
 123

LN
BI

P
27

0

Comparing Observed and Modeled Processes

Conformance
Checking and Diagnosis
in Process Mining

Jorge Munoz-Gama

Lecture Notes
in Business Information Processing 270

Series Editors

Wil M.P. van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Jorge Munoz-Gama

Conformance Checking
and Diagnosis
in Process Mining
Comparing Observed and Modeled Processes

123

Jorge Munoz-Gama
Departamento de Ciencia de la Computación
Pontificia Universidad Católica de Chile,
Escuela de Ingeniería

Macul, Santiago
Chile

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-49450-0 ISBN 978-3-319-49451-7 (eBook)
DOI 10.1007/978-3-319-49451-7

Library of Congress Control Number: 2016957478
© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To Loly, Emilio, Alex, and the rest of my family
and friends.

Preface

This book encompasses a revised version of the PhD dissertation of Jorge
Munoz-Gama written at the Computer Science Department of the Universitat Poli-
tècnica de Catalunya (Spain). In 2015, the dissertation won the “Best Process Mining
Dissertation Award,” assigned by the IEEE Task Force on Process Mining to the most
outstanding PhD thesis, discussed between 2013 and 2014, focused on the area of
business process intelligence.

In the past few decades, the capability of information systems to generate and record
overwhelming amounts of event data has witnessed an exponential growth in several
domains, and in particular in industrial scenarios. Devices connected to the Internet
(Internet of Things), social interaction, mobile computing, and cloud computing pro-
vide new sources of event data and this trend will continue in the next decades. The
omnipresence of large amounts of event data stored in logs is an important enabler for
process mining, a novel discipline for addressing challenges related to business process
management, process modeling, and business intelligence. Process mining techniques
can be used to discover, analyze, and improve real processes, by extracting models
from observed behavior. The capability of these models to represent the reality
determines the quality of the results obtained from them.

The aim of this book is conformance checking, one of the main areas of process
mining. In conformance checking, existing process models are compared with actual
observations of the process in order to assess their quality. These models are typically
the result of a hand-made analysis influenced by the bias of the analysts and the process
owners, modeling a possibly outdated representation of the process. Conformance
checking techniques are a way to visualize the differences between the assumed process
represented in the model and the real process in the event log, pinpointing possible
problems to be addressed, and the business process management results that rely on
these models.

Conformance checking is a complex multidimensional analysis, where orthogonal
dimensions such as fitness (measuring and ensuring that models capture all the
behavior in the log) and precision (not including unnecessary behavior) determine the
quality of the models. Moreover, a conformance analysis of real-life processes may
overcome additional challenges such as the presence of noise or the size of the models.

The first part of the book focuses on analyzing and measuring the precision
dimension of conformance, where models describing precisely the reality are preferred
to overly general models. The book includes a novel technique based on detecting
escaping arcs, i.e., points where the modeled behavior deviates from the one in the log.
The detected escaping arcs are used to determine the precision between log and model,
and to locate possible actuation points in order to achieve a more precise model. The
book also presents a confidence interval on the provided precision metric, and a
multi-factor measure to assess the severity of the detected imprecisions. These tech-
niques open the door to noise-robust analysis of real-life processes and the possibility

of ranking the misconformances detected regarding the importance and potential
impact in the process.

Checking conformance can be time consuming for real-life scenarios, and under-
standing the reasons behind the conformance mismatches can be an effort-demanding
task. The second part of the book changes the focus from the precision dimension to the
fitness dimension, and proposes the use of decomposed techniques to aid in checking
and diagnosing fitness. The proposed approach is based on decomposing the model in
single-entry single-exit components. The resulting fragments represent subprocesses
within the main process with a simple interface with the rest of the model. Fitness
checking per component provides well-localized conformance information, aiding the
causes behind the mismatches. Moreover, the relations between components can be
explored to improve the diagnosis capabilities of the analysis, identifying areas with a
high degree of mismatches, or providing a hierarchy for a zoom-in zoom-out analysis.

Finally, the book proposes two main applications of the decomposed approach.
First, the theory is extended to incorporate data information for fitness checking in a
decomposed manner. Second, a real-time event-based framework is presented for
monitoring fitness in an on-line setting.

This book combines both application and research perspectives. It provides concrete
use cases that illustrate the problems addressed by the techniques in the book, but at the
same time, it contains complete conceptualization and formalization of the problem and
the techniques, and through evaluations on the quality and the performance of the
proposed techniques. Hence, this book is aimed at business analysts willing to improve
their organization processes, and also data scientists interested in the topic of
process-oriented data science.

April 2016 Jorge Munoz-Gama

viii Preface

Acknowledgments

The first person I would like to thank is my advisor, Josep Carmona. I would like to
express my gratitude to him for his expertise, understanding, and patience. I appreciate
his knowledge and skills (an “oracle” to me), his determination and patience in
teaching me, his concept of ethics in the academic world, the hours of work spent
together, and his comprehension in my darkest hours. From him I learned to never be
satisfied with mediocrity, and to always give the best of myself. And the deeper I go in
the academic world, the more I realize how outstanding Josep was as an advisor.
Thanks for having your office always open for me, even today!

This book would not have been possible without Marcos Sepúlveda. He is the best
partner one could have to co-direct this new academic adventure of Process Mining
UC. He was one of the main reasons I took the opportunity that appeared here in Chile,
and he has helped, guided, and pushed me since then, professionally and personally.
Whenever I feel lost, overwhelmed, or pessimistic, he is there for me (with his acerbic
humor). And the same can be said about our group. Sharing my time with them is great.
I would like to thank Jonathan Lee, who made the effort to proofread this thesis. And I
would like to extend my thanks to my colleagues, inside and outside the department,
and friends here in Chile, especially to Mar Pérez-Sanagustín.

I would also like to thank Wil van der Aalst for opening the door of TU Eindhoven,
making me feel a member of his group from the very first minute, and for sharing with
me his views on the process mining field. It was (and still is) a real privilege to work
with him. I would like to extend my thanks to the rest of the group in Eindhoven: Each
visit there is an intellectual pleasure, and a personal dream. To all of you, thanks for
making my stays in Eindhoven memorable.

During my PhD and afterward I have had the privilege of working with great people
from other research groups around the world. I would like to thank Isao Echizen from
the NII for advising me and giving me the opportunity to work in a place so exotic for
me like Japan. His creative mind and his practical vision of security and the world in
general is remarkable. I would like to also thank Seppe vanden Broucke (hard-working
researcher and even greater person), Bart Baesens, and Jan Vanthienen from KU
Leuven. Some colleagues visited us in Barcelona and Santiago, and I had the oppor-
tunity to work side by side with them: Joel Ribeiro, Thomas Stocker, Xixi Lu, and
Andrea Burattin. It has been a pleasure to have you there and here. Collaborating with
Ernest Teniente and Montse Estañol is clear evidence that in science there are more
things in common between us than things keeping us apart.

The academic path is a road full of bumps. And therefore I would like to thank
everyone who made this work possible: The people in charge of the department, the
university, the research projects, and the administrative tasks. Not to mention Ramon
Xuriguera and Daniel Alonso, who were always there when my deadlines were around
the corner.

To enumerate all the friends who shared with me this period of my life would
require another thesis: the friends of S108 (and S106, of course), The Netherlands,
Japan, Bergen, Barcelona, Folloneres, China, Haskell, Castellón, San Francisco, Vic,
Ragú, Gelida, Ibiza, Cantabria, Indonesia, Leuven, Italy, Iran, Curitiba, Chile, Costa
Rica, Ukraine, Russia, Porto, France, and all the others. Without you, I would have
finished my thesis much earlier.

As mentioned, this book comes as an elaborated version of my PhD thesis. I am
particularly thankful to the organizers and jury of the Best Process Mining Dissertation
Award: Marcello La Rosa, Antonella Guzzo, and especially Dirk Fahland, whose
detailed comments and precise suggestions made this book possible.

Finally, I would like my last thanks to go to my parents, Loly and Emilio, my
brother, Alex, and the rest of my family. I am truly grateful to have you by my side, in
the good but also in the bad moments. This book is dedicated to you!

x Acknowledgments

Contents

1 Introduction . 1
1.1 Processes, Models, and Data . 1
1.2 Process Mining . 3
1.3 Conformance Checking Explained: The University Case 5
1.4 Book Outline . 7

Part I Conformance Checking in Process Mining

2 Conformance Checking and its Challenges . 11
2.1 The Role of Process Models in Conformance Checking 11
2.2 Dimensions of Conformance Checking . 12
2.3 Replay-based and Align-based Conformance Checking 15
2.4 Challenges of Conformance Checking . 15

3 Conformance Checking and its Elements . 19
3.1 Basic Notations . 20
3.2 Event Logs . 22
3.3 Process Models . 23
3.4 Process Modeling Formalisms . 26

3.4.1 Petri Nets . 26
3.4.2 Workflow Nets . 28
3.4.3 Other Formalisms . 28

Part II Precision in Conformance Checking

4 Precision in Conformance Checking . 33
4.1 Precision: The Forgotten Dimension . 34
4.2 The Importance of Precision . 34
4.3 Measures of Precision . 35
4.4 Requirements for Precision . 37

xii Contents

5 Measuring Precision . 39
5.1 Precision based on Escaping Arcs . 40
5.2 Constructing the Observed Behavior . 42
5.3 Incorporating Modeled Behavior . 43
5.4 Detecting Escaping Arcs and Evaluating Precision 46
5.5 Minimal Imprecise Traces . 49
5.6 Limitations and Extensions . 51

5.6.1 Unfitting Scenario . 51
5.6.2 Indeterministic Scenario . 52

5.7 Summary . 53

6 Evaluating Precision in Practice . 55
6.1 The University Case: The Appeals Process . 56
6.2 Experimental Evaluation . 58

7 Handling Noise and Incompleteness . 61
7.1 Introduction . 62
7.2 Robustness on the Precision . 62
7.3 Confidence on Precision . 67

7.3.1 Upper Confidence Value . 67
7.3.2 Lower Confidence Value . 69

7.4 Experimental Results . 70
7.5 Summary . 73

8 Assessing Severity . 75
8.1 Introduction . 76
8.2 Severity of an Escaping Arc . 76

8.2.1 Weight of an Escaping Arc . 77
8.2.2 Alternation of an Escaping Arc . 78
8.2.3 Stability of an Escaping Arc . 78
8.2.4 Criticality of an Escaping Arc . 80
8.2.5 Visualizing the Severity . 80
8.2.6 Addressing Precision Issues based on Severity 81

8.3 Experimental Results . 82
8.4 Summary . 84

9 Handling non-Fitness . 85
9.1 Introduction . 86
9.2 Cost-Optimal Alignment . 88
9.3 Precision based on Alignments . 92
9.4 Precision from 1-Alignment . 93
9.5 Summary . 96

Contents xiii

10 Alternative and Variants to Handle non-Fitness . 97
10.1 Precision from All-Alignment . 98
10.2 Precision from Representative-Alignment . 100
10.3 Abstractions for the Precision based on Alignments 102

10.3.1 Abstraction on the Order . 104
10.3.2 Abstraction on the Direction . 105

10.4 Summary . 106

11 Handling non-Fitness in Practice . 107
11.1 The University Case: The Exchange Process . 108
11.2 Experimental Results . 112

Part III Decomposition in Conformance Checking

12 Decomposing Conformance Checking . 121
12.1 Introduction . 122
12.2 Single-Entry Single-Exit and Refined Process Structure Tree 123
12.3 Decomposing Conformance Checking using SESEs 125
12.4 Summary . 127

13 Decomposing for Fitness Checking . 129
13.1 Introduction . 130
13.2 Bridging a Valid Decomposition . 130
13.3 Decomposition with invisible/duplicates . 135
13.4 Summary . 138

14 Decomposing Conformance Checking in Practice 141
14.1 The Bank Case: The Transaction Process . 142
14.2 Experimental Results . 145

15 Diagnosing Conformance . 151
15.1 Introduction . 152
15.2 Topological Conformance Diagnosis . 153
15.3 Multi-level Conformance Diagnosis and its Applications 156

15.3.1 Stand-alone Checking . 156
15.3.2 Multi-Level Analysis . 157
15.3.3 Filtering . 158

15.4 Experimental Results . 159
15.5 Summary . 161

16 Data-aware Processes and Alignments . 163
16.1 Introduction . 164
16.2 Data-aware Processes . 166

16.2.1 Petri nets with Data . 166
16.2.2 Event Logs and Relating Models to Event Logs 169
16.2.3 Data Alignments . 170

xiv Contents

16.3 Summary . 172

17 Decomposing Data-aware Conformance . 173
17.1 Introduction . 174
17.2 Valid Decomposition of Data-aware Models . 174
17.3 SESE-based Strategy for a Valid Decomposition 176
17.4 Implementation and Experimental Results . 177
17.5 Summary . 179

18 Event-based Real-time Decomposed Conformance Checking 181
18.1 Introduction . 182
18.2 Event-based Real-time Decomposed Conformance 182

18.2.1 Model and Log Decomposition . 182
18.2.2 Event-based Heuristic Replay . 184

18.3 Experimental Results . 186
18.4 Summary . 188

Part IV Conclusions and Future Work

19 Conclusions . 191
19.1 Conclusion and Reflection . 191
19.2 Summary of Contributions . 192
19.3 Challenges and Directions for Future Work . 193

References . 197

Chapter 1
Introduction

This chapter presents the concepts of processes, process models and event data, and
provides an overview of the discipline that uses event data to improve process mod-
els, known as process mining. Moreover, the chapter introduces the reader to con-
formance checking – final goal of this book– the set of process mining techniques
that focus on evaluate the difference between the assumed process model and the
real process.

1.1 Processes, Models, and Data

There is a wide range of ways to define the concept of process. A simple but intuitive
alternative is to define a process as a sequence of activities performed in a specific
order to achieve a specific goal. And when this definition is considered one realizes
that processes are everywhere in our daily lives. Processes are crucial parts of our
industries and organizations. An assembly line in a car plant, or the management of
packages in a delivery company are examples of processes in industrial scenarios.
However, the concept of process is wider than that, being present in any daily ac-
tivity: buying groceries in the city market is, by itself, a process. When you go to a
market you visit the different stands in a given order. The stands where you buy may
depend on your needs that day (e.g., groceries for yourself or to prepare a big meal
for some guests), or even on the date itself (e.g., the butcher closes on Monday). The
order of the stalls is determined by a set of factors (e.g., buy in stalls close to each
others to avoid crossing the market each time, or buy heavy purchases at the end
to not carry them around). Even concurrent activities may appear (e.g., send your
son to buy bread while you buy the fish). Hence, buying groceries is a complete
process with all its elements. Other examples of processes are the application for
a credit card, boarding and security procedures before a flight, or the preoperative
steps before a surgical procedure.

Most organizations, large and small, document their processes using process
models by regulations such as ISO 9001. However, most of the organizations go

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 1–8, 2016.
DOI: 10.1007/978-3-319-49451-7_1

2 1 Introduction

beyond static documents, and use the process models as a direct input to manage,
coordinate, monitor, and validate all the activities of the organization. Fields such as
Business Process Management (BPM) and Business Process Automation (BPA) are
good examples of process techniques that rely on process models. Therefore, there
is a need for updated models that reflect the current execution of the organization
processes.

The times of paper and ink are progressively passing, and nowadays more and
more organizations are supported by some kind of IT system. The support of the IT
system in small organizations is usually passive, like the use of simple spreadsheets
to keep the accounts of a small business. In other cases, like in banking, this support
plays a more active role where each action is strictly controlled and monitored by
the IT system. But most IT systems used in practice have something in common: the
possibility to keep some kind of record of the actions occurred during the executions
of the process they support. These records are called event logs.

Consider, for example, a doctoral scholarship process of some university. Doc-
toral students apply for a scholarship submitting their academic record, the CV of
their advisor, and a description of their proposed project. Then the university evalu-
ates the documentation and decides if they should grant the scholarship. The process
starts by collecting all the documents and starting the procedure (Start Processing).
Then, the three documents are evaluated in any order (Evaluate Academic Record,
Evaluate Advisor CV and Evaluate Project). Once all documents have been eval-
uated, a final evaluation is done by the chief of the department (Final Evaluation)
and the application is either accepted (Accepted) or rejected (Rejected). Finally, the
decision taken is notified to the student (Notify Results). Table 1.1 shows an example
of an event log recorded by the IT system supporting this scholarship process. Each
row represents an event of the log. All events relating the application of a particular
student form a case, and the events within a case are ordered by the time of their
occurrence.

Notice that the information contained in an event log represents an unbiased re-
flection of the real process as it has been executed in the past. This contrasts with
the possible information represented in a hand-made process model, where the per-
spective of the process analyst or the process owner could lead to an unfaithful
representation of the process. The use of inaccurate models could result in incor-
rect predictions, wrong decisions, or poor performances. Therefore, Process Mining
techniques focus on the use of unbiased information contained in the event data to
support the management of process models.

1.2 Process Mining 3

Case Event Timestamp Activity Employee Student . . .

1 1 01-01-2014 10:00 Start Processing Merce Alex . . .
1 2 01-01-2014 11:30 Evaluate Academic Record Fernando Alex . . .
1 4 01-01-2014 13:30 Evaluate Project Fernando Alex . . .
1 8 01-01-2014 17:00 Evaluate Advisor CV Fernando Alex . . .
1 9 02-01-2014 10:00 Final Evaluation Ana Alex . . .
1 11 02-01-2014 11:00 Accept Ana Alex . . .
1 12 02-01-2014 12:00 Notify Results Merce Alex . . .

2 3 01-01-2014 12:00 Start Processing Merce Dolores . . .
2 5 01-01-2014 14:00 Evaluate Academic Record Maria Dolores . . .
2 6 01-01-2014 15:00 Evaluate Advisor CV Maria Dolores . . .
2 7 01-01-2014 16:00 Evaluate Project Fernando Dolores . . .
2 10 02-01-2014 10:30 Final Evaluation Ana Dolores . . .
2 13 02-01-2014 13:00 Reject Ana Dolores . . .
2 15 02-01-2014 16:00 Notify Results Merce Dolores . . .

3 14 02-01-2014 15:00 Start Processing Merce Emilio . . .
3 16 02-01-2014 17:30 Evaluate Academic Record Maria Emilio . . .
3 17 02-01-2014 18:00 Evaluate Project Maria Emilio . . .
3 18 03-01-2014 10:00 Final Evaluation Ana Emilio . . .
3 19 03-01-2014 11:00 Reject Ana Emilio . . .
3 21 03-01-2014 13:00 Notify Results Merce Emilio . . .

4 20 03-01-2014 12:00 Start Processing Merce George . . .
. .

Table 1.1: Example of a partial event log for the scholarship process, grouped by
case.

1.2 Process Mining

Process mining is a relative young research discipline that sits between machine
learning and data mining on the one hand, and process modeling and analysis on
the other hand. The idea of process mining is to discover, monitor and improve real
processes by extracting knowledge from event logs readily available in today’s IT
systems [7].

Event logs are unbiased footprints representing the process as it is. This contrasts
with the process assumed by the process owners, a perception possibly biased by
their understanding of how the process is executed. Event logs are the starting point
of all process mining techniques, that use them to discover, verify or extend models
for the process. Figure 1.1 shows an overview of how process mining is structured.

Process mining techniques can be grouped into three classes depending on their
purpose: discovery, conformance, and enhancement.

Discovery: A discovery technique takes an event log as input and produces a
model considering only the knowledge extracted from the log. For example, the
model in Figure 1.2 shows a possible workflow model discovered from the schol-
arship process event log of Table 1.1. For simplicity purposes, the model is de-

4 1 Introduction

conformance

discovery

enhancement

controls /
supports

models /
analyzes

record
events

REALITY

PROCESS
MODEL

EVENT
LOG

IT SYSTEMS

Fig. 1.1: Overview of process mining and its three types of techniques: discovery,
conformance and enhancement [7].

Start

Processing
AND

Evaluate

Project

Evaluate

Academic

Record

Evaluate

Advisor CV

AND
Final

Evaluation
XOR

Accept

Reject

XOR
Notify

Results

Fig. 1.2: Informal process model of the scholarship process.

fined using an informal but intuitive notation, instead of wide-spread process
formalisms such as BPMN [66], Petri nets [65], or YAWL [11]. In this informal
notation AND diamonds model concurrent activities and XOR diamonds repre-
sent mutually exclusive activities, similar to the gateways of BPMN. Discovery
is the oldest sub-discipline in process mining. The list of approaches is long, as
long as the list of different algorithms used to discover models. For instance,
α-algorithm [15] is based on detecting relations among activities of the log, Ge-
netic Miner [54] uses evolutionary algorithms, or Genet [38] and ILP Miner [93]
are based on the theory of regions. The model discovered is not restricted to the
workflow perspective of the process. If the log contains additional information
one can also discover resource-related models, for example capturing the inter-
actions between the actors of the process [13].
Conformance: Unlike discovery, conformance considers both an event log and a
model as inputs. The goal of conformance techniques is to check whether if the
modeled behavior accurately represents the behavior observed in the log. Some

1.3 Conformance Checking Explained: The University Case 5

examples of conformance techniques are [73, 17, 59, 62, 88]. Conformance can
be used to verify if a process documentation is still updated, or to check if the
model obtained using a discovery approach is a faithful representation of the
process.
Enhancement: Like conformance, enhancement also considers both an event log
and a model as inputs. However, enhancement techniques aim to improve the a-
priori model with information contained in the log. This enhancement could be
done by means of repairing the model to better conform the observed behavior
[44]. Another option is to extend the model with additional information, adding
a new perspective to the process model. For example, detecting and including the
data dependencies that affect the routing of a process execution [76].

This book focuses on conformance checking, and how this techniques can be
used, for example, to verify the quality of hand-made models, to compare them with
the unbiased execution of the processes in the event logs, and to identify possible
points for improvement.

1.3 Conformance Checking Explained: The University Case

Most of the research in process mining has mainly focused on discovery techniques,
neglecting the importance of conformance. However, conformance techniques have
become an essential part in the process life cycle. Regulations, certifications or
simply communication purposes are making most organization document their pro-
cesses. Process models are also required in process-aware information systems such
as workflow management systems, or for analyzing and simulating future scenarios.
However, models that do not adequately represent the reality could lead to wrong
conclusions.

We illustrate how conformance checking techniques can overcome such prob-
lems in the analysis of real-life processes by means of an example – The University
Case – and we will return to this example at various points in the book:

An American university has most of their daily academic processes partially
managed by its own process management system. The system was initially devel-
oped in the early 2000s, and it has been patched and extended until now. However,
the cost of maintaining this system is extremely high, and not flexible at all, so the
university decides to change the system that supports the academic processes.

Instead of develop a new system, the university decides to buy Usoft, a BPM solu-
tion for large academic institutions used in a wide range of universities in America,
and configure it to fulfill their needs. Usoft software uses process models as inputs,
and these models are used to guide the user step-by-step on its execution, avoiding
not-desired arbitrary additional behavior. Moreover, the process models are used to
automatize certain steps, and to provide monitoring functionality for the university
administration.

In addition to the software, the Usoft package provides a pack of standard pro-
cess models for the typical university processes to be used as input, e.g., inscription

6 1 Introduction

of courses, admission of new students, assign classrooms to courses, among other
examples. The pack includes different process models for the same process, repre-
senting good but different procedures to perform the same process. Moreover, the
process models are easily modifiable, in order to add, remove, or change certain
steps.

EVENT	
 LOG	
 PROCESS	

MODEL	

CONFORMANCE	

RESULTS	

CONFORMANCE	

CHECKING	

Uso7	

System	

Legacy	

System	

Process	

Re-­‐design	

Model	

AdaptaFon	

Process	

Analysis	

Model	

ValidaFon	

Fig. 1.3: Overview of the conformance analysis applied to the University case.

The new system should be as close as possible in its behavior as the old system.
Thus, the university has to identify process variants among the provided processes
which best support the process on how it has been executed in the past. For that
task, the university relies on conformance checking techniques in order to success-
fully migrate and configure the new system, as it is shown in Figure 1.3. To do that,
the university will use the event logs recorded in the legacy system to validate the
models used as input in Usoft, and also to analyze how they are currently execut-
ing certain processes. In particular, some of the tasks performed with the help of
conformance checking are:

• Assess the quality of the process models provided by Usoft in order to choose
the one closest to the current process.

• Locate the discrepancies between a selected model and the current execution of
the process, to evaluate possible modifications of the model.

• Compare the current process executions with the new process models in order to
detect parts of the process not currently supported by the legacy system, and to
estimate the potential benefits (time, resources, ...) of the new process automation
using Usoft.

1.4 Book Outline 7

• Compare the current execution of processes with well established and widely
used process models, to consider if necessary, re-design (totally or partially) the
process and the university policies.

How to conduct such conformance analysis under various conditions and circum-
stances is the subject of this book. In Chapter 2, we introduce conformance checking
at a more conceptual level and the challenges that will be addressed in this book.

1.4 Book Outline

This book is divided into four parts:

Part I - Conformance Checking in Process Mining

Part I presents the problem of conformance checking, where a process model is com-
pared with event data to assess its conformance to the reality (Chapter 2), and the
elements involved in the problem such as process models and event logs (Chapter 3)

Part II - Precision in Conformance Checking

Part II focuses on precision checking, the problem of analyzing if the process model
captures the reality in a precise way, not allowing additional behavior that are not
observed in the event log. Part II motivates the importance of precision checking
(Chapter 4), proposes an approach to evaluate precision (Chapter 5), and shows its
applicability (Chapter 6). Moreover, the precision analysis is extended to address
some of the challenges faced by real-life analysis, such as handling noise and in-
completeness (Chapter 7) assessing the severity of the detected problems (Chap-
ter 8), handling non-fitness (Chapter 9 and Chapter 10), and the applicability of the
analysis on non-fitting scenarios. Chapter 11).

Part III - Decomposition in Conformance Checking

Part III focuses on fitness checking – measuring how much of the observed behav-
ior is being captured by the process model – for large processes. Part III proposes
a decomposition strategy (Chapter 12) and a fitness checking based on that decom-
position strategy (Chapter 13). Moreover, Part III illustrates the applicability of the
decomposed analysis in practice (Chapter 14) and proposes techniques to aid the di-

8 1 Introduction

agnosis of conformance problems (Chapter 15). Additionally, Part III extends con-
formance checking to data-aware process models (Chapter 16) and proposes a de-
composed analysis (Chapter 17). Finally, Part III illustrates the use of decomposed
conformance checking techniques on real-time scenarios (Chapter 18).

Part IV - Conclusions and Future Work

Part IV concludes the book, summarizing the contributions and proposing directions
for future work on the field of conformance checking (Chapter 19).

Part I
Conformance Checking in Process Mining

Chapter 2
Conformance Checking and its Challenges

An analysis of a process is as good as the models used for such analysis. This chap-
ter provides a basic overview on conformance checking. In particular it concentrates
on the quality dimensions of a process model with respect to reality, and the chal-
lenges that arise when one tries to assess the conformance of a model to reality. This
chapter closes with an overview on all the challenges addressed in this book and the
respective chapters where each challenge will be covered.

2.1 The Role of Process Models in Conformance Checking

Process models play a crucial role in any process analysis technique. The term pro-
cess model may refer to any representation, generic or specific, of one or several
perspectives of a process. However, one of the most extended meanings of process
models are workflow process models, i.e., a process model that captures the order of
the actions involved in the process. Workflow process models are the main process
modeling type used in this book, and they are referred simply as process models.
Figure 2.1 is an example of process model, using an informal modeling notation,
for the scholarship process presented in the previous chapter.

Start

Processing
AND

Evaluate

Project

Evaluate

Academic

Record

Evaluate

Advisor CV

AND
Final

Evaluation
XOR

Accept

Reject

XOR
Notify

Results

Fig. 2.1: Informal process model of the scholarship process.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 11–18, 2016.
DOI: 10.1007/978-3-319-49451-7_2

12 2 Conformance Checking and its Challenges

Different process modeling notations define different types of elements to rep-
resent the process. However, there are elements common in most of the notations.
These are the activities denoting the steps of the process, and usually graphically
represented by boxes. Another element common in most process modeling nota-
tions are the flows between activities, represented as arrows, to denote an order-
ing relation between activities. Most process models are able to represent the idea
of concurrency (several activities performed without an specific order), and choice
(the execution of an activity excludes another). For example, in Figure 2.1 the AND
and XOR gateways represent concurrency and choice, respectively. In the context of
conformance checking, a process model may either be created by a human modeler
or be constructed by an algorithm. Conformance checking then aims to answer how
well that model describes reality - as it has been recorded in an event log.

2.2 Dimensions of Conformance Checking

By measuring the conformance between an event log and a process model one is
concerned about quantifying if a given model is a valid description of reality. A
first naive approach could be to consider that a model and a log conform to each
other simply if the model captures all the behavior observed in the log. In other
words, a perfect conformance would require that all the traces in the log fit in the
model. However, there are models that will allow any log to fit, but that have such
a trivial structure that they are of little or no use to a process analyst when trying
to understand a process. For example, let us consider the model in Figure 2.2 for
the scholarship example. The informal semantics behind this model (similar to Petri
nets), know as a flower model, is that it captures a possible sequence of the activi-
ties, in any order and for any length, i.e., the special circle in the middle should be
read as the state the process is in and always return to after executing an activity.
Therefore, any possible log involving the same activities fit this model. However, as
one can see, this model provides absolutely no insight into the process or how the
activities are executed. This simple counter-example shows that conformance needs
to consider more dimensions than fitness to give a faithful account of how well a
model describes a log.

In [77, 73] the multidimensional nature of the conformance is studied, and the
authors propose four dimensions – fitness, precision, generalization and simplicity –
to fully capture the notion of how good a given model is with respect to the reality.

Fitness As it has been already mentioned, this dimension indicates how much
of the observed behavior is captured – fits – the process model. For example,
the trace 〈Start Processing, Evaluate Academic Record, Evaluate Project, Eval-
uate Advisor CV, Final Evaluation, Accept, Notify Results〉 with case id 1 in Ta-
ble 1.1 perfectly fits the model in Figure 1.2. However, the trace 〈Start Pro-
cessing, Evaluate Academic Record, Evaluate Project, Final Evaluation, Reject,
Notify Results〉 with case id 3 does not fit the model because evaluate advisor
CV is never executed, denoting that the application of the student is rejected

2.2 Dimensions of Conformance Checking 13

Evaluate

Academic

Record

Evaluate

Advisor CV

Reject
Notify

Results

Final

Evaluation

Accept
Start

Processing

Evaluate

Project
Start
End

Fig. 2.2: Informal flower process model of the scholarship process, modeling any
possible sequence of the activities.

without proper evaluation. On the other hand, both traces fit the flower model of
Figure 2.2. Part III of this book is devoted to analyze the fitness dimension in
a decomposed way, and consequently a more formal presentation of the fitness
dimension is presented.
Precision This dimension identifies overly general models: precision penalizes a
process model for allowing behavior that is unlikely given the observed behavior
in the event log. For example, in the log of Table 1.1 we observe that, although
the three documents could be evaluated concurrently, the university employees
always first evaluate the academic record. That way, if the student is clearly not
suitable for the grant (e.g., the grade does not reach the minimum necessary), the
advisor and project evaluation can be done less thoroughly without compromis-
ing on the outcome of the evaluation. However, because of that specific order, the
model of Figure 2.1 is less precise than reality as it also allows for other unseen
execution orders. In contrast, the model shown in Figure 2.3 is a more precise
representation of reality than Figure 2.1. The flower model in Figure 2.2 is the
perfect example of completely imprecise model. Part II of this book is devoted
to the precision dimension, and consequently a more formal presentation of the
precision is included in these sections.

Evaluate

Academic

Record

AND

Evaluate

Project

Evaluate

Advisor CV

AND
Final

Evaluation
XOR

Accept

Reject

XOR
Notify

Results

Start

Processing

Fig. 2.3: More precise model for the scholarship process.

14 2 Conformance Checking and its Challenges

Generalization This dimension addresses overfitting models: a good model must
be able to generalize and reproduce possible future behavior, instead of capturing
simply each trace of the observed log. For example, Figure 2.4 shows a model
that only captures one possible order for the evaluation of the documents that re-
sults necessarily in the acceptance of the application. This model perfectly cap-
tures the first trace in the Table 1.1, but it is unable to generalize for any other
possible process execution. In [73, 77] the generalization dimension is covered
in more detail.

Start

Processing

Evaluate

Academic

Record

Evaluate

Project

Evaluate

Advisor CV

Final

Evaluation
Accept

Notify

Results

Fig. 2.4: Model that overfits the first trace of the scholarship log, and does not gen-
eralize for possible future behavior.

Simplicity This dimension penalizes models that are unnecessarily complex: fol-
lowing the Occam’s Razor principle, models that explain the behavior observed
in the log in a simple way are preferred than those that use redundant compo-
nents. Figure 2.5 illustrates an example where explicitly writing out all possible
execution sequences of the three evaluate activities complicates the model for the
scholarship process unnecessarily. In [73, 77] the simplicity dimension is covered
in more detail.

Start

Processing
XOR

Evaluate

Project

Evaluate

Academic

Record

Evaluate

Advisor CV

XOR
Final

Evaluation
XOR

Accept

Reject

XOR
Notify

Results
Evaluate

Project

Evaluate

Academic

Record

Evaluate

Advisor CV

Evaluate

Academic

Record

Evaluate

Advisor CV

Evaluate

Project

Evaluate

Advisor CV

Evaluate

Academic

Record

Evaluate

Project

Evaluate

Advisor CV

Evaluate

Academic

Record

Evaluate

Advisor CV

Evaluate

Project

Evaluate

Project

Evaluate

Academic

Record

Fig. 2.5: Unnecessary complex model for the scholarship process.

Given the orthogonal nature of the dimensions, there is no such thing as perfect
model, but a set of suitable models. For example, for analyzing the main paths of
a organization process the analyst could prioritize fitness over the the other dimen-
sions. On the other hand, if the process model involves critical activities and it is

2.4 Challenges of Conformance Checking 15

being used as part of a workflow system, a model with high precision is desired to
avoid performing costly actions in the wrong moments.

Next, we outline the basic techniques used in conformance checking, and the
challenges addressed in this book - focusing on fitness and precision.

2.3 Replay-based and Align-based Conformance Checking

In early works on conformance, most of the proposed approaches were based on re-
playing the log on the model to detect discrepancies. Some replay-based approaches
simply stop at the point where the model is not able to reproduce the trace anymore.
Other approaches perform the replay in a non-blocking way, regardless of whether
the path of the model is followed or not, like [77]. More sophisticated approaches,
such as the approach in [90], include also a look ahead function to determine the
most promising path. Recently, another family of approaches has appeared, where
the conformance check is done in a global manner, by means of aligning both the
modeled behavior and the behavior observed in the log. Examples of conformance
approaches based on alignments are [17, 50]. These approaches handle conformance
in a global way, but they are computationally more expensive compared with replay-
based approaches. In Part II of this book, both replay-based and alignment-based
approaches are explored to check precision. In Part III, a decomposed technique is
proposed to alleviate computation time for conformance diagnosis, especially for
those analyses based on alignments due their expensive cost.

2.4 Challenges of Conformance Checking

Conformance checking must confront a set of challenges in order to be applied suc-
cessfully. In particular, we identify five challenges: four-dimensional conformance,
big data and real time, noise, incompleteness, unfitness, and indeterminism, confor-
mance diagnosis and modeling notations. This book addresses all these challenges
(see Figure 2.6).

Challenge 1 – Four-Dimensional Conformance. Since the multidimensional na-
ture of conformance – fitness, precision, generalization and simplicity – has been
stated first in [75] and later refined in [78, 77, 73], the relation between the four
dimensions and the adequacy of the results has become more and more clear.
Works like [35] illustrate the need of metrics for all the dimensions in order to
discover good models. However, most of the approaches proposed in confor-
mance, especially on the early days, are focused exclusively on fitness. Confor-
mance checking must provide also measures for other dimensions such as preci-
sion, generalization, and simplicity. Hence, the challenge addressed in this book
is to provide a versatile, well founded, yet easy to understand way to measure
precision. This challenge is addressed in Chapters 4, 5, and 6.

16 2 Conformance Checking and its Challenges

Challenge 2 – Big Data and Real Time. The amount of information recorded
by the information systems periodically grows exponentially. Event logs become
more detailed, complete and large, and with them also the process models. Con-
formance techniques must evolve accordingly in order to handle this exponential
growth, especially those based on the global aligning of behaviors. Moreover,
the fast implantation of online and monitoring paradigms in nowadays systems
is requiring faster and more fine-grained conformance approaches. In this book,
we will address that challenge proposing approaches to measure conformance
even on very large models and very large data sets. This challenge is addressed
in Chapters 12, 13, 14 and 18.
Challenge 3 – Noise, Incompleteness, Unfitness, Indeterminism. Typically, the
application of process mining techniques faces some of these four issues: noise,
incompleteness, unfitness, and indeterminism. Noise in event logs can appear by
traces incorrectly recorded (for instance, due to temporary system failure), or
traces reflecting exceptional situations not representative of the typical behav-
ior of the process. Noise is a well-known problem in discovery approaches [7],
and therefore, conformance approaches proposed should also be noise-aware too.
Conformance checking compares reality and model, and therefore, the compar-
ison is only fair if the log really is complete regarding what happens in reality,
e.g., comparing a small sample from reality to a complex models could lead to
incorrect conclusions. However, assuming that a sample log contains all possible
behavior is an unrealistic assumption in most of the cases. The number of traces
necessary for a complete log grows exponentially when the number of concur-
rent actions in the model is increased. Moreover, some concurrent actions may
look sequentially in the log because performing one action is always much faster
than the other. Conformance techniques must include mechanisms to aid the pro-
cess analyst on deciding whether the problems are real conformance anomalies
or result of the incompleteness of the log. Unfitness – i.e., situations where the
behavior observed in the log cannot be reproduced by the model – is a con-
formance dimension itself, but it may influence other dimensions: if the model
cannot reproduce the observed behavior, it cannot determine the state of the sys-
tem in that moment. Conformance approaches should try to abstract from how
the alignment between observed and modeled behavior is done. This include also
the non-deterministic situations produced when a trace in the log can be mapped
to several sequences in the model. In this book, we will present conformance
techniques that mitigate the effects of noise, incompleteness, unfitness, and non-
determinism, providing at the same time useful conformance assessment of the
process models. This challenge is addressed in Chapters 7, 9, 10, and 11.
Challenge 4 – Conformance Diagnosis. The importance of indicating the loca-
tion of the problems for a proper conformance diagnosis was already emphasized
in the seminal work [73]. However, the diagnosis mechanisms cannot be limited
to simply locate the possible conformance errors, but they must go a step further:
they must provide mechanisms to the analyst to fully understand the causes of
the problems. For example, making it possible to dynamically inspect the con-
formance results at different levels of abstraction, or to group mismatches with

2.4 Challenges of Conformance Checking 17

a similar root cause. Diagnosis tools are especially useful for large models or
models with a high degree of complexity, where the causes of the problems are
difficult to grasp. In this book, we will complement the conformance techniques,
with additional approaches to analyze, locate, and rank, the conformance discrep-
ancies detected, aiding on understanding the underlying causes. This challenge
is addressed in Chapters 8 and 15.
Challenge 5 – Modeling Notations. Most of the approaches presented in confor-
mance so far focus exclusively on the control-flow perspective of the process –
i.e., the order of the activities – and to one specific workflow modeling notation,
Petri nets [65]. Conformance techniques must include other modeling notations,
and other perspectives. In addition, there will appear new approaches to check the
conformance of multi-perspective models – models capturing more than one per-
spective – like for example [50], where integer linear programming techniques
are used to validate both the control-flow and the data perspectives of a model.
In this book, we will go a step in that direction, providing conformance checking
techniques adapted for data-aware multi-perspective models, especially suitable
for large processes. This challenge is addressed in Chapters 16 and 17.

Figure 2.6 provides an overview of the approach presented on this book, and the
techniques proposed to address each one of the challenges aforementioned.

18 2 Conformance Checking and its Challenges

Precision	

Checking	

Fitness	

Checking	

Normal	
 Process	

Severity	

Noise	
 and	

Incompleteness	

Non-­‐Fi;ng	

Process	

Large	

Process	

Data	
 Aware	

Process	

EVENT	
 LOG	
 MODEL	

Real	

Time	

Monolithic	
 	
 Analysis	
 Decomposed	
 Analysis	

CONFORMANCE	

RESULTS	

Decomposed	
 Diagnosis	

Fig. 2.6: Overview of the conformance analysis and challenges addressed in this
book.

Chapter 3
Conformance Checking and its Elements

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

This chapter provides a basic overview on the elements involved in a confor-
mance checking problem. In particular, the chapter introduces basic notation, and
formalize the concepts of event logs, and process models. In later chapters, we will
use these formalization of event logs and process models to precisely define specific
problems and solutions in conformance checking.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 19–29, 2016.
DOI: 10.1007/978-3-319-49451-7_3

20 3 Conformance Checking and its Elements

3.1 Basic Notations

In this section we introduce the basic notations for sets, multisets, functions, se-
quences, and transition systems.

Definition 3.1 (Set) A set A is a possible infinite collection of elements. The el-
ements in the set are listed between braces, e.g., A = {a,b,c}. The empty set is
represented by /0. |A| denotes the size of the set, e.g., |A| = 3. P(A) denotes the
powerset of A, the set of all subsets of A, including the empty set and A itself, e.g.,
P(A) = { /0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}.

Some operations are defined over sets. Let A = {a,b,c,d} and B = {a,c,d,e}
be non-empty sets. The union of A and B, denoted A∪B, is the set containing all
elements of either A or B, e.g., A∪B = {a,b,c,d,e}. The intersection of A and B,
denoted A∩B, is the set containing elements in both A and B, e.g., A∩B = {a,c,d}.
The difference between A and B, denoted A\B, is the set containing all elements of
A that are not in B, e.g., A\B = {b}.

Multisets are used to describe event logs and to represent states of some processes
models such as Petri nets.

Definition 3.2 (Multiset) A multiset – also called bag – B over a set A is a possible
infinite collection of elements of A, where each element may appear more than once.
The elements in the multiset are listed between square brackets, e.g., B = [a,a,b],
also denoted as B = [a2,b], where A = {a,b}. B(a) denotes the number of times the
element a appears in the multiset B, e.g., B(a) = 2, B(b) = 1 and B(c) = 0 for all
c 6∈ A. Furthermore, a set S ⊆ A can be viewed as a multiset where each element
occurs once. The empty multiset is denoted as []. B(A) represents the set of all
multisets over the set A.

The standard operations over sets can be extended to multisets. For example: the
union [a,a]] [a,b] = [a,a,a,b], the difference [a,a,b,c] \ [a,b,b] = [a,c], the size
|[a,a]|= 2, etc.

Sequences are used to represent traces in the log, or states of the observed behav-
ior and modeled behavior.

Definition 3.3 (Sequence) A sequence σ = 〈a1,a2, . . . ,an〉 ∈ A∗ over a set A is an
ordered list of elements ai ∈ A of size n. The empty sequence is denoted as 〈〉. The
concatenation of sequences is denoted as σ1 ·σ2.

Functions are constantly used in the book to represent different meanings, such
as the mapping between model tasks and observable activities.

Definition 3.4 (Function) Let A and B be non-empty sets. A function f from A to B,
denoted f : A→B is a relation from A to B, where every element of A is associated to
an element of B. Given a function f : A→ B, dom(f) and rng(f) denote the domain
and the range of f . A partial function, denoted f : A9 B, is a function that may be
undefined for some of the elements in A.

3.1 Basic Notations 21

In particular, a function can be applied to a sequence, applying it only to the
elements in the domain of the function, i.e. if dom(f) = {x,y}, then f (〈y,z,y〉) =
〈 f (y), f (y)〉.

Definition 3.5 (Function to Sequences) Let f ∈X 6→Y be a partial function. f can
be applied to sequences of X using the following recursive definition (1) f (〈 〉) = 〈 〉
and (2) for σ ∈ X∗ and x ∈ X:

f (〈x〉 ·σ) =

{
f (σ) if x 6∈ dom(f)
〈 f (x)〉 · f (σ) if x ∈ dom(f)

An especially useful function is the projection.

Definition 3.6 (Projection) Let X be a set and Q⊆ X one of its subsets.�Q∈ X∗→
Q∗ is a projection function and is defined recursively: (1) 〈〉�Q= 〈〉 and (2) for
σ ∈ X∗ and x ∈ X:

(〈x〉 ·σ)�Q=

{
σ�Q if x 6∈ Q
〈x〉 ·σ�Q if x ∈ Q

For example, 〈y,z,y〉�{x,y}= 〈y,y〉.
Transition systems are used to represent the observed and the modeled behavior.

Moreover, in order to abstract from any specific process model notation, transition
systems are used to represent the semantics of a generic process model.

Definition 3.7 (Transition System) A transition system with initial states S0 and
final states SF is a tuple TS = {S,Σ ,↗,SI ,SF} where S is a set of states, Σ is a set
of action labels, SI ⊆ S is a set of initial states, SF ⊆ S is a set of final states, and
↗⊂ S×Σ ×S is a transition relation.

A more general – and more commonly used – definition of transition systems
does not include the set of final states. When no set of final states is specified, it
is assumed all states are final states, i.e., SF = S. Figure 3.1 shows an example of
transition system with states S = {s1,s2,s3,s4} and labels Σ = {a,b,c}, being s1
its initial state. The transition system denotes that, for example, there is a transition
from the state s1 to the state s2.

s2s1
a

s3

s4

b

c

Fig. 3.1: Example of TS with S = {s1,s2,s3,s4}, Σ = {a,b,c}, and SI = {s1}.

22 3 Conformance Checking and its Elements

3.2 Event Logs

Event Case Timestamp Activity Employee Student . . .

1 1 01-01-2014 10:00 (a) Set Checkpoint Merce Alex . . .
2 1 01-01-2014 11:30 (c) Evaluate Academic Record Fernando Alex . . .
3 2 01-01-2014 12:00 (a) Set Checkpoint Merce Dolores . . .
4 1 01-01-2014 13:30 (b) Evaluate Project Fernando Alex . . .
5 2 01-01-2014 14:00 (c) Evaluate Academic Record Maria Dolores . . .
6 2 01-01-2014 15:00 (d) Evaluate Advisor CV Maria Dolores . . .
7 2 01-01-2014 16:00 (b) Evaluate Project Fernando Dolores . . .
8 1 01-01-2014 17:00 (d) Evaluate Advisor CV Fernando Alex . . .
10 1 02-01-2014 11:00 (e) Accept Ana Alex . . .
11 1 02-01-2014 12:00 (a) Set Checkpoint Merce Alex . . .
12 2 02-01-2014 13:00 (f) Reject Ana Dolores . . .
13 2 02-01-2014 16:00 (a) Set Checkpoint Merce Dolores . . .

Table 3.1: Example of event log for the scholarship process variant, ordered chrono-
logically.

Event logs are the footprints left in the system by the execution of processes.
They are the main objects that any process mining technique works with. Let us
consider a variant of the scholarship process presented in Chapter 1. In this variant
both Start Processing and Notify Results activities are substituted by a single activ-
ity Set Checkpoint executed at the start and end of the process. Moreover, the Final
Evaluation action is always done outside the system, and there is no recording of
it in the log. Table 3.1 shows a possible partial event log of the process. The log
contains two complete process executions or cases: Alex and Dolores application.
Each row corresponds with one event in the log, and the events are ordered chrono-
logically. Therefore, an event log is a sequence of events. Each event is associated
with a set of attributes. The list of the most common attributes in event logs for the
practice of process mining analysis are:

• case – process instance id of the event.
• activity – name of the action performed in the event.
• timestamp – moment of the event execution, establishing an order between the

events.
• resource – name of the resource initiating the event.
• data – data attribute related to the event.

For example, the event 10 is part of the case 1, corresponding with the scholarship
application of Alex, and it reflects an Accept activity performed by Ana at 11 : 00
on the date 02− 01− 2014. For the sake of clarity, activities are associated with a
lowercase letter, e.g., e = Accept.

Different attributes are required to derive different type of models. For example,
the resource attribute is necessary for discovering social interactions between actors

3.3 Process Models 23

of the process. In this book we focus mainly on the control-flow perspective of the
processes (except on Chapter 17 were we also focus on the data perspective). For
those cases, the activity, the case and an order between events are necessary, and
therefore, the definition of event logs is simplified: the event log is composed by
traces, where each trace corresponds to a case, and only the activity is considered
for each event.

Definition 3.8 (Trace, Event Log) Let A ∈ UA be a set of activities in some uni-
verse of activities UA. A trace σ ∈ A∗ is a sequence of activities. An event log is a
multiset of traces, i.e., L ∈B(A∗).

For example, the event log in Table 3.1 is represented as [〈a,c,b,d,e,a〉,〈a,c,d,b,
f ,a〉], containing information about 12 events and 2 cases, where each case follows
a different trace.

Although they are called event logs, event information is rarely recorded in logs
files as Apache logs or error logs are, but stored in some internal database. However,
recently a new XML-based standard for event logs has been presented: eXtensive
Event Stream (XES) [1]. The purpose of XES is not only the storage of event logs,
but to provide a standard format for the interchange of event log data between tools
and application domains.

3.3 Process Models

Process models are the second element necessary in any conformance checking ap-
proach. A process model captures the behavior to compare with respect to the be-
havior observed in the log. Different models are used to capture different perspec-
tives of the process. In this book we mainly focus on the control-flow perspective
of processes, and therefore the models are used to capture the ordering between the
actions. For the sake of generality, whenever it is possible, we abstract from any spe-
cific process modeling notation by defining a generic process model. In Section 3.4
we present several concrete process modeling languages.

A generic process model semantics can be abstracted using a basic transition
systems as a placeholder for more advanced modeling languages, such as Petri nets,
UML, BPMN, EPCs, etc.

Definition 3.9 (Process Model) A process model semantic is abstracted as a tran-
sition system TS = {S,T,↗,SI ,SF} over a set of model tasks T with states S, initial
states SI ⊆ S, final states SF ⊆ S, and transitions↗⊂ S×T ×S. When no set of final
states is specified, all states are assumed to be final states.

A task t ∈ T is enabled to be executed in the state s of the model M, denoted
as (M,s)[t〉, if there is a transition with task t in the state s, i.e., (s, t,s′) ∈↗.
(M,s)[t〉(M,s′) denotes that t is enabled in s and executing t results in the state s′. Let
σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of model tasks. (M,s)[σ〉(M,s′) denotes that

24 3 Conformance Checking and its Elements

there is a set of states s0,s1, . . . ,sn such that s0 = s, sn = s′ and (M,si)[ti+1〉(M,si+1)
for 0≤ i < n.

Definition 3.10 (Complete Task Sequences) The set of complete tasks sequences
φt of process model M is the set of all possible sequences of tasks executed from an
initial state reaching a final state, i.e., φt(M) = [σ |(M,sI)[σ〉(M,sF)} for all sI ∈ SI
and sF ∈ SF .

Figure 3.2 shows a process model M capturing the order of the tasks T = t1 . . . t8
using the informal semantics of Chapter 1, i.e., AND models concurrent tasks and
XOR mutually exclusive tasks. The set of complete tasks sequences of this model is:

φt(M) =

〈t1, t2, t3, t4, t5, t6, t8〉
〈t1, t2, t3, t4, t5, t7, t8〉
〈t1, t2, t4, t3, t5, t6, t8〉
〈t1, t2, t4, t3, t5, t7, t8〉
〈t1, t3, t2, t4, t5, t6, t8〉
〈t1, t3, t2, t4, t5, t7, t8〉
〈t1, t3, t4, t2, t5, t6, t8〉
〈t1, t3, t4, t2, t5, t7, t8〉
〈t1, t4, t2, t3, t5, t6, t8〉
〈t1, t4, t2, t3, t5, t7, t8〉
〈t1, t4, t3, t2, t5, t6, t8〉
〈t1, t4, t3, t2, t5, t7, t8〉

AND AND XOR XOR

t1

t2

t3

t4

t5

t6

t7

t8

Fig. 3.2: Informal process model for tasks t1 . . . t8.

In a labeled process model (or observable process model) the tasks represent
activities in a real process that are potentially observable, i.e., they may cause events
in a log. This potential observability is captured by the labeling function, which
relates observable tasks in the model to activities of the process.

Definition 3.11 (Labeled Process Model) A labeled process model (or simply a
process model) is a tuple M = (TS, l), where the transition system TS = {S,T,↗
,SI ,SF} represents the semantics of the model, and l ∈ T 9UA is a labeling func-
tion where UA is some universe of activity labels.

3.3 Process Models 25

The process models in this book are considered always labeled, unless stated
otherwise. If a model task t 6∈ dom(l), then it is called invisible (or also known
as silent or unobservable). An occurrence of a visible task t ∈ dom(l) corresponds
to observable activity l(t). Two or more tasks associated with the same activity
are called duplicate. For instance, Figure 3.3 show a labeled process model for the
scholarship variant process. The task t5 is invisible, i.e., this action is not observed
nor recorded in the log. Tasks t1 and t8 are duplicate tasks corresponding with the
same activity (a)Set Checkpoint.

(a) Set

Checkpoint
AND

(b) Evaluate

Project

(c) Evaluate

Academic

Record

(d) Evaluate

Advisor CV

AND XOR

(e) Accept

(f) Reject

XOR
(a) Set

Checkpoint

t1

t2

t3

t4

t5

t6

t7

t8

Fig. 3.3: Informal labeled process model for scholarship variant process.

Definition 3.12 (Process Model notations) Let M = (TS, l) be a process model
with TS = {S,T,↗,SI ,SF}.

• Tv(M) = dom(l) is the set of visible tasks in M.
• Av(M) = rng(l) is the set of corresponding observable activities in M.
• T u

v (M) = {t ∈ Tv(M) | ∀t ′∈Tv(M) l(t) = l(t ′)⇒ t = t ′} is the set of unique visible
tasks in M, i.e., there are no other tasks with the same associated to the same
activity.

• Au
v(M) = {l(t) | t ∈ T u

v (M)} is the set of corresponding unique observable activ-
ities in model M.

In the example model M of Figure 3.3 the set of visible tasks is Tv(M) =
{t1, t2, t3, t4, t6, t7, t8} (all except t5), and the set of unique visible tasks is T u

v (M) =
{t2, t3, t4, t6, t7}. The set of observable activities is Av(M) = {a,b,c,d,e, f}, while
the set of unique observable activities is only Au

v(M) = {b,c,d,e, f}.
Similar to the set of complete task sequences, a labeled process model contains

its corresponding set of complete activity sequences, i.e., sequences of tasks starting
from an initial to a final state projected onto the set of observable activities.

Definition 3.13 (Complete Activity Sequences) Let M be a process model with T
tasks and labeling function l. A sequence σv = 〈a1,a2, . . . ,an〉 ∈UA∗ is a complete
activity sequence of the model M, denoted as (M,sI)[σv . (M,sF) if and only if there
is a complete tasks sequence σ ∈ T ∗ in M such that (M,sI)[σ〉(M,sF) and l(σ) =
σv. The set of complete activity sequences of the model M is denoted φ(M).

The set of complete activity sequences of the model in Figure 3.3 is:

26 3 Conformance Checking and its Elements

φ(M) =

〈a,b,c,d,e,a〉
〈a,b,c,d, f ,a〉
〈a,b,d,c,e,a〉
〈a,b,d,c, f ,a〉
〈a,c,b,d,e,a〉
〈a,c,b,d, f ,a〉
〈a,c,d,b,e,a〉
〈a,c,d,b, f ,a〉
〈a,d,b,c,e,a〉
〈a,d,b,c, f ,a〉
〈a,d,c,b,e,a〉
〈a,d,c,b, f ,a〉

3.4 Process Modeling Formalisms

There are a wide variety of process modeling formalism that match the generic
process model definition of previous section. In this section we present some of
these formalisms. In particular we focus on Petri nets and its extensions, the formal
notation used to illustrate the process models examples of this book.

3.4.1 Petri Nets

Petri nets [65] are one of most frequently used process modeling notations in process
mining. Its formal semantics, its mathematical foundation, and its inherent capac-
ity to model concurrency in a succinct way, make Petri nets perfect to model the
control-flow perspective of processes. In addition, Petri nets are supported by an
intuitive graphical notation, and there exists a wide range of tools and libraries to
operate with them.

Definition 3.14 (Petri Net) A Petri net is a tuple PN = (P,T,F) with P the set of
places, T the set of transitions, where P∩T = /0, and F ⊆ (P×T)∪(T ×P) the flow
relation. For a node n (place or transition) of a Petri net, •n (n•) is the predecessor
(successor) set of n in A, i.e., •n = {n′|(n′,n) ∈ F} and n•= {n′|(n,n′) ∈ F}.

The set of transitions T represent the set of tasks of generic process modeling
definition. An example of Petri net is shown in Figure 3.4. The transitions are rep-
resented as square nodes, while the places are represented as circles.

The states of a Petri net are called markings. The formal semantics of Petri nets
are defined by the firing rule, that states the effects of firing an enabled transition.

Definition 3.15 (Petri Net Semantics) Let PN = (P,T,F) be a Petri net. A mark-
ing M is a multiset of places, i.e., M ∈ B(P). A transition t ∈ T is enabled in a

3.4 Process Modeling Formalisms 27

a = Set Checkpoint
b = Evaluate Project
c = Evaluate Academic Record
d = Evaluate Advisor CV
e = Accept
f = Reject

t6
e
t7
f

p7 t8
a

endt5 p7p2 t3
c

p5

p1 t2
b

p4

p3 t4
d

p6

start t1
a

Fig. 3.4: Petri net for scholarship variant process of Figure 3.3.

marking M, denoted as (PN,M)[t〉, iff •t ≤ M. Firing transition t in M, denoted
as (PN,M)[t〉(PN,M′), results in a new marking M′ = M−•t + t•, i.e., tokens are
removed from •t and added to t•.

A marking is graphically represented as black dots (called tokens) in places. For
example, the marking represented in Figure 3.4 is M = [start]. In that marking,
only t1 is enabled, and firing t1, (PN,M)[t1〉(PN,M′), will result in the marking
M′ = [p1, p2, p3]. In M′, t2, t3, t4 are enabled simultaneously, and can be fired in any
order.

Similar to tasks sequences, a transition sequence from a Petri net can also be
defined. Notice that, for the sake of clarity, the same notation is preserved between
generic process models and Petri nets, referring to tasks or transitions in each par-
ticular case.

Definition 3.16 (Transition Sequence) A transition sequence σ = 〈t1, t2, . . . , tn〉 ∈
T ∗ of Petri net PN, represented as (PN,M)[σ〉(PN,M′), denotes that there is a set
of markings M0,M1, . . . ,Mn such that M0 = M, Mn = M′ and (N,Mi)[ti+1〉(N,Mi+1)
for 0 ≤ i < n. A marking M′ is reachable from M if there exists a σ such that
(PN,M)[σ〉(PN,M′).

Similar to generic labeled process models, a Petri net can also be labeled, asso-
ciating observable activities to the transitions of the model.

Definition 3.17 (Labeled Petri Net) A labeled Petri net PN = (P,T,F, l) is a Petri
net (P,T,F) with labeling function l ∈ T 9 UA, where UA is some universe of ac-
tivity labels.

Figure 3.4 shows a labeled Petri net for the scholarship variant process of Fig-
ure 3.3. Similar to the generic labeled process model, we can define the visible tran-
sitions Tv(PN), observable activities Av(PN), unique visible transitions T u

v (PN),
and unique observable activities Au

v(PN) of a Petri net PN. Typically, invisible tran-
sitions are represented as filled squares, e.g., t5.

Definition 3.18 (Activity Sequence) A sequence σv = 〈a1,a2, . . . ,an〉 ∈ UA∗ is a
activity sequence of the Petri net PN, denoted as (PN,M)[σv . (PN,M′) if and only
if there is a transition sequence σ ∈ T ∗ in PN such that (PN,M)[σ〉(PN,M′) and
l(σ) = σv.

28 3 Conformance Checking and its Elements

In the context of process mining and business processes, processes are usually
considered to start in an initial state and to end in a well-defined end state. Petri nets
considering a initial and a final marking are called system nets.

Definition 3.19 (System Net) A system net is a triplet SN = (PN,MI ,MF) where
PN = (P,T,F, l) is a labeled Petri net, MI ∈B(P) is the initial marking, and MF ∈
B(P) is the final marking.

A system net SN = (PN, [start], [end]) is a possible system net for the Petri net
PN in Figure 3.4. We define the set of complete transition sequences and the set of
complete activity sequences as the sequence of transitions and activities from the
initial marking to the final marking.

Definition 3.20 (Complete Transition Sequence, Complete Activity Sequence)
Let SN = (PN,MI ,MF) be a system net with PN = (P,T,F, l). The set of com-
plete transition sequences φt of SN is the set of all possible sequences of tran-
sitions executed from the initial marking and reaching the final marking, i.e.,
φt(SN) = [σ |(PN,MI)[σ〉(PN,MF)}. The set of complete activity sequences of sys-
tem net SN is the set of all possible sequences of observable activities from the initial
marking and reaching the final marking, i.e., φ(SN) = [σ |(PN,MI)[σ . (PN,MF)}.

3.4.2 Workflow Nets

Workflow nets [4, 3], commonly used for business and workflow processes, are a
subclass of Petri nets with a well defined starting and ending place.

Definition 3.21 (Workflow Net) A workflow net WN = (P,T,F, l,start,end) is a
particular type of Petri net where:

• start is a special source place with no incoming arcs, i.e., •start = /0
• end is a special sink place, with no outgoing arcs, i.e., end•= /0
• every node of the net must be on some path from start to end

The Petri net in Figure 3.4 shown in the previous section is actually a workflow
net. Workflow nets present a direct way to define system nets, with a single token in
start as initial marking, and a single token in end as a final marking.

Definition 3.22 (System Net from Workflow net) A system net SN = (WN, [start],
[end]) from the workflow net WN is the net where the initial marking is [start], and
the final marking is [end].

3.4.3 Other Formalisms

There is a wide range of other model formalisms to describe processes. Each formal-
ism has its own advantages and disadvantages, and its own tools to support it. Some

3.4 Process Modeling Formalisms 29

examples of such formalisms are BPMN [66], YAWL [11], EPC [5], or UML [67],
to enumerate some examples.

Business Process Model and Notation (BPMN) [66] is a standard for business
process modeling that provides a graphical notation for specifying business pro-
cesses based on a flowcharting technique very similar to activity diagrams from
Unified Modeling Language (UML) [67]. The objective of BPMN is to support
business process management, for both technical users and business users, by pro-
viding a notation that is intuitive to business users, yet able to represent complex
process semantics. BPMN is one of the most used notations in the industry. BPMN
is composed of events (denoted as circles), activities (denoted as rounded squares)
and gateways (denoted as diamonds), among other elements, and the connections
between them. Figure 3.5 illustrates a model for the scholarship variant process us-
ing BPMN notation1.

(a) Set
Checkpoint

(c) Evaluate
Academic
Record

(b) Evaluate
Project

(d) Evaluate
Advisor CV

(e) Accept

(f) Reject

(a) Set
Checkpoint

Fig. 3.5: BPMN for scholarship variant process of Figure 3.3.

Another notation is YAWL [11]. The original drivers behind YAWL were to de-
fine a workflow language that would support all (or most) of the typical workflow
patterns [12] and would have a formal semantics. The language is supported by a
software system that includes an execution engine, a graphical editor and a worklist
handler. The system is available as Open source software under the LGPL license.
Figure 3.6 illustrates a model for the scholarship variant process using YAWL no-
tation, where the atomic tasks (denoted as squares) can be possibly complemented
with control flow elements such as AND-split, AND-join, XOR-split, XOR-join,
OR-split or OR-join.

(a) Set
Checkpoint

(b) Evaluate
Project

(c) Evaluate
Academic Record

(d) Evaluate
Advisor CV

(e) Accept

(f) Reject

(a) Set
Checkpoint

Fig. 3.6: YAWL for scholarship variant process of Figure 3.3.

1 For the sake of clarity, BPMN notation is abused representing an activity without label.

Part II
Precision in Conformance Checking

Chapter 4
Precision in Conformance Checking

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

A good model must represent the reality in a precise way. This chapter provides
an overview on the precision checking. In particular it concentrates on its impor-
tance as a conformance checking dimension, and it presents the requirements nec-
essary for a precision metric. Chapter 5 will then present a solution to the problem
that is validated and extended in the remaining chapters of Part II.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 33–38, 2016.
DOI: 10.1007/978-3-319-49451-7_4

34 4 Precision in Conformance Checking

4.1 Precision: The Forgotten Dimension

In the last years, the use within organizations of Process-Aware Information Systems
(PAIS) and Business Process Management technologies (BPM) has experimented
an exponential growth. Increasingly, organizations are investing vast amounts of
time and resources on modeling their business processes [42, 94]. Process models
are used to provide insights, analyze, simulate and improve the processes, and all
conclusions obtained rely on how faithfully these models describe the reality [7].
Conformance checking techniques compare recorded process executions in terms
of event logs with process models to quantify how good these models are. Checking
conformance is a complex multi-dimensional task that involves the dimensions of
fitness, precision, generalization and simplicity [7]. While fitness evaluates whether
the behavior in the log is captured in the model, precision evaluates how much be-
havior is allowed by the model which is unlikely given the observed behavior in
the log. Precise models are desirable: when the model becomes too general allow-
ing for more behavior than necessary, it becomes less informative as it no longer
describes the actual process. The extreme case is the flower model, shown in Fig-
ure 4.1, a model that allows for the execution of activities a–i in any order. The
fitness in this case is perfect because it captures any possible log over the activ-
ities a–i, but the precision is extremely poor and the model provides no insights
on the process. Many approaches in the literature relate to the fitness dimension,
e.g., [22, 18, 23, 35, 56, 45, 46, 68, 77, 79, 7, 10, 92, 9, 50]. In contrast, few are the
ones proposed to measure precision, e.g. [21, 77, 88, 55, 46].

a = Start Checkpoint
b = Register Low-value Claim
c = Register High-value Claim
d = Check Policy
e = Consult Expert
f = Check Liability
g = Complete Low-value Claim
h = Complete High-value Claim
i = Close Checkpoint

flower t1
a

t2
b

t3
c

t4 d

t6
f

t5 e

t7
g

t8h

t9i

Fig. 4.1: Flower model for the activities a–i.

4.2 The Importance of Precision

From a theoretical point of view, the need for a multi-dimensional conformance,
and especially the necessity of measuring precision, has been plenty justified and
illustrated in the literature [77, 35]. The flower model represents the theoretical worst
scenario concerning precision.

4.3 Measures of Precision 35

But besides the theory, the importance of precision is also a key element of real-
life scenarios. The lack of precision on the models used in real-life systems may
reduce the effectiveness of those systems. Some examples of those scenarios are:

• Workflow Management Systems: Workflow Management Systems and other process-
aware information systems [42] make use of process models to set-up and moni-
tor the defined sequence of tasks in a process. A precise model would guide the
system, limiting and suggesting the next task to be performed, improving the ef-
ficiency. On the other hand, an imprecise model would be a poor guide, allowing
too much tasks at the same time, and not giving real useful information.

• Regulations and Certifications: Regulations, such as the Sarbanes-Oxley (SOX)
Act [80], enforce the documentation of processes, while quality certification,
such as the ISO 9000 standards, requires the documentation and monitoring of
all key processes to ensure their effectiveness. The use of overgeneralized models
as part of the audition and certification procedure may provide an inexact vision
of the processes, failing the auditing process [16].

• Communication: Models are used to communicate and gain insight into the ana-
lyzed processes, for example, models illustrating the reworks done in the process.
Models allowing for more behavior than the one seen in reality would complicate
the understanding of the processes, indicating a possible rework path that never
happened.

• Simulation: Process models are used for simulating possible future scenarios,
and to take decisions according to results obtained. The use of imprecise models
would result in overgeneralized simulations, with a lot of non realistic scenarios,
limiting the effectiveness of the conclusions.

• Abstraction: Some systems require a high level of flexibility. Health-care systems
are good examples of flexible systems, where the path followed by two patients
is never the same. In those cases, the need for precision is less crucial. How-
ever, extremely overgeneralized models would mask possible path restrictions,
compromising the usefulness of the system.

In conclusion, the need for achieving precise models is becoming more crucial
in nowadays systems, for both conformance checking and process discovery tech-
niques.

4.3 Measures of Precision

In contrast with the fitness dimension, there are few proposed approaches in the
literature that address, totally or partially, the precision checking. In [46], Greco
et al. propose a metric –soundness– to estimate the precision by calculating the
percentage of traces in the log that can be generated by the given model. Medeiros
et al. [55] defines a metric –behavioral precision– to measure the precision between
two models and a log, evaluating how much of the first model behavior is covered
by the second. This measure is used within the Genetic Miner [56, 54] –a discovery

36 4 Precision in Conformance Checking

approach based on evolutionary algorithms– to evaluate the quality of the population
obtained. Goedertier et al. [45] introduces the use of artificial negative examples
to measure the precision between an event log and a process model. The way of
generating those negative examples was later improved by De Weerdt et al. [88]
and Vanden Broucke et al. [30]. Finally, Van Dongen et al. [41, 40] addresses the
precision dimension between two models without a log, based on the similarity of
their structures.

Analyze whether events in the log actually
Always (A), Never (N), or Sometimes (S)
followed each other

Analyze whether activities in the model
Always (A), Never (N), or Sometimes (S)
follow each other

F F

Event Log L2

(b) “Follows”relations fromlog perspective(a) “Follows”relations frommodel perspective

DCB

D

C

B

E

E

F

F

G H

G

H

S S S S

S

A

A

S

S

S S S S S S

S

A AA NN N N N

A N N

A N N

A N N

A N N

A N N

A N N

A

N

N

N

AN A

A A

N N N

N N N

N

N

N A N N

AN A

DCB

D

C

B

E

E

F

F

G H

G

H

S S S S

S

A

A S S S S S S

S

S

A A

A AA NN N N

A A ANN N

A N N N

A N N N N N N

A N N N N N N

A N N A NN

A N N N A N

N

A

N

N

A

N

No. of Instances LogTraces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

c7

B

A

C

D
Start c1 c2 E

F

c3
A

c4 End

G

c6

H

c5

Process Model M6

Fig. 4.2: ’Follows’ relations used to compute the behavioral appropriateness (a′B).
Image taken from Process Mining: Conformance and Extension by Anne Rozi-
nat [73].

However, given the goal of checking precision between a process model and an
event log, Rozinat et al. [77] can be seen as the seminal work, later extended in [73].
In [77], Rozinat et al. present several metrics to estimate the four dimensions of
conformance checking. In particular, they present the advanced behavioral appro-
priateness (a′B), a metric designed to measure the precision between a Petri net and
an event log. The metric is based on deriving global ’Follows’ and ’Precedes’ activ-
ity relations from both a model and a log perspective, i.e., given all pairs of activities
x and y, determine whether they either always (i.e., in all traces), never (i.e., in none
of the traces), or sometimes (i.e., in some but not all traces) follow/precede each
other. Figure 4.2 shows an example of ’Follows’ relation, taken from [73]. Because

4.4 Requirements for Precision 37

precision relates to those situations where the model has more variability than the
event log, the idea of the metric is compare the behavior allowed by the model and
the behavior observed in the log based on how many elements are contained in the
sometimes follows and sometimes precedes relations once we superpose two the
matrices.

The aforementioned technique has some limitations. First, precision is based on
activity relations with a high level of abstraction but not precise points of deviation,
i.e., only three categories are considered: always, never and sometimes. Although
this can be useful to get insights on the precision from a high level, it becomes
a limitation when it comes to detect exactly those precision problems. Moreover,
the correct categorization of follows/precedes relations is not guaranteed when the
traces contain loops [73]. Finally, building the relations from a model point of view
requires the analysis of the model task sequences based on a state space analysis
or an exhaustive model simulation. This limits the applicability of the approach to
examples of low complexity, or forces the use of approximations to alleviate the
complexity.

4.4 Requirements for Precision

Given the aforementioned limitations, there are several requirements a precision
technique must fulfill in order to be applied in general real scenarios, enable at
the same time an analyst to both measure the precision dimension and diagnose
the causes of the precision problems and their locations. In particular, a precision
technique should aim for:

• A precision based on potential points of improvement. The precision dimension
can be viewed from different angles. One can estimate the precision of a system
as the difference between the behavior allowed by the model and the behavior
observed in the log. Instead, we propose a different way of estimating precision
based on identifying all precision problems and quantifying the effort need to
correct them achieving a perfectly precise system.

• A technique that does not require an exhaustive model state-space exploration.
Because the state space of a model can grow exponentially, state-based analysis
techniques may be problematic with respect to computational complexity [72].
Therefore, any approach involving an exhaustive exploration of the model state-
space, such as [77], sees its applicability compromised for complex cases, often
found in reality.

• An approach to identify precision problems with a fine granularity. In order to
help in the process diagnosis, the approach should be able to detect the exact
precision points of improvement in the model.

• A mechanism to use the precision results for analysis and process improvement.
Besides a metric, any approach proposed should consider the possibility of col-
lecting all precision anomalies detected in a format suitable for analysis using

38 4 Precision in Conformance Checking

process mining techniques, or to be used within the continuous cycle of improve-
ment and correction of the process.

In the following chapters, a set of precision checking approaches are presented
that fulfill the aforementioned requirements.

Chapter 5
Measuring Precision

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

The previous chapter motivated the need for a precision measure and enumer-
ated a list of requirements that the measure should satisfy. This chapter presents
the procedure to measure precision, both an intuitive explanation as well as a com-
plete formalization based on the definitions of Chapter 3. The procedure is based
on detecting and pinpointing escaping arcs, i.e., the parts where the model allows
more behavior than the one observed in the log. This basic procedure analyses the

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 39–53, 2016.
DOI: 10.1007/978-3-319-49451-7_5

40 5 Measuring Precision

model as a whole (i.e., monolithic analysis). Later chapters consider variants and
extensions of the procedure regarding both its input and its output.

5.1 Precision based on Escaping Arcs

In this chapter we present a precision checking approach that fulfills all the require-
ments presented in Chapter 4. The approach is based on the detection and collection
of escaping arcs between a log and a model. The escaping arcs define those cru-
cial points where the model starts to deviate from the behavior observed in the log.
Figure 5.1 shows an overview of the escaping arcs.

log behavior

model behavior

imprecisions
(or escaping arcs)

unfitting behavior

Fig. 5.1: Overview of observed behavior, modeled behavior, and escaping arcs.

On the one hand, the behavior observed in the log is determined by a set of
states. On the other hand, a possibly different set of states determine the behavior
represented by the model. When compared, both sets usually overlap. In an ideal
situation, both set of states will be equal, representing a complete precise scenario.
However, this is not usually the case. In most of the cases, some of the observed
states are not modeled, representing some unfitting behavior. Symmetrically, there
is also the situation where the model includes unobserved behavior, denoting an
imprecise model. The ’border’ between the observed behavior and the modeled be-
havior determines a set of escaping arcs, points reaching a state modeled but not
observed in the log.

The escaping arcs depend entirely on how the observed and modeled states are
determined. The technique proposed in this chapter is decomposed into the follow-
ing steps (cf. Figure 5.2):

1. Constructing the observed behavior: First, the behavior in the log is analyzed,
extracting state information from it, constructing an automaton representing the
observed behavior. This step is explained in detail in Section 5.2.

5.1 Precision based on Escaping Arcs 41

<a,b,d,g,i>
<a,c,d,e,f,h,i>
<a,c,e,d,f,h,i>
<a,c,e,f,d,h,i>

start
t1
a p1 t2

b

t3
c

p2

p3

t4
d

t6
f

t5
e

p5

p6

t7
g

t8
h

p4

p7
t9
i end

<a,c,f>
<a,c,d,f>
<a,c,d,e,e>
<a,c,e,d,e>
<a,c,e,e>

4
<>

1
<a,b,d,g,i>

1
<a,c,d,e,f,h>

1
<a,c,d,e,f>

1
<a,c,d,e>

1
<a,c,d>

3
<a,c>

1
<a,b,d,g>

1
<a,b,d>

1
<a,b>

1
<a,c,e,d,f,h>

1
<a,c,e,f,d,h>

1
<a,c,e,d,f>

1
<a,c,e,d>

1
<a,c,e,f,d>

1
<a,c,e,f>

2
<a,c,e>

4
<a> 1

<a,c,d,e,f,h,i>

1
<a,c,e,d,f,h,i>

1
<a,c,e,f,d,h,i>

a

b

d
c

e

d g

e

d

f

f

d

h

h

h i

i

i

f

i

4
<>

1
<a,b,d,g,i>

1
<a,c,d,e,f,h>

1
<a,c,d,e,f>

1
<a,c,d,e>

1
<a,c,d>

3
<a,c>

1
<a,b,d,g>

1
<a,b,d>

1
<a,b>

1
<a,c,e,d,f,h>

1
<a,c,e,f,d,h>

1
<a,c,e,d,f>

1
<a,c,e,d>

1
<a,c,e,f,d>

1
<a,c,e,f>

2
<a,c,e>

4
<a> 1

<a,c,d,e,f,h,i>

1
<a,c,e,d,f,h,i>

1
<a,c,e,f,d,h,i>

a

b

d
c

e

d g

e

d

f

f

d

h

h

h i

i

i

f

i

0
<a,c,d,f>

0
<a,c,d,e,e>

f e

f 0
<a,c,f> 0

<a,c,e,d,e>

e

0
<a,c,e,e>e

0.81

event log

process model

ETC Precision
metric

Minimal
Imprecise Traces

modeling
log behavior

enhance
with model

behavior and
detect

imprecisions

Fig. 5.2: Route map of the precision based on escaping arcs.

2. Incorporating modeled behavior: Second, the observed behavior automaton is
enhanced by incorporating information about the modeled states. This step does
not require an exhaustive exploration of the modeled behavior, but the explo-
ration is restricted to the ’border’ between observed and modeled behavior. This
step is explained in detail in Section 5.3.

3. Detecting escaping arcs and estimating precision: The escaping arcs of a state
refer to those points where the model allows more behavior than the one actually
recorded in the log. The number of escaping arcs and their location are used
to estimate the precision of the whole system in terms of a metric. This step is
explained in detail in Section 5.4.

4. Collecting minimal imprecise traces: Finally, all the precision problems detected
are collected in terms of an event log, describing the minimal traces leading to a
precision problem. This step is explained in Section 5.5.

42 5 Measuring Precision

5.2 Constructing the Observed Behavior

In this section we present the first necessary step for the precision checking proposed
in this section: determining the states conforming the observed behavior by means
of an automaton. The state definition proposed in this section is based on the prefixes
of the traces, i.e. given a log trace σ reflecting an instance of the process, the prefixes
of σ determine the states reached by the system during that execution.

Definition 5.1 (Prefixes of a Log) Let L ∈ B(A∗) be an event log, where σ =
〈a1,a2, . . . ,an〉 ∈ L is a trace of the log. •(σ) is the set of prefixes of the trace
σ , i.e., •(σ) = {〈a1,a2, . . . ,am〉|m ≤ n}. •(L) ∈B(A∗) is the multiset of prefixes
of the log L, i.e., •(L) =

⊎
σ∈L •(σ).

Notice that, the empty sequence 〈〉 and the complete sequence are prefixes of any
trace. Let us consider for example the trace σ = 〈a,b,d,g, i〉 of log L1 in Figure 5.3.
The prefixes •(σ) = {〈〉,〈a〉,〈a,b〉,〈a,b,d〉,〈a,b,d,g〉,〈a,b,d,g, i〉} represent the
states reached by the system during the execution recorded in σ . The set of pre-
fixes resulting of applying this definition to all the traces in L1 represents the set of
observed states of the whole log.

<a,b,d,g,i>
<a,c,d,e,f,h,i>
<a,c,e,d,f,h,i>
<a,c,e,f,d,h,i>

L1
a = Start Checkpoint
b = Register Low-value Claim
c = Register High-value Claim
d = Check Policy
e = Consult Expert
f = Check Liability
g = Complete Low-value Claim
h = Complete High-value Claim
i = Close Checkpoint

Fig. 5.3: Event log L1 for a liability insurance claim process.

The state information extracted from a log is used to construct a compact rep-
resentation in terms of an automaton. The prefix automaton contains the states, the
transitions between the states, and the weight of a state within the process.

Definition 5.2 (Prefix Automaton of the Log) Let L ∈ B(A∗) be an event log,
where A is the set of activities. We define the prefix automaton of the log as an
extension of the transition system definition AL = (S,A,↗,ω,〈〉) such that:

• the set of states correspond to the set of prefixes of the log, i.e., S = {σ |σ ∈
•(L)}.

• the set of labels correspond to the set of activities of the log, i.e., A.
• the arcs↗⊆ (S×A×S) define the concatenation between prefixes and activities,

i.e.,↗= {(σ ,a,σ · 〈a〉)|σ ∈ S∧σ · 〈a〉 ∈ S}.
• the function that determines the weight of a state is determined by the number

of occurrences of the state in the multiset of prefixes of the log, i.e., ω(σ) =
•(L)(σ).

5.3 Incorporating Modeled Behavior 43

• the initial state corresponds with the empty prefix 〈〉.

4
<>

1
<a,b,d,g,i>

1
<a,c,d,e,f,h>

1
<a,c,d,e,f>

1
<a,c,d,e>

1
<a,c,d>

3
<a,c>

1
<a,b,d,g>

1
<a,b,d>

1
<a,b>

1
<a,c,e,d,f,h>

1
<a,c,e,f,d,h>

1
<a,c,e,d,f>

1
<a,c,e,d>

1
<a,c,e,f,d>

1
<a,c,e,f>

2
<a,c,e>

4
<a> 1

<a,c,d,e,f,h,i>

1
<a,c,e,d,f,h,i>

1
<a,c,e,f,d,h,i>

a

b

d
c

e

d g

e

d

f

f

d

h

h

h i

i

i

f

i

Fig. 5.4: Prefix automaton AL1 for the event log L1.

Figure 5.4 illustrates the construction of the prefix automaton for the log L1.
Each prefix of L1 identifies a state. The number in the states represents the weight
function. For instance, the state 〈a〉 has a weight of ω(〈a〉) = 4 because it appears
four times in •(L). On the other hand, 〈a,b〉 appears only once, i.e., ω(〈a,b〉) = 1.
The initial state corresponds with the prefix 〈〉.

In [14], the authors proposed a configurable approach to construct a transition
system from an event log. The definition of state and the events considered to build
a state can be parametrized depending on the abstraction level desired. In particular,
the parameters past, sequence, and no horizon will result in a transition system
with the same characteristics as the prefix automaton proposed in this section. In
Chapter 10 we consider the use of other values for the parameters and their effects
on the precision checking.

5.3 Incorporating Modeled Behavior

In this section we use the prefix automaton representing the observed behavior to
restrict the exploration of the modeled behavior. Let us consider, for example, the
model SN1 in Figure 5.5, presented in terms of a system net, with [start] and [end]

44 5 Measuring Precision

as initial and final markings respectively.1 The system net is a possible model for
the insurance process observed in the log L1. Given a state of the prefix automaton,
we analyze the set of possible activities when the model reaches that state. For
example, let us consider the state 〈a〉 of the prefix automaton AL1 . Analyzing the set
of complete activity sequences of SN1 we realize that, once the model reaches the
state 〈a〉, only two activities can follow: b and c.

For the sake of clarity, in this section we assume that the log perfectly fits the
model. That is to say that all traces of the log L are included in the set of complete
activity sequences of the model M, i.e. ∀σ ∈ L : σ ∈ φ(M). Consequently, any prefix
of the trace σ represents a state reachable by the model. In Section 5.6 we study the
relaxation of this assumption, and how the theory proposed is extended accordingly.

a = Start Checkpoint
b = Register Low-value Claim
c = Register High-value Claim
d = Check Policy
e = Consult Expert
f = Check Liability
g = Complete Low-value Claim
h = Complete High-value Claim
i = Close Checkpoint

start
t1
a p1 t2

b

t3
c

p2

p3

t4
d

t6
f

t5
e

p5

p6

t7
g

t8
h

p4

p7
t9
i end

SN1

Fig. 5.5: System net SN1 modeling the liability insurance claim process.

Given a prefix automaton from the log, we analyze the activities allowed by the
model in each log state, and we incorporate new states denoting those activities
modeled but never observed in the log. Let us consider for example the automaton
AL1SN1 in Figure 5.6, result of enhancing AL1 with modeled behavior of SN1. The
states in white represent states that are in both the log and model behavior. The
colored states represent the new states introduced, that belong only to modeled be-
havior but never observed in the log. The weightf of these new states is 0, denoting
that they are not observed in the log. For example, the state 〈a,c〉 represents a state
in both the log L1 and the model SN1, but 〈a,c, f 〉 is a state only of the model (i.e.,
〈a,c, f 〉 is not a prefix of L1).

Formally, the enhancement of the observed prefix automaton with modeled be-
havior is defined as follows:

Definition 5.3 (Prefix Automaton of the Observed Behavior Enhanced with the
Modeled Behavior) Let L∈B(A∗) be an event log, where A is a set of activities. Let
M be a process model, where φ(M) is the set of complete activity sequences of M.
Similar to •(L), •(φ(M)) represents the prefixes of the complete activity sequences
of M, i.e., •(φ(M))=

⊎
σ∈φ(M) •(σ). We define the prefix automaton of the observed

behavior enhanced with modeled behavior ALM = (S,A,↗,ω,〈〉) such that:

1 Notice that we use system nets in this section for illustrative purposes only, while the theory
refers to any process model.

5.3 Incorporating Modeled Behavior 45

4
<>

1
<a,b,d,g,i>

1
<a,c,d,e,f,h>

1
<a,c,d,e,f>

1
<a,c,d,e>

1
<a,c,d>

3
<a,c>

1
<a,b,d,g>

1
<a,b,d>

1
<a,b>

1
<a,c,e,d,f,h>

1
<a,c,e,f,d,h>

1
<a,c,e,d,f>

1
<a,c,e,d>

1
<a,c,e,f,d>

1
<a,c,e,f>

2
<a,c,e>

4
<a> 1

<a,c,d,e,f,h,i>

1
<a,c,e,d,f,h,i>

1
<a,c,e,f,d,h,i>

a

b

d
c

e

d g

e

d

f

f

d

h

h

h i

i

i

f

i

0
<a,c,d,f>

0
<a,c,d,e,e>

f e

f 0
<a,c,f> 0

<a,c,e,d,e>

e

0
<a,c,e,e>e

Fig. 5.6: Prefix automaton AL1SN1 of the event log L1 enhanced with the modeled
behavior of the system net SN1.

• Let SLM = {σ |σ ∈ •(L)∩ •(φ(M))} be the states that are in both the observed
and modeled behavior. Let SM = {σ |σ 6∈ •(L)∧σ ∈ •(φ(M))} be states that are
in the modeled behavior but not in the observed behavior2. The set of states S of
the enhanced automaton is the union S = SLM∪SE , where SE ⊆ SM are the states
only in the modeled behavior that come preceded by a state in both behaviors,
i.e., SE = {σ · 〈a〉|σ ∈ SLM ∧σ · 〈a〉 ∈ SM}.

• The set of labels correspond to the set of activities of the process, i.e., A.
• The arcs↗⊆ (S×A×S) define the concatenation between states and activities,

i.e.,↗= {(σ ,a,σ · 〈a〉)|σ ∈ S∧σ · 〈a〉 ∈ S}.
• The function that determines the weight of a state is determined by the number

of occurrences of the state in the multiset of prefixes of the log P with P = •(L),
or 0 if the state does not appear on the log:

ω(σ) =

{
P(σ) if σ ∈ SLM
0 if σ ∈ SE

• The initial state corresponds with the empty prefix 〈〉.

Notice that, although the definition of the enhanced prefix automaton considers
the set of complete activity sequences φ(M) of a model M, in practice the approach
proposed does not require computing all the sequences in advanced. In the previous
example, for the system net SN1 the set of complete activity sequences is infinite due
the transition t5. Instead, in executable process models such as Petri nets or BPMN,

2 SL = {σ |σ ∈ •(L)∧σ 6∈ •(φ(M))} is not possible because we assume perfect fitness (cf. Sec-
tion 5.6.)

46 5 Measuring Precision

the sequences can be constructed progressively on demand. For example, given SN1
and the state 〈a〉, we analyze the marking reached after firing t1 (i.e., [p1]) and the
activities allowed (i.e., b and c), being 〈a,b〉 and 〈a,c〉 both sequences possible in
the model. Notice that, the presence of invisible and duplicate transitions may arise
some potential indeterminism about the marking reached after a given prefix, i.e., the
same sequence of activities may match several tasks sequences, reaching different
markings, and therefore, allowing different set of activities. For the sake of clarity
in this section we assume determinism. In Section 5.6 we explore the relaxation of
this assumption and the consequences that this may produce.

Moreover, the proposed approach does not require the complete exploration of
model behavior. Unlike other approaches in the literature that require an exhaustive
exploration of the model state space (e.g., [77]), the proposed approach restricts
the exploration to the boundaries of the log state space. Only the border between
the behavior observed in the log and the model behavior is explored. For example,
given L1 and SN1, the trace 〈a,c,d,e,e,e,e,e, f ,h, i〉 included in the model behavior
is never explored.

5.4 Detecting Escaping Arcs and Evaluating Precision

Given an event log L and process model M, the prefix automaton ALM contains
the juxtaposition of both observed and modeled behaviors, and the border defined
between them. Each state of the automaton represents a state reached by the system
during the execution recorded in the log. The precision checking approach proposed
in this chapter bases its estimation on comparing, for each one of these states, the
activities allowed by the model and the activities that where recorded in the log.

Definition 5.4 (Observed and Modeled Arcs) Let ALM = (S,A,↗,ω,〈〉) be the
prefix automaton of the log L enhanced with the behavior of the model M. Let
SLM be the states that are in both observed and modeled behavior, and let SM be
the states only in the modeled behavior. Let σ ∈ SLM be a state of the automaton.
obs(σ)= {(σ ,a,σ ′)∈↗ |σ ∈ SLM∧σ ′ ∈ SLM} represent those arcs whose activities
were executed and consequently recorded on the log L when the system was on the
state σ . mod(σ) = {(σ ,a,σ ′) ∈↗ |σ ∈ SLM ∧σ ′ ∈ SLM ∪SM} represent those arcs
whose activities are modeled and consequently allowed by the model M when the
system was on the state σ . Similarly, we refer as observed/modeled states of σ those
states reached through an observed/modeled arc from σ , and observed/modeled ac-
tivities of σ those activities used in the observed/modeled arcs from σ .

For example, let us consider the state 〈a,c〉 of the automaton AL1SN1 . The ac-
tivities modeled by the model SN1 in that state are d, e and f . On the other hand,
the activities observed in the same state are only d and e. Notice that in this sec-
tion we are under the assumption that the log perfectly fits the model. Therefore,
observed(σ)⊆ modeled(σ) for all states σ ∈ SLM .

5.4 Detecting Escaping Arcs and Evaluating Precision 47

An escaping arc denotes a point where the behavior of the process model allows
more than what has been actually observed in the log, i.e., an arc that escapes from
the log behavior.

Definition 5.5 (Escaping Arcs) Let ALM = (S,A,↗,ω,〈〉) be the prefix automaton
of the log L enhanced with the behavior of the model M, where σ ∈ SLM . The set of
escaping arcs of the state σ is determined by the difference between the arcs modeled
and the arcs allowed on the state, i.e., esc(σ) = mod(σ) \ obs(σ). Similarly, we
refer to the activities used to escape and the states reached, as escaping activities
and escaping states, respectively. The set of all escaping arcs of the automaton is
denoted as esc(ALM).

Following with the example state 〈a,c〉 of the automaton in AL1SN1 , there is only
one escaping activity in that state: f . In other words, when the system was in the state
〈a,c〉, all activities allowed by the model in that point have been observed, except f .
Notice that, by construction of the automaton, the escaping activities are considered
globally, i.e., all the traces in the log are considered as a whole to compute the set of
reflected activities, instead of analyzing trace by trace independently. For example,
given the state 〈a,c〉 in AL1SN1 , the activity d is reflected in the second trace of L1,
and the activity e is reflected in the third and forth traces of the log.

In our view, a precise model is one that does not contain escaping arcs, i.e., for
each state it only models the behavior observed on the log. A model where almost all
the behavior allowed represents an escaping opportunity must be considered highly
imprecise. In that sense, we define a metric –ETC Precision– designed to measure
the precision between a model and a log, based on the escaping arcs. On the one
hand, the metric quantifies the degree of escaping arcs of the automaton. This value
is weighted according to the weight of the state where each escaping arc is located,
i.e., escaping arcs in more frequent states have more impact in the metric that those
who appear in infrequent and barely used parts of the process. On the other hand, the
metric measures the modeled behavior on the automaton, weighted also according
to the weights of the states. The metric defines the precision between a log and a
model as the relation between the escaping behavior versus the modeled behavior.

Definition 5.6 (ETC Precision) Let ALM = (S,A,↗,ω,〈〉) be the prefix automa-
ton of the log L enhanced with the behavior of the model M. The metric ETC Preci-
sion estimates the precision of the system comparing, for each state in SLM , the num-
ber of escaping arcs with the number of modeled arcs. The numbers are weighted
according to the importance of the state. Formally:

etcp(ALM) = 1− ∑σ∈SLM ω(σ) · |esc(σ)|
∑σ∈SLM ω(σ) · |mod(σ)|

Let us consider, for example, the automaton AL1SN1 . The automaton contains 21
states in SLM , denoted in white. For each one of those states we compute the number
of escaping arcs and the number of modeled arcs, and we weight them according to
the weight of each state.

48 5 Measuring Precision

etcp(AL1SN1) = 1−
4 ·0+4 ·0+1 ·0+1 ·0+1 ·0+1 ·0+3 ·1+1 ·1+1 ·1+ · · ·
4 ·1+4 ·2+1 ·1+1 ·1+1 ·1+1 ·0+3 ·3+1 ·2+1 ·2+ · · ·
· · ·1 ·0+1 ·0+1 ·0+2 ·1+1 ·1+1 ·0+1 ·0+1 ·0+1 ·0+ · · ·
· · ·1 ·1+1 ·1+1 ·0+2 ·3+1 ·2+1 ·1+1 ·1+1 ·0+1 ·1+ · · ·
· · ·1 ·0+1 ·0+1 ·0
· · ·1 ·1+1 ·1+1 ·0

= 1− 8
43

= 1−0.19 = 0.81

The etcp value for the automaton AL1SN1 between L1 and SN1 is 0.81, denoting
a moderate precision degree of 81%.

Taking a look at the literature one can see that the intuitive notion of precision is
difficult to capture in a metric. Comparing a process model and an even log always
allows for different interpretations and a wide range of metrics can defined. Facing
so much uncertainty it is wise to impose some requirements to ensure the usefulness
of any measure proposed. In [74] the authors present a list, based on [52], with
five properties any conformance metric proposed should satisfy: validity, stability,
analyzability, reproducibility and localizability. In the following part we analyze
those properties and we provide a brief justification on how ETC Precision metric
fulfills them:

• Validity Validity means that the measure and the property to measure must be
sufficiently correlated with each other.
As it has been motivated, there is a direct relation between the precision of a
system and the escaping arcs detected, justifying its validity. An increase in the
precision degree is reflected in the number and importance of the escaping arcs,
and thus, producing an increment on the metric value.

• Stability Stability means that the measure should be stable against manipula-
tions of minor significance, i.e., be as little as possible affected by properties that
are not measured.
The approach proposed is defined at a activity level, i.e., the observed behav-
ior is compared with the modeled behavior independently from the structural
properties of the models. Two models with different structure but modeling the
same behavior will result in the same metric value. This makes it even possible
to compare models defined using different notations, e.g., Petri nets and BPMN.
The metric is defined such that the context of the precision problem is taken into
account, but not the position, i.e., two states with the same weight will have the
same importance in the metric no matter where they are located. Notice that, al-
though the metric is defined to measure the precision dimension independently,
possible problems and corrections in the fitness dimension may affect the stabil-
ity of the precision results (cf. Section 5.6).

• Analyzability Analyzability, in general, relates to the properties of the measured
values (e.g., whether they can be statistically evaluated). In the remainder, the
emphasis is on the requirement that the measured values should be distributed
between 0 and 1, with 1 being the best and 0 being the worst value.
Notice that by definition esc(σ)⊆ mod(σ), resulting in a metric that range from
0 to 1. Therefore, on the one hand an optimal value for precision is defined,

5.5 Minimal Imprecise Traces 49

i.e, 1 denotes that the observed behavior is precisely modeled. This is especially
important as a stop condition in the context of an iterative approach looking for
appropriate process models, such as genetic mining [56, 34], but also for a human
analyst as it indicates that there is no better solution available. Notice that, to
achieve a value of 1 it is not necessary to have all the modeled behavior observed
in a single trace, i.e., the precision is considered globally, taking all the observed
traces as a whole. Finally, the fact that the metric is normalized by the degree
of allowed behavior in each state makes it possible to be used for comparing
different pairs of model-log, even if they refer to different processes.

• Reproducibility Reproducibility means that the measure should be independent
of subjective influence, i.e., it requires a precise definition of its formation.
The definition of the metric proposed is solid and formal, and there is no room
for subjectivity. The same experiment can be reproduced several times and it
will always output the same result. However, notice that the relation between
activity sequences and tasks sequences of a process model may arise possible
non-deterministic situations, requiring further assumptions in order to preserve
the reproducibility of the approach (cf. Section 5.6).

• Localizability Localizability means that the system of measurement forming the
metric should be able to locate those parts in the analyzed object that lack certain
desirable (i.e., the measured) properties.
It is very important that a precision problem is not only reflected by the measured
value but can also be located. In that sense, the escaping arcs captured in the au-
tomaton describe perfectly where the precision problems are, making it possible
for the business analyst to identify potential points of improvement. Additionally,
in Section 5.5 we provide an additional mechanism to collect all those precision
problems for a deeper analysis.

5.5 Minimal Imprecise Traces

The ETC Precision metric presented in the previous section provides a numeric mea-
surement on the precision of the system. This value may be useful to measure the
precision of several alternative models describing the same observed behavior, or to
establish when a model becomes obsolete to represent an evolving process. How-
ever, in order to fully understand the causes of the precision problems, an analyst
needs to be able to access the exact points of mismatch between the observed and
modeled behaviors. The prefix automaton and its detected escaping arcs provide this
information, and may be used to guide a deeper analysis into the model and the log
to understand their discrepancy. Some of the escaping arcs may represent meaning-
ful abstractions that arise in the model and therefore no further action is required.
Others, however, may suggest situations for which future actions over the process
need to be carried out.

Additionally to the escaping arcs detected on the automaton, in this section our
purpose is to collect all the precision anomalies in terms of logs and traces to be used

50 5 Measuring Precision

later on for its analysis. Each escaping arc is represented by one minimal imprecise
trace (mit), a sequence containing the minimal behavior observed until the escaping
arc was available. All the minimal imprecise traces compose the minimal imprecise
log.

Definition 5.7 (Minimal Imprecise Traces and Log) Let ALM = (S,A,↗,ω,〈〉)
be the prefix automaton of the log L enhanced with the behavior of the model M.
Let esc(ALM) define all the escaping arcs of the automaton. Given the escaping arc
(σ ,a,σ ′)∈ esc(ALM), its minimal imprecise trace is defined as mit((σ ,a,σ ′)) =σ ′.
The set of all minimal imprecise traces defines the minimal imprecise log, i.e.,
mil(ALM) =

⋃
i∈escape(ALM) mit(i).

In AL1SN1 , there are five escaping arcs in the automaton, and thus, five are the
minimal imprecise traces conforming the minimal imprecise log, shown in Fig-
ure 5.7. Notice that, by definition, all minimal imprecise traces fulfill a minimal-
ity criterion, i.e., they represent the minimal behavior before the deviation. In other
words, all elements in the trace except the last one represent a behavior observed in
the log, and the last one is the activity allowed by the model but not observed.

<a,c,f>
<a,c,d,f>
<a,c,d,e,e>
<a,c,e,d,e>
<a,c,e,e>

Minimal Imprecise Log (MIL)

a = Start Checkpoint
b = Register Low-value Claim
c = Register High-value Claim
d = Check Policy
e = Consult Expert
f = Check Liability
g = Complete Low-value Claim
h = Complete High-value Claim
i = Close Checkpoint

Fig. 5.7: Minimal Imprecise Log (MIL) for the automaton AL1SN1 .

The representation of the imprecisions in terms of a minimal imprecise log opens
the possibility to different analysis and uses. For example, all techniques and tools
based in analyzing event logs can be used to gain insights into the precision prob-
lems. That includes most of the approaches in the field of process mining, e.g.,
discovery algorithms can be used to derive a model that represents the imprecise
behavior. Some of the minimal imprecise traces can be used for process reparation,
correcting the model to represent more precisely the observed behavior, e.g., trans-
forming pairs of concurrent events in the model to ordered events [57]. Another
option is to use the minimal imprecise log as input for the supervisory control the-
ory [71], i.e., synthesizing a supervisor (i.e., another model synchronized with the
original model) that restricts the behavior of original system such the imprecisions
never occur. Finally, similar to [45, 88, 30], the minimal imprecise trace can be con-
sidered as negative examples, and can be used to enrich the original log in order to
discover a more precise model.

5.6 Limitations and Extensions 51

5.6 Limitations and Extensions

For the sake of clarity, the approach presented made some assumptions. In this sec-
tion we discuss the effects of relaxing those assumptions, addressed in later chapters
of the book. In particular, we focus on the consequences of unfitting traces and the
indeterminism between activity sequences and tasks sequences.

5.6.1 Unfitting Scenario

This chapter has presented the precision checking based on escaping arcs assuming
a perfectly fitting log. In other words, each trace on a log L is included in the set
of complete activity sequences of the model M. Consequently, any prefix in the
log traces is a prefix of the sequences of the model, and therefore, observed(σ) ⊆
modeled(σ) for all states σ ∈ SLM .

However, this is a strong assumption, especially in real-life scenarios, where mis-
recorded events and exceptional executions of the process exist. For such cases, we
define SL = {σ |σ ∈ •(L)∧σ 6∈ •(φ(M))} as the set of states in the observed be-
havior but not modeled. Those states represent situations difficult to interpret, where
the observed behavior is not aligned within the domain of the model [17]. In other
words, the model is not able to determine the state of the system given the observed
elements.

Given the rare nature of these situations, a possible strategy is to consider the
fitting part of the traces for the computation of the precision. In other words, given
an unfitting trace σ = σ ′ · 〈a〉 · σ ′′ where σ ′ ∈ SLM and σ ′ · 〈a〉 ∈ SL, only σ ′ is
used to compute precision. For example, let us consider the model M of Figure 5.8
and the log L = [〈a,b,d, f 〉100,〈a,c,e, f 〉100,〈a,b,c,d, f 〉]. The observed behavior
used to compute the precision automaton is composed by the two first traces (100
instances of each) and the fragment 〈a,b〉 of the third trace.

start t1
a

endp1

t2
b

t3
c

t4
d

t5
e

p2

p3

p4 t6
f

Fig. 5.8: Model to illustrate the problems of unfitting scenarios.

Notice that the current definition of observed, modeled and escaping arcs pre-
sented in Definition 5.4 and 5.5 already satisfies that assumption, considering ob-
served arcs those arcs in the behavior of both the log and the model. Moreover, the
ETC Precision proposed in Definition 5.6, based on observed and escaping arcs,
also satisfies the assumption. If the escaping arcs suggest situations with preci-
sion problems, we define the equivalent fitness escaping arcs as the exact points
where the observed behavior deviates from the model. In these cases, the fitness

52 5 Measuring Precision

escaping arcs do not provide information about the precision dimension, but sim-
ple information about the fitness of the system. Moreover, similar to the mini-
mal imprecise trace (cf. Definition 5.7), we define the minimal unfitting trace as
the trace fragment reaching that fitness escaping arcs.We define the minimal un-
fitting log as the collection of those unfitting traces in terms of a log. For example,
L = [〈a,b,d, f 〉100,〈a,c,e, f 〉100,〈a,b,c,d, f 〉] has only one fitness escaping arc, and
therefore the minimal unfitting log is composed only by the trace 〈a,b,c〉.

The strategy of considering the fitting part of the traces to compute precision
is only appropriate for those cases where the unfitting behavior represent a minor
part of the whole observed behavior and its effect on the metric is negligible. How-
ever, it has several disadvantages and limitations. First, the precision metric is af-
fected by the position of the fitness problem, creating a dependency between both
dimensions not desired [21, 20]. In the worst case scenario, when the fitness mis-
match is at the beginning of the trace, the whole trace is discarded. For example,
L1 = [〈a,a,b,d, f 〉,〈a,a,c,e, f 〉] and L2 = [〈a,b,d, f , f 〉,〈a,c,e, f , f 〉] are two logs
for the model M where a or f is recorded twice by mistake. In L1, only 〈a〉 is con-
sidered to measure precision (the rest of both traces is discarded). This results in a
low precision value of 0.3. On the other hand, in L2, 〈a,b,d, f 〉 and 〈a,c,e, f 〉 are
considered (only the last f is discarded), and this result in a perfect precision of 1.

The second limitation is that noisy unfitting behavior distort the precision analy-
sis, ”covering” arcs that otherwise would be considered escaping. For example, let
us consider the log L = [〈a,b,d, f 〉1000,〈a,c,b,d, f 〉]. In this log, the second trace,
that could be considered noisy, covers the escaping arc 〈a,c〉, denoting that the lower
path of the model is never used. Notice that the effect on the metric from a escaping
arc (i.e., c) in a state 〈a〉 with a weight of 1000 is much more than the effect of the
escaping arc e in a state 〈a,c〉 with a weight of 1.

This issue is related with the third limitation: the fitness anomalies are not ad-
dressed globally, but locally. For example, given the trace 〈a,c,b,d, f 〉 in the afore-
mentioned example, we assume that deviation is produced after 〈a,c〉. However,
a global vision would consider a more logical interpretation where c is already a
deviation, denoting a misrecorded event on a perfectly fitting trace 〈a,b,d, f 〉. The
application of global alignment of observed and modeled behavior for precision
checking will address these issues, and is presented in detail in Chapter 9.

5.6.2 Indeterministic Scenario

The second assumption made for the sake of clarity during this chapter is the de-
terministic relation between activity sequences and tasks sequences of a model. In
other words, given a sequence of activities, there is only one sequence of tasks as-
sociated with it. However, this is not always the case. Let us consider the model
in Figure 5.9. Given the activity sequence 〈a,b〉, there are two transition sequences
resulting in that sequence: 〈t1, t2〉 and 〈t1, t3〉. A similar situation may occur when
the model contains invisible tasks.

5.7 Summary 53

start t1
a

endp1

t2
b

t3
b

t4
c

t5
d

p2

p3

p4 t6
e

Fig. 5.9: Model to illustrate the problems of indeterministic scenarios.

There are different strategies to deal with indeterminism. One option is to con-
sider and explore all possible scenarios. However, this solution could lead to a state-
space explosion, making it only suitable for small and simple cases [77]. Other
options include the use of heuristics, e.g., a random selection, or more elaborate
look-ahead heuristics to determine the most plausible option. The heuristic solution
contrasts with the possibility of using alignment algorithms to determine the global
optimal sequence of tasks for a given activity sequence. This possibility is explored
in detail in the Chapter 9.

5.7 Summary

Given an event log and a process model, the notion of escaping arcs offers an ef-
ficient alternative to analyze the precision dimension. This chapter described the
definition of the observed behavior in terms of an automaton, and how that automa-
ton is enhanced to incorporate information about the modeled behavior. It showed
how the enhanced automaton is used to detect the escaping arcs. The escaping arcs,
and their position within the process, are the bases for the proposed precision metric.

Chapter 6
Evaluating Precision in Practice

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

Previous chapters motivated the need for precision checking and introduced a
precision measure based on escaping arcs. This chapter illustrates the evaluation of
precision in practice using the University case presented in Chapter 1. Additionally,
the chapter presents empirical results to illustrate the characteristics of the approach.
Later chapters consider variants and extensions of the procedure to adapt it to par-
ticular conditions.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 55–59, 2016.
DOI: 10.1007/978-3-319-49451-7_6

56 6 Evaluating Precision in Practice

6.1 The University Case: The Appeals Process

In Chapter 1, the University Case is presented: a university is planning on chang-
ing its obsolete system which manages academic processes to a new system called
USoft. For that, the university compares the event data generated by the legacy sys-
tem with the process models of USoft in order to analyze the precision.

In this section we describe the precision analysis performed for the appeals pro-
cess, the process that concerns those cases where the student needs to be expelled
from the university, for low academic results, severe ethics violations, or other cir-
cumstances.

The precision analysis is performed as follows:

1. First, the data recorded by the legacy system is processed. Several tables of the
system database containing the information regarding the appeals process are
identified, and the information is extracted and consolidated in terms of an event
log. That data includes 1100 cases from the last 10 years, and 23 different types
of events.

2. In the second step, the process model for the appeal process contained in USoft
is considered. Figure 6.1 shows a fragment of the USoft model for such process,
in its BPMN notation. In order to check precision using the technique presented
in Chapter 5, the relevant parts of the process model are converted to Petri nets.
Both Petri net and event logs are pre-processed in order to guarantee same names
for the activities.

Fig. 6.1: Fragment of the appeals process model in USoft in BPMN notation.

3. Then, the escaping arcs based precision checking is applied and the results are
analyzed. Figure 6.2 show a fragment of the results provided by the ProM plug-in
Precision for DPN, developed by F. Mannhardt. The results provided by the tool
include a visualization of the Petri net coloring the places with precision prob-
lems (top right), the minimal imprecise traces denoting the comparison between
observed and possible arcs (top left), and a summary of the precision and arcs,
including the observed and possible arcs for each place.

4. After analyzing the results, the university concludes that the USoft model for the
appellation process is precise enough for their requirements (0.778). Moreover,
the university identifies two precision problems from the results. First, the model
allows for t21 and t22 in parallel. However, the log reflects a sequential order

6.1 The University Case: The Appeals Process 57

Fig. 6.2: Fragment of the precision results provided by Precision for DPN tool.

between t21 and t22. Although the tool identifies this problem, the university
considers this imprecision as irrelevant: the list is generated automatically and
it takes less than a second to complete task t21, but writing the report is a time
consuming task (t22). Therefore it is normal that the sequence t22-t21 is never
observed in the log. Second, the approach detects that t25 can be executed before
t24. This is a violation of the university policy (the resolution needs to be regis-
tered first before sending the reports), and consequently the USoft model needs
to be adapted before its implementation.

5. Finally, the USoft appeals model is adapted to correct the precision problems
between the real process and the model identified on the conformance analysis.
Figure 6.3 shows a fragment of the adapted USoft model.

Fig. 6.3: Fragment of the adapted appeals process model in USoft in BPMN nota-
tion.

58 6 Evaluating Precision in Practice

6.2 Experimental Evaluation

The first experiment of this section is designed to illustrate the same dimension – in
this case precision – can be quantified differently by different measures, each one
more suitable depending on the final goal of the analysis. In particular, we com-
pare the precision checking based on escaping arcs presented in this book, and the
approach in [77], implemented as Conformance Checker in ProM 5.2.

The experiment setup includes the analysis of precision with both approaches on
a set of small logs [59]. For each log, a Petri net is obtained using ILP miner [93],
a miner that provides perfectly fitting process models. Additionally, we counted the
number of minimal imprecise traces (|MIL|) detected with the approach of this book.
We do not report CPU times since checking precision in both approaches took less
than one second for each pair of log and model.

Table 6.1a shows the results of the experiment. Examining the table, one can see
that the results include all possibilities: 1) cases where both measures provide simi-
lar results, including cases with perfect precision (e.g., GFA6NTC) and imprecise cases
(e.g., GFA5), and 2) cases where both measures provided different results, including
cases where [77] provides a higher measurement (e.g., GFAL1), and cases where the
approach of this book is higher (e.g., GFBN2). The reason for such differences de-
pends on the techniques used to measure precision: in general, [77] highly penalize
a general discrepancy between log tasks relations and model tasks relations, while
precision based on escaping arcs only penalize the few situations where the escaping
arcs appear in the log.

The first conclusion arised from the experiment is that the same dimension could
be measured in different ways. Based on that, one may decide to use [77] for a more
holistic vision of the precision, while the approach of this book could be used to de-
tect the specific precision discrepancies. However, as the next experiment illustrates,
for non trivial examples, the only alternative is the precision based on escaping arcs.

The purpose of the second experiment in this section is to illustrate the applica-
bility of the precision checking based on escaping arcs in large processes that other
approaches are not able to handle. In particular, we compare with the approach in
[77], implemented as Conformance Checker in ProM 5.2.

The experiment setup includes the analysis of escaping arcs precision on 8 logs
of a public dataset widely used in process mining [93]. [77] technique is not able
to process any of the 8 logs. Two different algorithms are used to generate mod-
els from the logs in order to analyze the conformance. The algorithms are the ILP
miner [93] and the RBMiner [84]. These are two miner that guarantee fitness value
one. Additionally, we provide the results of the most permissive models, i.e., models
with only the transitions but without arcs or places (MT). These models allow any
behavior and thus, they have a low etcp value, as expected.

Table 6.1b shows the results of the experiment. The results include the precision
value, number of |MIL| and CPU time in seconds for checking precision on the
models obtained by the ILP miner, the RBMiner, and the only-transitions models.
For each one of the aN benchmarks, N represents the number of tasks in the log,
while the 1 and 5 suffixes denote its size: 100 and 900 traces, respectively. The

6.2 Experimental Evaluation 59

t32 has 200 (1) and 1800 (5) traces. The pair of CPU times reported denote the
computation of etcp without or with the collection of |MIL| (in parenthesis).

A first conclusion on the results is the capability of the approach to handle large
benchmarks in reasonable CPU time, even for the prototype implementation carried
out. A second observation is that as the number of tasks increases, precision in
the model drops as the discovery algorithms can no longer precisely capture the
complex relations between tasks and have to derive less precise relations between
them.

Benchmark [77] etcp |MIL| Benchmark [77] etcp |MIL|
GFA6NTC 1.00 1.00 0 GFl2lOpt 1.00 0.85 7
GFA7 1.00 1.00 0 GFAL2 0.86 0.90 391
GFA8 1.00 1.00 0 GFDrivers 0.78 0.89 2
GFA12 1.00 1.00 0 GFBN3 0.71 0.88 181
GFChoice 1.00 1.00 0 GFBN2 0.59 0.96 19
GFBN1 1.00 1.00 0 GFA5 0.50 0.57 35
GFParallel5 1.00 0.99 11 GFl2l 0.47 0.75 11
GFAL1 1.00 0.88 251 GFl2lSkip 0.30 0.74 10

(a)

MT Parikh RBMiner
Benchmark |TS| etcp |P| |T | etcp |MIL| CPU |P| |T | etcp |MIL| CPU
a22f0n00 1 1309 0.06 19 22 0.63 1490 0(0) 19 22 0.63 1490 0(0)
a22f0n00 5 9867 0.07 19 22 0.73 9654 0(3) 19 22 0.73 9654 0(4)
a32f0n00 1 2011 0.04 31 32 0.52 2945 0(0) 32 32 0.52 2944 0(1)
a32f0n00 5 16921 0.05 31 32 0.59 22750 2(10) 31 32 0.59 22750 2(11)
a42f0n00 1 2865 0.03 44 42 0.35 7761 0(2) 52 42 0.37 7228 0(2)
a42f0n00 5 24366 0.04 44 42 0.42 60042 5(28) 46 42 0.42 60040 6(29)
t32f0n00 1 7717 0.03 30 33 0.37 15064 1(15) 31 33 0.37 15062 1(12)
t32f0n00 5 64829 0.04 30 33 0.39 125429 9(154) 30 33 0.39 125429 8(160)

(b)

Table 6.1: (a) Comparison of the precision results between the proposed approach
and approach in [77] for small examples. (b) Comparison of precision results be-
tween models obtained by three discovery algorithms, for large examples where
[77] was not able to finish.

Chapter 7
Handling Noise and Incompleteness

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

In the previous chapters we presented a precision checking approach for noise-
less data. However, noise is present in most real-life cases. Moreover, the behavior
reflected in the log can only be considered as an example of the real process be-
havior. This chapter presents the adaptation of the precision presented in the first
chapters of this book in order to be more robust against noise, and it provides a

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 61–73, 2016.
DOI: 10.1007/978-3-319-49451-7_7

62 7 Handling Noise and Incompleteness

technique to assess the confidence on the variability of measure in the future. In the
next chapter we will assess the severity of the precision issues detected.

7.1 Introduction

In the previous chapter we introduced precision checking based on escaping arcs.
Given a log and a model, we use the behavior observed in the log to traverse the
modeled behavior, detecting the escaping arcs and estimating the precision of a
system. In other words, it allows to know how precise is our model describing the
behavior observed in the log. In this chapter, we go a step further, and we extend
the escaping arcs analysis to address the following points:

• Robustness on the escaping arcs. Experience has proved that most real-life logs
contain noise, e.g, incorrectly logged events (for instance, due to temporary sys-
tem misconfiguration), or sequences of events representing abnormal behavior
[56]. Even though noise tends to represent a minor part of the observed behav-
ior, its effect on the escaping arcs detection may become significant, i.e., causing
exceptional escaping arcs to appear, or covering legitimate ones. In this chapter
we revisit the escaping arcs approach in order to make it more robust to such
situations.

• Confidence of the precision metric. A checking based on escaping arcs reports the
degree of precision of the system at a certain moment. However, the metric by
itself provides no insight on the precision stability, i.e., how likely is the metric
to drastically change when we consider more observed behavior. In this chapter
we introduce a confidence interval over the precision metric in order to indicate
the possible variability of the metric in the future.

7.2 Robustness on the Precision

The precision checking presented in Chapter 5 is based on detecting escaping arcs,
i.e., the log is traversed to detect those points where the modeled behavior is broader
than the one observed on the log. Each considered trace produces new escaping
arcs, or covers some existing one. However, although the weight of the states is
taken into account to estimate the precision metric (cf. Definition 5.6), it is not used
to determine what represents or not an escaping arc. In other words, infrequent or
noise behavior in the log may impact on the escaping arcs and the precision metric,
covering possible escaping arcs and creating new ones.

Let us consider the insurance process in Chapter 5 and use it as a running example
to illustrate the concepts introduced in this chapter. The system net of Figure 7.1
represents a model M for the insurance process, and the log L in Table 7.1 is a
reflection of the process execution. Each row of the log represents a trace and the

7.2 Robustness on the Precision 63

a = Start Checkpoint
b = Register Low-value Claim
c = Register High-value Claim
d = Check Policy
e = Consult Expert
f = Check Liability
g = Complete Low-value Claim
h = Complete High-value Claim
i = Close Checkpoint

start
t1
a p1 t2

b

t3
c

p2

p3

t4
d

t6
f

t5
e

p5

p6

t7
g

t8
h

p4

p7
t9
i end

Fig. 7.1: Model M for the insurance process, used as running example to illustrate
the concepts of this chapter.

Frequency Trace

1435 σ1 = 〈a,b,d,g, i〉

946 σ2 = 〈a,c,d,e, f ,h, i〉

764 σ3 = 〈a,c,e,d, f ,h, i〉

54 σ4 = 〈a,c,e, f ,d,h, i〉

1 σ5 = 〈a,c,d,e,e, f ,h, i〉

Table 7.1: Event log L for the insurance process, used as running example to illus-
trate the concepts of this chapter.

number of occurrences of the trace in the log. Therefore, L captures 3200 executions
of the process, following 5 different paths.

Figure 7.2 shows the prefix automaton of L and M as it is presented in Chap-
ter 5. Looking at the prefix automaton one can see the effect of the infrequent trace
σ5 = 〈a,c,d,e,e, f ,h, i〉. The detected escaping arc 〈a,c,d,e,e,e〉 is a direct result
of the trace σ5, i.e., an escaping arc that would not exist if we consider the log
L′ = [σ1435

1 ,σ946
2 ,σ764

3 ,σ54
4]. On the other hand, σ5 contains the prefix 〈a,c,d,e,e〉

that otherwise, considering L′, would be a escaping arc on a highly weighted state
〈a,c,d,e〉 (with its consequent effect on the metric value). A robust precision check-
ing approach should be affected as little as possible at this kind of situations.

In the literature, several approaches have been proposed to detect noisy and
anomalous traces within event logs, e.g., [24, 25]. This is not the goal of the ap-
proach presented in this section, but to extend the escaping arc detection theory
in order to incorporate the weight component, and to do that in an arc-level way.
Therefore, the filtering of anomalous traces from the event log can be considered a
pre-processing step prior to the precision checking.

In order to increase the robustness of the approach presented in Chapter 5, in
this section we propose the use of a cut threshold to remove states of the prefix
automaton based on their weight, as a preliminary step to the precision computation.
In other words, states in the log having a weight under that threshold are considered
out of the observed behavior for the precision checking purposes. For example, if we
consider the state 〈a,c,d,e〉 in Figure 7.2, we see that 99.9% of its behavior follows

64 7 Handling Noise and Incompleteness

3200
<>

1435
<a,b,d,g,i>

946
<a,c,d,e,f,h>

946

<a,c,d,e,f>

947

<a,c,d,e>
947

<a,c,d>

1765

<a,c>

1435
<a,b,d,g>

1435

<a,b,d>
1435

<a,b>

764

<a,c,e,d,f,h>

54

<a,c,e,f,d,h>

764

<a,c,e,d,f>
764

<a,c,e,d>

54
<a,c,e,f,d>

54

<a,c,e,f>

818

<a,c,e>

3200

<a>

946
<a,c,d,e,f,h,i>

764

<a,c,e,d,f,h,i>

54

<a,c,e,f,d,h,i>

a

b

d
c

e

d g

e

d

f

f

d

h

h

h i

i

i

f

i

0
<a,c,d,f>

1

<a,c,d,e,e>
f

e

f 0
<a,c,f>

0
<a,c,e,d,e>

e
0

<a,c,e,e>

e

1

<a,c,d,e,e,f,h>
1

<a,c,d,e,e,f>
1

<a,c,d,e,e,f,h,i>

e

h i

0
<a,c,d,e,e,e>

f

Fig. 7.2: Prefix automaton for the event log L and model M as it is presented in
Chapter 5.

the f activity, being e a promising candidate to be cut. The cut threshold proposed
in this section is defined to be parametric at arc-level:

• Parametric: The cut threshold is based on a cut factor r ∈ [0,1]. The cut factor
is established according to the level of robustness desired. For instance, a high
cut factor is used to compute the precision using only the main behavior of the
system, reaching a higher level of abstraction. On the other hand, a low cut factor
cuts only the most extreme cases. When the cut factor r is 0 there is no cut states,
and all the behavior is considered for the precision checking.

• Arc-Level: The cut threshold is applied at arc-level, and not at trace level. In other
words, to decide if at the state σt with the incoming arc q = (σs,a,σt) must be
cut we consider only the context of that arc, i.e., the weight of target state σt and
the weight of its predecessor σs. The cut threshold is defined as the weight of the
source state multiplied by the cut factor, i.e., ω(σs) · r. A state is cut if its weight
is less or equal than the cut threshold, i.e., ω(σt)≤ ω(σs) · r. Notice that, the cut
threshold is defined locally to the arc, and not globally. Therefore, the cut does
not depends on the weight of the overall automaton but only on the weights of
the part of the process the arc refers to.

When a state σ ∈ SLM is defined as cut state, all the states in SLM descendants of
σ are also considered cut.

Figure 7.3 shows the prefix automaton of L and M when we apply a cut fac-
tor of r = 0.03. The automaton shows some differences with the original au-
tomaton in Figure 7.2, where the cut states are represented in a different color
than the escaping states. For example, the state 〈a,c,d,e,e〉 is a cut state because
its weight do not overpass the threshold ω(〈a,c,d,e,e〉) ≤ ω(〈a,c,d,e〉) · r, i.e.,
1 ≤ 947 · 0.03 = 28.41. Consequently, all the states after 〈a,c,d,e,e〉 are also cut
states, i.e., 〈a,c,d,e,e, f 〉, 〈a,c,d,e,e, f ,h〉 and 〈a,c,d,e,e, f ,h, i〉.

7.2 Robustness on the Precision 65

3200
<>

1435
<a,b,d,g,i>

946
<a,c,d,e,f,h>

946

<a,c,d,e,f>

947

<a,c,d,e>
947

<a,c,d>

1765

<a,c>

1435
<a,b,d,g>

1435

<a,b,d>
1435

<a,b>

764

<a,c,e,d,f,h>

54

<a,c,e,f,d,h>

764

<a,c,e,d,f>
764

<a,c,e,d>

54
<a,c,e,f,d>

54

<a,c,e,f>

818

<a,c,e>

3200

<a>

946
<a,c,d,e,f,h,i>

764

<a,c,e,d,f,h,i>

54

<a,c,e,f,d,h,i>

a

b

d
c

e

d g

e

d

f

f

d

h

h

h i

i

i

f

i

0
<a,c,d,f>

1

<a,c,d,e,e>
f

e

f 0
<a,c,f>

0
<a,c,e,d,e>

e
0

<a,c,e,e>

e

1

<a,c,d,e,e,f,h>
1

<a,c,d,e,e,f>
1

<a,c,d,e,e,f,h,i>

e

h i

0
<a,c,d,e,e,e>

f

Fig. 7.3: Prefix automaton for the event log M and model M considering a cut factor
r = 0.03.

Formally, cut states are defined as follows:

Definition 7.1 (Cut States) Let ALM = (S,A,↗,ω,〈〉) be the prefix automaton of
the log L enhanced with the behavior of the model M. Let (σs,a,σt) ∈↗ be an arc
where σt ∈ SLM is a state of both log and model. Given a cut factor r, the prefix σt
is a cut state if :

• its weight is less or equal than the cut threshold for that state, i.e., ω(σt) ≤
ω(σs) · r.

• any of the prefixes of σt is already a cut state, i.e., ∃σa ·σb = σt : σa is a cut state.

The set of cut states is represented as Sr. The prefix automaton of the log L en-
hanced with the behavior of the model M and cut with a threshold r is denoted as
A r

LM .

Notice that, by definition the empty sequence 〈〉 is never a cut state because it
has no incoming arc. Notice also that, when the threshold factor r is 0, no state in
the log is cut and the approach behaves as the one presented in Chapter 5.

As it has been mentioned before, the cut states are considered to be out of the
log behavior. Therefore, although they appear on the log, they are counted as escap-
ing states for the precision computation. The definitions of modeled, observed and
escaping in Definition 5.4 and Definition 5.5 are adapted to reflect this new scenario.

Definition 7.2 (Escaping Arcs with Cut States) Let A r
LM = (S,A,↗,ω,〈〉) be the

prefix automaton of the log L enhanced with the behavior of the model M and cut
with a factor r. Let the prefix σs ∈ (SLM \ Sr) represent a state of both log and
model and not cut by r. The set of arcs observed in σs represent those activities
executed and consequently recorded on the log L but not cut by r, i.e., obs(σs) =
{(σs,a,σt) ∈↗ |σt ∈ (SLM \ Sr)}. The set of activities modeled by the model M in

66 7 Handling Noise and Incompleteness

the state σs is defined as mod(σs) = {(σs,a,σt) ∈↗ |σt ∈ SM}. The set of escaping
arcs of the state σs is determined by the difference between the arcs modeled and
the arcs observed on the state, i.e., esc(σs) = mod(σs)\obs(σs).

For example, the modeled activities of the state 〈a,c,d,e〉 are f and e, but only f
is considered observed, being e escaping. The precision metric in Definition 5.6 is
redefined to consider the new definitions of modeled and escaping arcs. The metric
only explores states in both the modeled and observed behavior which are not cut.

Definition 7.3 (ETC Precision with Cut States) Let A r
LM = (S,A,↗,ω,〈〉) be the

prefix automaton of the log L enhanced with the behavior of the model M and cut
with a factor r. The metric ETC Precision when the automaton contains cut states
is defined as follows:

etcp(A
r

LM) = 1−
∑σ∈(SLM\Sr) ω(σ) · |esc(σ)|
∑σ∈(SLM\Sr) ω(σ) · |mod(σ)|

3200
<>

1435
<a,b,d,g,i>

946
<a,c,d,e,f,h>

946

<a,c,d,e,f>

947

<a,c,d,e>
947

<a,c,d>

1765

<a,c>

1435
<a,b,d,g>

1435

<a,b,d>
1435

<a,b>

764

<a,c,e,d,f,h>

54

<a,c,e,f,d,h>

764

<a,c,e,d,f>
764

<a,c,e,d>

54
<a,c,e,f,d>

54

<a,c,e,f>

818

<a,c,e>

3200

<a>

946
<a,c,d,e,f,h,i>

764

<a,c,e,d,f,h,i>

54

<a,c,e,f,d,h,i>

a

b

d
c

e

d g

e

d

f

f

d

h

h

h i

i

i

f

i

0
<a,c,d,f>

1

<a,c,d,e,e>
f

e

f 0
<a,c,f>

0
<a,c,e,d,e>

e
0

<a,c,e,e>

e

Fig. 7.4: Escaping arcs of the prefix automaton for the event log L and model M, cut
with a factor r = 0.03.

Figure 7.4 illustrates the states and escaping arcs considered in the metric for the
running example L and M. The five escaping states considered are represented in
color: the four states in the same color indicate states in the model but not in the log,
and the state in different color represents a cut state. The blurry states indicate the
states not explored by the precision metric due to being cut states.

The metric calculation for automaton A 0.03
LM between L and M with a cut factor

of 0.03 is:

7.3 Confidence on Precision 67

etcp(A
0.03

LM) = 1−
3200 ·0+3200 ·0+1435 ·0+1435 ·0+1435 ·0+1435 ·0+1765 ·1+ . . .

3200 ·1+3200 ·2+1435 ·1+1435 ·1+1435 ·1+1435 ·0+1765 ·3+ . . .
· · ·+947 ·1+947 ·1+946 ·0+946 ·0+946 ·0+818 ·1+764 ·1+ . . .

· · ·+947 ·2+947 ·2+946 ·1+946 ·1+946 ·1+818 ·3+764 ·2+ . . .
· · ·+764 ·0+764 ·0+764 ·0+54 ·0+54 ·0+54 ·0+54 ·0
· · ·+764 ·1+764 ·1+764 ·0+54 ·1+54 ·1+54 ·1+54 ·0

= 1− 5241
31498

= 1−0.17 = 0.83

The metric result for the automaton A 0.03
LM is 0.83, and as expected, it differs

from the results of the automaton ALM with no cut where etcp(ALM) is 0.86. The
difference is explained because A 0.03

LM contains an escaping state (〈a,c,d,e,e〉) is a
state with high weight (〈a,c,d,e〉 with weight 947), a situation that does not occur
in ALM , causing the metric to decrease.

7.3 Confidence on Precision

Given an event log and a model, the metric ETC Precision (etcp) estimates the de-
gree of precision of the system. However, together with a metric, sometimes it is
convenient to provide also a confidence value, indicating the possible variability of
the metric in the future. In this section we provide this confidence value in terms of
a confidence interval, i.e., an upper confidence value (etc>p) and a lower confidence
value (etc⊥p) estimating variability over the computed metric. A narrow interval in-
dicates that the metric should not vary significantly. On the other hand, a wide in-
terval reflects the opposite: a low confidence in the metric provided, whose value
could change drastically in the future.

Both confidence values presented in this section are defined in terms of k, a pa-
rameter representing the future behavior to be considered. A low k is used to com-
pute the confidence in a near future, whereas with a large k, a larger incoming behav-
ior is considered, and thus a longer term future is contemplated. We will implement
k as number of traces to consider.

Notice that, both confidence values presented in this section are approximated,
i.e., they do not provide real bounds over the metric, but instead aim at estimating
them with simple and intuitive heuristics which can be computed in a systematic
manner.

7.3.1 Upper Confidence Value

Given an automaton A r
LM and the parameter k representing the future behavior to

consider, the upper value of the confidence interval is computed considering a best

68 7 Handling Noise and Incompleteness

possible scenario. That is, all the future behavior aims only to cover existing escap-
ing arcs. In other words, each j where 1 ≤ j ≤ k represents a new occurrence in
an escaping arc, increasing the weight of the both states of the arc. In that sense,
each j can be seen as a future trace reaching an escaping arc q = (σs,a,σt). Both
if the target state σt is not in the log or it has been cut, a trace j represents a new
occurrence of it in the log. If the number of occurrences is enough to overpass the
cut threshold (cf. Section 7.2), the arc is no longer considered escaping.

The cost in number of occurrences needed to change a escaping arc q=(σs,a,σt)
from escaping to non escaping depends on the cut factor r considered, i.e., ω(σt)≤
ω(σs) · r. Notice that, states in the model but not in the log (i.e., with weight 0), are
under that threshold, no matter what r is considered. The technique presented in this
section estimates the gain (i.e., the precision increase) of covering each escaping arc,
and maximizes the total gain considering k as the maximum number of occurrences
used to cover escaping arcs. For that, we first define the cost and the gain of covering
an escaping arc.

Definition 7.4 (Cost and Gain of Covering and imprecision) Let q = (σs,a,σt)
be an escaping arc of the automaton A r

LM . The cost of covering q, denoted as
cost(q) = c with c ∈ N, is the minimum c that satisfies ω(σt)+ c > (ω(σs)+ c) · r,
i.e., it overpasses the cut threshold. The gain of covering the escaping arc q is de-
fined as gain(q) = ω(σs), i.e., the gain of reducing in one the number of escaping
arcs of the source state σs.

By inspecting the formula of the ETC Precision metric (cf. Definition 7.3), one
can see why the gain of covering the escaping q is defined as ω(σs): if the state
σs has one less escaping arc, the number of escaping arcs become |esc(σs)| − 1.
Since this number is multiplied by ω(σs) in the numerator part of the equation, the
numerator will be reduced exactly in ω(σs).

1765

<a,c>

0
<a,c,f>

f

947

<a,c,d>

0
<a,c,d,f>

f

947
<a,c,d,e>

1

<a,c,d,e,e>

e

818

<a,c,e>

0
<a,c,e,e>

e

764

<a,c,e,d>

0
<a,c,e,d,e>

e

q1 q2 q3 q4 q5

Fig. 7.5: Close up of the escaping arcs of the automaton A 0.03
LM for the running

example M and L.

Let us consider the escaping arcs of the running example A 0.03
LM , enumerated in

Figure 7.5. The cost of the escaping arc q2 is 30, i.e., 30 traces need to reach that arc
to overpass the threshold. Instead, 29 are not enough because ω(〈a,c,d, f 〉)+29≯
(ω(〈a,c,d〉)+29) ·0.03. On the other hand, the escaping arc q3 only needs 29. That
contrasts with the the cost of the escaping arc q1 – that needs 55 – because of the
weight of 〈a,c〉 – that is 1765. The gain of covering q2 and q3 is the same, i.e., 947.
On the other hand, the gain of covering q1 is 1765.

7.3 Confidence on Precision 69

Once the gain and cost of covering an escaping arc are defined, the maximum
gain obtained with k occurrences can be formulated. This problem is analogous to
the well known Knapsack problem [39], which can be solved using binary inte-
ger programming (BIP) [81]. The following BIP model encodes the maximum gain
obtained covering imprecisions with at most k occurrences:

1. Variables: The variable Xi denotes if the imprecision i is covered or not.

Xi ∈ {0,1}

2. Constraints: The total cost cannot exceed the number of occurrences.

∑
i∈esc(A r

LM)

cost(i) ·Xi ≤ k

3. Cost function: Maximize the gain.

max ∑
i∈esc(A r

LM)

gain(i) ·Xi

Once the optimization problem is formulated, the upper confidence value can be
defined as follows:

Definition 7.5 (Upper Confidence Value) Let A r
LM = (S,A,↗,ω,〈〉) be the prefix

automaton of the log L enhanced with the behavior of the model M and cut with a
factor r. Let k be the future parameter to consider. Let numerator and denominator
be the numerator and denominator of the metric ETC Precision in Definition 7.3,
i.e., etcp(A r

LM) = 1− numerator
denominator . Let gainmax be the result obtained using the opti-

mization problem modeled above. The upper confidence value is defined as:

etc>p (A
r

LM,k) = 1− numererator−gainmax

denominator

Following with the running example of A 0.03
LM and considering a future parameter

k = 24, the only escaping arc with cost lower enough to be covered with this k is
q5. The gain of covering this escaping arc is 764. This value is subtracted from
numerator, providing an upper interval value of 0.85 for this scenario.

7.3.2 Lower Confidence Value

The idea for computing the lower confidence value is similar to the upper value.
However, in this case the k representing the future does not cover escaping arcs,
but produce the rising of new escaping arcs instead. In other words, we consider k
new observed traces. Each one of those k traces introduces m new observed states.
And each one of those m states causes n new escaping arcs to appear. The lower

70 7 Handling Noise and Incompleteness

confidence value is the decrease on the precision metric caused by the escaping arcs
introduced by these new k traces.

The number of escaping arcs introduced is directly related with the number of
observed states introduced by the new traces, i.e., m. Longer traces cause more es-
caping arcs, and as a result a lower confidence value. The are several alternatives
of the value of m, e.g., the length of the longest trace in the log, or just an arbitrary
number. However, for statistical consistency, the m considered in this approach cor-
responds with the average length of the traces in the log. Moreover, the number of
new escaping arcs introduced for each state (i.e., n) is also directly related with the
confidence value obtained. Given that we are considering a worst case scenario, we
consider n to be |A−1|, i.e., all activities are escaping arcs except the one followed
by the trace. Given all these considerations, the lower confidence value is defined as
follows:

Definition 7.6 (Lower Confidence Value) Let A r
LM = (S,A,↗,ω,〈〉) be the prefix

automaton of the log L enhanced with the behavior of the model M and cut with a
factor r. Let numerator and denominator be the numerator and denominator of the
metric ETC Precision in Definition 7.3, i.e., etcp(A r

LM) = 1− numerator
denominator . Let k be

the future to consider, and let avg be the average length of the traces in the log L.
The lower confidence value is defined as:

etc⊥p (A
r

LM,k) = 1− numerator+(k ·avg · |A−1|)
denominator+(k ·avg · |A|)

For instance, following with the running example, being avg = 6 the average
length, A = 8 the number of activities, and considering r = 0.03 and k = 24, the
lower bound in this case is:

etc⊥p (A
r

LM,24) = 1− 5241+(24 ·6 ·7)
31498+(24 ·6 ·8)

= 0.81

7.4 Experimental Results

This section illustrate experimentally some of the concepts presented on this chap-
ter. Table 7.2 contains the results of applying the proposed approach to a set of
large datasets. For comparative reasons, the datasets are some of the ones used in
Chapter 6, obtained from the same public repository. As it is mentioned in Chap-
ter 6, these datasets cannot be handled by precision approaches such as a′b [77].
The experimental setting is based on variations of the a32 f 0n00 5 and t32 f 0n00 5
datasets, and the experiments focus on illustrating how the growth of a log influences
the metric and its confidence, given a particular selection of the stability and confi-
dence parameters presented in this chapter. The column with pX reports the percent-
age of the log considered in each case, i.e. p100 represents the original a32f0n00 5
log, while logs pX with X < 100 correspond to slices of the original log, e.g., p20
contains the first 20% of the original log traces. Logs pX with X > 100 are obtained

7.4 Experimental Results 71

by choosing with uniform distribution among the existing traces in the log the extra
traces needed to achieve the desired size.

Bench |Log| r k etcp Confidence time(s)

a32

p20 180

.05 20

.543 .246 - .553 (.307) 1 / 3 / 5
p40 360 .564 .345 - .570 (.225) 1 / 5 / 6
p60 540 .576 .403 - .582 (.179) 1 / 7 / 11
p80 720 .583 .441 - .587 (.146) 1 / 12 / 17
p100 900 .592 .470 - .595 (.125) 1 / 15 / 24
p150 1350 .591 .504 - .595 (.091) 2 / 16 / 23
p200 1800 .591 .523 - .595 (.072) 2 / 17 / 23
p250 2250 .590 .534 - .594 (.060) 2 / 16 / 24
p300 2700 .591 .544 - .594 (.050) 2 / 16 / 24

t32

p20 360

.05 20

.385 .250 - .387 (.137) 2 / 67 / 121
p40 720 .391 .305 - .392 (.087) 4 / 180 / 229
p60 1080 .392 .330 - .393 (.063) 5 / 295 / 339
p80 1440 .393 .345 - .394 (.049) 6 / 336 / 496
p100 1800 .393 .353 - .394 (.041) 6 / 390 / 550
p150 2700 .393 .365 - .393 (.028) 6 / 411 / 562
p200 3600 .393 .371 - .393 (.022) 7 / 429 / 572
p250 4500 .393 .376 - .393 (.017) 9 / 440 / 579
p300 5400 .393 .379 - .393 (.014) 9 / 443 / 581

Table 7.2: Precision metric value, confidence and computation time for incremental
benchmarks.

The models used are the ones obtained from discovering a Petri net through the
ILPMiner [93]. The wide spectrum of the set of benchmarks presented makes it
possible to illustrate the evolution of the approach presented in this chapter and
can be considered as a real situation in an information system where trace sets are
evaluated on a regular basis, e.g., monthly.

A first conclusion on the table is the stability of the approach with respect to
the size of the log. Notice that the etcp value tends to increase as new behavior
is considered, e.g., between p20 and p100 there is a difference of 0.05. However,
this difference is extremely small considering that between p20 and p100 there is a
500% increment in the observed behavior. In addition, the more traces are included
in the previously observed behavior, the closer the metric value is to stabilizing. The
second conclusion to extract from this table is the dependency between the traces
considered and the confidence in the metric, i.e., increasing the size of the trace set
considered results in a narrower confidence interval.

The next set of experiments are designed to illustrate the influence of confidence
parameter k and the cutting parameter r in the proposed approach.

In chart 7.6a, three process models are considered: ext c1 01, ext c1 02 and
ext c1 03. These benchmarks have been created using the PLG tool [37]. This tool
allows to create configurable and generic benchmarks, containing all the common
patters appearing in any workflow model, e.g., choice, parallelism, sequence, etc.
For the experiment, each one of the logs considered contains 15000 traces. Bench-

72 7 Handling Noise and IncompletenessSheet1

Page 1

1 500 10002000 1 500 10002000 1 500 1000 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

e
tc

p

ext_c1_01 ext_c1_02 ext_c1_03

(a)

Page 1

0
0.01

0.02
0.03

0.04
0.06

0.08
0.1

0.12
0.14

0.16
0.18

0.2
0.22

0.24
0.26

0.28
0.3

0.33
0.36

0.4

0

10

20

30

40

50

60

70

80

90

100

plg01 plg02

r

%
b
eh
av
io
r
no
tc
on
si
d
er
ed

(b)

Fig. 7.6: Charts showing the effects of different parameters for the confidence value.

marks 01 and 03 denote standard processes, with great difference between model
and log behavior (and thus exhibiting low precision). On the other hand, process
model ext c1 02 is a simpler model which describes accurately the behavior re-
flected in the log, i.e., the precision value is high. The chart illustrates the influence
in the approach when considering diverse future windows, i.e., four different k val-
ues: 1, 500, 1000 or 2000 new traces to consider. As it is reflected in the experiments,
the future considered has no influence on the metric value, but it is relevant on the
confidence value over the metric. The possibility of variation for the metric consid-
ering a really near future (i.e. k = 1) is practically zero. However, when considering
farther futures, this possibility increases, e.g., considering a k value of 2000 (ap-
prox. 15% of the log) the confidence in the metric is substantially low. Notice that,
as expected, the confidence interval is not symmetric.

Chart 7.6b illustrates the relation between the cut factor r and the percentage of
the process behavior considered to compute the precision. Two generic and repre-
sentative process, plg 01 and plg 02, have been created using PLG tool, and dif-
ferent values of r have been tested. The conclusion we obtained is that for these
processes, lower values of r (i.e., less than 0.04) can be used to polish the effects
produced by noisy traces, while greater values of r (not considering more than 10%
of the process behavior for computing the precision) should be used if the emphasis

7.5 Summary 73

is in computing precision on the most frequent parts of the process. Values greater
than 0.4 does not make any sense, due to the 100% of process is discarded.

7.5 Summary

Given an event log and a process model, the approach to measure precision based
on escaping arcs presented in Chapter 5 is sensitive to the presence of infrequent
behavior. This chapter presented an extension of the escaping arc theory to increase
its robustness, by discarding exceptional behavior from the precision computation.
Furthermore, the chapter presented a confidence interval over the precision metric,
indicating the likelihood of the metric to drastically change when more observed
behavior is considered.

Chapter 8
Assessing Severity

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

The previous chapters presented a technique to detect precision issues between
process models and logs. However, not all the detected precision problems have the
same severity. A good diagnosis tool must evaluate and categorize them accord-
ing to their importance. This chapter provides an assessment approach to measure
the severity of the escaping arcs, quantifying their severity using four dimensions:

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 75–84, 2016.
DOI: 10.1007/978-3-319-49451-7_8

76 8 Assessing Severity

weight, alternation, stability, and criticality. In later chapters, we will extend the
precision detection to handle non-fitting scenarios.

8.1 Introduction

The precision based on escaping arcs aims to estimate the effort needed to achieve
a perfectly precise system, i.e., resolving all the escaping arcs result in a model that
precisely describes the observed behavior. However, analyzing the cause of an es-
caping arc and eventually fixing it requires time and it is a resource-consuming task.
One only wants to invest time and effort in resolving deviations which represent a
clear and severe precision problem. On the other hand, it may be considered a waste
of resources to fix escaping arcs that are likely to disappear in a near future. In this
chapter we propose a multi-factor severity assessment of the escaping arcs, making
it possible to compare them and prioritize imprecisions that need to be resolved first.

8.2 Severity of an Escaping Arc

The computation of the escaping arcs is an accurate mechanism to determine the
exact location of imprecisions of a system. By means of defining the border between
log and model behaviors one can indicate where the efforts must be done in order to
achieve a precise representation of the reality. However, not all escaping arcs have
the same importance. Some escaping arcs may refer to exceptional and infrequent
parts of the process or may be produced by the incompleteness of the log considered.
On the other hand, other escaping arcs may be clear and may affect important and
frequent parts of the process. By assigning to each escaping arc a severity degree,
it becomes possible to compare and sort the escaping arcs, opening the door to
prioritizing those imprecision points that must be fixed first.

The severity of an escaping arc is a complex multi-factored concept, with a strong
degree of subjectivity that changes according to the importance that each process
analyst gives to each factor.

Definition 8.1 (Severity of an Escaping Arc) Let q ∈ esc(A r
LM) be an escaping

arc detected in the system. The severity of q is defined as:

sev(q) = f (factq
1, . . . , factq

n)

where factq
1, . . . , factq

n correspond to the factor values for the escaping arc q, and f
is a user-defined function that weights the n factors.

In this section, we define a standard weighting function as the arithmetic mean
of all the factor values considered, giving the same importance to all the factors.

8.2 Severity of an Escaping Arc 77

Alternative weighting functions can be defined assigning higher weights to some
factors, and lower weights (or even 0) to others.

The definition and selection of the different factors considered in the severity
function are also open to subjectivity, and may vary from one context to another. In
this book we propose a four-factored severity with weight, alternation, stability and
criticality being the four factors considered.

8.2.1 Weight of an Escaping Arc

The first factor proposed to assess the severity of an escaping arc is the weight. Es-
caping arcs occurring on highly weighted states denote problems in important parts
of the process. These escaping arcs occur frequently during the process executions,
and should be in the top of the list of problems to fix. On the other hand, escaping
arcs that appear on states with low weight indicate problems in infrequent parts of
the process, with low representation in the process executions.

The weight factor considers the weight of the state where the escaping arc oc-
curs, normalizing it with the maximum weight of all the states in the automaton.
Therefore, the factor value ranges from 0 to 1.

Definition 8.2 (Weight Factor) Let q = (σs,a,σt) ∈ esc(A r
LM) be an escaping arc

detected in the automaton A r
LM = (S,A,↗,ω,σ0). Let max be the maximum weight

of all the states in S, i.e., ∀σ ∈ S,max ≥ ω(σ). The weight factor of the escaping
arc q is defined as:

factq
w =

w(σs)

max

For example, let us consider the escaping arc q1 of the running example A 0.03
LM .

The maximum weight of all the states of A 0.03
LM corresponds with the state 〈〉, i.e.,

max = 3200. Therefore, the weight factor for q1 is factq1
w = w(〈a,c〉)

max = 1765
3200 = 0.55.

The mid-value weight factor for q1 contrasts with the 764
3200 = 0.24 value for the

imprecision q5.

1765

<a,c>
0

<a,c,f>
f

947
<a,c,d>

d

818

<a,c,e>
e

i1

Fig. 8.1: Close-up of the escaping arc q1 of A 0.03
LM and its context.

78 8 Assessing Severity

8.2.2 Alternation of an Escaping Arc

The alternation factor addresses situations where the system enables a set of al-
ternatives, but only a few part of them can be considered as valid alternatives. In
this case, the set of alternatives are the set of arcs in a state, while a wrong alter-
native is to chose to continue through an escaping arc. Situations where it is more
likely to choose wrongly must have higher priority than situations where choosing
an escaping arc is not so probable.

Definition 8.3 (Alternation Factor) Let q= (σs,a,σt)∈ esc(A r
LM) be an escaping

arc detected in the automaton A r
LM =(S,A,↗,ω,σ0). Given a state σ ∈ S, let PE(σ)

be the probability of selecting a escaping arc being in the state σ . The alternation
factor of the imprecision q is defined as:

factq
a = PE(σs)

The distribution of PE(σs) depends on the assumptions taken. In the general case
where no particular assumption are made, a uniform distribution is considered, i.e.,
given σs, all the outgoing arcs of σs have the same probability of being reached.
Considering a uniform distribution the alternation factor of the escaping arc q is
reformulated as:

factq
a =
|esc(σ)|
|mod(σ)|

Notice that the alternation is a factor based on the source state σs of the escap-
ing arc, not the target escaping state σt . Therefore, all escaping arcs with the same
source state have the same alternation value. The alternation factor measures the
amount of alternation in each escaping arc. For instance, the alternation value for
the escaping arc q1 is factq1

a = 1
3 = 0.33, denoting a mid-low probability of selecting

a escaping state – only 〈a,c, f 〉 in this case– from the state 〈a,c〉.

8.2.3 Stability of an Escaping Arc

The third factor proposed – the stability factor – addresses the stability or equilib-
rium of an escaping arc, i.e., the probability of an arc to stop being an escaping arc
after applying a little perturbation to it. The idea of introducing perturbations in
order to estimate some property has been used successfully in other fields, such as
the measurement of community robustness [49]. In our setting, a perturbation over
an escaping arc is represented by a small set of traces going across the escaping
arc, modifying the weight of both source and target state, and possibly changing its
status from escaping to normal arc. The number of traces used as perturbation – and
represented by z – are defined proportionally to the weight of the source state by
means of the perturbation intensity τ .

8.2 Severity of an Escaping Arc 79

Definition 8.4 (Perturbation of an Escaping Arc) Let q = (σs,a,σt) ∈ esc(A r
LM)

be an escaping arc detected in the automaton A r
LM = (S,A,↗,ω,σ0). Let τ ∈ [0,1]

be the perturbation intensity considered. The number of traces considered as per-
turbation is defined as z = dω(σs) · τe. Let l ∈ N be the smallest number such that
the equation ω(σt)+ l > (ω(σ)+ z) · r is satisfied, i.e., l defines the minimum num-
ber of traces the arc q must receive in order to overpass the cut threshold r after
considering z traces, and change from escaping to normal arc.

For example, let us consider the escaping arc q1 of A 0.03
LM where r = 0.03. Consid-

ering a perturbation intensity of τ = 0.06, the perturbation traces are d1765 ·0.06e=
106, and consequently, l is d((1765+106) ·0.03)−0e= 57.

The stability factor is defined as the probability of an escaping arc to remain
escaping after perturbing it.

Definition 8.5 (Stability Factor) Let q=(σs,a,σt)∈ esc(A r
LM) be an escaping arc

of A r
LM = (S,A,↗,ω,σ0). Let τ be the perturbation intensity, and let z and l be the

corresponding perturbation traces and minimum, respectively. The stability factor
of the escaping arc q is the probability of q to remain escaping after considering z
new traces, i.e.,

factq
sτ = Pz

q(< l) =
l−1

∑
i=0

Pz
q(= j)

where Pz
q(< x) and Pz

q(= x) represent the probability that the arc q receives less
than x (or exactly x) of the new z traces considered in this point.

Let pq define the probability that a new trace crosses the escaping arc q. Let
1− pq be the probability that the trace follows one of the other successor states of
σs. According to the binomial distribution [27], the stability factor can be expressed
as:

factq
sτ =

l−1

∑
i=0

(
z
i

)
(pq)

i(1− pq)
z−i

The formula can be understood as follows: in order to q to remain escaping i suc-
cesses (pq)

i and z− i failures (1− pq)
z−i are needed. However, the i successes can

occur anywhere among the z traces, and there are
(z

i

)
different ways of distributing

i successes in a sequence of z traces.
The probability pq may depend on the assumptions taken. Again, if no knowledge

regarding the distribution of the log is assumed, a uniform distribution is consid-
ered. Therefore, if c is the number of successors states of σs, the probability of each
successor state is 1/c, and the formula can be rewritten as:

factq
sτ =

l−1

∑
i=0

(
z
i

)(
1
c

)i(
1− 1

c

)z−i

In the running example A 0.03
LM , given the escaping q5 and considering r = 0.03

and τ = 0.06, the stability factor results in 0.67, being z = 46 and l = 25. This factor

80 8 Assessing Severity

reflects that this escaping arc has a mid-probability of disappearing in the close
future. This contrasts with the stability 1 obtained from the escaping arc q1, with the
same r and τ parameters, reflecting a really stable imprecision.

8.2.4 Criticality of an Escaping Arc

Finally, the criticality factor introduces domain knowledge into the severity assess-
ment. Different activities constitute different levels of criticality within the process.
For example, the possible consequences of CheckDateFormat action are not the
same as the TransferMoney action, so neither are their criticality. Escaping arcs in
the model allowing to execute TransferMoney – an action never observed in the
log on that state – must have a higher severity and should be analyzed before than
escaping arcs allowing CheckDateFormat.

The criticality factor relies on a function crit defined externally by a domain
expert, assessing the criticality of the activities of the process. If this function is not
defined, we consider a function where all activities have the same criticality. The
criticality function is inspired by cost function used by the alignment conformance
algorithms to weight the different types of misalignments [18, 17].

Definition 8.6 (Criticality Factor) Let q = (σs,a,σt) ∈ esc(A r
LM) be an escaping

arc detected in the automaton A r
LM = (S,A,↗,ω,σ0). Let cri : A→ [0,1] be the

function that assess the criticality of the process activities. The criticality factor of
the escaping arc q is defined as:

factq
c = crit(a)

In our running example, we consider that Check Liability (f) is a relative cheap
operation where the database is queried automatically, whereas Consult Expert (e)
is a much costly operation that involve a human consultation. Consequently, consid-
ering crit(e) = 0.9 and crit(f) = 0.2, the escaping arcs q3, q4, q5 are considerably
more critical than q1, q2.

8.2.5 Visualizing the Severity

The severity of an escaping arc is the result of combining the different factors
through the function f , that assign weights to each factor (cf. Definition 8.1). For ex-
ample, the standard severity proposed in this chapter for an escaping arc q is defined
as sev(q) = mean(factq

w, factq
a, factq

sτ , factq
c). This value can be used to visualize the

severity escaping arcs of a system in more advanced ways than simply displaying
the value next to the arc. For example, the set of escaping arcs can be partitioned ac-
cording to their severity ([0.0,0.3) = low, [0.3,0.4) = mid, and [0.4,1.0) = critical),

8.2 Severity of an Escaping Arc 81

and using an intuitive traffic light color scheme (i.e., green, yellow, red), an analyst
can easily identify visually the different severity degrees.

Fig. 8.2: Two escaping arcs with different factor value distribution.

However, there are situations where a factor-grained analysis of the severity may
be more adequate, i.e., analyzing the factors independently, instead of aggregating
them on a unique value. For those cases, displaying the factor results in a radar
chart provides a better understanding of the different factor distribution composing
the severity of an escaping arc. For example, Figure 8.2 shows two possible escaping
arcs with different factor distribution. The left chart corresponds to a really frequent
escaping arc. However, the situation of that escaping arc is really unstable and the
possibilities of choosing badly in that situation are really few. The second escaping
arc, shown in the chart on the right, is much more sever in general terms than the first
one. It corresponds to a more stable and dangerous situation, but it is less frequent
than the first one.

8.2.6 Addressing Precision Issues based on Severity

Finally, once the severity of all the escaping arcs has been evaluated, the results are
taken into consideration in order to prioritize the future actions over the process.
Let us consider the example insurance process seen in Chapter 5 (cf. Figure 8.3 and
Table 8.1). In this small example, 5 escaping arcs are detected denoting 5 precision
problems. However, the severity analysis determines that the 〈a,c, f 〉 needs to be
urgently addressed: although its alternation is lower than the others (0.33 in com-
parison with 0.5), its weight is considerably higher than the others. Moreover, the
domain experts determine that f (Check Liability) is a highly critical activity, and
its execution needs to be precisely controlled. Therefore, the model is changed to
forbid the execution of f without executing e previously. On the other hand, the
domain experts decided that, addressing the escaping arcs in 〈a,c,d,e,e,e〉, may be
more costly than the possible benefits from the update, given the low weight of the
escaping arc.

82 8 Assessing Severity

a = Start Checkpoint
b = Register Low-value Claim
c = Register High-value Claim
d = Check Policy
e = Consult Expert
f = Check Liability
g = Complete Low-value Claim
h = Complete High-value Claim
i = Close Checkpoint

start
t1
a p1 t2

b

t3
c

p2

p3

t4
d

t6
f

t5
e

p5

p6

t7
g

t8
h

p4

p7
t9
i end

Fig. 8.3: Model M for a insurance process as it is presented in Chapter 5.

Frequency Trace

1435 σ1 = 〈a,b,d,g, i〉

946 σ2 = 〈a,c,d,e, f ,h, i〉

764 σ3 = 〈a,c,e,d, f ,h, i〉

54 σ4 = 〈a,c,e, f ,d,h, i〉

1 σ5 = 〈a,c,d,e,e, f ,h, i〉

Table 8.1: Event log L for a insurance process as it is presented in Chapter 5.

3200
<>

1435
<a,b,d,g,i>

946
<a,c,d,e,f,h>

946

<a,c,d,e,f>

947

<a,c,d,e>
947

<a,c,d>

1765

<a,c>

1435
<a,b,d,g>

1435

<a,b,d>
1435

<a,b>

764

<a,c,e,d,f,h>

54

<a,c,e,f,d,h>

764

<a,c,e,d,f>
764

<a,c,e,d>

54
<a,c,e,f,d>

54

<a,c,e,f>

818

<a,c,e>

3200

<a>

946
<a,c,d,e,f,h,i>

764

<a,c,e,d,f,h,i>

54

<a,c,e,f,d,h,i>

a

b

d
c

e

d g

e

d

f

f

d

h

h

h i

i

i

f

i

0
<a,c,d,f>

1

<a,c,d,e,e>
f

e

f 0
<a,c,f>

0
<a,c,e,d,e>

e
0

<a,c,e,e>

e

1

<a,c,d,e,e,f,h>
1

<a,c,d,e,e,f>
1

<a,c,d,e,e,f,h,i>

e

h i

0
<a,c,d,e,e,e>

f

Fig. 8.4: Prefix automaton for the event log L and model M as it is presented in
Chapter 5.

8.3 Experimental Results

Charts 8.5a and 8.5b are used to illustrate the the severity concept. Four generic
models (sev01, sev02, sev03 and sev04) have been created using the PLG tool,
which contain the most common structures in workflow models. For each model,

8.3 Experimental Results 83

sev01 sev02 sev03 sev04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

weight
alt
stab
crit

(a)

Sheet1

Page 1

sev01 sev02 sev03 sev04
0

2000

4000

6000

8000

10000

12000

crit
mid
low

(b)

Fig. 8.5: Severity analysis of four escaping arcs, and partitioning of the detected
escaping arcs in three severity categories: low, mid, and critical.

a severity analysis has been performed, where each factor has received the same
weight.

The same values of r and τ have also been assigned for all the models (0.01 and
0.06, respectively). The criticality value assigned to each of the tasks is different
depending on the task and the model. In chart 8.5a, we selected the most severe
escaping arc of each process, and show the distribution of each one of the four fac-
tors. This chart illustrates the distribution of the weight of each factor in the final
severity value, in this particular setting. In addition, it also illustrates that, given the
normalization introduced in the definition of each one of the factors, it is possible to
compare the severity between imprecision of different processes, e.g., given a sys-
tem containing the four process models, and given the current setting, the escaping
arc shown in the second bar (which corresponds to model sev02) should be tackled
first. In chart 8.5b, the same four processes are considered. In this case, escaping arcs
of each process are classified in three categories: low (less than 0.3), mid (between
0.3 and 0.4) and critical (greater than 0.4). Notice that, in this particular scenario,
the number of critical escaping arcs (the ones that should be tackled urgently) is
small (approx. 10 imprecisions for each process) compared to the total number of
escaping arcs. Based on this, a process analyst can now focus their improvement
efforts on these ca. 40 imprecisions rather than all 20000 imprecisions.

Finally, the approach presented in this chapter has been tested in a real world sce-
nario. The scenario is taken from a Dutch Academic Hospital, and the log contains
about 150.000 events in 1100 cases, where each case corresponds with a patient of
the Gynecology department. The goal of the experiment is to measure the quality of
the models obtained using different discovery algorithms. The process miners used
in the experiment are RBMiner[84], Genet[38], ILPMiner [93] and α-miner[15].
The results illustrate that the precision of the models obtained using such miners
focusing on the whole process is very low. The generated models allow almost all

84 8 Assessing Severity

the tasks most of the time, decreasing drastically the precision and consequently
the quality of the models. For instance, the etcp value of the models generated by
α-miner and RBMiner are 0.03 and 0.01 respectively. However, that precision in-
creases when we apply partition and clustering techniques over the log, to focus
the mining on specific parts of the process. For instance, mining a model projecting
the process over the set of the 10 most frequent events will result in a precision of
0.397, 0.386, and 0.386 for Genet, ILPMiner and α-miner respectively. In the case
of RBMiner, the precision is slightly greater, i.e., 0.423.

8.4 Summary

The chapter proposed a multi-factor measure to quantify the severity of the detected
escaping arcs, making it possible to compare them and to prioritize imprecisions that
need to be resolved first. The four factors proposed are weight, alternation, stability,
and criticality.

Chapter 9
Handling non-Fitness

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

In the first part of the book, we presented a precision checking technique based
on escaping arcs. However, it is not uncommon to have a certain degree of unfit-
ness when we measure precision, e.g., invisible or duplicate activities, or simply
produced by small known mismatches between model and process. This chapter
provides an overview on the use of alignment techniques as a pre-processing step to

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 85–96, 2016.
DOI: 10.1007/978-3-319-49451-7_9

86 9 Handling non-Fitness

provide meaningful precision results in unfitting scenarios. In the next chapter, we
will present some variants of this technique more suitable for some cases.

9.1 Introduction

As it has been illustrated in previous chapters, replaying observed behavior over
the modeled behavior is an effective and efficient way to detect escaping arcs, and
with them, detect potential imprecise points to be fixed. However, there are situ-
ations where the observed behavior cannot be replayed on the modeled behavior,
i.e., the model cannot mimic the ”moves” observed in the log. These problems are
produced by the presence of unfitting traces, or undeterministic situations on the
model. For example, let us consider the model M1 at the top of Figure 9.1, and the
state σ1 = 〈a,b,c〉 observed in the log. Given the choice between b and c in M1, the
state σ1 cannot be reached by the model. A similar situation occurs for the models
M2 and M3, in the middle and bottom of Figure 9.1, respectively. However, in this
case the problems are not produced due to the unreachability of the observed state,
but because there is a non-bijective relation between activity sequences and tasks
sequences on the model – due to invisible and duplicate activities. Let us consider
the model M2 and the observed state σ2 = 〈a,b〉. What are the set of modeled activ-
ities for the state σ2? c, if we consider the upper b? Or d, if we consider the lower
b?. The use of duplicate activities may introduce – not always – undeterminitic sit-
uations such as the one illustrated. A similar situation happens with the presence
of invisible activities. For example, let us consider the model M3 and the observed
state σ3 = 〈a〉. Because invisible activities are not reflected in the log, there is no
way to determine if the set of modeled activities in σ3 are b, c, or the empty set.

start t1
a

endp1

t2
b

t3
c

t4
d

t5
e

p2

p3

p4 t6
f

start t1
a

endp1

t2
b

t3
b

t4
c

t5
d

p2

p3

p4 t6
e

start t1
a

endp1

t2
b

t3
b

t4
b

t5
c

p2

p3

p4 t6
d

M1

M2

M3

Fig. 9.1: Models to illustrate the problems with the replay produced by unfitting
traces (top), the indeterminism of duplicate activities (middle), and the indetermin-
ism of invisible activities (bottom).

9.1 Introduction 87

The effect of problems derived from unfitting logs can be alleviated by making
some assumptions over the observed behavior. For example, in Section 5.6.1 the
unfitting part of the trace is considered noisy or infrequent and it is discarded for
the precision metric. This drastic approach is useful when the percentage of log dis-
carded is small, and we are not interested on providing all possible points of impre-
cision. However, the effect in a worst case scenario is not negligible. For example, in
a log where only the first event in all traces is wrongly recorded, the whole log is dis-
carded. Similar, heuristic assumptions could be considered to solve indeterministic
situations with no formal guarantees, but still have practical applicability.

Undeterminism is produced because the escaping arcs are detected at a log level.
At a model level, each task is unique, e.g., although t2 and t3 have the same label b,
they are distinguishable in the model M2. Therefore, a precision checking at a task
level will solve indeterministic situations, transferring the responsibility to mapping
correctly log traces and tasks sequences of the model. Thus, each trace in the log
is translated to a complete tasks sequence in the model. For example, log traces
〈a,b,c,e〉 and 〈a,b,d,e〉 may be associated with 〈t1, t2, t4, t6〉 and 〈t1, t3, t5, t6〉 of
model M2, respectively.

The mapping between log traces and model traces is far from trivial. An approach
may consider the use of heuristics, such as look-ahead [90, 28]. Informally, when
the approach reaches a decision point, the algorithm looks ahead to choose the most
suitable option. For example, in the trace 〈a,b,c,e〉 for the M2, t2 is selected because
there is a c next. Similar happens when the indeterminism is introduced by invisi-
bles, e.g., trace 〈a,b,d〉 is associated with complete tasks sequence 〈t1, t2, t4, t6〉 in
M3. Look-ahead heuristics can be also used to associate unfitting observed states to
reachable states of the model. For example, given the observed trace 〈a,b,c,d, f 〉
and the model M1, the algorithm could consider c an event wrongly recorded in the
log.

Look-ahead and other heuristics are heuristics after all, and therefore, they lack
formal guarantees. The decision taken heuristically may not be the optimal. Even,
when the number of events considered in the look-ahead is increased, the decision
may still not be optimal, e.g., the optimal path may require the reconsideration of
previous decisions [17].

In this chapter we introduce a precision checking approach based on aligning ob-
served and modeled behavior. The alignment is done at a model level, for each one
of the traces in the log. The alignment techniques provide global optimal results and
therefore, there are guarantees on the escaping arcs detected. Notice that, the com-
putation cost of aligning observed and modeled behavior in a global optimal may be
considerable in some cases. Therefore, there are situations where other alternatives
need to be considered, for example, decomposed aligning for conformance diag-
nosis (cf. Chapter 12), or a heuristic replay-based approach in real-time scenarios
where the time is a crucial element (cf. Chapter 18).

88 9 Handling non-Fitness

9.2 Cost-Optimal Alignment

The use of alignment techniques in conformance checking was first proposed by
Adriansyah, van Dongen, and van der Aalst [17]. An alignment between an event
log and a process model relates occurrences of activities in the log to tasks of the
model. As the execution of a case is often independent from the execution of another
case, the alignment is performed per traces. This is a common assumption taken in
process mining techniques, and reduces the complexity of the analysis.

For each trace in an event log that fits a process model, each move in the trace
(i.e., an activity observed in the log) can be mimicked by a move in the model (i.e., a
task executed in the model). However, this is not the case if the trace does not fit the
model perfectly. We use the symbol� to denote ”no move” in either log or model.

Definition 9.1 (Moves [17]) Let L ∈B(A∗) be an event log over the activities A,
and let M be a model where T is the set of tasks of the model, Av(M) is the set of
observable activities of M, and l is the labeling function between tasks and observ-
able activities in M. For the sake of clarity, we abuse the notation writing l(t) = τ

if t 6∈ dom(l), i.e., if t is an invisible task.

• (aL,(aM, t)) is a move, where aL ∈ A ∪�, (aM, t) ∈ (Av(M)∪ τ×T) ∪�, and
l(t) = aM .

• (a,(a, t)) is a synchronous move (also called move in both), where a ∈ A, t ∈ T ,
and l(t) = a.

• (a,�) is a move on log, where a ∈ A.
• (�,(a, t)) is a move on model, where (a, t) ∈ (Av(M)∪ τ×T), and l(t) = a.
• A legal move is a move on log, a move on model, or a synchronous move. Other-

wise, it is an illegal move. ALM denotes the set of possible legal moves between
the model M and log L.

Given a sequence of moves γ , row�L (γ) denotes the sequence of log activities
in γ , i.e., the first element. Similar, row�M (γ) and row�T (γ) denote the sequence of
model activities and tasks, respectively. rowL, rowM and rowT denote the projection
of sequences of activities in the log, model and tasks, filtering�.

Definition 9.2 (Alignment [17]) Let σL ∈ L be a log trace and σM ∈ φt(M) a com-
plete task sequence of model M. An alignment of σL and σM is a sequence of
moves γ ∈ ALM

∗ such that the sequence of log activities (ignoring �) yields σL,
and the sequence of model tasks (ignoring �) yields σM , i.e., rowL(γ) = σL and
rowT (γ) = σM .

Let us consider a medical process for an oncological treatment in a hospital – this
process will be used as running example during this chapter. Model M in Figure 9.2
represents a possible model for this medical process. Assuming that the end state
of the model is reached when place end in the model contains exactly one token,
the model represents an infinite set of complete activity sequences, e.g., 〈a,b,c,d〉,
〈a,c,b,d〉, 〈a,b,c,e〉, 〈a,c,b,e〉, 〈a, f ,g,h〉, 〈a,b, i,c,b,e〉. Given an unfitting trace
σL = 〈a,b,d,e〉, Figure 9.3 shows some possible alignments between σL and M.

9.2 Cost-Optimal Alignment 89

a = Examination
b = Radiology
c = Update Record
d = Therapy
e = Home Care
f = Allergy Test
g = Chemotherapy
h = Post-Chemo
i = Operation

start t1
a end

t3

i
t4

b
t5

c

t2

f
t6

g

t9

h
t8

e

t7

dp4

p3

p5

p6

p1

p2

Fig. 9.2: Model for a medical process, used as running example on this chapter.

γ1 =
a � b d e
a c b � e
t1 t3 t2 t5

γ2 =
a b � d e
a b c � e
t1 t2 t3 t5

γ3 =
a � b d e
a c b d �
t1 t3 t2 t4

γ4 =
a b � d e
a b c d �
t1 t2 t3 t4

γ5 =
a b d � e
a b � c e
t1 t2 t3 t5

γ6 =
a � � � b d e
a f g h � � �
t1 t6 t7 t8

Fig. 9.3: Some alignments between trace σL = 〈a,b,d,e〉 and the model M in Fig-
ure 9.2.

The moves are represented vertically, e.g., the second move of γ1 is (�,(c, t3)),
indicating that the model performs t3 while the log does not make any move. Note
that after removing �, the projections of all moves in the model are by definition
complete task sequences allowed by the model. This property is not always ensured
by other conformance checking approaches. For example, given a trace and a pro-
cess model, when using the approach in [77], the so-called missing tokens are added
to allow activities that occur in the trace but are not supposed to occur according to
the model. The addition of such missing tokens introduces extra behavior that is not
allowed in the original process model, thus overestimating its behavior.

In order to compare alignments and select the most appropriate one, costs are
associated to undesirable moves and the alignment with the lowest total costs is
selected. To quantify the costs of an alignment, a cost function δ is defined.

Definition 9.3 (Cost of alignment [17]) The cost function δ : ALM → IN assigns
costs to legal moves. The cost of an alignment γ ∈ ALM

∗ is the sum of all costs, i.e.,
δ (γ) = ∑(x,y)∈γ δ (x,y).

Different scenarios may require different cost functions. The costs may depend
on the nature of the activity, e.g., skipping a payment may be more severe than
sending an email. Moreover, the severity assumed for a move on log and a move on
model may be different, e.g., a system with constant recording problems should be
more tolerant with activities skipped on the log. Abstracting from particular cases,
we can define a standard cost function that assigns unit costs to moves in log or
moves on model only.

90 9 Handling non-Fitness

Definition 9.4 (Standard Cost Function [17]) A standard cost function δS is de-
fined such that:

• Synchronous move has cost 0, i.e., δS(x,(x, t)) = 0 for all x ∈ A.
• Move on log has cost 1, i.e., δS(x,�) = 1.
• Move on model from a visible task has cost 1, i.e., δS(�,(x, t)) = 1.
• Move on model from an invisible task has cost 0, i.e., δS(�,(τ, t)) = 0.

Using the standard cost function, the cost of alignment γ1 is δS(γ1)= δS(a,(a, t1))
+ δS(�,(c, t3))+ δS(b,(b, t2))+ δS(d,�)+ δS(e,(e, t5)) = 0+ 1+ 0+ 1+ 0 = 2.
Note that the function returns the number of mismatches in the alignment. On the
other hand, δS(γ6) = 6. Hence, we conclude that γ1 is close to the log trace σL =
〈a,b,d,e〉 than γ6.

Given a trace from an event log and a process model, we are interested in an
activity sequence from the model that is most similar to the trace, i.e., the optimal
alignment.

Definition 9.5 (Optimal Alignments [17]) We define the set of alignments ΓσL,M =
{γ ∈ ALM

∗ | γ is an alignment between σL and M} to be all possible alignments
between σL and M. Accordingly, we define the set of optimal alignments as the set of
all alignments with minimum cost, i.e., Γ o

σL,M = {γ ∈ΓσL,M | ∀γ ′∈ΓσL ,M
δ (γ)≤ δ (γ ′)}.

It is easy to see that there can be more than one optimal alignment between a
trace and a model. For example, {γ1,γ2,γ3,γ4,γ5} is the set of optimal alignments
between the trace σL = 〈a,b,d,e〉 and the model M.

By definition, the task component of all alignments yields a complete task se-
quence of the model. Thus, given an optimal alignment γ between σL and M,
rowT (γ) provides a complete tasks sequence that both perfectly fits M and is closest
to σL. In the running example, rowT (γ1) = 〈t1, t3, t2, t5〉 is one of the complete task
sequences of M that is most similar to trace 〈a,b,d,e〉.

Given a log and a model, constructing all optimal alignments between all traces
in the log and the model is computationally expensive [18, 19]. Thus, there are
cases where computing all optimal alignments between traces and process models
may not always be feasible in practice. Hence, instead of computing all optimal
alignments between traces in the log and the model to obtain insights into deviations,
one may also compute just some representative optimal alignments for each trace.
In this chapter, we consider three approaches: one optimal alignment per trace, all
optimal approaches, and a set of representative optimal alignments. We define three
functions that provide optimal alignments between traces in the log and the model:

• Λ ∗M : A∗L→P(ALM
∗) returns all optimal alignments between traces of L and M,

such that for all σL ∈ L,Λ ∗M(σL) = Γ o
σL,M ,

• Λ 1
M : A∗L→ ALM

∗ returns one optimal alignment between traces of L and M, such
that for all σL ∈ L,Λ 1

M(σL) ∈ Γ o
σL,M , and

• Λ R
M : A∗L → P(ALM

∗) returns representatives of optimal alignments between
traces of L and M, such that for all σL ∈ L,Λ R

M(σL)⊆ Γ o
σL,M .

9.2 Cost-Optimal Alignment 91

γ7 =
a � � �
a f g h
t1 t6 t7 t8

γ8 =
a � � �
a b c d
t1 t2 t3 t4

γ9 =
a � � �
a c b d
t1 t3 t2 t4

γ10 =
a � � �
a c b e
t1 t3 t2 t5

γ11 =
a � � �
a b c e
t1 t2 t3 t5

Fig. 9.4: All optimal alignments between trace σL = 〈a〉 and the model M in Fig-
ure 9.2.

In [22, 18, 19] various approaches to obtain an optimal alignment between a trace
and a model with respect to different cost functions are investigated. Given a trace
σL of L and a model M, if there are multiple optimal alignments, Λ 1

M chooses one of
them according to other external criteria. With our previous example, suppose that
Λ 1

M selects an alignment that has the longest consecutive occurrence of synchronous
moves in the beginning, Λ 1

M(σL) = γ4.
In [18, 19], an A?-based algorithm is proposed to compute one optimal alignment

between a trace and a model. The same algorithm can be extended to provide more
than one optimal alignment between them. Given a trace σL of L and a model M,
the algorithm constructs one optimal alignment by computing a shortest path from
the initial to the final state of the state space of the synchronous product between
σL and M. It is shown in [19] that all shortest paths from the initial to the final state
of the state space yield an optimal alignment. For each state in the state space, the
algorithm records a shortest path from the initial state to reach this state and thus, be-
comes the representative of all other shortest paths from the initial state to the state.
An optimal alignment is constructed from a shortest path from the initial state to
the final state that is also representing all other shortest paths that connect the same
pair of states. By recording all represented shortest paths during state space explo-
ration for each state, we can obtain all shortest paths from the initial to the final
state of the state space (i.e., obtain all optimal alignments). Different representa-
tives may represent different number of optimal alignments. Given a representative
γ ∈ Λ R

M(σL),repM(γ) denotes the number of optimal alignments represented by γ .
Furthermore, due to possible pruning of state space, the total number of represented
optimal alignments by the representatives is a lower bound of the total number of
all optimal alignments, i.e., ∑γ∈Λ R

M(σL)
repM(γ) ≤ |Γ o

σL,M|. The interested reader is
referred to [18, 19, 17] for details on the constructed state space with the A?-based
algorithm approach.

Take for example a trace σL = 〈a〉. All optimal alignments between the trace
and the medical model M are shown in Figure 9.4. Given a possible function Λ R,
Λ R(σL) = {γ7,γ9,γ10} where repM(γ7) = 1 (γ7 represents {γ7}), rep(γ9) = 2 (γ9
represents {γ8,γ9}), and rep(γ10) = 2 (γ10 represents {γ10,γ11}).

For simplicity, in the remainder we omit the model notation M in functions Λ ∗M ,
Λ 1

M , Λ R
M , and repM whenever the context is clear. Note that in cases where a process

92 9 Handling non-Fitness

model has duplicate tasks (more than one task to represent an activity) or invisible
tasks (tasks whose execution are not logged), approaches to construct alignments
(e.g., [22, 18]) keep the mapping from all model moves to the tasks they correspond
to. Hence, given an alignment of a trace and such models, we know exactly which
task is executed for each model move. We refer to [22, 18] for further details on how
such mapping is constructed.

9.3 Precision based on Alignments

The technique described in the previous section provides optimal alignments for
each trace in the log. This section presents a technique to compute precision based
on the use of these optimal alignments. Like the approach on Chapter 5, the behavior
observed in the log is used to traverse the modeled behavior, detecting escaping arcs
for possible points of imprecision. However, whereas in Chapter 5 is based on model
replay directly from the log, the approach presented here uses the alignments as a
more faithful representation of the observed behavior. The advantages are manifold.
First of all, traces in the log do not need to be completely fitting. In Chapter 5, the
non-fitting parts are simply ignored. For most real-life situations, this implies that
only a fraction of the event log can be used for computing precision. Second, the
existence of indeterminism in the model poses no problems when using the align-
ments. Finally, the use of alignments instead of log-based model replay improves
the robustness of conformance checking. The remainder of this section is devoted to
explain how precision can be calculated from the alignments. In particular, we con-
sider the precision checked from one alignment, all alignments, and representative
alignments. To illustrate the three approaches, in the remainder of the section we
use the following running example: the model M shown in Figure 9.2 and the log
L = [σ1,σ2,σ3,σ4,σ5], containing the 5 traces that appear in in Table 9.1. The table
also provides the optimal alignments for the traces in L.

9.4 Precision from 1-Alignment 93

Freq Trace Optimal Alignment

1 σ1 = 〈a〉

γ1a =
a � � �
a f g h
t1 t6 t7 t8

γ1b =
a � � �
a b c d
t1 t2 t3 t4

γ1c =
a � � �
a c b d
t1 t3 t2 t4

γ1d =
a � � �
a c b e
t1 t3 t2 t5

γ1e =
a � � �
a b c e
t1 t2 t3 t5

1 σ2 = 〈a,b,c,d〉

γ2 =
a b c d
a b c d
t1 t2 t3 t4

1 σ3 = 〈a,c,b,e〉

γ3 =
a c b e
a c b e
t1 t3 t2 t5

1 σ4 = 〈a, f ,g,h〉

γ4 =
a f g h
a f g h
t1 t6 t7 t8

1 σ5 = 〈a,b, i,b,c,d〉

γ5 =
a b i b c d
a b i b c d
t1 t2 t9 t2 t3 t4

Table 9.1: Optimal alignments of log [σ1,σ2,σ3,σ4,σ5] and the medical model M
of Figure 9.2

9.4 Precision from 1-Alignment

Like Chapter 5, precision is estimated by confronting model and log behavior: es-
caping arcs between the model and the log (i.e., situations where the model allows
more behavior than the one reflected in the log) are detected by juxtaposing behav-
ior observed in the log and the one allowed by the model. This juxtaposition is done
in terms of an automaton: first, an automaton is built from the alignments. Then,
the automaton is enhanced with behavioral information of the model. Finally, the
enhanced automaton is used to compute the precision. In order to build the automa-
ton, observed behavior must be determined in terms of model perspective, i.e., we
consider the optimal alignments of each trace in the log for this purpose. For ex-

94 9 Handling non-Fitness

ample, given the running example L and M, the trace σ1 has 5 optimal alignments,
γ1a, γ1b, γ1c, γ1d , γ1e}, shown in Table 9.1. However, in 1-alignment only one align-
ment is considered. For this example, we assume that the alignment assigned to σ1
by Λ 1 based on an external criterion corresponds to γ1a, i.e., Λ 1(σ1) = γ1a. On the
other hand, traces σ2 . . .σ5 are perfectly fitting and have only one optimal align-
ment containing only synchronous moves. Given an alignment γ , in order to build
the automaton, we only consider the projection of tasks moves, i.e., rowT (γ). In
this example, the sequences used as observed behavior are 〈t1, t6, t7, t8〉, 〈t1, t2, t3, t4〉,
〈t1, t3, t2, t5〉, 〈t1, t6, t7, t8〉 and 〈t1, t2, t9, t2, t3, t4〉. We use rowT (Λ

1)L to denote the ap-
plication of function rowT on all the alignments provided by the functions Λ 1 for the
traces in log L. We can omit the subindex L whenever the context is clear. Note that,
by definition, any alignment projection rowT (γ) is a valid complete firing sequence
of the model.

Similar to Chapter 5, the automaton is built considering all the prefixes for the
sequences in rowT (Λ

1) as the states. For instance, given a sequence 〈t1, t2, t3, t4〉
resulting of rowT (Λ

1)(σ2), the states considered are 〈〉, 〈t1〉, 〈t1, t2〉, 〈t1, t2, t3〉 and
〈t1, t2, t3, t4〉. We denote as •(rowT (γ)) the set of prefixes of the tasks sequence of the
alignment γ and as •(rowT (Λ

1)) the multiset of prefixes of the the tasks sequences
of all alignments in Λ 1.

Definition 9.6 (Prefix Automaton of the 1-Alignment) Let L∈B(A∗) be an event
log, let M be a model with tasks T , and let rowT (Λ

1) be the alignments be-
tween them projected on the model tasks. We define the prefix automaton of the
1-Alignment AΛ 1M = (S,T,↗,ω,s0) such that:

• the set of states corresponds to the set of prefixes of the alignments projected on
the model tasks, i.e., S = {σ |σ ∈ •(rowT (Λ

1))}.
• the set of labels corresponds to the set of tasks T .
• the arcs↗⊆ (S×T ×S) define the concatenation between states and tasks, i.e.,
↗= {(σ , t,σ · 〈t〉)|σ ∈ S∧σ · 〈t〉 ∈ S}.

• the function that determines the weight of a state is determined by the number
of occurrences of the state in the multiset of prefixes of the tasks sequences, i.e.,
ω(σ) = •(rowT (Λ

1))(σ) for all σ ∈ S.
• the initial state s0 corresponds with the empty prefix 〈〉.

Figure 9.5 shows the resulting automata for the running example L using the
function Λ 1 (only the white states). For example, the weight of the state 〈t1〉 is
greater than the weight of 〈t1, t3〉 because there are more tasks sequences with the
prefix 〈t1〉 (all 5 sequences), than the ones with prefix 〈t1, t3〉 (only the sequence
〈t1, t3, t2, t5〉 contains that prefix).

Once the observed behavior has been determined in terms of an automaton, the
confrontation with the actual modeled behavior is required in order to determine the
precision. For each state of the automaton, we compute its set of modeled tasks, i.e.,
possible direct successor tasks according to the model (mod), and then compare it
with the set of observed tasks, i.e., tasks really executed in the log (obs)(cf. Defini-
tion 5.4). Let us consider, for example, state 〈t1, t2, t3〉 of automaton in Figure 9.5.

9.4 Precision from 1-Alignment 95

0
<t1,t3,t2,t4>

5
<>

5
<t1>

1

<t1,t3>

1
<t1,t3,t2>

1
<t1,t3,t2,t5>

0
<t1,t3,t2,t9>

2

<t1,t6>

2

<t1,t6,t7>

2
<t1,t6,t7,t8>

0
<t1,t2,t3,t5>

2

<t1,t2>

1
<t1,t2,t3>

1
<t1,t2,t3,t4>

0
<t1,t2,t3,t9>

0
<t1,t2,t9,t5>

1
<t1,t2,t9>

1
<t1,t2,t9,t2>

0
<t1,t2,t9,t6>

0
<t1,t2,t9,t2,t3,t5>

1
<t1,t2,t9,t2,t3>

1
<t1,t2,t9,t2,t3,t4>

0
<t1,t2,t9,t2,t3,t9>

0
<t1,t2,t9,t2,t9>

Fig. 9.5: Automaton from 1-alignments between model M and log L.

The set of observed tasks of the state is obs(〈t1, t2, t3〉) = {t4}, i.e., for all traces with
prefix 〈t1, t2, t3〉, their direct successor is only t4. The set of modeled tasks for the
state is mod(〈t1, t2, t3〉) = {t4, t5, t9} because after performing the sequence of tasks
〈t1, t2, t3〉, the model allows to do t4, t5 or t9. Note that, by definition of alignment,
obs(s)⊆ mod(s), i.e., the set of executed tasks of a given state is always a subset of
all available tasks according to the model.

The arcs that are modeled according to the model, but do not occur in the event
log according to the alignments, are used to collect the escaping arcs of the system,
i.e., arcs that escapes from the observed behavior. The tasks on the escaping arcs
and the states reached are called escaping tasks and escaping states respectively. In
Figure 9.5 the escaping states are in color. For example, the escaping tasks of the
state 〈t1, t2, t3〉 are {t4, t5, t9}\{t4}= {t5, t9}. The computation and analysis of these
escaping arcs are the cornerstone of the precision checking technique presented in
this book. All identified escaping arcs can be analyzed and further used to correct
the model and make it more precise. Furthermore, in order to globally estimate
precision, these escaping arcs in turn are weighted and normalized defining a metric
to measure precision called 1-align precision metric.

Definition 9.7 (1-Align Precision metric) Let AΛ 1M = (S,T,↗,ω,s0) be the pre-
fix automaton of the alignments in Λ 1 enhanced with the behavior of the model M.
The metric 1-Align Precision estimates the precision of the system comparing, for
each state in S, the number of escaping arcs with the number of allowed arcs. The
numbers are weighted according to the importance of the state. Formally:

96 9 Handling non-Fitness

a1
p(AΛ 1M) = 1− ∑s∈S ω(s) · |esc(s)|

∑s∈S ω(s) · |mod(s)|

For example, the precision for the automaton derived from Λ 1 shown in Figure
9.5 is 0.79.

9.5 Summary

This chapter presented an overview on the alignment techniques. These techniques
are used as a pre-processing step to align modeled and observed behavior, provid-
ing meaningful precision results in unfitting scenarios. In the next chapter several
variants of the main technique are presented, to explore different scenarios.

Chapter 10
Alternative and Variants to Handle non-Fitness

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

The previous chapter presented the use of the alignment technique to compute
precision. This chapter provides alternatives to the basic alignment approach to an-
alyze different types of scenarios. In particular, it concentrates on the use of several
optimal alignments and the directionality of those alignments. In the next chapter,
the approach to check precision based on alignments is put into practice.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 97–106, 2016.
DOI: 10.1007/978-3-319-49451-7_10

98 10 Alternative and Variants to Handle non-Fitness

10.1 Precision from All-Alignment

As experiments show, the use of one alignment is an effective and efficient alterna-
tive for precision checking. However, the approach relies on selecting one of opti-
mal alignments, and therefore, it may detect more escaping arcs. Let us consider the
model in Figure 10.1, and a log with only one trace 〈a,d〉.

endt4
d

p2start t1
a

p1

t2
b

t3
c

Fig. 10.1: Model with two optimal alignments for the trace 〈a,d〉, one with move on
the model (b, t2), and the other with one move on model (c, t3).

There are two possible optimal alignments: one includes a move on the model
(b, t2), and the other one move on model (c, t3), while (a, t1) and (d, t4) are syn-
chronous moves. If we select the first alignment for computing the precision, 〈t1, t3〉
is then considered an escaping tasks. On the other hand, if we select the second
alignment, 〈t1, t2〉 becomes an escaping tasks. In other words, decisions in the fit-
ness dimension are affecting the precision dimension. As [77, 73] states, the analysis
of one conformance dimension should be independent from the others. Therefore,
given that both alignments have the same cost, both alignments must be considered
for precision dimension, while the mismatches produced by the moves on model
must be evaluated in the fitness phase. Following with the running example of Table
9.1 in the previous chapter, we consider the following 9 complete transition se-
quences to represent the observed behavior: rowT (γ1a) = 〈t1, t6, t7, t8〉, rowT (γ1b) =
〈t1, t2, t3, t4〉, rowT (γ1c) = 〈t1, t3, t2, t4〉, rowT (γ1d) = 〈t1, t3, t2, t5〉, rowT (γ1e) = 〈t1, t2,
t3, t5〉, rowT (γ2) = 〈t1, t2, t3, t4〉, rowT (γ3) = 〈t1, t3, t2, t5〉, rowT (γ4) = 〈t1, t6, t7, t8〉,
and rowT (γ5) = 〈t1, t2, t9, t2, t3, t4〉,

Notice that, constructing an automaton from all the alignments using the ap-
proach on the previous section introduces a bias on the weighting functions: log
traces associated with more optimal alignments would have more weight. For exam-
ple, log trace σ1 would have five times more influence in the measure – rowT (γ1a),
rowT (γ1b), rowT (γ1c), rowT (γ1d) and rowT (γ1e) – than σ2 – rowT (γ2). In other
words, in order to have an unbiased precision measure, the weight of each opti-
mal alignment associated with a log trace must be normalized, such that each trace
of the log has the same importance within the observed behavior. For that, we de-
fine the weight of an alignment, and we redefine the weight of the states in the prefix
automaton.

Definition 10.1 (Weight of Alignment) Let M be a model, let L be an event log,
let σL be a trace in L, let L(σL) be the frequency of σL, and let γ ∈ Λ ∗M(σL) be
one of the optimal alignments between σL and M. The weight of γ is defined as
ω(γ) = L(σL) ·1/|Λ ∗M(σL)|, i.e., the weight is split equally among all the alignments

10.1 Precision from All-Alignment 99

of the log trace, taking into account the frequency of the trace withing the log. Given
the prefix automaton AΛ∗M = (S,T,↗,ω,s0), the weight of a state s ∈ S is defined
as:

ω(s) = ∑
∀γ∈Λ∗

ω(γ) if s is a prefix of rowT (γ) (or 0 otherwise)

For example, the weight of the alignment γ1a of trace σ1 is 1 ·1/5= 0.2, while the
weight of γ2 is 1 ·1/1 = 1. Figure 10.2 shows the resulting automata for the running
example L and M using the function Λ ∗. For example, the weight of the state 〈t1, t6〉
is 1 from γ4 plus 0.2 from γ1a, i.e., 1.2.

<t1,t3,t2,t4>

5
<>

5
<t1>

1.4

<t1,t3>

1.4
<t1,t3,t2>

1.2
<t1,t3,t2,t5>

0
<t1,t3,t2,t9>

1.2

<t1,t6>

1.2

<t1,t6,t7>

1.2
<t1,t6,t7,t8>

<t1,t2,t3,t5>

2.4

<t1,t2>

1.4
<t1,t2,t3>

1.2
<t1,t2,t3,t4>

0
<t1,t2,t3,t9>

0
<t1,t2,t9,t5>

1
<t1,t2,t9>

1
<t1,t2,t9,t2>

0
<t1,t2,t9,t6>

0
<t1,t2,t9,t2,t3,t5>

1
<t1,t2,t9,t2,t3>

1
<t1,t2,t9,t2,t3,t4>

0
<t1,t2,t9,t2,t3,t9>

0
<t1,t2,t9,t2,t9>

0.2

0.2

Fig. 10.2: Automaton from all-alignments between model M and log L.

As it is done with 1-align precision metric, the all-align metric is formalized as:

Definition 10.2 (All-Align Precision metric) Let AΛ∗M = (S,T,↗,ω,s0) be the
prefix automaton of the alignments in Λ ∗ enhanced with the behavior of the model
M. The metric All-Align Precision estimates the precision of the system comparing,
for each state in S, the number of escaping arcs with the number of allowed arcs.
The numbers are weighted according to the importance of the state. Formally:

a∗p(AΛ∗M) = 1− ∑s∈S ω(s) · |esc(s)|
∑s∈S ω(s) · |mod(s)|

100 10 Alternative and Variants to Handle non-Fitness

10.2 Precision from Representative-Alignment

Given a log trace and a process model, Λ ∗ provides all optimal alignments. How-
ever, as shown in [20], it is an expensive option in terms of computation time. The
use of only one alignment per trace (i.e., Λ 1) solves this issue in cases where time
is a priority, but it may sacrifice accuracy. As a trade-off between time and accu-
racy, in this section we propose precision measurement based on representatives of
all optimal alignments Λ R (cf. Section 9.2). In this section, we revisit the precision
measurement to include this notion.

Freq Trace Λ R rep

1 σ1 = 〈a〉 γ1a 1
γ1c 2
γ1d 2

1 σ2 = 〈a,b,c,d〉 γ2 1

1 σ3 = 〈a,c,b,e〉 γ3 1

1 σ4 = 〈a, f ,g,h〉 γ4 1

1 σ5 = 〈a,b, i,b,c,d〉 γ5 1

Table 10.1: Optimal representative alignments of log L = [σ1,σ2,σ3,σ4,σ5] and the
medical model M of Figure 9.2

Table 10.1 show the optimal representative alignments assigned to each trace of
the running example, and the number of optimal alignments they represent.

The construction of the prefix automaton and the definition of escaping arcs for
the representative alignments are the same as the or for all the alignments shown in
the previous section, except for the weighting function. The weight of an alignment
γ needs to be proportional to the number of alignments represented by γ , i.e., rep(γ).

Definition 10.3 (Weight of Alignment) Let M be a model, let L be an event log,
let σL be a trace in L, let L(σL) be the frequency of σL, and let γ ∈ Λ R

M(σL) be one
of the optimal representative alignments between σL and M, where rep(γ) are the
alignments represented by γ . The weight of γ is defined as:

ω(γ) = L(σL) · rep(γ)/ ∑
γ ′∈Λ R(σL)

rep(γ ′)

For instance, let us consider the optimal representative alignment γ1c for the log
trace σ1. The number of alignments represented by γ1c is rep(γ1c) = 2. The total
number of optimal alignments represented by the representative alignments associ-
ated with σ1 is ∑γ ′∈Λ R(σ1)

rep(γ ′) = 5. Hence, the weight ω(γ1c) = 1 ·2/5 = 0.4. On
the other hand, let us consider γ5, the only optimal alignment associated with σ5.
The representative alignment γ5 represents 1 optimal alignment. Since the number

10.2 Precision from Representative-Alignment 101

of all optimal alignments represented is ∑γ ′∈Λ R(σ5)
rep(γ ′) = 1, the weight of γ5 is

ω(γ5) = 1 ·1/1 = 1.
Figure 10.3 shows the resulting automata for the running example L and M using

the function Λ R. For example, the weight of the state 〈t1, t3〉 is 1 from γ3, plus 0.4
from γ1c (represents 2 alignments of 5), plus 0.4 from γ1d (represents 2 alignments
of 5), i.e., 1.8.

<t1,t3,t2,t4>

5
<>

5
<t1>

1.8

<t1,t3>

1.8
<t1,t3,t2>

1.4
<t1,t3,t2,t5>

0
<t1,t3,t2,t9>

1.2

<t1,t6>

1.2

<t1,t6,t7>

1.2
<t1,t6,t7,t8>

<t1,t2,t3,t5>

2

<t1,t2>

1
<t1,t2,t3>

1
<t1,t2,t3,t4>

0
<t1,t2,t3,t9>

0
<t1,t2,t9,t5>

1
<t1,t2,t9>

1
<t1,t2,t9,t2>

0
<t1,t2,t9,t6>

0
<t1,t2,t9,t2,t3,t5>

1
<t1,t2,t9,t2,t3>

1
<t1,t2,t9,t2,t3,t4>

0
<t1,t2,t9,t2,t3,t9>

0
<t1,t2,t9,t2,t9>

0.4

0

Fig. 10.3: Automaton from representative-alignments between model M and log L.

As it is done with 1-align and all-align precision metric, the rep-align metric is
formalized as:

Definition 10.4 (Rep-Align Precision metric) Let AΛ RM = (S,T,↗,ω,s0) be the
prefix automaton of the alignments in Λ R enhanced with the behavior of the model
M. The metric All-Align Precision estimates the precision of the system comparing,
for each state in S, the number of escaping arcs with the number of allowed arcs.
The numbers are weighted according to the importance of the state. Formally:

aR
p(AΛ RM) = 1− ∑s∈S ω(s) · |esc(s)|

∑s∈S ω(s) · |mod(s)|

Note that there can be more than one ways to compute representative alignments
from a given model and a trace. Given an event log and a model, the selection of
representative alignments between each trace in the log and the model obviously
influences the automata that can be constructed between the log and the model.

102 10 Alternative and Variants to Handle non-Fitness

10.3 Abstractions for the Precision based on Alignments

The approach presented in Section 9.3 uses the prefixes of complete tasks sequences
to represent states of the automaton. This implies that given a complete tasks se-
quence σ , other sequences with slightly different permutation of tasks are placed
in different branches of constructed automaton than σ . Given a process model that
allows many possible interleaving of tasks, the approach can only provide a perfect
precision value if all permutations of the interleaving activities have been observed.
This requirement may be too restrictive in some cases.

start t1

a
end

b

c

d

e

f

g

h

i

t2

t3

t4

t5

t6

t7

t8

t9

Fig. 10.4: Process model that allows the interleaving of two blocks of tasks: t2, t3, t4
and t6, t7, t8.

Freq Trace rowT (γ)

1 〈a,b,c,d,e, f ,g,h, i〉 〈t1, t2, t3, t4, t5, t6, t7, t8, t9〉

1 〈a,b,d,c,e, f ,h,g, i〉 〈t1, t2, t4, t3, t5, t6, t8, t7, t9〉

1 〈a,c,b,d,e,g, f ,h, i〉 〈t1, t3, t2, t4, t5, t7, t6, t8, t9〉

1 〈a,c,d,b,e,g,h, f , i〉 〈t1, t3, t4, t2, t5, t7, t8, t6, t9〉

1 〈a,d,b,c,e,h, f ,g, i〉 〈t1, t4, t2, t3, t5, t8, t6, t7, t9〉

1 〈a,d,c,b,e,h,g, f , i〉 〈t1, t4, t3, t2, t5, t8, t7, t6, t9〉

Table 10.2: Event log for the model in Figure 10.4

For example, let us consider the process model in Figure 10.4 and the log in
Table 10.2. The model allows for the interleaved execution of t2, t3 and t4. This
behavior is also observed in the log, containing all possible permutations of t2, t3
and t4. The model also allows the interleaving of t6, t7 and t8, and all possible per-
mutations of t6, t7 and t8 are also observed in the log. One may expect a perfect
precision of 1 for such model and log. However, given the presented approach,
the precision is 0.8. The automaton of Figure 10.5 shows the escaping arcs de-
tected. Notice that prefix 〈t1, t2, t3〉 of 〈t1, t2, t3, t4, t5, t6, t7, t8, t9〉 and prefix 〈t1, t3, t2〉
of 〈t1, t3, t2, t4, t5, t7, t6, t8, t9〉 represent two different states even when the executed

10.3 Abstractions for the Precision based on Alignments 103

tasks and their frequency in both prefixes are the same. For the given example, the
minimum number of traces necessary to reach a precision of 1 is 36. This number
increases exponentially with the increasing degree of concurrency of the considered
model. In such cases, some level of abstraction in the way states are represented is
desirable. In Section 10.3.1 we propose an approach to abstract from the order of
the tasks to compute the precision, dealing with the possible incompleteness of the
log.

0
<t1,t2,t4,t3,t5,t6,t7>

1
<t1,t2,t4,t3,t5,t6,t8,t7,t9>

1
<t1,t2,t3,t4,t5,t6,t7,t8,t9>

1
<t1,t3,t2,t4,t5,t7,t6,t8,t9>

1
<t1,t3,t4,t2,t5,t7,t8,t6,t9>

1
<t1,t4,t2,t3,t5,t8,t6,t7,t9>

1
<t1,t4,t3,t2,t5,t8,t7,t6,t9>

1
<t1,t2,t4,t3,t5,t6,t8,t7>

1
<t1,t2,t3,t4,t5,t6,t7,t8>

1
<t1,t3,t2,t4,t5,t7,t6,t8>

1
<t1,t3,t4,t2,t5,t7,t8,t6>

1

<t1,t4,t2,t3,t5,t8,t6,t7>

1
<t1,t4,t3,t2,t5,t8,t7,t6>

1
<t1,t2,t4,t3,t5,t6,t8>

1
<t1,t2,t3,t4,t5,t6,t7>

1
<t1,t3,t2,t4,t5,t7,t6>

1
<t1,t3,t4,t2,t5,t7,t8>

1
<t1,t4,t2,t3,t5,t8,t6>

1
<t1,t4,t3,t2,t5,t8,t7>

1
<t1,t2,t4,t3,t5,t6>

1
<t1,t2,t3,t4,t5,t6>

1
<t1,t3,t2,t4,t5,t7>

1
<t1,t3,t4,t2,t5,t7>

1
<t1,t4,t2,t3,t5,t8>

1
<t1,t4,t3,t2,t5,t8>

1
<t1,t2,t4,t3,t5>

1
<t1,t2,t3,t4,t5>

1
<t1,t3,t2,t4,t5>

1
<t1,t3,t4,t2,t5>

1
<t1,t4,t2,t3,t5>

1
<t1,t4,t3,t2,t5>

1
<t1,t2,t4,t3>

1
<t1,t2,t3,t4>

1
<t1,t3,t2,t4>

1
<t1,t3,t4,t2>

1
<t1,t4,t2,t3>

1
<t1,t4,t3,t2>

1

<t1,t2,t4>

1
<t1,t2,t3>

1

<t1,t3,t2>

1
<t1,t3,t4>

1
<t1,t4,t2>

1
<t1,t4,t3>

2
<t1,t2>

2
<t1,t3>

2
<t1,t4>

6
<t1>

6
< >

0
<t1,t2,t4,t3,t5,t7>

0
<t1,t2,t4,t3,t5,t8>

0
<t1,t2,t3,t4,t5,t7>

0
<t1,t2,t3,t4,t5,t8>

0
<t1,t2,t3,t4,t5,t6,t8>

0
<t1,t3,t2,t4,t5,t6>

0
<t1,t3,t2,t4,t5,t8>

0
<t1,t3,t2,t4,t5,t7,t8>

0
<t1,t3,t4,t2,t5,t6>

0
<t1,t3,t4,t2,t5,t8>

0
<t1,t3,t4,t2,t5,t7,t6>

0
<t1,t4,t2,t3,t5,t6>

0
<t1,t4,t2,t3,t5,t7>

0
<t1,t4,t2,t3,t5,t8,t7>

0
<t1,t4,t3,t2,t5,t6>

0
<t1,t4,t3,t2,t5,t7>

0
<t1,t4,t3,t2,t5,t8,t6>

Fig. 10.5: Precision automaton and escaping arcs between the model in Figure 10.4
and the log in Table 10.2.

Moreover, notice that the automaton is constructed considering the prefixes of
the complete tasks sequences. However, this may introduce a bias on the direction,
i.e., the tasks executed in the past are the ones that determine the current state. A
reasonable alternative is to consider the future tasks to determine the current state.
In Section 10.3.2 we propose to use the future to construct the automaton, in order
to deal with the possible bias produced by the direction used to compute precision.

104 10 Alternative and Variants to Handle non-Fitness

10.3.1 Abstraction on the Order

In [14], the authors describe an approach to extract a transition system from the log.
The proposed approach considers a set of possible abstractions and filters on the
trace in order to determine the states of the transition system. In particular, they pro-
pose the use of sets, multisets, and sequences of activities as state representations.
In a similar way, in this section we propose two possible state representations for
precision checking that can be chosen depending on the desired level of abstractions:

• Ordered: A state is a sequence of tasks. This is the same representation as the
one used in Section 9.3. For example, the states for prefix 〈t1, t2, t3〉 and 〈t1, t3, t2〉
are different.

• Unordered: A state is a multiset of tasks, i.e., the order among tasks does not
matter, but the number of executions of each task does. For example, the states
for 〈t1, t2, t3〉 and 〈t1, t3, t2〉 are the same, i.e., [t1, t2, t3]. However, the states for
〈t1, t2, t9〉 and 〈t1, t2, t9, t2〉 are not the same, i.e., [t1, t2, t9] and [t1, t22, t9] respec-
tively, because the number of occurrences of each task matters.

5
[]

5
[t1]

1

[t1,t3]

1
[t1,t2,t3,t5]

2

[t1,t6]

2

[t1,t6,t7]

2
[t1,t6,t7,t8]

2

[t1,t2]

2
<t1,t2,t3]

1
[t1,t2,t3,t4]

0
[1,t2,t3,t9]

0
[t1,t2,t6,t9]

1
[t1,t2,t9]

1
[t1,t2,t2,t9]

0
[t1,t2,t6,t9]

0
[t1,t2,t2,t3,t5,t9]

1
[t1,t2,t2,t3,t9]

1
[t1,t2,t2,t3,t4,t9]

0
[t1,t2,t2,t3,t9,t9]

0
[t1,t2,t2,t9,t9]

Fig. 10.6: Automaton from Λ 1 with multiset state representation for the running
example medical process.

Figure 10.6 show the 1-alignment automaton for the medical process of
Figure 9.2, considering the multiset state representation. This automaton contains
differences with respect to its ordered homologous (cf. Figure 9.5). For exam-
ple, instead of having two states 〈t1, t2, t3〉 and 〈t1, t3, t2〉 for prefixes 〈t1, t2, t3〉 and
〈t1, t3, t2〉, both prefixes are now represented as a single state [t1, t2, t3]. This repre-
sentation reduces the number of escaping arcs and hence increases precision values.
Using multiset state representation and precision calculation as explained in Sec-
tion 9.3, the model in Figure 10.4 and log in Table 10.2 used to motivate this section

10.3 Abstractions for the Precision based on Alignments 105

has a precision value of 1 (perfect). It is worth mentioning that in [14], the authors
also propose the use of set as state representation. However, this is not applicable
to our case: unlike sequence or multiset, a set does not preserve the number of oc-
currences of each task executed, and therefore, it may represent a (possible infinite)
number of different model states. For example, given the model in Figure 9.2, the
set {t1, t2, t9} represents 〈t1, t2, t9〉,〈t1, t2, t9, t2〉,〈t1, t2, t9, t2, t9〉,

10.3.2 Abstraction on the Direction

In the approach presented in Section 9.3, the prefixes of the complete tasks se-
quences are used to build the automaton. For example, given a complete task se-
quence 〈t1, t2, t3, t4〉, the states constructed from the sequence are the empty se-
quence 〈〉 (corresponding with 〈•t1, t2, t3, t4〉, where • indicates a point of interest in
the sequence), 〈t1〉 (for 〈t1•, t2, t3, t4〉), 〈t1, t2〉 (for 〈t1, t2, t3, t4 • t3, t4〉), 〈t1, t2, t3〉 (for
〈t1, t2, t3 • t4〉) and finally 〈t1, t2, t3, t4〉 (for 〈t1, t2, t3, t4•〉). In other words, only the
activities in the past are used and we move forward on the complete task sequences.
This approach is used by all existing precision checking techniques [59, 60, 61].

In [14], the authors show that any point in the sequence (represented as •) may
represent two complementary visions: the past tasks seen until that point (as it has
been shown above), but also the future tasks to come until the ending of the case.
For instance, given 〈t1, t2 • t3, t4〉, 〈t1, t2〉 are the tasks occurred, while 〈t3, t4〉 are the
tasks to happen. Both 〈t1, t2〉 and 〈t3, t4〉 are used in [14] as two different states that
can be derived from the same point in the sequence. In this section, we use the same
idea to present a backward precision measurement, that complements the forward
approach presented before. The combination of metric results for both approaches
will lead to a measurement unbiased by the direction of the precision checking. For
the sake of clarity we will use ordered state representation to illustrate the remain-
der of the section, although the analogous procedure is applicable for unordered
representation.

Let Λ be the option chosen to compute precision, i.e., Λ 1, Λ ∗ or Λ R. In or-
der to build the automaton for the backward precision measurement, we consider
the prefixes of the reversed complete tasks sequences in rowT (Λ). In other words,
given rowT (γ) = 〈t1, t2, t3, t4〉 of the alignment γ ∈Λ , we use row′T (γ) = 〈t4, t3, t2, t1〉
to determine the states, resulting in the following 5 states: 〈〉 (corresponding with
〈•t4, t3, t2, t1〉), 〈t4〉 (for 〈t4 • t3, t2, t1〉), 〈t4, t3〉 (for 〈t4, t3 • t2, t1〉), 〈t4, t3, t2〉 (for
〈t4, t3, t2 • t1〉) and finally 〈t4, t3, t2, t1〉 (for 〈t4, t3, t2, t1•〉). Analogously, the set of
complete tasks sequences of M is also reversed.1 The rest of the precision checking
is performed as it is described in Section 9.3.

Figure 10.7 shows an example of two automata for the trace 〈a,b,c,d〉, con-
structed by moving in forward direction (left) and by moving backward (right). No-

1 Notice that, for the case of Petri nets with one unique initial and final markings, the set of all
reversed complete transition sequences can be generated by the behavior of a net obtained from
the original net by reversing its arcs and swapping their initial with final marking.

106 10 Alternative and Variants to Handle non-Fitness

endt4
d

start

t1
a

p1

t2
b

t3
c

end
t4
d start

t1
a

p1

t2
b

t3
c

1
<t1>

1
<>

0
<t2>

0
<t3>

1
<t1,t2>

0
<t1,t1>

0
<t1,t3>

1
<t1,t2,t3>

0
<t1,t2,t1>

0
<t1,t2,t1>

1
<t1,t2,t3,t4>

1
<t4>

1
<>

1
<t4,t3>

1
<t4,t3,t2>

0
<t4,t3,t1>

1
<t4,t3,t2,t1>

0
<t4,t3,t2,t1,t1>

0
<t4,t3,t2,t1,t2>

0
<t4,t3,t2,t2>

Fig. 10.7: Example of model and resulting automaton for the trace 〈a,b,c,d〉, with
both forward and backwards approaches.

tice the difference of identified escaping arcs shown by the two automata. Finally,
precision values obtained using forward and backward-constructed automaton can
be combined (e.g., the average), resulting in a balanced precision metric unbiased by
the direction of the automaton constructed. Note that more sophisticated and flexible
combinations of both metrics are also possible. In Section 11.2, we investigate the
differences in precision values produced by the various approaches using a variety
of event logs and models.

10.4 Summary

This chapter provided alternatives to the basic alignment approach to analyze dif-
ferent types of scenarios when the fitness between observed and modeled behavior
does not match perfectly. In particular, it explored the use of several optimal align-
ments and the directionality of those alignments.

Chapter 11
Handling non-Fitness in Practice

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

The previous chapter proposed a method to measure precision based on align-
ments for non-fitting cases. This chapter uses the University Case example to illus-
trate the applicability of the alignment-based approach to analyze possible precision
anomalies in a non-fitting process. Additionally, the chapter provides an experimen-
tal analysis on the different characteristics of the approach. That concludes Part II

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 107–117, 2016.
DOI: 10.1007/978-3-319-49451-7_11

108 11 Handling non-Fitness in Practice

of the book focused on precision checking, while Part III will focus on fitness for
large processes.

11.1 The University Case: The Exchange Process

This example was introduced in Chapter 1, where a university is considering to
change its own system to buy a new BPM solution, USoft, to manage its processes.
The university wants to analyze how good the USoft process models support its
current processes. For that, a conformance analysis is proposed, where the models
are analyzed with respect to the event logs recorded by the legacy system.

In this particular scenario, conformance checking is applied to analyze the preci-
sion of the USoft model and the legacy system event log, for the exchange process.
The exchange process involves students who have applied for an academic exchange
with another university, for a period of one or two semesters, or longer.

The precision analysis is performed as follows:

1. First, the data recorded by the legacy system is processed. Several tables of the
system database containing the information regarding the exchange process are
identified, and the information is extracted and consolidated in terms of an event
log. The data includes 850 cases from the last 10 years, and 18 different types of
events.

2. Second, the USoft process model for the exchange process is considered. Fig-
ure 11.1 shows a fragment of the USoft model for such process, in BPMN nota-
tion. In order to check precision using the alignment-based technique presented
in Chapter 9, the relevant parts of the process model are converted to Petri nets.
Both Petri net and event logs are pre-processed in order to guarantee same names
for the activities.

3. The exchange process is an example of non-fitting scenario when comparing the
current operations of the university with the USoft model. First, the evaluation of
the cases (t15) is a manual task, and it is never recorded in the system, although
it is important to be modeled. Second, although the official agreement (t14) is
a required step of the process, sometimes is not explicitly performed (e.g., the
agreement is never asked because it was previously included together with other
petitions). Finally, besides these actual differences between model and reality,
the translation to Petri nets that is needed for the conformance check also adds
an invisible transition between both AND gateways to express parallel routing of
control-flow; the event log does not contain events for this transition. Therefore,
a precision checking based on alignments is selected to conduct the analysis.

4. Both modeled and observed behavior are aligned, and the result is used to per-
form the escaping arcs based precision checking. Figure 11.2 show a fragment
of the alignments provided by the ProM plugin-in Replay a Log in Petri Net for
Conformance Analysis by A. Adriansyah (top), and a fragment of the precision
analysis performed over the alignments provided by the ProM plug-in Precision

11.1 The University Case: The Exchange Process 109

Fig. 11.1: Fragment of the exchange process model in USoft in BPMN notation.

for DPN, developed by F. Mannhardt. The results provided include a visualiza-
tion of the Petri net coloring the places with precision problems (middle left), the
minimal imprecise traces denoting the comparison between observed and possi-
ble arcs (middle right), and a summary of the precision and arcs (bottom).

5. After analyzing the results, the university concludes that the USoft model for the
exchange process is precise enough for their requirements (0.75). The alignments
confirm that t14 is sometimes skipped (not an important problem). However,
a more serious precision problem is detected using the alignments: the model
allows for the execution of t20, t17, and t16 in parallel. However, the log reflects
that t16 must be performed before t17, and t20, resulting in escaping arcs. The
university then confirms that this is a violation of the university guidelines, since
the academic advisor needs to be notified before sending the emails.

6. Finally, the USoft exchange model is adapted to correct the precision problem
identified in the analysis. Figure 11.3 shows a fragment of the adapted model.

110 11 Handling non-Fitness in Practice

Fig. 11.2: Fragment of the precision results provided by Replay a Log in Petri Net
for Conformance Analysis and Precision for DPN tools.

11.1 The University Case: The Exchange Process 111

Fig. 11.3: Fragment of the adapted exchange process model in USoft in BPMN
notation.

112 11 Handling non-Fitness in Practice

11.2 Experimental Results

In this section we illustrate experimentally the different variants of alignment-based
precision presented in the previous chapters.

The first set of experiments was performed to evaluate the precision measure-
ments provided. In particular, we measured whether the proposed precision ap-
proaches are unidimensional [87], i.e., not sensitive to non-fittingness of event logs.
We measured precision between various logs and models whose expected values
are known. Furthermore, we compared the obtained values against existing state-of-
the-art metrics for precision: etcP [59] (presented in Chapter 5), behavioral precision
[88], and weighted behavioral precision [30].

In order to create models with precisely known precision values that are neither
fully precise (trace model) nor fully imprecise (flower model), we combine pre-
cise models, flower models, and logs in various ways as follows. Two models, with
disjoint set of activities, were combined by merging the end place of one with the
initially marked place of another. The merged models were named according to the
name of their original models, e.g., PF model is the result of merging the end place
of completely precise P model with the initially marked place of the flower model
F. Precision values were measured 30 times using 30 event logs, each consisting
of 5,000 traces, generated by simulating the precise model (i.e., PP). For sake of
completeness, we also measured the precision of the overfitting model (P) and the
flower model (F) using 30 logs of 5,000 traces generated by simulating the P model.
This way, each log contains all the possible behavior of the model that generates
it (i.e., for any two activities that can follow each other directly according to the
model, there is also a trace in the log where they follow each other directly).

Fig. 11.4: Precision values of flower and over-precise logs/models and their com-
binations provided by alignment-based approach (i.e., computed using all optimal
alignments, ordered, and forward-constructed automata). If all behavior are ob-
served in the original logs, all measurements are insensitive to non-fitting traces.

11.2 Experimental Results 113

The top part of Figure 11.4 shows the alignment-based precision values, mea-
sured using all optimal alignments per trace of the logs. The experiment with one
and representative alignments per trace yields identical results. This result shows
that by observing sufficiently enough behavior in the event logs, all alignment-based
measures provide similar intuition about precision of models, i.e., overfitting mod-
els have high precision values and “flower” models have low precision values. Note
that there are slight differences between various configurations of measures, i.e.,
states (ordered/unordered) and forward/backward constructed automata.

To evaluate the robustness of the measures against non-fitting logs, we took the
models and logs from the previous experiments and created unfitting logs by remov-
ing n random events per trace from the fitting logs. Furthermore, the measurements
are compared against existing measures. We use the CoBeFra tool [31] to measure
behavioral precision [88] and weighted behavioral precision [30]) and use ProM 6
to measure etcP. The bottom part of Figure 11.4, Figures 11.5 and 11.6 show some
of the results.

Fig. 11.5: Comparison between precision values obtained using alignment-based
approach (i.e., computed using all optimal alignments, ordered, and forward-
constructed automata) and other measures. Only the alignment-based approach is
not sensitive to non-fitting logs/models.

The bottom part of Figure 11.4 shows that the measures proposed in this chapter
are robust to fitness problems. Figure 11.5 shows a comparison between the pre-
cision values provided by alignment-based measures and other existing measures.
For readability, we only show one alignment-based measure: the one computed us-
ing all-optimal alignments and forward-constructed automata whose states are con-
structed by taking into account activity ordering. Note that in cases where logs are
perfectly fitting the models, all measures provide similar precision intuition. In fact,
the alignment-based precision values shown in Figure 11.5 are the same as the etcP
values. However, in cases where logs are non-fitting, other measures may show mis-
leading precision insights. The etcP measure provides low precision for model PF
with respect to perfectly fitting logs (i.e., 0.25). However, the value rises to 0.82
when 3 events are removed from the logs, because for all non-fitting traces, it ig-
nores the rest of the traces after the first non-fitting event occur. Similarly, both
weighted and unweighted behavioral precision measures provide lower precision

114 11 Handling non-Fitness in Practice

values for non-fitting logs than the ones provided for perfectly fitting logs. Even
for overly fitting models P and PP, both measures provide precision values below
half (i.e., indicating the models are imprecise). This occurs because both measures
mixed both perfectly-fitting and non-fitting traces in construction of artificial nega-
tive events, which leads to misleading construction of artificial negative events.

Figure 11.6 shows the influence of noise by removing some events in the logs.
As shown in the figure, other than the alignment-based precision measure, preci-
sion values of all measures may change significantly even with only one event re-
moved from all traces. Due to the randomness of the location of removed events, the
etcP measure may both increases or decreases in the presence of non-fitting traces.
Both weighted and unweighted behavioral precision measures decreases when more
events are removed because incorrect artificial negative events are introduced. Note
that the number of negative events tends to decrease when traces in the log gets more
diverse because of the removal of events.

Fig. 11.6: Precision values of different measures for perfectly fitting logs and non-
fitting logs created by removing some events in the logs. Only the alignment-
based approach measure (i.e., computed using all optimal alignments, ordered, and
forward-constructed automata) is insensitive to non-fitting logs.

The set of experiments also shows some interesting insights into the differences
between alignment-based measures. Figure 11.7 shows a comparison between pre-
cision values provided by the two measures for models PF and FP. As shown
in the figure, precision values of alignment-based measures provided by forward-
constructed automata for model PF is higher than the values provided by backward-
constructed automata for the same model, regardless of the noise level and the state
representation (ordered/unordered). In contrast, the values provided by the latter is
higher than the former for the FP model. This shows that the position of the precise
part of the models influences precision values. Precision values are higher when the
direction of constructed automata starts with precise part of process models. In this
case, we clearly see the influence of forward/backward direction of constructed au-
tomata to precision values. To balance the influence, one of the simplest way is to
take the average between the values provided by both directions. Figure 11.7 shows
that the precision values obtained by combining both values are almost similar be-
tween model PF and FP.

11.2 Experimental Results 115

Fig. 11.7: Precision values of the PF and FP using all-alignments per trace,
with different state representations (ordered/non-ordered) and direction (for-
ward/backward). Higher precision is obtained when the direction of automata con-
struction starts with precise part of the models.

Log #Cases #Events Process Model #Deviation/trace
#Place #Trans

Bouw-1 139 3,364 33 34 9.75
Bouw-4 109 2,331 31 31 7.27
MLog1 3,181 20,491 15 12 5.33
MLog2 1,861 15,708 16 19 1.45
MLog3 10,271 85,548 24 21 14.50
MLog4 4,852 29,737 16 27 2.09
MLog5 25,846 141,755 14 24 1.21

IsalaLog 77 459 26 39 0.68

Table 11.1: Real-life logs and models used for experiments

To evaluate the applicability of the approach to handle real life logs, we used 8
pairs of process models and logs from two different domains (see Table 11.1), where
7 logs and models were obtained from municipalities in the Netherlands. In particu-
lar, we took the collections of logs and models from the CoSeLoG project [33]. The
remaining pair of log and model is obtained from a hospital in the Netherlands1.
The logs and models from municipalities are related to different types of building
permission applications, while the hospital log is related to patient handling pro-
cedure. All processes have unlogged tasks, and some of the models allow loops.
Table 11.1 shows an overview of the logs and models used in the experiments. #De-
viations/trace column indicates the number of asynchronous moves after aligning
all traces in the logs with their corresponding models. As shown in Table 11.1, all
logs are not perfectly fitting to the corresponding models. We measure the preci-
sion values for all logs and the required computation time. The results are shown in
Figure 11.8 and Figure 11.9.

Figure 11.8 reports precision values obtained for the real-life logs and models.
Only the approach based on 1-alignment provides precision values for all real-life
logs and models in the experiments. The approach based on all-optimal alignments
per trace had out-of-memory problems when dealing with relatively complex pro-
cess models and logs such as “Bouw-1” (33 places, 34 transitions), “Bouw-4” (31

1 see http://www.healthcare-analytics-process-mining.org/

http://www.healthcare-analytics-process-mining.org/

116 11 Handling non-Fitness in Practice

Fig. 11.8: Precision values of real-life logs and models. Only the 1-alignment ap-
proach manages to provide precision results for all logs/models.

places, 31 transitions), and “MLog-3” (24 places, 21 transitions). Precision mea-
surements based on representative of optimal alignments also had the same prob-
lems dealing with the hospital log (i.e., “IsalaLog”). Although the model of the log
is relatively small, it contains many unlogged tasks (tasks whose execution are not
logged), allows loops, and allows many interleaving activities such that the size of
state space required to compute even the representative of all optimal alignments is
large and does not fit memory.

Fig. 11.9: Computation time comparison of alignment-based precision measurement
using combined values (from backward and forward automata construction). Y-axis
values are shown in a logarithmic scale.

Nevertheless, notice the similarity of the computed precision values using all
three alignments (1-align, all-align, and representatives). From all pairs of logs and
models, only 2 of them have precision value below 0.7. This shows that in real-
ity, process models are made to be relatively precise such that meaningful insights
into the process can be obtained. Interestingly, different precision values are pro-
vided by different measures in the experiment with log and model “Bouw-4” when
both one and representative alignments are used. The precision value provided by
ordered-forward measure for the model is around 0.44 (showing imprecision) while
the unordered-backward precision measure provides a value of 0.7 (i.e., precise).

11.2 Experimental Results 117

This indicates that more observations are required to measure the particular log and
model accurately.

Figure 11.9 reports the computation time required to measure precision of
real-life logs and models using alignment-based approach with combined preci-
sion values between forward and backward-constructed automata. The y-axis of
the charts are shown in logarithmic scale. As shown in the figure, the computa-
tion time of precision measurement with all-alignments takes much longer than
the ones required by one or representative alignments. All measurements using 1-
alignment/representative alignments were computed in less than 10 seconds. Notice
the similarity between the left and right graph on the figure (except the IsalaLog that
has out-of-memory problem in the approach with representative alignments). In fact,
we obtained identical results for all other combination of state representations (or-
dered/unordered) and directions where automata is constructed (forward/backward).
This shows that the different directions of the automata construction and state repre-
sentations are not significantly influencing computation time. Instead, most compu-
tation time of precision measurement is spent in the alignment of logs and process
models. Another interesting observation is that the time spent to compute repre-
sentative alignments are similar to the time spent to compute 1-alignment. Thus,
we recorded the number of generated representatives for the experiments and other
statistics to investigate this.

In conclusion, the experiments show that the use of alignments provides a preci-
sion measurement that works well on real-life logs, with reasonable computation
time and memory requirements, and reliable results. Moreover, the 1-alignment
variant is preferred when time is a constraint or when only an overview analysis
is required, while the all-alignment variant provides a more reliable result balancing
between possible optimal alignments.

Part III
Decomposition in Conformance Checking

Chapter 12
Decomposing Conformance Checking

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

Conformance checking is a time-consuming analysis, and the diagnose of con-
formance problems is not free of difficulties. This chapter provides a general de-
composition of the original problem in parts, alleviating its computation time, and
providing mechanism to locally understand the detected problems. In later chapters,
we will apply this idea to analyze the fitness of large processes.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 121–127, 2016.
DOI: 10.1007/978-3-319-49451-7_12

122 12 Decomposing Conformance Checking

12.1 Introduction

While in the previous chapters we analyzed the precision dimension, in these part
we focus on the fitness dimension of conformance checking. In real-life situations,
event logs often do not fit its corresponding models, i.e., some log traces cannot
be fully reproduced in the model. These non-fitting situations should be communi-
cated to the stakeholders, in order to take decisions on the process object of study.
However, in reality process models can be non-deterministic, which complicates
the analysis. Non-determinism may arise when the model contains silent or dupli-
cate activities, which is often the case in practice. Moreover, the presence of noise
in the log – e.g., incorrectly logged events or abnormal behavior – complicates even
more the algorithmic detection of non-fitting situations. Due to this, the initial fit-
ness approaches based on replaying log traces in a model in order to assess whether a
trace can fit a model [77] have been recently reconsidered, giving rise to approaches
based on alignment [18]. Alignment techniques relate complete firing sequences
of the model and traces in the event log. The techniques can cope with deviations
and models with duplicate/invisible activities. However, alignment techniques are
extremely challenging from a computational point of view. Traces in the event log
need to be mapped on paths in the model. A model may have infinitely many paths
and the traces may have an arbitrary amount of deviating events. Hence, although the
algorithms have demonstrated to be of great value for undertaking small or medium-
sized problem instances [7, 2], they are often unable to handle problems of industrial
size. Decomposition techniques are an important means to tackle much larger and
more complex process mining problems. Therefore, this chapter addresses this prob-
lem through decomposition and distribution, using Petri nets as the modeling class
(although the conclusions can be extrapolated to other process model notations).

There is a trivial way to decompose the fitness checking problem. One can sim-
ply split the event log into sublogs such that every trace appears in precisely one of
these sublogs. Note that the conformance is still checked on the whole model. Lin-
ear speed-ups are possible using such a simple decomposition. However, the real
complexity is in the size of the model and the number of different activities in the
event log [17]. Therefore, we propose a different approach. Instead of trying to as-
sess the fitness of the whole event log and the complete Petri net, fitness checking is
only performed for selected subprocesses (subnets of the initial Petri net and corre-
sponding sublogs). Subprocesses are identified as subnets of the Petri net that have a
single-entry and a single-exit node (SESE), thus representing an isolated part of the
model with a well-defined interface to the rest of the net. SESEs can be efficiently
computed and hierarchically represented in a tree-like manner as Refined Process
Structured Tree (RPST) [70].

12.2 Single-Entry Single-Exit and Refined Process Structure Tree 123

12.2 Single-Entry Single-Exit and Refined Process Structure
Tree

The intuitive idea behind the decomposition technique in this chapter is to find sub-
graphs that have a simple interface with respect to the rest of the net. The following
set of definitions formalizes the idea of Single-Entry Single-Exit subnet and the cor-
responding decomposition. The underlying theory dates back to the seminal work
of Hopcroft and Tarjan in the seventies [47], but recent studies have made consid-
erable progress into making the algorithms practical when applied to process mod-
els [70, 69]. We start by defining the graph structure used for decomposing a process
model: the workflow graph. Given a workflow net1, the workflow graph represents
the arcs between the nodes of the net.

Definition 12.1 (Workflow Graph) Let WN = (P,T,F,start,end) be a workflow
net, where P are the places, T are the transitions, and F are the arcs. We define
the workflow graph of WN simply as the directed graph G(WN) = (N,F) where no
distinctions are made between places and transitions, i.e., N = P∪T represent the
nodes of the graph, and F the arcs. We can omit the parameter WN whenever the
context is clear.

An example of workflow graph Figure 12.1b (only the graph but not the squares)
is shown for the workflow net in Figure 12.1a.

(a)

t1
t2

t3
t4

t5

t6
t7

start
p2

p3

p4

p5
p6 p7 end

a
b

c

d

e

f

g

h

i

j
k

l

m

n

o p

S6

S7

S3
S4

S5

SS2SS1

S1S

S2S S3S

j opa

S4S S5S S6S S7S

b d f h c e g i k m l n

(b)

(c)

Fig. 12.1: An example of (a) workflow net, (b) its workflow graph, and the (c) RPST
with its SESE decomposition.

In the remainder, the following context is assumed: Let G be the workflow graph
of a given WN, and let GS = (VS,S) be a connected subgraph of G formed by a set
of edges S and the vertices VS = Π(S) induced by S.2

1 Although the approach presented in this chapter can be generalized to general Petri nets with
several sources and sinks, for the sake of clarity in this paper we restrict to the workflow case with
only one source and only one sink [70].
2 Π(R) =

⋃
(a,b)∈R {a,b} is the set of elements referred to by relation X ⊆ A×B.

124 12 Decomposing Conformance Checking

Definition 12.2 (Subnet nodes [70]) A node x ∈ VS is interior with respect to GS
iff it is connected only to nodes in VS; otherwise x is a boundary node of GS. A
boundary node y of GS is an entry of GS iff no incoming edge of y belongs to S or if
all outgoing edges of y belong to S. A boundary node y of GS is an exit of GS iff no
outgoing edge of y belongs to S or if all incoming edges of y belong to S.

For example, let us consider the arcs S4 = {b,d, f ,h} of Figure 12.1, and the set
of vertices induced by them VS4 = {t1, p2, t2, p4, t4}. t1 and t4 are boundary nodes,
while p2, t2, p4 are interior. Moreover, t1 is an entry, while t4 is an exit.

As the next definition formalizes, a SESE is a special type of subgraph with a
very restricted interface with respect to the rest of the graph:

Definition 12.3 (Single-Exit-Single-Entry [70]) A set of edges S ⊆ F is a SESE
(Single-Exit-Single-Entry) of graph G = (N,F) iff GS has exactly two boundary
nodes: one entry and one exit. A SESE is trivial if it is composed of a single edge.
S is a canonical SESE of G if it does not partially overlap with any other SESE of
G, i.e., given any other SESE S′ of G, they are nested (S ⊆ S′ or S′ ⊆ S) or they are
disjoint (S∩ S′ = /0). By definition, the source start of a workflow net is an entry to
every fragment it belongs to and the sink end of the net is an exit from every fragment
it belongs to.

The decomposition based on canonical SESEs is a well studied problem in the
literature, and can be computed in linear time. In [86], the authors proposed the
algorithm for constructing the RPST, i.e., a hierarchical structure containing all the
canonical SESEs of a model. In [70], the computation of the RPST is considerably
simplified and generalized by introducing a pre-processing step that reduces the
implementation effort considerably.

Definition 12.4 (Refined Process Structured Tree [70]) Let G be the workflow
graph of a given workflow net. The Refined Process Structured Tree (RPST) of G
is the tree composed by the set of all its canonical SESEs, such that, the parent of
a canonical SESE S is the smallest canonical SESE that contains S. The root of the
tree is the entire graph, and the leaves are the trivial SESEs. The set of all the nodes
of the tree is denoted as S.

Figure 12.1 show the RPST and the canonical SESEs in the example of the same
figure. In the remainder of the chapter, we will refer to canonical SESEs result-
ing from the RPST decomposition simply as SESEs. Also note that the SESEs
are defined as a set of edges (i.e., S) over the workflow graph (not as subgraphs,
i.e., GS). However, for simplicity and when the context is clear, we will use the
term SESE to refer also to the subgraph induced by those edges. We will de-
note as PNS = (PS,T S,FS) the Petri net determined by the SESE S, i.e., PNS =
(P∩Π(S),T ∩Π(S),F ∩S). The nodes (either transitions or places) determined by
S are denoted as NS, i.e., (P∪T)∩Π(S).

12.3 Decomposing Conformance Checking using SESEs 125

12.3 Decomposing Conformance Checking using SESEs

It is well known that checking conformance of large logs and models is a chal-
lenging problem. The size of log and model and the complexity of the underlying
process strongly influence the time needed to compute fitness and to create opti-
mal alignments. Divide-and-conquer strategies are a way to address this problem
[64, 63, 62, 9]. As indicated before, we do not just want to partition the traces in the
event log (providing a trivial way to distribute conformance checking). The poten-
tial gains are much higher if the model is also decomposed and traces are split into
smaller ones. To decompose conformance checking problems, the overall system
net SN is broken down into a collection of subnets {SN1,SN2, . . . ,SNn} such that
the union of these subnets yields the original system net.

Definition 12.5 (Decomposition) Let SN = (SNMI ,MF) be a system net where
WN = (P,T,F,start,end). D = {SN1,SN2, . . .SNn} is a decomposition of SN if and
only if:

• P =
⋃

1≤i≤n Pi,
• T =

⋃
1≤i≤n T i,

• F =
⋃

1≤i≤n F i where F i∩F j = /0 for 1≤ i < j ≤ n.

Note that each place or transition can be shared among different subnets, while
each arc resides in just one subnet.

Any decomposition that satisfies Definition 12.5 may be considered for decom-
posing a conformance problem, e.g., subnets containing only one arc, or subnets
randomly grouping distant nodes on the net. However, given that the ultimate goal
of a decomposition is to be able to diagnose, comprehend and understand confor-
mance problems, the use of meaningful decompositions is preferred, i.e., SESEs.
Given the structure of a SESE where a unique single entry and a unique single exit
exist, a SESE becomes an appropriate unit of decomposition. Intuitively, each SESE
may represent a subprocess within the main process (i.e., the interior nodes are not
connected with the rest of the net), and the analysis of every SESE can be performed
independently. The RPST of a net can then be used to select a possible set of SESEs
forming a decomposition. As it shown in Proposition. 12.6, any transverse cut over
the RPST defines a decomposition.

Proposition 12.6 (SESE decomposition) Let SN = (SNMI ,MF) be the system net
of the workflow net WN = (P,T,F,start,end). Consider the RPST decomposition of
WN, where S represents all the SESEs in the RPST. We define a transverse-cut over
the RPST as a set of SESEs D⊆ S such that any path from the root to a leaf of RPST
contains one and only one SESE in D. Given a transverse-cut D = {S1,S2, . . .Sn},
let the decomposition DD be defined as DD = {SNS1 ,SNS2 , . . .SNSn}, where SNSi =
(PNSi ,MI�PSi ,MF�PSi), i.e., the Petri net determined by the SESE Si, and the projec-
tion of the initial and final markings on the places of the subnet. The decomposition
DD derived from the SESEs satisfies the definition of decomposition given in Defini-
tion 12.5

126 12 Decomposing Conformance Checking

Proof. By definition of RPST, the arcs of each SESE in the RPST are contained
in one, and only one, of its children (unless it is a trivial SESE). Therefore, any
transverse-cut set of SESEs contains all the arcs, where each arc only appears in
only one SESE.

Proposition 12.7 (A SESE decomposition from RPST exists) Given any RPST, a
decomposition always exists.

Proof. Given any RPST, the root (i.e., the whole net) defines a decomposition. In
addition, the set of all the leaves (i.e., the trivial SESEs with only one arc) also
defines a decomposition.

As it is claimed in Proposition 12.7, the overall net is, by definition, a decom-
position by itself. But it is obvious to see that this trivial way of decomposition
does not alleviate the initial conformance problem. On the other hand, a decomposi-
tion formed only by trivial SESEs will produce meaningless components, and at the
same time, the posterior analysis will have to deal with the analysis overhead pro-
duced by the creation of the numerous components. A decomposition which lays
in between the aforementioned extremes seems more interesting from the practi-
cal point of view, i.e., to generate components large enough to become meaningful
subprocesses, but whose size can be handled in practice. Hence, the algorithm pro-
posed in Algorithm 12.1 can generate a decomposition which limits the maximum
size of each component to k in order to control the size and complexity of individual
components.

Algorithm 12.1 k-decomposition algorithm
procedure k-DEC(RPST,k)

V = {root(RPST)}
D = /0
while V 6= /0 do

v← pop(V)
if |v.arcs()| ≤ k then D = D∪{v}
else V =V ∪{children(v)}

return D

Algorithm 12.1 shows how to compute a k-decomposition, for any k such that 1≤
k ≤ |F | (where |F | stands for the number of arcs of the overall net). The algorithm
keeps a set of nodes that conform the decomposition (D) and a set of nodes to
consider (V). Initially V contains the root of the RPST, i.e., the overall net. Then,
the algorithm checks, for each node v to consider, if v satisfies the k property, i.e.,
the number of arcs of SESE v is less or equal than k. If this is the case, v is included
in the decomposition. If not, it discards v and includes the RPST children of v into
the nodes to consider. Note that, given any RPST, a k-decomposition always exists,
i.e., in worst case, the decomposition formed by all the leaves of the RPST will
satisfy the definition. The algorithm proposed has linear complexity with respect to

12.4 Summary 127

the size of the RPST, and termination is guaranteed by the fact that the size of the
component is reduced in every iteration.

12.4 Summary

This chapter presented the decomposition of the conformance checking problem,
i.e., the process model is decomposed in subprocesses with a single entry and a sin-
gle exit node, and they are analyzed independently. This decomposition reduces the
computation time, and makes it possible to understand the conformance problems
in local way. However, in order to guarantee certain conformance properties over
the general case, the decomposition must satisfy certain characteristics. In the next
chapter, the SESE decomposition is extended to fulfill such characteristics.

Chapter 13
Decomposing for Fitness Checking

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

In the previous chapter, a decomposing method based on single entry single
exit components was presented to generically decompose the conformance prob-
lem. This chapter presents an extension of the method to provided a so-called valid
decomposition, i.e., a decomposition that preserves certain conformance guarantees
over the general problem, even when it is analyzed in a decomposed manner. In the
next chapter, the fitness analysis based on decomposition is put into practice.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 129–139, 2016.
DOI: 10.1007/978-3-319-49451-7_13

130 13 Decomposing for Fitness Checking

13.1 Introduction

Decomposing conformance analysis is helpful in the diagnosis and understanding
of the conformance problems. The model is divided into parts and conformance
checking is performed over each part individually. However, in order to guarantee
the relation between the local analysis and the general problem, the decomposition
applied must satisfy certain properties, i.e., it must be a valid decomposition. The
remaining of this chapter adapts the SESE decomposition presented in the previous
chapter, in order to provide a valid decomposition.

13.2 Bridging a Valid Decomposition

A SESE is a component that only interfaces with the rest of the net through single
entry and single exit boundary nodes, which may be shared among different compo-
nents. The rest of the nodes of a SESE (i.e., the interior nodes) have no connection
with other components. Given that the SESE computation is performed over the
workflow graph (i.e., where there is no distinction between places and transitions),
we distinguish two possible cases for the boundary nodes: transition boundary and
place boundary.

The transition boundary case occurs when the node determined to be the entry
or the exit of a SESE is a transition. Figure 13.1 shows an example of a transi-
tion boundary. In the example, the overall net is decomposed into two subnets that
correspond to the SESEs S1 and S2, d being the boundary transition that is shared
between them.

(a) original model

(b) decomposition

a
b

c

S1

d

e

f
g

S2

a
b

c

S1

d

d

e

f
g

S2

start

start

end

end

(c) log traces

σ1 abcddefg=

σ1 S1 abcdd=

σ1 S2 ddefg=

σ2 abcefg=

σ2 S1 abc=

σ2 S2 efg=

Fig. 13.1: Example of decomposition with transition boundary.

13.2 Bridging a Valid Decomposition 131

As it is proven in [9], a transition boundary decomposition represents no prob-
lem from a conformance point of view, i.e., given a decomposition with only tran-
sition boundaries, a log trace fits the overall net if and only if it fits all the subnets.
The reason for that is that when a transition is shared between subnets, the label
of the transition is used to synchronize the subnets that contain that transition on
their boundaries, ensuring that the models’ decisions to reproduce that label are
done jointly. Consider the decomposition DD = {SNS1 ,SNS2} from the example of
Figure 13.1, where SNS1 = (PNS1 , [start], []) and SNS2 = (PNS2 , [], [end]) are the
systems nets derived from the SESEs S1 and S2. Consider the trace σ1 = abcddefg
shown in Figure 13.1c. Such trace does not fit the overall net due to the double
d. The projection of that trace on SNS1 and SNS2 results in σ1�T S1= abcdd and
σ1�T S2= dde f g respectively (cf. Figure 13.1c). Note that, although σ1�T S2 fits SNS2

(on SNS2 , the preset of d is empty hence it can fire more than once), σ1�T S1 does
not fit SNS1 . Hence, the trace σ1 that does not fit the overall net, does not fit all the
subnets (at least there is one that is not fitting). A similar situation happens with the
trace σ2 = abcefg (where no d appears), i.e., trace σ2 does not fit the overall net,
hence σ2�T S1 does not fit SNS1 or σ2�T S2 does not fit SNS2 . In the latter example,
actually both do not fit.

a
b

c

d

e
f

p

a
b

c p

d

e
f

p

S1 S2

S1

S2

(a) original model

(b) decomposition

start

start

end

end

(c) log traces

σ1 abcdef=

σ1 S1 abc=

σ1 S2 def=

σ2 abdecf=

σ2 S1 abc=

σ2 S2 def=

Fig. 13.2: Example of decomposition with place boundary.

On the other hand, the case of place boundary is different. When the boundary
(entry or exit) is a place, it is shared between two or more subnets. However, the
arcs connected to the place (the ones in charge of producing and consuming to-
kens) are split amongst the subnets. This makes the place unable to synchronize,
and therefore, it is impossible to analyze the different subnets in isolation. The ex-
ample in Fig. 13.2 reflects this situation. The original net is decomposed into two
subnets, DD = {SNS1 ,SNS2}, corresponding with the SESEs S1 and S2, and being p

132 13 Decomposing for Fitness Checking

the boundary place shared by both subnets. It can be seen that the arcs that produce
tokens in p and the ones that consume tokens from p are distributed into different
subnets. Consider now the log traces σ1 = abcdef and σ2 = abdecf of Fig. 13.2.
While σ1 fits the overall net, σ2 does not. However, the projections of both traces on
T S1 and T S2 are the same (cf. Fig. 13.2). This problem materializes when we ana-
lyze the subnets. Firstly, given that any arc that produces tokens in p is contained in
PNS1 , we need to consider an initial marking for SNS2 different than [] (otherwise,
the subnet would be deadlocked initially). If we consider the initial marking [p],
σ1�T S2 does not fits SNS2 . Therefore the fitness correctness is not preserved, i.e., a
trace that fits the overall net like σ1 must fit all the subnets. On the other hand, if we
consider the initial marking with two (or more) tokens on p (i.e., [p2]), σ2�T S2 fits
SNS2 (similarly, σ2�T S1 fits SNS1). However σ2 is a non-fitting trace of the overall
net, and consequently, it must not fit all the subnets. Therefore, when the decom-
position contains place boundaries, the preservation of the fitness correctness is not
guaranteed.

In [9] the definition of decomposition is revisited to propose the so called valid
decomposition, i.e., a decomposition that only shares transitions (but not places nor
arcs).

Definition 13.1 (Valid Decomposition [9]) Let SN = (WN,MI ,MF) be a system
net where WN = (P,T,F,start,end). D = {SN1,SN2, . . .SNn} is a valid decomposi-
tion of SN if and only if:

• T =
⋃

1≤i≤n T i,
• P =

⋃
1≤i≤n Pi where Pi∩P j = /0 for 1≤ i < j ≤ n,

• F =
⋃

1≤i≤n F i where F i∩F j = /0 for 1≤ i < j ≤ n.

In [9, Theorem 2] it is proven that all valid decompositions preserve the fitting
correctness, i.e., a log is fitting a system net if and only if fits all the subnets.

As illustrated in the previous examples, a decomposition based directly on SESEs
is not necessarily a valid decomposition, i.e., boundary places may be shared among
subnets. However, in the remainder of this section an approach to transform a
SESE decomposition into a valid decomposition is presented; the approach tries
to preserve the underlying semantics behind SESE decomposition. This technique
is called bridging, and consists of: (1) transforming each place boundary into a tran-
sition boundary (i.e., boundary place is removed) and (2) creating explicit subnets
(called bridges) for each boundary place. The bridges contain all the transitions
connected with the boundary place, and they are in charge of keeping the place syn-
chronized among subnets. In addition, the boundary places together with the arcs
connected to them are removed from the original subnets. Formally:

Definition 13.2 (Bridging a SESE decomposition) Let D = {S1, . . .Sn} be the
SESE decomposition of the workflow net WN = (P,T,F,start,end). Let ID = {i1, . . . ,
in} and OD = {o1, . . . ,on} be the set of all entry and exit nodes of the SESEs in D.
B = {p1, . . . , pk}= ((IP∪OP)∩P)\{start,end}= (IP∩OP)∩P is the set of bound-
ary places, i.e., entry and exit nodes of the SESEs that are places but not the source

13.2 Bridging a Valid Decomposition 133

or sink place of the workflow net WN. The decomposition after applying bridging
D′ = {S′1, . . .S′n,B1 . . .Bk} of D is constructed as follows:

• For all 1≤ i≤ n: S′i = {(x,y)∈ Si | {x,y}∩B= /0} (boundary places are removed
from the SESEs).

• For 1≤ j ≤ k: B j = {(x,y) ∈ A | p j ∈ {x,y}} (bridges are added).

DD′ = {SNS′1 , . . .SNS′n ,SNB1 . . .SNBk} represents the decomposition constructed
from D′.

Figure 13.3 illustrates the effects of the bridging on the example previously
shown in Fig. 13.2. In this case, the boundary place p (and its arcs) are removed
from S1 and S2, and a bridge B1 is created. Note that now, the transitions connected
to p (i.e., b, c, d and e) are shared (instead of p), keeping the synchronization among
components, and making DD′ a valid decomposition.

a
b

c

d

e
f

p

a
b

c p

d

e
f

p

a
b

c

d

e
f

b

c

d

ep

S1 S2

S1

S2

S'1

S'2

B1

(a) original model

(c) decomposition and bridging(b) decomposition

end

end
end

start

start

start

Fig. 13.3: Example of decomposition with bridging.

Proposition 13.3 shows that the decomposition derived from applying SESE
decomposition and then bridging results in a valid decomposition, according to
Def. 13.1.

Proposition 13.3 (Bridging results in valid decomposition) Let D′ = {S′1, . . .S′n,
B1 . . .Bk} be obtained from a SESE decomposition after applying bridging. The
decomposition DD′ = {SNS′1 , . . .SNS′n ,SNB1 . . .SNBk} is a valid decomposition ac-
cording to Def. 13.1.

Proof. By construction, a SESE decomposition only shares transitions and places.
After applying the bridging, all the shared places are removed, creating explicit
components with only one instance of these places.

134 13 Decomposing for Fitness Checking

Moreover, given that the bridging produces a valid decomposition, it also pre-
serves the property that a trace in the log fits the overall process model if and only if
each subtrace fits the corresponding process fragment. Hence, fitness checking can
be decomposed using SESEs and bridges.

Proposition 13.4 (SESE-based Fitness Checking can be decomposed) Let L be
a log and SN = (WN,MI ,MF) be a system net where WN is a workflow net. Let
DD′ = {SN1,SN2, . . .SNn} be a valid decomposition resulting of the application of
the SESE decomposition and bridging over WN. Let SNi = (PNi,Mi

I ,M
i
F), where

PNi = (Pi,T i,Ai).
A trace σ ∈ L fits SN (i.e., (WN,MI)[σ〉(WN,MF)) if and only if it fits all the

parts, i.e., for all SNi ∈ DD′ , (PNi,Mi
I)[σ�T i〉(PNi,Mi

F).

Proof. Special case of the more general Theorem 2 in [9]. If the overall trace σ fits
SN, then each of the projected traces σ�T i fits the corresponding subnet. If this is not
the case, then at least there exist one projected trace σ�T i that does not fit. But this is
impossible because, by construction, each subnet is a relaxation of the behavior of
the overall net. If the projected traces σ�T i fit the corresponding subnets, then these
traces can be stitched back into a trace σ that fits SN.

b

d

e

f

g

h

i
j

k
l

m

n

o

p

q

s

r

a

register
claim

decide
high-low

start high
check

start low
check

high insurance check

high medical history check

contract hospital

low insurance check

low medical history check

end high
check

end low
check

start
notification

prepare
notification

notify

re-notification
need

register
notification

archive
claim

re-process claim

Fig. 13.4: Running example: claims in a insurance company.

Let us consider the example of Figure 13.5 to illustrate the decomposition of the
conformance checking proposed in this Chapter. The model in figure was inspired
by a similar model presented in [26] and represents the possible situations to handle
claims in a insurance company.

Figure 13.5 shows the SESE decomposition by a size k of 15. Let us show how
the fitness problems are now identified in a decomposed manner. For that, we will
use the trace σ = abijlmnpqnpqs. Given σ and the SESEs provided in Figure 13.5,
the only ones that reveal fitness anomalies are S′3, B4 and B6 (for the other com-
ponents we can find perfect alignments when projecting σ to the activities of the
component). The alignment for S′3 is:

13.3 Decomposition with invisible/duplicates 135

h

l

m

a

s

n

p

i
j

k

l

b

d

e

f

g

h

q

r s

o

p

q

m

n

o
b

r

a

S'1 d

iB1

B6 S'6
B2

B3

S'2

S'3

S'4

B4

B5

Fig. 13.5: Components resulting from 15-decomposition and bridging for the run-
ning example of Figure 13.4.

i j � l
i j k l

which reveals that the mandatory check of the medical history is missing in the log.
Analogously, the alignment for B4 is:

m n � n
m n o n

which identifies the explicit need to notify the client again, an action missing in the
log but required by the model. Finally, the alignment for B6:

q q s
� q s

reveals another fitness problem for trace σ : the system has stored in the log an
early registration of the notification which was not meant at that point in time, since
notifications were later sent and according to the model, the registration is only
expected to be done at the end of the case.

By Prop. 13.4 and the fitness problems identified at some of the components in
the decomposition, we can infer that the whole model does not fit the log.

13.3 Decomposition with invisible/duplicates

So far, the approach presented in this chapter assumes that all the Petri net tran-
sitions are associated with a unique single activity, i.e., a transition could be un-
ambiguously identified by its label. In this section we lift this assumption in order
to consider invisible and duplicate transitions. An invisible transition is a transi-
tion without an associated activity, e.g., transitions included for routing purposes.
Duplicate transitions are transitions with the same activity associated. For exam-
ple, consider the net of Figure 13.6, which is a slight variation of the example
in Figure 13.4. This model contains an invisible transition (represented in black)
which is used to skip the execution of contract hospital, i.e., now contract hospi-

136 13 Decomposing for Fitness Checking

h

l

m

a

s

n

p

i
e

k

l

b

d

e

f

g

h

q

r s

o

p

q

m

n

o
b

r

a

S'1 d

iB1

B6 S'4
B2

B3

S'2

S'3

B4

B5

b

d

e

f

g

h

i
e

k
l

m

n

o

p

q

s

r

a

register
claim

decide
high-low

start high
check

start low
check

insurance check

high medical history check

contract hospital

insurance check

low medical history check

end high
check

end low
check

start
notification

prepare
notification

notify

re-notification
need

register
notification

archive
claim

re-process claim

Fig. 13.6: Variant of the running example of Figure 13.4 including invisible and
duplicates (top), and its corresponding decomposition (bottom).

tal is optional. Moreover, the new model does not distinguish between high insur-
ance check and low high insurance check, but the same action insurance check is
modeled in two different parts of the model, i.e., is a duplicate activity. The Petri
net definition is extended considering now a labeling function l ∈ T 6→ UA where
UA is some universe of activity labels. Additionally, if a transition t 6∈ dom(l),
it is called invisible. Tv(PN) = dom(l) is the set of visible transitions in PN.
T u

v (PN) = {t ∈ Tv(PN) | ∀t ′∈Tv(PN) l(t) = l(t ′) ⇒ t = t ′} is the set of unique visible
transitions in PN (i.e., there are no other transitions having the same visible label)

As it has been illustrated previously in this chapter, when a net is decomposed,
the labels of the transitions are used to synchronize and preserve the fitness proper-
ties. However, sharing invisible and duplicate transitions among subnets generates
ambiguity invalidating this synchronization. Thus, the definition of valid decompo-
sition presented in Definition 13.1 is refined to consider invisible and duplicates,
i.e., only unique visible transitions can be shared among subnets.

Definition 13.5 (Valid Decomposition with Invisible and Duplicates[9]) Let SN
= (WN,MI ,MF) be a system net where WN = (P,T,F, l,start,end). D = {SN1,SN2,
. . .SNn} is a valid decomposition of SN if and only if:

• SNi = (PNi,Mi
I ,M

i
F) is a system net with PNi = (Pi,T i,F i, li) for all 1≤ i≤ n,

• li = l�T i for all 1≤ i≤ n,
• Pi∩P j = /0 for 1≤ i < j ≤ n,
• T i∩T j ⊆ T u

v (SN) for 1≤ i < j ≤ n, and
• SN =

⋃
1≤i≤n SNi.

13.3 Decomposition with invisible/duplicates 137

Let SN = (WN,MI ,MF) with WN = (P,T,F, l,start,end) be a system net with
valid decomposition D = {SN1,SN2, . . . ,SNn}. We can observe the following prop-
erties:

- each place appears in precisely one of the subnets, i.e., for any p ∈ P: |{1≤ i≤
n | p ∈ Pi}|= 1,

- each invisible transition appears in precisely one of the subnets, i.e., for any t ∈
T \Tv(SN): |{1≤ i≤ n | t ∈ T i}|= 1,

- visible transitions that do not have a unique label (i.e., there are multiple tran-
sitions with the same label) appear in precisely one of the subnets, i.e., for any
t ∈ Tv(SN)\T u

v (SN): |{1≤ i≤ n | t ∈ T i}|= 1,
- visible transitions having a unique label may appear in multiple subnets, i.e., for

any t ∈ T u
v (SN): |{1≤ i≤ n | t ∈ T i}| ≥ 1, and

- each edge appears in precisely one of the subnets, i.e., for any (x,y) ∈ F : |{1 ≤
i≤ n | (x,y) ∈ F i}|= 1.

In order to instantiate a decomposition complying with this new definition of
valid decomposition, Algorithm 12.1 needs to be refined (cf. Algorithm 13.1).

Algorithm 13.1 Refined k-decomposition algorithm
function k-DEC(RPST,k)

V = {root(RPST)}
D = /0
while V 6= /0 do

v← pop(V)
if |v.arcs()| ≤ k or not Decomposable(v) then

D = D∪{v}
else V =V ∪{children(v)}

return D

function DECOMPOSABLE(s)
{s1, . . .sn}← children(s)
T ← shared transitions in {s1, . . .sn}
P← shared places in {s1, . . .sn}
T P← transitions connected with P

if T ∩T u
v 6= T then return false

else if T P∩T u
v 6= T then return false

else if same label in different {s1, . . .sn} then
return false

else return true

Algorithm 13.1 checks if considering the children of a SESE s will violate the
definition of valid decomposition in Definition 13.5. The three conditions need to
be satisfied:

- transitions shared (T) between any subset of SESEs {s1, . . .sn} must be unique
visible transitions (T u

v).

138 13 Decomposing for Fitness Checking

- places shared (P) between any subset of SESEs {s1, . . .sn} will be bridged ac-
cording to Def. 13.2. Therefore, transitions connected with the places shared (P)
between any subset of {s1, . . .sn}must be unique visible transitions (T u

v), in order
to avoid be duplicated boundary transitions after the bridging.

- Transitions with the same label must belong to the same vi.

The main difference between the original k-decomposition algorithm presented
previously and Algorithm 13.1 is that the latter checks if the children of SESE v
of the decomposition D are violating the valid decomposition definition (Defini-
tion 13.5). Notice that by definition, if the children {s1, . . .sn} of v are violating
the definition, further descendants of v are considered to be violating the definition
as well. Therefore, when the algorithm checks that the SESE must not be decom-
posed, it includes it into the decomposition D. As a result, Algorithm 13.1 does not
guarantee the k property, i.e., some components may have more than k arcs. For in-
stance, consider the subnets resulting from a 15-decomposition and bridging shown
in Figure 13.6. Unlike Figure 13.5, here when the algorithm tries to decompose the
SESE S2, it detects that this will result in splitting the duplicate e, and thus it must
consider S2, even though the number of arcs of S2 is greater 151. Notice that some
worst case scenarios exist for Algorithm 13.1: consider the example of Figure 13.7.
In this case, the presence of invisible transitions in the model boundaries makes it
impossible for the algorithm decompose more that the root S1, and therefore, the
resulting decomposition will be the overall net. The effect of those cases can be al-
leviated by pre-processing the model and the log before applying the decomposed
conformance.

(a) workflow net

t1 t7
a b

S2S
S1 S1S

S2S
ba

(b) RPST

...
...

Fig. 13.7: Example of worst case scenario for the k-decomposition with invisi-
ble/duplicates.

13.4 Summary

This chapter presented an extension of the SESE decomposition approach to provide
a valid decomposition. The valid decomposition is proven to preserve the perfectly
fitting condition of the general case, even when the different parts are analyzed inde-

1 Notice that, the bridging may produce that a SESE loses its SESE structure, e.g., the entry and
exit places of S2 are removed when it becomes S′2 due to the bridges B2 and B3. In spite of this, the
decomposition obtained still satisfies Definition 13.5.

13.4 Summary 139

pendently. The following chapters present empirical results and propose tools based
on the decomposition topology to help in the diagnosis of conformance problems.

Chapter 14
Decomposing Conformance Checking in
Practice

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

In the previous chapters, we presented a decomposition method to analyze the
fitness of large processes. This chapter presents a practical case example where
this decomposed conformance checking technique is applied to analyze possible
conformance anomalies in a large process and illustrates the detailed diagnostic in-
formation that can be obtained. Additionally, the chapter provides an experimental
analysis on the different characteristics of the approach.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 141–149, 2016.
DOI: 10.1007/978-3-319-49451-7_14

142 14 Decomposing Conformance Checking in Practice

14.1 The Bank Case: The Transaction Process

In this section we propose the analysis of a realistic process case example in order
to illustrate the approach proposed in the book. The case involves a bank interested
in comparing the real execution of their processes with respect to verified and pre-
approved protocols, in order to detect fitness violations of the bank policies.

In particular, this analysis focuses on the transaction process of the bank. The
transaction process contains all sort of monetary checks, authority notifications, and
logging mechanisms responding to the new degree of responsibility and account-
ability that current economic environments demand. The process is structured as
follows (cf. Figure 14.1 shows a high-level overview of the complete process): it is
initiated when a new transaction is requested, opening a new instance in the sys-
tem and registering all the components involved. The second step is to run a check
on the person (or entity) – the origin of the monetary transaction. Then, the actual
payment is processed differently, depending on the payment modality chosen by the
sender (cash, cheque1 and payment). Later, the receiver is checked and the money
is transferred. Finally, the process ends by registering the information, notifying the
required actors and authorities, and emitting the corresponding receipt.

open and
register

transaction
check
sender

process
cash

payment

process
cheque

payment

process
electronic
payment

check
receiver

transfer
money

notify and
close

transaction

Fig. 14.1: High level overview of the running example process, structured in sub-
processes.

The analysis proceeds as follows:

1. First, the data recorded by the bank information technology systems are pro-
cessed. Several tables of the database containing the information regarding the
transaction process are identified, and the information is extracted and consol-
idated in terms of an event log. The data includes 2000 cases from the last 2
months, and 113 different types of events.

2. In the second step, a process model of the transaction process is required. For
that, the bank models the process using Petri net notation, as it must be accord-
ing to their protocols. Figure 14.2 shows the resulting Petri net, containing 114
transitions.

1 The British term is used to avoid ambiguity with the verb “to check”.

14.1 The Bank Case: The Transaction Process 143

S
R
P
P

R
B
P
C

R
IB
P
C

R
E
P
C

F
R
P
P

S
R
P

R
E
P
P

E
P
P

S
H
R
R
P

S
LR
R
P

LR
IR
V

LR
E
R
V

LR
R
R

F
LR
R
P

S
H
R
R

P
C

M
H
R
R

P
C

A
H
R
R

P
C

F
H
R
R

P
C

R
H
R
R

P
C

H
R
R
A
N

H
R
H
A

H
R
R
R

F
H
R
R
P

F
R
P

S
T
T

S
E
T

S
IT

C
IT

R
G
IT

R
IT

C
D
D

D
N
D

E
T

C
E
T

R
E
T

R
G
E
T

F
IT

F
E
T

F
T
T

S
C

S
R
C
P

E
R

P
R

E
S
R

G
P
R

F
R
C
P

R
T
C

R
A
T
C

N
A
T
C

F
C

F
C

F
T

F
T
T

S
C

F
R
P

S
T
T

F
T
R
R

S
S
A

S
T

S
T
R
R

S
T
R
R

R
R
S

R
R
R

R
R
D

F
T
R
R

S
S
A

C
S
P
ID

C
S
B
ID

R
B
ID

S
C
U
C

G
B
ID

LC
S
H

LC
S
P

A
B
ID

H
C
S
H

H
C
S
P

N
S
A

F
C
U
C

R
N
C

R
O
C

F
S
A

S
A
P
P

R
A
P

C
A
P
R

U
R
A
P

A
R
A
P

P
B
A
P

E
C
P
R

S
A
V

B
A
V

A
A
V

F
A
V

C
A
P
A

R
C
A
P

F
A
P
P

S
C
H
P
P

M
C
A

A
C
A

S
C
H
C

C
B
C
H

S
N

C
IB
C

H
S
N

C
A
C
H

S
N

F
C
H
C

P
C
H

E
C
H
R
R

C
C
H
R
A

F
C
H
P
P

R
C
H

F
C
P
P

F
A
P
P

F
C
H
P
P

F
P
P

S
R
P

F
S
A

S
P
V

S
C
P
P

S
A
P
P

S
C
H
P
P

S
C
P
P

C
C

A
C

C
IB
S
N

C
B
S
N

C
A
S
N

C
P
C

E
C
R
R

C
C
R
A

R
C
C
P

F
C
P
P

...

...

O
pe

n
an

d
re

gi
st

er

tr
an

sa
ct

io
n

C
he

ck
 s

en
de

r

P
ro

ce
ss

 c
as

h
pa

ym
en

t

P
ro

ce
ss

 c
he

qu
e

pa
ym

en
t

P
ro

ce
ss

 e
le

ct
ro

ni
c

pa
ym

en
t

C
he

ck
 r

ec
ei

ve
r

T
ra

ns
fe

r
m

on
ey

N
ot

ify
 a

nd
 c

lo
se

 t
ra

ns
ac

ti
on

Fig. 14.2: Running example: final valid SESE-decomposition.
The substructures are named according to Figure 14.1.

144 14 Decomposing Conformance Checking in Practice

3. Given the size of the process, and in order to better understand the fitness viola-
tions occurred in such a large process, the bank decides to check fitness using the
decomposition technique illustrated in this book. The decomposition technique
based on SESE regions is used to automatically decompose the overall model
into subprocesses. In particular, a valid decomposition where components have a
size of at most 60 nodes is derived. Finally, the decomposition is post-processed
by merging some of the SESE regions in order to reach the final decomposi-
tion shown in Figure 14.2 (which depicts the full process): eight of the proposed
subnets (indicated by the gray rectangles) correspond to the eight subprocesses
identified in Figure 14.1, and the ninth subnet contains all the trivial connections
between subprocesses (represented outside the rectangles).

4. Once the fitness analysis is performed, two major violations are detected:
First, the transaction process defines that, whenever a client executes a payment
in cash, the serial numbers must be checked. The banking regulation states that
serial numbers must be compared with an external database governed by a recog-
nized international authority (“Check Authority Serial Numbers CASN”). In ad-
dition, the bank incorporates two complementary checks: an internal bank check
(“Check Bank Serial Numbers CBSN”), and a check among the databases of the
bank consortium to which this bank belongs to (“Check Inter-Bank Serial Num-
bers CIBSN”). However, as it is shown in Figure 14.3, the analysis reveals that
at a given point, due to technical reasons (e.g., peak hour network congestion,
malfunction of the software, deliberated blocking attack, etc.), the external check
CASN was not performed, contradicting the modeled process, i.e., all the running
instances of the process involving cash payment proceeded without executing the
required CASN activity.

SCPP CC AC

CBSN

CIBSN

CASN ⚠

CPC

CCRA

ECRR

RCCP FCPP

Fig. 14.3: Fitness violation where “Check Authority Serial Numbers CASN” is
skipped.

The second major violation is detected on the check receiver stage of the pro-
cess, where the model establishes two steps to be performed sequentially: first, a
preliminary profiling analysis (“Start Receiver Pre Profiling SRPP”) is executed
over the receiver in order to evaluate and establish its potential risk (“Evaluate
Pre Profiling EPP”). Only then, a complete background check is performed over
the receiver, where this check can either be more casual (“Start Low Risk Re-
ceiver Processing SLRRP ”) or thorough (“Start High Risk Receiver Processing
SHRRP”) depending on the potential risk detected on the preliminary profiling.
However, the analysis reveals that the evaluation of the receiver is executed with

14.2 Experimental Results 145

an unfinished preliminary profile check, as it is depicted in in Figure 14.4. This
could be produced by the presence of an inexperienced bank employee, malevo-
lence, or simply a badly implemented bank evaluation protocol.

SRP

SRPP

RIBPC

REPC

RBPC

FRPP ⚠

REPP

EPP ...

Fig. 14.4: The preliminary profile check for receivers is skipped (SRPP to FRPP).

5. Once the analysis is concluded, and given that the process model describes the
process as it should be executed, the bank decides to analyze in detail the anoma-
lous parts of the process and the people involved, and eventually take the neces-
sary countermeasures on the process execution.

14.2 Experimental Results

In this section we provide experimental results to demonstrate that the proposed
decomposition approach provides significant performance gains and improved di-
agnostics.

Conformance Diagnosis

The goals of decomposed and non-decomposed (i.e., [18]) approaches are slightly
different: while [18] aims for a global conformance, the decomposed approach aims
for an optimal conformance of each component. However, the decomposed ap-
proach proposed in this book makes it possible to identify conformance problems
at localized regions. This leads to a better understanding of the causes, aids the di-
agnosis of conformance problems in large systems, and pinpoints the subprocesses
that are producing them. In order to illustrate this contribution, we analyze the fit-
ness results per component for the running example of Chapter 13 and the dataset
bpm2013 using the proposed decomposed approach.

We use a circumference to graphically depict the fitness evaluation of a decom-
position by means of a colored gradient for each component. All components of the
decomposition are placed in different positions of the circumference.

146 14 Decomposing Conformance Checking in Practice

S'1

B1

B2

S'2

S'3

B3B4

S'4

B5

B6

S'6

Fig. 14.5: Fitness visualization for the running example.

Let us use the running example of this chapter to illustrate the graphical visual-
ization used.

Fig. 14.6: Fitness results per components for benchmark bpm2013.

As it is shown in Figure 14.5, for each component, a line from the center of
the circumference indicates its fitness. If the line reaches the perimeter, the fitness
is 1.0 (components S′1, B1, B2, S′2, B3, S′4, B5, S′6), while the line for components
with fitness anomalies does not reach the perimeter. To show intuitively the fitness,
a color gradient is included in the circumference: the fitness ranges from red/dark
(fitness problems close to 0.0) down to green/light (perfect fitness of 1.0).

Figure 14.6 shows the results of the fitness diagnosis of each one of the models of
the dataset bpm2013: for model prAm6, 7 components have fitness anomalies, with
diverse severity (7 dents on the circumference) .2 On the other hand, all components
in prBm6 are perfectly fitting. This contrasts with prCm6, where fitness problems
are clearly spread over multiple components. The other of dataset model-log pairs
have fitness anomalies in just a few components. This supports the approach taken
in this book, i.e., the diagnostics help to focus on the problematic parts while at the
same time provide performance gains.

2 When no fitness anomalies exist, we do not explicitly label components in the visualization.

14.2 Experimental Results 147

Performance Improvements

This experiment is designed to validate the applicability, in terms of performance,
of the decomposed alignment-based approach when facing large processes.

For this analysis we use the bpm2013 dataset3. The dataset contains pairs of
large models and logs with different levels of fitness (ranging from perfectly fitting
as prBm6, to pairs with fitness of 0.57 – like prCm6), according to the fitness met-
ric in [18]. The analysis includes the computation time of checking fitness with four
different approaches, including the Decomposed Conformance (new DC) proposed
in this book using a k to decompose of 25 and 50 respectively (cf. Algorithm 12.1).
For comparison reasons the analysis also includes the results of the old decompo-
sition approach (old DC) presented in [64, 63], and the non-decomposed results of
[18] technique (non decomposed).

Figure 14.7 shows the results of the experiment. The chart illustrates perfectly
the vast difference, in computation time, between the presented approach and the
non-decomposed alternative. The non-decomposed approach remains competitive
for the less complex and highly fitting models (e.g., prAm6 and prBm6). Because of
the component creation overhead the non-decomposed approach may even be faster
for simple and well-fitting models as noted in [63]. For example, for prAm6 and
prBm6 the non-decomposed approach is faster than the implementation presented
in [63]. This is no longer the case for the new decomposed implementation which is
outperforming the earlier approaches. In some cases, the difference could reach two
orders of magnitude (e.g., from 15 to 3566 seconds in prEm6). More importantly,
the proposed approach is able to tackle and provide conformance information for
those cases (prDm6, prFm6 and prGm6) where [18] is not able to provide a result
within a period of 12 hours.

0

200

400

600

800

1000

1200

prAm6 prBm6 prCm6 prDm6 prEm6 prFm6 prGm6

ti
m

e
 (

s)

new DC (25) new DC (50) old DC (50) non decomposed

n/a n/a

1667
1386

2743

n/a

3566

Fig. 14.7: Comparison of computation time among different approaches: the new
decomposed conformance checking technique (two variants: one which limits the
maximum size of each component to k = 25 and the other to k = 50), the old de-
composed conformance checking technique [63], and the approach without decom-
position.

3 http://dx.doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49

http://dx.doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49

148 14 Decomposing Conformance Checking in Practice

0

20

40

60

80

100

16 21 26 31 36 41
tim

e
(s
)

averagetracelength

dec(25) fit dec(25)noise non_decfit non_decnoise

pr-1908

0

200

400

600

800

1000

11 21 31 41 51

tim
e
(s
)

averagetracelength

dec(25) fit dec(25)noise non_decfit non_decnoise

pr-1151

Fig. 14.8: Comparison of computation time among different trace lengths.

Trace length and grouping

This set of experiments was conducted to study the effect that the decomposed ap-
proach proposed in the book has on computation time, and to compare it with the
non-decomposed approach.

The conformance analysis was performed over the models and logs of the is-
bpm2013 dataset4 which contains logs of different trace lengths for large processes.
For each model, four logs are considered; each log has a different average trace
length (e.g., pr1908-m18-l1 has an average trace length of 18, while pr1908-m41-
l4 has average length of 41). Each one of these four logs has been generated from
simulating the same model and using the same parameters (except for the lengths of
the traces), and all them are completely fitting. Additionally, another four logs for
each model are considered, with the same characteristics, but containing noise (and
hence being non-fitting).

Figure 14.8 shows the results for two models included in the dataset: pr-1908 and
pr-1151, given that the results are similar for the rest of models-logs in the bench-
mark. For each model, the chart contains the computation times of each alternative
: decomposed using k of 25 with noisy logs (dec(25) noise) and fitting logs (dec(25)
fit), and the results for the same noisy (non dec noise) and fitting logs (non dec
noise) using the original non-decomposed approach in [18].

4 http://dx.doi.org/10.4121/uuid:b8c59ccb-6e14-4fab-976d-dd76707bcb8a

http://dx.doi.org/10.4121/uuid:b8c59ccb-6e14-4fab-976d-dd76707bcb8a

14.2 Experimental Results 149

The first conclusion that arises from the experiments refers to the processes with
noise – the most plausible assumption in a real world scenario. Figure 14.8 shows
that, when the log has short traces, both decomposed and non-decomposed align-
ment checking perform good. However, once the length of the traces grows, it has
a severe effect on the non-decomposed performance. This was to be expected, i.e.,
the more activities in a trace, the more difficult it is to compute the alignment. On
the other hand, the decomposed approach performs both quickly and with a near-to
constant growth (and eventually constant at some point). This is caused by the effect
of the decomposition on the computation time (as has been shown in Figure 14.7),
but also due to the grouping (as explained below).

The current implementation of the alignment-based conformance checking in-
cludes the grouping optimization: when the algorithm analyzes a trace, it first checks
if it has already computed an alignment for an identical trace in the same SESE com-
ponent. If this is the case, it re-uses the previously computed alignment, thus reduc-
ing the time significantly. The effect of this optimization for the non-decomposed
scenario depends on the case at hand: the likeliness of identical cases falls as traces
get longer, thus a decomposed model has less likely identical traces. The smaller is
the component (e.g., k = 25), the fewer activities it contains, and therefore, the more
likely it is to find a trace already seen before (once the original trace has been pro-
jected onto the component). The effects of the grouping are perfectly reflected by
the fitting cases (fit) of Figure 14.8 where the decomposed approach performs faster
than the non-decomposed alternative even in a fitting scenario. This is remarkable
because alignments can be created easily in this case.

Chapter 15
Diagnosing Conformance

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

In conformance analysis, computing the conformance metrics is as important as
the diagnosis and understanding the cause of the conformance problems. Similar to
a map, this chapter provides mechanisms to zoom-in and zoom-out on the confor-
mance analysis, and to detect what parts of the model represent the conformance
problems. This technique complements the decomposed approaches presented in
previous chapters.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 151–161, 2016.
DOI: 10.1007/978-3-319-49451-7_15

152 15 Diagnosing Conformance

15.1 Introduction

The main goal of decomposed conformance checking techniques is to alleviate the
time required to analyze conformance, especially for complex alignment-based ap-
proaches. This is the case of the approach presented in Chapter 12. However, in
conformance analysis, computing the conformance metrics is as important as the
diagnosis and understanding the cause of the conformance problems. Approaches
that decompose processes into components provide a basic mechanism to diagnose
conformance, assessing which components are problematic – especially those tech-
niques that decompose the process into meaningful components such as SESEs [62]
or passages [8]. This chapters goes a step further in that direction, and provides
additional mechanisms to diagnose conformance problems based on decomposed
processes.

Comparing a process model with a map is a recurrent metaphor in process min-
ing [6]. A map represents a city, like a models represents a process. There is not
”a” map, but a set of maps for different purposes, for example street maps, traffic
congestion maps, or real state maps. Maps can be decomposed, for example, into
provinces, cities, or districts. Information in maps can be grouped, to indicate for
example what areas concentrate most crimes, and they can allow zooming-in and
zooming-out to analyze this information at different levels. Figure 15.1 shows an
example of a real estate map which indicates the areas with more rent offers and is
able to refine geographically this information with zoom.

Fig. 15.1: Interactive real estate map from www.portalinmobiliario.com, with
grouping by proximity and zoom-in zoom-out functionality.

This chapter translates some of this map functionalities to decomposed confor-
mance checking. In Section 15.2 we define a topological relationship between com-
ponents, and use this relation to define close areas with conformance problems.
Section 15.3 defines a hierarchy among components, opening the door to explore

www.portalinmobiliario.com

15.2 Topological Conformance Diagnosis 153

the conformance results at multiple levels. Moreover, the section proposes several
refinements over the hierarchy that helps the conformance diagnosis. Finally, Sec-
tion 15.4 provides some experimental results, and Section 15.5 concludes the chap-
ter.

15.2 Topological Conformance Diagnosis

A valid decomposition, presented in the previous chapter, is a collection of subnets
that may be related to each other through the sharing of transitions, i.e., two subnets
are related if they share a transition. The topology of a valid decomposition is an
undirected graph where the vertices denote subnets and the edges denote the sharing
of transitions.

Definition 15.1 (Topology of a Decomposition) Let D = {SN1,SN2, . . .SNn} be a
valid decomposition, where SNi = (PNi,Mi

I ,M
i
F) and PNi = (Pi,T i,F i). The topol-

ogy of decomposition D is defined as the undirected graph TD = (D,C) such that two
components are connected if they share any transition, i.e., C = {{SNi,SN j}|1≤ i<
j ≤ n∧T i∩T j 6= /0}.

In the general definition of topology over a valid decomposition the relations
remain undirected, i.e., two subnets sharing the same transition are connected by
an undirected edge. However, in the specific case of a valid decomposition derived
from SESEs, defined in Chapter 12, this definition can be extended to include the
concept of direction: the transition being the exit of the SESE is considered the
source of the edge, while the entry is the target. Bridges can have multiple entry and
exit nodes, but again we can derive the direction connections among bridges and
SESEs.

Definition 15.2 (Topology of a SESE Decomposition) LetD= {S1, . . .Sn} andD′
= {S′1, . . .S′n,B1, . . .Bk} be a SESE decomposition before and after applying bridg-
ing. Let {p1, . . . , pk} be the boundary places inD. Let DD′ = {SNS′1 , . . .SNS′n ,SNB1 . . .
SNBk} represent the decomposition constructed from D′. The topology of DD′ is de-
fined as the directed graph TDD′ = (DD′ ,C) such that C = {(SNS′i ,SNS′j)|1 ≤ i, j ≤
n ∧ (y,x)∈ Si ∧ (x,z)∈ S j} ∪ {(SNS′i ,SNB j)|1≤ i≤ n ∧ 1≤ j≤ k ∧ (y, p j)∈ Si}
∪ {(SNB j ,SNS′i)|1≤ i≤ n ∧ 1≤ j ≤ k ∧ (p j,y) ∈ Si}.

Note that the topological graph has as many vertices as the nets in D′, but some
of the arcs in this graph (those regarding connection to bridges) are defined over
the original SESE decomposition D, e.g., (y, p j) ∈ Si refers to an arc in the original
SESE and is used to infer a directed connection from SNS′i to SNB j .

One of the features of the topology is to aid the visualization of a valid decompo-
sition. For example, let us consider the valid decomposition in Figure 15.2 (a slight
modification of the model in Figure 12.1 in Chapter 12). The decomposition is the
result of applying a 4-decomposition over the model (i.e., SESEs with at most 4

154 15 Diagnosing Conformance

(a) decomposition and bridging

(b) topological graph

t4
t5

t6p6
t9

p9

t7

t8

(c) topology enhanced with fitness for the trace t1 t3 t4 t5 t7 t7 t9

S1

2S

3S

B1

S5

S6

2B S8 S1

2S

3S

B1

S5

S6

2B S8

'

'

'

'

'

' '

'

' '

'

'

t1
p1

t1
t2

t4p2 p4

t1
t3

t4

p3 p5

t5
p7

t7

t6
p8

t8
t9

p10

S1'

2S'

3S'

B1
S5'

S6'

2B
S8'

Fig. 15.2: Example of valid decomposition and its topology

edges: S′1,S
′
2,S
′
3,S
′
5,S
′
6,S
′
8) and followed by the bridging (resulting in two bridges,

B1 and B2, corresponding with the two boundary places p6 and p9)1. The corre-
sponding topology is shown in same Figure 15.2b.

Besides simply showing the connections among subnets, the topology can be
enhanced with other information about the components and their characteristics. For
instance, bridges can be denoted by circles having dotted borders and SESEs can be
denoted by circles having solid borders. Moreover, the size of the nodes in the graph
is directly related with the size of the corresponding subnets, i.e., a subnet with many
arcs is depicted using a larger circle compared to subnets with fewer arcs. Given the
final goal of this thesis (i.e., conformance analysis), a particular interesting case is to
enhance the topology with conformance information. For example, let us consider
the trace σ = t1t3t4t5t7t7t9. When we check fitness in the subnets of decomposition
DD′ = {SNS′1 , . . .SNS′8 ,SNB1 ,SNB2}, we detect the following fitness anomalies: in
SNS′2 , t4 is fired without firing t2; in SNS′5 , t7 is executed twice, but this requires t5
to be fired twice as well; finally, in the bridge SNB2 , t7 is fired twice, but t9 only
once, leaving a token remaining in p9. This information can be used to enhance
the topology. As shown in Figure 15.2c the vertices which have problems can be
depicted in color (here S′2, S′5 and B2).

Although the topology is an important aid for the process diagnosis by itself, it
can also guide further analysis. For instance, the topological graph enhanced with
conformance information can be used to identify maximal process fragments with
fitness problems. This allows us to focus on the problematic parts of a model, dis-
carding the parts without any fitness problems. Algorithm 15.1 describes a proce-
dure that is based on detecting connected components (Cc) on the graph induced
by the non-fitting vertices. First, the topological graph (TD) is filtered, leaving only
non-fitting vertices (V). Then, the weakly connected components (Cc) are detected:

1 Note that the original trivial SESE S4 that corresponds to the arc (t4, p6) has disappeared once
the bridging has been done, i.e., the arc is now in B1. The same happens for the original trivial
SESE S7 corresponding to the arc (p9, t9).

15.2 Topological Conformance Diagnosis 155

1) a random node v1 is chosen, 2) all nodes {v1, . . .vn} weakly connected (i.e., con-
nected vertices without considering the direction of the edges) with v1 are computed
using a depth-first search exploration and they constitute a new connected compo-
nent, and finally 4) {v1, . . .vn} are removed from the graph and the exploration of
connected components continues. For each connected component, we project the
elements of the original net that they refer to. Note that this algorithm prioritizes the
connectivity among vertices resulting in weakly connected components. However,
alternative versions of the algorithm that yield strongly connected components are
possible. For instance, given the example of Figure 15.2c, two connected compo-
nents are found as shown in Figure 15.3: one corresponding to SNS′2 and the other
to the union of SNS′5 and SNB2 .

t5 t9
p6 p9p7

t7

t8

t1 t4
p4p2

t2

S5 2B+

2S'

'

Fig. 15.3: Examples of non-fitting weakly connected components.

Algorithm 15.1 Non-Fitting Weakly Connected Components Algorithm
function NFWCC(TD,V) . V is non-fitting vertices

Cc = /0
remove from TD: . Graph induced by V
-all arcs c = {x,y} such that x,y 6∈V
-all vertices z 6∈V

while TD has vertices do
v1← select random vertex on TD
{v1, . . .vn}← get vertices weakly connected with v1 using Depth-first search
remove {v1, . . .vn} from TD
Cc =Cc∪

⋃n
1 vi

return Cc

The topological graph enhanced with conformance information can also be used
to create one complete subnet that includes all non-fitting subnets of the decom-
position, i.e., a connected set of vertices V containing all the non-fitting vertices
Vnf . Algorithm 15.2 illustrates the heuristic-based approach proposed, based on the
greedy expansion of the largest non-fitting connected components, to compute the
complete non-fitting subnet. Initially, V contains the non-fitting vertices Vnf , and G
denotes the graph induced by V . The goal of the algorithm is to have all the vertices
in V connected, i.e. G be connected. If this is not the case, the algorithm detects the

156 15 Diagnosing Conformance

two largest connected components (c1 and c2) of G, and then computes the shortest
path ({v1 . . .vn}) between any vertex in c1 and any vertex in c2. Finally, {v1 . . .vn}
are included to V , and it is checked again if the induced graph G is connected. Given
the example of Figure 15.2c, the net resulting (shown in Figure 15.4) contains the
union of the subnets SNS′2 , SNS′4 , SNB1 , SNS′5 and SNB2 .

S4S2

t1 t4
p4p2

t2 t5 t9
p6 p9p7

t7

t8t8
S5 2B+ B1+ + +' ' '

Fig. 15.4: Example of a non-fitting subnet.

Algorithm 15.2 Non-Fitting Subnet Algorithm
function NFN(TD,Vnf) . Vnf is non-fitting vertices

V ← Vnf
G← graph induced by V on TD
while G is not connected do

c1← get the 1st largest conn. comp. of G
c2← get the 2nd largest conn. comp. of G
{v1 . . .vn}← shortest path vertex(TD,c1,c2)
V =V ∪{v1 . . .vn}.
G← graph induced by V on TD

return Petri net induced by V

15.3 Multi-level Conformance Diagnosis and its Applications

So far the analysis of the conformance was always performed using a complete
decomposition of the model. However, for detailed process diagnosis it is important
to also be able to do a more focused analysis. This section presents three approaches
to achieve this: (1) stand-alone checking, (2) multi-level analysis, and (3) filtering.

15.3.1 Stand-alone Checking

First we consider the problem of analyzing a selected subprocess in isolation.
Clearly, assumptions on the subprocess and its context must be defined in order to
perform such an isolated conformance check. The conformance results obtained are
strongly correlated with the assumptions considered, and hence the analysis of the
model properties and domain knowledge becomes an essential part, e.g., whether

15.3 Multi-level Conformance Diagnosis and its Applications 157

a place has a bound on the number of tokens, or the number of activations of the
subprocess within a trace.

Let us show an application of the stand-alone checking for the typical case of
well-structured process models, that can easily be modeled using the subclass of
safe workflow nets[64]. Given a SESE S obtained from a decomposition, one can
apply the following steps to conduct a local diagnosis of S:

1. Workflowing the SESE: In order to have a clear starting and ending point for the
subprocess represented, re-define the net derived from S. In other words, given a
SESE S, define the net derived from S in terms of a workflow net, with an starting
place (start) and a final place (end). By construction, a SESE has both an entry
(i) and an exit (o) node. The start corresponds with i if i is a place. However,
when i is a transition, we define start to be an artificial place and we connect it
with i. Similarly for end and o.

2. Initial and Final Marking: Given the workflow-net from the previous step, de-
termining a plausible initial marking becomes straightforward, i.e., due to the
safeness assumption of safe workflow nets, we consider a single token in the
start in order to enable the execution of the subprocess. Similarly for the final
marking.

3. SESE activations: the number of potential activations of a SESE within a case
must be determined. In the case where it is always one, the SESE is left as is.
However, in the case where it can be executed more than once (e.g., the SESE
is inside some loop in the model), the net in the previous step is short-circuited,
using a silent transition between end and start. Finally, it can also happen that a
SESE may be not executed in a trace. In this last case, a silent transition between
start and end avoiding the SESE content will be used. Determining if a suprocess
can be executed several times is a complex matter. In [64], it is proposed the use
of Petri net structural theory (minimal T-invariants [82]) as a best effort strategy
for estimating repetitive behavior.

15.3.2 Multi-Level Analysis

In this section we propose to combine the stand-alone checking presented above
with the RPST to achieve conformance analysis in a hierarchical manner. RPST
nodes enriched with conformance information enable analysis at different degrees
of granularity and independence, similar to zooming in and out using online maps.
Note that, by construction, the root of the RPST is the overall net. Therefore, any
hierarchical analysis that involves the conformance checking of all the RPST nodes
will require checking conformance on the original net (plus the checks of the rest of
nodes), i.e., the computation time for a exhaustive hierarchical analysis will always
be, by definition, greater than checking conformance on the overall net. For complex
and time-consuming cases, this problem can be alleviated by limiting the size of the
nodes to check or by using less expensive replay-based conformance techniques like
[77, 28]. The latter techniques use heuristics in order to deal with unfitting situations.

158 15 Diagnosing Conformance

15.3.3 Filtering

The study presented in [64] suggest that there are three main differences between
manual hierarchical decomposition and the one provided by the RPST-based decom-
position: (1) analysts prefer to discard small components, (2) analysts prefer to not
consider similar components, and (3) analysts prefer to have a hierarchy with a lim-
ited number of levels. Additionally, in this paper we point out a fourth difference: (4)
analysts prefer to base hierarchies on other (non-control-flow) perspectives. In the
remainder of this section we propose filtering techniques to allow for RPST-based
decompositions closer to hierarchical decompositions preferred by analysts.

- Small components: Small components of the RPST can be removed by filtered
using a minimal size threshold.

- Similarity: In order to reduce the redundancy of components and the unnecessary
growth of the hierarchy, a similarity metric between parent-child components is
defined, together with a threshold that determines the similarity frontier that will
determine when two components are considered essentially the same. The pro-
posed metric for estimating the similarity between a node S and its single child
S′ is based on two factors: size and simplicity. The size factor is related with the
number of arcs of S not included on S′. The more arcs shared by both compo-
nents, the more similar they are. For instance, considering the component S1 of
Figure 15.5a, all its arcs are included in S2 except two, i.e., S2 is in essence S1.
Therefore, a detailed conformance diagnosis over S1 may be sufficient for un-
derstanding both subprocesses. The simplicity factor refers to the simplicity of
part of the parent S not included on the child S′. When such part defines a simple
behavior (e.g., the strictly sequential behavior of S3 not included in S4, in Fig-
ure 15.5b), the analysis and understanding of the parent may again be enough. On
the other hand, when the behavior not included in S′ contains complex control-
flow constructs (e.g., mixtures of concurrency and choice) it may be more advis-
able to analyze both subprocesses. An example similarity metric is formalized as
follows.

Definition 15.3 (Similarity Metric) Let SP = (VP,FP) be an RPST node, and
let SC = (VC,FC) be its only child. Let size define the difference on size between
them, i.e., size = |FC|/|FP|. Let FO = FP \FC be the set of non-intersecting arcs.
Let F∗O be the arcs in FO that have a source vertex with only one outgoing edge,
and a target vertex with only one incoming edge, i.e., F∗O = {(x,y) ∈ FO|(x,v) ∈
FO| = 1 ∧ |(w,y) ∈ FO| = 1}. Let simplicity define the simplicity of the non-
intersecting arcs, i.e., simplicity = |F∗O|/|FO|. The similarity between SP and SC
is the harmonic mean between size and simplicity:

similarity = 2 · size · simplicity
size+ simplicity

Although the similarity evaluation is restricted to nodes with only one child,
our experimental results show that the reduction achieved on the RPST may be
significant (especially after applying a small nodes filtering).

15.4 Experimental Results 159

(a) similar size among SESEs

S2SS1

S3 S4S

(b) high simplicity among SESEs

Fig. 15.5: Example of cases with high similarity between nested SESEs.

- Multi-perspective filtering: The filtering presented until now is based on only
structural net properties and does not take into account other perspectives (e.g.,
data, costs, roles, departments). However, there may be situations where we
would like to focus the analysis only on subprocesses which satisfy certain do-
main conditions, e.g., an analyst may want to focus on the subprocesses that
involve tasks executed in a particular department. Therefore, we need to support
filtering based on user-requirements and focus the analysis on the subprocesses
involving activities relevant from the selected viewpoint. Such filtering is not
limited to activities and may involve other perspectives (e.g., resources, actors,
or costs), determining the activities they are connected with, and using them for
filtering.

15.4 Experimental Results

The set of experiments of this section is designed to illustrate the effects of some of
the techniques proposed for process diagnosis. In particular, the Non-fitting Subnet
Algorithm (cf. Algorithm 15.2), and the techniques of filtering the RPST based on
small components and similarity (cf. Section 15.3.3). Table 15.1 shows the applica-
tion of the NFN algorithm over the benchmark bpm20132, with components of size
at most 50. For each model (containing P places and T transitions) the table pro-
vides the size of the minimal net containing all the non-fitting components, i.e., the
number of places and transitions (|P| and |T |), and the number of vertices |V | used
to create the net. The table illustrates the benefits of the proposed algorithm to detect
and isolate the fitness mismatches. In cases where the fitness problems are spread
all over the whole model, the resulting net is almost the original net (e.g., prCm6).

2 http://dx.doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49

http://dx.doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49

160 15 Diagnosing Conformance

However, when the fitness problems are local, the net that encloses all problem spots
may be orders of magnitude smaller than the original net, thus easing the diagnosis.

Dataset NFN
P T |V | |P| |T |

prAm6 363 347 14 15 14
prCm6 317 317 113 315 317
prDm6 529 429 31 55 52
prEm6 277 275 31 29 40
prFm6 362 299 7 27 25
prGm6 357 335 5 34 29

Table 15.1: Results of NFN algorithm.

The second experiment performed illustrates the effects of the simplification
techniques over the RPST. Figure 15.6 reflects the results for one of the models
(prCm6). The charts show the number of nodes of the original RPST, after filtering
small components (< 10) and then merging by similarity (> 0.8). The number of
nodes are distributed by levels of depth in the RPST tree, i.e., the distance with the
root represented as the level 1. The chart clearly reflects the difference between the
number of components on the original RPST and the one after removing the small
components, i.e., most of the RPST nodes are small. After removing small nodes
the depth of the RPST only decreases two levels (from 14 to 12). On the other hand,
when merging on similarity is applied over the filtered RPST, though the number
of nodes is not reduced drastically, there is a significant reduction in the number of
levels in the tree(from 13 to 6). This provides a hierarchical decomposition with less
redundancy and it is more aligned with the human perception [64].

0 100 200

1

3

5

7

9

11

13

nodes

le
ve

ls

RSPT

0 20 40

1

3

5

7

9

11

13

nodes

le
ve

ls

small

0 20 40

1

3

5

7

9

11

13

nodes

le
ve

ls

similarity

Fig. 15.6: Results of filtering by small (< 10) and merging by similarity (> 0.8)
over the model prCm6.

15.5 Summary 161

15.5 Summary

Decomposition techniques in conformance checking provide an efficient mecha-
nism to identify and locate conformance anomalies. This chapter went a step further,
using decomposition techniques to provide other mechanisms for the diagnosis of
conformance problems. The chapter proposed a topological relation between com-
ponents, used to identify closely connected components with conformance prob-
lems. Furthermore, the chapter defined a hierarchy of components, opening the door
to a zoom-in zoom-out analysis of the conformance.

Chapter 16
Data-aware Processes and Alignments

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

Previous chapters focused on the control-flow perspective of the processes. This
chapter explores the extension of the concepts of conformance and alignments be-
yond the control-flow perspective. In particular, the chapter presents conformance
checking for data-aware processes, i.e., process with both control-flow and data per-
spectives. In the next chapter, we will adapt this approach to handle large processes.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 163–172, 2016.
DOI: 10.1007/978-3-319-49451-7_16

164 16 Data-aware Processes and Alignments

Credit
Request

(a)

Verify

 (b)

Assessment

(c)

Positive
Vefication

Register
Negative

Verification (d)Negative
Verification

Inform Requester

(e)

Renegotiate

Request(f)

Register
Negative

Request (g)

Negative
Decision

Open Credit

(h)Positive
Decision

Amount (A)

Interest (I)

Decision (D)

Verification (V)

 0.1 Amount < Interest < 0.2 Amount

The renegotiated amount is
smaller than the original
amount

Decision = Negative

Fig. 16.1: Example of a (simplified) process to request loans. The dotted arcs going
from a transition to a variable denote write operations; the arcs towards a transition
denote read operations, i.e. the transition requires accessing the current variables’
value. Each transition is abbreviated as a lower-case letter (e.g. a) and each variable
is represented as a upper-case letter (e.g. A). The abbreviations are shown in brackets
after the name of the transitions or variable names.

16.1 Introduction

Most of the work done in conformance checking in the literature, and the one pre-
sented in this book so far, focuses on the control-flow of the underlying process, i.e.
the ordering of activities [77, 18]. In a data-aware process model, each case, i.e. a
process instance, is characterized by its case variables. Paths taken during the ex-
ecution may be governed by guards and conditions defined over such variables. A
process model specifies the set of variables and their possible values, guards, and
write/read actions. Since existing conformance checking techniques typically com-
pletely abstract from data, resources, and time, many deviations remain undetected.
Therefore, the event log may record executions of process instances that appear fully
conforming, even when it is not the case. Rigorous analysis of the data perspective
is needed to reveal such deviations.

Let us consider the process that is modeled as BPMN diagram in Figure 16.1. It
models the handling of loans requests from customers. It is deliberately oversimpli-
fied to be able to explain the concepts more easily. The process starts with a credit
request where the requestor provides some documents to demonstrate the capability
of paying back the loan. These documents are verified and the interest amount is
also computed. If the verification step is negative, a negative decision is made, the
requestor is informed and, finally, the negative outcome of the request is stored in the
system. If verification is positive, an assessment is made to take a final decision. In-
dependent of the assessment’s decision, the requestor is informed. Moreover, even
if the verification is negative, the requestor can renegotiate the loan (e.g. to have

16.1 Introduction 165

lower interests) by providing further documents or by asking for a smaller amount.
In this case, the verification-assessment part is repeated. If both the decision and
verification are positive and the requestor is not willing to renegotiate, the credit is
opened. Let us consider the following trace:1

σex = 〈(a, /0,{(A,4000)}),(b,{(A,4000)},{(I,450),(V, false)}),(c,{(V, false)},
{(D, true)}),(e, /0, /0),(f,{(A,4000)},{(A,5000)}),(b,{(A,5000)},{(I,450),
(V, false)}),(d,{(V, false)},{(D, false)}),(e, /0, /0),(h,{(D, true)}, /0)〉

Seen from a control-flow perspective only (i.e. only considering the activities’ or-
dering), the trace seems to be fully conforming. Nonetheless, a number of deviations
can be noticed if the data perspective is considered. First of all, if activity c is ex-
ecuted, previously activity b could not have resulted in a negative verification, i.e.
V is set to false. Second, activity f cannot write value 5000 to variable A, as this
new value is larger than the previous value, i.e. 4000. Furthermore, if the decision
and verification are both negative, i.e. both V are D are set to false, then h cannot
be executed at the end.

The identification of non-conforming traces clearly has value in itself. Nonethe-
less, organizations are often interested in explanations that can steer measures to
improve the quality of the process. Alignments (cf. Chapter 9) aim to support more
refined conformance checking. An alignment aligns a case in the event log with an
execution path of the process model as good as possible. If the case deviates from
the model, then it is not possible to perfectly align with the model and a best match-
ing scenario is selected. Note that for the same deviation, multiple explanations can
be given. For instance, the problem that h was executed when it was not supposed
to happen can be explained in two ways: (1) h should not have occurred because V
and D are both set to false (“control-flow is wrong”) and (2) V and D should both
have been set to true because h occurs (“data-flow is wrong”). In order to decide for
the most reasonable explanation, costs are assigned to deviations and we aim to find
the explanation with the lowest cost. For instance, if assigning a wrong value to V
and D is less severe than executing h wrongly, the second explanation is preferred.
The seminal work in [18] only considers alignments in the control-flow part, thus
ignores the data-perspective aspect of conformance.

As we detail in Section 16.2.3, finding an alignment of an event log and a data-
aware process model is undecidable in the general case. However, to make the prob-
lem decidable, works [50, 53] put forward the limitation that guards need to be linear
(in)equations. These works also show that, even with that limitation, the problem of
finding an alignment of an event log can become intractable since the problem’s
complexity is exponential on the size of the model, i.e. the number of activities and
data variables.

1 Notation (act,r,w) is used to denote the occurrence of activity act that writes and reads variables
according to functions w and r, e.g., (b,{(A,4000)},{(I,450),(V, false)}) is an event correspond-
ing to the occurrence of activity b while reading value 4000 for variable A and writing values 450
and false to variables I and V respectively. (e, /0, /0) corresponds to the occurrence of activity e
without reading/writing any variables.

166 16 Data-aware Processes and Alignments

16.2 Data-aware Processes

In the previous chapters, all the definitions and theory presented focus on the
control-flow perspective of the processes. De Leoni, Mannahardt, Reijers, and van
der Aalst extended the existing process mining theory to incorporate the data-
perspective [50, 51, 53] In this section we present those concepts. In particular, this
section presents Petri nets with data as data-aware process model notation, event
logs with data, and the relation between models and logs.

16.2.1 Petri nets with Data

n1 n2

n3 n5 n6

Credit Request

Register Negative
Verification

Inform Requester

Renegotiate

Open Credit Loan

Assessment
Interests

Amount

Verification

Decision

Register Negative RequestRegister Negative Request

n4n4

VerifyVerify

Fig. 16.2: Pictorial representation of a Petri net with Data that models the process
earlier described in terms of BPMN diagram (cf. Figure 16.1). Places, transitions
and variables are represented as circles, rectangles and triangles, respectively. The
dotted arcs going from a transition to a variable denote the writing operations; the
reverse arcs denote the read operations, i.e. the transition requires accessing the
current variables’ value.

Petri nets presented in previous chapters are extended to incorporate data. A
Petri net with Data is a Petri net with any number of variables (see Definitions 16.1
and 16.2 below). Petri nets with data can be seen as an abstracted version of high-
level/colored Petri nets [48]. Colored Petri nets are extremely rich in expressiveness;
however, many aspects are unimportant in our setting. Petri nets with data provide
precisely the information needed for conformance checking of data-aware models
and logs. In particular, the definitions presented is based on the work of de Leoni et
al. [50].

16.2 Data-aware Processes 167

Definition 16.1 (Variables and Values) UVN is the universe of variable names.
UVV is the universe of values. UVM = UVN 6→UVV is the universe of variable map-
pings.

In this type of nets, transitions may read from and/or write to variables. Moreover,
transitions are associated with guards over these variables, which define when these
they can fire. A guard can be any formula over the process variables using relational
operators (<,>,=) as well as logical operators such as conjunction (∧), disjunction
(∨), and negation (¬). A variable v appear as vr or vw, denoting the values read and
written by the transition for v. We denote with Formulas(V) the universe of such
formulas defined over a set V of variables. In the remainder, given a set V ⊂UVN of
variable names, we denote VR = {vr : v ∈V} and VW = {vw : v ∈V}.

Formally, a Petri net with Data (DPN) is defined as follows:

Definition 16.2 (Petri net with Data) A Petri net with Data DPN =(SN,V,val, init,
read,write,guard) consists of

• a system net SN = (PN,Minit,Mfinal) with PN = (P,T,F, l),
• a set V ⊆UVN of data variables,
• a function val ∈ V →P(UVV) that defines the values admissible for each vari-

able, i.e., val(v) is the set of values that variable v can have,
• a function init ∈V →UVV that defines the initial value for each variable v such

that init(v) ∈ val(v) (initial values are admissible),
• a read function read ∈ T →P(V) that labels each transition with the set of

variables that it reads,
• a write function write ∈ T →P(V) that labels each transition with the set of

variables that it writes,
• a guard function guard ∈ T → Formulas(VW ∪VR) that associates a guard with

each transition such that, for any t ∈ T and for any v ∈ V , if vr appears in
guard(t) then v ∈ read(t) and if vw appears in guard(t) then v ∈ write(t).

UDPN is the universe of Petri nets with data.

The notion of bindings is essential for the remainder. A binding is a triplet (t,r,w)
describing the execution of transition t while reading values r and writing values w.
A binding is valid if:

1. r ∈ read(t)→UVV and w ∈ write(t)→UVV
2. for any v ∈ read(t): r(v) ∈ val(v), i.e., all values read should be admissible,
3. for any v ∈ write(t): w(v) ∈ val(v), i.e., all values written should be admissible.
4. Guard guard(t) evaluates true.

More specifically, let us introduce variable assignment χb : (VR∪VW) 6→UVV) which
is defined as follows: for any v ∈ read(t), χ(vr) = r(v) and, for any v ∈ write(t),
χ(vw) = w(v). A binding (t,r,w) makes guard(t) evaluate true if the evaluation of
guard(t) wrt. χb returns true.

A marking (M,s) of a Petri net with Data DPN has two components: M ∈B(P)
is the control-flow marking and s ∈ UVM with dom(s) = V and s(v) ∈ val(v) for
all v ∈ V is the data marking. The initial marking of a Petri net with Data DPN

168 16 Data-aware Processes and Alignments

Transition Guard

Credit Request true
Verify 0.1 ·Ar < Iw < 0.2 ·Ar
Assessment VR = true
Register Negative Verification Vr = false∧Dw = false
Inform Requester true
Renegotiate Request Vr = false∧Aw < Ar
Register Negative Request Dr = false
Open Credit Dr = true

Table 16.1: Definitions of the guards of the transitions in Fig. 16.2. Variables and
transition names are abbreviated as described in Figure 16.1. Subscripts r and w
refer to, respectively, the values read and written for that given variable.

is (Minit, init). Recall that init is a function that defines the initial value for each
variable.

(DPN,(M,s))[b〉 denotes that a binding b is enabled in marking (M,s), which
indicates that each of its input places •t contains at least one token (control-flow
enabled), b is valid and and s�read(t)= r (the actual values read match the binding).

An enabled binding b = (t,r,w) may occur, i.e., one token is removed from each
of the input places •t and one token is produced for each of the output places t• .
Moreover, the variables are updated as specified by w. Formally: M′ = (M \ •t)] t•
is the control-flow marking resulting from firing enabled transition t in marking M
(abstracting from data) and s′ = s⊕w is the data marking where s′(v) = w(v) for all
v∈write(t) and s′(v) = s(v) for all v∈V \write(t). (DPN,(M,s))[b〉(DPN,(M′,s′))
denotes that b is enabled in (M,s) and the occurrence of b results in marking (M′,s′).

Figure 16.2 shows a Petri net with Data DPNex that models the same process as
represented in Figure 16.1 as BPMN diagram, and Table 16.1 illustrates the condi-
tions of the guards of the transitions of DPNex. The labeling function l is such that
the domain of l is the set of transitions of DPNex and, for each transition t of DPNex,
l(t) = t. In other words, the set of activity labels coincides with the set of transitions.

Let σb = 〈b1,b2, . . . ,bn〉 be a sequence of bindings. (DPN,(M,s))[σb〉(DPN,
(M′,s′)) denotes that there is a set of markings (M0,s0),(M1,s1), . . . ,(Mn,sn) such
that (M0,s0) = (M,s), (Mn,sn) = (M′,s′), and (DPN,(Mi,si))[bi+1〉(DPN,(Mi+1,
si+1)) for 0≤ i < n. A marking (M′,s′) is reachable from (M,s) if there exists a σb
such that (DPN,(M,s))[σb〉(DPN,(M′,s′)).

φ f (DPN) = {σb | ∃s (DPN,(Minit, init))[σb〉(DPN,(Mfinal,s))} is the set of com-
plete binding sequences, thus describing the behavior of DPN.

Given a set of Petri nets with Data, the union is defined as the merge of those
Petri nets.

Definition 16.3 (Union of Petri nets with Data) Let DPN1 = (SN1,V 1,val1, init1,
read1,write1,guard1) and DPN2 = (SN2,V 2,val2, init2,read2,write2,guard2) with
V 1∩V 2 = /0. DPN1∪DPN2 = (SN1∪SN2,V 1∪V 2,val1⊕ val2, init1⊕ init2,read3,
write3,guard3) is the union such that

16.2 Data-aware Processes 169

• read3(t) = read1(t), write3(t) = write1(t), and guard3(t) = guard1(t) if t ∈ T 1 \
T 2,

• read3(t) = read2(t), write3(t) = write2(t), and guard3(t) = guard2(t) if t ∈ T 2 \
T 1, and

• read3(t) = read1(t) ∪ read2(t), write3(t) =write1(t) ∪ write2(t), and guard3(t)
= guard1(t) ·guard2(t) if t ∈ T 1∩T 2.

16.2.2 Event Logs and Relating Models to Event Logs

Next we extend the definition of event logs presented in Chapter 3 to incorporate
data and relate them to the observable behavior of a DPN.

Definition 16.4 (Trace, Event Log with Data) A trace σ ∈ (UA×UVM ×UVM)∗

is a sequence of activities with input and output data. L ∈B((UA×UVM×UVM)∗)
is an event log with read and write information, i.e., a multiset of traces with data.

Definition 16.5 (From Bindings to Traces) Consider a Petri net with Data with
transitions T and labeling function l ∈ T 6→ UA. A binding sequence σb ∈ (T ×
UVM×UVM)∗ can be converted into a trace σv ∈ (UA×UVM×UVM)∗ by removing
the bindings that correspond to unlabeled transitions and by mapping the labeled
transitions onto their corresponding label. l(σb) denotes the corresponding trace
σv.

Note that we overload the labeling function to binding sequences, σv = l(σb).
This is used to define φ(DPN): the set of all visible traces.

Definition 16.6 (Observable Behavior of a Petri net with Data) Let DPN be a
Petri net with Data. (DPN,(M,s))[σvB (DPN,(M′,s′)) if and only if there is a se-
quence σb such that (DPN,(M,s))[σb〉(DPN,(M′,s′)) and σv = l(σb). φ(DPN) =
{l(σb) |σb ∈ φ f (DPN)} is the set of visible traces starting in (Minit, init) and ending
in (Mfinal,s) for some data marking s.

Definition 16.7 (Perfectly Fitting with Data) A trace σ ∈ (UA×UVM×UVM)∗ is
perfectly fitting DPN ∈ UDPN if σ ∈ φ(DPN). An event log L ∈B((UA×UVM ×
UVM)∗) is perfectly fitting DPN if all of its traces are perfectly fitting.

Later, we will need to project binding sequences and traces onto subsets of transi-
tions/activities and variables. Therefore, we introduce a generic projection operator
ΠY,V (σ) that removes transitions/activities not in Y and variables not in V .

Definition 16.8 (Projection) Let X be a set of transitions or activities (i.e., X ⊆ T
or X ⊆ UA). Let Y ⊆ X be a subset and V ⊆ UVN a subset of variable names. Let
σ ∈ (X ×UVM ×UVM)∗ be a binding sequence or a trace with data. ΠY,V (σ) ∈
(Y × (V 6→UVV)× (V 6→UVV))

∗ is the projection of σ onto transitions/activities Y
and variables V . Bindings/events unrelated to transitions/activities in Y are removed
completely. Moreover, for the remaining bindings/events all read and write variables

170 16 Data-aware Processes and Alignments

not in V are removed. ΠY,V (L) = [ΠY,V (σ) | σ ∈ L] lifts the projection operator to
the level of logs.

16.2.3 Data Alignments

In this section we extend the alignment theory presented in Chapters 9 and 12 to
incorporate the notion of data. Alignments shows how the event log can be replayed
on the process model, and they are composed by sequences of moves:

Definition 16.9 (Legal alignment moves) Let DPN = (SN,V,val, init,
read,write,guard) be a Petri net with Data, with SN = (PN,Minit,Mfinal) and
PN = (P,T,F, l). Let SL = UA×UVM×UVM be the universe of events. Let SDPN =
T ×UVM ×UVM be the universe of bindings of DPN. Let be S�DPN = SDPN ∪{�}
and S�L = SL∪{�}.

A legal move in an alignment is represented by a pair (sL,sM) ∈ (S�L × S�DPN) \
{(�,�)} such that

• (sL,sM) is a move in log if sL ∈ SL and sM =�,
• (sL,sM) is a move in model if sL =� and sM ∈ SDPN ,
• (sL,sM) is a move in both without incorrect read/write operations if sM =

(t,r,w) ∈ SDPN and sL = (l(t),r,w) ∈ SL,
• (sL,sM) is a move in both with incorrect read/write operations if sM = (t,r,w) ∈

SDPN and sL = (l(t),r′,w′) ∈ SL, and r 6= r′ or w 6= w′.

All other moves are considered as illegal.

Definition 16.10 (Data Alignments) Let DPN =(SN,V,val, init,read,write,guard)
be a Petri net with Data and σ ∈ (SL)

∗ be an event-log trace. Let ADPN be the
set of legal moves for DPN. A complete alignment of σL and DPN is a sequence
γ ∈ADPN

∗ such that, ignoring all occurrences of�, the projection on the first ele-
ment yields σL and the projection on the second yields a σP ∈ φ f (DPN).

Table 16.2 shows two complete alignments of the process model in Figure 16.2
and the log trace σex from Section 1.

As it is explained in Chapter 9, in order to define the severity of a deviation,
we introduce a cost function on legal moves: κ ∈ ADPN → R+

0 . This cost function
can be used to favor one type of explanation for deviations over others. The cost
of each legal move depends on the specific model and process domain and, hence,
the cost function κ needs to be defined specifically for each setting. The cost of an
alignment γ is the sum of the cost of all individual moves composing it: K (γ) =

∑(sL,sM)∈γ κ(sL,sM).
However, we do not aim to find just any complete alignment. Our goal is to

find a complete alignment of σL and DPN which minimizes the cost: an optimal
alignment. Let ΓσL,N be the (infinite)set of all complete alignments of σL and DPN.
The alignment γ ∈ ΓσL,DPN is an optimal alignment if, for all γ ′ ∈ ΓσL,N , K (γ) ≤

16.2 Data-aware Processes 171

Event-Log Trace Process
(a, {(A,4000)}) (a, {(A,4000)})
(b, {(I,450),(V,false)}) (b, {(I,450),(V,true)})
(c, {(D,true)}) (c, {(D,true)})
(e, /0) (e, /0)
(f, {(A,5000)}) (f, {(A,3000)})
(b, {(I,450),(V,false)}) (b, {(I,450),(V,false)})
(d, {(D,false)}) (d, {(D,false)})
(e, /0) (e, /0)
(h, /0) �
� (g, /0)

(a)

Event-Log Trace Process
(a, {(A,4000)}) (a, {(A,5100)})
(b, {(I,450),(V,false)}) (b, {(I,511),(V,true)})
(c, {(D,true)}) (c, {(D,true)})
(e, /0) (e, /0)
(f, {(A,5000)}) (f, {(A,5000)})
(b, {(I,450),(V,false)}) (b, {(I,511),(V,false)})
(d, {(D,false)}) (d, {(D,false)})
(e, /0) (e, /0)
(h, /0) �
� (g, /0)

(b)

Table 16.2: Examples of complete alignments of σexample and N. For readability, the
read operations are omitted. Of course, read operations for any variable must match
the most recent value for that variable. Any move is highlighted with a gray color
if it contains deviations, i.e. it is not a move in both without incorrect read/write
operations.

K (γ ′). Note that an optimal alignment does not need to be unique, i.e. multiple
complete alignments with the same minimal cost may exist.

Let us consider again our example introduced above. Let us assume to have a
cost function κs such that κs(sL,sM) = 1 if (sL,sM) is a visible move in process or
a move in log (i.e. sL =� and sM corresponds to a labeled transition or, conversely,
sM =�, respectively) or a move in both with incorrect read/write operations and
κs(sL,sM) = 0 in case of move in both without incorrect read/write operations or
a move in model corresponding to an unlabeled transition. The alignment in Ta-
ble 16.2a has a cost of 6 whereas the alignment in Table 16.2b has a cost 8.2 It
follows that the former is a better alignment. As a matter of fact, it is also an opti-
mal alignment, although it is not the only one. For instance, any variation of such
an alignment where the move for f is of the form (now including read operations)
((f,{(A,4000)},{(A,5000)}) (f,{(A,4000)},{(A,x)})})) with 2250 < x < 4000
corresponds to an optimal alignment, as well.

As we have mentioned, the data-aware conformance checking is undecidable in
the general case. This is caused by the fact that Petri nets with Data are Turing-
complete. Therefore, it is not decidable to verify whether a sequence of valid bind-
ings exists that takes from the initial marking to any final marking (M f inal ,s). As a
consequence, for instance, it is not possible to find an alignment of a Petri net with
Data and the empty log trace. However, the problem becomes decidable (with an
exponential complexity) if guards are restricted to linear (in)equalities.

2 They also include a cost of two that is accounted for incorrect read operations, not shown in the
alignments, which are caused by incorrect write operations.

172 16 Data-aware Processes and Alignments

16.3 Summary

This chapter presented the concepts of conformance and alignments applied to data-
aware process models. This is a time-consuming analysis. Therefore, in the next
chapter we present an extension of these concepts to be applied in a decomposed
manner.

Chapter 17
Decomposing Data-aware Conformance

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

The previous chapter focused on the use of alignments to analyze the data per-
spective of processes. This chapter presents a decomposition approach of that tech-
nique to check conformance of data-aware processes. In particular, the chapter
presents a valid decomposition of data-aware models, and a decomposition strat-
egy based on single entry single exit components.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 173–179, 2016.
DOI: 10.1007/978-3-319-49451-7_17

174 17 Decomposing Data-aware Conformance

17.1 Introduction

In the previous chapter we introduced the concepts of conformance and align-
ments for data-aware processes, i.e., processes with both control-flow and data
perspectives combined. Checking conformance on data-aware processes is a time-
consuming task. In this chapter we propose a decomposition version of the data-
aware conformance checking in order to reduce the computation time and improve
the understanding of the conformance errors, similar to the one presented in Chapter
13 for control-flow models.

17.2 Valid Decomposition of Data-aware Models

In Chapter 13 a valid decomposition [9] is presented in terms of Petri nets: the over-
all system net SN is decomposed into a collection of subnets {SN1,SN2, . . . ,SNn}
such that the union of these subnets yields the original system net. A decomposi-
tion is valid if the subnets “agree” on the original labeling function (i.e., the same
transition always has the same label), each place resides in just one subnet, and also
each invisible transition resides in just one subnet. Moreover, if there are multiple
transitions with the same label, they should reside in the same subnet.

As shown in Chapter 12, these observations imply that conformance checking
can be decomposed. Any trace that fits the overall process model can be decomposed
into smaller traces that fit the individual model fragments. Moreover, if the smaller
traces fit the individual fragments, then they can be composed into a trace that fits
into the overall process model. This result is the basis for decomposing process
mining problems.

In this chapter, the definition of valid decomposition is extended to cover Petri
nets with data.

Definition 17.1 (Valid Decomposition for Petri nets with Data) Let DPN ∈UDPN
be a Petri net with Data. D = {DPN1,DPN2, . . . ,DPNn} ⊆UDPN is a valid decom-
position if and only if:

• for all 1 ≤ i ≤ n: DPNi = (SNi,V i,vali, initi,readi,writei,guardi) is a Petri
net with Data, SNi = (PNi,Mi

init,M
i
final) ∈ USN is a system net, and PNi =

(Pi,T i,F i, li) is a labeled Petri net,
• D′ = {SN1,SN2, . . . ,SNn} ⊆USN is a valid decomposition of

⋃
1≤i≤n SNi,

• V i∩V j = /0 for 1≤ i < j ≤ n,
• DPN =

⋃
1≤i≤n DPNi.

D(DPN) is the set of all valid decompositions of DPN.

Each variable appears in precisely one of the subnets. Therefore, V i ∩V j = /0
implies that there cannot be two fragments that read and or write the same data
variables:

⋃
t∈T i readi(t)∪writei(t)

⋂⋃
t∈T j read j(t)∪write j(t) = /0 for 1≤ i< j≤

n. Moreover, two guards in different fragments cannot refer to the same variable. If

17.2 Valid Decomposition of Data-aware Models 175

a transition t appears in multiple fragments, then it needs to have a visible unique
label. Such a uniquely labeled transition t shared among fragments, may use, read,
or write different variables in different fragments. Since DPN =

⋃
1≤i≤n DPNi, we

know that, for all t in DPN, guard(t) is the product of all guardi(t) such that t ∈ T i.
Without loss of generality we can assume that the first k fragments share t. Hence,
guard(t) = guard1(t) · . . . · guardk(t). Hence, in a valid decomposition, the guard
of a shared transition can only be split if the different parts do not depend on one
another. Notice that, the splitting of the data variables is limited by how the variables
are used throughout the process, existing a worst-case where all the data variables
are used in all the steps of the process.

Based on these observations, we prove that we can decompose conformance
checking also for Petri nets with data.

Theorem 17.2 (Conformance Checking With Data Can be Decomposed) Let L
∈ B((UA ×UVM ×UVM)∗) be an event log with information about reads and
writes and let DPN ∈ UDPN be a Petri net with Data. For any valid decomposi-
tion D = {DPN1,DPN2, . . . ,DPNn} ⊆ UDPN: L is perfectly fitting Petri net with
Data DPN if and only if for all 1≤ i≤ n: ΠAv(SNi),V i(L) is perfectly fitting DPNi.

Proof. Let DPN = (SN,V,val, init,read,write,guard) be a Petri net with Data with
SN = (PN,Minit,Mfinal) and PN = (P,T,F, l). Let D = {DPN1,DPN2, . . .DPNn} be
a valid decomposition of DPN with DPNi =(SNi,V i,vali, initi, readi, writei,guardi),
SNi = (PNi,Mi

init,M
i
final) ∈USN , and PNi = (Pi,T i,F i, li).

(⇒) Let σv ∈ L be such that there exists a data marking s such that (DPN, (Minit,
init))[σvB (DPN,(Mfinal,s)). This implies that there exists a corresponding σb with
(DPN, (Minit, init))[σb〉(DPN,(Mfinal,s)) and l(σb) = σv. For all 1≤ i≤ n, we need
to prove that there is a σ i

b with (DPNi,(Mi
init, initi))[σ i

b〉(DPNi,(Mi
final,s

i)) for some
si. This follows trivially because DPNi can mimic any move of DPN with respect to
transitions T i: just take σ i

b = ΠT i,V i(σb). Note that guards can only become weaker
by projection.

(⇐) Let σv ∈ L. For all 1 ≤ i ≤ n, let σ i
b be such that (DPNi,(Mi

init, initi))[σ i
b〉

(DPNi,(Mi
final,s

i)) and li(σ i
b) = ΠAv(SNi),V i(σv). The different σ i

b sequences can
be stitched together into an overall σb s.t. (DPN,(Minit, init))[σb〉(DPN,(Mfinal,s))
with s = s1⊕ s2⊕ . . .⊕ sn. This is possible because transitions in one subnet can
only influence other subnets through unique visible transitions and these can only
move synchronously as defined by σv. Moreover, guards can only be split in in-
dependent parts (see Definition 17.1). Suppose that t appears in Ti and Tj, then
guard(t) = guardi(t) · guard j(t). Hence, a read/write in subnet i cannot limit a
read/write in subnet j. Therefore, we can construct σb and l(σb) = σv.

176 17 Decomposing Data-aware Conformance

17.3 SESE-based Strategy for a Valid Decomposition

In this section we present a concrete strategy to instantiate the valid decomposition
definition over a Petri net with data presented in the previous section (cf. Defini-
tion17.1). Similar to Chapter 12, the proposed strategy decomposes the Petri net
with data in a number of Single-Entry Single-Exit (SESE) components, creating
meaningful fragments of a process model [69, 64]. SESE decomposition is indi-
cated for well-structured models, whereas for unstructured models some automatic
transformation techniques can be considered as a pre-processing step [43].

n3
Verify

RegisterNegative
Verification

Assessment

n2
Credit Request

Verify

Renegotiate

n1
Credit Request

RegisterNegative
Verification

InformRequester

Assessment

n4n4

n5

Renegotiate

OpenCredit Loan

RegisterNegativeRequestRegisterNegativeRequest

n6

OpenCredit Loan

Verify

RegisterNegative
Verification

OpenCredit Loan

Assessment

Verification Decision

Credit Request

Verify

Renegotiate

Interests

Amount

RegisterNegativeRequestRegisterNegativeRequest

RegisterNegativeRequestRegisterNegativeRequest

Fig. 17.1: SESE-based decomposition for the running example, with 2-
decomposition.

To extend the SESE decomposition strategy presented in Chapter 12 to also ac-
count for data, one simply considers its application over the data workflow graph,
an extension of the workflow graph where the variables and read/write arcs are also
included.

Definition 17.3 (Data Workflow Graph) The data workflow graph of a Petri net
with Data (((P,T,F, l),Minit,Mfinal),V,val, init,read,write,guard) with data arcs
R= {(v, t)|v∈ read(t)} and W = {(t,v)|v∈write(t)} is the workflow graph DWG=
(S,E) with S = P∪T ∪V and E = F ∪R∪W.

The SESE decomposition proposed to analyze the conformance of Petri nets with
data, is similar to the one presented in Chapter 12 but considering data workflow
graph instead. Algorithm 17.1 describes the steps necessary to construct a SESE de-
composition. The arcs are partitioned in SESEs by means of creating the RPST from
the data workflow graph, and selecting a particular set of SESES over it. Once the
partitioning is done, a subnet is created for each part. Subnets contradicting some of
the requirements of Definition 17.1 (e.g. sharing places, invisible or duplicate tran-
sitions, variables, or transitions with non-splitting guards) are merged to preserve
the valid decomposition definition.

Figure 17.1 shows the decomposition for the example of Figure 16.2, where
the RPST is partitioned using the 2-decomposition algorithm (cf. Chapter 12), i.e.,

17.4 Implementation and Experimental Results 177

Algorithm 17.1 SESE-based Decomposition
1: Build data workflow graph DWG from F , R, W
2: Compute RPST from DWG
3: Compute SESE decomposition D from the RPST
4: Compute and merge subnets if necessary to preserve valid decomposition.
5: return valid decomposition where perspectives are decomposed altogether

SESEs of at most 2 arcs1. To ensure a valid decomposition is obtained, step 4 of Al-
gorithm 17.1 combines multiple SESE fragments into larger fragments, which are
not necessarily SESEs anymore.

17.4 Implementation and Experimental Results

The approach requires a Petri Net with Data and an event log as input and returns
as many bags of alignments as the number of fragments in which the Petri Net with
Data has been decomposed. Each bag refers to a different fragment and shows the
alignments of each log trace and that fragment. A second type of output is also
produced in which the alignments’ information is projected onto the Petri net with
Data. Transitions are colored according to the number of deviations: if no deviation
occurs for a given transition, the respective box in the model is white-colored. The
filling color of a box shades towards red as a larger fraction of deviations occur
for the corresponding transition. Something similar is also done for variables: the
more incorrect read/write operations occur for a variable, the more the variable is
shown with a color close to red. This output is extremely interesting from an end-
user viewpoint as it allows for gaining a helicopter view on the main causes of
deviations [50].

The approach has been evaluated using a number of synthetic event logs and
also a real-life process. The approach has been evaluated using the model in Fig-
ure 16.2 and with a number of event logs that were artificially generated. In partic-
ular, we have generated different event logs with the same number of traces, 5000,
but increasing number of events, meaning that, on average, traces were of different
length. To simulate that, for each simulated process execution, an increasing num-
ber of renegotiations was enforced to happen. Traces were also generated so as to
contain a number of deviations: the event logs were generated in a way that 25% of
transitions fired violating the guards.

Figure 17.2 shows the results of checking for conformance of the different event
logs and the process model, comparing the SESE-based decomposition with k = 2
with the case in which no decomposition is made. To check the conformance of each
fragment, we used the technique reported in [50]. Each dot in the chart indicates a
different event log with traces of different size. The computation time refers to the

1 Although the SESEs have at most two arcs, this is not guaranteed for the final subnets, i.e., some
subnets are merged to preserve the valid decomposition definition.

178 17 Decomposing Data-aware Conformance

Fig. 17.2: Computation time for checking the conformance of the Petri net with Data
in Figure 16.2 and event logs of different size. The Y axis is on a logarithmic scale.

conformance checking of the whole event logs (i.e., 5000 traces). The decomposed
net is the same as in Figure 17.1. Regarding the cost function, we assign cost 1
to any deviation; however, this could be customized based on domain knowledge.
The results show that, for every combination of event log and process model, the
decomposition significantly reduces the computation time and the improvement is
exponential in the size of the event log.

To assess the practical relevant of the approach, we also performed an evaluation
with a Dutch financial institute. The process model was provided by a process ana-
lyst of the institute and consists of 21 transitions: 13 transitions with unique labels,
3 activities labels shared between 2 transitions (i.e. 6 transitions in total), plus 3 in-
visible transitions. The model contains twelve process variables, which are read and
written by the activities when being executed. We were also provided with an event
log that recorded the execution of 111 real instances of such a process; overall, the
111 log traces contained 3285 events, which means roughly 29.6 events per trace.
We checked the conformance of this process model and this event log, comparing
the results when the model has or has not been decomposed in small fragments. For
conformance checking, here we used the technique reported in [53] since the pro-
vided process model breaks the soundness assumptions required by [50]. For this
experiment round, the additional optimizations proposed in [53] were deactivated to
allow for a fair comparison.

The application of the decomposition approach to this real-life case study has
shown tremendous results: the conformance checking has required 52.94 seconds
when the process model was decomposed using the SESE-based technique pre-
sented in Section 17.3; conversely, it required 52891 seconds when the model was
not decomposed. This indicates that decomposing the process model allowed us to
save 99.999% of the computation time. As a matter of fact, we tried for different
values of SESE parameter k but we obtained similar results: the computation time
did not move away for more than 1 second. The reason of this is related to the fact
that every decomposition for any value of k always contained a certain fragment,

17.5 Summary 179

along with others. Indeed, that fragment could not be decomposed any further than
a given extent. Since the computation time was mostly due to constructing align-
ments with that fragment, no significant difference in computation time could be
observed when varying k.

17.5 Summary

Checking conformance between an event log and a process model is known to be a
complex procedure. That complexity explodes even more when we consider data-
aware conformance checking with multi-perspective models. This chapter proposed
the extension of control-flow decomposed conformance checking techniques to al-
leviate the computation time of data-aware processes. The decomposition defini-
tion proposed is proven to be correct from a conformance point of view, and the
experiments showed a significant reduction in time with respect to the monolithic
approach. In the future, new decomposition strategies may be considered, and the
proposed techniques may be extended to other conformance dimensions, such as
precision.

Chapter 18
Event-based Real-time Decomposed
Conformance Checking

Precision)
Checking)

Fitness)
Checking)

Normal)Process)

Severity)

Noise)and)
Incompleteness)

Non:Fi;ng)
Process)

Large)
Process)

Data)Aware)
Process)

EVENT)LOG) MODEL)

Real)
Time)

Monolithic))Analysis) Decomposed)Analysis)

CONFORMANCE)
RESULTS)

Decomposed)Diagnosis)

3) 3)

4)

6,)11,)14)

7)

8)

9) 10) 12)

13)

15)

16)

5)

17) 18)

Previous chapters illustrate the use of decomposition to analyze fitness issues
of the processes. In this chapter we present an approach to analyze conformance
checking in a real-time setting. This approach is based on the decomposition based
on single entry single exit components proposed in previous chapters.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 181–188, 2016.
DOI: 10.1007/978-3-319-49451-7_18

182 18 Event-based Real-time Decomposed Conformance Checking

18.1 Introduction

In this chapter we use the application of decomposed techniques to check confor-
mance in event-based real-time systems. Unlike forensic conformance checking,
where conformance is analyzed a posteriori once the case has finished, real-time
techniques check conformance on the fly. Real-time checking techniques are spe-
cially indicated for monitoring, immediate fraud detection and governance, risk and
compliance verification, and failure protection.

Although both forensic and real-time checking analyze the conformance between
models and reality, the latter presents a list of new challenges for its applicability.
First, the proposed approach should consider the computation time a priority. The
analysis must be conducted on a regular basis and the results must be output in
a short period of time. Second, given the periodicity of the analysis and the urge
for conclusions, real-time approaches must focus on the fine-grained localization
of deviations and the understanding of their causes. Finally, real-time systems must
be event-based instead of trace-based, i.e., the analysis must not require a complete
trace in other to detect possible mismatches.

In this chapter we propose a decomposed conformance analysis methodology to
support the real-time monitoring of event-based data streams, which aims to pro-
vide an answer to the challenges listed above, being more efficient than related ap-
proaches and is able to localize deviations in a more fine-grained manner.

18.2 Event-based Real-time Decomposed Conformance

In this section we present the proposed methodology, that combines: 1) a decompo-
sition of the model, 2) with an event-based heuristic replay of the log. Figure 18.1
provides a schematic overview of the approach, where each event is dispatched to
its corresponding component to be replayed.

18.2.1 Model and Log Decomposition

The first phase of the proposed methodology entails decomposition. Formally, the
overall system net SN is broken down into a collection of subnets {SN1,SN2, . . .SNn}
such that the union of these subnets yields the original system net SN. By means of
decomposing the original model into a set of subnets we aim to achieve the follow-
ing goals. First, fragment the conformance problems into a set of more comprehen-
sive semantic elements to aid the diagnosis. Second, restrict the possible pernicious
effects of the heuristics decisions taken during the conformance analysis (see Phase
3 below). Third, speed-up the analysis in comparison to non-decomposed confor-
mance checking techniques.

18.2 Event-based Real-time Decomposed Conformance 183

...{case5,A} {case3,D} {case4,B} {case3,A} Event
Dispatcher

...{c
ase2

,A} {c
ase1

,A}

...{case1,C} {case4,D} {case4,C} {case4,A} ...{case1,C} {case1,B}

...{case2,D} {case1,D}

Event-based
Heuristic Replay

A

Event-based
Heuristic Replay

D

Event-based
Heuristic Replay

B

C

Fig. 18.1: Architectural overview of the developed real-time decomposed confor-
mance checking technique.

Due to the final goal of analyzing conformance, not all possible decomposition
approaches are appropriate for this task. Only those valid decompositions that pre-
serve the conformance integrity should be considered (cf. Chapter 12). That is, given
the original net and the decomposed version, the original net perfectly conforms
iff all the subnets in the decomposed setting perfectly conforms. In other words,
no conformance anomalies should be lost or introduced in the transition from the
overall model to the decomposed one. As it is presented in Chapter 12, a valid
decomposition—applicable on Petri nets— is defined informally as the decomposi-
tion that satisfies the following conditions:

1. Each arc of the overall net belongs to exactly one of the subnets.
2. Each place of the overall net belongs to exactly one of the subnets.
3. Invisible transitions appears in precisely one of the subnets.
4. Visible, duplicate transitions appear in precisely one of the subnets.
5. Visible, non-duplicate transitions may appear in multiple subnet.

In other words, all elements in the original Petri net model must belong to a subnet,
but only visible, non-duplicate transitions can be shared among several subnet.

As it is mentioned in previous chapters, there exist several possible valid decom-
position strategies: minimal, passages, SESEs, etc. In this methodology we consider
a valid decomposition based on the SESE decomposition proposed in Chapter 12,
i.e. subgraphs in the workflow graph defined over a system net having single entry
and exit boundary nodes. SESEs perfectly reflect the idea of subprocesses within
the main process, important to obtain a meaningful real-time decomposition. Fig-
ure 18.2 shows an example of SESE for the illustrative case shown in Section 18.3.
The SESE decomposition can be combined with a user-supervised post-processing

184 18 Event-based Real-time Decomposed Conformance Checking

step where several SESEs are merged in order to obtain components that better ful-
fill the domain-aware monitoring.

STRR

RRS

RRR

RRD

FTRR... ...

Fig. 18.2: ”Open and register transaction” SESE from the case example in Sec-
tion 18.3. STRR and FTRR are the entry and exit boundary nodes of the SESE,
respectively. The rest of places and transitions are interior nodes of the SESE.

Once a system net has been decomposed into a set of submodels, this collection
of models is passed to a central event dispatcher, which also serves to listen for
incoming events. For each submodels, it is examined whether it contains a transition
t which maps to the incoming event e. If it does, this indicates that the event at hand
should be replayed on this particular submodel (multiple such submodels can be
found), and the event is passed forward to this model fragment.

18.2.2 Event-based Heuristic Replay

Once it is determined which process model fragment(s) should parse the incoming
event, the actual replay of this event on each such fragment is performed. In previ-
ous chapters – Chapters 9 and 12 – we illustrate the use and benefits of a optimal
conformance checking based on alignments. However, given the event-based nature
of the methodology, and the need for efficient approaches in real-time systems, in
this chapter we propose the use of replay based conformance techniques. In the sem-
inal work [77], a “fitness” metric is presented to describe the extent to which event
traces can be associated with valid execution paths in the process model, and an
“appropriateness” metric is proposed to assess whether the process model describes
the observed behavior accurately enough. The aforementioned approach replays the
traces of the log in the model to evaluate these metrics. One of the drawbacks of
this approach is that for undeterministic models, the heuristics used in the replay
may lead to overestimating the metrics, due to the artificial creation of superfluous
tokens in the model. Several solutions have been proposed to overcome this issue.
Weidlich et al. propose a system to check process model consistency based on “be-

18.2 Event-based Real-time Decomposed Conformance 185

havioral profiles” [91, 83]—which can be derived in a straightforward and efficient
manner but with loss of some granularity regarding the exact traces which can be
accepted by the model at hand.

In this chapter we propose the use of a replay algorithm based on the work of
vanden Broucke et al. [28, 29]. The informal idea is the following: for each process
model fragment, a state list is maintained denoting the current marking reached by
the currently-running process instances. When an event is queued for replay by a
process fragment, the state linked to process instance is progressed by investigating
whether there exists an enabled transition for such activity. The outcome of this
evaluation determines if the process model is showing discrepancies or not.

Some additional remarks should be provided at this point. First of all, we note
that we apply a heuristic, event-granular replayer similar to the one applied in [28].
The reasoning behind the choice to opt for a replayer playing the token game in-
stead of an alternative approach such as alignment or behavioral profile based tech-
niques [18, 83, 91] are twofold. First, alignment and behavioral profile based re-
players perform their analysis on a trace, rather than event level, meaning that a
complete process instance needs to be finalized in order to align the log trace with
a process model transition sequence. As we are dealing with event streams which
need to be analyzed in a real-time manner, an event-granular replay strategy is re-
quired. Second, alternative approaches suffer from scalability issues which make
them unsuitable in a real-time context.

A second remark entails the way in which decision points are resolved by the re-
player. Put briefly, whenever multiple (enabled) transitions are mapped to the same
event log activity within a process model and/or whenever multiple invisible ac-
tivities are enabled, the replayer needs to determine which transition to execute to
handle the activity at hand. Note that—in extreme edge cases—it is possible that the
forced firing of a non-enabled transition should be preferred if this avoids several
other violations later in the event trace [85]. A replay strategy is put forward which
prefers the firing of enabled transition mapped to the activity at hand first, followed
by the set of silent transitions, followed by the set of non-enabled transition mapped
to the activity at hand. If the chosen set contains multiple transition candidates, a
one-step look-ahead procedure is executed to determine which candidate enables
the execution of the following activity (if no such candidate can be found, a ran-
dom one is chosen). For the multitude of process models, this look-ahead suffices to
resolve any ambiguities. However, since we are dealing with streaming event data
in this context, we possess no knowledge about the events that will arrive in the
future, preventing the execution of the look-ahead procedure. There are three pro-
posed strategies to deal with this issue. First, disabling the look-ahead altogether and
assuming that the model is deterministic enough to handle incoming events without
taking the context into account. Second (another extreme), restarting the replay of
the full trace each time an event is added, thus allowing the replayer to revise earlier
decisions. Note however that the replayer is configured such that no new violations
may be introduced related to historical activities. In practice, this means that the
replayer can revise the state chain by modifying the execution of silent transitions,
selecting alternative albeit also enabled transition mapped to a particular activity

186 18 Event-based Real-time Decomposed Conformance Checking

for activities which were parsed correctly, or selecting alternative disabled transi-
tion, although only for activities which were not parsed correctly. The third method
combines these two extremes by considering a part of the executed transition se-
quence as “frozen”, only allowing revisions for the last n steps.

As a third remark, as it is aforementioned, one of the drawbacks of “token game”-
based replayers entails the possible creation of superfluous tokens, enabling subse-
quently for too much behavior. However, as was mentioned, the decomposition of
a process model restricts the possible pernicious effects of the heuristics decisions
taken during the conformance analysis, as each model is now limited to dealing with
a smaller subset of behavior. In addition, as superfluous tokens are created follow-
ing the forced firing of violating activities, the process instance or model fragment
at hand is likely to be immediately indicated as “dubious” at this point, lowering the
trustfulness of following events within this instance of model fragment, independent
of the replay strategy being applied.

The results of the replay analysis can be reported and visualized. Remark that,
naturally, these actions can be performed while the actual conformance analysis is
running. In general, two ways of result follow-up are supported by our architec-
ture. The first one consists of the logging of various statistics by the running worker
threads and replayers, which is polled regularly by decoupled components (e.g. a
real-time dashboard or perhaps logged to a persistent data store). The second man-
ner by which results can be interpreted consists of the definitions of various triggers
which are to be fired once certain criteria are met, such as a model fragment over-
shooting a certain error rate threshold, for instance, of a high-risk activity or model
fragment being violated. The actions which can be undertaken as a result are self-
explanatory, e.g. sending warnings, or halting running process instances or even the
complete system.

18.3 Experimental Results

To benchmark the performance of our developed real-time conformance analysis
technique against related approaches, a fitting event log was generated (based on the
model depicted in Figure 14.2) containing ten thousand process instances (678864
events). A non-conforming (“noisy”) variant of this event log was produced by in-
ducing noise (inserting, deleting, and swapping of events) so that 10% of the in-
cluded events are erroneous.

We compare our proposed technique against the alignment based replay tech-
nique by Adriansyah et al. [18] as well with the original implementation of the
token-game based heuristic replayer [28]. Both the non-decomposed and decom-
posed variants of these techniques were included.

Figure 18.3 depicts the performance results of the experiment, showing the
amount of time taken (x-axis) to check the conformance of the included event
logs (the y-axis represents the cumulative ratio of event checks performed). As
can be seen, our proposed real-time conformance analysis technique performs

18.3 Experimental Results 187

0 100 200 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (Elapsed Seconds)

R
at

io
 o

f
E

v
en

ts
 P

ar
se

d

v−− Real−time

v−− Heuristic decomposed

v−− Alignment non−decomposed −−−−−−−−−−−−−−−−v

v−− v−− Heuristic non−decomposed v− Alignment decomposed −v

Alignment non−decomposed (no noise)

Alignment non−decomposed (noise)

Alignment decomposed (no noise)

Alignment decomposed (noise)

Heuristic non−decomposed (no noise)

Heuristic non−decomposed (noise)

Heuristic decomposed (no noise)

Heuristic decomposed (noise)

Real−time (no noise)

Real−time (noise)

Fig. 18.3: Comparison of replay performance for the included techniques in the
experimental setup, showing the time taken per technique to replay the given event
log.

competitively with respect to related techniques. During the experimental run, a
maximum throughput rate (number of events checked per second) was reached at
35000 with the experiment running on a single consumer laptop with three worker
threads. Some additional remarks should be provided however when interpreting
Figure 18.3. First, note that our proposed technique performs similarly as the heuris-
tic decomposed replay technique, but note that proposed technique executes a con-
formance check on an event-granular basis and thus can be applied in a real-time
monitoring setting, whereas the other techniques do so on a trace-granular level
(i.e. a complete trace should be provided to perform the replay procedure). How-
ever, the event log is of sufficient size so that a step-wise effect is not apparent in
Figure 18.3. Second, the replay procedure of the existing techniques was modified
such that each trace is checked independently of the log context, meaning that no
distinct trace grouping is performed over the log and that each trace is checked as
if it belonged to an event log that only contains the particular trace, so as to bet-
ter assess the performance of these techniques in a real-time scenario (where the
complete trace and log are unknown as events are arriving), rather than a post-hoc
scenario where the complete event log is provided as-is. Note that—for the align-
ment based technique—this causes the non-decomposed version to perform better
than the decomposed one. This is perhaps an unexpected result, but it is caused by
the fact that the alignment based techniques are geared towards checking—and as
such expect—event logs as a whole. We thus emphasize the fact that these tech-

188 18 Event-based Real-time Decomposed Conformance Checking

niques have—currently—not been optimized to be applied in a real-time scenario
(with an event stream being checked instead of an historical log).

18.4 Summary

In this chapter we have presented a novel business process conformance analysis
technique which is able to support real-time monitoring of event-based data streams.
Our approach offers a number of novel contributions, most notably a speed-up com-
pared to related techniques and the ability to localize discrepancies. Furthermore,
by allowing real-time monitoring, the approach has rapid response times in mission-
critical or high-risk environments and this is a significant benefit in comparison to
existing conformance checking techniques which mainly work in an offline manner.

Future lines of research include: streamlining visualization and reporting capa-
bilities, incorporating other decomposition and replay strategies, and adapting the
framework into a distributed implementation, where different replayer engines run
on separate machines. In addition, future research include the adaptation of these
techniques to a strict steaming scenario, where the cases have no identification.

Part IV
Conclusions and Future Work

Chapter 19
Conclusions

This chapter concludes the book, summarizing the contributions, and providing a
final reflection on the challenges and future directions of conformance checking.

19.1 Conclusion and Reflection

In the early days of process mining, most of the research in process mining was
mainly focused on discovery techniques, neglecting the importance of conformance.
Several discovery approaches were presented, using a wide range of different tech-
niques. However, measuring the adequacy of the provided results was never a prior-
ity, and only simple measures were used, making it difficult to determine the most
adequate approach for each case. Moreover, most analysis focused on verifying the
properties of the model (e.g., has the model deadlocks?), or the properties of the log
(e.g., is activity x and y always executed by a different person?), instead of evalu-
ating whether the model represented faithfully the reality observed in the log, i.e.,
conformance.

However, in the recent years this tendency has finally changed, and more research
effort has been focused on the conformance dimensions. Since the thesis [73], sev-
eral master and doctoral thesis has focused, totally or partially, on conformance.
Thesis like [17], [29], [32], or [58], represent a good example of that effort. In ad-
dition, several papers were presented in journals, conferences and workshops to an-
alyze conformance: works addressing all conformance dimensions, such as [18, 9]
for fitness, [59, 21, 28] for precision, [28, 10] for generalization, or [35] for simplic-
ity, to enumerate some examples; works addressing conformance using replay-based
strategies such as [28], and also align-based strategies such as [18]; works address-
ing conformance in a decomposed way, such as [8, 9, 62]; and works addressing
conformance for multi-perspective models such as [50]. New benchmarking frame-
works for conformance analysis has been presented, such as [31], incorporating and
using these new approaches, for example in [89], to evaluate the quality of state-of-
the-art discovery algorithms.

c© Springer International Publishing AG 2016
J. Munoz-Gama: Conf. Check. ... in Process Mining, LNBIP 270, pp. 191–195, 2016.
DOI: 10.1007/978-3-319-49451-7_19

192 19 Conclusions

19.2 Summary of Contributions

The main theme of this book is the conformance checking and diagnosis between
behavior observed in the log and process models. The contributions of the book can
be divided in two groups according to their purposes: techniques to evaluate the
precision dimension, and techniques to decompose the conformance diagnosis.

• Precision in Conformance Checking. The precision is the dimension in confor-
mance checking that measures the degree of a process model to describe only the
behavior observed in the log, and no more.
Chapters 4, 5, and 6 studied the limitations of the approaches based on compar-
ing model and log relations, and presented a different approach to study preci-
sion. This approach is based on detecting escaping arcs, in other words, those
points where the model allows more behavior than the one observed in the log.
The escaping arcs are weighted and used to provide a metric for the precision di-
mension. Moreover the escaping arcs, and the situations leading to them, define
possible points for a future actuation, in order to achieve a more precise model.
In Chapter 7, the escaping arcs theory is revisited to incorporate the notion of
robustness. The refined approach consider the frequency of the observed traces
in order to be less affected by infrequent or noisy observed behavior. The chap-
ter also presented the notion of confidence over the precision metric provided. A
narrow confidence interval indicates a high confidence on the provided metric,
while a wide interval denotes a likely possibility that precision metric changes in
the future. The confidence interval is determined according to a giving parameter
indicating the future to consider, where a low value indicates a close future and
a high value a distance future. The bounds of the interval represent the likeli-
hood of new escaping arcs to appear, or disappear, within the considered future.
Chapter 8 presented a method to assess the severity of the escaping arcs detected.
The severity proposed is based in a multi-factor analysis, with factors such as the
weight of the escaping arc within the process or the criticality of the action al-
lowed. Escaping arcs with high severity pinpoint imprecise situations that should
be addressed urgently.
Chapters 9, 10, and 11 presented a different approach to analyze the escaping
arcs of a system. While the previous proposed technique detects the escaping arcs
directly from the log, this different approach uses a pre-processing step, where
the observed behavior is aligned with the modeled behavior. Aligning observed
and modeled behavior can solve situations, such as unfitting and undeterminism,
in a global and optimal way, whereas the direct use of the log would require the
use of heuristics. However, the aligning of behaviors is a time-consuming oper-
ation not suitable for all the scenarios. The chapter presented the use of aligned
behavior to derive escaping arcs, including as well situations where the observed
traces in the log can be optimally aligned with several model sequences. The
chapter also proposed different levels of abstractions on the precision computa-
tion, where the order of the activities is not considered, or where the direction in

19.3 Challenges and Directions for Future Work 193

which the log traces are processed is reverted to achieve a more balanced preci-
sion.

• Decomposed Conformance Diagnosis. Conformance checking is a time-
consuming task. Moreover, identifying the causes of the conformance problems
is sometimes far from easy. Decomposition techniques try to alleviate these two
problems by decomposing the processes in parts, and analyzing them separately.
In this part, the conformance focus changes from the precision dimension of the
previous part to the fitness dimension.
Chapters 12, 13, and 14 studied the different decomposition methods in process
mining, and proposed a decomposition conformance checking based on Single-
Entry Single-Exit (SESE) components. SESEs are components with a clear inter-
face with the rest of the model, (i.e., one entry node and one exit node), repre-
senting subprocesses within the main process. Decomposing a model in SESEs
alleviates the conformance checking analysis, while at the same time, the mean-
ingful decomposition provides a better understanding of what subprocesses have
conformance problems.
Chapter 15 extended the diagnosis capacities of the decomposition methods, pro-
viding mechanisms to analyze the conformance in a topological way and a hier-
archical way. A topology of a decomposition represents the connections between
components, and it can be used to detect areas with conformance problems. A
hierarchical conformance analysis allows to zoom-in and zoom-out on a hierar-
chy of components in order to get a better understanding of the situation and the
cause of the conformance problems.
Chapter 16 and 17 proposes a decomposition of multi-perspective models, in
order to alleviate the computation time and to aid the conformance diagnosis. In
particular, the proposed decomposition focuses on models with control-flow and
data perspective, aligning both flow and data in a distributed way.
Chapter 18 addresses the real-time monitoring of conformance deviations by
means of decomposition and event-based heuristic replay. The decomposed set-
ting aims at identifying the subprocesses cause of the conformance anomalies,
while the replay adapts the analysis to the event-based nature of real-time moni-
toring scenarios.

19.3 Challenges and Directions for Future Work

The work presented in this book focuses on the area of conformance checking, a
first step to perform conformance analysis which was impossible until now. In this
section we list some of the possible future research paths to follow:

• New metrics, new dimensions. Each conformance dimension states the property
all metrics for that dimension should measure. However, the details on how this
dimension is quantified relies on each specific metric, and each metric assumes a
different interpretation of the dimension. For example, PM [92] defines fitness as

194 19 Conclusions

the number of correct parsed traces divided by the number of traces in the event
log, while the metric f [77] is more fine-grained because it also considers the
problems (missing and remaining tokens) that occurred during the log replay. In
precision, a′B [77] derives sometimes follows and precedes relations for the model
and the log and compares them, while etcp [59] bases its estimation on detect-
ing escaping arcs. Each proposed metric has advantages and disadvantages that
make it appropriate for particular scenarios. For example, a precision metric such
as etcp, less time consuming than a′B, is more suited to be incorporated within a
genetic algorithm where conformance is executed constantly [35]. Therefore, the
study of new conformance metrics is an area that must be explored as future re-
search, extending the base of metrics to be used. Moreover, limiting conformance
to only four dimensions (fitness, precision, generalization, and simplicity) may
be considered too restrictive, and future research must be open to explore other
possible dimensions, such as the completeness, i.e., is the model describing the
complete process or only a part?

• Decomposed alignment of observed and modeled behavior. As experiments
show, aligning observed and modeled behavior can be a time-consuming task [17].
Chapter 12 and other similar works alleviate this cost by means of decomposing
the process. However, as it is remarked in the same chapter, the goal of decom-
posing is not to aligning the whole log and model (i.e., the original problem),
but to align at component level to provide localized conformance information.
It is proven by counterexample that the simple concatenation of local optimal
alignments does not result in a global optimal alignment. However, the use of
decomposed techniques have provided equally important results for the global
setting. For example, [9] provides a lower bound on the global alignment cost
based on local alignments. The use of decomposed techniques is a promising re-
search path to alleviate the cost of the alignments, and lots of efforts has been put
in the recent months. That may include, for example, the study of what properties
the traces, model, or local alignments must satisfy so the lower bound results in
the exact cost, or the development of divide-and-conquer strategies for a bottom-
up construction of the alignments.

• Decomposed conformance for other dimensions. Chapter 12 shows how to
check perfectly fitting traces in a decomposed way. However, conformance
checking also includes three other dimensions. The use of decomposed tech-
niques to measure those dimensions is an interesting future research path, but it
is also a challenge far from trivial. For example, metrics such as etcp [59] and
a′B [77] define precision as a global property, and therefore, a direct decomposi-
tion is not possible. There are several options that address the issue and can be
explored: the real cost of metrics like ap [21] comes from computing the align-
ments they rely on, and thus, a faster decomposed alignment of the behaviors will
reduce the computation cost of the metric; in other cases, a simple conformance
analysis can be done at local level and then can be smartly aggregated at a global
level, similar to a Map Reduce strategy; a final option is the definition of new
metrics that consider a redefinition of the dimension in a non-global way. Simi-

19.3 Challenges and Directions for Future Work 195

larly, decomposition can be used to measure simplicity, for example, measuring
the simplicity of the components and how they are connected.

• Visualization and diagnosis. The usefulness of results is directly related with
how the results are provided. Results poorly displayed may limit their transmitted
information. This is specially important in the conformance checking area, where
results tend to be large (e.g., set of escaping arcs, tokens missing, misalignments,
. . .) and pinpointing future lines of actuation withing the organization. The book
provides several mechanisms in that direction (e.g., severity of the escaping arcs,
or detection of problematic areas using the topology of a decomposition). How-
ever, this is just the tip of the iceberg and more approaches should follow. Some
future work possibilities include the aggregation of conformance problems by the
underlying cause behind them, or new ways to visually represent those problems.

• Model repair. The conformance diagnosis approaches presented in this book in-
dicate points where the model does not adequately describe the reality. These
points indicate possible parts of the model to be repaired, but the approaches rely
on the user to perform iterative improvements on the model. The use of the con-
formance results within a fully automated approach to repair the models, similar
to [44] and [36], is an interesting topic for further research. This becomes es-
pecially interesting in the decomposed setting, where the model can be repaired
component by component. Moreover, other scenarios to consider are also pos-
sible, such as models that cannot be modified, opening the door to theories like
supervisory control [71] in order to derive a controller to supervise the model
execution.

References

1. Extensible Event Stream (XES). www.xes-standard.org
2. IEEE Task Force on Process Mining – Case Studies . http://www.win.tue.nl/ieeetfpm/doku.

php?id=shared:process mining case studies
3. van der Aalst, W.M.P.: Verification of Workflow Nets. In: P. Azéma, G. Balbo (eds.) Appli-

cation and Theory of Petri Nets, PETRI NETS ’97, Lecture Notes in Computer Science, vol.
1248, pp. 407–426. Springer (1997)

4. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers 8(1), 21–66 (1998)

5. van der Aalst, W.M.P.: Formalization and verification of event-driven process chains. Infor-
mation & Software Technology 41(10), 639–650 (1999)

6. van der Aalst, W.M.P.: Using Process Mining to Generate Accurate and Interactive Business
Process Maps. In: W. Abramowicz, D. Flejter (eds.) Business Information Systems Work-
shops, BIS’09, Lecture Notes in Business Information Processing, vol. 37, pp. 1–14. Springer
(2009)

7. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

8. van der Aalst, W.M.P.: Decomposing Process Mining Problems Using Passages. In: S. Had-
dad, L. Pomello (eds.) 33rd International Conference on Application and Theory of Petri Nets,
PETRI NETS ’12, Lecture Notes in Computer Science, vol. 7347, pp. 72–91. Springer (2012)

9. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic approach. Dis-
tributed and Parallel Databases 31(4), 471–507 (2013)

10. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process mod-
els for conformance checking and performance analysis. Wiley Interdisc. Rew.: Data Mining
and Knowledge Discovery 2(2), 182–192 (2012)

11. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language. Inf.
Syst. 30(4), 245–275 (2005)

12. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

13. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering Social Networks from Event
Logs. Computer Supported Cooperative Work 14(6), 549–593 (2005)

14. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther,
C.W.: Process mining: a two-step approach to balance between underfitting and overfitting.
Software and System Modeling 9(1), 87–111 (2010)

15. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process
Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

16. Accorsi, R., Stocker, T.: On the exploitation of process mining for security audits: the confor-
mance checking case. In: S. Ossowski, P. Lecca (eds.) Proceedings of the ACM Symposium

http://www.xes-standard.org
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies

198 References

on Applied Computing, SAC 2012, Riva, Trento, Italy, March 26-30, 2012, pp. 1709–1716.
ACM (2012). DOI 10.1145/2245276.2232051

17. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Technische Univer-
siteit Eindhoven, Eindhoven, The Netherlands (2014)

18. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance Checking Using Cost-
Based Fitness Analysis. In: 15th IEEE International Enterprise Distributed Object Computing
Conference, EDOC’11, pp. 55–64. IEEE Computer Society (2011)

19. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Memory-Efficient Alignment of
Observed and Modeled Behavior. Tech. Rep. BPM-03-03, BPMcenter.org (2013)

20. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.:
Alignment Based Precision Checking. In: M.L. Rosa, P. Soffer (eds.) 8th International Work-
shop on Business Process Intelligence, BPI’12, Lecture Notes in Business Information Pro-
cessing, vol. 132, pp. 137–149. Springer (2012)

21. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.:
Measuring precision of modeled behavior. Inf. Syst. E-Business Management 12 (2014). (to
appear)

22. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-Based Fitness in Conformance Check-
ing. In: B. Caillaud, J. Carmona, K. Hiraishi (eds.) 11th International Conference on Applica-
tion of Concurrency to System Design, ACSD’11, pp. 57–66. IEEE (2011)

23. Banescu, S., Petkovic, M., Zannone, N.: Measuring Privacy Compliance Using Fitness Met-
rics. In: A.P. Barros, A. Gal, E. Kindler (eds.) 10th International Conference on Business
Process Management, BPM’12, Lecture Notes in Computer Science, vol. 7481, pp. 114–119.
Springer (2012)

24. Bezerra, F.d.L., Wainer, J.: Algorithms for anomaly detection of traces in logs of process aware
information systems. Inf. Syst. 38(1), 33–44 (2013)

25. Bezerra, F.d.L., Wainer, J., van der Aalst, W.M.P.: Anomaly Detection Using Process Min-
ing. In: T.A. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P. Soffer, R. Ukor (eds.)
10th International Workshop on Business Process Modeling, Development, and Support, BP-
MDS’09, Lecture Notes in Business Information Processing, vol. 29, pp. 149–161. Springer
(2009)

26. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Handling Concept Drift
in Process Mining. In: H. Mouratidis, C. Rolland (eds.) Advanced Information Systems En-
gineering, CAiSE ’11, Lecture Notes in Computer Science, vol. 6741, pp. 391–405. Springer
(2011)

27. Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for experimenters : an introduction to de-
sign, data analysis, and model building. Wiley series in probability and mathematical statistics.
J. Wiley & Sons (1978)

28. vanden Broucke, S.K., Weerdt, J.D., Vanthienen, J., Baesens, B.: Determining Process Model
Precision and Generalization with Weighted Artificial Negative Events. IEEE Transactions on
Knowledge and Data Engineering 99(PrePrints), 1 (2013). DOI 10.1109/TKDE.2013.130

29. vanden Broucke, S.K.L.M.: Advances in Process Mining: Artificial Negative Events and Other
Techniques. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium (2014)

30. vanden Broucke, S.K.L.M., Weerdt, J.D., Baesens, B., Vanthienen, J.: Improved Artificial
Negative Event Generation to Enhance Process Event Logs. In: J. Ralyté, X. Franch,
S. Brinkkemper, S. Wrycza (eds.) 24th International Conference on Advanced Information
Systems Engineering, CAiSE’12, Lecture Notes in Computer Science, vol. 7328, pp. 254–
269. Springer (2012)

31. vanden Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: A comprehensive
benchmarking framework (CoBeFra) for conformance analysis between procedural process
models and event logs in ProM. In: IEEE Symposium on Computational Intelligence and
Data Mining, CIDM’13, pp. 254–261. IEEE (2013)

32. Buijs, J.C.A.M.: Flexible Evolutionary Algorithms for Mining Structured Process Models.
Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands (2014)

33. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Towards Cross-Organizational
Process Mining in Collections of Process Models and Their Executions. In: F. Daniel,

http://dx.doi.org/10.1145/2245276.2232051
http://dx.doi.org/10.1109/TKDE.2013.130

References 199

K. Barkaoui, S. Dustdar (eds.) Business Process Management Workshops - BPM 2011 In-
ternational Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers,
Part II, pp. 2–13. Springer (2011)

34. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering
process trees. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

35. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery. In: R. Meersman, H. Panetto, T.S. Dillon,
S. Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, I.F. Cruz (eds.)
On the Move to Meaningful Internet Systems, OTM’12, Lecture Notes in Computer Science,
vol. 7565, pp. 305–322. Springer (2012)

36. Buijs, J.C.A.M., Rosa, M.L., Reijers, H.A., van Dongen, B.F., van der Aalst, W.M.P.: Improv-
ing Business Process Models Using Observed Behavior. In: P. Cudré-Mauroux, P. Ceravolo,
D. Gasevic (eds.) Data-Driven Process Discovery and Analysis, SIMPDA’12, Lecture Notes
in Business Information Processing, vol. 162, pp. 44–59. Springer (2012)

37. Burattin, A., Sperduti, A.: PLG: A Framework for the Generation of Business Process Models
and Their Execution Logs. In: M. zur Muehlen, J. Su (eds.) Business Process Management
Workshops - BPM 2010 International Workshops and Education Track, Hoboken, NJ, USA,
September 13-15, 2010, Revised Selected Papers, pp. 214–219. Springer (2010)

38. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A Tool for the Synthesis and Mining of
Petri Nets. In: Application of Concurrency to System Design, ACSD’09, pp. 181–185. IEEE
Computer Society (2009)

39. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms (3. ed.).
MIT Press (2009)

40. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring Similarity between Business Pro-
cess Models. In: Z. Bellahsene, M. Léonard (eds.) 20th International Conference on Advanced
Information Systems Engineering, CAiSE’08, Lecture Notes in Computer Science, vol. 5074,
pp. 450–464. Springer (2008)

41. van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural Patterns for Soundness of
Business Process Models. In: 10th IEEE International Enterprise Distributed Object Comput-
ing Conference, EDOC’06, pp. 116–128. IEEE Computer Society (2006)

42. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Sys-
tems: Bridging People and Software Through Process Technology. Wiley (2005)

43. Dumas, M., Garcı́a-Bañuelos, L., Polyvyanyy, A.: Unraveling Unstructured Process Models.
In: J. Mendling, M. Weidlich, M. Weske (eds.) Second International Workshop on Business
Process Modeling Notation, BPMN’10, pp. 1–7. Springer (2010)

44. Fahland, D., van der Aalst, W.M.P.: Repairing Process Models to Reflect Reality. In: A.P.
Barros, A. Gal, E. Kindler (eds.) Business Process Management, BPM’12, Lecture Notes in
Computer Science, vol. 7481, pp. 229–245. Springer (2012)

45. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery with Arti-
ficial Negative Events. Journal of Machine Learning Research 10, 1305–1340 (2009)

46. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering Expressive Process Models by
Clustering Log Traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

47. Hopcroft, J.E., Tarjan, R.E.: Dividing a Graph into Triconnected Components. SIAM J. Com-
put. 2(3), 135–158 (1973)

48. Jensen, K., Kristensen, L.: Coloured Petri Nets. Springer Verlag (2009)
49. Karrer, B., Levina, E., Newman, M.E.J.: Robustness of community structure in networks.

Phys. Rev. E 77(4), 046,119 (2008). DOI 10.1103/PhysRevE.77.046119
50. de Leoni, M., van der Aalst, W.M.P.: Aligning Event Logs and Process Models for Multi-

perspective Conformance Checking: An Approach Based on Integer Linear Programming.
In: F. Daniel, J. Wang, B. Weber (eds.) 11th International Conference on Business Process
Management, BPM ’13, Lecture Notes in Computer Science, vol. 8094, pp. 113–129. Springer
(2013)

51. de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: discovering decisions in pro-
cesses using alignments. In: S.Y. Shin, J.C. Maldonado (eds.) ACM Symposium on Applied
Computing, SAC ’13, pp. 1454–1461. ACM (2013)

http://dx.doi.org/10.1103/PhysRevE.77.046119

200 References

52. Liggesmeyer, P.: Software-Qualität - testen, analysieren und verifizieren von Software. Spek-
trum Akadem. Verl. (2002)

53. Mannhardt, F., de Leoni, M., Reijers, H.v.d.A.W.M.P.: Balanced Multi-Perspective Checking
of Process Conformance. Tech. rep., BPMcenter.org (2014). BPM Center Report BPM-14-07

54. de Medeiros, A.K.A.: Genetic Process Mining. Ph.D. thesis, Technische Universiteit Eind-
hoven, Eindhoven, The Netherlands (2006)

55. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Quantifying process equiv-
alence based on observed behavior. Data Knowl. Eng. 64(1), 55–74 (2008)

56. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: an
experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)

57. Munoz-Gama, J.: Algorithms for Process Conformance and Process Refinement. Master’s
thesis, Universitat Politecnica de Catalunya, Barcelona, Spain (2010)

58. Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining. Ph.D. thesis,
Universitat Politecnica de Catalunya, Barcelona, Spain (2014)

59. Munoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance. In: R. Hull,
J. Mendling, S. Tai (eds.) 8th International Conference on Business Process Management,
BPM’10, Lecture Notes in Computer Science, vol. 6336, pp. 211–226. Springer (2010)

60. Munoz-Gama, J., Carmona, J.: Enhancing precision in Process Conformance: Stability, con-
fidence and severity. In: IEEE Symposium on Computational Intelligence and Data Mining,
CIDM’11, pp. 184–191. IEEE (2011)

61. Munoz-Gama, J., Carmona, J.: A General Framework for Precision Checking. Special Issue
on Intelligent and Innovative Computing in Business Process Management of International
Journal of Innovative Computing, Information and Control 8(7(B)), 5317–5339 (2012)

62. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.: Single-Entry Single-Exit Decomposed
Conformance Checking. Information Systems 46, 102–122 (2014)

63. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Conformance Checking in the Large:
Partitioning and Topology. In: F. Daniel, J. Wang, B. Weber (eds.) 11th International Con-
ference on Business Process Management, BPM’13, Lecture Notes in Computer Science, vol.
8094, pp. 130–145. Springer (2013). [Best Student Paper Award]

64. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Hierarchical Conformance Checking of
Process Models Based on Event Logs. In: J.M. Colom, J. Desel (eds.) 34th International Con-
ference on Application and Theory of Petri Nets and Concurrency, PETRI NETS’13, Lecture
Notes in Computer Science, vol. 7927, pp. 291–310. Springer (2013)

65. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4),
541–580 (1989)

66. OMG: Business Process Model and Notation (BPMN) Version 2.0. http://www.omg.org/spec/
BPMN/2.0/ (2011)

67. OMG: Unified Modeling Language (UML) Version 2.0. www.omg.org/spec/UML/2.0/ (2011)
68. Petkovic, M., Prandi, D., Zannone, N.: Purpose Control: Did You Process the Data for the

Intended Purpose? In: W. Jonker, M. Petkovic (eds.) 8th VLDB Workshop on Secure Data
Management, SDM’11, Lecture Notes in Computer Science, vol. 6933, pp. 145–168. Springer
(2011)

69. Polyvyanyy, A.: Structuring process models. Ph.D. thesis, University of Potsdam (2012)
70. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified Computation and Generalization of the

Refined Process Structure Tree. In: M. Bravetti, T. Bultan (eds.) 7th International Workshop
on Web Services and Formal Methods, WSFM’10, Lecture Notes in Computer Science, vol.
6551, pp. 25–41. Springer (2010)

71. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

72. Reisig, W., Rozenberg, G.: Lectures on Petri nets I: Basic models - Advances in Petri nets,
vol. 1491. Springer (1998)

73. Rozinat, A.: Process Mining: Conformance and Extension. Ph.D. thesis, Technische Univer-
siteit Eindhoven, Eindhoven, The Netherlands (2010)

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
www.omg.org/spec/UML/2.0/

References 201

74. Rozinat, A., van der Aalst, W.M.P.: Conformance Testing: Measuring the Alignment Between
Event Logs and Process Models. BETA Research School for Operations Management and
Logistics (2005)

75. Rozinat, A., van der Aalst, W.M.P.: Conformance Testing: Measuring the Fit and Appropri-
ateness of Event Logs and Process Models. In: C. Bussler, A. Haller (eds.) Business Process
Management Workshops, vol. 3812, pp. 163–176 (2005)

76. Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: S. Dustdar, J.L. Fiadeiro,
A.P. Sheth (eds.) Business Process Management, BPM’06, Lecture Notes in Computer Sci-
ence, vol. 4102, pp. 420–425. Springer (2006)

77. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Inf. Syst. 33(1), 64–95 (2008)

78. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.:
The Need for a Process Mining Evaluation Framework in Research and Practice. In: A.H.M.
ter Hofstede, B. Benatallah, H.Y. Paik (eds.) Business Process Management Workshops, Lec-
ture Notes in Computer Science, vol. 4928, pp. 84–89. Springer (2007)

79. Rozinat, A., Veloso, M., van der Aalst, W.M.P.: Using Hidden markov models to evaluate the
quality of discovered process models. Tech. Rep. BPM-08-10, BPMcenter.org (2008)

80. Sarbanes, P., Oxley, G., et al.: Sarbanes-Oxley Act of 2012 (2002)
81. Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series in discrete

mathematics and optimization. Wiley (1999)
82. Silva, M., Teruel, E., Colom, J.M.: Linear Algebraic and Linear Programming Techniques for

the Analysis of Place or Transition Net Systems. In: W. Reisig, G. Rozenberg (eds.) Petri
Nets, Lecture Notes in Computer Science, vol. 1491, pp. 309–373. Springer (1996)

83. Smirnov, S., Weidlich, M., Mendling, J.: Business Process Model Abstraction Based on Be-
havioral Profiles. In: P.P. Maglio, M. Weske, J. Yang, M. Fantinato (eds.) 8th International
Conference on Service-Oriented Computing, ICSOC, Lecture Notes in Computer Science,
vol. 6470, pp. 1–16 (2010). DOI 10.1007/978-3-642-17358-5

84. Solé, M., Carmona, J.: Rbminer: A Tool for Discovering Petri Nets from Transition Sys-
tems. In: A. Bouajjani, W.N. Chin (eds.) Automated Technology for Verification and Analysis,
ATVA’10, Lecture Notes in Computer Science, vol. 6252, pp. 396–402. Springer (2010)

85. vanden Broucke, S., De Weerdt, J., Vanthienen, J., Baesens, B.: On replaying process execu-
tion traces containing positive and negative events. Feb research report kbi 1311, KU Leuven
(2013)

86. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng.
68(9), 793–818 (2009)

87. de Weerdt, J., de Backer, M., Vanthienen, J., Baesens, B.: A Critical Evaluation Study of
Model-log Metrics in Process Discovery. In: M. Muehlen, J. Su (eds.) Business Process Man-
agement Workshops, Lecture Notes in Business Information Processing, vol. 66, pp. 158–169.
Springer Berlin Heidelberg (2011)

88. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A robust F-measure for evaluating
discovered process models. In: IEEE Symposium on Computational Intelligence and Data
Mining, CIDM’11, pp. 148–155. IEEE (2011)

89. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A multi-dimensional quality assess-
ment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst.
37(7), 654–676 (2012)

90. Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active Trace Clustering
for Improved Process Discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013)

91. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement Based on Be-
havioral Profiles of Process Models. IEEE Trans. Software Eng. 37(3), 410–429 (2011).
DOI 10.1109/TSE.2010.96

92. Weijters, A., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process Mining with the Heuristics
Miner-algorithm. In: BETA Working Paper Series, vol. WP 166 (2006)

93. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Discov-
ery using Integer Linear Programming. Fundam. Inform. 94(3-4), 387–412 (2009)

http://dx.doi.org/10.1007/978-3-642-17358-5
http://dx.doi.org/10.1109/TSE.2010.96

202 References

94. Weske, M.: Business Process Management - Concepts, Languages, Architectures, 2nd Edition.
Springer (2012)

	Preface
	Acknowledgments
	Contents
	1
Introduction
	1.1 Processes, Models, and Data
	1.2 Process Mining
	1.3 Conformance Checking Explained: The University Case
	1.4 Book Outline

	Part I
Conformance Checking in Process Mining
	2
Conformance Checking and its Challenges
	2.1 The Role of Process Models in Conformance Checking
	2.2 Dimensions of Conformance Checking
	2.3 Replay-based and Align-based Conformance Checking
	2.4 Challenges of Conformance Checking

	3
Conformance Checking and its Elements
	3.1 Basic Notations
	3.2 Event Logs
	3.3 Process Models
	3.4 Process Modeling Formalisms
	3.4.1 Petri Nets
	3.4.2 Workflow Nets
	3.4.3 Other Formalisms

	Part II
Precision in Conformance Checking
	4
Precision in Conformance Checking
	4.1 Precision: The Forgotten Dimension
	4.2 The Importance of Precision
	4.3 Measures of Precision
	4.4 Requirements for Precision

	5
Measuring Precision
	5.1 Precision based on Escaping Arcs
	5.2 Constructing the Observed Behavior
	5.3 Incorporating Modeled Behavior
	5.4 Detecting Escaping Arcs and Evaluating Precision
	5.5 Minimal Imprecise Traces
	5.6 Limitations and Extensions
	5.6.1 Unfitting Scenario
	5.6.2 Indeterministic Scenario

	5.7 Summary

	6
Evaluating Precision in Practice
	6.1 The University Case: The Appeals Process
	6.2 Experimental Evaluation

	7
Handling Noise and Incompleteness
	7.1 Introduction
	7.2 Robustness on the Precision
	7.3 Confidence on Precision
	7.3.1 Upper Confidence Value
	7.3.2 Lower Confidence Value

	7.4 Experimental Results
	7.5 Summary

	8
Assessing Severity
	8.1 Introduction
	8.2 Severity of an Escaping Arc
	8.2.1 Weight of an Escaping Arc
	8.2.2 Alternation of an Escaping Arc
	8.2.3 Stability of an Escaping Arc
	8.2.4 Criticality of an Escaping Arc
	8.2.5 Visualizing the Severity
	8.2.6 Addressing Precision Issues based on Severity

	8.3 Experimental Results
	8.4 Summary

	9
Handling non-Fitness
	9.1 Introduction
	9.2 Cost-Optimal Alignment
	9.3 Precision based on Alignments
	9.4 Precision from 1-Alignment
	9.5 Summary

	10
Alternative and Variants to Handle non-Fitness
	10.1 Precision from All-Alignment
	10.2 Precision from Representative-Alignment
	10.3 Abstractions for the Precision based on Alignments
	10.3.1 Abstraction on the Order
	10.3.2 Abstraction on the Direction

	10.4 Summary

	11
Handling non-Fitness in Practice
	11.1 The University Case: The Exchange Process
	11.2 Experimental Results

	Part III
Decomposition in Conformance Checking
	12
Decomposing Conformance Checking
	12.1 Introduction
	12.2 Single-Entry Single-Exit and Refined Process Structure Tree
	12.3 Decomposing Conformance Checking using SESEs
	12.4 Summary

	13
Decomposing for Fitness Checking
	13.1 Introduction
	13.2 Bridging a Valid Decomposition
	13.3 Decomposition with invisible/duplicates
	13.4 Summary

	14
Decomposing Conformance Checking in Practice
	14.1 The Bank Case: The Transaction Process
	14.2 Experimental Results

	15
Diagnosing Conformance
	15.1 Introduction
	15.2 Topological Conformance Diagnosis
	15.3 Multi-level Conformance Diagnosis and its Applications
	15.3.1 Stand-alone Checking
	15.3.2 Multi-Level Analysis
	15.3.3 Filtering

	15.4 Experimental Results
	15.5 Summary

	16
Data-aware Processes and Alignments
	16.1 Introduction
	16.2 Data-aware Processes
	16.2.1 Petri nets with Data
	16.2.2 Event Logs and Relating Models to Event Logs
	16.2.3 Data Alignments

	16.3 Summary

	17
Decomposing Data-aware Conformance
	17.1 Introduction
	17.2 Valid Decomposition of Data-aware Models
	17.3 SESE-based Strategy for a Valid Decomposition
	17.4 Implementation and Experimental Results
	17.5 Summary

	18
Event-based Real-time Decomposed Conformance Checking
	18.1 Introduction
	18.2 Event-based Real-time Decomposed Conformance
	18.2.1 Model and Log Decomposition
	18.2.2 Event-based Heuristic Replay

	18.3 Experimental Results
	18.4 Summary

	Part IV
Conclusions and FutureWork
	19
Conclusions
	19.1 Conclusion and Reflection
	19.2 Summary of Contributions
	19.3 Challenges and Directions for Future Work

	References

