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Abstract. Enterprise architecture (EA) offers steering instruments to aid
architects in their decision-making process. However, the management of such a
process is a challenging task for enterprise architects, due to the complex
dependencies amongst EA models when evolving from an initial to a subsequent
state. In this paper, we design, present and analyze an approach supporting EA
model evolution. In doing so, we define EA artifacts dependencies and model
their corresponding evolutions during change. Then, this model is processed
using a feedback control schema to fully inform the EA design decisions. An
access control model for an inventory case study is introduced to reason on
issues connected to this evolution. The results obtained by a stochastic solution
(Markov Decision Processes) are used to argue about the usefulness and
applicability of our proposal.
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1 Introduction

Enterprise architecture (EA) is a discipline driving change within organizations. EA
provides a mechanism for cohesive steering and provides management with appropriate
indicators and controls to steer the transformation of an enterprise into the desired
direction [1, 2]. In the past, EA practice had focused primarily on the technological
aspects of change, but the practice is quickly evolving to use a rigorous business
architecture approach to address the organizational and motivational aspects of change
as well [3].

The need for enterprises to constantly adapt to ever changing requirements of the
environment is a continuing field of research in enterprise engineering. The notion of
engineering focuses on applying a systematic approach to enterprise transformation.
The transformation of enterprises is engineered by the means of appropriate models and
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methods [4]. Enterprise modeling provides adequate means for the description of As-is
and To-be states of enterprises. Thus, enterprise models integrate the conceptual
models of information systems with models representing organizational and technical
structures [5].

However, current EA frameworks do not support this transformation appropriately
due to inflexible EA models and missing integration of stakeholders in the modeling
process [6]. In practice, organizations struggle with transformational change being
demanded by the ever-increasing speed of business. In this context, enterprise archi-
tects rely on architecture modeling languages to support responsibility and alignment
for the new EA models [7], but lack guidelines during EA evolution [3].

The evolution of an EA model itself is just a set of changes to the artifacts con-
tained in this EA model. Architectural artifacts are created in order to describe a
system, solution, or state of the enterprise [8]. Thus, EA artifacts document EA
components from the business to the IT level. EA provides pragmatic artifacts such as
requirements, specifications, and conceptual models; thereby providing information for
enterprise architect when dealing with models change and decision-making.

In this paper, we define a model-driven approach to support EA evolution. The main
idea is to build an intuitive and powerful paradigm that can help the architect analyze the
effects of artifact changes. Such changes trigger events that can be reasoned on, viz.
model transitions from As-is to To-be states. As the architect faces several possible,
mutually exclusive, To-be design decisions, we offer the prospect of evaluation of these
decisions in order to identify the best EA model alternatives. These valuations of
alternatives are based on observational data and calculations using Markov decision
processes. The paper extends our own previous work [18] as detailed in the next section.

This research is based on a simplification of the design-science research (DSR) as
proposed by [9, 10]. The methodology applied is divided according to the two pro-
cesses of design science research in information system: Build and Evaluate. The build
process is composed of two stages: model definition and model construction. The first
stage encompasses the evolution model based on artifact dependencies in Sect. 1 based
on existing research contributions (see Sect. 2). The second stage constructs an orga-
nizational dynamics in EA context (inventory case study) to support their evolution
process (see Sect. 3). The evaluation process includes a calculation using a linear
programming algorithm (Markov decision processes — MDP) in Sect. 4. Finally, we
conclude and present future work in Sect. 5.

2 Related Work

One influential strand of research on uncertainty in EA work is that initiated by
Johnson et al. [11]. Here, the authors introduce three kinds of uncertainties — defini-
tional, causal, and empirical — and propose an extension of influence diagrams to
manage them in the EA context. In later work, the same research group has used
probabilistic relational models (e.g. [12, 13]) and a probabilistic version of the OCL
language [14] as tools to describe and manage uncertainty in EA. The same research
group has also explored utility theory as a theoretical framework for trading different
goods against each other in the EA decision-making context, viz. cost vs. availability.
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While our paper is closely related to the work by Johnson et al. in the sense that we use
probabilities to model EA activities, we differ importantly in our use of the MDP
formalism, which explicitly allows us to address problems where the outcomes are only
partially under the control of the decision-maker, and, in the partially observable MDP
(POMDP) where the outcomes are only partially observable.

Another method proposed in the literature for addressing uncertainty in EA is real
options analysis [15]. However, while Mikaelian et al. [15] address the problem of
using real options holistically, to avoid sub-optimization in organizational silos, we
address inherent uncertainties in EA work by means of MDP valuation to choose the
best option.

It should also be noted that EA frameworks most often contain mechanisms for
dealing with uncertainty, albeit not in a formal and quantitative manner. On the one
hand, Quartel ez al. [16] describe the well-known TOGAF Architecture Development
Method (ADM) precisely as a means to address uncertainty and change, in particular
the kind of uncertainty inherent in bridging requirements and actual solution. On the
other hand, the Information Technology Infrastructure Library (ITIL) describes pro-
cesses supporting change management to be applied by an organization during service
transition [17]. However, such qualitative approaches remain generic using best
practices, and thus, differ from our quantitative approach.

To summarize, we address an important problem in a novel way. This paper extends
our own previous work [18] in the following aspects (i) enforcement of an informed
decision-making solution applied for access control governance and (ii) evaluation of
the rigor of the delivered MDP calculation results using DSR methodology.

3 Modeling Enterprise Architecture Evolution

Why is EA decision-making and evolution such a hard problem? One reason is the
complex organizational setting. Almost by definition, EA decision-making takes place
at the highest organization level, and aims to align and synchronize a variety of
separate processes and organizational entities, each with their own expertise and their
own agendas. As noted by [15], this entails a substantial risk of sub-optimization in
organizational silos. Another reason is that the problems of EA evolution do not exist a
priori, well defined and waiting to be solved, but rather have to be constructed and
structured into well-defined problems before they can be solved [19]. A third reason, as
alluded to above, is the prevalence of uncertainty. Uncertainty being the rationale for
our choice of the MDP formalism, it is worth expanding on: Causal uncertainty [11] is
about the effects of actions taken: Even if EA decisions and actions are guided by
proper theory, there is always some degree of causal uncertainty involved. If a com-
pany switches to a more reliable IT service, what will their resulting availability be?
99.998 %? 99.999 %? Theories addressing such questions typically include uncertainty
(e.g. [20]). Empirical uncertainty [11] is about the data used. The information used for
enterprise decision-making is uncertain, e.g. because it is obsolete [21], measured with
an imperfect instrument, or subject to some unknown bias. This kind of uncertainty is
an important reason for extending the MDP into the POMDP, where the environment is
only partially observable. Event uncertainty outside the enterprise is essentially the
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kind of uncertainty, which is at the core of standard decision theory: Will supplier A go
bust, will product X form a working software ecosystem, and will there be a need to
retract thousands of deployed embedded systems for security upgrades? The uncer-
tainty of being successful in changing an EA (from As-Is to To-Be) is a classical
problem that is shown in the case study (cf. next Sect.), and could occur because of bad
implementation, bad interpretation or even a malicious action, or deception, taken by
an organization actor. For instance, implementing a non-secure EA model could lead to
substantial financial losses.

It is against the background of causal, empirical and event uncertainty that we find
the MDP methodology useful as a means for uncertainty management in EA.

The rest of this section follows the DSR methodology. We define the first stage of
the build process where the relevant concepts and relations are identified, in order to
build a model describing EA evolution and their corresponding operations. Here, we
introduce our concrete running example, intended to illustrate the uncertainties
described, more generally, above.

We assume that the overarching EA is composed of a multitude of EA models, each
being concurrently edited by different modelers (i.e. enterprise architects). These
architects have different responsibilities and may not be fully aware of the depen-
dencies between the models and their artifacts. (In this sense, the problem addressed is
one of separation of concern, which is an important rationale for EA work, cf. [22])
This may lead to creating flaws and inconsistencies in EA models, when changes made
on given EA models indirectly impact other EA models (see Fig. 1). A typical example
of this is when a modeler X modifies the credentials or permissions assigned to a given
role, in order to update a business process model Y, but is unaware that this has an
impact on another business process model Z where some security requirement is
broken by this change (e.g. a conflict of interest violation).

(As-is) EA . (To-be) EA
Model Evolution Models

_______________________________________

pmIIIIIIIIIIIT
\

M1

Fig. 1. Model-driven EA evolution
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Describing EA evolution will enable us to reason on different alternatives for EA
evolutions and thus decide upon alternatives or analyze potential evolutions from a
given EA state in an informed manner. Our objective is to assist enterprise architects in
deciding which EA evolutions are fully compliant and which ones are not compliant or
should be considered as suspicious and need be more thoroughly analyzed by an EA
expert. This expert will then have the responsibility of taking a final decision whether
the EA evolution should be committed to or reverted.

4 EA Evolution Decision: A Case Study Using Models

In this section, the DSR methodology is applied to the second stage of the build
process. Here we use organizational dynamics in EA to process the evolution model as
introduced in Sect. 3.

In order to illustrate the need and the benefits to support the EA evolution decision,
we present a case study in the field of access control models, in specific, the role-based
access control (RBAC) model [23]). RBAC relies on user authentication, which in turn
relies on identity management and defines relationships between the main concepts of
Users, Roles and Permissions. RBAC’s constraints restrict permissions depending on
contextual information such as segregation of duties (SoD) [24].

To represent the models, DEMO' (Design and Engineering Methodology for
Organizations) is used. DEMO is a methodology and a theory founded in language
action perspective (LAP), and aims at the design, engineering, and implementation of
organizations [5]. On the one hand DEMO is compatible with the communication and
production, acts and facts that occur between actors in business processes. A DEMO
business transaction model has two distinct worlds: (i) transition space and (ii) state
space. On the one hand, the DEMO transition space is grounded in a theory named as
Y-theory (PSI), where the standard pattern of a transaction includes two distinct actor
roles: the Initiator and the Executor. Figure 2 depicts this basic transaction pattern.

The transactional pattern is performed by a sequence of coordination and pro-
duction acts that leads to the production of the new fact. In detail, it encompasses: (i)
order phase that involves the acts of request (rq), promise (pm), decline (dc) and quit
(qt), (ii) execution phase that includes the production act of the new fact itself (depicted
by the diamond) and (iii) result phase that includes the acts of state (st), reject (rj), stop
(st) and accept (ac). Firstly, when a Customer desires a new product, he requests it.
After the request for the production, a promise to produce the production is delivered
by the Producer. Then, after the production, the Producer states that the product is
available. Finally, the Customer accepts the new fact produced. DEMO basic trans-
action pattern aims at specifying the transition space of a process that is given by the set
of allowable sequences of transitions. Every state transition is only dependent on the
current states of all surrounding transactions.

The usage of a business transaction oriented methodology has the benefit of nar-
rowing the domain of EA models to a single and self-contained set of models.

! http://www.demo.nl/.
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Fig. 2. The DEMO standard pattern of a transaction between two actors with separation
between communication and production acts (Adapted from [5]).
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4.1 Case Study Explanation

For explanation, the evolvable EA proposal is exemplified using an inventory case
study. One person orders goods from suppliers, and another person logs the received
goods in the accounting system. This keeps the purchasing person from diverting
incoming goods for his own use. To that end, a segregation of duties (SoD?) between
both users’ roles is enforced.

Figure 3 depicts a DEMO Process Model (PM) [5], where each business transac-
tion is an abstraction represented graphically by the cylinders. The goal of performing
such a transaction pattern is to obtain a new fact.

As depicted by the PM in Fig. 3-(Model 1), the user Ul (Client) who order the
goods (T1) is assigned with role 1 (R1). R1 inherits read/write permissions. The user
U2 (Accounter) of the accounting system is assigned with role 2 (R2) to perform log
account (T2). R2 inherits read permission. The aforementioned permissions define
operations on the accounting system database. Roles and responsibilities definition are
dependent on organizational dynamics during EA change.

2 SoD concept prohibits the assignment of role/responsibility to a single person for the acquisition of
assets, their custody, and the related record keeping.
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Fig. 3. Mapping the set of possible evolutions (¢) from/to Models 1, 2 and 3: a non-deterministic
finite automaton representation.

However, because of the occurrence of non-expected situations, e.g. fraud,
deception, misunderstanding or misinterpretation, there is a risk of malicious or
wrongful change in the inventory scenario.

4.2 EA Evolution Options

We explain how to anticipate the impacts of each decision and consequently to avoid
security failures using ex ante calculation. Two possible model transformations (M2 and
M3) starting from an initial M1 (see Fig. 3-(Model 1)) are considered. Figure 3-(Model 2)
represents one the one hand, a first model design. There exists a risk in changing role’s
hierarchy when evolving RBAC model in EA. For instance, the inventory unit may be
extended with additional tasks (e.g. audit). The architect needs to model this change and
may misinterpret the role R2 as a responsibility to supervise role R1 orders. In this case,
role R2 will go up in the hierarchy and be senior to role R1. In RBAC, this means role R2
will inherit role R1’s permissions. This situation may present a fraud risk and is repre-
sented in Fig. 3-(Model 2) when Ul is empowered with T1 and T2 concomitantly.

On the other hand, Fig. 3-(Model 3) represents a second model. Here, a new role 3
(R3) is added to the model in order to supervise the orders and the logging transactions
that have been executed. M3 is the response to a previous deception successfully
attempted, guaranteeing for some time an extra level of operational control. In this
context, the role R3 is assigned with the responsibility of initiating and performing the
Supervision transaction (T3).

An EA model transformation is triggered whenever the enterprise architect decides
to evolve the organization with a known purpose. In this context, the following set of
evolutions (¢) decisions is considered: ¢1 - do not take any action; @2 — remove SoD;
@3 — add SoD; and ¢4 — add extra transaction with supervised SoD.
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The mapping between the known EA models (M) and EA model evolutions (¢) is
depicted in Fig. 3 as a non-deterministic finite automaton. The mappings are derived
from the enterprise transformation planning produced by the architect. Each model may
evolve, whereas different evolution options are available at each moment. Each evo-
lution drives the EA to a new model. The maximum number of possible evolutions is
given multiplying ¢ by M. Figure 3 presents the evolutions that will likely happen. We
remark that due to probabilities division, the same ¢ may drive to more than one M,
e.g., ol will be simulated with shared probability p and 1 — p to evolve respectively
from M1 to M1 and M2. The full probabilities used in the calculation are presented in
Table 1 and will be discussed in Sect. 4.2.

Table 1. Transition matrix (P;;.) containing the set of possible evolutions (¢) from/to Models 1,
2 and 3.

¢1 | From To ¢3 | From To
Model 1 | Model 2 | Model 3 Model 1 | Model 2 | Model 3
Model 1 |p 1-p 0 Model 1 | p 1-p 0
Model 2 | 0 1 0 Model 2 | p 1-p 0
Model 3 | 0 I1-p |p Model 3 | p 0 1-p
¢2 | From To ¢4 | From To
Model 1 | Model 2 | Model 3 Model 1 | Model 2 | Model 3
Model 1|0 1 0 Model 1|1 —p 0 P
Model 2 | 0 1 0 Model 2 |0 I1-p |p
Model 3 | 0 1 0 Model 3 | 0 I-p |p

4.3 Experimenting Enterprise Architecture Evolution Decision

This section is about the experimental design in DSR. The approach is evaluated and
simulated using a linear programming algorithm (Markov Decision Process) to
instantiate the theoretical conceptualization introduced in Sects. 3 and 4. The MDP is
simulated and the achieved results are argued. Markov Decision Process (MDP) are
used make informed design decisions by computing the best EA model alternatives.
Alternatives are evolvable models and depend on roles’ transformation as depicted in
the inventory case study of Fig. 3. This corresponds to the execution of a given type of
change operation. Moreover, the decision depends on the dependency between the
model and the set of possible evolutions available for checking whether the fulfillment
of segregation of duty (SoD) constraint is being endangered by the evolution or not.
From the probabilities theory literature, a Markov process is a stochastic process
that satisfies the Markov property [25]: if the transition probabilities from any given
state depend only on the actual state and not on previous history. Four classes of
Markov models are usually distinguished. A Markov chain refers to a process, which
has a countable and discrete set of state spaces, but is not controllable. A Markov
decision process (MDP) is able to solve the problem of calculating an optimal policy in
an accessible and stochastic environment with a known transition model [26].
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However, in only partially accessible environments, or whenever the observation does
not provide enough information to determine the states or the associated transition
probabilities, then the hidden Markov model (HMM) or the partially observable
Markov decision process (POMDP) solutions should be considered. The difference is
that HMM is applied to uncontrolled systems and POMDP to controlled systems.

In our case study, the models and evolutions are considered as observable, and
when an evolution is taken it will be successful. By other words, the system in Fig. 3 is
observable and controllable, and therefore, a MDP is chosen to solve the problem of
defining the optimal evolutions that maximizes value for the organization.

4.4 Enterprise Architecture Evolution Decision

The goal is to decide if the evolution contains any change that will influence adversely
the model. In a real operational environment, many (and concurrent) evolutions are
attempted; therefore the enforcement of a continuous process to steer the EA evolutions
is demanded. Considering o as the artifact to be the aforementioned roles, then the
evolution process is instantiated by the following five steps, and the challenge posed to
the architect is to choose the evolution that maximizes the value to the organization:

1. Observation: the set of a that are being attempted at operation are observed and
collected;

2. Intelligence: this step is equal to (1) if a full observation is considered. However, if
(i) uncertainty about the a exists, or if (ii) due to manual task-based environments is
not possible to automatically collect a, or if (iii) different perceptions coexist within
the organization in regard to a; then a partial observation solution should be con-
sidered. In the EA context, the different kinds of uncertainty described by Johnson
et al. merit further research into Partially observable Markov decision processes
(POMDP) [26-28], to estimate the belief a.

In this case study, however, we merely assume that all the artifacts are observable
and employ a Markov decision processes (MDP). MDP evaluates a given EA
transformation process maximizing the expected value (v) after discounting the
decay throughout time. A MDP is usually defined by the tuple (S,A,P,R,y) where:
S ={S;...,5,} is a set of states, representing all the possible underlying states the
process can be in (our case study, the states of S are the models MI-M3);

A ={A,..A,} is a set of actions, representing all the available control choices at
each point in time (our case study represents A by the evolutions ¢);
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is a transition matrix that contains the probability of a state transition, whereas i is
the actual state and j is the final state if a given action « that is being used;’

R ={R;,...,R,} is an immediate reward function, giving the immediate utility for
performing an action that drives the system towards each state”;

Finally, v is a discounted factor of future rewards, meaning the decay that a given
achieved state suffers throughout time.

EA re-design: in regard to a possible SoD violation, the enterprise architect need to
re-design a new set of evolution (a,a’) pairs, e.g., adding an auditing task such as an
extra supervision task. If partial observations are occurring, then the new (a,a’) pair
depends on the belief o obtained in step (2);

Choose best EA re-design: a qualitative and/or quantitative valuation of the best
evolution to take. This step is the responsibility of enterprise architect. To support
the architect the MDP is solved. There are many solutions available to solve the
MDP. Our goal is to use MDP using a well-known solution with stable results.
Therefore, to obtain the maximized V, we solve the MDP as specified by the
following recursive Eq. 1:

V() :=> Paiy)(5,8') (Ru(e) (5, 8') +7V(5)) (1)
where:

n(s) = arg mgzx{ZS, P,(s,s")(Ru(s,s') + yV(s/))};

Enforce new EA model: it is equal to result in (4) if a full actuation is considered.
Whether operational environment is not completely controllable then o” will be only
partial enforced.

Next, the results of an exemplification of this MDP approach is presented to foresee the
support that could be delivered to the architect while choosing the best EA evolution.

4.5 [Evolvable Enterprise Architecture Results

The obtained results emphasize the rationale behind our approach to deliver valuation
when the architect faces different EA model evolution options. In fact, this rationale is

w

Clearly, how to elicit these probabilities is a key issue for applying the method. Having developed
the formalism in this paper, probability elicitation is an important future work to be addressed in
industrial case studies. Here, let us just note that it will probably involve a combination of manual
analytical methods such as identifying forbidden transitions and setting their probabilities to 0,
data-driven methods such as using historical data to find probabilities and expert methods such as
surveys (cf. [29] for an example in the EA context) and interviews (cf. [30] for an example in the EA
context).

The need to estimate rewards could also be found in literature, e.g., [31] proposes an EA support tool
where the score of a given architecture solution should be indicated by the architect. See also [32] for
a discussion of utility in EA evaluation.
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more important than the particular results obtained for the case study at hand. More-
over, this approach is to be used recursively: observing the reality, simulating different
options, enforcing new models and then restarting the loop.

The MDP is computed by a Marlab® toolbox” using a linear programming algo-
rithm. The transition matrix with the probabilistic estimation between the evolutions
(¢) required to transit from a model (Mcyq) to other (M) is presented in Table 1.

Each cell of Table 1 accounts the previous defined P,‘\’i,m_wl M Let p be the probability

of ¢ be succeed, and for calculation purposes, p is tested in the range [0.1,...,1.0] with
small steps of 0.1 each. A positive value is attributed to a cell if and only if an evolution
exists in Fig. 3.

Moreover, the reward matrix R, when achieving the desired M., is defined in
Table 2. For all ¢, Model 1 and 3 contain an access control model; therefore they have
an higher reward. In the specific situation of Model 3, the sum of rewards for all ¢ is
higher because it has a more sophisticated access control model (supervised SoD).
Model 2 has zero reward because it should be avoided. Moreover, using the same
previous rationale, @1 (do not take any action) has a positive reward, because achieving
an access control model without effort is valuable; @2 (removing SoD) has a zero
reward because it is not desirable; ¢3 (add SoD) is the considered as the best com-
mitment cost/benefit for this organization; and finally, ¢4 (add extra transaction with
supervised SoD) is valuable, but, because of implementation effort to enforce a new
transaction the reward is less than ¢3.

Table 2. Reward matrix (R) containing the set of rewards when achieving a model through each
evolution (¢).

Achieved model | Evolution

ol 02| @3] ¢4
Model 1 2 10 |4 |0
Model 2 0 |0 |0 0
Model 3 2 10 |3 |3

For example, the probability to be in state M3 at time ¢ + 1, starting in state M3 and
choosing ¢l at time ¢, is P(3,3,1) = p and the associated reward is R(3,1) = 2.
Translating for the case study language, this denotes that keeping the model supervised
SoD after doing no action has a probability p and offers the third higher reward.

Figure 4 depicts the result from the MDP calculation using three distinct repre-
sentations. In the top left corner, the value function is presented at each stage k, and
each p value is separated. We observe that increasing p drives to increased value
function. In the top right corner, the elicited evolutions to fulfill the value function are
depicted. For each p the set of evolutions differ (each set correspond here to a different
color). In the bottom, for each p, we represent the percentage of time spent in each
model. Here, we observe that changing p implies change in the percentage of time
spent in each model.

3 Toolbox public available at http:/www7.inra.fr/mia/T/MDPtoolbox.
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Fig. 4. MDP calculation: Py cf. Table 1; R cf. Table 2; vy = 0.95 and p € [0.1,...,1.0:0.1].

Aggregating the previous results, the solution that maximizes the value function, is
to always keep M1, however, it demands p = I. The interpretation is straightforward
and intuitive — if the organization can be fully controlled with no risk of going astray,
then it is easy to maximize value. Unfortunately, due to the occurrence of workarounds,
it is not expected that any organizational operation will behave 100 % as prescribed
[33, 34]. Moreover, when p € [0.8,...,1.0[ then it is possible to avoid ¢4 (add extra
transaction with supervised SoD) which imposes implementation costs. Yet, if p

[0.1,...,0.8] then ¢4 is required and extra costs are incurred. Therefore, in this case
study, the probability (p) to succeed with an evolution (¢) seems to be the relevant
variable to maximize the value function.

Furthermore, following the rigor imposed by DSR methodology, these results are
analysed using the four principles of (i) abstraction, (ii) originality, (iii) justification and
(iv) benefit as proposed by [35]:

1. Abstraction (the proposed solution must be applicable to a class of problems) — the
solution may be used to evaluate other EA models, considering the fact that MDP
evaluation depends on the estimation process that is defined for each reality.

2. Originality (the proposed solution must substantially contribute to the advancement
of the body of knowledge) — by gathering the related literature combined with a
stochastic approach, a novel solution is presented, representing a contribution over
and above what has been found in the related work Sect.

3. Justification (the proposed solution must be justified in a comprehensible manner
and must allow validation) — the presented solution depends on (i) EA modeling,
then (ii) converting EA models into a non-deterministic finite automaton
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representation, and finally (iii) parameter estimation. The calculation results are
repeatable using any MDP computational environment.

4. Benefit (the proposed solution must deliver benefit, immediately or in the future for
the respective stakeholder groups) — the solution explores the benefits of using
stochastic approaches supporting EA architect decisions. This goal can be achieved
if engineers are empowered with all pertinent information to forecast the impacts of
their decisions in the near future of the organization. With this proposal, the
architect is able to simulate different configurations (and evaluate them) before its
implementation, and subsequently understand the impact of actions in the operation
of the organization.

5 Conclusions

This paper proposes an EA-driven organizational evolution process based on MDP
calculations. Our goal is to support EA evolution decisions with an informed
decision-making process, and thus enable better-informed transformational changes.
We argue that the benefit of having a fully informed decision-making solution is the
capability to empower the organizational decisions with tools to forecast the impacts in
the near/middle/long -terms for the organization. Subsequently, the organization will be
able to decide upon which is the best, and the most timely, action to be enacted.

Our solution is illustrated using a stochastic approach that is grounded in Markov
Decision Processes theory. Three distinct EA models are considered and four distin-
guishable evolutions are available afterward. Therefore, this illustration raises the
challenge of choosing between twelve different EA evolution options. In this sense, the
challenge is to identify the EA evolution option that maximizes value. We remark that a
stochastic approach does not address unknown exception situations; however, it covers
a significant part of the reality of how actors behave within their social and human
interactions. Moreover, this solution is able to show the valuation throughout the
intermediate EA evolution stages. Therefore, the organization is able to forecast not
only the final valuation to be achieved, but also the value that will be returned
throughout time.

The main weakness of the method presented is, of course, that it has not yet been
applied to a real case. Clearly, this constitutes the most important direction for future
work, where not least the elicitation of probabilities and the full complexity of EA
evolution options will be important challenges to overcome. By finding suitable
industry partners, we hope to develop an informed decision-making approach that
works, side-by-side, with humans taking dynamic decisions. Some potential alterna-
tives and complements are business intelligence, business analytics, process mining,
and event calculus. In such real-world environments, the richness of detailed data
available might also call for the use of simulation methods that go beyond the analytic
solutions demonstrated here.
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