
Chapter 9
Handling non-Fitness

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

In the first part of the book, we presented a precision checking technique based
on escaping arcs. However, it is not uncommon to have a certain degree of unfit-
ness when we measure precision, e.g., invisible or duplicate activities, or simply
produced by small known mismatches between model and process. This chapter
provides an overview on the use of alignment techniques as a pre-processing step to

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 85–96, 2016.
DOI: 10.1007/978-3-319-49451-7_9

86 9 Handling non-Fitness

provide meaningful precision results in unfitting scenarios. In the next chapter, we
will present some variants of this technique more suitable for some cases.

9.1 Introduction

As it has been illustrated in previous chapters, replaying observed behavior over
the modeled behavior is an effective and efficient way to detect escaping arcs, and
with them, detect potential imprecise points to be fixed. However, there are situ-
ations where the observed behavior cannot be replayed on the modeled behavior,
i.e., the model cannot mimic the ”moves” observed in the log. These problems are
produced by the presence of unfitting traces, or undeterministic situations on the
model. For example, let us consider the model M1 at the top of Figure 9.1, and the
state σ1 = 〈a,b,c〉 observed in the log. Given the choice between b and c in M1, the
state σ1 cannot be reached by the model. A similar situation occurs for the models
M2 and M3, in the middle and bottom of Figure 9.1, respectively. However, in this
case the problems are not produced due to the unreachability of the observed state,
but because there is a non-bijective relation between activity sequences and tasks
sequences on the model – due to invisible and duplicate activities. Let us consider
the model M2 and the observed state σ2 = 〈a,b〉. What are the set of modeled activ-
ities for the state σ2? c, if we consider the upper b? Or d, if we consider the lower
b?. The use of duplicate activities may introduce – not always – undeterminitic sit-
uations such as the one illustrated. A similar situation happens with the presence
of invisible activities. For example, let us consider the model M3 and the observed
state σ3 = 〈a〉. Because invisible activities are not reflected in the log, there is no
way to determine if the set of modeled activities in σ3 are b, c, or the empty set.

start t1
a

endp1

t2
b

t3
c

t4
d

t5
e

p2

p3

p4 t6
f

start t1
a

endp1

t2
b

t3
b

t4
c

t5
d

p2

p3

p4 t6
e

start t1
a

endp1

t2
b

t3
b

t4
b

t5
c

p2

p3

p4 t6
d

M1

M2

M3

Fig. 9.1: Models to illustrate the problems with the replay produced by unfitting
traces (top), the indeterminism of duplicate activities (middle), and the indetermin-
ism of invisible activities (bottom).

9.1 Introduction 87

The effect of problems derived from unfitting logs can be alleviated by making
some assumptions over the observed behavior. For example, in Section 5.6.1 the
unfitting part of the trace is considered noisy or infrequent and it is discarded for
the precision metric. This drastic approach is useful when the percentage of log dis-
carded is small, and we are not interested on providing all possible points of impre-
cision. However, the effect in a worst case scenario is not negligible. For example, in
a log where only the first event in all traces is wrongly recorded, the whole log is dis-
carded. Similar, heuristic assumptions could be considered to solve indeterministic
situations with no formal guarantees, but still have practical applicability.

Undeterminism is produced because the escaping arcs are detected at a log level.
At a model level, each task is unique, e.g., although t2 and t3 have the same label b,
they are distinguishable in the model M2. Therefore, a precision checking at a task
level will solve indeterministic situations, transferring the responsibility to mapping
correctly log traces and tasks sequences of the model. Thus, each trace in the log
is translated to a complete tasks sequence in the model. For example, log traces
〈a,b,c,e〉 and 〈a,b,d,e〉 may be associated with 〈t1, t2, t4, t6〉 and 〈t1, t3, t5, t6〉 of
model M2, respectively.

The mapping between log traces and model traces is far from trivial. An approach
may consider the use of heuristics, such as look-ahead [90, 28]. Informally, when
the approach reaches a decision point, the algorithm looks ahead to choose the most
suitable option. For example, in the trace 〈a,b,c,e〉 for the M2, t2 is selected because
there is a c next. Similar happens when the indeterminism is introduced by invisi-
bles, e.g., trace 〈a,b,d〉 is associated with complete tasks sequence 〈t1, t2, t4, t6〉 in
M3. Look-ahead heuristics can be also used to associate unfitting observed states to
reachable states of the model. For example, given the observed trace 〈a,b,c,d, f 〉
and the model M1, the algorithm could consider c an event wrongly recorded in the
log.

Look-ahead and other heuristics are heuristics after all, and therefore, they lack
formal guarantees. The decision taken heuristically may not be the optimal. Even,
when the number of events considered in the look-ahead is increased, the decision
may still not be optimal, e.g., the optimal path may require the reconsideration of
previous decisions [17].

In this chapter we introduce a precision checking approach based on aligning ob-
served and modeled behavior. The alignment is done at a model level, for each one
of the traces in the log. The alignment techniques provide global optimal results and
therefore, there are guarantees on the escaping arcs detected. Notice that, the com-
putation cost of aligning observed and modeled behavior in a global optimal may be
considerable in some cases. Therefore, there are situations where other alternatives
need to be considered, for example, decomposed aligning for conformance diag-
nosis (cf. Chapter 12), or a heuristic replay-based approach in real-time scenarios
where the time is a crucial element (cf. Chapter 18).

88 9 Handling non-Fitness

9.2 Cost-Optimal Alignment

The use of alignment techniques in conformance checking was first proposed by
Adriansyah, van Dongen, and van der Aalst [17]. An alignment between an event
log and a process model relates occurrences of activities in the log to tasks of the
model. As the execution of a case is often independent from the execution of another
case, the alignment is performed per traces. This is a common assumption taken in
process mining techniques, and reduces the complexity of the analysis.

For each trace in an event log that fits a process model, each move in the trace
(i.e., an activity observed in the log) can be mimicked by a move in the model (i.e., a
task executed in the model). However, this is not the case if the trace does not fit the
model perfectly. We use the symbol� to denote ”no move” in either log or model.

Definition 9.1 (Moves [17]) Let L ∈B(A∗) be an event log over the activities A,
and let M be a model where T is the set of tasks of the model, Av(M) is the set of
observable activities of M, and l is the labeling function between tasks and observ-
able activities in M. For the sake of clarity, we abuse the notation writing l(t) = τ

if t 6∈ dom(l), i.e., if t is an invisible task.

• (aL,(aM, t)) is a move, where aL ∈ A ∪�, (aM, t) ∈ (Av(M)∪ τ×T) ∪�, and
l(t) = aM .

• (a,(a, t)) is a synchronous move (also called move in both), where a ∈ A, t ∈ T ,
and l(t) = a.

• (a,�) is a move on log, where a ∈ A.
• (�,(a, t)) is a move on model, where (a, t) ∈ (Av(M)∪ τ×T), and l(t) = a.
• A legal move is a move on log, a move on model, or a synchronous move. Other-

wise, it is an illegal move. ALM denotes the set of possible legal moves between
the model M and log L.

Given a sequence of moves γ , row�L (γ) denotes the sequence of log activities
in γ , i.e., the first element. Similar, row�M (γ) and row�T (γ) denote the sequence of
model activities and tasks, respectively. rowL, rowM and rowT denote the projection
of sequences of activities in the log, model and tasks, filtering�.

Definition 9.2 (Alignment [17]) Let σL ∈ L be a log trace and σM ∈ φt(M) a com-
plete task sequence of model M. An alignment of σL and σM is a sequence of
moves γ ∈ ALM

∗ such that the sequence of log activities (ignoring �) yields σL,
and the sequence of model tasks (ignoring �) yields σM , i.e., rowL(γ) = σL and
rowT (γ) = σM .

Let us consider a medical process for an oncological treatment in a hospital – this
process will be used as running example during this chapter. Model M in Figure 9.2
represents a possible model for this medical process. Assuming that the end state
of the model is reached when place end in the model contains exactly one token,
the model represents an infinite set of complete activity sequences, e.g., 〈a,b,c,d〉,
〈a,c,b,d〉, 〈a,b,c,e〉, 〈a,c,b,e〉, 〈a, f ,g,h〉, 〈a,b, i,c,b,e〉. Given an unfitting trace
σL = 〈a,b,d,e〉, Figure 9.3 shows some possible alignments between σL and M.

9.2 Cost-Optimal Alignment 89

a = Examination
b = Radiology
c = Update Record
d = Therapy
e = Home Care
f = Allergy Test
g = Chemotherapy
h = Post-Chemo
i = Operation

start t1
a end

t3

i
t4

b
t5

c

t2

f
t6

g

t9

h
t8

e

t7

dp4

p3

p5

p6

p1

p2

Fig. 9.2: Model for a medical process, used as running example on this chapter.

γ1 =
a � b d e
a c b � e
t1 t3 t2 t5

γ2 =
a b � d e
a b c � e
t1 t2 t3 t5

γ3 =
a � b d e
a c b d �
t1 t3 t2 t4

γ4 =
a b � d e
a b c d �
t1 t2 t3 t4

γ5 =
a b d � e
a b � c e
t1 t2 t3 t5

γ6 =
a � � � b d e
a f g h � � �
t1 t6 t7 t8

Fig. 9.3: Some alignments between trace σL = 〈a,b,d,e〉 and the model M in Fig-
ure 9.2.

The moves are represented vertically, e.g., the second move of γ1 is (�,(c, t3)),
indicating that the model performs t3 while the log does not make any move. Note
that after removing �, the projections of all moves in the model are by definition
complete task sequences allowed by the model. This property is not always ensured
by other conformance checking approaches. For example, given a trace and a pro-
cess model, when using the approach in [77], the so-called missing tokens are added
to allow activities that occur in the trace but are not supposed to occur according to
the model. The addition of such missing tokens introduces extra behavior that is not
allowed in the original process model, thus overestimating its behavior.

In order to compare alignments and select the most appropriate one, costs are
associated to undesirable moves and the alignment with the lowest total costs is
selected. To quantify the costs of an alignment, a cost function δ is defined.

Definition 9.3 (Cost of alignment [17]) The cost function δ : ALM → IN assigns
costs to legal moves. The cost of an alignment γ ∈ ALM

∗ is the sum of all costs, i.e.,
δ (γ) = ∑(x,y)∈γ δ (x,y).

Different scenarios may require different cost functions. The costs may depend
on the nature of the activity, e.g., skipping a payment may be more severe than
sending an email. Moreover, the severity assumed for a move on log and a move on
model may be different, e.g., a system with constant recording problems should be
more tolerant with activities skipped on the log. Abstracting from particular cases,
we can define a standard cost function that assigns unit costs to moves in log or
moves on model only.

90 9 Handling non-Fitness

Definition 9.4 (Standard Cost Function [17]) A standard cost function δS is de-
fined such that:

• Synchronous move has cost 0, i.e., δS(x,(x, t)) = 0 for all x ∈ A.
• Move on log has cost 1, i.e., δS(x,�) = 1.
• Move on model from a visible task has cost 1, i.e., δS(�,(x, t)) = 1.
• Move on model from an invisible task has cost 0, i.e., δS(�,(τ, t)) = 0.

Using the standard cost function, the cost of alignment γ1 is δS(γ1)= δS(a,(a, t1))
+ δS(�,(c, t3))+ δS(b,(b, t2))+ δS(d,�)+ δS(e,(e, t5)) = 0+ 1+ 0+ 1+ 0 = 2.
Note that the function returns the number of mismatches in the alignment. On the
other hand, δS(γ6) = 6. Hence, we conclude that γ1 is close to the log trace σL =
〈a,b,d,e〉 than γ6.

Given a trace from an event log and a process model, we are interested in an
activity sequence from the model that is most similar to the trace, i.e., the optimal
alignment.

Definition 9.5 (Optimal Alignments [17]) We define the set of alignments ΓσL,M =
{γ ∈ ALM

∗ | γ is an alignment between σL and M} to be all possible alignments
between σL and M. Accordingly, we define the set of optimal alignments as the set of
all alignments with minimum cost, i.e., Γ o

σL,M = {γ ∈ΓσL,M | ∀γ ′∈ΓσL ,M
δ (γ)≤ δ (γ ′)}.

It is easy to see that there can be more than one optimal alignment between a
trace and a model. For example, {γ1,γ2,γ3,γ4,γ5} is the set of optimal alignments
between the trace σL = 〈a,b,d,e〉 and the model M.

By definition, the task component of all alignments yields a complete task se-
quence of the model. Thus, given an optimal alignment γ between σL and M,
rowT (γ) provides a complete tasks sequence that both perfectly fits M and is closest
to σL. In the running example, rowT (γ1) = 〈t1, t3, t2, t5〉 is one of the complete task
sequences of M that is most similar to trace 〈a,b,d,e〉.

Given a log and a model, constructing all optimal alignments between all traces
in the log and the model is computationally expensive [18, 19]. Thus, there are
cases where computing all optimal alignments between traces and process models
may not always be feasible in practice. Hence, instead of computing all optimal
alignments between traces in the log and the model to obtain insights into deviations,
one may also compute just some representative optimal alignments for each trace.
In this chapter, we consider three approaches: one optimal alignment per trace, all
optimal approaches, and a set of representative optimal alignments. We define three
functions that provide optimal alignments between traces in the log and the model:

• Λ ∗M : A∗L→P(ALM
∗) returns all optimal alignments between traces of L and M,

such that for all σL ∈ L,Λ ∗M(σL) = Γ o
σL,M ,

• Λ 1
M : A∗L→ ALM

∗ returns one optimal alignment between traces of L and M, such
that for all σL ∈ L,Λ 1

M(σL) ∈ Γ o
σL,M , and

• Λ R
M : A∗L → P(ALM

∗) returns representatives of optimal alignments between
traces of L and M, such that for all σL ∈ L,Λ R

M(σL)⊆ Γ o
σL,M .

9.2 Cost-Optimal Alignment 91

γ7 =
a � � �
a f g h
t1 t6 t7 t8

γ8 =
a � � �
a b c d
t1 t2 t3 t4

γ9 =
a � � �
a c b d
t1 t3 t2 t4

γ10 =
a � � �
a c b e
t1 t3 t2 t5

γ11 =
a � � �
a b c e
t1 t2 t3 t5

Fig. 9.4: All optimal alignments between trace σL = 〈a〉 and the model M in Fig-
ure 9.2.

In [22, 18, 19] various approaches to obtain an optimal alignment between a trace
and a model with respect to different cost functions are investigated. Given a trace
σL of L and a model M, if there are multiple optimal alignments, Λ 1

M chooses one of
them according to other external criteria. With our previous example, suppose that
Λ 1

M selects an alignment that has the longest consecutive occurrence of synchronous
moves in the beginning, Λ 1

M(σL) = γ4.
In [18, 19], an A?-based algorithm is proposed to compute one optimal alignment

between a trace and a model. The same algorithm can be extended to provide more
than one optimal alignment between them. Given a trace σL of L and a model M,
the algorithm constructs one optimal alignment by computing a shortest path from
the initial to the final state of the state space of the synchronous product between
σL and M. It is shown in [19] that all shortest paths from the initial to the final state
of the state space yield an optimal alignment. For each state in the state space, the
algorithm records a shortest path from the initial state to reach this state and thus, be-
comes the representative of all other shortest paths from the initial state to the state.
An optimal alignment is constructed from a shortest path from the initial state to
the final state that is also representing all other shortest paths that connect the same
pair of states. By recording all represented shortest paths during state space explo-
ration for each state, we can obtain all shortest paths from the initial to the final
state of the state space (i.e., obtain all optimal alignments). Different representa-
tives may represent different number of optimal alignments. Given a representative
γ ∈ Λ R

M(σL),repM(γ) denotes the number of optimal alignments represented by γ .
Furthermore, due to possible pruning of state space, the total number of represented
optimal alignments by the representatives is a lower bound of the total number of
all optimal alignments, i.e., ∑γ∈Λ R

M(σL)
repM(γ) ≤ |Γ o

σL,M|. The interested reader is
referred to [18, 19, 17] for details on the constructed state space with the A?-based
algorithm approach.

Take for example a trace σL = 〈a〉. All optimal alignments between the trace
and the medical model M are shown in Figure 9.4. Given a possible function Λ R,
Λ R(σL) = {γ7,γ9,γ10} where repM(γ7) = 1 (γ7 represents {γ7}), rep(γ9) = 2 (γ9
represents {γ8,γ9}), and rep(γ10) = 2 (γ10 represents {γ10,γ11}).

For simplicity, in the remainder we omit the model notation M in functions Λ ∗M ,
Λ 1

M , Λ R
M , and repM whenever the context is clear. Note that in cases where a process

92 9 Handling non-Fitness

model has duplicate tasks (more than one task to represent an activity) or invisible
tasks (tasks whose execution are not logged), approaches to construct alignments
(e.g., [22, 18]) keep the mapping from all model moves to the tasks they correspond
to. Hence, given an alignment of a trace and such models, we know exactly which
task is executed for each model move. We refer to [22, 18] for further details on how
such mapping is constructed.

9.3 Precision based on Alignments

The technique described in the previous section provides optimal alignments for
each trace in the log. This section presents a technique to compute precision based
on the use of these optimal alignments. Like the approach on Chapter 5, the behavior
observed in the log is used to traverse the modeled behavior, detecting escaping arcs
for possible points of imprecision. However, whereas in Chapter 5 is based on model
replay directly from the log, the approach presented here uses the alignments as a
more faithful representation of the observed behavior. The advantages are manifold.
First of all, traces in the log do not need to be completely fitting. In Chapter 5, the
non-fitting parts are simply ignored. For most real-life situations, this implies that
only a fraction of the event log can be used for computing precision. Second, the
existence of indeterminism in the model poses no problems when using the align-
ments. Finally, the use of alignments instead of log-based model replay improves
the robustness of conformance checking. The remainder of this section is devoted to
explain how precision can be calculated from the alignments. In particular, we con-
sider the precision checked from one alignment, all alignments, and representative
alignments. To illustrate the three approaches, in the remainder of the section we
use the following running example: the model M shown in Figure 9.2 and the log
L = [σ1,σ2,σ3,σ4,σ5], containing the 5 traces that appear in in Table 9.1. The table
also provides the optimal alignments for the traces in L.

9.4 Precision from 1-Alignment 93

Freq Trace Optimal Alignment

1 σ1 = 〈a〉

γ1a =
a � � �
a f g h
t1 t6 t7 t8

γ1b =
a � � �
a b c d
t1 t2 t3 t4

γ1c =
a � � �
a c b d
t1 t3 t2 t4

γ1d =
a � � �
a c b e
t1 t3 t2 t5

γ1e =
a � � �
a b c e
t1 t2 t3 t5

1 σ2 = 〈a,b,c,d〉

γ2 =
a b c d
a b c d
t1 t2 t3 t4

1 σ3 = 〈a,c,b,e〉

γ3 =
a c b e
a c b e
t1 t3 t2 t5

1 σ4 = 〈a, f ,g,h〉

γ4 =
a f g h
a f g h
t1 t6 t7 t8

1 σ5 = 〈a,b, i,b,c,d〉

γ5 =
a b i b c d
a b i b c d
t1 t2 t9 t2 t3 t4

Table 9.1: Optimal alignments of log [σ1,σ2,σ3,σ4,σ5] and the medical model M
of Figure 9.2

9.4 Precision from 1-Alignment

Like Chapter 5, precision is estimated by confronting model and log behavior: es-
caping arcs between the model and the log (i.e., situations where the model allows
more behavior than the one reflected in the log) are detected by juxtaposing behav-
ior observed in the log and the one allowed by the model. This juxtaposition is done
in terms of an automaton: first, an automaton is built from the alignments. Then,
the automaton is enhanced with behavioral information of the model. Finally, the
enhanced automaton is used to compute the precision. In order to build the automa-
ton, observed behavior must be determined in terms of model perspective, i.e., we
consider the optimal alignments of each trace in the log for this purpose. For ex-

94 9 Handling non-Fitness

ample, given the running example L and M, the trace σ1 has 5 optimal alignments,
γ1a, γ1b, γ1c, γ1d , γ1e}, shown in Table 9.1. However, in 1-alignment only one align-
ment is considered. For this example, we assume that the alignment assigned to σ1
by Λ 1 based on an external criterion corresponds to γ1a, i.e., Λ 1(σ1) = γ1a. On the
other hand, traces σ2 . . .σ5 are perfectly fitting and have only one optimal align-
ment containing only synchronous moves. Given an alignment γ , in order to build
the automaton, we only consider the projection of tasks moves, i.e., rowT (γ). In
this example, the sequences used as observed behavior are 〈t1, t6, t7, t8〉, 〈t1, t2, t3, t4〉,
〈t1, t3, t2, t5〉, 〈t1, t6, t7, t8〉 and 〈t1, t2, t9, t2, t3, t4〉. We use rowT (Λ

1)L to denote the ap-
plication of function rowT on all the alignments provided by the functions Λ 1 for the
traces in log L. We can omit the subindex L whenever the context is clear. Note that,
by definition, any alignment projection rowT (γ) is a valid complete firing sequence
of the model.

Similar to Chapter 5, the automaton is built considering all the prefixes for the
sequences in rowT (Λ

1) as the states. For instance, given a sequence 〈t1, t2, t3, t4〉
resulting of rowT (Λ

1)(σ2), the states considered are 〈〉, 〈t1〉, 〈t1, t2〉, 〈t1, t2, t3〉 and
〈t1, t2, t3, t4〉. We denote as •(rowT (γ)) the set of prefixes of the tasks sequence of the
alignment γ and as •(rowT (Λ

1)) the multiset of prefixes of the the tasks sequences
of all alignments in Λ 1.

Definition 9.6 (Prefix Automaton of the 1-Alignment) Let L∈B(A∗) be an event
log, let M be a model with tasks T , and let rowT (Λ

1) be the alignments be-
tween them projected on the model tasks. We define the prefix automaton of the
1-Alignment AΛ 1M = (S,T,↗,ω,s0) such that:

• the set of states corresponds to the set of prefixes of the alignments projected on
the model tasks, i.e., S = {σ |σ ∈ •(rowT (Λ

1))}.
• the set of labels corresponds to the set of tasks T .
• the arcs↗⊆ (S×T ×S) define the concatenation between states and tasks, i.e.,
↗= {(σ , t,σ · 〈t〉)|σ ∈ S∧σ · 〈t〉 ∈ S}.

• the function that determines the weight of a state is determined by the number
of occurrences of the state in the multiset of prefixes of the tasks sequences, i.e.,
ω(σ) = •(rowT (Λ

1))(σ) for all σ ∈ S.
• the initial state s0 corresponds with the empty prefix 〈〉.

Figure 9.5 shows the resulting automata for the running example L using the
function Λ 1 (only the white states). For example, the weight of the state 〈t1〉 is
greater than the weight of 〈t1, t3〉 because there are more tasks sequences with the
prefix 〈t1〉 (all 5 sequences), than the ones with prefix 〈t1, t3〉 (only the sequence
〈t1, t3, t2, t5〉 contains that prefix).

Once the observed behavior has been determined in terms of an automaton, the
confrontation with the actual modeled behavior is required in order to determine the
precision. For each state of the automaton, we compute its set of modeled tasks, i.e.,
possible direct successor tasks according to the model (mod), and then compare it
with the set of observed tasks, i.e., tasks really executed in the log (obs)(cf. Defini-
tion 5.4). Let us consider, for example, state 〈t1, t2, t3〉 of automaton in Figure 9.5.

9.4 Precision from 1-Alignment 95

0
<t1,t3,t2,t4>

5
<>

5
<t1>

1

<t1,t3>

1
<t1,t3,t2>

1
<t1,t3,t2,t5>

0
<t1,t3,t2,t9>

2

<t1,t6>

2

<t1,t6,t7>

2
<t1,t6,t7,t8>

0
<t1,t2,t3,t5>

2

<t1,t2>

1
<t1,t2,t3>

1
<t1,t2,t3,t4>

0
<t1,t2,t3,t9>

0
<t1,t2,t9,t5>

1
<t1,t2,t9>

1
<t1,t2,t9,t2>

0
<t1,t2,t9,t6>

0
<t1,t2,t9,t2,t3,t5>

1
<t1,t2,t9,t2,t3>

1
<t1,t2,t9,t2,t3,t4>

0
<t1,t2,t9,t2,t3,t9>

0
<t1,t2,t9,t2,t9>

Fig. 9.5: Automaton from 1-alignments between model M and log L.

The set of observed tasks of the state is obs(〈t1, t2, t3〉) = {t4}, i.e., for all traces with
prefix 〈t1, t2, t3〉, their direct successor is only t4. The set of modeled tasks for the
state is mod(〈t1, t2, t3〉) = {t4, t5, t9} because after performing the sequence of tasks
〈t1, t2, t3〉, the model allows to do t4, t5 or t9. Note that, by definition of alignment,
obs(s)⊆ mod(s), i.e., the set of executed tasks of a given state is always a subset of
all available tasks according to the model.

The arcs that are modeled according to the model, but do not occur in the event
log according to the alignments, are used to collect the escaping arcs of the system,
i.e., arcs that escapes from the observed behavior. The tasks on the escaping arcs
and the states reached are called escaping tasks and escaping states respectively. In
Figure 9.5 the escaping states are in color. For example, the escaping tasks of the
state 〈t1, t2, t3〉 are {t4, t5, t9}\{t4}= {t5, t9}. The computation and analysis of these
escaping arcs are the cornerstone of the precision checking technique presented in
this book. All identified escaping arcs can be analyzed and further used to correct
the model and make it more precise. Furthermore, in order to globally estimate
precision, these escaping arcs in turn are weighted and normalized defining a metric
to measure precision called 1-align precision metric.

Definition 9.7 (1-Align Precision metric) Let AΛ 1M = (S,T,↗,ω,s0) be the pre-
fix automaton of the alignments in Λ 1 enhanced with the behavior of the model M.
The metric 1-Align Precision estimates the precision of the system comparing, for
each state in S, the number of escaping arcs with the number of allowed arcs. The
numbers are weighted according to the importance of the state. Formally:

96 9 Handling non-Fitness

a1
p(AΛ 1M) = 1− ∑s∈S ω(s) · |esc(s)|

∑s∈S ω(s) · |mod(s)|

For example, the precision for the automaton derived from Λ 1 shown in Figure
9.5 is 0.79.

9.5 Summary

This chapter presented an overview on the alignment techniques. These techniques
are used as a pre-processing step to align modeled and observed behavior, provid-
ing meaningful precision results in unfitting scenarios. In the next chapter several
variants of the main technique are presented, to explore different scenarios.

	9
Handling non-Fitness
	9.1 Introduction
	9.2 Cost-Optimal Alignment
	9.3 Precision based on Alignments
	9.4 Precision from 1-Alignment
	9.5 Summary

