
Implementing Complete Formulas
on Weierstrass Curves in Hardware

Pedro Maat C. Massolino(B), Joost Renes, and Lejla Batina

Radboud University, Nijmegen, The Netherlands
{p.massolino,j.renes,lejla}@cs.ru.nl

Abstract. This work revisits the recent complete addition formulas for
prime order elliptic curves of Renes, Costello and Batina in light of par-
allelization. We introduce the first hardware implementation of the new
formulas on an FPGA based on three arithmetic units performing Mont-
gomery multiplication. Our results are competitive with current literature
and show the potential of the new complete formulas in hardware design.
Furthermore, we present algorithms to compute the formulas using any-
where between two and six processors, using the minimum number of field
multiplications.

Keywords: Elliptic curve cryptography · FPGA · Weierstrass curves ·
Complete addition formulas

1 Introduction

The main operation in many cryptographic protocols based on elliptic curves is
scalar multiplication, which is performed via repeated point addition and dou-
bling. In early works formulas for the group operation used different sequences of
instructions for addition and doubling [22,28]. This resulted in more optimized
implementations, since doublings can be faster than general additions, but näıve
implementations suffered from side-channel attacks [23]. Indeed, as all special
cases have to be treated differently, it is not straightforward to come up with an
efficient and side-channel secure implementation.

A class of elliptic curves which avoids these problems is the family of curves
proposed by Bernstein and Lange, the so-called Edwards curves [8]. Arguably,
the primary reason for their popularity is their “complete” addition law. That
is, a single addition law which can be used for all inputs. The benefit of having
a complete addition law is obvious for both simplicity and side-channel security.
Namely, having only one set of formulas that works for all inputs simplifies
the task of implementers and thwarts side-channel analysis and more refined
attacks, e. g. safe-error attacks [38]. After the introduction of Edwards curves,
more curves models have been shown to possess complete addition laws [6,7].

This work was supported in part by the Technology Foundation STW (project 13499
- TYPHOON & ASPASIA), from the Dutch government.

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 89–108, 2016.
DOI: 10.1007/978-3-319-49445-6 5

90 P.M.C. Massolino et al.

Moreover, (twisted) Edwards curves are being deployed in software, for example
in the library NaCl [10]. In particular, software implementations typically rely
on specific curves, e. g. on the Montgomery curves Curve25519 [5] by Bernstein
or Curve448 [19] proposed by Hamburg.

Moving to a hardware scenario, using the nice properties of these specific
curves is not as straightforward anymore. Hardware development is costly, and
industry prefers IP cores as generic solutions for all possible clients. More-
over, backwards compatibility is a serious concern, and most current stan-
dards [12,15,29] regarding large prime fields contain prime order curves in short
Weierstrass form. This prohibits using (twisted) Edwards, (twisted) Hessian
and Montgomery curves. The desire for complete addition formulas for prime
order curves in short Weierstrass form was recognized and Renes, Costello and
Batina [31] proved this to be realistic. They present complete addition formu-
las with an efficiency loss of 34 %–44 % in software when compared to formulas
based on Jacobian coordinates, depending on the size of the field.

As the authors mention, one can expect to have better performance in hard-
ware, but they do not present results. In particular, when using Montgomery
multiplication one can benefit from very efficient modular additions and sub-
tractions (which appear a lot in their formulas), which changes the performance
ratio derived in the original paper. Therefore, it is of interest to investigate the
new complete formulas from a hardware point of view. In this paper we show
that the hardware performance is competitive with the literature, building scalar
multiplication on top of three parallel Montgomery multipliers. In more detail,
we summarize our contributions as follows:

– we present the first hardware implementation based on the work of [26], work-
ing for every prime order curve over a prime field of up to 522 bits, and obtain
competitive results;

– we present algorithms for various levels of parallelism for the new formulas to
boost the performance.

Related Work. Mainly there are numerous works on curve-based hardware
implementations. These are on various FPGA platforms, making a meaning-
ful comparison very difficult. Güneysu and Paar [17] proposed a new speed-
optimized architecture that makes intensive use of the DSP blocks in an FPGA
platform. Guillermin [18] introduced a prime field ECC hardware architecture
and implemented it on several Altera FPGA boards. The design is based on
Residue Number System (RNS), facilitating carry-free arithmetic and paral-
lelism. Yao et al. [37] followed the idea of using RNS to design a high-speed ECC
co-processor for pairings. Sakiyama et al. [33] proposed a superscalar coprocessor
that could deal with three different curve-based cryptosystems, all in character-
istic 2 fields. Varchola et al. [35] designed a processor-like architecture, with
instruction set and decoder, on top of which they implemented ECC. This app-
roach has the benefit of having a portion written in software, which can be
easily maintained and updated, while having special optimized instructions for
the elliptic curve operations. The downside of this approach is that the resource

Implementing Complete Formulas on Weierstrass Curves in Hardware 91

costs are higher than a fully optimized processor. As was the case for Güneysu
and Paar [17], their targets were standardized NIST prime curves P–224 and
P–256. Consequently, each of their synthesized circuit would only work for one
of the two primes. Pöpper et al. [30] follow the same approach as Varchola
et al. [35], with some side-channel related improvements. The paper focuses on
an analysis of each countermeasure and its effective cost. Roy et al. [32] followed
the same path, but with more optimizations with respect to resources and only
for curve NIST P–256. However, the number of Block RAMs necessary for the
architecture is much larger than of Pöpper et al. [30] or Varchola et al. [35].
Fan et al. [16] created an architecture for special primes and curves, namely the
standardized NIST P–192. The approach was to parallelize Montgomery mul-
tiplication and formulas for point addition and doubling on the curve. Vliegen
et al. [36] attempted to reduce the resources with a small core aimed at 256-bit
primes.

Organization. We start with preliminaries in Sect. 2, and briefly discuss par-
allelism for the complete formulas in Sect. 3. Finally we present our hardware
implementation using three Montgomery multipliers in Sect. 4.

2 Preliminaries for Elliptic Curve Cryptography

Let Fq be a finite field of characteristic p, i. e. q = pn for some n, and assume
that p is not two or three. For well-chosen a, b ∈ Fq, an elliptic curve E over Fq

is defined as the set of solutions (x, y) to the curve equation E : y2 = x3 +ax+ b
with an additional point O, called the point at infinity. The Fq-rational points
E(Fq) are all (x, y) ∈ E such that (x, y) ∈ F

2
q, together with O. They form a

group, with O as its identity element. From now on when we write E, we mean
E(Fq). The order of E is the order of this group. To compute the group law
on E one can use the chord and tangent process. To implement this, however,
it is necessary to use at least one inversion. Since inversions are very costly, we
choose a different point representation to avoid them.

Define an equivalence relation on F
3
q by letting (x0, x1, x2) ∼ (y0, y1, y2) if

and only if there exists λ ∈ F
∗
q such that (x0, x1, x2) = (λy0, λy1, λy2). Then the

projective plane over Fq, denoted P
2(Fq), is defined by F

3
q \ {(0, 0, 0)} modulo

the equivalence relation ∼. We write (x0 : x1 : x2) to emphasize that the tuple
belongs to P

2(Fq) as opposed to F
3
q. Now we can define E(Fq) to be the set of

solutions (X : Y : Z) ∈ P
2(Fq) to the curve equation E : Y 2 = X3+aXZ2+bZ3.

Note that we can easily map between the two representations by (x, y) �→ (x : y :
1), O �→ (0 : 1 : 0), and (X : Y : Z) �→ (X/Z, Y/Z) (for Z �= 0), (0 : 1 : 0) �→ O.

There are many ways to compute the group law on E, see [9]. These differ
depending on the representation of the curve and the points. As mentioned in
the introduction, we put emphasis on complete addition formulas for prime order
elliptic curves. The work of Renes et al. [31] presents addition formulas for curves
in short Weierstrass form embedded in the projective plane. They compute the

92 P.M.C. Massolino et al.

sum of two points P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) as P + Q = (X3 :
Y3 : Z3), where

X3 = (X1Y2 + X2Y1)(Y1Y2 − a(X1Z2 + X2Z1) − 3bZ1Z2)

− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 + X2Z1) − a2Z1Z2),

Y3 = (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 + X2Z1) − a2Z1Z2)
+ (Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 + X2Z1) − 3bZ1Z2),

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)
+ (X1Y2 + X2Y1)(3X1X2 + aZ1Z2). (1)

Elliptic curve cryptography [22,28] commonly relies on the hard problem
called the “Elliptic Curve Discrete Logarithm Problem (ECDLP)”. This means
that given two points P,Q on an elliptic curve, it is hard to find a scalar k ∈ Z

such that Q = kP , if it exists. Therefore the main component of curve based
cryptosystems is the scalar multiplication operation (k, P) �→ kP . Since in many
cases k is a secret, this operation is very sensitive to attacks. In particular many
side-channel attacks [4,23] and countermeasures [14] have been proposed. To
ensure protection against simple power analysis (SPA) attacks it is important
to use regular scalar multiplication algorithms, e. g. Montgomery ladder [20]
or Double-And-Add-Always [14], executing both an addition and a doubling
operation per scalar bit.

3 Parallelism

An important way to increase the efficiency of the implementation is to use multi-
ple Montgomery multipliers in parallel. In this section we give a brief explanation
for our choice of three multipliers.

The addition formulas on which our scalar multiplication is built are shown
in Algorithm 1 of [31]. We choose to ignore additions and subtractions since we
assume to be relying on a Montgomery multiplier for which the cost of field mul-
tiplications is far higher than that of field additions. The total (multiplicative)
cost in the most general case is 12M+2ma +3m3b

1. Because our processors do
not distinguish full multiplications and multiplications by constants, we consider
this cost simply as 17M. The authors of [31] introduce optimizations for mixed
addition and doubling, but in our case this only saves a single multiplication
(and some additions). Since this does not make up for the price we would have
to pay for the implementation of a second algorithm, we only examine the most
general case. In Table 1 we show the interdependencies of the multiplications.

1 We denote by M, ma, m3b, a the cost of a general multiplication, a multiplication by
curve constant a, a multiplication by curve constant 3b, and an addition respectively.

Implementing Complete Formulas on Weierstrass Curves in Hardware 93

Table 1. Dependencies of multiplications inside the complete addition formulas

Stage Result Multiplication Dependent on

0 �0 X1 · X2 -

0 �1 Y1 · Y2 -

0 �2 Z1 · Z2 -

0 �3 (X1 + Y1) · (X2 + Y2) -

0 �4 (X1 + Z1) · (X2 + Z2) -

0 �5 (Y1 + Z1) · (Y2 + Z2) -

1 �6 b3 · �2 �2

1 �7 a · �2 �2

1 �8 a · (�4 − �0 − �2) �0, �2, �4

1 �9 b3 · (�4 − �0 − �2) �0, �2, �4

2 �10 a · (�0 − �7) �0, �7

2 �11 (�3 − �0 − �1) · (�1 − �8 − �6) �0, �1, �3, �6, �8

2 �13 (�1 + �8 + �6) · (�1 − �8 − �6) �1, �6, �8

2 �15 (�5 − �1 − �2) · (�1 + �8 + �6) �1, �2, �5, �6, �8

2 �16 (�3 − �0 − �1) · (3�0 + �7) �0, �1, �3, �7

3 �12 (�5 − �1 − �2) · (�10 + �9) �1, �2, �5, �9, �10

3 �14 (3�0 + �7) · (�10 + �9) �0, �7, �9, �10

Table 2. Efficiency approximation of the number of Montgomery multipliers against
the area used.

n Cost Area × Time Algorithm

1 17M + 23a 17M + 23a 1 in [31]

2 9M2 + 12a2 18M + 24a 1

3 6M3 + 8a3 18M + 24a 2

4 5M4 + 7a4 20M + 28a 3

5 4M5 + 6a5 20M + 30a 4

6 3M6 + 6a6 18M + 36a 5

This allows us to write down algorithms for implementations running n
processors in parallel. Denote by Mn resp. an the cost of doing n multiplications
resp. additions (or subtractions) in parallel. In Table 2 we present the costs for
1 ≤ n ≤ 6. We make the simple approximations that Mn = M and an = a.
We note that this ignores some practical aspects. For example a larger number
of Montgomery multipliers can result in scheduling overhead, which we do not
take into account. All algorithms and their respective Magma [11] verification
code can be found in Appendices B and C. For our implementation we have
chosen for n = 3, i. e. three Montgomery multipliers. This number of multipliers

94 P.M.C. Massolino et al.

achieves a great area-time trade-off, while obtaining a good speed-up compared
to n = 1. Moreover, the aforementioned practical issues (e. g. scheduling) are not
as complicated to deal with as for larger n.

4 Implementation of the Formulas with Three Processors

In this section we introduce a novel hardware implementation, parallelizing
the new formulas using three Montgomery processors. We make use of the
Montgomery processors which have been proposed by Massolino et al. [26] for
MicrosemiR© IGLOO2R© FPGAs, for which the architecture is shown in Fig. 1.
We give a short description of the processor in Sect. 4.1, but for more details
on its internals we refer to [26]. As a consequence of building on top of this
processor, we target the same FPGA. However, it is straightforward to port to
other FPGA’s or even ASICs which have a Montgomery multiplier with the same
interface and instructions.

Fig. 1. Montgomery addition, subtraction and multiplication processor.

The elliptic curve scalar multiplication routine is constructed on top of the
Montgomery processors. As mentioned before, to protect against simple power
analysis attacks, we implement a regular scalar multiplication algorithm (i. e.
Double-And-Add-Always [14]). The algorithm relies on three registers R0, R1 and
R2. The register R0 contains the operand which is always doubled. The registers
R1 resp. R2 contain the result of the addition when the exponent bit is zero
resp. one. This algorithm should be applied carefully since it is prone to fault
attacks [3]. From a very high level point of view the architecture consists of the
three Montgomery multipliers and a single BRAM block, shown in Fig. 2. We
note that this BRAM block is more than large enough to store the necessary
temporary variables. So although Algorithm 2 tries to minimize the number of
these, this is not necessary for our case. In the rest of this section we elaborate
on the details of the implementation.

4.1 The Montgomery Processor

Massolino et al. [26] proposed two different Montgomery processors. Our scalar
multiplication builds on top of “version 2”, which has support for two internal

Implementing Complete Formulas on Weierstrass Curves in Hardware 95

multipliers and two memory blocks. It can perform three operations: Mont-
gomery multiplication, addition without reduction and subtraction without
reduction. To perform Montgomery multiplication, the processor employs the
FIOS algorithm proposed by Koç et al. [21]. In short, FIOS computes the par-
tial product and partial reduction inside the same iterative loop. This can be
translated into a hardware architecture, see Fig. 1, with a unit for the partial
product and another partial modular reduction. The circuit behaves like a three-
stage pipeline: in the first stage operands are fed into the circuit, in the second
they are computed and in the third they are stored into memory. The pipeline
system is reused for the addition and subtraction operation in the multiplier,
and values are added or subtracted directly. In case of subtraction the compu-
tation also adds a multiple of the prime modulus. Those operations can be done
without applying reduction, because reduction will be applied later during a
multiplication operation. However, there is a limit to the number of consecutive
additions/subtractions with no reduction, on which we elaborate in Sect. 4.4.

4.2 Memory

The main RAM memory in Fig. 2 is subdivided in order to lower control logic
resources and to facilitate the interface. The main memory operates as a true
dual port memory of 1024 words of 17 bits. We create a separation in the mem-
ory, composing a big word of 32 words (i. e. 544 bits). This way we construct
the memory as 32 × 32 big words. A big word can accommodate any temporary
variable, input or output of our architecture. An exception is possibly the scalar
of the point scalar multiplication. Although a single word would be large enough
to contain 523-bit scalars (in the largest case of a 523-bit field), the scalar blind-
ing technique can double the size of the scalar. Therefore, we use two words to
store the scalar. By doing this, it will in the future be possible to execute scalar
multiplication with a blinded scalar [13]. Lastly, there is a 17-bit shift register
into which the scalar is loaded word by word.

Fig. 2. Entire architecture with three Montgomery processors from [26], where MM =
Montgomery processor, SHR = Shift register, REG = Register.

96 P.M.C. Massolino et al.

4.3 Control Logic

The formulas and control system are done through two state machines: a main
one which controls everything, and one related to memory transfer.

The memory-transfer state machine was created with the purpose to reduce
the number of states in the main machine. This was done by providing the
operation of transfer between the main memory and the Montgomery processors
memory. Therefore, the main machine can transfer values with just one state,
and can reuse most of the transfer logic. This memory-transfer machine becomes
responsible for various parts of the bus between main memories, processors and
other counters. However, the main state machine still has to be able to control
everything. Hence, the main state machine shares some components with the
memory transfer machine, increasing control circuit costs.

The main state machine controls all the circuits that compose the entire
cryptographic core. Given it controls the entire circuit, the machine also has the
entire Table 2 scheduling implemented as states. The advantage of doing this
through states is the possible optimization of the design and the entire control.
However, the cost of maintenance is a lot higher than a small instruction set
or microcode that can also implement the addition formulas or scalar multi-
plication. Because the addition formulas are complete, it is possible to reduce
the costs of performing both addition and doubling through only the addition
formulas. This decreases the amount of states and therefore makes the final
implementation a lot more compact. Hence, the implementation only iterates
over the addition formulas, until the end of the computations.

4.4 Consecutive Additions

For the Montgomery processor to work in our architecture, part of the origi-
nal design was changed. The authors of [26] did not need to reduce after each
addition or subtraction, as they assumed that these operations would always
be followed by Montgomery multiplications (and its corresponding reduction).
However, they were not able to do multiple consecutive additions and subtrac-
tions, as the Montgomery division value r was chosen to be only 4 bits larger
than the prime. On the other hand, it is readily seen that in Algorithm 2 there
are several consecutive additions and subtractions. One example of such addi-
tions is t9 in line 7, then latter on line 8 is added and stored on t10, which on
line 10 is added with a fourth value. To be able to execute these without having
to reduce, we need a Montgomery division value at least 5 bits larger than the
prime. As a consequence, the processor only works for primes up to 522 bits (as
opposed to 523), which is still one bit more than the largest standardized prime
curve [29].

Implementing Complete Formulas on Weierstrass Curves in Hardware 97

Table 3. Scheduling for point addition P ← P + Q, where P = (X1 : Y1 : Z1) and
Q = (X2 : Y2 : Z2). For doubling simply put P = Q.

Line # Algorithm 2 MM0 MM1 MM2

1 t0 ← X1 · X2 t1 ← Y1 · Y2

t2 ← Z1 · Z2

2 t3 ← X1 + Y1 t4 ← X2 + Y2

t5 ← Y1 + Z1

3 t7 ← X1 + Z1 t8 ← X2 + Z2

t6 ← Y2 + Z2

4 t9 ← t3 · t4 t11 ← t7 · t8

t10 ← t5 · t6

5 t4 ← t1 + t2 t5 ← t0 + t2

t3 ← t0 + t1

6,7,8 t6 ← b3 · t2 t8 ← a · t2

t2 ← t9 − t3

t3 ← t10 − t4

t4 ← t11 − t5

t9 ← t0 + t0

t10 ← t9 + t0

9 t5 ← b3 · t4 t11 ← a · t4

t7 ← t0 − t8

t9 ← a · t7

10 t0 ← t8 + t10 t4 ← t11 + t6

t7 ← t5 + t9

11 t5 ← t1 − t4 t6 ← t1 + t4

12 t4 ← t0 · t7 t1 ← t5 · t6

t8 ← t3 · t7

13 t11 ← t0 · t2 t9 ← t2 · t5

t10 ← t3 · t6

14 Y1 ← t1 + t4 X1 ← t9 − t8

Z1 ← t10 + t11

4.5 Scheduling

The architecture presented in Fig. 2 has one dual port memory, whereas it has
three processors. This means that we can only load values to two processors at
the same time. As a consequence the three processors do not run completely in
parallel, but one of the three is unsynchronized. Table 3 showcases how operations
are split into different processors. They are distributed with the goal of minimiz-
ing the number of loads and stores for each processor and to minimize MM2 being
idle. The process begins by loading the necessary values into MM0 and MM1 and exe-

98 P.M.C. Massolino et al.

cuting their respective operations. As soon as the operations in MM0 and MM1 are
initialized, it loads the corresponding value into MM2 and executes the operation.
As soon as MM0 and MM1 finish their operations, this process restarts. Since the
operations executed in MM2 are not synchronized with those in MM0 and MM1, both
of the operations in MM0 and MM1 should be independent of the output of MM2, and
vice versa. Furthermore, since multiplications are at least ten times slower than
additions for our processor choice [26], the additions and subtractions from lines
seven and eight in Algorithm 2 can be done by the otherwise idle processor MM2 in
stage six. This makes them basically free of cost.

4.6 Comparison

As our architecture supports primes from 116 to 522 bits, we can run benchmarks
and do comparisons for multiple bitsizes. The results for different common prime
sizes are shown in Table 5 in Appendix A. In this section we consider only the
currently widely adopted 128-bit security level, presented in Table 4. Integer
addition, subtraction and Montgomery modular multiplication results are the
same as in Massolino et al. [26]. This is the first work implementing the new
complete formulas for elliptic curves in short Weierstrass form [31], and leads to
a scalar multiplication routine which takes about 14.21 ms for a 256-bit prime.

It is not straightforward to do a well-founded comparison between work in
the literature. Table 4 contains different implementations of elliptic curve scalar
multiplication, but they have different optimization goals. For example we top
[35,36] in terms of milliseconds per scalar multiplication, but they use less mul-
tipliers or run at a lower frequency. On the other hand [1,17,18,25,27,34] out-
perform our architecture in terms of speed, but use a much larger number of
embedded multipliers. Also, implementations only focusing on NIST curves are
able to use the special prime shape, yielding a significant speed-up. Depending
on the needs of a specific hardware designer, this specialization of curves might
not always be desirable. As mentioned before, many parties in industry might
prefer generic cores. Despite these remarks, we argue that the implementation
is competitive with the literature, making a similar trade-off between size and
speed. Thus the new formulas can be implemented with little to no penalties,
while having the benefit of not having to deal with exceptions.

Implementing Complete Formulas on Weierstrass Curves in Hardware 99

A More complete results comparison

Table 4. Comparison of our results to the literature on hardware implementations for
ECC. The speed results are for one scalar multiplication.

Work Field FPGA Slice/ LUT FF Emb. BRAM BRAM Freq. Scalar Mult.

ALM Mult. 64× 18 1 k× 18 (MHz) Cycles (ms)

For all prime fields and prime order short Weierstrass curves

Our 256 IGLOO 24 – 2828 1048 6 6 1 100 1421312 14.21

For NIST curves [29] only

[35] 256 SmartFusion4 – 3690 3690 0 0 12 109 2103941 19.3

[35] 256 Virtex II Pro4 773 1546a 1546a 1 0 3 210 2103941 10.02

[35] 256 Virtex II Pro4 1158 2316a 2316a 4 0 3 210 949951 4.52

[30] 256 Virtex 56c 1914 7656a 7656a 4 0 12 210 830000 3.95

[16] 192 Virtex II Pro4 3173 6346a 6346a 16 0 6 93 920700b 9.90

[32] 256 Spartan 66 72 193 35 8 0 24 156.25 1906250b 12.2

[24] 256 Virtex 44 7020 12435 3545 8 0 4 182 993174b 5.457

[1] 256 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 39922 0.40

[17] 256 Virtex 44 1715 2589 2028 32 0 11 490 303450 0.619

For only Edwards or Twisted Edwards curves

[2] 192 Spartan 3E 4 4654 9308a 9308a 0 0 0 10 125430b 12.543

[34] 256 Zynq6c 1029 2783 3592 20 0 4 200 64770 0.324

For only specific field size, but works with any prime

[36] 256 Virtex II Pro4 1832 3664a 3664a 2 0 9 108.2 3227993 29.83

[36] 256 Virtex II Pro4 2085 4170a 4170a 7 0 9 68.17 1074625 15.76

[18] 256 Stratix II4 9177 18354a 18354a 96 0 0 157.2 106896b 0.68

[27] 256 Virtex II Pro4 15755 31510a 31510a 256 0 0 39.46 151360 3.86

[25] 256 Virtex 44 4655 5740 4876 37 0 11 250 109297 0.44
aMaximum possible value assumed from the number of slices. Virtex II Pro and Spartan 3E slice is 2

LUTs and FFs, Virtex 5 is 4 LUTs and FFs, finally Virtex 6 is 4 LUTs and 8 FFs. Stratix II ALM can

be configured into 2 LUTs and FFs.
bValues estimated by multiplying time by frequency.
4 6 indicates LUT size.
cBRAMs of Virtex 5, 6 and Zynq are 1 k× 36, so they account as 2 independent 1 k× 18.

100 P.M.C. Massolino et al.

Table 5. Complete comparison and results from Table 4

Work Field FPGA Slice/ LUT FF Emb. BRAM BRAM Freq. Scalar Mult.

ALM Mult. 64× 18 1 k×18 (MHz) Cycles (ms)

For all prime fields and prime order short Weierstrass curves

Our 192 IGLOO 24 – 2828 1048 6 6 1 100 728448 7.28

Our 224 IGLOO 24 – 2828 1048 6 6 1 100 1036224 10.36

Our 256 IGLOO 24 – 2828 1048 6 6 1 100 1421312 14.21

Our 320 IGLOO 24 – 2828 1048 6 6 1 100 2498560 24.99

Our 384 IGLOO 24 – 2828 1048 6 6 1 100 3744768 37.45

Our 512 IGLOO 24 – 2828 1048 6 6 1 100 8187904 81.88

Our 521 IGLOO 24 – 2828 1048 6 6 1 100 8331832 83.32

For NIST curves [29] only

[35] 224 SmartFusion4 – 3690 3690 0 0 12 109 1722088 15.8

[35] 256 SmartFusion4 – 3690 3690 0 0 12 109 2103941 19.3

[35] 224 Virtex II Pro4 773 1546a 1546a 1 0 3 210 1722088 8.2

[35] 256 Virtex II Pro4 773 1546a 1546a 1 0 3 210 2103941 10.02

[35] 224 Virtex II Pro4 1158 2316a 2316a 4 0 3 210 765072 3.64

[35] 256 Virtex II Pro4 1158 2316a 2316a 4 0 3 210 949951 4.52

[30] 256 Virtex 56c 1914 7656a 7656a 4 0 12 210 830000 3.95

[16] 192 Virtex II Pro4 3173 6346a 6346a 16 0 6 93 920700b 9.90

[32] 256 Spartan 66 72 193 35 8 0 24 156.25 1906250b 12.2

[24] 192 Virtex 44 7020 12435 3545 8 0 4 182 429702b 2.361

[24] 224 Virtex 44 7020 12435 3545 8 0 4 182 666666b 3.663

[24] 256 Virtex 44 7020 12435 3545 8 0 4 182 993174b 5.457

[24] 384 Virtex 44 7020 12435 3545 8 0 4 182 2968420b 16.31

[24] 521 Virtex 44 7020 12435 3545 8 0 4 182 7048860b 38.73

[1] 192 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 29948 0.30

[1] 224 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 34999 0.35

[1] 256 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 39922 0.40

[1] 384 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 11722 1.18

[1] 521 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 159959 1.60

[17] 224 Virtex 44 1580 1825 1892 26 0 11 487 219878 0.451

[17] 256 Virtex 44 1715 2589 2028 32 0 11 490 303450 0.619

For only Edwards or Twisted Edwards curves

[2] 192 Spartan 3E 4 4654 9308a 9308a 0 0 0 10 125430b 12.543

[34] 256 Zynq6c 1029 2783 3592 20 0 4 200 64770 0.324

For only specific field size, but works with any prime

[36] 256 Virtex II Pro4 1832 3664a 3664a 2 0 9 108.2 3227993 29.83

[36] 256 Virtex II Pro4 2085 4170a 4170a 7 0 9 68.17 1074625 15.76

[18] 192 Stratix II4 6203 12406a 12406a 92 0 0 160.5 70620b 0.44

[18] 256 Stratix II4 9177 18354a 18354a 96 0 0 157.2 106896b 0.68

[18] 384 Stratix II4 12958 25916a 25916a 177 0 0 150.9 203715b 1.35

[18] 512 Stratix II4 17017 34034a 34034a 244 0 0 144.97 323283b 2.23

[27] 256 Virtex II Pro4 15755 31510a 31510a 256 0 0 39.46 151360 3.86

[25] 256 Virtex 44 4655 5740 4876 37 0 11 250 109297 0.44

Implementing Complete Formulas on Weierstrass Curves in Hardware 101

B Algorithms

Algorithm 1. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using two processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3

and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 + Y1;
t1 ← X2 + Y2;

2. t2 ← Y1 + Z1;
t3 ← Y2 + Z2;

3. t0 ← t0 · t1; (�3)
t1 ← t2 · t3; (�5)

4. t4 ← X1 · X2; (�0)
t6 ← Z1 · Z2; (�2)

5. t2 ← X1 + Z1;
t3 ← X2 + Z2;

6. t0 ← t0 − t4;
t1 ← t1 − t6;

7. t5 ← Y1 · Y2; (�1)
t2 ← t2 · t3; (�4)

8. t7 ← a · t6; (�7)
t8 ← b3 · t6; (�8)

9. t9 ← t4 − t7;
t10 ← t4 + t4;

10. t11 ← t4 + t7;
t2 ← t2 − t4;

11. t0 ← t0 − t5;
t1 ← t1 − t5;

12. t2 ← t2 − t6;
t10 ← t10 + t11;

13. t9 ← a · t9; (�10)
t11 ← b3 · t2; (�9)

14. t2 ← a · t2; (�8)

15. t9 ← t9 + t11;
t8 ← t2 + t8;

16. t6 ← t5 − t8;
t5 ← t5 + t8;

17. t3 ← t1 · t9; (�12)
t9 ← t9 · t10; (�14)

18. t10 ← t0 · t10; (�16)
t0 ← t0 · t6; (�11)

19. t6 ← t5 · t6; (�13)
t1 ← t1 · t5; (�15)

20. X3 ← t0 − t3;
Y9 ← t6 + t9;

21. Z3 ← t1 + t10;

102 P.M.C. Massolino et al.

Algorithm 2. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using three processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3

and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 · X2; (�0)
t1 ← Y1 · Y2; (�1) t2 ← Z1 · Z2; (�2)

2. t3 ← X1 + Y1;
t4 ← X2 + Y2; t5 ← Y1 + Z1;

3. t6 ← Y2 + Z2;
t7 ← X1 + Z1; t8 ← X2 + Z2;

4. t9 ← t3 · t4; (�3)
t10 ← t5 · t6; (�5) t11 ← t7 · t8; (�4)

5. t3 ← t0 + t1;
t4 ← t1 + t2; t5 ← t0 + t2;

6. t6 ← b3 · t2; (�6)
t8 ← a · t2; (�7)

7. t2 ← t9 − t3;
t9 ← t0 + t0; t3 ← t10 − t4;

8. t10 ← t9 + t0;
t4 ← t11 − t5; t7 ← t0 − t8;

9. t0 ← a · t4; (�8)
t5 ← b3 · t4; (�9) t9 ← a · t7; (�10)

10. t4 ← t0 + t6;
t7 ← t5 + t9; t0 ← t8 + t10;

11. t5 ← t1 − t4;
t6 ← t1 + t4;

12. t1 ← t5 · t6; (�13)
t4 ← t0 · t7; (�14) t8 ← t3 · t7; (�12)

13. t9 ← t2 · t5; (�11)
t10 ← t3 · t6; (�15) t11 ← t0 · t2; (�16)

14. X3 ← t9 − t8;
Y3 ← t1 + t4; Z3 ← t10 + t11;

Algorithm 3. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using four processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3

and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 + Y1;
t1 ← X2 + Y2; t2 ← Y1 + Z1; t3 ← Y2 + Z2;

2. t0 ← t0 · t1; (�3)
t1 ← t2 · t3; (�5) t4 ← X1 · X2; (�0) t6 ← Z1 · Z2; (�2)

3. t2 ← X1 + Z1;
t3 ← X2 + Z2; t0 ← t0 − t4; t1 ← t1 − t6;

4. t5 ← Y1 · Y2; (�1)
t2 ← t2 · t3; (�4) t7 ← a · t6; (�7) t8 ← b3 · t6; (�6)

5. t9 ← t4 − t7;
t10 ← t4 + t4; t11 ← t4 + t7; t2 ← t2 − t4;

6. t0 ← t0 − t5;
t1 ← t1 − t5; t2 ← t2 − t6; t10 ← t10 + t11;

7. t9 ← a · t9; (�10)
t11 ← b3 · t2; (�9) t2 ← a · t2; (�8)

8. t9 ← t9 + t11;

9. t3 ← t1 · t9; (�12)
t9 ← t9 · t10; (�14) t10 ← t0 · t10; (�16) t8 ← t2 + t8;

10. t6 ← t5 − t8;
t5 ← t5 + t8;

11. t0 ← t0 · t6; (�11)
t6 ← t5 · t6; (�13) t1 ← t1 · t5; (�15)

12. X3 ← t0 − t3;
Y3 ← t6 + t9; Z3 ← t1 + t10;

Implementing Complete Formulas on Weierstrass Curves in Hardware 103

Algorithm 4. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using five processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3

and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t5 ← X1 + Y1;
t6 ← X2 + Y2; t7 ← X1 + Z1;

t8 ← X2 + Z2; t9 ← Y1 + Z1;

2. t0 ← X1 · X2; (�0)
t1 ← Y1 · Y2; (�1) t2 ← Z1 · Z2; (�2)

t3 ← t5 · t6; (�3) t4 ← t7 · t8; (�4)

3. t10 ← Y2 + Z2;
t3 ← t3 − t0; t4 ← t4 − t0;

t11 ← t0 + t0;

4. t3 ← t3 − t1;
t4 ← t4 − t2; t11 ← t11 + t0;

5. t5 ← t9 · t10; (�5)
t6 ← b3 · t2; (�6) t7 ← a · t2; (�7)

t8 ← a · t4; (�8) t9 ← b3 · t4; (�9)

6. t5 ← t5 − t1;
t11 ← t11 + t7; t4 ← t0 − t7;

t10 ← t6 + t8;

7. t0 ← a · t4; (�10)
t6 ← t3 · t11; (�16)

8. t0 ← t0 + t9;
t7 ← t1 − t10; t10 ← t1 + t10;

t5 ← t5 − t2;

9. t1 ← t3 · t7; (�11)
t2 ← t5 · t0; (�12) t4 ← t10 · t7; (�13)

t8 ← t11 · t0; (�14) t9 ← t5 · t10; (�15)

10. X3 ← t1 − t2;
Y3 ← t4 + t8; Z3 ← t9 + t6;

Algorithm 5. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using six processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3,

b3 = 3 · b and a2 = a2.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 + Y1;
t1 ← X2 + Y2; t2 ← Y1 + Z1;

t3 ← Y2 + Z2; t4 ← X1 + Z1; t5 ← X2 + Z2;

2. t0 ← t0 · t1; (n3)
t1 ← t2 · t3; (n5) t2 ← t4 · t5; (n4)

t3 ← X1 · X2; (n0) t4 ← Y1 · Y2; (n1) t5 ← Z1 · Z2; (n2)

3. t0 ← t0 − t3;
t1 ← t1 − t4; t2 ← t2 − t5;

4. t0 ← t0 − t4;
t1 ← t1 − t5; t2 ← t2 − t3;

5. t6 ← b3 · t5; (n6)
t7 ← a · t5; (n7) t8 ← a · t2; (n8)

t9 ← b3 · t2; (n9) t10 ← a · t3; (n10) t11 ← a2 · t5; (n11)

6. t6 ← t6 + t8;
t7 ← t3 + t7 t8 ← t3 + t3;

t9 ← t9 + t10;

7. t9 ← t9 − t11;
t8 ← t8 + t7 t7 ← t4 − t6;

t6 ← t4 + t6;

8. t3 ← t0 · t7; (n12)
t4 ← t0 · t8; (n17) t5 ← t1 · t9; (n13)

t8 ← t8 · t9; (n15) t7 ← t6 · t7; (n14) t6 ← t1 · t6; (n16)

9. X3 ← t3 − t5;
Y3 ← t7 + t8; Z3 ← t6 + t4;

104 P.M.C. Massolino et al.

C Verification code

ADD_two := function(X1,Y1,Z1,X2,Y2,Z2,E,a,b3)

t0 := X1+Y1; t1 := X2+Y2;

t2 := Y1+Z1; t3 := Y2+Z2;

t0 := t0*t1; t1 := t2*t3;

t4 := X1*X2; t6 := Z1*Z2;

t2 := X1+Z1; t3 := X2+Z2;

t0 := t0-t4; t1 := t1 -t6;

t5 := Y1*Y2; t2 := t2*t3;

t7 := a*t6; t8 := b3*t6;

t9 := t4-t7; t10 := t4+t4;

t11 := t4+t7; t2 := t2 -t4;

t0 := t0-t5; t1 := t1 -t5;

t2 := t2-t6; t10 := t10+t11;

t9 := a*t9; t11 := b3*t2;

t2 := a*t2;

t9 := t9+t11; t8 := t2+t8;

t6 := t5-t8; t5 := t5+t8;

t3 := t1*t9; t9 := t9*t10;

t10 := t0*t10; t0 := t0*t6;

t6 := t5*t6; t1 := t1*t5;

X3 := t0-t3; Y3 := t6+t9;

Z3 := t1+t10;

return E![X3 ,Y3 ,Z3];

end function;

ADD_three := function(X1,Y1,Z1,X2,Y2,Z2,E,a,b3);

t0 := X1*X2; t1 := Y1*Y2; t2 := Z1*Z2;

t3 := X1+Y1; t4 := X2+Y2; t5 := Y1+Z1;

t6 := Y2+Z2; t7 := X1+Z1; t8 := X2+Z2;

t9 := t3*t4; t10 := t5*t6; t11 := t7*t8;

t3 := t0+t1; t4 := t1+t2; t5 := t0+t2;

t6 := b3*t2; t8 := a*t2;

t2 := t9-t3; t9 := t0+t0; t3 := t10 -t4;

t10 := t9+t0; t4 := t11 -t5; t7 := t0-t8;

t0 := a*t4; t5 := b3*t4; t9 := a*t7;

t4 := t0+t6; t7 := t5+t9; t0 := t8+t10;

t5 := t1-t4; t6 := t1+t4;

t1 := t5*t6; t4 := t0*t7; t8 := t3*t7;

t9 := t2*t5; t10 := t3*t6; t11 := t0*t2;

X3 := t9-t8; Y3 := t1+t4; Z3 := t10+t11;

return E![X3 ,Y3 ,Z3];

end function;

ADD_four := function(X1,Y1 ,Z1 ,X2 ,Y2 ,Z2,E,a,b3);

t0 := X1+Y1; t1 := X2+Y2; t2 := Y1+Z1; t3 := Y2+Z2;

t0 := t0*t1; t1 := t2*t3; t4 := X1*X2; t6 := Z1*Z2;

t2 := X1+Z1; t3 := X2+Z2; t0 := t0 -t4; t1 := t1-t6;

Implementing Complete Formulas on Weierstrass Curves in Hardware 105

t5 := Y1*Y2; t2 := t2*t3; t7 := a*t6;; t8 := b3*t6;

t9 := t4-t7; t10 := t4+t4; t11 := t4+t7; t2 := t2-t4;

t0 := t0-t5; t1 := t1-t5; t2 := t2-t6; t10 := t10+t11;

t9 := a*t9; t11 := b3*t2; t2 := a*t2;

t9 := t9+t11;

t3 := t1*t9; t9 := t9*t10; t10 := t0*t10; t8 := t2+t8;

t6 := t5-t8; t5 := t5+t8;

t0 := t0*t6; t6 := t5*t6; t1 := t1*t5;

X3 := t0-t3; Y3 := t6+t9; Z3 := t1+t10;

return E![X3 ,Y3 ,Z3];

end function;

ADD_five := function(X1 ,Y1 ,Z1,X2,Y2,Z2,E,a,b3);

t5 := X1+Y1; t6 := X2+Y2; t7 := X1+Z1;

t8 := X2+Z2; t9 := Y1+Z1; // 1

t0 := X1*X2; t1 := Y1*Y2; t2 := Z1*Z2;

t3 := t5*t6; t4 := t7*t8; // 2

t10 := Y2+Z2; t3 := t3-t0; t4 := t4-t0;

t11 := t0+t0; // 3

t3 := t3-t1; t4 := t4-t2; t11 := t11+t0; // 4

t5 := t9*t10; t6 := b3*t2; t7 := a*t2;

t8 := a*t4; t9 := b3*t4; // 5

t5 := t5-t1; t11 := t11+t7; t4 := t0-t7;

t10 := t6+t8; // 6

t0 := a*t4; t6 := t3*t11; // 7

t0 := t0+t9; t7 := t1-t10; t10 := t1+t10;

t5 := t5-t2; // 8

t1 := t3*t7; t2 := t5*t0; t4 := t10*t7;

t8 := t11*t0; t9 := t5*t10; // 9

X3 := t1-t2; Y3 := t4+t8; Z3 := t9+t6; // 10

return E![X3,Y3,Z3];

end function;

ADD_six := function(X1,Y1,Z1,X2 ,Y2 ,Z2 ,E,a,b3)

t0 := X1+Y1; t1 := X2+Y2; t2 := Y1+Z1;

t3 := Y2+Z2; t4 := X1+Z1; t5 := X2+Z2; // 1

t0 := t0*t1; t1 := t2*t3; t2 := t4*t5;

t3 := X1*X2; t4 := Y1*Y2; t5 := Z1*Z2; // 2

t0 := t0-t3; t1 := t1-t4; t2 := t2-t5; // 3

t0 := t0-t4; t1 := t1-t5; t2 := t2-t3; // 4

t6 := b3*t5; t7 := a*t5; t8 := a*t2;

t9 := b3*t2; t10 := a*t3; t11 := a^2*t5; // 5

t6 := t6+t8; t7 := t3+t7; t8 := t3+t3;

t9 := t9+t10; // 6

t9 := t9-t11; t8 := t8+t7; t7 := t4-t6;

t6 := t4+t6; // 7

t3 := t0*t7; t4 := t0*t8; t5 := t1*t9;

t8 := t8*t9; t7 := t6*t7; t6 := t1*t6; // 8

X3 := t3-t5; Y3 := t7+t8; Z3 := t6+t4; // 9

return E![X3,Y3,Z3];

106 P.M.C. Massolino et al.

end function;

while(true) do

repeat q:= RandomPrime (8); until q gt 3;

Fq:=GF(q);

repeat repeat a:= Random(Fq); b:= Random(Fq); until not (4*

a^3+27*b^2 eq 0);

E:= EllipticCurve ([Fq|a,b]);

b3 := 3*b;

until IsOdd(#E);

for P in Set(E) do

for Q in Set(E) do

repeat Z1 := Random(Fq); until Z1 ne 0;

repeat Z2 := Random(Fq); until Z2 ne 0;

X1 := P[1]*Z1; Y1 := P[2]*Z1; Z1 := P[3]*Z1;

X2 := Q[1]*Z2; Y2 := Q[2]*Z2; Z2 := Q[3]*Z2;

assert P+Q eq ADD_two(X1,Y1 ,Z1 ,X2 ,Y2 ,Z2,E,a,b3);

assert P+Q eq ADD_three(X1,Y1,Z1,X2,Y2,Z2 ,E,a,b3);

assert P+Q eq ADD_four(X1,Y1 ,Z1,X2,Y2,Z2,E,a,b3);

assert P+Q eq ADD_five(X1,Y1 ,Z1,X2,Y2,Z2,E,a,b3);

assert P+Q eq ADD_six(X1,Y1 ,Z1 ,X2 ,Y2 ,Z2,E,a,b3);

end for;

end for;

print"Correct:", E;

end while;

References

1. Alrimeih, H., Rakhmatov, D.: Fast and flexible hardware support for ECC over
multiple standard prime fields. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
22(12), 2661–2674 (2014)

2. Baldwin, B., Moloney, R., Byrne, A., McGuire, G., Marnane, W.P.: A hardware
analysis of twisted edwards curves for an elliptic curve cryptosystem. In: Becker,
J., Woods, R., Athanas, P., Morgan, F. (eds.) ARC 2009. LNCS, vol. 5453, pp.
355–361. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00641-8 41

3. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

4. Batina, L., Chmielewski, �L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online template attacks. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT
2014. LNCS, vol. 8885, pp. 21–36. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-13039-2 2

5. Bernstein, D.J.: Curve25519: new diffie-hellman speed records. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Heidelberg (2006). doi:10.1007/11745853 14

6. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68164-9 26

http://dx.doi.org/10.1007/978-3-642-00641-8_41
http://dx.doi.org/10.1007/978-3-319-13039-2_2
http://dx.doi.org/10.1007/978-3-319-13039-2_2
http://dx.doi.org/10.1007/11745853_14
http://dx.doi.org/10.1007/978-3-540-68164-9_26

Implementing Complete Formulas on Weierstrass Curves in Hardware 107

7. Bernstein, D.J., Chuengsatiansup, C., Kohel, D., Lange, T.: Twisted hessian
curves. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015.
LNCS, vol. 9230, pp. 269–294. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-22174-8 15

8. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2 3

9. Bernstein, D.J., Lange, T.: Explicit-Formulas Database. http://hyperelliptic.org/
EFD/index.html. Accessed 21 Feb 2015

10. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol.
7533, pp. 159–176. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33481-8 9

11. Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system I: the user
language. J. Symb. Comput. 24(3/4), 235–265 (1997)

12. Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters, Ver-
sion 2.0. Technical report, Certicom Research (2010)

13. Clavier, C., Joye, M.: Universal exponentiation algorithm a first step towards
Provable SPA-Resistance. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES
2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg (2001). doi:10.1007/
3-540-44709-1 25

14. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 25

15. ECC Brainpool: ECC Brainpool standard curves and curve generation. Technical
report, Brainpool (2005)

16. Fan, J., Sakiyama, K., Verbauwhede, I.: Elliptic curve cryptography on embedded
multicore systems. Design Autom. Embedded Syst. 12(3), 231–242 (2008). doi:10.
1007/s10617-008-9021-3

17. Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3 5

18. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications
over Fp. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
48–64. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 4

19. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625 (2015). http://eprint.iacr.org/2015/625.pdf

20. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 22

21. Koç, Ç.K., Acar, T., Kaliski, B.S.: Analyzing and comparing Montgomery multi-
plication algorithms. IEEE Micro 16(3), 26–33 (1996)

22. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
23. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

24. Loi, K.C.C., Ko, S.B.: Scalable elliptic curve cryptosystem FPGA processor for
NIST prime curves. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 23(11),
2753–2756 (2015)

25. Ma, Y., Liu, Z., Pan, W., Jing, J.: A high-speed elliptic curve cryptographic proces-
sor for generic curves over GF(p). In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 421–437. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-319-22174-8_15
http://dx.doi.org/10.1007/978-3-319-22174-8_15
http://dx.doi.org/10.1007/978-3-540-76900-2_3
http://hyperelliptic.org/EFD/index.html
http://hyperelliptic.org/EFD/index.html
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/3-540-44709-1_25
http://dx.doi.org/10.1007/3-540-44709-1_25
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/s10617-008-9021-3
http://dx.doi.org/10.1007/s10617-008-9021-3
http://dx.doi.org/10.1007/978-3-540-85053-3_5
http://dx.doi.org/10.1007/978-3-642-15031-9_4
http://eprint.iacr.org/2015/625.pdf
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25

108 P.M.C. Massolino et al.

26. Massolino, P.M.C., Batina, L., Chaves, R., Mentens, N.: Low Power Montgomery
Modular Multiplication on Reconfigurable Systems. Cryptology ePrint Archive,
Report 2016/280 (2016). http://eprint.iacr.org/2016/280

27. McIvor, C., McLoone, M., McCanny, J.V.: Hardware elliptic curve cryptographic
processor over GF(p). IEEE Trans. Circuits Syst. I Regul. Pap. 53(9), 1946–1957
(2006)

28. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.
1007/3-540-39799-X 31

29. National Institute for Standards and Technology. Federal information processing
standards publication 186–4. digital signature standard. Technical report, NIST
(2013)

30. Pöpper, C., Mischke, O., Güneysu, T.: MicroACP - a fast and secure reconfigurable
asymmetric crypto-processor. In: Goehringer, D., Santambrogio, M.D., Cardoso,
J.M.P., Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405, pp. 240–247. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-05960-0 24

31. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9665, pp. 403–428. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 16

32. Roy, D.B., Das, P., Mukhopadhyay, D.: ECC on your fingertips: a single instruction
approach for lightweight ECC design in GF(p). In: Dunkelman, O., Keliher, L.
(eds.) SAC 2015. LNCS, vol. 9566, pp. 161–177. Springer, Heidelberg (2015)

33. Sakiyama, K., Batina, L., Preneel, B., Verbauwhede, I.: Superscalar coprocessor
for high-speed curve-based cryptography. In: Goubin, L., Matsui, M. (eds.) CHES
2006. LNCS, vol. 4249, pp. 415–429. Springer, Heidelberg (2006). doi:10.1007/
11894063 33

34. Sasdrich, P., Güneysu, T.: Efficient elliptic-curve cryptography using curve25519 on
reconfigurable devices. In: Goehringer, D., Santambrogio, M.D., Cardoso, J.M.P.,
Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405, pp. 25–36. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-05960-0 3

35. Varchola, M., Guneysu, T., Mischke, O.: MicroECC: A lightweight reconfigurable
elliptic curve crypto-processor. In: 2011 International Conference on Reconfig-
urable Computing and FPGAs (ReConFig), pp. 204–210, November 2011

36. Vliegen, J., Mentens, N., Genoe, J., Braeken, A., Kubera, S., Touhafi, A., Ver-
bauwhede, I.: A compact FPGA-based architecture for elliptic curve cryptography
over prime fields. In: 2010 21st IEEE International Conference on Application-
specific Systems Architectures and Processors (ASAP), pp. 313–316, July 2010

37. Yao, G.X., Fan, J., Cheung, R.C.C., Verbauwhede, I.: Faster pairing coprocessor
architecture. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp.
160–176. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36334-4 10

38. Yen, S., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000)

http://eprint.iacr.org/2016/280
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/978-3-319-05960-0_24
http://dx.doi.org/10.1007/978-3-662-49890-3_16
http://dx.doi.org/10.1007/11894063_33
http://dx.doi.org/10.1007/11894063_33
http://dx.doi.org/10.1007/978-3-319-05960-0_3
http://dx.doi.org/10.1007/978-3-642-36334-4_10

	Implementing Complete Formulas on Weierstrass Curves in Hardware
	1 Introduction
	2 Preliminaries for Elliptic Curve Cryptography
	3 Parallelism
	4 Implementation of the Formulas with Three Processors
	4.1 The Montgomery Processor
	4.2 Memory
	4.3 Control Logic
	4.4 Consecutive Additions
	4.5 Scheduling
	4.6 Comparison

	A More complete results comparison
	B Algorithms
	C Verification code
	References

