is a significant performance difference between
solver configurations. The test is conducted every time the solvers have run on
an instance. If the test is positive, poor configurations are dropped, and only
the good ones are further evaluated. The configurator ends when the number of
solvers left in the race is less than 2 times the number of parameters or if there
are no more instances to evaluate on.

To determine good values for cb and cm we have run our modified version
of F-Race on the training sets 3sat1k, 3sat10k, 5sat500 and 7sat90. The cutoff
time for the solvers were set to 10 s for 3sat1k and to 100 s for the rest. The best
parameter values returned by this procedure are listed in Table 1. Values for the
class of 3sat1k problems were also included, because the preliminary analysis of
the parameter search space was done on this class. The best parameter of the
break-only-exp-algorithm for k-SAT can be roughly described by the formula
cb = k0.8.

Table 1. Parameter setting for cb and cm: Each cell represents a good setting for
cb and cm dependent on the function used by the solver. Parameter values close to
these values have similar good performance.

3sat1k 3sat10k 5sat500 7sat90

exp(cb, cm) 3.6 0.5 3.97 0.3 3.1 1.3 3.2 1.4
poly(cb, cm) 3.1 −0.8 2.86 −0.81 - -
exp(cb) 2.50 2.33 3.6 4.4
poly(cb) 2.38 2.16 - -

4 Empirical Evaluation

In the second part of our experiments we compare the performance of our solvers
to that of the SAT Competition 2011 winners and also to WalkSAT [13]. An
additional comparison to a survey propagation algorithm will show how far our
probSAT local search solver can get.

8 A. Balint and U. Schöning

Soft- and Hardware. The solvers were run on a part of the bwGrid clusters [8]
(Intel Harpertown quad-core CPUs with 2.83 GHz and 8 GByte RAM). The
operating system was Scientific Linux. All experiments were conducted with
EDACC, a platform that distributes solver execution on clusters [1].

The Competitors. The WalkSAT solver is implemented within our own code
basis. We use our own implementation and not the original code (version 48)
provided by Henry Kautz2, because our implementation is approximately 1.35
times faster3.

We have used version 1.4 of the survey propagation solver provided by
Zecchina4, which was changed to be DIMACS conform. For all other solvers
we have used the binaries from the SAT Competition 20115.

Parameter Settings of Competitors. Sparrow is highly tuned on our target set of
instances and incorporates optimal settings for each set within its code. WalkSAT
[13] has only one single parameter, the walk probability wp. In case of 3-SAT
we took the optimal values for wp = 0.567 which have been established in an
extensive analysis in [11]. Because we could not find any settings for 5-SAT and 7-
SAT problems we have run our modified version of F-Race to find good settings.
For 5sat500 the configurator reported wp = 0.25 and for 7sat90 wp = 0.1. The
survey propagation solver was evaluated with the default settings reported in [6]
(fixing 5% of the variables per step).

Results. We have evaluated our solvers and the competitors on the test set of the
instance sets 3sat1k, 3sat10k, 5sat500 and 7sat90 (note that the training set was
used only for finding good parameters for the solvers). The parameter setting
for cb and cm are those from Table 1 (in case of 3-SAT we have always used the
parameters for 3sat10k). The results of the evaluations are listed in Table 2.

On the 3-SAT instances, the polynomial function yields the overall best per-
formance. On the 3-SAT competition set all of our solver variants exhibited the
most stable performance, being able to solve all problems within cutoff time.
The survey propagation solver has problems with the 3sat10k and the 3sat-
Comp problems (probably because of the relatively small number of variables).
The good performance of the break-only-poly-solver remains surprisingly good
even on the 3satExtreme set where the number of variables reaches 5 · 105 (ten
times larger than that from the SAT Competition 2011). From the class of SLS
solvers it exhibits the best performance on this set and is only approx. 2 times
slower than survey propagation. Note that a value of cb = 2.165 for the break-
only-poly solver further improved the runtime of the solver by approximately
30 % on the 3satExtreme set.

2 http://www.cs.rochester.edu/u/kautz/walksat/.
3 The latest version 50 of WalkSAT has been significantly improved, but was not

available at the time we have performed the experiments.
4 http://users.ictp.it/∼zecchina/SP/.
5 http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz.

http://www.cs.rochester.edu/u/kautz/walksat/
http://users.ictp.it/~zecchina/SP/
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-static-binaries.tar.gz

Engineering SLS for SAT 9

Table 2. Evaluation results: Each cell represents the PAR10 (Penalized average
runtime with penalization factor 10 - every unsuccessful run is penalized with 10 times
the maximum runtime.) runtime and the number of successful runs for the solvers on
the given instance set. Results are highlighted if the solver succeeded in solving all
instances within the cutoff time, or if it has the best PAR10 runtime. Cutoff times are
600 s for 3sat10k, 5sat500 and 7sat90 and 5000 s for the rest. The blank cells indicates
that we have no parameter setting worth evaluating.

3sat10k 3satComp 3satExtreme 5sat500 7sat90
exp(cb, cm) 46.6 93.84 - 12.49 201.68

(998) (500) (103) (974)
poly(cb, cm) 46.65 76.81 - - -

996 (500)

exp(cb) 53.02 126.59 - 7.84 134.06
(997) (500) (103) (984)

poly(cb) 22.80 54.37 1121.34 - -
(1000) (500) (180)

Sparrow 199.78 498.05 47419 9.52 14.94
(973) (498) (10) (103) (103)

WalkSAT 61.74 172.21 1751.77 14.71 69.34
(995) (499) (178) (103) (994)

sp 1.4 3146.17 18515.79 599.01 5856 6000
(116) (63) (180) (6) (0)

On the 5-SAT instances the exponential break-only-exp solver yields the
best performance being able to beat even Sparrow, which was the best solver for
5-SAT within the SAT Competition 2011. On the 7-SAT instances though the
performance of our solvers is relatively poor. We observed a very strong variance
of the run times on this set and it was relatively hard for the configurator to
cope with such high variances.

Overall the performance of our simple probability based solvers reaches state-
of-the-art performance and can even get into problem size regions where only
survey propagation could catch ground.

Scaling Behavior with the Number of Variables n. Experiments show that
the survey propagation algorithm scales linearly with n on formulas generated
near the threshold ratio. The same seems to hold for WalkSAT with optimal
noise as the results in [11] show. The 3satExtreme instance set contains very
large instances with varying n ∈ {105 . . . 5 ·105}. To analyze the scaling behavior
of probSAT in the break-only-poly variant we have computed for each run the
number of flips per variable performed by the solver until a solution was found.
The number of flips per variable remains constant at about 2 · 103 independent
of n. The same holds for WalkSAT, though WalkSAT seems to have a slightly
larger variance of the runtimes.

10 A. Balint and U. Schöning

Results on the SAT Competition 2011 Satisfiable Random Set. We have
compiled an adaptive version of probSAT and of WalkSAT, that first checks the
size of the clauses (i.e. k) and then sets the parameters accordingly (like Spar-
row does). We have ran these solvers on the complete satisfiable instances set
from the SAT Competition 2011 random category along with all other competi-
tion winning solvers from this category: Sparrow2011, sattime2011 and EagleUP.
Cutoff time was set to 5000 s. We report only the results on the large set, as the
medium set was completely solved by all solvers and the solvers had a median
runtime under one second. As can be seen from the results of the cactus plot in
Fig. 2, the adaptive version of probSAT would have been able to win the compe-
tition. Interestingly is to see that the adaptive version of WalkSAT would have
ranked third.

0 50 100 150

1000

2000

3000

4000

5000

number of solved instances

C
PU

 T
im

e
(s

)

Sparrow2011
EagleUP
WalkSAT adapt
sattime2011
probSAT adapt

Fig. 2. Results on the “large” set of the SAT Competition 2011 random instances
represented as a cactus plot. The x-axis represents the number of problems a solver
was able to solve ordered by runtime; the y-axis is the runtime. The lower a curve
(low runtimes) and the more it gets to the right (more problems solved) the better the
solver.

Results on the SAT Competition 2011 Satisfiable Crafted Set. We have
also run the different solvers on the satisfiable instances from the crafted set of
SAT Competition 2011 (with a cutoff time of 5000 s). The results are listed
in Table 3. We have also included the results of the best three complete solvers
from the crafted category. probSAT and WalkSAT performed best in their 7-SAT
break-only configuration solving 81 respectively 101 instances. The performance
of WalkSAT could not be improved by changing the walk probability. probSAT
though exhibited better performance with cb = 7 and a switch to the polynomial
break-only scheme, being then able to solve 93 instances. With such a high cb

value (very greedy) the probability of getting stuck in local minima is very high.
By adding a static restart strategy after 2 · 104 flips per variable probSAT was
then able to solve 99 instances (as listed in the table).

Engineering SLS for SAT 11

Table 3. Results on the crafted satisfiable instances: Each cell reports the
number of solved instances within the cutoff time (5000 s). The first line shows the
results on the original instances and the second on the preprocessed instances.

Sattime Sparrow WalkSAT probSAT MPhaseSAT

(complete)

clasp

(complete)

Crafted 107 104 101 99 93 81

Crafted pre 86 97 101 95 98 80

The high greediness level needed for WalkSAT and probSAT to solve the
crafted instances indicates that this instances might be more similar to the
7-SAT instances (generally to higher k-SAT). A confirmation of this conjec-
ture is that Sparrow with fixed parameters for 7-SAT instances could solve 103
instances vs. 104 in the default setting (which adapts the parameters according
to the maximum clause length found in the problem). We suppose that improv-
ing SLS solvers for random instances with large clause length would also yield
improvements for non random instances.

To check whether the performance of SLS solvers can be improved by pre-
processing the instances first, we have run the preprocessor of lingeling [4],
which incorporates all main preprocessing techniques, to simplify the instances.
The results unluckily show the contrary of what would have been expected (see
Table 3). None of the SLS solvers could benefit from the preprocessing step, solv-
ing equal or less instances. These results motivated the analysis of preprocess-
ing techniques in more detail, which was performed in [3]. It turns out that
bounded variable elimination, which performs variable elimination through res-
olution rules up to certain bound is a good preprocessing technique for SLS
solvers and can indeed improve the performance of SLS solvers.

Results on the SAT Challenge 2012 Random Set. We have submitted
the probSAT solver (the adaptive version) to the SAT Challenge 2012 random
satisfiable category. The results of the best performing solvers can be seen as
a cactus plot in Fig. 3. probSAT was the second best solver on these instances
been only outperformed by CCAsat.

While the difference to all other competitors is significant in terms of a Mann-
Whitney-U test, the difference to CCAsat is not.

Results on the SAT Competition 2013 Satisfiable Random Set. We
have also submitted an improved version of probSAT to the SAT Competition
2013 to the Random Satisfiable category. The implementation of probSAT was
improved with respect to parameters, data structure and work flow.

12 A. Balint and U. Schöning

0 100 200 300 400

0

200

400

600

800

number of solved instances

C
PU

 T
im

e
(s

)

Sparrow2011
sattime2011
sattime2012
SATzilla2012 Rand
EagleUP
CCASat
pfolioUZK
ppfolio2012
SAT Solver Selector
SATzilla2012 All
probSAT
WalkSAT

Fig. 3. Results of the best performing solvers on the SAT Challenge 2012 random
instances as a cactus plot. For details about cactus plot see Fig. 2.

The parameters of probSAT have been set as follows:

k fct cb ε

3 poly 2.06 0.9
4 exp 2.85 -
5 exp 3.7 -
6 exp 5.1 -
≥ 7 exp 5.4 -

where k is the size of the longest clause found in the problem during pars-
ing. These parameter values have been determined in different configuration
experiments.

All array data structures where ended by a sentinel6 (i.e. the last element
in the array is the stop value; in our case we have used 0). All for-loops have
been changed into while-loops that have no counter but only a sentinel check,
allowing us to save several memory dereferences and variables. As most of the
operations performed by SLS solvers are loops over some small sized arrays,
this optimization turns out to improve the performance of the solver between
10 %–25 % (dependent on the instances).

6 We would like to thank Armin Biere for this suggestion.

Engineering SLS for SAT 13

Compared to the original version the version submitted to the competition
is not selecting an unsatisfied clause randomly but will iterate through the set
of unsatisfied clauses with the flip counter (i.e. instead of c=rand() modulo
numUnsat we use c=flipCounter modulo numUnsat). This scheme will reduce
the probability of undoing a change right in the next step. This small change
seems to improve in some cases the stagnation behavior of the solver giving it a
further boost7.

To measure the isolated effect of the different changes we have performed a
small experiment on the 3sat10k instance set. We start with the version that was
submitted to the SAT Challenge 2012 with new parameters (sc12(1)), then we
add the code optimizations (sc12(2)) and finally we remove the random selection
of a false clause (sc13). A further version was added to this evaluation that does
not cache the break values, but computes them on the fly. This version is denoted
with (nc) in the table and was analyzed only after the competition. The results
of the evaluation are listed in Table 4.

Table 4. The results of the evaluation of different implementation variants of the
probSAT solver on the 3sat10k instance set. The last column shows the speed up with
respect to the last row. Time is measured in seconds.

Solver Total
CPU time

Average
CPU time

Median
CPU time

Average
speedup

1 probSAT sc13 (nc) 4356.0729 17.4243 7.886 2.01x
2 probSAT sc13 4696.9674 18.7879 8.499 1.86x
3 probSAT sc12(2) 7632.1326 30.5285 10.695 1.15x
4 probSAT sc12(1) 8781.8255 35.1273 12.489 -

The code optimizations yielded an average speedup of 15 %, while the removal
of random clause selection is further improving the performance by around 70 %.
Further adding on the fly computation of the break values yields a twofold
speedup compared to the original version with new parameters.

probSAT sc13 was submitted to SAT Competition 20138. The results of the
best performing solvers submitted to SAT Competition 2013 can be seen as
a cactus plot in Fig. 4. probSAT is able to outperform all its competitors. The
instances used in SAT Competition 2013 contained randomly generated instances
on the phase transition point for k = 3, . . . , 7 and also a small set of huge
instances (in terms of number of variables). The last were intended to test the
robustness of the solvers. probSAT turns out to be a very robust solver, being
able to solve many of the huge instances 18 out of the 26 that have been solved
by some solver (out of a total of 36). From the set of phase transition instances
7 This might also be the case for the WalkSAT solver.
8 The code was compiled with the Intel R©Compiler 12.0 with the following parameters:
-O3 -xhost -static -unroll-aggressive -opt-prefetch -fast.

14 A. Balint and U. Schöning

0 20 40 60 80 100

0

1000

2000

3000

4000

5000

number of solved instances

C
PU

 T
im

e
(s

)

probSAT SC13
WalkSATlm2013
CScoreSAT2013
vflipnum
FrwCB2013
CCA2013
BalancedZ
Ncca+
sattime2013

Fig. 4. Results of the best performing solvers on the SAT Competition 2013 random
satisfiable instances.

probSAT solved 81 out of 109 that could be solved by any solver. Altogether this
shows that the solving approach (and the parameter settings) used by probSAT
has an overall good performance.

5 Comparison with WalkSAT

In principle, WalkSAT [13] also uses a certain pattern of probabilities for flipping
one of the variables within a non-satisfied clause. But the probability distribution
does not depend on a single continuous function f as in our algorithms described
above, but uses some non-continuous if-then-else decisions as described in [13].

In Table 5 we compare the flipping probabilities in WalkSAT (setting the wp
parameter i.e. the noise value to wp = 0.567) with the break-only-poly-algorithm
(with cb = 2.06 and ε = 0.9) using several examples of break values combinations
that might occur within a 3-CNF clause.

Even though the probabilities look very similar, we think that the small
differences renders our approach to be more robust. Further, probSAT has the
PAC property [10, p. 153]. In each step every variable has a probability greater
zero to be picked for flipping. This is though not the case for WalkSAT. A variable
occurring in a clause where an other variable has a score of zero can not be
chosen for flipping. There is no published example for which WalkSAT gets
trapped in cycles. Though, during a talk given by Donald Knuth in Trento at the
SAT Conference in 2012 where he presented details about his implementation
of WalkSAT, he mentioned that Bram Cohen, the designer of WalkSAT, has
provided such an example.

Engineering SLS for SAT 15

Table 5. Probability comparison of WalkSAT and probSAT: The first columns
show some possible break value combinations that occur within a clause in a 3-SAT
formula during the search. For the different solvers considered here the probabilities
for each of the 3 variables to be flipped are listed.

Breaks WalkSAT Break-only-poly

0 0 0 0.33 0.33 0.33 0.33 0.33 0.33
0 0 1 0.5 0.5 0 0.45 0.45 0.10
0 1 1 1.0 0 0 0.70 0.15 0.15
0 1 2 1.0 0 0 0.76 0.16 0.07
0 2 2 1.0 0 0 0.85 0.07 0.07
1 1 1 0.33 0.33 0.33 0.33 0.33 0.33
1 1 2 0.41 0.41 0.17 0.41 0.41 0.18
1 2 2 0.53 0.23 0.23 0.54 0.23 0.22
1 2 3 0.53 0.23 0.23 0.61 0.25 0.14

6 Implementation Variations

In the previous sections we have compared the solvers based on their runtime. As
a consequence the efficiency of the implementation plays a crucial role and the
best available implementation should be taken for comparison. Another possible
comparison measure is the number of flips the solver needs to perform to find
a solution. From a practical point of view this is not optimal. The number
of flips per second (denoted with flips/sec) is a key measure of SLS solvers
when it comes to compare algorithm implementations or two different similar
algorithms. In this Section we would like to address this problem by comparing
two different implementations of probSAT and WalkSAT on a set of very large
3-SAT problems.

All efficient implementations of SLS solvers are computing the scores of vari-
ables from scratch only within the initialization phase. During the search of the
solver, the scores are only updated. This is possible because only the score of
variables can change that are in the neighborhood of the variable being flipped.
This method is also known as caching (the scores of the variables are being
cached) in [10, p. 273] or incremental approach in [7].

The other method would be to compute the score of variables on the fly before
taking them into consideration for flipping. This method is called non-caching
or non-incremental approach. In case of probSAT or WalkSAT only the score of
variables from one single clause has to be computed as opposed to other solvers
where all variables from all unsatisfied clauses are taken into consideration for
flipping.

We have implemented two different versions of probSAT and WalkSAT within
the same code basis (i.e. the solvers are identical with exception of the pickVar
method), one that uses caching and one that does not. We have evaluated the

16 A. Balint and U. Schöning

0 20 40 60 80 100

0

5000

10000

15000

number of solved instances

C
PU

 T
im

e
(s

)

probSAT caching
probSAT non−caching
WalkSAT (UBCSAT)
WalkSAT non−caching
WalkSAT caching

Fig. 5. Comparison of the different implementation variants of probSAT and WalkSAT
on extreme large 3-SAT problems (within the same code basis), with and without
caching of the break values. We also evaluate the best known WalkSAT implementation
(non-caching) from UBCSAT as a reference.

four different solvers on a set of 100 randomly generated 3-SAT problems with
106 variables and a ratio of 4.2. The results can be seen in Fig. 5.

Within the time limit of 1.5·104 s only the variants not using caching were able
to solve all problems. The implementation with caching solved only 72 (prob-
SAT) respectively 65 instances (WalkSAT). Note that all solvers started with
the same seed (i.e. they perform search on the exactly same search trajectory).
The difference between the different implementations in terms of performance
can be explained by the different number of flips/sec. While the version with
caching performs around 1.4 · 105 flips/sec the version without caching is able to
perform around 2.2·105 flips/sec. This explains the difference in runtime between
the two different implementations. Similar findings have also been observed in
[20, p. 27] and in [7].

The advantage of non-caching decreases with increasing k (for random gen-
erated k-SAT problems) and becomes even a disadvantage for 5-SAT problems
and upwards. As a consequence the latest version of probSAT uses caching for
3-SAT problems and non-caching for the other types of problems.

7 Conclusion and Future Work

We introduced a simple algorithmic design principle for a SLS solver which does
its job without heuristics and “tricks”. It just relies on the concept of probability
distribution and focused search. It is though flexible enough to allow plugging
in various functions f which guide the search.

Using this concept we were able to discover a non-symmetry regarding the
importance of the break and make values: the break value is the more important
one; one can even do without the make value completely.

Engineering SLS for SAT 17

We have systematically used an automatic configurator to find the best para-
meters and to visualize the mutual dependency and impact of the parameters.

Furthermore, we observe a large variation regarding the running times even
on the same input formula. Therefore the issue of introducing an optimally cho-
sen restart point arises. Some initial experiments show that performing restarts,
even after a relatively short period of flips (e.g. 20n) gives favorable results on
hard instances. It seems that the probability distribution of the number of flips
until a solution is found, shows some strong heavy tail behavior (cf. [12,16]).

Finally, a theoretical analysis of the Markov chain convergence and speed of
convergence underlying this algorithm would be most desirable, extending the
results in [15].

Acknowledgments. We would like to thank the BWGrid [8] project for providing
the computational resources. This project was funded by the Deutsche Forschungsge-
meinschaft (DFG) under the number SCHO 302/9-1. We thank Daniel Diepold and
Simon Gerber for implementing the F-race configurator and providing different analy-
sis tools within the EDACC framework. We would also like to thank Andreas Fröhlich
for fruitful discussions on this topic and Armin Biere for helpful suggestions regarding
code optimizations.

References

1. Balint, A., Diepold, D., Gall, D., Gerber, S., Kapler, G., Retz, R.: EDACC - an
advanced platform for the experiment design, administration and analysis of empir-
ical algorithms. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 586–599.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3 46

2. Balint, A., Fröhlich, A.: Improving stochastic local search for SAT with a new
probability distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol.
6175, pp. 10–15. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7 3

3. Balint, A., Manthey, N.: Analysis of preprocessing techniques and their utility for
CDCL and SLS solver. In: Proceedings of POS2013 (2013)

4. Biere, A.: Lingeling and friends at the SAT competition 2011. Technical report,
FMV Reports Series, Institute for Formal Models and Verification, Johannes
Kepler University, Altenbergerstr. 69, 4040 Linz, Austria (2011)

5. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated
F-Race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L.,
Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algo-
rithms, pp. 311–336. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/
978-3-642-02538-9 13

6. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for
satisfiability. Random Structures & Algorithms 27(2), 201–226 (2005)

7. Fukunaga, A.: Efficient implementations of SAT local search. In: Seventh Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT 2004),
pp. 287–292 (2004, this volume)

8. bwGRiD(http://www.bwgrid.de/): Member of the German D-Grid initiative,
funded by the Ministry of Education and Research (Bundesministeriumfür Bildung
undForschung) and theMinistry forScience,ResearchandArtsBaden-Württemberg
(Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg). Techi-
cal report, Universities of Baden-Württemberg (2007-2010)

http://dx.doi.org/10.1007/978-3-642-25566-3_46
http://dx.doi.org/10.1007/978-3-642-14186-7_3
http://dx.doi.org/10.1007/978-3-642-02538-9_13
http://dx.doi.org/10.1007/978-3-642-02538-9_13
http://www.bwgrid.de/

18 A. Balint and U. Schöning

9. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of the
Eighteenth National Conference in Artificial Intelligence (AAAI 2002), pp. 655–
660 (2002)

10. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco (2005)

11. Kroc, L., Sabharwal, A., Selman, B.: An empirical study of optimal noise and
runtime distributions in local search. In: Strichman, O., Szeider, S. (eds.) SAT
2010. LNCS, vol. 6175, pp. 346–351. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14186-7 31

12. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
In: ISTCS, pp. 128–133 (1993). http://dblp.uni-trier.de/db/conf/istcs/istcs1993.
html#LubySZ93

13. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search.
In: Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI 1997), pp. 321–326 (1997)

14. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proceedings of
the 32nd Annual Symposium on Foundations of Computer Science (FOCS 1991),
pp. 163–169 (1991)

15. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: Proceedings of the Fourtieth Annual Symposium on Foundations of Com-
puter Science (FOCS 1999), p. 410 (1999)

16. Schöning, U.: Principles of stochastic local search. In: Akl, S.G., Calude, C.S.,
Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618,
pp. 178–187. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73554-0 17

17. Seitz, S., Alava, M., Orponen, P.: Focused local search for random 3-satisfiability.
CoRR abs/cond-mat/0501707 (2005)

18. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures,
4th edn. Chapman & Hall/CRC, Boca Raton (2007)

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998). http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.
html

20. Tompkins, D.A.D.: Dynamic local search for SAT: design, insights and analysis.
Ph.D. thesis, University of British Columbia, October 2010

21. Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain jack: new variable selection
heuristics in local search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT
2011. LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21581-0 24

http://dx.doi.org/10.1007/978-3-642-14186-7_31
http://dx.doi.org/10.1007/978-3-642-14186-7_31
http://dblp.uni-trier.de/db/conf/istcs/istcs1993.html#LubySZ93
http://dblp.uni-trier.de/db/conf/istcs/istcs1993.html#LubySZ93
http://dx.doi.org/10.1007/978-3-540-73554-0_17
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://dx.doi.org/10.1007/978-3-642-21581-0_24
http://dx.doi.org/10.1007/978-3-642-21581-0_24

	Engineering a Lightweight and Efficient Local Search SAT Solver
	1 Introduction
	2 The New Algorithm Paradigm
	2.1 An Exponential Function
	2.2 A Polynomial Function
	2.3 Some Remarks

	3 Experimental Analysis of the Functions
	3.1 The Benchmark Formulae
	3.2 Good Parameter Setting

	4 Empirical Evaluation
	5 Comparison with WalkSAT
	6 Implementation Variations
	7 Conclusion and Future Work
	References

