
Claude Carlet
M. Anwar Hasan
Vishal Saraswat (Eds.)

 123

LN
CS

 1
00

76

6th International Conference, SPACE 2016
Hyderabad, India, December 14–18, 2016
Proceedings

Security, Privacy,
and Applied Cryptography
Engineering

Lecture Notes in Computer Science 10076

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Claude Carlet • M. Anwar Hasan
Vishal Saraswat (Eds.)

Security, Privacy,
and Applied Cryptography
Engineering
6th International Conference, SPACE 2016
Hyderabad, India, December 14–18, 2016
Proceedings

123

Editors
Claude Carlet
Universities of Paris 8 and Paris 13, LAGA
Paris
France

M. Anwar Hasan
University of Waterloo
Waterloo, ON
Canada

Vishal Saraswat
CRRao AIMSCS
Hyderabad
India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-49444-9 ISBN 978-3-319-49445-6 (eBook)
DOI 10.1007/978-3-319-49445-6

Library of Congress Control Number: 2016957643

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers accepted for presentation at the 6th International
Conference on Security, Privacy, and Applied Cryptography Engineering 2016 (SPACE
2016), held during December 14–18, 2016, at the C.R. Rao Advanced Institute of
Mathematics, Statistics and Computer Science (AIMSCS), University of Hyderabad,
India. This annual event is devoted to various aspects of security, privacy, applied
cryptography, and cryptographic engineering. This is indeed a very challenging field,
requiring expertise from diverse domains, ranging from mathematics to solid-state
circuit design.

This year we received 54 submissions from about 20 countries, out of which, after
an extensive review process, 16 papers were accepted for presentation at the confer-
ence, and one shorter paper was accepted for short presentation. The submissions were
evaluated based on their significance, novelty, technical quality, and relevance to the
SPACE conference. The submissions were reviewed in a double-blind mode by at least
three members of the 35-member Program Committee (one more if at least one of the
authors was member of the Program Committee). The Program Committee was aided
by 36 additional reviewers. The Program Committee meetings were held electronically,
with intensive discussions.

The program also included eight invited talks and four tutorials on several aspects of
applied cryptology, delivered by world-renowned researchers: Lejla Batina, Shivam
Bhasin, Swarup Bhunia, Craig Costello, Joan Daemen, Christian Grothoff, Debdeep
Mukhopadhyay, Emmanuel Prouff, François-Xavier Standaert, and Ingrid Verbauwhede.
We sincerely thank the invited speakers for accepting our invitations in spite of their busy
schedules.

Like its previous editions, SPACE 2016 was organized in co-operation with the
International Association for Cryptologic Research (IACR). We are thankful to AIMSCS
for being the gracious host of SPACE 2016.

There is a long list of volunteers who invested their time and energy to put together
the conference, and who deserve accolades for their efforts. We are grateful to all the
members of the Program Committee and the additional reviewers for all their hard work
in the evaluation of the submitted papers. We thank Cool Press Ltd., owner of the
EasyChair conference management system, for allowing us to use it for SPACE 2016,
which was a great help. We also sincerely thank our publisher Springer for agreeing to
continue to publish the SPACE proceedings as a volume in the Lecture Notes in
Computer Science (LNCS) series. We are further very grateful to the members of the
local Organizing Committee, including Sahana Subbarao, for their assistance to Vishal
Saraswat in ensuring the smooth organization of the conference. Special thanks to our
general chairs, Arun Kumar, Arun Agarwal and Sitaram Chamarty, for their constant
support and encouragement.

Last, but certainly not least, our sincere thanks go to all the authors who submitted
papers to SPACE 2016, and to all the attendees. The conference was made possible by
you, and the proceedings are dedicated to you. We sincerely hope you find the program
proceedings stimulating and inspiring.

December 2016 Claude Carlet
M. Anwar Hasan
Vishal Saraswat

VI Preface

Organization

Chief Patron

V.K. Saraswat NITI Aayog, India

Patron

Alok Joshi NTRO, India

General Co-chairs

M. Arun Kumar CRRao AIMSCS, India
Arun Agarwal SCIS, University of Hyderabad, India
Sitaram Chamarty Tata Consultancy Services, India

Program Co-chairs

Claude Carlet Universities of Paris 8 and Paris 13, LAGA, France
M. Anwar Hasan University of Waterloo, Canada
Vishal Saraswat CRRao AIMSCS, India

Steering Committee

Debdeep Mukhopadhyay IIT, Kharagpur, India
Veezhinathan Kamakoti IIT, Madras, India
Sanjay Burman CAIR-DRDO, India

Program Committee

Lejla Batina Radboud University Nijmegen, The Netherlands
Guido Marco Bertoni STMicroelectronics, Italy
Francesco Buccafurri DIIES - Università Mediterranea di Reggio Calabria,

Italy
Claude Carlet (Co-chair) University of Paris 8 and LAGA, France
Rajat Subhra Chakraborty IIT, Kharagpur, India
Pandu Rangan

Chandrasekaran
IIT, Madras, India

Ashish Choudhury IIIT, Bangalore, India
Giovanni Di Crescenzo Applied Communication Sciences, USA
Sylvain Guilley GET/ENST, CNRS/LTCI, France
Indivar Gupta SAG, DRDO, India

M. Anwar Hasan (Co-chair) University of Waterloo, Canada
Thomas Johansson Lund University, Sweden
Marc Joye NXP Semiconductors, USA
Subhamoy Maitra Indian Statistical Institute, India
Keith Martin Royal Holloway, University of London, UK
Mitsuru Matsui Mitsubishi, Japan
Willi Meier FHNW, Switzerland
Debdeep Mukhopadhyay IIT, Kharagpur, India
Elisabeth Oswald University of Bristol, UK
Gilles Piret Oberthur Technologies, France
Emmanuel Prouff SAFRAN Identity and Security, France
Matthieu Rivain CryptoExperts, France
Bimal Roy Indian Statistical Institute, Kolkata, India
Dipanwita Roy Chowdhury IIT, Kharagpur, India
Rei Safavi-Naini University of Calgary, Canada
Rajeev Anand Sahu CRRao AIMSCS, Hyderabad, India
Somitra Sanadhya IIT, Delhi, India
Vishal Saraswat (Co-chair) CRRao AIMSCS, Hyderabad, India
Palash Sarkar Indian Statistical Institute, Kolkata, India
Kannan Srinathan IIIT, Hyderabad, India
Sirisinahal Srinivasachary DRDO, India
François-Xavier Standaert UCL Crypto Group, Belgium
Y.V. Subba Rao University of Hyderabad, India
Venkaiah V. Ch University of Hyderabad, India
Amr Youssuf Concordia University, Canada

Additional Reviewers

Urbi Chatterjee
Jean-Luc Danger
Ashok Das
Nicolas Debande
Dhananjoy Dey
Jacques Fournier
Mohona Ghosh
Michael Hutter
Arpan Jati
Anthony Journault
Sabyasachi Karat
Ilya Kizhvatov

Philippe Loubet-Moundi
Houssem Maghrebi
Marco Martinoli
Pedro Maat Massolino
Filippo Melzani
Prasanna Mishra
Surya Prakash Mishra
Nicolas Morin
Saibal Pal
Kostas Papagiannopoulos
Goutam Paul
Thomas Peters

Stjepan Picek
Jeyavijayan Rajendran
Debapriya Basu Roy
Durga Prasad Sahoo
Santanu Sarkar
Ahmadou Séré
Takeshi Sugawara
Ruggero Susella
Daisuke Suzuki
Toyohiro Tsurumaru
Rei Uno
Srinivas Vivek

VIII Organization

Organizing Institution

C.R. Rao Advanced Institute of Mathematics, Statistics and Computer Science
(AIMSCS), Hyderabad, India

Organizing Chair

Vishal Saraswat CRRao AIMSCS, Hyderabad, India

Organization IX

Abstracts of Tutorials

Side-Channel Attacks on PKC

Lejla Batina

Radboud University, Nijmegen, The Netherlands

Abstract. We give an introduction to physical attacks, in particular to passive
attacks exploiting leakages of secret data from power consumption or EM
emanations. Several issues such as leakage models, attack scenarios and
countermeasures are outlined. We focus on public-key cryptosystems and their
specifics with side-channel attacks and countermeasures. Recent attacks such as
horizontal and online template attacks (OTA) are described and their experi-
mental demonstrations on elliptic-curve cryptosystems are presented.

Sponge-Based Cryptography

Joan Daemen

STMicroelectronics, Diegem, Belgium
Radboud University, Nijmegen, The Netherlands

Abstract. Keccak, the winner of the SHA-3 competition, has at its core a per-
mutation and uses this in a mode that is known as the sponge construction. Previous
hash standards, from MD5 to SHA-2, all had at its core a block-cipher like
primitive. Similarly, block ciphers have also been at the core of encryption, MAC
computation and authenticated encryption schemes since the introduction of DES
in the seventies. Recently, in the slipstream of Keccak, permutation-based alter-
natives have been proposed for all these cryptographic services. It turns out that
they are at the same time more efficient and more elegant. In this tutorial we will
give an introduction to unkeyed (sponge and SHA-3) and keyed (full-state keyed
duplex and Keyak) permutation-based modes.

Elliptic Curve Cryptography
and Isogeny-Based Cryptography

Craig Costello

Microsoft Research, Redmond, WA, USA

Abstract. Elliptic curves have reigned supreme as a foundation for classical
public-key cryptography due to the exponential hardness of the elliptic curve
discrete logarithm problem (ECDLP). The gap between the hardness of the
ECDLP and the subexponential hardness of problems like integer factorization
and finite field discrete logarithms ultimately means that public-key cryptogra-
phy based on elliptic curves is much faster and much more compact than its
alternatives. The first half of this tutorial will give a gentle introduction to
elliptic curve cryptography (ECC). All of the above classically difficult problems
(including the ECDLP) become easy in the presence of a large-scale quantum
computer. Thus, cryptographers are currently examining a range of new foun-
dations that are believed to offer security against quantum adversaries. Inter-
estingly, elliptic curves have also surfaced as a promising foundation in the
post-quantum space, in particular in the realm of isogeny-based key exchange.
The second half of this tutorial will give a gentle introduction to isogenies and
their role in providing post-quantum primitives.

Abstracts of Keynotes

Secure Hardware and
Hardware-Enabled Security

Swarup Bhunia

University of Florida, Gainesville, USA

Abstract. Security has emerged as a critical design parameter for modern elec-
tronic hardware that builds the foundation for exciting new applications from
smart wearables to smart cities. However, recent discoveries and reports on
numerous attacks on microchips violate the well-regarded concept of hardware
trust anchors. It has prompted system designers to develop wide array of
design-for-security and test/validation solutions to achieve high security assur-
ance. At the same time, emerging security issues and countermeasures have led to
interesting interplay between security, energy, reliability, and test. Hardware
faults and parametric variations, on one hand, have created new barriers to
establishing hardware integrity in ever-complex semiconductor supply chain. On
the other hand, reliability issues – in particular, those induced by process vari-
ations and aging effects, create new opportunities in designing powerful security
primitives to protect against supply chain security issues as well as to enable
better functional security solutions. This talk will highlight the interaction of
hardware security issues and protection mechanisms with hardware faults and
reliability issues. It will present new frontiers in hardware security with the
rapidly diversifying application space and their symbiosis as well as conflicts
with test. The talk will also cover promising role of hardware in security of
various consumables, including food, supplements, and medicine.

Practical Post-quantum Key Exchange
from Supersingular Isogenies

Craig Costello

Microsoft Research, Redmond, WA, USA

Abstract. Academic groups, corporate bodies, and government agencies from
all over the world are hastily examining a range of cryptographic primitives that
are believed to remain secure in the presence of a large-scale quantum computer.
Indeed, all of the currently standardized public-key cryptography will offer little
or no security if such a computer is realized. In their Februrary 2016 report on
post-quantum cryptography, NIST stated that “It seems improbable that any
of the currently known algorithms can serve as a drop-in replacement for what
is in use today,” citing one challenge as being that quantum resistant algorithms
have larger key sizes than the algorithms they will replace. While this statement
is certainly applicable to many of the lattice- and code-based schemes, Jao and
De Feo’s 2011 supersingular isogeny Diffie-Hellman (SIDH) proposal is one
post-quantum candidate that could serve as a drop-in replacement to existing
internet protocols. Not only are high-security SIDH public keys smaller than
their lattice- and code-based counterparts, they are even smaller than some of the
traditional (i.e., finite field) Diffie-Hellman public keys. Moreover, in contrast to
the proposed lattice- and code-based schemes (which are all either KEMs or
encryption protocols), SIDH affords the option of restoring the elegant sym-
metry of the original Diffie-Hellman protocol.

This talk will give a detailed overview of isogeny-based key exchange, and
will present a full-fledged software implementation of SIDH that is designed to
provide 128 bits of security against a quantum adversary. We will conclude by
pointing out some important open problems and interesting research directions
in the realm of isogeny-based cryptography.

This talk is based on recent work with Patrick Longa and Michael Naehrig [1], and in
turn on the original paper(s) by De Feo, Jao and Plût [2]. The two tutorials preceding
the talk will (1) give a gentle introduction to elliptic curve cryptography, and (2) give a
gentle introduction to isogenies.

References

1. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for super-singular isogeny
Diffie-Hellman. In: CRYPTO 2016, pp. 572–601 (2016)

2. De Feo, L., Jao, D., Plȗut, J.: Towards quantum-resistant cryp-tosystems from supersingular
elliptic curve isogenies. J. Math. Crypt. 8(3), 209–247 (2014)

Contents

Deep Learning and Fault Based Attacks

Breaking Cryptographic Implementations Using Deep Learning Techniques . . . 3
Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff

Cheap and Cheerful: A Low-Cost Digital Sensor for Detecting Laser Fault
Injection Attacks . 27

Wei He, Jakub Breier, and Shivam Bhasin

Comprehensive Laser Sensitivity Profiling and Data Register Bit-Flips
for Cryptographic Fault Attacks in 65 Nm FPGA . 47

Wei He, Jakub Breier, Shivam Bhasin, Dirmanto Jap, Hock Guan Ong,
and Chee Lip Gan

Fault Based Almost Universal Forgeries on CLOC and SILC. 66
Debapriya Basu Roy, Avik Chakraborti, Donghoon Chang,
S.V. Dilip Kumar, Debdeep Mukhopadhyay, and Mridul Nandi

Applied Cryptography

Implementing Complete Formulas on Weierstrass Curves in Hardware. 89
Pedro Maat C. Massolino, Joost Renes, and Lejla Batina

Partially Homomorphic Encryption Schemes over Finite Fields 109
Jian Liu, Sihem Mesnager, and Lusheng Chen

Light Weight Key Establishment Scheme for Wireless Sensor Networks 124
Payingat Jilna and P.P. Deepthi

A Scalable and Systolic Architectures of Montgomery Modular
Multiplication for Public Key Cryptosystems Based on DSPs 138

Amine Mrabet, Nadia El-Mrabet, Ronan Lashermes,
Jean-Baptiste Rigaud, Belgacem Bouallegue, Sihem Mesnager,
and Mohsen Machhout

Iterative Ciphers

Spectral Characterization of Iterating Lossy Mappings 159
Joan Daemen

http://dx.doi.org/10.1007/978-3-319-49445-6_1
http://dx.doi.org/10.1007/978-3-319-49445-6_2
http://dx.doi.org/10.1007/978-3-319-49445-6_2
http://dx.doi.org/10.1007/978-3-319-49445-6_3
http://dx.doi.org/10.1007/978-3-319-49445-6_3
http://dx.doi.org/10.1007/978-3-319-49445-6_4
http://dx.doi.org/10.1007/978-3-319-49445-6_5
http://dx.doi.org/10.1007/978-3-319-49445-6_6
http://dx.doi.org/10.1007/978-3-319-49445-6_7
http://dx.doi.org/10.1007/978-3-319-49445-6_8
http://dx.doi.org/10.1007/978-3-319-49445-6_8
http://dx.doi.org/10.1007/978-3-319-49445-6_9

Decomposed S-Boxes and DPA Attacks: A Quantitative Case Study
Using PRINCE . 179

Ravikumar Selvam, Dillibabu Shanmugam, Suganya Annadurai,
and Jothi Rangasamy

GAIN: Practical Key-Recovery Attacks on Round-reduced PAEQ 194
Dhiman Saha, Sourya Kakarla, Srinath Mandava,
and Dipanwita Roy Chowdhury

Hardware Security

Predictive Aging of Reliability of Two Delay PUFs 213
Naghmeh Karimi, Jean-Luc Danger, Florent Lozac’h,
and Sylvain Guilley

Towards Securing Low-Power Digital Circuits with Ultra-Low-Voltage
Vdd Randomizers . 233

Dina Kamel, Guerric de Streel, Santos Merino Del Pozo, Kashif Nawaz,
François-Xavier Standaert, Denis Flandre, and David Bol

Security

Enabling Secure Web Payments with GNU Taler . 251
Jeffrey Burdges, Florian Dold, Christian Grothoff,
and Marcello Stanisci

Malware Characterization Using Windows API Call Sequences 271
Sanchit Gupta, Harshit Sharma, and Sarvjeet Kaur

VMI Based Automated Real-Time Malware Detector for Virtualized
Cloud Environment . 281

M.A. Ajay Kumara and C.D. Jaidhar

Post-quantum Cryptology

Solving Binary MQ with Grover’s Algorithm . 303
Peter Schwabe and Bas Westerbaan

Ring-LWE: Applications to Cryptography and Their Efficient Realization . . . 323
Sujoy Sinha Roy, Angshuman Karmakar, and Ingrid Verbauwhede

NewHope on ARM Cortex-M. 332
Erdem Alkim, Philipp Jakubeit, and Peter Schwabe

XXII Contents

http://dx.doi.org/10.1007/978-3-319-49445-6_10
http://dx.doi.org/10.1007/978-3-319-49445-6_10
http://dx.doi.org/10.1007/978-3-319-49445-6_11
http://dx.doi.org/10.1007/978-3-319-49445-6_12
http://dx.doi.org/10.1007/978-3-319-49445-6_13
http://dx.doi.org/10.1007/978-3-319-49445-6_13
http://dx.doi.org/10.1007/978-3-319-49445-6_14
http://dx.doi.org/10.1007/978-3-319-49445-6_15
http://dx.doi.org/10.1007/978-3-319-49445-6_16
http://dx.doi.org/10.1007/978-3-319-49445-6_16
http://dx.doi.org/10.1007/978-3-319-49445-6_17
http://dx.doi.org/10.1007/978-3-319-49445-6_17
http://dx.doi.org/10.1007/978-3-319-49445-6_18
http://dx.doi.org/10.1007/978-3-319-49445-6_19

Leakage, Power and Fault Analysis

Towards Fair and Efficient Evaluations of Leaking Cryptographic Devices:
Overview of the ERC Project CRASH, Part I (Invited Talk) 353

François-Xavier Standaert

A Methodology for the Characterisation of Leakages
in Combinatorial Logic . 363

Guido Bertoni and Marco Martinoli

Exploiting the Leakage: Analysis of Some Authenticated
Encryption Schemes . 383

Donghoon Chang, Amit Kumar Chauhan, Naina Gupta, Arpan Jati,
and Somitra Kumar Sanadhya

Breaking Kalyna 128/128 with Power Attacks . 402
Stephane Fernandes Medeiros, François Gérard, Nikita Veshchikov,
Liran Lerman, and Olivier Markowitch

Fault Injection Attacks: Attack Methodologies, Injection Techniques
and Protection Mechanisms: A Tutorial . 415

Shivam Bhasin and Debdeep Mukhopadhyay

Author Index . 419

Contents XXIII

http://dx.doi.org/10.1007/978-3-319-49445-6_20
http://dx.doi.org/10.1007/978-3-319-49445-6_20
http://dx.doi.org/10.1007/978-3-319-49445-6_21
http://dx.doi.org/10.1007/978-3-319-49445-6_21
http://dx.doi.org/10.1007/978-3-319-49445-6_22
http://dx.doi.org/10.1007/978-3-319-49445-6_22
http://dx.doi.org/10.1007/978-3-319-49445-6_23
http://dx.doi.org/10.1007/978-3-319-49445-6_24
http://dx.doi.org/10.1007/978-3-319-49445-6_24

Deep Learning and Fault Based Attacks

Breaking Cryptographic Implementations
Using Deep Learning Techniques

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff(B)

SAFRAN Identity and Security, 18, Chaussée Jules César, 95520 Osny, France
{houssem.maghrebi,thibault.portigliatti,emmanuel.prouff}@safrangroup.com

Abstract. Template attack is the most common and powerful profiled
side channel attack. It relies on a realistic assumption regarding the
noise of the device under attack: the probability density function of the
data is a multivariate Gaussian distribution. To relax this assumption, a
recent line of research has investigated new profiling approaches mainly
by applying machine learning techniques. The obtained results are com-
mensurate, and in some particular cases better, compared to template
attack. In this work, we propose to continue this recent line of research by
applying more sophisticated profiling techniques based on deep learning.
Our experimental results confirm the overwhelming advantages of the
resulting new attacks when targeting both unprotected and protected
cryptographic implementations.

Keywords: Deep learning · Machine learning · Side channel attacks ·
Template attack · Unprotected AES implementation · Masked AES
implementation

1 Introduction

Side Channel Attacks. Side Channel attacks (SCA) are nowadays well known
and most designers of secure embedded systems are aware of them. They exploit
information leaking from the physical implementations of cryptographic algo-
rithms. Since, this leakage (e.g. the power consumption or the electromagnetic
emanations) depends on the internally used secret key, the adversary may per-
form an efficient key-recovery attack to reveal these sensitive data. Since the first
public reporting of these threats [30], a lot of effort has been devoted towards
the research on side channel attacks and the development of corresponding coun-
termeasures.

Amongst side channel attacks, two classes may be distinguished.

– The so-called profiling SCA are the most powerful kind of SCA and consist
of two steps. First, the adversary procures a copy of the target device and
uses it to characterize the dependency between the manipulated data and the
device behavior. Secondly, he performs a key-recovery attack on the target

T. Portigliatti—Work done when the author was at SAFRAN Identity and Security.

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 3–26, 2016.
DOI: 10.1007/978-3-319-49445-6 1

4 H. Maghrebi et al.

device. The set of profiled attacks includes Template attacks [10] and Sto-
chastic cryptanalyses (aka Linear Regression Analyses) [16,47,48].

– The set of so-called non-profiling SCA corresponds to a much weaker adver-
sary who has only access to the physical leakage captured on the target
device. To recover the secret key in use, he performs some statistical analyses
to detect dependency between the leakage measurements and this sensitive
variable. The set of non-profiled attacks includes Differential Power Analysis
(DPA) [30], Correlation Power Analysis (CPA) [9] and Mutual Information
Analysis (MIA) [20].

Side Channel Countermeasures. A deep look at the state-of-the-art shows
that several countermeasures have been published to deal with side channel
attacks. Amongst SCA countermeasures, two classes may be distinguished [36]:

– The set of so-called masking countermeasures: the core principle of masking
is to ensure that every sensitive variable is randomly split into at least two
shares so that the knowledge of a strict sub-part of the shares does not give
information on the shared variable itself. Masking can be characterized by
the number of random masks used per sensitive variable. So, it is possible
to give a general definition for a dth-order masking scheme: every sensitive
variable Z is randomly split into d + 1 shares M0, · · · ,Md in such a way
that the relation M0 ⊥ · · · ⊥ Md = Z is satisfied for a group operation ⊥
(e.g. the XOR operation used in the Boolean masking, denoted as ⊕) and no
tuple of strictly less than d+1 shares depends on Z. In the literature, several
provably secure higher-order masking schemes have been proposed (see for
instance [13,19,44].).

– The set of so-called hiding countermeasures: the core idea is to render in
making the activity of the physical implementation constant by either adding
complementary logic to the existing logic [11] (in a hardware setting) or by
using a specific encoding of the sensitive data [27,50] (in a software setting).

Machine Learning Based Attacks. A recent line of works has investigated
new profiling attacks based on Machine Learning (ML) techniques to defeat both
unprotected [5,23,28,32,34] and protected cryptographic implementations [21,
33]. These contributions focus mainly on two techniques: the Support Vector
Machine (SVM) [14,57] and the Random Forest (RF) [45]. Practical results
on several data-sets have demonstrated the ability of these attacks to perform
successful key recoveries. Besides, authors in [23] have shown that the SVM-based
attack outperforms the template attack when applied on highly noisy traces.

Mainly, ML-based attacks exploit the same discriminating criteria (i.e. the
dependence between the sensitive data and some statistical moments of the leak-
age) as a template attack. Two major differences between these attacks exist.
They are listed hereafter.

– The template attack approximates the data distribution by a multivariate
Gaussian distribution (aka Gaussian leakage assumption) [10] whose parame-
ters (i.e. the mean vector and the covariance matrix) are estimated during

Breaking Cryptographic Implementations Using Deep Learning Techniques 5

the profiling phase. This implies that the statistical moments of the leakage
distribution whose order is greater than 2 are not exploited which can make
the attack sub-optimal and even ineffective in some contexts.

– The ML-based attacks make no assumption on the data distribution and build
classifications directly from the raw data-set.

Despite the fact that Gaussian leakage is a fairly realistic assumption in
side channel context [35,43], applying distribution-agnostic statistical techniques
would appear to be a more rational approach.

Our Contribution. Over the past few years, there has been a resurgence of
interest in using Deep Learning (DL) techniques which have been applied in sev-
eral signal processing areas where they have produced interesting results [1,15].
Deep learning is a parallel branch of machine learning which relies on sets of
algorithms that attempt to model high-level abstractions in data by using model
architectures with multiple processing layers, composed of a sequence of scalar
products and non-linear transformations called activation functions [51]. Several
recent results have demonstrated that DL techniques have convincingly out-
performed other existing machine learning approaches in image and automatic
speech recognition.

In this work, we propose to apply DL techniques in side channel context.
Actually, we highlight the ability of DL to build an accurate profiling leading
to an efficient and successful side channel key recovery attack. Our experiments
show that our proposed DL-based attacks are more efficient than the ML-based
and template attacks when targeting either unprotected or masked cryptographic
implementations.

Paper Outline. The paper is organized as follows. In Sects. 2 and 3, we provide
an overview on machine learning and deep learning techniques. Then, in Sect. 4
we describe how to use deep learning techniques to perform a successful key
recovery. This is followed in Sect. 5 by some practical attack experiments applied
on unprotected and masked AES implementations. Finally, Sect. 6 draws general
conclusions and opens some perspectives for future work.

2 Overview on Machine Learning Techniques

Machine learning techniques have been developed and used in order to build effi-
cient pattern recognition and features extraction algorithms. Mainly, ML tech-
niques are divided into three categories depending on the learning approach:
unsupervised, semi-supervised and supervised. In this paper, we focus on super-
vised and unsupervised learning techniques.

6 H. Maghrebi et al.

– Unsupervised learning is mainly used when profiling information (i.e. train-
ing data-set) is not available. So, the purpose is to ensure an efficient data
partitioning without any prior profiling or data modeling. Two classic exam-
ples of unsupervised learning techniques are clustering (e.g. K-means [17])
and dimensionality reduction (e.g. Principal Component Analysis (PCA)).
These techniques have been widely used in side channel contexts to perform
either successful key recovery [24,52] or some pre-processing of the physical
leakage [4].

– Supervised learning refers to techniques that involve a training data-set1 (aka
labeled data-set) to build a model. Once the learning has been performed,
a supervised learning algorithm is executed which returns, for a new incom-
ing input, an output that is the most accurate one according to the previ-
ously learned model. Typical supervised learning techniques include neural
networks [8], random forest [45] and support vector machines [14,57].

In the following sections we provide a survey of some supervised learning
techniques and their applications in side channel analysis. All of them take as
input a training data-set composed of vectors X(i) = (x1, . . . , xn) ∈ R

n and their
corresponding labels yi ∈ R (e.g. scores or values of the manipulated sensitive
data). After the learning step, their goal is to associate a new vector X with the
correct label y.

2.1 Perceptron

The perceptron is the simplest neural network model [8]. It is a linear classifier
that uses a learning algorithm to tune its weights in order to minimize a so-called
loss function2 as described in Fig. 1. We detail hereafter how perceptron works
to perform classification:

– first, an input vector X = (x1, . . . , xn) ∈ R
n is presented as an entry to the

perceptron.
– then, components of X are summed over the weights wi ∈ R of the perceptron

connections (i.e. w0 +
n∑

i=1

wixi, with w0 being a bias3).

– finally, the output of the perceptron is computed by passing the previously
computed sum to an activation function4 denoted f .

1 The training data-set is composed of pairs of some known (input, output).
2 The loss (aka cost, error) function quantifies in a supervised learning problem the

compatibility between a prediction and the ground truth label (output). The loss
function is typically defined as the negative log-likelihood or the mean squared error.

3 Introducing a value that is independent of the input shifts the boundary away from
the origin.

4 In the case of the perceptron, the activation function is commonly a Heaviside func-
tion. In more complex models (e.g. the multilayer perceptron that we will describe
in the next section), this function can be chosen to be a sigmoid function (tanh).

Breaking Cryptographic Implementations Using Deep Learning Techniques 7

Fig. 1. Representation of a perceptron.

During the training phase, the perceptron weights, initialized at zeros or small
random values, are learned and adjusted according to the profiling data-set (X(i),
yi). By e.g. applying a gardient descent algorithm, the goal is to find/learn the
optimal connecting weights moving the perceptron outputs as close as possible5

to the correct labels/scores (e.g. to minimize the sum of squared differences
between the labels yi and the corresponding perceptron’s output).

2.2 Multilayer Perceptron

AMultilayerPerceptron (MLP) is nothingmore thana specificway to combineper-
ceptrons6 in order to build a classifier for more complex data-sets [8]. As shown in
Fig. 2, the information is propagated from the left to the right and each units (per-
ceptrons) of a layer is connected to every unit of the previous layer in this model.
This is called a fully connected network. Each neuron belongs to a layer and the
number of layers is a parameter which has to be carefully chosen by the user.

An MLP is made of three different types of layers:

– Input Layer: in the traditional model, this layer is only an intermediate
between the input data and the rest of the network. Thus the output of the
neurons belonging to this layer is simply the input vector itself.

– Hidden layer: this layer aims at introducing some non-linearity in the model
so that the MLP will be able to fit a non-linear separable data-set. Indeed, if
the data that have to be learned are linearly separable, there is no need for
any hidden layer. Depending on the non-linearity and the complexity of the
data model that has to be fit, the number of neurons on the hidden layer or
even the number of these layers can be increased. However, one hidden layer
is sufficient for a large number of natural problems.

5 E.g. for the Euclidean distance.
6 Perceptrons are also called “units”, “nodes” or neurons in this model.

8 H. Maghrebi et al.

Fig. 2. Example of MLP, where each node is a perceptron as described in Sect. 2.1.

Regarding the number of neurons on the hidden layers, it has been demon-
strated that using a huge number of neurons can lead to over-fitting if the
model that has to be learned is close to a linear one [8]. It means that the
algorithm is able to correctly learn weights leading to a perfect fit with the
training data-set while these weights are not representative of the whole data.
On the other hand, the opposite may happen: for a complex data-set, using
too few neurons on the hidden layers may lead the gradient minimization
approach to fail in returning an accurate solution.

– Output layer: this is the last layer of the network. The output of the nodes
on this layer are directly mapped to classes that the user intends to predict.

Training a multilayer perceptron requires, for each layer, the learning of the
weighting parameters minimizing the loss function. To do so, the so-called back-
propagation [8] can be applied. It consists in computing the derivative of the
loss function with respect to the weights, one layer after another, and then in
modifying the corresponding weights by using the following formula:

wij = − ∂E

∂wi,j
,

where E is the loss function and wi,j denotes the weight of the connection
between two neurons of indices (i, j).

In several recent works, MLP has been applied to perform successful side
channel key recovery. For instance, in [21], authors have presented a neural net-
work based side channel attack to break the masked AES implementation of
the DPA contest V4 [55]. In fact, the authors of [21] assume that the adversary
has access to the mask values during the profiling phase. Under this assump-
tion, the proposed attack consists first in identifying the mask by applying a
neural network mask recovery. Then, a second neural network based attack is
performed to recover the secret key with a single trace. While the results of this

Breaking Cryptographic Implementations Using Deep Learning Techniques 9

work are quite interesting, the considered assumption is not always met in real
world circumstances.

2.3 Decision Trees and Random Forest

A decision tree is a tool involving binary rules to classify data [45]. It is made of
a root, several nodes and leaves. Each leaf is associated to a label corresponding
to the target value to be recovered. Each node that is not a leaf can lead to two
nodes (or leaves). First, the input is presented to the root. It is then forwarded
to one of the possible branch starting from this node. The process is repeated
until a leaf is reached. An illustration of this process for a 2-bit XOR operation
is depicted in Fig. 3.

A random forest is composed of many decision trees, each one working with
a different subset of the training data-set [45]. On the top of all of the trees, the
global output is computed through a majority vote among these classification
trees outputs. RFs have been successfully applied in SCA context to defeat

Fig. 3. Partial graphical representation of a decision tree performing the XOR opera-
tion between 2 bits variables x1 and x2. The leaves correspond to the XOR result.

10 H. Maghrebi et al.

cryptographic implementations [33,34]. In this paper, we will try to compare
RF-based attack with deep learning ones in terms of key recovery effectiveness.

2.4 Support Vector Machine

A support vector machine [14,57] is a linear classifier that not only intends to find
an hyper-plane to separate data classes but also intends to find the optimal one
maximizing the margin between these classes as described in Fig. 4. To deal with
non-linearly separable data-sets, it is possible for instance to use a kernel function
for instance that maps these data into a feature space of higher dimensions in
which the classes become linearly separable [49].

Fig. 4. Binary hyper-plane Classification.

In the side channel literature, several works have investigated the use of SVM
towards performing successful attacks to break either unprotected [5,23,28,32,
34] or protected cryptographic implementations [33]. Actually, authors in [23]
have demonstrated that when the Signal-to-Noise Ratio (SNR)7 of the targeted
data-set is very low, the SVM-based attack outperforms the template attack.

3 Overview on Deep Learning Techniques

For several reasons (mainly the vanishing gradient problem [25] and the lack of
computational power), it was not possible to train many-layered neural networks
7 The SNR is defined as the ratio of signal power to the noise power.

Breaking Cryptographic Implementations Using Deep Learning Techniques 11

until a few years ago. Recent discoveries, taking full advantage of GPU for com-
putations and using the rectified linear unit function (f : x �→ max(0, x)) as
an activation function instead of the classical sigmoid (g : x �→ 1

1+e−x), made it
possible to stack many layers allowing networks to learn more and more abstract
representation of the training data-set [29]. This is known as deep learning tech-
niques [1]. One major difference between deep learning and usual machine learn-
ing is that the latter ones are classifiers usually working from human-engineered
features while the former ones learn the features directly from the raw data
before making any classification [6]. In the following sections, some of the most
widely used learning techniques are detailed.

3.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specific kind of neural network built
by stacking the following layers [31,40]:

– A convolutional layer: on this layer, during the forward computation phase,
the input data are convoluted with some filters. The output of the convolution
is commonly called a feature map. It shows where the features detected by
the filter can be found on the input data. In Fig. 5, we provide an example
of a convolutional layer where the input vector X is represented as a matrix
(i.e. X = (xi,j) ∈ R

t×t where t is smallest square integer greater than the
size n of X viewed as a vector) and padded with zeros around the border8.

The output values can be expressed as yi,j =
m∑

a=1

m∑

b=1

wa,bxi+a,j+b, where wa,b

denotes the weights of the filter viewed as an m-by-m matrix. During the
backward computation, the filter weights are learned9 by trying to minimize
the overall loss.

– A Max Pooling layer: this is a sub-sampling layer. The feature map is divided
into regions and the output of this layer is the concatenation of the maximum
values of all these regions. Such layers can help reducing computation com-
plexity and enhance the robustness of the model with respect to a translation
of the input.

– A SoftMax layer: it is added on the top of the previous stacked layers. It
converts scores from the previous layer to a probability distribution over the
classes.

Learning the filters enables to extract high level features from the data.
This step may therefore be used as a dimensionality reduction or a Points Of
Interest (POI) selection technique (e.g. a PCA). Based on this remark, it would
be interesting to assess the efficiency of the CNN internal features extraction
function in selecting the most informative points to perform a successful key
recovery attack.
8 The goal is to control the size of the output.
9 As for the MLP weights estimations, the filter parameters are learned using the

back-propagation algorithm.

12 H. Maghrebi et al.

Fig. 5. An example of a convolutional layer where n = 25, t = 5 and m = 3.

3.2 Stacked Auto-Encoders

Stacked auto-encoders are artificial neural networks with many layers trained
by following a very specific procedure [37]. This procedure consists in training
each layer independently, using the output of the previous layer as input for
the current one. Each layer is composed of an encoder and a decoder, both
being a dense layer (i.e. fully connected layer)10. The role of the encoder is to
generate higher level features from the inputs. Whereas, the decoder role is to
reconstruct the inputs from the intermediate features learned by the encoder11

as described in Fig. 6. A very uninteresting network would learn the identity
function. To avoid such a behavior, a thumb rule could be that each layer has
to be smaller than the previous one12. This way the network will be forced to
learn a compressed representation of the input. Once the training is done, the
decoder is removed, the newly generated encoder is stacked with the previously
trained ones and the procedure can be repeated using the output of the newly
trained layer.

On the top of the stacked auto-encoder layers, a SoftMax classifier is usually
added to predict the class of the input using the high level extracted features
of the last layer. Each of these layers (including the SoftMax layer) is trained
sequentially. But once the last layer is trained, a global training using the well-
known Back-propagation algorithm is performed. This technique is known as
fine tuning [37].

10 This is also known as a restricted Boltzmann machine [46].
11 We refer the interested reader to another type of auto-encoder deep learning tech-

nique called Denoising auto-encoder [56,58]. This specific kind of auto-encoder aims
at removing the noise when fed with a noisy input.

12 This is not mandatory; some empirical results have shown that it might be better
to sometimes have more neurons on the first hidden layer than on the output as a
“pre-learning” step.

Breaking Cryptographic Implementations Using Deep Learning Techniques 13

Fig. 6. Learning an auto-encoder layer. First, the input X = (x0, x1, x2, x3, x4) ∈ R
5

is encoded. Then, the obtained result H = (h0, h1, h2, h3, h4) ∈ R
5 is decoded using

the second layer of the diagram to reconstruct the input ̂X = (x̂0, x̂1, x̂2, x̂3, x̂4) ∈ R
5.

The difference (X − ̂X) is then computed and fed to the back-propagation algorithm
to estimate the optimal weights minimizing the loss function.

Like CNN, auto-encoders are features extractors. Their role is to build high
level features that are easier to use in a profiling task. This task is particularly
meaningful in SCA where the features selection method is critical.

3.3 Recurrent Neural Networks

The Recurrent Neural Networks (RNN) [22] are dedicated to data for which the
same information is spread over several time samples. Thus, instead of assuming
that the components of the input vectors are mutually independent, each neuron
will infer its output from both the current input and output of previous units.
The RNN technique could be applied in the context of SCA since the leakage is
spread actually over several time samples.

In Fig. 7, we explain how this time-dependency is used by the RNN during the
profiling phase. Let n be the number of sample in our trace. For any i in [1, n], the
ith output si rewrites si = f(U ·xi +W · si−1), where (U,W) are the connecting
weights that the RNN have to learn and f denotes the activation function. To
get the ith output yj , a SoftMax layer is added such that yj = SoftMax(V · si)
where V is a connecting weight. Unlike traditional deep learning techniques
which use different weights at each layer, a RNN shares the same parameters
(U, V,W) across all layers13. To adjust the network weights of the ith unit, two
different back-propagation phases are processed: the classical one (to learn U)
and a temporal one (to learn W which depends on (i − 1)th output).
13 The purpose is to reduce the number of parameters to be learned.

14 H. Maghrebi et al.

Fig. 7. An unrolled recurrent layer.

3.4 Long and Short Term Memory Units

The Long and Short Term Memory (LSTM) is based on the RNN [26]. It has
been originally introduced to solve problems that had been reported when using
RNN, mainly the vanishing or the exploding gradients [7]. It enables the network
to deal with long time lags between relevant time-series of the processed data-
set. To do so, a cell state (aka memory cell) is added inside each unit. It contains
some statistical information (e.g. mean, variance) computed over a previously
processed time-series of the data. This cell can either be written on or erased
depending on the relevance of the stored information. The decision of writing on
the cell or of clearing it is taken by a small neural network [26].

In side channel context, this feature is quite interesting when dealing with
higher-order attacks where the adversary have to combine several delayed time
samples in order to defeat masked implementations for instance.

In the rest of this paper, we will focus on LSTM rather than RNN for the
reasons outlined above.

4 Towards New Profiling Methods

Several profiling approaches have been introduced in the literature. A common
profiling side channel attack is the template attack proposed in [10] which is
based on the Gaussian assumption14. It is known as the most powerful type of
profiling in a SCA context when (1) the Gaussian assumption is verified and (2)
the size of the leakage observations is small (typically smaller than 10.000).

When the Gaussian assumption is relaxed, several profiling based side chan-
nel attacks have been suggested including techniques based on machine learn-
ing. Actually, machine learning models make no assumption on the probability
density function of the data. For example, random forest model builds a set of

14 which is that the distribution of the leakage when the algorithm inputs are fixed is
well estimated by a Gaussian Law.

Breaking Cryptographic Implementations Using Deep Learning Techniques 15

decision trees that classifies the data-set based on a voting system [34] and SVM-
based attack discriminates data-set using hyper-plane clustering [23]. Indeed, one
of the main drawbacks of the template attacks is their high data complexity [12]
as opposed to the ML-based attacks which are generally useful when dealing
with very high-dimensional data [34].

In the following section, we describe the commonly used template attack
before introducing our new profiling approaches based on deep learning tech-
niques.

4.1 Template Attack

Template attacks have been introduced in 2002 by Chari et al. [10]. Since then,
many works have been published proposing either some efficiency improvements
(e.g. using Principal Component Analysis) [4,5,12] or to extend it to break
protected implementations [41]. The seminal template attack consists first in
using a set of profiling traces15 and the corresponding intermediate results in
order to estimate the probability density function (pdf) fz(L|Z = z) where Z
and L are random variables respectively denoting the target intermediate result
and the corresponding leakage during its processing by the device, and where z
ranges over all the definition set of Z. Usually L is multivariate, say defined over
R

d for some integer d (e.g. d = 1.000). Under the Gaussian assumption, this pdf
is estimated by a multivariate normal law:

fz(L|Z = z) � 1
(2π)ddet(Σz)

exp

(

−1
2
(L − μz)TΣz(L − μz)

)

,

where Σz denotes the (d × d)-matrix of covariances of (L|Z = z) and where the
d-dimensional vector μz denotes its mean16.

Next, during the attack phase, the adversary uses a new set of traces (li)1≤i≤n

for which the corresponding values zi are unknown. From a key hypothesis k,
he deduces predictions ẑi on these values and computes the maximum likelihood

approach
n∏

j=1

fẑj (lj |Z = ẑj). To minimize approximation errors, it is often more

convenient in practice to process the log-likelihood.

4.2 Deep Learning in Side Channel Analysis Context

Like other machine learning techniques (e.g. SVM and RF), a deep learning
technique builds a profiling model for each possible value zi of the targeted
sensitive variable Z during the training phase and, during the attack phase these
models are involved to output the most likely key (i.e. label) k∗ used during the
acquisition of the attack traces set (li)1≤i≤n.

In side channel attack context, an adversary is rather interested in the compu-
tation of the probability of each possible value ẑi deduced from a key hypothesis.
15 This set of traces is typically acquired on an open copy of the targeted device.
16 The couple (μz, Σz) represents the template of the value z.

16 H. Maghrebi et al.

Therefore, to recover the good key, the adversary computes the maximum or the

log-maximum likelihood approach like for template attack (
n∏

j=1

P (lj |Z = ẑj)).

Indeed, our deep learning techniques only differs from the machine learning
one in the method used to profile data. However, the attack phase remains the
same for both kinds of attack.

5 Experimental Results

In the following section, we compare for different implementation sets the effec-
tiveness and the efficiency of our proposed DL-based attacks with those of ML-
based and template-based attacks. Mainly, we have targeted a hardware and a
software implementation of an unprotected AES and a first-order masked AES
implementation.

5.1 Experimental Setup

We detail hereafter our experimental setup.

Attacker Profile. Since we are dealing with profiled attacks, we assume an
attacker who has full control of a training device during the profiling phase and is
able to measure the power consumption during the execution of a cryptographic
algorithm. Then during the attack phase, the adversary aims at recovering the
unknown secret key, processed by the same device, by collecting a new set of
power consumption traces. To guarantee a fair and realistic attack comparison,
we stress the fact that the training and the attack data-sets must be different.

Targeted Operation. Regarding the targeted operation, we consider one or
several AES SBox outputs during the first round: Z = SBox[X ⊕ k∗] where
X and k∗ respectively denote the plaintext and the secret key. We motivate
our choice towards targeting this non-linear operation by the facts that it is a
common target in side channel analysis and that it has a high level of confusion.

Training and Attack Phase Setup. For fair attack comparison, we have
considered fixed size data-sets for the profiling and the attack: 1.000 power traces
per sensitive value (i.e. Z = z) for the training phase and 20.000 power traces
with a fixed key k∗ for the attack phase.

Evaluation Metric. For the different targeted implementations, we have con-
sidered a fixed attack setup. In fact, each attack is conducted on 10 independent
sets of 2.000 traces each (since we have a set of 20.000 power traces for the attack
phase). Then, we have computed the averaged rank of the correct key among all
key hypotheses (aka the guessing entropy metric [53]).

Breaking Cryptographic Implementations Using Deep Learning Techniques 17

5.2 Unprotected AES Implementations

DPA Contest V2. Our first experiments were carried out on the DPA con-
test V2 data-set [54]. It is an FPGA-based unprotected AES implementation.
Each trace contains 3.253 samples measuring the power consumption of an AES
execution.

To break this hardware implementation, we have conducted 4 different DL-
based attacks (AE, CNN, LSTM and MLP)17. For the MLP-based attack, we
have considered two versions: for the first one, we have pre-processed traces
by applying a PCA in order to extract the 16 most informative components
(since we will target the 16 SBox outputs). For the second MLP-based attack,
no dimensionality technique was applied. Our purpose here is to check if the
commonly used PCA technique could enhance the efficiency of deep learning
based attacks.

For the sake of completeness, we have performed the seminal template attack
and the RF-based attack18. The evolution of the correct key rank according
to the number of traces for each attack when targeting the first AES SBox is

Fig. 8. Evolution of the correct key rank (y-axis) according to an increasing number of
traces (x-axis in log scale base 10) for each attack when targeting the first AES SBox

17 The parameters for each attack are detailed in Appendix A.
18 In our attack experiments, we didn’t reported the results of the SVM-based attack

since it achieves a comparable results as those obtained for the RF-based attack.
The same observations were highlighted in [33].

18 H. Maghrebi et al.

Fig. 9. Averaged guessing entropy over the 16 AES SBoxes (y-axis) according to an
increasing number of traces (x-axis in log scale base 10).

described in Fig. 8. Besides, the averaged guessing entropy over the 16 AES SBox
is shown in Fig. 9.

From Fig. 9, the following observations may be emphasized:

– the CNN and the AE-based attack slightly outperform template attack. For
instance, for the CNN-based attack 200 traces are roughly needed in average
to recover the key with a success rate of 100%. For the template attack, an
adversary needs roughly 400 traces. This could be explained by the fact that
CNN applies a nice features extraction technique based on filters allowing
dealing with the most informative samples form the processed traces.

– Prepossessing with PCA does not enhance the efficiency of MLP-based attack.
In fact, the PCA is probably removing some data components which are
informative for linear clustering representation, but negatively impact the
accuracy of the non-linear model profiling of the MLP network.

– The LSTM performs worse compared to the other types of deep learning
techniques. This could be due to the fact that the leakage of this hardware
implementation is not time-dependent (i.e. the leakage is spread over few time
samples).

Software Unprotected AES Implementation. For our second experiments,
we have considered an unprotected AES implementation on the ChipWhisperer-
Capture Rev2 board [39]. This board is a very compact side channel attack

Breaking Cryptographic Implementations Using Deep Learning Techniques 19

Fig. 10. Evolution of the correct key rank (y-axis) according to an increasing number
of traces (x-axis in log scale base 10) for each attack when targeting the first AES
SBox.

platform. It enables users to quickly and easily test their implementation against
side channel attacks.

For the sake of comparison, we have performed the same attacks as these con-
ducted on the DPA contest V2 implementation. In Figs. 10 and 11, we reported
respectively the guessing entropy when targeting the first AES SBox and the
averaged guessing entropy over the first four SBoxes for each attack and for an
increasing attack traces set.

From Fig. 11, the following observations could be emphasized:

– Our proposed deep learning based attacks outperform both template and
RF-based attack. For instance, for the AE-based attack 20 traces are roughly
needed in average to recover the first four bytes of AES key with a success
rate of 100%. For the template attack and RF-based attack, an adversary
needs respectively 100 and 80 traces.

– The performed attacks requires less than 100 traces to recover the first four
bytes of the key. A natural explanation of this result could be that the SNR
is very high on the ChipWhisperer side channel platform.

– The LSTM performs well compared to the results obtained on the DPA contest
V2 data-set. This could be due to the facts that the leakage of a software
implementation is very time-dependent and that the samples are less noisy.

20 H. Maghrebi et al.

Fig. 11. Averaged guessing entropy over the first four AES SBoxes (y-axis) according
to an increasing number of traces (x-axis in log scale base 10).

5.3 First-Order Masked AES Implementation

Our last experiments were carried out on a first-order masked AES implemen-
tation on the ChipWhisperer-Capture Rev2 board. The 16 SBoxes outputs are
masked with the same mask. Our attacks were performed using the same leak-
age model as that used for the previously evaluated unprotected implementations
(i.e. the training data were profiled with respect to the SBox output S[X ⊕ k]).
Unlike the recently published ML-based attacks to break masked implementa-
tions [21,33], we stress the fact that no prior profiling of the mask values was
made during the training phase. The attack results when targeting the first SBox
are shown in Fig. 12.

From Fig. 12, one can conclude that our deep learning based attacks perform
well against masked implementation. In fact, 500 and 1000 traces are respec-
tively needed for AE and CNN/MLP-based attacks to recover the key. Actually,
the deep learning techniques apply some activation functions as described in
Sect. 2.1. Those functions (e.g. a sigmoid) implicitly perform product combi-
nations of the data samples which has as an effect the removal of the mask
dependency19 exactly like a second-order side channel attack [42].

For template attack and RF-based attack more traces are needed to reach a
success rate of 100%.
19 The product combining function maps the leakages of the masked data (Z ⊕M) and

the mask (M) into a univariate sample depending on the sensitive data Z.

Breaking Cryptographic Implementations Using Deep Learning Techniques 21

Fig. 12. Evolution of the correct key rank (y-axis) according to an increasing number
of traces (x-axis in log scale base 10) for each attack when targeting the first AES
SBox.

6 Conclusion and Perspectives

In this paper, to the best of our knowledge, we study for the first time the
application of deep learning techniques in the context of side channel attacks.
The deep learning techniques are based on some nice features suitable to perform
successful key recovery. Mainly, they use different methods of features extraction
(CNN and AE) and exploit time dependency of samples (RNN, LSTM). In order
to evaluate the efficiency of our proposed attacks, we have compared them to
the most commonly used template attack and machine learning attacks. The
comparison between these attacks was conducted on three different data-sets
by evaluating the number of traces required during the attack phase to achieve
a unity guessing entropy with a fixed size of profiling data-set. Our practical
results have shown the overwhelming advantage of our proposal in breaking
both unprotected and protected AES implementations. Indeed, for the different
targeted implementations, our attacks outperform the state-of-the-art profiling
side channel attacks.

A future work may consist in targeting other types of protection (e.g. shuf-
fling, combined masking and shuffling) with our proposed DL-based attacks.
Moreover, our work opens avenues for further research of new deep learning
techniques in order to better adapt them to challenge cryptographic implemen-
tations.

22 H. Maghrebi et al.

A Attack Settings

Our proposed deep learning attacks are based on Keras library [2]. We pro-
vide hereafter the architecture and the used parameters for our deep learning
networks.

– Multilayer Perceptron:
• Dense input layer: the number of neurons = the number of samples in the

processed trace
• Dense hidden layer: 20 neurons
• Dense output layer: 256 neurons

– Stacked Auto-Encoder:
• Dense input layer: the number of neurons = the number of samples in the

processed trace
• Dense hidden layer: 100 neurons
• Dense hidden layer: 50 neurons
• Dense hidden layer: 20 neurons
• Dense output layer: 256 neurons

– Convolutionnal Neural Network:
• Convolution layer

* Number of filters: 8
* Filters length: 16
* Activation function: Rectified Linear Unit

• Dropout
• Max pooling layer with a pooling size: 2
• Convolution layer

* Number of filters: 8
* Filters length: 8
* Activation function: tanh(x)

• Dropout
• Dense output layer: 256 neurons

– Long and Short Term Memory:
• LSTM layer: 26 units
• LSTM layer: 26 units
• Dense output layer: 256 neurons

– Random Forest: For this machine learning based attack, we have used the
scikit-learn python library [3].

• Number of trees: 300

In several published works [23,28], authors have noticed the influence of
the parameters chosen for SVM and RF networks on the attack results. When
dealing with deep learning techniques we have observed the same effect. To find
the optimal parameters setup for our practical attacks, a deeply analyzed method
is detailed in the following section.

Breaking Cryptographic Implementations Using Deep Learning Techniques 23

A.1 How to Choose the Optimal Parameters?

When dealing with artificial neural networks, several meta-parameters have to be
tuned (e.g. number of layers, number of neurons on each layer, activation func-
tion, . . .). One common technique to find the optimal parameters is to use evo-
lutionary algorithms [18] and more precisely the so-called genetic algorithm [38].

At the beginning of the algorithm, a population (a set of individuals with
different genes) is randomly initialized. In our case, an individual is a list of
the parameters we want to estimate (e.g. number of layers, number of neurons
on each layer, activation function, . . .) and the genes are the corresponding
values. Then, the performance of each individual is evaluated using what is
called a fitness function. In our context, the fitness function is the guessing
entropy outputted by the attack. Said, differently, for each set of parameters
we perform the attack and we note the guessing entropy obtained. Only the
individuals that achieve good guessing entropy scores are kept. Their genes are
mutated and mixed to generate a better population. This process is repeated
until a satisfying fitness is achieved (i.e. a guessing entropy equals one).

References

1. Deep learning website. http://deeplearning.net/tutorial/
2. Keras library. https://keras.io/
3. Scikit-learn library. http://scikit-learn.org/stable/
4. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks

in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). doi:10.1007/11894063 1

5. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on proba-
bilistic multi-class support vector machines. In: Mangard, S. (ed.) CARDIS
2012. LNCS, vol. 7771, pp. 263–276. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37288-9 18

6. Bengio, Y.: Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1),
1–127 (2009)

7. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. Trans. Neur. Netw. 5(2), 157–166 (1994)

8. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press
Inc., New York (1995)

9. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

11. Chen, Z., Zhou, Y.: Dual-rail random switching logic: a countermeasure to reduce
side channel leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 242–254. Springer, Heidelberg (2006). doi:10.1007/11894063 20

12. Choudary, O., Kuhn, M.G.: Efficient Template Attacks. Cryptology ePrint Archive,
Report 2013/770 (2013). http://eprint.iacr.org/2013/770

http://deeplearning.net/tutorial/
https://keras.io/
http://scikit-learn.org/stable/
http://dx.doi.org/10.1007/11894063_1
http://dx.doi.org/10.1007/978-3-642-37288-9_18
http://dx.doi.org/10.1007/978-3-642-37288-9_18
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/11894063_20
http://eprint.iacr.org/2013/770

24 H. Maghrebi et al.

13. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 25

14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

15. Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Signal
Process. 7(3–4), 197–387 (2014)

16. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptographic Eng. 1(2), 123–144 (2011)

17. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-
Interscience (2000)

18. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Hei-
delberg (2003)

19. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel analy-
sis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23951-9 16

20. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85053-3 27

21. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of aes. In: 2015 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), pp. 106–111, May 2015

22. Hermans, M., Schrauwen, B.: Training and analysing deep recurrent neural net-
works. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 190–198.
Curran Associates Inc. (2013)

23. Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic
devices using support vector machines. In: Schindler, W., Huss, S.A. (eds.)
COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29912-4 18

24. Heyszl, J., Ibing, A., Mangard, S., Santis, F.D., Sigl, G.: Clustering Algorithms
for Non-Profiled Single-Execution Attacks on Exponentiations. IACR Cryptology
ePrint Archive 2013, 438 (2013)

25. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural
nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6(2),
107–116 (1998)

26. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

27. Hoogvorst, P., Danger, J.-L., Duc, G.: Software implementation of dual-rail repre-
sentation. In: COSADE, Darmstadt, Germany, 24–25 February 2011

28. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptographic Eng.
1(4), 293–302 (2011)

29. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-
stage architecture for object recognition? In: ICCV, pp. 2146–2153. IEEE (2009)

30. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

http://dx.doi.org/10.1007/978-3-642-55220-5_25
http://dx.doi.org/10.1007/978-3-642-23951-9_16
http://dx.doi.org/10.1007/978-3-642-23951-9_16
http://dx.doi.org/10.1007/978-3-540-85053-3_27
http://dx.doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25

Breaking Cryptographic Implementations Using Deep Learning Techniques 25

31. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series.
In: Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press,
Cambridge (998)

32. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach
based on machine learning. Int. J. Appl. Cryptography 3(2), 97–115 (2014)

33. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learn-
ing Approach Against a Masked AES. In: Francillon, A., Rohatgi, P. (eds.)
CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-08302-5 5

34. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in side-
channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS,
vol. 9064, pp. 20–33. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21476-4 2

35. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the
success rate of higher-order side-channel attacks, pp. 35–54. Heidelberg (2014)

36. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, December 2006. ISBN 0-387-30857-1, http://www.
dpabook.org/

37. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-
encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami,
M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21735-7 7

38. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

39. O’Flynn, C., Chen, Z.D.: Chipwhisperer: An open-source platform for hardware
embedded security research. Cryptology ePrint Archive, Report 2014/204 (2014).
http://eprint.iacr.org/2014/204

40. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR,
abs/1511.08458 (2015)

41. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006). doi:10.1007/11967668 16

42. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

43. Rivain, M.: On the exact success rate of side channel analysis in the gaussian
model. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 165–183. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04159-4 11

44. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

45. Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theroy and Applica-
tions. World Scientific Publishing Co. Inc., River Edge (2008)

46. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collab-
orative filtering. In: Proceedings of the 24th International Conference on Machine
Learning, ICML 2007, pp. 791–798. ACM, New York (2007)

47. W. Schindler.: Advanced stochastic methods in side channel analysis on block
ciphers in the presence of masking. J. Math. Cryptology 2(3), 291–310 (2008).
ISSN (Online) 1862–2984. ISSN (Print) 1862–2976. doi:10.1515/JMC.2008.013

48. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

http://dx.doi.org/10.1007/978-3-319-08302-5_5
http://dx.doi.org/10.1007/978-3-319-08302-5_5
http://dx.doi.org/10.1007/978-3-319-21476-4_2
http://www.dpabook.org/
http://www.dpabook.org/
http://dx.doi.org/10.1007/978-3-642-21735-7_7
http://eprint.iacr.org/2014/204
http://dx.doi.org/10.1007/11967668_16
http://dx.doi.org/10.1007/978-3-642-04159-4_11
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1515/JMC.2008.013
http://dx.doi.org/10.1007/11545262_3

26 H. Maghrebi et al.

49. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

50. Servant, V., Debande, N., Maghrebi, H., Bringer, J.: Study of a novel software con-
stant weight implementation. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS,
vol. 8968, pp. 35–48. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16763-3 3

51. Silva, T.C., Zhao, L.: Machine Learning in Complex Networks. Springer, Switzer-
land (2016)

52. Souissi, Y., Nassar, M., Guilley, S., Danger, J.-L., Flament, F.: First principal
components analysis: a new side channel distinguisher. In: Rhee, K.-H., Nyang,
D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 407–419. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-24209-0 27

53. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

54. TELECOM ParisTech SEN research group. DPA Contest, 2nd edn. (2009–2010).
http://www.DPAcontest.org/v2/

55. TELECOM ParisTech SEN research group.DPA Contest, 4th edn. (2013–2014).
http://www.DPAcontest.org/v4/

56. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th Interna-
tional Conference on Machine Learning, ICML 2008, pp. 1096–1103. ACM, New
York (2008)

57. Weston, J., Watkins, C.: Multi-class support vector machines (1998)
58. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural

networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.)
Advances in Neural Information Processing Systems 25, pp. 341–349. Curran Asso-
ciates Inc. (2012)

http://dx.doi.org/10.1007/978-3-319-16763-3_3
http://dx.doi.org/10.1007/978-3-642-24209-0_27
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://www.DPAcontest.org/v2/
http://www.DPAcontest.org/v4/

Cheap and Cheerful: A Low-Cost Digital Sensor
for Detecting Laser Fault Injection Attacks

Wei He(B), Jakub Breier, and Shivam Bhasin

Temasek Laboratories, Physical Analysis and Cryptographic Engineering,
Nanyang Technological University, Singapore, Singapore

{he.wei,jbreier,sbhasin}@ntu.edu.sg

Abstract. Fault Injection Attacks (FIAs) have become a critical threat
towards prevailing security embedded systems. FIA typically exploits the
maliciously induced faults in security ICs for retrieving confidential inter-
nals. Since the faults are injected by disturbing circuit behaviors, FIA
can possibly be detected in advance by integrating a sensitive sensor. In
this paper, a full-digital detection logic against laser fault injection is
proposed, which mainly consists of a high-frequency RO watchdog and
a disturbance capture for sensing frequency ripples due to laser impact.
Practical experiments on Virtex-5 FPGA show that the proposed sensor
has fault detection rate of 100 % for both regional and single CLB injec-
tion, protecting critical registers of PRESENT-80 cipher, with superior
power/spatial security margin compared to a prior PLL-based sensor,
while maintaining extremely low cost in hardware. The proposed logic
is further applied to protect complete cipher over larger fabric, and the
fine-grained fault injection using pulse laser shows a detection rate of
94.20 %, and an alarm rate of 2.63 : 1 in this experiment. Owing to its
simple digital architecture, this system can be easily applied into any
security-critical ICs.

Keywords: Cryptography · Embedded system · Ring-oscillator ·
Semi-invasive attack · FPGA

1 Introduction

Hostile implementation circumstances in security applications demand the
security-critical circuits to be integrated with a strong protection against var-
ious attack threats. In modern cryptography, confidential data is protected by
utilizing strong algorithms. However, the real-world implementation of these
algorithms in devices inevitably draws numerous vulnerabilities in their applica-
tions. Various attack methodologies on the physical layer have been proposed for
breaking crypto algorithms or other security-critical applications. The two com-
monly known methodologies are leakage-based side-channel attacks (SCA [12]),
and abnormality-based fault injection attacks [7]. In SCA, the leaked physical
information (like power consumption, timing, etc.) is exploited for extracting
the secrets [12]. On the other hand, FIA retrieves confidential information by
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 27–46, 2016.
DOI: 10.1007/978-3-319-49445-6 2

28 W. He et al.

analyzing the faulty behavior or faulty outputs from the target when operated
under hostile environment. FIA can be widely used for serving different pur-
poses, the most common one being the secret key retrieval [4]. Besides, it can
also be used for reverse engineering purpose to deduce the internal architec-
ture of the attacked chip by analyzing its faulty behavior [16]. Moreover, FIA is
also a promising method to break the defense of the system, for assisting other
hardware-level attacks [1]. Owing to its wide potential in various attacks, fault
injection attacks have evolved to be a critical security threat against all kinds of
security ICs. It is also commonly tested by certification bodies when evaluating
security-critical devices.

The fault injection can be conducted at two levels. First, faults can be glob-
ally injected by imposing disturbances into global variables, such as the clock
system or power supply of the device under test (DUT) [2]. In this approach,
noticeable disturbances are induced in clock or power lines, which are distributed
through the global network and affect the critical logic points that are vulnera-
ble in exposure of disturbance. Typically, it is the critical logic path which can
easily suffer from setup-time violation by a ripple in clock or power. Another
approach to conduct fault injection is to affect the local chip fabric relying on
high-precision injection methodologies, as laser (laser fault injection - LFI) or
electromagnetic (EM fault injection - EMFI). The faults are injected by making
an impact on the signal propagation by external means like EM or directly upset-
ting stored data bits in memory cells by using strong laser. Since the disturbance
can be strictly constrained to a specific chip region, and it is easy to tune the
injection time from the equipment, LFI and EMFI are superior to global injec-
tions in terms of both precision and controllability. The disadvantage compared
to global methods is a high cost of injection equipment.

Protection against fault attacks can be done either at information level or
circuit level. Error detection and correction codes find wide applications in infor-
mation based fault protection [11]. Other kinds of information redundancy, like
duplication, can also be used for fault protection. The circuit modification for
information redundancy has a finite and non-negligible cost. Moreover, it is a
reactive protection, which acts when the fault has already been injected and
potentially exploited [1]. The other family of protection is proactive in nature
and based on environmental sensors [21]. It monitors environmental parameters
and raises an alarm in hostile conditions. Such protections are better for LFI or
EMFI techniques which inject faults by controllable injection using high-energy
electromagnetic or laser pulses. In this paper, a low-cost and fully digital sensor
system is presented for detecting a semi-invasive laser fault injection on-the-fly.
This sensor relies on a strict timing violation, for detecting the slight signal oscil-
lation alteration (phase shift) in a watchdog ring oscillator (RO) from laser fault
injection.

Contribution: The merit of the proposed technique resides in (a) its superior
detection sensitivity and protection coverage against semi-invasive disturbance;
(b) the capability of detecting bi-directional frequency ripple (i.e., either accel-
eration or deceleration of sensitive signal); and (c) fully digital and cost-efficient

A Low-Cost Digital Sensor 29

architecture, which can be easily implemented into any digital/hybrid ICs and
FPGAs, for high-security application.

Outline of this paper: The content of this paper is organized as follows:
Sect. 2 recalls the technical backgrounds of laser-based fault attacks towards
cryptographic primitives in hardware, and the prior countermeasures; In Sect. 3,
the proposed low-cost digital sensor system against laser fault injection is elab-
orated; along with the FPGA implementation details. Sect. 4 describes a series
of experimental evaluations in practical high-precision laser fault attacks, with a
thorough comparison to a recently proposed PLL based sensor [10,13]. Finally,
the work conclusions are drawn in Sect. 5.

2 Background

2.1 Fault Attacks on Cryptographic Primitives

Integrated circuits (IC) can be easily affected by environmental conditions they
operate in. One of the first phenomena observed in this direction was a higher
number of failures in satellite systems caused by cosmic rays [5]. A new area,
testing reliability of IC has emerged since then - failure analysis. More then 20
years later, Boneh, DeMillo, and Lipton [7] have shown that such failures can be
used for attacking cryptographic primitives implemented in integrated circuits,
naming this area fault injection attacks.

Currently, fault attacks are among the most popular physical attacks on cryp-
tographic implementations, together with side-channel attacks. There are various
techniques allowing attackers to influence electronic devices, ranging from low-
cost solutions, such as voltage or clock glitches, to expensive ones, such as laser
fault injection or focused ion beam [3]. If the attacker can control the device
in order to make a precise errors during computations, some confidential inter-
nals, particularly as crypto keys, can be easily revealed. For example, it was
shown that the full AES key can be recovered by injecting just one fault in the
penultimate round [15].

For testing our countermeasure, we have chosen the laser fault injection tech-
nique, which provides very good spatial and timing resolution and therefore can
accurately measure the effectivity of the fault protection.

2.2 Laser Fault Injection

Optical fault injection attacks were presented by Skorobogatov and Anderson
in 2002 [18]. In the paper, authors used a flashlight for inducing faults in a
microcontroller. However, such technique is not very precise, therefore, laser
fault injection has quickly become the most used optical fault attack technique.

In this approach, a laser source attached to a microscope is placed over
the chip, so the laser beam can lead to charge transmission in signal paths,
or the ionization effect on transistors. In general, one can decide whether to
approach the chip from the frontside or the backside. For the frontside injection,

30 W. He et al.

either green (532 nm) or red (808 nm) lasers are used because there is no need
to penetrate the silicon substrate. The advantage of this method is the direct
visibility of components of the chip. However, metallic layers can completely
nullify the effect of the beam. Especially modern ICs have several metal layers
and therefore, it makes it infeasible to use this method. In the backside injection,
one has to use at least near-infrared laser (1064 nm) because of the substrate. It is
advisable to mill down and polish the substrate in order to make the components
accessible and to achieve higher precision by avoiding the light refraction.

When it comes to effects on FPGAs, the resulted phenomena can cause a
direct bit upset in memory cells, either in the flip-flops, in block memories, or in
the configuration bits in reconfigurable circuit [17]. It can also affect the signal
propagation, by either increasing or decreasing the signal transmission, causing
timing violation in logic chain.

Fig. 1. Example of laser fault injection setup testbench.

An example of laser fault injection setup is depicted in Fig. 1. On the left
side, we can see the laser source, with the power usually ranging in several
Watts, attached to a magnifying objective lens (in our setup we use 5× mag-
nification). There is also an X-Y table that is capable to precisely position the
device under test (FPGA in the picture). On the right side, there are acquisition,
communication and control devices. Normally, data is sent from the PC to the
DUT, which sends a trigger signal before processing the data. Trigger & Control
device captures this signal and sends a command to the laser source to perform
the injection. To get precise timing and laser diode current, it is advisable to use
a digital sampling oscilloscope.

2.3 Countermeasures

Numerous countermeasures against fault injection have been developed in prior
literatures, which basically drop within two scopes: First, the cipher itself is
fortified with capability of detecting data abnormality. In this approach, the

A Low-Cost Digital Sensor 31

cipher primitive needs to be merged with the detection logic, as the concurrent
error detection (CED) proposed by Karri et al. in [11]. In this method, parity bits
are computed in advance to predict and compare with the parity of the output
vector in each computation round. If they are equal, error check is passed, and
otherwise, error/errors occurred in ciphering computation of this round. Another
popular idea to detect the error is to simply duplicate the original cipher in
parallel, and both are fed with the same plaintext. In the output side, the two
outputs from the genuine and the duplicated rails are compared to see if any
faults occurred in either rails. The pitfalls of these redundancy based detection
can be summarized as follows:

1. High-Cost: The cost of these redundancy error check logics are resource
consuming. This is because the detection needs to simulate the real data
computation, or parity computation at each computation round, so as to
be compared with real cipher outputs. Prior work reported roughly doubled
hardware cost using these methods.

2. Low-Detection Coverage: Since these detection base on the data or parity
comparison, a fatal problem arisen here is that not all the faults can be
detected. For instance, parity comparison normally detect odd-number errors
occurred inside the algorithm, and the duplication method cannot detect the
faults that are simultaneously perturbated into the same logic points of the
two rails.

3. No Prediction Margin: These detection logics can only detect the faults
that have already been successfully injected into the cipher cores. In other
words, the on-going injection campaign cannot be predicted in advance.

On contrary, sensor based countermeasures [13,21] are alternatively used
for detecting the fault injection on-the-fly. In this approach, an independent
logic can be used as the injection sensor, being implemented together with the
protected cipher. The sensor should have a higher sensitivity against the distur-
bance induced by the injection equipment, which should have logic (alarm) signal
responding to injection turbulence earlier than the accomplished cipher faults.
More precisely, the injection disturbance should have more significant impacts on
the sensor, by inducing specific alarm signal. Moreover, the detection coverage
of fault types should also be sufficiently high.

2.4 Previous Works on Sensor Based Countermeasures

As a summary, all the injections discussed above can cause change on signal
propagation. Therefore, if a logic can be sufficiently sensitive in detecting abnor-
mal frequency change, the malicious injections can be detected.

There are several techniques that can be employed in FPGA in order to detect
disturbances by a laser. In the following, we will explain the works proposed so
far in this area.

32 W. He et al.

Glitch Detector. Glitch detector is a timing-violation based sensor that was
originally proposed for detecting any timing violation using power or clock global
fault injections [8]. Later research mentions its partial effectiveness against EM
fault injections [21]. This logic consists in detecting the violation of a guarding
delay prior to any timing violation. The clock signal is used as a reference to
be able to draw comparisons between the guarding delay and the clock period
to a flip-flop, as illustrated in Fig. 2(a). The output of flip-flop serves as the
alarm signal which stays in low voltage level in absence of disturbance. In case
the external disturbance increases the signal delay in CK, the setup-time will be
violated which triggers a high voltage level in alarm signal, as illustrated by the
timing diagram in Fig. 2(b). The pitfalls of this logic are twofold. Firstly, the
detector is suited for global disturbances. However, using a network of detec-
tors can also detect local injections to some extent [21]. Secondly, the detector
is designed against injection method which increases propagation delay, while
remaining insensitive to techniques which can accelerate the signal propagation
as shown in Fig. 2(c).

alarmD Q

CKDelay

CK

DCK

(a)

CK

power
supply

DCK

Normal Normal
under-power

delay increased delay

1alarm

CK

power
supply

DCK

Normal Normal
over-power

delay
reduced delay

alarm

(b) (c)

Fig. 2. (a) Topology of glitch detector; Timing diagram of disturbance detection by
glitch detector under: (b) delayed signal propagation, and (c) accelerated signal prop-
agation.

Ring-Oscillator with Frequency Counter. As a low-cost oscillation gener-
ator, digital Ring-Oscillator (RO) has been widely used in security applications,
such as the unclonable crypto key generation [20]. RO is a closed loop chained an
by odd number of inverters, as sketched in Fig. 3(a). The oscillation frequency
of a RO is determined by the summed-up signal propagation time in this loop.
Any anomaly or disturbance would normally impact the RO resulting in change
of oscillation frequency and phase. As aforementioned, many fault injections can
cause timing change in signal path, hence RO can be potentially used to detect
the on-going injection campaign.

Basically, the oscillation distortion in either phase or frequency can be cap-
tured by a digital counter [9], and the size (bit-width) of the counter can be

A Low-Cost Digital Sensor 33

Fig. 3. (a) Inverter based digital ring-oscillator; (b) Round architecture of PRESENT-
80 cipher.

determined by the used oscillation frequency and the time-window of the mea-
surement. The drawbacks using frequency counter are clear. First, to enlarge the
disturbance impact to a RO, the frequency of this RO should be high. There-
fore, the required bit-width of the capture RO should be sufficiently big, in
order to prevent any data overflow during the measurement in the time win-
dow. A smaller time window can reduce the size of the counter, however it risks
the capture precision. In addition, the frequency measurement and comparison
judgement by RO needs a significantly long time to be completed, hence the
response to detected injection campaign cannot be immediate. And the large
size of this logic is also vulnerable and easier to be affected by fault injections.

Ring-Oscillator with PLL. Phase-Locked-Loop (PLL) was originally used by
Miura et al. in [13] for detecting the phase shift disturbance in RO by EMFI. In
this proposal, the frequency of a RO is fed into the frequency input of a PLL,
hence any disturbance in phase shift comparison (must have two frequencies,
one is reference to check the change of phase/frequency distortion).

A technique, using digital RO for detecting frequency disturbance caused by
laser, and a PLL, allowing detection of frequency changes in RO, was published
in [10]. By using this technique, authors were able to detect faults caused by the
laser with the detection rate more than 92 %.

Since the PLL is a scarce resource and not always available, we propose a
fully-digital sensor which also allows us to achieve higher detection rates.

2.5 Lightweight PRESENT Cipher

To validate the effectiveness of the proposed countermeasure against LFIs, The
ISO/IEC standardized PRESENT-80 block cipher [6] is selected as the protection
target. This cipher is a classic substitution permutation network (SPN), which
consists of 64-bit AddRoundKey, 16 4-bit S-box and 64 bit pLayers, to en-/de-
crypt 64-bit plaintext/ciphertext using 80- or 128-bit key. In this work, we target

34 W. He et al.

its 64-bit round data registers for injecting the cipher faults, as indicated in
Fig. 3(b).

3 Low-Cost Digital LFI Sensor

As previously discussed, PLL-based LFI sensor [10] that senses laser injection
through an underlying RO is an effective countermeasure. It is both low-cost
and easy to integrate in a complex circuit. However, this countermeasure assumes
availability of an existing PLL block. PLL is an analog block used for clock mon-
itoring and generation which is often found in most, if not all, modern FPGAs.
However, the need for PLL reduces the portability of the countermeasure to
ASIC. Even if PLL are available in ASIC, being a scarce resource, it might not
be viable to use it only for countermeasures due to area, power and cost con-
sideration. To overcome this limitation, we propose a fully-digital low-cost LFI
sensor. It precisely replaces the PLL with an all digital clock monitoring circuit
while still keeping the watchdog RO. The fully digital nature of the sensor makes
it versatile for different hardware platforms. The low-cost motivates the possi-
bility of deploying several instances of the sensor if needed. As shown later, this
all-digital sensor also shows a much higher detection rate than the original PLL-
based solution. In the rest of the section, we discuss the design and features of
the proposed sensor followed by its implementation details on FPGA platform.
Being an all digital proposal, the cost in ASIC is also limited to only few gates.

3.1 Digital Fault Injection Detector

In this paper, we introduce a novel fault injection detector, as sketched in Fig. 4.
This system consists of a multi-inverter RO serving as the frequency disturbance
Watchdog Sensor, and a Disturbance Capture logic comprised of two flip-flops
and a logic gate i.e. (Q1&Q2). The frequencies from two points (f1.f2) on this
RO loop are fetched to be sampled by two flip-flops (FF1.FF2), being sampled
by a derived frequency (ck-delay). The two-bit vectors from the two flip-flops
manifest whether abnormality occurred in the RO. The function of the entire
detection system is detailed in Fig. 5.

In this work, the outputs of three consecutive inverters in Watchdog Sensor
RO are used as the inputs for the Disturbance Capture part, named as f1,
ck, f2 by signal propagation sequence. Given a stable electrical environment,
the three signals will have the same frequency with fixed phase shift, and an
opposite polarity to signal ck, w.r.t. f1 and f2. FF1 and FF2 are both triggered
by the falling edge of ck, as seen in Fig. 5(a). In absence of signal delay from
RO to flip-flops, the sampled values for FF1 and FF2 are respectively ‘1’ and
‘0’, as indicated by the blue dotted arrow lines in Fig. 5(a). Noticeably, the
ripples in this RO will identically affect three frequencies, leading to no impact
on the Disturbance Capture and thus giving false negatives.

In order to capture anomalies, a delay factor is intentionally inserted into
the clock inputs of FF1 and FF2, which is used for introducing a propagation

A Low-Cost Digital Sensor 35

D Q1

FF1

D Q2

FF2

Delay
Factor

RO enable

CK

CK

f1

f2

ck 1: safe
0: injection detectedck-delay

Watchdog Sensor Disturbance Capture

alarmQ1&Q2

Fig. 4. Topology of the schemed fault injection sensor system.

delay of signal ck by several clock cycles. In the sequel, each flip-flop is actually
clocked by the falling-edge of a delayed ck cycle or ck-delay, as highlighted by the
red dotted arrow lines in Fig. 5(a). The significant merit here is that the ripple
in RO only affects the f1 and f2 at the injection moment, without immediately
affecting the sampling frequency (ck-delay) on Disturbance Capture. In this
way, this system is able to capture bi-directional abnormalities in RO frequency
ripples, as explained in the following subsection. The area report is given in
Table 1. The delay can also be configured by appropriate routing only.

Table 1. Area report of the all-digital LFI sensor

Component LUT DFF

Watchdog sensor 3 0

Disturbance capture 1 2

Delay 1 0

3.2 Timing Violation Detection

In this part, we qualitatively analyse the proposed sensor against various timing
impacts of laser injection to the RO.

Delayed Propagation. In case the signal propagation is delayed by the LFI,
the frequency of RO can be reduced shortly, as indicated by Fig. 5(b). In this
situation, the duty cycles of f1 and f2 are temporarily extended. As discussed
before, both FF1 and FF2 are clocked by the delayed clock signal ck-delay, hence
the sampling time in flip-flops at the injection moment is not impacted by the
RO disturbance, which is very likely to result in the set-up time violation at
f2. As can be seen in Fig. 5(a), the sampled value vector from FF1 and FF2 is
‘10’ under normal operation. Hence, the sampled vector in presence of timing
violation from delayed signal propagation is ‘11’, as highlighted in Fig. 5(b).

36 W. He et al.

(b) temporarily decreased frequency

11

10

00

(c) temporarily increased frequency

(a) no disturbance

time window for sampling

f1

ck-delay

f2

f1

ck-delay

f2

f1

ck-delay

f2

increased clock period

decreased clock period

Fig. 5. Timing of low/high-frequency ripple detection. (Color figure online)

Accelerated Propagation. As aforementioned, the frequency can also be tran-
siently increased by the LFI. In this way, the duty cycle of both f1 and f2 can
be reduced when the injection affects the RO. Comparatively, the timing will
be violated in FF1, rather than FF2, cf. preceding situation. As explained in
Fig. 5(c), the sampled value vector from FF1 and FF2 becomes ‘00’ from the
normal ‘10’.

Complex Disturbances. It should be emphasized that the timing analyses of
disturbance in RO frequency above only considers a single frequency cycle. In a
real scenario, the disturbance can be more complex and prevail for several clock
cycles to produce a prolonged impact. Hence the extended or shortened duty
cycle in f1 and f2 can be longer and more complicated than those single-cycle
ripples illustrated in Fig. 5(a) and (b). Nevertheless, these complex event can
be seen as a combination of several delayed and accelerated event. The timing
violation will still be captured as the proposed countermeasure latches the first
alarm glitch appearing in each disturbance-period. It allows to alert the main
system and launch the fault recovery mechanism. This would also cover the less
frequent sampled value of ‘01’. Hence, the complexity in alarm pattern dropping
inside the disturbance time window does not impede the disturbance detection.

A Low-Cost Digital Sensor 37

Since alarm signal is computed from Q1&Q2, both abnormalities can result
in an alarm value change from ‘1’ to ‘0’ for alerting the cipher to respond the
on-going injection campaign immediately. Here, ‘&’ represents logical AND.

3.3 Target FPGA and Digital-Sensor Implementation

As one of the major FPGA vendors, Xilinx provides a wide range of commer-
cial FPGAs with different technologies. In our work, we tested our circuit on
Virtex-5 FPGA which is one of the most popular SRAM based FPGAs on mar-
ket in recent decade. The basic architecture includes a massive Configurable
Logic Block (CLB) array, and numerous peripheral functional logic modules, as
Block RAM, Digital Signal Processor (DSP), Digital Clock Manager (DCM),
Phase Locked Loop (PLL), as well as rich routing resource channels. In Xilinx
terminology, each CLB is comprised by two slices for deploying the implemented
logic. Four Look-up-tables (LUTs) in each slice are the main logic resource for
implementing the synthesized logic gates, and 4 flip-flops can be configured as
registers or latches. A switch-box is deployed besides each CLB for providing rich
interconnected resources between the CLB logic to external routing channels. In
this work, we mainly target the 64-bit round data registers of PRESENT-80
cipher (see Fig. 3(b)), which are implemented inside the 4 flip-flops in each slice.

The implemented circuit in FPGA-editor view is shown in Fig. 6. To evaluate
the detection capability of the proposed sensor system against the previously
proposed PLL-based LFI sensor [10], we have deployed both of them on the target
Virtex-5 FPGA with similar implementation scheme. Since each slice in Virtex-
5 FPGA has 4 flip-flops, we implemented the 64-bit round data registers of
PRESENT-80 cipher into 16 slices (8 CLBs) as a rectangle. The RO routing path
is forced to cross the 4 corners, so as to encompass the protected data registers,
as shown in Fig. 6. As shown in Fig. 6, the all-digital Disturbance Capture
using the 3 inverter outputs from the RO are deployed outside the RO routings.
In the second implementation, the Disturbance Capture is simply replaced by
PLL (not shown) to restore the reference implementation of [10].

4 Experimental Evaluation

4.1 Experimental Setup

The device-under-test (DUT) is a Xilinx Virtex-5 (VLX50T) FPGA, manu-
factured by 65 nm technology with a flip-chip package. The mother FPGA
board (Digilent Genesys) is fixed on a motorized 2-dimensional (X-Y) step-
per stage, with 0.05µm minimum step size. As the chip substrate may signifi-
cantly absorb the energy carried by laser photons, we have mechanically milled
down the substrate of this FPGA to roughly 130µm, in order to have suffi-
cient energy penetrated into the active logic (i.e., transistor) layer. Arduino
Due board is programmed to bridge the controller GUI in computer and the
cipher + countermeasure system implemented on FPGA. This setting allows

38 W. He et al.

Fig. 6. FPGA implementation scheme of the proposed sensor system and the protected
64-bit round data registers of the PRESENT-80 cipher.

us to observe and record the real-time encryption outcome and the alarm signal,
as well as the location coordinates for each injection of a LFI region scan. The
setup is sketched in Fig. 7.

We used a diode pulse laser with 1064 nm wavelength. A 5× magnification
reduced the spot size to 60×14 µm, but the effective size is roughly 10% of this
size, allowing us to do a very precise laser injection. Injection time can be varied
in nanoseconds.

pulse current

plaintexts ciphertexts & Alarm

target FPGA board

diode pulse
laser

trigger signal

FPGA die

motorized 2D stage

digital glitch

glitch
generator

Control
Interface

Arduino
Bridge Board

Fig. 7. Illustration of LFI experimental setup.

4.2 Timing Response

Figure 8 shows the timing of the critical signals of this system. Injection
Trigger is provided by the cipher which denotes the start of the target com-
putation round for a fault perturbation. RO frequency is a signal oscillation of

A Low-Cost Digital Sensor 39

Fig. 8. Timing of signal response of a detected laser fault injection.

the watchdog RO. In this figure, we captured the signal from a tiny RO with
357 MHz frequency. Alarm flags the occurrence of timing violation induced by
laser injection. The trigger delay is comprised by (i) the fixed signal delay (from
trigger signal on chip glitch generator), and (ii) the adjustable delay time from
glitch generator to activation of the diode pulse laser. In our setup, the first fixed
delay portion is roughly 100 ns and the second delay is properly set to ensure
the injection occurs roughly at the next clock edge. The pulse length of each
injection is set randomly between 100 and 200 ns to guarantee the laser is suffi-
ciently powerful to cause bit upsets in registers. The time period of RO ripple is
determined by the laser pulse length of each injection. The response time from
the frequency ripple appearance to the rising edge of set of the alarm signal is
affected by prolonged signal propagation from ck to ck-delay (see Fig. 4).

4.3 Scanning Results

We have performed the LFI on two implementations on the DUT. The first
one was a laser scan of regional CLB array, and the second was a fine-grained
single CLB scan. We categorized the faults into three types: (a) Only Alarm
(Case (1)) represent the detected injection without cipher faults; (b) Fault +
Alarm (Case (2)) refer to the detected injections that induced cipher faults, and
(c) Only Fault Case (3) denote the injections that induced cipher faults without
triggering the alarm. Scanning results are stated in the following subsections.

Regional Scan. In the first scenario, the implementation details of the cipher
and the device architecture are supposed to be unknown to adversaries. For
launching valid fault injection into the point-of-interest (POI), a coarse surface
scan towards a big fabric region must be performed by adversaries for finding

40 W. He et al.

the POIs. In this experiment, the scan region is intentionally focused on a larger
silicon region which does not just cover the RO circumvented cipher data reg-
isters, but also the neighbouring regions. The scan matrix is 300 × 300, which
results in 90,000 scanned points with 1 injection per point. Figure 9 shows the
comparison of the LFI scan of the two implementations, and the dotted line
rectangle indicates the 8 CLBs where the 64-bit PRESENT round data registers
have been implemented.

As can be seen in Fig. 9(a), a PLL-based sensor detected the injection not
just in the RO region, but also in the neighboring CLBs (Only Alarm= 271).
A few LFI injections incurred in cipher (Data) faults in the cipher registers,
whilst all of them simultaneously triggered the alarm signal (Fault+Alarm= 3),
i.e., no cipher fault went undetected. The scan result for the cipher registers
protected by the proposed digital sensor is given in by Fig. 9(b). Similarly, the
alarm has been triggered from injections both inside and outside the watchdog
RO (Only Alarm= 5421), and all the induced cipher faults have been detected
(Fault+Alarm= 8). It can be clearly observed that the alarm density for this
scan is much higher (5421 vs 271), which implies that this digital sensor system
is more sensitive to laser injection cf. PLL sensor.

If we only consider the cipher faults, the Detection Rate of the sensor can be
computed by detection rate = Case (2)

Case (2)+Case (3) . According to our experimental
results, the Detection Rates for both regional LFI scans are 100%. Another
metric that can be used for quantifying the countermeasure is the Alarm Rate,
which gives the ratio between the triggered alarms and induced cipher faults.
Alarm Rate is fair to be applied in a more realistic scenario, this is because
the adversaries typically need to perform tedious scan over the chip for finding
the exact location of POIs. Any triggered alarm (even without cipher faults)
alerts the system to respond to the on-going LFIs, hence paralyzes the attackers.
Alarm rate = Case (1)+Case (2)

Case (2)+Case (3) is used to compute the ratio, which gives 91.33:1
for the PLL sensor, and 678.63:1 for the digital sensor in this experiment. In
addition, for the digital sensor, the lowest laser power to induce the cipher faults
is 75 % of its full strength, and the lowest power to trigger the alarm is 44 %,
which further certifies that the sensor is more sensitive to the LFIs, which offers
a power security margin of 31 %. The detailed comparison results are provided
in the upper part of Table 2.

Single-CLB Scan. A more rigid scenario was also evaluated, which assumes
that the adversary knows the details of the implementation and device architec-
ture, particularly the accurate location of the CLB on chip where the security-
sensitive round data registers were situated. This way, the adversary is able to
directly focus on the CLB to launch a fine-grain fault injection campaign. In this
attack, we target a single CLB which has 4 cipher registers implemented inside.
Since the effective region of the laser beam is smaller than the CLB size, the
scan is still necessary, but the chance to induce cipher faults in registers is much
higher. Here, the scan matrix is reduced to 150× 150, again with 1 injection per
point. The experiment results are shown in Fig. 10. Similar to the region scan,

A Low-Cost Digital Sensor 41

Fig. 9. Laser fault injection scan to regional silicon (a) PLL based LFI sensor; (b) the
proposed digital LFI sensor.

injections to both implementation incurred cipher faults and alarm, as summa-
rized in the lower part of Table 2. Results show that PLL sensor detected 284
injection without cipher faults, and 33 injections with cipher faults. Noticeably, 1
cipher fault went undetected. In comparison, 4461 injection without cipher faults
have been detected using the proposed digital sensor, and all of the 99 cipher
faults triggered the alarm. The result implies a higher sensitivity using this RO
based digital sensor, cf. PLL sensor, under the assumption that the attack was
performed by well-prepared adversaries. Similarly, for the digital sensor, the low-
est power for triggering alarm (42 %) is lower than the minimum power inducing
cipher fault (63 %), with a power security margin of 21 %.

While one cipher fault was missed by the PLL-based sensor (97.06 % detec-
tion rate), the digital sensor shows 100 % detection rate. The general Alarm
Rate is noticeably higher than the PLL counterpart (46.06:1 vs 9.32:1), as seen
in Table 2. As explained before, any triggered alarm (detected injection either
with or without induced cipher faults) would prevent the attack in a more real-
istic scenario, so it is safe to conclude that this digital sensor is superior in
defending the LFI attacks. At the same time, it has much lower area cost than
a scarce PLL block.

4.4 Full Cipher Protection

In total, 24 CLBs are covered by this watchdog RO. However, previous experi-
ments have shown that the injections to neighboring CLBs are also able to trigger
the alarm (see Fig. 9), so this RO can actually cover a larger fabric region. In
this experiment, we deployed 2 PRESENT-80 ciphers in parallel for filling up
the logic resources in a big area of a clock region, as indicated by PRESENT 1 and
PRESENT 2 in Fig. 11. The higher logic density helps to yield more valid cipher
faults.

42 W. He et al.

Fig. 10. Laser fault injection scan to a single CLB: (a) PLL based LFI sensor; (b) the
proposed digital LFI sensor.

In this experiment, the LFI scan is launched towards the region of the two
implemented ciphers, with the scan matrix of 300 × 300 with single injection
per point. Similar to prior campaigns, the laser power level is set to random,
between 40% to 100% of the full laser strength. Figure 12 gives the distribu-
tions of different fault types. Due to the lower injection density, the number
of observed faults is less than the preceding experiments, while information
can still be extracted. There were 69 injections resulting in cipher faults, and
among those, 65 triggered the alarm (Fault+Alarm= 65), leaving only 4 unde-
tected (Only Fault= 4). Besides, alarm has been triggered for 116 times without
cipher faults (Only Alarm= 116). Thus, the Detection Rate, computed using
the equations from Table 2, for this experiment is 94.20 %, and Alarm Rate is
2.63:1. This outcome demonstrates that the Detection Rate for protecting the
whole cipher is still very high. Even with a reduced Alarm Rate, the chance to
trigger the alarm is still 2.63 times of the chance to induce cipher faults for this
densely implemented complete PRESENT-80 primitive. The faults marked as
exceptional were faults observed on the I/O and power pads and not sensitive
(unrelated to cipher) in nature.

4.5 Further Discussions

Timing Tuning of Delay Factor. As discussed in Sect. 3, a prolonged
delay from ck to ck-delay must be ensured, in order to enforce the falling-
edge of ck-delay dropping between the rising-edges of f1 and f2, in absence
of laser disturbance. This proper timing can be easily achieved by adjusting
the propagation time of the routing. Two methods can be applied for this
purpose: First, the third-party toolkit can be relied on to control the routing
delay for Xilinx FPGAs, such as RapidSmith and Torc [14,19]. Another, easier
method, is to insert a transparent LUT between ck and ck-delay, configured as

A Low-Cost Digital Sensor 43

Table 2. Experimental results comparison between the PLL based sensor and the
presented digital sensor using LFIs.

Only Alarm
Case (1)

Fault+Alarm
Case (2)

Only Fault
Case (3)

Scan
Matrix

RO freq.
(MHz)

PLL LFI
Sensor
(Region
Scan)

No. 271 3 0 300 × 300 ≈220

min. Power 54% 90% n/a

Detection Successful Failed

Detection rate
Case (2)

Case (2)+Case (3) = 100%

Alarm rate
Case (1)+Calse (2)
Case (2)+Case (3) = 91.33 : 1

Digital LFI
Sensor
(Region
Scan)

No. 5421 8 0 300 × 300 ≈206

min. Power 44% 75% n/a

Detection Successful Failed

Detection rate
Case (2)

Case (2)+Case (3) = 100%

Alarm rate
Case (1)+Calse (2)
Case (2)+Case (3) = 678.63 : 1

PLL LFI
Sensor (CLB
Scan)

No. 284 33 1 150 × 150 ≈220

min.Power 60% 75% n/a

Detection Successful Failed

Detection rate
Case (2)

Case (2)+Case (3) = 97.06%

Alarm rate
Case (1)+Calse (2)
Case (2)+Case (3) = 9.32 : 1

Digital LFI
Sensor
(CLB
Scan)

No. 4461 99 0 150 × 150 ≈206

min. Power 42% 63% n/a

Detection Successful Failed

Detection rate
Case (2)

Case (2)+Case (3) = 100%

Alarm rate
Case (1)+Calse (2)
Case (2)+Case (3) = 46.06 : 1

‘‘Route-Thrus’’ property, where the LUT has no logic function, only serv-
ing as a route point. By relocating the location of this LUT, the delay can be
adjusted.

Detection Capability Against Other Fault Injection Methods. In this
paper, only laser based fault injection is discussed. However, the proposed logic is
still promising to be used as a sensor against other fault perturbation techniques,
such as EM based fault injection (EMFI). EMFI basically induces eddy current in
circuit for causing signal errors, and the current direction relies on the direction
of the pulse EM field, i.e., the position of the EM probe. If the current direction
follows the signal propagation direction of the watchdog RO, RO frequency would
be temporarily accelerated (high-frequency ripple), and otherwise, low-frequency
ripple. Therefore, the bi-directional detection capability of the proposed digital
sensor is specially useful to detect the EMFI. As well, glitches on power supply

44 W. He et al.

PRESENT 1 PRESENT 2

Watchdog RO

Disturbance Capture

Fig. 11. Countermeasure configuration for protecting full PRESENT cipher.

would change the RO frequency, hence it should be also effective against global
fault injection on power supply on the chip.

False Positives. One consideration for the proposed countermeasure is the
unwanted false positives that may arise from neighbouring components or envi-
ronmental variation. As shown in the results, the countermeasure can only be
triggered when laser power is in medium to high ranges. Generating such high
energy on board is not be obvious for a big range of devices. Moreover, envi-
ronmental variations are gradual in nature and RO is inherently resistant to
such changes. Thus the chances of false positives are quite low for the proposed
countermeasure.

5 Conclusions

In this paper, a low-cost fully digital sensor for detecting the malicious laser
fault injection in security-critical ICs is presented. This system consists of a
multiple-inverter high-frequency RO for producing a stable frequency oscillation,
and a disturbance capture logic for detecting the frequency ripple on this RO.
In presence of any disturbance from an on-going laser injection, the frequency
ripple on RO can be captured by timing violation in the two flip-flops, hence
alerting the system with an alarm signal. The effectiveness of this system is
validated on Xilinx 65 nm Virtex-5 FPGA. Experimental results on both round
data registers and full PRESENT-80 cipher show that the proposed digital
sensor has a high fault Detection Rate, as compare to PLL-based sensor, and
being significantly superior in terms of alarm sensitivity (Alarm Rate) against
laser injections. Since the timing violation can be bi-directionally detected by
the two flip-flops, both low-frequency and high-frequency disturbances can be
captured, which exceeds the prior glitch-detector countermeasure. Owing to its

A Low-Cost Digital Sensor 45

Fig. 12. LFI detection experiment on the two full PRESENT-80 ciphers.

pure digital and simple architecture, this system can be easily deployed into
any digital/hybrid IC environments, particularly as Internet-of-Things (IoT) or
embedded endpoints of Cyber-Physical System (CPS) with restricted power and
hardware resources.

In the future work, we plan to validate its detection capability against EM
and power/clock glitch injection. Moreover, it will be interesting to explore more
precise laser setup and the physical limits of proposed countermeasure against
laser spot size.

References

1. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and active combined attacks:
combining fault attacks and side channel analysis. In: Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2007, pp. 92–102. IEEE (2007)

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

3. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). doi:10.1007/BFb0052259

5. Binder, D., Smith, E.C., Holman, A.B.: Satellite anomalies from galactic cosmic
rays. IEEE Trans. Nucl. Sci. 22(6), 2675–2680 (1975)

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/978-3-540-74735-2_31

46 W. He et al.

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

8. Endo, S., Li, Y., Homma, N., Sakiyama, K., Ohta, K., Aoki, T.: An efficient coun-
termeasure against fault sensitivity analysis using configurable delay blocks. In:
2012 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp.
95–102. IEEE (2012)

9. Hammouri, G., Akdemir, K., Sunar, B.: Novel PUF-based error detection methods
in finite state machines. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol.
5461, pp. 235–252. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00730-9 15

10. He, W., Breier, J., Bhasin, S., Miura, N., Nagata, M.: Ring oscillator under laser:
potential of pll based countermeasure against laser fault injection. In: International
Workshop on Fault Diagnosis and Tolerance in Cryptography 2016, pp. 1–12. IEEE,
August 2016

11. Karri, R., Kuznetsov, G., Goessel, M.: Parity-based concurrent error detection of
substitution-permutation network block ciphers. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 113–124. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45238-6 10

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

13. Miura, N., Najm, Z., He, W., Bhasin, S., Ngo, X.T., Nagata, M., Danger, J.L.: Pll
to the rescue: a novel em fault countermeasure. In: Proceedings of the 53rd Annual
Design Automation Conference, p. 90. ACM (2016)

14. Moradi, A., Immler, V.: Early propagation and imbalanced routing, how to dimin-
ish in FPGAs. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731,
pp. 598–615. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 33

15. Saha, D., Mukhopadhyay, D., RoyChowdhury, D.: A diagonal fault attack on
the advanced encryption standard. Cryptology ePrint Archive, Report 2009/581
(2009). http://eprint.iacr.org/2009/581

16. Pedro, M., Soos, M., Guilley, S.: FIRE: fault injection for reverse engineering.
In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 280–293.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21040-2 20

17. Selmke, B., Brummer, S., Heyszl, J., Sigl, G.: Precise laser fault injections into
90 nm and 45 nm SRAM-cells. In: Homma, N., Medwed, M. (eds.) CARDIS
2015. LNCS, vol. 9514, pp. 193–205. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31271-2 12

18. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). doi:10.1007/3-540-36400-5 2

19. Steiner, N., Wood, A., Shojaei, H., Couch, J., Athanas, P., French, M.: Torc:
towards an open-source tool flow. In: Proceedings of the 19th ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, pp. 41–44. ACM (2011)

20. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the 44th Annual Design Automation
Conference, pp. 9–14. ACM (2007)

21. Zussa, L., Dehbaoui, A., Tobich, K., Dutertre, J.M., Maurine, P., Guillaume-Sage,
L., Clediere, J., Tria, A.: Efficiency of a glitch detector against electromagnetic
fault injection. In: Proceedings of the Conference on Design, Automation & Test
in Europe, p. 203. European Design and Automation Association (2014)

http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/978-3-642-00730-9_15
http://dx.doi.org/10.1007/978-3-540-45238-6_10
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-662-44709-3_33
http://eprint.iacr.org/2009/581
http://dx.doi.org/10.1007/978-3-642-21040-2_20
http://dx.doi.org/10.1007/978-3-319-31271-2_12
http://dx.doi.org/10.1007/978-3-319-31271-2_12
http://dx.doi.org/10.1007/3-540-36400-5_2

Comprehensive Laser Sensitivity Profiling
and Data Register Bit-Flips for Cryptographic

Fault Attacks in 65 Nm FPGA

Wei He1,4(B), Jakub Breier1,4, Shivam Bhasin1,4,
Dirmanto Jap1,2, Hock Guan Ong3,4, and Chee Lip Gan3,4

1 Lab of Physical Analysis and Cryptographic Engineering,
Nanyang Technological University, Singapore, Singapore

2 School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

djap@ntu.edu.sg
3 School of Materials Science and Engineering,

Nanyang Technological University, Singapore, Singapore
4 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore

{he.wei,jbreier,sbhasin,hgong,clgan}@ntu.edu.sg

Abstract. FPGAs have emerged as a popular platform for security sen-
sitive applications. As a practical attack methodology, laser based fault
analyses have drawn much attention in the past years due to its superior
accuracy in fault perturbation into security-critical Integrated Circuits
(ICs). However, due to the insufficient device information, the practical
injections work are not so efficient as expected. In this paper, we thor-
oughly analyze the laser fault injections to data flip-flops, instead of the
widely studied configuration memory bits, of a modern nanoscale FPGA.
A profiling campaign based on laser chip scan is performed on an exem-
plary 65 nm Virtex-5 FPGA, through the delayered silicon substrate, to
identify the laser sensitivity distribution of the resource array and the
fundamental logic cells. The sophisticated flip-flop bit flips are realized by
launching fine-grained laser perturbations on an identified Configurable
Logic Block (CLB) region. The profiled laser fault sensitivity map to
FPGA resource significantly facilitate high-precision logic navigation and
fault injection in practical cryptographic fault attacks. We show that the
observed single- and multiple-bit faults are compatible with most pro-
posed differential or algebraic fault analyses (DFA/AFA). Finally, fur-
ther discussions on capability of reported fault models to bypass fault
countermeasures like parity and dual-rail logic are also given.

Keywords: Cryptographic fault attack · Laser fault injection · Data
bit-flip · FPGA

1 Introduction

Modern Field Programmable Gate Arrays (FPGAs) and programmable System
on Chips (SoCs) come with interesting features like rich logic resource, real-time
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 47–65, 2016.
DOI: 10.1007/978-3-319-49445-6 3

48 W. He et al.

reconfiguration, high-density memories, clock managers, environment sensors,
etc. Owing to such features and low time-to-market, it enables deployment of
FPGAs in many kinds of applications. FPGAs also find wide application in
security-critical domains due to constantly evolving protection requirements like
aerospace, defence etc. However, like other devices, FPGAs are also vulnerable to
physical attacks, i.e., side-channel attacks [12], fault attacks [5] and probing [3].

Side-channel attacks (SCA) are passive and exploits unintentional physical
leakages, while probing tries to read out sensitive values directly from the cir-
cuit [13]. Fault attacks stay in between SCA and Probing by operating the tar-
get device in a non-friendly environment and exploiting secrets from the faulty
behaviors. The most common fault attack in context of cryptography is the differ-
ential fault analysis (DFA) [4] and the recently published algebraic fault analysis
(AFA) [9]. For instance, in AES, DFA can extract the secret key by a single well-
located fault [23]. This tampering or erroneous behavior can be accomplished in
several ways, which are widely classified as global or local. Global fault injec-
tions are, in general, low-cost techniques which create disturbances on global
parameters like voltage and clock system, etc. The resultant faults are more
or less random in nature and the adversary might need repetitive injections to
obtain exploitable faults. On the other hand, local injection techniques, like laser
or electromagnetic injections, are more precise in terms of fault locations. This
precision needs expensive equipments and more preparation efforts.

Laser fault injection (LFI) falls into optical fault injection methods. It is a
semi-invasive perturbation technique, which requires decapsulation of the tar-
get device, followed by injection of high intensity laser. The injection can be
theoretically performed at either frontside or backside of the target chip. How-
ever, because of the dense metal wires covering the active logic layer, it is highly
challenging to realise successful fault perturbation from the frontside.

An alternative to laser method is the electromagnetic injection (EMI [17])
which uses a tiny EM probe with an intense transient pulse or a harmonic emis-
sion to (a) upset logic values in storage cells; (b) slow down the signal transmis-
sion to cause set-up time violation in flip-flops or faulty timing in internal clock
generator [15]; (c) bias critical logic, e.g., key generation PUF [22]. However,
the generated EM field is difficult to be restricted only to the Point-of-Interest
(POI), so the accuracy of EMI is still comparatively lower than LFI.

In this paper, the LFI campaigns on a commercial 65 nm FPGA will be val-
idated using pulse laser from its substrate (backside). A fault injection based
laser sensitivity profiling of the exemplary FPGA is developed. We report suc-
cessful data register bit flips in logic array using diode pulse laser with backside
injection. We localize interesting logics within these blocks, and sketched the
laser sensitivity regions, to demonstrate that the high-precision bit-flips in fun-
damental logic cells of nano-scale FPGA can be practical achieved using μm-level
laser. The presented results and the derivatives certify the feasibility of realizing
sophisticated bit-level fault injections to complex cryptographic algorithms on
nano-scale FPGAs or programmable SoCs.

Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA 49

The rest of this paper is organized as follows. Sect. 2 discusses previous work
and outlines our contributions. In Sect. 3, the related work about optical prop-
erties on silicon, chip preparation and configuration are presented. The profiling
of laser sensitivity on chip and analysis methodologies are described in Sect. 4.
Experimental results and further discussions are detailed in Sect. 5. Finally, con-
clusions are drawn in Sect. 6.

2 Related Work

Many techniques have been proposed in previous literatures for disturbing val-
ues processed and stored in ICs [1,6,8,10,18,19]. In general, results on micro-
controllers show high degree of repeatability, mainly because of a stable clock
and a possibility to predict the instruction order. Precision depends on the used
CMOS technology and the size of the effective laser spot. Additionally to mem-
ory disturbances, it is also relatively easy to disturb instruction execution on
these devices, leading to instruction skip or alteration faults. Previous papers
about fault injection on FPGAs mostly aim at memory disturbances both on
configuration memory of SRAM FPGAs and data Block RAM [7,16,21].

The fault injection into the configuration memory of SRAM FPGAs intrin-
sically incurs the alterations on logic functions or routings, and hence lead to
permanent circuit malfunction until the device is reconfigured with a new bit-
stream. The faults are typically found and analyzed by readback the bitstream
from device after each fault injection, to be compared with the unaffected golden
sample [2,14], in order to figure out the affected tiles on the logic array. So the
comparison efficiency is low and static, and furthermore the method is becoming
challenging to apply to newer FPGAs with more obscured bitstream format.

In this work, we target the data bit flips in registers and perform the dynamic
fault injection to a lightweight block cipher in a 65 nm commercial FPGA. Since
the faults are inserted by flipping the data bit/bits, instead of the configuration
faults in SRAM, the circuit function will not be disrupted. So it is more practical
to be applied to real fault attack scenarios. The fault comparison is to analyze the
faulty cipher outputs where the bitstream readback is not required, which makes
the efficiency is much higher than bitstream comparison. In our work, we used
a diode pulse laser with different lens fixed into a 2D (X-Y) motorized stage.
The selected chip is encapsulated in a flip-chip package, hence a mechanical
preprocess is conducted for thinning down the substrate for achieving better
laser penetration.

Some previous works are summarized in Table 1 and compared with this work.
The comparison is drawn in terms of platform (μC, FPGA, ASIC), technology
node (Tech.), fault target (RAM, logic, flip-flop), chip position (front-side, back-
side), fault precision (bit, random), and purpose of fault injection.

Our Contributions: This work systematically presents the following improve-
ments from the state-of-the-art. It:

50 W. He et al.

Table 1. State of the art for laser fault injection.

Work Platform Tech Target Fault Model Position Purpose

Dutertre et al. [1,10,19] μC 350 nm SRAM byte Front Attack

Courbon et al. [8] ASIC 90 nm FlipFlops bit Back Attack

Breier et al. [6] μC 350 nm Register bit Back Attack

Pouget et al. [16] FPGA 150 nm CLB/BRAM random Back Reliability

Canivet et al. [7] FPGA 150 nm Logic random Back Attack

Selmke et al. [21] FPGA 90/45 nm BRAM bit Back Attack

This Work FPGA 65nm Flip-Flops bit Back Attack

– proposes a new methodology for laser sensitivity profiling of a nano-scale
FPGA, ranging from the global resource array to the slice flip-flops. This
method can be practically applied to a wider spectrum of FPGA devices.

– reports precise bit-flip faults exclusively to specific flip-flops in logic resource,
instead of the configuration memory faults, inside the FPGAs.

– realises fault models in FPGA that are compatible with almost all pro-
posed differential/algebraic fault analysis (DFA/AFA) on unprotected cryp-
tographic primitives.

– discusses the possibilities of counteracting dual-rail or parity protected cryp-
tographic primitives.

3 Chip Preparation and Device Configuration

For modern FPGAs, two packages styles are typically applied to encapsulate
the naked dies. The first is the bonded-wire package (or frontside) in which
the metal layer is placed up and the chip substrate is facing down to the PCB
board. On the contrary, flip-chip package (or backside) places the substrate
up and metal layers down. Due to the metal layer placed above the active logic
layer, laser injection can hardly affect the logic cells (active transistor layer)
below. In this work, we target to a 65 nm Virtex-5 FPGA (LX50T) with flip-
chip package on Digilent’s Genesys board. To allow effective laser impact to
the internal logics, we have pre-processed the FPGA chip by thinning down the
substrate layer using a mechanical solution.

3.1 Optical Property of Silicon

To understand laser effects in silicon we have to study its physical properties and
the way how the energy traverse and affect the active logic layer. Schmid [20]
provided a deep overview of optical absorption of Si:As and Si:B samples and
addressed ionization process of pulsed lasers that produces electron-hole pairs.
For linear absorption of semiconductor we can derive the linear transfer energy
(LET), expressed in Eq. 1 as a function of the depth penetration z.

LET (z) =
αλEe/h

ρhc
Elasere

−αx (1)

Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA 51

where α[cm−1] is the absorption coefficient, λ[nm] represents the wavelength of
a pulse laser, the energy required to induce an electron-hole pair is denote as
Ee/h[eV], and ρ[mg/cm3] means the density of silicon, h, c and Elaser presents
the Planc constant, the light velocity and the laser energy respectively.

Previous equation works for particles, however for laser we need to take a
radial exposure into account. This is expressed in Eq. 2.

l(r, z) = l0(z)e
2r2

ω(z)2 Elasere
−αz (2)

where ω(z)2 expresses the radial properties of the laser as a function of the beam
width, focalization point and refraction index.

Another important parameter to be identified is how deep we can reach
the logic elements under the silicon surface. For this purpose we have to use
absorption coefficient from Eq. 3.

α =
4πk

λ
(3)

where k is the extinction coefficient.
Values for absorption coefficients for silicon can be found in literatures. We

plotted combined results from [11,24] in Fig. 1 for wavelengths that are mostly
used for laser fault injections (530 nm – 1070 nm). It is seen that for green laser
(532 nm), the absorption depth is ≈ 1.58 μm, for near infrared (NIR) laser
(808 nm) it is ≈ 12.79 μm, and for NIR laser (1064 nm) it is ≈ 1100 μm. Accord-
ingly, a conclusion can be drawn that for our case study, where the thickness of
the thinned silicon substrate from the backside is ≈ 130 μm, it is necessary to
use a laser with near infrared wavelengths or higher. Hence the diode pulse laser
with 1064 nm wavelength is selected for our experiments.

Fig. 1. Absorption depth in silicon for wavelengths from 530 nm to 1070 nm.

52 W. He et al.

3.2 Backside Substrate Thinning of Virtex-5

We have employed a backside polishing technique, which involves the thinning
down of the chip substrate layer. This process is typically useful in experiments
where access from the back of a die is required for testing, such as laser prob-
ing, fault isolation and thermal imaging. A 1064 nm diode pulse laser is used to
generate charges in the desired location in the silicon, with a thick silicon sub-
strate, the amount of charges that are generated at the POIs in the active logic
layer are rather limited because of the laser refraction and energy absorption. By
thinning down the substrate, the amount of charges induced at the POIs can be
significantly increased which makes flip-flop upsets possible. We performed back-
side polishing on our FPGA sample using Ultra Tec ASAP-1 polishing machine
(Fig. 2a). The heat-sink metal lid of the FPGA sample was removed to expose
the backside substrate, and this substrate was mechanically reduced to ≈ 130
μm, removing ≈ 170 μm, as illustrated in Fig. 2b. The thinning process can be
bypassed if the strength of laser source is high enough such that laser injection
after absorption is enough for realizing event upsets. On the other hand, the
silicon substrate can also be further thinned down to ≈ 50 μm to have, perhaps,
very slight improvement in result, but the risk taken will be higher. As the sil-
icon substrate is being thinned down, the integrity of the silicon structure will
experience a bigger force. This will cause die warping and in some cases where
the strain is too big, the sample will crack. Thus in our approach, we will want
to achieve sample preparation able for testing with the least risk to be involved.
Thinner silicon substrate is a much seek out goal in a lot of the backside sample
preparation for other form of testing and/or with other wavelength of laser. How-
ever, in our experiment context, the advantage to have a much thinner substrate
is being overshadowed by the risk of spoiling the onboard sample.

(a) Ultra Tec ASAP-1 polishing
machine.

milled down layer

front-side (multiple metal layers)

300 um

130 um

back-side (substrate)

diode
pulse
laser

high-energy
laser core

(b) Laser penetration through thinned silicon
substrate to active transistor layer.

objective lens

Fig. 2. Mechanical chip process for realizing effective laser penetration to transistor
layer in FPGA.

Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA 53

3.3 Device Under Test and Configuration

The target Virtex 5 FPGA (LX50T) consists of 12 metal layers, manufactured
in 65 nm technology in a 1136-pin flip-chip BGA package. The device provides
3,600 CLB (7,200 slices) deployed in 12 clock regions. Each slice contains 4 6-
input look-up tables (LUTs) and 4 flip-flops. A number of BRAMs, digital clock
mangers (DCMs), phase-locked loops (PLLs) and DSPs are located in columns
of the logic resource array. A system monitor together with its temperature
and power supply sensors are situated in the center of the die. Figure 3 (left)
illustrates the basic architecture of the selected device. The CLB structure in
Xilinx FPGA contains 2 slices, together with the route channel to a switch-box,
as sketched in Fig. 3 (right).

Fig. 3. Simplified view of the architecture of the target FPGA and CLB cell

The focal plane of the laser beam is critical for impacting the logic elements
that are deployed under substrate. Due to the unrevealed bottom device informa-
tion and the unknown dopant density in silicon that hinder the laser focalization,
we have to empirically calibrate the focal plane to the active CLB layer relying
on the number of generated faults, as an indicator, in a preliminary chip scan. As
aforementioned, a diode pulse laser with a wavelength of 1064 nm was selected
due to its superior penetration into silicon. The spot size of the chosen laser with
a 5× lens is around 60× 14 um2. The output power of the laser can be adjusted
with an embedded attenuator with 1 % precision step from 0 to 100 % of its
full power strength (10 Watt). The entire setup for performing fault injection
experiments is depicted in Fig. 4.

Importantly, solid experiments prove that only the very center part of the
claimed laser beam is powerful enough to trigger the faults (‘high-energy laser
core’ illustrated in Fig. 2b), which is empirically tested to be roughly 1/10 of
the claimed spot size (≈ 60 um2). This phenomenon is based on the nature of
diode laser, and the optical refraction and energy absorption through the residual
substrate (≈ 100 um). We do not suggest a further substrate process since it

54 W. He et al.

Fig. 4. Laser setup used for the experimental fault injection.

potentially causes side-effects on the electrical characteristics of FPGA, and also
it risks physical damage to transistors or interconnects.

A lightweight block cipher PRESENT was used for profiling the logic array,
which is a Substitution-Permutation Network (SPN) cipher with 64 bit
block size, 80/128 bit key and 31 computation rounds. Each round contains
AddRoundKey, Sbox Substitution and pLayer permutation. Figure 5 illustrates
the round-based architecture of the implemented cipher. A single PRESENT
can be tailored to be implemented in a CLB column pair. We define a CLB
column pair as two adjacent CLB columns from two clock regions, as shown in
Fig. 3 (left). We chose a CLB column pair as the cipher couldn’t fit in a single
CLB column. Moreover, the chosen CLB column must be vertically adjacent,
as horizontally adjacent CLB columns would hinder establishment of column
boundaries during the profiling.

Fig. 5. Implemented PRESENT-80 cryptographic algorithm.

Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA 55

4 Laser Sensitivity Profiling

After preparing the device sample, we proceeded with identifying the laser sen-
sitivity distribution of FPGA architecture by analyzing the unique faults from
a number of ciphers implemented in parallel.

4.1 Global Array Scan

We applied a strategy by implementing a large number of PRESENT-80 cipher
primitives into logic resource array, and each core is restricted into a specific
CLB column pair by applying the placement constraints at the implementation
stage. It is remarked that other algorithms or even a simply cascaded logic chain
could be used for this purpose as well. We have chosen a cryptographic algorithm
in our work owing to the following advantages:

– The PRESENT-80 occupies almost all the logic resources for each assigned
CLB column pair, which provides a good coverage of resource occupation;

– The 32 encryption rounds provide a sufficiently big time window (32 clock
cycles) to test the laser injection with varying glitch offsets;

– The exact logic points and affected timings could be simply determined by
finding the collision round between the faulty ciphertext decryption and plain-
text encryption;

– For the bit flips to the configuration memory of SRAM-FPGA, the faults
change the basic circuit configuration, instead of the processed data, and it
hence leads to permanent malfunction of the design [16]. Concretely, the mal-
function stays for the following encryptions untill the FPGA is reconfigured
with an uninfected bitstream. So, a practical algorithm (e.g., a cipher) used
here shows if the faults are transient data bit upsets or permanent configura-
tion bit flips in SRAM.

All the cores encrypt the same plaintext in parallel and all the output cipher-
texts are compared in the output – a tag bit vector. The vector width is equal
to the number of the implemented ciphers, and the value of each bit represents
if the corresponding cipher is correct or faulty (‘0’: correct; ‘1’: faulty). A fault
in any of the PRESENT cores can be identified by the position of the exclusive tag
bit. The scanning stage also records critical parameters, like scan coordinates,
injection power and timing. Hence, each fault can be associated to a particular
cipher and specific location on chip.

Since the peripheral logic (e.g., the output comparison) also occupies some
resources, we have divided the complete die mapping into two parts: the left
plane mapping and the right plane mapping. When the right part was scanned,
peripheral logic was deployed to the left side, and vice versa, to avoid control
interruption. Total 48 PRESENT cores are implemented in the right region and
42 in the left side, corresponding to the device architecture. The results are then
merged to construct the fault map of the entire FPGA. Relying on the recorded
coordinates of each fault, we provide the 2D plot in Fig. 6. The X and Y axis

56 W. He et al.

Fig. 6. Laser sensitivity properties of device under test (DUT), profilied by mapping
tagged faults from implemented algorithm and scan coordinates. The plotted faults
reveal the logic resource architecture of the exemplary FPGA.

are the dimensions of the thinned chip i.e., 12 × 12 mm2. The blue dots repre-
sent the valid faults by laser injection (occurring in any single cipher). The red
ones represent the unexpected (exceptional) invalid faults that simultaneously
affected multiple ciphers. Based on this analysis, we could investigate the laser
sensitivity on a specific CLB column.

CLB Column. According to our initial results, the faults from the same cipher
come from the same rectangular region in Fig. 6. It also matches the user place-
ment constraints. Since the coordinates base on the real dimensions of FPGA,
not the virtual floor plan or FPGA editor view, Fig. 6 provides the exact scales
of the on-chip instances. Comparing to the architectural view in Fig. 3, dimen-
sions of other logic resources can be estimated. It is shown that the IO pad (IO
Logic and IO Pin) and PCIE occupies significant die space, the width of BRAM
and DSP are roughly equal to 4 and 2 CLB columns respectively. Besides, there
are no faults from the extreme top and bottom (grey) regions. This indicates
that the active logic array does not extend to the very edge of the die. Due to
the insufficient information, we could not determine the boundaries on the left
IO pad region and the right BRAM&PCIE region. Nevertheless, we have clearly

Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA 57

identified and mapped the CLB columns to the physical dimensions of the chip.
Based on this mapping, we further continue with a fine-grained scan within the
CLB column to identify laser sensitivity for slices.

Impact of Substrate Thinning. To demonstrate the impact of thinning and
polishing on laser fault injection, we repeated the experiments with another copy
of the test board, where the FPGA substrate was not thinned down. Only the
metal lid over the FPGA was removed. A global laser scan on the entire chip was
repeated. The scan result has shown that faults only occur when conducting the
laser injection to the center part of the chip, which exactly match the position
and shape (ring shape) of the exceptional invalid faults in the center die, as
shown in Fig. 6. The phenomenon demonstrates that only a specific center part
of the chip without any substrate thinning is sensitive to the laser impacts.
Noticeably, we are not able to trigger any events in the active CLB logic array
where the ciphers are implemented, even with the maximum laser power. Thus
substrate thinning enables exploitable transient fault injection with laser. The
fault mechanism of center die will be discussed in Sect. 5. Please note that the
coordinates in all the following figures are preserved with respect to Fig. 6.

4.2 Configurable Logic Block Column Scan

The laser fault tests with higher scan resolution are executed exclusively to a part
of the CLB column where totally 10 CLBs (e.g., 20 slices) are occupied. We only
implemented the round data registers of PRESENT-80 into the flip-flops of
these CLBs. The scan matrix is 100 × 1400, so totally 140,000 positions will be
evaluated by laser in this CLB column, and one injection is executed in each
location. Note that either single-bit or multiple-bit fault from the 4 flip-flops of
the each slice are tagged with the same color, which returns 20 different fault
types to be observed, as plotted in Fig. 7. Hence the fault sensitivity distribution
of the 10 CLBs can be distinctly identified, and the relative sensitivity positions
of the 2 slices inside each CLB can also be established.

Figure 8 gives a closer view of the slice faults of CLB 6 from Fig. 7. Because
the effective laser spot possibly impacts flip-flops from both slices in this CLB,
the fault regions from the 2 slices show an overlapped region, as shown in Fig. 8.
For most of the CLB regions, only the faults from the 2 slices of this CLB appear,
but not symmetrically. This phenomenon is mainly due to the variant energy
attenuations of laser beam through the residual but uneven substrate layer due
to process variations. The thickness variation across the 12mm × 12mm die is
within 15μm and thus the substrate thinning is rather uniform.

Given the coordinates from both Figs. 7 and 8, the following important para-
meters can be estimated as follows:

– Distance between the neighbouring CLBs: 60∼80 μm
– Width (X) of a CLB column: 7∼15 μm;
– For this DUT, each clock region has 20 CLB rows, and regions are sym-

metrically divided by a global-clock routing channel. In Fig. 7, half of the

58 W. He et al.

Fig. 7. 2D laser sensitivity map from CLB column (faults from difference slices are
coloured differently).

clock region are measured, and the middle clock routing channel occupies
around 700 μm. So the height (Y) of a CLB column in a clock region
(e.g., the heigh of the clock region) in this Virtex-5 FPGA is estimated as:
(3250 − 2350) ∗ 2 μm + 700 μm ≈ 2500 μm.

It should be noted these dimensions are the laser fault sensitivity regions, instead
of the precise component sizes. However, they shows the critical scales that
sensitive to the laser attacks, upon logic bits on devices. These parameters helps
to efficiently navigate the laser to the POIs, for performing precise bit-level
fault attacks against FPGA implemented ciphers. The estimated regions and
dimensions are used in the following subsections.

Discussion of exceptional fault appearance: For some CLB regions, unex-
pected faults appeared. Note that fault 2 (denoted as blue dot) is supposed to
only appear in CLB 1. However it unexpectedly occurs when the laser targets
to CLB 3 also. This phenomenon is mainly because the signal paths for register
bit [4–7], that were deployed in slice 2, pass the routing channel close to CLB 3,
and hence are affected by laser disturbance on CLB 3.

Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA 59

Fig. 8. Slice-exclusive faults for a single CLB.

4.3 Flip-Flop Scan

Recall the mapped device from Fig. 6, we could navigate the laser spot to a
specific slice. Without loss of generality, we focus on a particular slice where
4 out of the total 64 round registers of PRESENT are deployed. In this slice
registers storing bits 0, 1, 2 and 3 are respectively placed in its 4 flip-flops, and
the 4 LUTs inside this slice are unused. In FPGA, LUT is actually a 6-input ROM
by nature, and any bit upset in this memory changes the implemented Boolean
function (potentially leads to computation errors) until FPGA is refreshed by
new bitstream. So, no matter if the LUTs are used or not, it does not affect the
registers implemented in this slice.

By scanning the interested single slice region: 6 × 13 μm2, we obtained the
following results. With the laser glitch length fixed to 282 ns and laser strength
varying between 75 %–100 %, we have received 3918 faulty encryptions out of
10,000, with 1 injection for each position. In total, 6462 bits were flipped in the
faulty ciphertexts, resulting to 3378 bit sets and 3084 bit resets. It shows that
with the same laser settings, we can expect roughly the same number of bit
sets and bit resets in flip-flops. If we focus on the flip-flops that were affected,
most of the faults flipped flip-flop A, as can be seen in Table 2, following similar
proportions of faults for the other three flip-flops. In Table 3 we can see numbers
for different fault models we have obtained. More than one half of all the faults
were 1-bit flips, following with ≈ 1/3 2-bit flips. 3- and 4-bit flips were less likely
to occur, however still possible to obtain. Moreover, with high-precision scan,

60 W. He et al.

Table 2. Percentages of
faults for different registers
(non-exclusive).

Register % of faults

A 66.9

B 35.5

C 35.9

D 36.2

Table 3. Numbers of 1,2,3 and 4-bit flips from
the total 3918 faults.

Fault model # of faults

1-bit flip 2243

2-bit flip 947

3-bit flip 595

4-bit flip 135

we can find the POI affecting only one slice without having the laser injecting
faults in neighbouring slices.

Flip-Flop Laser Sensitive Region. Four flip-flops (FF-A, FF-B, FF-C, FF-
D) are placed inside each slice in Xilinx FPGAs, therefore each injection could
cause multiple bit flips if the laser spot is bigger than the flip-flop scale. We show
the faults when 2 adjacent registers flipped in Fig. 9. The red, blue, and green
points represent 2-bit flips occurred on (FF-A, FF-B), (FF-B, FF-C), (FF-C,
FF-D), respectively, being caused by single injection. It is clearly shown that
different regions have slight offsets in X axis, and this offset is because the
size of the effective laser beam covers two neighbouring registers in most. More
specifically, X1 and X2 constitute middle lines of registers (C, D) and (A, B) in
X axis (X1 ≈ 5782.4445 μm, X2 = 5781.9900 μm). Due to the similarity of each
register, d/2 = (X2 − X1)/2 ≈ 227 nm should be roughly equal with the fault
sensitive region of a single register. It is stressed that register structure varies
for devices manufactured with different technologies and devices, therefore this
estimation is valid only for the tested Virtex-5 FPGA. However, the analysis
solution is applicable to other FPGA devices.

As mentioned before, none of the faults were found in the configuration
memory. Our laser equipement was operating at its maximum capability, we
couldn’t fiind advanced parameters to inject configuration faults. This could be
due to different structure and/or layer placement for flip-flops and configuration
memory.

5 Results and Discussions

In this section, we present more experiments to further analyze the fault topology
and success probability. Next, we discuss the relevance of these fault models to
fault attacks on cryptographic algorithms and fault countermeasures. Finally, we
shed some light on the invalid faults found in the central region of the FPGA.

Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA 61

Fig. 9. Estimation of flip-flop laser sensitivity region basing on 2-bit faults from adja-
cent flip-flops.

5.1 Success Rate

Apart from different kind of faults, success rate is another important parameter.
In this part we determine the manipulating power of the attacker for a given
target. It is important to know which laser settings are the most efficient for
producing bit flips or random byte faults, etc. The objective is to ascertain the
minimum power required for fault injection with each fault model.

The experiment is conducted by injecting laser with varying power in the
range 0 %–100 %. The injection campaign is performed on the POI of a slice
region where 4-bit round data registers are implemented in the 4 flip-flops of
this slice. 100 injections are performed per laser power, using PRESENT-80
encryption with random plaintext and fixed key. In Fig. 10, it can be observed
that faults started appearing at 81% laser power. With > 85% laser power,
over 90% injections resulted in faults. The fault injection success is 100 %, when
laser power is over 96%. These faults included both bit-flips as well as random
byte/nibble.

5.2 Discussion on Central Fault Region

A dense fault region appeared in the center of FPGA die. This region is not an
active CLB region and no user logic is implemented in this area. The nature of
injected faults in this region is also very different from the valid fault, i.e., sev-
eral cores are faulted by single injection. Moreover, the faults started appearing
at a much lower power (18% as compared to 81% for faults in CLB columns).
To study this behavior, we have specially focused on this region with better
scanning precision using a 20x laser lens. The size of the laser spot in this lens

62 W. He et al.

Fig. 10. Fault success rate for random byte flips.

is 15 × 3.5 μm2. The energy density of the 20x lens is higher than that of the
5x lens. We varied the laser power from 17 % to 25 % of the full laser strength.
Figure 11 gives the fault plot after the laser scan in this section. Points in dif-
ferent colours represent different laser strengths. Most faults are located in two
regions, hereafter named "Region A" and "Region B" respectively. A very few
number of faults are seen in some remote spots. A bitstream modification was
never observed.

Fig. 11. Position and strength of faults in precise laser scan to the center of FPGA.

Due to the undisclosed transistor-level device information, clarifying the
internal mechanism of the faults here is challenging. Even when the cipher and its
peripheral logics are placed in far FPGA corner, the fault characteristic of central
region remained unchanged. Also, multiple ciphers could be faulted by a single
injection, when targeting this region. Thus, laser injection in this region causes

Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA 63

Fig. 12. RO response against laser injection targeting (a) CLB area; (b) Region "A",
respectively.

and propagates some global disturbance, which could affect multiple ciphers irre-
spective of the placement. Deeper analysis is conducted under two assumptions:

– The faults are triggered by the global clock network. Since the clock buffer
that fans out the global clock is deployed in the die center, a fault on the
buffer can spread to the whole chip. To validate, we removed the clock buffer
and routed the clock system using the signal paths. However, the faults still
persisted in the new experiment.

– The faults are triggered by the system monitor. System monitor is an envi-
ronment sensor system (power supply, temperature etc.), deployed near the
center of FPGA die. System monitor is activated by default and physically
connected to the power network, that can possibly propagate the voltage dis-
turbance induced by laser impact. However, fresh experiments after disabling
the System Monitor, by connecting all its IO pins to GND on board, still
reported similar faults in central region.

To continue our analysis, we implemented a ring oscillator (RO) in the CLB
area, far from the central region, to conduct another test. The RO is composed
of a single inverter (LUT) and routing wires, implemented in a CLB region to cover
9 CLBs through square routing, which results in a stable oscillation frequency of
230 MHz. We observed the signal oscillation of the RO from an oscilloscope, and
the results are shown in Fig. 12. When the laser is shot in the CLB area, where the
RO is deployed, we can see that laser injection disturbs the RO response for a short
period of time with a oscillation ripple lasting around 800 ns, and then RO returns
to the stable oscillation, as shown in Fig. 12 (a). On the other hand, when the laser
is shot on either of "Region A" or "B", the response of the RO is more noticeable.
As shown in Fig. 12 (b), the RO stops to oscillate for a bigger period of time of
roughly 27, 000 ns. From an oscillating state, the RO response is pulled down to
zero and then the RO starts again to oscillate and lock itself. The phenomena can
be described as a soft reset which occurs probably due to triggering of certain
sensors or some impact on the power delivery network, which are not present in
the documentation. We call it as soft reset because only the signals are disarmed

64 W. He et al.

but flip-flops and logic values are held. We could not carry the analysis further
without knowing the architectural details of the commercial FPGA, and the reason
for these faults at the center stays an open question.

6 Conclusions

In this paper, a laser based FPGA profiling technique towards the nanometer-
level FPGAs is proposed for exploiting the bottom-level device architecture and
realizing various bit-level fault attacks against cryptographies. The work relies
on the diode pulse laser to trigger the bit events from algorithmic data, instead
of the widely studied memory configuration bits of FPGAs, as to profile the
device architecture and fundamental CLBs basing on the fault sensitivity dis-
tribution. Without loss of generality, a Xilinx 65 nm FPGA is selected as the
DUT, and a series of laser scan campaigns from the thinned chip substrate lead
to successful identification of critical architecture and internal component infor-
mation. With further fine-grained scan on individual slice region both single- or
multiple- data bit faults in flip-flops have been enabled, which are compatible
with most differential and algebraic fault attack schemes proposed in previous
literatures. The precisely induced bit faults can also compromise fault attack
countermeasures like dual-rail logic and parity detection. Not restricted to the
studied exemplary device, the proposed techniques could be applied to other
FPGAs or programmable SoCs, to perform high-precision bit-level fault attacks
against cryptographic primitives. To the best of our knowledge, this is the first
work that thoroughly profiled the generic FPGA architecture and fundamental
logic unit using laser based fault injection.

The following work will focus on the chip profiling and laser fault perturba-
tion to FPGAs manufactured by 28 nm technology. The practical chip analysis
and laser attack to an FPGA chip from a commercial security product will also
be a part of further work.

References

1. Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria, A.:
Single-bit DFA using multiple-byte laser fault injection. In: 2010 IEEE Interna-
tional Conference on HST, pp. 113–119 (2010)

2. Alderighi, M., Casini, F., d’Angelo, S., Mancini, M., Pastore, S., Sechi, G.R.: Eval-
uation of single event upset mitigation schemes for sram based FPGAs using the
FLIPPER fault injection platform. In: 22nd IEEE International Symposium on
Defect and Fault-Tolerance in VLSI Systems, DFT 2007, pp. 105–113. IEEE (2007)

3. Anderson, R.: Security engineering: A guide to building dependable distributed
systems (2001)

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). doi:10.1007/BFb0052259

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptology 14(2), 101–119 (2001)

http://dx.doi.org/10.1007/BFb0052259

Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA 65

6. Breier, J., Jap, D.: Testing feasibility of back-side laser fault injection on a micro-
controller. In: Proceedings of the WESS 2015, pp. 5:1–5:6 (2015)

7. Canivet, G., Maistri, P., Leveugle, R., Cldire, J., Valette, F., Renaudin, M.: Glitch
and laser fault attacks onto a secure AES implementation on a SRAM-based
FPGA. J. Cryptology 24(2), 247–268 (2011)

8. Courbon, F., Loubet-Moundi, P., Fournier, J.J.A., Tria, A.: Adjusting laser injec-
tions for fully controlled faults. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol.
8622, pp. 229–242. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10175-0 16

9. Courtois, N.T., Jackson, K., Ware, D.: Fault-algebraic attacks on inner rounds
of des. In: e-Smart’10 Proceedings: The Future of Digital Security Technologies
(2010)

10. Dutertre, J.M., Mirbaha, A.P., Naccache, D., Tria, A.: Reproducible single-byte
laser fault injection. In: 2010 Conference on PRIME, pp. 1–4 (2010)

11. Green, M.A.: Self-consistent optical parameters of intrinsic silicon at 300 k includ-
ing temperature coefficients. Solar Energy Mater. Solar Cells 92(11), 1305–1310
(2008)

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

13. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard
processors. Smartcard 99, 9–20 (1999)

14. Lima Kastensmidt, F., Tambara, L., Bobrovsky, D.V., Pechenkin, A.A., Nikiforov,
A.Y.: Laser testing methodology for diagnosing diverse soft errors in a nanoscale
sram-based fpga. Nucl. Sci. IEEE Trans. 61(6), 3130–3137 (2014)

15. Maurine, P.: Techniques for em fault injection: equipments and experimental
results. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 3–4. IEEE (2012)

16. Pouget, V., Douin, A., Lewis, D., Fouillat, P., Foucard, G., Peronnard, P., Main-
got, V., Ferron, J., Anghel, L., Leveugle, R., Velazco, R.: Tools and methodology
development for pulsed laser fault injection in SRAM-based FPGAs. In: 8th LATW
2007), p. Session 8. IEEE Computer Society, Cuzco, Peru (2007)

17. Quisquater, J.J., Samyde, D.: Eddy current for magnetic analysis with active sen-
sor. In: Esmart 2002, Nice, France (2002)

18. Roscian, C., Dutertre, J.M., Tria, A.: Frontside laser fault injection on cryptosys-
tems - Application to the AES’ last round. In: 2013 IEEE International Symposium
on HOST, pp. 119–124 (2013)

19. Roscian, C., Sarafianos, A., Dutertre, J.M., Tria, A.: Fault model analysis of laser-
induced faults in SRAM memory cells. In: 2013 Workshop on FDTC, pp. 89–98
(2013)

20. Schmid, P.E.: Optical absorption in heavily doped silicon. Phys. Rev. B 23, 5531–
5536 (1981)

21. Selmke, B., Brummer, S., Heyszl, J., Sigl, G.: Precise laser fault injections into
90nm and 45nm SRAM-cells. In: CARDIS, pp. 1–13 (2015)

22. Trimberger, S.M., Moore, J.J.: Fpga security: Motivations, features, and applica-
tions. Proc. IEEE 102(8), 1248–1265 (2014)

23. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21040-2 15

24. Wang, H., Liu, X., Zhang, Z.: Absorption coefficients of crystalline silicon at wave-
lengths from 500 nm to 1000 nm. Int. J. Thermophys. 34(2), 213–225 (2013)

http://dx.doi.org/10.1007/978-3-319-10175-0_16
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-642-21040-2_15
http://dx.doi.org/10.1007/978-3-642-21040-2_15

Fault Based Almost Universal Forgeries
on CLOC and SILC

Debapriya Basu Roy1(B), Avik Chakraborti2, Donghoon Chang3,
S.V. Dilip Kumar1, Debdeep Mukhopadhyay1, and Mridul Nandi2

1 Secured Embedded Architecture Laboratory (SEAL),
Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur, Kharagpur, India
{deb.basu.roy,debdeep}@cse.iitkgp.ernet.in, dilipkumar@iitkgp.ac.in

2 Indian Statistical Institute, Kolkata, India
avikchkrbrti@gmail.com, mridul.nandi@gmail.com

3 Indraprastha Institute of Information Technology, Delhi, India
pointchang@gmail.com

Abstract. CLOC and SILC are two blockcipher based authenticated
encryption schemes, submitted to the CAESAR competition, that aim
to use low area buffer and handle short input efficiently. The designers
of the schemes claimed n

2
-bit integrity security against nonce reusing

adversaries, where n is the blockcipher state size in bits. In this paper,
we present single fault-based almost universal forgeries on both CLOC
and SILC with only one single bit fault at a fixed position of a spe-
cific blockcipher input. In the case of CLOC, the forgery can be done
for almost any nonce, associated data and message triplet, except some
nominal restrictions on associated data. In the case of SILC, the forgery
can be done for almost any associated data and message, except some
nominal restrictions on associated data along with a fixed nonce. Both
the attacks on CLOC and SILC require several nonce-misusing encryp-
tion queries. This attack is independent of the underlying blockcipher
and works on the encryption mode. In this paper, we also validate the
proposed fault based forgery methodology by performing actual fault
attacks by electromagnetic pulse injection which shows practicality of the
proposed forgery procedure. Finally, we provide updated constructions,
that can resist the fault attack on the mode assuming the underlying
blockcipher is fault resistant. We would like to note that our attacks do
not violate the designers’ claims as our attacks require fault. However,
it shows some vulnerability of the schemes when fault is feasible.

Keywords: Fault attack · Blockcipher · Authenticated encryption ·
CLOC · SILC

1 Introduction

An authenticated encryption scheme with associated data (AEAD) is a symmet-
ric key cryptographic primitive that provides privacy of the plaintext, integrity of
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 66–86, 2016.
DOI: 10.1007/978-3-319-49445-6 4

Fault Based Almost Universal Forgeries on CLOC and SILC 67

the plaintext and the associated data. There exist several authenticated encryp-
tion schemes based on blockciphers or streamciphers. In 2002 Whiting et al.
proposed a blockcipher based authenticated encryption scheme CCM [31] for
use within the IEEE 802.11 standard for WLANs. It is later adopted as NIST
standard [14]. Later Bellare et al. proposed EAX [5], Minematsu et al. proposed
EAX+ [25] and Moise et al. proposed EAX′ [26] to overcome some of the limi-
tations of CCM.

CLOC [22] and SILC [21] are two of the candidates in the CAESAR [1] com-
petition, a competition which attempts to standardize some efficient AEAD
schemes. CLOC is an online authenticated encryption scheme which uses CFB
blockcipher mode of operation with the underlying block ciphers AES-128 [11,12]
and TWINE-80 [29]. CLOC aims to optimize the implementation overhead, pre-
computation complexity and memory requirements of CCM, EAX and EAX′.
It has a unique feature of low overhead computation, which makes it efficient
to handle short input and the only precomputation that CLOC does is the key
scheduling. CLOC is considered to be a lightweight AEAD scheme useful for
embedded devices. It is provably secure under the pseudorandomness property
of the underlying blockciphers.

SILC aims to achieve a lightweight construction and built over CLOC. SILC is
also an online authenticated encryption scheme and has been constructed using
CFB mode with the underlying block cipher AES-128, PRESENT-80 [8] and
LED-80 [15]. SILC has actually been constructed to optimize hardware imple-
mentation used for the CLOC. Thus, SILC is considered to be a lightweight AEAD
scheme useful for hardware resource constrained devices. SILC is also provably
secure under the pseudorandomness property of the underlying blockciphers.

Fault attacks on several cryptographic primitives are gaining lot of atten-
tions. Introduction of smart cards, mobile devices and several other devices
with cryptographic hardware require resistance against fault injections. The
first fault based attacks on cryptographic devices has been introduced by Boneh
et al. [9,10]. Later, this area of research has been expanded for both symmet-
ric and asymmetric cryptography. Biham et al. in [6] has published a differen-
tial fault analysis (DFA) on DES. Later, many blockcipher and streamciphers
have been successfully analyzed with fault attacks, such as on AES [13,27,30],
LED [23,24], Trivium [18,19], RC4 [7,17], Grain [3,4], Mickey 2.0 [2]. Fault
Attacks has also been proposed against SHA-1 compression function by Hemme
et al. [16]. To the best of our knowledge, there is only one such fault attack on
any authenticated encryption scheme. The attack has been proposed by Saha
et al. [28] on a CAESAR candidate APE. The attack has been able to reduce
the key search space for APE-80 by injecting two 5-bit diagonal faults.

Our Contribution. In this work, we have observed that both CLOC and SILC
has the property of blockcipher input state separation for encryption and associ-
ated data processing phase. This separation is done by fixing the first bit of the
blockcipher input state to 0 in the AD processing phase and 1 in the encryption

68 D.B. Roy et al.

phase. We briefly describe below how our attacks nullify this input separation
effect for both CLOC and SILC.

Attack on CLOC: In the case of CLOC, the first bit of the first AD block
is fixed to zero before the corresponding blockcipher call. The first bit of all
the ciphertext blocks are fixed to one and then passed to the next blockcipher
invocation. After the first bit of the first ciphertext block is fixed to 1, a fault
is injected at the first bit of the block. The attack first uses this faulty input-
output pair to simulate the AD processing phase to find a pair of colliding ADs
and subsequently forge a valid ciphertext. If the fault is injected at the first bit
then we can forge a valid ciphertext with only two nonce respecting encryption
queries.

We next describe how we can use the above mentioned attack to make almost
universal forgery. We clearly mention in the respective section what the term
almost implies. In this case, we have to make several nonce respecting encryp-
tion queries and the number of queries depending on the number of associated
data blocks. We show that fault based existential forgery on any authenticated
encryption scheme is trivial, but this attack is purely nontrivial and interesting,
since it is almost universal forgery.

Attack on SILC: In SILC, the nonce is padded with several zeroes in the prefix
and the first bit of all the ciphertext blocks are first fixed to one and then send
to the next blockcipher invocation. This attack tries to inject a fault in any one
of such fixed ciphertext blocks such that the first bit of the block becomes zero.
Note that, we can control all the bits by nonce reusing encryption queries or
RUP decryption queries, except the first bit of the block. Thus, by adjusting the
plaintext in the encryption queries or the ciphertext in the RUP queries we can
find a fault injected input-output pair, where the input has the form of a nonce
padded with zeroes in the prefix. The attack next finds a pair of colliding ADs
and subsequently forge a valid ciphertext.

We next describe an almost universal forgery on SILC, which is almost same
as that on CLOC, except the restriction on nonce.

Practical Validation of Fault Attack: We have validated our proposed fault
based forgery attack on actual FPGA implementation. We have ported CLOC on
a SPARTAN-6 FPGA (xc6slx75) and have enforced faults on the implementation
to show that the proposed attack methodology is practically feasible, hence need
to be addressed to maintain the security of CLOC and SILC.

Countermeasures Against Forgery: The attack mentioned above is based on
the encryption modes and not on the underlying blockcipher. We propose three
fault resistant encryption mode by updating only the message processing phase
for both CLOC and SILC. Here, we assume that, the underlying blockcipher is
fault resistant. We also briefly discuss the overheads of these constructions
over CLOC and SILC in terms of hardware area and throughput.

Fault Based Almost Universal Forgeries on CLOC and SILC 69

2 Preliminaries

2.1 Description of CLOC

In this section we give a very brief description of CLOC and we follow the
same notations and variable names as described in [22]. As described by the
author, CLOC has several variants based on three parameters, the underlying
block cipher Ek of length n bits, nonce length �N bits and tag length τ bits.
CLOC has no secret message number and there are three additional require-
ments that 1 ≤ �N ≤ n − 1, 1 ≤ τ ≤ n and n ∈ {64, 128}. We also assume that
both �N/8 and τ/8 are integers.

(a) Hashk

⊕ ⊕ ⊕fix0

A1 A2 Aa ozp(N)

Ek Ek Ek

i

f1

V

(b) Enck

V

fix1 fix1 fix1

M1 M2 Mm−1 Mm

Ek Ek Ek Ek

⊕ ⊕ ⊕ ⊕

C1 C2 Cm−1 Cm

Fig. 1. V ← Hashk(N,A), |A| > 0, C ← Enck(V,M), |M | > 0

Below, we describe the encryption circuit only, as the decryption circuit is not
important to our attack. The encryption circuit runs Hashk, Enck and the tag
generation algorithm sequentially. It receives the nonce N , the associated data
A = (A1, A2, · · · , Aa) and the message M = (M1,M2, · · · ,Mm) and outputs the
ciphertext C = (C1, C2, · · · , Cm) and the tag T , where m and a are the number
of blocks in the message and the associated data respectively. We assume that Aa

has full block length. As we can see from Fig. 1, the underlying key to block cipher
E is k. First, N and A are processed by the algorithm Hashk to produce an
intermediate value V . The Enc algorithm then gets V and M and uses the same
block cipher Ek to produce the ciphertext C = (C1, C2, · · · , Cm) = Enck(V,M).
The tag genration algorithm receives V and C to produce the final tag T . We
intentionally omit the tag generation algorithm description as it is not important
to our attack. Hashk and Enck are presented in Fig. 1.

We purposefully ignored the ozp, msb, h, g1, g2 and f2 functions in [22], as
they have no effect on attack and are not needed. We also assume that i, f1, fix0
and fix1 are public reversible permutations. fix0 function with input x fix the
first bit of x to 0 and fix1 function with input x fix the first bit of x to 1. i is
the identity function.

70 D.B. Roy et al.

Parameter Choice and Integrity Claims for CLOC. Recommended para-
meter sets and the corresponding integrity security claim in bits are proposed
as follows.

• aes128n12clocv1: E = AES-128, �N = 96, τ = 64, 64-bit security.
• aes128n8clocv1: E = AES-128, �N = 64, τ = 64, 64-bit security.
• twine80n6clocv1: E = TWINE-80, �N = 48, τ = 32, 32-bit security.

2.2 Description of SILC

In this section we give a very brief description of SILC and we follow the same
notations and variable names as described in [21]. As described by the author,
SILC has several variants based on three parameters, the underlying block cipher
Ek of length n, nonce length �N and tag length τ . SILC has no secret message
number and there are three additional requirements that 1 ≤ �N ≤ n − 1,
1 ≤ τ ≤ n and n ∈ {64, 128}. We assume that both �N/8 and τ/8 are integers.

⊕ ⊕ ⊕

N A1 Aa len(A)

zpp

Ek

i

Ek Ek

g

V

Fig. 2. V ← Hashk(N,A), zpp(X) = 0n−(|X| mod n)||X

Below, we describe both the encryption and the decryption circuit. The
encryption circuit runs Hashk, Enck and the tag generation algorithm sequen-
tially. It receives the nonce N , the associated data A = (A1, A2, · · · , Aa)
and the message M = (M1,M2, · · · ,Mm) and outputs the ciphertext C =
(C1, C2, · · · , Cm) and the tag T , where m and a are the number of blocks
in the message and the associated data respectively. We assume that Aa has
full block length. As we can see, from Figs. 2 and 3, the underlying key to
block cipher E is k. First, N and A are processed by the algorithm Hashk,
using a block cipher Ek to produce an intermediate value V . The Enc algo-
rithm then gets V and M and uses the same key k to produce the ciphertext
C = (C1, C2, · · · , Cm) = Enck(V,M). The tag genration algorithm receives V
and C to produce the final tag T . We intentionally omit the description for tag
generation as it is not important to our attack.

The decryption circuit runs Hashk first and then Deck and tag genera-
tion algorithm parallely. It gets as input the nonce N , the associated data
A = (A1, A2, · · · , Aa), the ciphertext C = (C1, C2, · · · , Cm) and the tag T .
It first runs Hashk(A) to generate V . This V and C is passed through the

Fault Based Almost Universal Forgeries on CLOC and SILC 71

(a) Enck

V

fix1 fix1 fix1

M1 M2 Mm−1 Mm

Ek Ek Ek Ek

⊕ ⊕ ⊕ ⊕

C1 C2 Cm−1 Cm

(b) Deck

V

fix1 fix1 fix1

C1 C2 Cm−1 Cm

Ek Ek Ek Ek

⊕ ⊕ ⊕ ⊕

M1 M2 Mm−1 Mm

Fig. 3. C ← Enck(V,M), |M | > 0, M ← Deck(V,C), |C| > 0

Deck algorithm to compute M . The tag generation algorithm is run parallely to
compute a tag T ∗. If T ∗ = T then the circuit outputs M , otherwise the input
is rejected. Hashk and Enck are presented in Fig. 2 and Deck is presented in
Fig. 3.

We purposefully ignored the zap, msb and g functions in [21] as they have
no effect on our attack and are not needed. We also assume that fix1, g are
public reversible permutations. zpp function is defined as zpp(X) = X, if |X| =
n and zpp(X) = 0n−(|X| mod n)||X, otherwise. fix1 is already defined in the
description of CLOC.

Parameter Choice and Integrity Claims for SILC. Recommended parame-
ter sets and the corresponding integrity security claim in bits are proposed as
follows.

• aes128n12silcv1: E = AES-128, �N = 96, τ = 64, 64-bit security.
• aes128n8silcv1: E = AES-128, �N = 64, τ = 64, 64-bit security.
• present80n6silcv1: E = PRESENT -80, �N = 48, τ = 32, 32-bit security.
• led80n6silcv1: E = LED-80, �N = 48, τ = 32, 32-bit security.

2.3 Integrity Security Models

Let x ∈R X denotes that x is sampled uniformly from some finite set X. Let,
⊥ denotes a special symbol reject. We next define the integrity security notion,
INT-CTXT or the unforgeability of an adversary with access to both encryp-
tion and verification oracle and can repeat nonce in the encryption queries mul-
tiple times. Let π = (K, E ,D,V) be an authenticated encryption scheme, where
K is the key generation algorithm, E is the encryption algorithm, D is decryption
algorithm and V is the verification algorithm.

Definition 1. The INT-CTXT advantage of a distinguisher D with respect to
π, is defined as

Advint−ctxt
π (D) = |Pr[K ∈R K : DEK ,VK �=⊥]|

72 D.B. Roy et al.

We assume that the distinguisher does not make a verification query (N,A,C, T)
if it ever obtained (C, T) ← EK(N,A,M) for some M . Depending upon the attack
scenario, we can also optionally restrict the distinguisher from repeating N for
different Ek queries (N,A,M). By Advint−ctxt

π (q, l), we denote the supremum
taken over all distinguishers making q queries with total queried message length
as l bits.

If Advint−ctxt
π (q, l) ≤ 2−s, then the π has s bit INT-CTXT security against

all adversaries making q queries with total queried message length as l bits.
Informally, the goal of D is to compute a (N,A,C, T) such that Vk(N,A,C, T)

�=⊥. Here the output of the verification �=⊥ implies that ∃ M , such that (C, T) =
Ek(N,A,M). If the adversary can generate a valid cipheretext and tag pair for
any message, associated data and nonce then the adversary is said to make a
universally forgery.

In the case of fault based forgery, D can inject faults in the intermediate
encryption states during the encryption queries. This means, D can forcefully
change the normal execution of the encryption process Ek. In other words, he can
simulate a new circuit E ′

k(the encryption procedure after fault injection) from
Ek, by injecting the fault. In this case, D gets the extra power to change the
circuit. The goal of D will be as the INT-CTXT security model described above.

3 Motivation

In this section, we provide the motivation behind this work. The fault based
existential forgery does not posses much importance as the output from this
attack does not provide much benefit to the attacker. Moreover, in the case of
blockcipher based authenticated encryption schemes, where the master secret key
is solely used inside the underlying blokcipher, the key recovery of the scheme
implies the key recovery of the blockcipher. Thus it would be really relevant to
achieve something more than existential forgery on the encryption mode using
fault injection(s), assuming the underlying blockcipher is fault resistant.

For example, let us consider the scenario of a low resource embedded
device(e.g., smart card) with an authenticated encryption algorithm embedded
inside the chip for secure communications. If the attacker has access to the chip,
he can inject a fault and forge with false information. However, injeting a fault
may be costly and may take long time. In that case, existential forgery by inject-
ing a fault may not be the goal of the attacker as he can forge only a single valid
ciphertext and does not gain much advantage from this procedure. In this sce-
nario, universal forgery or even multiple forgery could be more interesting and
non trivial task.

However, doing existential forgery with a single fault could be possible on
any of the authenticated encyption schemes. As pointed out by Iwata et al. [20]
any authenticated encryption scheme can be existentially forged by the following
procedure.

Fault Based Almost Universal Forgeries on CLOC and SILC 73

• Make a fault injected encryption query (N,A,M) and receive (C, T). The
fault is injected at known bit positions N and A to result in N ′ and A′

respectively.
• Make a valid forge with (N ′, A′, C, T).

This attack can forge a valid ciphertext for any nonce, associated data and
message triplet by injecting a fault. In a generic sense, if the adversary wants
to forge k ciphertexts, he has to inject faults k times. However, this procedure
is not efficient as fault injection is not cheap in itself and we have to insert k
faults here. Thus, it will be a really interesting problem to see whether k (k 	 1)
forgery can be done with one or a very few number of faults. Since, injecting one
fault may be costly, making multiple forgeries with a very few number of faults
could be an efficient fault based attack. In this work, we address this problem
and shown that, in the case of CLOC and SILC, we can forge a valid ciphertext
for almost all the nonce, associated data and message with only one single bit
fault.

This attack is on the encryption mode and does not exploit the underlying
blockcipher structure. Hence, it would also be really interesting to see, if there
exists an encryption mode, that can resist similar attack strategies.

4 Fault Based Existential Forgery on CLOC

4.1 A Fault Based Forgery on CLOC with Nonce Respecting
Encryption Queries

We first describe the fault model and next the forgery under this fault model.

Fault Model and Motivation of the Attack. Here, we assume that a fault e
has been injected at the first bit position of the n-bit input state corresponding
to the second block cipher call for processing the first ciphertext block in Enck.
We next describe how we can forge a valid ciphertext assuming that a fault e
has been injected at the first bit position of a specific n-bit input state.

Different Phases of the Forgery. The several phases of the forgery are
described below.

• Phase 1 : Construct a faulty input-output pair and 2 valid input output
pairs corresponding to Ek by a single encryption query.

• Phase 2 : Construct two colliding associated data (A,A′), that produces
same V under the same nonce N .

• Phase 3 : Construct (C∗, T ∗) under N , A and a random message M∗ by a
single encryption query.

• Phase 4 : Forge a valid ciphertext (N,A′, C∗, T ∗).

74 D.B. Roy et al.

Phase 1: Construct a Faulty Input-Output Pair and 2 Valid Input
Output Pairs Corresponding to Ek by a single encryption query. The
attack first makes an encryption query with a random 4 block message M =
(M1,M2,M3,M4), a random nonce Nr and a random associated data Ar and
receives a ciphertext tag pair ((C = C1, C2, C3, C4), T). We assume that the
fault e is injected at the first bit of the n-bit input state fix1(C1) before the
corresponding Ek call in Enck. We now construct two valid input-output pairs
(X1, Y1) and (X2, Y2) corresponding to Ek, with X1 = fix1(C2), Y1 = M3 ⊕C3,
X2 = fix1(C3) and Y2 = M4 ⊕ C4. Note that, the first bit of e(fix1(C1)) is 0
as the first bit of fix1(C1) is 1. Let us denote e(fix1(C1)) by X and Ek(X) =
M2 ⊕ C2 by Y . This phase is described in Fig. 4.

V r

Fault e

M1 M2 M3 M4

Ek Ek Ek Ek

⊕ ⊕ ⊕ ⊕

X

fix1 fix1 fix1

C1

Y

C2

X1

Y1

C3

X2

Y2

C4

Fig. 4. Phase 1

Phase 2: Construct Two Colliding Associated Data. (A,A′), that pro-
duces same V under the same nonce N . We now construct two collid-
ing associated data A = (A1, A2, A3) and A′ = (A1, A

′
2, A

′
3), such that both

of them produce the same V under the same nonce N . We set A1 = X. As
A1 = fix0(A1), Ek(A1) is equal to Y . We now set A2 = Y ⊕X1 such that, input
to the corresponding Ek call is X1. As Ek outputs Y1, set A3 = Y1 ⊕ X2 such
that, input to the corresponding Ek call is X2. Thus, V = f1(Y2 ⊕ ozp(N)).

We construct A′ by first setting A′
2 = Y ⊕ X2 such that, input to the corre-

sponding Ek call is X2. As Ek outputs Y2, set A′
3 = Y2 ⊕ X2 such that, input to

the corresponding Ek call is X2. Thus V gets the same value f1(Y2 ⊕ ozp(N)).
This phase is described in Fig. 5.

Phase 3: Construct. (C∗, T ∗) under N,A and a random message M∗

by a single encryption query. We now make an encryption query with N , A
and a random message M∗. In response, we receive a valid ciphertext tag pair
(C∗, T ∗).

Phase 4: Forge a Ciphertext. (N,A′, C∗, T ∗). As both A and A′ produces
same V , the ciphertext tag pair produced for M∗ with N and A′ is (C∗, T ∗).
Thus we make a valid forgery (N,A′, C∗, T ∗).

Fault Based Almost Universal Forgeries on CLOC and SILC 75

(a) Compute A

⊕ ⊕ ⊕

A1 A2 A3 ozp(N)

fix0

Ek

X

Ek Ek

Y

Y + X1

X1

Y1

Y1 + X2

X2

f1

Y2

V

(b) Compute A′

⊕ ⊕ ⊕

A1 A′
2 A′

3 ozp(N)

fix0

Ek

X

Ek Ek

Y

Y + X2

X2

Y2

Y2 + X2

X2

f1

Y2

V

Fig. 5. Phase 2.

5 Fault Based Almost Universal Forgery on CLOC

The attack described in Sect. 4 first collects a set of input-output correspond-
ing to Ek and then finds a colliding associated data pair and finally forge
valid ciphertext-tag pair. In this section, we describe how this technique can be
extended efficiently to almost universal forgery with some extra nonce-misusing
encryption queries. Also, we first compute X and Y as described in Phase 1
in Sect. 4.1. We use this X and Y to describe the term “almost universal
forgeries”

We first describe, what the term “almost universal forgeries” suggests in
this scenario. This attack can create a valid forgery for almost all the (N,A =
(A1, · · · , Aa),M = (M1, · · · Mm)) triplet for any a and m (a and m are bounded
according to the specification). There is a nominal restriction on the choice of A.
However, there is no restriction on the message M and the nonce N . We denote
the intermediate inputs and outputs to and from the Ek for A2, · · · , Aa are by
X1, · · · ,Xa−1 and Y1, · · · , Ya−1 respectively. We also introduce I1 and O1 and
they are described as follows.

I1 = A1 = X,O1 = Y = Ek(I1)
X1 = A2 ⊕ i/h(O1), Y1 = Ek(X1)

.

.

Xa−1 = Aa ⊕ Ya−2, Ya−1 = Ek(Xa−1)

In this attack we first make a fault injected encryption query to retrieve X
and Y . The restriction on the associated data A = (A1, · · · , Aa) can be viewed as
A1 is always equal to X, all the bits of A2, · · · , Aa except the first bit can take any
value and the first bit of X1, · · · ,Xa−1 will be 1. This is a negligible restriction
where all the Ais can take any of the 2127 values instead of 2128. Here, we assume
that all the Ais are full. The scenario is same for incomplete Aa, hence is omitted.
We next describe the almost universal forgery for an arbitrary nonce, associated
data and message triplet (N,A = (A1, · · · , Aa),M = (M1, · · · ,Mm)), such that

76 D.B. Roy et al.

this triplet follows the “almost” restriction. Let the V be the intermediate value
after the associated data and nonce is processed.

1. Set A1 = X and X1 = Y ⊕ A2.
2. Make an encryption query (N,A,Mr = Mr

1) and receive (Cr
1 , T r

1) to compute
Ek(V) = Mr

1 ⊕ Cr
1 .

3. Repeat for i = 1 to a − 2:
• Make an encryption query (N,A,M = (M ′

1 = Ek(V) ⊕ Xi,M
′
2) and

receive (C ′ = (C ′
1, C

′
2), T

′).
• Compute Yi = M ′

2 ⊕ C ′
2.

• Compute Xi+1 = Ai+2 ⊕ Xi.
4. Make an encryption query (N,A,M = (M ′

1 = Ek(V)⊕Xa−1,M
′
2) and receive

(C ′ = (C ′
1, C

′
2), T

′).
5. Compute Ya−1 = M ′

2 ⊕ C ′
2.

6. Find a colliding associated data A′ for A (colliding at V) following the Phase
2 in Sect. 4.1.

7. Make an encryption query (N,A′,M) and receive (C, T).
8. Thus (C, T) is a valid forgery for (N,A,M).

6 Fault Based Existential Forgery on SILC

6.1 A Fault Based Forgery on SILC with Nonce Misusing
Encryption Queries.

Fault Model and Motivation of the Attack. The fault model for this attack
on SILC is similar to that for CLOC described in Sect. 4.1. This section describes
how we can forge a valid ciphertext assuming that a fault e has been injected
at the first bit position of the above mentioned n-bit input state. We denote the
nonce length by �N and we define t by t = n − �N , such that zpp(N) = 0t||N .

(a) First Encryption Query

V r

fix1 fix1

M1 M2 M3

Ek Ek Ek

⊕ ⊕ ⊕

X1

C1

Y1

C2

X2

Y2

C3

(b) Second Encryption Query

V r

Fault e

fix1

M ′
1 M2

Ek Ek

⊕ ⊕

X

C ′
1

Y

C ′
2

Fig. 6. First and the Second Encryption Query in Phase 1

Fault Based Almost Universal Forgeries on CLOC and SILC 77

Different Phases of the Forgery. The different phases are described below.

• Phase 1 : Construct a faulty input-output pair and 2 valid input-output
pairs corresponding to Ek by 2 encryption queries.

• Phase 2 : Construct two colliding associated data (A,A′), that produces
same V under the same nonce N .

• Phase 3 : Construct (C∗, T ∗) under N , A and a random message M∗ by a
single encryption query.

• Phase 4 : Forge a valid ciphertext (N,A′, C∗, T ∗).

Phase 1: Construct a Faulty Input-Output Pair and 2 Valid Input Out-
put Pairs Corresponding to Ek by 2 encryption queries. The attack first
makes an encryption query with a random 3 block message M = (M1,M2,M3),
a random nonce Nr and a random associated data Ar and receives a ciphertext
tag pair ((C = C1, C2, C3), T). The attack now construct two input-output pairs
(X1, Y1) and (X2, Y2) corresponding to Ek, where X1 = fix1(C1), Y1 = M2⊕C2,
X2 = fix1(C2) and Y2 = M3 ⊕ C3. The attack now makes a two block encryp-
tion query (Nr, Ar,M ′ = (M ′

1,M2)) and receive((C ′ = C ′
1, C

′
2), T

′) where first t
bits of M ′

1 adjusted in such a way such that first t bits of C ′
1 are 0. Note that,

we inject a fault e at the first bit of fix1(C ′
1) before the corresponding Ek call

in Enck. As the first bit of fix1(C ′
1) is one and next t − 1 bits of fix1(C ′

1) are
zero, first t bits of e(fix1(C ′

1)) are zero. Let us denote e(fix1(C ′
1)) by X and

Ek(X) = M2 ⊕ C ′
2 by Y . This phase is described in Fig. 6.

Phase 2: Construct Two Colliding Associated Data (A,A′), that pro-
duces same V under the same nonce N . The attack now construct two
colliding associated associated data A = (A1, A2) and A′ = (A′

1, A
′
2), that pro-

duces same V under the same nonce with zpp(N) = X. We set A1 = Y ⊕ X1,
such that input to the corresponding Ek call is X1. We set A2 = Y1 ⊕ X2,
such that input to the corresponding Ek call is X2. Thus, V = g(Y2 ⊕ 2), with
len(A) = 2.

We construct A′ by setting A′
1 = Y ⊕X2, such that input to the corresponding

Ek call is X2. We set A′
2 = Y2 ⊕ X2, such that input to the corresponding Ek

call is X2. Thus, V will get the same value g(Y2 ⊕ 2), as len(A′) = 2. This phase
is described in Fig. 7.

Phase 3 and 4 are the same as previous attack described in Sect. 4.1. The
fault detection technique is also similar to that for the previous attack. We
iterate this forging attempt n times and detect the fault if the forging attempt
gets accepted by the decryption oracle.

6.2 Fault Based Almost Universal Forgery on SILC

The attack described in Sect. 6 is almost same as the attack on CLOC and it
first collects a set of input-output corresponding to Ek and then finds a collid-
ing associated data pair and finally forge and valid ciphertext-tag pair. In this

78 D.B. Roy et al.

(a) Compute A

⊕ ⊕ ⊕

N A1 A2 len(A)

fix0

Ek

X

Ek Ek

Y

Y + X1

X1

Y1

Y1 + X2

X2

g

Y2

V

(b) Compute A′

⊕ ⊕ ⊕

N A′
1 A′

2 len(A)

zpp

Ek

X

Ek Ek

Y

Y + X2

X2

Y2

Y2 + X2

X2

g

Y2

V

Fig. 7. Phase 2

section, we describe the almost universal forgery on SILC. We first compute X
and Y and use them to describe the term almost.

The term almost is a nominal restriction on the possible value forgable
(N,A,M) triplet. This attack can create a valid forgery for almost all the
(N,A = (A1, · · · , Aa),M = (M1, · · · Mm)) triple for any a and m (a and m are
bounded according to the specification). The nonce N is restricted in away, such
that zpp(N) = X. There is a nominal restriction on the choice of A. However,
there is no restriction on the message M . We denote the intermediate inputs and
outputs to and from the Ek for A1, · · · , Aa are by X1, · · · ,Xa and Y1, · · · , Ya

respectively. The restriction is,

X1 = zpp(N) = X,Y1 = Y = Ek(X1)
X2 = A1 ⊕ (Y1), Y2 = Ek(X2)

.

.

Xa+1 = Aa ⊕ Ya, Ya+1 = Ek(Xa+1)

In this attack we first make a fault injected encryption query to retrieve X
and Y . The restriction on the associated data A = (A1, · · · , Aa) can be viewed
as zpp(N) is always equal to X, all the bits of A1, · · · , Aa except the first bit
can take any value and the first bit of X2, · · · Xa+1 will be 1. This is a negligible
restriction on A where all the Ais can take any of the 2127 values instead of 2128.
Here, we assume that all the Ais are full. The scenario is same for incomplete
Aa, hence is omitted. However, the restriction on N is strict. We next describe
the almost universal forgery for an arbitrary nonce, associated data and message
triplet (N,A = (A1, · · · , Aa),M = (M1, · · · ,Mm)), such that this triplet follows
the “almost” restriction. Let the V be the intermediate value after the associated
data and nonce is processed.

Fault Based Almost Universal Forgeries on CLOC and SILC 79

1. Set zpp(N) = X and X1 = Y ⊕ A1.
2. Make an encryption query (N,A,Mr = Mr

1) and receive (Cr
1 , T r

1) to compute
Ek(V) = Mr

1 ⊕ Cr
1 .

3. Repeat for i = 1 to a − 1:
• Make an encryption query (N,A,M = (M ′

1 = Ek(V) ⊕ Xi,M
′
2) and

receive (C ′ = (C ′
1, C

′
2), T

′).
• Compute Yi = M ′

2 ⊕ C ′
2.

• Compute Xi+1 = Ai+2 ⊕ Xi.
4. Make an encryption query (N,A,M = (M ′

1 = Ek(V) ⊕ Xa,M ′
2) and receive

(C ′ = (C ′
1, C

′
2), T

′).
5. Compute Ya = M ′

2 ⊕ C ′
2.

6. Find a colliding associated data A′ for A (colliding at V) following the Phase
2 in Sect. 6.1.

7. Make an encryption query (N,A′,M) and receive (C, T).
8. Thus (C, T) is a valid forgery for (N,A,M).

7 Experimental Validation of Proposed Fault Based
Forgery Attack

In the previous sections, we have depicted how fault injection in the fix1 module
of ENCk operation will allow us to do successful forgeries on the CLOC and
SILC. This section focusses on practical validation of the proposed fault based
forgery attack.

For experimental validation, we have implemented CLOC in the SPARTAN-6
FPGA (xc6slx75) of SAKURA-G [37] board. The implementation requires 7776
LUTs and 5422 number of registers. The critical path of the design is 10.372 ns.
It should be noted that from the operational point of view, fix1 module does
not involve any computation. It simply sets the MSB of the input register of Ek

module. Instead of directly assigning logic one to the MSB, we have introduced
some buffers in the path of this assignment. It should be noted that these buffers
do not increase the critical path of the design and increase the area overhead of
the design very slightly.

There are several ways by which one can inject fault into a device. Over-
clocking [32], under-powering [33], laser shots [34], temperature increase [35] are
few of them. In this experiment, we have used electromagnetic pulses as fault
injector [36]. The fault attack set-up is shown in Fig. 8. For experimental valida-
tion we have focussed only on the fix1 module of CLOC. Hence we have ported
the fix1 module in the SPARTAN 6 FPGA (xc6slx75) of SAKURA G. This
FPGA implementation triggers the connected oscilloscope for each execution of
fix1 module which in turn triggers the delay generator equipment. This allows
us to choose a precise time moment at which we would like to inject fault. The
delay generator equipment triggers the RF generator module which generates
the electromagnetic pulses. Finally these electromagnetic pulses are amplified by
a RF amplifier and are injected in to the FPGA by the electromagnetic probe.

80 D.B. Roy et al.

Electromagnetic
Probe

Board
FGPAPC

Amplifier
RF

Transmission

Reception

Trigger
Oscilloscope

Delay

Generator

Trigger

Trigger

Generator
RF

Electromagnetic
Pulse

Amplified

Pulse
Electromagnetic

Electromagnetic
Pulse Injection

Fig. 8. Fault Attack Setup

Input and output of the fix1 module, executing on the FPGA, are constantly
monitored on PC to detect the occurrence of faults.

To execute the proposed forgery, we need to inject a stuck at zero fault at
the MSB of the output of fix1 module. In this case, the adversary has a very
precise control over both fault location and fault nature which may be difficult
to obtain without precise instruments like laser. However, here we show how an
electromagnetic pulse base fault injection set-up can be utilized to induce a fault
which can eventually corrupt the MSB as required in the proposed attack. More
specifically, we are able to introduce a 32 bit left shift in the output of the fix1
module. We have repeated our experiment multiple times and each time we have
observed same fault pattern (32 bit left shift of the input). This deterministic
nature of the fault pattern allows us to do the forgery by following steps:

1. We give a random message as input to the fix1 module of ENCk operation
with only one constraint: 95th bit of should be set to zero. As the input is
the previous ciphertext block, we can always query with a suitable message
block in order to set the 95th bit of the ciphertext as zero.

2. Then we will inject fault on the fix1 module which will left shift the fix1
module output by 32 bits, making the 95th bit as MSB. Thus we have been
able to input Ek operation with an input having its MSB set to zero. Also as
the fault nature is deterministic, we know the output of fix1 module which will
allow us to construct the required associative data values to do the forgery.
The main challenge was to query the blockcipher with an input having its
MSB set to zero. Once we achieve that using the fault injection, the rest of
the attack can be implemented as described in Sect. 4.

3. For SILC too, we can apply similar fault injection methodology with slight
modification due to the zpp function. Let us assume that for one instance of
SILC, nonce is of 120 bits. Then it needs to be padded with 8 bits of zero
from the MSB side. Hence, for successful forgery we need to set the most
significant byte of the fix1 module to zero. This can be achieved by setting

Fault Based Almost Universal Forgeries on CLOC and SILC 81

from 95th to 88th bits of fix1 input to zero. Thus when we inject fault, these
bits will get shifted by 32 bits and will become the most significant byte which
will allow us to do the forgery. This scheme can be extended for nonce of any
length,

Thus, we have practically validated the fault based forgery attack in this
section. In the next section, we will focus on the countermeasures where we
provide two different constructions to prevent the proposed fault based forgery
attack.

8 Preventing Fault Based Forgery on CLOC and SILC

In the previous sections, we had exploited the vulnerability of ENCk and
HASHk algorithms to produce a successful forgery attack on the HASHk imple-
mentation. The adversary in this case was able to obtain the input and output
block of any Ek with the help of fault induction on the fix1 module of encryption
operation. This allows the adversary to query the HASHk implementation with
specific choices of associated data which in turn produces a successful forgery.
Structural modification of the HASHk algorithm doesn’t improve the security
of CLOC as long as the input-output pairs of Ek are available to the adversary.
As the choice of associated data is at the liberty of the adversary, and associated
data could always be chosen so as to produce desired input to the encryption
block, and create duplicate associated data which would produce the same V
value under identical nonce values.

8.1 Redesign of ENCk algorithm

Since the root cause for the attack was the availability of input-output pairs
to the adversary, in this section, we’ll discuss upon the possible modification of
ENCk algorithm, which could prevent the fault attack. In order to make the
input-output pairs of Ek unavailable, the output Ci is encrypted using another

msb

Ek Ek Ek EkEk

Ek Ek

Ek

C2 3C

EkEk Ek

C4

Ek

Cm

fix1 fix1 fix1

V

fix1fix1

M1
M2 M3 M4

M

Cm−1C1

m−1 Mm

Fig. 9. C←− ENCk(V,M) for |M | ≥1

82 D.B. Roy et al.

encryption block as shown in Fig. 9, where i ∈ {1, 2, ...n}. In this new algo-
rithm, let Y = (Y1, Y2....Yn) be the outputs after the XOR operation of message
M = (M1,M2....Mn), Y1 = M1 ⊕ Ek(V) is not known to the adversary, so the
consecutive Yi = Mi ⊕ Ek(fix1(Yi−1)) remain unknown, where i ∈ {2, 3...n}.
Hence we can predict neither the input nor the output of any Ek,and since Phase
1 of the attack cannot be performed in modified Enck algorithm, the adversary
will not be able to perform the attack on the cipher. Please also note that nei-
ther HASHk nor PRFk algorithms are changed. This countermeasure can also
be applied to SILC as its ENCk operation is exactly similar to CLOC. The total
number of blockcipher execution will be now 2n for encrypting n number of
blocks and the timing overhead will be twice.

Cost Effective ENCk algorithm. It is not necessary to prevent the adversary
from knowing both the input as well as the output of any Ek, even if either the
input or the output is known, the adversary would still be unable to attack the
cryptosystem. To reduce the cost of the algorithm, alternate ciphertext blocks
could be encrypted and still maintain protection against the attack as shown
in Fig. 10. For any Ek, either the input or the output is known, but not both.
The total number of blockcipher execution will be now 3n

2 times for n number
of blocks and timing complexity would be 1.5 times that of the original ENCk

algorithm if the computation is performed with the existing implementation. But
the timing could be made similar to the original ENCk algorithm with twice
the area of implementation which enables parallel computation.

msb

Ek Ek Ek EkEk

Ek Ek

Ek

Ek

C2 3C

fix1 fix1 fix1

V

fix1fix1

M1
M2 M3 M4

M

CmCm−1C4C1

m−1 Mm

Fig. 10. C←− ENCk(V,M) for |M | ≥1 and m has an even value

I1 = fix0(M1 ⊕ Ek(V))
I2 = fix1(C2)
I3 = fix1(M3 ⊕ E−1

k (C[3]))

O1 = M2 ⊕ C2

O2 = M3 ⊕ E−1
k (C3)

O3 = M4 ⊕ C4

From the above equations, the values of O1, I2 and O3 are available to the
adversary but not I1, O2 and I3, as the key is unknown, so are the values E−1

k (C3)
and Ek(V).

Fault Based Almost Universal Forgeries on CLOC and SILC 83

8.2 Structural Modification of ENCk algorithm

In this section, we introduce yet another possible modification to Enck algorithm
which is more cost effective and faster in computation than redesigned algorithm
discussed before. This algorithm exposes the output of any Ek but not the input,
this has been achieved with the introduction of a secret parameter A, equal to
Ek(ozp(Nonce)). As shown in Fig. 11, the output of Ek with input fix1(C[i]) is
XORed with αi−1 times A, where α is a primitive element in GF (2128). Except
during the last encryption when A is multiplied with (1 + α)αm−2, instead of
αm−1, m indicates the number of blocks of the message.

msb

αΑ m−2α ΑΑ

EkEkEk

m−2(1+α)α Α

Ek

Im−2

Om−2

Im−1

Om−1

fix1 fix1

V

O1

I1

M1 M2 Mm−1
Mm

CmCm−1C2
C1

Fig. 11. C←− ENCk(V,M) for |M | ≥1

Ii = Ek(fix1(Ci) ⊕ αiA) Oi = Mi+1 ⊕ Ci+1

We can see that the outputs of Ek are readily available to the adversary, but
the inputs of Ek is not available to the adversary as it is now masked with secret
parameter which depends upon A. As A is actually the encryption of nonce, it
is unknown to the adversary. This rules out the attack proposed in this paper.
The area and timing overhead of this scheme is due to the introduction of a field
multiplication in GF (2128) which can be implemented with very less area and
timing requirement. The number of required Ek operations increases by one as
now we also need to compute A = Ek(ozp(N)). Moreover we now need to store
the value of A which requires additional storage.

To summarize, in this section we have provided two modified CLOC construc-
tions to prevent previously discussed forgery attacks based on fault injection in
the fix1 module. An important observation is that the proposed attack works
because the adversary has access to the both input and output of Ek in the
encryption module. In the modified constructions, we have made sure that at
any time an adversary will not have access to both input and output of Ek,
which prevents the fault based forgery attack.

It should be also noted that ENCk operation of bothCLOC and SILC is similar.
As we do not modify other operations HASHk and PRF , the countermeasures
depicted in this section are equally applicable to both CLOC and SILC.

84 D.B. Roy et al.

9 Conclusion

In this paper, we present fault based almost universal forgery on both CLOC
and SILC with nonce misusing encryption queries and only one fault injected
encryption query with a single fault at the MSB of a specific blockcipher input
state. We first propose fault based existential forgeries on both the constructions.
We next use these attacks to construct almost universal forgeries. All of the
proposed forgery attacks requires fault injection at the output of the fix1 module
which we have practically validated by performing electromagnetic pulse based
fault attack on fix1 module. Finally, we propose three efficient constructions
with small overheads to resist fault based forgeries on the encryption mode.

Acknowledgement. Avik Chakraborti and Mridul Nandi are supported by the Cen-
tre of Excellence in Cryptology, Indian Statistical Institute, Kolkata. We would also
like to thank the reviewers for their useful comments on our paper.

References

1. — (no editor), CAESAR Competition. http://competitions.cr.yp.to/caesar.html
2. Banik, S., Maitra, S.: A differential fault attack on MICKEY 2.0. In: Bertoni, G.,

Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 215–232. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40349-1 13

3. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family of
stream ciphers. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 122–139. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 8

4. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family
under reasonable assumptions. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT
2012. LNCS, vol. 7668, pp. 191–208. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34931-7 12

5. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-25937-4 25

6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). doi:10.1007/BFb0052259

7. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible fault analysis of RC4 and
differential fault analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005). doi:10.1007/
11502760 24

8. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the. Journal of Cryptography. 2001,
101–119 (2001)

http://competitions.cr.yp.to/caesar.html
http://dx.doi.org/10.1007/978-3-642-40349-1_13
http://dx.doi.org/10.1007/978-3-642-33027-8_8
http://dx.doi.org/10.1007/978-3-642-34931-7_12
http://dx.doi.org/10.1007/978-3-642-34931-7_12
http://dx.doi.org/10.1007/978-3-540-25937-4_25
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/11502760_24
http://dx.doi.org/10.1007/11502760_24
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/3-540-69053-0_4

Fault Based Almost Universal Forgeries on CLOC and SILC 85

11. Daemen, J., Rijmen, V.: Rijndael for AES. In: AES Candidate Conference, pp.
343–348 (2000)

12. Daemen, J., Rijmen, V.: The design of Rijndael: AES - the advanced encryption
standard. In: Information Security and Cryptography, Springer, Heidelberg (2002)

13. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45203-4 23

14. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality (2004). NIST Special, Publication,
800-38C (2004)

15. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22

16. Hemme, L., Hoffman, L., Lee, C.: Differential Fault Analysis on the SHA1 Com-
pression Function. In: FDTC 2011, pp. 54–62, 11 (2011)

17. Hoch, J.J., Shamir, A.: Fault analysis of stream ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-28632-5 18

18. Hojśık, M., Rudolf, B.: Floating fault analysis of trivium. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 239–250.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-89754-5 19

19. Hojśık, M., Rudolf, B.: Differential fault analysis of trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71039-4 10

20. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: Re: Fault
Based Forgery on CLOC and SILC. https://groups.google.com/forum/#!topic/
crypto-competitions/ qxORmqcSrY

21. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: SILC: SImple
Lightweight CFB (2014). http://competitions.cr.yp.to/round1/silcv1.pdf

22. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC: Compact
Low- Overhead CFB (2014). http://competitions.cr.yp.to/round1/clocv1.pdf

23. Jeong, K., Lee, C.: Differential fault analysis on block cipher LED-64. In: Park,
J.J., Leung, V.C.M., Wang, C.-L., Shon, T. (eds.) Future Information Technol-
ogy, Application, and Service. LNEE, vol. 164, pp. 747–755. Springer, Heidelberg
(2012). doi:10.1007/978-94-007-4516-2 79

24. Jovanovic, P., Kreuzer, M., Polian, I.: A fault attack on the LED block cipher. In:
Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 120–134.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-29912-4 10

25. Minematsu, K., Lucks, S., Iwata, T.: Improved authenticity bound of EAX, and
refinements. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS, vol. 8209,
pp. 184–201. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41227-1 11

26. Moise, A., Beroset, E., Phinney, T., Burns, M.: EAX0 Cipher Mode. NIST Sub-
mission, 2011: Technique against SPN Structures, with Application to the AES
and KHAZAD(2011). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/eax-prime/eax-prime-spec.pdf

27. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45238-6 7

http://dx.doi.org/10.1007/978-3-540-45203-4_23
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-540-28632-5_18
http://dx.doi.org/10.1007/978-3-540-89754-5_19
http://dx.doi.org/10.1007/978-3-540-71039-4_10
http://dx.doi.org/10.1007/978-3-540-71039-4_10
https://groups.google.com/forum/#!topic/crypto-competitions/_qxORmqcSrY
https://groups.google.com/forum/#!topic/crypto-competitions/_qxORmqcSrY
http://competitions.cr.yp.to/round1/silcv1.pdf
http://competitions.cr.yp.to/round1/clocv1.pdf
http://dx.doi.org/10.1007/978-94-007-4516-2_79
http://dx.doi.org/10.1007/978-3-642-29912-4_10
http://dx.doi.org/10.1007/978-3-642-41227-1_11
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax-prime/eax-prime-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax-prime/eax-prime-spec.pdf
http://dx.doi.org/10.1007/978-3-540-45238-6_7

86 D.B. Roy et al.

28. Saha, D., Kuila, S., Roy Chowdhury, D.: EscApe: diagonal fault analysis of APE.
In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp.
197–216. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13039-2 12

29. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 22

30. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21040-2 15

31. Whiting, D., Houeley, R., Ferguson, N.: Counter with CBC-MAC, Submission to
NIST: (2002). http://csrc.nist.gov/groups/ST/toolkit/BCM/modesdevelopment.
html

32. Agoyan, M., Dutertre, J.-M., Mirbaha, A.-P., Tria, A.: How to Flip a Bit?, On-Line
Testing Symposium (IOLTS). In: 2010 IEEE 16th International, 2010 (2010)

33. Fournier, J.J.A., Moore, S., Li, H., Mullins, R., Taylor, G.: Security evaluation
of asynchronous circuits. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 137–151. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45238-6 12

34. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). doi:10.1007/3-540-36400-5 2

35. Skorobogatov, S.: Local heating attacks on flash memory devices. In: IEEE Inter-
national Workshop on Hardware-Oriented Security and Trust, 2009 (2009)

36. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Tria, A.: Electromagnetic Transient
Faults Injection on a Hardware and a Software Implementations of AES. Fault
Diagnosis and Tolerance, 2012 (2012)

37. — (no editor). http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G Spec
Ver1.0 English.pdf

http://dx.doi.org/10.1007/978-3-319-13039-2_12
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-21040-2_15
http://dx.doi.org/10.1007/978-3-642-21040-2_15
http://csrc.nist.gov/groups/ST/toolkit/BCM/modesdevelopment.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modesdevelopment.html
http://dx.doi.org/10.1007/978-3-540-45238-6_12
http://dx.doi.org/10.1007/978-3-540-45238-6_12
http://dx.doi.org/10.1007/3-540-36400-5_2
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G_Spec_Ver1.0_English.pdf
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G_Spec_Ver1.0_English.pdf

Applied Cryptography

Implementing Complete Formulas
on Weierstrass Curves in Hardware

Pedro Maat C. Massolino(B), Joost Renes, and Lejla Batina

Radboud University, Nijmegen, The Netherlands
{p.massolino,j.renes,lejla}@cs.ru.nl

Abstract. This work revisits the recent complete addition formulas for
prime order elliptic curves of Renes, Costello and Batina in light of par-
allelization. We introduce the first hardware implementation of the new
formulas on an FPGA based on three arithmetic units performing Mont-
gomery multiplication. Our results are competitive with current literature
and show the potential of the new complete formulas in hardware design.
Furthermore, we present algorithms to compute the formulas using any-
where between two and six processors, using the minimum number of field
multiplications.

Keywords: Elliptic curve cryptography · FPGA · Weierstrass curves ·
Complete addition formulas

1 Introduction

The main operation in many cryptographic protocols based on elliptic curves is
scalar multiplication, which is performed via repeated point addition and dou-
bling. In early works formulas for the group operation used different sequences of
instructions for addition and doubling [22,28]. This resulted in more optimized
implementations, since doublings can be faster than general additions, but näıve
implementations suffered from side-channel attacks [23]. Indeed, as all special
cases have to be treated differently, it is not straightforward to come up with an
efficient and side-channel secure implementation.

A class of elliptic curves which avoids these problems is the family of curves
proposed by Bernstein and Lange, the so-called Edwards curves [8]. Arguably,
the primary reason for their popularity is their “complete” addition law. That
is, a single addition law which can be used for all inputs. The benefit of having
a complete addition law is obvious for both simplicity and side-channel security.
Namely, having only one set of formulas that works for all inputs simplifies
the task of implementers and thwarts side-channel analysis and more refined
attacks, e. g. safe-error attacks [38]. After the introduction of Edwards curves,
more curves models have been shown to possess complete addition laws [6,7].

This work was supported in part by the Technology Foundation STW (project 13499
- TYPHOON & ASPASIA), from the Dutch government.

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 89–108, 2016.
DOI: 10.1007/978-3-319-49445-6 5

90 P.M.C. Massolino et al.

Moreover, (twisted) Edwards curves are being deployed in software, for example
in the library NaCl [10]. In particular, software implementations typically rely
on specific curves, e. g. on the Montgomery curves Curve25519 [5] by Bernstein
or Curve448 [19] proposed by Hamburg.

Moving to a hardware scenario, using the nice properties of these specific
curves is not as straightforward anymore. Hardware development is costly, and
industry prefers IP cores as generic solutions for all possible clients. More-
over, backwards compatibility is a serious concern, and most current stan-
dards [12,15,29] regarding large prime fields contain prime order curves in short
Weierstrass form. This prohibits using (twisted) Edwards, (twisted) Hessian
and Montgomery curves. The desire for complete addition formulas for prime
order curves in short Weierstrass form was recognized and Renes, Costello and
Batina [31] proved this to be realistic. They present complete addition formu-
las with an efficiency loss of 34 %–44 % in software when compared to formulas
based on Jacobian coordinates, depending on the size of the field.

As the authors mention, one can expect to have better performance in hard-
ware, but they do not present results. In particular, when using Montgomery
multiplication one can benefit from very efficient modular additions and sub-
tractions (which appear a lot in their formulas), which changes the performance
ratio derived in the original paper. Therefore, it is of interest to investigate the
new complete formulas from a hardware point of view. In this paper we show
that the hardware performance is competitive with the literature, building scalar
multiplication on top of three parallel Montgomery multipliers. In more detail,
we summarize our contributions as follows:

– we present the first hardware implementation based on the work of [26], work-
ing for every prime order curve over a prime field of up to 522 bits, and obtain
competitive results;

– we present algorithms for various levels of parallelism for the new formulas to
boost the performance.

Related Work. Mainly there are numerous works on curve-based hardware
implementations. These are on various FPGA platforms, making a meaning-
ful comparison very difficult. Güneysu and Paar [17] proposed a new speed-
optimized architecture that makes intensive use of the DSP blocks in an FPGA
platform. Guillermin [18] introduced a prime field ECC hardware architecture
and implemented it on several Altera FPGA boards. The design is based on
Residue Number System (RNS), facilitating carry-free arithmetic and paral-
lelism. Yao et al. [37] followed the idea of using RNS to design a high-speed ECC
co-processor for pairings. Sakiyama et al. [33] proposed a superscalar coprocessor
that could deal with three different curve-based cryptosystems, all in character-
istic 2 fields. Varchola et al. [35] designed a processor-like architecture, with
instruction set and decoder, on top of which they implemented ECC. This app-
roach has the benefit of having a portion written in software, which can be
easily maintained and updated, while having special optimized instructions for
the elliptic curve operations. The downside of this approach is that the resource

Implementing Complete Formulas on Weierstrass Curves in Hardware 91

costs are higher than a fully optimized processor. As was the case for Güneysu
and Paar [17], their targets were standardized NIST prime curves P–224 and
P–256. Consequently, each of their synthesized circuit would only work for one
of the two primes. Pöpper et al. [30] follow the same approach as Varchola
et al. [35], with some side-channel related improvements. The paper focuses on
an analysis of each countermeasure and its effective cost. Roy et al. [32] followed
the same path, but with more optimizations with respect to resources and only
for curve NIST P–256. However, the number of Block RAMs necessary for the
architecture is much larger than of Pöpper et al. [30] or Varchola et al. [35].
Fan et al. [16] created an architecture for special primes and curves, namely the
standardized NIST P–192. The approach was to parallelize Montgomery mul-
tiplication and formulas for point addition and doubling on the curve. Vliegen
et al. [36] attempted to reduce the resources with a small core aimed at 256-bit
primes.

Organization. We start with preliminaries in Sect. 2, and briefly discuss par-
allelism for the complete formulas in Sect. 3. Finally we present our hardware
implementation using three Montgomery multipliers in Sect. 4.

2 Preliminaries for Elliptic Curve Cryptography

Let Fq be a finite field of characteristic p, i. e. q = pn for some n, and assume
that p is not two or three. For well-chosen a, b ∈ Fq, an elliptic curve E over Fq

is defined as the set of solutions (x, y) to the curve equation E : y2 = x3 +ax+ b
with an additional point O, called the point at infinity. The Fq-rational points
E(Fq) are all (x, y) ∈ E such that (x, y) ∈ F

2
q, together with O. They form a

group, with O as its identity element. From now on when we write E, we mean
E(Fq). The order of E is the order of this group. To compute the group law
on E one can use the chord and tangent process. To implement this, however,
it is necessary to use at least one inversion. Since inversions are very costly, we
choose a different point representation to avoid them.

Define an equivalence relation on F
3
q by letting (x0, x1, x2) ∼ (y0, y1, y2) if

and only if there exists λ ∈ F
∗
q such that (x0, x1, x2) = (λy0, λy1, λy2). Then the

projective plane over Fq, denoted P
2(Fq), is defined by F

3
q \ {(0, 0, 0)} modulo

the equivalence relation ∼. We write (x0 : x1 : x2) to emphasize that the tuple
belongs to P

2(Fq) as opposed to F
3
q. Now we can define E(Fq) to be the set of

solutions (X : Y : Z) ∈ P
2(Fq) to the curve equation E : Y 2 = X3+aXZ2+bZ3.

Note that we can easily map between the two representations by (x, y) �→ (x : y :
1), O �→ (0 : 1 : 0), and (X : Y : Z) �→ (X/Z, Y/Z) (for Z �= 0), (0 : 1 : 0) �→ O.

There are many ways to compute the group law on E, see [9]. These differ
depending on the representation of the curve and the points. As mentioned in
the introduction, we put emphasis on complete addition formulas for prime order
elliptic curves. The work of Renes et al. [31] presents addition formulas for curves
in short Weierstrass form embedded in the projective plane. They compute the

92 P.M.C. Massolino et al.

sum of two points P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) as P + Q = (X3 :
Y3 : Z3), where

X3 = (X1Y2 + X2Y1)(Y1Y2 − a(X1Z2 + X2Z1) − 3bZ1Z2)

− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 + X2Z1) − a2Z1Z2),

Y3 = (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 + X2Z1) − a2Z1Z2)
+ (Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 + X2Z1) − 3bZ1Z2),

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)
+ (X1Y2 + X2Y1)(3X1X2 + aZ1Z2). (1)

Elliptic curve cryptography [22,28] commonly relies on the hard problem
called the “Elliptic Curve Discrete Logarithm Problem (ECDLP)”. This means
that given two points P,Q on an elliptic curve, it is hard to find a scalar k ∈ Z

such that Q = kP , if it exists. Therefore the main component of curve based
cryptosystems is the scalar multiplication operation (k, P) �→ kP . Since in many
cases k is a secret, this operation is very sensitive to attacks. In particular many
side-channel attacks [4,23] and countermeasures [14] have been proposed. To
ensure protection against simple power analysis (SPA) attacks it is important
to use regular scalar multiplication algorithms, e. g. Montgomery ladder [20]
or Double-And-Add-Always [14], executing both an addition and a doubling
operation per scalar bit.

3 Parallelism

An important way to increase the efficiency of the implementation is to use multi-
ple Montgomery multipliers in parallel. In this section we give a brief explanation
for our choice of three multipliers.

The addition formulas on which our scalar multiplication is built are shown
in Algorithm 1 of [31]. We choose to ignore additions and subtractions since we
assume to be relying on a Montgomery multiplier for which the cost of field mul-
tiplications is far higher than that of field additions. The total (multiplicative)
cost in the most general case is 12M+2ma +3m3b

1. Because our processors do
not distinguish full multiplications and multiplications by constants, we consider
this cost simply as 17M. The authors of [31] introduce optimizations for mixed
addition and doubling, but in our case this only saves a single multiplication
(and some additions). Since this does not make up for the price we would have
to pay for the implementation of a second algorithm, we only examine the most
general case. In Table 1 we show the interdependencies of the multiplications.

1 We denote by M, ma, m3b, a the cost of a general multiplication, a multiplication by
curve constant a, a multiplication by curve constant 3b, and an addition respectively.

Implementing Complete Formulas on Weierstrass Curves in Hardware 93

Table 1. Dependencies of multiplications inside the complete addition formulas

Stage Result Multiplication Dependent on

0 �0 X1 · X2 -

0 �1 Y1 · Y2 -

0 �2 Z1 · Z2 -

0 �3 (X1 + Y1) · (X2 + Y2) -

0 �4 (X1 + Z1) · (X2 + Z2) -

0 �5 (Y1 + Z1) · (Y2 + Z2) -

1 �6 b3 · �2 �2

1 �7 a · �2 �2

1 �8 a · (�4 − �0 − �2) �0, �2, �4

1 �9 b3 · (�4 − �0 − �2) �0, �2, �4

2 �10 a · (�0 − �7) �0, �7

2 �11 (�3 − �0 − �1) · (�1 − �8 − �6) �0, �1, �3, �6, �8

2 �13 (�1 + �8 + �6) · (�1 − �8 − �6) �1, �6, �8

2 �15 (�5 − �1 − �2) · (�1 + �8 + �6) �1, �2, �5, �6, �8

2 �16 (�3 − �0 − �1) · (3�0 + �7) �0, �1, �3, �7

3 �12 (�5 − �1 − �2) · (�10 + �9) �1, �2, �5, �9, �10

3 �14 (3�0 + �7) · (�10 + �9) �0, �7, �9, �10

Table 2. Efficiency approximation of the number of Montgomery multipliers against
the area used.

n Cost Area × Time Algorithm

1 17M + 23a 17M + 23a 1 in [31]

2 9M2 + 12a2 18M + 24a 1

3 6M3 + 8a3 18M + 24a 2

4 5M4 + 7a4 20M + 28a 3

5 4M5 + 6a5 20M + 30a 4

6 3M6 + 6a6 18M + 36a 5

This allows us to write down algorithms for implementations running n
processors in parallel. Denote by Mn resp. an the cost of doing n multiplications
resp. additions (or subtractions) in parallel. In Table 2 we present the costs for
1 ≤ n ≤ 6. We make the simple approximations that Mn = M and an = a.
We note that this ignores some practical aspects. For example a larger number
of Montgomery multipliers can result in scheduling overhead, which we do not
take into account. All algorithms and their respective Magma [11] verification
code can be found in Appendices B and C. For our implementation we have
chosen for n = 3, i. e. three Montgomery multipliers. This number of multipliers

94 P.M.C. Massolino et al.

achieves a great area-time trade-off, while obtaining a good speed-up compared
to n = 1. Moreover, the aforementioned practical issues (e. g. scheduling) are not
as complicated to deal with as for larger n.

4 Implementation of the Formulas with Three Processors

In this section we introduce a novel hardware implementation, parallelizing
the new formulas using three Montgomery processors. We make use of the
Montgomery processors which have been proposed by Massolino et al. [26] for
MicrosemiR© IGLOO2R© FPGAs, for which the architecture is shown in Fig. 1.
We give a short description of the processor in Sect. 4.1, but for more details
on its internals we refer to [26]. As a consequence of building on top of this
processor, we target the same FPGA. However, it is straightforward to port to
other FPGA’s or even ASICs which have a Montgomery multiplier with the same
interface and instructions.

Fig. 1. Montgomery addition, subtraction and multiplication processor.

The elliptic curve scalar multiplication routine is constructed on top of the
Montgomery processors. As mentioned before, to protect against simple power
analysis attacks, we implement a regular scalar multiplication algorithm (i. e.
Double-And-Add-Always [14]). The algorithm relies on three registers R0, R1 and
R2. The register R0 contains the operand which is always doubled. The registers
R1 resp. R2 contain the result of the addition when the exponent bit is zero
resp. one. This algorithm should be applied carefully since it is prone to fault
attacks [3]. From a very high level point of view the architecture consists of the
three Montgomery multipliers and a single BRAM block, shown in Fig. 2. We
note that this BRAM block is more than large enough to store the necessary
temporary variables. So although Algorithm 2 tries to minimize the number of
these, this is not necessary for our case. In the rest of this section we elaborate
on the details of the implementation.

4.1 The Montgomery Processor

Massolino et al. [26] proposed two different Montgomery processors. Our scalar
multiplication builds on top of “version 2”, which has support for two internal

Implementing Complete Formulas on Weierstrass Curves in Hardware 95

multipliers and two memory blocks. It can perform three operations: Mont-
gomery multiplication, addition without reduction and subtraction without
reduction. To perform Montgomery multiplication, the processor employs the
FIOS algorithm proposed by Koç et al. [21]. In short, FIOS computes the par-
tial product and partial reduction inside the same iterative loop. This can be
translated into a hardware architecture, see Fig. 1, with a unit for the partial
product and another partial modular reduction. The circuit behaves like a three-
stage pipeline: in the first stage operands are fed into the circuit, in the second
they are computed and in the third they are stored into memory. The pipeline
system is reused for the addition and subtraction operation in the multiplier,
and values are added or subtracted directly. In case of subtraction the compu-
tation also adds a multiple of the prime modulus. Those operations can be done
without applying reduction, because reduction will be applied later during a
multiplication operation. However, there is a limit to the number of consecutive
additions/subtractions with no reduction, on which we elaborate in Sect. 4.4.

4.2 Memory

The main RAM memory in Fig. 2 is subdivided in order to lower control logic
resources and to facilitate the interface. The main memory operates as a true
dual port memory of 1024 words of 17 bits. We create a separation in the mem-
ory, composing a big word of 32 words (i. e. 544 bits). This way we construct
the memory as 32 × 32 big words. A big word can accommodate any temporary
variable, input or output of our architecture. An exception is possibly the scalar
of the point scalar multiplication. Although a single word would be large enough
to contain 523-bit scalars (in the largest case of a 523-bit field), the scalar blind-
ing technique can double the size of the scalar. Therefore, we use two words to
store the scalar. By doing this, it will in the future be possible to execute scalar
multiplication with a blinded scalar [13]. Lastly, there is a 17-bit shift register
into which the scalar is loaded word by word.

Fig. 2. Entire architecture with three Montgomery processors from [26], where MM =
Montgomery processor, SHR = Shift register, REG = Register.

96 P.M.C. Massolino et al.

4.3 Control Logic

The formulas and control system are done through two state machines: a main
one which controls everything, and one related to memory transfer.

The memory-transfer state machine was created with the purpose to reduce
the number of states in the main machine. This was done by providing the
operation of transfer between the main memory and the Montgomery processors
memory. Therefore, the main machine can transfer values with just one state,
and can reuse most of the transfer logic. This memory-transfer machine becomes
responsible for various parts of the bus between main memories, processors and
other counters. However, the main state machine still has to be able to control
everything. Hence, the main state machine shares some components with the
memory transfer machine, increasing control circuit costs.

The main state machine controls all the circuits that compose the entire
cryptographic core. Given it controls the entire circuit, the machine also has the
entire Table 2 scheduling implemented as states. The advantage of doing this
through states is the possible optimization of the design and the entire control.
However, the cost of maintenance is a lot higher than a small instruction set
or microcode that can also implement the addition formulas or scalar multi-
plication. Because the addition formulas are complete, it is possible to reduce
the costs of performing both addition and doubling through only the addition
formulas. This decreases the amount of states and therefore makes the final
implementation a lot more compact. Hence, the implementation only iterates
over the addition formulas, until the end of the computations.

4.4 Consecutive Additions

For the Montgomery processor to work in our architecture, part of the origi-
nal design was changed. The authors of [26] did not need to reduce after each
addition or subtraction, as they assumed that these operations would always
be followed by Montgomery multiplications (and its corresponding reduction).
However, they were not able to do multiple consecutive additions and subtrac-
tions, as the Montgomery division value r was chosen to be only 4 bits larger
than the prime. On the other hand, it is readily seen that in Algorithm 2 there
are several consecutive additions and subtractions. One example of such addi-
tions is t9 in line 7, then latter on line 8 is added and stored on t10, which on
line 10 is added with a fourth value. To be able to execute these without having
to reduce, we need a Montgomery division value at least 5 bits larger than the
prime. As a consequence, the processor only works for primes up to 522 bits (as
opposed to 523), which is still one bit more than the largest standardized prime
curve [29].

Implementing Complete Formulas on Weierstrass Curves in Hardware 97

Table 3. Scheduling for point addition P ← P + Q, where P = (X1 : Y1 : Z1) and
Q = (X2 : Y2 : Z2). For doubling simply put P = Q.

Line # Algorithm 2 MM0 MM1 MM2

1 t0 ← X1 · X2 t1 ← Y1 · Y2

t2 ← Z1 · Z2

2 t3 ← X1 + Y1 t4 ← X2 + Y2

t5 ← Y1 + Z1

3 t7 ← X1 + Z1 t8 ← X2 + Z2

t6 ← Y2 + Z2

4 t9 ← t3 · t4 t11 ← t7 · t8

t10 ← t5 · t6

5 t4 ← t1 + t2 t5 ← t0 + t2

t3 ← t0 + t1

6,7,8 t6 ← b3 · t2 t8 ← a · t2

t2 ← t9 − t3

t3 ← t10 − t4

t4 ← t11 − t5

t9 ← t0 + t0

t10 ← t9 + t0

9 t5 ← b3 · t4 t11 ← a · t4

t7 ← t0 − t8

t9 ← a · t7

10 t0 ← t8 + t10 t4 ← t11 + t6

t7 ← t5 + t9

11 t5 ← t1 − t4 t6 ← t1 + t4

12 t4 ← t0 · t7 t1 ← t5 · t6

t8 ← t3 · t7

13 t11 ← t0 · t2 t9 ← t2 · t5

t10 ← t3 · t6

14 Y1 ← t1 + t4 X1 ← t9 − t8

Z1 ← t10 + t11

4.5 Scheduling

The architecture presented in Fig. 2 has one dual port memory, whereas it has
three processors. This means that we can only load values to two processors at
the same time. As a consequence the three processors do not run completely in
parallel, but one of the three is unsynchronized. Table 3 showcases how operations
are split into different processors. They are distributed with the goal of minimiz-
ing the number of loads and stores for each processor and to minimize MM2 being
idle. The process begins by loading the necessary values into MM0 and MM1 and exe-

98 P.M.C. Massolino et al.

cuting their respective operations. As soon as the operations in MM0 and MM1 are
initialized, it loads the corresponding value into MM2 and executes the operation.
As soon as MM0 and MM1 finish their operations, this process restarts. Since the
operations executed in MM2 are not synchronized with those in MM0 and MM1, both
of the operations in MM0 and MM1 should be independent of the output of MM2, and
vice versa. Furthermore, since multiplications are at least ten times slower than
additions for our processor choice [26], the additions and subtractions from lines
seven and eight in Algorithm 2 can be done by the otherwise idle processor MM2 in
stage six. This makes them basically free of cost.

4.6 Comparison

As our architecture supports primes from 116 to 522 bits, we can run benchmarks
and do comparisons for multiple bitsizes. The results for different common prime
sizes are shown in Table 5 in Appendix A. In this section we consider only the
currently widely adopted 128-bit security level, presented in Table 4. Integer
addition, subtraction and Montgomery modular multiplication results are the
same as in Massolino et al. [26]. This is the first work implementing the new
complete formulas for elliptic curves in short Weierstrass form [31], and leads to
a scalar multiplication routine which takes about 14.21 ms for a 256-bit prime.

It is not straightforward to do a well-founded comparison between work in
the literature. Table 4 contains different implementations of elliptic curve scalar
multiplication, but they have different optimization goals. For example we top
[35,36] in terms of milliseconds per scalar multiplication, but they use less mul-
tipliers or run at a lower frequency. On the other hand [1,17,18,25,27,34] out-
perform our architecture in terms of speed, but use a much larger number of
embedded multipliers. Also, implementations only focusing on NIST curves are
able to use the special prime shape, yielding a significant speed-up. Depending
on the needs of a specific hardware designer, this specialization of curves might
not always be desirable. As mentioned before, many parties in industry might
prefer generic cores. Despite these remarks, we argue that the implementation
is competitive with the literature, making a similar trade-off between size and
speed. Thus the new formulas can be implemented with little to no penalties,
while having the benefit of not having to deal with exceptions.

Implementing Complete Formulas on Weierstrass Curves in Hardware 99

A More complete results comparison

Table 4. Comparison of our results to the literature on hardware implementations for
ECC. The speed results are for one scalar multiplication.

Work Field FPGA Slice/ LUT FF Emb. BRAM BRAM Freq. Scalar Mult.

ALM Mult. 64× 18 1 k× 18 (MHz) Cycles (ms)

For all prime fields and prime order short Weierstrass curves

Our 256 IGLOO 24 – 2828 1048 6 6 1 100 1421312 14.21

For NIST curves [29] only

[35] 256 SmartFusion4 – 3690 3690 0 0 12 109 2103941 19.3

[35] 256 Virtex II Pro4 773 1546a 1546a 1 0 3 210 2103941 10.02

[35] 256 Virtex II Pro4 1158 2316a 2316a 4 0 3 210 949951 4.52

[30] 256 Virtex 56c 1914 7656a 7656a 4 0 12 210 830000 3.95

[16] 192 Virtex II Pro4 3173 6346a 6346a 16 0 6 93 920700b 9.90

[32] 256 Spartan 66 72 193 35 8 0 24 156.25 1906250b 12.2

[24] 256 Virtex 44 7020 12435 3545 8 0 4 182 993174b 5.457

[1] 256 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 39922 0.40

[17] 256 Virtex 44 1715 2589 2028 32 0 11 490 303450 0.619

For only Edwards or Twisted Edwards curves

[2] 192 Spartan 3E 4 4654 9308a 9308a 0 0 0 10 125430b 12.543

[34] 256 Zynq6c 1029 2783 3592 20 0 4 200 64770 0.324

For only specific field size, but works with any prime

[36] 256 Virtex II Pro4 1832 3664a 3664a 2 0 9 108.2 3227993 29.83

[36] 256 Virtex II Pro4 2085 4170a 4170a 7 0 9 68.17 1074625 15.76

[18] 256 Stratix II4 9177 18354a 18354a 96 0 0 157.2 106896b 0.68

[27] 256 Virtex II Pro4 15755 31510a 31510a 256 0 0 39.46 151360 3.86

[25] 256 Virtex 44 4655 5740 4876 37 0 11 250 109297 0.44
aMaximum possible value assumed from the number of slices. Virtex II Pro and Spartan 3E slice is 2

LUTs and FFs, Virtex 5 is 4 LUTs and FFs, finally Virtex 6 is 4 LUTs and 8 FFs. Stratix II ALM can

be configured into 2 LUTs and FFs.
bValues estimated by multiplying time by frequency.
4 6 indicates LUT size.
cBRAMs of Virtex 5, 6 and Zynq are 1 k× 36, so they account as 2 independent 1 k× 18.

100 P.M.C. Massolino et al.

Table 5. Complete comparison and results from Table 4

Work Field FPGA Slice/ LUT FF Emb. BRAM BRAM Freq. Scalar Mult.

ALM Mult. 64× 18 1 k×18 (MHz) Cycles (ms)

For all prime fields and prime order short Weierstrass curves

Our 192 IGLOO 24 – 2828 1048 6 6 1 100 728448 7.28

Our 224 IGLOO 24 – 2828 1048 6 6 1 100 1036224 10.36

Our 256 IGLOO 24 – 2828 1048 6 6 1 100 1421312 14.21

Our 320 IGLOO 24 – 2828 1048 6 6 1 100 2498560 24.99

Our 384 IGLOO 24 – 2828 1048 6 6 1 100 3744768 37.45

Our 512 IGLOO 24 – 2828 1048 6 6 1 100 8187904 81.88

Our 521 IGLOO 24 – 2828 1048 6 6 1 100 8331832 83.32

For NIST curves [29] only

[35] 224 SmartFusion4 – 3690 3690 0 0 12 109 1722088 15.8

[35] 256 SmartFusion4 – 3690 3690 0 0 12 109 2103941 19.3

[35] 224 Virtex II Pro4 773 1546a 1546a 1 0 3 210 1722088 8.2

[35] 256 Virtex II Pro4 773 1546a 1546a 1 0 3 210 2103941 10.02

[35] 224 Virtex II Pro4 1158 2316a 2316a 4 0 3 210 765072 3.64

[35] 256 Virtex II Pro4 1158 2316a 2316a 4 0 3 210 949951 4.52

[30] 256 Virtex 56c 1914 7656a 7656a 4 0 12 210 830000 3.95

[16] 192 Virtex II Pro4 3173 6346a 6346a 16 0 6 93 920700b 9.90

[32] 256 Spartan 66 72 193 35 8 0 24 156.25 1906250b 12.2

[24] 192 Virtex 44 7020 12435 3545 8 0 4 182 429702b 2.361

[24] 224 Virtex 44 7020 12435 3545 8 0 4 182 666666b 3.663

[24] 256 Virtex 44 7020 12435 3545 8 0 4 182 993174b 5.457

[24] 384 Virtex 44 7020 12435 3545 8 0 4 182 2968420b 16.31

[24] 521 Virtex 44 7020 12435 3545 8 0 4 182 7048860b 38.73

[1] 192 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 29948 0.30

[1] 224 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 34999 0.35

[1] 256 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 39922 0.40

[1] 384 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 11722 1.18

[1] 521 Virtex 66c 11.2 k 32.9 k 89.6 ka 289 0 256 100 159959 1.60

[17] 224 Virtex 44 1580 1825 1892 26 0 11 487 219878 0.451

[17] 256 Virtex 44 1715 2589 2028 32 0 11 490 303450 0.619

For only Edwards or Twisted Edwards curves

[2] 192 Spartan 3E 4 4654 9308a 9308a 0 0 0 10 125430b 12.543

[34] 256 Zynq6c 1029 2783 3592 20 0 4 200 64770 0.324

For only specific field size, but works with any prime

[36] 256 Virtex II Pro4 1832 3664a 3664a 2 0 9 108.2 3227993 29.83

[36] 256 Virtex II Pro4 2085 4170a 4170a 7 0 9 68.17 1074625 15.76

[18] 192 Stratix II4 6203 12406a 12406a 92 0 0 160.5 70620b 0.44

[18] 256 Stratix II4 9177 18354a 18354a 96 0 0 157.2 106896b 0.68

[18] 384 Stratix II4 12958 25916a 25916a 177 0 0 150.9 203715b 1.35

[18] 512 Stratix II4 17017 34034a 34034a 244 0 0 144.97 323283b 2.23

[27] 256 Virtex II Pro4 15755 31510a 31510a 256 0 0 39.46 151360 3.86

[25] 256 Virtex 44 4655 5740 4876 37 0 11 250 109297 0.44

Implementing Complete Formulas on Weierstrass Curves in Hardware 101

B Algorithms

Algorithm 1. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using two processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3

and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 + Y1;
t1 ← X2 + Y2;

2. t2 ← Y1 + Z1;
t3 ← Y2 + Z2;

3. t0 ← t0 · t1; (�3)
t1 ← t2 · t3; (�5)

4. t4 ← X1 · X2; (�0)
t6 ← Z1 · Z2; (�2)

5. t2 ← X1 + Z1;
t3 ← X2 + Z2;

6. t0 ← t0 − t4;
t1 ← t1 − t6;

7. t5 ← Y1 · Y2; (�1)
t2 ← t2 · t3; (�4)

8. t7 ← a · t6; (�7)
t8 ← b3 · t6; (�8)

9. t9 ← t4 − t7;
t10 ← t4 + t4;

10. t11 ← t4 + t7;
t2 ← t2 − t4;

11. t0 ← t0 − t5;
t1 ← t1 − t5;

12. t2 ← t2 − t6;
t10 ← t10 + t11;

13. t9 ← a · t9; (�10)
t11 ← b3 · t2; (�9)

14. t2 ← a · t2; (�8)

15. t9 ← t9 + t11;
t8 ← t2 + t8;

16. t6 ← t5 − t8;
t5 ← t5 + t8;

17. t3 ← t1 · t9; (�12)
t9 ← t9 · t10; (�14)

18. t10 ← t0 · t10; (�16)
t0 ← t0 · t6; (�11)

19. t6 ← t5 · t6; (�13)
t1 ← t1 · t5; (�15)

20. X3 ← t0 − t3;
Y9 ← t6 + t9;

21. Z3 ← t1 + t10;

102 P.M.C. Massolino et al.

Algorithm 2. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using three processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3

and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 · X2; (�0)
t1 ← Y1 · Y2; (�1) t2 ← Z1 · Z2; (�2)

2. t3 ← X1 + Y1;
t4 ← X2 + Y2; t5 ← Y1 + Z1;

3. t6 ← Y2 + Z2;
t7 ← X1 + Z1; t8 ← X2 + Z2;

4. t9 ← t3 · t4; (�3)
t10 ← t5 · t6; (�5) t11 ← t7 · t8; (�4)

5. t3 ← t0 + t1;
t4 ← t1 + t2; t5 ← t0 + t2;

6. t6 ← b3 · t2; (�6)
t8 ← a · t2; (�7)

7. t2 ← t9 − t3;
t9 ← t0 + t0; t3 ← t10 − t4;

8. t10 ← t9 + t0;
t4 ← t11 − t5; t7 ← t0 − t8;

9. t0 ← a · t4; (�8)
t5 ← b3 · t4; (�9) t9 ← a · t7; (�10)

10. t4 ← t0 + t6;
t7 ← t5 + t9; t0 ← t8 + t10;

11. t5 ← t1 − t4;
t6 ← t1 + t4;

12. t1 ← t5 · t6; (�13)
t4 ← t0 · t7; (�14) t8 ← t3 · t7; (�12)

13. t9 ← t2 · t5; (�11)
t10 ← t3 · t6; (�15) t11 ← t0 · t2; (�16)

14. X3 ← t9 − t8;
Y3 ← t1 + t4; Z3 ← t10 + t11;

Algorithm 3. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using four processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3

and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 + Y1;
t1 ← X2 + Y2; t2 ← Y1 + Z1; t3 ← Y2 + Z2;

2. t0 ← t0 · t1; (�3)
t1 ← t2 · t3; (�5) t4 ← X1 · X2; (�0) t6 ← Z1 · Z2; (�2)

3. t2 ← X1 + Z1;
t3 ← X2 + Z2; t0 ← t0 − t4; t1 ← t1 − t6;

4. t5 ← Y1 · Y2; (�1)
t2 ← t2 · t3; (�4) t7 ← a · t6; (�7) t8 ← b3 · t6; (�6)

5. t9 ← t4 − t7;
t10 ← t4 + t4; t11 ← t4 + t7; t2 ← t2 − t4;

6. t0 ← t0 − t5;
t1 ← t1 − t5; t2 ← t2 − t6; t10 ← t10 + t11;

7. t9 ← a · t9; (�10)
t11 ← b3 · t2; (�9) t2 ← a · t2; (�8)

8. t9 ← t9 + t11;

9. t3 ← t1 · t9; (�12)
t9 ← t9 · t10; (�14) t10 ← t0 · t10; (�16) t8 ← t2 + t8;

10. t6 ← t5 − t8;
t5 ← t5 + t8;

11. t0 ← t0 · t6; (�11)
t6 ← t5 · t6; (�13) t1 ← t1 · t5; (�15)

12. X3 ← t0 − t3;
Y3 ← t6 + t9; Z3 ← t1 + t10;

Implementing Complete Formulas on Weierstrass Curves in Hardware 103

Algorithm 4. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using five processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3

and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t5 ← X1 + Y1;
t6 ← X2 + Y2; t7 ← X1 + Z1;

t8 ← X2 + Z2; t9 ← Y1 + Z1;

2. t0 ← X1 · X2; (�0)
t1 ← Y1 · Y2; (�1) t2 ← Z1 · Z2; (�2)

t3 ← t5 · t6; (�3) t4 ← t7 · t8; (�4)

3. t10 ← Y2 + Z2;
t3 ← t3 − t0; t4 ← t4 − t0;

t11 ← t0 + t0;

4. t3 ← t3 − t1;
t4 ← t4 − t2; t11 ← t11 + t0;

5. t5 ← t9 · t10; (�5)
t6 ← b3 · t2; (�6) t7 ← a · t2; (�7)

t8 ← a · t4; (�8) t9 ← b3 · t4; (�9)

6. t5 ← t5 − t1;
t11 ← t11 + t7; t4 ← t0 − t7;

t10 ← t6 + t8;

7. t0 ← a · t4; (�10)
t6 ← t3 · t11; (�16)

8. t0 ← t0 + t9;
t7 ← t1 − t10; t10 ← t1 + t10;

t5 ← t5 − t2;

9. t1 ← t3 · t7; (�11)
t2 ← t5 · t0; (�12) t4 ← t10 · t7; (�13)

t8 ← t11 · t0; (�14) t9 ← t5 · t10; (�15)

10. X3 ← t1 − t2;
Y3 ← t4 + t8; Z3 ← t9 + t6;

Algorithm 5. Parallelized complete addition formulas for a prime order
elliptic curve in Weierstrass form, using six processors

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3,

b3 = 3 · b and a2 = a2.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 + Y1;
t1 ← X2 + Y2; t2 ← Y1 + Z1;

t3 ← Y2 + Z2; t4 ← X1 + Z1; t5 ← X2 + Z2;

2. t0 ← t0 · t1; (n3)
t1 ← t2 · t3; (n5) t2 ← t4 · t5; (n4)

t3 ← X1 · X2; (n0) t4 ← Y1 · Y2; (n1) t5 ← Z1 · Z2; (n2)

3. t0 ← t0 − t3;
t1 ← t1 − t4; t2 ← t2 − t5;

4. t0 ← t0 − t4;
t1 ← t1 − t5; t2 ← t2 − t3;

5. t6 ← b3 · t5; (n6)
t7 ← a · t5; (n7) t8 ← a · t2; (n8)

t9 ← b3 · t2; (n9) t10 ← a · t3; (n10) t11 ← a2 · t5; (n11)

6. t6 ← t6 + t8;
t7 ← t3 + t7 t8 ← t3 + t3;

t9 ← t9 + t10;

7. t9 ← t9 − t11;
t8 ← t8 + t7 t7 ← t4 − t6;

t6 ← t4 + t6;

8. t3 ← t0 · t7; (n12)
t4 ← t0 · t8; (n17) t5 ← t1 · t9; (n13)

t8 ← t8 · t9; (n15) t7 ← t6 · t7; (n14) t6 ← t1 · t6; (n16)

9. X3 ← t3 − t5;
Y3 ← t7 + t8; Z3 ← t6 + t4;

104 P.M.C. Massolino et al.

C Verification code

ADD_two := function(X1,Y1,Z1,X2,Y2,Z2,E,a,b3)

t0 := X1+Y1; t1 := X2+Y2;

t2 := Y1+Z1; t3 := Y2+Z2;

t0 := t0*t1; t1 := t2*t3;

t4 := X1*X2; t6 := Z1*Z2;

t2 := X1+Z1; t3 := X2+Z2;

t0 := t0-t4; t1 := t1 -t6;

t5 := Y1*Y2; t2 := t2*t3;

t7 := a*t6; t8 := b3*t6;

t9 := t4-t7; t10 := t4+t4;

t11 := t4+t7; t2 := t2 -t4;

t0 := t0-t5; t1 := t1 -t5;

t2 := t2-t6; t10 := t10+t11;

t9 := a*t9; t11 := b3*t2;

t2 := a*t2;

t9 := t9+t11; t8 := t2+t8;

t6 := t5-t8; t5 := t5+t8;

t3 := t1*t9; t9 := t9*t10;

t10 := t0*t10; t0 := t0*t6;

t6 := t5*t6; t1 := t1*t5;

X3 := t0-t3; Y3 := t6+t9;

Z3 := t1+t10;

return E![X3 ,Y3 ,Z3];

end function;

ADD_three := function(X1,Y1,Z1,X2,Y2,Z2,E,a,b3);

t0 := X1*X2; t1 := Y1*Y2; t2 := Z1*Z2;

t3 := X1+Y1; t4 := X2+Y2; t5 := Y1+Z1;

t6 := Y2+Z2; t7 := X1+Z1; t8 := X2+Z2;

t9 := t3*t4; t10 := t5*t6; t11 := t7*t8;

t3 := t0+t1; t4 := t1+t2; t5 := t0+t2;

t6 := b3*t2; t8 := a*t2;

t2 := t9-t3; t9 := t0+t0; t3 := t10 -t4;

t10 := t9+t0; t4 := t11 -t5; t7 := t0-t8;

t0 := a*t4; t5 := b3*t4; t9 := a*t7;

t4 := t0+t6; t7 := t5+t9; t0 := t8+t10;

t5 := t1-t4; t6 := t1+t4;

t1 := t5*t6; t4 := t0*t7; t8 := t3*t7;

t9 := t2*t5; t10 := t3*t6; t11 := t0*t2;

X3 := t9-t8; Y3 := t1+t4; Z3 := t10+t11;

return E![X3 ,Y3 ,Z3];

end function;

ADD_four := function(X1,Y1 ,Z1 ,X2 ,Y2 ,Z2,E,a,b3);

t0 := X1+Y1; t1 := X2+Y2; t2 := Y1+Z1; t3 := Y2+Z2;

t0 := t0*t1; t1 := t2*t3; t4 := X1*X2; t6 := Z1*Z2;

t2 := X1+Z1; t3 := X2+Z2; t0 := t0 -t4; t1 := t1-t6;

Implementing Complete Formulas on Weierstrass Curves in Hardware 105

t5 := Y1*Y2; t2 := t2*t3; t7 := a*t6;; t8 := b3*t6;

t9 := t4-t7; t10 := t4+t4; t11 := t4+t7; t2 := t2-t4;

t0 := t0-t5; t1 := t1-t5; t2 := t2-t6; t10 := t10+t11;

t9 := a*t9; t11 := b3*t2; t2 := a*t2;

t9 := t9+t11;

t3 := t1*t9; t9 := t9*t10; t10 := t0*t10; t8 := t2+t8;

t6 := t5-t8; t5 := t5+t8;

t0 := t0*t6; t6 := t5*t6; t1 := t1*t5;

X3 := t0-t3; Y3 := t6+t9; Z3 := t1+t10;

return E![X3 ,Y3 ,Z3];

end function;

ADD_five := function(X1 ,Y1 ,Z1,X2,Y2,Z2,E,a,b3);

t5 := X1+Y1; t6 := X2+Y2; t7 := X1+Z1;

t8 := X2+Z2; t9 := Y1+Z1; // 1

t0 := X1*X2; t1 := Y1*Y2; t2 := Z1*Z2;

t3 := t5*t6; t4 := t7*t8; // 2

t10 := Y2+Z2; t3 := t3-t0; t4 := t4-t0;

t11 := t0+t0; // 3

t3 := t3-t1; t4 := t4-t2; t11 := t11+t0; // 4

t5 := t9*t10; t6 := b3*t2; t7 := a*t2;

t8 := a*t4; t9 := b3*t4; // 5

t5 := t5-t1; t11 := t11+t7; t4 := t0-t7;

t10 := t6+t8; // 6

t0 := a*t4; t6 := t3*t11; // 7

t0 := t0+t9; t7 := t1-t10; t10 := t1+t10;

t5 := t5-t2; // 8

t1 := t3*t7; t2 := t5*t0; t4 := t10*t7;

t8 := t11*t0; t9 := t5*t10; // 9

X3 := t1-t2; Y3 := t4+t8; Z3 := t9+t6; // 10

return E![X3,Y3,Z3];

end function;

ADD_six := function(X1,Y1,Z1,X2 ,Y2 ,Z2 ,E,a,b3)

t0 := X1+Y1; t1 := X2+Y2; t2 := Y1+Z1;

t3 := Y2+Z2; t4 := X1+Z1; t5 := X2+Z2; // 1

t0 := t0*t1; t1 := t2*t3; t2 := t4*t5;

t3 := X1*X2; t4 := Y1*Y2; t5 := Z1*Z2; // 2

t0 := t0-t3; t1 := t1-t4; t2 := t2-t5; // 3

t0 := t0-t4; t1 := t1-t5; t2 := t2-t3; // 4

t6 := b3*t5; t7 := a*t5; t8 := a*t2;

t9 := b3*t2; t10 := a*t3; t11 := a^2*t5; // 5

t6 := t6+t8; t7 := t3+t7; t8 := t3+t3;

t9 := t9+t10; // 6

t9 := t9-t11; t8 := t8+t7; t7 := t4-t6;

t6 := t4+t6; // 7

t3 := t0*t7; t4 := t0*t8; t5 := t1*t9;

t8 := t8*t9; t7 := t6*t7; t6 := t1*t6; // 8

X3 := t3-t5; Y3 := t7+t8; Z3 := t6+t4; // 9

return E![X3,Y3,Z3];

106 P.M.C. Massolino et al.

end function;

while(true) do

repeat q:= RandomPrime (8); until q gt 3;

Fq:=GF(q);

repeat repeat a:= Random(Fq); b:= Random(Fq); until not (4*

a^3+27*b^2 eq 0);

E:= EllipticCurve ([Fq|a,b]);

b3 := 3*b;

until IsOdd(#E);

for P in Set(E) do

for Q in Set(E) do

repeat Z1 := Random(Fq); until Z1 ne 0;

repeat Z2 := Random(Fq); until Z2 ne 0;

X1 := P[1]*Z1; Y1 := P[2]*Z1; Z1 := P[3]*Z1;

X2 := Q[1]*Z2; Y2 := Q[2]*Z2; Z2 := Q[3]*Z2;

assert P+Q eq ADD_two(X1,Y1 ,Z1 ,X2 ,Y2 ,Z2,E,a,b3);

assert P+Q eq ADD_three(X1,Y1,Z1,X2,Y2,Z2 ,E,a,b3);

assert P+Q eq ADD_four(X1,Y1 ,Z1,X2,Y2,Z2,E,a,b3);

assert P+Q eq ADD_five(X1,Y1 ,Z1,X2,Y2,Z2,E,a,b3);

assert P+Q eq ADD_six(X1,Y1 ,Z1 ,X2 ,Y2 ,Z2,E,a,b3);

end for;

end for;

print"Correct:", E;

end while;

References

1. Alrimeih, H., Rakhmatov, D.: Fast and flexible hardware support for ECC over
multiple standard prime fields. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
22(12), 2661–2674 (2014)

2. Baldwin, B., Moloney, R., Byrne, A., McGuire, G., Marnane, W.P.: A hardware
analysis of twisted edwards curves for an elliptic curve cryptosystem. In: Becker,
J., Woods, R., Athanas, P., Morgan, F. (eds.) ARC 2009. LNCS, vol. 5453, pp.
355–361. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00641-8 41

3. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

4. Batina, L., Chmielewski, �L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online template attacks. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT
2014. LNCS, vol. 8885, pp. 21–36. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-13039-2 2

5. Bernstein, D.J.: Curve25519: new diffie-hellman speed records. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Heidelberg (2006). doi:10.1007/11745853 14

6. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68164-9 26

http://dx.doi.org/10.1007/978-3-642-00641-8_41
http://dx.doi.org/10.1007/978-3-319-13039-2_2
http://dx.doi.org/10.1007/978-3-319-13039-2_2
http://dx.doi.org/10.1007/11745853_14
http://dx.doi.org/10.1007/978-3-540-68164-9_26

Implementing Complete Formulas on Weierstrass Curves in Hardware 107

7. Bernstein, D.J., Chuengsatiansup, C., Kohel, D., Lange, T.: Twisted hessian
curves. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015.
LNCS, vol. 9230, pp. 269–294. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-22174-8 15

8. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2 3

9. Bernstein, D.J., Lange, T.: Explicit-Formulas Database. http://hyperelliptic.org/
EFD/index.html. Accessed 21 Feb 2015

10. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol.
7533, pp. 159–176. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33481-8 9

11. Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system I: the user
language. J. Symb. Comput. 24(3/4), 235–265 (1997)

12. Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters, Ver-
sion 2.0. Technical report, Certicom Research (2010)

13. Clavier, C., Joye, M.: Universal exponentiation algorithm a first step towards
Provable SPA-Resistance. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES
2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg (2001). doi:10.1007/
3-540-44709-1 25

14. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 25

15. ECC Brainpool: ECC Brainpool standard curves and curve generation. Technical
report, Brainpool (2005)

16. Fan, J., Sakiyama, K., Verbauwhede, I.: Elliptic curve cryptography on embedded
multicore systems. Design Autom. Embedded Syst. 12(3), 231–242 (2008). doi:10.
1007/s10617-008-9021-3

17. Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3 5

18. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications
over Fp. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
48–64. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 4

19. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625 (2015). http://eprint.iacr.org/2015/625.pdf

20. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 22

21. Koç, Ç.K., Acar, T., Kaliski, B.S.: Analyzing and comparing Montgomery multi-
plication algorithms. IEEE Micro 16(3), 26–33 (1996)

22. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
23. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

24. Loi, K.C.C., Ko, S.B.: Scalable elliptic curve cryptosystem FPGA processor for
NIST prime curves. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 23(11),
2753–2756 (2015)

25. Ma, Y., Liu, Z., Pan, W., Jing, J.: A high-speed elliptic curve cryptographic proces-
sor for generic curves over GF(p). In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 421–437. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-319-22174-8_15
http://dx.doi.org/10.1007/978-3-319-22174-8_15
http://dx.doi.org/10.1007/978-3-540-76900-2_3
http://hyperelliptic.org/EFD/index.html
http://hyperelliptic.org/EFD/index.html
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/3-540-44709-1_25
http://dx.doi.org/10.1007/3-540-44709-1_25
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/s10617-008-9021-3
http://dx.doi.org/10.1007/s10617-008-9021-3
http://dx.doi.org/10.1007/978-3-540-85053-3_5
http://dx.doi.org/10.1007/978-3-642-15031-9_4
http://eprint.iacr.org/2015/625.pdf
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25

108 P.M.C. Massolino et al.

26. Massolino, P.M.C., Batina, L., Chaves, R., Mentens, N.: Low Power Montgomery
Modular Multiplication on Reconfigurable Systems. Cryptology ePrint Archive,
Report 2016/280 (2016). http://eprint.iacr.org/2016/280

27. McIvor, C., McLoone, M., McCanny, J.V.: Hardware elliptic curve cryptographic
processor over GF(p). IEEE Trans. Circuits Syst. I Regul. Pap. 53(9), 1946–1957
(2006)

28. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.
1007/3-540-39799-X 31

29. National Institute for Standards and Technology. Federal information processing
standards publication 186–4. digital signature standard. Technical report, NIST
(2013)

30. Pöpper, C., Mischke, O., Güneysu, T.: MicroACP - a fast and secure reconfigurable
asymmetric crypto-processor. In: Goehringer, D., Santambrogio, M.D., Cardoso,
J.M.P., Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405, pp. 240–247. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-05960-0 24

31. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9665, pp. 403–428. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 16

32. Roy, D.B., Das, P., Mukhopadhyay, D.: ECC on your fingertips: a single instruction
approach for lightweight ECC design in GF(p). In: Dunkelman, O., Keliher, L.
(eds.) SAC 2015. LNCS, vol. 9566, pp. 161–177. Springer, Heidelberg (2015)

33. Sakiyama, K., Batina, L., Preneel, B., Verbauwhede, I.: Superscalar coprocessor
for high-speed curve-based cryptography. In: Goubin, L., Matsui, M. (eds.) CHES
2006. LNCS, vol. 4249, pp. 415–429. Springer, Heidelberg (2006). doi:10.1007/
11894063 33

34. Sasdrich, P., Güneysu, T.: Efficient elliptic-curve cryptography using curve25519 on
reconfigurable devices. In: Goehringer, D., Santambrogio, M.D., Cardoso, J.M.P.,
Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405, pp. 25–36. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-05960-0 3

35. Varchola, M., Guneysu, T., Mischke, O.: MicroECC: A lightweight reconfigurable
elliptic curve crypto-processor. In: 2011 International Conference on Reconfig-
urable Computing and FPGAs (ReConFig), pp. 204–210, November 2011

36. Vliegen, J., Mentens, N., Genoe, J., Braeken, A., Kubera, S., Touhafi, A., Ver-
bauwhede, I.: A compact FPGA-based architecture for elliptic curve cryptography
over prime fields. In: 2010 21st IEEE International Conference on Application-
specific Systems Architectures and Processors (ASAP), pp. 313–316, July 2010

37. Yao, G.X., Fan, J., Cheung, R.C.C., Verbauwhede, I.: Faster pairing coprocessor
architecture. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp.
160–176. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36334-4 10

38. Yen, S., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000)

http://eprint.iacr.org/2016/280
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/978-3-319-05960-0_24
http://dx.doi.org/10.1007/978-3-662-49890-3_16
http://dx.doi.org/10.1007/11894063_33
http://dx.doi.org/10.1007/11894063_33
http://dx.doi.org/10.1007/978-3-319-05960-0_3
http://dx.doi.org/10.1007/978-3-642-36334-4_10

Partially Homomorphic Encryption Schemes
over Finite Fields

Jian Liu1,2, Sihem Mesnager3(B), and Lusheng Chen4

1 School of Computer Software,
Tianjin University, Tianjin 300072, People’s Republic of China

jianliu.nk@gmail.com
2 CNRS, UMR 7539 LAGA, Paris, France

3 Department of Mathematics, University of Paris VIII, University of Paris XIII,
CNRS, UMR 7539 LAGA and Telecom ParisTech, Paris, France

smesnager@univ-paris8.fr
4 School of Mathematical Sciences, Nankai University,

Tianjin 300071, People’s Republic of China
lschen@nankai.edu.cn

Abstract. Homomorphic encryption scheme enables computation in the
encrypted domain, which is of great importance because of its wide and
growing range of applications. The main issue with the known fully (or
partially) homomorphic encryption schemes is the high computational
complexity and large communication cost required for their execution.
In this work, we study symmetric partially homomorphic encryption
schemes over finite fields, establishing relationships between homomor-
phisms over finite fields with q-ary functions. Our proposed partially
homomorphic encryption schemes have perfect secrecy and resist cipher-
only attacks to some extent.

Keywords: Homomorphic encryption · q-ary functions · Perfect
secrecy · Finite fields · Symmetric cryptography

1 Introduction

Homomorphic encryption schemes are cryptographic constructions which enable
to securely perform operations on encrypted data without ever decrypting them.
More precisely, a (group) homomorphic encryption scheme over a group (G, ∗)
satisfies that given two encryptions c1 = Ek(m1) and c2 = Ek(m2), where
m1,m2 ∈ G and k is the encryption key, one can efficiently compute Ek(m1∗m2)
without decrypting c1 and c2. Homomorphic encryption schemes are widely used
in many interesting applications, such as private information retrieval [6], elec-
tronic voting [2], multiparty computation [7], and cloud computing etc. Gener-
ally, fully homomorphic encryption schemes that support two operations over

This work is supported by the National Key Basic Research Program of China under
Grant 2013CB834204.

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 109–123, 2016.
DOI: 10.1007/978-3-319-49445-6 6

110 J. Liu et al.

the underlying algebraic structure, i.e., addition and multiplication, will benefit
more problems with different notions of security and cost.

The possibilities of homomorphic encryption were first explored by Rivest,
Adleman, and Dertouzos in [20] shortly after the presentation of RSA, where
homomorphic encryption was called “privacy homomorphism”. Multiplicative
homomorphic encryption scheme based on basic RSA [20] is an asymmet-
ric encryption system, which is useful for many applications. ElGamal [9] is
also a multiplicative homomorphic encryption scheme which is asymmetric.
Some additive homomorphic encryption schemes exist, see e.g. [18,19]. The
first candidate for fully homomorphic encryption scheme was presented by Gen-
try [10]. After that, a number of fully homomorphic encryption schemes were
proposed [4,5,12,23]. The security of these homomorphic encryption schemes
(including partially and fully homomorphic variants) relies on the hardness of
some problems. The main limitation for such homomorphic encryption schemes
in practice concerns computational cost and communication efficiency.

Homomorphic encryption schemes allow to securely delegate computation,
which have important significance in many client-server applications (e.g. cloud
computing). In a client-server framework, it is more preferable to select effi-
cient symmetric encryption schemes which are computationally “light” (e.g. over
finite fields or rings), since the clients have limited computation ability and
want to make communication cost small. However, such homomorphic encryp-
tion schemes are not easy to design, and the known constructions cannot com-
pletely suffice the needs of practical applications. In [8], Domingo-Ferrer pro-
posed a symmetric fully homomorphic encryption scheme over polynomial rings,
but at each time we multiply the ciphertexts, the size of the ciphertexts grows.
Domingo-Ferrer’s scheme has been broken by using a small pool of known plain-
texts (see e.g. [24]). Armknecht and Sadeghi [1] also construct a symmetric addi-
tive homomorphic encryption scheme based on Reed-Solomon code, which also
allows few number of multiplications. However, Armknecht’s scheme suffers from
the weakness that at some point, the error may become large enough to cause
incorrect decryption (see [11]). In [4], there is a symmetric fully homomorphic
encryption scheme based on the ring learning with errors assumption. Recently,
a typical framework combining a symmetric encryption scheme and an asym-
metric homomorphic encryption scheme was introduced to reduce the time and
memory complexity, see [17].

In this paper, we mainly consider symmetric partially homomorphic encryp-
tion schemes over finite fields, which are not based on hardness assumptions. In
a previous work, it was proved by Boneh and Lipton [3] that under a number
theoretic assumption, any fully homomorphic encryption scheme over a ring Zn

can be broken in sub-exponential time by cipher-only attacks. More explicitly,
given any ciphertext, the cryptanalyst who knows nothing about the secret key
can find the encrypted plaintext in sub-exponential time. Later, Maurer and
Raub [16] extended Boneh et al.’s work to finite fields of small characteristic.
Thus, fully homomorphic encryption schemes over finite fields or rings would be
vulnerable to cipher-only attacks. We propose two symmetric partially homo-

Partially Homomorphic Encryption Schemes over Finite Fields 111

morphic encryption schemes. After some security analyses, we show that the
multiplicative homomorphic encryption scheme and the additive homomorphic
encryption scheme can achieve perfect secrecy, i.e., given any ciphertext, the
cryptanalyst who does not know the secret key can determine nothing about
the encrypted plaintext. Furthermore, we claim that even the presented schemes
are not in a one-time pad setting, they can resist against cipher-only attacks
to some extent (if the size of the finite field is large enough). In addition, we
get that over finite fields, non-zero multiplicative homomorphisms are equiva-
lent to power functions, and non-zero additive homomorphisms are equivalent
to non-constant homogeneous affine functions.

2 Preliminaries

Let (G, ∗) and (H, ·) be two groups. A mapping f of G into H is called a homo-
morphism if it preserves the operation of G, i.e., for all x, y ∈ G, we have
f(x ∗ y) = f(x) · f(y).

Let Fq be a finite field, where q is a power of a prime. A function F :
Fq → Fq is called a q-ary function, which admits a unique univariate polynomial
representation over Fq:

F (x) =
q−1∑

i=0

δix
i, δi ∈ Fq, (1)

where the multiple sum is calculated in finite field Fq. The representation (1) of
F can be obtained by the interpolation formula below

F (x) =
∑

a∈Fq

F (a)
(
1 − (x − a)q−1

)
.

In fact, denote by P and Q the set of all the polynomials in (1) and the set of all
q-ary functions respectively. Then, define a mapping L : P → Q, which maps any
polynomial in P to the corresponding q-ary function. Because of the interpolation
formula, we know that L is surjective. Since it is clear that |P| = |Q| = qq, then
L is bijective. A q-ary function F is called a power function if F (x) = xd for some
d ∈ Zq, where Zq is the residue class ring modulo q. Let q = ps for some positive
integer s, where p is a prime. For i ∈ Zq, we use wtp(i) to denote the sum of
nonzero coefficients in the p-ary expansion i =

∑s−1
k=0 ikpk, i.e., wtp(i) =

∑s−1
k=0 ik.

Then, for a non-zero q-ary function F (x) =
∑q−1

i=0 δix
i, the algebraic degree of

F is defined as AD(F) = max{wtp(i) | δi �= 0, i ∈ Zq}. In this paper, if all the
terms of F have the same algebraic degree, then F is called homogeneous. A
function F is called affine if AD(F) � 1.

A function G : Fq×Fq → Fq, where q is a power of a prime, can be represented
as a bivariate polynomial over Fq,

G(x, y) =
∑

i,j∈Zq

γi,jx
iyj , γi,j ∈ Fq, (2)

112 J. Liu et al.

where the multiple sum is calculated in finite field Fq. All such polynomials form
a vector space over Fq which has dimension q2 and {xiyj | i, j ∈ Zq} as its basis.
For i, j ∈ Zq, the degree of xiyj , denoted by deg(xiyj), equals i + j, where the
addition is calculated in characteristic 0.

Let q be a power of a prime and n be a positive integer. The trace function
from Fqn to Fq is defined as

Trn
1 (x) = x + xq + xq2

+ · · · + xqn−1
, x ∈ Fqn .

The trace function Trn
1 (·) is a linear transformation from Fqn onto Fq, i.e., Trn

1 (·)
is surjective, for any a, b ∈ Fqn , Trn

1 (a+b) = Trn
1 (a)+Trn

1 (b), and for any c ∈ Fq,
any a ∈ Fqn , Trn

1 (ca) = cTrn
1 (a).

We consider that in a cryptosystem, a particular key is used for one encryp-
tion, then perfect secrecy provides unconditional security.

Definition 1. Let P and C be the plaintext space and the ciphertext space respec-
tively. A cryptosystem has perfect secrecy if for any m ∈ P and any c ∈ C,

Pr(m = m | c = c) = Pr(m = m).

3 Relationships Between Homomorphisms over Finite
Fields with q-Ary Functions

In this section, we study q-ary functions which are homomorphisms over finite
fields. These functions preserve the multiplication and addition operations
respectively. The results in Theorems 1 and 2 are more or less known, but it
is difficult to find explicit references in the books. For completeness, we provide
their proofs in the Appendix.

Theorem 1. A non-zero q-ary function F is a homomorphism preserving the
multiplication operation if and only if F is a power function.

Theorem 2. A non-zero q-ary function F is a homomorphism preserving the
addition operation if and only if F is a non-constant homogeneous affine func-
tion.

Combining Theorem 1 with Theorem 2, one can obtain the following corollary
immediately.

Corollary 1. A non-zero q-ary function F is a homomorphism preserving both
the multiplication and the addition operations if and only if F (x) = xpi

for some
integer i � 0, where p is the characteristic of the finite field Fq.

Remark 1. It is well known that the only automorphisms of a finite field Fps are
the Frobenius automorphisms x �→ xpi

for i = 0, . . . , s−1, where p is a prime. In
Corollary 1, we claim that the only non-zero homomorphisms of Fps into itself
are Frobenius automorphisms.

Partially Homomorphic Encryption Schemes over Finite Fields 113

Remark 2. Corollary 1 essentially states that any non-zero homomorphism of
finite field Fq into itself is an automorphism. In fact, let F be a non-zero homo-
morphism of Fq, then Ker(F) = {x ∈ Fq | F (x) = 0} is an ideal of Fq, and thus
Ker(F) = {0} or Ker(F) = Fq. Since F is non-zero, then Ker(F) = {0}, which
implies that F is bijective. Hence, F is an automorphism.

4 Partially Homomorphic Encryption Schemes

In this section, we provide two partially homomorphic encryption schemes over
finite fields and give the security analysis. These encryption schemes are sym-
metric.

4.1 A Multiplicative Homomorphic Encryption Scheme

Let F
∗
q = Fq \ {0} and Z

∗
q−1 = {k ∈ Zq−1 | gcd(k, q − 1) = 1}, where q is a power

of a prime. For a positive integer n, let η be a primitive element of Fqn , then
β = η(qn−1)/(q−1) is a primitive element of Fq. For integers a and b such that a|b,
we use a/b or a

b to denote division of a by b. For a ring R, if a ∈ R is invertible,
then we use a−1 to denote the inverse of a.

– Key-Generation
Choose a positive integer d such that d|(qn − 1)/(q − 1) and gcd(d, q − 1) = 1,
and choose l ∈ Z

∗
q−1. The tuple (d, l) is the secret key.

– Encryption
Let α = η(qn−1)/d, which is a primitive d-th root of unity over Fq. To encrypt
a plaintext m ∈ F

∗
q , one randomly chooses r ∈ {0, 1, . . . , d − 1} and computes

the ciphertext as
c = γlogβ mαr,

where γ = ηl(qn−1)/d(q−1), the discrete logarithm logβ m = a if βa = m.
– Decryption

For c ∈ F
∗
qn , one computes

m′ = cd·l−1
,

where l−1 is the inverse of l in Z
∗
q−1.

Remark 3. In the encryption phase, since d|(qn − 1)/(q − 1) implies d|(qn − 1),
then the splitting field of xd − 1 over Fq is a subfield of Fqn . Thus, {x ∈ Fqn |
xd = 1} = {1, α, α2, . . . , αd−1}. We also assume that the discrete logarithm over
Fq is easy to find (that is to say, the parameter q is much less than 21880, see
Footnote 1 on the next page).

Theorem 3. The multiplicative homomorphic encryption scheme described
above is correct, and it is multiplicative homomorphic.

114 J. Liu et al.

Proof. To show the correctness, we have to prove that the decryption of an
encrypted plaintext yields the same plaintext again. To decrypt a ciphertext
c = γlogβ mαr, one computes

m′ = cd·l−1
= (γlogβ m)d·l−1

(αr)d·l−1

= (γd)l−1·logβ m(αd)r·l−1

= βl·l−1·logβ m (3)
= m,

where Eq. (3) is due to the facts that γd = βl and αd = 1.
The multiplicative homomorphic property is an immediate consequence of

Theorem 1. More explicitly, let c1 and c2 be two encryptions of the plaintexts
m1 and m2 respectively. Since the decryption function F (x) = xd·l−1

is a power
function, then F is a multiplicative homomorphism, i.e., decrypting c1 · c2 yields
(c1 · c2)d·l−1

= cd·l−1

1 · cd·l−1

2 = m1 · m2. ��

Security Analysis. In this paper, we only consider ciphertext-only attacks. We
argue that the multiplicative homomorphic encryption scheme described above
cannot be broken in general by ciphertext-only attacks if the parameter q satisfies
some restrictions.

We first give some notations. Let n be an integer. For i|n, define

Oi(n) = {il mod n | l ∈ Z
∗
n},

where Z
∗
n = {k ∈ Zn | gcd(k, n) = 1}. Clearly, if i and j are distinct factors of n,

then Oi(n)
⋂ Oj(n) = ∅, and we have

⋃
i|n Oi(n) = Zn. Hence, the sets Oi(n),

i|n, form a partition of Zn.
In the above multiplicative homomorphic encryption scheme, we know that

α = η(qn−1)/d is a primitive d-th root of unity over Fq, and γ = ηl(qn−1)/d(q−1),
where d|(qn −1)/(q−1), gcd(d, q−1) = 1, l ∈ Z

∗
q−1, and η is a primitive element

of Fqn . Suppose that the cryptanalyst gets c as a ciphertext. Then, there exists
a plaintext m ∈ F

∗
q and an integer r ∈ {0, 1, . . . , d − 1} such that c = γlogβ mαr,

where β = η(qn−1)/(q−1). Hence, the cryptanalyst has

c = η
qn−1
q−1 · 1

d (l logβ m+r(q−1)),

and thus x := 1
d (l logβ m+r(q−1)) is known.1 The cryptanalyst will try to guess

m from x, but d, l, r are unknown to him. Let d0 := gcd(l logβ m + r(q − 1), d)

1 Note that here we do not need to make a requirement on q such that the Discrete
Logarithm problem (DLP) in F

∗
qn is hard to solve. Indeed, it is suggested that qn

needs to be at least 21880 to make known discrete logarithm algorithms infeasible [22,
Chapter 6]. Nowadays DLP can be solved for some special fields (especially with
small characteristic) of size larger than 1880 bits, e.g., discrete logarithm in F26168

is solved [14].

Partially Homomorphic Encryption Schemes over Finite Fields 115

and d1 := min{d′ | cd′(q−1) = 1} = d/d0 � d. From the cryptanalyst’s point of
view, he can compute d1 and

cd1 = η
qn−1
q−1 · 1

d0
(l logβ m+r(q−1)) = β

1
d0

(l logβ m+r(q−1))

= β
1

d0
(l′ logβ m′+r′(q−1)) (4)

where l′, r′ are the guessed parameters, m′ ∈ F
∗
q is the guessed plaintext, and

d0 is unknown to the cryptanalyst.
From the above discussion, we now prove the following lemma.

Lemma 1. For m,m′ ∈ F
∗
q , there exists l′ ∈ Z

∗
q−1 such that (4) holds if and

only if gcd(logβ m, q − 1) = gcd(logβ m′, q − 1), i.e., logβ m, logβ m′ ∈ Oi(q − 1)
for some i|(q − 1).

Proof. It is clear that (4) holds if and only if

1
d0

(l logβ m + r(q − 1)) ≡ 1
d0

(l′ logβ m′ + r′(q − 1)) (mod q − 1). (5)

Since gcd(d, q−1) = 1, which implies gcd(d0, q−1) = 1, and thus d0 is invertible
modulo q − 1. Hence, (5) holds if and only if l logβ m ≡ l′ logβ m′ (mod q − 1).
This is equivalent to saying that gcd(l logβ m, q − 1) = gcd(l′ logβ m′, q − 1), or
equivalently, gcd(logβ m, q − 1) = gcd(logβ m′, q − 1), because l and l′ are in
Z

∗
q−1. ��

Theorem 4. In the above multiplicative homomorphic encryption scheme, if a
cryptanalyst gets a ciphertext c and knows nothing about the secret key, then he
can only find a factor i of q − 1 such that the encrypted plaintext m satisfies
logβ m ∈ Oi(q − 1). Moreover, for any m such that logβ m ∈ Oi(q − 1), the
conditional probability of m given c is

Pr(m = m | c = c) =
1

|Oi(q − 1)| ,

which implies that the cryptanalyst will succeed in guessing which plaintext was
encrypted with probability 1/|Oi(q − 1)|.
Proof. From the discussion above, we know that given a ciphertext c, a crypt-
analyst can compute d1 = min{d′ | cd′(q−1) = 1} and

cd1 = β
1

d0
(l logβ m+r(q−1)) = βec , (6)

where ec := 1
d0

(l logβ m+ r(q − 1)) is known but d0 = gcd(l logβ m+ r(q − 1), d),
l, r, and m are unknown. Since gcd(d0, q−1) = 1, then logβ m ∈ Oi(q−1) if and
only if gcd(ec, q − 1) = i. Therefore, the cryptanalyst determines the factor i of
q − 1 such that logβ m ∈ Oi(q − 1). Thanks to Lemma 1, there exists l′ ∈ Z

∗
q−1

such that (4) holds if and only if logβ m′ ∈ Oi(q − 1). Hence, the cryptanalyst
cannot find the exact plaintext m.

116 J. Liu et al.

Suppose that the encrypted plaintext m satisfies logβ m ∈ Oi(q − 1), where
i|(q−1). It is easy to see that for any j ∈ Oi(q−1), the number of l ∈ Z

∗
q−1 such

that lj mod (q − 1) = j is exactly φ(q − 1)/|Oi(q − 1)|, where φ is the Euler phi
function. For a fixed d, let C be the ciphertext space. For any c ∈ C, denote by
ec the exponent of cd1 based on β defined in (6). Hence, for any m ∈ F

∗
q and any

c ∈ C, since r is randomly chosen from {0, . . . , d − 1}, then one can obtain

Pr(c = c | m = m) =
φ(q − 1)

|Oi(q − 1)| · 1
d · φ(q − 1)

=
1

d · |Oi(q − 1)|
if logβ m ∈ Oi(q − 1) and gcd(ec, q − 1) = i, and Pr(c = c | m = m) = 0
otherwise. Since for any m ∈ F

∗
q , Pr(m = m) = 1/(q − 1), then for any c such

that gcd(ec, q − 1) = i,

Pr(c = c) =
∑

m∈F∗
q

Pr(m = m)Pr(c = c | m = m)

=
∑

m∈F
∗
q

logβ m∈Oi(q−1)

1
q − 1

· 1
d · |Oi(q − 1)| =

1
(q − 1)d

.

By using Bayes’ theorem, we have that for any m ∈ F
∗
q and any c ∈ C,

Pr(m = m | c = c) =
Pr(c = c | m = m)Pr(m = m)

Pr(c = c)

=
{ 1

|Oi(q−1)| , if logβ m ∈ Oi(q − 1) and gcd(ec, q − 1) = i,

0, otherwise.

Therefore, the cryptanalyst will succeed in guessing the encrypted plaintext with
probability 1/|Oi(q − 1)|. ��
Corollary 2. In the above multiplicative homomorphic encryption scheme, if
the plaintext space is restricted to F

∗
q \ {1}, then for a cryptanalyst, by cipher-

only attacks, the probability of success of guessing the plaintext from a known
ciphertext is at most 1/mini|(q−1),i<q−1 |Oi(q − 1)|.
Proof. From Theorem 4, it is known that for a plaintext m satisfying logβ m ∈
Oi(q − 1), where i|(q − 1), a cryptanalyst will succeed in guessing m from the
corresponding ciphertext c with probability 1/|Oi(q − 1)|. Note that the set
{Oi(q − 1) | i|(q − 1), i < q − 1} forms a partition of Zq−1 \ {0}. Since the
plaintext space is restricted to F

∗
q \ {1}, then for a cryptanalyst, the probability

of success of guessing the plaintext m is at most 1/mini|(q−1),i<q−1 |Oi(q−1)|. ��
Remark 4. If q is odd, then mini|(q−1),i<q−1 |Oi(q − 1)| = |O(q−1)/2(q − 1)| = 1.
Thus, from Corollary 2, a cryptanalyst may succeed in guessing the plaintext
from the ciphertext with probability 1. In fact, if m = β(q−1)/2 is encrypted as
c, where β is a primitive element of Fq, then for a cryptanalyst, the probability
of success of guessing m from c is 1. To increase the security of the system, we

Partially Homomorphic Encryption Schemes over Finite Fields 117

Table 1. All numbers 9 � q � 3100 satisfying q = 3s and (q − 1)/2 is a prime

q (q − 1)/2

33 13

37 1093

313 797161

371 3754733257489862401973357979128773

can choose odd q such that (q − 1)/2 is a prime, and then restrict the plaintext
space to F

∗
q \ {1, β(q−1)/2}. In this case, it is easy to check that

min
i|(q−1),i<q−1,i �=(q−1)/2

|Oi(q − 1)| = |O1(q − 1)| = φ(q − 1) = (q − 3)/2.

Hence, a cryptanalyst can succeed in guessing the plaintext with probability at
most 2/(q − 3). In Table 1, we list some examples of q = 3s, where 2 � s � 100,
which satisfy (q − 1)/2 is a prime.

Proposition 1. Let the plaintext space be restricted to F
∗
q \{1}. Then, the mul-

tiplicative homomorphic encryption scheme described above has perfect secrecy
if and only if q − 1 is a Mersenne prime (see e.g. [21]), i.e., q − 1 = 2s − 1 is a
prime for some prime s.

Proof. Sufficiency. Since q−1 is a prime, then Zq−1\{0} = O1(q−1). Let β be a
primitive element of Fq, then for any m ∈ F

∗
q \{1}, we have logβ m ∈ Zq−1\{0} =

O1(q − 1). According to Theorem 4, we have that for every m ∈ F
∗
q \ {1} and

every c ∈ C, the conditional probability of m given a ciphertext c, is

Pr(m = m | c = c) =
1

|O1(q − 1)| = Pr(m = m).

Therefore, from Definition 1, the multiplicative homomorphic encryption scheme
has perfect secrecy.

Necessity. It is known that for every m ∈ F
∗
q \ {1} and every c ∈ C,

Pr(m = m | c = c) = Pr(m = m) =
1

q − 2
.

From Theorem 4, we have that Pr(m = m | c = c) = 1/|Oi(q − 1)| for some
i|(q − 1). Therefore, for every integer i satisfying i|(q − 1) and i < q − 1, we have
|Oi(q − 1)| = q − 2, which implies that q − 1 is a prime. Note that q is a power
of a prime. If q is odd, then q − 1 is even which cannot be a prime. Hence, q is
a power of 2 such that q − 1 is a prime, i.e., q − 1 is a Mersenne prime. ��

118 J. Liu et al.

Remark 5. From Proposition 1, we know that to achieve perfect secrecy, the
parameter q chosen in the multiplicative homomorphic encryption scheme should
satisfy q − 1 is a Mersenne prime. In practice, it would be suitable to choose
some prime power q such that mini|(q−1),i �∈A |Oi(q−1)| takes a high value, where
A ⊆ {1, 2, . . . , q−1}, and the plaintext space is restricted to m ∈ F

∗
q\{βi | i ∈ A}.

See Remark 4 for example.

Remark 6. Note that in the multiplicative homomorphic encryption scheme with
constraints in Proposition 1, we have proved that for only one encryption, the
scheme has perfect secrecy. In fact, homomorphic encryption schemes cannot in
a one-time pad setting, and a reuse of the secret key could lead to a break of
the scheme. However, if the size of the finite field is chosen to be large enough,
we can show that the proposed multiplicative homomorphic encryption scheme
can resist cipher-only attacks to some extent. Suppose that the cryptanalyst
gets a sequence of ciphertexts c1, . . . , cs encrypted by the secret key (d, l). Then,
he can compute d̄ = max1�i�s

{
min

{
d′ | c

d′(q−1)
i = 1

}}
and get the multiset

C = {∗ cd̄
1, . . . , c

d̄
s ∗}. In the case d̄ = d, the cryptanalyst can only guess the

encrypted plaintext sequence m1, . . . ,ms correctly with probability 1/(q − 2),
since he knows nothing about the parameter l. Thus, when q is large enough
(but much less than 21880, see Remark 3), the probability of success of guessing
the correct plaintext sequence is still very small.

4.2 An Additive Homomorphic Encryption Scheme

Let q be a power of a prime and n be a positive integer, and F (x) =
∑n−1

i=0 δix
qi −

α be a qn-ary affine function, where α ∈ Fqn and δi ∈ Fqn , i = 0, . . . , n − 1. An
element β ∈ Fqn is a root of F (x) if and only if F (β) = α. For a qn-ary affine
function F , the determination of all the roots of F in Fqn is an easy task (see
e.g. [15, Chapter 3]).

– Key-Generation
Choose α ∈ F

∗
qn as the secret key. Define a qn-ary function F (x) = Trn

1 (αx).
– Encryption

To encrypt a plaintext m ∈ Fq, one randomly chooses a root c ∈ Fqn of the
affine q-polynomial F (x) − m. Then, c is the ciphertext.

– Decryption
For c ∈ Fqn , one computes m′ = F (c).

Theorem 5. The additive homomorphic encryption scheme described above is
correct, and it is additive homomorphic.

Proof. The correctness of the scheme is obvious. The additive homomorphic
property is an immediate consequence of the fact that the trace function is
linear, i.e., decrypting c1 + c2 yields F (c1 + c2) = Trn

1 (α(c1 + c2)) = Trn
1 (αc1) +

Trn
1 (αc2) = F (c1) + F (c2) = m1 + m2. ��

Partially Homomorphic Encryption Schemes over Finite Fields 119

Security Analysis. In this paper, we only consider ciphertext-only attacks. In
the above additive homomorphic encryption scheme, if a ciphertext c = 0, then
the encrypted plaintext m must be 0. Therefore, we always assume that m = 0
is encrypted as a nonzero element in Fqn .

Theorem 6. The additive homomorphic encryption scheme described above has
perfect secrecy.

Proof. Let {β1, . . . , βn} be a basis of Fqn over Fq. For a ciphertext c ∈ F
∗
qn ,

there must exist j ∈ {1, . . . , n} such that Trn
1 (βjc) �= 0. For any m ∈ Fq and any

ai ∈ Fq, i ∈ {1, . . . , n} \ {j}, define

aj =

⎛

⎝m −
∑

i∈{1,...,n}\{j}
aiTrn

1 (βic)

⎞

⎠ (Trn
1 (βjc))

−1
.

Then, we have
∑n

i=1 aiTrn
1 (βic) = m, i.e., Trn

1 (
∑n

i=1 aiβic) = m. Define α =∑n
i=1 aiβi, then Trn

1 (αc) = m. For m ∈ F
∗
q , there are qn−1 possible α ∈ F

∗
qn such

that Trn
1 (αc) = m. If m = 0 and ai = 0 for i ∈ {1, . . . , n} \ {j}, then aj = 0,

which leads to α = 0. So, for m = 0, there are only qn−1 − 1 possible α ∈ F
∗
qn

such that Trn
1 (αc) = m. Note that we always assume that m = 0 is encrypted as

a nonzero element in Fqn . Hence, for any m ∈ Fq and any c ∈ F
∗
qn , since a root

c ∈ F
∗
qn is randomly chosen from the solution space of dimension n − 1, then we

have

Pr(c = c | m = m) =

{
qn−1

qn−1 · 1
qn−1 = 1

qn−1 , if m ∈ F
∗
q ,

qn−1−1
qn−1 · 1

qn−1−1 = 1
qn−1 , if m = 0.

Since for any m ∈ Fq, Pr(m = m) = 1/q, then for any c ∈ F
∗
qn ,

Pr(c = c) =
∑

m∈Fq

Pr(m = m)Pr(c = c | m = m) =
1

qn − 1
.

By using Bayes’ theorem, we have that for any m ∈ Fq and any c ∈ F
∗
qn ,

Pr(m = m | c = c) =
Pr(c = c | m = m)Pr(m = m)

Pr(c = c)
=

1
q

= Pr(m = m).

Therefore, from Definition 1, the additive homomorphic encryption scheme has
perfect secrecy. ��
Remark 7. In the additive homomorphic encryption scheme described above, we
have proved that for only one encryption, the scheme has perfect secrecy. Similar
to the discussion in Remark 6, we will show that if the size of the finite field
is chosen to be large enough, the proposed additive homomorphic encryption
scheme can resist cipher-only attacks to some extent. Suppose that the cryptan-
alyst gets a sequence of ciphertexts c1, . . . , cs encrypted by the secret key α. If
c1, . . . , cs span a t-dimensional vector space over Fq, then the cryptanalyst can

120 J. Liu et al.

only guess the encrypted plaintext sequence m1, . . . ,ms correctly with probabil-
ity 1/qt if t < n, and 1/(qn − 1) otherwise, since he knows nothing about the
parameter α. Thus, when q is large enough, the probability of success of guessing
the correct plaintext sequence is still very small.

5 Concluding Remarks

In this paper, we studied symmetric partially homomorphic encryption schemes
over finite fields. We showed that non-zero multiplicative (or additive) homomor-
phisms over finite fields are equivalent to power functions (or non-constant homo-
geneous affine functions). We proposed two homomorphic encryption schemes
with reasonable computation and communication costs, and discussed security
of our schemes in terms of cipher-only attacks. Since our schemes are not based
on hardness assumptions, semantic security (see [13]) is not considered here
(this concept is mainly discussed under a given hardness assumption). In [3,16],
it is proved that any fully homomorphic encryption scheme over finite fields (or
rings) cannot resist against cipher-only attacks. As an extended work, we find
two partially homomorphic encryption schemes which have perfect secrecy and
can resist against cipher-only attacks to some extent.

Appendix: The Proofs of Theorems 1 and 2

The Proof of Theorem 1. The sufficiency is obvious since that for any x, y ∈
Fq, we have F (xy) = (xy)d = xdyd = F (x)F (y). We prove the necessity below.

Since F is a homomorphism, we have F (0) = F (0)2, which implies F (0) = 1
or 0. If F (0) = 1, then for any x ∈ Fq, F (x) = F (x)F (0) = F (0) = 1. Define
00 = 1, and thus F (x) = x0 is a power function. In the following, we consider
the case F (0) = 0.

From F (1) = F (1)2, one can deduce F (1) = 1, since if F (1) = 0, then for
any x ∈ Fq, F (x) = F (x)F (1) = 0, which contradicts that F is non-zero. Let
α be a primitive element of Fq. Note that F (α) �= 0, since otherwise, we have
0 = F (αq−2)F (α) = F (αq−1) = F (1) = 1, a contradiction. Thus, for any i ∈ Zq,

F (αi) = F (α)i = αlogα F (α)i

= αi logα F (α). (7)

Combining F (0) = 0 with (7), we have that for any x ∈ Fq,

F (x) = xlogα F (α).

Therefore, F is a power function.

The Proof of Theorem 2. Sufficiency. Let F (x) =
∑s−1

i=0 δix
pi

, where δi ∈ Fq.
Then, for any x, y ∈ Fq,

F (x + y) =
s−1∑

i=0

δi(x + y)pi

=
s−1∑

i=0

δix
pi

+
s−1∑

i=0

δiy
pi

= F (x) + F (y).

Partially Homomorphic Encryption Schemes over Finite Fields 121

Necessity. Let F (x) =
∑q−1

i=0 δix
i, where δi ∈ Fq. Define a function from

Fq × Fq to Fq as

Δ(x, y) = F (x + y) − F (x) − F (y), (x, y) ∈ Fq × Fq. (8)

Since for any integer k � 0, (x + y)pk

= xpk

+ ypk

, then from (8), we have

Δ(x, y) =
∑

i∈I

δi(x + y)i −
∑

i∈I

δix
i −

∑

i∈I

δiy
i, (9)

where the set I satisfies for any i ∈ I, δi �= 0 and wtp(i) � 2. Suppose that
AD(F) = max{wtp(i) | δi �= 0, i ∈ Zq} � 2, then it follows that I �= ∅. Let
j =

∑s−1
k=0 jkpk ∈ I, then we have

δj(x + y)j = δj(x + y)
∑s−1

k=0 jkpk

= δj

s−1∏

k=0

(
xpk

+ ypk
)jk

= δj

s−1∏

k=0

(
jk∑

l=0

(
jk

l

)

xlpk

y(jk−l)pk

)

.

If there exists k0 ∈ Zs such that 2 � jk0 � p − 1, then since p �
(jk0

l

)
, there must

exist a nonzero term with degree j in the expansion of δj(x + y)j , which can
be divided by xpk0

ypk0 . Thus, combining (9) with the fact that xiyj , i, j ∈ Zq

are linearly independent over Fq, we have that Δ(x, y) is a nonzero function. On
the other hand, if there exist distinct k1, k2 ∈ Zs such that jk1 = jk2 = 1, then
there must exist a nonzero term with degree j in the expansion of δj(x + y)j ,
which can be divided by xpk1

ypk2 . Similarly, it follows that Δ(x, y) is a nonzero
function. Hence, F (x+y) �= F (x)+F (y), a contradiction to that F is an additive
homomorphism. Therefore, since F (0) = F (0) + F (0), we have AD(F) = 1 with
F (0) = 0.

References

1. Armknecht, F., Sadeghi, A.-R.: A new approach for algebraically homomorphic
encryption. Cryptology ePrint Archive, Report 2008/422 (2008). https://eprint.
iacr.org/2008/422

2. Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis, Yale University, New
Haven, USA (1987)

3. Boneh, J., Lipton, R.: Searching for elements in black-box fields and applications.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297. Springer,
Heidelberg (1996)

4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

https://eprint.iacr.org/2008/422
https://eprint.iacr.org/2008/422
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29

122 J. Liu et al.

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 50

6. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

7. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 18

8. Domingo-Ferrer, J.: A provably secure additive and multiplicative privacy homo-
morphism. In: Chan, A.H., Gligor, V. (eds.) ISC 2002. LNCS, vol. 2433, pp. 471–
483. Springer, Heidelberg (2002). doi:10.1007/3-540-45811-5 37

9. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp.
169–178. ACM (2009)

11. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity, California, USA (2009)

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-40041-4 5

13. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, STOC 1982, pp. 365–377. ACM (1982)

14. Joux, A.: Discrete logarithm in F26168 . Announcement to the Number Theory List
(2013)

15. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, New York (1997)

16. Maurer, U., Raub, D.: Black-box extension fields and the inexistence of field-
homomorphic one-way permutations. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 427–443. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76900-2 26

17. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers
for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 13

18. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998). doi:10.1007/BFb0054135

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

20. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–179. Academic Press,
New York (1978)

21. Sloane, N.J.A.: A Handbook of Integer Sequences. Academic Press, New York
(1973)

22. Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. CRC Press, Boca
Raton (2006)

http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/3-540-44987-6_18
http://dx.doi.org/10.1007/3-540-45811-5_37
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-540-76900-2_26
http://dx.doi.org/10.1007/978-3-540-76900-2_26
http://dx.doi.org/10.1007/978-3-662-49890-3_13
http://dx.doi.org/10.1007/BFb0054135
http://dx.doi.org/10.1007/3-540-48910-X_16

Partially Homomorphic Encryption Schemes over Finite Fields 123

23. Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryp-
tion over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 24–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 2

24. Wagner, D.: Cryptanalysis of an algebraic privacy homomorphism. In: Boyd, C.,
Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 234–239. Springer, Heidelberg
(2003). doi:10.1007/10958513 18

http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/10958513_18

Light Weight Key Establishment Scheme
for Wireless Sensor Networks

Payingat Jilna(B) and P.P. Deepthi

National Institute of Technology, Calicut, India
jilnaprakash@yahoo.co.in

Abstract. This paper presents a light weight key establishment tech-
nique for wireless sensor networks. The proposed method is a hybrid of
two popular key exchange protocols LEAP (Localised encryption and
authentication protocol) and COKE (Crypto-less over the air key estab-
lishment) and addresses the weakness of both schemes. The security
analysis shows that the system is secure against active adversaries and
node compromise. Compared to COKE, the proposed scheme guaran-
tees a secret key establishment and is energy efficient with a single MAC
computation for secret key establishment.

Keywords: Key management · Resilience · Node addition attack ·
Wireless sensor network

1 Introduction

Wireless sensor networks (WSNs) are used in a wide range of applications includ-
ing critical applications such as military surveillance and health care. Securing
these networks against adversaries is a challenging issue due to the resource
limitations of sensor nodes. The security of the sensor network depends on the
secrecy of the symmetric key used for encryption and thereby on the security
and reliability of key distribution protocols. The limited energy, communication
bandwidth and computational capabilities of a wireless sensor node make the
use of conventional key distribution schemes difficult.

Many light weight key management schemes specific to the resource con-
strained WSNs are available in the literature [1]. One approach is key pre-
deployment in which secret keys are loaded in to the sensor nodes prior to
deployment. The use of global key/network-wide key is one such scheme in which
a single key is preloaded to all sensor nodes in the network. The scheme is effi-
cient in the sense that no communication or computation is required to establish
the key. But since the compromise of a single node will lead to the compromise
of the whole network, the scheme lacks security. To overcome this security risk,
in another scheme of the network-wide key, each node is preloaded with pair
wise keys to communicate with every other node in the network. That is, in a
network of n nodes, each node has to store (n-1) pair wise keys. The scheme is
secure in the sense that when a node is compromised only the links established
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 124–137, 2016.
DOI: 10.1007/978-3-319-49445-6 7

Light Weight Key Establishment Scheme for Wireless Sensor Networks 125

by that node are compromised. But it is not scalable due to memory constraints
of sensor nodes and cannot support node additions. A number of probabilistic
key distribution schemes exist in which each node is loaded with a set of keys
chosen randomly from a key pool. Once deployed, the nodes try to identify their
neighbours and their shared secret keys. These schemes offer a performance in
between the other two extremes in terms of security, scalability and storage with
an added issue that it is not certain to establish a link between a pair of nodes.

The key derivation information pre-deployment is another approach in which
the sensor nodes generate shared secret keys after deployment using the pre-
loaded information. Sensor nodes are loaded with a secret master key and some
mathematical functions which are used to compute the shared secrets. Though
these schemes are efficient in terms of storage and computations, the whole
network will be compromised if the nodes are compromised in the initialization
phase.

The key management scheme in [2] make use of auxiliary nodes for key estab-
lishment. In addition to regular nodes, additional nodes called assisting nodes
are deployed to help pair wise key set up between regular nodes. The scheme
is storage efficient but the security depends on the number of assisting nodes
involved in establishing a pair-wise secret key. The communication overhead and
the computational cost increase with the increase in number of assisting nodes.
In the group based key distribution [3] the nodes are deployed in groups and is
expected that nodes in the same group will lie close to each other. The node ids
and key pre-distribution instances are loaded into the sensor nodes such that
each node can establish an in-group key and a cross-group key. Though security
is improved in comparison with related works, the scheme is not scalable due to
large storage requirements.

The key management schemes based on hard mathematical problems (modu-
lar arithmetic based key management, elliptic curve based key management etc.)
[4,5] provide high resilience even if nodes are compromised in the initialization
phase. In [6] the authors have presented an efficient key management technique
based on elliptic curves (EC) for homogeneous static WSNs. The performance
of this scheme is evaluated and it is established that this scheme outperforms
most of the key management protocols available in the literature in terms of
parameters such as communication overhead, storage requirement etc. Similarly
an EC based certificateless key establishment scheme for heterogeneous dynamic
WSNs is presented in [7]. The performance is evaluated in terms of computation
time and energy consumption and demonstrates the trade off between energy
consumption and security level. The complex computations associated with EC
point multiplication may become too expensive to afford in sensor nodes with
stringent energy constraints.

To increase the energy efficiency by reducing the computations, over-the-
air key establishment protocols were introduced. The two methods adopted are
(i) to extract secret keys from the received signal strength (RSS) [8] and (ii)
to leverage channel anonymity for generating pair wise secret keys [9]. For the
first method to be secure, the communicating channel must be highly dynamic

126 P. Jilna and P.P. Deepthi

in nature which is not guaranteed always. The key exchange protocols based
on channel anonymity assume the adversary to be a passive eavesdropper and
cannot retain security in the presence of active adversaries. This paper presents
a hybrid of master key based and over-the-air key establishment protocols such
that the proposed method is efficient in terms of energy consumption and is
secure against active adversary and node compromise.

The rest of the paper is organised as follows. The related works are given
in Sect. 2 and in Sect. 3 the proposed protocol is presented. In Sect. 4, the per-
formance of the proposed scheme is evaluated and in Sect. 5 comparison with
related works is done. In Sect. 6 some conclusions are drawn.

2 Related Works and Their Security Analysis

In this work we have considered a static homogeneous wireless sensor network
with high security requirements and strict energy constraints. The adversary
is modelled as an active adversary. The EC based approaches are not suitable
because of the intensive mathematical computations involved in key establish-
ment. The schemes based on deployment knowledge of the sensor nodes is also
not considered due to strict energy constraints. Many other light weight schemes
are ruled out because of lack of scalability and low security. The two widely
accepted key establishment schemes with minimum computations is chosen and
their pros and cons are analysed in this section.

2.1 LEAP+

LEAP+ introduced in [10] is widely accepted for key establishment in WSN due
to reduced communication overhead and increased security compared to random
key pre-distribution schemes. In LEAP+, each node is pre-loaded with an initial
master key, node identity and a pseudo random function. Once deployed, each
node derives its own master key as a function of initial master key and node
identity. The node then broadcasts its identity as a hello message. On receiving
this hello message, the neighbouring nodes send acknowledgement which consist
of the node id and MAC for authentication. The shared secret key is generated
as a function of private master key and node identity.

The security of LEAP+ depends on the secrecy of the initial master key
which is erased after Tmin time period where Tmin is the lower bound on the
time required to establish pair-wise secret key with the neighbouring nodes. The
security of the protocol is based on the assumption that no nodes are compro-
mised within this time period. But if Tmin is kept very small, the probability
that a pair-wise secret key is established between every neighbouring node pair
becomes low. So, in order to ensure connectivity of the network Tmin must be
kept sufficiently large which also causes an increase in the probability that a
node is compromised in the initialization phase. If the adversary gets the initial
master key then the whole network will be compromised. Thus choice of Tmin

sets a trade-off between security and connectivity of the network.

Light Weight Key Establishment Scheme for Wireless Sensor Networks 127

It is also seen that LEAP+ is prone to jamming attacks [11]. Since the key
establishment is done within the short time-out period Tmin, the adversary can
easily generate jamming signals for this small duration and prevent the pair-wise
key establishment and thereby spoiling connectivity of the network.

In [12] a modified scheme with reduced performance overhead is introduced.
The communication overhead and the number of computations required for pair-
wise key set up are reduced so that Tmin can be kept very small without com-
promising the connectivity. Though the probability that nodes are compromised
in the initialization phase is less compared to LEAP+, the scheme is more prone
to jamming attacks.

2.2 COKE

Crypto-less over-the-air key exchange protocol introduced in 2012 is a proba-
bilistic protocol which allows two neighbouring nodes establish a shared secret
without using cryptographic functions. This scheme takes advantage of the
source in-distinguishability of anonymous channels to establish the shared secret.
A brief description of the algorithm is given below.

Let A and B be the two neighbouring nodes trying to establish a shared
secret. It is assumed that both A and B are able to estimate the minimum
transmission power required for communicating with each other. Both nodes A
and B randomly generate secret keys KA and KB each of length k bits. In each
time slot, both nodes choose a random waiting time. In the ith time slot, if the
waiting time of A(B) is elapsed and no packet is received then the node A(B)
transmits the ith bit of KA(KB). Node A(B) randomly decides to use its own
ID or the ID of neighbouring node in the sender field. If the bit is transmitted
by A then it is stored as such at both nodes and if it is transmitted by B, its
complement is stored at each node. Thus after k time slots both nodes A and B
will have a string of k bits Ks. The shared secret key is derived as H(Ks) where
H is a hash function.

In this scheme, the adversary is modelled as a globally eavesdropping adver-
sary and is passive. It is assumed that the adversary has prior information about
the location at which the nodes will be deployed and the attacker nodes are
present at this location. Even though plain text bits are transmitted, the prob-
ability that the adversary identifies the exact source depends on the maximum
transmitted power and the geographical location of the adversary. The authors
have shown that the probability of secret bit transmission between nodes A and
B is high if the adversary is located midway from A to B and reduces to zero
with the decrease in this distance ratio. That is, if the adversary is positioned in
close proximity of any of the nodes then the probability of secret bit transmission
is zero. This is a major drawback of the COKE algorithm as the position of the
adversary cannot be predicted or determined in real scenarios. The number of
transmissions required to establish a shared secret key under various conditions
is also well analysed in the paper. But the scheme is secure only against pas-
sive eavesdropping adversaries and is easily prone to node addition attacks as
there is no authentication mechanism involved in key establishment. Any active

128 P. Jilna and P.P. Deepthi

adversary can easily guess a valid node id by eavesdropping the network and
convince the neighbouring nodes that it is a part of the network even without
compromising a node. The valid nodes will then set up shared secrets with these
attacker nodes and be part of the network. Once these attacker nodes join as
a part of the network, they can launch various insider attacks such as inject-
ing false messages, spoofing, altering or replaying routing information, selective
forwarding attack etc.

From the analysis above it can be seen that the COKE algorithm is energy
efficient as it involves only a single hash computation; but it is not secure against
active adversaries. In the LEAP+ protocol, compromising a single node in the
initialisation phase causes the whole network to be compromised. To mitigate
these attacks, a new energy efficient and secure key establishment protocol is
proposed which combines the concepts of transitory master key approach and
COKE algorithm in such a way that the proposed scheme is energy efficient,
secure against active adversaries and defends jamming attacks.

3 Proposed Method for Key Establishment

In this section we present the proposed key exchange protocol which is designed
as a hybrid of COKE and LEAP for increased security and efficiency. We assume
the network to be static and the nodes to be unaware of their neighbours prior
to deployment (Fig. 1).

Fig. 1. Proposed method of key establishment

3.1 Adversary Model

The adversary is assumed to be active in contradiction to a passive adversary in
COKE. The adversary can eavesdrop on all the communication between nodes,

Light Weight Key Establishment Scheme for Wireless Sensor Networks 129

guess valid node ids and inject messages into the networks. It is assumed that
the adversary has prior information of the location at which the nodes will be
deployed especially, in military scenarios.

3.2 System Model

The wireless sensor network is considered to be homogeneous and static. Prior
to deployment a node id and master key (MK) are loaded into each sensor node.
In the beginning of each node addition phase, the node ids are generated by the
base station using a random number generator and the base station broadcasts
the valid node ids added.

Initialization Phase. In this phase, the sensor nodes discovers its neigh-
bours through broadcast of hello messages and establishes the pair-wise secret
keys. Once deployed each node, say node A, generates a private master key as
PMKA = prf(MK, IDA) in the initialisation phase where prf is a pseudo ran-
dom function. This is to enable addition of new nodes as neighbours in the net-
work after the initialisation phase, since MK is erased at the end of this phase.
The node broadcasts a hello message which consists of its id, a time stamp (T)
and an authentication code. The authentication code for node A is computed as
MAC(MK, IDA ‖ T). The use of time stamp and authentication code prevents
replay attack and Hello flood attack in sensor nodes as analysed in Sect. 4. Each
of the neighbouring nodes, say node B, authenticates the sender and acknowl-
edges with its id and authentication code (MAC(MK, IDA ‖ IDB ‖ T)). Node
A now verifies these acknowledgement signals from various nodes and generates
a table with entries as ids of neighbouring nodes. The COKE algorithm is then
initiated and the pair-wise secret key is computed as MAC(MK,Ks) where Ks

is the shared secret key. Once the pair-wise secret key is established between
every neighbouring node pair, the MK is erased. This is to ensure that once
the network comes out of initialisation phase, capturing of a node won’t allow
the adversary to compute the shared secret keys of various links even when the
probability of secret bit transmission is very low.

Working Phase. In this phase, the nodes perform the data processing functions
and communicate using the shared secret keys established in the initialization
phase. In many practical applications, to extend the life time of the sensor net-
work, new nodes are added in to the network at various time intervals. At this
stage, the existing nodes will be in their working phase and the newly deployed
nodes in their initialization phase. The key establishment between a node in the
working phase and a node in the initialization phase is explained below.

Each new node in the node addition phase is loaded with its id and the
master key. These nodes broadcast their hello message and wait for the acknowl-
edgement from the neighbouring nodes. Each of the neighbouring nodes in the
working phase adds these new ids into its existing list of neighbouring nodes

130 P. Jilna and P.P. Deepthi

and broadcasts its id and MAC(PMKi, IDi ‖ T). The nodes in the initializa-
tion phase compute the private master key of the neighbouring nodes PMKi,
using the received data. The base station now broadcasts the list of newly added
valid node ids and each node verifies the new entries in its list. This will help
to prevent node addition attack. Now the nodes initiate COKE algorithm and
generate the pair-wise secret key as MAC(PMKi,Ks).

4 Performance Evaluation of the Proposed Scheme

The security, computation cost, storage requirement, connectivity and commu-
nication cost of the proposed key establishment scheme are analysed in this
section.

4.1 Security Analysis

The security of a key management scheme can be quantified through its resilience
and security against a variety of attacks in WSNs.

Resilience. Resilience is the probability that a link between uncompromised
nodes is not compromised due to other compromised nodes in the network.
When a node is compromised it is assumed that all the data in the node is
available to the attacker. If a node is compromised in the working phase of
the proposed scheme, the private master key PMKi, node id and the pair-wise
secret key MAC(PMKi,Ks) with the neighbouring nodes will be available to
the attacker. But this data is not sufficient to compromise any other link in the
network. The key in any link depends upon random data exchanged between the
node pair through COKE algorithm. The difficulty of the attacker to identify
the source of each transmitted bit and thereby collect the random bit stream
exchanged is analysed in [9] and is shown to be very high. Even if a node is
compromised in the initialization phase and the master key is available to the
attacker, computation of the shared secret key requires knowledge of source of
each bit transmitted. Since the COKE algorithm leverage channel anonymity
and the probability that the source is identified is very low, the probability that
an uncompromised link is compromised is very low. Thus the key establishment
scheme offers high resilience even if the nodes are compromised in the initializa-
tion phase.

Hello Flood Attack. In a Hello flood attack, the adversary sends hello mes-
sages to the neighbouring nodes with high transmission power to convince the
nodes that it is their nearest neighbour. The nodes may then start the key
establishment process with the attacker nodes which unnecessarily drains their
energy. In the proposed scheme, both hello message and acknowledgement mes-
sage consist of authentication codes computed through stored master key. Fur-
ther processing and initialisation of COKE algorithm is done only after verifica-
tion of these codes. Thus the proposed scheme defends this attack because only

Light Weight Key Establishment Scheme for Wireless Sensor Networks 131

authenticated hello messages are processed by the nodes and other hello mes-
sages are discarded. Though it involves an additional MAC computation at each
node this cost is negligible in comparison with the transmission cost involved
in executing the COKE algorithm. Hence the proposed algorithm resists Hello
flood attack through authentication.

Node Cloning/Node Replication Attack. When a node is compromised,
the attacker loads its own nodes with the compromised information, deploys
them at arbitrary locations in the network and tries to establish pair-wise keys
with the neighbouring nodes. This is known as node cloning or node replication
attack. In case of EG [13] and other random key pre-distribution schemes where a
single key is shared by more than one link, a few such cloned nodes are enough to
bring down the entire network. In the proposed scheme, if a node is compromised
in the working phase, the data available to the adversary are PMKi, node ids
and shared secret keys of neighbouring nodes. In this scheme, the probability
that a pair-wise secret key is shared by more than one link is negligibly small.
Establishment of pair-wise keys by the clone nodes demands the knowledge of the
MK and verification of the node id by the neighbouring nodes. Even if the node
is compromised in the initialization phase and the master key MK is available
to the attacker, the probability that the clone node passes the verification is
negligible as the node ids are generated randomly by the base station. Hence it
is not possible for the clone nodes to establish pair-wise keys with valid nodes.

Node Addition Attack. In a node addition attack, the adversary introduces
new nodes into the network by loading it with the correct master key. These
nodes can easily be a part of the network and the adversary can launch various
insider attacks and defeat the purpose of the sensor network. In the proposed
scheme, the node ids are randomly generated by the base station and in each
node addition phase, the base station broadcasts a list of valid node ids added
in that phase. Before initiating the COKE algorithm and establishing secret key
with the new neighbours, the nodes verify their neighbour’s ids based on the
broadcast message from the base station. This reduces the probability that a
random guess of node id by the adversary is a valid one. Thus the proposed
scheme is less prone to node addition attack.

4.2 Computational Cost

The pair-wise secret key generation in the proposed scheme involves the com-
putation of a single MAC at each node. In addition to this, one more MAC
computation is performed to increase the security against Hello flood attack in
WSNs. Both nodes authenticate each other before initiating the COKE algo-
rithm. This additional computation helps the nodes to discard hello messages
from adversaries and prevent unwanted energy consumption by executing COKE
algorithm with an adversary. The energy consumed by the MAC computation is
negligible in comparison with the transmission cost.

132 P. Jilna and P.P. Deepthi

4.3 Memory Requirement

Prior to deployment, the data loaded into the node memory are the master key
and the node id. In the working phase, the master key is replaced with a private
master key. In addition, the node ids and shared secret keys of neighbouring
nodes are also stored. Considering a node id of length 2 bytes, number of neigh-
bouring nodes as 40 and length of master key and MAC as 16 bytes, the memory
required in the initialization phase and working phase are 18 bytes and 738 bytes
respectively. This requirement is much less compared to 4 KB memory available
in sensor nodes.

4.4 Communication Cost

The parameters that determine the communication cost of the proposed scheme
are length of node id, length of MAC, length of time stamp and the number of
bits transmitted in the COKE algorithm. In [9], the authors have shown that the
number of transmissions required for a fixed number of secret bits varies with
Psb where Psb is the secret bit communication probability. Assuming that both
nodes A and B have equal probability of transmission

Psb = 1/2(P (φA) + P (φB)) (1)

where P (φi) is the probability that adversary does not correctly guess the source
i. These probabilities depend on the maximum transmitted power and the posi-
tion of the adversary in the network. In [9] authors have provided the relationship
between the secret-bit transmission probability (Psb) and the average number of
expected transmissions to commit on shared secret key of a minimum required
length. The random variable Xi which takes a value 1 when the ith transmitted
bit is secret follows Bernoulli distribution with probability of success Psb. Then,
as per central limit theorem, the random variable X counting the number of bits
securely transmitted out of a total K emissions given by X =

∑K
i=1 Xi will have

a normal distribution with mean (μ) and variance (σ2) as given below.

μ = KPsb (2)

σ2 = KPsb(1 − Psb) (3)

Then the number of secret bits transmitted lie within 8
√

KPsb(1 − Psb) of KPsb

with probability greater than 1 − ε for ε = 2−48. The variation of number of
secret bits transmitted with secret bit transmission probability (Psb) is sketched
in Fig. 2. From the simulation results given in [9] it can be seen that Psb is
approximately zero if the distance ratio is less than 0.6 and hence secret key
establishment is not possible. In the proposed scheme, the pair-wise secret key is
generated as a function of MK and shared bits Ks. Thus the scheme guarantees
a secret key establishment through MK even if Psb = 0. In the proposed scheme
the number of bits transmitted by nodes A and B is fixed as 1000 so that, on an
average 100 secret bits will be available even when Psb = 0.1 as shown in Fig. 2.

Light Weight Key Establishment Scheme for Wireless Sensor Networks 133

The received 1000 bits are now given as input to the MAC function. The MAC
function can be either a keyed hash function or a block cipher in cipher block
chaining (CBC) mode of operation. In both cases, even a single bit change in the
input can cause considerable change in the output due to the in-built properties
of MAC function. So with an over the air transmission of 1000 bits, an adversary
at a favourable position from the node, has to randomly guess the 100 secret bits
transmitted and the stored MK to compute the shared secret key which is an
infeasible task. Hence in the proposed algorithm, the number of bits transmitted
is fixed as 1000. Thus, considering a node id of length 2 bytes, length of MAC
= 16 bytes, length of time stamp = 2 bytes and the number of bits transmitted
in the COKE algorithm as 1000, the communication over head of the proposed
scheme is 163 bytes.

Fig. 2. Number of secret bits transmitted for different values of K

4.5 Connectivity

In the proposed scheme, after deployment, the nodes identify their neighbours
and generate a table with entries as ids of neighbouring nodes. A pair wise secret
key is established with every authenticated neighbour irrespective of the number
of secret bits received through COKE algorithm. The presence of common master
key in the initialization phase and private master key in the working phase
ensures the connectivity of the network in both phases.

4.6 Structural Complexity

The computations involved in the proposed secret key establishment scheme are
the execution of pseudo random function and MAC. In order to achieve reduced

134 P. Jilna and P.P. Deepthi

structural complexity, both these functions can be performed by time sharing a
single hardware unit. AES is the best option as it can be used both as a pseudo
random function and MAC in cipher block chaining mode.

5 Comparison with Related Works

In this section, the proposed method is compared with LEAP+ and COKE in
terms of security, efficiency and scalability metrics that are used to evaluate the
key management schemes in WSNs.

5.1 Security Metric

In this metric, the resilience of the key management scheme and security against
various attacks such as Hello flood attack, node addition attack, sink hole attack
etc. are analysed.

The shared secret key computation in COKE is dependent on the plain text
bits exchanged between neighbouring nodes and is independent of other links
thereby providing high resilience to the network. But the scheme is not resistant
to node addition attack due to lack of authentication in the key establishment
process. Attacker nodes can easily be a part of the network even without node
compromise and can launch insider attacks. COKE is also prone to sink hole
attack. In a sink hole attack, the attacker node transmits signals with increased
power and convinces the nodes that it is their nearest neighbour. It then cre-
ates a sink hole by attracting all the traffic from the neighbouring nodes and
dropping it. As the COKE algorithm can be initiated at any instant during the
life time of the network, the adversary can easily launch a sink hole attack. In
COKE, the probability of secret key establishment is dependent on the maxi-
mum transmitted power and the adversarial position that cannot be determined.
Thus COKE algorithm does not guarantee a secure network. In the proposed
scheme, the nodes identify their neighbours at the beginning of the initializa-
tion phase and authenticate each other prior to key establishment using a secret
master key. Similarly in the working phase, the node ids of new neighbours are
verified based on the broadcast signals from the base station. This prevents the
adversary from being a part of the network and convincing the nodes as their
nearest neighbour to launch sink hole attack.

The security of LEAP+ is dependent on the secrecy of the master key which
is loaded into the sensor node prior to deployment. If this MK is compromised,
the whole network is compromised as the shared secret keys in the entire network
are computed based on this MK. Thus LEAP+ offers zero resilience if a node is
compromised in the initialization phase. The proposed scheme provides security
at two levels, one through the master key and other through the source in-
distinguishability of COKE algorithm. Hence a link can be compromised only if
both the MK and the source of transmitted bits are known to the adversary and
hence provides high resilience even if nodes are compromised in the initialization
phase which is the major drawback of LEAP+.

Light Weight Key Establishment Scheme for Wireless Sensor Networks 135

5.2 Efficiency Metric

The factors considered in an efficiency metric are storage requirement, commu-
nication overhead, computational cost and connectivity.

Storage Requirement. Similar to the proposed scheme, the data loaded into
a sensor node prior to deployment in LEAP+ are node id and the initial master
key. In the working phase, the initial master key is replaced with private master
key. In addition, each node stores the id and shared secret keys of neighbouring
nodes. Establishment of pair-wise keys using COKE algorithm do not require
any pre-loaded information other than node id. The shared secrets and node ids
of neighbouring nodes are stored in the working phase.

Considering a node id of length 2 bytes, number of neighbouring nodes as 40
and length of master key as 16 bytes, memory required in the working phase is
738 bytes for the proposed scheme and LEAP+ while it is 722 bytes in COKE.
This shows that the proposed scheme offers more security and reliability without
compromising the storage efficiency.

Communication Overhead. The key establishment with authentication in
LEAP+ involves the transmission of two node ids and two MACs where as
COKE algorithm does not have a constant communication overhead. LEAP+
has a very low communication cost with an overhead of 36 bytes based on the
network assumptions. The number of bits transmitted for key establishment
in COKE depends on the probability of safe bit transmission which in turn
is dependent on the maximum power transmitted and the adversary position.
Based on these factors, the number of bits varies from 300 bits (38 bytes) to
1400 bits (175 bytes) [9]. In the proposed scheme, the number of bits transmitted
is fixed as 1000 bits giving a communication overhead of 163 bytes. Thus the
proposed scheme outperforms COKE where a secret key establishment is not
guaranteed even after transmission of plain text bits.

Computational Cost. The computation of pair-wise secret key in the proposed
scheme, LEAP+ and COKE involves the execution of a MAC /pseudo random
function. To increase the security of the key establishment scheme, two additional
MAC computations are performed in the proposed scheme and LEAP+.

Connectivity. The connectivity in LEAP+ depends on the time-out period
Tmin after which the master key is erased. If the time-out period is chosen very
small to ensure the security of the network, the number of links a node can
establish will be reduced. Thus Tmin presents a trade-off between security and
connectivity of the network. Moreover, an attacker can easily generate jamming
signals for this small duration and prevent the nodes from secret key establish-
ment thereby reducing the connectivity of the network. COKE is a probabilistic
protocol in which secret key establishment depends on the geographical position

136 P. Jilna and P.P. Deepthi

of the adversary in the network and the transmitted power. In [9] the authors
have shown that increased transmission power slightly increases the probability
of secret key establishment at the cost of reduced energy efficiency. The pro-
posed key establishment scheme is deterministic and the master key is erased
only when key establishment with neighbouring nodes is complete so that con-
nectivity of the network is ensured. As the key establishment consists of multiple
transmissions, jamming attacks cannot affect the connectivity of the network.
This shows that the proposed scheme is more efficient compared to LEAP+ and
COKE.

5.3 Scalability Metric

The proposed scheme is scalable, does not depend on deployment knowledge and
can support large networks without compromising security and efficiency. The
other two schemes under consideration, LEAP+ and COKE, are also scalable.

The overall comparison results are given in Table 1.

Table 1. Overall comparison

Proposed scheme LEAP+ COKE

Storage (in bytes) 738 738 722

Communication overhead (in bytes) 163 36 175

Prob. of eavesdropping a link with nodes
compromised in the working phase

0 0 0

Prob. of eavesdropping a link with nodes
compromised in the initialization phase

0 1 0

Prob. of node addition attack 0 0 1

Scalability support YES YES YES

6 Conclusion

An energy efficient, secure and deterministic key exchange protocol for resource
constrained WSNs is presented in this paper. The concepts of transitory master
key and crypto-less over-the-air key establishment methods are combined in this
scheme. The security analysis shows that the proposed method offers enhanced
security against a variety of attacks in WSNs and active adversaries without
increasing the computational cost. Compared to the crypto-less over-the-air key
establishment protocols, the proposed method is deterministic, and a pair-wise
secret key is established even if the probability of secret bit transmission is very
low. In comparison with LEAP+, the proposed scheme offers high resilience
even if the node is compromised in the initialization phase and resists jamming
attacks.

Light Weight Key Establishment Scheme for Wireless Sensor Networks 137

References

1. Simpĺıcio, M.A., Barreto, P.S., Margi, C.B., Carvalho, T.C.: A survey on key
management mechanisms for distributed wireless sensor networks. Comput. Netw.
54(15), 2591–2612 (2010)

2. Dong, Q., Liu, D.: Using auxiliary sensors for pairwise key establishment in WSN.
In: Akyildiz, I.F., Sivakumar, R., Ekici, E., Oliveira, J.C., McNair, J. (eds.) NET-
WORKING 2007. LNCS, vol. 4479, pp. 251–262. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-72606-7 22

3. Liu, D., Ning, P., Du, W.: Group-based key predistribution for wireless sensor
networks. ACM Trans. Sens. Netw. (TOSN) 4(2), 11 (2008)

4. Kotzanikolaou, P., Magkos, E., Vergados, D., Stefanidakis, M.: Secure and practical
key establishment for distributed sensor networks. Secur. Commun. Netw. 2(6),
595–610 (2009)

5. Du, D., Xiong, H., Wang, H.: An efficient key management scheme for wireless
sensor networks. Int. J. Distrib. Sens. Netw. 8(1), 406254 (2012)

6. Jilna, P., Pattathil, D.P.: A key management technique based on elliptic curves for
static wireless sensor networks. Secur. Commun. Netw. 8(18), 3726–3738 (2015)

7. Seo, S.-H., Won, J., Sultana, S., Bertino, E.: Effective key management in dynamic
wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 10(2), 371–383 (2015)

8. Barsocchi, P., Oligeri, G., Soriente, C.: Shake: single hash key establishment for
resource constrained devices. Ad Hoc Netw. 11(1), 288–297 (2013)

9. Di Pietro, R., Oligeri, G.: Coke crypto-less over-the-air key establishment. IEEE
Trans. Inf. Forensics Secur. 8(1), 163–173 (2013)

10. Zhu, S., Setia, S., Jajodia, S.: Leap+: efficient security mechanisms for large-
scale distributed sensor networks. ACM Trans. Sens. Netw. (TOSN) 2(4), 500–528
(2006)

11. Blackshear, S., Verma, R.M.: R-leap+: randomizing leap+ key distribution to resist
replay and jamming attacks. In: Proceedings of the 2010 ACM Symposium on
Applied Computing, pp. 1985–1992. ACM (2010)

12. Kim, Y.H., Lee, H., Lee, D.H., Lim, J.: A key management scheme for large
scale distributed sensor networks. In: Cuenca, P., Orozco-Barbosa, L. (eds.) PWC
2006. LNCS, vol. 4217, pp. 437–446. Springer, Heidelberg (2006). doi:10.1007/
11872153 38

13. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security, pp. 41–47. ACM (2002)

http://dx.doi.org/10.1007/978-3-540-72606-7_22
http://dx.doi.org/10.1007/11872153_38
http://dx.doi.org/10.1007/11872153_38

A Scalable and Systolic Architectures
of Montgomery Modular Multiplication

for Public Key Cryptosystems Based on DSPs

Amine Mrabet1,3,5(B), Nadia El-Mrabet2, Ronan Lashermes7,
Jean-Baptiste Rigaud2, Belgacem Bouallegue6, Sihem Mesnager1,4,

and Mohsen Machhout3

1 University of Paris XIII, CNRS, UMR 7539 LAGA, Villetaneuse, France
amine mrabet eniso@yahoo.fr

2 Ecole des Mines de St-Etienne, SAS-CMP, Gardanne, France
3 University of Monastir EμE Lab, Monastir, Tunisia

4 Tlcom ParisTech, Paris, France
5 National Engineering School of Tunis, Tunis, Tunisia

6 King Khalid University, Abha, Saudi Arabia
7 LHS-PEC TAMIS INRIA-Rennes, Rennes, France

Abstract. The arithmetic in a finite field constitutes the core of Public
Key Cryptography like RSA, ECC or pairing-based cryptography. This
paper discusses an efficient hardware implementation of the Coarsely
Integrated Operand Scanning method (CIOS) of Montgomery modular
multiplication combined with an effective systolic architecture designed
with a Two-dimensional array of Processing Elements. The systolic archi-
tecture increases the speed of calculation by combining the concepts of
pipelining and the parallel processing into a single concept. We propose
the CIOS method for the Montgomery multiplication using a systolic
architecture. As far as we know this is the first implementation of such
design. The proposed architectures are designed for Field Programmable
Gate Array platforms. They targeted to reduce the number of clock cycles
of the modular multiplication. The presented implementation results of
the CIOS algorithms focuses on different security levels useful in cryptog-
raphy. This architecture have been designed in order to use the flexible
DSP48 on Xilinx FPGAs. Our architecture is scalable and depends only
on the number and size of words. For instance, we provide results of
implementation for 8, 16, 32 and 64 bit long words in 33, 66, 132 and
264 clock cycles. We highlight the fact that for a given number of word,
the number of clock cycles is constant.

Keywords: Systolic hardware implementation · Modular multiplica-
tion · Montgomery algorithm · CIOS method · Systolic architecture ·
DSP48

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 138–156, 2016.
DOI: 10.1007/978-3-319-49445-6 8

A Scalable and Systolic Architectures 139

1 Introduction

Since 1976, many Public Key Cryptosystems (PKC) have been proposed and all
these cryptosystems based their security on the difficulty of some mathematical
problem. The hardness of this underlying mathematical problem is essential for
security. Elliptic Curve Cryptosystems which were proposed by Koblitz [12] and
Miller [15], RSA [19] and the Pairing-Based Cryptography [10] are examples of
PKCs. All these systems rely on an efficient finite field multiplication. As a con-
sequence, the development of efficient architecture for modular multiplication has
been a very popular subject of research. In 1985, Montgomery has presented a new
method for modular multiplication [16]. It’s one of the most suitable algorithm
for performing modular multiplications in hardware and software implementa-
tions. The efficient implementation of the Montgomery modular multiplication in
hardware was considered by many authors [3,6,9,17,18,20]. There are a variety of
ways to perform the Montgomery multiplication, considering if multiplication and
reduction are separated or integrated. The separated approach consists in first per-
forming the product and then the Montgomery reduction. It was presented in 1996
by Koç and Tolga in [11]. This method is called the Separated Operand Scanning
method (SOS). On the contrary, the integrated approach is characterized by an
alternation between multiplication and reduction. Several integrated approaches
are presented in [11]: the Coarsely Integrated Operand Scanning Method (CIOS),
the Finely Integrated Operand Scanning Method (FIOS), the Finely Integrated
Product Scanning Method (FIPS) and the Coarsely Integrated Hybrid Scanning
Method (CIHS). According to Koç and Tolga in [11] the CIOS method is a scal-
able word-based method for Montgomery multiplication, and it is the most effi-
cient algorithm that integrates the multiplication with reduction steps. A systolic
array architecture [13,21] is one possibility for the implementation of the Mont-
gomery algorithm in hardware [3,17,18,20]. These architectures offer Processing
Elements (PE) array where each Processing Element performs arithmetic compu-
tation additions andmultiplications. In accordancewith the number ofwords used,
the architecture can employ a variable number of PEs. The systolic architecture
uses very simples Processing Elements. As a consequence, the systolic architecture
decreases the needs for logic elements in hardware implementations. Our contri-
bution in this work is to combine a systolic architecture, which is assumed to be
the best choice for FPGA implementation, with the CIOS method of Montgomery
modular multiplication. We optimize the number of clock cycles required to com-
pute a n-bit Montgomery multiplication and we reduce the utilization of FPGA
resources. We have implemented the modular multiplication in a fixed number of
clock cycles. To the best of our knowledge, this is the first time that a hardware or
a software multiplier of modular Montgomery multiplication, suitable for various
security level, is performed in just 33 clock cycles. Furthermore, as far as we know,
our work is the first one dealing with systolic architecture and CIOS method over
large prime characteristic finite fields. This paper is organized as follows: Sect. 2
discusses related state-of-the-art works. Section 3 presents the Montgomery modu-
lar multiplication algorithm. The proposed architectures and results are presented
in Sects. 4 and 5. Finally, the conclusion is presented in Sect. 6.

140 A. Mrabet et al.

2 Brief State of the Art

In hardware design, the systolic architecture [13] is a pipelined network arrange-
ment of Processing Elements (or cells). It is a specialized form of parallel design.
Each cell compute the data which is coming as input and calculate data indepen-
dently. In [21] the authors proposed a systolic design for FPGA implementation.
Several works are devoted to the implementation of the Montgomery multipli-
cation [2,3,6,8,9,11,16–18,20]. The first ones to our knowledge who proposed a
systolic array are Iwamura, Matsumoto and Imai [8,9]. They presented a systolic
architecture that can execute a modular exponentiation using Montgomery mul-
tiplications. In [20] Tenca and Koç introduced a pipelined Montgomery modular
multiplication, which has the ability to work in any given operand precision and
which is adjustable to any chip area. Harris et al. in [4] improve the result of [20]
using a systolic architecture for the Montgomery multiplication. Siddika Berna
Örs, Lejla Batina, Bart Preneel and Joos Vandewalle presented in [17] a modular
exponentiationbased on themodularMontgomery. In [18]GuilhermePerin,Daniel
Gomes Mesquita and Jõao Baptista Martins proposed a comparison between two
modular multiplication architectures: a systolic and a very high-radix multiplexed
implementation. Their approach uses a radix-16 and radix-32 decomposition. Both
implementations targeted a Virtex-4 and a Virtex-5 FPGA. (A radix-n word is a
word of size n.) Their work is the latest and the most efficient describing the use of
a systolic approach for the Montgomery multiplication. We briefly recall the defin-
ition of a systolic architecture before a summary of their work. A systolic architec-
ture is a pipelined network arrangement of PEs called cells. It is a specialized form
of parallel computing, where cells compute the data which is coming as input and
store them independently. A systolic architecture is an array composed of matrix-
like rows of cells. Each PE shares the information with its neighbours immediately
after processing. Cell at each step takes input data from one or more neighbours.
The systolic architecture proposed in the work [18] is composed of s Processing
Elements distributed in a one-dimensional array. The number s is the number of
words. At each iteration of the Montgomery Algorithm, the words are read from
an external memory (BRAM) and passed to their architecture. To evaluate the
number of clock cycles for a Montgomery multiplication in the systolic architec-
ture, they have to consider the first s cycles to read the input operands from RAM
memories. Furthermore the first iteration of algorithm also needs s clock cycles.
Finally the remaining iterations of algorithm are performed in 4 × s clock cycles.
As a consequence, this architecture requires a 6 × s(= s + s + 4 × s) clock cycles.
For the multiplexed architecture, the first steps are identical to thus of the systolic
architecture (2×s). The number of clock cycles required to remaining iterations of
Montgomery Algorithm is 6 × s clock cycles. In order to perform the multiplexed
architecture the algorithm requires 8 × s(= 2 × s + 6 × s) clock cycles.

3 Montgomery Multiplication

The Montgomery Multiplication Algorithm for large prime characteristic finite
fields [16] is a method for performing modular multiplication without needing

A Scalable and Systolic Architectures 141

to divide by the modulus. In cryptography, the Montgomery Algorithm is the
most used modular multiplication to perform the operation a × b mod p. The
Montgomery multiplication transforms the division by p into several divisions
by a power of 2, which consists only in shifts in hardware and software imple-
mentation. Furthermore, the Montgomery multiplication among large numbers
can be constructed using a radix representation of the numbers. Let p be an odd
prime number. Let n = �log2(p)� be the length of the binary decomposition of
p. We choose the base of numeration to be R = 2n, such that p < R. As p and R
are coprime, we can define p′ = −p−1 mod R. The choice of R is motivated by
the facts that gcd(R, p) = 1 and reductions and divisions by R must be efficient.
As R is a power of 2, divisions are right shifts and the modulo operation is a
simple assignment of the first n-bit. Montgomery multiplication is performed
with numbers represented in the Montgomery representation. The conversion
from ordinary domain to Montgomery domaine detailed in Table 1. The map
M : a ∈ Fp → aR ∈ Fp is a bijection and a field isomorphism of Fp. For any
element a of Fp, the product aR ∈ Fp is called the Montgomery representation
of a in basis R and it is denoted M(a). We describe the Montgomery multipli-
cation in Algorithm 1. The Montgomery multiplication computes M(a) × M(b)
and gives as result M(ab).

Algorithm 1. Montgomery Modular Multiplication
Input: p an odd prime, n = �log2(p)�, R = 2n, p′ = −p−1mod R, M(a),

M(b) ∈ Fp

Output: M(ab) mod p
1 γ ← M(a) × M(b)
2 δ ← γ × p′ mod R

3 T ← γ+δ×p
R

4 If T ≥ p then T ← T − p
5 return T

Table 1. Conversion between montgomery and ordinary domains

Ordinary domain ⇐⇒ Montgomery domain

a ←→ M(a)=a·R mod p

b ←→ M(b)=b·R mod p

a·b ←→ M(a·b)=a·b·R mod p

3.1 CIOS Method

The Coarsely Integrated Operand Scanning (CIOS) method presented in Algo-
rithm 2, improves the Montgomery Algorithm by integrating the multiplication
and reduction. More specifically, instead of computing the product a · b, then
reducing the result, this method allows an alternation between iterations of the

142 A. Mrabet et al.

outer loops for multiplication and reduction. The integers (p, a and b) are seen
as lists of s words of size w. In order to perform this algorithm we need an array
T of size only s + 2. The intermediate results are stored in T . The final result of
the CIOS algorithm is composed by the s+1 least significant words of this array.
The alternation between multiplication and reduction is possible since the value

Algorithm 2. CIOS algorithm for Montgomery multiplication [11]
Input: p < 2K , p′ = −p−1mod 2w, w, s, K = s · w :bit length, R = 2K , a, b < p
Output: a · b · R−1 mod p

1 T ← Null;
2 for i ← 0 to s − 1 do
3 C ← 0;
4 for j ← 0 to s − 1 do
5 (C, S) ← T [j] + a[i] · b[j] + C
6 T [j] ← S

7 (C, S) ← T [s] + C
8 T [s] ← S
9 T [s + 1] ← C

10 C ← 0;
11 m ← T [0] · p′ mod 2w

12 (C, S) ← T [0] + m · p[0] for j ← 1 to s − 1 do
13 (C, S) ← T [j] + m · p[j] + C
14 T [j] ← S

15 (C, S) ← T [s] + C
16 T [s − 1] ← S
17 T [s] ← T [s + 1] + C

18 return T ;

of m (in line 11 of the Algorithm 2) in the ith iteration of the outer loop for
reduction depends only on the value T [j], which is computed by the ith iteration
of the outer loop for the multiplication. In order to perform the multiplication,
we have modified the CIOS algorithm of [11] and designed this method with a
systolic architecture. Indeed, instead of using an array to store the intermediate
result, we replace T by Input and Output signals for each Processing Element.
As a consequence, our design uses fewer of multiplexers and then we have better
results considering the number of slices.

4 Hardware Implementation

4.1 Block DSP in Xilinx FPGAs

Modern FPGA devices like Xilinx Virtex-4, Virtex-5 and Artix-7 as well as
Altera Stratix FPGAs have been equipped with arithmetic hardcore extensions

A Scalable and Systolic Architectures 143

Fig. 1. Structure of DSP block in modern FPGA device.

to accelerate digital signal processing applications. These function DSP blocks
can be used to build a more efficient implementation interms of performance and
reduce at the same time the demand for areas. DSP blocks can be programmed to
perform basic arithmetic functions, multiplication, addition and subtraction of
unsigned integers. Figure 1 shows the generic DSP structure in advanced FPGAs.
DSP can operate on external Input A,B and C as well as on feedback values from
P or result PCIN.

4.2 Proposed Architecture

The idea of our design is to combine the CIOS method of Montgomery Modu-
lar multiplier presented in [11] with a two-dimensional systolic architecture in
the model of [7,21]. As seen in Sect. 3.1, the CIOS method is an alternation
between iterations of the loops for multiplication and reduction. The concept of
the two-dimensional systolic architecture presented in Sect. 2 combines an iden-
tical Processing Elements with local connections, which take external inputs
and handle them with a predetermined manner in a pipelined fashion. This new
architecture is directly based on the arithmetic operations of the CIOS method
of Montgomery Algorithm. The arithmetic is performed in a radix-w base (2w).
The input operands are processed in s words of w bits. We present many versions
of this method. We illustrate our design for s = 8, s = 16, s = 32 and a s = 64
architectures, respectively denoted NW-8 (for Number of Words), NW-16, NW-
32 and NW-64. Before the descriptions of the architectures NW-8 and NW-16,
we begin with a generic description of our systolic architecture. Our proposed
architectures for the implementation of the Montgomery modular multiplica-
tion is detailed in this section. We describe it in detail as well as the different
Processing Element behaviours. In order to have less of states in our Final State
Machine (FSM), we divided our Algorithm 2 of Montgomery on five kinds of PE
noted:

– cells alpha denoted α;
– cells beta denoted β;
– cells gamma denoted γ;

144 A. Mrabet et al.

Fig. 2. Data dependency in general systolic architecture.

– cells alpha final denoted αf ;
– cells gamma final denoted γf .

Figure 2 presents the dependency of the different cells. Below we describe pre-
cisely each cells. The letters MSB stand for the Most Significant Bits and LSB
for the Least Significant Bits. In our notation the letter C denote the MSB of
the results and the letter S the LSB.

1. alpha : Presented by the lines 4 and 5 in the Algorithm 2 and detailed in
Algorithm 3. The PEs alpha are scalable according to the NW in the design.
We use this cell to perform the multiplication step. The input of the cell alpha
are: S In provided by the previous step, C In provided by the previous step,
a[i]: The words of the operand a, and b[j]: The words of the operand b. The
output of the cell alpha are: S provided to the next step and C provided to
the next step.

2. beta : Presented by the lines 9, 10 and 11 in the Algorithm 2 and detailed in
Algorithm 4. The input of the cell beta are: S In provided by the previous
step, p[0]: The first word of the modulo p and p′: predefined. The output of
the cell beta are: m provided to the next step and C provided to the next
step.

3. gamma : Presented by the lines 13 and 14 in the Algorithm 2 and detailed in
Algorithm 5. The PEs gamma are scalable according to the NW in the design.
We use this cell to perform the reduction step. The input of the cell gamma
are: S In provided by the previous step, C In provided by the previous step,
p[j]: The words of the modulo p and m provide by the cell beta. The output
of the cell gamma are: S provided to the next step and C provided to the
next step.

4. alpha final : Presented by the lines lines 6, 7 and 8 in the Algorithm 2 and
detailed in Algorithm 6. The input of the cell alpha final are: S In provided
by the previous step and C In provided by the previous step. The output of
the cell alpha final are: S1 provided to the next step and S2 provide to the
next step.

A Scalable and Systolic Architectures 145

5. gamma final : Presented by the lines 15, 16 and 17 in the Algorithm 2 and
detailed in Algorithm 7. The input of the cell gamma final are: S1 In provided
by the previous step, S2 In provided by the previous step and C In provided
by the previous step. The output of the cell gamma final are: S1 provided to
the next step and S2 provided to the next step.

Algorithm 3. Cell alpha
Input: a[i], b[j], C In, S In
Output: C, S

1 tmp1 ← S In + C In
2 tmp2 ← a[i] · b[j]
3 tmp2 ← tmp2 + tmp1
4 C ←MSB(tmp2)
5 S ←LSB(tmp2)
6 return C, S;

Algorithm 4. Cell beta
Input: S in, p[0], p′ = −p−1mod 2w

Output: C, m
1 tmp1 ← S in · p′

2 m ← LSB(tmp1)
3 tmp1 ← p[0] · m
4 tmp1 ← S in + tmp1
5 C ←MSB(tmp1)
6 return C, m;

Algorithm 5. Cell gamma
Input: p[i], m, C in, S in
Output: C, S

1 tmp1 ← S in + C in
2 tmp2 ← p[i] · m
3 tmp2 ← tmp2 + tmp1
4 C ←MSB(tmp2)
5 S ←LSB(tmp2)
6 return C, S;

This organization allows us to optimize the number of clock cycles. Each
Processing Element in Fig. 10 is responsible for performing arithmetic opera-
tions. The different Processing Elements establish communication with the con-
trol block (FSM) as shown in Fig. 9 by receiving starts signals at each state of
Montgomery Algorithm iteration. Each PE sends a done signal to the FSM at
each end of the calculation. The final result is a concatenation of the last output
of gamma and gamma final PEs. The structure of all PEs have a combinational
behaviour.

146 A. Mrabet et al.

Algorithm 6. Cell alpha final
Input: C in, S in
Output: S1, S2

1 tmp1 ← S in + C in
2 S1 ←LSB(tmp1)
3 S2 ←MSB(tmp1)
4 return C, S;

Algorithm 7. Cell gamma final
Input: C in, S1 in, S2 in
Output: S1, S2

1 tmp1 ← S1 in + C in
2 S1 ←LSB(tmp1)
3 S2 ←MSB(tmp1)
4 S2 ← S2 in + S2
5 return S1, S2;

4.3 Internals Architectures of Cells

In this section we will describe the internals architectures of PEs used in these
designs. Our five cells are designed in order to use DSP(s) blocks.

Description of the Cell α. As illustrated in Fig. 4, the multiplication between
a[i] and b[j] words returns a 2w bits result. This result is added thereafter to
S α In. This latter is the least significant bits of the result of Processing Element
gamma, which is provided through the output multiplexer. The last add is also
added to C α In. The C α In is the most significant bits of the result of the
previous Processing Element alpha, which is provided also through an output of
a second multiplexer. The different inputs outputs of the PE alpha are presented
in Fig. 9. The most significant bits of the result of alpha is propagated to the

Fig. 3. PEs of Systolic Architecture in two-dimensional array.

A Scalable and Systolic Architectures 147

a[i]

b[i]

×

+
C α In

S α In

+

REG

REG

C α Out

S α Out

MSB w bits

LSB w bits

Fig. 4. Alpha Processing Element internal architecture.

multiplexer to fix the next PE of alpha. Whereas the least significant bits are
propagated to an other multiplexer to fix the next PE of gamma. After each
computation of the alpha PE a shift in the input b is triggered.

Description of the Cell β. According to our Algorithm 4 and as illustrated in
Fig. 5, the zero index word of p (p[0]) and p′ are provided to this beta Processing
Element. The number p′ corresponds the modular inverse of p modulo 2w. The
multiplication between p′ and S β In returns a 2w bits result, where only the
least significant bits of this multiplication is multiplied by the first word of p and
returns a 2w bits result. Finally, this result is added to a w bits word S β In.
Only the most significant bit part of this result is used in the next gamma PE.
The different inputs/outputs of PE beta are presented in Fig. 9.

p′

S β In

×

P [0]

×
+

S β In

REG C β Out

REG m

MSB w bits

LSB w bits

Fig. 5. Beta Processing Element internal architecture.

Description of the Cell γ. As illustrated in Fig. 6, the multiplication between
m and p[j] words returns a 2w bits result. This latter is added thereafter to
S γ In. The number S γ In corresponds to the least significant bits of the result
of Processing Element alpha, which is provided through an output multiplexer.
This add is also added to C γ In, where C γ In is the most significant bits of the
result of the previous Processing Element gamma. This PE gamma is provided
also through an output of a second multiplexer. The different inputs/outputs
of the gamma PE are shown in Fig. 9. The most significant bits of result are
propagated to the multiplexer to fix the next PE of gamma. Whereas the least
significant bits are propagated to an other multiplexer to fix the next PE of
alpha.

148 A. Mrabet et al.

m

p[i]

×

+
C γ In

S γ In

+

REG

REG

C γ Out

S γ Out

MSB w bits

LSB w bits

Fig. 6. Gamma Processing Element internal architecture.

Description of the Cell αf . The cell αf corresponds to the final α computed
at the end of the line correspond to the multiplication step. In the PE alpha final,
the S α f In added to C α f returns a 2w bits result as presented in Fig. 7.

+
S α f In

C α f

REG

REG

S2 α f out

S1 α f out

MSB w bits

LSB w bits

Fig. 7. Alpha f Processing Element internal architecture.

Description of the Cell γf . The cell γf corresponds to the final γ computed
at the end of the line correspond to the reduction step. For Processing Element
gamma final, S1 γ f In is added to C γ f , the result is a 2w bits. The least
significant bits of the last result is added to S2 γ f In. The internal architecture
of the gamma final type PE is presented in Fig. 8.

+
C γ f

S1 γ f In +

S2 γ f In

REG

REG

S2 γ f Out

S1 γ f Out

MSB w bits

LSB w bits

Fig. 8. Gamma f Processing Element internal architecture.

In the remainder of this section we detail our design for a s = 8 and a s = 16
architectures, respectively denoted NW-8 and NW-16.

A Scalable and Systolic Architectures 149

Fig. 9. Proposed Montgomery modular multiplication architecture.

4.4 Our Architectures

Firstly, we will start with the NW-8 architecture which contains 3 PEs of type
alpha and 3 of type gamma. With this design we can compute a modular mul-
tiplication in 33 clock cycles. Secondly we will present the NW-16 architecture
that is composed by 6 PEs of type alpha and 6 PEs of type gamma. And we can
perform a modular multiplication with this architecture in 66 clock cycles. Simi-
larly, in order to implement the NW-32 architecture and the NW-64 architecture
we need every time to double the number of cells. We provide a comparison of
our architectures at the end of this section.

NW-8 Architecture. In this architecture, the operands and the modulo are
divided in 8 words as illustrated in Fig. 10. The NW-8 architecture is composed of 9
Processing Elements distributed in a two-dimensional array. Every Processing Ele-
ments are responsible for the calculus involving w bits words of the input operands.
For example, for a 256 bits modular multiplication with NW-8, the operands are
split in 8 words of 32 bits which results in a two-dimensional array of 9 Processing
Elements. The 9 Processing Elements are divided in the following manner: 3 cells
alpha, 1 cell alpha final, 1 cell beta, 3 cells gamma, et 1 cell gamma final.

Those choices were made in order to optimize the number of states in our
FSM. As seen in Sect. 2 each PE in the N-dimensional array is connected to 2 N
data In/Out paths for communicating with 2N PEs in the N-dimensional array.
Since we are working with two-dimensional elements, each PE in our design is
connected to 4 data paths, 2 Input and 2 Output as presented in Fig. 3.

In this architecture, the Processing Elements are designed with finite state
machines (FSM). The control block communicates with the PEs and shift regis-

150 A. Mrabet et al.

Fig. 10. The data dependency graph of the proposed new Systolic Architecture with
a Two-dimensional array of Processing Elements (NW-8).

ters through starts signals. The Fig. 9 presents an overview of our architecture. For
more technical details the Fig. 11 presents the differents PEs with input/output.
The shift register is designed to provide the required words for a modular multi-
plication to the PEs. The Processing Element alpha requires words a[i] and b[j] of
the operands a and b, on the other side the Processing Element gamma required a
words of the operand p. Thus, these operands are defined in the package body.
At the end of the Montgomery modular multiplication, the control block pro-
vides the multiplication result a · b · R−1 mod p through the outputs of the last
gamma and gamma final Processing Elements. To evaluate the number of clock
cycles for a CIOS method of modular multiplication in NW-8, the first parame-
ter is max{number of alpha, number of gamma} = 3, it means that our design can
handle three iterations of i at the same time as illustrated in Fig. 10. Implying that
our algorithm require to loop s+3 times. We can performing our design in 33 clock
cycles since our design requires three states (33 = 3×(s+3)). The different results
of this architecture in bit-length 256 are given in Table 2.

Table 2. Implementations of cells and MMM (NW-8).

Artix-7 DSP Frequency (MHz) Clock cycle

MMM (s = 8/K = 256) 31 105.275 33

Alpha 4 291.023 1

Gamma 4 291.023 1

Beta 4 388.350 1

Alpha final 1 459.918 1

Gamma final 2 442.811 1

NW-16 Architecture. In this architecture, the operands and the modulo are
divided in 16 words. The NW-16 architecture is designed in the same way as the
NW-8. This example illustrates the scalability of our design. The NW-16 archi-
tecture is composed of 15 Processing Elements distributed in a two-dimensional

A Scalable and Systolic Architectures 151

array, where every Processing Elements are responsible for the calculus involv-
ing w bits words of the input operands. The 15 Processing Elements are divided
like this: 6 cells alpha, 1 cell alpha final, 1 cell beta, 6 cells gamma et 1 cell
gamma final. We can remark that the number of PEs of type alpha and gamma
are the double of the number for NW-8. As said previously, the number of other
PE type (alpha final, beta, gamma final) remains unchanged whatever the num-
ber of words in the design. In order to evaluate the number of clock cycles of
the NW-16 architecture, the first parameter is max{number of alpha, number of
gamma} = 6, implying that our algorithm requires to loop s + 6 times. We can
perform the multiplication with our design in 66 clock cycles since our design
requires three states (66 = 3 × (s + 6)). The different results of this architecture
in bit-length 256 are given in Table 3.

Table 3. Implementations of cells and MMM (NW-16).

Artix-7 DSP Frequency (MHz) Clock cycle

MMM (s = 16/K = 256) 29 145.892 66

Alpha 2 379.341 1

Gamma 2 379.341 1

Beta 2 453.104 1

Alpha final 1 459.918 1

Gamma final 2 442.811 1

NW-32 Architecture. In this architecture, the operands and the modulo are
divided in 32 words. The NW-32 architecture is composed of 27 Processing Ele-
ments distributed in a two-dimensional array, where every Processing Elements
are responsible for the calculus involving w bits words of the input operands. The
27 Processing Elements are divided like this: 12 cells alpha, 1 cell alpha final,
1 cell beta, 12 cells gamma et cell gamma final. In order to evaluate the num-
ber of clock cycles of the NW-32 architecture, the first parameter as we have
seen previously is max{number of alpha, number of gamma} = 12, implying
that our algorithm require to loop s + 12 times. We can perform the multipli-
cation with our design in 132 clock cycles since our design requires three states
(132 = 3 × (s + 12)).

NW-64 Architecture. In this architecture, the operands and the modulo are
divided in 64 words. The NW-64 architecture is composed of 51 Processing Ele-
ments distributed in a two-dimensional array, where every Processing Elements
are responsible for the calculus involving w bits words of the input operands. The
51 Processing Elements are divided like this: 24 cells alpha, 1 cell alpha final, 1
cell beta, 24 cells gamma et 1 cell gamma final. In order to evaluate the number
of clock cycles of the NW-64 architecture, the first parameter is max{number
of alpha, number of gamma} = 24, implying that our algorithm require to loop

152 A. Mrabet et al.

s + 24 times. We can perform the multiplication with our design in 264 clock
cycles since our design requires three states (264 = 3 × (s + 24)).

Architectures Comparison. The Table 4 explains a comparison between the
different architectures. Number of clock cycles for every architecture equal to 3
× (s+nb), such that nb=max{number of cells alpha, number of cells gamma},
implying that our algorithm require to loop s + nb times. It is interesting to
notice that all our architectures are scalable and targeting the different security
levels useful in cryptography.

Table 4. Comparison of our architectures

CIOS s = 8 s = 16 s = 32 s = 64

K = 256 32 16 8 4

K = 512 64 32 16 8

K = 1024 128 64 32 16

K = 2048 256 128 64 32

Clock cycles = 3 × (s+nb) 33 66 132 264

Number of cells 6 +3 12 +3 24 +3 48 +3

5 Results

The Table 5 summarizes the FPGA results postimplementation of the proposed
versions of modular multiplication architectures. We present a results for the
both architectures NW-8 and NW-16. The designs were described in hardware
description languages (VHDL) and synthesized for Artix-7 and Virtex-5 Xilinx
FPGAs. In order to check the correctness of the result, we compare the results
given by the FPGA with the sage code. We present the different results after
implementation of bit-length k which are given in Table 5. These circuits have
the advantage of suitability to various applications with different bit lengths like
RSA, ECC and pairings. As it is shown in Table 5, an interesting property of our
design is the fact that the clock cycles are independent from the bit length. This
property gives to our design the advantage of suitability to different security level.
In order to implement the modular Montgomery multiplication for fixed security
level, we must choose the most suitable architecture. The results presented in this
work are compared with the previous work [4,5,17,18] in the Table 6. We could
notice that our results are better then [18] considering every point of comparison
i.e. the number of slice and the number of clock cycles. Considering the number
of slices, we recall that [18] used an external memory to optimize the number of
slices used by their algorithms. Considering the comparison with [17], our design
requires less number of slices, and a better frequency and we really improve the
number of clock cycles. Our design performed the Montgomery multiplication in
66 clock cycles for the 512 and 1024 bit length corresponding to AES-256 and

A Scalable and Systolic Architectures 153

Table 5. Illustration of the scalabilty of our architecture.

Artix 7- Nexys 4

NW-8 NW-16

128 256 512 256 512 1024

Freq MHz 198 106 65 146 106 65

Cycles 33 33 33 66 66 66

Slice registers 487 870 1614 1123 2164 4208

Slice LUTs 355 809 2650 846 1789 5242

Slices 206 352 878 402 798 2072

DSP 19 31 87 29 57 161

Table 6. Comparaison of our work with state-of-art implementations.

Xilinx FPGAs

Our A7 Our V5 [18] V5 [17] VE [5] VII [4] VII [14] V [1] K7 and V5

512 1024 512 1024 512 1024 512 1024 1024 1024 512 1024 512

K7

512

V5

Freq

MHz

106 65 97 65 95 130 95.229 95.620 116.4 119 72.1 79.2 176 123

Cycles 66 66 66 66 96 384 1540 3076 1088 1167 – – 66 66

Speed

μs

0.622 1.013 0680 1.015 1.010 2.953 16.031 32.021 9.34 9.80 – – 0.374 0536

Slice

Regis-

ters

2164 4208 3046 6072 3876 6642 – – – – – – 5076 4960

Slice

LUTs

1789 5242 1781 5824 – – 2972 5706 9319 9271 3125 6243 8757 10877

BRAM 0 0 0 0 128 256 – – – – – – 0 0

AES-512 security level, while [17] performed the multiplication in 1540 clock
cycles for the AES-256 security level and 3076 for the AES-512 security level.

6 Conclusion

In this paper we have presented an efficient hardware implementation of the CIOS
method of Montgomery multiplication Algorithm over large prime characteristic
finite fields Fp. We give the results of our design after routing and placement using
a Artix-7 and Virtex-5 Xilinx FPGAs. Our systolic implementations is suitable for
every implementation implying a modular multiplication, for example RSA, ECC
and pairing-based cryptography. Our architectures and the designs were matched
with features of the FPGAs. The NW-8 design presented a good performance con-
sidering latency × area efficiency. This architecture can run for all the bit length
corresponding to classical security levels (128, 256, 512 or 1024 bits) in just 33
clock cycles. On the other hand the NW-16 perform the same bit length in 66 clock
cycles, but improve in area compared to NW-8 work. Our systolic design using this
method CIOS is scalable for other number of words.

154 A. Mrabet et al.

A Architecture

Fig. 11. All processing elements.

A Scalable and Systolic Architectures 155

References

1. Bigou, K., Tisserand, A.: Single base modular multiplication for efficient hard-
ware rns implementations of ecc. In: Conference on Cryptographic Hardware and
Embedded Systems, pp. 123–140, September 2015

2. Junfeng, F., Sakiyama, K., Verbauwhede, I.: Montgomery modular multiplication
algorithm on multi-core systems. In: 2007 IEEE Workshop on Signal Processing
Systems, pp. 261–266, October 2007

3. Hariri, A., Reyhani-Masoleh, A.: Bit-serial and bit-parallel montgomery multipli-
cation and squaring over gf. IEEE Trans. Comput. 58(10), 1332–1345 (2009)

4. Harris, D., Krishnamurthy, R., Anders, M., Mathew, S., Hsu, S.: An improved uni-
fied scalable radix-2 montgomery multiplier. In: 17th IEEE Symposium on Com-
puter Arithmetic, ARITH-17 2005, pp. 172–178, June 2005

5. Huang, M., Gaj, K., El-Ghazawi, T.: New hardware architectures for montgomery
modular multiplication algorithm. IEEE Trans. Comput. 60(7), 923–936 (2011)

6. Huang, M., Gaj, K., Kwon, S., El-Ghazawi, T.: An optimized hardware archi-
tecture for the montgomery multiplication algorithm. In: Cramer, R. (ed.) PKC
2008. LNCS, vol. 4939, pp. 214–228. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78440-1 13

7. Lee, K.I.: Algorithm and VLSI architecture design for H.264/AVC Inter Frame
Coding. Ph.D. thesis, National Cheng Kung University, Tainan, Taiwan (2007)

8. Iwamura, K., Matsumoto, T., Imai, H.: High-speed implementation methods for
RSA scheme. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp.
221–238. Springer, Heidelberg (1993). doi:10.1007/3-540-47555-9 20

9. Iwamura, K., Matsumoto, T., Imai, H.: Systolic-arrays for modular exponentiation
using montgomery method. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 477–481. Springer, Heidelberg (1993). doi:10.1007/3-540-47555-9 43

10. Joux, A.: A one round protocol for tripartite diffiehellman. J. Cryptology 17(4):
263–276 (2004)

11. Ko, C.K., Acar, T., Jr. Kaliski, B.S.: Analyzing and comparing montgomery mul-
tiplication algorithms. IEEE Micro 16(3), 26–33 (1996)

12. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
13. Kung, H.T.: Why systolic architectures? Computer 15(1), 37–46 (1982)
14. Manochehri, K., Pourmozafari, S., Sadeghiyan, B.: Montgomery, rns for rsa hard-

ware implementation. In: Computing and Informatics, vol. 29, pp. 849–880, Decem-
ber 201

15. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.
1007/3-540-39799-X 31

16. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

17. Ors, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware implementation of a
montgomery modular multiplier in a systolic array. In: Parallel and Distributed
Processing Symposium, p. 8, April 2003

18. Perin, G., Mesquita, D.G., Martins, J.B.: Montgomery modular multiplication on
reconfigurable hardware: systolic versus multiplexed implementation. Int. J. Recon-
fig. Comput. 2011, 601–610 (2011)

http://dx.doi.org/10.1007/978-3-540-78440-1_13
http://dx.doi.org/10.1007/978-3-540-78440-1_13
http://dx.doi.org/10.1007/3-540-47555-9_20
http://dx.doi.org/10.1007/3-540-47555-9_43
http://dx.doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31

156 A. Mrabet et al.

19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

20. Tenca, A.F., Koç, Ç.K.: A scalable architecture for montgomery nultiplication. In:
Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 94–108. Springer,
Heidelberg (1999). doi:10.1007/3-540-48059-5 10

21. Vucha, M., Rajawat, A.: Design and fpga implementation of systolic array archi-
tecture for matrix multiplication. Int. J. Comput. Appl. 26(3), 0975 s8887 (2011)

http://dx.doi.org/10.1007/3-540-48059-5_10

Iterative Ciphers

Spectral Characterization of Iterating
Lossy Mappings

Joan Daemen1,2(B)

1 STMicroelectronics, Diegem, Belgium
2 Radboud University, Nijmegen, Netherlands

joan@cs.ru.nl

Abstract. In this paper we study what happens to sets when we iter-
atively apply lossy (round) mappings to them. We describe the infor-
mation loss as imbalances of parities of intermediate distributions and
show that their evolution is governed by the correlation matrices of the
mappings. At the macroscopic level we show that iterating lossy map-
pings results in an increase of a quantity we call total imbalance. We
quantify the increase in total imbalance as a function of the number of
iterations and of round mapping characteristics. At the microscopic level
we show that the imbalance of a parity located in some round, dubbed
final, is the sum of distinct terms. Each of these terms consists of the
imbalance of a parity located at the output of a round, multiplied by
the sum of the correlation contributions of all linear trails between that
parity and the final parity. We illustrate our theory with experimental
data. The developed theory can be applied whenever lossy mappings are
repeatedly applied to a state. This is the case in many modes of block
ciphers and permutations for, e.g., iterated hashing or self-synchronizing
stream encryption. The main reason why we have developed it however,
is for applying it to study the security implications of using non-uniform
threshold schemes as countermeasure against differential power and elec-
tromagnetic analysis.

Keywords: Iterative lossy mappings · Correlation matrices ·
Non-uniformity

1 Introduction

Differential power analysis (DPA) is a class of statistical attacks allowing to
extract the key out of cipher implementations exploiting dependence of the
power consumption on the data being processed. As a countermeasure to be
used in hardware implementations, so-called threshold schemes have been pro-
posed [11,12]. These schemes are a special case of masking schemes, where the
sensitive intermediate variables are represented by a number c of shares and the
represented value, dubbed native, is the (bitwise) sum of those shares. A thresh-
old scheme is designed such that any combinatorial circuit in the implementation
takes as input at most c − 1 shares. If the sharing is uniform, i.e., if the missing
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 159–178, 2016.
DOI: 10.1007/978-3-319-49445-6 9

160 J. Daemen

share is uniformly distributed, the power consumption of such a combinatorial
circuit is independent of the native value for the same reason that the one-time
pad is provably secure. From this it is easy to prove that a threshold scheme is
provably secure against first-order DPA as long as the shares are uniform.

We have proposed to apply a 3-share threshold schemes to the Keccak-f
permutation [3] to be used for keyed modes of Keccak or Keccak-f itself
[2]. However, the threshold sharing we proposed for the non-linear layer is not
uniform. Concretely, our shared implementation of the non-linear step χ is not
invertible and it seems no invertible 3-share threshold scheme exists for χ. This
implies that if we start with a uniformly shared state, it is no longer uniform
after an iteration. We have proposed different fixes for this problem [4]. In fact,
the loss of uniformity can be compensated by some extra circuitry and injecting
4 random bits per round. However, some of us felt that this may be unnecessary.
To better understand this, we thought it would be good to take a closer look at
this loss of uniformity. The result of these investigations lead to some theory that
is not specific for the threshold sharing setting and insights specific for threshold
sharing. This paper reports on the former.

Although non-uniformity threshold schemes is the trigger for this work, it
can be applied to other settings. For example Merkle-Damg̊ard based or sponge-
based hashing, self-synchronizing stream ciphers or ciphers with a non-invertible
state-updating function. An example of the latter is the sponge function Gluon
[1]. Gluon was already investigated in [14], that can be considered prior art
to this work. As opposed to [14] that concentrates on macroscopic aspects, we
start from the spectral domain and make extensive use of correlation matrices
to derive macroscopic metrics for non-uniformity in a second stage.

1.1 Overview

Section 2 explains how distributions over GF(2)n can be fully characterized by
the imbalances of their parities. The array of imbalances is called the imbalance
spectrum and the link between the probability distribution and the imbalance
spectrum is the Walsh-Hadamard transformation. We derive how to compute
the spectrum of the product of independent distributions and of a projected
distribution.

Section 3 recalls correlation matrices of Boolean mappings and linear trails
in iterative mappings. It provides expressions for the occurrence of imbalances
in (iterative) Boolean mappings and iterative mappings and their propagation
through them. These expressions are the basis for the remainder of the paper.

Section 4 defines macroscopic non-uniformity metrics for distributions and
mappings: the total imbalance (contribution) and collision probability. It shows
that under independence assumptions, iteratively applying lossy mappings to a
variable accumulates the imbalance contributions of the lossy mappings in the
total imbalance of the variable.

In Sect. 5 we characterize the distributions, spectra and total imbalance that
result when sampling GF(2)n both for the cases with and without replacement
and the corresponding distributions of random mappings.

Spectral Characterization of Iterating Lossy Mappings 161

In Sect. 6 we show that for some classes of mappings, i.e., lossy round func-
tions, it is easy to determine their so-called collision profile that fully determines
their total imbalance. We illustrate this with an example.

Finally, in Sect. 7 we provide some experimental evidence that the indepen-
dence assumptions of Sect. 4 are reasonable.

1.2 Conventions and Notation

We consider distributions over domains of type GF(2)n, i.e., sets of n-bit vectors.
We denote them by a capital, e.g., X. For a given n-bit value x, we denote
Pr(X = x), the probability that X = x, by X(x).

We use the Kronecker delta function with a slightly different notation than
usual for clarity: δ(x = y). This function takes two arguments x and y and is 1
if x = y and zero otherwise.

If x is an n-bit vector and y is an m-bit vector x||y denotes the n + m-bit
vector with first n components those of x and m last components those of y.

For quantities a and b, we use a ≫ b to indicate that a is much larger than
b. When using addition and summation, the kind of addition (in GF(2)n, in
R, . . .) performed is implicitly determined by the type of summands.

We use vectors and matrices and their products. The vectors are supposed
to be column vectors and the transpose operation applied to a vector or matrix
switches rows and columns. The transpose of vector v is denoted as vT and the
transpose of matrix M is denoted as MT. We denote the n × n unity matrix by
In. The component of a vector v with index i is denoted as vi and the element
in a matrix M in row with index r and column with index c is denoted as Mr,c.

2 Distributions and Their (imbalance) Spectrum

In this section we show how distributions can be characterized in the spectral
domain by means of imbalances in certain parities. Large imbalances can give
rise to cryptanalytic or side-channel attacks.

2.1 Parities, Imbalances and Spectrum

Definition 1. A distribution X over GF(2)n is uniform if X(x) = 2−n for all
x ∈ GF(2)n.

We can describe distributions over GF(2)n with imbalances over parities that
are defined by n-dimensional binary vectors called masks.

Definition 2. The parity of a vector x defined by a mask v is the linear function
vTx from GF(2)n to GF(2) given by

vTx =
∑

i

vixi ,

where the summation corresponds to the addition in GF(2).

162 J. Daemen

Definition 3. The imbalance X̃(v) of a mask v for a distribution X is given by

X̃(v) =
∑

x

X(x)(−1)vTx
. (1)

Imbalances range between −1 (parity is always 1) and +1 (parity is always 0).
If it is zero we say it is balanced.

Filling in v = 0 in Eq. (1) yields X̃(0) = 1. Naturally, X̃(0) is the imbalance
of the constant function zero and so equal to 1. This leads us to the following
definition.

Definition 4. The spectrum of a distribution with X̃(0) omitted is the reduced
spectrum and denoted by X̂.

Let L be a mapping from the space of binary vectors to the space of real-
valued vector that transforms a binary vector of dimension n to a real-valued
vector of dimension 2n . L is defined by

L : GF(2)n → IR2n : a �→ L(x) ⇔ ∀u ∈ GF(2)n : L(x)u = (−1)uTx . (2)

Since L(x ⊕ y) = L(x) · L(y), L is a group homomorphism from 〈GF(2)n
,+〉 to

〈(R\{0})2
n

, ·〉, where ‘ · ’ denotes the component-wise product.
L(x) contains the 2n parities of an n-bit vector x. Equivalently, it contains the

parities of the distribution X over GF(2)n that has probability 1 in x and zero
elsewhere: Pr(X = x) = δ(x = a). We can express the spectrum of a distribution
X in terms of L:

X̃ =
∑

x

X(x)L(x) . (3)

2.2 The Walsh-Hadamard Transform

From Eq. (1), it is clear that the vector X̃ of values X̃(v) for all v can be obtained
by applying the Walsh-Hadamard transform [8] to X. This transform is a linear
transformation operating on a vector space R2n that can be modelled as multipli-
cation by a square matrix W with 2n rows and columns. The rows and columns
are not indexed by integers but rather by n-bit binary vectors and the element
in row v and column x is given by (−1)vTx = L(x)v. So we have X̃ = W × X.
Clearly, vTx = xTv so W is symmetric: WT = W.

We can define an inner product 〈A,B〉 with A and B vectors in R
2n . Assum-

ing A and B are column arrays containing coordinates with respect to an ortho-
normal basis, this inner products is given by 〈A,B〉 = ATB =

∑
i AiBi. Two

vectors A and B are orthogonal if their inner product is zero.
A transformation M is said to be orthogonal if for all vectors A and B it holds

that 〈MA,MB〉 = 〈A,B〉. It is easy to see that this is the case if the columns
of M form an orthonormal basis, i.e., if we denote two columns of M by Mi

and Mj , we have Mi
TMj = δ(i = j). This can be expressed more compactly as

MTM = I2n .

Spectral Characterization of Iterating Lossy Mappings 163

The Walsh-Hadamard transform can be decomposed in an orthogonal trans-
formation and an expansion by 2n/2. We have W = 2n/2W̌ and W̌W̌T = I2n .
The inverse of W is therefore given by W−1 = 2−nWT = 2−nW. It follows that
we can reconstruct a distribution X from its spectrum X̃ in the following way:

X(x) = 2−n
∑

v

X̃(v)(−1)vTx , (4)

or equivalently
X = 2−n

∑

v

X̃(v)L(v) .

2.3 Product of Independent Distributions

Let X be a distribution of a 2n-bit string x and Y a distribution of a 2m bit
string y, with X and Y independent and let z be the joint distribution of x and
y. Then the distribution Z of z is given by:

Z(z = (x, y)) = X(x)Y (y) .

For the imbalances this implies the following:

Z̃(v = (vx, vy)) = X̃(vx)Ỹ (vy) .

This can be generalized to the concatenation of s string with independent dis-
tributions. Let x = (x(0), x(1), . . . , x(s−1)) and v = (v(0), v(1), . . . , v(s−1)). We
have:

X̃(v) =
∏

i

X̃(i)(v(i)) . (5)

Note that in the product on the right hand side of Eq. (5), only factors with
v(i)
= 0 can be different from 1. We call these active component masks. Moreover,
for X̃(v) to be non-zero, all terms in the product on the right hand side shall
be different from zero. In words, for vTx to be imbalanced, all parities v(i)

Tx(i)

must be imbalanced. This implies that X̃(v) = 0 as soon as there is a single
parity v(i)

Tx(i) that is balanced.

2.4 Projection of a Distribution

Consider now the distribution of a subset of the bits of a string x. We denote
this by the term projection. We consider the projection reducing x to its first k
bits denoted by x(u) and denote the last n − k bits by x(u). We have

X(u)(x(u)) =
∑

x(u)

X(x(u)||x(u)) ,

and for the spectrum:
X̃(u)(v(u)) = X̃(v(u)||0) .

164 J. Daemen

So the spectrum of the projection of X is just a truncation of the spectrum of
X. This can be generalized by defining x(u) = Zx with Z a binary projection
matrix with k rows and n columns:

X(u)(x(u)) =
∑

x

δ(x(u) = Zx)X(x) ,

and for the spectrum:
X̃(u)(v(u)) = X̃(ZTv(u)) . (6)

It may be the case that for a non-uniform distribution X, the projection is
uniform. This is in fact the case if the spectrum is zero for all masks v that
can be formed as ZTv(u). So global non-uniformity and local uniformity are not
mutually exclusive.

3 Lossy Mappings and Their Impact on Local Imbalance

In this section we show how mappings from GF(2)n to GF(2)m transform the
spectrum of variables.

3.1 Correlation Matrices and Linear Trails

The correlation between two Boolean functions with domain GF(2)n can be
expressed by a correlation coefficient that ranges between −1 and 1:

Definition 5. The correlation coefficient C(g(x), h(x)) associated with a pair of
Boolean functions g(x) and h(x) is given by

C(g(x), h(x)) = 2 · Pr(g(x) = h(x)) − 1 ,

or equivalently
C(g(x), h(x)) =

∑

x

(−1)g(x)+h(x) .

The structure of input-output correlations of a Boolean mapping f(x) form
an equivalent representation in the spectral domain. In particular, this contains
the correlations between Boolean functions uTf(x) on the one hand and vTx on
the other. This structure is the correlation matrix [5].

The correlation between an input mask v and an output mask u of a Boolean
mapping is defined as:

C(uTf(x), vTx) =
∑

x

(−1)uTf(x)+vTx .

Definition 6 ([5]). The correlation matrix Cf of an n-bit to m-bit mapping
f is a 2n × 2m matrix with element Cf

u,w in row u and column w equal to
C(uTf(x), wTx).

Spectral Characterization of Iterating Lossy Mappings 165

Row u of a correlation matrix can be interpreted as

(−1)uTf(x) =
∑

w

Cf
u,w(−1)wTx .

This expresses an output parity with respect to the basis of input parities.
A correlation matrix Cf defines a linear map with domain R

2n and range
R

2m . Clearly, we have
L(f(x)) = CfL(x) .

In words, applying a Boolean function f to a Boolean vector x and multiplying
the corresponding vector L(x) with the correlation matrix Cf are just different
representations of the same operation. This is illustrated in Fig. 1.

Fig. 1. The equivalence of a Boolean mapping and its correlation matrix.

Let F be a Boolean mapping that is the composition of a number of Boolean
mappings fi:

F = fr ◦ . . . ◦ f2 ◦ f1 .

We call the mappings fi round mappings.
The correlation matrix of F is the product of the correlation matrices of the

round mappings fi. We have

CF = Cfr × . . . × Cf2 × Cf1 .

An r-round linear trail Q [5], denoted by

Q = (q0, q1, q2, . . . qr) ,

consists of the chaining of r successive correlations of the type
C(qi

Tfi(x), qi−1
Tx). To this linear trail corresponds a correlation contribution

coefficient CQ ranging between −1 and +1 defined as:

CQ =
∏

i

Cfi
qi,qi−1

.

From this we can derive following lemma.

166 J. Daemen

Lemma 1 ([5]). The correlation between uTF (x) and wTx is the sum of the
correlation contribution coefficients of all r-round linear trails Q with initial
selection vector w and terminal selection vector u.

C(uTF (x), wTx) =
∑

q0=w,qr=u

CQ .

3.2 Propagation of Imbalance Through a Mapping

Let f be a Boolean mapping from GF(2)n to GF(2)m and X is a distribution
over GF(2)n, the domain of this mapping. Then the distribution Y of y = f(x)
is given by:

Pr(Y = y) =
∑

x

δ(f(x) = y) Pr(X = x) . (7)

Given an input x with a given spectrum X̃, we can compute the spectrum Ỹ
of y = f(x) by applying the inverse Walsh-Hamadard transform to get X, apply
Eq. (7) to X to get Y and then apply the Walsh-Hadamard transform again to
get Ỹ . However, we can also do it in a single step using the correlation matrix.

Lemma 2. Given a Boolean mapping f and the spectrum X̃ of its input x, the
spectrum Ỹ of its output y = f(x) is given by

Ỹ = Cf × X̃ .

Proof. The spectrum of Y can be written as:

Ỹ =
∑

y

Pr(Y = y)L(y) .

For the probabilities of Y we have:

Pr(Y = y) =
∑

x

Pr(X = x)δ(y = f(x)) .

Filling this in yields:

Ỹ =
∑

y

(
∑

x

Pr(X = x)δ(y = f(x))

)

L(y) .

Re-ordering and re-grouping this gives:

Ỹ =
∑

x

Pr(X = x)

⎛

⎝
∑

y

δ(y = f(x))L(y)

⎞

⎠

=
∑

x

Pr(X = x)L(f(x))

=
∑

x

Pr(X = x)C
fL(x)

= C
f
∑

x

Pr(X = x)L(x)

= C
f
X̃ .

�

Spectral Characterization of Iterating Lossy Mappings 167

In a correlation matrix, row 0 contains correlations where the output mask
is all-zero. It immediately follows that in the correlation matrix of any mapping,
all elements in row 0 are zero, except the element in column 0, that contains
the correlation between two constant functions both equal to zero and is hence
one. Column 0 contains correlations of output parities with input parities with
zero input mask. An input x that is uniformly distributed has a spectrum that
is all-zero for all non-zero masks and 1 in the zero mask. So column 0 contains
the spectrum Ỹ of y = f(x) given a uniformly distributed x.

Analogous to the reduced spectrum of a distribution, we can now define the
reduced correlation matrix C∗f of a mapping f as Cf with row 0 and column
0 removed. This technique was also used by Jrmy Parriaux [13]. For an n-bit to
m-bit mapping, C∗f has 2m − 1 rows and 2n − 1 columns. Moreover, we denote
the first column of the correlation matrix, with the element in row 0 removed,
by If and call it the imbalance vector of f . It is simply the reduced spectrum Ŷ
of y = f(x) with x uniformly distributed. Note that for a balanced mapping the
imbalance vector If is all-zero. We have:

[
1
Ŷ

]

=
[

1 0
If C∗(f)

]

×
[

1
X̂

]

.

We can now re-formulate Lemma 2 in terms of reduced spectra, correlation
matrix and imbalance vector:

Lemma 3. Given a Boolean mapping f and an input x with reduced spectrum
X̂, the reduced spectrum Ŷ of y = f(x) is given by

Ŷ = If + C∗f × X̂ .

In other words, the reduced spectrum of y = f(x) consists of the sum of two
terms. The first term is the imbalance vector of f and independent of x and the
second term is the reduced spectrum of x multiplied by the reduced correlation
matrix of f .

3.3 Propagation of Imbalance Through Iterative Mappings

Applying Lemma 3 to an iterative mapping F = fr ◦ . . . ◦ f2 ◦ f1 yields following
expression:

Ŷ =
∑

1≤i≤r

⎛

⎝

⎛

⎝
∏

i<j≤r

C∗fj

⎞

⎠ × Ifi

⎞

⎠ +

⎛

⎝
∏

1≤j≤r

C∗fj

⎞

⎠ × X̂ . (8)

When in Eq. (8) considering the imbalance of an individual mask in Ỹ , we can
express it using linear trails Q by applying Lemma1 to the products of the round
mapping correlation matrices:

Ŷ (u) =
∑

1≤i≤r

∑

w

⎛

⎜
⎝

∑

Q with
qi=w,qr=u

CQ

⎞

⎟
⎠×Ifi [w]+

∑

w

⎛

⎜
⎝

∑

Q with
q0=w,vqr=u

CQ

⎞

⎟
⎠× X̂(w) . (9)

168 J. Daemen

So from Eq. (9) it follows that the imbalance of a mask u equals the sum of
the products of the non-zero components Ifi [w] of the imbalance vectors of all
previous rounds, each one multiplied by the sum of the correlation contribu-
tions of the linear trails from w to u. Note that the effect of the imbalance
vector of the last round, Ifr [w] is immediate: Ỹ (u) = Ifr [u] + other terms. The
contribution of components of the imbalance vector of the penultimate round,
Ifr−1 [w] is diluted by the multiplication of correlations over fr−1. In particular,
a component Ifr−1 [w] contributes C

fr−1
u,w Ifr−1 [w]. Note that contributions can be

constructive or destructive as the imbalances and correlations are signed. The
contribution of components of earlier rounds becomes more and more diluted
as the distance to the final round grows. They are multiplied by the correla-
tion contribution of linear trails and typically cryptographic round functions are
designed to not exhibit multiple-round linear trails with high correlation contri-
bution. Equation (9) is useful when studying the possible loss of security due to
non-uniformity of threshold scheme anti-DPA mechanisms [4].

4 Lossy Mappings and Their Impact on Macroscopic
Imbalance

In this section we define macroscopic non-uniformity metrics for distributions
and study their evolution through iterative mappings. We repeatedly apply
transformations fi from a fixed set of transformations with known imbalance
contribution. This is similar to but different from studying the cycle structure
of a single transformation f . In the latter case iteration leads to cycles while in
the case of different transformations no such cycles appear.

4.1 Collision Probability and Total Imbalance

The norm of a vector A is defined as
√〈A,A〉. It turns out that a useful measure

for the non-uniformity of a distribution X is the square of its norm, when seen as
a vector, i.e., &X = 〈X,X〉. This quantity coincides with the collision probability
of X, defined as:

Definition 7. The collision probability Prcoll(X) of a distribution X is the prob-
ability that two elements independently chosen according to the distribution X
are the same. It is given by:

Pr
coll

(X) =
∑

x

X(x)2 = &X .

The negative of the binary logarithm of the collision probability is the so-
called collision entropy [15]. It can be shown that the collision entropy forms a
lower bound for the more familiar Shannon entropy by Jensen’s inequality [16].

As the Walsh-Hadamard transform is the composition of an orthogonal trans-
formation and a scaling, we have &X̃ = 2n&X, or equivalently:

∑

v

X̃(v)
2

= 2n Pr
coll

(X) . (10)

Spectral Characterization of Iterating Lossy Mappings 169

In other words, the sum of the squared imbalances over all masks for a given
distribution X is fully determined by its collision probability.

The squared norm of the reduced spectrum is the sum of the non-trivial
squared imbalances and it plays a central role in our analysis.

Definition 8. The total imbalance φX of a distribution X is the squared norm
of its reduced spectrum:

φX = &X̂ =
∑

u�=0

X̃(u)
2
.

Clearly, the total imbalance is fully determined by the collision probability
through Eq. (10):

φX = 2n Pr
coll

(X) − 1 . (11)

The collision probability and total imbalance reach a minimum with a uni-
form distribution. A uniform distribution over GF(2)n has collision probability
2−n and total imbalance 0. Uniformity of a distribution can be expressed alter-
natively as having an all-zero reduced spectrum.

The collision probability and total imbalance reach a maximum when the
distribution is only non-zero for a single element in the domain. In that case the
collision probability equals 1 and the total imbalance equals 2n − 1

For the collision probability of the product of independent distributions, it
is trivial to prove following lemma.

Lemma 4. The collision probability of a distribution that is the product of a
number of independent distributions is the product of those of the component
distributions

Pr
coll

(X) =
∏

i

Pr
coll

(X(i)) .

4.2 Collision Probability and Imbalance Contribution

We define the collision probability for a mapping f analogous to that of a dis-
tribution. It is the collision probability of the distribution Y of y = f(x) if x has
the uniform distribution.

Definition 9. The collision probability Prcoll(f) of a mapping f is the proba-
bility that f(x) = f(x′) holds for two randomly and uniformly chosen inputs x
and x′.

Similarly we can define the imbalance contribution in terms of its collision
probability.

Definition 10. The imbalance contribution φf of a mapping f is its collision
probability multiplied by 2m, minus 1:

φf = 2m Pr
coll

(f) − 1 .

170 J. Daemen

Clearly, the imbalance contribution of a mapping f is simply the squared
norm of its imbalance vector If .

We can now define balancedness of a mapping f .

Definition 11. A mapping f is balanced if it transforms an input with a uni-
form distribution into an output with uniform distribution. Equivalently, a map-
ping is balanced if its imbalance contribution is zero, or equivalently, its imbalance
vector is zero.

Given two transformations f and g operating on domains GF(2)m and
GF(2)k respectively, their Cartesian product h = f × g operates on GF(2)m+k

and is defined as h(x, y) = (f(x), g(y)). Transformation h simply consists of the
parallel application of f and g.

The collision probability of h = f × g is simply the product of those of f
and g.

Lemma 5. If h = f × g then Prcoll(h) = Prcoll(f) Prcoll(g).

Proof. Consider x = (x(f), x(g)) and y = (y(f), y(g)). We have h(x) = h(y)
iff f(x(f)) = f(y(f)) and g(x(g)) = g(y(g)). It follows immediately that the
probability of a collision in h is the product of the collision probabilities in f
and g. �

The following corollary is useful for computing the collision probability of
S-box layers.

Corollary 1. If h is the parallel application of a number of mappings fi, then
Prcoll(h) =

∏
i Prcoll(fi).

For imbalance contributions this translates to:

φf =
∏

i

(φfi
+ 1) − 1 .

The properties of the serial composition of two transformations h = g ◦
f depends on the specific way f and g interact and in general not easy to
determine exactly. In the special case that one of f and g is a permutation, the
composed transformation simply inherits the collision probability and imbalance
contribution of the other one.

4.3 Total Imbalance Evolution Through a Lossy Mapping

From Lemma 3, we see that the reduced spectrum after f consists of the sum
of the imbalance vector If and the spectrum before f multiplied by the reduced
correlation matrix of f . Making some independence assumptions allows us to
say something about the expected total imbalance after f .

First, we quantify the effect of the multiplication with C∗f on the (squared)
norm of a vector. It is well known that a permutation f has an orthogonal
correlation matrix [5] and for that case multiplication by the correlation matrix,

Spectral Characterization of Iterating Lossy Mappings 171

or its reduced version, does not impact the norm. The mappings we are interested
in are not invertible and have some imbalance contribution. We now show that
multiplication by C∗f tends to multiply the norm with 1− φf

2n−1 . We will denote
this by cf .

Lemma 6. The expected value over the space of all possible input vectors X
with &X = 1 of &C∗f × X is exactly 1 − φf

2n−1 = cf .

Proof. For readability we will denote C∗f by C in this proof and use
Econdition(X)(f(X)) to express the expected value of f(X) chosen uniformly with
only restriction that X satisfies the mentioned condition. Let Y = C∗f × X.
We have &Y = &CX = (CX)TCX = XTCTCX. Let UDV be the sin-
gular value decomposition of C[10]. Here U and V are orthonormal matri-
ces and D a diagonal matrix with on the diagonal the singular values di

of C. Then we have &Y = V XTDTUTUDV X = V XTD2V X and hence
E&X=1(&Y) = E&X=1(V XTD2V X). If we denote V X by X ′, X ′ has the same
norm as X as V is an orthonormal matrix. We now have (with xi denoting the
components of X ′:

E&X′=1(X ′TD2X ′) = E∑
i x2

i=1(x
2
i d

2
i) =

∑
i d2i

2n − 1
.

So cf equals the average of the squared singular values of the reduced correlation
matrix C∗f .

The sum of the squared singular values of a matrix equals the sum of squared
elements of that matrix [10]. So

∑
i d2i =

∑
u�=0,w �=0 C2

u,w. As the only non-zero
element in the first row of any correlation matrix is the element in column zero,
we have

∑
i d2i =

∑
u,w C2

u,w − ∑
u C2

u,0. Each row in a correlation matrix has

norm 1, so this becomes
∑

i D2
i = 2n − 1 − φf . It follows that cf = 1 − φf

2n−1 . �

It follows that the term C∗f × X̂ has an expected imbalance contribution

cfφX . Second, we assume that If is independent of C∗f × X̂. We think this is
a reasonable assumption as they have different origins. In that case the squared
norm of the sum of the two vectors is the sum of the squared norms of the
vectors. We have:

φY ≈ φf + cfφX .

4.4 Total Imbalance Evolution in Iterative Mappings

If we make the same independence assumptions for Eq. (8) we obtain:

φY =
∑

1≤i≤r

⎛

⎝

⎛

⎝
∏

i<j≤r

cfj

⎞

⎠ × φfi

⎞

⎠ +

⎛

⎝
∏

1≤j≤r

cfj

⎞

⎠ × φX . (12)

In typical use cases we have r ≪ 2n/φfj
implying r ≪ (1 − cfj

) and hence∏
j cfj

≈ 1. This allows simplifying Eq. (12) to:

φY ≈
∑

1≤i≤r

φfi
+ φX .

172 J. Daemen

The expected total imbalance of Y is simply the sum of the imbalance contribu-
tions of the round mappings fi plus the total imbalance of X. In other words,
the total imbalance increases linearly with the number of rounds by simply
accumulating their imbalance contributions. Similarly, the collision probability
increases linearly and hence the collision entropy decreases logarithmically with
the number of rounds.

Assuming all fi have the same imbalance contribution φf , Eq. (12) simplifies
to:

φY =
1 − cf

r

1 − cf
φf + cf

rφX .

If the mappings fi are not invertible we have cfi
< 1 and for r going to infinity

this expression becomes

φY =
φf

1 − cf
= 2n − 1 .

This corresponds with Y having a peak distribution equal to 1 in a single value
and zero elsewhere.

5 Sampling Noise and Random Mappings

In many applications one samples from a set. Even if the sampling is done accord-
ing to a uniform distribution, the resulting sets will exhibit imbalance and have
non-zero total imbalance (unless every element from the domain happens to
be sampled exactly one time). In this section we characterize the distributions
that result from random sampling of GF(2)n, in a way similar to [6]. We con-
sider two types of sampling: with and without replacement. It turns out that a
random mapping can be modeled as a sampling. An injective random mapping
corresponds to sampling without replacement and in absence of an injectivity
requirement it corresponds to sampling with replacement.

5.1 Sampling with Replacement and Random Transformations

In sampling with replacement, we take z independent samples from GF(2)n. Let
U be the multi-set containing the z samples. It is well known that if z ≫ 1,
the number of times a given value x occurs in U , its cardinality, has a Poisson
distribution with λ = z2−n [7]. Hence, the components of X(x) are distributed
according to a Poisson distribution scaled by a factor z−1:

Pr
(

X(x) =
i

z

)

=
zi2−ni

i!
e−z2−n

.

We can compute the distribution of the imbalance of a non-zero parity v

using the expression X̃(v) = z−1
∑

x∈U (−1)vTx. The imbalance is given by
1 − 2p/z with p the number of elements x in U with parity 1 in v. Each element
of U is independent and the probabilities of this parity being 1 or −1 are both

Spectral Characterization of Iterating Lossy Mappings 173

1/2. It follows that the number p has a binomial distribution with mean z/2
and variance z/4. So for non-zero v, X̃(v), has a distribution with mean 0 and
variance z−1. If z ≫ 1, this distribution has a normal shape.

The expected collision probability is z−1 +(1−z−1)2−n. The term z−1 is the
probability of taking the same instance among the samples and the second term
is the complement of that probability multiplied by the probability that two
independent samples collide. Applying Eq. (11) yields an expected total imbal-
ance equal to (2n − 1)z−1.

The set of images of a random mapping from GF(2)n to GF(2)m simply
coincides with that of a random sample with replacement of 2n elements out of
2m and hence the expected collision probability is 2−n + (1 − 2−n)2−m and the
expected imbalance contribution (2m − 1)2−n. For a random transformation we
have n = m and this becomes 2−n+1−2−2n and 1−2−n respectively. Remarkably,
a random transformation has an imbalance contribution close to 1.

When applying Lemma 4 we see that parallel composition of mappings with
an imbalance contribution lower than that of a random transformation may
result in a mapping with imbalance contribution higher than that of a random
transformation. For example, parallel application of d S-boxes with imbalance
contribution 1 results in an S-box layer with imbalance contribution 2d − 1.

The effect of projection on total imbalance depends on the shape of the
spectrum. Assuming that the imbalances have a (near) flat distribution, pro-
jection from n to k bits reduces the total imbalance by dividing it by a factor
(2n − 1)/(2k − 1) ≈ 2n−k.

5.2 Sampling Without Replacement and Random Injective
Mappings

In sampling without replacement, the sample set U contains z different elements
from GF(2)n, with z ≤ 2n. It follows that X(x) has a two-valued distribution
with value 0 in 2n − z elements and z−1 in z elements. The collision probability
equals Prcoll(X) = z−1 and the total imbalance is z−12n − 1. Note that if the
size of the sample and the domain are equal, i.e. z = 2n, we have a uniform
distribution and the total imbalance becomes zero.

We can compute the distribution of the imbalance of a non-zero parity v using
the expression X̃(v) = z−1

∑
x∈U (−1)vTx. The imbalance is given by 1 − 2p/z

with p the number of elements x in U with parity 1 in v. The number p has
the probability distribution of p successes in z draws from a set of 2n without
replacement, where the total number of successes in the set is 2n−1. This is given
by the hypergeometric distribution [7]:

Pr(p = i) =

(
2n−1

i

)(
2n−1

z−i

)

(
2n

z

) .

This distribution has mean z/2 and variance (1 − z2−n) z
4 . It follows that for

non-zero v, X̃(v) has a distribution with mean 0 and variance (1 − z2−n)z−1. If
z ≫ 1, this distribution has a normal shape.

174 J. Daemen

The collision probability is equal to z−1: one over the size of the sample. The
total imbalance hence equals z−12n − 1.

The collision probability of an injective mapping (implying m ≥ n) coincides
with that of a sample without replacement. The size of the sample is given by
z = 2−n, so we have Prcoll(f) = 2−n and φf = 0. An injective mapping with n =
m is a permutation and it has total imbalance 0 and collision probability 2−n.

5.3 Summary of This Section

We summarize the results of this section in Table 1.

Table 1. Statistical characteristics of samples with size z.

with replacement without replacement

X(x) scaled Poisson
Pr(X = i

z
) = λi

i!
e−λ

with λ = z
2n

two-valued
Pr(X = 0) = 1 − z

2n

Pr(X = 1
z
) = z

2n

˜X(v) very close to normal
mean: 0
variance: z−1

very close to normal
mean: 0
variance: (1 − z2−n)z−1

Prcoll(X) mean: z−1 + (1 − z−1)2−n equals z−1

φX mean: z−1(2n − 1) equals z−12n − 1

φX if z = 2n mean: 1 − 2−n equals 0

6 Imbalance Contribution of Mappings with Known
Collision Profile

In this section we deal with mappings where the non-uniformity can be quanti-
tatively characterized by a so-called collision profile. It turns out that this fully
determines the collision probability and imbalance contribution. We also provide
some experimental evidence of the theoretically predicted evolution of the total
imbalance.

6.1 Collision Profile and Implications

Definition 12. The collision partition of a mapping f is the one defined by
f(x) = f(y). In other words, two elements x and y of the domain are in the
same subset if and only if f(x) = f(y). We call the subsets of the partition
collision sets and a collision set with i elements an i-collision.

Spectral Characterization of Iterating Lossy Mappings 175

Based on the collision partition of a transformation f we can define its col-
lision profile.

Definition 13. The collision profile of a transformation f is the list
(Cf [1], Cf [2], . . .) where Cf [i] denotes the number of i-collisions in f .

Clearly, the total number of inputs in i-collisions is iCf [i] and so it follows
that

∑
i iCf [i] = 2n.

The collision probability of a mapping f is determined by its collision profile.

Lemma 7. The collision probability of an n-bit to m-bit mapping f with known
collision profile is given by:

Pr
coll

(f) =
1

22n

∑

i

i2Cf [i] .

Proof. The probability equals the number of cases (x, y) leading to a collision
divided by the total number of cases:

Pr
coll

(f) =
1

22n

∑

x,y

δ(f(x) = f(y)) .

In other words:

Pr
coll

(f) =
1

22n

∑

x,y

δ(x and y are in the same collision set) .

The number of colliding pairs (x, y) in an i-collision set is i2, hence:

Pr
coll

(f) =
1

22n

∑

i

i2Cf [i] .

�

The value of the imbalance contribution follows from this:

Corollary 2. The imbalance contribution of an n-bit to m-bit mapping f with
known collision profile is given by:

φf =
1

22n−m

∑

i

i2Cf [i] − 1 .

6.2 Example: A Round Function with Lossy S-Boxes

Assume we have a round function consisting of a lossy nonlinear S-box layer
N and a linear layer L and we wish to determine its total imbalance. First,
thanks to the invertibility of the linear layer, the total imbalance of the round
function is the total imbalance of the lossy S-box layer. Second, for an S-box

176 J. Daemen

of reasonable width, it is easy to determine the collision profile and hence its
collision probability. This allows determining the collision probability of the non-
linear layer. Assume we have m identical S-boxes of width n. Then the collision
probability of the nonlinear layer is Prcoll(N) = Prcoll(S)n. Translated to total
imbalances this gives: φN = 2nmPrcoll(S)m − 1.

Let now Prcoll(S) be 2−a: the S-box reduces the set of 2m inputs to a set
with the same collision probability as a set of 2a elements. Then we have φN =
2n(m−a)−1 and cN = 1− 2n(m−a)−1

2nm−1 . If n(m−a) ≫ 1, we have these expressions
simplify to φN ≈ 2n(m−a) and cN ≈ 1 − 2−na. Assume we have a block cipher
with a block size nm of 128 bits and a 4-bit S-box with Prcoll(S) = 2−3. Then
we have φN ≈ 232 and cN ≈ 1 − 2−96 ≈ 1. The total imbalance after r rounds
is simply 232r implying a collision probability of 2−96r. This lower bounds the
collision entropy, and hence also the Shannon entropy, to 96 − log2(r).

7 Experiments

We did a number of experiments to check the validity of our independence
assumptions. More particularly, we randomly constructed transformations f with
domains of size 2e with e ranging from 22 to 27 and for each of them we tracked
the total imbalance when applying randomized versions of f to it iteratively.
We did this by tracking the image set as the number of rounds increases. We
initialize the image set to the full domain and randomize the application of f
by bitwise addition with a constant that is randomly generated for each i but
equal for all elements in the image set.

Initially each element in the image set has probability 2−e and the total
imbalance is zero. If the first iteration of f maps w elements to some element,
this element has probability w2−e. In our experiments we keep track of these
probabilities and compute from them the total imbalance.

We studied two types of pseudorandomly generated transformations. Those
in the first category were generated without side conditions. Those in the second
category satisfy specific collision profiles: only 2−f of the images are possible
and each image has 2f pre-images. We composed these of a random permutation
followed by a simple transformation satisfying the collision profile, followed by
a (independently generated) random permutation. The random permutations
were generated with the Fisher-Yates shuffle [9].

Figure 2 illustrates the outcome of our experiments. The continuous lines
represent the values taken by simply multiplying the imbalance contribution of
the transformations by the number of iterations for the random transformation
(imbalance contribution 1) and the one that maps 64 values to a single one
(imbalance contribution 63). The figure shows that the experimentally measured
total imbalances follows these linear profiles quite closely.

Spectral Characterization of Iterating Lossy Mappings 177

Fig. 2. Evolution of total imbalance for different transformations.

8 Conclusions and Acknowledgments

In this paper we have provided a formalism to describe non-uniformity in the
spectral domain using imbalances. The occurrence and propagation of these
imbalances can be described by correlation matrices and linear trails. We have
introduced macroscopic metrics for non-uniformity in the form of total imbal-
ance. When iteratively applying lossy mappings to a variable, its total imbalance
increases linearly with the number of rounds and its entropy decreases logarith-
mically. The tools we provide in this paper are helpful when studying non-
invertible cryptographic modes and primitives, including non-uniform threshold
schemes.

Acknowledgements. I thank Gilles Van Assche, Guido Bertoni, Svetla Nikova,
Ventzi Nikov and Begül Bilgin for useful comments.

References

1. Berger, T.P., D’Hayer, J., Marquet, K., Minier, M., Thomas, G.: The GLUON
Family: a lightweight hash function family based on FCSRs. In: Mitrokotsa, A.,
Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 306–323. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31410-0 19

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power analysis
resistant implementations of Keccak. In: Second SHA-3 Candidate Conference,
August 2010

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference.
http://keccak.noekeon.org/, January 2011

4. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Assche, G.: Efficient
and First-Order DPA resistant implementations of Keccak. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Heidel-
berg (2014). doi:10.1007/978-3-319-08302-5 13

http://dx.doi.org/10.1007/978-3-642-31410-0_19
http://keccak.noekeon.org/
http://dx.doi.org/10.1007/978-3-319-08302-5_13

178 J. Daemen

5. Daemen, J.: Cipher and hash function design strategies based on linear and differ-
ential cryptanalysis, Ph.D. thesis, K.U.Leuven (1995)

6. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptology 1(3), 221–242 (2007)

7. Feller, W.: Introduction to Probability Theory and its Applications, vol. 1. Wiley,
New York (1968)

8. Golomb, S.: Shift Register Sequence. Holden-Day, San Francisco (1967)
9. Knuth, D.E.: The Art of Computer Programming, vol. 2, 3rd edn. Addison-Wesley

Publishing, Boston (1998)
10. Lay, D., Lay, S., McDonald, J.: Linear Algebra and its Applications, 5th edn.

Pearson, New York (2016)
11. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-

linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00730-9 14

12. Bertoni, G., Daemen, J., Peeters, M., Van, G.: Assche.: Secure hardware imple-
mentation of nonlinear functions in the presence of glitches. J. Cryptology 24(2),
292–321 (2011)

13. Parriaux, J., Guillot, P., Millerioux, G.: Towards a spectral approach for the design
of self-synchronizing stream ciphers. Cryptography Commun. 3(4), 259–274 (2011)

14. Perrin, L., Khovratovich, D.: Collision spectrum, entropy loss, T-sponges,
and cryptanalysis of GLUON-64. In: Cid, C., Rechberger, C. (eds.) FSE
2014. LNCS, vol. 8540, pp. 82–103. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46706-0 5

15. Rényi, A.: On measures of information and entropy. In: Proceedings of the Fourth
Berkeley Symposium on Mathematics, pp. 547–561 (1960)

16. Weisstein, E.: Jensen’s inequality from mathworld - a wolfram web resource. http://
mathworld.wolfram.com/JensensInequality.html

http://dx.doi.org/10.1007/978-3-642-00730-9_14
http://dx.doi.org/10.1007/978-3-642-00730-9_14
http://dx.doi.org/10.1007/978-3-662-46706-0_5
http://dx.doi.org/10.1007/978-3-662-46706-0_5
http://mathworld.wolfram.com/JensensInequality.html
http://mathworld.wolfram.com/JensensInequality.html

Decomposed S-Boxes and DPA Attacks:
A Quantitative Case Study Using PRINCE

Ravikumar Selvam(B), Dillibabu Shanmugam(B), Suganya Annadurai(B),
and Jothi Rangasamy(B)

Society for Electronic Transactions and Security, Chennai, India
{ravikumar,dillibabu,asuganya,jothiram}@setsindia.net

http://www.setsindia.org/hardware.html

Abstract. Lightweight ciphers become indispensable and inevitable in
the ubiquitous smart devices. However, the security of ciphers is often
subverted by various types of attacks, especially, implementation attacks
such as side-channel attacks. These attacks emphasise the necessity of
providing efficient countermeasures. In this paper, our contribution is
threefold: First, we propose a method to choose the efficient decomposi-
tion of S-box in terms of area. Then we slightly alter the widely used for-
mula to improve the accuracy for weighted sum estimation of the shared
S-Box and present the practical implementation of two level decompo-
sition using PRINCE S-Box. Finally, we present the first quantitative
study on the efficacy of Transparency Order (TO) of decomposed S-
Boxes in thwarting a side-channel attack. For PRINCE S-Box we observe
that TO-based decomposed implementation has better DPA resistivity
than the naive implementation. To benchmark the DPA resistivity of
TO(decomposed S-Box) implementation we arrive at an efficient thresh-
old implementation of PRINCE, which itself merits to be an interesting
contribution.

Keywords: Side-channel attack · Threshold implementation · Decom-
position · Transparency Order

1 Introduction

Usage of smart electronic devices in our life is rapidly growing and almost
unavoidable. Smart electronic devices are resource constrained having less mem-
ory, low power and limited computation capability. Since lightweight ciphers
require only minimal resources, they are identified to provide compact solu-
tions to achieve security goals to protect such devices. The theoretical proofs of
security for cryptographic algorithms give us some confidence; but may not be
sufficient to protect against real-world attacks.

As the smart devices are portable and easily accessible to the attacker, these
devices are shown to be prone to implementation attacks in a rapid phase.
Side-channel analysis attacks exploit the information leakage through physical
medium to reveal the secret key of the device. In particular, Differential Power
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 179–193, 2016.
DOI: 10.1007/978-3-319-49445-6 10

180 R. Selvam et al.

Analysis (DPA) attack is considered as more effective form of side-channel attack
that reveals the key with high probability [5]. These attacks brought the atten-
tion to develop effective and efficient countermeasures. One such countermeasure,
which is widely studied and provably secure, is Threshold Implementation (TI)
of block ciphers.

In TI, a non-linear component of block cipher is decomposed into secret shares
and the method was first proposed by Nikova et al. [10,11]. The degree of S-Box,
say d, decides the number of secret shares that must be greater than d. In TI the
higher degree S-Box is decomposed into smaller degree S-Boxes so that the num-
ber of shares needed gets reduced, which in turn reduces the area requirement for
TI. At the same time, the decomposed S-Boxes must satisfy the TI properties,
such as correctness, non-completeness, and uniformity. Indeed not all decompo-
sitions need to satisfy the uniformity property, in such cases re-sharing is used to
achieve it. However, non-uniform decomposition design is vulnerable to attack as
shown in [1,18]. Efficient way of realising TI for lightweight cipher and a formula
for estimating shared TI S-box were presented in [15]. Threshold Implementation
of 4-bit S-Boxes is proposed in [6].

Leander et al. proposed sixteen optimal 4-bit S-Boxes [7] for lightweight block
ciphers. It is stated that only eight out of sixteen are suitable for PRINCE in
[2]. Then G13 (also represented as C231) class of S-Box is taken for PRINCE
implementation based on lexicographical order. S-Boxes are predominantly the
point of interest for DPA, as bit flip occurs randomly in circuit. Theoretically
the possible amount of information leakage has been studied by Prouff et al. [16]
and quantified as a metric called Transparency Order (TO). Further, this metric
is studied and explored in many papers [3,8,9,13,14]. TO is redefined in the
paper [4]. In [14], it is found that G13 class of S-Box has high TO but it is vul-
nerable to power analysis attack. Subsequently, differential power analysis attack
on PRINCE is demonstrated in [19]. It is stated in [13] that the small reduction
in the TO will increase the trace requirement 2.5 to 3 times for a successful DPA
attack. However this prediction on TO is not explored with practical evaluation
so far. In this paper, we analyse DPA resistance of a decomposed 4-bit S-Box
using TO metrics.

Our contributions in this paper are as follows:

– We first observe the inaccuracy in the well-known and widely used formula
proposed by Poschmann et al. in [15] for weighted sum estimation of shared
function. In particular their formula leads to an incorrect result when used
to compute the weighted sum for the shared implementation of a boolean
function. We present a revised formula to produce accurate results in shared
implementation.

– We then present an area-efficient TI of PRINCE block cipher before adopting
for resource constrained devices. For this, we use two-level decomposition of
PRINCE S-Box that falls in class G13. The chosen decomposition, which
satisfy all TI properties is taken and optimized further for implementation.

– We finally study the transparency order for S-Box decomposition and its influ-
ence in DPA attack. Our practical evaluations on PRINCE S-Box show that

Decomposed S-Boxes and DPA Attacks 181

the number of traces required for DPA attack on naive S-Box is increased
significantly for the case of S-Box decomposition with lower transparency
order. This implies that the TO-decomposed S-Box implementation is supe-
rior over the naive implementation. However benchmarking TO-decomposed
S-Box implementation against TI implementation reveals that TI implemen-
tation should provide a much better security than any (even unrolled) unpro-
tected implementation. Nevertheless, our experiments show that low trans-
parency order implementation of decomposed S-Box may be considered as an
intermediate countermeasure between the naive and TI implementations and
the lesser TO means the better immunity against DPA attacks.

2 On Estimation Formula for Weighted Sum

To find the efficient decomposition, in terms of number of gate count (Wsum) for
shared implementation, Poschmann et al. [15] proposed a formula to estimate a
weighted sum of shared function. We observed that the proposed formula have
an inconsistency in the result which differs from the actual gate count for the
given shared function. This is illustrated below with a sample function (1). For
simplicity, we have taken 1-bit inputs w, x, y, and z to compute F . We also
define shares for the function F as f1, f2, and f3.

F = 1 + x + y + w + xz (1)
f1 = 1 + x2 + y2 + w2 + x2z2 + x2z3 + x3z2

f2 = x3 + y3 + w3 + x3z3 + x3z1 + x1z3

f3 = x1 + y1 + w1 + x1z1 + x1z2 + x2z1

Following [15], the XOR and AND gates are given the weightage of 2 and 1
GE respectively. With 16 XOR and 9 AND operations, the (manual) weighted
sum calculation of the shared function results in 41 GE, whereas Poschmann
et al. formula (2) outputs the estimated weighted sum as 47 GE. For fixing this
inconsistency, we revise the formula (2) to (3).

Wsum = (2 × C) + (6 × L) + (27 ×Q) (2)

Wsum = 2 × ((3 × C) − 2) + 6 × (L + Q− 1) + 21 ×Q (3)

where,
C is number of Constant
L is number of Linear Co-efficient
Q is number of Quadratic Co-efficient.

We calculated the weighted sum for the same function using our formula and
obtained the result as 41 GE, which matches with the actual value of the shared
function. The Table 1 presents the result obtained manually, using the revised
formula and from formula (2). In the following sections, we use the revised for-
mula to choose the efficient decomposition of S-box.

182 R. Selvam et al.

Table 1. Estimation of weighted sum

Function Parameters Weighted Sum

C L Q Manual Formula (2) Revised formula

F = 1 + x + y + w + xz 1 3 1 41 47 41

3 Threshold Implementation of PRINCE S-Box

The PRINCE family proposed eight classes of S-Box for their design, in which
the authors chose to use affine equivalent of eighth S-Box, as given in [2]. We
studied the characteristics of that S-Box and its inverse using the TI Tool [12].

Table 2. S-Box and Inverse S-Box of PRINCE

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

S−1(x) B 7 3 2 F D 8 9 A 6 4 0 5 E C 1

The S-Box of PRINCE is one of the eight golden S-Boxes proposed in [17],
and it falls under the Class 231 with algebraic degree 3 and presented in Table 2.
We have two choices for the implementation of TI: (a) to implement with 5 or
4 shares satisfying all the properties; (b) to implement the decomposed S-Box
to reduce the number of required shares. In the first case, the implementation
requires 5 or 4 times more area than the unprotected implementation. In the
second case, if the S-Box is decomposed into lower degree functions, say quadratic
functions, then the TI requires 3 shares to implement, which minimizes the
required area. But the first level decomposition of PRINCE S-Box yields one
cubic function and one quadratic function. This decomposition requires at least
4 shares that does not offer significant gain in the area requirement. Therefore
to reduce the area requirement further, subsequent level of decomposition on
cubic functions yields two quadratic functions as shown in Fig. 1. Finally, the
PRINCE S-Box is decomposed into three quadratic functions.

Using TI tool [12], PRINCE S-Box in Table 2 is decomposed into 304 solu-
tions in the first level of decomposition and 2576 solutions after the second level
of decomposition. To construct a secure shared implementation, three TI prop-
erties are to be fulfilled [10]. We have taken first 644 solutions out of 2576 for
our analysis. Though all 644 solutions satisfy, correctness and non-completeness
properties; only 40 solutions satisfy uniformity properties of TI. The other solu-
tions require either re-masking or virtual variable technique to make them satisfy
the uniformity property. In decomposed S-Box, we analysed 644 solutions using
our weighted sum formula which is given in (3). A solution that does not satisfy
the uniformity property may also be area efficient after re-masking. To make

Decomposed S-Boxes and DPA Attacks 183

Fig. 1. Decomposition approach Fig. 2. PRINCE S-Box decomposition

the process easy and efficient, we classify the solutions into two divisions. Solu-
tions that satisfy the uniformity property and solutions that fail to satisfy the
uniformity property of TI. Using (3), we calculated the weighted sum for all
solutions of F, G and H functions. We identified the least weighted sum on both
classifications separately and compared. The candidate of first category has the
least weighted sum of 412 GE, which is quite lesser than the least weighted
sum of 447 GE for the second category. Therefore, we chose the candidate with
weighted sum 412 GE for hardware space efficient implementation of PRINCE
S-Box whose classes are given in Fig. 2 and its shares are given in Appendix A.

Table 3. S-Box decomposition

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

F (x) 0 A 2 8 1 3 B 9 E 5 D 6 F C 4 7

G(x) E 4 0 A 2 8 C 6 9 7 5 B D 3 1 F

H(x) 3 6 D 8 A F 4 1 7 2 C 9 0 5 B E

Table 4. Inverse S-Box decomposition

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

F−1(x) 3 9 B 1 7 C F 4 A 8 2 0 6 5 E D

G−1(x) E 4 0 A 2 8 C 6 9 7 5 B D 3 1 F

H−1(x) 4 C 9 1 2 A F 7 E 6 B 3 5 D 0 8

Similarly for Inverse S-Box, 2-level decomposition was performed and 644
solutions of quadratic functions were obtained. The solutions were divided into
two divisions and the efficient implementation of Inverse S-Box was also obtained
using the same procedure. The Inverse S-Box has the least weighted sum of 354
GE. The decomposed functions F, G and H for the S-box are presented in Table 3
and decomposed functions F−1, G−1 and H−1 are presented in Table 4.

184 R. Selvam et al.

3.1 Optimised Hardware Implementation and DPA Experiments

The architecture of round based implementation with TI is presented in Fig. 3.
Inputs M1 and M2 are the mask values, which are 64-bits each. The S-Box
and its inverse were implemented with efficient decomposition as H(G(F (x)))
and H−1(G−1(F−1(x))) respectively. An interesting observation is that S-Box
and Inverse S-Box are decomposed with same G-function. By exploiting this to
improve the area efficiency further, we shared the G function module for S-Box
and its Inverse which is elaborated in Appendix A.

Fig. 3. Architecture of PRINCE with TI

To evaluate the security of protected implementation, we realised TI of
PRINCE in SASEBO G board in which the target FPGA device is Xilinx Vir-
tex2Pro. Power measurements were taken for 300,000 encryptions and Pearson’s
correlation coefficient analysis were performed for the attack. Figure 4 shows
that the correct key (plotted in black) is hidden with the other key hypothesis
that are plotted in grey. It is understood that TI is secure against DPA attack.
In [19], the DPA attack was successful with 30,000 encryptions, whereas the
protected implementation is secure up to 300,000 encryptions, which is 10 times
more secure than the unprotected implementation. Due to resource limitations
the protected implementation is tested up to 300,000 encryptions. However, TI
is believed to provide more security as stated in [10].

4 Transparency Order and DPA Attacks

In general, TO is calculated for naive S-Box to measure the DPA resistivity of
any cipher. In this paper, we analyse the influence of TO in decomposed S-Box.

Decomposed S-Boxes and DPA Attacks 185

Fig. 4. Attack on Threshold Implementation

Our first observation is that TO of naive S-Box is not the same as the TO of
decomposed S-Box. This observation motivates us to study the behaviour of TO
value with respect to the DPA resistance of decomposed S-Box implementation.
We use PRINCE for our case study.

The decomposition of PRINCE S-Box has many possible ways using cubic
and quadratic functions. The first level decomposition, which comprises of a
cubic and quadratic functions are analysed initially. We noted that the TO of
the first level decomposed functions and naive S-Box has negligible difference
and may not be suitable for the analysis. Therefore, we analysed the second level
decomposition of PRINCE S-Box. The second level decomposition comprises of
three quadratic functions and has 2576 (644×4) possible solutions. All solutions
were taken for analysis and sorted the solutions based on least TO. We also
estimated area requirement in terms of weighted sum as discussed in Sect. 2 for
the chosen decomposition.

Table 5. Case 3 S-Box decomposition

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

F (x) 7 5 0 1 C A E B F D 8 9 4 2 6 3

G(x) 7 4 5 6 E 9 C B 8 3 A 1 D 2 F 0

H(x) 6 1 7 0 2 5 4 3 8 F C B D A E 9

We performed DPA attack on three types of implementations: (1) Naive S-
Box implementation as shown in Table 2 with the TO of 3.4; (2) decomposed
implementation of quadratic functions F, G and H as shown in Table 3 with
TO of 2.933, 3.2 and 3.46 respectively; and, (3) decomposed implementation of
quadratic functions F, G and H as shown in Table 5 with TO of 2.933 each.

186 R. Selvam et al.

Case 3 is the decomposition that has least TO among all solutions. To verify
the impact of varying TO values, same experiment setup (SASEBO-G board) is
retained for all experiments to neglect noise influence.

4.1 Experimental Result

1. Naive S-Box implementation: Naive S-Box of PRINCE cipher has TO
3.4 and area 78 GE. We plot the correlation values at 2.021µs for different
samples. The correct key bit is highlighted in black and others in grey. Figure 5
shows that after 30,000 encryptions the correlation coefficient for the correct
key value 108 is ranked first with correlation value 0.038 on the hypothesis
list of 213.

2. Decomposed implementation with different TO values: In this case,
we had taken the decomposition used for TI for which the TO of decomposed
functions are (TOF

Si
= 2.933, TOG

Si
= 3.2, TOH

Si
= 3.46) and the S-box area

is measured as 72 GE. DPA attack on this implementation reveals secret
key with 30,000 encryptions. In Fig. 6, the correct key value 108 (in decimal)
is uniquely distinguishable which is having the correlation value of 0.03 at
2.032µs. This decomposed function did not have any impact on the resistivity
against DPA attack. The reason could be TOH

Si
= 3.46, which is being the

highest among three functions TO value. The higher TO of H function may
have dominated the other functions. Subsequently, TOH

Si
= 3.4 is same as

TONS = 3.4. Therefore, the number of traces required to attack did not vary.
3. Decomposed implementation with same TO values: The least TO

from the decomposed functions (TOF
Si

= TOG
Si

= TOH
Si

= 2.933) is taken for
analysis and its area requirement is 87 GE. When DPA is explored for this
decomposition, the cipher requires 2,50,000 traces to reveal 85 % of secret
key. Figure 7 shows highest correlation value of 0.01 at 2.102µs for the key
value 108. From this, we observe that the decomposed solution achieves eight
times better security than the naive implementation in terms of DPA resis-
tance. Hence, TO based decomposed implementation may be considered as
an implementation strategy to resist DPA to certain extent.

We practically evaluate the impact of TO value on the DPA resistivity of S-Box,
which has not been verified so far. From the experimental results we observe
that TO-based decomposed implementation seems to provide a trade-off between
naive and TI-based approaches. That is, TO-based decomposed implementation
is superior to naive implementation but is inferior to TI-based approach. Exper-
imentally we verified that there is an inverse relationship between TO value
and the DPA resistance; that is, when the TO value increases, DPA resistance
decreases.

4.2 Comparative Study of PRINCE S-Box Results for Constrained
Device

Normally, constrained devices has low area, limited computational capability and
low power consumption. Though a device has many limitations, it is expected to

Decomposed S-Boxes and DPA Attacks 187

Fig. 5. Attack on naive S-Box

Fig. 6. Attack on decomposed S-Box with different TO values

match the security level offered by a conventional device, which may not be prac-
tically realisable. But, there are two choices for users depending on application
requirement (Table 6).

– Select the specific parameter (in this case security)
– Parameter affordability (level of the security)

In this paper, security affordability is studied and its metrics are tabulated
in Table 7. Three kinds of security affordability were discussed such as naive,
decomposed S-Box (least TO) and decomposed TI (least area) of PRINCE.
Even though decomposed TI has better security when compared to other imple-
mentations, it comes at the cost of area. Therefore, by far decomposed S-Box
implementation achieves better trade-off, i.e. small increase in area, say about
10 GE in weighted sum, achieves eight times better security when compared to

188 R. Selvam et al.

Fig. 7. Attack on decomposed S-Box with same TO values)

Table 6. Comparative study

Metrics Naive TO TI

No. of encryptions for DPA attack 30,000 250,000 > 300,000

Area of S-box in GE 78 87 412

naive S-Box implementation. The approach discussed in Sects. 3 and 4 can be
extended for other PRINCE S-Boxes mentioned in [2], which might result in
efficient decomposition to achieve least area and least TO.

5 Conclusion

Protecting lightweight ciphers from side-channel attack is seen to be a mam-
moth task. In this paper, we observed and corrected the inaccuracy in the
widely-accepted formula for estimating gate equivalents for shared implemen-
tation. Then we presented the first quantitative study on the efficacy of Trans-
parency Order (TO) of decomposed functions of S-Boxes and its effectiveness
in thwarting a specific side-channel attack, namely DPA. Using PRINCE S-Box
we observed that TO-based S-Box decomposition may be considered as an inter-
mediate countermeasure since TO-based decomposed implementation provides
better DPA immunity than the naive implementation but not as strong as DPA
immunity that can be achieved using the TI method. For this we arrived at an
efficient threshold implementation (TI) for PRINCE block cipher using two-level
decompositions, which itself is an interesting contribution.

Acknowledgments. This Research work was funded by Department of Atomic
Energy (DAE), Govt. of India under the grant 12-R&D-IMS-5.01.0204. We would like
to thank Prof. Svetla Nikova and anonymous reviewers for their useful comments.

Decomposed S-Boxes and DPA Attacks 189

A TI Solution

This section elaborates the selection of efficient solution and its implementation
approach.

Fig. 8. Architecture of PRINCE non-linear function with TI

The Architecture of PRINCE non-linear function with the decomposition
is depicted in Fig. 8. The weighted sum were calculated for 644 decomposed
function and the value of the efficient function is given in Table 7. To implement
the TI countermeasures on PRINCE non-linear function 766 GE were required.

Table 7. Weighted sum.

Functions F G H Total

S-Box 126 123 163 412

Inverse S-Box F−1 G H−1 354

97 123 134

We observed that the S-Box and Inverse S-Box has same ′G′ function. This
leads us to optimize the architecture by sharing the ′G′ function between S-Box
(F ,G,H) and Inverse S-Box (F−1,G,H−1). Hence the gate count is reduced to
643.

Listed below are the algebraic normal forms (ANFs) of the PRINCE S-Box
decomposition with 3-shares for TI countermeasure.

190 R. Selvam et al.

F and H function

F1(w2, x2, y2, z2, w3, x3, y3, z3) = (f13, f12, f11, f10)
f10 = x2 + w2y2 + w2y3 + w3y2 + w2z2 + w2z3 + w3z2
f11 = z2 + y2 + w2

f12 = w2

f13 = z2 + w2 + x2z2 + x2z3 + x3z2 + x2y2 + x2y3 + x3y2

F2(w3, x3, y3, z3, w1, x1, y1, z1) = (f23, f22, f21, f20)
f20 = x3 + w3y3 + w3y1 + w1y3 + w3z3 + w3z1 + w1z3
f21 = z3 + y3 + w3

f22 = w3

f23 = z3 + w3 + x3z3 + x3z1 + x1z3 + x3y3 + x3y1 + x1y3

F3(w1, x1, y1, z1, w2, x2, y2, z2) = (f33, f32, f31, f30)
f30 = x1 + w1y1 + w1y2 + w2y1 + w1z1 + w1z2 + w2z1
f31 = z1 + y1 + w1

f32 = w1

f33 = z1 + w1 + x1z1 + x1z2 + x2z1 + x1y1 + x1y2 + x2y1

H1(w2, x2, y2, z2, w3, x3, y3, z3) = (h13, h12, h11, h10)
h10 = 1 + z2 + x2 + w2y2 + w2y3 + w3y2
h11 = 1 + y2 + w2x2 + w2x3 + w3x2

h12 = z2 + y2 + w2 + w2y2 + w2y3 + w3y2 + w2x2 + w2x3 + w3x2

h13 = y2 + x2 + w2x2 + w2x3 + w3x2

H2(w3, x3, y3, z3, w1, x1, y1, z1) = (h23, h22, h21, h20)
h20 = z3 + x3 + w3y3 + w3y1 + w1y3
h21 = y3 + w3x3 + w3x1 + w1x3

h22 = z3 + y3 + w3 + w3y3 + w3y1 + w1y3 + w3x3 + w3x1 + w1x3

h23 = y3 + x3 + w3x3 + w3x1 + w1x3

H3(w1, x1, y1, z1, w2, x2, y2, z2) = (h33, h32, h31, h30)
h30 = z1 + x1 + w1y1 + w1y2 + w2y1
h31 = y1 + w1x1 + w1x2 + w2x1

h32 = z1 + y1 + w1 + w1y1 + w1y2 + w2y1 + w1x1 + w1x2 + w2x1

h33 = y1 + x1 + w1x1 + w1x2 + w2x1

F−1 and H−1 function of inverse S-box:

F−1
1 (w2, x2, y2, z2, w3, x3, y3, z3) = (f−1

13 , f−1
12 f−1

11 , f−1
10)

f−1
10 = 1 + w2 + x2z2 + x2z3 + x3z2
f−1
11 = 1 + z2
f−1
12 = x2

f−1
13 = z2 + y2 + w2 + w2z2 + w2z3 + w3z2 + w2x2 + w2x3 + w3x2

F−1
2 (w3, x3, y3, z3, w1, x1, y1, z1) = (f−1

23 , f−1
22 , f−1

21 , f−1
20)

f−1
20 = w3 + x3z3 + x3z1 + x1z3

Decomposed S-Boxes and DPA Attacks 191

f−1
21 = z3
f−1
22 = x3

f−1
23 = z3 + y3 + w3 + w3z3 + w3z1 + w1z3 + w3x3 + w3x1 + w1x3

F−1
3 (w1, x1, y1, z1, w2, x2, y2, z2) = (f−1

33 , f−1
32 , f−1

31 , f−1
30)

f−1
30 = w1 + x1z1 + x1z2 + x2z1
f−1
31 = z1
f−1
32 = x1

f−1
33 = z1 + y1 + w1 + w1z1 + w1z2 + w2z1 + w1x1 + w1x2 + w2x1

H−1
1 (w2, x2, y2, z2, w3, x3, y3, z3) = (h−1

13 , h
−1
12 , h

−1
11 , h

−1
10)

h−1
10 = y2 + w2x2 + w2x3 + w3x2

h−1
11 = x2 + w2

h−1
12 = 1 + y2 + x2 + w2x2 + w2x3 + w3x2

h−1
13 = z2 + y2 + w2 + w2x2 + w2x3 + w3x2 + w2y2 + w2y3 + w3y2

H−1
2 (w3, x3, y3, z3, w1, x1, y1, z1) = (h−1

23 , h
−1
22 , h

−1
21 , h

−1
20)

h−1
20 = y3 + w3x3 + w3x1 + w1x3

h−1
21 = x3 + w3

h−1
22 = y3 + x3 + w3x3 + w3x1 + w1x3

h−1
23 = z3 + y3 + w3 + w3x3 + w3x1 + w1x3 + w3y3 + w3y1 + w1y3

H−1
3 (w1, x1, y1, z1, w2, x2, y2, z2) = (h−1

33 , h
−1
32 , h

−1
31 , h

−1
30)

h−1
30 = y1 + w1x1 + w1x2 + w2x1

h−1
31 = x1 + w1

h−1
32 = y1 + x1 + w1x1 + w1x2 + w2x1

h−1
33 = z1 + y1 + w1 + w1x1 + w1x2 + w2x1 + w1y1 + w1y2 + w2y1

Common G function of both S-box and inverse S-box:

G1(w2, x2, y2, z2, w3, x3, y3, z3) = (g13, g12, g11, g10)
g10 = w2

g11 = 1 + z2 + y2 + w2 + w2y2 + w2y3 + w3y2
g12 = 1 + x2 + y2 + w2 + w2z2 + w2z3 + w3z2
g13 = 1 + z2 + y2 + x2 + w2x2 + w2x3 + w3x2

G2(w3, x3, y3, z3, w1, x1, y1, z1) = (g23, g22, g21, g20)
g20 = w3

g21 = z3 + y3 + w3 + w3y3 + w3y1 + w1y3
g22 = x3 + y3 + w3 + w3z3 + w3z1 + w1z3
g23 = z3 + y3 + x3 + w3x3 + w3x1 + w1x3

G3(w1, x1, y1, z1, w2, x2, y2, z2) = (g33, g32, g31, g30)
g30 = w1

g31 = z1 + y1 + w1 + w1y1 + w1y2 + w2y1
g32 = x1 + y1 + w1 + w1z1 + w1z2 + w2z1
g33 = z1 + y1 + x1 + w1x1 + w1x2 + w2x1

192 R. Selvam et al.

References

1. Bilgin, B.: Threshold Implementations: As Countermeasure Against Higher-Order
Differential Power Analysis. Ph.D. thesis, KU Leuven and UTwente (2015). Pieter
Hartel and Vincent Rijmen (promotors)

2. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

3. Carlet, C.: On highly nonlinear S-boxes and their inability to thwart DPA attacks.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005.
LNCS, vol. 3797, pp. 49–62. Springer, Heidelberg (2005). doi:10.1007/11596219 5

4. Chakraborty, K., Sarkar, S., Maitra, S., Mazumdar, B., Mukhopadhyay, D., Prouff,
E.: Redefining the transparency order. In: WCC2015 - 9th International Workshop
on Coding and Crypography 2015 (2015)

5. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

6. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold imple-
mentations for 4-bit S-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864,
pp. 99–113. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40026-1 7

7. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73074-3 13

8. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Constrained search for a class of
good bijective S-boxes with improved DPA resistivity. IEEE Trans. Inf. Forensics
Secur. 8(12), 2154–2163 (2013)

9. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Design and implementation of
rotation symmetric S-boxes with high nonlinearity and high DPA resilience. In:
2013 IEEE International Symposium on Hardware-Oriented Security and Trust,
HOST 2013, pp. 87–92. IEEE Computer Society (2013)

10. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00730-9 14

11. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308 38

12. Petkova-Nikova, S.: TI Tools for the 3 x 3 and 4 x 4 S-boxes. http://homes.esat.
kuleuven.be/∼snikova/ti tools.html. Accessed April 2016

13. Picek, S., Ege, B., Batina, L., Jakobovic, D., Chmielewski, L., Golub, M.: On using
genetic algorithms for intrinsic side-channel resistance: the case of AES s-box.
In: Knoop, J., Salapura, V., Koren, I., Pelosi, G. (eds.), Proceedings of the First
Workshop on Cryptography and Security in Computing Systems (CS2@HiPEAC)
2014, pp. 13–18. ACM (2014)

14. Picek, S., Ege, B., Papagiannopoulos, K., Batina, L., Jakobovic, D.: Optimality
and beyond: the case of 4 * 4 s-boxes. In: 2014 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2014, pp. 80–83. IEEE Computer
Society (2014)

http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/11596219_5
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-642-40026-1_7
http://dx.doi.org/10.1007/978-3-540-73074-3_13
http://dx.doi.org/10.1007/978-3-642-00730-9_14
http://dx.doi.org/10.1007/978-3-642-00730-9_14
http://dx.doi.org/10.1007/11935308_38
http://homes.esat.kuleuven.be/~snikova/ti_tools.html
http://homes.esat.kuleuven.be/~snikova/ti_tools.html

Decomposed S-Boxes and DPA Attacks 193

15. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2,300 GE. J. Cryptology 24(2), 322–345
(2010)

16. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005). doi:10.1007/
11502760 29

17. Saarinen, M.-J.O.: Cryptographic analysis of all 4×4-bit S-boxes. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 118–133. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28496-0 7

18. Sasdrich, P., Moradi, A., Güneysu, T.: Affine equivalence and its application
to tightening threshold implementations. Cryptology ePrint Archive, Report
2015/749 (2015). http://eprint.iacr.org/

19. Selvam, R., Shanmugam, D., Annadurai, S.: Vulnerability analysis of prince and
rectangle using CPA. In: Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security, CPSS 2015, pp. 81–87. ACM (2015)

http://dx.doi.org/10.1007/11502760_29
http://dx.doi.org/10.1007/11502760_29
http://dx.doi.org/10.1007/978-3-642-28496-0_7
http://eprint.iacr.org/

Gain: Practical Key-Recovery Attacks
on Round-reduced PAEQ

Dhiman Saha(B), Sourya Kakarla, Srinath Mandava,
and Dipanwita Roy Chowdhury

Crypto Research Lab, Department of Computer Science and Engineering,
IIT Kharagpur, Kharagpur, India

{dhimans,skakarla,smandava,drc}@cse.iitkgp.ernet.in

Abstract. This work presents practical key-recovery attacks on round-
reduced variants of CAESAR Round 2 candidate PAEQ by analyzing it
in the light of guess-and-determine analysis. The attack developed here
targets the mode of operation along with diffusion inside the AES based
internal permutation AESQ. The first attack uses a guess-and-invert tech-
nique leading to a meet-in-the-middle attack that is able to recover the
key for 6 out of the 20 rounds of paeq-64/80/128 with reduced key
entropy of 1, 216 and 232 respectively. The second analysis extends the
attack to 7 rounds using a invert-and-guess strategy which results in
reduced key-space of 224, 232 and 240 for the same PAEQ variants. Finally,
an 8-round attack is mounted using a guess-invert-guess strategy which
works on any of the three variants with a complexity of 248. Moreover,
unlike the CICO attack mounted by the designers which works with
only AESQ, our 8-round attack additionally takes into account the mode
of operation of PAEQ.

Keywords: Authenticated encryption · CAESAR competition · PAEQ ·
Guess and determine · AESQ · AES · Cryptanalysis

1 Introduction

Authenticated Encryption (AE) aims at efficiently unifying the cryptographic
goals of privacy and integrity under a single crypto primitive. Since the intro-
duction of the idea, there have been various attempts to address the challenge
of designing efficient authenticated ciphers providing a reasonable security mar-
gin. However, the exposure of serious vulnerabilities [1,7] in OpenSSL and TLS
highlighted the lack of proper understanding of the problem. Hence the need
of well-studied innovative designs leading to possible standardization became
imperative. This contributed to the initiation of the CAESAR [6] competition
which is a new addition to a long standing tradition of public competitions of
the cryptographic community. The competition assumes a rigorous approach in
defining the requirements of an authenticated cipher and outlines a multi-year
time-line for scrutinizing submissions to arrive at a final portfolio of AE schemes.

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 194–210, 2016.
DOI: 10.1007/978-3-319-49445-6 11

Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ 195

Presently, at the second Round, the competition witnessed 57 accepted submis-
sions for Round 1 out of which 30 proposals have progressed to Round 2.

Among the Round 2 candidates of CAESAR is PAEQ which is an AES based
parallelizable authenticated cipher designed by Biryukov and Khovratovich and
introduced in ISC 2014 [4]. Internally, it instantiates a permutation called AESQ
and uses a new mode of operation. The size of the permutation AESQ is 512
bits which is invariant across all PAEQ variants. In the submission document [2],
the authors classify PAEQ in two sets: primary and secondary. The primary set
constitutes paeq-64, paeq-80 and paeq-128 with key sizes of 64, 80 and 128
bits respectively. The secondary set includes variants with higher key-lengths
and/or some additional features like quick tag update and nonce-misuse. As
regards the cryptanalytic results on PAEQ, most of the analysis available is by
the designers themselves. They provide a CICO (Constrained Input Constrained
Output) attack on 8-rounds of AESQ with a complexity of 232 where it is assumed
that the last 384 bits of the input and output of AESQ are known. They also mount
a rebound-attack to devise a 12-round distinguisher on AESQ with a complexity of
2256. Among third party cryptanalysis, a new rebound attack has been mounted
on AESQ in ACISP 2016 [3] while an internal differential fault-attack has been
recently reported in CHES 2016 [9].

In this work, we exploit the mode of operation of PAEQ using a guess-and-
determine strategy to perform a complete key recovery when the internal per-
mutation is reduced from 20 rounds to 6, 7 and 8 rounds for paeq-64/80/128.
Guess-and-determine techniques aim at guessing a part of the input/output to
determine whole or part of the key leading to a reduced key-space. Complexity
of these kind of attacks is generally directly determined by the complexity of
guessing. This type of analysis has been successfully applied by Boura et al. [5]
to CAESAR Round 2 candidate π-cipher [8]. There the authors exploited limited
diffusion in a round-reduced version of the π-function to recover the key. In this
work we also target the internal permutation AESQ reduced to 6, 7 and 8 rounds.
First we show that by design most of the input to AESQ is known allowing an
attacker to propagate the input state forward in the presence of the unknown key
bytes. Secondly, we show that from the observable part of the output of AESQ
an attacker can invert by guessing a part of the state independently without
the knowledge of rest of the state. This helps to propagate the state backward
assuming the remaining part to be unknown. Finally, we establish the condition
for the forward and backward propagation to converge leading to a meet-in-
the-middle scenario which is used to recover the key for 6-rounds of AESQ. The
6-round attack is used as a sub-routine to extend the strategy to 7-rounds and
8-rounds using some additional tweaks. The attacks presented in this work are
referred to as Gain to capture underlying theme of (G)uess (A)nd (In)vert.
Further, we show that the complexity of the entire attack can be reduced to the
complexity of the guessing phase. Our results are summarized as below (Table 1):

The rest of the paper is organized as follows. Section 2 provides a brief descrip-
tion of PAEQ describing both the mode of operation PPAE and the internal
permutation AESQ. Section 3 tries to formally capture the notion of partially

196 D. Saha et al.

Table 1. Attack summary

PAEQ Gain complexities

Variant Security level 6-rounds 7-rounds 8-rounds

paeq-64 64-bit 1 224 248

paeq-80 80-bit 216 232 248

paeq-128 128-bit 232 240 248

specified state/sub-states and their behavior under AES round operations. The
observations on PAEQ pertaining to the proposed attack are showcased in Sect. 4.
The 6 round key-recovery of PAEQ is devised in Sect. 5 and the extensions to 7
and 8 rounds are done in Sects. 6 and 7 respectively. The complexity analysis is
furnished in Sect. 8 while a discussion of the proposed attacks with respect to
the CICO attack by the designers is given in Sect. 9. The concluding remarks
are given in Sect. 10.

2 The Design of PAEQ

Parallelizable Authenticated Encryption based on Quadrupled AES or PAEQ was
introduced by Biryukov and Khovratovich in ISC 2014 [4] and is also one of
the Round 2 candidates in the on-going CAESAR competition for authenticated
ciphers. It features a new generic mode of operation PPAE which stands for Par-
allelizable Permutation-based Authenticated Encryption. As the name suggests,
PAEQ is AES based and has been designed to achieve a security level equal to
the key-length. In order to arrive at a simplistic design the authors argued in
favor of a permutation based construction. It is fully parallelizable and on-line
and offers a security level up to 128 bits and higher (up to w/3, w ← width of
internal permutation). As mentioned earlier the different members of the PAEQ
family are classified into two sets (p. 2, [2]) based on the security level and extra
features. An interesting aspect of the PPAE mode of operation (denoted PPAEf)
is the way the input to the internal permutation f is formatted. This formatting
plays a vital role in the attacks developed in this work. Next we touch upon
PPAEf and the internal permutation of PAEQ called AESQ.

2.1 PPAE Mode of Operation

PPAEf (illustrated in Algorithm1) can be instantiated with an n-bit permutation
f . The inputs to the permutation are formatted as (Di||counter||N ||K) for each
plaintext block and (Di||counter||AD-block||K) for processing associated data
(AD) where Di → domain separator, N → nonce and K → key. The plaintext
and AD are divided into blocks of size n − k − 16 and n − 2k − 16 respectively
where k is the key-size. Incomplete last blocks are padded using the byte-length
of the block and domain separators are changed accordingly. Plaintext processing

Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ 197

and authentication calls f twice while AD data is authenticated using a single
call. Partial authentication data from all branches are passed to a final call to f ,
the output of which is optionally truncated to get the tag. The entire operation
is depicted in Fig. 1. An interested reader can refer to [2,4] for details.

Fig. 1. Encryption & Authentication with PAEQ

2.2 The Internal Permutation: AESQ

Definition 1 (Word [9]). Let T = F[x]/(x8 + x4 + x3 + x + 1) be the field F28

used in AES MixColumns operation. Then a word is defined as an element of T.

A word is just a byte redefined to account for the field arithmetic. In this
work, we will come across partially specified states/sub-states where certain words
might have unknown values. To capture this scenario, we use the symbol ‘X’ to
represent unknown words. Thus, to be precise a word is an element of T∪{‘X’}.

Definition 2 (Sub-state, State [9]). The internal state of the AESQ permu-
tation is defined as a 4-tuple of sub-states where each sub-state is a (4× 4)-word
matrix.

A state is denoted by s, while each sub-state is represented by sm = [sm
i,j] where

sm
i,j are the elements of sm and m denotes the sub-state index i.e., the relative

position of the sub-state inside the state. We denote a column of [sm
i,j] as sm

∗,j

while a row is referred to as sm
i,∗.

sm = [sm
i,j], where

{
si,j ∈ T ∪ {‘X’}
0 ≤ i, j < 4; m ∈ {1, 2, 3, 4} s = (s1, s2, s3, s4)

198 D. Saha et al.

Algorithm 1. PPAEf (P,N,K,A, n)[9]

Input:

{

P → Plaintext, N → Nonce, |N | = r, K → Key, |K| = k

A → Associated Data, f → Internal permutation, n → Internal state size

Output: C, T → Ciphertext and Tag

1: Di = (k, (r + i) mod 256), i = 1, 2, · · · , 6 � Generating 2-byte domain separators
2: {P1, P2, · · · , Pt} ← P |Pi| = (n − k − 16) bits
3: {A1, A2, · · · , Ap} ← A |Ai| = (n − 2k − 16) bits
4: if (|Pt| < n − k − 16) then Pt ← Pt||a||a · · · ||a � a = |Pt|/8 and |a| = 1 byte

5: if (|Ap| < n − 2k − 16) then Ap ← Ap||b||b · · · ||b � b = |Ap|/8 and |b| = 1 byte

6: Y = 0 � |Y | = n − k − 16
7: for i = 1 to t do

8: Vi ← D0||Ri||N ||K �

{

Ri → Branch Index, Ri = i, |Ri| = n − k − r − 16

D0 → D1 for incomplete last block

9: Wi ← f (Vi); Ci ← Wi[17 · · · (n − k)] ⊕ Pi � W [i · · · j] indicates part of W

from ith bit to jth bit
10: Xi ← D2||Ci||Wi[(n − k + 1) · · · n] � D2 → D3 for incomplete last block
11: Yi ← (f (Xi))[17 · · · (n − k)]; Y ← Y

⊕

Yi

12: for i = 1 to p do � Binding Associated Data

13: X ′
i ← D4||Ri||Ai||K �

{

Ri = i, |Ri| = k

D4 → D5 for incomplete last block

14: Y ′
i ← (f (X ′

i))[17 · · · (n − k)]
15: Y ← Y

⊕

Y ′
i

16: T ← f (D6||Y ||K) ⊕ (0n−k||K)
17: C = {C1, C2, · · · , Ct} � Truncate Ct for incomplete last plaintext block

The AESQ permutation is a composition of 20 round functions with a Shuffle
operation(denoted by S , Ref. Table 2) after every 2 rounds. Each round-function
is denoted by Rr where the index r denotes the rth round of AESQ. Every
round applies on the internal state a composition of four bijective functions
which are basically the standard AES round operations SubBytes, ShiftRows,
MixColumns, AddRoundConstants applied individually on each sub-state. In the
context, of a state we refer to these functions as QuadSubBytes, QuadShiftRows,
QuadMixColumns, QuadAddRoundConstants and denote them as βr, ρr, μr and αr

respectively. The reference to a sub-state is addressed by including the sub-state
index in notation. For example, to refer to the MixColumns on the second sub-
state in R17 we use μ2

17. When considering a sub-state in Rr we refer to round
function applied individually to the sub-state as Rm

r by including the sub-state
index in the notation. This implies that for an internal state s the output of the
rth round of AESQ is Rr(s) = R1

r(s
1)||R2

r(s
2)||R3

r(s
3)||R4

r(s
4).

AESQ = S ◦ R20 ◦ R19 ◦ · · · ◦ S ◦ R2 ◦ R1

Rr = αr ◦ μr ◦ ρr ◦ βr; Rm
r = αm

r ◦ μm
r ◦ ρm

r ◦ βm
r

Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ 199

Table 2. Column mapping under Shuffle (S)

s1 s2 s3 s4

From s1∗,0 s1∗,1 s1∗,2 s1∗,3 s2∗,0 s2∗,1 s2∗,2 s2∗,3 s3∗,0 s3∗,1 s3∗,2 s3∗,3 s4∗,0 s4∗,1 s4∗,2 s4∗,3

To s1∗,3 s4∗,3 s3∗,2 s2∗,2 s1∗,1 s4∗,1 s3∗,0 s2∗,0 s1∗,2 s4∗,2 s3∗,3 s2∗,3 s1∗,0 s4∗,0 s3∗,1 s2∗,1

Round-reduced AESQ permutation is denoted by AESQn where n = 2k, 1 ≤ k ≤ 9.
Thus AESQn = S ◦ Rn ◦ Rn−1 ◦ · · · ◦ S ◦ R2 ◦ R1. Since n is even, it implies
that we consider reductions in steps of two-rounds and AESQn always ends in the
S operation. Finally, the round constant for sub-state m in round r of AESQ is
given by: rcm

r = ((r − 1) ∗ 4 + m). In αm
r , rcm

r is added to all words of row sm
1,∗.

3 Handling Partially Specified States/Sub-states

As mentioned earlier in this work we have to handle states or sub-states that
may have multiple unknown values. To capture this notion formally we introduce
the following definition.

Definition 3 (Byte-Entropy). The Byte-Entropy of a state/sub-state,
denoted by E , is defined as the number of unknown bytes in the state/sub-state.

E (sm) =
∣
∣{sm

i,j = ‘X’,∀i, j}∣∣ ; E (s) =
∑

∀sm∈s

E (sm)

Consequently, if a state/sub-state is completely specified, then its Byte-Entropy
is zero. The definition can be analogously applied on individual columns in which
case it would account for the number of unknown bytes in a column of a sub-state
i.e., for the jth column of the mth sub-state, E (sm

∗,j) =
∣
∣{sm

i,j = ‘X’,∀i}∣∣. We now
define how the operations βm

r , ρm
r , μm

r and αm
r behave when the Byte-Entropy

of a sub-state sm = [sm
i,j] is E (sm) > 0.

– SubBytes: Under SubBytes unknowns remain unknown thereby preserving
the Byte-Entropy of the sub-state: E (βm

r (sm)) = E (sm). Below SBOX denotes
the AES Substitution box.

sm
i,j

βm
r−−→

{
X if sm

i,j = X

SBOX(sm
i,j) Otherwise

– ShiftRows: ρm
r does not rely on values of sm. Thus, the unknown values just

shift their positions and we have E (ρm
r (sm)) = E (sm).

– MixColumns: The situation changes with MixColumns since to apply μm
r one

needs to know the entire input column. Hence, under μm
r the Byte-Entropy

of a sub-state may increase: E (μm
r (sm)) ≥ E (sm). Below Mμ denotes the

MixColumns matrix.

sm
∗,j

μm
r−−→

{
Mμ × sm

∗,j if ∀i, sm
i,j �= X; E (μm

r (sm
∗,j)) = E (sm

∗,j)
{X, X, X, X}T Otherwise; E (μm

r (sm
∗,j)) ≥ E (sm

∗,j)

200 D. Saha et al.

– AddRoundConstants: Here, again there is no effect on the Byte-Entropy i.e.,
E (αm

r (sm)) = E (sm).

sm
i,j

αm
r−−→

⎧
⎪⎨

⎪⎩

sm
i,j if i �= 1

sm
i,j ⊕ rcm

r if sm
i,j �= X

X Otherwise

Thus, we see that the only operation that affects the Byte-Entropy of a sub-
state and thereby a state is MixColumns. It is evident that the inverse of these
operations behave in the same way while dealing with partially specified states.

4 Some Observations on PAEQ

Observation 1 (Limited Key Diffusion). For primary PAEQ variants, key
diffusion is limited to the fourth sub-state after first two rounds of AESQ.

Remark 1. This follows from the fact that for paeq-64/80/128 the key is
absorbed in the fourth sub-state and the first two rounds only diffuse it inside the
sub-state keeping the rest of the state independent of the key. This is depicted
in Fig. 2.
�

Observation 2 (The Three-Fourth Rule). The Byte-Entropy of every col-
umn of every sub-state of the state after ρ3 (i.e., before μ3) is one, i.e., three-
fourth of the state (each sub-state/column) is known to the attacker.

E (sm
∗,j) = 1, ∀(m, j); s

ρ3 ◦ β3 ◦ AESQ2←−−−−−−−−− r

where, r is the input state of AESQ corresponding to any parallel branch during
the encryption phase of PAEQ.

Fig. 2. Key Diffusion after first two rounds of AESQ. Unknown bytes before and after
key diffusion are denoted by ‘X’.

Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ 201

Remark 2. This property is an implication of Observation 1 and the fact that for
any of paeq-64/80/128 at least three-fourths of the input is always known to an
attacker. One can recall that the input r to AESQ during the encryption phase is
given by r = (D0||i||N ||K) where, D0 is the domain separator, i is the counter
value for the particular parallel branch, N is the nonce while K forms the key.
Here the only unknown is K and since |K| ≤ 128 bits and

∣
∣(D0||i||N ||K)

∣
∣ = 512

bits, so at least three-fourths of the input or three out of the four input sub-states
are known. Now let us see how the Byte-Entropy changes:

– At input r: E (rm)

{
= 0 1 ≤ m ≤ 3
≤ 16 m = 4.

– After R1 and R2: The Byte-Entropy of the first three sub-states remains
same since by Observation 1 they are independent of the fourth one.

q
Rm

2 ◦Rm
1←−−−−− r; E (qm) =

{
0 1 ≤ m ≤ 3
16 m = 4.

– After S : The S operation just permutes the known and unknown columns
resulting in a state where each sub-state has one unknown column.

p
S←− q; E (pm) = 4, ∀m; E (pm

∗,j) =

{
4 if S −1(pm

∗,j) ∈ q4;
0 Otherwise;

– After β3 and ρ3: As per Sect. 3, we know that β3 and ρ3 keep the Byte-
Entropy unaltered. However, due to ρ3, the unknown column of each sub-state
is dispersed giving a state where every column has exactly one unknown byte.

s
ρ3◦β3←−−−− q; E (sm) = 4, ∀m; E (sm

∗,j) = 1, ∀(m, j)

At this point we stop as propagating forward leads to a completely unknown
state. The entire forward propagation is illustrated in Fig. 3.
�

Observation 3 (One-Fourth Inversion). If the attacker has knowledge of
a single sub-state after Rn, then he can invert and determine the partial state
before αn−3 (or after μn−3) where exactly one byte is known in every column1.

E (sm
∗,j) = 3, ∀(m, j); s

(αn−3)
−1◦S −1◦(Rn−1)

−1◦(Rn)
−1

←−−−−−−−−−−−−−−−−−−−−−−− r

where, r is the state after Rn and ∃k : E (rm) = 0, if m = k.

Remark 3. A sub-state, if known at the end of of the nth round of AESQ, can be
inverted two rounds without the knowledge of the entire state. After inversion
the known sub-state diffuses in the remaining unknown state due to S −1. The
resulting state has one known column in every sub-state. This partially specified
1 It is understood that here 2|n.

202 D. Saha et al.

Fig. 3. Demonstration of Three-Fourth Rule applicable to paeq-64/80/128. Unknown
bytes are shown as ‘X’.

state can be inverted one more round followed by (α)−1 operation of the previous
round. We can no longer usefully invert the state by applying (μ)−1 since now
every column has only one known byte. The process of inverting a known sub-
state to get a one-fourth partially specified state is captured by Algorithm2 and
also pictorially presented in Fig. 4.
�

Algorithm 2. OneFourthInv(sm, n)

Input:

{

sm → Input sub-state

n → Round from which inversion starts (2|n)

Output: t → The partial state after μn−3

1: sm ← (Rm
n−1)

−1 ◦ (Rm
n)−1(sm)

2: t = (t1, t2, t3, t4) ← X � All unknown state
3: tm ← sm � Partial state with only sub-state m specified
4: t ← S −1(t) � One column of each sub-state known
5: t ← (αn−3)

−1 ◦ (Rn−2)
−1(t) � Every column has exactly one known byte

6: return t

With these observations in place we now present a theorem which forms the
basis of the key-recovery attack presented in this work.

Theorem 1 (Meet-in-the-middle). For n = 6, the Three-fourth Rule and
One-Fourth Inversion strategy converge at the input and output of μ3 respectively
which results in a unique solution for input of μ3.

Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ 203

Fig. 4. Demonstration of One-Fourth Inversion (Observation 3) assuming that attacker
has knowledge of sub-state 2 after Rn of AESQ.

Proof. The Three-fourth Rule always leads the attacker to a partial state before
μ3. As regards Observation 3, plugging the value of n = 6 shows that the attacker
is able to reach a partial state after μ3. So the convergence is apparent. Now to
show that this leads to a unique solution for the unknown bytes of the input of
μ3 one has to just recall that the input and output of μ3 are linearly related:
output = Mμ×input. Now, for every input column we can form a linear equation
using the known byte of the corresponding output column. Since these equations
have only one2 unknown, so solving all such equations gives unique solution for
the input of μ3.
�

In the next section we introduce the key-recovery attacks against PAEQ
reduced to 6 and 7 rounds. We first illustrate the 6-round attack and then present
the one-round extension.

5 Gain6 : Key Recovery Attack on PAEQ6 = PPAEAESQ6

Here we consider PAEQ with rounds of AESQ reduced to 6. As mentioned earlier
AESQ6 is given as AESQ6 = S ◦ R6 ◦ R5 ◦ · · · ◦ S ◦ R2 ◦ R1. The attack requires
a single plaintext/ciphertext block pair corresponding to any3 parallel branch

2 The unknown byte of the input column.
3 Except the last branch when the last message block is incomplete. This is because

for last incomplete block output is further truncated resulting in loss of information
available to the attacker.

204 D. Saha et al.

and is hence message-length independent. The steps of the attack are given as
below:

– Use AESQ6 input: The first step is to use the knowledge publicly available:
the Domain separator D0, the counter value i of the ith branch, the value
of the nonce N . Using these, the attacker applies the Three-Fourth Rule to
reach the state before μ3.

– Use AESQ6 output: The partial output state is obtained from the xor of the
ith plaintext and ciphertext block. After applying S −1, the attacker reaches
the output of R6 from which he chooses one of the sub-states with the least
Byte-Entropy (Refer Fig. 5).

– Guess and determine: He now guesses the unknown bytes of the sub-state.
For each guess he applies the One-Fourth Inversion technique (Ref. Algo-
rithm 2) and computes a partial state at the output of μ3.

– Recover input of AESQ6: The attacker applies Theorem 1 to recover the
unknown bytes at the input of μ3. As the complete state is known, it can be
inverted to retrieve the entire input of AESQ6 which is of the form: D0||i||N ||k ,
k being the candidate key.

– Verify candidate key k : For paeq-64/80 key verification is equivalent to
verifying the value of the nonce. This is because the a part of the nonce
and the key together form the fourth sub-state of the input. This cannot be
done for paeq-128 since the key forms the entire fourth sub-state. So for
paeq-128 key verification is done by recomputing AESQ6 and comparing with
the values observed by the attacker from the xor of plaintext and ciphertext
block. Algorithm 3 precisely states the verification procedure.

Fig. 5. Sub-state with minimum Byte-Entropy for AESQ6.

The key verification concludes the key-recovery process. The complete attack
on 6 rounds, referred to as Gain6 is given by Algorithm 4. In the next section
we highlight how this attack can be extended one more round using an invert-
guess-invert approach with re-uses the 6-round attack.

Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ 205

Algorithm 3. VerifyKey(q,Nx, N, k)

Input:

⎧

⎪

⎨

⎪

⎩

q → Output state (Pi ⊕ Ci)

Nx → Computed Nonce N → Actual Nonce

k → Key candidate to be verified
Output: TRUE/FALSE

1: if (|k | == 64) || (|k | == 80) then
2: if Nx == N then
3: return TRUE

4: else if (|k | == 128) then
5: if (AESQ6(D0||i||Nx||k) == q) then � Verify known values of q
6: return TRUE

7: return FALSE

6 Gain7 : Extending the attack to PAEQ7 = PPAEAESQ7

Before we proceed with the attack, it is important to understand the way we
visualize AESQ7. This is because in Sect. 2.2 we mentioned that while considering
round-reduced version of AESQ: AESQn, n is always even to ensure that AESQn

always ends with the S operation. In order to meet this AESQ7 is visualized as
below:

AESQ7 ≡ AESQ8 − R8

= S ◦ R7 ◦ AESQ6

The attack on PAEQ7 uses the attack on PAEQ6 as a sub-routine. The attacker
uses the observable output of AESQ7 and inverts it up to the input of R7. This
state can be directly used as an input to the PAEQ6 key-recovery attack since it is
equivalent to the output of AESQ6. Consequently, the rest of the attack proceeds
as before. The only difference inside the six round attack (Algorithm 4) is in
Step 3 due to the following observation.

Observation 4. The state S −1 ◦ (R7)−1 ◦S −1(Pi ⊕ Ci) has the property that
every sub-state has the same Byte-Entropy.

E (sm) = E (sn) ∀(sm, sn) ∈ s where s
S −1◦(R7)

−1◦S −1

←−−−−−−−−−−−− (Pi ⊕ Ci)

Due to this, the attacker need not choose a sub-state with minimum Byte-
Entropy and can instead choose any sub-state to start the guess and determine
part without affecting the complexity of guessing. This extension to seven rounds
is captured by Algorithm 5.

7 Gain8 : A Guess-Invert-Guess attack on PAEQ8 = PPAEAESQ8†

As stated earlier, AESQn ends with the S operation. In the 8-round attack we
deviate from this convention and drop the last shuffle. It is worth mentioning

206 D. Saha et al.

Algorithm 4. Gain6(q, i)

Input:

{

q = (q1, q2, q3, q4) → Pi ⊕ Ci (Output of 6 rounds as seen by attacker)

i → Branch Index (Counter value)

Output: k → The Master Key

1: v
ρ3 ◦ β3 ◦ AESQ2←−−−−−−−−−−−−

Three-fourth Rule
D0||i||N ||X � Columns of v have exactly one unknown byte

2: s ← S −1(q)

3: Choose sm ∈
{

sm : min
∀sm∈s

E (sm)

}

4: for Each guess of (sm
i,j == ‘X’), ∀i, j do

5: t ← OneFourthInv(sm, 6) � Columns of t have exactly one known byte

6: v
Solve t=μ3(v)←−−−−−−−−−

Theorem 1
(t, v) �

{

Meet-in-the-middle step

Recovers unknown bytes of v

7: v
(AESQ2)−1◦(β3)

−1◦(ρ3)
−1

←−−−−−−−−−−−−−−−− v � AESQ input state
8: v = (D0||i||Nx||k)
9: if VerifyKey(q, Nx, N, k) == TRUE then

10: return k

Algorithm 5. Gain7(s, i)

Input:

{

q = (q1, q2, q3, q4) → Pi ⊕ Ci (Output of 7 rounds as seen by attacker)

i → Branch Index (Counter value)

Output: k → The Master Key

1: s = (R7)
−1 ◦ S −1(q) � Inversion with partial state

2: k ← Gain6(s, i)
3: return k

that the CICO attack described by the designers of PAEQ also does the same
thing while considering 8 rounds of AESQ permutation. This can be visualized as
below:

AESQ8† ≡ AESQ8 − S

= R8 ◦ R7 ◦ AESQ6

The 8-round attack is similar to the 7-round version with the only difference that
it follows a guess-invert-guess approach. Here the attacker first guesses the first
two bytes of the first substate of (Pi ⊕ Ci). It should be noted that this guess
yields a state where the first three substates are completely known. He then
inverts R8 and R7. The attack now be mapped to Gain6. Like the last section,
we again have a uniform Byte-Entropy situation arising due to the following
observation:

Observation 5. For every guess of the first two bytes of the first substate of
Pi ⊕ Ci, all substates of the state S −1 ◦ (R7)−1 ◦ (R8)−1(Pi ⊕ Ci) have a Byte-

Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ 207

Fig. 6. Uniform Byte-Entropy at R6 output for AESQ7.

Entropy = 4.

E (sm) = 4 ∀sm ∈ s where s
S −1◦(R7)

−1◦(R8)
−1

←−−−−−−−−−−−−−− (Pi ⊕ Ci)

This corresponding state configuration is depicted in Fig. 7. The uniform Byte-
Entropy of 4 implies that the attacker can choose any substate to execute to
continue with the guess-and-determine step of the 6-round attack and would in
the process would incur a complexity of 232. Since he has to repeat this for every
guess of the first two bytes of Pi ⊕ Ci, the final complexity of Gain6 stands at
216+32 = 248. Algorithm 6 summarizes the idea of the attack. In the next section
we present a overview of the complexity of the Gain attacks.

Fig. 7. Demonstration of uniform Byte-Entropy of 4 due to two byte guess of Pi ⊕ Ci

208 D. Saha et al.

Algorithm 6. Gain8(s, i)

Input:

{

q = (q1, q2, q3, q4) → Pi ⊕ Ci (Output of 8 rounds as seen by attacker)

i → Branch Index (Counter value)

Output: K → The Final Candidate Key Set

1: K = ∅

2: for Each guess of (q10,0, q
1
1,0) do � Guess two bytes of first substate

3: s
(R7)

−1◦(R8)
−1

←−−−−−−−−−− q � Inversion with partial state
4: k ← Gain6(s, i)
5: K ← K ∪ k
6: return K � |K| = 1 for paeq-64/80, |K| > 1 for paeq-128

8 Complexity Analysis

It suffices to study the complexity of the 6-round attack taking into account
Observation 4 for the seven round version and Observation 5 for 8-round attack.
As regards the attack on PAEQ6 one can easily infer from Algorithm 4 that the
complexity is governed by the loop (Step 4) pertaining to the guessing of the
unknown bytes of the sub-state. Thus the complexity is given by 28u, where
u is the minimum Byte-Entropy of a sub-state at the output of R6 i.e., u =
min

∀sm∈s
E (sm). However, as stated earlier, for Gain8, the 6-round attack needs to

be repeated for every guess of the first two bytes of the first substate of the state
observed by the attacker leading to a complexity of 216+8u.

– paeq-64: Interestingly, for paeq-64, u = 0 because the second sub-state is
completely known. Thus we do not have to guess anything for Gain6. For,
Gain7 u = 3 thereby increasing the complexity to 224.

– paeq-80: Here u = 2 for Gain6 and u = 4 for Gain7 leading to complexities
of 216 and 232 respectively.

– paeq-128: For this variant, the complexity hits 232 for the 6-round attack as
u = 4 while for the 7-round extension it hits 240 owing to u = 5.

As regards Gain8, u = 4 for all the three versions of PAEQ. Consequently, the
complexity of the 8-round attack reaches 216+32 = 248 irrespective of the variant
under consideration. Table 3 summarizes the complexity analysis of the Gain
attacks.

9 Discussion

It is worth comparing and contrasting the CICO attack mounted by the designers
to the current work. The first thing to note is the primitive being targeted in
each attack. While the CICO attack is based on the internal permutation AESQ,
Gain exploits properties of both AESQ and the PPAE mode of operation of PAEQ.
Targeting only AESQ gives the designers higher degrees of freedom while choosing

Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ 209

Table 3. Complexities of Gain.

Gain PAEQ u = min
∀sm∈s

E (sm) sm : E (sm) = u

Complexity

28u ← Gain6/7

216+8u ← Gain8

Gain6

s
S−1←−−− (Pi ⊕ Ci)

paeq-64 0 s2 1

paeq-80 2 s2, s3 216

paeq-128 4 s1, s2, s3 232

Gain7

s
S−1◦(R7)

−1◦S−1

←−−−−−−−−−−−−− (Pi ⊕ Ci)

paeq-64 3
s1, s2, s3, s4

Ref. Fig.6

224

paeq-80 4 232

paeq-128 5 240

Gain8

s
S−1◦(R7)

−1◦(R8)
−1

←−−−−−−−−−−−−−−−
First Guess 2 Bytes
(Ref. Algorithm 6)

(Pi ⊕ Ci)

paeq-64 4
s1, s2, s3, s4

Ref. Fig. 7

248

paeq-80 4 248

paeq-128 4 248

constrained-inputs and constrained-outputs since the input formatting and the
output truncation are no longer a concern. Moreover, though the designers say
that they consider a 8-round version of AESQ, they do not explicitly mention
that they ignore the Shuffle operation after the 8th round. If the Shuffle
is included, then the CICO attack with the claimed complexity of 232 is not
applicable anymore. In Gain8, we follow the same convention for 8-round AESQ
as followed by the designers. However, we show an attack which is applicable to
the entire scheme with 216 times the overhead of the CICO attack.

10 Conclusion

This work deploys guess-and-determine analysis against variants of CAESAR
Round 2 candidate PAEQ penetrating up to 8 out of the 20 rounds. A deterministic
forward path is shown while a backward path is devised based on guessing the
unknown bytes of the sub-state with least Byte-Entropy at the output of 6th

round. The paths are shown to converge at input and output of the MixColumns
of round 3. Solving linear system of equations leads to determination of the key
bytes. The extension to seven rounds uses a simple tweak of inverting the seventh
round and then applying the 6-round attack. The 8-round attack uses a similar
approach but starts with an initial guess of two bytes. All attacks reported
have practical complexities. For paeq-64/80/128, the key recovery complexity

210 D. Saha et al.

is respectively 1, 216, 232 for Gain6 attack and 224, 232, 240 for Gain7 attack
while Gain8 can be mounted with a uniform complexity of 248 for all the three
variants.

References

1. Al Fardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS record
protocols. In: IEEE Symposium on Security and Privacy 2013, pp. 526–540. IEEE
(2013)

2. Alex Biryukov, D.K.: PAEQ v1 (2014). http://competitions.cr.yp.to/round1/
paeqv1.pdf

3. Bagheri, N., Mendel, F., Sasaki, Y.: Improved rebound attacks on AESQ: core per-
mutation of CAESAR candidate PAEQ. In: Liu, J.K., Steinfeld, R. (eds.) ACISP
2016. LNCS, vol. 9723, pp. 301–316. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-40367-0 19

4. Biryukov, A., Khovratovich, D.: PAEQ: parallelizable permutation-based authenti-
cated encryption. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.)
ISC 2014. LNCS, vol. 8783, pp. 72–89. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-13257-0 5

5. Boura, C., Chakraborti, A., Leurent, G., Paul, G., Saha, D., Soleimany, H., Suder,
V.: Key recovery attack against 2.5-round π-cipher. In: Peyrin, T. (ed.) FSE
2016. LNCS, vol. 9783, pp. 535–553. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-52993-5 27

6. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness (2014). http://competitions.cr.yp.to/caesar.html/

7. Duong, T., Rizzo, J.: Here Come The XOR Ninjas. White paper, Netifera (2011)
8. Gligoroski, D., Mihajloska, H., Samardjiska, S., Jacobsen, H., El-Hadedy, M.,

Jensen, R., Otte, D.: π-Cipher v2.0. Submission to the CAESAR Competition
(2014). http://competitions.cr.yp.to/caesar-submissions.html/

9. Saha, D., Chowdhury, D.R.: EnCounter: on breaking the nonce barrier in differential
fault analysis with a case-study on PAEQ. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 581–601. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53140-2 28

http://competitions.cr.yp.to/round1/paeqv1.pdf
http://competitions.cr.yp.to/round1/paeqv1.pdf
http://dx.doi.org/10.1007/978-3-319-40367-0_19
http://dx.doi.org/10.1007/978-3-319-40367-0_19
http://dx.doi.org/10.1007/978-3-319-13257-0_5
http://dx.doi.org/10.1007/978-3-319-13257-0_5
http://dx.doi.org/10.1007/978-3-662-52993-5_27
http://dx.doi.org/10.1007/978-3-662-52993-5_27
http://competitions.cr.yp.to/caesar.html/
http://competitions.cr.yp.to/caesar-submissions.html/
http://dx.doi.org/10.1007/978-3-662-53140-2_28
http://dx.doi.org/10.1007/978-3-662-53140-2_28

Hardware Security

Predictive Aging of Reliability
of Two Delay PUFs

Naghmeh Karimi1(B), Jean-Luc Danger2,3,
Florent Lozac’h3, and Sylvain Guilley2,3

1 ECE Department, Rutgers University, Piscataway, NJ 08854, USA
naghmeh.karimi@rutgers.edu

2 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013 Paris, France
{jean-luc.danger,sylvain.guilley}@telecom-paristech.fr

3 Secure-IC SAS, 35510 Cesson-Sévigné, France
{jean-luc.danger,florent.lozach,sylvain.guilley}@secure-ic.com

Abstract. To protect integrated circuits against IP piracy, Physically
Unclonable Functions (PUFs) are deployed. PUFs provide a specific sig-
nature for each integrated circuit. However, environmental variations,
(e.g., temperature change), power supply noise and more influential IC
aging affect the functionally of PUFs. Thereby, it is important to eval-
uate aging effects as early as possible, preferentially at design time. In
this paper we investigate the effect of aging on the stability of two delay
PUFs: arbiter-PUFs and loop-PUFs and analyze the architectural impact
of these PUFS on reliability decrease due to aging.

We observe that the reliability of the arbiter-PUF gets worse over
time, whereas the reliability of the loop-PUF remains constant. We inter-
pret this phenomenon by the asymmetric aging of the arbiter, because
one half is active (hence aging fast) while the other is not (hence aging
slow). Besides, we notice that the aging of the delay chain in the arbiter-
PUF and in the loop-PUF has no impact on their reliability, since these
PUFs operate differentially.

1 Introduction

With the advancement of VLSI technology, people are increasingly relying on
electronic devices and in turn integrated circuits (ICs). Therefore, it is essential
to assure the security of the sensitive tasks performed by such devices and to
guarantee the security of information stored within these devices.

Having a unique identifier for each electronic chip offers many security ben-
efits. If, for example, the chip is in a smartphone, the identifier can be used
to associate the device with a specific service. The identifier can also be used
to thwart overbuilding since it can be recorded at fabrication and can later be
checked against a whitelist (in this way, overproduced or counterfeited chips can
be detected). However, for the identifier to be trusted, it must meet some secu-
rity properties: essentially, it must be unique and it must not be tamperable.
Physically Unclonable Functions (PUFs) are known as technical solutions [1–3]
as they can generate volatile secret keys for a system [4].
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 213–232, 2016.
DOI: 10.1007/978-3-319-49445-6 12

214 N. Karimi et al.

A PUF signature is used either via a Challenge-Response Pair (CRP) pro-
tocol for authentication, or to generate a private key or random variable in a
ciphering operation. A PUF can avoid the use of digital memory to store a key
imposed by the IC manufacturer or the user. Hence PUFs are well suited in
low-cost devices such as the RFIDs or smartcards [5]. In practice, PUFs have
different applications including cryptographic key generation, device authenti-
cation, Intellectual Property (IP) protection, etc.

Indeed, PUFs benefit from process variations which occur during the man-
ufacturing of integrated circuits and thereby each PUF generates a unique sig-
nature extracted based on physical characteristics of the circuit elements. The
unique behavior after fabrication stems from a static randomness due to tech-
nological dispersion. It is a well known source of mismatch in electronics circuits
design and was characterized by Pelgrom [6] to follow a normal distribution.

The PUF responses are also subject to dynamic randomness due to mea-
surement noise, which is detrimental to the reliability of the PUF measurement.
For this reason, it is important in practice to increase the signal-to-noise ratio
(SNR). In a so-called SRAM-PUF [7] which consists in one SRAM memory bit
booting up at either value 0 or 1, it seems difficult to improve the SNR except
by repeating measurements, which demands a power down between each mea-
surement. In a delay-PUF [8], n elements are chained, and the total delay of
the chain is measured. The SNR is then increased by a factor n as the signal
power grows linearly with n. Because of this property, we focus in this paper on
delay-PUFs, namely loop-PUF [5] and arbiter-PUF [2, Section 2.2].

PUFs can be deployed as identifiers of electronic chips if the responses (keys)
generated by PUFs are reliable and do not change over time. However, sim-
ilar to other ICs, PUFs are vulnerable to aging mechanisms that jeopardize
their reliability over time. In practice, with the advancement of VLSI technol-
ogy and moving towards nano technologies, run time degradation mechanisms
such as Negative-Bias Temperature-Instability (NBTI), Hot-Carrier Injection
(HCI), and gate Oxide Breakdown (OB) play a critical role in urging circuits
malfunctions [9–13]. In these degradation mechanisms, so-called aging, electrical
behavior of transistors eventually deviates from its original intended behavior.
This deviation may degrade performance; and consequently, the chip suddenly
fails to meet some of the required specifications [14,15].

In practice, NBTI is the main aging mechanism resulting in circuit malfunc-
tions [16]. While NBTI happens continuously when the circuit is powered on,
the HCI only happens provided the circuit has some activity: the more activity,
the more HCI effect. In this paper, we investigate the effect of NBTI on the
reliability of PUFs.

Problem Statement. Different schemes have been proposed in literature to
improve the reliability of PUFs against aging effects. In particular, Error Correc-
tion Codes (ECCs) are employed in [17] to recover unwanted bit-flips (erroneous
bits) in the output of PUFs. However, using ECC for error recovery is costly
and its overhead is not negligible in case of multiple errors [4]. Software tech-
niques have been proposed in [18] to combat the aging effects in PUFs. The

Predictive Aging of Reliability of Two Delay PUFs 215

proposed protocol-level solutions can either detect drifts in PUFs and update
the affected challenge/response pairs or prevent such drifts by shortening the
lifespan of challenge/response pairs [18].

Guajardo et al. investigated the robustness of SRAM-PUF against aging
caused by a specific case of continuous writing of ones and zeros in SRAM
cells [19]. Maes et al. also showed that SRAM-PUF aging can be inverted by
programming them with the opposite value [20]. This reinforces the bias of the
PUF, hence a rejuvenation. However, such technique does not apply to delay-
PUFs.

In order to combat aging of ring oscillator PUFs (RO-PUFs), an aging resis-
tant RO-PUF has been proposed in [4]. This ring oscillator stops oscillation
when the PUF is not used. Such reconfiguration slows down the aging effects,
but there is a need of custom design with the use of pass transistors. Maiti
et al. conducted an accelerated aging to investigate the effect of aging on the
functionality of RO-PUFs. They proposed a reconfigurable RO-PUF to mitigate
aging effects [21]. As the RO-PUF consists in comparing two ROs among a set
of identical ROs, the proposed anti-aging method is to choose the ROs which
have the maximum frequency differences.

The RO-PUF has the specificity of having many ROs in parallel and the
aging has a direct impact when two oscillators behave differently with aging.
The contribution of this paper is to study the aging of simpler delay-PUF: the
Loop-PUF which has a single delay chain, and the arbiter-PUF which uses two
controllable delay chains.

Contributions. We notice that the reliability of the arbiter-PUF decreases with
aging, whereas the reliability of the loop-PUF remains unchanged with aging.
We manage to explain this discrepancy, by noting that the arbiter (seen as a
hardware IP) becomes less reliable over time. The reason is the same as for
SRAM-PUF aging: half of the PMOS transistors of the arbiter are conducting,
while the other half are blocked. Regarding the delay chains, they age similarly:
therefore, their timing difference is not impacted by aging. The loop-PUF does
not use an arbiter, therefore its reliability is not affected by aging.

To support this interpretation, we use the fact that:

– Synopsys HSPICE MOSRA tool [22] can be used to simulate the aging effects
in PUFs, and

– transient noise in the simulations can be used to simulate the reliability change
over time of PUFs, in particular delay-PUFs.

The simulations are validated by real-world experiments on a 65 nm ASIC.

Outline. The remainder of this paper is organized as follows. Section 2 presents
a preliminary background on aging mechanisms. Section 3 provides a description
of the studied PUFs. The steps taken to evaluate the aging effects using Synop-
sys MOSRA tool are discussed in Sect. 4. Then, Sect. 5 presents the simulation
results depicting the impact of aging on the reliability of PUFs. Confirmation of
results on real silicon is presented in Sect. 6. Conclusions and perspectives are
drawn in Sect. 7.

216 N. Karimi et al.

2 Aging Mechanisms

Digital circuits can be affected by various aging mechanisms including Nega-
tive Bias Temperature Instability (NBTI), Hot Carrier Injection (HCI), Time
Dependent Dielectric Breakdown (TDDB), and Electro-Migration (EM) result-
ing in performance degradation and eventually design failure [23]. Among these
aging mechanisms, the NBTI impact on PMOS transistors and the HCI impact
on NMOS transistors are more prominent in the reliability of digital circuits.
BTI, HCI, and TDDB aging all relate to gate oxides of transistors while EM
happens in the interconnect metal lines.

NBTI occurs in a PMOS transistor when a negative voltage is applied to its
gate. In this mechanism, positive interface traps are generated at the Si-SiO2

interface. As a result, the threshold voltage increases and the PMOS transistor
becomes slower and fails to meet timing constraints.

HCI occurs when hot carriers are injected into the gate dielectric during
transistor switching and remain there. HCI is a function of switching activity
and degrades the circuit by shifting the threshold voltage and the drain current
of transistors under stress [4]. HCI mainly affects NMOS transistors.

TDDB relates to the creation of an electrical current conduction path through
the gate oxide in the device. It degrades the isolation properties of gate dielectric,
increasing the tunneling current across the transistor gate terminal. Ultimately,
TDDB results in device breakdown [24].

High density currents result in EM aging. The currents create electron winds
that cause metal atoms to migrate over time, gradually removing metal atoms
from wires, thereby increasing interconnect resistance. EM eventually results in
an open circuit, creating a permanent error [25].

As the PUF is used mainly to get an identifier or a response to a challenge
for authentication, we can consider a rather low switching activity. Consequently
we can assume less impact caused by HCI compared to NBTI. This is the reason
why we mainly investigate the effect of NBTI on the reliability of PUFs, what
follows discusses NBTI effects in more detail.

2.1 Background on NBTI Aging

NBTI is one of the leading factors in performance degradation of digital circuits.
In practice, a PMOS transistor experiences two phases of NBTI depending on its
bias condition. The first phase, i.e., the stress phase, occurs when the transistor
is on, i.e., when a negative voltage (i.e. VGS < Vt, the threshold voltage Vt
being negative for a PMOS) is applied to its gate. In the stress phase, positive
interface traps are generated at the Si-SiO2 interface. As a result, the magnitude
of the threshold voltage Vt of the transistor is increased. In the second phase,
i.e., recovery phase, a “positive” voltage (i.e. VGS > Vt) is applied to the gate of
the transistor. In this phase, the threshold voltage drift induced by NBTI during
the stress phase can partially “recover”.

Threshold voltage drifts of a PMOS transistor under stress depend on the
physical parameters of the transistor, supply voltage, temperature, and stress

Predictive Aging of Reliability of Two Delay PUFs 217

Fig. 1. Change in threshold voltage of a PMOS transistor over time.

time. Figure 1 shows the threshold voltage drift of a sample PMOS transistor
that is continuously under stress for 6 months as well as a transistor that is under
stress and recovery every other month. As shown, the NBTI effect is high in the
first couple of months but the threshold voltage tends to saturate for long stress
times. NBTI affect is exacerbated with thinner gate oxide and higher operating
temperature [26,27].

Two prevalent theories, Reaction-Diffusion (R-D) and Trapping-Detrapping
(T-D), have been proposed in literature to explain NBTI. The R-D model
explains the NBTI phenomenon as the breaking and rebonding of hydrogen-
silicon bonds at the silicon-gate dielectric interface of PMOS devices [28,29].
The T-D model considers a number of defect states with different energy levels,
and capture and emission time constants. In the T-D model, the threshold volt-
age increases when a trap captures a charge carrier from the channel of a PMOS
device [30].

Wang et al. presented an R-D model to evaluate the NBTI effects [31]. In
this model, the change in threshold voltage of a PMOS transistor in stress and
recovery modes at time t are evaluated by Eqs. (1) and (2), respectively.

ΔVth =
(
Kv(t − t0)0.5 + 2n

√
ΔVth0

)2n

, and (1)

ΔVth = ΔVth1

(

1 − 2ξ1te +
√

ξ2C(t − t1)
2tox +

√
Ct

)

, (2)

where t0 and t1 denote the time at which the stress and recovery phases begin,
te denotes the effective oxide thickness, and ξ1 and ξ2 are constants. Parameter
n is the time exponent parameter, and for H2 diffusion, it is 1/6. Kv and C
are computed by using Eqs. (3) and (4), where Eox is the electrical field, T is
the temperature, and Ea, K1, T0, and k are constants. As shown in Eq. (1), the
magnitude of the threshold voltage of a PMOS transistor is increased during
stress time.

218 N. Karimi et al.

Kv =
(

qtox
εox

)3

K1
2Cox(Vgs − Vth)

√
C exp

(
2Eox

E01

)

(3)

where C = exp(−Ea/kT)/T0. (4)

In this paper, to evaluate the impact of NBTI on the performance of a circuit
under stress, HSPICE MOSRA (MOS Reliability Analysis) [22] that uses an R-D
model is deployed.

3 Loop-PUF and Arbiter-PUF

3.1 Loop-PUF

The loop-PUF structure [5] consists of a single delay chain which is looped to
form a ring oscillator by means of an inverter. The delay can be obtained with
high accuracy as many oscillations (N) are measured.

yixi

delay ndelay idelay 1

ci

BLPUFfrequency
measurement

c1 cn

Inversion creating a loop oscillating N times

Fig. 2. Loop-PUF structure.

Figure 2 illustrates the Loop-PUF structure composed of n delay elements
and Fig. 3 illustrates the detail of one delay element in the chain of n elements.
For each i = 1, 2, . . . , n element, i can have two delays (theoretically equal at
blueprint level), chosen according to one challenge bit ci ∈ {0, 1}.

Let d(ci) be the corresponding delay. As time is an extensive physical quan-
tity, we have

d(ci) =

{
dT1
i + dB2

i = dTB
i if ci = 0,

dB1
i + dT2

i = dBT
i if ci = 1.

The delays dTB
i and dBT

i are modeled as i.i.d. normal random variables
selected at fabrication [6]. Actually, variation at fabrication can be explained
by many factors, amongst which random dopant fluctuation [32].

The n elements are chained by connecting yi to xi+1, for i = 1, . . . , n − 1.
The principle of the loop-PUF is to measure the difference ΔLPUF

c of cumulative

Predictive Aging of Reliability of Two Delay PUFs 219

dT1
i

dB1
i

dT2
i

dB2
i

xi yi

d(ci)

ci

Fig. 3. Delay element i in a Loop-PUF. The output yi is equal to the input xi, but
occurs after a delay d(ci).

delays d(c) =
∑n

i=1 d(ci) for a challenge c = (c1, . . . , cn) and its complementary
value ¬c = (¬c1, . . . ,¬cn):

ΔLPUF
c = sign(�N

n∑

i=1

d(ci)� − �N
n∑

i=1

d(¬ci)�), (5)

where N is the number of loops and the �·� symbol expresses the quantization of
the number of loops. Thus, the LPUF computes response bits based on a mode
of operation, given in Protocol 1.

Protocol 1. Protocol to get one bit out of an LPUF using challenge c.
input : Challenge c
output: Response Bc

1 Set challenge c
2 Measure d1 ← �N∑n

i=1 d(ci)�
3 Set challenge −c
4 Measure d2 ← �N∑n

i=1 d(¬ci)�
5 return Bc = sign(d1 − d2)

The N oscillations contribute to diminish the noise impact. For simplification
we can consider a single loop (N = 1) and a perfect quantization. Thus:

ΔLPUF
c =

n∑

i=1

d(ci) − d(¬ci) =
n∑

i=1

(−1)ci(dTB
i − dBT

i) (6)

=
n∑

i=1

(−1)ciΔi, (7)

220 N. Karimi et al.

where we have used that ¬ci = 1 − ci. Since dTB
i and dBT

i are i.i.d. normal, the
random variables

Δi = dTB
i − dBT

i (i = 1, 2, . . . , n) (8)

are themselves i.i.d. normal and have zero mean. Each Δi represents the delay
difference from xi to yi in the path through first top/second bottom and first
bottom/second top buffers. One bit of the identifier is the sign of the cumulative
delay difference Δ(c):

BLPUF
c = sign(ΔLPUF

c). (9)

The overall loop-PUF function is summarized in Fig. 4. A unique identifica-
tion number can be obtained by querying the PUF for M different challenges c.

n i.i.d. normal
Response Bc ∈ {±1}
Bc = sign(

∑n
i=1(−1)ciΔi)

Loop-PUF:

random variables Δi

Challenge c ∈ {0, 1}n

Fig. 4. Operation of a loop-PUF.

3.2 Arbiter-PUF

The arbiter-PUF (APUF) is an architecture [2, Section 2.2] with a pair of delay
chains, so as to obtain one challenge bit per challenge, in one single query.
Figure 5 represents the architecture of the Arbiter-PUF. The race of a signal
along the top path and the bottom path is grabbed by the arbiter.

The PUF element thus consists in the duplication of the paths: the xi → yi
path of Fig. 3 is turned into two parallel paths (xi, x′

i → yi, y
′
i). This is depicted

in Fig. 6a.
We have

d(c) =
n∑

i=1

cid
T
i + ¬cidBi

d′(c) =
n∑

i=1

cid
T ′
i + ¬cidB′

i ,

and the APUF measures the fastest of the two cumulative paths. Therefore,

BAPUF
c = sign(ΔAPUF

c), where (10)

ΔAPUF
c = d(c) − d′(c) =

n∑

i=1

ci(dTi − dT
′

i) + (1 − ci)(cidBi − cid
B′
i). (11)

However, contrary to the case of the loop-PUF, this equation does not sim-
plify as in (7).

Predictive Aging of Reliability of Two Delay PUFs 221

delay i delay n

x′
iy′

1 y′
ny′

i

ynyixiy1

BAPUF0 1 arbiter

cn

delay 1

cic1

Fig. 5. Arbiter-PUF.

d(ci)

dT
′

i

x′
i

dTi

dBi

xi

y′
i

yi

ci
dB

′
i

d′(ci)
(a) Delay element i.

BAPUFyn

y′
n

(b) Arbiter (function φa).

Fig. 6. Arbiter-PUF element examples.a

Indeed, we have that the expected value of Δ is not zero. The reason is
that the delays in either input of the multiplexer are not the same. That is, let
us denote E(dTi) = E(dT

′
i) = E(dT), and E(dBi) = E(dB

′
i) = E(dB). We have

E(dT) �= E(dB). Thus,

E(ΔAPUF
c) =

n∑

i=1

(−1)ci(E(dB) − E(dT)) �= 0.

222 N. Karimi et al.

Moreover the sign and subtraction functions of the Eq. (10) cannot be per-
formed by arithmetic. They use an arbiter function φa which is able to detect
the slight delay differences between two signals. The real equation of the bit
generated by a APUF is:

BAPUF
c = φa(

n∑

i=1

d(ci),
n∑

i=1

d(¬ci)), (12)

where φa is a two input function with value in {0, 1}. Typically, the function
φa is a latch as illustrated in Fig. 6b, which is sensitive to aging and can be
unbalanced. Given a threshold tha close to 0, it computes:

φa(d1, d2) =

{
1 if d1 − d2 ≥ tha,

0 otherwise .

4 Aging Methodology with MOSRA

Figure 7 shows a flowchart of the steps involved in our aging evaluation scheme.
The circuit netlist is defined at transistor level using HSPICE. The technology
library is given and the input values and operating temperature are decided.

We first run a HSPICE simulation to capture the outputs of the circuit-
under-evaluation (and the required delay parameters) at time zero, i.e., no aging
is considered in this phase. Then, we get benefit of HSPICE MOSRA in our
simulations and run another simulation (pre-stress simulation) during which
we setup MOSRA to evaluate the aging effects for the given circuit running
with the given set of inputs under the considered temperature. During the pre-
stress simulation phase, the simulator evaluates the electrical stress of user-
selected MOSFETs in the circuit, based on the MOSRA models. For example,
in this phase, the aging-related change of threshold voltage of the user-selected
MOSFETs are evaluated for user-defined aging time intervals and the results
are reported. In practice, The calculation depends on the electrical simulation
conditions of each targeted device [22].

As the next step, we launch the post-stress simulation phase during which
the degradation of device characteristics that was computed in the pre-stress
phase is translated to performance degradation at the circuit level.

5 Impact of Aging on the Reliability of PUFs

5.1 Experimental Setup

In this section, we provide the details of the simulation setup used to evaluate
the effect of aging on our targeted PUFs.

We first implemented our PUFs in a transistor level using a 45-nm technology
extracted from the open-source NANGATE library [33]. We then used Synopsys

Predictive Aging of Reliability of Two Delay PUFs 223

Fig. 7. Flowchart for applying HSPICE MOSRA to evaluate aging effects.

HSPICE for the transistor-level simulations and employed the HSPICE built-in
MOSRA Level 1 model to capture NBTI effects in MOSFETs [22].

We ran Monte Carlo (MC) simulations for 8192 instances of loop-PUF and
arbiter-PUF each including one PUF element. We then extracted the NBTI
effects to extrapolate the effect of aging on 512 loop-PUFs and arbiter-PUFs each
including 16 delay elements using our in-house tool. Simulations were carried out
using the following process-variation parameters for a Gaussian distribution:
transistor gate length L: 3σ = 10%; threshold voltage V TH : 3σ = 30%, and
gate-oxide thickness tOX : 3σ = 3%.

Using HSPICE MOSRA, the effect of aging was evaluated for 20 months
of PUF operation in time steps of one month. The operating temperature was
considered as 45◦C.

5.2 Experimental Results of the Loop-PUF Aging

The Loop-PUF aging has been simulated by considering 512 delay chains of 16
elements taken from the 8192 instances of one element. To be able to evaluate
the effect of aging in the functionality of Loop-PUFs in different cases, we cut
the closed loop of the Loop -PUF at point A in Fig. 2 and injected periodic
pulses to the delay chain at point A. In order to measure the oscillation period
of the loop-PUF which is now in an open loop, it is necessary to consider the
delays from both rising-edge and falling edge from the SPICE simulation with
the challenge bit then its complementary. The following delay is thus obtained:

ΔLPUF
c =

n∑

i=1

d(ci) − d(¬ci). (13)

224 N. Karimi et al.

Fig. 8. Mean and variance evolution for challenge pair = 0x00FF/0xFF00.

As three extreme case, we considered that the duty cycle of the pulse can be
either, 1 %, 50 % or 99 %. A duty cycle of X% means that the pulse is at level’0’
X% of the time. Note that when a PMOS transistor gets a pulse at level’1’ in its
gate input, the NBTI impact is mitigated. Thereby, different PMOS transistors
in a Loop-PUF may behave differently regarding the value of X. The simulation
is performed during the equivalence of 20 months of aging at 45◦C and 1.2 V
instead of 1.0 V. The chosen challenges are selected amongst those given the
maximum PUF entropy. The study in [34] has shown that the best challenges
correspond to Hadamard codes, the way to construct them is explained in [35].
For the 16-element delay-PUF, there are 32 Hadamard codewords, giving 16
pairs of complementary challenges necessary for the Loop-PUF.

The results in terms of evolution of mean and standard deviation during 20
months for 3 challenge pairs are given in Figs. 8, 9, and 10.

These results provide many pieces of information:

1. The mean is not always a monotonous function, thus there is no direct relation
between the aging and the mean. This can be explained by the independence
of the delay elements. Hence when a delay element has a delay increase with
aging, the other one decreases. All in one, there is not a unique tendency.
As a straightforward consequence, a positively (resp. negatively) biased delay
element remains positively (resp. negatively) biased over time.

2. The standard deviation is always increasing with aging. This behavior is intu-
itively that of the standard deviation of a random walk.

3. The aging impact is stronger at the beginning of the circuit life. This is a
specificity of NBTI (recall Fig. 1).

4. The duty cycle of the pulse has a small impact on aging. The standard devia-
tion slope is slightly smaller when the duty cycle is 1 % (than when it is 50 %
or 99 %). The offset at time 0 of the standard deviation is not relevant, only

Predictive Aging of Reliability of Two Delay PUFs 225

Fig. 9. Mean and variance evolution for challenge pair = 0x33CC/0xCC33.

Fig. 10. Mean and variance evolution for challenge pair = 0x6996/0x9669.

the slope matters. The difference between the duty cycle value is not very
significant. This means that the anti-NBTI aging strategy to force the PMOS
to be most of the time “off” is not so efficient.

5. The challenges do not impact the observed behavior w.r.t. aging.

5.3 Experimental Results of the Arbiter-PUF Aging

The aging on the arbiter-PUF can be studied on separate parts which are the
parallel delay chains and the arbiter.

Results of the delay chain part. The delay chain corresponds to Eq. (11) where
the two paths are configured with complementary challenges. The delay chains

226 N. Karimi et al.

have been configured with 16 elements, thus requiring 16-bit challenges. The
results are very similar to the Loop-PUF. Figure 11 represents the mean and
standard deviation among the 512 arbiter-PUFs for the challenge=0x5A5A.

 0.3277
 0.3278
 0.3279

 0.328
 0.3281
 0.3282
 0.3283
 0.3284
 0.3285
 0.3286

 0 5 10 15 20

M
ea

n
of

 D
el

ta
 in

 p
s

Months

 5.26
 5.28

 5.3
 5.32
 5.34
 5.36
 5.38

 5.4
 5.42
 5.44
 5.46
 5.48

 0 5 10 15 20

St
d

de
vi

at
io

n
of

 D
el

ta
 in

 p
s

Months

1%

Fig. 11. Mean and variance evolution for challenge = 0x5A5A.

The same conclusions as the LPUF can be drawn from these results:

1. The mean is not always a monotonous function, thus there is no direct relation
between the aging and the mean. Thus, if one chain is faster than the other
initially, it will remain so despite aging.

2. The standard deviation is always increasing with aging.
3. The aging impact is stronger at the beginning of the circuit life.

Results of the arbiter part. The test design of arbiter uses a latch composed of
two NAND gates as shown in Fig. 12.

The aging impact is assessed by counting the number of bit flips in the
APUF response. Figure 13 illustrates the results obtained with 16384 APUF of
one element.

It clearly shows that the number of bit flips increases with aging significantly
as 1 % of bit flips occurred after one year at 45◦C. In order to make sure that
these bit flips do not come from the delay chain, the bottom figure of Fig. 13
represents the dependence between the bit flip and the Δ value. It is expressed
in probability to get a bit flip vs the sign of Δ. As it remains around 0.5, it
indicates the delay chain has no noticeable impact.

5.4 Discussion

The fact that the arbiter reliability decreases over time can be accounted by the
fact the steady state of the latch is asymmetrical. For example, if the arbiter

Predictive Aging of Reliability of Two Delay PUFs 227

slow aging
disabled, hence

fast aging
enabled, hence

yn

y′
n

BAPUF1

1

1

0

Fig. 12. Latch with two NAND gates.

Fig. 13. Bit flips at the arbiter output.

evaluates to 0, then the logic states in the arbiter are represented in Fig. 12.
One can see that one NAND gate is active, while the other one is not. This
“asymmetric” state is similar to that of an SRAM memory point in the SRAM-
PUF. Therefore, the reliability of the latch arbiter of Fig. 12 is decreasing over
time.

Now, in a delay chain (recall Figs. 3 and 6a), each element ages independently.
But, as the final measurement is a difference, the aging has no impact on the
reliability.

6 Aging Acceleration on Real Silicon

6.1 Aging Acceleration Setup

An ASIC with 49 LPUF has been implemented in 65 nm technology. Figure 14
shows the layout with a 7 × 7 LPUF matrix which makes up the largest part in
the upper right-hand corner of the layout.

228 N. Karimi et al.

7x7 Loop-PUF matrix

Fig. 14. Layout of the test chip embedding 49 LPUFs.

The circuit has been placed on a PCB and put in a laboratory oven adjusted
at 85◦C. The power supply has been set to 2.0 V instead of the nominal voltage
of 1.2 V. The test procedure is described in Protocol 2 which corresponds to
cycles of 24 h.

Protocol 2. Aging acceleration Protocol.
Input: Non aged device
Output: Aged device

1 STEP 1: Stress during 23 hours .
2 Vdd ← 2.0 V, T ◦C ← 85◦C
3 Challenge Ci ← 0x00000000FFFFFFFF

4 Always measure PUFi, for i ∈ {0, . . . , 7}
5 Measure PUFj every 1/8 time, for j ∈ {8, . . . , 15}
6 Measure PUFk every 1/64 time, for k ∈ {16, . . . , 31}
7 STEP 2: Evaluation during 1 hour .
8 Vdd ← 1.2 V, T ◦C ← 20◦C
9 Measurement of the 49 LPUFs with the Hadamard Challenges

10 Go to STEP 1

In this protocol the devices are placed in a high temperature, high voltage
environment which should accelerate the NBTI and HCI effects [36, Section 5.3].
The first 8 PUFs PUF0 to PUF7 are always measured, whereas PUF8 to PUF15

are measured 1/8 of the time, and PUF16 to PUF31 are measured 1/64 of the
time. PUF32 to PUF48 are never measured. This differences in switching activity
(X%) allows us to test the switching activity impact on the aging. Every 24 h
and during one hour, the device is back in its typical environment and all the
challenges are used to measure the PUF values.

Predictive Aging of Reliability of Two Delay PUFs 229

The results in Fig. 15 represent the evolution of the mean delay N
∑n

i=1 d(ci),
not the differential delay, for the challenge 0x00000000FFFFFFFF. This delay is
measured when the device is back in its typical condition (STEP 2 of the
protocol).

Fig. 15. Evolution of the mean delay with aging. Recall that switching rate X for
PUF[0,7] is 100 %, for PUF[8,15] is 12.5 %, for PUF[16,31] is 1.6 %, and for PUF[32,49]

is 0 %.

This figure brings a lot of information concerning the impact of aging:

1. The mean delay is always increasing with age.
2. Every 24 h, we can notice a small recovery phenomenon, as expected for NBTI.
3. The slopes satisfy PUF[7:0] > PUF[15:8] > PUF[31:16] > PUF[48:32]. This

highlights the importance of the switching activity on the aging, as also
observed in simulations (Figs. 8, 9, and 10) when X increases.

Now, considering the differential delay sign(�N ∑n
i=1 d(ci)� − �N ∑n

i=1

d(¬ci)�), we obtain the results shown in Fig. 16 (left). These results represent
the mean of the differential delay for one delay element. As the evolution is very
small we can notice the strong impact of the noise.

As it was observed for the simulation of the delay chain, the evolution of the
differential delay is not monotonous. Hence we can conclude that the aging has
a slight and non monotonous impact on the delay chain of the Loop-PUF. The
evolution of the standard deviation is illustrated in Fig. 16 (right). The results
are very noisy as the differential delay is very small. However it is possible to
observe that the standard deviation is always increasing with a greater increase
during the first hours. This confirms the simulation results.

230 N. Karimi et al.

Fig. 16. Evolution of the mean (left) and of the standard deviation (right) of the
differential delay with aging.

7 Conclusions and Perspectives

In this paper the aging on delay-PUFs has been evaluated by simulation and
aging acceleration on a real silicon. Two types of PUF taking advantage of a delay
chain have been considered: the Loop-PUF and the arbiter-PUF. It has been
shown that the aging has a very small impact on delay chains as each element
ages independently. However the memory point as the latch of the arbiter is
much more sensitive to aging, due to the asymmetry of its dual structure. Hence
the aging of element is different from the aging of its dual element, and the
difference is always increasing. This also highlights the interest of using simple
delay-PUFs as the Loop-PUF, to avoid the imbalance of the arbiter or SRAM
memory points. It has also been noticed with the experiments on a real device
that the NBTI impact is dominant and that the HCI is significant only with a
high switching rate.

More generally, from a user perspective, it makes sense for low-power appli-
cations to switch off completely the PUF as the aging is mainly due to having it
on. This does not apply for Loop-PUF which is naturally resilient against aging.
A solution to counter the aging for arbiter-PUF would be to complement its
state (as the SRAM anti-aging proposed in Maes et al. [20]) or use an arbiter
based on RS latch based on NOR and forces the output at ‘0’ to mitigate the
NBTI impact.

References

1. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random
functions. In: Computer Security Applications Conference, pp. 149–160 (2002)

2. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Design Automation Conference (DAC), pp. 9–14
(2007)

Predictive Aging of Reliability of Two Delay PUFs 231

3. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their
use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol.
4727, pp. 63–80. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 5

4. Rahman, M.T., Forte, D., Fahrny, J., Tehranipoor, M.: ARO-PUF: An aging-
resistant ring oscillator PUF design. In: Design, Automation Test in Europe Con-
ference (DATE), pp. 1–6 (2014)

5. Cherif, Z., Danger, J., Guilley, S., Bossuet, L.: An easy-to-design PUF based on
a single oscillator: the loop PUF. In: Digital System Design (DSD), pp. 156–162
(2012)

6. Pelgrom, M.J., Duinmaijer, A.C., Welbers, A.P.: Matching properties of MOS tran-
sistors. IEEE J. Solid State Circ. 24(5), 1433–1439 (1989)

7. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying
fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–
1210 (2009)

8. Morozov, S., Maiti, A., Schaumont, P.: An analysis of delay based puf implemen-
tations on FPGA. In: Sirisuk, P., Morgan, F., El-Ghazawi, T., Amano, H. (eds.)
ARC 2010. LNCS, vol. 5992, pp. 382–387. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-12133-3 37

9. Kufluoglu, H., Alam, M.A.: A generalized reaction-diffusion model with explicit
H-H2 dynamics for Negative-Bias Temperature-Instability (NBTI) degradation.
IEEE Trans. Electron Devices 54(5), 1101–1107 (2007)

10. Lu, Y., Shang, L., Zhou, H., Zhu, H., Yang, F., Zeng, X.: Statistical reliability
analysis under process variation and aging effects. In: Design Automation Confer-
ence (DAC), pp. 514–519, July 2009

11. Chakravarthi, S., Krishnan, A., Reddy, V., Machala, C.F., Krishnan, S.: A compre-
hensive framework for predictive modeling of negative bias temperature instability.
In: Reliability Physics Symposium, pp. 273–282 (2004)

12. Saha, D., Varghese, D., Mahapatra, S.: Role of anode hole injection and valence
band hole tunneling on interface trap generation during hot carrier injection stress.
IEEE Electron Device Lett. 27(7), 585–587 (2006)

13. Rodriguez, R., Stathis, J., Linder, B.: Modeling and experimental verification of
the effect of gate oxide breakdown on CMOS inverters. In: IEEE Int’l Reliability
Physics Symposium, pp. 11–16 (2003)

14. Sinanoglu, O., Karimi, N., Rajendran, J., Karri, R., Jin, Y., Huang, K., Makris,
Y.: Reconciling the IC test and security dichotomy. In: European Test Symposium
(ETS), pp. 1–6 (2013)

15. Khan, S., Haron, N.Z., Hamdioui, S., Catthoor, F.: NBTI monitoring and design for
reliability in nanoscale circuits. In: Int’l Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), pp. 68–76 (2011)

16. Yuan, J.-S., Yeh, W.-K., Chen, S., Hsu, C.-W.: NBTI reliability on high-k metal-
gate SiGe transistor and circuit performances. Microelectron. Reliab. 51(5), 914–
918 (2011)

17. Yu, M., Devadas, S.: Secure and robust error correction for physical unclonable
functions. Des. Test of Comput. 27(1), 48–65 (2010)

18. Kirkpatrick, M.S., Bertino, E.: Software techniques to combat drift in PUF-based
authentication systems. In: Workshop on Secure Component and System Identifi-
cation (SECSI), p. 9 (2010)

19. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their
use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol.
4727, pp. 63–80. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 5

http://dx.doi.org/10.1007/978-3-540-74735-2_5
http://dx.doi.org/10.1007/978-3-642-12133-3_37
http://dx.doi.org/10.1007/978-3-642-12133-3_37
http://dx.doi.org/10.1007/978-3-540-74735-2_5

232 N. Karimi et al.

20. Maes, R., van der Leest, V.: Countering the effects of silicon aging on SRAM PUFs.
In: Hardware-Oriented Security and Trust (HOST), pp. 148–153 (2014)

21. Maiti, A., Schaumont, P.: The impact of aging on a physical unclonable function.
IEEE Trans. Very Large Scale Integr. Syst. 22(9), 1854–1864 (2014)

22. Synopsys. HSPICE User Guide: Basic Simulation and Analysis (2016)
23. Kim, K.K.: On-chip delay degradation measurement for aging compensation.

Indian J. Sci. Technol. 8(8), 777–782 (2015)
24. Nunes, C., Butzen, P.F., Reis, A.I., Ribas, R.P.: BTI, HCI and TDDB aging impact

in flip-flops. Microelectron. Reliab. 53(9–11), 1355–1359 (2013)
25. Mizan, E.: Efficient fault tolerance for pipelined structures and its application to

superscalar and dataflow machines. Ph.D. thesis, Electrical and Computer Engi-
neering Department, University of Texas At Austin (2008)

26. Alam, M.A., Kufluoglu, H., Varghese, D., Mahapatra, S.: A comprehensive model
for PMOS NBTI degradation: Recent progress. Microelectron. Reliab. 47(6), 853–
862 (2007)

27. Mahapatra, S., Saha, D., Varghese, D., Kumar, P.: On the generation and recovery
of interface traps in MOSFETs subjected to NBTI, FN, and HCI stress. IEEE
Trans. Electron Devices 53(7), 1583–1592 (2006)

28. Schroder, D.K.: Negative bias temperature instability: What do we understand?
Microelectron. Reliab. 47(6), 841–852 (2007)

29. Cha, S., Chen, C.-C., Liu, T., Milor, L.S.: Extraction of threshold voltage degra-
dation modeling due to negative bias temperature instability in circuits with I/O
measurements. In: VLSI Test Symposium (VTS), pp. 1–6 (2014)

30. Sutaria, K.B., Velamala, J.B., Ramkumar, A., Cao, Y.: Compact modeling of
BTI for circuit reliability analysis. In: Reis, R., Cao, Y., Wirth, G. (eds.) Cir-
cuit Design for Reliability, pp. 93–119. Springer, Heidelberg (2015). doi:10.1007/
978-1-4614-4078-9 6

31. Wang, W., Yang, S., Bhardwaj, S., Vrudhula, S., Liu, F., Cao, Y.: The impact of
NBTI effect on combinational circuit: modeling, simulation, and analysis. IEEE
Trans. Very Large Scale Integr. Syst. 18(2), 173–183 (2010)

32. Ye, Y., Liu, F., Chen, M., Nassif, S., Cao, Y.: Statistical modeling and simulation
of threshold variation under random dopant fluctuations and line-edge roughness.
IEEE Trans. VLSI Syst. 19(6), 987–996 (2011)

33. Nangate 45nm Open Cell Library. http://www.nangate.com. Accessed 1 May, 2016
34. Rioul, O., Solé, P., Guilley, S., Danger, J.-L.: On the Entropy of Physically

Unclonable Functions. In: IEEE Int’l Symposium on Information Theory (ISIT),
Barcelona, Spain, July 2016

35. Hedayat, A.S., Wallis, W.D.: Hadamard matrices, their applications. Ann. Statist.
6(6), 1184–1238 (1978). http://dx.doi.org/10.1214/aos/1176344370

36. JEDEC. JEP122G : Failure mechanisms and models for semiconductor devices.
http://www.jedec.org/standards-documents/docs/jep-122e. October 2011

http://dx.doi.org/10.1007/978-1-4614-4078-9_6
http://dx.doi.org/10.1007/978-1-4614-4078-9_6
http://www.nangate.com
http://dx.doi.org/10.1214/aos/1176344370
http://www.jedec.org/standards-documents/docs/jep-122e

Towards Securing Low-Power Digital Circuits
with Ultra-Low-Voltage Vdd Randomizers

Dina Kamel(B), Guerric de Streel, Santos Merino Del Pozo, Kashif Nawaz,
François-Xavier Standaert, Denis Flandre, and David Bol

ICTEAM/ELEN, Université catholique de Louvain, Louvain-la-neuve, Belgium
dina.kamel@uclouvain.be

Abstract. With the exploding number of connected objects and sensi-
tive applications, security against side-channel attacks becomes critical
in low-cost and low-power IoT applications. For this purpose, established
mathematical countermeasures such as masking and shuffling always
require a minimum amount of noise in the adversary’s measurements,
that may not be guaranteed by default because of good measurement
setups and powerful signal processing. In this paper, we propose to
improve the protection of sensitive digital circuits by operating them
at a random ultra-low voltage (ULV) supplied by a Vdd randomizer.
As the Vdd randomization modulates the switching current, it results
in a multiplicative noise on both the current consumption amplitude
and its time dependence. As ULV operation increases the sensitivity
of the current on the supply voltage, it magnifies the generated noise
while reducing the side-channel information signal thanks to the switch-
ing current reduction. As a proof-of-concept, we prototyped a simple
Vdd randomizer based on a low-quiescent-current linear regulator with
a digitally-controlled resistive feedback divider on which we apply a
4-bit random number stream. Using an information theoretic metric,
the measurement results obtained in 65 nm low-power CMOS confirm
that such randomizers can significantly improve the security of crypto-
graphic implementations against standard side-channel attacks in case
of low physical noise in the attacks’ setups, hence enabling the use of
mathematical countermeasures.

1 Introduction

With the increasing current trend of deploying billions of wireless Internet-of-
Things (IoT) nodes, privacy and security concerns are raised [25]. However,
due to strong power and area constraints, deploying cryptography for IoT sys-
tems is extremely challenging. Moreover, guaranteeing the physical security of
these highly resource constrained applications against side-channel attacks is
even more challenging. In a side-channel attack, the adversary exploits a physi-
cal signal (e.g. the supply current or electromagnetic field) to identify the secret
key. Therefore, existing hardware countermeasures generally aim at reducing
the side-channel signal-to-noise-ratio (SNR) [9] by decreasing the signal (e.g.
[12,21,22]) or increasing the noise (e.g. [26]).
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 233–248, 2016.
DOI: 10.1007/978-3-319-49445-6 13

234 D. Kamel et al.

Following, the reduction of the SNR can be combined with mathematical
countermeasures such as masking [18] and shuffling [24]. Nevertheless, for such
mathematical countermeasures against side-channel attacks to be effective, it is
strictly necessary that the original signal is hidden by a sufficient physical noise,
i.e. that the original SNR is sufficiently small. Intuitively, this is because mathe-
matical countermeasures can only amplify the impact of the physical noise (and
therefore fall short if there is nothing to amplify). The usual approach for this
purpose, that embeds sources of additive noise (algorithmic noise) in circuits [8],
has an approximate cost that is linear with the noise level i.e. doubling the circuit
size roughly doubles the noise variance, but also doubles the power consumption.
A complementary approach would be to reduce the side-channel signal ampli-
tude, for example by equalizing the power consumed with the design of custom
logic gates (e.g. dual-rail pre-charged logic [21]). However, the power/area is
approximately doubled and the design complexity is relatively high, which ren-
ders them unsuitable for resource-constrained applications. Other approaches to
reduce the side-channel signal are the use of on-chip decoupling capacitors (cur-
rent filtering) [12] and current equalization through switched capacitors [22].

This state-of-the-art raises new challenges regarding the design of advanced
solutions that can be combined with mathematical countermeasures to increase
the security regardless of the adversary’s capabilities while keeping the cost and
performance overheads limited. Therefore, we propose an ULV multiplicative
source of noise in the form of a Vdd randomizer that embeds adequate noise due
to the supply randomizataion in case the physical noise in the attack setup is
insufficient, and at the same time reduces the side-channel signal due to its ULV
operation (< 0.55 V). Our investigations show that this solution can be con-
veniently combined with mathematical countermeasures thanks to its low area
(1.8×) and low current consumption (1.6×) overheads, and leads to a security
improvement by a factor of 20 in case of low physical noise. Our results are
based on real measurements of a fabricated chip using 65 nm low-power CMOS
technology.

The rest of the paper is organized as follows. The related work and alternative
approaches are discussed in Sect. 2, together with our contributions. We describe
the Vdd randomizer implementation and the test setup in Sect. 3. We introduce
our methodology for security evaluations in Sect. 4. This methodology is applied
in Sect. 5, which details the security analysis of our side-channel signal reduction
approach, and the embedding of the Vdd randomizer as a source of multiplicative
noise. Finally, the design overheads are discussed in Sect. 6.

2 Related-Work and Contributions

2.1 Related Work

Countermeasures based on chip voltage regulation (VR) are currently gaining
attention as they tend to pack the complexity into the regulator, which is a block
present in almost all modern ICs, therefore reducing the power/energy and area

Towards Securing Low-Power Digital Circuits 235

overheads. In this trend, we see two directions. One is to de-correlate the cur-
rent traces (at the supply of the voltage regulator) from the load current (drawn
by the crypto engine), thus reducing the side-channel signal amplitude. A lot
of research focused on switched-capacitor VR (e.g. [20]) or switched-inductor
VR (e.g. [7]). In [20], the authors describe a bi-channel power structure voltage
regulator composed of a linear converter supplying the slowly varying part of
the load current and a switched-capacitor converter clocked by a random digi-
tal signal. They also use a low dropout (LDO) regulation subsystem to further
enhance the de-correlation of the external current traces from the load current.
Their design occupies an area of 0.8 mm2 using a 0.18µm CMOS technology.
However, their security evaluation only relies on visible inspection of the current
traces to show the effectiveness of the hiding performed by the system, which
makes it difficult to assess in front of advanced side-channel attacks. Also, the
authors do not use a real circuit load in their power/energy and area efficiency
evaluations, which prevents quantifying the cost of the system relative to such
loads. In [7], the authors use switched-inductors to de-correlate the observed
current from the load current traces. But both security and performance eval-
uations are limited for similar reasons. Low-dropout (LDO) regulators are also
investigated in [16] to attenuate the high frequency variations of the load cur-
rent by reducing the LDO bandwidth. Here the authors mounted a correlation
power analysis (CPA) attack against a protected AES engine which shows an
800× improvement in terms of the measurement to disclosure (MTD) metric
(compared to an unprotected one) with 1.4% area and 5% power overheads.
Yet, a possible shortcoming of their analysis is that the results they provided
are based on simulation results without physical noise.

The second direction depends on creating multiple randomized observed
current traces, thus introducing another source of noise (e.g. using multiphase
switched-capacitor VR [26] or through random voltage scaling [1]). In [26], the
authors propose to scramble the observed current by turning on and off the
individual interleaved stages in a pseudo-random fashion. However, they do not
provide the power/energy or area costs of their proposal and their security eval-
uation is uniquely based on power trace entropy, without indicating the amount
of physical noise present in their evaluation system. The random voltage scaling
technique proposed in [1] could lower the correlation coefficient by 10× when
applied to the complete AES. Their approach aimed at FPGA designs and the
authors suggested to alter the supply voltage once every 200 encryption rounds
since in their settings, a successful DPA attack can be mounted against an AES
engine after 2500 rounds and they need a changing supply rate much less than
that.

So overall, and while these previous solutions are intuitively appealing and
technically innovative, a more formal/comparative treatment of their pros and
cons is still missing. As detailed next, this paper aims to make one step in
this direction, by investigating the security of a current randomizer based on
advanced side-channel security metrics together with its performance results
in a comprehensive manner. Furthermore, since we believe the impact of such

236 D. Kamel et al.

Fig. 1. Hardware countermeasures against side-channel analysis.

countermeasures are highly dependent on the actual level of physical noise found
in the measurements, we propose to highlight trends in this respect, by consid-
ering noise as a parameter of our evaluations.

2.2 Contributions

First, we summarize the impact of these different countermeasures based on our
understanding of their relevance in different physical noise regions as represented
in Fig. 1. Generally, the side-channel information extracted from a circuit (pre-
cisely defined next) remains unchanged for low physical noise levels, and starts
to decrease when increasing the physical noise. The gradient grey along the y-
axis indicates the reduction of side-channel information as the color lightens.
Therefore, the dark grey region is considered dangerous, since it corresponds
to the case where mathematical countermeasures are ineffective. As clear from
the figure, this typically happens in the low physical noise region. Fig. 1 also
highlights the two main solutions for this purpose, namely embedding noise and
reducing the side-channel signal. At the extreme, for extremely low physical
noises, it is clear that the noise embedding approach is necessary. Similarly, in
the large physical noise region, it is usually the signal reduction that brings
the best benefits (since, e.g. additional additive noise could be small in front
of the existing physical noise). Of course, most existing embedded devices fall
inbetween these extremes and in this case, both approaches can be relevant. In
the following, we pick up on this SNR reduction problem and investigate a new
area- and power-efficient technique to generate hard-to-exploit noise that enables
mathematical types of countermeasures. More precisely, our main contributions
are threefold:

– We propose an ULV Vdd randomizer that modulates the switching current of a
cryptographic implementation resulting in a multiplicative noise source. The
Vdd randomizer employs an LDO regulator operating with sufficiently short

Towards Securing Low-Power Digital Circuits 237

transition times between Vdd levels in order to prevent an adversary from
easily profiling the Vdd’s at which each operation is performed. In addition,
we propose to combine this Vdd randomization with an operation of the circuit-
to-protect at ultra-low voltage (ULV) which reduces the side-channel signal
amplitude. Both techniques help reduce the information leakage of the circuit-
to-protect in low and high physical noise regions.

– We provide a security assessment of the proposed technique using an infor-
mation theoretic metric described in [14,17] based on template attacks [3].
This allows us to demonstrate the effectiveness of the technique across the
whole range of physical noise. In addition, the information theoretic metric
we used is proven to be directly proportional to the success rate of a maximum
likelihood adversary [5], thus justifying its use in this context.

– We show that our solution can be conveniently combined with mathematical
countermeasures thanks to its low area (∼ 1.8×) and low current consumption
(< 1.6×) overheads in addition to the security improvement by a factor of
20 in case of low physical noise against a standard template adversary doing
Gaussian profiling. Our results are based on real measurements of a fabricated
chip using 65 nm low-power CMOS technology.

Eventually, we conclude by discussing the limitations of our randomizer against
adversaries able to access the Vdd levels during profiling. We highlight that
increasing the number of Vdd levels (limited to 16 in our work) would be neces-
sary to prevent such worst-case attacks, which we leave as an interesting scope
for further research.

3 Vdd Randomizer Design

3.1 Circuit Implementation

Intuitively, randomizing the supply voltage of the circuit to protect modulates
the switching current or Ion in a multiplicative fashion. When the gates are
switching at nominal Vdd the transistors mostly operate in saturation regime:

Ion ∼ (Vdd − Vt)α. (1)

where Vt is the transistor threshold voltage and α is a factor between 1 and 2 [15].
When the transistors operate in the subthreshold regime:

Ion ∼ 10(Vdd/S). (2)

where S is the subthreshold swing between 60 and 100 mV/decade [2]. At the
supply voltage operating range of the Vdd randomizer in 65 nm LP CMOS, the
transistors are in the near-threshold regime, which results in an Ion dependence
on Vdd between Eqs. 1 and 2. Therefore, adding voltage noise on the supply
voltage results in a multiplicative noise on the dynamic supply current as Ion is
modulated with a dependence between linear-to-quadratic in saturation regime
and exponential in subthreshold regime.

238 D. Kamel et al.

−2 −1 0 1
x 10

−5

0

2

4

6

8

10

12

Current [A]

P
D

F

−5 0 5
x 10

−5

0

5

10

15

Current [A]

P
D

F

(b)(a)

Fig. 2. Probability density functions of two (S-box) computations, for a prototype
circuit operating under (a) a fixed supply (0.5 V) and (b) sixteen randomized supplies
(from 0.45 V to 0.55 V).

Now, the main goal of a multiplicative noise source is to avoid the simple
Gaussian leakage functions of unprotected implementations that easily allow
distinguishing different events (e.g. S-box computations) happening in a target
chip, as represented in Fig. 2(a)1. Instead, the Vdd randomizer turns the simple
Gaussian leakage into a Gaussian mixture where every mode of the distribution
represents one possible supply voltage, as represented in Fig. 2(b), thus increasing
the overlap between these two events.

In this work, we use a simple Vdd randomizer to evaluate the security of the
proposed approach. Its architecture is based on a conventional linear regula-
tor with an error amplifier driving a power stage and a digitally-controlled 4-bit
feedback resistive divider on which we apply a 4-bit random number stream gen-
erated off chip2, as shown in Fig. 3. The error amplifier is a folded cascode ampli-
fier and the power stage is an NMOS device with body connected to source [4].
The amplifier and its bias dissipates only 280 nA, whereas the feedback resistor
network consumes about 1µA, allowing the Vdd randomizer to limit the power
overhead compared to the protected circuit. The feedback resistive divider is
designed to provide a supply voltage to the digital circuit to protect ranging
from 0.45 V to 0.55 V. This voltage range is carefully chosen in order to reduce
the side-channel signal amplitude while operating the digital circuits at a max-
imum frequency of 1 MHz, suitable for low-speed IoT applications, and at the
same time provide sufficient variations in the current traces as can be seen in
Fig. 2. Current state of the art design of IoT sensor nodes uses ULV operation
to minimize the energy consumption, e.g. in [19]. Therefore our analysis focuses
only on the ULV region of operation which ranges from 0.45 V to 0.55 V in this
case.

1 The sign of the current is not preserved due to the clock coupling on the printed
circuit board (PCB).

2 We considered an off-chip implementation of the 4-bit random number stream gen-
eration as a proof of concept for demonstration purpose only. Of course, a full
implementation of the Vdd randomizer would consider designing the random number
stream on-chip to deny the adversary access.

Towards Securing Low-Power Digital Circuits 239

Error
amp

1.2V

+

-

Vref

Vfb

1.2V

Vout [0.45-0.55V]
= random Vdd

Digital
circuit to
protect

Random
number

[3:0]

Feedback
resistor network

Power
stage

R
N

 [2
]

V
d

d
ra

n
d

o
m

iz
er

R
N

 [1
]

R
N

 [0
]

R
N

 [3
]

On-chip
MiM cap

Bias

Fig. 3. Circuit architecture.

Notably, the randomness in the output voltage should come from the random
number stream and not from the impact of the load current, which is correlated
to the computation and might therefore leak side-channel information. Stability
and load regulation can thus not be compromised in the Vdd randomizer, just as
in conventional voltage regulators. In order to ensure stability over a wide range
of loading currents, a current-mode capacitance multiplication in the bias of the
error amplifier is used for pole splitting and an on-chip filtering MiM capacitor
is added on the supply voltage output. As a result, stability is ensured for load
currents up to 0.5 mA without an off-chip capacitor.

The slew rate of the randomizer is determined by the sizing of the power
stage, and is in a direct trade-off with the area through the sizing of the sta-
bilization capacitances. The slew rate specification is that the regulator has to
render a transition time comparable with the clock period used in the digital cir-
cuit. This ensures sufficiently short transition times between Vdd levels in order
to prevent an adversary from easily profiling the Vdd’s at which each operation
is performed. In [1], which aimed at FPGA designs, the supply voltage is mod-
ified at a rate of one change per 200 encryptions. While this may be sufficient
to improve security against certain types of Differential Power Analyses (DPA)
attacks, it is still insufficient against advanced adversaries exploiting multiple
samples/intermediate computations per encryption [10,23]. Therefore we target
a slew rate of 105 V/s allowing the voltage to ramp from 0.45 V to 0.55 V in 1µs
compatible with the 1 MHz clock frequency.

3.2 Performance Benchmark and Test Setup

In order to characterize the Vdd randomizer, we designed a test chip implementing
an 8-bit AES S-box as benchmark for the circuit to protect3. The input signal

3 In our test chip we only implemented the 8-bit AES S-box instead of the whole AES
as a proof of concept. Of course when used with the full AES, the Vdd randomizer
should be able to drive the whole AES circuit. The results we later provide in Sect. 6
are for the measured Vdd randomizer with the AES S-box and also an estimation in
case the randomizer operates with the full AES.

240 D. Kamel et al.

Fig. 4. Die microphotograph of the ultra-low-voltage Vdd randomizer and other struc-
tures of the AES S-box with decoupling capacitors.

has 256 possible values whose transitions are chosen between 0 and an arbitrary
input.4 In order to hide the impact of the supply voltage transients on the
captured traces, the random number stream is clocked synchronously with the S-
box input signal, i.e. the Vdd randomizer is synchronized with the operation of the
circuit to protect. The Vdd randomizer was manufactured in 65 nm LP CMOS,
and its area is 0.0145 mm2, as represented in Fig. 4. Our dies also contain several
versions of an unprotected S-box with various levels of decoupling capacitances
for comparison. All input signals were generated externally using a National
instrument PXI 6552 waveform generator. The clock frequency of all circuits
under test is 1 MHz. Current traces for security analysis were captured with a
differential probe over a resistor with a 2 GS/s oscilloscope.

4 Methodology

4.1 Evaluation Settings

Capital letters are assigned to random variables, while lower case letters refer to
samples of these random variables. The leakage function in case the implemen-
tation uses a fixed supply voltage has two input arguments: the discrete random
variable X, which denotes the value of the processed data under investigation,
and the continuous random variable N , which represents the physical noise in the
measurements. When the Vdd randomizer is used, we also consider the discrete
random variable V , which denotes the supply voltage. The leakage function vari-
able denoted by L(,) contains either random variable arguments or fixed argu-
ments. We denote the tth time sample in a leakage trace as Lt(,). We consider
4 We only considered 256 input transitions for the S-box in order to limit the time

of our measurement campaigns. Since our security evaluation will essentially reflect
the improved overlap of Gaussian mixture models such as in Fig. 2, this should not
impact our comparisons between fixed and randomized power supplies. Yet, a more
expensive profiling of 2562 transitions should admittedly allow adversaries to extract
slightly more information from their traces.

Towards Securing Low-Power Digital Circuits 241

two types of traces in our analysis. First, the real measurements with actual phys-
ical noise are denoted as L1

t (X,N) = Lmeas
t (X,N). Second, “hybrid” traces, in

which the average measurement traces Lmeas
t (X) = Ê

n
L(X,n) (where Ê denotes

the sample mean operator) are combined with simulated Gaussian noise. The
leakage function in this context is denoted as L2

t (X,N) = Lmeas
t (X)+N . These

hybrid traces allow us to quantify the impact of a change of physical noise level
in our different experiments.

4.2 Information Theoretic Metric

We evaluate the leakage information of the traces with the information theoretic
metric described in [17] and refined in [14]. Namely, the Perceived Information
(PI) corresponds to the amount of information that can be exploited by a side-
channel adversary given a certain leakage model:

P̂I(X;L) = H[X] −
∑

x∈X

Pr[x]
∑

l∈L

Pr
chip

[l|x] . log2

(

P̂r
model

[x|l]
)

.

In case the true (unknown) leakage distribution of an implementation
(denoted as Prchip[l|x]) and the adversary’s leakage model estimate (given by
P̂rmodel[x|l]) are identical (e.g. in a simulated environment), then a perfect eval-
uation is achieved. That is, the PI is equivalent to the standard definition of
mutual information and it captures the worst-case information leakages. By
contrast, if these distributions deviate (because of practical limitations which
lead to bad profiling, or because there exists significant inter-chip variability, or
because the adversary’s model is simplified), then the PI is the best available
estimate of the implementation’s leakage. Compared to the previous analyses
in [1], using such an information theoretic metric allows our conclusions to be
closer to those of a worst-case security evaluation. Indeed, such a PI metric is
directly proportional to the success rate of a maximum likelihood adversary (as
proven in [5]).5

Note that the PI can be viewed as a generalization of the SNR metric dis-
cussed in introduction [5]. It is even proportional to the SNR in case of Gaussian
leakages. We next use the PI (rather than the SNR) as evaluation metric since
it can capture other types of leakage distributions, in particular the Gaussian
mixtures that are relevant in our experiments.

4.3 Information Extraction Tools

In order to evaluate the previous information theoretic metric, one essentially
requires a good model, aka estimation of the leakage probability function. For
this purpose, our strategy will follow the one already established, e.g. in [13,14],
and consider a univariate setting as a starting point. That is, models will be built

5 If positive, otherwise it indicates that the model exploited by the adversary does not
guarantees successful key recoveries.

242 D. Kamel et al.

exhaustively for all the time samples of our leakage traces, and the PI value for
the most informative time sample will be kept.6 Concretely, building models for
the fixed supply voltage case can directly exploit the Gaussian template attacks
described in [3]. That is, in this case we start by building 256 templates of the
form:

P̂r
model

[l|x] = N (l|μx,N , σ2
x,N). (3)

ˆPrmodel[x|l] is then obtained by applying Bayes’ rule. Eventually, the PI metric
is directly estimated according to its equation, by sampling the true distribution
Prchip[l|x] (i.e. by measuring the chip) and estimating the conditional probabil-
ities of the 256 x values based on these measurements.

By contrast, the procedure can be slightly more involved in the case of ran-
domized power supplies. We will consider two types of adversaries for this pur-
pose: a standard one and powerful one. In the first case, the adversary is assumed
incapable of identifying the 16 Vdd values during profiling. Therefore, the power
supply randomizations are (wrongly) considered as a part of the measurement
physical noise when building the templates and estimating the PI. In practice,
such a setting would typically correspond to a context where the random num-
bers are unknown during profiling. As a result, the profiling phase exactly cor-
responds to the previous Gaussian templates building, but with σ′2

x,N made of
a truly physical part σ2

x,Nmeas
to which we add a randomization part σ2

x,NV dd
.

We call this scenario Gaussian profiling .
Next, the more powerful adversary is assumed capable of identifying the 16

random supply voltages during profiling. In this case we build 256×16 templates
corresponding to the 256 S-box inputs and the 16 supply voltages:

P̂r
model

[x|l, v] = N (l|μx,v,N , σ2
x,v,N). (4)

Quite naturally, the random numbers selecting Vdd remain unknown during the
PI estimation phase:

P̂I(X;L) = H[X] −
∑

x∈X

Pr[x]
∑

v∈V

Pr[v]

·
∑

l∈L

Pr
chip

[l|x, v] . log2(P̂r
model

[x|l]),

where the conditional probability of the events x given the leakages l is computed
by summing over all possible v’s, namely: ˆPrmodel[x|l] =

∑
v∈V

ˆPrmodel[x|l, v].
In the following, we call this scenario Gaussian mixture profiling .

Note that the more powerful adversary could additionally target the leakage
of the 4-bit random values controlling the randomizer. This is an interesting
scope for further research. Yet, as the following results already show that our

6 Extending this analysis towards multivariate attacks, possibly including a dimension-
ality reduction phase, is an interesting scope for further research. As for Footnote 1,
it should not impact our comparisons between fixed and randomized supplies, but
allow more efficient attacks.

Towards Securing Low-Power Digital Circuits 243

Fig. 5. Perceived information of the AES S-box with different decoupling capacitor
values at a supply voltage of 1.2 V (solid lines) and 0.5 V (dashed lines). Curves corre-
spond to the hybrid case with simulated Gaussian noise. The stars indicate the actual
physical noise measured on chip.

instance of randomizer is not sufficient to prevent such powerful adversaries
without this additional leakage, results in this direction will not affect our con-
clusions.

5 Security Analysis

5.1 ULV Operation and Decoupling Capacitors

In our analysis, the AES S-box is first operated at two different constant supply
voltages: the nominal 1.2 V and a ULV (near-threshold) supply which is 0.5V. In
each case, the impact of adding different values of on-chip decoupling capacitors
is explored as well. Figure 5 exploits both the actual measured traces (L1

t (.))
denoted by the stars and the hybrid traces (L2

t (.)) explained in Sect. 4.1. It
demonstrates how the reduction of the supply voltage and the addition of on-
chip decoupling capacitors are effective in case the physical noise in the attack
setup is high enough. Both techniques reduce the side-channel signal. This is
clearly seen as the stars’ horizontal positions in Fig. 5 remain nearly the same
(corresponding to physical noise in the attack setup), whereas their vertical
positions (corresponding to the perceived information) decreases while operating
at ULV or using on-chip decoupling capacitors. However, if the physical noise
can be reduced (e.g. thanks to a better measurement setup, or signal processing)
as in the left part of the figure, neither lowering the supply voltage, nor using
on-chip decoupling capacitors can help to escape the danger zone.

5.2 Vdd Randomizer

In Fig. 6 we compare the security of the Vdd randomizer implementation to the
unprotected S-box at 0.5 V (without decoupling capacitors) again exploiting both
the actual measured traces (L1

t (.)) denoted by the stars and the hybrid traces

244 D. Kamel et al.

(L2
t (.)) explained in Sect. 4.1. Furthermore, we have considered different settings

for the actual measured traces to explore various physical noise values. The
bandwidth of the oscilloscope was configured to full (600 MHz) and to 20 MHz
in addition to using the singular spectrum analysis (SSA) post-processing tool
introduced in [11] to reduce the physical noise in the attack setup7. First we con-
sider Gaussian profiling that correspond to a standard adversary who (wrongly)
considers the power supply randomizations as a part of the measurement phys-
ical noise. In the low physical noise region, the perceived information of the Vdd

randomizer, using Gaussian profiling, is 20× better than the unprotected S-box
at 0.5 V, thus approaching the comfort zone. Note that once in the comfort zone,
typically corresponding to a PI below 0.1, a factor 20 for the PI reduction implies
a multiplication of the attack’s data complexity by the same factor in case of
unprotected devices, and a factor 20d if masking with d shares is exploited [5].
Meanwhile, the security of the Vdd randomizer is bounded by the unprotected S-
box at 0.5 V in the high physical noise region which naturally lies in the comfort
zone. This is expected as the physical noise dominates in this region. Conse-
quently, these results prove the importance of combining the Vdd randomization
technique with the ultra-low voltage operation to sustain sufficient security for
the whole physical-noise range.

We insist that the concrete noise level of our experiments is in general less
relevant than the trends indicated by our PI curves. In particular, since we
target a combinatorial circuit, the SNR of these measurements is lower than
what would be expected for sequential circuits and complete systems. Besides,
it is interesting to see that the physical noise in the attack setup can be reduced
by lowering the bandwidth of the oscilloscope to 20 MHz (acting as a low-pass
filter) and by employing the SSA tool as shown by the symbols in Fig. 6. In
general, the goal of the Vdd randomizer is indeed to mitigate the risk of a strong
physical noise reduction.

On the other hand, if the Gaussian mixtures are considered, where the adver-
sary is assumed capable of accurately identifying the 16 random supply voltages
used, then there is obviously no security gain compared to the unprotected S-
box at 0.5V in the low physical noise region. This is expected, since for the Vdd

randomizer to be effective in this context, we need a noise such that the modes
of the distributions in Fig. 2 start to overlap. In this respect, it is important to
stress that this observation does not invalidate the interest of the randomizer.
First, and very concretely, such a powerful profiling may be difficult to be per-
formed by practical adversaries, since the internal randomness of the randomizer
is not supposed to leave the chip. Yet, it is an interesting conceptual challenge
to prevent even those adversaries (and their possible extension towards non-
parametric pdf estimation techniques that would not require the knowledge of
the masks during profiling, at the cost of higher sampling requirements). Sec-
ond, and more importantly, Vdd randomizers can in principle enforce the modes
of their Gaussian mixtures to be arbitrarily close, by increasing the range of

7 SSA can be viewed as a type of filtering. Details are not necessary for the under-
standing of our results.

Towards Securing Low-Power Digital Circuits 245

Fig. 6. Perceived information of the unprotected AES S-box at 0.5 V and the one with
variable supply voltages using the Gaussian profiling and the perfect profiling scenarios.
The symbols indicate the actual physical noise on chip with different settings.

the power supplies. Hence, our results show that our simple Vdd randomizer is
already a good solution to prevent most state-of-the-art side-channel attacks,
and that their generalization towards a wider range of Vdd levels to face even
more powerful adversaries is an interesting research track. Note that by “most
state-of-the-art attacks” we mean in particular all the CPA-like attacks that
were used to assess the security of the solutions mentioned in Sect. 2.

More technically, it is worth mentioning that in the Gaussian mixture pro-
filing we notice the “waved” shape of the information theoretic curve for the
intermediate noise levels that is typical from masking [18]. It indicates that sev-
eral moments of the statistical distribution are actually exploited for such noise
levels. Besides, for the worst-case Gaussian mixture profiling, the Vdd randomizer
actually leaks (slightly) more information than the unprotected chip running at
0.5 V in the high noise region. This is explained by the fact that the randomized
supplies also lead to computations at (more informative) higher supplies in this
case.

6 Cost Comparison

Table 1 summarizes the costs of the techniques in this paper. First, reducing the
supply voltage of the unprotected S-box from 1.2 V to 0.5 V decreases both the
current consumption and the PI at actual measured physical noise by 2.3× and
34×, respectively (for the standard side-channel adversary doing Gaussian pro-
filing). Next, when the Vdd randomizer is used with the S-box, we gain a factor
of 20 in PI at low physical noise for a similar increase of 17× in area, while
maintaining the security gain of nearly 50× at the actual measured physical
noise. This is more or less what additive noise would cost. But quite naturally,
the performance gains are significantly amplified if the Vdd randomizer was used
for a full AES design, since we could then amortize its cost (e.g. the area is
expected to increase only by a factor of 1.8 compared to the unprotected AES
reported in [6], still leading to the same security gain 20× at low physical noise).

246 D. Kamel et al.

The current consumption overheads in this case are even smaller: the full AES
with the Vdd randomizer would consume < 1.6× higher current than the unpro-
tected one. Finally, decoupling capacitances are only effective in the high physical
noise region at a large area cost.

Table 1. Security versus cost (area and current consumption at 1MHz) for a standard
adversary.

Implementation Area Current PI PI

[GE] [µA] @ low noise @ actual noise

S-box (1.2 V) 220 0.74 8 1

S-box (0.5 V) 220 0.32 8 0.029

Full AESa 4,721 2.12 8 NA

S-box + Vdd rand 3,753 1.64 0.36 0.019

Full AES + Vdd rand 8,255 3.48 0.36 NA

S-box + 10 pF (0.5 V) 1,011 0.32 8 0.021

S-box + 100 pF (0.5 V) 6,849 0.32 8 0.007
a The power consumption of the unprotected full AES reported in [6]
is at 0.4 V (890 kHz).

7 Conclusions

Noise is always assumed as the basic ingredient to prevent side-channel attacks.
Confirming previous works in this direction, this paper shows that designing
secure and efficient noise engines is not a trivial task, and certainly deserves
more attention. In particular, while trying to hide the side-channel signal in a
sufficient amount of physical noise with signal reduction techniques (as done
with decaps in this paper) or mathematical countermeasures is well understood,
how to generate hard-to-exploit noise in the low physical noise region is very
challenging, especially in front of powerful adversaries able to perform Gaussian
mixture profiling.

As a first step towards the better understanding of these issues, we analyzed
the security improvements offered by a Vdd randomizer prototype to supply the
digital circuits to protect at ULV. It shows good results against standard DPA
adversaries usually considered in the literature (and evaluation laboratories), at
a low die area cost. This confirms that randomizing the supplies can be used
to make sure that the (possibly small) physical noise in an adversary’s attack
setup creates confusion when trying to distinguish cryptographic computations.
Mathematical countermeasures such as masking can then be used to amplify this
confusion.

But interestingly, our results also show that the impact of such randomizers
may be limited in front of powerful adversaries able to profile the leakage distri-
butions with full access to the chip’s randomness (which is not advisable from

Towards Securing Low-Power Digital Circuits 247

a design point-of-view, but is interesting to reflect worst-case security levels).
Our discussion (in Sect. 5.2) suggests that preventing such powerful adversaries
is conceptually feasible, e.g. with supplies covering a wider range of Vdd levels,
with a more granular randomization. So, our results raise new research chal-
lenges. Namely, how to design efficient noise engines that guarantee low infor-
mation leakage (in the comfort zone) across the whole range of physical noise and
against adversaries exploiting non-Gaussian profiling methods (either Gaussian
mixtures, as in this paper, or non-parametric ones).

Acknowledgements. This work has been funded in parts by the ARC Project
NANOSEC. François-Xavier Standaert is a research associate of the Belgian Fund
for Scientific Research.

References

1. Baddam, K., Zwolinski, M.: Evaluation of dynamic voltage and frequency scaling
as a differential power analysis countermeasure. In: VLSI Design, pp. 854–862.
IEEE (2007)

2. Bol, D., Ambroise, R., Flandre, D., Legat, J.-D.: Interests and limitations of tech-
nology scaling for subthreshold logic. IEEE Trans. VLSI Syst. 17(10), 1508–1519
(2009)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

4. de Streel, G., De Vos, J., Flandre, D., Bol, D.: A 65 nm 1 V to 0.5 V linear regulator
with ultra low quiescent current for mixed-signal ULV SoCs. In: FTFC, pp. 1–4.
IEEE (2014)

5. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 16

6. Hocquet, C., Kamel, D., Regazzoni, F., Legat, J.-D., Flandre, D., Bol, D., Stan-
daert, F.-X.: Harvesting the potential of nano-CMOS for lightweight cryptography:
an ultra-low-voltage 65 nm AES coprocessor for passive RFID tags. J. Crypto-
graphic Eng. 1(1), 79–86 (2011)

7. Kar, M., Lie, D., Wolf, M., De, V., Mukhopadhyay, S.: Impact of inductive inte-
grated voltage regulator on the power attack vulnerability of encryption engines:
a simulation study. In: CICC, pp. 1–4. IEEE (2014)

8. Mangard, S.: Hardware Countermeasures against DPA – a statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 18

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Advances in Information Security. Springer, Secaucus (2007)

10. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA Attacks: pushing DPA
beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 243–261. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45611-8 13

http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/978-3-662-46800-5_16
http://dx.doi.org/10.1007/978-3-540-24660-2_18
http://dx.doi.org/10.1007/978-3-662-45611-8_13
http://dx.doi.org/10.1007/978-3-662-45611-8_13

248 D. Kamel et al.

11. Merino Del Pozo, S., Standaert, F.-X.: Blind source separation from single mea-
surements using singular spectrum analysis. In: Güneysu, T., Handschuh, H. (eds.)
CHES 2015. LNCS, vol. 9293, pp. 42–59. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48324-4 3

12. Nakai, T., Shiozaki, M., Kubota, T., Fujino, T.: Evaluation of on-chip decoupling
capacitors effect on AES cryptographic circuit. In: SASIMI (2013)

13. Renauld, M., Kamel, D., Standaert, F.-X., Flandre, D.: Information theoretic and
security analysis of a 65-nanometer DDSLL AES S-Box. In: CHES, pp. 223–239
(2011)

14. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 8

15. Sakurai, T., Newton, A.R.: Alpha-power law MOSFET model and its applications
to CMOS inverter delay and other formulas. IEEE J. Solid-State Circuits 25(2),
584–594 (1990)

16. Singh, A., Kar, M., Ko, J. H., Mukhopadhyay, S.: Exploring power attack pro-
tection of resource constrained encryption engines using integrated low-drop-out
regulators. In: ISLPED, pp. 134–139. IEEE/ACM (2015)

17. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

18. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World Is Not Enough: another look on second-
order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 7

19. Takamiya, M.: Energy efficient design and energy harvesting for energy
autonomous systems. In: VLSI Design, Automation and Test, VLSI-DAT 2015,
Hsinchu, Taiwan, 27–29 April 2015, pp. 1–3 (2015)

20. Telandro, V., Kussener, E., Malherbe, A., Barthelemy, H.: On-chip voltage regu-
lator protecting against power analysis attacks. In: MWSCAS, pp. 507–511 (2006)

21. Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic
level: next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45238-6 11

22. Tokunaga, C., Blaauw, D.: Secure AES engine with a local switched-capacitor
current equalizer, In: ISSCC, pp. 64–65. IEEE (2009)

23. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 15

24. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against Side-Channel Attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 44

25. Xu, T., Wendt, J. B., Potkonjak, M.: Security of IoT systems: design challenges
and opportunities. In: ICCAD, pp. 417–423. IEEE/ACM (2014)

26. Weize, Y., Uzun, O.A., Köse, S.: Leveraging on-chip voltage regulators as
a countermeasure against side-channel attacks. In: DAC, pp. 115:1–115:6.
ACM/EDAC/IEEE (2015)

http://dx.doi.org/10.1007/978-3-662-48324-4_3
http://dx.doi.org/10.1007/978-3-662-48324-4_3
http://dx.doi.org/10.1007/978-3-642-20465-4_8
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-17373-8_7
http://dx.doi.org/10.1007/978-3-540-45238-6_11
http://dx.doi.org/10.1007/978-3-662-45611-8_15
http://dx.doi.org/10.1007/978-3-642-34961-4_44

Security

Enabling Secure Web Payments with GNU Taler

Jeffrey Burdges, Florian Dold, Christian Grothoff(B), and Marcello Stanisci

Inria Rennes - Bretagne Atlantique, Rennes, France
{jeffrey.burdges,florian.dold,

christian.grothoff,marcello.stanisci}@inria.fr

Abstract. GNU Taler is a new electronic online payment system which
provides privacy for customers and accountability for merchants. It uses
an exchange service to issue digital coins using blind signatures, and is
thus not subject to the performance issues that plague Byzantine fault-
tolerant consensus-based solutions.

The focus of this paper is addressing the challenges payment systems
face in the context of the Web. We discuss how to address Web-specific
challenges, such as handling bookmarks and sharing of links, as well as
supporting users that have disabled JavaScript. Web payment systems
must also navigate various constraints imposed by modern Web browser
security architecture, such as same-origin policies and the separation
between browser extensions and Web pages. While our analysis focuses
on how Taler operates within the security infrastructure provided by the
modern Web, the results partially generalize to other payment systems.

We also include the perspective of merchants, as existing systems have
often struggled with securing payment information at the merchant’s
side. Here, challenges include avoiding database transactions for cus-
tomers that do not actually go through with the purchase, as well as
cleanly separating security-critical functions of the payment system from
the rest of the Web service.

1 Introduction

The Internet needs a secure, usable and privacy-preserving micropayment sys-
tem, which is not backed by a “crypto currency”. Payment systems involving
state-issued currencies have been used for centuries to facilitate transactions, and
the involvement of the state has been critical as state institutions can dampen
fluctuations in the value of the currency [9]. Controlling money supply is critical
to ensure stable prices that facilitate trade [34] instead of speculation [19].

Internet transactions, such as sending an e-mail or reading a Web site, tend
to be of smaller commercial value than traditional transactions involving the
exchange of physical goods. Consequently, if we want to associate payments
with these types of transactions, we face the challenge of reducing the mental
and technical overheads of existing payment systems. For example, executing a
3-D Secure [22] payment process takes too long, is way too complex, and way
too expensive to be used for payment for typical Web articles.

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 251–270, 2016.
DOI: 10.1007/978-3-319-49445-6 14

252 J. Burdges et al.

Addressing this problem is urgent: ad-blocking technology is eroding adver-
tising as a substitute for micropayments [31], and the Big Data business model
in which citizens pay with their private information [11] in combination with the
deep state hastens our society’s regression towards post-democracy [30].

The focus of this paper is GNU Taler, a new free software payment system
designed to meet certain key ethical considerations from a social liberalism per-
spective. In Taler, the paying customer remains anonymous while the merchant
is easily identified and thus taxable. Here, anonymous simply means that the
payment process does not require any personal information from the customer,
and that different transactions by the same customer are unlinkable. Naturally,
the specifics of the transaction—such as delivery of goods to a shipping address,
or the use of non-anonymous IP-based communication—may still leak informa-
tion about the customer’s identity. Taxable means that for any transaction the
state can easily obtain the necessary information about the identity of the mer-
chant and the respective contract in order to levy income, sales, or value-added
taxes. Taler uses blind signatures [5] to create digital coins and a new refresh
protocol [8] to allow giving change and refunds while maintaining unlinkability.

This paper will not consider the details of Taler’s cryptographic protocols.1

The basic cryptography behind blind-signature based payment systems has been
known for over 25 years [6]. However, it was not until 2015 that the W3C started
the payments working group [35] to explore requirements for deploying payment
systems that are more secure and easy to use for the Web. Our work describes how
a modern payment system using blind signatures could practically be integrated
with the modern Web to improve usability, security, and privacy. This includes
the challenge of hiding the cryptography from the users, integrating with modern
browsers, integrating with Web shops, providing proper cryptographic proofs for
all operations, and handling network failures. We explain our design using terms
from existing mental models that users have from widespread payment systems.

Key contributions of this paper are:

– A description of different payment systems using common terminology, which
allows us to analytically compare these systems.

– An introduction to the Taler payment system from the perspective of users
and merchants, with a focus on how to achieve secure payments in a way that
is intuitive and has adequate fail-safes.

– Detailed considerations for how to adapt Taler to Web payments and the
intricacies of securing payments within the constraints of modern browsers.

– A publicly available free software reference implementation of the presented
architecture.

2 Existing Payment Workflows

Before we look at the payment workflow for Taler, we sketch the workflow of
existing payment systems. This establishes a common terminology which we will
use to compare different payment processes.
1 Details of the protocol are documented at https://api.taler.net/.

https://api.taler.net/

Enabling Secure Web Payments with GNU Taler 253

2.1 Credit and Debit Cards

Credit and debit card payments operate by the customer providing their creden-
tials to the merchant. Many different authentication and authorization schemes
are in use in various combinations. Secure systems typically combine multiple
forms of authentication including secret information, such as personal identifica-
tion numbers (PINs), transaction numbers (TANs) [1] or credit card verification
(CCV) codes, and physical security devices such cards with an EMV chip [2],
TAN generators, or the customer’s mobile phone [10]. A typical modern Web
payment process involves: (1.) the merchant offering a secure communication
channel using TLS based on the X.509 public key infrastructure;2 (2.) selecting
a payment method; (3.) entering the credit card details like the owner’s name,
card number, expiration time, CCV code, and billing address; and (4.) (option-
ally) authorizing the transaction via mobile TAN, or by authenticating against
the customer’s bank. Due to the complexity of this, the data entry is often per-
formed on a Web site that is operated by a third-party payment processor and
not the merchant or the customer’s bank.

Given this process, there is an inherent risk of information leakage of cus-
tomers’ credentials. Fraud detection systems attempt to detect misuse of stolen
credentials, and payment system providers handle disputes between customers
and merchants. As a result, Web payment processes may finish with (5.) the
payment being rejected for a variety of reasons, such as false positives in fraud
detection or the merchant not accepting the particular card issuer.

Traditionally, merchants bear most of the financial risk, and a key “feature”
of the 3DS process compared to traditional card payments is to shift dispute
liability to the issuer of the card—who may then try to shift it to the customer
[22, Sect. 2.4]. Even in cases where the issuer or the merchant remain legally first
in line for liabilities, there are still risks customers incur from the card dispute
procedures, such as neither them nor the payment processor noticing fraudulent
transactions, or them noticing fraudulent transactions past the deadline until
which their bank would reimburse them. The customer also typically only has a
merchant-generated comment and the amount paid in his credit card statement
as a proof for the transaction. Thus, the use of credit cards online does not
generate any cryptographically verifiable electronic receipts for the customer,
which theoretically enables malicious merchants to later change the terms of the
contract.

Beyond these primary issues, customers face secondary risks of identity theft
from the personal details exposed by the authentication procedures. In this case,
even if the financial damages are ultimately covered by the bank, the customer
always has to deal with the procedure of notifying the bank in the first place.
As a result, customers must remain wary about using their cards, which limits
their online shopping [27, p. 50].

2 Given numerous TLS protocol and implementation flaws as well as X.509 key man-
agement incidents in recent years [15], one cannot generally assume that the security
provided by TLS is adequate under all circumstances.

254 J. Burdges et al.

2.2 Bitcoin

Bitcoin operates by recording all transactions in a pseudonymous public ledger.
A Bitcoin account is identified by its public key, and the owner must know the
corresponding private key to authorize the transfer of Bitcoins from the account
to other accounts. The information in the global public ledger allows everybody
to compute the balances in all accounts and to see all transactions. Transactions
are denominated in a new currency labeled BTC, whose valuation depends upon
speculation, as there is no authority that could act to stabilize exchange rates
or force anyone to accept BTC as legal tender to settle obligations. Adding
transactions to the global public ledger involves broadcasting the transaction
data, peers verifying and appending it to the public ledger, and some peer in the
network solving a moderately hard computational proof-of-work puzzle, which
is called mining.

The mining process is incentivised by a combination of transaction fees and
mining rewards [23]. The latter process also provides primitive accumulation [25]
for BTC. Conversion to BTC from other currencies and vice versa incurs substan-
tial fees [4]. There is now an extreme diversity of Bitcoin-related payment tech-
nologies, but usability improvements are usually achieved by adding a trusted
third party, and there have been many incidents where such parties then embez-
zled funds from their customers [33].

The classical Bitcoin payment workflow consisted of entering payment details
into a peer-to-peer application. The user would access their Bitcoin wallet and
instruct it to transfer a particular amount from one of his accounts to the account
of the merchant. He could possibly include additional metadata to be associ-
ated with the transfer to be embedded into the global public ledger. The wallet
application would then transmit the request to the Bitcoin peer-to-peer overlay
network. The use of an external payment application makes payments signifi-
cantly less browser-friendly than ordinary card payments. This has led to the
development of browser-based wallets.3

Bitcoin payments are only confirmed when they appear in the public ledger,
which is updated at an average frequency of once every 10 min. Even then, it
is possible that a fork in the so-called block chain may void durability of the
transaction; as a result, it is recommended to wait for 6 blocks (on average one
hour) before considering a transaction committed [23]. In cases where merchants
are unable to accommodate this delay, they incur significant fraud risks.

Bitcoin is considered to be secure against an adversary who cannot control
around a fifth of the Bitcoin miner’s computational resources [3,12,14]. As a
result, the network must expend considerable computational resources to keep
this value high. According to [20], a single Bitcoin transaction uses roughly
enough electricity to power 1.57 American households for a day. These costs are
largely hidden by speculation in BTC, but that speculation itself contributes to
BTC’s valuation being volatile [16].

Bitcoin’s pseudononymity applies equally to both customers and merchants,
which makes Bitcoin amenable to tax evasion, money laundering, sales of
3 https://github.com/frozeman/bitcoin-browser-wallet.

https://github.com/frozeman/bitcoin-browser-wallet

Enabling Secure Web Payments with GNU Taler 255

contraband, and especially extorion [24]. As a result, anonymity tools like
mixnets do not enjoy widespread support in the Bitcoin community where
many participants seek to make the currency appear more legitimate. While
Bitcoin’s transactions are difficult to track, there are several examples of Bit-
coin’s pseudononymity being broken by investigators [26]. This has resulted in
the development of new protocols with better privacy protections.

Zerocoin [21] is such an extension of Bitcoin: It affords protection against link-
ability of transactions, but at non-trivial additional computational costs even for
spending coins. This currently makes using Zerocoin unattractive for payments,
especially with mobile devices.

Bitcoin also faces serious scalability limitations, with the classic implemen-
tation being limited to at most 7 transactions per second globally on aver-
age.4 There are a variety of efforts to confront Bitcoin’s scaling problems with
off-blockchain techniques, like side-chains. Amongst these, the blind off-chain
lightweight transactions (BOLT) proposal [13] provides anonymity by routing
off-blockchain transfers through bank-like intermediaries. Although interesting,
there are numerous seemingly fragile aspects of the BOLT protocol, including
aborts deanonymizing customers, intermediaries risking unlimited losses, and
theft if a party fails to post a refute message in a timely fashion.

2.3 Walled Garden Payment Systems

Walled garden payment systems offer ease of use by processing payments using
a trusted payment service provider. Here, the customer authenticates to the
trusted service, and instructs the payment provider to execute a transaction on
his behalf. In these payment systems, the provider basically acts like a bank
with accounts carrying balances for the various users. In contrast to traditional
banking systems, both customers and merchants are forced to have an account
with the same provider. Each user must take the effort to establish his identity
with a service provider to create an account. Merchants and customers obtain
the best interoperability in return for their account creation efforts if they start
with the biggest providers. As a result, there are a few dominating walled garden
providers, with AliPay, ApplePay, GooglePay, SamsungPay and PayPal being the
current oligopoly. In this paper, we will use PayPal as a representative example
for our discussion of these payment systems.

As with card payment systems, these oligopolies are politically danger-
ous [29], and the lack of competition can result in excessive profit taking that
may require political solutions [17] to the resulting market failure. The use of
non-standard proprietary interfaces to the payment processing service of these
providers serves to reinforce the customer lock-in.

3 Taler

Taler is a free software cryptographic payment system. It has an open pro-
tocol specification, which couples cash-like anonymity for customers with low
4 http://hackingdistributed.com/2016/08/04/byzcoin/.

http://hackingdistributed.com/2016/08/04/byzcoin/

256 J. Burdges et al.

transaction costs, signed digital receipts, and accurate income information to
facilitate taxation and anti-corruption efforts.

Taler achieves anonymity for buyers using blind signatures [5]. Since their
discovery thirty years ago, cryptographers have viewed blind signatures as the
optimal cryptographic primitive for privacy-preserving consumer-level transac-
tion systems. However, previous transaction systems based on blind signatures
have failed to see widespread adoption. This paper details strategies for hiding
the complexity of the cryptography from users and integrating smoothly with
the Web, thereby providing crucial steps to bridge the gap between good cryp-
tography and real-world deployment.

Exchange

Customer Merchant

Auditor

with
dr

aw
co

ins
deposit coins

spend coins

verify

Fig. 1. Taler system overview.

There are four key roles in the Taler system (Fig. 1):

– Customers use a digital wallet to withdraw, hold, and spend coins. Wallets
manage the customer’s accounts at the exchange, and keep receipts in a trans-
action history. Wallets can be realized as browser extensions, mobile Apps or
even in custom hardware. If a user’s digital wallet is compromised, the cur-
rent balance may be lost, just as with an ordinary wallet containing cash. A
wallet includes a list of trusted auditors, and will warn users against using an
exchange that is not certified by a trusted auditor.

– Exchanges, which are run by financial service providers, enable customers to
withdraw anonymous digital coins, and merchants to deposit digital coins, in
exchange for bank money. Coins are signed by the exchange using a blind
signature scheme [5]. Thus, only an exchange can issue new coins, but coins
cannot be traced back to the customer who withdrew them. Furthermore,
exchanges learn the amounts withdrawn by customers and deposited by mer-
chants, but they do not learn the relationship between customers and mer-
chants. Exchanges perform online detection of double spending, thus providing
merchants instant feedback —including digital proofs—in case of misbehaving
customers.

– Merchants provide goods or services in exchange for coins held by customers’
wallets. Merchants deposit these coins at the exchange used by the customer
in return for a bank wire transfer of their value. While the exchange is deter-
mined by the customer, the merchant’s contract specifies the currency, a list

Enabling Secure Web Payments with GNU Taler 257

Taler (W ithdraw coins)

Customer Browser

Customer Browser

Bank Site

Bank Site

Taler Exchange

Taler Exchange

HTTPS

HTTPS

wire t ransfer

1 user authent icat ion

2 send account portal

3 init iate withdrawal (specify amount and exchange)

4 request coin denom inat ion keys and wire t ransfer data

5 send coin denom inat ion keys and wire t ransfer data

6 execute withdrawal

opt

7 request t ransact ion authorizat ion

8 t ransact ion authorizat ion

9 withdrawal confirmat ion

10 execute wire t ransfer

11 withdraw request

12 signed blinded coins

13 unblind coins

Fig. 2. Withdrawing coins with Taler.

of accepted auditors, and the maximum exchange deposit fee the merchant
is willing to pay. Merchants consist of a frontend, which interacts with the
customer’s wallet, and a backend, which interacts with the exchange. Typical
frontends include Web shops and point-of-sale systems.

– Auditors verify that exchanges operate correctly to limit the risk that cus-
tomers and merchants incur by using a particular exchange. Auditors are
typically operated by or on behalf of financial regulatory authorities. Depend-
ing on local legislation, auditors may mandate that exchanges have enough
financial reserves before authorizing them to create a given volume of signed
digital coins to provide a buffer against potential risks due to operational
failures (such as data loss or theft of private keys) of the exchange. Audi-
tors certify exchanges that they audit using digital signatures. The respective
signing keys of the auditors are distributed to customer and merchants.

258 J. Burdges et al.

Taler (Payment)

Payer (Shopper) Browser

Payer (Shopper) Browser

Payee (Merchant) Site

Payee (Merchant) Site

Taler Exchange

Taler Exchange

Tor/HTTPS

HTTP/HTTPS

Request Offer

1 Choose goods by navigat ing to offer URL

2 Send signed digital cont ract proposal

opt

3 Select Taler payment method (skippable with auto-detect ion)

Execute Payment

opt

4 Affirm cont ract

5 Navigate to fulfillment URL

6 Send hash of digital cont ract and payment informat ion

7 Send payment

8 Forward payment

9 Confirm payment

10 Confirm payment

Fulf ilment

11 Reload fulfillment URL for delivery

12 Provide product resource

Fig. 3. Payment processing with Taler.

The specific protocol between wallet and merchant depends on the setting.
For a traditional store, a near field communication (NFC) protocol might be
used between a point-of-sale system and a mobile application. In this paper, we
focus on Web payments for an online shop and explain how the actors in the
Taler system interact by way of a typical payment.

Initially, the customer installs the Taler wallet extension for their browser.
This only needs to be done once per browser. Naturally, this step may become
superfluous if Taler is integrated tightly with browsers in the future. Regardless,
installing the extension involves only one or two clicks to confirm the operation.
Restarting the browser is not required.

Enabling Secure Web Payments with GNU Taler 259

3.1 Withdrawing Coins

As with cash, the customer must first withdraw digital coins (Fig. 2). For this, the
customer must first visit the bank’s online portal. Here, the bank will typically
require some form of authentication; the specific method used depends on the
bank.

The next step depends on the level of Taler support offered by the bank:

– If the bank does not offer integration with Taler, the customer needs to use
the menu of the wallet to create a reserve. The wallet will ask which amount
in which currency (e.g. EUR or USD) the customer wants to withdraw, and
allow the customer to select an exchange. Given this information, the wallet
will instruct the customer to transfer the respective amount to the account
of the exchange. The customer will have to enter a 54-character reserve key,
which includes 256 bits of entropy and an 8-bit checksum into the transfer
subject. Naturally, the above is exactly the kind of interaction we would like
to avoid for usability reasons.

– Otherwise, if the bank fully supports Taler, the customer has a form in the
online banking portal in which they can specify an amount to withdraw. The
bank then triggers an interaction with the wallet to allow the customer to
select an exchange. Afterwards, the wallet instructs the bank about the details
of the wire transfer. The bank asks the customer to authorize the transfer, and
finally confirms to the wallet that the transfer has been successfully initiated.

In either case, the wallet can then withdraw the coins from the exchange,
and does so in the background without further interaction with the customer.

In principle, the exchange can be directly operated by the bank, in which case
the step where the customer selects an exchange could be skipped by default.
However, we generally assume that the exchange is a separate entity, as this
yields the largest anonymity set for customers, and may help create a competitive
market.

3.2 Spending Coins

At a later point in time, the customer can spend their coins by visiting a mer-
chant that accepts digital coins in the respective currency issued by the respective
exchange (Fig. 3). Merchants are generally configured to either accept a specific
exchange, or to accept all the exchanges audited by a particular auditor. Mer-
chants can also set a ceiling for the maximum amount of transaction fees they
are willing to cover. Usually these details do not matter for the customer, as
we expect most merchants to accept most exchange providers accredited by the
auditors that wallets include by default. Similarly, we expect exchanges to oper-
ate with transaction fees acceptable to most merchants to avoid giving customers
a reason to switch to another exchange. If transaction fees are higher than what
is covered by the merchant, the customer may choose to cover them.

As with traditional Web transactions, customers first select which items they
wish to buy. This can involve building a traditional shopping cart, or simply

260 J. Burdges et al.

HTTP/1 .1 402 Payment Required
Content−Type : t ex t /html ; cha r s e t=UTF−8
X−Taler−Contract−Url : https : // shop/ generate−cont rac t /42

<!DOCTYPE html>
<html>
<!−− f a l l b a c k f o r browsers without the Taler ex tens i on −−>
You do not have Taler i n s t a l l e d . Other payment opt ions are . . .
</html>

Fig. 4. Sample HTTP response to prompt the wallet to show an offer.

clicking on a particular link for the respective article. Once the articles have been
selected, the Web shop directs the user to the offer URL, where the payment
details are negotiated. The process usually starts by allowing the user to select
a payment method from a set of methods supported by the Web shop. Taler also
allows the Web shop to detect the presence of a Taler wallet, so that the selection
of alternative payment methods can be skipped if a Taler wallet is installed.

Offer. The offer URL of the Web shop can then initiate payments by sending a
contract proposal to the wallet, either via the HTTP status code 402 Payment
Required (Fig. 4). The wallet then presents the contract to the user. The format
of the contract is in an extensible JSON-based format defined by Taler and not
HTML, as the rendering of the contract is done by the wallet to ensure correct
visual representation of the terms and prices. In case that transaction fees need
to be covered by the customer, these are shown together with the rest of the
proposed contract.

The Taler wallet operates from a securely isolated background context on the
client side. The user interface that displays the contract and allows the user to
confirm the payment is displayed by this background context. By running in
the background context, the wallet can perform the cryptographic operations
protected from the main process of the Web site. In particular, this architecture
is secure against a merchant that generates a page that looks like the wallet’s
payment page, as such a page would still not have access to the private keys of
the coins that are exclusive to the background context.

If the customer approves the contract by clicking the “Confirm Payment”
button on the payment page, their wallet signs the contract with enough coins
to cover the contract’s cost, stores all of the information in its local database,
and redirects the browser to the fulfillment URL provided by the merchant in
the contract.

Fulfillment. The fulfillment URL uniquely identifies a purchase by some cus-
tomer, while the offer URL identifies a generic offer that is not specific to a
customer. The purchase identified by a fulfillment URL may have been com-
pleted or still be in progress. The information contained in the fulfillment URL

Enabling Secure Web Payments with GNU Taler 261

must allow the merchant to restore the full contract (including a unique trans-
action identifier) that was associated with the purchase, either directly from the
URL or indirectly from an identifier in a database. Efficiently reconstructing the
contract entirely from the URL instead of using costly database transactions
can be important, as costly disk operations for incomplete purchases make mer-
chants more susceptible to denial-of-service attacks from adversaries pretending
to be customers.

HTTP/1 .1 402 Payment Required
Content−Type : t ex t /html ; cha r s e t=UTF−8
X−Taler−Contract−Hash : 2BAH2AT4GSG5JRM2W4YWTSYGY66EK4X8C . . .
X−Taler−Pay−Url : https : // shop/pay
X−Taler−Offer−Url : https : // shop/ a r t i c l e /42

<!DOCTYPE html>
<html>
<!−− f a l l b a c k f o r browsers without the Taler ex tens i on −−>
You do not have Taler i n s t a l l e d . Other payment opt ions are . . .
</html>

Fig. 5. Sample HTTP response when the user agent navigates to a fulfillment URL
without the session state that indicates they have paid for the resource. Note that
unlike in Listing 4, the response references a contract that typically is already known
to the wallet via its hash code.

When a customer has completed a purchase, navigating to the fulfillment
URL in a browser will show the resource associated with the purchase. This
resource can be a digital good such as a news article, or simply a confirmation
for products that are delivered by other means.

When a customer has not yet completed a purchase (this is always the
case when a customer visits the fulfillment URL for the first time), or when
the Web shop cannot confirm that this visitor has paid for the contract,
for example because the session state was lost,5 the Web store responds
by (again) triggering a payment process (either via JavaScript or using
402 Payment Required, see Fig. 5). However, unlike the response from the
offer URL, the 402 response from the fulfillment page includes the headers
X-Taler-Contract-Hash, X-Taler-Pay-Url and X-Taler-Offer-Url.

If the contract hash matches a payment which the user already previously
approved, the wallet reacts to this by injecting the logic to transmit the payment
to the pay URL of the Web shop into the page. Then the wallet inspects the
response as it may contain error reports about a failed payment which the wallet
has to handle. By submitting the payment this way, we also ensure that this
intermediate request does not require JavaScript and still does not interfer with

5 This can happen when privacy conscious users delete their cookies. Also, some user
agents (such as the TOR browser) do not support persistent (non-session) cookies.

262 J. Burdges et al.

navigation. Once the Web shop confirms the payment, the wallet causes the
fulfillment URL to be reloaded.

If the contract hash does not match a payment which the user already
approved, for example because the user obtained the link from another user,
the wallet navigates to the offer URL included in the header.

Discussion. Various failure modes are considered in this design:

– If the payment fails on the network, the request is typically retried. How
often the client retries automatically before informing the user of the network
issue is up to the merchant. If the network failure persists and is between
the customer and the merchant, the wallet will try to recover control over
the coins at the exchange by effectively spending the coins first using Taler’s
refresh protocol. In this case, later deposits by the merchant will simply fail. If
the merchant already succeeded with the payment before the network failure,
the customer can either retry the operation via the transaction history kept
by the wallet, or demand a refund (see below). Handling these errors does not
require the customer to give up his privacy.

– If the payment fails due to the exchange claiming that the request was invalid,
the diagnostics created by the exchange are passed to the wallet for inspection.
The wallet then decides whether the exchange was correct, and can then
inform the user about a fraudulent or buggy exchange. At this time, it allows
the user to export the relevant cryptographic data to be used in court. If
the exchange’s proofs were correct and coins were double-spent, the wallet
informs the user that its database must have been out-of-date (e.g. because it
was restored from backup), updates the database and allows the user to retry
the transaction.

While our design requires a few extra roundtrips, it has the following key advan-
tages:
– It works in the confines of the WebExtensions API.
– It supports restoring session state for bookmarked Web resources even after

the session state is lost by the user agent.
– Sending deep links to fullfilment or offer pages to other users has the expected

behavior of asking the other user to pay for the resource.
– Asynchronously transmitting coins from injected JavaScript costs one

roundtrip, but does not interfer with navigation and allows proper error
handling.

– The different pages of the merchant have clear delineations: the shopping
pages conclude by making an offer, and the fulfillment page begins with
processing an accepted contract. It is thus possible for these pages to be
managed by separate parties. The control of the fulfillment page over the
transmission of the payment data minimizes the need for exceptions to han-
dle cross-origin resource sharing [18].

– The architecture supports security-conscious users that may have disabled
JavaScript, as it is not necessary to execute JavaScript originating from Web
pages to execute the payment process.

Enabling Secure Web Payments with GNU Taler 263

3.3 Giving Change and Refunds

An important cryptographic difference between Taler and previous transaction
systems based on blind signing is that Taler is able to provide unlinkable change
and refunds. From the user’s point of view, obtaining change is automatic and
handled by the wallet, i.e., if the user has a single coin worth e5 and wants
to spend e2, the wallet may request three e1 coins in change. Critically, the
change giving process is completely hidden from the user. In fact, our graphical
user interface does not offer a way to inspect the denominations of the various
coins in the wallet, it only shows the total amount available in each denomi-
nation. Expanding the views to show details may show the exchange providers
and fee structure, but not the cryptographic coins. Consequently, the major
cryptographic advances of Taler are invisible to the user.

Taler’s refresh protocol [8] also allows merchants to give refunds to customers.
To refund a purchase, the merchant obtains a signed refund permission from the
exchange, which the customer’s wallet processes to obtain new, unlinkable coins
as refund. This process allows the customer to say anonymous when receiving
refunds.

Taler’s refresh protocol ensures unlinkability for both change and refunds,
thereby assuring that the user has key conveniences of other payment systems
while maintaining the security standard of an anonymous payment system.

3.4 Deployment Considerations for Merchants

Payment system security is not only a concern for customers, but also for mer-
chants. For consumers, existing schemes may be inconvenient and not provide
privacy, but remembering to protect a physical token (e.g. the card) and to
guard a secret (e.g. the PIN) is relatively straightforward. In contrast, mer-
chants are expected to securely handle sensitive customer payment data on net-
worked computing devices. However, securing computer systems—and especially
payment systems that represent substantial value—is a hard challenge, as evi-
denced by large-scale break-ins with millions of consumer card records being
illicitly copied [28].

Taler simplifies the deployment of a secure payment system for merchants.
The high-level cryptographic design provides the first major advantage, as mer-
chants never receive sensitive payment-related customer information. Thus, they
do not have to be subjected to costly audits or certified hardware, as is com-
monly the case for processing card payments [36]. In fact, the exchange does not
need to have a formal business relationship with the merchant at all. According
to our design, the exchange’s contract with the state regulator or auditor and
the customers ought to state that it must honor all (legal and valid) deposits it
receives. Hence, a merchant supplying a valid deposit request should be able to
enforce this in court without a prior direct business agreement with the exchange.
This dramatically simplifies setting up a shop to the point that the respective
software only needs to be provided with the merchant’s wire transfer routing
information to become operational.

264 J. Burdges et al.

The payment process requires a few cryptographic operations on the side
of the merchant, such as signing a contract and verifying the customer’s and
the exchange’s signatures. The merchant also needs to store transaction data, in
particular so that the store can match sales with incoming wire transfers from
the exchange. We simplify this for merchants by providing a generic payment
processing backend for the Web shops.

Wallet Browser Web shop Taler backend

(4) signed contract

(signal)

(signal)

(5) signed coins

(3,6) custom

(HTTP(S))

(HTTP(S))

(1) proposed contract / (7) signed coins

(2) signed contract / (8) confirmation

(HTTP(S))

Fig. 6. Both the customer’s client and the merchant’s server execute sensitive crypto-
graphic operations in a secured background/backend that is protected against direct
access. Interactions with the Taler exchange from the wallet background to withdraw
coins and the Taler backend to deposit coins are not shown. Existing system secu-
rity mechanisms are used to isolate the cryptographic components (boxes) from the
complex rendering logic (circles), hence the communication is restricted to JavaScript
signals or HTTP(S), respectively.

Figure 6 shows how the secure payment components interact with the existing
Web shop logic. First, the Web shop frontend is responsible for constructing the
shopping cart. For this, the shop frontend generates the customary Web shop
pages, which are transmitted to the customer’s browser. Once the order has been
constructed, the shop frontend provides a proposed contract in JSON format to
the payment backend, which signs it and returns it to the frontend. The frontend
then transfers the signed contract over the network, and passes it to the wallet
(sample code for this is shown in Fig. 4).

Instead of adding any cryptographic logic to the merchant frontend, the
Taler merchant backend allows the implementor to delegate coin handling to
the payment backend, which validates the coins, deposits them at the exchange,
and finally validates and persists the receipt from the exchange. The merchant
backend then communicates the result of the transaction to the frontend, which is
then responsible for executing the business logic to fulfill the order. As a result of
this setup (Fig. 6), the cryptographic details of the Taler protocol do not have to
be re-implemented by each merchant. Instead, existing Web shops implemented
in a multitude of programming languages can add support for Taler by: (0)
detecting in the browser that Taler is available; (1) upon request, generating
a contract in JSON based on the shopping cart; (2) allowing the backend to
sign the contract before sending it to the client; (7) passing coins received in

Enabling Secure Web Payments with GNU Taler 265

payment for a contract to the backend; and, (8) executing fulfillment business
logic if the backend confirms the validity of the payment.

To setup a Taler backend, the merchant only needs to configure the wire
transfer routing details, such as the merchant’s IBAN number, as well as a list
of acceptable auditors and limits for transaction fees. Ideally, the merchant might
also want to obtain a certificate for the public key generated by the backend for
improved authentication. Otherwise, the customer’s authentication of the Web
shop simply continues to rely upon HTTPS/X.509.

4 Discussion

We will now discuss how customer’s may experience relevant operational risks
and failure modes of Taler, and relate them to failure modes in existing systems.

4.1 Security Risks

In Taler, customers incur the risk of wallet loss or theft. We believe customers
can manage this risk effectively because they manage similar risks of losing cash
in a physical wallet. Unlike physical wallets, Taler’s wallet could be backed up to
secure against loss of a device. We note that managing the risk does not imply
that customers will never suffer from such a loss. We expect that customers will
limit the balance they carry in their digital wallet. Ideally, the loss should be
acceptable given that the customer gains the insight that their computer was
compromised.

Taler’s contracts provide a degree of protection for customers, because they
are signed by the merchant and retained by the wallet. While they mirror the
paper receipts that customers receive in physical stores, Taler’s cryptographically
signed contracts ought to carry more weight in courts than typical paper receipts.
Customers can choose to discard the receipts, for example to avoid leaking their
shopping history in case their computer is compromised.

Point-of-sale systems providing printed receipts have been compromised in
the past by merchants to embezzle sales taxes. [32] With Taler, the merchant still
generates a receipt for the customer, however, the record for the tax authorities
ultimately is anchored with the exchange’s wire transfer to the merchant. Using
the subject of the wire transfer, the state can trace the payments and request the
merchant provide cryptographically matching contracts. Thus, this type of tax
fraud is no longer possible, which is why we call Taler taxable. The mere threat
of the state sometimes tracing transactions and contracts back to the merchant
also makes Taler unsuitable for illegal activities.

The exchange operator is obviously crucial for risk management in Taler, as
the exchange operator holds the customer’s funds in a reserve in escrow until the
respective deposit request arrives6 To ensure that the exchange operator does not
6 As previously said, this deposit request is aimed to exchange coins for bank money,

and it is made by a merchant after successfully receiving coins from a wallet during
the payment process.

266 J. Burdges et al.

embezzle these funds, Taler expects exchange operators to be regularly audited
by an independent auditor7. The auditor can then verify that the incoming and
outgoing transactions, and the current balance of the exchange matches the logs
with the cryptographically secured transaction records.

4.2 Failure Modes

There are several failure modes which a customer using a Taler wallet may
encounter:

– As Taler supports multiple exchanges, there is a chance that a merchant might
not support any exchange where the customer withdrew coins from. We miti-
gate this problem by allowing merchants to support all exchanges audited by
a particular auditor. We believe this a reasonable approach, because auditors
and merchants must operate with a particular legal and financial framework
anyways. We note that a similar failure mode exists with credit cards where
not all merchants accept all issuers, which is often the case internationally.

– Restoring the Taler wallet state from previous backups, or copying the wallet
state to a new machine may cause honest users to attempt to double spend
coins, as the wallet does not know when coins are spent between backup and
recovery. In this case, the exchange provides cryptographic proof to the wallet
that the coins were previously spent so the wallet can verify that the exchange
and the merchant are behaving honestly.

– There could be insufficient funds in the Taler wallet when making a payment.
Usually the wallet can trivially check this before beginning a transaction,
but when double-spending is detected this may also happen after the wallet
already initiated the payment. This would usually only happen if the wallet
is unaware of a backup operation voiding its internal invariant of knowing
which coins have already been spent. If a payment fails in-flight due to insuf-
ficient funds, the wallet can use Taler’s refresh protocol to obtain a refund for
those coins that were not actually double-spent, and then explain to the user
that the balance was inaccurate due to inconsistencies, and insufficient for
payment. For the user, this failure mode appears equivalent to an insufficient
balance or credit line when paying with debit or credit cards.

In the future, we plan to make it easy for users to backup and synchronize
wallets to reduce the probability of the later two failure modes. A key issue
in this context is that these processes will need to be designed carefully to
avoid leaking information that might allow adversaries to link purchases via
side channels opened up by the synchronization protocol.

4.3 Comparison

The different payment systems discussed make use of different security tech-
nologies, which has an impact on their usability and the assurances they can
7 Auditors are typically run by financial regulatory bodies of states.

Enabling Secure Web Payments with GNU Taler 267

provide. Except for Bitcoin, all payment systems described involve an authen-
tication step. With Taler, the authentication itself is straightforward, as the
customer is at the time visiting the Web portal of the bank, and the authenti-
cation is with the bank (Fig. 2). With PayPal, the shop redirects the customer
to the PayPal portal after the user selects PayPal as the payment method. The
customer then provides the proof of payment to the merchant. Again, this is
reasonably natural. The 3DS workflow has to deal with a multitude of banks
and their different implementations, and not just a single provider. Hence, the
interactions are more complicated as the merchant needs to additionally perform
a lookup in the card scheme directory and verify availability of the bank.

A key difference between Taler and 3DS or PayPal is that in Taler, authen-
tication is done ahead of time. After authenticating once to withdraw digital
coins, the customer can perform many micropayments without having to re-
authenticate. While this simplifies the process of the individual purchase, it
shifts the mental overhead to an earlier time, and thus requires some planning,
especially given that the digital wallet is likely to only contain a small fraction
of the customer’s available funds. As a result, Taler improves usability if the cus-
tomer withdraws funds once to then perform many micropayments, while Taler
is likely less usable if for each transaction the customer first visits the bank to
withdraw funds. This is deliberate, as Taler can only achieve reasonable privacy
for customers if they keep a balance in their wallet, as this is necessary to break
the association between withdrawal and deposit.

Bitcoin’s payment process resembles that of Taler in one interesting point,
namely that the wallet is given details about the contract the user enters. How-
ever, in contrast to Taler, Bitcoin wallets are expected to fetch the “invoice” from
the merchant. In Taler, the browser can provide the proposed contract directly
to the wallet. In PayPal and 3DS, the user is left without a cryptographically
secured receipt.

Card-based payments (including 3DS) and PayPal also extensively rely on
TLS for security. The customer is expected to verify that their connections to
the various Web sites are properly authenticated using X.509, and to know
that it is fine to provide their bank account credentials to the legitimate www.
verifiedbyvisa.com.8 However, relying on users understanding their browser’s
indications of the security context is inherently problematic. Taler addresses this
challenge by ensuring that digital coins are only accessible from wallet-generated
pages. As such there is no risk of Web pages mimicking the look of the respective
page, as they would still not obtain access to the digital coins.

Once the payment process nears its completion, merchants need to have some
assurance that the contract is valid. In Taler, merchants obtain a non-repudiable
confirmation of the payment. With 3DS and PayPal, the confirmation may be
disputed later (e.g. in case of fraud), or accounts may be frozen arbitrarily [7].
Payments in cash require the merchant to assume the risk of receiving counterfeit
money. Furthermore, with cash merchants have the cost of maintaining change

8 The search query “verifiedbyvisa.com legit” is so common that, when we entered
“verifiedbyvisa” into a search engine, it was the suggested auto-completion.

www.verifiedbyvisa.com
www.verifiedbyvisa.com

268 J. Burdges et al.

and depositing the money earned. The most extreme case for lack of assurances
upon “completion” is Bitcoin, where there is no time until a payment can be
said to be definitively confirmed, leaving merchants in a bit of a tricky situation.

Finally, attempts to address the scalability hudles of Bitcoin using side-chains
or schemes like BOLT introduce semi-centralized intermediaries, not wholey
unlike Taler’s use of exchanges. Compared to BOLT, we would expect a Taler
exchange operating in BTC to offer stronger security to all parties and stronger
anonymity to customers, as well as being vastly cheaper to operate.

5 Conclusions

Customers and merchants should be able to easily adapt their existing mental
models and technical infrastructure to Taler. In contrast, Bitcoin’s payment mod-
els fail to match common expectations be it in terms of performance, durability,
security, or privacy. Minimizing the need to authenticate to pay fundamentally
improves security and usability.

We expect that electronic wallets that automatically collect digitally signed
receipts for transactions will become commonplace. By providing a free software
wallet, Taler gives the user full control over the usage of their transaction history,
as opposed to giving control to big data corporations.

We encourage readers to try our prototype for Taler at
https://demo.taler.net/.

Acknowledgements. This work benefits from the financial support of the Brittany
Region (ARED 9178) and a grant from the Renewable Freedom Foundation. We thank
Bruno Haible for his financial support enabling us to participate with the W3c payment
working group. We thank the W3C payment working group for insightful discussions
about Web payments. We thank Krista Grothoff and Neal Walfield for comments on an
earlier draft of the paper. We thank Gabor Toth for his help with the implementation.

References

1. Chiptan/cardtan: What you see is what you sign (2016). http://www.kobil.com/
solutions/identity-access-card-readers/chiptan/

2. EMVCO (2016). http://www.emvco.com/
3. Bahack, L.: Theoretical Bitcoin attacks with less than half of the computational

power (draft). IACR Cryptology ePrint Archive 2013, 868 (2013). http://eprint.
iacr.org/2013/868

4. Beigel, O.: What Bitcoin exchanges won’t tell you about fees (2015). https://
www.cryptocoinsnews.com/what-bitcoin-exchanges-wont-tell-you-about-fees/.
Accessed 10 Feb 2016

5. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in cryptology, pp. 199–203. Springer,
New York (1983)

https://demo.taler.net/
http://www.kobil.com/solutions/identity-access-card-readers/chiptan/
http://www.kobil.com/solutions/identity-access-card-readers/chiptan/
http://www.emvco.com/
http://eprint.iacr.org/2013/868
http://eprint.iacr.org/2013/868
https://www.cryptocoinsnews.com/what-bitcoin-exchanges-wont-tell-you-about-fees/
https://www.cryptocoinsnews.com/what-bitcoin-exchanges-wont-tell-you-about-fees/

Enabling Secure Web Payments with GNU Taler 269

6. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990).
doi:10.1007/0-387-34799-2 25

7. Constine, J.: After the Regretsy and Diaspora account freezes, we’ve lost con-
fidence in PayPal, December 2011. http://techcrunch.com/2011/12/06/paypal-
account-freeze/

8. Dold, F., Totakura, S.H., Müller, B., Burdges, J., Grothoff, C.: Taler: taxable
anonymous libre electronic reserves

9. Dominguez, K.M.: Does central bank intervention increase the volatility of for-
eign exchange rates? Working Paper 4532, National Bureau of Economic Research,
November 1993. http://www.nber.org/papers/w4532

10. Dunn, J.E.: Eurograbber SMS trojan steals 36 million from online banks, December
2012. http://www.techworld.com/news/security/eurograbber-sms-trojan-steals-
36-million-from-online-banks-3415014/

11. Ehrenberg, B.: How much is your personal data worth? April 2014. http://www.
theguardian.com/news/datablog/2014/apr/22/how-much-is-personal-data-worth

12. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. CoRR
abs/1311.0243 (2013). http://arxiv.org/abs/1311.0243

13. Green, M., Miers, I.: Bolt: anonymous payment channels for decentralized curren-
cies. Cryptology ePrint Archive, Report 2016/701 (2016). http://eprint.iacr.org/
2016/701

14. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s
peer-to-peer network. In: Proceedings of the 24th USENIX Conference on Security
Symposium, SEC 2015, pp. 129–144. USENIX Association, Berkeley, CA, USA
(2015). http://dl.acm.org/citation.cfm?id=2831143.2831152

15. Holz, R.: Empirical analysis of Public Key Infrastructures and investigation of
improvements. Ph.D. thesis, TU Munich (2014)

16. Jeffries, A.: Why don’t economists like Bitcoin? (2013). http://www.theverge.com/
2013/12/31/5260534/krugman-bitcoin-evil-economists. Accessed 28 Feb 2016

17. Jones, R.: Cap on card fees could lead to lower prices for consumers, July 2015.
http://www.theguardian.com/money/2015/jul/27/cap-on-card-fees-retailers

18. van Kersteren, A.: Cross-origin resource sharing, January 2014. http://www.w3.
org/TR/cors/

19. Lewis, N.: Bitcoin is a junk currency, but it lays the foundation for better money
(2013). http://www.forbes.com/sites/nathanlewis/2013/05/09/bitcoin-is-a-junk-
currency-but-it-lays-the-foundation-for-better-money/. Accessed 28 Feb 2016

20. Malmo, C.: Bitcoin is unsustainable (2015). https://www.cryptocoinsnews.com/
what-bitcoin-exchanges-wont-tell-you-about-fees/. Accessed 10 Feb 2016

21. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from Bitcoin. In: IEEE Symposium on Security and Privacy (SP), pp. 397–
411. IEEE (2013)

22. Murdoch, S.J., Anderson, R.: Verified by Visa and MasterCard SecureCode:
or, how not to design authentication. In: Sion, R. (ed.) FC 2010. LNCS, vol.
6052, pp. 336–342. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14577-3 27.
https://www.cl.cam.ac.uk/˜rja14/Papers/fc10vbvsecurecode.pdf

23. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
24. NYA International: Cyber extortion risk report 2015, October 2015. http://

www.nyainternational.com/sites/default/files/nya-publications/151027 Cyber
Extortion Risk Report 2015 0.pdf

25. Perlman, M.: The Invention of Capitalism: Classical Political Economy and the
Secret History of Primitive Accumulation. Duke University Press Books (2000)

http://dx.doi.org/10.1007/0-387-34799-2_25
http://techcrunch.com/2011/12/06/paypal-account-freeze/
http://techcrunch.com/2011/12/06/paypal-account-freeze/
http://www.nber.org/papers/w4532
http://www.techworld.com/news/security/eurograbber-sms-trojan-steals-36-million-from-online-banks-3415014/
http://www.techworld.com/news/security/eurograbber-sms-trojan-steals-36-million-from-online-banks-3415014/
http://www.theguardian.com/news/datablog/2014/apr/22/how-much-is-personal-data-worth
http://www.theguardian.com/news/datablog/2014/apr/22/how-much-is-personal-data-worth
http://arxiv.org/abs/1311.0243
http://eprint.iacr.org/2016/701
http://eprint.iacr.org/2016/701
http://dl.acm.org/citation.cfm?id=2831143.2831152
http://www.theverge.com/2013/12/31/5260534/krugman-bitcoin-evil-economists
http://www.theverge.com/2013/12/31/5260534/krugman-bitcoin-evil-economists
http://www.theguardian.com/money/2015/jul/27/cap-on-card-fees-retailers
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.forbes.com/sites/nathanlewis/2013/05/09/bitcoin-is-a-junk-currency-but-it-lays-the-foundation-for-better-money/
http://www.forbes.com/sites/nathanlewis/2013/05/09/bitcoin-is-a-junk-currency-but-it-lays-the-foundation-for-better-money/
https://www.cryptocoinsnews.com/what-bitcoin-exchanges-wont-tell-you-about-fees/
https://www.cryptocoinsnews.com/what-bitcoin-exchanges-wont-tell-you-about-fees/
http://dx.doi.org/10.1007/978-3-642-14577-3_27
https://www.cl.cam.ac.uk/~rja14/Papers/fc10vbvsecurecode.pdf
http://www.nyainternational.com/sites/default/files/nya-publications/151027_Cyber_Extortion_Risk_Report_2015_0.pdf
http://www.nyainternational.com/sites/default/files/nya-publications/151027_Cyber_Extortion_Risk_Report_2015_0.pdf
http://www.nyainternational.com/sites/default/files/nya-publications/151027_Cyber_Extortion_Risk_Report_2015_0.pdf

270 J. Burdges et al.

26. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (eds.) Security
and Privacy in Social Networks. Springer, New York (2013). http://arxiv.org/abs/
1107.4524

27. IBI research: Digitalisierung der gesellschaft 2014 – aktuelle einschätzungen
und trends (2014). http://www.ecommerce-leitfaden.de/digitalisierung-der-gesell
schaft-2014.html

28. Riley, M., Elgin, B., Lawrence, D., Matlack, C.: Missed alarms and 40 million stolen
credit card numbers: how target blew it, March 2013. http://www.bloomberg.com/
bw/articles/2014-03-13/target-missed-alarms-in-epic-hack-of-credit-card-data

29. Rundle, G.: The humble credit card is now a political tool, October 2011. http://
www.crikey.com.au/2011/10/25/rundle-humble-credit-card-now-a-political-tool-
just-ask-wikileaks/

30. Stallman, R.: How much surveillance can democracy withstand? WIRED (2013)
31. Sweney, M.: City AM becomes first UK newspaper to ban ad blocker

users, October 2015. http://www.theguardian.com/media/2015/oct/20/city-am-
ban-ad-blocker-users

32. Szent-Ivanyi, T.: Wie firmen ihre kassen manipulieren, August 2015.
http://www.fr-online.de/wirtschaft/steuerhinterziehung-wie-firmen-ihre-kassen-
manipulieren-,1472780,31535960.html

33. Trautman, L.J.: Virtual currencies: Bitcoin & what now after Liberty Reserve, Silk
Road, and Mt. Gox? Richmond J. Law Technol. 20(4) (2014)

34. Volckart, O.: Early beginnings of the quantity theory of money and their context
in polish and prussian monetary policies, c. 1520–1550. Economic Hist. Rev. 50(3),
430–449 (1997). http://www.jstor.org/stable/2599810

35. W3c: Web payments payment flows, February 2016. https://github.com/w3c/
webpayments/tree/gh-pages/PaymentFlows

36. Wright, S.: PCI DSS A Practical Guide to Implementing and Maintaining Com-
pliance. 3rd edn. It Governance Ltd. (2011)

http://arxiv.org/abs/1107.4524
http://arxiv.org/abs/1107.4524
http://www.ecommerce-leitfaden.de/digitalisierung-der-gesellschaft-2014.html
http://www.ecommerce-leitfaden.de/digitalisierung-der-gesellschaft-2014.html
http://www.bloomberg.com/bw/articles/2014-03-13/target-missed-alarms-in-epic-hack-of-credit-card-data
http://www.bloomberg.com/bw/articles/2014-03-13/target-missed-alarms-in-epic-hack-of-credit-card-data
http://www.crikey.com.au/2011/10/25/rundle-humble-credit-card-now-a-political-tool-just-ask-wikileaks/
http://www.crikey.com.au/2011/10/25/rundle-humble-credit-card-now-a-political-tool-just-ask-wikileaks/
http://www.crikey.com.au/2011/10/25/rundle-humble-credit-card-now-a-political-tool-just-ask-wikileaks/
http://www.theguardian.com/media/2015/oct/20/city-am-ban-ad-blocker-users
http://www.theguardian.com/media/2015/oct/20/city-am-ban-ad-blocker-users
http://www.fr-online.de/wirtschaft/steuerhinterziehung-wie-firmen-ihre-kassen-manipulieren-,1472780,31535960.html
http://www.fr-online.de/wirtschaft/steuerhinterziehung-wie-firmen-ihre-kassen-manipulieren-,1472780,31535960.html
http://www.jstor.org/stable/2599810
https://github.com/w3c/webpayments/tree/gh-pages/PaymentFlows
https://github.com/w3c/webpayments/tree/gh-pages/PaymentFlows

Malware Characterization Using
Windows API Call Sequences

Sanchit Gupta1, Harshit Sharma2(&), and Sarvjeet Kaur1(&)

1 Scientific Analysis Group, DRDO, Delhi, India
{sanchitgupta,sarvjeet}@sag.drdo.in

2 NIIT University, Neemrana, India
harshit.sharma@st.niituniversity.in

Abstract. In this research we have used Windows API (Win-API) call
sequences to capture the behaviour of malicious applications. Detours library by
Microsoft has been used to hook the Win-APIs call sequences. To have a higher
level of abstraction, related Win-APIs have been mapped to a single category.
A total set of 534 important Win-APIs have been hooked and mapped to 26
categories (A…Z). Behaviour of any malicious application is captured through
sequence of these 26 categories of APIs. In our study, five classes of malware
have been analyzed: Worm, Trojan-Downloader, Trojan-Spy, Trojan-Dropper
and Backdoor. 400 samples for each of these classes have been taken for
experimentation. So a total of 2000 samples were taken as training set and their
API call sequences were analyzed. For testing, 120 samples were taken for each
class. Fuzzy hashing algorithm ssdeep was applied to generate fuzzy hash based
signature. These signatures were matched to quantify the API call sequence
homologies between test samples and training samples. Encouraging results
have been obtained in classification of these samples to the above mentioned 5
categories. Further, N-gram analysis has also been done to extract different API
call sequence patterns specific to each of the 5 categories of malware.

Keywords: Win-API � API hooking � Malware � Fuzzy hashing

1 Introduction

In today’s world everyone is connected and uses internet for most of the things. This
not only creates dependency on the internet but also increases possibility of
exploitation via it. Besides computers, smartphones are also a great source of con-
nectivity. Managing ever-evolving malware related to these devices is critical for
proper functioning and security. Despite the use of anti-virus software, new malware
and their variants are spreading continuously. Worms, Backdoors and Trojans are
growing at tremendous rate thus affecting the secrecy, integrity and functionality of the
systems. Thus the researchers and anti-malware vendors are always working in the area
of developing new solutions to counter the effect of malware.

Various approaches like Static analysis and Dynamic analysis have been proposed
for activities related to malware analysis. In Static analysis the binary code is analyzed
without executing it, whereas in Dynamic analysis the code is executed and its behavior

© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 271–280, 2016.
DOI: 10.1007/978-3-319-49445-6_15

is monitored. The advantage in dynamic analysis is that it even works for sophisticated
obfuscated binaries where static analysis is quite challenging and time-consuming.
However static features like Opcode n-gram, Byte code n-gram have been used as
features for Malware detection systems [1–4].

New malware can easily evade traditional hash-based signature detection by just
introducing slight modification in the code or applying obfuscation techniques. But
signatures based on dynamic analysis provide better detection rate as they capture the
behaviour of the malware which remains unaltered even after obfuscation. Further to
categorize the malware in different classes, behaviour specific to particular class needs
to be identified.

The main advantage in dynamic analysis is that the run-time behavior of the
executable is difficult to obfuscate. Also, the dynamic malware analysis can be easily
automated enabling analysis at large scale possible. But the disadvantage of dynamic
analysis is that it captures only one execution trace of the whole program. Also the
program must be run in secure run-time environment to evade the danger of getting
infection while doing analysis. Both of these limitations can be addressed by using
good test vectors for maximum code coverage and setting safe virtual environment.
Egele et al. [5] given an extensive survey of dynamic malware analysis techniques. We
have used dynamic analysis technique to analyze different class samples, where-in API
call sequences are extracted by running the samples.

Using API-calls for dynamic malware analysis is not a new concept as many
techniques have been proposed in the literature. Santos et al. [6] proposes a malware
detector based upon frequency of occurrence of operational code and API-calls. Ye
et al. [7] proposed malware detection system based on interpretable string analysis and
uses SVM with bagging for classification purpose. Zolkipli and Jantan [8] presented
malware behavior identification using run time analysis and resource monitoring and
malware classification using artificial intelligence technique. Islam et al. [9] used static
parameters namely string information, function length frequency and dynamic
parameters namely API function name and function parameters to classify between
malware and clean files. Gandotra et al. [10] gave extensive survey of various
researches related to malware classification. Ranveer and Hirai [11] categorized various
features used in the malware detection systems. They have compared features of static,
dynamic and hybrid type. Youngjoon et al. [12] used API call sequences as features
and they claimed to get accuracy of 0.998 in classification between benign and malware
samples. They have used DNA sequence alignment algorithm for detection of malware
samples.

Above mentioned research mainly is in the area of classification between malware
and benign samples. Nothing much has been done in regard of sub-classification
between various families of malwares. Park et al. [13] classified various variants of
worms based on system call graph matching. They used maximal common subgraph as
a feature to find similarities in worms. But their model is not able to provide higher
classification accuracy. Nari et al. [14] presented a framework for malware classifi-
cation into their respective families based on only the network behaviour. They have
used network flow and their dependencies to build behavioral profile. Families con-
sidered for classification were variants of trojans, backdoors and worms. Their
framework would not classify malwares with no network signatures.

272 S. Gupta et al.

In our study,five classes ofmalware have been analyzed:Worm,Trojan-Downloader,
Trojan-Spy, Trojan-Dropper and Backdoor. We took the main classes of windows mal-
ware and observed their behaviors related to files, registry, network, services etc. by
observing total 534API calls related to each category. Themain contribution in this paper
is developing a technique for malware classification and further extracting signatures for
all these five classes based on API call sequences.

2 Methodology

2.1 Overall Malware Classification and Characterization Framework

The Proposed Malware Characterization Framework is mainly using Win-API hooking
technique for API call sequence extraction and Fuzzy Hashing technique for signature
generation, matching and classification. To carry out this we have downloaded malware
samples from available internet resources [15–17]. Further this malware dataset is
tagged as per Kaspersky’s Antivirus classification through free VirusTotal [18] scan-
ning engine. In this work we have selected five classes of malware: Worm, Backdoor,
Trojan-Downloader, Trojan-Dropper and Trojan-Spy. The reason for selecting these
five classes is that we were able to get sufficient number of tagged samples for these
categories. Modules for API hooking and DLL injection were implemented in C lan-
guage to extract the Win-API call sequences. In all a set of 534 Win-APIs were hooked.
All the samples were run and their API call sequence was observed. Repeated con-
secutive API calls were removed while generating signatures to remove redundancies.

To have higher level of abstraction, we bundled similar API-calls in one category.
In all 26 such categories (A…Z) were created and all the API calls were replaced with
the corresponding category. Fuzzy Hashing algorithm ssdeep [19] has been applied to
the categorized API call sequences to get the fuzzy hash signature of each malware
sample. Thus, a Fuzzy hash signature repository has been created for all the samples of
different classes. For a given test sample, we use the same procedure to extract its fuzzy
hash signature. Further we apply fuzzy hash signature matching algorithm [19]
between the given test sample and all the samples in the signature repository. These
matched values were averaged for each of the five classes and the sample is classified to
the highest matched class. The schematic diagram of Malware Classification frame-
work is shown in Fig. 1. Implementation details regarding all the above-mentioned
steps are given in the Sects. 2.2, 2.3, 2.4 and 2.5.

2.2 Malware Dataset Preparation and Extraction of Win-API Calls

Malware samples were downloaded from internet [15–17]. These samples were not
tagged, meaning no class specific information was available. But for training purpose
we required tagged malware samples. To address this issue, we have used the online
scanning services provided by Virustotal [18]. In particular, Kaspersky Anti-Virus
engine classification was used to tag malware samples to appropriate classes.

For experimentation, we selected 400 samples for each class of malware: Worm,
Backdoor, Trojan-Downloader, Trojan-Dropper and Trojan-Spy. We ran all these 2000

Malware Characterization Using Windows API Call Sequences 273

samples in virtual machine and extracted their Win-API call sequences. A C-program
was written for API hooking which uses Detours [20] library to extract the significant
534 Win-API calls. The Win-API call sequences were extracted by running every
sample for 30 s in the Virtual environment on Windows-XP. Consecutive same API
calls were clubbed together to remove redundant information from API call sequences.

2.3 Categorization of Win-API Calls

We have categorized the total set of 534 Win-API calls into 26 Categories based upon
the function these APIs are performing. These categories are developed by us and are
shown in Table 1. This categorization has been done to club all the APIs used to
achieve a higher level functionality into a single category. For example Win-API calls
like Send, Recv, WSARecv and Connect are related to socket communication and
hence are placed in Socket Communication category.

Fig. 1. Proposed malware classification framework.

274 S. Gupta et al.

2.4 Creating Fuzzy Hash Signatures

We have applied ssdeep [19] program to compute Context Triggered Piecewise Hash
(CTPH), also called fuzzy hash, on the categorized API call sequences. The concept of
fuzzy hashing has been used as it has the capability to compare two different samples
and determine the level of similarity between them. Instead of generating a single hash
for a file, piecewise hashing generates many hashes for a file based on different sections
of the file. CTPH algorithm uses the rolling hash to determine the start and stop of each
segment. CTPH Signature generation algorithm combines these section hashes in a
particular way to generate the fuzzy hash of the file. Also, two inputs with sequence of
identical bytes in between them can be identified using CTPH matching algorithm [19].

Table 1. Categorization of Win-API calls.

Category Code No. of API Some examples

Input/output Create A 14 CreatefileA, CreatePipe, CreateNamedPipeA
Input/output Open B 10 OpenFile, OpenFileMappingA
Input/output Write C 25 WriteFile, WriteConsoleW, WriteFileEx
Input/output Find D 13 FindFirstFileA, FindNextFileW
Input/output Read E 18 ReadFile, ReadFileEx, ReadConsoleA
Input/output Access F 19 SetFileAttributesW, SetConsoleMode
Loading Library G 7 LoadLibraryExW, FreeLibrary
Registry Read H 15 RegOpenKeyExW, RegQueryValueA
Registry Write I 13 RegSetValueA, RegSetValueW
COM/OLE/DDE J 154 OleCreate, OleLoad, CoBuildVersion
Process Create K 10 CreateProcessA, ShellExecute, WinExec
Process Read L 33 GetCurrentThreadId, ReadProcessMemory
Process Write M 10 WriteProcessMemory, VirtualAllocEx
Process Change N 12 SetThreadContext, SetProcessAffinityMask
Process Exit O 3 TerminateProcess, ExitProcess
Hooking P 5 SetWindowsHookA, CallNextHookEx
Anti-debugging Q 4 IsDebuggerPresent, OutputDebugStringA
Synchronization R 13 CreateMutexA, CreateSemaphoreW
Device Control S 6 DeviceIoControl, GetDriveTypeW
Socket Comm. T 70 Send, Recv, WSARecv, Connect
Network Information U 17 Gethostbyname, InternetGetConnectedState
Internet Open/Read V 13 InternetOpenUrlA, InternetReadFile
Internet Write W 2 InternetWriteFile, TransactNamedPipe
Win-Service Create X 2 CreateServiceW, CreateServiceA
Win-Service Other Y 11 StartServiceW, ChangeServiceConfigA
System Information Z 35 GetSystemDirectoryW, GetSystemTime
Total APIs 534

Malware Characterization Using Windows API Call Sequences 275

We have selected this technique because CTPH can match inputs that have
homologies and these sequences may be different in both content and length. As length
of extracted Win-API sequences for each sample is different, fuzzy hashing technique
suits us the most. These hashes constitute the signature repository. For our analysis, we
have developed a repository of 2000 fuzzy hash signatures, 400 for each class. Table 2
shows API call sequences and their fuzzy hash signatures for few samples of class:
Worm.

2.5 Matching Fuzzy Hash Signatures

Ssdeep [19]matching algorithm calculates thematching between fuzzy hashes of two dif-
ferent samples. This score is based on the edit distance algorithm: Damerau Levenshtein
Distance between two strings. This matching function counts the minimum number of
operations needed to transform one string into another. Allowed operations during string
matching are insertions, deletions, transpositions of two adjacent characters and substi-
tutions of a single character. After matching a comparison score is generated between
0 and 100. We have used this matching score as malware classification criteria.

3 Classification Results and Analysis

Our framework presently contains 2000 fuzzy hash signatures, 400 of each class. The
ssdeep tool also has a fuzzy hash signature matching module which gives a matching
score between 0 (totally different) and 100 (exactly same). For testing purpose, we took
120 samples for each category making a total of 600 samples. These samples were
taken from different sources than the training samples. The test samples were run and
their API call sequences were observed. Fuzzy hashes were calculated for all the
samples. Fuzzy hash matching score was calculated between the test sample and all the
samples of the training set. So average matching score is calculated for each class of
test data. Table 3 gives the consolidated results for all the classes. It was observed that
maximum matching is obtained between test samples and training samples of the same
class.

Table 2. Sample fuzzy hash signatures of worms.

Malware API call sequence Fuzzy hash

Worm 1 ZLMLZLMLRLZLZLSJLQBRLGSGSLZLDGZ
LRZJLSJSLHLHGQGLGZBGZGZLZLZLML
MLMHZGMLZLZAFWMWMWMF…

24:Nbz94nARL3dSaNN0yYRD1FKKGb
5mSDSu5mFNaaxQ1Xy7YpK/G:Bz9K
A19X0yYQ1bVmG

Worm 2 ZLMLZLMLRLZLZLSJLQLZBRLSLSLDGZL
RZJLSJSLHLHGQGLGZBGZGZLZLZLMLM
LMHZGMLZLZAFWMLMLMZF…

24:M4hz94nARL3dSaNN0yYRD1FKKG
b5cUEKsNQq:M8z9KA19X0yYQ1bc

Worm 3 SLZLGLZLZLQBRLTLHLHZSHMLZIRLZCA
CSLSMGLSJSLHLHGQGLGZBGZGZLZLZL
MLMLMHZGMLZLZAFLMLMLMZ…

24:lM2dV94nAsVPrr9WK0JPOEUf9uu
SHS0uYC35AAW5AAtwYQ4l3qNb2X:
NP9KAMPr6JPOE8935AAW5AAtwIlcc

276 S. Gupta et al.

These results gave us the confidence that fuzzy hashing can be used to classify the
samples in different classes. So each of the 120 test samples were individually classified
to the class based on maximum average matching score. Figure 2 gives the details of
the classification results for 120 test samples of each of the five categories. Since there
is no classification system available in literature for the above mentioned categories, so
we have given comparison of our system with malware vs benign classifiers [11, 12],
which are much simpler. For this we have divided our 5-class problem into five 2-class
problems, namely: Worm vs rest, Backdoor vs rest, Trojan-Dropper vs rest,
Trojan-Downloader vs rest and Trojan-Spy vs rest.

Table 4 gives the classification accuracy and FPR for these five 2-class problems,
and Table 5 gives the accuracy & FPR for 2 class classifier problems (Malware vs
Benign) [11, 12].

Also this model is able to classify more generic classes as compared to only worm
classification in [13] and it capture signatures of almost all possible activities of
malware as compared to only network activity presented in [14].

These classification results indicate that there exist class specific signatures for
every class which can be extracted manually by thorough inspection. Thus malware

Table 3. Average matching score (0–100) of fuzzy hashes between different classes of test
samples and training samples.

Test samples (# 120) Dataset of 2000 signatures (400*5)
Worm Backdoor Trojan-Dropper Trojan-Downloader Trojan-Spy

Worm 25.28 5.42 3.16 7.6 1.74
Backdoor 5.42 22.14 1.31 5.3 3.5
Trojan-Dropper 3.16 1.31 24.77 5.45 10.55
Trojan-Downloader 7.6 5.3 5.45 27.73 7.01
Trojan-Spy 1.74 3.5 10.55 7.01 26.63

Fig. 2. Classification results of 600 (120 * 5) test samples.

Malware Characterization Using Windows API Call Sequences 277

class specific signatures in terms of patterns were extracted. Table 6 gives few of the
distinctive patterns extracted for each category. The table also shows the presence of
these patterns in the other classes.

Table 4. Performance of our framework.

Classification problem Classification accuracy (%) FPR

Worm vs rest 96.33 0.022
Backdoor vs rest 92.67 0.045
Trojan-Dropper vs rest 93.66 0.039
Trojan-Downloader vs rest 96 0.025
Trojan-Spy vs rest 95.33 0.029

Table 5. Performance of malware detection models given in [11, 12].

Malware detection model based on feature (Malware vs
Benign)

Classification accuracy
(%)

FPR

Opcode n-gram + Byte code n-gram [1] 95 0.06
Opcode n-gram [2] 99 0.03
Opcode n-gram [3] 92 0.03
Byte Code n-gram + Opcode n-gram [4] 96 0.01
Opcode n-gram + API [6] 96.22 0.07
API + String + function length frequency [5] 97.05 0.055
Portable Executable Header + Strings [7] 93.7 0.15
System Call [21] 96.8 0.04
API Call with DNA sequence alignment [12] 99.8 –

Table 6. Presence (%) of some distinctive API Patterns in malware.

Pattern Worm Backdoor Trojan
Downloader

Trojan-Dropper Trojan-Spy

EBMZRFZRMHMHZH 0 0 24.16 0 0
LFAFECEAE 23 0 0 0 0
MLMLMLMLMLMLHD 0 58.95 0 0 0
GLGLGLSMHMHM
HM

0 12.3 0 0 0

ZDGLMH 3.75 0 25.83 0 2.5
LSLZXMXL 0 0 0 0 33.33
FLHZSRGLMLPLPLPL 0 2.1 0 0 32.51
LPLP LMLZJL 26.67 0 0 0 0
FZRFM JRIHLFIM 0.83 0 0 21.97 1.25

278 S. Gupta et al.

4 Conclusion

API call sequence and Fuzzy hashing based classification gives good results to classify
different kind of malware. Five different type of malware were studied: Worm,
Backdoor, Trojan-Downloader, Trojan-Dropper and Trojan-Spy. The results indicate
that Fuzzy hash matching is able to successfully capture the homologies in the behavior
of the malware samples. The results also indicate that class specific patterns can be
created for these classes of Malware.

5 Future Work

The proposed malware classification system will be extended to other malware classes.
Fuzzy hash based matching scheme can be replaced with more sophisticated text
pattern matching techniques. Number of samples in each category will be increased for
more accuracy. We propose to integrate all the activities into a single automated system
which will check all running programs for malicious behaviour. At present API
hooking has been done at User level which will be extended to Kernel level, if possible.
A similar approach will be used to capture behaviour of applications based on other
Operating systems like Linux, Android etc.

References

1. Shafiq, M.Z., Tabish, S.M., Mirza, F., Farroq, M.: Pe-Miner: mining structural information
to detect malicious executable in real time. In: 12th International Symposium on Recent
Advances in Intrusion Detection (2009)

2. Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., Elovici, Y.:
Unknown malcode detection using OPCODE representation. In: Ortiz-Arroyo, D., Larsen,
H.L., Zeng, D.D., Hicks, D., Wagner, G. (eds.) EuroIsI 2008. LNCS, vol. 5376, pp. 204–
215. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89900-6_21

3. Moskovitch, R., et al: Unknown malcode detection via text categorization and the imbalance
problem. In: IEEE International Conference on Intelligence and Security Informatics,
pp. 156–161 (2008)

4. Santos, I., et al.: Opcode sequences as representation of executables for data-mining based
unknown malware detection. Inf. Sci. 231, 64–82 (2013)

5. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic malware
analysis techniques and tools. ACM Comput. Surv. 44(2), 1–42 (2012)

6. Santos, I., et al.: OPEM: a static-dynamic approach for machine-learning-based malware
detection. In: International Conference CISIS12-ICEUTE12, vol. 189, pp. 271–280 (2013)

7. Ye, Y., et al.: SBMDS: an interpretable string based malware detection system using SVM
ensemble with bagging. J. Comput. Virol. 5(4), 283–293 (2009)

8. Zolkipli, M.F., Jantan, A.: Approach for malware behavior identification and classification.
In: 3rd International Conference on Computer Research and Development, Shanghai,
pp. 191–194 (2011)

9. Islam, M.R., Tian, R., Batten, L., Versteeg, S.: Classification of malware based on integrated
static and dynamic features. J. Netw. Comput. Appl. 36, 646–656 (2013)

Malware Characterization Using Windows API Call Sequences 279

http://dx.doi.org/10.1007/978-3-540-89900-6_21

10. Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classification: a survey. J. Inf.
Secur. 5, 56–64 (2014)

11. Ranveer, S., Hiray, S.: Comparative analysis of feature extraction methods of malware
detection. Int. J. Comput. Appl. 120(5), 1–7 (2015)

12. Youngjoon, K., Eunjin, K., HuyKang, K.: A novel approach to detect malware based on API
call sequence analysis. Int. J. Distrib. Sens. Netw., Article no. 4 (2015)

13. Park, Y., Reeves, D., Mulukutla, V., Sundaravel, B.: Fast malware classification by
automated behavioural graph matching. In: Sixth Annual Workshop on Cyber Security and
Information Intelligence Research (2010)

14. Nari, S., Ghorbani, A.A.: Automated malware classification based on network behavior. In:
International Conference on Computing, Networking and Communications (ICNC) (2013)

15. VxVault. http://www.vxvault.net
16. Vxheaven. http://www.vxheaven.org
17. VirusSign. http://www.virussign.com
18. VirusTotal. https://www.virustotal.com
19. Kornblum, J.: Identifying almost identical files using context triggered piecewise hashing.

Digit. Invest. J. 3, 91–97 (2006)
20. Hunt, G., Brubacher, D.: Detours: binary interception of Win32 functions. In: 3rd

Conference on USENIX Windows NT Symposium, pp. 135–143 (1999)
21. Firdausi, I., et al.: Analysis of machine learning techniques used in behavior-based malware

detection. In: Second International Conference on Advances in Computing, Control and
Telecommunication Technologies (ACT), pp. 201–203. IEEE (2010)

280 S. Gupta et al.

http://www.vxvault.net
http://www.vxheaven.org
http://www.virussign.com
https://www.virustotal.com

VMI Based Automated Real-Time Malware
Detector for Virtualized Cloud Environment

M.A. Ajay Kumara(B) and C.D. Jaidhar

Department of Information Technology,
National Institute of Technology Karnataka, Surathkal, India

{ajayit13f01,jaidharcd}@nitk.edu.in

Abstract. The Virtual Machine Introspection (VMI) has evolved as a
promising future security solution to performs an indirect investigation of
the untrustworthy Guest Virtual Machine (GVM) in real-time by oper-
ating at the hypervisor in a virtualized cloud environment. The existing
VMI techniques are not intelligent enough to read precisely the manip-
ulated semantic information on their reconstructed high-level semantic
view of the live GVM. In this paper, a VMI-based Automated-Internal-
External (A-IntExt) system is presented that seamlessly introspects the
untrustworthy Windows GVM internal semantic view (i.e. Processes) to
detect the hidden, dead, and malicious processes. Further, it checks the
detected, hidden as well as running processes (not hidden) as benign or
malicious. The prime component of the A-IntExt is the Intelligent Cross-
View Analyzer (ICV A), which is responsible for detecting hidden-state
information from internally and externally gathered state information of
the Monitored Virtual Machine (Med−V M). The A-IntExt is designed,
implemented, and evaluated by using publicly available malware and
Windows real-world rootkits to measure detection proficiency as well as
execution speed. The experimental results demonstrate that A-IntExt
is effective in detecting malicious and hidden-state information rapidly
with maximum performance overhead of 7.2 %.

Keywords: Virtual Machine Introspection · Hypervisor · Malware ·
Semantic gap · Cross-view analysis · Rootkits

1 Introduction

The virtualization platform is becoming an attractive target for an adversary due
to easy access of Virtual Machines (VMs) through the cloud service provider [1].
The proliferation of sophisticated rootkit or malware could alter the normal
behavior of the legitimate GOS by altering the critical kernel data structures [2–
4]. The traditional in-host antimalware defense solution is not only inadequate
to thwart advanced malware, but it can also be easily removed by sophisticated
rootkits or malware. For example, the malicious logic employed by the Agobot
variant rootkit is powerful enough to bypass 105 antimalware defensive processes
on the victims machine [5]. To detect the stealthy and elusive malware, the VMI
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 281–300, 2016.
DOI: 10.1007/978-3-319-49445-6 16

282 M.A. Ajay Kumara and C.D. Jaidhar

[6] has emerged as a tamper-resistant and Out-of-the-Box practical solution to
enforce transparently the security assurance on the run state of the GVM [5,7,8].

The VMI is able to gather the run-state information of the Med−VM with-
out the consent or knowledge of the one being monitored, while functioning
at the hypervisor or the Virtual Machine Monitor (VMM). However, obtain-
ing meaningful GVM state information such as process list, module list, system
calls details, network connections, etc., from the viewable raw bytes of the GVM
memory is a challenging task for the VMI and referred to as the semantic gap
[9,10]. To tackle this problem, several approaches have evolved over the last
few years by considering different constraints of the GOS [11,12]. However, the
current challenges of VMI are: (1) It must have higher scalability features to
introspect the rich semantic view of the live state of the GVM. To achieve this,
it requires tremendous manual effort to build kernel data structure knowledge
of large volumes of GOS [13], (2) The VMI solution requires frequent rewriting
of the introspection program due to the dynamic and frequent upgrading of the
kernel version, and (3) The VMI must be built with a robust introspection tech-
nique that would help to reduce the performance overhead and make the VMI
automated with little human effort.

On the other hand, many modern families of malware leverages stealth rootk-
its functionality to conceals itself, and to evade detection system to tamper
other critical kernel data structure such as files, directories, sockets, etc. of the
GOS [14,15]. The best way of detecting it is by identifying the hidden running
processes. This process is the key source of information for any introspection
program to spot the existence of the malware. A prior attempt, the VMM-based
Lycosid [16] is aimed at detecting and identifying only the hidden processes (HP)
of the Med−VM at the VMM level. However, the current generation of evasive
malware may create new malicious processes (not hidden) or attach itself to the
existing legitimate running processes. In such cases, Lycosid is inadequate to
detect such a malicious malware process. It does not identify the name or binary
of the process and it is also inefficient in checking the detected hidden details are
malicious or benign. Moreover, the process visible from the hypervisor may be
noisy, most likely incorrect, and may lead to a false positive. Another approach,
named the Linebacker [17], also uses the cross view analysis to investigate the
rootkit running on the GVM. The efficiency of the Linebacker has been demon-
strated on the VMware vSphere-based GVM. However, only the Windows GVMs
were considered for evaluation.

The significant challenges in detecting the malicious and dead processes,
particularly in a virtualized environment are:

– The number of running processes may significantly differ from time-to-time,
even if there are no hidden processes at the moment of introspection (while
checking inside the VM and viewed from the VMM). This is due to the fact
that the number of processes available in the system is not constant and
changes too frequently. This is due to the dynamic nature of the process cre-
ation. In such cases, it is highly dubious to rely on the introspected data.

VMI Based Real-Time Malware Detector 283

– Estimating accurately the number of dead processes and precisely identifying
the malicious processes (not hidden) in a timely manner on the run state of
Med−VM is a challenging task.

In this work, the VMI-based A-IntExt system for a virtualized environment
is presented. It mainly detects the hidden, dead and malicious processes that are
invoked by rootkits or malware by leveraging Intelligent Cross-View Analysis
for Process (ICV Ap) algorithm between the externally (VMM-level) captured
run-state information and the internally (In-VM level) acquired execution-state
information of the Med−VM . Further, it checks detected, hidden as well as run-
ning processes (not hidden) as benign or malicious.

The pertinent contributions of the present work are as follows:

1. We have designed, implemented, and evaluated a consistent and real-time
A-IntExt system that periodically scrutinizes the state of the Med−VM to
detect hidden, dead, and malicious processes by leveraging an open-source
VMI1 tool, while functioning at the hypervisor.

2. Our novel A-IntExt accurately detects malicious and hidden-state information
on the externally reconstructed high-level semantic view of the Med−VM ,
and internally gathers state information of the same Med−VM by adopting
its prime ICV Ap algorithm. Further, it checks detected hidden as well as
running processes (not-hidden) as benign or malicious by cross-checking with
both local malware database and public malware scanner.

3. A mathematical model of the ICV Ap algorithm has been designed, practically
implemented, and implanted into the A-IntExt that detects and classifies
suspicious activities of the Med−VM .

4. The other focus of the A-IntExt is to address the time synchronization prob-
lem associated with the internally and externally captured GV Ms′ state infor-
mation, which impacts on the hidden-state information detection. This issue
is tackled by using the Time Interval Threshold (TIT).

5. The robustness of the A-IntExt was evaluated using publicly available Win-
dows rootkits. In addition, malware was also employed in the experimental
work to make the evaluation comprehensive. The A-IntExt correctly detected
all of the hidden and malicious state information.

The rest of the paper is organized as fallows: Sect. 2 provides background and
related work. Section 3 provides detailed overview of proposed A-IntExt system.
Section 4 discusses memory state reconstruction. Section 5 presents experiment
and results analysis. The performance overhead of A-IntExt described in Sect. 6.
Finally discussion and conclusion addressed in Sects. 7 and 8 respectively.

2 Background and Related Work

To address the semantic gap impediment of the VMI, an attempt was made
by Virtuno [9] that creates an introspection program automatically to extract
1 http://libvmi.com/.

http://libvmi.com/

284 M.A. Ajay Kumara and C.D. Jaidhar

meaningful semantic information using the dynamic slicing algorithm based on
the low-level data source of the Med−VM . The main limitation of this tech-
nique is not being fully automated and requires minimal human effort. VMST
[11] significantly eliminated the limitation of Virtuoso, by enabling an auto-
matic generation of a secure introspection tool with a number of new features
and capabilities. The Virtuoso and VMST paid more attention to bridging the
semantic gap, but were unable to satisfy the usefulness and practicality of the
VMI. Moreover, these techniques have a high overhead. The system call redi-
rection approach [18] proposed to meet the real-world needs of the VMI by
significantly improving the practical usefulness of the VMI, and encouraged one
inspection program to inspect the different versions of the GVM. The VMI-
based open source tools called Xen Access [7] or LibVMI, VMI-PL [19], Vprobe
[25], and HYPERSHELL [20] seamlessly address the semantic gap problem by
extracting semantic low-level artifacts of the GVM from the hypervisor specific
to the memory state introspection.

Hidden process detection: Antfarm [21] is a VMM based approach incorpo-
rated at the VMM to track implicitly and exploit the GOS activities. However,
it is insufficient in detecting malicious processes, which are invoked for ker-
nel code alteration. Lycosid [16] extends Antfarm as a VMM-based approach
for hidden processes detection and identification, based on implicitly obtained
process information from the GOS. Moreover, implicitly obtained information
within the hypervisor can be noisy. The authors employed a statistical infer-
ence and hypothesis technique to address this challenge. Another out-of-VM
hypervisor-based approach, namely, process out-grafting [8] focuses on analyz-
ing the individual process of running all of the VMs processes to identify and
detect the suspected process in an on-demand way. Patagonix [22] a hypervisor-
based system that detects and identifies stealthily executing binaries regardless
of the state of the OS kernel. To achieve this it uses knowledge of the hardware
architecture.

The Ghostbuster [23], VM watcher [11] and Lycoside [16] commonly uses
cross-view analysis technique to detect and identify of any discrepancy between
the trusted view and the untrusted view of the Med−VM . However, comparison
of the semantic data is manually achieved in most of these prior work. The
main limitation of the VMI-based cross-view comparison is related to the time
synchronization problem associated with the internal and external view acquired.
In our work, this issue is addressed using TIT. The ICV Ap is intelligent enough
to distinguish between hidden, genuine, and dead processes.

3 Overview of the VMI Based Automated
Internal-External System

The goal of the VMI-based A-IntExt system is to enable the inspection tool in a
trusted Monitoring Virtual Machine (Ming−VM) to investigate the hidden and
malicious run state of the untrusted Med−VM . The overall architectural design

VMI Based Real-Time Malware Detector 285

Fig. 1. The proposed VMI based A-IntExt system

of the A-IntExt is shown in Fig. 1. The prime idea is to introduce a hyper-
visor protected, automated, and independent system to introspect the volatile
RAM pages of the Med−VM from the Ming−VM , and then to identify the hidden
execution state by performing an intelligent cross-comparison operation on the
internally and externally captured state information. The A-IntExt achieves this
goal by using the ICV A, which is an integral component. The major compo-
nents of the A-IntExt are the Guest Virtual Machine State Information Extractor
(GV MSIE), ICVA, Online Malware Scanner(OMS) and Alert Generator(AG).

3.1 Guest Virtual Machine State Information Extractor

The prime function of the GV MSIE is to extricate the run-state information
of the Med−VM . Its components are: (1) State Information Requester (SIR),
and (2) VMI-based State Information Extractor (V MISIE). The GV MSIE

initiates the process of investigation by signaling the SIR to send a state-
information request to the Med−VM for currently running processes details. The
SIR makes use of the communication channel established between the Ming−VM

and Med−VM to send a request and to receive a reply. Upon receiving the state-
information request (step 1), the Med−VM acquires the requested data locally,
and then sends the results to SIR after completion of the extraction operation.
After receiving the internally gathered state information as a reply from Med−VM

(step 2), the next task of the SIR is to verify whether a reply arrived within
TIT. If the time gap between the state-information request to state-information
reply lies within TIT, then GV MSIE immediately acquires the currently run-
ning processes of the Med−VM from the hypervisor to capture the current

286 M.A. Ajay Kumara and C.D. Jaidhar

Fig. 2. Hidden processes (a) dubious processes (b) details of Med−V M externally intro-
spected (left side) and internally acquired (right side) by the A-IntExt after rootkit
injection on Windows GVM

execution state by directly introspecting the RAM pages of the one being mon-
itored (steps 3 and 4). The SIR rejects the state-information reply and sends a
fresh request whenever the time interval between the state-information request
and state-information reply falls outside the TIT.

Figure 2 shows the processes of the Med−VM captured internally and exter-
nally after malware and the rootkit injection, it includes hidden, Dubious
processes (DPs2) information. This is achieved by the well-built isolation prop-
erty of the hypervisor guarantees that the state information captured from the
Ming−VM is accurate. The procedure followed by the V MISIE to reconstruct
the Med−VM memory is described in Sect. 4. The GV MSIE sends the gathered
state information to the ICV Ap for further analysis.

3.2 Time Interval Threshold

TIT is utilized in the GV MSIE to address the time synchronization prob-
lem between the internal and external state-information captures. TIT is the
time interval between the state-information request sent to Med−VM and state-
information reply received by the SIR. Figure 3 demonstrates the TIT used by
the GV MSIE . Let T1 be the date and time at which the state-information request
is sent to the Med−VM , and T2 be the date and time at which the reply is received
by the SIR from the Med−VM . Upon receiving the state information, the SIR

2 Dubious Processes (DPs) are current state of executable processes it includes both
benign and malicious processes (not hidden) on the Ming−V M . Existing hypervisor-
based VMI systems are not intelligent enough to detect and identify actual malicious
processes that are running or attached to a benign one.

VMI Based Real-Time Malware Detector 287

checks the time interval between T2 and T1; T2 − T1 > ΔT, then the GV MSIE

rejects the received state information and resends the state information request,
where, ΔT denotes the predefined threshold time. If, T2 − T1 ≤ ΔT, then, the
GV MSIE immediately acquires the execution state of the Med−VM from the
hypervisor.

Assume that the processes P1, P2, P3...., PN are currently being run at
Med−VM and their details are extracted internally during the time interval
between T1 and T ′′

1 . If any process expires or dies after T ′′
1 and before T2, such

process details do not show up in the state information caught externally by the
Ming−VM . As a result, a disparity emerges between the internally and externally
captured state information of the Med−VM .

Fig. 3. Time interval threshold used by A-IntExt

The process details appear in the internally captured state information and
are absent in the externally captured state information treated as dead processes.
In contrast, if a new process PN+1 is created between T ′′

1 and T3, such process
details appear only in the externally captured state information and not in the
internally captured state information. As a result, process PN+1 is recognized as
a hidden process, even though process PN+1 is unconcealed. To tackle this issue,
first, A-IntExt extracts the entire executable file of the corresponding process,
and then, investigates to detect whether any malignant substance is present or
not.

3.3 Intelligent Cross-View Analyser

The ICV A is an integral component of the A-IntExt and its prime func-
tion is to recognize hidden and dead processes of the untrusted Med−VM ,

288 M.A. Ajay Kumara and C.D. Jaidhar

by performing an intelligent cross-examination between the internally and exter-
nally acquired execution-state information using ICV AP algorithm. A-IntExt
ascertains the existence of hidden processes by examining Eq. (4); similarly, dead
process presence is identified by checking Eq. (6). Further, A-IntExt classifies
the introspected processes as hidden and DPs to ascertain whether the detected
hidden process and DPs of Med−VM are benign or malicious by performing a
cross-examination with the public OMS, as discussed in Sect. 3.4.

Model for Intelligent Cross-View Analyzer for Processes. The notations
used in this section and in Algorithm 1 are depicted in Table 1. The process
details captured from the hypervisor (externally) undergo the preprocessing
operation, and then stored as EXTps = {PID ‖ PN1, P ID ‖ PN2, P ID ‖
PN3....., P ID ‖ PNm} where m = 1, 2, 3,..., and

Table 1. Notations used in the algorithms and their meaning

Symbol Meaning of the Symbol Used in

HPC Hidden Process Count Algorithms1

DPC Dead Process Count

PID Process Identifier

PS Process

PN Process Name

‖ Concatenation

PID‖PN PID concatenated with PN

INTps Internally Captured Processes

INTpsc Internally Captured Processes Count

EXTps Externally Captured Processes

EXTpsc Externally Captured Processes Count

EXTps(PID ‖ PNm) mth PID‖PN of EXTps

INTps(PID ‖ PNn) nth PID‖PN of INTps

PID ‖ PNm represent the mth process. The internally captured process
details after the preprocess operation are represented as INTps = {PID ‖
PN1, P ID ‖ PN2, P ID ‖ PN3....., P ID ‖ PNn} where n = 1, 2, 3,..., and
PID ‖ PNn represent the nth process. The ICV Ap performs the preprocess-
ing operation to remove unimportant state information and sort the elements of
both the EXTps and INTps in ascending order, based on the PID.

The total number of EXTps processes is symbolized as EXTpsc

EXTpsc =
m∑

j=1

PID ‖ PNj (1)

VMI Based Real-Time Malware Detector 289

Algorithm 1. Intelligent Cross View Analyzer for Process (ICV AP)
Input

1: Processes details captured externally from hypervisor stored as EXTps.
2: Process details captured and sent by the monitored virtual machine (Internally)

stored as INTps.

Output

1: Hidden and dead processes details
2: Hidden Process Count (HPC) and Dead Processes Count (DPC)

1: Pre-process the EXTps and INTps such that their elements are in sorted order
based on PID

2: Assign HPC=0, DPC=0, p=EXTpsc, q=INTpsc, n=1, m=1
3: for all m such that 1 ≤ m ≤ p do
4: if n > q then
5: Break
6: else
7: compare EXTps(PID ‖ PNm) with INTps(PID ‖ PNn)
8: if EXTps(PID ‖ PNm) = = INTps(PID ‖ PNn) then
9: m=m+1; n=n+1; goto step 4;

10: else
11: if EXTps(PID ‖ PNm) < INTps(PID ‖ PNn) then
12: store EXTps(PID ‖ PNm) as hidden process into HP.txt
13: m=m+1; HPC = HPC + 1; goto step 4
14: else
15: if EXTps(PID ‖ PNm) > INTps(PID ‖ PNn) then
16: store INTps(PID ‖ PNn) as dead process into DP.txt
17: DPC = DPC +1; n=n+1; goto step 4
18: end if
19: end if
20: end if
21: end if
22: end for
23: if m < p &&n > q then
24: Store EXTps(PID ‖ PNm),...,EXTps(PID ‖ PNp) as hidden processes into

HP.txt
25: HPC = HPC + (p-m).
26: end if
27: if m > p &&n < q then
28: Store INTps(PID ‖ PNn),..., INTps(PID ‖ PNq) as dead processes into DP.txt.
29: DPC=DPC + (q-n)
30: end if

The total number of INTps processes is represented as INTpsc

INTpsc =
n∑

j=1

PID ‖ PNj (2)

290 M.A. Ajay Kumara and C.D. Jaidhar

Any inconsistency between EXTpsc and INTpsc i.e. EXTpsc �= INTpsc indi-
cates an abnormal state of the Med−VM . Algorithm 1 depicts the procedure
followed by the ICV AP to perform the cross-examination between the EXTps

and INTps. At the end of the scrutiny, ICV AP provides Hidden Process Count
(HPC) and Dead Process Count (DPC), hidden and dead processes.

ICV AP (EXTps, INTps) → HPC,DPC, hidden, deadprocess (3)

To ascertain the hidden and dead processes, the ICV AP compares the
EXTps(PID ‖ PNm) with INTps(PID ‖ PNm), where (PID ‖ PNm)
is the mth PID and PN. It treats the examined processes as dubious when
they are equal. If they are unequal, it checks further to determine whether
EXTps(PID ‖ PNm) is greater than INTps(PID ‖ PNm); if the condi-
tion is satisfied, then the ICV AP declares the INTps(PID ‖ PNm) as a
dead process. It continues the comparison operation EXTps(PID ‖ PNm)
with INTps(PID ‖ PNj), where j = m + 1, m + 2,..., until it finds that
EXTps(PID ‖ PNm) is equal to INTps(PID ‖ PNj), and then declares the
processes from INTps = {PID ‖ PNm,, P ID ‖ PNj−1} as dead processes
when the condition EXTps(PID ‖ PNm) = = INTps(PID ‖ PNj) is sat-
isfied. If EXTps(PID ‖ PNm) is less than INTps(PID ‖ PNm), then the
ICV Ap declares the EXTps(PID ‖ PNm) as a hidden process. The comparison
operation between the externally and internally captured state information is
continued until all of the elements are examined.

Case 1: HPC > 0 indicates that some processes are hidden at the Med−VM .
Equation (4) is an indication of malware infection.

((EXTpsc �= INTpsc)&&(HPC > 0)) (4)

Case 2: HPC = 0 denotes that the processes viewed externally are the same
as the processes viewed internally. The state of the Med−VM is dubious state
when Eq. 5 is satisfied.

((EXTpsc == Intpsc)&&(HPC == 0)) (5)

Case 3: The dead process count indicates that the number of processes cap-
tured externally is smaller than the number of processes captured internally.
This is due to the dynamic nature of the create and destroy of processes. To
overcome this situation, A-IntExt first captures the state information of the
Med−VM internally, followed by externally within the TIT.

(EXTpsc < INTpsc) (6)

3.4 Online Malware Scanner

The OMS is another key component of the A-IntExt and it performs two key
functions. First, from the hypervisor it extracts the complete binary of the hidden
process (executable file) that is reported by the ICV AP . The OMS accomplishes

VMI Based Real-Time Malware Detector 291

this by utilizing procdump plugin of an open source tool3 on the acquired memory
dump of Med−VMs. For each executable file, it computes three distinct hash
digests, such as Message Digest (MD5), Secure Hash Algorithm-1 (SHA-1), and
Secure Hash Algorithm-256 (SHA-256). Further, these computed hash digests
were checked with Local Malware Database (LMD4) to identify any types of
hash digests were matched with stored hash digests of known malware types, if
not it sends the computed hash digests to powerful public free OMSs and gets an
examination report to ascertain whether the extracted executable file is benign
or malignant. Similarly, OMS also extracts other processes executable files that
are not classified as hidden processes by the ICV AP that are currently being
running in the Med−VM . These processes are named as dubious processes. Like
shrouded processes, the OMS additionally registers hash digest for non-concealed
processes and sends them to OMS to identify whether the non-concealed process
executable file is malevolent or benign. The procedure involved in determining
whether the detected hidden and running dubious (not-hidden) processes are
benign or malicious is shown in Fig. 4. The accurate identification and detection
of hidden processes leads to A-IntExt generating an alert.

4 Windows VM Memory State Reconstruction

The Intel VT-X and AMD-V virtualization architectures provide hardware-
assisted Extended Page Table (EPT) and nested page table to facilitate the
address translation more efficiently by leveraging the EPT mechanism [26], the
A-IntExt is able to read the guest virtual address from the raw memory contents
of the GVM. However, due to the dynamic nature and consistent upgrading of
the kernel version, reconstructing the semantic view of the virtual machine is
a challenging task for the VMI technology. To reconstruct the memory state of
the Med−VM , the A-IntExt prototype leverages an open-source VMI tool that
uses the xc map foreign range() function provided in the Xen Control Library
(libxc) to understand and reconstruct volatile memory artifacts of the Med−VM

without the consent of the Med−VM . Later, the same function accesses the RAM
memory artifacts, and finally, converts the page frame number to the memory
frame number.

Translation of the virtual machine memory address into the corresponding
physical address in the host machine is needed to reconstruct the semantic view
of the Med−VM . To reconstruct the memory state information for a commod-
ity operating system (e.g., Windows), the VMI techniques require an in-depth
knowledge of the GVM kernel data structures. Static data entries of the kernel
symbol table are crucial for the kernel and boot-up procedures. Memory-state
reconstruction is the initial step in extracting meaningful high-level information
(ps, lsmod, etc.) from low-level artifacts of the live GVM. This is achieved in
3 http://www.volatilityfoundation.org/.
4 LMD consists of 107520 MD5,SHA-1, and SHA-256 hash digest for all previously

identified well-known families of malware which was obtained by using https://
virusshare.com/ malware repository.

http://www.volatilityfoundation.org/
https://virusshare.com/
https://virusshare.com/

292 M.A. Ajay Kumara and C.D. Jaidhar

Fig. 4. Online malware scanner

the A-IntExt system by leveraging the VMI technology, while functioning at
Ming−VM of the hypervisor with the kernel symbol table of the corresponding
GVM.

In the Windows system, each process associated with a data structure is
called an EPROCESS. Each EPROCESS has many data fields and one Forward
Link (FLINK) pointer and one Backward Link (BLINK) pointer. The FLINK
contains the address of the next EPROCESS and BLINK stores the address
of the previous EPROCESS. The first field of the EPROCESS is a process
control block, which is a structure of type Kernel Process (KPROCESS). The
KPROCESS is used to provide data related to scheduling and time accounting.
Other data fields of the EPROCESS are PID, Parent PID (PPID), exit status,
etc. [24]. The field position of the PID and the PPID in the EPROCESS structure
may differ from one operating system version to another version, and the series of
FLINK and BLINK systematizes the EPROCESS data structures in a circular
doubly linked list. A Windows symbol, such as the PsActiveProcessHead, points
to the doubly linked list. Traversing the EPROCESS doubly linked list from the
beginning to the end provides all of the running process details.

VMI Based Real-Time Malware Detector 293

5 Experimental Results and Evaluation

5.1 Experimental Setup

Experiments were conducted on the host system, which possessed the follow-
ing specifications: Intel(R) core(TM) i7-3770 CPU@3.40 GHz, 8 GB RAM, and
Ubuntu 14.04 (Trusty Tahr) 64-bit operating system. The popular open-source
Xen 4.4 bare metal hypervisor was utilized to establish a virtualized environ-
ment. To introspect the run state of the live Med−VM , Windows XP-SP3 32 bit
GVM created as DOMU-1 under the Xen hypervisor. The GVM was managed
by the trusted VM (DOM-0 i.e. management unit) of the Xen hypervisor. The
A-IntExt was installed on the DOM-0 VM, and it leveraged the popular VMI
tool, namely, the LibVMI version 0.10.1 to introspect low-level artifacts of the
GVMs. The LibVMI traps the hardware events and accesses the vCPU registers,
while functioning at the hypervisor.

5.2 Implementation

The implementation of A-IntExt is at three levels: (i) it acts as a VMI system
by leveraging a prominent VMI tool to introspect and acquire the GVM running
state information without human intervention, (ii) the ICV AP algorithm is
implemented as Proof of Concept (PoC) and induced into the A-IntExt, wherein
the ICV AP detects hidden, dead and dubious processes. In addition, a program
was developed that establishes a communication channel between the A-IntExt
and the Med−VM , which also facilitates the transfer of state information by the
Med−VM to the ISR. (iii) The A-IntExt comprises another major component
named OMS (see Sect. 3.4). It is used to identify whether the detected hidden
and classified DPs are benign or malicious by auxiliary verification with LMD
and large online free public malware scanners5 while addressing the malicious
processes (not hidden) detection challenges as discussed in Sect. 1.

5.3 Windows Malware and Windows Rootkits

To convert the benign Windows GVM into a malicious one and to perform
malicious activities on the GVM, two stages of experiments were performed using
a combination of both malware and publically available Windows rootkits. In
the first stage, the evasive malware variant called Kelihos was directly collected
from malware repository6 to generate bulk malicious processes. In the second
stage of the experiment, five publicly available real-world Windows rootkits that
have the ability to hide the processes were used.

Experiment 1: Kelihos is a Windows malware also known as Hlux. Once it
starts to execute, it generates a number of child processes, and then exits from
the main process to conceal its existence. It launches a set of processes in a span
5 https://www.virustotal.com/.
6 http://openmalware.org/.

https://www.virustotal.com/
http://openmalware.org/

294 M.A. Ajay Kumara and C.D. Jaidhar

of a short interval, which influences the process count. The main function of the
generated child process is to monitor user activities, and then report it to the
Command and Control Server (C&C) to be joined into a botnet. The Kelihos
malware was used to breed a number of processes, and at the same time, the
Hacker defender rootkit was used to hide the process. This test was done to
demonstrate the detection accuracy of the A-IntExt under a dynamic process
creation environment. The A-IntExt extracts the manipulated semantic kernel
data structure details related to the process by walking through the EPROCESS
data structure and its associated PsActiveProcessHead symbol (see Sect. 4).

Table 2. Detection and classification of hidden, dead and DPs by the A-IntExt for
windows GVM

Exp PS used PS visible

at GVM

PS Introspected

by A-IntExt

No. of PS classified by A-IntExt Time in

(Sec)

HPC DPC DPs

Test-1 25 20 25 5 0 20 0.22

Test-2 50 45 50 5 0 45 0.41

Test-3 75 70 74 5 1 69 0.63

Test-4 100 95 99 5 1 94 0.82

Test-5 125 120 123 5 2 118 1.03

The ICV Ap is a subcomponent of the A-IntExt and its task is to identify
hidden, dead and dubious processes by performing a comparison operation on
the internally and externally captured state information of the Med−VM . The
performance evaluation tests for both the ICV Ap and the A-IntExt were con-
ducted separately. To measure the execution speed of the ICV AP in detecting
the hidden and dead processes, experiments were performed with different num-
bers of processes, i.e., 25, 50, 75, 100, and 125. The execution speed denotes
the amount of time the ICV AP takes to derive a conclusion as to whether the
process is hidden, dead or dubious processes. The last columns of Table 2 depicts
the average detection time of the ICV AP for different numbers of processes on
the Windows GVM. One can observe that the detection time of the ICV AP for
125 processes is less than 1.03 s.

Table 3. Identifying an actual malicious process from detected hidden processes by
OMS of A-IntExt on Windows GVM.

Exp No. of HP Computed MD5 hash for classified HP Checked as PS name D R

1 5 55cc1769cef44910bd91b7b73dee1f6c Malicious hxdef073.exe 37/53

be046bab4a23f8db568535aaea565f87 NF procdump.exe 0/53

6cf0acd321c93eb978c4908deb79b7fb NF chrome.exe 0/53

bf4177e1ee0290c97dbc796e37d9dc75 NF iexplore.exe 0/53

d068da81e1ab27dc330af91bffd36e6b NF firefox.exe 0/53

VMI Based Real-Time Malware Detector 295

Table 4. Identifying an actual malicious processes from detected and classified DPs
by OMS of A-IntExt on Windows GVM.

Exp No.of DPs Scanned result Malicous PS reported with MD5 hash Name D R

Benign Malware

1 20 18 2 0bf067750c7406cf3373525dd09c293c EFMTnkT7m.exe –

5fcfe2ca8f6b8d93bda9b7933763002a kelihos dec.exe 37/55

Twenty-five processes were considered in the first test; each test was per-
formed five times to derive the average detection time. Prior to the evaluation,
five processes were hidden at the Med−VM and all of them were correctly detected
by the A-IntExt, including the hidden, dead, and DPs, as shown in Table 2. Fur-
ther, A-IntExt precisely address the malicious process detection challenges (see
Sect. 1) by leveraging its OMS component. As part of the experimental obser-
vations, Test-1 of Table 2 describes the 25 processes externally introspected by
A-IntExt, which includes five hidden processes and twenty DPs that are clas-
sified by the ICV AP ; these hidden and DPs are propagated by the malware.
In our experiment-1, we used kelihos malware to generate malicious processes
(not hidden) and perform spiteful activity on Med−VM . At the same time,
we used hacker defender rootkit to hide some processes. During introspection
of the untrustworthy Med−VM , A-IntExt precisely classified the infection activ-
ity of the malware processes as hidden and DPs. Table 3 describes that from
the five detected hidden processes, one process (hxdef073.exe) is correctly iden-
tified as malicious with Detection Rate(DR) of 37/53 based on the computed
hash, and the other four processes such as the procdump.exe, chrome.exe, iex-
plorer.exe, and firefox.exe, which were actually hidden by the hacker defender
rootkit, are reported as benign by the OMS. Similarly, Table 4 represents the 20
DPs that were classified by A-IntExt further, those processes were checked with
both LMD and OMS based on the computed hashes. The time taken to compute
MD5,SHA-1,SHA-256 hashes and cross-check with LMD are depicted in Fig. 5.
As a result, one process (EFMTnkT7m.exe) is identified as malicious by locally
checking with LMD (without forwarding to virustotal) and other advanced mal-
ware process (kelihos dec.exe) identified as malicous checking with OMS as
shown in Fig. 6, and the rest were recognized as benign or Nothing Found (NF).

Table 5. List and functionality of Windows rootkit

Rootkit name User mode/Kernel mode Target object Hide PS Detected by A-IntExt

Fu Rootkit Kernel mode EPPROCESS Yes Yes

HE4Hook Kernel Mode EPPROCESS Yes Yes

Vanquish(0.2.1) User mode IAT,DLL Yes Yes

Hacker Defender User mode IAT,DLL Yes Yes

AFX Rootkit User mode IAT,DLL Yes Yes

IAT: Interrupt Address Table, DLL: Dynamic Link Library

296 M.A. Ajay Kumara and C.D. Jaidhar

Fig. 5. The average time taken by OMS to compute MD5,SHA-1, and SHA-256 hashes
for different processes (5a). Time taken by OMS to detect malware by cross-checking
with LMD based on it’s computed hashes (5b).

Experiment 2: In the second stage of the experiment, five publicly available
Windows rootkits were used as shown in Table 5. The third and fourth columns of
Table 5 represent target object and complete functionality of the rootkit, respec-
tively. However, in this stage of the experiment, the detection capability of the
A-IntExt was limited to only the processes. For example, the FU rootkit lever-
ages the direct kernel object manipulation technique to hide a list of active
processes by directly unlinking the doubly linked list EPROCESS data struc-
ture. It contains the fu.exe executable file and the msdirectx.sys system file. The
function of hiding the kernel driver module files is achieved by the msdirectx.sys,
whereas the fu.exe file is used to configure and command the driver. The FU
rootkit is capable of achieving privilege escalation of the running processes and
can also alter the DLL semantic object of the kernel data structure by rewriting
the kernel memory. TheHE4Hook is a kernel-mode rootkit and the user-mode
rootkits areVanquish, Hacker defender, and AFX Rootkit. These rootkits have
the potential to hide the running processes on the Windows system. The fifth
column of Table 5 represents the detection of hidden processes performed by the
A-IntExt.

6 Performance Overhead

A series of tests were conducted using Windows system benchmark tools to
determine the performance impact of the A-IntExt. The benchmark tests were
executed on the Windows GVM in two different scenarios to evaluate the per-
formance impact of the A-IntExt. In the first scenario, the A-IntExt was dis-
abled (not functioning), and in the second scenario the A-IntExt was enabled
(running). PCMark05, an industry standard benchmark, was executed on the
Windows GVM to quantify the performance impact of the A-IntExt. Tests such
as the CPU, Memory, and HDD of the PCMark05 suite were considered. These

VMI Based Real-Time Malware Detector 297

Fig. 6. OMS results for kelihos dec.exe malware

Fig. 7. Performance impact of A-IntExt on PCMark05 in detecting hidden and mali-
cious state information of Med−V M for Windows GVM

tests were executed separately five time on the GVM. Finally, the results were
considered on an average five-time execution of each test.

298 M.A. Ajay Kumara and C.D. Jaidhar

During hidden, dead and DPs process detection, tests such as File Decryp-
tion, HDD-Text Startup, and HDD-File-Write induced maximum performance
overheads of 6.8 %, 7.2 %, and 5.6 %, respectively, other tests performance over-
heads observed is less than 5.5 %. These were noticed while the A-IntExt per-
formed process introspection traces on the executed malware and rootkits.
Figure 7 represents the overall performance of the A-IntExt in detecting hid-
den, dead and dubious processes detection.

The main reason for the performance loss is due to direct introspection and
the semantic view reconstruction operation performed by the A-IntExt. As the
ICV AP achieve the job offline, there is no performance overhead.

7 Discussion

The existing VMI techniques facilitate reconstructing a few semantic views of
the Med−VM by directly intercepting the RAM contents of the live Med−VM by
overcoming the semantic gap problem. However, these techniques are yet to be
intelligent and automated to introspect and accurately detect hidden or mali-
cious semantic state information on their reconstructed high-level semantic view.
The design, implementation, and evolution of the proposed A-IntExt are signi-
fied as an intelligent solution to precisely detect the malignant processes running
on the Med−VM . It acts as a perfect VMI-based malware symptoms detector by
logically analyzing the malicious infection of the operating systems key source
information (processes). The ICV Ap of the A-IntExt judiciously performs a
cross-examination to detect the hidden-state information of the GOS that is
manipulated by different types of evasive malware or stealthy rootkits. Malicious
processes (not-hidden) are identified by the OMS. We believe that the current
development of A-IntExt is proficient in detecting hidden, dead, and malicious
processes of any kind of malware or rootkit. However, detecting and identifying
both known and unknown malware processes by performing cross-examination
with both LMD and powerful online malicious content scanners (Viroustotal)
using it’s computed hashes (MD5, SHA-1, and SHA-256). The major limitation
in identifying malicious processes by the Viroustotal is that it accepts only four
requests per minute.

8 Conclusion and Future Work

In this work, we designed, implemented, and evaluated the A-IntExt system,
which detects hidden, dead and malicious processes by performing an intelligent
cross-view analysis on the internally and externally captured run-state informa-
tion of the Med−VM . The A-IntExt abstracts the semantic view (processes) of
the live Windows GVM externally (VMM-level). It uses an established commu-
nication channel between the Ming−VM and Med−VM to receive internally cap-
tured run-state information (at-VM-level), further proficiently detecting hidden
and malignant state information of the Med−VM that could be manipulated by
sophisticated malware or real-world rootkits. The A-IntExt is intelligent enough

VMI Based Real-Time Malware Detector 299

to address the challenges that lie in detecting malicious (not-hidden) processes
of the run state of the Med−VM using its OMS component. Publicly available
evasive malware, real-world Windows rootkits were used to perform a series
of experiments to accurately measure the hidden-state and malicious detection
capability of the A-IntExt. The experimental results showed the accuracy of A-
IntExt in detecting stealthy processes with a maximum performance overhead
of 7.2 %.

As future work, we plan to enhance the detection capability of the A-IntExt
to detect unknown malware which are not recognized by OMS of A-IntExt, by
incorporating machine learning algorithms so that detection capability A-IntExt
can be evaluated against most commonly emerging advanced persistent threats,
elusive malware and rootkit.

References

1. Pearce, M., Zeadally, S., Hunt, R.: Virtualization: Issues, security threats, and
solutions. ACM Comput. Surv. (CSUR) 45(2), 17 (2013)

2. Barford, P., Yegneswaran, V.: An inside look at botnets. Malware Detection.
Springer, New York (2007)

3. Lanzi, A., Sharif, M.I., Lee, W.: K-Tracer: a system for extracting kernel malware
behavior. In: NDSS (2009)

4. Prakash, A., et al.: Manipulating semantic values in kernel data structures: attack
assessments and implications. In: 2013 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). IEEE (2013)

5. Jiang, X., Wang, X., Dongyan, X.: Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security. ACM (2007)

6. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: NDSS. vol. 3 (2003)

7. Payne, B.D., Martim, D.D.A., Lee, W.: Secure and flexible monitoring of virtual
machines. In: Twenty-Third Annual Computer Security Applications Conference,
ACSAC 2007. IEEE (2007)

8. Srinivasan, D., et al.: Process out-grafting: an efficient out-of-VM approach for fine-
grained process execution monitoring. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security. ACM (2011)

9. Dolan-Gavitt, B., et al.: Virtuoso: narrowing the semantic gap in virtual machine
introspection. In: 2011 IEEE Symposium on Security and Privacy. IEEE (2011)

10. Jain, B., et al.: SoK: introspections on trust and the semantic gap. In: 2014 IEEE
Symposium on Security and Privacy. IEEE (2014)

11. Fu, Y., Lin, Z.: Bridging the semantic gap in virtual machine introspection via
online kernel data redirection. ACM Trans. Inf. Syst. Secur. (TISSEC) 16(2), 7
(2013)

12. Saberi, A., Yangchun, F., Lin, Z.: HYBRID-BRIDGE: Efficiently bridging the
semantic gap in virtual machine introspection via decoupled execution and training
memoization. In: Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS-2014) (2014)

13. Bauman, E., Ayoade, G., Lin, Z.: A Survey on Hypervisor-Based Monitoring:
approaches, applications, and evolutions. ACM Comput. Surv. (CSUR) 48(1), 10
(2015)

300 M.A. Ajay Kumara and C.D. Jaidhar

14. Goudey, H.: Threat Report: Rootkits. https://www.microsoft.com/en-in/
download/details.aspx?id=34797

15. Xuan, C., Copeland, J., Beyah, R.: Toward revealing kernel malware behavior in
virtual execution environments. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 304–325. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04342-0 16

16. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden
process detection and identification using Lycosid. In: Proceedings of the fourth
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments. ACM (2008)

17. Richer, T.J., Neale, G., Osborne, G.: On the effectiveness of virtualisation assisted
view comparison for rootkit detection. In: Proceedings of the 13th Australasian
Information Security Conference (AISC 2015), vol. 27, p. 30 (2015)

18. Wu, R., et al.: System call redirection: A practical approach to meeting real-world
virtual machine introspection needs. In: 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. IEEE (2014)

19. Westphal, F., et al.: VMI-PL: a monitoring language for virtual platforms using
virtual machine introspection. Digital Invest. 11, S85–S94 (2014)

20. Fu, Y., Zeng, J., Lin, Z.: HYPERSHELL: a practical hypervisor layer guest OS shell
for automated in-VM management. In: 2014 USENIX Annual Technical Conference
(USENIX ATC 2014) (2014)

21. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: tracking
processes in a virtual machine environment. In: USENIX Annual Technical Con-
ference, General Track (2006)

22. Litty, L., Andres Lagar-Cavilla, H., Lie, D.: Hypervisor support for identifying
covertly executing binaries. In: USENIX Security Symposium (2008)

23. Wang, Y.-M., et al.: Detecting stealth software with strider ghostbuster. 2005 Inter-
national Conference on Dependable Systems and Networks (DSN 2005). IEEE
(2005)

24. Lamps, J., Palmer, I., Sprabery, R.: WinWizard: expanding Xen with a LibVMI
intrusion detection tool. In: 2014 IEEE 7th International Conference on Cloud
Computing. IEEE (2014)

25. Vmware, 2011. Vmware, inc. vprobes programming reference. http://www.
vmware.com/pdf/ws8 f4 vprobes reference.pdf

26. Aneja, A.: Xen hypervisor case study-designing embedded virtualized Intel archi-
tecture platforms. Intel, March 2011. https://www.intel.in/content/dam/www/
public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-
paper.pdf

https://www.microsoft.com/en-in/download/details.aspx?id=34797
https://www.microsoft.com/en-in/download/details.aspx?id=34797
http://dx.doi.org/10.1007/978-3-642-04342-0_16
http://dx.doi.org/10.1007/978-3-642-04342-0_16
http://www.vmware.com/pdf/ws8_f4_vprobes_reference.pdf
http://www.vmware.com/pdf/ws8_f4_vprobes_reference.pdf
https://www.intel.in/content/dam/www/public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-paper.pdf
https://www.intel.in/content/dam/www/public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-paper.pdf
https://www.intel.in/content/dam/www/public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-paper.pdf

Post-quantum Cryptology

Solving Binary MQ with Grover’s Algorithm

Peter Schwabe and Bas Westerbaan(B)

Digital Security Group, Radboud University, Nijmegen, The Netherlands
peter@cryptojedi.org, bas@westerbaan.name

Abstract. The problem of solving a system of quadratic equations in
multiple variables—known as multivariate-quadratic or MQ problem—
is the underlying hard problem of various cryptosystems. For efficiency
reasons, a common instantiation is to consider quadratic equations over
F2. The current state of the art in solving the MQ problem over F2

for sizes commonly used in cryptosystems is enumeration, which runs in
time Θ(2n) for a system of n variables. Grover’s algorithm running on a
large quantum computer is expected to reduce the time to Θ(2n/2). As a
building block, Grover’s algorithm requires an “oracle”, which is used to
evaluate the quadratic equations at a superposition of all possible inputs.
In this paper, we describe two different quantum circuits that provide
this oracle functionality. As a corollary, we show that even a relatively
small quantum computer with as little as 92 logical qubits is sufficient
to break MQ instances that have been proposed for 80-bit pre-quantum
security.

Keywords: Grover’s algorithm · Multivariate quadratics · Quantum
resource estimates

1 Introduction

The effects of large quantum computers on the world of modern cryptography are
often summarized roughly as follows: “All factoring-based and discrete-log based
cryptosystems are broken in polynomial time by Shor’s algorithm [Sho94,Sho97]”
and “symmetric crypto is affected by Grover’s algorithm [Gro96], but we just
have to double the key size”. A more detailed look also reveals applications of
Grover’s algorithm in various asymmetric schemes (as in this paper); an even
more detailed look considers the question what exactly “large quantum com-
puter” means, i.e., how many logical qubits and how much time is required to
implement Shor’s and Grover’s algorithm. In the following, when we say “time”
we always refer to the cumulative number of gates that need to be executed.

This work has been supported by the European Commission through the ICT pro-
gram under contract ICT-645622 (PQCRYPTO); by the European Research Coun-
cil under grant 320571 (QCLS) and by the Netherlands Organisation for Scientific
Research (NWO) through Veni 2013 project 13114. Permanent ID of this document:
40eb0e1841618b99ae343ffa073d6c1e. Date: 2016-09-01.

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 303–322, 2016.
DOI: 10.1007/978-3-319-49445-6 17

304 P. Schwabe and B. Westerbaan

This is obviously very different from the number of gates that might be phys-
ically implemented. For example, implementing a loop of length 100 around a
certain circuit increases the number of executed gates (i.e., the time) by a factor
of 100, but does not increase the number of physical gates (except maybe for
the loop counter).

Recently, multiple papers have taken this more detailed approach of analyzing
the cost of quantum attacks against cryptographic primitives. For example, in
[GLRS16], Grassl, Langenberg, Roetteler, and Steinwandt describe how to attack
AES-128 with Grover’s algorithm using a quantum computer with 2953 logical
qubits in time about 287. We note that with the results of [GLRS16] it would
also be possible to perform this computation on a quantum computer with only
984 qubits, however, then increasing time by a factor of 3. In [AMG+16], Amy,
Di Matteo, Gheorghiu, Mosca, Parent and Schanck describe how to compute
SHA-2 preimages with Grover’s algorithm on a quantum computer with 2402
logical qubits in time about 2148 and how to compute SHA-3 preimages using
3200 qubits in time about 2154. For Shor’s algorithm the common estimate is
that one needs approximately 2n qubits to factor an n-bit number1. Breaking
RSA-1024 thus needs a quantum computer with at least 2048 logical qubits.

These results seem to suggest that quantum computers only affect cryptogra-
phy once they can be scaled to at least about one thousand qubits. In this paper
we show that much smaller quantum computers can be used to break crypto-
graphic schemes. Ironically, the schemes we are targeting are “post-quantum”
schemes, i.e., schemes that have been proposed to replace factoring-based sys-
tems like RSA and discrete-log based systems like DSA to resist attacks by quan-
tum computers. Specifically, we describe how to use Grover’s algorithm to solve
multivariate systems of equations over F2. This problem is known as the MQ
problem and it is in general NP-complete [GJ79]. It is the underlying hard prob-
lem of various signature schemes like HFEv− [PCG01,PCY+15] and (variants
of) Unbalanced Oil-and-Vinegar (UOV) [KPG99,DS05], and the identification
scheme proposed in [SSH11].

It is long known that Grover’s algorithm provides a square-root speedup in
enumeration attacks against this problem. What is new in this paper are two
implementations together with a detailed analysis of the cost of this attack in
terms of the number of required qubits and time (in the number of gates). These
numbers for Grover’s algorithm are largely determined by the number of qubits
and time required in an oracle that evaluates the target function. In the case of
MQ, evaluating the target function means evaluating the system of quadratic
equations at a superposition of all possible inputs. In this paper we describe two
such oracles for systems of quadratic equations over F2. The first oracle is easy
to describe and for m − 1 quadratic equations in n − 1 variables it only needs
m+n+2 qubits and at most 2m(n2+2n)+1 gates executed. The second oracle is
more sophisticated and requires only 3+n+ �log2 m� qubits, but approximately
double the number of gates executed of the first oracle.

1 The problem of factoring a number N is reduced to finding the order of an element x
modulo N , which requires a bit more than 2 log2 N qubits [NC10, §5.3.1].

Solving Binary MQ with Grover’s Algorithm 305

As a consequence, we show that the “80-bit secure” parameters (84 equa-
tions in 80 variables) used, for example, in the identification scheme described
in [SSH11] can be broken on a quantum computer with only 168 logical qubits
in time about 260 or on a quantum computer with only 92 logical qubits in time
about 261.

Organization of this paper. Section 2 gives a very brief introduction to quan-
tum computing to establish notation and to give the basic background required
to follow the remainder of the paper. Section 3 collects the quantum gates we
need in our oracles. Section 4 describes in detail our first Grover oracle for
the MQ problem over binary fields with a careful analysis of the complexity.
Section 5 continues with a description of the more complex second oracle which
requires fewer qubits. Finally, in Sect. 6, we briefly sketch how to optimize for
circuit depth instead of number of qubits. In Appendix A we provide quipper
code to generate the oracles and Python code to generate the first oracle. We
place this code into the public domain.

2 Preliminaries

In this section we will first give a concise definition of the problem we solve
in this paper. Then we introduce the bare essentials of quantum computing to
apply Grover’s algorithm. For a proper introduction, see [NC10].

2.1 Problem Definition

Problem 1. A system of quadratic equations overF2 is given by a “cube” (λ(k)
ij)i,j,k

over F2 and a vector (v1, . . . , vm) ∈ F
m
2 . The goal is to find (x1, . . . , xn) ∈ F

n
2 such

that
∑

1≤i,j≤n

λ
(1)
ij xixj = v1 . . .

∑

1≤i,j≤n

λ
(m)
ij xixj = vm.

Note that the system also contains linear terms as x2
i = xi.

For sizes of this problem commonly used in cryptography, the best classical
algorithm known is (Gray-code) enumeration [BCC+14]. Specifically, [YCC04,
Sect. 2.2] estimates that asymptotically faster algorithms take over only for sys-
tems with about n = 200 variables. On a quantum computer, however, one can
use Grover’s algorithm [Gro96,BHT98]. To apply Grover’s algorithm, we need
to provide a suitable oracle: a quantum circuit that checks whether a vector (xi)
is a solution for a given system (λ(k)

ij), (vk). Every Boolean circuit can be trans-
lated into an equivalent quantum circuit, however, näıve translations typically
require a vast amount of ancillary registers.

For notational convenience, we will solve the following equivalent problem.

306 P. Schwabe and B. Westerbaan

Problem 2. A system of quadratic equations over F2 in convenient form is
given by a ‘cube’ (λ(k)

ij)i,j,k in F2 where λ
(k)
ij = 0 whenever i > j. The goal is to

find x1, . . . , xn ∈ F2 such that
∑

1≤i≤j≤n

λ
(1)
ij xixj = 1 . . .

∑

1≤i≤j≤n

λ
(m)
ij xixj = 1.

Clearly every system in convenient form is also a regular system. Now we describe
how to turn any system (λ(k)

i,j), (vk) of m equations in n variables into an equiv-

alent system (λ′(k)
i,j) of m + 1 equations in n + 1 variables that is in convenient

form. For 1 ≤ i, j ≤ n + 1 and 1 ≤ k ≤ m define

λ′(k)
i,j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ
(k)
i,j i = j ≤ n

λ
(k)
i,j + λ

(k)
j,i i < j ≤ n

1 + vk i = j = n + 1
0 otherwise

λ′(m+1)
i,j :=

{
1 i = j = n + 1
0 otherwise.

The new equation forces xn+1 = 1 and so the new terms λ′(k)
n+1,n+1 = 1 + vk

compensate for having a constant term 1.
The first oracle we construct, will use at most n + m + 2 qubit-registers

and O(mn2) time for a system of m quadratic equations in convenient form
with n variables. Our second oracle will only use n + 3 qubit-registers, but
require approximately double the amount of time.

To conveniently describe our circuit later on, define

y
(k)
i =

∑

1≤j≤n

λ
(k)
ij xj E(k) =

∑

1≤i≤n

xiy
(k)
i .

Then (xi) is a solution if and only if E(k) = 1 for every 1 ≤ k ≤ m.

Example 1. As a running example throughout the paper, we will use the follow-
ing small system:

x1(1 + x2 + x3) + x2x3 = 1
x2(1 + x3) = 1

Before we continue with a step-by-step definition of the circuit for the first oracle,
we will review with the basics of quantum computing and in particular Grover’s
algorithm.

2.2 Quantum Computing

We start with finite classical computing and describe finite quantum computing
later in a similar fashion. Write n for the set of natural numbers less than n.
Clearly 2n is the set of possible states of an n-bit unsigned integer. Classically
every function from f : 2n → 2m is computable. However, some are easy to

Solving Binary MQ with Grover’s Algorithm 307

compute and others are practically infeasible. One measure of complexity is the
size of the smallest Boolean circuit containing just NAND-gates that computes f .

Later we will see that it is not easy for a quantum computer to efficiently
compute any classical function f , because every quantum gate must be invertible.
For every classical simple reversible gate, however, there exists a counterpart
quantum gate. In the construction of our oracles we will only use (the quantum
counterparts of) classical reversible gates.

The state of a quantum computer with n qubits is a tuple (a0, . . . , a2n−1)
of 2n complex numbers with |a0|2 + · · · + |a2n−1|2 = 1. It is convenient to write
subscripts of a in binary, e.g. a1...1 := a2n−1. If one opens up the quantum
computer and looks at the qubits, one will find that they collapse into some
classical state of just n bits in a non-deterministic fashion. The chance to find
all qubits in the classical state 0 is |a0...0|2. Similarly |ab1...bn |2 is the chance to
find the first qubit as the classical bit b1, the second qubit as the classical bit b2
and so on.

It is customary to define |b1 . . . bn〉 to be the state which is zero everywhere
except for on the b1 . . . bthn place. For example |0 . . . 0〉 = (1, 0, . . . , 0), |1 . . . 1〉 =
(0, . . . , 0, 1) and |00〉+|11〉√

2
= (1√

2
, 0, 0, 1√

2
). This last state is interesting: if one

measures the first qubit to be 0 (resp. 1), one is sure that the second qubit must
be 0 (resp. 1) as well. The two qubits are said to be entangled.

Every unitary complex 2n × 2n matrix U preserves length and thus will send
a state a to a new state Ua. Every operation a quantum computer can perform
(except for measurement) will be of this form. Conversely, every unitary (matrix)
is realizable by a universal quantum computer.

However, just like in the classical case, not every unitary is efficient to com-
pute. It is not yet clear what the primitive operations of the first practical
quantum computer will be and thus what would be the appropriate basic gates
of this quantum computer — or whether gate-count itself would be the most apt
measure of complexity. For instance, some gates (the Toffoli gates) in the gate
set we will use are more costly to make fault tolerant with the current quantum
error correcting codes than the others. For now we will make do.

If f : 2n → 2n is a reversible map, there is a unitary Uf fixed
by Uf |b1 . . . bn〉 = |f(b1 . . . bn)〉. In this way a reversible function corresponds
to a quantum program.

2.3 Applying Grover’s Algorithm

Problem 3. Let f : 2n → 2 be a function which is valued 0 everywhere except
on one place. The problem is to find, given a Boolean circuit for f , the place
where f is valued 1.

Classically one cannot do better in general than to try every possible input. On
average one will have to execute f for 2n−1 times. With a quantum computer this
problem can be solved with high probability by executing the quantum analogue
of f just 2

1
2n times using just n qubits. This is done using Grover’s algorithm.

Actually, Grover’s algorithm (with the quantum counting extension [BHT98])

308 P. Schwabe and B. Westerbaan

solves the more general problem where f has arbitrarily many places where it is
valued 1 and one is interested in any preimage of 1. In this paper, however, we
only need the simpler version.

Clearly f is not reversible. How can we then feed it to a quantum computer
where every operation should be invertible? One way is to define a new classical
reversible function Rf : 2n+1 → 2n+1 by

Rf (b1 . . . bny) =

{
b1 . . . bny f(b1 . . . bn) = 0,
b1 . . . bny f(b1 . . . bn) = 1.

Here overline denotes negation. For Grover’s algorithm it is sufficient to provide
a quantum circuit, the oracle, which is the quantum analogue of Rf . We claimed
Grover only needs n qubits. This is true, however in practice the oracle might
not be efficient to compute with just n qubits. Often the oracle itself requires
some ancillary qubits, say m, as scratch space to be efficient. In that case Grover
uses a total of n + m qubits.

The gist of Grover’s algorithm. To understand the remainder of this paper,
it is not required to know how Grover’s algorithm works (if the reader accepts
that the core part are evaluations of the oracle). However, for completeness, we
provide a brief summary of Grover’s algorithm.

Let f : 2n → 2 be any function for which we want to find a w ∈ 2n

with f(w) = 1. Write a, g, b respectively for the standard uniform superpo-
sition of all basisvectors, the basisvectors marked 1 by f , and the basisvectors
marked 0 by f . Concretely, with N = 2n and M = |f−1(1)|:

a =
∑

w∈2n

1√
N

|w〉 g =
∑

w∈2n

f(w)=1

1√
M

|w〉 b =
∑

w∈2n

f(w)=0

1√
N − M

|w〉

b

g

a
v

ROv

Ov

◦◦
◦◦
•
•

If we can put the quantum computer in
state g, then a measurement will give a bitstring w
with f(w) = 1 as desired. It is easy to see that a
is actually a linear combination of b and g: a =√

M√
N

g +
√

N−M√
N

b. As b and g are orthogonal, we can
visualize a as a point on a grid with axes g and b.
Let O be the unitary with O |w〉 = |w〉 if f(w) = 0
and O |w〉 = − |w〉 if f(w) = 1. It is not hard to con-
struct O from the oracle discussed above (the quan-
tum analogue of Rf). In our picture, O is simply a
reflection over the b axis. Note how an arbitrary v
on the grid is reflected to Ov. Let R denote the uni-
tary that reflects over a. By adding some angles in the picture and a moments
thought, one can see the action of RO is a counter-clockwise rotation in our grid
by twice the angle a has with b. If M is known, this angle is straight-forward to
compute. Grover’s algorithm is to prepare the quantum computer in state a and
then to execute as many times the unitary RO until the state of the computer

Solving Binary MQ with Grover’s Algorithm 309

is close to g. Measuring the bits will then give a bitstring w with f(w) = 1
with high probability. The number of times that RO has to be executed can be
shown [NC10, Eq. 6.17] to be at most �π

4

√
N/M�.

3 A Collection of Quantum Gates

In this section we collect the quantum gates that we will use for the oracles
presented in Sects. 4 and 5. All quantum gates we will use are the quantum
counterparts of reversible classical gates.

Gate 1. We will use a CNOT gate (controlled not — also called the Feynman
gate) to compute XOR. CNOT is usually drawn as shown below on the left. As
unitary it is defined on the computational basis by CNOT |x〉 |y〉 = |x〉 |x + y〉. It
corresponds to the classical reversible Boolean function on the right.

Gate 2. To compute AND, we will use the Toffoli gate T . It’s drawn below
on the left. As unitary it is defined by T |x〉 |y〉 |z〉 = |x〉 |y〉 |z + xy〉 (on the
computation basis). It corresponds to the classical invertible Boolean function on
the right.

Gate 3. To compute NOT, we use the X-gate, usually depicted by

As unitary it is defined by X |x〉 = |x〉 = |1 + x〉 (on the computational basis).

Gate 4. To compute the AND of multiple bits, we will use the n-qubit Toffoli
gate (Tn). It is a controlled not-gate with n − 1 control-bits. That is: its action
as a unitary on the computational basis is

Tn |x1〉 · · · |xn〉 = |x1〉 · · · |xn−1〉 |xn + (x1 · · · · · xn−1)〉.

310 P. Schwabe and B. Westerbaan

Note that T1 = X, T2 = CNOT and T3 = T . The n-qubit Toffoli gate is drawn
similarly to the regular Toffoli gate. For instance, this is the 4-qubit Toffoli gate:

Gate 5. For the second oracle we want to swap bits, which is done with the
2-qubit swap-gate S. It’s drawn below on the left2 As a unitary it is defined
by S |x〉 |y〉 = |y〉 |x〉 (on the computational basis). It corresponds to the classical
invertible Boolean function on the right.

It is expected that the X, SWAP and CNOT gates will be cheap to execute
and error correct on a quantum computer, whereas (n-qubit) Toffoli gates will
be expensive. This is why papers often list gate-counts separately for ‘easy’ and
‘hard’ gates.

4 The First Grover Oracle for MQ over F2

Our circuit Uλ to check whether (xi)i is a solution (of a system of m quadratic
equations in n variables in convenient form), will use n + m + 2 registers. It will
act as follows, where r = |1〉 if (xi)i is a solution and |0〉 else.

The first n registers are the input and should be initialized with x1, . . . , xn.
The circuit will not change them – not even temporarily. The next register will
be an ancillary register labelled t. It is intended to be initialized to |0〉. The

2 Note that a SWAP gate can be written with CNOTs:

Solving Binary MQ with Grover’s Algorithm 311

next m registers we will label e1, ..., em and should all be initialized to |0〉. The
final register is an output register labelled y.

We will construct our circuit Uλ step by step. Note that 1 + z = z. Thus,
with at most n − 1 CNOT gates and possibly an X-gate, we can put y

(1)
1 into t.

In our example (see Sect. 2):

Using one Toffoli gate, we put x1y
(1)
1 into e1. In our example:

Then, by applying the inverse circuit used to put y
(1)
1 into t, we can return t

to |0〉. As all the gates we use are self-inverse, the inverse circuit is simply the
horizontal mirror-image. In our example:

Using a similar circuit with at most 2n − 4 CNOT-gates, two X-gate and a
Toffoli-gate, we can add y

(1)
2 to e1, leaving the remaining registers untouched.

In our example y
(1)
2 = x2x3, hence we obtain the following:

312 P. Schwabe and B. Westerbaan

We continue with n − 2 similar circuits, to add y
(1)
2 , ..., y

(1)
n to e1. Our

complete circuit up to this point, has put E(1) into e1 with at most n2 + 2n
gates. (In our example we are already done.) The remaining registers are as they
were.

With m − 1 similar circuits we can store E(k) into ek for the other k. In
total we will have used at most m(n2 +2n) gates. In our example the remainder
will be:

Next, compute E(1) ·E(2) · · · · ·E(m) and store it in y using an m-qubit Toffoli
gate.

The circuit for our example is shown on the
right. Finally, we reverse the computation of E(1),
..., E(m) to reset all but the output register to
their initial state. We have used at most 2m(n2 +
2n) + 1 gates.

One might object to counting the n-qubit
Toffoli gate with the same weight as the other
gates. Indeed, classically one cannot even com-
pute arbitrarily large reversible circuits if one is
restricted to m-register gates and no temporary
storage [Tof80, Thm. 5.2]. However, without ancillary qubits and just with
CNOTs and one-qubit gates, one can create an n-qubit Toffoli gate. If one allows
one ancillary qubit, one only needs O(n) many ≤ 2-qubit gates to construct
a n-qubit Tofolli gate [MD03]. The gates used in this construction are, how-
ever, expensive to error correct with current codes. For the next oracle, we will

Solving Binary MQ with Grover’s Algorithm 313

implicitly construct a 2n-qubit Toffoli gate from an n-qubit Toffoli gate with n
ancillary qubits.

Python and Quipper code to generate the oracle presented in this section are
given in Appendix A.

5 The Second Grover Oracle for MQ over F2

In this section we will describe a second, more complex oracle, which requires
fewer qubits, but approximately twice the number of gates. As for the first oracle,
we give Quipper code to generate this second oracle in Appendix A.

In our first oracle we reserved for every equation a qubit register which stores
whether that equation is satisfied. At the end the oracle checks whether every
equation is satisfied by checking whether every of the corresponding registers is
set to |1〉. Instead, for our second oracle we will only count the number of equa-
tions that are satisfied. Instead of m separate registers, we will only need �log2 m�
registers which act as a counter. Instead of storing E(k) into a separate register,
the oracle will do a controlled increment on the counter. At the end the oracle
will check whether the value in the counter is m. This can be done with suitably
placed X-gates and a multi-qubit Toffoli.

Note that as the value of E(k) is not kept around anymore, it needs to be com-
puted and uncomputed a second time compared to the first oracle to uncompute
the counter qubits. This is the reason the second oracle requires approximately
double the number of gates.

We still have to describe the increment circuit for the counter register. Using
the standard binary encoding for the counter and the obvious increment is not a
good a choice: the incrementation is hard to implement efficiently without using
ancillary registers. We can do better by not adhering to the standard binary
encoding.

For instance consider the 3-qubit circuit on the right. This
circuit has two (classical) cycles: it will send |000〉 directly
to |000〉 and

|111〉 	→ |101〉 	→ |100〉 	→ |010〉 	→ |001〉 	→ |110〉 	→ |011〉 	→ |111〉.

This simple 3-qubit circuit can thus be used as a counter up to 7. For instance, to
count 5 equations with this circuit one initializes the counter register to |100〉,
applies the circuit for each valid equation and checks in the end whether the
counter register is set to |111〉.

Now we will show how to construct a similar simple circuit for any number of
qubits. For this construction we will need to think of the state |v1 . . . vn〉 as the
polynomial vnxn−1+· · ·+v2x+v1 over F2. For instance |1101〉 corresponds to 1+
x2+x3. The circuit above corresponds to multiplying by x in the field F2[x]/(x3+
x + 1). Indeed: the ladder of swap gates at the start of the circuit is a rotation

314 P. Schwabe and B. Westerbaan

down and would correspond to multiplying by x in the ring F2[x]/(x3 + 1). The
cNOT at the end of the circuit is responsible for the missing x term. The fact
that the circuit cycles over all (7) invertible elements of the field is by definition
equivalent to the fact that x3 + x + 1 is a primitive polynomial.

So, to construct a counter on c-qubits, one picks a
primitive polynomial p(x) over F2 of degree c (eg. from
[Wat62]) and builds the corresponding circuit. For
instance, x5 +x4 +x3 +x2 +1 is a primitive polynomial
and corresponds to the circuit on the right.

The following table lists the maximum number of
each gate used in the second oracle compared to the first for a system of 85
equations in 81 variables.

qubits X CNOT Toffoli and

First oracle 168 27,540 1,101,600 13,770 one 85-Toffoli

Second oracle 91 55,080 2,206,260 27,710 one 7-Toffoli

To find a solution to this example system, the oracle will be executed ∼240

times interleaved with reflections, which yields a total of ∼261 executed gates
when using the second oracle.

6 Circuit Depth

If gates act on separate qubits, they might be executed in parallel. For this
reason the depth of a circuit is often considered instead of the total number of
gates executed. For our first two oracles we choose to optimize for qubit count
instead of circuit depth. We will briefly sketch how to decrease the circuit depth
by allowing for more qubit registers.

If one changes the first oracle to use a separate t register for each equation,
the value of each equation can be computed practically in parallel and the circuit
depth is reduced from O(n2m) to O(n2+m) using a total of n+2m+1 registers.

There is still room for another trade-off: the terms y
(k)
i for a single equation

are not computed in parallel. If one uses a separate register for each y
(k)
i , one

could reduce the circuit depth to O(n + m) using a total of n2 + m registers.

7 Conclusion

We have shown step-by-step how to construct oracles for Grover’s algorithm to
solve binary MQ, implement these in a quantum programming language, and
estimate the resources it will use. As a corollary we find that some proposed

Solving Binary MQ with Grover’s Algorithm 315

choice of parameters for some “post-quantum” schemes seem practical to break
on a quantum computer with less than a hundred logical qubits.

We finish with a table that shows the upper bound of resources required to
solve a system with 84 equations in 80 variables with a single solution. (This
is the hard problem underlying the identification scheme described in [SSH11]
for “80-bits security”.) We reiterate that the number of gates mentioned is the
cumulative number of times that kind is executed.

first oracle second oracle

qubits 168 90

X gates 33,831,077,551,338,276 67,464,312,543,896,796

CNOT gates 1,345,329,399,702,340,800 2,690,658,799,404,681,600

Toffoli gates 16,816,617,496,279,260 33,840,847,554,240,980

7-qubit Toffoli gates 0 2,442,500,725,676

80-qubit Toffoli gates 1,221,250,362,838 1,221,250,362,838

85-qubit Toffoli gates 2,442,500,725,676 0

Hadamard gates 200,285,059,505,513 200,285,059,505,513

Controlled-Z gates 1,221,250,362,838 1,221,250,362,838

Total number of gates 1,430,025,554,865,881,938 2,861,116,040,048,158,450

Acknowledgments. The authors are grateful to Gauillaume Allais and Peter Selinger
for their helpful suggestions. In particular, it was Peter Selinger’s suggestion to con-
struct a counter from a primitive polynomial.

A Example code

The following is Python code that generates the first oracle circuit, which we
described informally in Sect. 4.

316 P. Schwabe and B. Westerbaan

Fig. 1. Oracles for the running example generated by Quipper

Solving Binary MQ with Grover’s Algorithm 317

To turn this into a useful commandline util that converts a system of
quadratic equations into a quantum circuit in Nielsen and Chuang’s QASM
[Chu05] format, we need a few more lines of code.3 One invokes the completed
script as follows.

python mqgrover.py 3 2 111010000110

The second oracle is more complex and easier to synthesize in a special purpose
language. The following is an implementation of the first and second oracle in
the quipper programming language [GLR+13b,GLR+13a,Sel], which is based
on Haskell.

3 https://github.com/bwesterb/mqgrover.

https://github.com/bwesterb/mqgrover

318 P. Schwabe and B. Westerbaan

Solving Binary MQ with Grover’s Algorithm 319

320 P. Schwabe and B. Westerbaan

The gate counts mentioned in the conclusion were generated by the build-in
GateCount functionality of Quipper, which was invoked (for the first oracle) with
the following code.

The variable sqe is set to the system of 85 equations in 81 variables where
every coefficient is 1 as it requires most gates executed in our construction. We
use the following implementation of Grover’s algorithm.

Solving Binary MQ with Grover’s Algorithm 321

References

[AMG+16] Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck,
J.: Estimating the cost of generic quantum pre-image attacks on SHA-2
and SHA-3. Preprint 2016. https://arxiv.org/abs/1603.09383

[BCC+14] Bouillaguet, C., Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.:
Fast exhaustive search for quadratic systems in F2 on FPGAs. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 205–
222. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 11

[BHT98] Brassard, G., HØyer, P., Tapp, A.: Quantum counting. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 820–831.
Springer, Heidelberg (1998). doi:10.1007/BFb0055105

[Chu05] Chuang, I.: Quantum circuit viewer: qasm2circ (2005). http://www.
media.mit.edu/quanta/qasm2circ/. Accessed 24 June 2016

[DS05] Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature
scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). doi:10.1007/
11496137 12

[GJ79] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company (1979)

[GLR+13a] Green, A.S., Lumsdaine, P.L.F., Ross, N.J., Selinger, P., Valiron, B.:
An introduction to quantum programming in quipper. In: Dueck, G.W.,
Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 110–124. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38986-3 10

[GLR+13b] Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quip-
per: a scalable quantum programming language. 48(6), 333–342 (2013).
https://arxiv.org/pdf/1304.3390

https://arxiv.org/abs/1603.09383
http://dx.doi.org/10.1007/978-3-662-43414-7_11
http://dx.doi.org/10.1007/BFb0055105
http://www.media.mit.edu/quanta/qasm2circ/
http://www.media.mit.edu/quanta/qasm2circ/
http://dx.doi.org/10.1007/11496137_12
http://dx.doi.org/10.1007/11496137_12
http://dx.doi.org/10.1007/978-3-642-38986-3_10
https://arxiv.org/pdf/1304.3390

322 P. Schwabe and B. Westerbaan

[GLRS16] Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying
grover’s algorithm to AES: quantum resource estimates. In: Takagi, T.
(ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 29–43. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-29360-8 3

[Gro96] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on The-
ory of Computing, pp. 212–219. ACM (1996)

[KPG99] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature
schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
206–222. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 15

[MD03] Maslov, D., Dueck, G.W.: Improved quantum cost for n-bit Toffoli gates.
Electron. Lett. 39(25), 1790–1791 (2003)

[NC10] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge (2010)

[PCG01] Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signa-
tures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297.
Springer, Heidelberg (2001). doi:10.1007/3-540-45353-9 21

[PCY+15] Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design prin-
ciples for HFEv- based multivariate signature schemes. In: Iwata, T.,
Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 14

[Sel] Selinger, P.: The quipper language. http://www.mathstat.dal.ca/
∼selinger/quipper/. Accessed 09 Jan 2016

[Sho94] Shor, P.W.: Algorithms for quantum computation: discrete logarithms
and factoring. In SFCS 1994 Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, pp. 124–134. IEEE (1994). http://
www-math.mit.edu/∼shor/papers/algsfqc-dlf.pdf

[Sho97] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–
1509 (1997). http://arxiv.org/abs/quant-ph/9508027

[SSH11] Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes
based on multivariate quadratic polynomials. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-22792-9 40

[Tof80] Toffoli, T.: Reversible Computing. Springer, Heidelberg (1980)
[Wat62] Watson, E.J.: Primitive polynomials (mod 2). Math. Comput. 16(79),

368–369 (1962)
[YCC04] Yang, B.-Y., Chen, J.-M., Courtois, N.T.: On asymptotic security esti-

mates in XL and Gröbner bases-related algebraic cryptanalysis. In: Lopez,
J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–
413. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30191-2 31

http://dx.doi.org/10.1007/978-3-319-29360-8_3
http://dx.doi.org/10.1007/3-540-48910-X_15
http://dx.doi.org/10.1007/3-540-45353-9_21
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www-math.mit.edu/~shor/papers/algsfqc-dlf.pdf
http://www-math.mit.edu/~shor/papers/algsfqc-dlf.pdf
http://arxiv.org/abs/quant-ph/9508027
http://dx.doi.org/10.1007/978-3-642-22792-9_40
http://dx.doi.org/10.1007/978-3-540-30191-2_31

Ring-LWE: Applications to Cryptography
and Their Efficient Realization

Sujoy Sinha Roy, Angshuman Karmakar, and Ingrid Verbauwhede(B)

ESAT/COSIC and IMinds, KU Leuven,
Kasteelpark Arenberg 10, 3001 Leuven-heverlee, Belgium

{sujoy.sinharoy,angshuman.karmakar,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. The persistent progress of quantum computing with algo-
rithms of Shor and Proos and Zalka has put our present RSA and ECC
based public key cryptosystems at peril. There is a flurry of activity
in cryptographic research community to replace classical cryptography
schemes with their post-quantum counterparts. The learning with errors
problem introduced by Oded Regev offers a way to design secure cryp-
tography schemes in the post-quantum world. Later for efficiency LWE
was adapted for ring polynomials known as Ring-LWE. In this paper we
discuss some of these ring-LWE based schemes that have been designed.
We have also drawn comparisons of different implementations of those
schemes to illustrate their evolution from theoretical proposals to prac-
tically feasible schemes.

Keywords: Post-quantum cryptography · Learning with errors · Ring
learning with errors · Implementations

1 Introduction

Post-quantum cryptography has become a popular research topic in cryptogra-
phy in this decade. Our existing public-key infrastructures greatly rely on cryp-
tographic primitives such as elliptic curve cryptography and RSA. The security
if these primitives are based on the hardness of elliptic curve discrete loga-
rithm problem and integer factorization. With our present day computers, these
two problems remain computationally infeasible for sufficiently large key size.
However a powerful quantum computer together with Shor’s (RSA) and Proos
and Zalka’s (ECDLP) algorithm can solve these problems in polynomial time.
Though there is no known powerful quantum computer till date, different orga-
nizations are trying to build quantum computers. In 2014 a BBC News article
[2] reports an effort by the NSA. Due to these threats the need for quantum
computer resistant public key cryptography has emerged. Recently NIST has
recommended a gradual shift towards post-quantum cryptography [6] and have
called for a standardization process for post-quantum cryptography schemes in
the PQCrypto 2016 conference. Different organizations in the field of informa-
tion storage and processing have responded to this call. For example, Google
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 323–331, 2016.
DOI: 10.1007/978-3-319-49445-6 18

324 S.S. Roy et al.

has recently introduced the scheme Frodo [4] in 1 % of all Chrome browsers. The
world wide cryptography research community has proposed several candidates
for post-quantum public key cryptography. Among them, the schemes based on
lattices have received the highest attention thanks to their simpler arithmetic
operations and wide range of applicability. In this paper we provide an overview
of different lattice based constructions and discuss their implementations.

The LWE Problem

The foundations of the cryptosystems that we discuss in this paper are based
on the learning with errors (LWE) problem that was introduced in 2005 by
Regev [28]. The problem is conjectured to be a hard problem and it is as hard
as solving several worst-case lattice problems. For a lattice with dimension n,
integer modulus q, and an error distribution X over the integers Z, the LWE
problem is defined as follows.

We denote vectors of dimension n by bold fonts. Generate a secret vector s of
dimension n by choosing its coefficients uniformly in Zq. Generate ai uniformly
and the error terms ei from X . Next compute bi = 〈ai, s〉 + ei ∈ Zq. The
LWE distribution is denoted as As,X over Z

n
q × Zq and is the set of tuples

(ai, bi). Solving the decision LWE problem is to distinguish with non-negligible
advantage between the samples from As,X and the same number of samples
drawn uniformly from Z

n
q × Zq. Solving the search LWE problem is to find s

from a polynomial number of samples drawn from As,X . The error distribution
X is normally a discrete Gaussian distribution with a standard deviation σ.

The original LWE problem is defined over lattices and is not very efficient
due to the use of large matrices. A more computationally efficient variant of
the problem, known as the ring-LWE problem was introduced by Lyubashevsky,
Peikert and Regev in [21]. The ring-LWE problem is defined over a polynomial
ring Rq = Zq[x]/〈f〉 where the irreducible polynomial 〈f〉 has degree n and
the coefficients have modulus q. The problem is defined as follows. Sample a
secret polynomial s(x), and error polynomials ei(x) ∈ Rq with coefficients from
X . Next generate polynomials ai(x) with coefficients chosen uniformly from Zq.
Compute bi(x) = ai(x) · s(x) + ei(x) ∈ Rq. The ring-LWE distribution is the
set of polynomial tuples (ai(x), bi(x)). The decision ring-LWE problem is to
distinguish between the samples (ai(x), bi(x)) and the same number of samples
generated by choosing the coefficients uniformly. The search ring-LWE problem is
to find the secret polynomial s(x) from a polynomial number of samples drawn
from the ring-LWE distribution. In the next section we will discuss different
cryptographic primitives that have been designed using the ring-LWE problem.

Public-key Encryption Schemes

An encryption scheme based on the ring-LWE problem has been proposed by
Lyubashevsky, Peikert and Regev in [21]. The steps are described below.

Ring-LWE: Applications to Cryptography and Their Efficient Realization 325

1. KeyGen() : Generate a polynomial a ∈ Rq with coefficients chosen uniformly
in Zq. Next sample two polynomials r1, r2 ∈ Rq from X and compute p =
r1 − a · r2 ∈ Rq. The public key is (a, p) and the private key is r2.

2. Enc(a, p,m) : First encode the message m to a polynomial m̄ ∈ Rq. Sam-
ple three polynomials e1, e2, e3 ∈ Rq from X . The ciphertext is the pair of
polynomials c1 = a · e1 + e2 and c2 = p · e1 + e3 + m̄ ∈ Rq.

3. Dec(c1, c2, r2) : Compute m′ = c1 · r2 + c2 ∈ Rq and decode the coefficients
of m′ to either 0 or 1.

After the proposal of the encryption scheme, several implementations of the
encryption scheme followed [3,7,12,18,25,27,29]. The basic arithmetic opera-
tions are polynomial multiplication, addition, subtraction, and generation of
error polynomials from a discrete Gaussian distribution. For around 100 bit
security, the implementations use a parameter set with n = 256, a 13-bit mod-
ulus q, and a narrow discrete Gaussian distribution with standard deviation σ
around 4.5. Among all the arithmetic operations, polynomial multiplication is
the costliest one. To perform fast polynomial multiplication, the implementa-
tions use the number theoretic transform (NTT) which is a variant of the fast
Fourier transform (FFT) over integer rings. For the generation of error polyno-
mials from the discrete Gaussian distribution X , the implementations use one
of the following sampling algorithms [8]: rejection sampling, inversion sampling
and the Knuth-Yao sampling. In Fig. 1 a simplified hardware architecture for
ring-LWE encryption [29] is shown. The architecture uses its polynomial arith-
metic unit to perform polynomial addition and multiplication, and the discrete
Gaussian sampler (based on Knuth-Yao algorithm) to generate the error poly-
nomials. To achieve fast computation time, the architecture uses an efficient
memory access scheme. For more details, authors may follow [29]. In Tables 1
and 2 we show some of the implementation results on hardware and software
platforms respectively for different parameter sets (n, q, σ).

Digital Signature Schemes

Using hard lattice problems to create efficient digital signature scheme was
first demonstrated by Hoffstein et al. [15]. Their ‘Hash and Sign’ signature
scheme NTRUSign was an extremely efficient scheme in practice but the origi-
nal scheme’s ‘Hash and sign’ approach leaks information about the private key,

Control Signal and Address Generation

Memory

Bank

Arithmetic Unit

Polynomial

Discrete Gaussian
Sampler

Fig. 1. Architecture (simplified) for ring-LWE encryption [29]

326 S.S. Roy et al.

Table 1. Performance of Ring-LWE encryption in hardware

Implementation

algorithm

Parameters

(n, q, σ)

Device LUTs/FFs/

DSPs/BRAM18

Freq

(MHz)

Cycles/Time(μs)

Encryption Decryption

Roy et al. [29] (256,7681,4.516)

(512,12289,4.859)

Xilinx

V6LX75T

1349/860/1/2

1536/953/1/3

313

278

6.3 k/20.1

13.3 k/47.9

2.8 k/9.1

5.8 k/21

Pöppelmann

et al. [25]

(256,7681,4.516)

(512,12289,4.859)

Xilinx

V6LX75T

4549/3624/1/12

5595/4760/1/14

262

251

6.8 k/26.2

13.7 k/54.8

4.4 k/16.8

8.8 k/35.4

RLWE-Enc [26]

RLWE-Dec

(256,4096,3.33) Xilinx

S6LX9

317/238/95/1

112/87/32/1

144

189

136 k/946

-

-

66 k/351

Table 2. Performance of Ring-LWE encryption in software

Implementation algorithm Parameters (n, q, σ) Device Cycles

Encryption Decryption

Boorghany et al. [3] (256,7681,4.516) ARM7TDMI 878,454 226,235

Boorghany et al. [3] (256,7681,4.516) ATMega64 3,042,675 1,368,969

de Clercq et al. [7] (256,7681,4.516) Cortex-M4F 121,166 43,324

Göttert et al. [12] (256,7681,4.516) Core 2 Duo 4,560,000 1,710,000

Pöppelmann et al. [27] (256,7681,4.516) AX128 874,347 215,863

Liu et al. [19] (256,7681,4.516) AX128 666,671 299,538

namely the shape of the parallelepiped. It was first exploited by Gentry and
Szydlo [11] and later Regev and Nguyen [23] developed this weakness further to
show that an attacker can recover the private key with as few as 400 signatures.

Later Melchor et al. [22] used Gausssian sampling to hide this leakage
efficiently using rejection sampling introduced by Lyubashevsky [20]. Though
Lyubashevsky’s scheme helped to create secure and efficient digital signature
schemes like PASSSign [16] and BLISS [9], his scheme itself was very inefficient
due to the requirement of sampling from Gaussian distributions with large stan-
dard deviation and very high rejection rates. From the computational point of
view the most significant part of such signature schemes are polynomial mul-
tiplication and discrete Gaussian sampling. Unlike the encryption scheme, the
standard deviation of the discrete Gaussian distribution is orders of magnitude
larger to make these schemes secure and keep the signature sizes small. For exam-
ple, the signature scheme by Lyubashevsky in [20] requires a standard deviation
σ in between 3 × 104 and 1.7 × 105. Implementation of a fast sampler for such a
large standard deviation is a difficult problem. Hence the focus has been in the
direction of designing signature schemes with smaller standard deviation.

The Bimodal Lattice Signature Scheme known as BLISS [9] is a very popular
lattice based signature scheme. It has been implemented on a wide variety of
devices. The standard deviation of BLISS-I has σ = 215 for 128 bit security [9],
which is of magnitude smaller than the previous signature schemes, but still
larger than the σ used in encryption schemes.

For efficiency and security we need to store O(τσ entries to sample from
a discrete Gaussian distribution with standard deviation σ(τ = 12). The large

Ring-LWE: Applications to Cryptography and Their Efficient Realization 327

Table 3. Benchmark on a (Intel Core i7 at 3.4 Ghz, 32 GB RAM) with openssl 1.0.1c [9]
ECDSA on a prime field Fp: ecdsap160,ecdsap256 and ecdsap384 in openssl

Implementation Security Signature size SK size PK size Sign(ms) Verify(ms)

BLISS-0 ≤ 60 bits 3.3 kb 1.5 kb 3.3 kb 0.241 0.017

BLISS-I 128 bits 5.6 kb 2 kb 7 kb 0.124 0.030

BLISS-II 128 bits 5 kb 2 kb 7 kb 0.480 0.030

BLISS-III 160 bits 6 kb 3 kb 7 kb 0.203 0.032

BLISS-IV 192 bits 6.5 kb 3 kb 7 kb 0.375 0.032

RSA-2048 103-112 bits 2 kb 2 kb 2 kb 1.180 0.038

RSA-4096 ≥128 bits 4 kb 4 kb 4 kb 8.660 0.138

ECDSA 256 128 bits 0.5 kb 0.25 kb 0.25 kb 0.106 0.384

ECDSA 384 192 bits 0.75 kb 0.37 kb 0.37 kb 0.195 0.853

M
em

or
y Sparse

Polynomial

Multiplication

Compute−U

Huffman

Encoder

NTT

ALU

Decoder

Gaussian
Sampler

PolyMul

Compression

Rejection
SamplingKeccak

Hash

reject

c

Fig. 2. Architecture for BLISS-I signing [24]

memory requirement of BLISS makes it a challenging job to implement it on
devices with limited memory and computing power. In addition, the authors
of BLISS also proposed a new Gaussian sampling technique that requires only
O(log(τσ2)) storage thus making the scheme suitable scheme for small devices
(Table 3).

An efficient implementation of BLISS is by Pöppelmann and Ducas and
Güneysu [24]. The implementation uses the Peikert’s convolution lemma and the
Kullback-Leibler divergence to design a practical and efficient discrete Gaussian
sampler. Using the Peikert’s convolution lemma, a sample from the distribution
with σ = 215.73 is constructed by mixing two samples from a narrower distrib-
ution with σ = 19.53. This optimization is very useful since designing a sampler
for such a small standard deviation is a lot easier. The Kullback-Leibler diver-
gence is used to get a precision for a desired bit-security. A simplified architecture
diagram of BLISS-I from [24] is shown in Fig. 2. The architecture is composed of
a polynomial arithmetic unit, a discrete Gaussian sampler, a sparse polynomial
multiplier, a compression block (which includes a rejection sampler), and a Huff-
man encoder. On a Xilinx Spartan-6 FPGA the implementation [24] takes 114.1
μs for signature generation and 61.2 μs for signature verification. It is worth
noting here that there exists lattice based signature scheme that don’t require
Gaussian sampling at all [13,14]. And thus trading off speed with signature size.

328 S.S. Roy et al.

Also scheme proposed by Bai and Galbraith [1] requires Gaussian sampling only
in the keygen part, making the time critical signing process efficient.

Homomorphic Encryption Scheme

The beauty of the ring-LWE problem is that it is not restricted to encryption
and signature schemes. It has been used to design efficient homomorphic encryp-
tion schemes. With homomorphic encryption, computations can be performed
on encrypted data. Due to its homomorphism, equivalent computations are auto-
matically performed on the plaintext data. Thus with homomorphic operations,
users can upload their encrypted data in a powerful cloud service and still per-
form computations in the cloud on the encrypted data. With the emergence
of cloud service, a need for data privacy is gradually increasing. Beside data
processing, homomorphic encryption can have applications in oblivious com-
putations such as encrypted search. In an encrypted search, a user sends her
encrypted keyword to a search engine and the search engine returns encrypted
search result. The search engine and the associated data vendors are oblivious
of the user’s search.

A ring-LWE based homomorphic encryption scheme uses a basic ring-LWE
encryption scheme and two additional functions Add and Mult to perform arith-
metic operation on encrypted data. However in comparison to a simple ring-
LWE encryption scheme, a homomorphic encryption scheme requires a much
larger parameter set to support a desired multiplicative depth. An analysis on
the choice of parameter set for a required multiplicative depth for two homo-
morphic encryption schemes FV [10] and YASHE [5] is provided by Tancrde and
Naehrig in [17]. In the next part we provide some results for our implementation
of the encryption/decrytion for a parameter set that supports a depth of four.

We first designed the YASHE homomorphic encryption scheme for the para-
meter set with irreducible polynomial degree n = 2048, 105-bit modulus q, and
standard deviation σ = 11.32. The architecture uses full precision arithmetic:
operations are performed modulo q. To perform coefficient-wise multiplication, a
106-bit Karatsuba multiplier is used. The architecture is implemented in a Xilinx
ML605 board. with a Gigabit Ethernet interface. The homomorphic encryption-
decryption processor consumes 6K LUTs, 5K FFs, 24 BRAMs and 27 DSP mul-
tipliers. At 125 MHz frequency, encryption takes 6.8 ms and decryption takes 6.5
ms. However later a sub-field attack became applicable for the YASHE scheme
and the implementation became insecure.

Next we designed an architecture for the FV homomorphic scheme with a
similar parameter. This scheme is secure against the recent sub-field attack. To
achieve efficiency, we used the Chinese Remainder Theorem (CRT) in the poly-
nomial arithmetic. With this, operations modulo q reduces into several smaller
arithmetic operations modulo smaller primes. This is particularly suitable for
FPGA implementation where the DSP multipliers have small data width. When
implemented on the same FPGA board, the area consumption is: 6K LUTs, 4K
FFs, 36 BRAMs and 12 DSP multipliers. At 125 MHz frequency, the architecture
takes a total of 2 ms to perform one encryption and one decryption. This is a

Ring-LWE: Applications to Cryptography and Their Efficient Realization 329

lot faster than the previous implementation of the YASHE scheme, though the
YASHE scheme is around 1.5 times faster than the FV scheme. The efficiency is
achieved thanks to the use of CRT.

2 Current Trends

In this paper we have presented an overview of the implementations of ring-LWE
based cryptosystems. For public key encryption, ring-LWE encryption schemes
are faster than ECC based schemes. However, memory requirement is a bottle-
neck for implementations on extremely resource constrained platforms such as
passive RFID tags. The recent focus of the research community is to reduce the
parameter size so that memory requirement can be reduced.

Due to its wide popularity in designing public key cryptography primitives
and homomorphic encryption schemes, it is expected that in future more efficient
schemes will emerge. Beside efficiency, a new focus in this area is in the direction
of physical security of the schemes. The secret in a ring-LWE based scheme is a
polynomial and arithmetic operations involve masking data and the secret using
discrete Gaussian noise. Hence any leakage from the masking computation could
reveal information about the secret to an attacker.

Acknowledgements. This work was supported in part by the Research Council KU
Leuven: C16/15/058. G.0876.14N, and by the European Commission through the Hori-
zon 2020 research and innovation programme under contract No H2020-ICT-2014-
644371 WITDOM, H2020-ICT-2014-644209 HEAT and the ERC grant.

References

1. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04852-9 2

2. BBC News. NSA developing code-cracking quantum computer (2014). http://
www.bbc.com/news/technology-25588605

3. Boorghany, A., Sarmadi, S.B., Jalili, R.: On constrained implementation of lattice-
based cryptographic primitives and schemes on smart cards. Cryptology ePrint
Archive, Report 2014/514 (2014)

4. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V.,
Raghunathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure
key exchange from LWE. Cryptology ePrint Archive, Report 2016/659 (2016)

5. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45239-0 4

6. Boutin, C.: Nist kicks off effort to defend encrypted data from quan-
tum computer threat (2016). http://www.nist.gov/itl/csd/nist-kicks-off-effort-
to-defend-encrypted-data-from-quantum-computer-threat.cfm

7. de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-LWE encryption. In: Proceedings of the 2015 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE 2015), pp. 339–344 (2015)

http://dx.doi.org/10.1007/978-3-319-04852-9_2
http://www.bbc.com/news/technology-25588605
http://www.bbc.com/news/technology-25588605
http://dx.doi.org/10.1007/978-3-642-45239-0_4
http://www.nist.gov/itl/csd/nist-kicks-off-effort-to-defend-encrypted-data-from-quantum-computer-threat.cfm
http://www.nist.gov/itl/csd/nist-kicks-off-effort-to-defend-encrypted-data-from-quantum-computer-threat.cfm

330 S.S. Roy et al.

8. Devroye, L.: Non-uniform Random Variate Generation. Springer, Heidelberg (1986)
9. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and

bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

10. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/

11. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (2002). doi:10.1007/3-540-46035-7 20

12. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33027-8 30

13. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33027-8 31

14. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38616-9 5

15. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). doi:10.1007/
3-540-36563-X 9

16. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Practical sig-
natures from the partial fourier recovery problem. In: Boureanu, I., Owesarski, P.,
Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 476–493. Springer, Heidel-
berg (2014). doi:10.1007/978-3-319-07536-5 28

17. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT
2014. LNCS, vol. 8469, pp. 318–335. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06734-6 20

18. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36095-4 19

19. Liu, Z., Seo, H., Sinha Roy, S., Großschädl, J., Kim, H., Verbauwhede, I.: Efficient
ring-LWE encryption on 8-bit AVR processors. In: Güneysu, T., Handschuh, H.
(eds.) CHES 2015. LNCS, vol. 9293, pp. 663–682. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48324-4 33

20. Lyubashevsky, V.: Lattice signatures without trapdoors. Cryptology ePrint
Archive, Report 2011/537 (2011). http://eprint.iacr.org/2011/537

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

22. Melchor, C.A., Boyen, X., Deneuville, J.-C., Gaborit, P.: Sealing the leak on clas-
sical NTRU signatures. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp.
1–21. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11659-4 1

23. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg (2006). doi:10.1007/11761679 17

http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-46035-7_20
http://dx.doi.org/10.1007/978-3-642-33027-8_30
http://dx.doi.org/10.1007/978-3-642-33027-8_31
http://dx.doi.org/10.1007/978-3-642-38616-9_5
http://dx.doi.org/10.1007/3-540-36563-X_9
http://dx.doi.org/10.1007/3-540-36563-X_9
http://dx.doi.org/10.1007/978-3-319-07536-5_28
http://dx.doi.org/10.1007/978-3-319-06734-6_20
http://dx.doi.org/10.1007/978-3-319-06734-6_20
http://dx.doi.org/10.1007/978-3-642-36095-4_19
http://dx.doi.org/10.1007/978-3-662-48324-4_33
http://eprint.iacr.org/2011/537
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-319-11659-4_1
http://dx.doi.org/10.1007/11761679_17

Ring-LWE: Applications to Cryptography and Their Efficient Realization 331

24. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures
on reconfigurable hardware. Cryptology ePrint Archive, Report 2014/254(2014).
http://eprint.iacr.org/

25. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 68–85. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 4

26. Pöppelmann, T., Güneysu, T.: Area optimization of lightweight lattice-based
encryption on reconfigurable hardware. In: Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS 2014) Preprint (2014)

27. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based
cryptography on 8-bit ATxmega microcontrollers. In: Lauter, K., Rodŕıguez-
Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-22174-8 19

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing (STOC 2005), pp. 84–93, New York, NY, USA. ACM (2005)

29. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Com-
pact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 371–391. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 21

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1007/978-3-319-22174-8_19
http://dx.doi.org/10.1007/978-3-662-44709-3_21
http://dx.doi.org/10.1007/978-3-662-44709-3_21

NewHope on ARM Cortex-M

Erdem Alkim1(B), Philipp Jakubeit2, and Peter Schwabe2

1 Department of Mathematics, Ege University, İzmir, Turkey
erdemalkim@gmail.com

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands
phil.jakubeit@gmail.com, peter@cryptojedi.org

Abstract. Recently, Alkim, Ducas, Pöppelmann, and Schwabe pro-
posed a Ring-LWE-based key exchange protocol called “NewHope” [2]
and illustrated that this protocol is very efficient on large Intel proces-
sors. Their paper also claims that the parameter choice enables efficient
implementation on small embedded processors. In this paper we show
that these claims are actually correct and present NewHope software for
the ARM Cortex-M family of 32-bit microcontrollers. More specifically,
our software targets the low-end Cortex-M0 and the high-end Cortex-
M4 processor from this family. Our software starts from the C reference
implementation by the designers of NewHope and then carefully opti-
mizes subroutines in assembly. In particular, compared to best results
known so far, our NTT implementation achieves a speedup of almost
a factor of 2 on the Cortex-M4. Our Cortex-M0 NTT software slightly
outperforms previously best results on the Cortex-M4, a much more pow-
erful processor. In total, the server side of the key exchange executes in
only 1 467 101 cycles on the M0 and only 834524 cycles on the M4; the
client side executes in 1 760 837 cycles on the M0 and 982 384 cycles on
the M4.

Keywords: Post-quantum key exchange · Ring-LWE · Embedded
microcontroller · NTT

1 Introduction

Almost all asymmetric cryptography in use today relies on the hardness of factor-
ing large integers or computing (elliptic-curve) discrete logarithms. It is known
that cryptography based on these problems will be broken in polynomial time
by Shor’s algorithm [25] once a large quantum computer is built. It is, however,

P. Schwabe—This work has been supported by TÜBITAK under 2214-A Doctoral
Research Program Grant and 2211-C PhD Scholarship, by Ege University under
project 2014-FEN-065, by the European Commission through the Horizon 2020 pro-
gram under project number ICT-645622 (PQCRYPTO), and by Netherlands Orga-
nization for Scientific Research (NWO) through Veni 2013 project 13114. Part of
the work was done while Erdem Alkim was visiting Radboud University. Permanent
ID of this document: c7a82d41d39c535fd09ca1b032ebca1b. Date: 2016-09-01.

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 332–349, 2016.
DOI: 10.1007/978-3-319-49445-6 19

NewHope on ARM Cortex-M 333

unknown when this will be achieved. Researchers from IBM estimate the arrival
of such quantum computers within the next 2 decades [27]. This does not only
imply that we need to switch to so-called post-quantum cryptography in 15 or 20
years. For content that we want protected over a period of 15 years or longer it
is a necessary to switch already today. This has been recognized, for example,
by the NSA [1], by NIST [19], or by the Tor project [16].

In the majority of contexts the most critical asymmetric primitive to upgrade
to post-quantum security is ephemeral key exchange. In 2015, Bos, Costello,
Naehrig, and Stebila proposed a post-quantum key exchange based on the Ring-
learning-with-errors (RLWE) problem for TLS [7]. Later in 2015 (with updates in
2016), Alkim, Ducas, Pöppelmann, and Schwabe significantly improved on this
proposal (in terms of speed, message size, and security) with a protocol that they
call NewHope. This protocol is now used in a post-quantum-crypto experiment
by Google [8] and is considered as one option to upgrade Tor’s handshake to
post-quantum cryptography. See [16, Slide 16] and [14]. In Sect. 2.3 of the 2015-
12-07 version of [2], the authors of NewHope state that

“it [. . .] can be implemented in constant time using only integer arithmetic -
which is important on constrained devices without a floating point unit.”

In this paper we present such an implementation of NewHope on “constrained
devices”; specifically on the ARM Cortex-M0 and the ARM Cortex-M4 micro-
controllers. Our software starts from the C reference implementation by Alkim,
Ducas, Pöppelmann, and Schwabe and then carefully optimizes all performance-
critical routines in ARM assembly.

Contributions. Our software is to our knowledge the first to achieve 128 bits
of post-quantum security (with a comfortable margin) for key exchange on an
embedded microcontroller. In terms of speed, the software is not only competi-
tive, but actually considerably faster than today’s elliptic-curve-based solutions.
For example, our software outperforms the Curve25519 [4] implementation for
the Cortex-M0 presented in [11] by more than a factor of two.

This speed is possible in part because of the design of NewHope, and in part
through a careful optimization of the software on the assembly level. In particular
for the number-theoretic transform (NTT) we show significant speedups that will
also be useful in implementations of other lattice-based schemes. Specifically, our
dimension-1024 NTT takes 86 769 cycles on the Cortex-M4. The previous speed
record on this architecture was 71 090 cycles for a dimension-512 NTT from [9].
An NTT is essentially a sequence of “butterfly” operations where the number
of butterflies is n · log(n) for a dimension-n NTT. One would thus expect the
number from [9] to scale up to 10/9 · 2 · 71 090 = 157 977 cycles, almost a factor
of two slower than our result. On the much more restricted Cortex-M0 our NTT
needs only 148 517 cycles and thus still outperforms the (scaled) result from [9].
Other components that we optimized on the assembly level include the error
reconciliation [2, Sect. 5] and the ChaCha20 stream cipher [5] that is used for
efficient generation of uniform noise.

334 E. Alkim et al.

Availability of the software. We place all of the software described in this
paper into the public domain to maximize reusability of our results. It is available
at https://github.com/newhopearm/newhopearm.git and https://github.com/
erdemalkim/newhopearm.

Organization of this paper. Section 2 describes the NewHope post-quantum
key exchange scheme. Section 3 gives a brief overview of the Cortex-M processor
family and zooms into the specifications of and differences between the Cortex-
M0 and the Cortex-M4. Section 4 provides detailed information of design deci-
sions and constraints for both target devices. Finally, Sect. 5 presents and dis-
cusses our results and compares them to previous work.

2 The NewHope RLWE-based Key Exchange

The NewHope key exchange protocol is an instantiation of Peikert’s RLWE-
based passively secure KEM presented in [22]. This section recalls the specifica-
tion of the key exchange and in particular explains the computations involved
in the subroutines that our software optimizes on the ARM Cortex-M0 and the
Cortex-M4. For a detailed motivation of the design choices in NewHope and a
security analysis see [2].

The high-level overview of NewHope, as also listed in [2, Protocol 4], is
given in Protocol 1. In this overview, all elements printed in bold-face, except
for r, are elements of the ring Rq = Zq[X]/(Xn + 1), where q = 12289 and
n = 1024. The element r is in {0, 1, 2, 3}n. The operation ◦ denotes pointwise
multiplication. All other operations are explained in more detail in the following
paragraphs.

Parse (SHAKE-128). NewHope generates a new (public) parameter a for each
key exchange. This eliminates concerns about backdoors in this parameter and
all-for-the-price-of-one attacks (see [2, Sect. 3]). Server-side applications are free
to cache this parameter for several key exchanges to improve performance, but
our software, like the reference implementation, does not include caching. The
parameter a is generated from a random 32-byte seed by extending this seed
through the SHAKE-128 extendable-output function (XOF) from the FIPS-202
standard [21]. The output of SHAKE-128 is considered as an array of 16-bit
little-endian unsigned integers. Each of these integers is used as a coefficient of
a if it is smaller than 5q = 61445. Note that the amount of SHAKE-128 output
required to “fill” all coefficients of a may differ for different seeds (because a
different amount of 16-bit integers may be discarded). This is not a problem,
because a XOF is designed to produce outputs of variable length. It is also not
a problem from a side-channel perspective, because a is public.

Sampling noise polynomials from ψ16. The distribution ψk is a centered
binomial, which is used as LWE secret and error. NewHope uses the parameter
k = 16. The distribution ψ16 has a mean of 0 and a variance of 8, which leads
to the standard deviation of σ =

√
8. Generating a noise polynomial requires

secure random-number generation. For this purpose we use the ChaCha20 stream

https://github.com/newhopearm/newhopearm.git
https://github.com/erdemalkim/newhopearm
https://github.com/erdemalkim/newhopearm

NewHope on ARM Cortex-M 335

Parameters: q = 12289 < 214, n = 1024
Error distribution: ψn

16

Alice (server) Bob (client)

seed
$← {0, . . . , 255}32

â←Parse(SHAKE-128(seed))

s, e
$← ψn

16 s′, e′, e′′ $← ψn
16

ŝ←NTT(s)

b̂←â ◦ ŝ + NTT(e)
ma=encodeA(seed,b̂)−−−−−−−−−−−−−→

1824 Bytes
(b̂, seed)←decodeA(ma)

â←Parse(SHAKE-128(seed))

t̂←NTT(s′)
û←â ◦ t̂ + NTT(e′)
v←NTT−1(b̂ ◦ t̂) + e′′

(û, r)←decodeB(mb)
mb=encodeB(û,r)←−−−−−−−−−−

2048 Bytes
r

$← HelpRec(v)

v′←NTT−1(û ◦ ŝ) ν←Rec(v, r)
ν←Rec(v′, r) μ←SHA3-256(ν)
μ←SHA3-256(ν)

Protocol 1. The NewHope protocol including NTT and NTT−1 computations and

sizes of exchanged messages; ◦ denotes pointwise multiplication; x
$← χ denotes the

sampling of x ∈ R according to χ if χ is a probability distribution over R; a
$← Rq

denotes the uniform choice of coefficients from Zq; y
$← A denotes that the output of

A is assigned to y where A is a probabilistic algorithm running with randomly chosen
coins.

cipher [5] to expand a 32-byte seed (or, optionally on the Cortex-M4, the built-in
hardware RNG).

NTT and NTT−1. The core computational effort of NewHope lies in the
number-theoretic transforms (NTTs), which are to a large extent inherently
embedded into the protocol, because the exchanged messages contain polynomi-
als in the NTT domain. The NTT transform has three sub-routines: pointwise
multiplication, bit reversal of the coefficients of the polynomials, and the NTT
calculation itself. All input polynomials have randomly chosen coefficients, there-
fore, we can assume that the coefficients are already in bit-reversed order. This
leads to the situation, where our forward transform consists only of the NTT
and multiplication by square roots of twiddle factors. The NTT−1 consists of the
transform, the multiplication by the square roots of the twiddle factors and a
bit-reversal.

Encoding of messages. The key-exchange requires two message exchanges by
the corresponding two parties, as can be seen in Protocol 1. The main part
of each message is a 1024-coefficient polynomial with 14-bit coefficients. Those
polynomials are encoded into a compressed little-endian array, which takes a
total of 1792 bytes. The message ma contains an additional 32-byte seed and

336 E. Alkim et al.

thus reaches a total size of 1824 bytes; mb contains additional 256 bytes of
reconciliation information and thus reaches a total size of 2048 bytes.

Rec and HelpRec. The Error reconciliation of NewHope is based on finding
the closest vector in a 4-dimensional lattice with basis

B4 =

⎛

⎜
⎝

1 0 0 0.5
0 1 0 0.5
0 0 1 0.5
0 0 0 0.5

⎞

⎟
⎠ .

With this basis, the lattice D̂4 gets defined. The HelpRec first splits the 1024
coefficients of the input polynomial v into 256 4-dimensional vectors xi =
(vi,vi+256,vi+512,vi+768)t, for i = 0, . . . , 255. It then computes reconciliation
information ri from those xi as

ri = HelpRec(xi, b) = CVPD̂4

(
2r

q
(xi + bg)

)

mod 2r,

where b is a random bit and g = (0.5, 0.5, 0.5, 0.5)t. Algorithm 1 describes the
computation of the closest vector denoted as CVPD̂4

. Note that the output of
HelpRec as stated above is a 4-dimensional vector with entries in {0, 1, 2, 3} (i.e.,
2-bit entries). Application to the whole polynomial v means applying it 256 times
(for all xi). This produces a total of 2048 bits of reconciliation information.

Algorithm 1. CVPD̂4
(x ∈ R

4)
Ensure: An integer vector z such that Bz is a closest vector to x
1: if (‖x − �x�‖1) < 1 then
2: return (�x0�, �x1�, �x2�, 0)t + �x3� · (−1, −1, −1, 2)t

3: else
4: return (�x0	, �x1	, �x2	, 1)t + �x3	 · (−1, −1, −1, 2)t

5: end if

The Rec function also works on 4-dimensional vectors and is defined as
Rec(x, r) = LDDecode(1qx − 1

2r Br), where LDDecode is given in Algorithm 2
(see [2, Algorithm 2]).

Algorithm 2. LDDecode(x ∈ R
4/Z4)

Ensure: A bit k such that kg is a closest vector to x + Z
4: x − kg ∈ V + Z

4

1: v = x − �x�
2: return 0 if ‖v‖1 ≤ 1 and 1 otherwise

The divisions by q and the presence of values like 1/2 might suggest that the
computation of the HelpRec and Rec requires floating-point arithmetic. How-
ever, one can simply multiply all values by 2q to obtain integers; this is what

NewHope on ARM Cortex-M 337

Table 1. Operation counts on the client and the server side of NewHope.

Operation Server Client

Generating the public parameter a; 1 1

Sampling noise polynomials; 2 3

Computing the NTT; 2 2

Computing the NTT−1 with bit reversal; 1 1

Computing the pointwise multiplication; 2 2

Computing the vector r for error reconciliation; 0 1

Computing the error reconciliation Rec; 1 1

Hashing the 32-byte value ν with SHA3-256 to obtain the final key μ 1 1

the authors of NewHope refer to as efficiently implementable in fixed-point
arithmetic.

Operation costs of NewHope. Table 1 summarizes the operations involved
on either side of the NewHope key exchange.

3 The Cortex-M Family of Microcontrollers

The ARM Cortex-M processors are advertised as “the most popular choice for
embedded applications, having been licensed to over 175 ARM partners” [15].
Their wide deployment in embedded applications makes them an attractive tar-
get for optimized cryptography. ARM offers a wide range with their Cortex-M
family. At the low end of pricing, power consumption, and also computational
capabilities is the Cortex-M0. At the high end are the Cortex-M4 and Cortex-
M7. Like other embedded processors, ARM Cortex-M chips are used in the
Internet of Things, consumer products, medical instrumentation, connectivity,
or industry-control systems.

All Cortex-M processors have in common that data is processed in 32-bit
words. Relevant differences for the software described in this paper are the
instruction set, the size of RAM and ROM, and the availability of a random
source. The Cortex-M0 is based on the ARMv6-M architecture. This architec-
ture combines the 16-bit Thumb instruction set with a few 32-bit instructions.
The Cortex-M4 is based on the ARMv7-M architecture. This architecture makes
use of the 32-bit Thumb-2 instruction set. Both processors have 16 general-
purpose registers, out of which one is used as stack pointer (r13), one is used
as link register (r14), and one for the program counter (r15). However, only
32-bit instructions can make use of the 8 high general-purpose registers, which
limits the Cortex-M0 to essentially eight general purpose registers (except for
register-to-register copies, which can also reach the high registers). Another dif-
ference concerns the size of immediate values that instructions can handle: The
M0 instruction set supports only 8-bit immediate values; the M4 instruction set
supports immediate values of up to 16 bits.

338 E. Alkim et al.

Both processors have a comparable timing with respect to cycle count of
atomic instructions. For example, the branch instruction needs 3 cycles if the
branch is taken and 1 cycle otherwise on both architectures. Both architectures
provide instructions to load or store multiple registers in 1 + n cycles, where n
is the number of registers. In the case of load and store instructions, however,
architectural differences occur. On the Cortex-M4, store instructions take only
one cycle, because address generation is performed in the initial cycle and the
actual storing of data is performed while the next instruction is executed. Load
instruction can be pipelined together with other independent load and store
instructions. The Cortex-M0 does not provide pipeline functionality for load
and store instructions; those instructions thus take 2 cycles.

The Cortex-M0 does not have a hardware random-number generator (RNG),
whereas the Cortex-M4 on our STM32F4xx-series development board offers a 32-
bit hardware RNG. This RNG unit passes all statistical tests for secure random
number generation provided by the NIST [26]. For the M4 we present two ver-
sions of our noise generation: one using ChaCha20 and one using this hardware
RNG (which has also been used for noise generation in [9]).

4 Implementation Details

This section first provides a detailed explanation of general optimization tech-
niques. We then provide two architecture-specific subsections in which we elabo-
rate on processor-specific optimization techniques. For the SHAKE-128 function
and the SHA3-256 function we use the optimized implementation by the Daemen
et al. [6].

The main focus of our optimization lies on the NTT and the NTT−1. In our
description we treat the NTT and the NTT−1 together, because they only differ
in the fact that the NTT−1 requires a bit reversal and in the constants being used:
powers of ω for the NTT and powers of ω−1 for the NTT−1. The choices for these
parameters made by the designers of NewHope are ω = 49 and ω−1 = 49−1

mod q = 1254. This implies that γ = 7 is the square root of ω, the n-th root
of unity. The existence of ω and γ is guaranteed by the parameter choice of
n = 1024 and q = 12289, which is the smallest prime for which q ≡ 1 mod 2n.
This together with n being a power of 2 allows an efficient implementation of
the NTT for elements of Rq = Zq[X]/(Xn + 1). As an obvious optimization we
make use of precomputed powers of ω and γ, and removed multiplications by
ω0 = 1 from last level of the NTT. These well known optimization techniques
for speeding up the NTT computation save us 1525 multiplications.

For precomputing the constants, there are essentially three different strate-
gies to trade-off time and memory. One approach is to precompute none of the
powers of ω and γ the other extreme is obviously to precompute all of the
powers of ω and γ; a middle ground is to precompute a subset of them. Not
precomputing any powers implies that only one coefficient needs to be stored
and the rest is generated ‘on the fly’, which costs one additional multiplication
per power. The cost intensive aspect, however, is that the product needs to be

NewHope on ARM Cortex-M 339

reduced afterwards, which rules out this option for us as we chose to focus on
efficiency. Precomputing all powers was the logical approach to begin with due
to consistency with the reference implementation provided by [2]. This requires
to store 3072 14-bit coefficients: the 512 powers of ω, the 512 bit reversed powers
of ω, the 1024 powers of γ, and the 1024 inverted powers of γ. These constants,
however, have a partial overlap, which points into the direction of the third app-
roach, namely to balance the memory usage and the computational costs. We
found in our experiments that the most balanced approach is to store the 512
powers of ω and use them to compute the powers of γ. The first 512 elements
of the powers of γ are identical to the powers of ω, because the powers of γ are
bit reversed. The second 512 elements can be computed by a simple multiplica-
tion with γ = 7. Since 7 needs only 3 bits and both the precomputed powers
of ω and the coefficients are 14-bits in size no reduction is required, because we
operate on a 32-bit architecture and after a multiplication the maximum bit size
is 3 + 14 + 14 = 31-bits. With this approach we were able to reduce the size of
precomputed tables needed by a factor of 1

3 for a price of ≈ 750 cycles. It is the
most efficient setup for the NTT transform with regards to both memory and
computational costs, as it only requires to keep 512 14-bit coefficients at a low
cycle count overhead.

The approach for NTT−1 it is not as straight forward, because the powers
of ω−1 are not as easily related to the powers of γ (γ2n ≡ 1 mod q). The only
balancing technique we could apply would be to use same powers of ω used for the
NTT. This would imply that the resulting polynomial would be in reversed order.
We would then need to reorder the polynomial to the natural form. This could
be integrated into the required multiplication with the precomputed powers of
γ. We implemented it during our experiments and decided against it in the
final implementation as it saves only 1

6 of the table sizes, (namely 512 inverted
powers of ω) but introduces an overhead of >3 000 cycles. Therefore, we decided
to keep the reversed powers of ω. In our speed-optimized implementation we
decided against this tradeoff, but it might well be worth considering if memory
constraints are an issue.

Listing 1. Reduction routines used in the butterfly operation.

(a) Montgomery reduction (R = 218).

montgomery_reduce,rm:
MUL rt, rm, #12287
AND rt, rt, #262143
MUL rt, rt, #12289
ADD rm, rm, rt
SHR rm, rm, #18

(b) Short Barrett reduction.

barrett_reduce, rb:
MUL rt, rb, #5
SHR rt, rt, #16
MUL rt, rt, #12289
SUB rb, rb, rt

The NTT for n = 1024 consist of 10 levels, each performing 512 Gentlemen-
Sande butterfly operations [12]. Each butterfly operation consists of three loads,
one addition, one subtraction, one multiplication by a constant and two stores.

340 E. Alkim et al.

Listing 2. Gentlemen-Sande butterfly operation - all variables are uint16 t.
LDR (a_{j}),r0
LDR ($a_{j + d}$),r1
MOV rt,rt,r0
ADD r0,r0,r1
ADD rt,rt,#36867
SUB rt,rt,r1
LDR ($omega_t$),r1
MUL rt,rt,r1
barret_reduce,r0
montgomery_reduce,rt
STR (a_j),r0
STR ($a_{j + d}$),rt

One more addition needs to be performed to keep all coefficients in unsigned
format.

Thus, except for the modular reductions, a butterfly operation requires at
least 2 registers for coefficients, one temporary register, and one 16-bit imme-
diate value. Self-evidently we carry over the optimization techniques applied to
the computation of the NTT already in place in the reference implementation.
These consist of speeding up the modular-arithmetic. The first optimization is
to use Montgomery arithmetic [17]. This demands that all constants are stored
in the Montgomery representation with R = 218. Our assembly version of the
Montgomery reduction is given in Listing 1a. It shows that Montgomery reduc-
tion requires two 14-bit, one 18-bit, and one 5-bit immediate value, and also one
temporary register. The second optimization is to use short Barrett reductions
[3] for modular reductions after addition. Our assembly version of this routine is
given in Listing 1b; it shows how we reduce a 16-bit unsigned integer to an inte-
ger congruent modulo q of at most 14-bits. It requires one 14-bit, one 5-bit and
one 3-bit immediate values, and one additional register. The ARM instruction
set does not allow immediate values as parameter in the multiply instruction on
both microcontrollers. Therefore, immediate values used in multiplications must
be loaded to a register first. With these conditions, each butterfly operation
requires at least 4 registers. The third optimization is called ‘lazy reduction’. It
describes that the short Barrett reduction is only applied every second level [2].
This works, since per level at most one carry bit occurs; the short Barrett can
handle up to 16-bits and the starting value is at most 14-bits in size. However,
because we are computing two additions before the reduction, we need to add
3q (36867) before the subtraction to keep all coefficients in the unsigned format.

A note on the Longa-Naehrig approach. As a follow-up work to [2], Longa
and Naehrig presented speedups to NewHope and in particular the NTT in [13].
They claim a speedup of the NTT by a factor 1.9 in the C implementation and by
a factor of 1.25 in the AVX2-optimized implementation. The central idea of that
paper is a specialized modular reduction routine for primes of the shape k ·2m+�
for small values of k and �; in the case of NewHope those values are k = 3 and
� = 1. This reduction routine is combined with extensive use of lazy reduction.
The factor of 1.9 in the C implementation is largely explained by the fact that

NewHope on ARM Cortex-M 341

the software makes heavy use of 64-bit integers, which the software described
in [2] explicitly avoids. Obviously, making use of 64-bit integers makes sense
on AMD64 processors, but is much less efficient on the 32-bit microcontrollers
targeted in this paper. The AVX2 implementation described in [13] has in the
meantime been outperformed by the latest version of the AVX2 software by the
NewHope authors, which uses double-precision floating-point arithmetic.

We experimented with the approach described by Longa and Naehrig on the
M0 and M4 and were not able to gain any speedups. This is partly explained
by the lack of 64-bit registers (and a 32 × 32-bit multiplier on the M0). Another
reason was that we observed a slight increase in register usage, which significantly
increased the required number of loads and stores, in particular on the M0.
Furthermore, the lazy-reduction approach leaves intermediate values of >16 bits,
which need to be stored to RAM before processing the next level. Using 32-bit
integers for those intermediate values increases the memory usage of the NTT
by 2 KB, which is prohibitive on the M0.

4.1 Cortex-M0 Specific Optimization

The first optimization necessary for the Cortex-M0 is to fit NewHope onto the
processor. The portable reference implementation provided by the authors of
NewHope and described in [2] exceeds the Cortex-M0’s 8 KB of RAM. The
C reference implementation of NewHope closely follows the description in
Protocol 1, and makes use of 4 polynomials during key generation and 8 poly-
nomials for the computations on the client side. Each of these polynomials is
represented by its 1024 unsigned 16-bit coefficients, and thus consumes 2 KB of
RAM. Even with only minimal overhead for different variables or microcontroller
internal RAM usage, only up to 3 polynomials fit simultaneously into the RAM
of the Cortex-M0. By restructuring the code and adapting the data types used
we could fit both, the server side and the client side onto the Cortex-M0. We
solved a similar issue during noise extension. On the Cortex-M0 it is impossible
to have a buffer larger than 1024-byte. We therefore perform four ChaCha20
calls. This required another bit of entropy. We simply used the loop counter
used for the four consecutive calls as input byte for the second element of the
initialization vector for the ChaCha20 function.

After fitting the key exchange protocol into the boundaries provided by the
Cortex-M0, we could start to look into optimization for speed. A general aspect
regarding optimization on Cortex-M processors is that data is processed in words
of 32-bits. This allows us to cut the amount of stores and loads in half for the
coefficients and constants represented as unsigned 16-bit values. For the shared
key and seeds, unsigned 8-bit values, the amount of load and stores is decreased
by four. For logical operations on the values loaded this way, no overhead is
generated. Arithmetic operations, however, produce overhead, because the 32-
bit values need to be split before computation and the 16-bit values need to
be merged afterwards. This costs 2 additional cycles for every load and 2 more
cycles before every store.

342 E. Alkim et al.

As can be seen in the operation counts summarized in Table 1 at the end
of Sect. 2, the NTT and the NTT−1 are the most frequently called operations.
Since it is also the most expensive function with regards to cycle counts, it was
the natural choice to begin with.

NTT and NTT−1. We began our optimization of the NTT (and NTT−1), by
unrolling the 10 levels and standardizing the inner loops, such that every level
loops 256 times and performs two Gentlemen-Sande butterfly operations per loop
iteration. Performing two Gentlemen-Sande butterfly operations per iteration is
beneficial, because it allows us to make the best use of the 32-bit word size of the
Cortex-M family. Listing 2 shows the code for one Gentlemen-Sande butterfly
operation. For the lazy reduction on every second level the Barrett reduction
is omitted. Since each coefficient is a 16-bit value, we are able to load two of
them per load operation. We continued our optimization by merging levels 0
and 1. Level 0 takes every element and performs the butterfly operations; level 1
takes every second element and performs the butterfly operations. If we combine
both levels for efficiency we need to load two 32-bit words, thus four 16-bit
coefficients. For each 2 loads we can now perform 4 combined Gentlemen-Sande
butterfly operations. We perform the two butterfly operations of level 0 (without
the Barrett reduction followed by the two butterfly operations of level 1 (with
the Barrett reduction). One loop iteration thus handles both levels.

These four merged butterfly operations take a total of 134 cycles. Unfortu-
nately this does not work for the other consecutive levels on the Cortex-M0.
With its limited instruction set and the resulting 8 general purpose registers,
the overhead gets out of proportion when merging higher levels. Therefore we
get a cycle count of 96 for every even and a cycle count of 86 for every odd
level. The last optimization we performed was to minimize register reordering.
We went through our NTT code and optimized it such that constants and loop-
counter are placed in high registers where possible to allow to make use of the
Cortex-M0’s full potential.

Before each call to the NTT a multiplication with the γ coefficients and after
each call to the NTT−1 a multiplication with the precomputed γ−1 coefficients
must be performed. We implemented the multiplication on the coefficients in
assembly to benefit from the Cortex-M0’s 32-bit word size. Additionally to the
architectural benefit we make use of the fact that the multiplication of the coeffi-
cients with the precomputed coefficients is a simple operation and does not need
too many registers. Therefore we are able to load 4 coefficients at once and also
store them. With this we decreased the amount of loads and stores needed by
another factor of two. We could reduce the cycle count for the multiplication of
coefficients by 55.04 % compared to the reference implementation.

We also decided to rewrite the pointwise multiplication of polynomials such
that it makes optimal usage of the target architecture. We achieve a 56.08 %
decreased cycle count, compared to the reference implementation, for the point-
wise multiplication by making use of the word size. We load and store two
consecutive coefficients of the polynomial and apply the calculations needed on
each half word. By doing so, we only call half of the iterations of the main loop.

NewHope on ARM Cortex-M 343

Before the NTT−1 is called a bit reversal needs to be performed. We did not
provide an assembly optimized version for this function. The problem is that
consecutive coefficients do not necessarily get changed, which implies that we
cannot benefit from the word size. We just adapted the bit reversal to not loop
over the last elements which are unaffected by it.

Sampling noise polynomials. The noise seeds which form the base of the
noise polynomials are not generated on the Cortex-M0. The development board
we used during the implementation does not provide an RNG. Since there is no
default option for random number generation on the Cortex-M0 we made the
choice to allow a context-specific implementation. The randomly generated seed
is crucial for the security of the key exchange, therefore, we provide an easy to
replace C function in our code. The random seed gets subsequently extended by
the ChaCha20 stream cipher. We based our architecture specific implementa-
tion on a ChaCha20 implementation specifically designed for the Cortex-M0 by
Neikes and Samwel [18]. The core functionality of this stream cipher is optimized
in assembly. Additions we made were merely in the initialization phase. Again
we benefit from the 32-bit word length of the architecture, which allowed us to
represent the internal variables efficiently. The reference implementation makes
use of two helper functions to store and load values in little-endian, however,
this aspect can be solved simply by the little-endian architecture. Therefore, we
could omit the helper functions, which gives us a 10.82 % decreased cycle count
compared to the reference implementation.

Error reconciliation and help-vector generation. We continued our opti-
mization with the Rec function by implementing it in assembly. This yields the
general benefits of the 32-bit word size. By additionally unrolling and restruc-
turing the loop we make even better use of the architecture. We calculate 8-bits
of the key and perform four consecutive calls to this function to get 32-bit of
the key before storing it. We store 32-bit of the key eight times to compute all
256 bits of the key. Contrary to the reference implementation, we apply helper
functions as soon as possible without storing intermediates. These changes give
us a 32.10 % decreased cycle count compared to the reference implementation.

In the case of the HelpRec function, we first benefit from the fast ChaCha20
implementation. We continued by rewriting the main loop in assembly. The loop
iterates over the 256 random bits used as fair coin and encodes each bit into 4
coefficients of the input polynomial. We restructured the loop to load 8 times a
full word (32-bit). Afterwards, we perform the loop internal calculations per bit
and apply the results to the four positions of the polynomial. These optimization
measures grant us a 14.43 % faster implementation compared to the reference
implementation.

Polynomial addition. Additionally, we wrote assembly implementations for
the basic arithmetic calculations for polynomials. The addition works by taking
each coefficient of the first and each coefficient of the second polynomial at the
same position and adding them together before reducing the sum with a call
to the Barrett reduction. We implemented the Barrett reduction specific for

344 E. Alkim et al.

the context and the architecture, such that we manage to decrease the cycle
count to 5. Due to the fact that this simple function does not require meticulous
register usage we could load two 32-bit words at once, thus 4 coefficients. We
do so for the coefficients of the first polynomial and load 2 coefficients of the
second polynomial, compute the results, load the next 2 coefficients of the second
polynomial, compute the second two results and store the newly computed 4
coefficients with one instruction. We manage to reduce the cycle count required
for polynomial addition by 59.02 % compared to the reference implementation.

4.2 Cortex-M4 Specific Optimization

Compared to the Cortex-M0, the Cortex-M4 is much more powerful. It has
192 KB of RAM, the portable reference implementation can thus run without
adaptations on this microcontroller. Additionally, the Cortex-M4 on our devel-
opment board features a hardware random-number generator. This enables us
to calculate the seeds on the microcontroller directly. Additionally, we are not
required to make use of LDM and STM instructions to save cycles for mem-
ory operations, thanks to the architectural benefits described in Sect. 3. This
enables us to use 16-bit loads and stores directly without extracting the 16-bit
coefficients from 32-bit words. The most obvious implication of this is that the
C implementation performs as good as assembly when there are no arithmetic
and/or reordering optimizations.

NTT and NTT−1. Inside one butterfly operation, 2 temporary registers are
required to calculate the results. The Cortex-M4 has 14 available general-purpose
registers and we need to keep the addresses of the input polynomial and the array
of precomputed twiddle factors. Therefore, we have 10 registers available during
our computations. This implies that we can merge up to 3 levels to save on
loads and stores. Making use of these architectural constraints we split the NTT
on the Cortex-M4 in four chunks of layers. The first two chunks each perform
three layers of the NTT in one loop. These loops process 8 coefficients and run
128 times. In the third chunk we took the first 512 coefficients of the input-
polynomial and ran the next three layers of the NTT on them. Afterwards, we
took the second 512 coefficients of the input-polynomial and ran the same layers
on them. When the results are loaded into the registers we were able to ran
the last layer on them, which saved us 1024 loads and stores. The precomputed
twiddle factors are such that we do not need multiplication for the last layer. We
incorporate the additional register that kept the addresses of the twiddle factors
into the calculations performed at the last layer. This reduces the total amount
of loads and stores needed for the NTT to 3.5n instead of 10n (n = 1024).
By applying the concept of merged layers, we where able to reduce our NTT
assembly code for the Cortex-M4 to 384 branches instead of 5120 needed in the
C reference implementation.

The Cortex-M4 has a ‘multiply and accumulate’ instruction for 32-bit inte-
gers. It can be seen that both in reductions in Listing 1 multiplication is followed
by addition or subtraction. Therefore, we could use this instruction in both, but-
terfly and pointwise multiplication. This saves more than 30000 cycles per NTT

NewHope on ARM Cortex-M 345

transform. To be able to use this optimization we implemented the pointwise
multiplication of polynomials in assembly.

We also implemented the bit reversal operation in assembly. However, while
unrolling the bit reversal operation in assembly saves 6500 cycles, the code size
of the unrolled bit reversal is 7799 bytes more than the looped implementation.
Due to this trade off we decided against the use of it in our work, because we
only have two NTT−1’s. In another scenario, however, it could be beneficial and
proofs that there is still room for improvements.

Sampling noise polynomials. We implemented the sampling of noise poly-
nomials in two different ways on the Cortex-M4. First, we implemented the
sampling by calling ChaCha20 as the reference implementation does. Second,
we implemented the sampling by using the built-in RNG. It generates a 32-
bit random number every 40 cycles. Each coefficient of a polynomial requires
2k random bits, 2k + 1 additions, 2k shifts, 2k logical ‘and’ instructions and 1
subtraction. For every 32-bit number we generated one coefficient in 50 cycles.
These calculations take more time than required by the RNG, which implies
that the RNG does not have to wait on our calculations. Since we need 32-bit of
randomness for one coefficient, the RNG is called 1024 times during the process
of sampling one polynomial. As can be seen, the performance of the generation
of a noise polynomial is strongly dependent on the parameter ‘k’. Therefore, the
running time of the noise sampling can be predicted by the time required to
generate 2k random bits with the RNG.

The Cortex-M4 memory operation can be pipelined, thus calling two 16-
bit load/store instructions takes the same amount of time as calling one 32-
bit load/store instruction and split it into two 16-bit integers. This allowed us
to use the C implementation for the other operations of NewHope without
experiencing any significant slowdown.

5 Results and Comparison

In this section, we present our results and compare them with results from
the literature. Cortex-M0 benchmarks are obtained on the STM32F0 Discovery
board, which is equipped with a STM32F051R8T6 microcontroller. Cortex-M4
benchmarks are obtained on the STM32F4 Discovery development board, which
is equipped with a STM32F407VGT6 microcontroller. Our software is compiled
with arm-none-eabi-gcc version 5.2.0 and -Ofast as compiler flag for both, the
Cortex-M0 and the Cortex-M4. Cycle counts and ROM size of our software is
summarized in Table 2.

Comparison with previous results. The literature describes various imple-
mentations of lattice-based cryptography on embedded microcontrollers.

For example, in [24] the authors targeted the AVR architecture, and in [23]
the authors targeted FPGAs. A direct and fair comparison among those imple-
mentations underlies many, often unsolvable constraints. The architectures vary,
different schemes are implemented, and last but not least do all candidates for

346 E. Alkim et al.

Table 2. Cycle counts of NewHope building blocks on target devices.

Operation Cortex-M0 Cortex-M4

Generation of a 328 789 263 089

NTT 148 517 86 769

NTT−1 167 405a 97 340a

Sampling of a noise polynomial 208 692b 111 794b (53 281)c

HelpRec 68 170 43 112

Rec 46 945 31 892

Key generation (server) 1 170 892 781 518b (659 726)c

Key gen + shared key (client) 1 760 837 1 140 594b (982 384)c

Shared key (server) 298 877 174 798

ROM usage (bytes) 30 178 22 828b (18 544)c

a Includes bit reversal operation
b Noise generation done by ChaCha20
c Noise generation done by RNG

comparison to our result target lower security levels. To gauge the progress of
implementation techniques, most comparisons between different schemes focus
on comparing the performance of subroutines; in the context of ideal-lattice-
based cryptography mainly on comparing noise sampling and the NTT, the two
most costly operations.

To the best of our knowledge, there are two papers that describe opti-
mizations of ideal-lattice-based cryptography for the ARM Cortex-M family of
microcontrollers. In [9], de Clercq, Roy, Vercauteren, and Verbauwhede optimize
RLWE-based encryption and in [20], Oder, Pöppelmann, and Güneysu optimize
the Bliss signature scheme by Ducas, Durmus, Lepoint, and Lyubashevsky [10].
Both papers target the Cortex-M4F microcontroller and implemented the NTT
on 512-coefficient polynomials with the same modulus q = 12289 that we used.
An additional challenge for comparison is that the NTT operations in [9] and [20]
use dimension 512, whereas we use dimension 1024. As explained in the intro-
duction, NTT computations are essentially a sequence of butterfly operations.
For comparison we thus scale the numbers from [9,20] to dimension 1024 by the
number of butterflies, i.e., by a factor of 20/9.

From Table 3 we can see that even if we use the built-in RNG of the M4, our
sampling algorithm is 1.75× slower than the Knuth-Yao algorithm used in [9].
Note however, that our sampling algorithm, unlike the Knuth-Yao sampler, runs
in constant time and is thus inherently protected against timing attacks. Also,
the slightly decreased performance on embedded microcontrollers is a price to
pay for compatibility with significantly increased timing-attack-protected sam-
pling performance on large processors with caches. For details, see [2, Sect. 4].
Comparison with noise sampling from [20] is problematic, because noise sampling
for signature schemes have very different requirements for the noise distribution.

NewHope on ARM Cortex-M 347

Table 3. Performance comparison of NTT implementation and error sampling

NTT Noise samplinga

Cortex-M0 (ours) 148 517 204

Cortex-M4 (ours) 86 769 110b (50)c

Cortex-M4F [9] 157 977d 28.5

Cortex-M4F [20] 272 486d 1 828
a Cycle counts for sampling one coefficient
b Noise generation done by ChaCha20
c Noise generation done by RNG
d Number scaled from dimension 512 to dimension 1024 by multiplying
by 20/9

With respect to the NTT the cycle counts we achieve on the Cortex-M4 are
45% faster than [9] and 68% faster than [20]. In the case of the Cortex-M0, the
cycle savings are 6% faster than the M4F counts from [9] and 45% faster than the
M4F counts from [20]. This demonstrates that the optimization measures applied
by us provide faster results on comparable hardware and enable inferior hardware
to outperform the best results on ARM Cortex-M processors for calculating an
NTT.

Acknowledgments. We are thankful to Ko Stoffelen for his suggestions about
Cortex-M4 implementation.

References

1. National Security Agency. NSA suite B cryptography. https://www.nsa.gov/ia/
programs/suiteb cryptography/. Accessed 9 Aug 2015

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange –
a new hope. In: Proceedings of the 25th USENIX Security Symposium. USENIX
Association (2016). https://cryptojedi.org/papers/#newhope

3. Barrett, P.: Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). doi:10.1007/
3-540-47721-7 24

4. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). doi:10.1007/11745853 14

5. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Cipher (2008). http://cr.yp.to/papers.html#chacha

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak imple-
mentation overview (2012). http://keccak.noekeon.org/Keccak-implementation-3.
2.pdf. Accessed 3 Jan 2016

7. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 553–570 (2015). http://eprint.iacr.org/2014/
599

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://cryptojedi.org/papers/#newhope
http://dx.doi.org/10.1007/3-540-47721-7_24
http://dx.doi.org/10.1007/3-540-47721-7_24
http://dx.doi.org/10.1007/11745853_14
http://cr.yp.to/papers.html#chacha
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://eprint.iacr.org/2014/599
http://eprint.iacr.org/2014/599

348 E. Alkim et al.

8. Braithwaite, M.: Experimenting with post-quantum cryptography. Posting
on the Google Security Blog (2016). https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html

9. de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-LWE encryption. In: Design, Automation & Test in Europe Con-
ference & Exhibition (DATE) (2015) pp. 339–344. EDA Consortium (2015). http://
eprint.iacr.org/2014/725

10. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

11. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed curve25519 on 8-bit, 16-bit, and 32-bit microcon-
trollers. Des. Codes Cryptogr. 77(2), 493–514 (2015). http://cryptojedi.org/
papers/#mu25519

12. Gentleman, W.M., Sande, G.: Fast fourier transforms: for fun and profit. In: Fall
Joint Computer Conference, AFIPS Proceedings, vol. 29, pp. 563–578 (1966).
http://cis.rit.edu/class/simg716/FFT Fun Profit.pdf

13. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster ideal
lattice-based cryptography. Cryptology ePrint Archive, Report 2016/504 (2016).
https://eprint.iacr.org/2016/504/

14. Lovecruft, I., Schwabe, P.: RebelAlliance: a post-quantum secure hybrid handshake
based on NewHope. Draft proposal for Tor (2016). https://gitweb.torproject.
org/user/isis/torspec.git/plain/proposals/XXX-newhope-hybrid-handshake.txt?
h=draft/newhope

15. ARM Ltd. Cortex-M series (2015). www.arm.com/products/processors/cortex-m/.
Accessed 12 Oct 2015

16. Mathewson, N.: Cryptographic directions in Tor. Slides of a talk at Real-
World Crypto 2016 (2016). https://people.torproject.org/∼nickm/slides/nickm-
rwc-presentation.pdf

17. Montgomery, P.I.: Modular multiplication without trial division. Math. Com-
put. 44(170), 519–521 (1985). http://www.ams.org/journals/mcom/1985-44-
170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf

18. Neikes, M., Samwel, N.: ARM implementation of the ChaCha20 block cipher. Git-
Lab repository (2016). https://gitlab.science.ru.nl/mneikes/arm-chacha20

19. NIST. Workshop on cybersecurity in a post-quantum world (2015). http://www.
nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm

20. Oder, T., Poppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: lattice-based
digital signatures on constrained devices. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), p. 16. ACM (2014). https://www.sha.rub.de/
media/attachments/files/2014/06/bliss arm.pdf

21. National Institute of Standards and Technology. FIPS PUB 202 – SHA-3 standard:
Permutation-based hash and extendable-output functions (2015). http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

22. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11659-4 12

23. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 68–85. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 4

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://eprint.iacr.org/2014/725
http://eprint.iacr.org/2014/725
http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://cryptojedi.org/papers/mu25519
http://cryptojedi.org/papers/mu25519
http://cis.rit.edu/class/simg716/FFT_Fun_Profit.pdf
https://eprint.iacr.org/2016/504/
https://gitweb.torproject.org/user/isis/torspec.git/plain/proposals/XXX-newhope-hybrid-handshake.txt?h=draft/newhope
https://gitweb.torproject.org/user/isis/torspec.git/plain/proposals/XXX-newhope-hybrid-handshake.txt?h=draft/newhope
https://gitweb.torproject.org/user/isis/torspec.git/plain/proposals/XXX-newhope-hybrid-handshake.txt?h=draft/newhope
www.arm.com/products/processors/cortex-m/
https://people.torproject.org/~nickm/slides/nickm-rwc-presentation.pdf
https://people.torproject.org/~nickm/slides/nickm-rwc-presentation.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://gitlab.science.ru.nl/mneikes/arm-chacha20
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1007/978-3-662-43414-7_4

NewHope on ARM Cortex-M 349

24. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based
cryptography on 8-Bit ATxmega microcontrollers. In: Lauter, K., Rodŕıguez-
Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-22174-8 19

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

26. STMicroelectronics. AN4230 application note – STM32 microcontrollers random
number generation validation using NIST statistical test suite (2013). http://www.
st.com/resource/en/application note/dm00073853.pdf

27. Utsler, J.: Quantum computing might be closer than previously thought. IBM
Systems Magazine (2013). http://www.ibmsystemsmag.com/mainframe/trends/
IBM-Research/quantum computing/. Accessed 3 Mar 2016

http://dx.doi.org/10.1007/978-3-319-22174-8_19
http://www.st.com/resource/en/application_note/dm00073853.pdf
http://www.st.com/resource/en/application_note/dm00073853.pdf
http://www.ibmsystemsmag.com/mainframe/trends/IBM-Research/quantum_computing/
http://www.ibmsystemsmag.com/mainframe/trends/IBM-Research/quantum_computing/

Leakage, Power and Fault Analysis

Towards Fair and Efficient Evaluations
of Leaking Cryptographic Devices

Overview of the ERC Project CRASH, Part I
(Invited Talk)

François-Xavier Standaert(B)

ICTEAM Institute, Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
fstandae@uclouvain.be

Extended abstract. Side-channel analysis is an important concern for the secu-
rity of cryptographic implementations, and may lead to powerful key recovery
attacks if no countermeasures are deployed. Therefore, various types of pro-
tection mechanisms have been proposed over the last 20 years. In view of the
cost and performance overheads caused by these protections, their fair evalua-
tion is a primary concern for hardware and software designers. Yet, the physical
nature of side-channel analysis also renders the security evaluation of crypto-
graphic implementations very different than the one of cryptographic algorithms
against mathematical cryptanalysis. That is, while the latter can be quantified
based on (well-defined) time, data and memory complexities, the evaluation of
side-channel analysis additionally requires to quantify the informativeness and
exploitability of the physical leakages. This implies that a part of these security
evaluations is inherently heuristic and dependent on engineering expertise.

The development of sound tools allowing designers and evaluation laborato-
ries to deal with this challenge was one of the main objectives of the CRASH
project funded by the European Research Council. In this talk, I will survey a
number of results we obtained in this direction, starting with concrete evaluation
methodologies that are well-adapted to the investigation of current embedded
devices, and following with future trends for emerging implementations. Quite
naturally, a large number of researchers and teams have worked on similar direc-
tions. For each of the topics discussed, I will add a couple of references to pub-
lications that I found inspiring/relevant. The list is (obviously) incomplete and
only reflects my personal interests. I apologize in advance for omissions.

Concrete evaluation methodologies. Side-channel analyses against crypto-
graphic implementations can be viewed as a combination of several informal
steps, next denoted as (1) measurement & pre-processing, (2) prediction & mod-
eling, (3) exploitation and (4) post-processing. They can also be classified based
on the adversarial capabilities. In particular, the literature generally suggests
two categories of attacks, namely profiled attacks (where the adversary can use
a device he fully controls – meaning including the secret key and possibly ran-
domness – in order to gain understanding of the target implementation leakages)
and non-profiled attacks (where the adversary can only access a target device
holding the secret key to recover). In this respect, our results are as follows.
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 353–362, 2016.
DOI: 10.1007/978-3-319-49445-6 20

354 F.-X. Standaert

A. The profiling separation. In practice, non-profiled attacks can be viewed as
more realistic, since adversaries do not always have access to a profiling device.
Therefore, a fundamental question regarding the evaluation of leaking devices
is whether performing non-profiled attacks only is sufficient to state sound
conclusions regarding susceptibility to side-channel analysis. We answered this
question negatively in [67]. Defining a generic strategy as one which is able
to recover secret information from side-channel leakages without any a-priori
assumption about the target devices’ physical characteristics, we showed that
(strictly defined) such strategies cannot succeed in general. This implies that
there exist devices (leakage characteristics) which can only be evaluated soundly
by performing profiled attacks. Yet, we also showed that a minor relaxation
of the strict definition of generic strategies, incorporating non-device-specific-
intuitions, produces generic-emulating strategies able to succeed against a wide
range of targets (an approach that we followed in [64]). Hence, these results
suggest profiled attacks as the method of choice for side-channel security eval-
uations, since (i) they are strictly necessary, (ii) they lead to a better under-
standing of the leakage characteristics and (iii) they allow worst-case complexity
estimates (which non-profiled adversaries can usually approach with generic-
emulating strategies).

Related works. The COSADE 2014 paper by Reparaz et al. offers a critical
view of this separation and discusses its impact in practical scenarios [54].

B. The heuristic vs. optimal separation. Based on the previous four (informal)
steps, another important question regarding the evaluation of leaking devices
is whether one can guarantee that (at least some of) these steps are optimal.
Following the standard cryptographic approach, a perfectly sound evaluation
indeed requires to determine the worst-case attack complexities, which implies
to consider the most powerful adversaries (and again suggests profiled attacks
are preferable for this purpose). But in view of the physical nature of the attacks,
theoretical guarantees of optimality seem hard to reach. Interestingly, we could
show that excepted for the measurement and pre-processing step of the attacks
(which is indeed inherently heuristic), it is possible to guarantee that the other
steps are “close enough to optimal” (or optimal), as we discuss next.

Step 1. Measurement & pre-processing. This step typically includes the design
of low-noise Printed Circuit Boards (PCBs) and probes, filtering the measure-
ments, dimensionality reduction and the detection of Points of Interest (POIs)
in leakage traces. As just mentioned, such tasks are essentially heuristic and
highly depend on engineering skills. In this respect, it is important to note that
even without guarantees of optimality, it is always possible to compare two solu-
tions for the measurement and pre-processing of the leakages, using the other
attack/evaluation steps described next. Public – ideally open source – measure-
ment platforms are an interesting ingredient for this purpose. Quite naturally,
the same holds for statistical signal processing and machine learning tools. As
part of the CRASH project, we paid attention to filtering with Singular Spec-
trum Analysis [47], projection pursuits as an alternative to Principal Component

Towards Fair and Efficient Evaluations of Leaking Cryptographic Devices 355

Analysis (PCA [1]) and Linear Discriminant Analysis (LDA [58]) for dimension-
ality reduction/detection of POIs in side-channel attacks [22], improved leakage
detection tests based on a simple partitioning of the side-channel measurements
for fast (yet preliminary) security assessment [19], and the removal of random
delays from software implementations using hidden Markov models [18].

Related works. [38,57] for leakage detection, [2,11,34,35] for concrete issues in
the application of side-channel attacks and [10] for dimensionality reduction.

Step 2. Prediction & modeling. Given some public input X to the target device,
a secret parameter K and the physical leakages L, most side-channel attacks
require an estimation of the conditional probability distribution P̂r[K|X,L] (or
a simplification of this distribution to some of its moments), usually denoted
as the model. This is an essential step of the security evaluations that highly
relates to the previously mentioned separation between non-profiled and pro-
filed attacks. More precisely, fair evaluations ideally require exploiting a perfect
leakage model (to extract all the available information). But since such perfect
models are generally unknown, density estimation techniques have to be used to
approximate the leakage distribution. This raises the fundamental problem that
all security evaluations are potentially biased by both estimation and assumption
errors. At Eurocrypt 2014, we proposed first leakage certification tools allowing
evaluators to verify that their models are good enough [21]. That is, while know-
ing the distance between an estimated model and the optimal one is impossible in
general, it is possible to verify that given number of leakages available for eval-
uation, any improvement of the (possibly imperfect) estimated model will be
negligible. Technically, this requires checking that given this number of leakages,
the model assumption errors are small enough in front of the model estimation
errors, which amounts to test the hypothesis that the model is correct. At CHES
2016, we then described simpler leakage certification tools, which came at the
cost of a couple of heuristic assumptions on the leakage distributions [20].

Related works. A complementary issue to leakage certification is templates
portability/robust profiling [12,23,65]. Note that nothing prevents using certifi-
cation tools to test a model built with one device against another device.

Step 3. Exploitation. Given a leakage model P̂r[K|X,L], most side-channel analy-
ses are based on a divide-and-conquer strategy. In this context, the optimal solu-
tion is easy to implement and just corresponds to maximizing the likelihood of
the key (bytes) given the observed leakages, which is the standard approach for
profiled attacks. Interestingly, we could show that in the context of unprotected
implementations, several of the published distinguishers are in fact equally effi-
cient to perform key recovery attacks [14,36]. By contrast, in the case of imple-
mentations protected with masking or shuffling, only the Bayesian (maximum
likelihood) distinguisher guarantees optimal results [59,62].

Besides, an alternative and (theoretically) more powerful strategy to perform
key recoveries based on physical leakages is to consider analytical attacks. The
first (algebraic) attempts in this direction were generally limited in their applica-
bility because of their low tolerance to measurement noise [51,52]. As part of

356 F.-X. Standaert

the CRASH project, we developed new solutions to better deal with this noise
limitation, based on alternative descriptions of the key recovery problem as opti-
mization or soft decoding problems [44,61]. The latter one is particularly relevant
to evaluation laboratories since it can deal with any level of noise, and exhibits
a constant improvement over divide-and-conquer attacks [27].

Related works. Multi-target attacks can be viewed as an alternative between
simple (single-target) divide-and-conquer attacks and anaytical ones [39].

Step 4. Post-processing. The outcome of a divide-and-conquer attack is typically
shaped as lists of probabilities or scores for each of the target key bytes. If this
outcome is such that the correct key byte is always rated first, then the attack
is directly successful (which happens when a sufficient amount of measurements
is available to the adversary). If not, the adversary can trade measurements for
time and perform key enumeration, which allows testing whether the correct
key is within reach given his computational power. Our first contribution in this
direction was an optimal key enumeration algorithm published at SAC 2012 [60].
One possible limitation of key enumeration is that in case the result of the enu-
meration is negative (i.e., the key is not recovered), it does not provide any hint
about the computational security of the key: is it close to computational reach
(e.g., with rank 245 while we performed enumeration up to rank 240) or close
to a standard cryptographic key sizes (e.g., 280 − 2100)? In order to deal with
this issue, we introduced a first key rank estimation algorithm allowing “security
evaluations beyond computing power” at Eurocrypt 2013. Following these initial
works, we then proposed much simplified algorithms for both key enumeration
and rank estimation. More precisely, in a FSE 2015 paper we showed that is
it possible to estimate the rank of a block cipher key with very tight bounds
(e.g., with less than one bit of accuracy) almost instantaneously, using simple
tools such as histograms and convolutions [26]. In a CHES 2016 paper, we then
extended the use of these tools to a key enumeration algorithm that is paral-
lelizable and allows easy distribution of the key testing among various hardware
and software computing platforms [46]. In a complementary line of work, we
finally discussed the pros and cons of various approaches to rank estimation,
together with the efficiency gains that can be obtained by replacing the previous
approximations by simple(r) bounds based on easier-to-estimate metrics [45]. In
the same paper, we again put forward the interest of a (profiled) probabilistic
approach to allow the optimal post-processing of the attack outcomes.

Related works. [6] presents an alternative (similarly efficient) key ranking algo-
rithm. [37] proposed the first parallel key enumeration algorithm.

Wrapping up & cautionary note. The previous separation results allow a bet-
ter understanding of the necessary steps in side-channel security evaluations,
together with a systematic view of the possible sources of sub-optimality which
may lead evaluators to over-estimate the security of their implementations. For
Steps 2, 3 and 4, we additionally provided tools allowing them to avoid such a
false sense of security. These tools typically allow evaluators to estimate security
graphs (i.e., plots of the attacks success rate in function of their measurement and

Towards Fair and Efficient Evaluations of Leaking Cryptographic Devices 357

time complexity) for any implementation. Yet, and despite these progresses, it is
important to note that all concrete security evaluations remain highly dependent
on measurements and & pre-processing. That is, if an adversary/evaluator does
a selection of POIs that ignores critical information, or does not filter a parasitic
frequency and models it as noise, the next evaluation steps will not be able to
correct this. Hence, and quite naturally, such a more established methodology
has to be combined with continuous progresses in order to develop tools able
to capture increasingly protected implementations, for which the exploitation of
the leakages may require to deal with high-dimensional and high-order statis-
tics. Finding solutions allowing adversaries/evaluators to deal with such complex
settings is an important scope for further research on side-channel analysis.

Related works. [5,40] illustrate that high-dimensions and high-order attacks
become increasingly important as implementations become better protected.

Future trends. One emerging drawback of the concrete approaches to physical
security evaluations is that they are essentially based on mounting attacks (or
detecting biases). Yet, and as security levels increase, their direct evaluation with
sufficient statistical confidence will soon become untractable. For example, think
about an implementation that guarantees a computational security of 280 after
the observation of 280 measurements. In order to evaluate security in this case,
we foresee two trends that we illustrate with the masking countermeasure.

A. Exploiting (tight) proofs. The (measurement) security of a masked implemen-
tation theoretically increases exponentially with the number of shares, given that
the leakage of each share is sufficiently noisy and independent. In practice, it
means that if a designer is able to quantify this noise condition and guaran-
tee independence, he can evaluate the security of a masked implementation by
evaluating the leakage of a single share (which is roughly as easy as evaluat-
ing an unprotected implementation) rather than that of their combination (a
task for which the complexity is exponential in the number of shares). A seed
result in this direction was published at Eurocrypt 2015 [16,17]. We believe that
evaluations based on tight proofs will be increasingly relevant in the future.

Related works. Models to analyze masked implementations include the probing
model and the noisy leakage model [31,50]. In a very important piece of work,
Duc et al. showed probing security implies noisy leakage security (under some
conditions discussed in the paper) [15]. Simplified tools allowing faster security
evaluations but specialized to certain popular distinguishers include [13,33].

B. Security without obscurity. A positive artifact of masked (serial) implementa-
tions is that the number of POIs that have to be identified by an adversary also
increases exponentially with the number shares. Yet, contrary to the noise con-
dition that guarantees high measurement complexity, these POIs are typically
a long-term secret that depend on the adversarial knowledge about the imple-
mentation. A single leak of this secret (e.g., the implementation source code)
may completely annihilate its impact. In this respect, it is naturally advisable to
design security mechanisms that are not based on such hard to quantify secrets,

358 F.-X. Standaert

but only on a sound combination of reproducible (empirically verifiable) physical
assumptions and mathematical amplification. Since security without obscurity
is also the best (and probably only) setting in which security proofs can be
established, we believe it will also become increasingly relevant in the future.

Other results. For completeness, we list a number of other results related to
the fair evaluation of side-channel attacks obtained during the CRASH project.
First, we used our tools and methodology to evaluate the impact of technology
scaling on the side-channel resistance of cryptographic implementations, e.g.,
variability [53] and static leakages [48]. Second, we analyzed (pseudo) generic
distinguishers in [3,63], which are typical candidate tools to manipulate high-
dimension and high-order leakages. Third, we investigated collision attacks as
an alternative path between divide-and-conquer and analytical attacks [24].

Other related works. The exploitability of static leakages in side-channel
analysis was first put forward in [41]. The Kolmogorov-Smirnov test has been
studied in [66] as an alternative (pseudo) generic distinguisher. There is a
wide literature on side-channel collision attacks. Recent examples include [7,42].
Finally, and in a recent line of papers, standard side-channel distinguishers have
been revisited thanks to a theoretical framework where the leakage function is
fixed (i.e., in a so-called simulated attack setting). This brings a complementary
view to the concrete setting where most of the efforts are put on finding the
right leakage model, and a maximum likelihood strategy is applied afterwards.
The authors showed that as long as the assumed leakage function is close to the
ones observed in practice, the standard distinguishers/dimensionality reductions
previously proposed in the literature are indeed close to optimal [8,9,29].

Acknowledgements. François-Xavier Standaert is a research associate of the Belgian
Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in part by the
European Commission through the ERC project 280141. The author is highly grateful
to the SPACE 2016 organizers for inviting him to give this talk, and allowing him to
amortize the load of his final project report.

References

1. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). doi:10.1007/11894063 1

2. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-
ing at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) [28], pp. 599–619

3. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptology
24(2), 269–291 (2011)

4. Batina, L., Robshaw, M. (eds.): CHES 2014. LNCS, vol. 8731. Springer, Heidelberg
(2014)

5. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) [25], pp. 23–39

http://dx.doi.org/10.1007/11894063_1

Towards Fair and Efficient Evaluations of Leaking Cryptographic Devices 359

6. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. IACR Cryptology ePrint Archive
2015:221 (2015)

7. Bogdanov, A., Kizhvatov, I.: Beyond the limits of DPA: combined side-channel
collision attacks. IEEE Trans. Comput. 61(8), 1153–1164 (2012)

8. Bruneau, N., Guilley, S., Heuser, A., Marion, D., Rioul, O.: Less is more - dimen-
sionality reduction from a theoretical perspective. In: Güneysu, T., Handschuh, H.
(eds.) [28], pp. 22–41

9. Bruneau, N., Guilley, S., Heuser, A., Rioul, O.: Masks will fall off. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 344–365. Springer, Hei-
delberg (2014). doi:10.1007/978-3-662-45608-8 19

10. Cagli, E., Dumas, C., Prouff, E.: Enhancing dimensionality reduction methods for
side-channel attacks. In: Homma, N., Medwed, M. (eds.) [30], pp. 15–33

11. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-08302-5 17

12. Choudary, O., Kuhn, M.G.: Template attacks on different devices. In: Prouff, E.
(ed.) [49], pp. 179–198

13. Adam Ding, A., Zhang, L., Fei, Y., Luo, P.: A statistical model for higher order
DPA on masked devices. In: Batina, L., Robshaw, M. (eds.) [4], pp. 147–169

14. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptographic Eng. 1(2), 123–144 (2011)

15. Duc, A., Dziembowski, S., Faust, S., Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) [43], pp. 423–440

16. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 16

17. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete
or how to evaluate the security of any leaking device (extended version). IACR
Cryptology ePrint Archive 2015:119 (2015)

18. Durvaux, F., Renauld, M., Standaert, F.-X., Oldeneel tot Oldenzeel, L., Veyrat-
Charvillon, N.: Efficient removal of random delays from embedded software
implementations using Hidden Markov Models. In: Mangard, S. (ed.) CARDIS
2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37288-9 9

19. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 10

20. Durvaux, F., Standaert, F.-X., Del Pozo, S.M.: Towards easy leakage certification.
In: Gierlichs, B., Poschmann, A.Y. (eds.) [25], pp. 40–60

21. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) [43], pp. 459–476

22. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N., Mairy, J.-B., Deville, Y.:
Efficient selection of time samples for higher-order DPA with projection pursuits.
In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp.
34–50. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21476-4 3

23. Abdelaziz Elaabid, M., Guilley, S.: Portability of templates. J. Cryptographic Eng.
2(1), 63–74 (2012)

http://dx.doi.org/10.1007/978-3-662-45608-8_19
http://dx.doi.org/10.1007/978-3-319-08302-5_17
http://dx.doi.org/10.1007/978-3-662-46800-5_16
http://dx.doi.org/10.1007/978-3-642-37288-9_9
http://dx.doi.org/10.1007/978-3-642-37288-9_9
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-319-21476-4_3

360 F.-X. Standaert

24. Gérard, B., Standaert, F.-X.: Unified and optimized linear collision attacks and
their application in a non-profiled setting: extended version. J. Cryptographic Eng.
3(1), 45–58 (2013)

25. Gierlichs, B., Poschmann, A.Y. (eds.): CHES 2016. LNCS, vol. 9813. Springer,
Heidelberg (2016)

26. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander, G.
(ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48116-5 6

27. Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which
one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) [32], pp. 291–312

28. Güneysu, T., Handschuh, H. (eds.): CHES 2015. LNCS, vol. 9293. Springer,
Heidelberg (2015)

29. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough - deriving optimal
distinguishers from communication theory. In: Batina, L., Robshaw, M. (eds.) [4],
pp. 55–74

30. Homma, N., Medwed, M. (eds.): CARDIS 2015. LNCS, vol. 9514. Springer,
Heidelberg (2016)

31. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

32. Iwata, T., Cheon, J.H. (eds.): ASIACRYPT 2015. LNCS, vol. 9453. Springer,
Heidelberg (2015)

33. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the
success rate of higher-order side-channel attacks. In: Batina, L., Robshaw, M. (eds.)
[4], pp. 35–54

34. Lomné, V., Prouff, E., Roche, T.: Behind the scene of side channel attacks. In:
Sako, K., Sarkar, P. (eds.) [55], pp. 506–525

35. Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC It to EM: electromagnetic
side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh,
H. (eds.) [28], pp. 620–640

36. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

37. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) [32], pp. 313–337

38. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak informa-
tion? An a priori statistical power analysis of leakage detection tests. In: Sako, K.,
Sarkar, P. (eds.) [55], pp. 486–505

39. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: pushing DPA
beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.) [56], pp.
243–261

40. Moradi, A.: Statistical tools flavor side-channel collision attacks. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 428–445. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 26

41. Moradi, A.: Side-channel leakage through static power - should we care about in
practice? In: Batina, L., Robshaw, M. (eds.) [4], pp. 562–579

42. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 9

43. Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer,
Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-642-29011-4_26
http://dx.doi.org/10.1007/978-3-642-15031-9_9

Towards Fair and Efficient Evaluations of Leaking Cryptographic Devices 361

44. Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks
beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33027-8 9

45. Poussier, R., Grosso, V., Standaert, F.-X.: Comparing approaches to rank estima-
tion for side-channel security evaluations. In: Homma, N., Medwed, M. (eds.) [30],
pp. 125–142

46. Poussier, R., Standaert, F.-X., Grosso, V., Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) [25], pp. 61–81

47. Del Pozo, S.M., Standaert, F.-X.: Blind source separation from single measure-
ments using singular spectrum analysis. In: Güneysu, T., Handschuh, H. (eds.)
[28], pp. 42–59

48. Del Pozo, S.M., Standaert, F.X., Kamel, D., Moradi, A.: Side-channel attacks from
static power: when should we care? In: Nebel, W., Atienza, D. (eds.) Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE
2015, Grenoble, France, 9–13 March 2015, pp. 145–150. ACM (2015)

49. Prouff, E. (ed.): COSADE 2014. LNCS, vol. 8622. Springer, Heidelberg (2014)
50. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security

proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 9

51. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F.,
Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16342-5 29

52. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04138-9 8

53. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 8

54. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Generic DPA attacks: curse or bless-
ing? In: Prouff, E. (ed.) [49], pp. 98–111

55. Sako, K., Sarkar, P. (eds.): ASIACRYPT 2013. LNCS, vol. 8269. Springer,
Heidelberg (2013)

56. Sarkar, P., Iwata, T. (eds.): ASIACRYPT 2014. LNCS, vol. 8873. Springer,
Heidelberg (2014)

57. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J.
Cryptographic Eng. 6(2), 85–99 (2016)

58. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85053-3 26

59. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17373-8 7

60. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,

http://dx.doi.org/10.1007/978-3-642-33027-8_9
http://dx.doi.org/10.1007/978-3-642-33027-8_9
http://dx.doi.org/10.1007/978-3-642-38348-9_9
http://dx.doi.org/10.1007/978-3-642-16342-5_29
http://dx.doi.org/10.1007/978-3-642-04138-9_8
http://dx.doi.org/10.1007/978-3-642-04138-9_8
http://dx.doi.org/10.1007/978-3-642-20465-4_8
http://dx.doi.org/10.1007/978-3-540-85053-3_26
http://dx.doi.org/10.1007/978-3-642-17373-8_7

362 F.-X. Standaert

L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35999-6 25

61. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) [56], pp. 282–296

62. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 44

63. Veyrat-Charvillon, N., Standaert, F.-X.: Generic side-channel distinguishers:
improvements and limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 354–372. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 20

64. Wang, W., Yu, Y., Liu, J., Guo, Z., Standaert, F.-X., Gu, D., Xu, S., Fu, R.:
Evaluation and improvement of generic-emulating DPA attacks. In: Güneysu, T.,
Handschuh, H. (eds.) [28], pp. 416–432

65. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T.,
Handschuh, H. (eds.) [28], pp. 3–21

66. Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov-Smirnov
test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS
2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-27257-8 15

67. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA. . .and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04852-9 10

http://dx.doi.org/10.1007/978-3-642-35999-6_25
http://dx.doi.org/10.1007/978-3-642-34961-4_44
http://dx.doi.org/10.1007/978-3-642-22792-9_20
http://dx.doi.org/10.1007/978-3-642-27257-8_15
http://dx.doi.org/10.1007/978-3-642-27257-8_15
http://dx.doi.org/10.1007/978-3-319-04852-9_10

A Methodology for the Characterisation
of Leakages in Combinatorial Logic

Guido Bertoni1 and Marco Martinoli2(B)

1 STMicroelectronics, Agrate Brianza, MB, Italy
guido.bertoni@st.com

2 Department of Computer Science, University of Bristol, Bristol, UK
marco.martinoli@bristol.ac.uk

Abstract. Glitches represent a great danger for hardware implemen-
tations of cryptographic schemes. Their intrinsic random nature makes
them difficult to tackle and their occurrence threatens side-channel pro-
tections. Although countermeasures aiming at structurally solving the
problem already exist, they usually require some effort to be applied
or introduce non-negligible overhead in the design. Our work addresses
the gap between such countermeasures and the näıve implementation
of schemes being vulnerable in the presence of glitches. Our contribu-
tion is twofold: (1) we expand the mathematical framework proposed by
Brzozowski and Ésik [5] by meaningfully adding the notion of informa-
tion leakage, (2) thanks to which we define a formal methodology for
the analysis of vulnerabilities in combinatorial circuits when glitches are
taken into account.

Keywords: Side-channel analysis · Hardware countermeasures ·
Glitches · Formal method

1 Introduction

Side-channel attacks were first introduced by Kocher et al. [6] as a way to attack
implementations of cryptosystems. They exploit the relation between data being
processed and several physical emanations, for instance time taken or power
consumed to perform computations [7]. Since its first appearance, side-channel
analysis has grown quickly with newly developed attacks as well as countermea-
sures, which try to prevent any sensitive information from being leaked. For
instance, sharing schemes randomise intermediate values in such a way that the
leaked information no longer depends on any sensitive data [8]. However the
efficiency of countermeasures is deeply linked to physical characteristics of the
device on which they are implemented: in 2005 Mangard et al. [9] predicted the
criticality of glitches for hardware implementations, which was then demon-
strated in the same year [10]. They showed how the propagation of signals
in combinatorial logic implementing an apparently secured SBox might result
in critical leakages, leading to an ineffective protection. To solve the problem,

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 363–382, 2016.
DOI: 10.1007/978-3-319-49445-6 21

364 G. Bertoni and M. Martinoli

Nikova et al. [13,14] suggested the use of threshold implementations, which allow
to tackle glitches at root by developing maps that do not handle all the shares
in the same combinatorial circuit. Such maps obviously come at the cost of a
significant overhead compared to the unprotected version. Implementations and
practical discussions can be found in the work of Moradi et al. [12] and of Bilgin
et al. [4]. As for higher-order security, the issue of glitches has been faced with a
generalisation of threshold implementations [3,17], and independently by Prouff
and Roche [15]. Specifically on the effects of glitches on the AES SBox Mangard
and Schramm [11] have reported a deep and complete analysis.

Overall there is a gap in the capabilities of quantifying the criticality of
glitches in a hardware implementation. This gap is not trivial to close, as glitches
in combinatorial logic are functions of the final layout of the circuit and the
environmental conditions, and might change during the life of the device. In
practice two equal devices might exhibit a different behaviour in terms of glitches.

Our aim is to provide a framework for evaluating the presence of glitches
under worst-case conditions without the need of detailed characterisation of the
combinatorial logic, i.e. remaining at gate level description. In order to achieve
this result, we start from the mathematical structure created by Brzozowski and
Ésik [5], which simulates the propagation of electric signals inside a circuit, and
we build a method to relate a modelled power consumption with the sensitive
variables that have caused it. Our analysis is done in a worst-case scenario where
all possible glitches are taken into account as to achieve the maximum possible
generality. Our main result is an assessing tool which is able to formally describe
what kind of information could be leaked, and to give an heuristic estimate about
the security of sharing schemes implemented in hardware.

Organisation of the Paper. Section 2 provides the abstract framework under-
lying our tool, with a particular emphasis on how circuits and signals propagating
inside them are modelled. Section 3 describes parts of the work of Brzozowski and
Ésik [5] which are also used by our construction. In Sect. 4 we present our main
contribution: we expand the functionalities of the previously discussed mathe-
matical model with the notion of leakage and we show how such an improved
framework can be used to analyse cryptographic circuits. In Sect. 5 some exam-
ples of usage of our model are reported, with particular reference to the sponge
function Keccak. We discuss the soundness of our approach and several prac-
tical aspects in Sect. 6, and we conclude our work in Sect. 7.

2 Preliminaries

Our work targets hardware implementations of cryptographic schemes. Since
the meaning of such can be quite broad, the present section aims at specify-
ing our environment, as well as at setting the notation we adopt. In fact, our
mathematical model applies only to an abstraction of real-world circuits: we
just refer to logic netlists, hence circuits formed only of logic gates and con-
nections among them. Our tool therefore achieves a good level of generality,

A Methodology for the Characterisation of Leakages in Combinatorial Logic 365

since it does not require any knowledge of implementation details apart from
the circuit scheme itself, which means that it is general enough to include all the
above mentioned source of glitches (final layout, environmental conditions...). In
particular we focus on asynchronous feedback-free circuits. We claim this is not
too restrictive, because of the following argument. Circuits can be divided into
two parts: the combinatorial logic and the state storing part. The combinato-
rial logic is indeed asynchronous, it is the part in charge of implementing the
logic functionality and where glitches might propagate. The state storing part,
implemented via registers or memory cells, is clocked and provides the synchro-
nization between different sections of the circuits. Since we apply our model to
logic circuits performing sensitive computations, the most natural choice is to
focus on the asynchronous part only. We do not consider the presence of feed-
backs in the combinatorial part for the sake of simplicity and because they are
not a common construction in this field anyway.

We adopt a high-level abstraction of signals too. Since we are only interested
in the Boolean value they represent, it is convenient to think of them as square
waveforms which can assume the values 0 or 1. To push the abstraction further
we assume the existence of a sampling frequency being fine enough to detect all
the changes occurring in a signal, in such a way that a signal is represented as
a finite-length bit-string. We denote by

Z
∗
2 =

∞⋃

r=1

Z
r
2

the set of finite-length bit-strings. We denote bit-strings by concatenation of
bits, i.e. a bit-string s ∈ Z

∗
2 is of the form s = a1 . . . ar for some bits ai ∈ Z2

and for a certain r ≥ 1. Grouping bits of a bit-string is also a useful notation
and is denoted by s = bp1

1 . . . b
pr′
r′ , where this time we assume bj �= bj+1 and

pi > 0 for every 1 ≤ i ≤ r′, 1 ≤ j ≤ r′ − 1. Essentially, the latter notation
highlights the number of times pi the corresponding bit bi is repeated in a bit-
string. Finally, we denote by �(s) = r its length, by α(s) = a1 = b1 its first bit
and by ω(s) = ar = br′ its last one.

Further Notation. We denote the power set (i.e. the set of all subsets) of a set
S by P(S). Vectors are denoted by underlined letters while boldface is reserved
for signals seen as transients (cf. Definition 1 and Example 1).

2.1 Power Consumption Model

The power consumed by a circuit is a crucial information as it is one of a number
of side-channels through which a loss of sensitive information can occur [7] and
is the only one we focus on throughout this work. If we consider global synchro-
nous circuits, the power consumption can be divided in three components: the
static leakage, the switching of registers and the switching of combinatorial logic.
The static leakage is the amount of power needed by the circuit to maintain the

366 G. Bertoni and M. Martinoli

current state when no switch is present. The switching of registers is the con-
sumption taken by the circuit for updating the state and is easily approximated
by the Hamming distance of the state in two consecutive clock cycles. The value
of the registers can be easily protected by masking schemes. The last contri-
bution is the most interesting for us and is related to the consumption of the
combinatorial logic. From a temporal point of view, the switching of registers
usually happens at the rising edge of the clock cycle while the static leakage
happens in its last part. By contrast, the consumption of combinatorial logic
spans, in most cases, the entire duration of the clock cycle [16]. Consistently
with the choice of addressing only the asynchronous part of a circuit, our power
consumption model includes only the contribution of the combinatorial logic.

Since we deal only with circuits formed by logic gates, we assume that the
power consumed by the whole circuit is the sum of the power consumed by
each gate, which reduces the problem to modelling the power consumed by a
gate. The simplest way is to consider the signal a gate outputs or, equivalently,
the corresponding bit-string. If the output signal changes, equivalently the corre-
sponding output bit-string switches, the gate consumes. The power consumption
model we assume in the present work is then described by the following three
assumptions:

1. a gate consumes power if and only if its output bit-string switches;
2. a zero-to-one switch consumes the same amount of power as a one-to-zero

switch;
3. every time some power is consumed, an attacker can measure and exploit it.

Hence we assume that a potential leakage exists as far as a switch occurs.

As already stated, we neglect static leakage by means of the first assumption.
The second assumption is made for the sake of simplicity and it can be dropped
in favour of a more realistic model built on top of a specific technology library.
The third assumption assures the best possible generality: we consider as leaked
every variable that has a chance to be leaked.

3 Simulation of Signal Propagation

Brzozowski and Ésik [5] have developed a mathematical structure which aims
at simulating worst-case glitches propagation in a circuit. In essence, the model
analyses how a change in the inputs propagates and which kind of response is
triggered in the gates. In their work, Brzozowski and Ésik use a higher level of
abstraction than bit-strings to simulate signals.

Definition 1. A transient is a bit-string with no repetitions. More formally, a
bit-string t = a1 . . . ar ∈ Z

∗
2 is a transient if ai �= ai+1 for all 1 ≤ i ≤ r − 1.

Equivalently, t = bp1
1 . . . b

pr′
r′ ∈ Z

∗
2 is a transient if pi = 1 for every 1 ≤ i ≤ r′.

Informally, transients can only be of the form 1010 . . . or 0101 . . . for an
arbitrary finite length r ≥ 1 (note that bits 0 and 1 can be considered as tran-
sients for which r = 1). We define a map from bit-strings to transients called the

A Methodology for the Characterisation of Leakages in Combinatorial Logic 367

contraction map and denoted by γ : Z∗
2 → Z

∗
2 such that:

γ(bp1
1 . . . bpn

n) = b1 . . . bn.

We denote by T = γ(Z∗
2) ⊆ Z

∗
2 the set of all possible transients.

Definition 2. Let t, t′ ∈ T be two transients such that �(t) ≤ �(t′). We say that
t is a prefix of order o = �(t′) − �(t) of t′ if α(t) = α(t′). We adopt the notation
t �o t′. Note that if o = 0, �0 is equivalent to equality between transients.

The rationale behind transients is the following. Contracting bit-strings is
equivalent to neglecting time periods during which a signal assumes constant
values 1 or 0. This results in transients being exclusively designed to represent
which changes occur, but not when: the order of switches can then be freely
tuned, in such a way that the worst glitchy behaviour is always shown at the
output of a gate. That is to say if two transients modelling two changing signals
are given as inputs to a gate, then the output will be a transient modelling the
signal showing the highest possible number of changes. Next subsection specifies
how to combine transients so to emulate gates’ logic.

3.1 Operations Among Transients

As the previous discussion has suggested, the choice of transients rather than
general bit-strings as a formalisation of signals relies on the operations that it
is possible to define among them. Since the circuits we study are only formed of
logic gates, we want those operations to preserve gates’ functionalities. Therefore
we aim at building a function f̂ : Tn → T associated to a Boolean function
f : Zn

2 → Z2 whose inputs are n transients, namely t = (t1, . . . , tn) ∈ Tn.

Example 1. Let us suppose that two signals s1 and s2 are given as input to a
gate implementing a Boolean function f : Z2

2 → Z2. Firstly, they are fixed at
constant values b1 ∈ Z2 and b2 ∈ Z2 respectively. Suddenly, s1 changes from
b1 to c ∈ Z2, with c �= b1. This is represented by the transient s1 = b1c which
can be either 01 or 10. Then, the idea behind the function f̂ is to emulate the
behaviour of the function f , but taking as inputs the two transients s1 = b1c
and s2 = b2 (seen as a length-one transient) and producing a transient with the
highest number of switches, i.e. as if the highest number of glitches occurred.
Note that we write a variable in boldface if it is seen as a transient and that bit
concatenation is denoted by simply writing one bit after the other.

The remainder of this subsection describes how to achieve the functionality
discussed in Example 1. The idea is that, given two input transients t1 = a1 . . . an

and t2 = b1 . . . bm, the first bit the gate computes is f(a1, b1). This will be
also called the initial stable state. Then the two inputs change to a2 and b2
respectively, and we have the freedom to decide which is the first one to affect the
gate such that another change in the output (if any) is triggered. This process is
built thanks to two graphs which look at all possible combinations of propagation
times. Firstly, we define the directed graph D(t) as follows.

368 G. Bertoni and M. Martinoli

Definition 3. Given t = (t1, . . . , tn) ∈ Tn, we define the directed graph D(t) =
(V,E) such that:

V = {v ∈ Tn | vi �oi
ti for every 0 ≤ oi < �(ti) and 1 ≤ i ≤ n}

E = {(v, w) ∈ V × V | ∃!i such that vi �1 wi and vj = wj for every j �= i}

Note that D(t) is the graph whose nodes are all the prefixes of the components
of t, the simplest being (α(t1), . . . , α(tn)) and the longest being t itself. Edges are
drawn if there exists only one change in exactly one of two nodes’ components.
At this point we label each vertex v = (v1, . . . , vn) ∈ V with the bit fω(v) =
f(ω(v1), . . . , ω(vn)) ∈ Z2 and we construct the following graph.

Definition 4. Let f : Zn
2 → Z2 be a Boolean function. Given t = (t1, . . . , tn) ∈

Tn and D(t) = (V,E), we define its labelled directed graph Df (t) = (Vf , Ef)
such that:

Vf = {fω(v) ∈ Z2 | v ∈ V }
Ef = {(fω(v), fω(w)) ∈ Vf × Vf | (v, w) ∈ E}

It is straightforward that the graph Df (t) has the same shape as D(t). In
particular there is a bijection between E and Ef , hence every path in D(t) can
be reconstructed in Df (t). Thanks to this, the output of f̂ is computed by first
considering all the paths in D(t) from (α(t1), . . . , α(tn)) to (t1, . . . , tn) and then
reconstructing them in Df (t). Since elements of Vf are bits, each path in the
latter graph uniquely defines a bit-string by concatenating its successive vertices.
The contraction map γ is then applied to every such bit-strings and the output
of f̂(t1, . . . , tn) is defined as the longest contraction.

Theorem 1. Let f : Zn
2 → Z2 be a Boolean function. The function f̂ : Tn → T

is well defined for any given input t = (t1, . . . , tn) ∈ Tn.

Proof. We only need to prove that if two paths in D(t) lead to bit-strings
whose contractions have the same length and are the longest, then such con-
tractions are equal. In other words, let s1 = a1 . . . ak and s2 = b1 . . . bm be two
bit-strings computed from the two paths such that �(γ(s1)) = �(γ(s2)), where
ai, bj ∈ Z2. Since we are only considering paths in D(t) from (α(t1), . . . , α(tn))
to (t1, . . . , tn), it is true that α(s1) = α(s2) = f(α(t1), . . . , α(tn)) and ω(s1) =
ω(s2) = f(ω(t1), . . . , ω(tn)). It follows that α(γ(s1)) = α(γ(s2)) and ω(γ(s1)) =
ω(γ(s2)), because the contraction map cannot change the first and last bits.
Since �(γ(s1)) = �(γ(s2)) holds too, γ(s1) and γ(s2) are two transients with
same first and last bits and same length, hence γ(s1) = γ(s2).
�
Example 2. We report how to construct ˆAND : T 2 → T between the two tran-
sients 010, 01 ∈ T .

In Fig. 1 (left), D(010, 01) is built according to Definition 3 while in Fig. 1
(right) DAND(010, 01) is computed with the function AND : Z

2
2 → Z2 as in

Definition 4. In the graph D(010, 01) there are only three possible paths from

A Methodology for the Characterisation of Leakages in Combinatorial Logic 369

Fig. 1. D(010, 01) and DAND(010, 01)

(0, 0) to (010, 01), whose corresponding bit-strings are 0000, 0010 and 0010.
By applying the contraction map to each of them, we obtain that the possible
outputs of ˆAND are γ(0000) = 0, γ(0010) = 010 and γ(0010) = 010. Hence, by
taking the longest possible transient we obtain that ˆAND(010, 01) = 010. In Fig. 1
(right), the chosen path is highlighted with thicker arrows and another possible
one leading to the same result is highlighted with thicker dash arrows.

We want to highlight the rationale behind those graphs. Each edge corre-
sponds to a change in exactly one of the inputs. Deciding a path in those graphs
is then equivalent to assuming an “order of arrival” of the inputs’ changes to
the gate. Such an order is chosen according to our previously discussed “longest
possible output” rule.

Remark 1. The above construction is only a formal procedure to build f̂ from a
generic Boolean function f . In practice, once f is fixed, a simple rule to compute
f̂ can be derived from the graph. For instance, it is possible to prove (as it is
done in [5]) that ˆAND : T 2 → T can be defined for any two transients t, t′ ∈ T as
follows:

– ˆAND(t, 1) = ˆAND(1, t) = t;
– ˆAND(t, 0) = ˆAND(0, t) = 0;
– if �(t), �(t′) > 1, ˆAND(t, t′) is the transient w such that:

• α(w) = α(t) ∧ α(t′);
• ω(w) = ω(t) ∧ ω(t′);
• u(w) = u(t) + u(t′) − 1;

where u : T → N denotes the number of ones of a transient. Such a simplification
also has an impact on the performance of f̂ : since we no longer need any graphs,
f̂ can be considered linear in the number of inputs (their lengths do not matter).
We refer to the work of Brzozowski and Ésik [5] for more examples.

3.2 Glitch-Counting Algorithm

We are finally ready to state the glitch-counting algorithm, which simulates the
propagation of signals inside a circuit in terms of transients. First of all, a change

370 G. Bertoni and M. Martinoli

in one or more inputs is assumed and represented as a transient. The glitch-
counting algorithm assigns a transient to each gate as soon as the change reaches
it. If the gate implements a Boolean function f , then the result is computed
according to f̂ .

Given a circuit with m inputs and k gates, we denote by X = (X1, . . . , Xm)
the vector of input variables and by s = (s1, . . . , sk) the vector of state variables,
which are the gates’ outputs. We use boldface to distinguish when variables are
used as transients, as in Example 1.

Definition 5. We call excitation the Boolean function Sj : Zm
2 × Z

k−1
2 → Z2

by which the state variable sj is computed.

sj = Sj(X, s) = Sj(X1, . . . , Xm, s1, . . . , sj−1, sj+1, . . . , sk)

The above definition simply establishes a notation for the Boolean function
each gate implements. It can be further extended so as to take into account all
the excitations in a given circuit.

Definition 6. Given a circuit with m inputs and k gates, the function S : Zm
2 ×

Z
k
2 → Z

k
2 defined by S(X, s) = (S1(X, s), . . . , Sk(X, s)) is called the vector of

excitations of the circuit.

Note that in Definition 6, the jth component of the vector s is dropped when
given as input to each Sj for every 1 ≤ j ≤ k, according to Definition 5. This is
because we only deal with feedback-free circuits.

Example 3. Let us consider the circuit in Fig. 2. It has input vector X =
(X1,X2,X3), state vector s = (s1, s2, s3) and excitation functions given by the
following Boolean expressions.

s1 =S1(X1,X2,X3, s2, s3) = X1 ∧ X2

s2 =S2(X1,X2,X3, s1, s3) = X2 ∨ X3

s3 =S3(X1,X2,X3, s1, s2) = s1 ⊕ s2

Initially, suppose that the input X assumes the value X = a′ =
(a′

1, . . . , a
′
m) ∈ Z

m
2 , and that the state has the value s = b = (b1, . . . , bk) ∈ Z

k
2 .

We assume that the circuit is stable, i.e. S(a′, b) = b, and that the input
changes to a = (a1, . . . , am) ∈ Z

m
2 . We call this a transition and we denote

it by a′
1 . . . a′

m → a1 . . . am.

Fig. 2. Example of a circuit with input and state variables

A Methodology for the Characterisation of Leakages in Combinatorial Logic 371

Definition 7. The transition function ◦ : Z2×Z2 → T , given a, b ∈ Z2, returns:

a ◦ b =

{
a if a = b

ab if a �= b

where ab denotes the concatenation of a and b, which is a transient. This notation
is extended to vectors. If a′ = (a′

1, . . . , a
′
m) and a = (a1, . . . , am), then:

a′ ◦ a = (a′
1 ◦ a1, . . . , a

′
m ◦ am)

The glitch-counting algorithm starts with the circuit in the initial stable state
(a′, b). The input is then set to a = a′◦a and is kept constant at that value for the
duration of the algorithm. After the input changes, some state variables become
unstable in the sense that they no longer represent the correct logic output of
their gate. We set all unstable variables at the same time to their excitations
as soon as the input change propagates till their gate. We then obtain a new
internal state, which is a vector of transients, and the process is repeated until
all the state variables become stable again, i.e. their value is the correct Boolean
output of their gate. Formally, the glitch-counting algorithm is specified below.

Algorithm 1. Glitch-counting algorithm
Input: The initial stable state (a′, b), the new input a and the vector of excitations

among transients Ŝ(X, s) of a circuit.
Output: A list of k transients, one per each gate’s output, describing the worst possible

switching activity during the transition a = a′ ◦ a.
1: h ← 0;
2: a ← a′ ◦ a;
3: s0 ← b;
4: repeat
5: h ← h + 1;
6: sh ← Ŝ(a, sh−1);

7: until sh = sh−1;

8: return sh;

Example 4. Suppose that, in the situation of Example 3, the input changes from
a′ = (1, 0, 0) to a = (0, 1, 0), hence the transition 100 → 010 occurs. The exe-
cution of the algorithm is summarised in Table 1, where each row represents
one iteration of the cycle and each column refers to one variable (both input
and state) of the circuit. The last two rows are identical, meaning that we have
reached a stable state again and the algorithm terminates. At each step, the algo-
rithm computes the whole vector of excitations of the circuit, hence considering
all gates. However, it follows the behaviour of real-world signal propagation,
hence earlier gates (i.e. closer to circuit inputs) are affected first. Indeed the
first row just represents the initial state (when only inputs have changed), the
second one depicts a change in the first line of gates while in the third row sig-
nals propagate till the last XOR. Figure 3 is a graphical representation of the final
situation, which is the output of the algorithm without intermediate steps. Note

372 G. Bertoni and M. Martinoli

Table 1. Example of a glitch-counting algorithm’s execution

h X1 X2 X3 s1 s2 s3

0 10 01 0 0 0 0

1 10 01 0 010 01 0

2 10 01 0 010 01 0101

3 10 01 0 010 01 0101

Fig. 3. Example of a glitch-counting algorithm’s execution

that the final logic situation can be retrieved from Table 1 by computing ω(s1),
ω(s2) and ω(s3) which are the correct (i.e. stable) Boolean outputs for inputs
ω(X1), ω(X2) and ω(X3).

We conclude the present section with a theorem stating the asymptotic running-
time of the glitch-counting algorithm. The proof is extensively discussed by
Brzozowski and Ésik [5] and is then omitted here.

Theorem 2 (Section 8 of [5]). Given a feedback-free circuit and a transition
of its inputs, the glitch-counting algorithm always terminates. Moreover, it runs
in O(m + k2) time where m is the number of inputs and k the number of gates.

4 LP Model

The glitch-counting algorithm was developed in the first place to prevent unnec-
essary power consumption by discarding netlists being particularly exposed to
glitches propagation [5]. Our main contribution is the LP (Leakage Path) model,
which is a mathematical abstraction that expands the functionalities of the
glitch-counting algorithm and relates its simulations to the notion of leakage.
Our result leads to a tool that allows to evaluate if a circuit has a critical
leakage from the security point of view. The remaining of this section explains
the structure of the LP model, which is formed of the following mathematical
entities:

input variables are the only part of a circuit that can trigger a signal prop-
agation. If no input variable changes, no signal propagates and no power is
consumed, therefore no leakage exists according to our power model;

A Methodology for the Characterisation of Leakages in Combinatorial Logic 373

literal transients are sets of input variables. For each gate reached by a signal’s
change, a literal transient contains which variables have caused the change
and could then be leaked;

literifiers are the link between transients and leakage. Essentially, they relate
the input and output transients of a gate to the appropriate literal transient.

The general idea behind the above three objects is the following. The process
begins with a change in the input variables, which generates a signal propagation
inside the circuit and affects some gates. The gates are then supposed to produce
a new output based on the new inputs and their final result depends on which
variables have changed and how. In this framework, literifiers are responsible to
retrieve the variables involved and represent them via literal transients.

4.1 Structure of LP Model

We now describe in details each part of the LP model with respect to a single
gate. This means that when we talk of input variables, we mean the variables
that are directly given as inputs to it. Next subsection will proved a broader
view, showing how to apply notions for single gates to a whole circuit. Following
the same notation as the input variables of a circuit, we denote such variables
by Xj and by Xj if they are seen as transients; we assume that f : Zn

2 → Z2 is
the Boolean function implemented by the gate and we denote by f̂ : Tn → T
the corresponding function among transients.

As stated in the introduction of this section, input variables are of great
importance for both the glitch-counting algorithm, since nothing could be sim-
ulated without a change of theirs, and the LP model. In essence, they are the
objects our study targets as we aim at following their propagation along the
circuit.

Definition 8. Given a gate with n inputs, namely X1, . . . , Xn, we call literal
transient any subset of {1, . . . , n}. The set of literal transients is denoted by
I = P({1, . . . , n}).

Literal transients are a generalisation of transients: instead of being finite
alternated sequences of zeros and ones, they are finite sets of input variables. In
a sense, they are the result we are looking for: the analysis of a circuit by means
of the LP model consists in assigning a literal transient to each gate. Their utility
stems from the fact that they list which input variables are responsible for the
power consumption and could then be leaked according to our power model.
This is strictly connected with the rationale behind transients. In both cases
we assume the worst possible scenario: transients are supposed to switch as if
the worst possible combination of glitches occurred in the same way as literal
transients list all variables being leaked in the worst possible case. It is clear
from the above discussion that the core of the LP model is the way we assign
literal transients to gates.

Literifiers are functions establishing which input variables are leaked by a
gate, i.e. the ones having caused a change in its output. They depend on how

374 G. Bertoni and M. Martinoli

the gate’s inputs change, i.e. which transients enter in it, and on the implemented
logic.

First of all, we represent the input of a gate as the following vector of couples:

((t1, l1), . . . , (tn, ln)) ∈ (T × I)n.

We call it transient-variable representation: the first component of each couple
is a transient modelling how that input signal changes, while the second one is
a literal transient listing the input variables responsible for that change.

Example 5. Recalling Figs. 1 and 3, the gate computing s1 = 010 has the follow-
ing input according to the transient-variable representation.

((10, {1}), (01, {2}))

In Example 5 we have assumed that the literal transient of a circuit’s input
is just the singleton containing its index. As for now, the transient-variable
representation is directly possible only for gates at height 1, i.e. whose inputs
are inputs of the circuit itself. In that case each literal transient is simply the
singleton of a variable. In the next subsection we will show a procedure similar
to the glitch-counting algorithm to meaningfully apply literifiers also to gates
whose inputs have already been processed. Such gates are said to have height
grater than 1. Informally speaking, the height of a gate is inductively defined
to be 1 if all its inputs are circuit inputs, and to be the maximum height of its
inputs plus one otherwise. We intentionally omit any further formalisation to
avoid heavy notations. As an example, in the circuit in Fig. 2 the AND and OR
gates are at height 1 and the XOR is at height 2.

When building the output of the function f̂ , Theorem 1 guarantees that the
described procedure yields a unique result. This means that, without loss of
generality, we can always assume a unique path in D(t) producing the output
of f̂ exists. Since a path is nothing more than a collection of edges, we denote
it by P ⊆ E. Note that considering P as a subset of E results in neglecting the
order of the vertices. Although this could be an issue with generic graphs, the
particular structure of E makes such a set representation unambiguous.

Definition 9. Let f : Zn
2 → Z2 be the Boolean function implemented by a gate

and let D(t) be the graph used to compute f̂ on input ((t1, l1), . . . , (tn, ln)) ∈ (T ×
I)n. For every edge (v, w) ∈ E, we define the edge-label function elab : E → I
as follows:

elab(v, w) = li

where i is such that vi �1 wi and vj = wj for every j �= i.

Note that elab is well defined by definition of E. The definition of literifier for
a single gate assuming its input is in transient-variable representation follows.

Definition 10. The literifier of a gate implementing a Boolean function f :
Z

n
2 → Z2 is the function Lf : (T × I)n → I such that:

Lf ((t1, l1), . . . , (tn, ln)) =
⋃

(v,w)∈P

elab(v, w)

A Methodology for the Characterisation of Leakages in Combinatorial Logic 375

Fig. 4. D(10, 01) and DAND(10, 01)

Recall that each edge of D(t) represents a change in one component of the
vector t = (t1, . . . , tn). For instance, let us assume that e ∈ P links two vertices
which differ in the jth component. The edge-label function elab is firstly used to
label e with the literal transient corresponding to the jth component, hence lj .
Once this is done for every edge in the path P , the literifier returns the union
of the labels.

Example 6. Following Example 4, let us compute the literifier LAND((10, {1}),
(01, {2})) associated to the gate computing s1. Figure 4 depicts a similar situ-
ation as in Fig. 1 and the same discussion follows. In addition, we apply the
edge-label function elab to the edges in path P and compute the following
literifier.

LAND((10, {1}), (01, {2})) = {2} ∪ {1} = {1, 2}

Remark 2. Similarly to Remark 1, the above is just a formal procedure to com-
pute literifiers. Once f is known and fixed, more straightforward approaches are
possible. For instance, the following is the literifier associated to a gate imple-
menting the Boolean function AND : Zn

2 → Z2:

LAND((t1, l1), . . . , (tn, ln)) =

⎧
⎨

⎩

∅ if ∃j ∈ {1, . . . , n} such that tj = 0
⋃

j∈J

lj otherwise

where J = {j ∈ {1, . . . , n} | �(tj) > 1}. Intuitively, the upper branch states
that if there exists one input which is the fixed 0, then the output will be the
fixed 0 no matter how other inputs change. Since the output is fixed, no power
is consumed and the set of leaked variables is empty. Otherwise, the union of
all literal transients corresponding to non-constant transients is returned. Since
we are in the second branch there is no constant 0 transient, which results in
the rule excluding only literal transients equal to the constant 1, as they do not
contribute to the switch activity of an AND gate. We refer to the full version of
this paper for a list of other compact definitions of literifiers. As before, we stress
that such a simplification has a positive impact on performance.

376 G. Bertoni and M. Martinoli

4.2 Application to Circuits

We conclude this section by showing how to apply the LP model to a given
circuit with m inputs and k gates. For instance in Figs. 1 and 3, on one hand
it is immediate that the transient-variable representation of gate computing s1
is the one shown in Example 5, but on the other it is less clear what it should
be for gates whose inputs are not the inputs of the circuit, e.g. for the one
computing s3.

We recall that we denote by X = (X1, . . . , Xm) the input variables and by
s = (s1, . . . , sk) the state variables of a circuit. Moreover we denote by Sj(X, s)
the Boolean function sj is computed by, which can depend on all input and state
variables except sj itself.

The idea is simply proceeding by height: the only gates we can directly com-
pute literifiers for are those at height 1, since the input literal transients are just
singletons of input variables. Once all literifiers at height 1 have been computed,
we can apply those at height 2: their input literal transients can be either sin-
gleton of input variables or outputs of gates at height 1. This procedure always
terminates as there are finitely many gates and is well-defined as there are no
feedbacks.

Example 7. We conclude what Example 6 has begun by computing all literifiers
of Example 4. The only other gate at height 1 is the one computing s2, for which
we have the following.

LOR((01, {2}), (0, {3})) = {2}

We now have all the information to compute the literifier for the last gate.

LXOR((010, {1, 2}), (01, {2})) = {1, 2} ∪ {2} = {1, 2}

Compact definitions of LOR and LXOR, in the same fashion as in Remark 2, can
be found in the full version.

Figure 5 depicts the final outcome of the LP model applied to the circuit in
Fig. 2 during transition 100 → 010. Essentially, the LP model adds one literal

Fig. 5. Application of literifiers to a circuit

A Methodology for the Characterisation of Leakages in Combinatorial Logic 377

transient per gate to the output of the glitch-counting algorithm. They describe
which input variables cause a particular gate to switch and whose values could
then be leaked through the power consumption. Collecting such an information
for all transitions gives the designer a powerful tool to predict possible flaws. In
the next section we deepen this discussion while providing a real-world use case.

Final Remarks. In the present subsection, we have shown how to practically
apply the LP model to the netlist of a circuit. Although the example we have
considered was trivial, the LP model is a formal tool to analyse netlists with an
arbitrary number of inputs and gates, where an ad hoc analysis would require
much more effort. Once a netlist and an input transition are fixed, the LP model
provides a list of variables based on which a risk assessment in the context of
side-channel analysis is facilitate. As the next section will suggest, a full analy-
sis would require the LP model to run over every non-trivial input transition,
hence 22m − 2m times where m is the number of inputs and where we have sub-
tracted transitions from an input to itself as they clearly do not produce any
consumption in our power model. Such exponential requirement is a drawback
of our approach: a deeper insight will be given in Sect. 6. Also, it is possible
to reduce the number of transitions over which the LP model needs to be run
by developing heuristics specifically designed for a circuit. Finally, for a fixed
transition the overall complexity is asymptotically bounded by the running time
of the glitch-counting algorithm, described in Theorem 2.

5 Case of Study: Keccak

The present section provides an application of the LP model to Keccak. We
show how to face the following issue thanks to our tool: an unprotected imple-
mentation of Keccak’s non-linear layer is obviously susceptible to side-channel
attacks, but a possible 2-shares scheme is still weak in the first order because of
glitches. We formally show the validity of the latter statement while suggesting
a deeper insight on how to circumvent the issue without adopting more costly
countermeasures. The reason why we chose to adopt Keccak as our case of
study mainly relies on it being deployed in real-world applications while still
having a not too complex structure. It is then the ideal candidate for being a
test bench.

Keccak is a family of sponge functions that uses a permutation from a
set of seven possible ones as a building block [2]. The permutations are defined
over a state s ∈ Z

b
2 where b = 25 × 2� is called width of the permutation and

� ∈ {0, . . . , 6}. Each round is formed of five maps: three linear maps aiming
at diffusion and dispersion, one non-linear map aiming at confusion and one
addition with round constants. When it comes to implement sharing schemes,
linear maps can be directly applied to each share separately. By contrast, non-
linear maps need to handle every share to preserve correctness. Therefore we
focus on the only non-linear map of Keccak, namely χ : Z5

2 → Z
5
2 acting on

378 G. Bertoni and M. Martinoli

groups of five bits of the state called rows. For a complete description of Keccak
we invite the reader to refer to the work of Bertoni et al. [2].

The map χ can be seen as the parallel application of five identical maps each
defined on three consecutive bits (modulo 5) of a row. Formally:

χi : ri ← ri ⊕ ri+1ri+2 (1)

where r ∈ Z
5
2 denotes a row of the Keccak state and the index i is computed

modulo 5. For our analysis, it is important to note that the five instances of the
map χi : Z3

2 → Z2 are completely independent, they do not share gates in their
computation. As a result, we can focus on a specific χi without loss of generality.
The sharing scheme we adopt in our analysis is a 2-shares Boolean scheme, i.e.
each row is split in two shares a, b ∈ Z

5
2 such that r = a ⊕ b [1]. Our results

can be easily generalised to many shares. In this setting, (1) can be masked as
follows:

ai ← ai ⊕ ai+1ai+2 ⊕ ai+1bi+2

bi ← bi ⊕ bi+1bi+2 ⊕ bi+1ai+2

(2)

where a straightforward computation shows that (2) are correct as (1) is simply
retrieved by XORing them. If the order of operations was kept fixed from left
to right, e.g. using software constraints, then the above sharing scheme would
be secure in the first order. However if (2) were implemented in hardware, such
condition could not be guaranteed, for instance because of glitches. This results
in possible vulnerabilities when the values ai+2 and bi+2 are involved in the
computation of the 3-inputs XOR at the same time, in one of the two branches.

As both the glitch-counting algorithm and the LP model work with netlists,
the first step in the analysis of (2) is to produce one. It can be easily seen that
the two branches are symmetric, hence we can focus only on the first without
loss of generality, i.e. the one computing ai. Figure 6 depicts its representation as
an hardware netlist, where the naming conventions presented at the beginning of
Subsect. 3.2 have been used. In particular, the input vector X = (X1,X2,X3,X4)
corresponds to (ai, bi+2, ai+1, ai+2).

Our analysis targets the netlist in Fig. 6 and proceeds as follows. First of all
an input transition is fixed among all the 28−24 = 240 non-trivial possible ones.
Then, the glitch-counting algorithm is applied as shown in Subsect. 3.2 and all
the transients are computed, one per gate. Table 2 reports the execution of the
glitch-counting algorithm for the input transition 0110 → 0001.

Fig. 6. Netlist of χi for one share

A Methodology for the Characterisation of Leakages in Combinatorial Logic 379

Table 2. Glitch-counting algorithm’s execution for the shared χi circuit

h X1 X2 X3 X3 s1 s2 s3 s4

0 0 10 10 01 1 0 0 1

1 0 10 10 01 10 01 0 1

2 0 10 10 01 10 01 01 10

3 0 10 10 01 10 01 01 101

4 0 10 10 01 10 01 01 101

At this point, suitable literifiers can be applied as described in Subsect. 4.2,
hence starting from gates at height 1. In our example, this means computing the
literifiers corresponding to s1 and s2 first, respectively an AND and NOT literifiers.

LAND((10, {2}), (10, {3})) = {2} ∪ {3} = {2, 3}
LNOT(10, {3}) = {3}

There are two gates at height higher than 1: first we compute LAND for the gate
computing s3 and finally LXOR is applied.

LAND((01, {3}), (01, {4})) = {3} ∪ {4} = {3, 4}
LXOR((0, {1}), (10, {2, 3}), (01, {3, 4})) = {2, 3} ∪ {3, 4}

= {2, 3, 4}

We refer the reader to the full version for the definitions of LNOT and LXOR. Figure 7
summarises the execution of both the glitch-counting algorithm and of the LP
model for the transition 0110 → 0001.

To take the most out of the proposed method, a vulnerability definition based
on critical combinations of variables needs to be formulated. This is checked
among all the literal transients produced by the model, which has been run over
all possible non-trivial input transition.

In the specific case of Keccak, a natural vulnerability of the circuit in Fig. 6
arises when the two variables ai+2 and bi+2 are processed in the same moment
by the last XOR gate, as this could leak the value ai+2 ⊕ bi+2 = ri+2 which
is unshared. In our model, this translates to the existence of {2} and {4} in
the same literal transient corresponding to the XOR gate, since X2 and X4 are
the input variables corresponding to ai+2 and bi+2. By running the model for
all the 28 − 24 non-trivial possible input transitions, we have found that 32
out of 240 match our vulnerability definition and could then lead to a critical
first order leakage. At this point, the designer possesses valuable information to
base security improvements on. In particular, leaving our gate-level abstraction,
the designer can carefully tune place-and-route paths in order to minimise the
occurrence and impact of those critical transitions. If such an operation is not
feasible, the designer still has a valid and sound criterion why to switch to an
higher number of shares (3 in the case of Keccak, since χ has degree 2). It is

380 G. Bertoni and M. Martinoli

Fig. 7. Shared χi circuit after LP model

important to note that further analyses, possibly by means of different and finer
vulnerability definitions, can be carried out without rerunning the whole model.

The sharing scheme we have analysed [1] has not gained much popularity
due to its weakness in the presence of glitches. However, our analysis is able to
capture more details: we can quantify and list all those transitions threatening
the security of unshared values. In this case a designer could just patch them
while being sure that all the others will never show a critical leakage of the first
order even in the presence of glitches. Since our aim was just to exemplify the
potentiality of our model, we consider the latter modification as being out of
scope for the present work, but an interesting future direction towards sound
and lightweight countermeasures.

6 Computational Effort and Multi-output Circuits

As we briefly mentioned while justifying the choice of Keccak, its combina-
torial circuits are relatively simple and allow to verify the correctness of the
proposed method easily. Since our aim is not to find a specific method for Kec-
cak but a rather generic methodology, there are two further topics that need
to be addressed: the computational complexity for a generic circuit and the
applicability of the method to multi-output combinatorial circuits.

The former topic has been partially addressed in Subsect. 3.2 for the glitch-
counting algorithm (Theorem 2) and in Subsect. 4.2 for the LP model. If we
refer to Keccak as a practical example and we think at an implementation
performing one round in one clock cycle, the target combinatorial circuit is the
concatenation of θ, one of the linear maps, and χ [2]. This combinatorial circuit
can be seen as a circuit with 33 input bits and 1 output bit in the unprotected
version, while the protected version using two shares is a 44-inputs circuit [1].
As described in Subsect. 4.2 this would turn in computing the propagation of
glitches through k gates for each of the 22m − 2m non-trivial input transitions.
Considering that the computation can be parallelised and the evaluation of the
glitch-counting algorithm is not a very complex computation, we claim that the
method could be applicable for a circuit with 44 inputs but would require a well
optimized implementation.

Multi-output circuits are also a very interesting target. In such circuits there
are gates contributing to the computation of different output bits. One approach

A Methodology for the Characterisation of Leakages in Combinatorial Logic 381

for tackling these circuits is to divide the circuit in n independent circuits with
single output, where n is the number of outputs of the initial combinatorial logic,
and apply the proposed method to each of them separately. Such approach could
however introduce an overhead as a single input might be used by more than
one sub-circuits. A further, more advanced solution for approaching multi-output
circuits and the computational effort when the number of inputs is large would
be the development of heuristic approaches as adopted by silicon compilers. We
see this as a future development. Finally note that there is nothing preventing
the model to be applied to multi-output circuits as it is, but it would be required
to develop meaningful vulnerability definitions based also on the cryptographic
algorithm. A similar discussion applies to high-order analysis. The LP model
can still be used but more sophisticated vulnerability definitions are needed to
interpret its results.

7 Conclusions

In their work, Brzozowski and Ésik [5] have developed a mathematical structure
to estimate the potential waste of power of a circuit due to glitches. Our first
contribution is the expansion of such framework to include a formal definition
of leakage. We have then defined a formal procedure to analyse circuits in the
context of side-channel analysis which take into account the effect of glitches
on the order of operations. Our work analyses only the combinatorial logic,
hence achieves a good level of generality since it is not touched by real-world
constraints. As a consequence, the LP model allows to retrieve how much a given
protection scheme can be affected by glitches, thus enabling a deep analysis.
Using the proposed methodology, a designer might explore alternative designs
for solving local problems of glitches instead of adopting more costly solutions.

Acknowledgements. The research leading to these results has received
funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 644052 (HECTOR).

Furthermore, Marco Martinoli has been supported in part by the Marie
Sk�lodowska-Curie ITN ECRYPT-NET (Project Reference 643161). Finally,
we thank Maria Chiara Molteni for corrections and useful comments.

References

1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Building power analysis resis-
tant implementations of Keccak. In: Second SHA-3 Candidate Conference (2010)

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 19

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 18

http://dx.doi.org/10.1007/978-3-642-38348-9_19
http://dx.doi.org/10.1007/978-3-662-45608-8_18

382 G. Bertoni and M. Martinoli

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES
threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT
2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06734-6 17

5. Brzozowski, J., Ésik, Z.: Hazard algebras. Formal Methods Syst. Des. 23(3), 223–
256 (2003)

6. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

7. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. J. Cryptographic Eng. 1(1), 5–27 (2011)

8. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, vol. 31. Springer, Heidelberg (2008)

9. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30574-3 24

10. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005). doi:10.1007/11545262 12

11. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES
hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006). doi:10.1007/11894063 7

12. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very
compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20465-4 6

13. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308 38

14. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00730-9 14

15. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES
using secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 5

16. Rabaey, J.M., Chandrakasan, A.P., Nikolic, B.: Digital Integrated Circuits, vol. 2.
Prentice Hall, Englewood Cliffs (2002)

17. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 37

http://dx.doi.org/10.1007/978-3-319-06734-6_17
http://dx.doi.org/10.1007/978-3-319-06734-6_17
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-540-30574-3_24
http://dx.doi.org/10.1007/11545262_12
http://dx.doi.org/10.1007/11894063_7
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/11935308_38
http://dx.doi.org/10.1007/978-3-642-00730-9_14
http://dx.doi.org/10.1007/978-3-642-00730-9_14
http://dx.doi.org/10.1007/978-3-642-23951-9_5
http://dx.doi.org/10.1007/978-3-642-23951-9_5
http://dx.doi.org/10.1007/978-3-662-47989-6_37

Exploiting the Leakage: Analysis of Some
Authenticated Encryption Schemes

Donghoon Chang, Amit Kumar Chauhan, Naina Gupta, Arpan Jati(B),
and Somitra Kumar Sanadhya

Indraprashtha Institute of Information Technology, (IIIT-Delhi), Delhi, India
{donghoon,amitc,nainag,arpanj,somitra}@iiitd.ac.in

Abstract. The ongoing CAESAR competition, aimed at finding robust
and secure authenticated encryption schemes provides many new sub-
missions for analysis. We analyzed many schemes and came across a
plenitude of techniques, design ideals and security notions. In view of
the above, we present key recovery attacks using DPA for Deoxys, Joltik
and ELmD, and a forgery attack on AEGIS. In our analysis of the various
schemes, we found out that, schemes using Sponge constructions with
pre-initialized keys such as Ascon, ICEPOLE, Keyak, NORX, PRIMATEs,
etc. were significantly harder to attack than contemporary designs using
standard building blocks from a side channel perspective. We also imple-
ment and demonstrate an attack on Joltik-BC, to recover the key in
roughly 50–60 traces.

Keywords: AEGIS · Deoxys · Joltik · ELmD · Side-channel · DPA · CPA

1 Introduction

An authenticated encryption (AE) scheme aims to provide two separate security
goals: confidentiality (privacy) and integrity (authenticity) of data. Historically,
these goals were achieved by generic compositions of two different cryptographic
primitives, a secure encryption scheme (e.g., block cipher) to ensure confiden-
tiality and a secure message authentication scheme to guarantee authenticity.
The seminal work by Bellare and Namprempre [8] introduced the notion of AE
around 2000. Since then, a significant amount of work has been done towards
the development of the notion, evolving new ideas and constructing new AE
schemes. Over the years, many significant results [23,26,27,38] demonstrated
that AE schemes can be constructed more efficiently than combinations of block-
ciphers or hash functions. As a result, many schemes have been devised such as
CCM [21], GCM [34], EAX [9], CWC [30] and OCB [39]. Despite the variety of
available designs, practice demands more desirable features – fast performance
in hardware and software, robustness against nonce-misuse, leakage of invalid
plaintexts, various kind of attacks, etc.

In 2013, Bernstein announced the CAESAR competition [1] (Competition
for Authenticated Encryption: Security, Applicability, and Robustness) to fill the
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 383–401, 2016.
DOI: 10.1007/978-3-319-49445-6 22

384 D. Chang et al.

needs of secure, efficient and robust AE schemes. In response, 57 candidates were
submitted to the competition. Currently, around 29 candidates in the second
round are being analyzed in terms of their security and efficiency. There is a
wide variety in the design approaches of the various schemes, from parallel and
high throughput modes for big-data applications to ciphers suited to the very
smallest and highly resource constrained devices, with a wide range of trade-offs
in robustness and security against attacks.

Leakage-resistance against side-channel attack is an important concern in the
design of AE schemes. There are several types of side channel leakage modes like
execution time [18,28], electromagnetic radiation [2,22,37], power consumption
[29], physical probing [4,31] etc. Power analysis is one of the most common form
of side channel analysis, as it is very powerful and moderately straightforward
to implement once the proper leakage points in a cipher design is decided upon.

There are several ways to analyze power consumption traces and to find
the relationship between a power trace and data; such as simple power analysis
(SPA), differential power analysis (DPA) and correlation power analysis (CPA).
SPA attacks require a single power trace to determine the secret key. SPA
exploits the relationship between the execution operations and the power leak-
age, whereas DPA attacks require a large number of power traces, and exploits
the relationship between the processed data and the power leakage. The first
practical implementation of a power analysis attack on the DES was described
by Kocher et al. [29] and formalized by Messerges et al. [35]. In various papers
[13,15,33], correlation power analysis (CPA) attack is proposed to use the cor-
relation factor between the power traces and the Hamming weight of processed
data.

In this work, we analyzed several CAESAR schemes for resistance against side
channel attacks. Although it was not a specific requirement for CAESAR, some
schemes were designed with side channel attacks in mind and were clearly diffi-
cult to attack. Most of the sponge-based designs like Ascon [20], ICEPOLE [36],
Keyak [10], NORX [6], PRIMATEs [5], etc., having initial key-mixing tend to be
significantly difficult to attack as they provide minimum control to the attacker
to recover the key. Such designs with large rate and capacity cannot be attacked
without using specialized attacks like fault [11,12] and template [14] attacks.
In [19], Dobraunig et al. presented fault attacks on authenticated encryption
schemes such as GCM, CCM, OCB and the CAESAR second round candidates,
e.g., Joltik, Deoxys and ELmD. These attacks work since these schemes use either
AES [16] as underlying cipher or have AES-like structure; and the attacker is
able to influence some byte of the internal state of AES. In [7], Bay et al. shows
the universal forgery attack and key recovery attack on ELmD by computing the
internal state using collision search of ciphertexts. Besides these, the unprotected
implementations of block-cipher based designs are succeptible to attacks.

This work demonstrates in detail the applicability of power analysis attacks
against second round AE candidates AEGIS [40], Joltik-BC [25], Deoxys-BC [24]
and ELmD [17] of the ongoing CAESAR competition. The attacks in this paper
focuses mainly on the software implementations of the schemes on 8-bit micro-
controllers.

Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes 385

1.1 Organization

This paper is organized as follows: Sect. 2 discusses the preliminaries for nota-
tions and correlation factor. Section 3 describes AEGIS, and discusses state recov-
ery and forgery attacks on it. Section 4 describes Joltik-BC and Deoxys-BC fol-
lowed by description of a full key recovery attack by performing DPA on a
microcontroller. Section 5 describes ELmD and a key recovery attack by com-
puting secret state value using DPA attack. Section 6 shows the experimental
results. Section 7 concludes our work and discusses the possible future works.

2 Preliminaries

2.1 Notation

We use the following notations.

x ∈ {0, 1}n Bitstring x of length n

0n Bitstring of n bits, all 0

|x| Length of the bitstring x in bits

x ⊕ y Bitwise logical exclusive-OR of bitstrings x and y

x||y Concatenation of bitstrings x and y

x � 1 1-bit logical shift of bitstring x

GF(2n) Galois Field with 2n points

K,N, T Secret key K, nonce N , tag T

AD Associated data

M,C Message M , ciphertext C (in blocks Mi, Ci)

SB / SR / MC Sub-byte / Shift-row / Mix-column

2.2 Authenticated Encryption

An authenticated encryption scheme is a three-tuple algorithm
∏

= (K, E ,D).
Associated to

∏
are the sets N ∈ {0, 1}n and M ∈ {0, 1}∗. The key space

K is a finite non-empty set of strings. Algorithm E is a deterministic algo-
rithm that takes strings K ∈ K and N ∈ N and M ∈ M and returns a
string C as C = E(K,N,M). Algorithm D is a deterministic algorithm that
takes strings K ∈ K, nonce N ∈ N and a ciphertext C ∈ {0, 1}∗ and returns
D(K,N,C), which is either a string in M or the error symbol ⊥. We require
that D(K,N, E(K,N,M)) = M for all K ∈ K, N ∈ N , and M ∈ M.

386 D. Chang et al.

2.3 Correlation Power Analysis

We follow [13,29] for performing differential power analysis (CPA/DPA) on AE
schemes in the Hamming weight model [3]. Since the correlation coefficient is the
most common way to determine the linear relationships between the data, CPA
focuses on the correlation factor between the power traces and Hamming weight
of the processed data. Suppose we have a known data vector d = (d1, . . . , dD)
of D different data blocks and where di denotes the data value used in the ith

encryption run. During these run, let ti = (ti,1, . . . , ti,T) be the power trace
correspond to data block di, and T denotes the length of the trace. Let hi =
(h1, . . . , hK) be the hypothetical power trace correspond to data block di, and K
denotes the total number of possible choices for k (a small part of the key), then
the correlation coefficient between hi and tj for i = 1, . . . ,K and j = 1, . . . , T ,
as defined in [32] is given by:

ri,j =
∑D

d=1(hd,i − hi).(td,j − tj)
√∑D

d=1(hd,i − hi)2.
∑D

d=1(td,j − tj)2

where hi and tj denote the mean of the column vectors hi and tj respectively.
CPA is a very powerful technique and has been used successfully to attack a

large number of implementations, including real protected devices.

3 AEGIS

AEGIS [40] is a dedicated authenticated encryption scheme introduced by
Hongjun Wu and Bart Preneel. It is fast and secure even when the nonce is
reused.

3.1 State Update Function

The AEGIS state update function, as in Fig. 1, uses the AES round function to
update an 80-byte state Si (Si,0, Si,1, . . . , Si,4) with a 16-byte block mi. The
80-byte state Si is processed in 16-byte blocks. Five instances of an unkeyed
AES round function is applied to each of the Si,j blocks, and the result is then
chained to the next block using XOR operation to update it. Mathematically,
Si+1 = StateUpdate128(Si,mi) is described as:

Si+1,0 = AESRound(Si,4, Si,0 ⊕ mi);
Si+1,1 = AESRound(Si,0, Si,1);
Si+1,2 = AESRound(Si,1, Si,2);
Si+1,3 = AESRound(Si,2, Si,3);
Si+1,4 = AESRound(Si,3, Si,4);

Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes 387

R R R R R

Si,0 Si,1 Si,2 Si,3 Si,4

Si+1,0 Si+1,1 Si+1,2 Si+1,3 Si+1,4

mi

w w

Fig. 1. AEGIS: state update function

3.2 Initialization Phase

In this phase, the key and IV is loaded to the state, used as message. Then
StateUpdate128 is performed ten times to obtain the final state. This updated
state is then used for encryption. One should note that the key is not used in
the scheme after this phase.

1. The 80-byte state is initialized with key and IV as follows:

S−10,0 =K128 ⊕ IV128;
S−10,1 =const1;
S−10,2 =const0;
S−10,3 =K128 ⊕ const0;
S−10,4 =K128 ⊕ const1;

2. In this step, a message array mi is initialized with the key and IV values.
for i = −5 to − 1, m2i = K128; m2i+1 = K128 ⊕ IV128;

3. Here, the initial state S−10 is updated 10 times using StateUpdate128.
for i = −10 to − 1, Si+1 = StateUpdate128(Si,mi);

3.3 Encryption

The plaintext message is processed in blocks of 16-bytes P0, P1, . . . , Pn, n =
�msglen

128 �. The StateUpdate128 is called n times to update the state with Pi.
Each ciphertext block Ci is obtained from the corresponding plaintext block Pi.
If the last plaintext block Pn is not a full block, then zero padding is used to
make it a 16-byte block, and the state is subsequently updated.

for i = 0 to n − 1, the following steps are performed:

Ci = Pi ⊕ Si,1 ⊕ Si,4 ⊕ (Si,2&Si, 3);
Si+1 = StateUpdate128(Si, Pi);

388 D. Chang et al.

S0,0 S0,1 S0,2 S0,3 S0,4

S1,0 S1,1 S1,2 S1,3 S1,4

M0

w0 w0

S2,0 S2,1 S2,2 S2,3 S2,4

M1

w1 w1

S3,0 S3,1 S3,2 S3,3 S3,4

M2

w2 w2

S4,0 S4,1 S4,2 S4,3 S4,4

M3

w3 w3

S5,0 S5,1 S5,2 S5,3 S5,4

M4

w4 w4

A0

R

A′
0

B0

B′
0

R R R R

R0 R R R R

R R1 R R R

R R R2 R R

R R R R3 R

A′
1

B1

B′
1

A1

A′
2

B2A2

A3

Fig. 2. State update function for AEGIS-128. The inputs S0,0, S0,1 . . .S0,4 is the state
after the initialization and processing of authenticated data. Mi (M0, M1,. . .) are input
messages.

Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes 389

3.4 State Recovery and Forgery Attacks on AEGIS-128

The following section describes a side-channel state recovery attack on AEGIS-
128. Once the complete state is recovered, we can perform a message forgery
attack. Figure 2 shows five state update operations in AEGIS-128 after the ini-
tialization and processing of authenticated data. For this attack we consider the
KPA (Known-plaintext attack) model. More specifically, we assume that the
input messages (Mi, where M0, M1,.. are the individual 16 byte blocks in which
the messages are processed.) are random but known. We also define M i

n to be
the ith byte of nth message input block.

For side channel attack, we consider the Hamming Weight (HW) model of
leakage. We also assume that power traces for the execution of the entire period
of the above mentioned five rounds are available.

As per the attack model, (Mi) is known and hence the attacker can capture
multiple side-channel traces while the cipher is operating with different values
of the same. In this attack, we consider the varying values of M0 as an input
perturbant, all the other input values are ignored for the purpose of analysis.
Let us consider the following equations:

V = S0,0 ⊕ w0

A0 = V ⊕ M0

The value A is an input to the round function R which is in essence an unkeyed
round of AES-128. The bytes of A0 (A0

0,A
1
0,.. A15

0) can be obtained by using
DPA/CPA. The leakage model can be described as:

Leakage = HW(A) = HW(V ⊕ M0)

so, Leakagei = HW(V i ⊕ M i
0), for the respective ith byte

Using the above leakage model, we can recover the correct value of V and hence
A0. As A′

0 = R0(A0), A′
0 can be readily calculated. Going one operation further,

we get the following equation:

A1 = A′
0 ⊕ B0

Now, as we know A′
0 for all the values of M0, we can perform DPA/CPA again to

obtain B0, and hence B′
0 and A1. One should note that no further traces are

needed; the same old traces from the previous step can be re-used, considering
that they are of the required length encompassing all the required operations.
Just like the previous step the value of A′

1 can be readily calculated. The same
attack steps can be repeated further twice to obtain A2, A′

2 and A3. Meanwhile,
in the process, the values of B1, B′

1 and B2 are also obtained. From these obtained
intermediate values the state can be calculated as follows:

S1,0 = A0

S1,2 = B′
0 ⊕ B1

S1,1 = B0

S1,3 = R(S1,2) ⊕ B′
1 ⊕ B2

390 D. Chang et al.

From the description of AEGIS-128 we have:

Ci = Pi ⊕ Su+i,1 ⊕ Su+i,4 ⊕ (Su+i,2 & Su+i,3)
Su+i,4 = Ci ⊕ Pi ⊕ Su+i,1 ⊕ (Su+i,2 & Su+i,3)

where, u is the number of associated data blocks, and i is the chosen position in
the cipher operation for the attack.

This way, all the blocks of the state can be recovered. The value of i, or the
attack point is flexible, as the design is symmetric. Once, all the blocks of the
state are recovered, one can launch a trivial forgery attack.

3.5 Forgery Attack on AEGIS-128 using a Recovered State

Once the state is recovered using side-channel attacks, mounting a forgery attack
is simple because, the key is only used in the beginning and the knowledge of the
state is enough to generate the tag. Once the attacker knows the state he is able
to perform all the steps after the known state including adding more plaintext
and generating a valid tag. As the length of the message is not encoded in the
header or any other key dependent state, it is easy to extend to message length
henceforth and still have a valid message.

4 Joltik-BC

Joltik-BC [25] is an ad-hoc tweakable block cipher designed by Jérémy Jean,
Ivica Nikolic, and Thomas Peyrin. Joltik-BC takes a message M , a key K, and
a tweak value T as inputs. The cipher has a 64-bit state and a variable sized
key and tweak. The structure of Joltik-BC is an AES like iterative substitution-
permutation network (SPN) which transforms a plaintext to a ciphertext through
a series of round functions. Joltik-BC-128 has 24 rounds whereas Joltik-BC-192
has 32 rounds and one round has the following four transformations specified
below:

– AddRoundTweakey : XOR the 64-bit round subtweakey to the internal state.
– SubNibbles : Apply the 4-bit S-box S to the 16 nibbles of the internal state.
– ShiftRows : Rotate the 4-nibble i-th row left by ρ[i] positions, where ρ =

(0, 1, 2, 3).
– MixNibbles : Multiply the internal state by the 4 × 4 constant MDS matrix
M defined below whose coefficients lies on the field GF(16) defined by the
irreducible polynomial x4 + x + 1.

M =

⎛

⎜
⎜
⎝

1 4 9 13
4 1 13 9
9 13 1 4
13 9 4 1

⎞

⎟
⎟
⎠

Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes 391

After the last round, a final AddRoundTweakey operation is performed to gener-
ate the ciphertext.

The 4-bit S-box S used in Joltik-BC is defined as:
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
14 4 11 2 3 8 0 9 1 10 7 15 6 12 5 13

)

4.1 Message Authentication and Tag Generation Phase

For simplification, we present a shorter description of the Joltik-BC cipher that
is only generating tag on a single block of the message M . As shown in Fig. 3, we
consider the associated data of zero length. Initially, the nonce is encrypted with
the tweak values 0011||0t−4 and 0111||0t−4 (where t denotes the tweak size) in two
independent calls of encryption respectively. Then Auth is generated as shown in
the Fig. 3. Secondly, the message block M1 is encrypted with tweak value 0 and
the output is xored with Auth and this resulted value is again encrypted with a
tweak value 0001||0t−4 to generate the tag. Thereafter, this tag is further used
as a tweak value to generate the ciphertext. (For more details, we refer to [25]).

N

E3,0
K

0

N

E7,0
K

M1

E0,0
K

Auth tag
X

′

E1,0
K

Fig. 3. Message processing in the authentication part.

To mount the side-channel attack, we do not need to generate the tag. Before
even producing value X ′ (as shown in Fig. 3), we are able to attack on the cipher
which will be described in the next Sect. 4.3.

4.2 TWEAKEY Framework Instantiation

A single-block of message in Joltik-BC is processed by applying the round func-
tion r times, depending on the variant. For each round, the subtweakey STKi

is updated and added to the state at round i to update the state for the next
round. The subtweakey STKi for Joltik-BC-128 is defined as:

STKi = TK1
i ⊕ TK2

i ⊕ RCi

whereas for Joltik-BC-192 it is defined as:

STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕ RCi

where, the 64-bit words TK1
i , TK2

i , TK3
i are outputs of key scheduling algorithm.

392 D. Chang et al.

h
h

h
h

2

RC1

. . .

. . .

RCr−1

2

RCr

h
h

. . .

X

KT

M = s0 sr = C
Y

RC0 XOR XOR XORXOR

f f

Fig. 4. Instantiating TWEAKEY framework with s0 = M1 and the tweak T = 0 for the
first plaintext block when the tag is calculated.

The key schedule algorithm KS(W,α) of Joltik-BC takes a 64-bit word W
and α as input parameters and apply the following transformations on it to
generate the subkeys TK0, TK1, Initial subkey TK0 is given by TK0 = W .

TKi+1 = g(h(TKi))

where g is a finite field multiplication in K of each nibble by α and h is the
nibble permutation defined as:

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)

In case of Joltik-BC-128, KT is used to initialize two 64-bit words W1 and W2

with W1 being the most significant 64 bits of KT and W2 being the rest. TK1
i

is then generated as KS(W1, 1) and TK2
i is generated as KS(W2, 2). Whereas,

in case of Joltik-BC-192, the size of KT is 192 bits, so three 64-bits W1, W2 and
W3 are generated from it. The subkeys TK1

i , TK2
i and TK3

i are then the output
words of KS(W1, 1), KS(W2, 2) and KS(W3, 4) respectively.

RC0, RC1, . . . , RCr are known round constants as described in [25].

4.3 Key Recovery Attack on Joltik-BC

Since Joltik-BC supports various key and tweak sizes, in this work we show a
strategy to perform DPA on two variants of Joltik-BC.

4.3.1 Key and Tweak are of the same size
|K| = |T |. For this attack, we target the value of ‘Y ’ as in Fig. 4. Here, we have
exploited two properties of the cipher:

1. In the ‘Message Authentication and Tag Generation Phase’, the tweak for
the first message block is predefined; currently it is all 0 bits. This essentially
implies that value of X in Fig. 4 after XOR operation is K ⊕ RC0.

2. The f function is similar to a round in AES without AddRoundTweakey; thus
can be exploited.

Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes 393

If we now consider the interaction of the key K with the plaintext, we get the
following equations:

X = K ⊕ T ⊕ RC0

= K ⊕ RC0

Y = X ⊕ s0, where X = K ⊕ RC0 and s0 = M1

Let s00, s10, . . . , s150 denotes the nibbles of plaintext and Y 0, Y 1, . . . , Y 15 be
the nibbles of ‘Y ’(obtained above).

The leakage model is then defined as follows:

Leakagen = HW(S[Y n])

where n = 0, 1, . . . , 15 for each nibble and S denotes SubNibbles S-box
Thus, this leakage will give us the value of ‘X’ i.e. we get K ⊕ RC0. Since, RC0

is a known-constant, we can simply XOR it with ‘X’ to get the key K.

4.3.2 Key and Tweak are different in size
|K| �= |T |. In this variant, first we use the above described strategy to obtain
‘X’, then with few more operations and choosing the attack target point to be
‘V ’as in Fig. 5, we are able to recover the full key K.

Interaction of the key K can be expressed by the following equations:

X = K1 ⊕ K0 ⊕ T ⊕ RC0

= K1 ⊕ K0 ⊕ RC0

Y = X ⊕ s0, where X = K1 ⊕ K0 ⊕ RC0 and s0 = M1

Z = f(Y)
U = 4 · h(T) ⊕ 2 · h(K1) ⊕ h(K0) ⊕ RC1

= 2 · h(K1) ⊕ h(K0) ⊕ RC1, as tweak T has all 0 bits

= K
′
1 ⊕ K

′
0 ⊕ RC1, where K

′
1 = 2 · h(K1) and K

′
0 = h(K0)

V = Z ⊕ U

Let s00, s10, . . . , s150 denotes the nibbles of plaintext, Y 0, Y 1, . . . , Y 15 be the
nibbles of ‘Y ’and V 0, V 1, . . . , V 15 be the nibbles of ‘V ’(obtained above).

The leakage model is then defined as follows:

Leakage0n = HW(S[Y n])

Leakage1n = HW(S[V n])

where n = 0, 1, . . . , 15 for each nibble and S denotes the SubNibbles S-box.
The leakage model Leakage0n gives the value for ‘X’, and similarly the leakage

model Leakage1n gives ‘U ’. The key then can be estimated by using the following

394 D. Chang et al.

equations:

X = K1 ⊕ K0 ⊕ RC0

So, X ⊕ RC0 = K1 ⊕ K0 (1)

U = K
′
1 ⊕ K

′
0 ⊕ RC1

So, U ⊕ RC1 = K
′
1 ⊕ K

′
0

Since, K
′
1 ⊕ K

′
0 = 2 · h(K1) ⊕ h(K0)

⇒ K
′
1 ⊕ K

′
0 = h((2 · K1) ⊕ K0) (2)

h−1(K
′
1 ⊕ K

′
0) = h−1(h((2 · K1) ⊕ K0)),using (3)

= (2 · K1) ⊕ K0 (3)
(2) ⊕ (4) ⇒ we have the value (2 · K1) ⊕ K1

From this, we can easily calculate all the nibbles of K1. Then from 1 and
the value of K1, we can calculate K0. This way, the entire key can be recovered.

4.4 Applicability of Joltik-BC Key Recovery Attack on Deoxys-BC

Deoxys-BC [24] resembles with Joltik-BC in the structure. Moreover, the TWEAKEY
framework instantiation, encryption and tag generation algorithms are same as
in Joltik-BC except the following differences:

• Deoxys-BC has 128-bit state instead of 64-bit state.
• It performs all the operations in the field GF(28) defined by the irreducible

polynomial x8 + x4 + x3 + x + 1.
• The number of rounds in Deoxys-BC-256 is 14 and in case of Deoxys-BC-384

it is 16.
• One round of Deoxys-BC is similar to a round in AES (using 8-bit AES S-box

S in SubBytes and MDS matrix M is same as the one used in AES).

2

XOR RC1

. . .

. . .

XOR RCr−1

2

XOR RCr

h
h

. . .

X

KT

M = s0 sr = C
Y

XOR RC0

h
h
h

h
h
h

h4 4

U

VZ

. . .

K′
0

K′
1

K0

K1

f f

Fig. 5. TWEAKEY framework instantiation with s0 = M1, tweak T = 0, K0 = K[127−64]
and K1 = K[63 − 0] for the first plaintext block when tag is calculated.

Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes 395

• It processes 128-bit block at a time instead of 64-bit block as in Joltik-BC.
• The word size in key scheduling algorithm is 128-bits.

The difference between the two ciphers is mainly in terms of the size of state,
message block, Field used and the round transformations; but, this does not
affect our attack strategy. The same key recovery attack applied on Joltik-BC is
applicable on Deoxys-BC as well.

5 ELmD

ELmD designed by Dutta and Nandi [17] is a “encrypt-linear mix-decrypt”
authenticated mode of encryption. It is fully parallelizable and nonce-misuse
resistant. ELmD uses AES [16] as underlying block cipher for encryption and
decryption processes. ELmD takes inputs as a nonce N ∈ {0, 1}128, an associ-
ated data AD ∈ {0, 1}∗, a message M ∈ {0, 1}∗, a non-negative integer t and
outputs a tagged ciphertext (C, T). An overview of ELmD is given in Fig. 6. Note
that the additions and multiplications are performed in the binary Galois field
GF(2128) defined by the primitive polynomial p(x) = x128 + x7 + x2 + x + 1. In
ELmD, the field multiplication by 2, 3, and 7 to 128-bits string a = a127 . . . a0 is
defined as:

a · 2 =

{
a 	 1, if a127 = 0
(a 	 1) ⊕ 01201000011, else

(4)

a · 3 = (a · 2) ⊕ a (5)
a · 7 = ((a · 2) · 3) ⊕ a (6)

The associated data and the plaintext are first padded into blocks of 128 bits,
and then processed block by block as shown in Fig. 6. We denote the chaining
value by Wi, output of EK by Xi, and input of E−1

K by Yi. The message M =
(M1, . . . ,M�−1,M

∗
�) is processed and the tagged ciphertext T along with the

intermediate tag T is generated using the following equations:

W0 = IV

M� = ⊕�−1
i=1Mi ⊕ M∗

�

M�+1 = M�

Xi = EK(Mi ⊕ 2i−1L), i = 1, 2, . . . � − 1

Xi =

{
EK(Mi ⊕ 2i−1L) i = �, � + 1, |M∗

� | = 128
EK(Mi ⊕ 7 · 2i−2L) i = �, � + 1, |M∗

� | < 128

(Yi,Wi) = ρ(Xi,Wi−1)

Ci = E−1
K (Yi) ⊕ 32 · 2i−1+� i−1

t �L, i = 1, 2, . . . �

Tj = E−1
K (Wjt) ⊕ 32 · 2jt+j−1L, j = 1, 2, . . . , h

C�+1 = E−1
K (Y�+1 ⊕ 1) ⊕ 32 · 2�L

396 D. Chang et al.

EK

X1

ρ

E−1
K

L

IV

32L

M1

EK

ρ

E−1
K

2L

322L

W1 W2 . . .

EK

ρ

E−1
K

322�+h−1L

EK

ρ

2�L

W�−1 W�

2�−1L

E−1
K

322�+hL

01271

M� M�+1

A1 A2

X2
X� X�+1

Y1 Y2 Y�

M2

C�+1

C�C1 C2

EK

L

0

EK

L

M1

A1

SB / SR / MC

9 full rounds

K0

X1

A′
1

Fig. 6. Structure of ELmD Authenticated Encryption. In top-left, A′
1 = A1 ⊕ K0 is

defined as a targeted point when performing side-channel analysis on ELmD.

The algorithm returns tagged ciphertext and intermediate tags (C, T); where

C =

{
C1, . . . , C�, (C�+1)|M [�∗]| if f = 1
C1, . . . , (C�+1) else

T = (T1, T2, . . . , Th)

5.1 Recovery of Intermediate State Variables Using Side Channels

Figure 6 shows the structure of ELmD. In order to recover the key, we first
recover two internal temporary variables A′

1 (as shown in Fig. 6) and A′
2 (it is

defined similar to A′
1) during the execution of the cipher. To define A′

1 and A′
2,

we consider the following equations:

A′
1 = L ⊕ K0 ⊕ M1 (7)

and A′
2 = 2L ⊕ K0 ⊕ M2 (8)

where L = EK(0), K0 is the add-round subkey in first round of AES, and M1,M2

are the first and second blocks of the message M . We further introduce two more
variables B1 and B2, then Eqs. (7) and (8) becomes:

A′
1 = B1 ⊕ M1, where B1 = L ⊕ K0 (9)

and A′
2 = B2 ⊕ M2, where B2 = 2L ⊕ K0 (10)

Our next goal is to recover the bits of A′
1 and A′

2 by performing side-channel
using CPA/DPA in the Hamming weight model. The leakage function can be

Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes 397

described as:

Leakage1 = HW(S[A′
1]) = HW(S[B1 ⊕ M1]) (11)

Leakage2 = HW(S[A′
2]) = HW(S[B2 ⊕ M2]) (12)

Using the above leakage values in (11) and (12), we can recover the correct value
of B1 and B2 and correspondingly we know the values of A′

1 and A′
2.

5.2 Key Recovery in ELmD using Recovered Intermediate States

Once we have recovered the intermediate states B1 and B2, we can recover the
unknown constant 3L by simply XORing B1 and B2. From Eqs. (9) and (10), it
is clear that:

B1 ⊕ B2 = (L ⊕ K) ⊕ (2L ⊕ K) = 3L

Thus, we know the value of 3L. Our goal is to compute the value of L. Now
suppose that L = a127a126 . . . a1a0, then using equation (5), 2L becomes:

2L =

{
a126 . . . a00, if a127 = 0
(a126 . . . a00) ⊕ 01201000011, else

(13)

Now using Eqs. (5) and (14), we have:

3L =

{
(a127 ⊕ a126) . . . (a0 ⊕ 0), if a127 = 0
(a127 ⊕ a126) . . . (a0 ⊕ 0) ⊕ 01201000011, else

(14)

Since we know the value of 3L, by using the above equation (14), we can recover
the secret masking value L in just two comparisons. By knowing the value of L,
we can get the complete secret key K by simply XORing L with B1.

6 Experimental Results

The three ciphers, namely AEGIS, Deoxys-BC and ELmD use standard AES-128
as primitives for the round functions or state update functions. There are many
results regarding attacks on unprotected AES implementations, and performing
similar attacks on reference implementations would be futile. For these reasons,
in this work, we show the techniques using which attacks can be mounted without
performing the same.

Joltik-BC uses a new AES like SPN structure, with a 4 × 4 matrix of nibbles.
As the design is new, we performed the attack using reference code. The round
function is performed in two steps:

1. ShiftRows: This is applied first, and implemented using shift operations.
2. SubNibbles and MixNibbles: Two table look-ups are used to speedup the com-

bined implementation of these transformations.

398 D. Chang et al.

Fig. 7. Power trace for Joltik-BC while executing a single round of Ek.

Like AES, the operations are performed in a column-wise fashion. We decided
to target the writing of the temporary variables to memory after the table look-
ups.

Considering the above, the best strategy is to target four diagonal nibbles
of the unknown state. The nibbles at indexes 0, 5, 10 and 15 respectively are
guessed, and the corresponding known plaintext nibbles are XORed with the
guesses and then we combine them and perform the table lookups to obtain
the expected 16-bit result. We target the lowest 8 bits from this estimate and
calculate the Hamming Weight (HW). This takes into account that the target
platform is a 8-bit microcontroller. So, to perform the attack we have to perform
216 state guess four times for each 64-bit state. This has to be done twice. So,
in total we perform 216 × 8 = 219 guesses over all the traces.

We tested our analysis of the cipher on a custom ATMEGA AVR board with
ATMEGA328p running at 16 MHz. A Tektronix DPO4104 oscilloscope was used
to take the traces. For the purpose of analysis, we collected traces at 1 Gs/s with
1,000,000 samples per trace. Because of the low frequency of the AVR microcon-
troller we re-sampled and trimmed the excess traces to obtain 20,000 data points
per trace. Figure 7 shows a power trace during the execution of the first round

Fig. 8. Correlation value vs. Key Guess: The correct value of the state is 0x0908

(2,312). The peak in the data with the correlation value of 0.707 represents the same.

Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes 399

of Ek during tag generation. Vertical alignment of the trace using averaging was
performed to improve results. Analysis of the traces using CPA with the above
mentioned power-model took 50–60 traces to recover the unknown state using
which the keys can be calculated. Figure 8 shows the result of CPA for the first
diagonal state. It can be seen that there is a significant peak around 0x0908
(2,312), which corresponds to the correct value of the state variable ‘X’ in Fig. 5.

7 Conclusion and Future Work

In this work, we have presented power analysis attacks on authenticated encryp-
tion schemes AEGIS, Deoxys-BC, Joltik-BC and ELmD. We have demonstrated
the attack on Joltik-BC by performing DPA on a software implementation run-
ning on an 8-bit microcontroller. After the target analysis, trace collection and
DPA, we show that the correct key can be recovered with around 50–60 traces.

There are still some more designs to attack, and it would be a nice exercise
to attempt and use the ideas to attack ELmD for other ciphers, which use similar
structure and multiplications in GF(2128).

References

1. CAESAR: Competition for authenticated encryption: Security, applicability, and
robustness (2014). https://competitions.cr.yp.to/caesar-submissions.html

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5 4

3. Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power analysis, what is now
possible. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502.
Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3 38

4. Anderson, R.J.: Security Engineering - A Guide to Building Dependable Distrib-
uted Systems. Wiley, Hoboken (2001)

5. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1.02. Submission to the CAE-
SAR competition. https://competitions.cr.yp.to/caesar-submissions.html, Sep-
tember 2014

6. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX v2.0. Submission to the CAESAR
competition. https://competitions.cr.yp.to/caesar-submissions.html, August 2015

7. Bay, A., Ersoy, O., KarakoÃğ, F.: Universal forgery and key recovery attacks on
ELmD authenticated encryption algorithm. Cryptology ePrint Archive, Report
2016/640 (2016). http://eprint.iacr.org/2016/640

8. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 41

9. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-25937-4 25

https://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/3-540-36400-5_4
http://dx.doi.org/10.1007/3-540-44448-3_38
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
http://eprint.iacr.org/2016/640
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/978-3-540-25937-4_25

400 D. Chang et al.

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keyak
v2. Submission to the CAESAR competition. https://competitions.cr.yp.to/
caesar-submissions.html, August 2015

11. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). doi:10.1007/BFb0052259

12. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

13. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Cryptographic Hardware, Embedded Systems - CHES(2011) Observation of
strains: 6th International Workshop Cambridge, MA, USA, August 11–13, 2004.
Proceedings, pp. 16–29 (2004)

14. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

15. Coron, J.-S., Kocher, P., Naccache, D.: Statistics and secret leakage. In: Frankel, Y.
(ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001). doi:10.
1007/3-540-45472-1 12

16. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York Inc.,
Secaucus (2002)

17. Datta, N., Nandi, M.: ELmD v2.0 specification. Submission to the CAESAR com-
petition. https://competitions.cr.yp.to/caesar-submissions.html, August 2015

18. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., Quisquater, J.-J., Willems, J.-
L.: A practical implementation of the timing attack. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 167–182. Springer, Heidelberg (2000).
doi:10.1007/10721064 15

19. Dobraunig, C., Eichlseder, M., Korak, T., Lomne, V., Mendel, F.: Practical fault
attacks on authenticated encryption modes for aes. Cryptology ePrint Archive,
Report 2016/616, (2016). http://eprint.iacr.org/2016/616

20. Dobraunig, C., Eichlseder, M., Mendel, F., Schlaffer, M.: Ascon v1.1. Submission
to the CAESAR competition. https://competitions.cr.yp.to/caesar-submissions.
html, August 2015

21. Dworkin, M.J.: Spp. 800–38c. Recommendation for block cipher modes of oper-
ation: The CCM mode for authentication and confidentiality. Technical report,
Gaithersburg, MD, United States (2004)

22. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1 21

23. Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002). doi:10.1007/3-540-45473-X 8

24. Jean, J., Nikolic, I., Peyrin, T.: Deoxys v1.3. Submission to the CAESAR compe-
tition. https://competitions.cr.yp.to/caesar-submissions.html, August 2015

25. Jean, J., Nikolic, I., Peyrin, T.: Joltik v1.3. Submission to the CAESAR competi-
tion. https://competitions.cr.yp.to/caesar-submissions.html, August 2015

26. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001). doi:10.1007/3-540-44987-6 32

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/3-540-45472-1_12
http://dx.doi.org/10.1007/3-540-45472-1_12
https://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/10721064_15
http://eprint.iacr.org/2016/616
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1007/3-540-45473-X_8
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/3-540-44987-6_32

Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes 401

27. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes
of operation. In: Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). doi:10.1007/
3-540-44706-7 20

28. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

29. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

30. Kohno, T., Viega, J., Whiting, D.: C.W.C.: A high-performance conventional
authenticated encryption mode. In: Fast Software Encryption, 11th International
Workshop, FSE 2004, Delhi, India, February 5–7, 2004, Revised Papers, pp. 408–
426 (2004)

31. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard
processors. In: Proceedings of the 1st Workshop on Smartcard Technology, Smart-
card 1999, Chicago, Illinois, USA, May 10–11, 1999 (1999)

32. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

33. Mayer-Sommer, R.: Smartly analyzing the simplicity and the power of simple power
analysis on smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 78–92. Springer, Heidelberg (2000). doi:10.1007/3-540-44499-8 6

34. McGrew, D.A., Viega, J.: The security and performance of the galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30556-9 27

35. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 14

36. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J.,
Rogawski7, M., Srebrny, M., Wojcik, M.: Icepole v2. Submission to the CAESAR
competition. https://competitions.cr.yp.to/caesar-submissions.html, August 2015

37. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart
2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/
3-540-45418-7 17

38. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002,
Washington, DC, USA, November 18–22, 2002, pp. 98–107 (2002)

39. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: O.C.B: a block-cipher mode of
operation for efficient authenticated encryption. In: CCS 2001, Proceedings of the
8th ACM Conference on Computer and Communications Security, Philadelphia,
Pennsylvania, USA, November 6–8, 2001, pp. 196–205 (2001)

40. Hongjun, W., Bart Preneel, A.: A fast authenticated encryption algorithm
(v1). Submission to the CAESAR competition. https://competitions.cr.yp.to/
caesar-submissions.html, March 2014

http://dx.doi.org/10.1007/3-540-44706-7_20
http://dx.doi.org/10.1007/3-540-44706-7_20
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-44499-8_6
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/3-540-48059-5_14
https://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html

Breaking Kalyna 128/128 with Power Attacks

Stephane Fernandes Medeiros(B), François Gérard, Nikita Veshchikov,
Liran Lerman, and Olivier Markowitch

Université libre de Bruxelles, Brussels, Belgium
{stfernan,fragerar,nveshchi,llerman,omarkow}@ulb.ac.be

Abstract. In 2015, Kalyna has been chosen as the new Ukrainian stan-
dard block cipher. Kalyna is an AES-like block cipher with a non-
invertible key schedule. In this paper we perform the first side-channel
analysis of Kalyna by performing a CPA attack on the round keys of
Kalyna 128/128. Our work is based on simulations and real experi-
ments performed on a software implementation on a micro-controller.
Our attack extracts the round keys with probability 0.96 using 250 mea-
surements.

Keywords: Side channel attack · Power analysis · Kalyna

1 Introduction

Since the publication by Kocher et al. [12] side-channel attacks turn into a major
concern when it comes to security. The goal of a side-channel attack is to recover
some secret value from a cryptographic device analyzing its physical behavior.
Over the time, several types of attacks appeared: timing attacks, power analysis
attacks, electromagnetic emanations attacks, fault injections attacks etc. Power
analysis attacks are easy to implement: an attacker can put a small resistor
between the power source and the target device and then the voltage difference
across the resistor divided by the resistance yields the current [13]. Once the
power consumption is collected there exists different ways to exploit it: simple
power analysis [13] is based on the direct interpretation of the measurements
(also called power traces), differential power analysis [13] use the differences in
power consumption caused by the modification of a (group of) bit(s), correla-
tion attacks [6] try to identify the correct (subpart of the) key by measuring
the correlation between measurements and the expected leakage according to
a key hypothesis, mutual information analysis [10] use the mutual information
between power traces and a power model to retrieve the key, template [5] and
stochastic [19] attacks first characterize a device’s power consumption and then

S. Fernandes Medeiros—The research of S. Fernandes Medeiros is funded by the
Région Wallone.
L. Lerman—The research of L. Lerman is funded by the Brussels Institute for
Research and Innovation (Innoviris) for the SCAUT project.

c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 402–414, 2016.
DOI: 10.1007/978-3-319-49445-6 23

Breaking Kalyna 128/128 with Power Attacks 403

use statistical tools for the key recovery, machine learning based attacks [14,15]
use tools from the machine learning domain to find the key. Those attacks can
be categorized either as non-profiled attacks where no profiling step takes place,
or as profiled attacks where the attacker first models the power consumption of
a device based on the measurements made on a similar one. In this paper we
consider, a non-profiled attack (correlation attack) supposing that the attacker
has no access to a similar device and can only query the attacked device with
plaintexts.

Kalyna, a new Ukrainian encryption standard [18], is a substitution-
permutation network (SPN), inspired from AES. Kalyna has already been ana-
lyzed from the point of view of classical cryptanalysis.

AlTawy et al. [2] performed a meet-in-the-middle attack on a 7-round reduced
version of Kalyna where the key size is twice the block length. The attack is
based on the differential enumeration approach where the authors deploy a four
round distinguisher in the first four rounds to bypass the effect of the carry bits
resulting from the pre-whitening modular key addition. They also exploit the
linear relation between consecutive odd and even round keys which enables to
attack seven rounds and recover all the round keys incrementally. Their attack
on Kalyna with 128-bit block has a data complexity of 289 chosen plaintexts,
time complexity of 2230.2 and a memory complexity of 2202.64. Akshima et al. [1]
performed a meet-in-the-middle attack on a 9-round version of Kalyna consid-
ering also versions where the key size is twice the block length. Their attack
has a data complexity of 2105 chosen plaintexts, time complexity of 2245.83 and
a memory complexity of 2226.86. To the best of our knowledge, no side-channel
attack against Kalyna has been published.

The present work is organized as follows: Sect. 2 presents the Kalyna block
cipher, Sect. 3 introduces side-channel attack in case of Kalyna, Sect. 4 summa-
rize our experimental results. Finally Sect. 5 concludes this work.

2 Kalyna

Kalyna is a SPN block cipher chosen as the new encryption standard of Ukraine
during the Ukrainian National Public Cryptographic Competition [16,17].
Kalyna is a Rijndael-like cipher based on five operations: substitutions i.e. S-
boxes (SubBytes), rows shifting (ShiftRows), column mixing (MixColumns),
exclusive-or (XorRoundKey) and addition modulo 264 (AddRoundKey).

Both the encryption and the key schedule use those five operations. The
key schedule generates couples of dependent round keys: round keys with even
indices are generated by using the five transformations while round keys with
odd indices are generated by rotating the previous (even) round keys. Those
round keys are derived from an intermediate key Kt which is derived from the
master key K using the Kalyna rounds. Kalyna supports block size and key size
of 128, 256 and 512 bits with the key length equal or double of the block size.
Kalyna can be referred as Kalyna b/k where b and k denote the block size and
the key size (in bits).

404 S. Fernandes Medeiros et al.

2.1 Encryption Algorithm

In this section we will describe Kalyna 128/128 encryption algorithm with block
size and key size of 128 bits which is the version we use in the rest of the paper.
Kalyna 128/128 algorithm is summarized in Fig. 1.

AddRoundKey. At the beginning and at the end of the encryption, the round key
is added to STATE that is initially filled column by column with the plaintext.
The addition is a 264 modular addition where each column of the round key is
added to each column of STATE.

SubBytes. Four S-boxes are used in Kalyna. Each byte si,j of STATE is passed
through the corresponding S-box: si,j = SBox(i mod 4)(si,j) with 0 ≤ i ≤ 7 and
0 ≤ j ≤ 1.

ShiftRows. This operation depends on the block size. For Kalyna 128/128 the
four last bytes of each column of STATE are swapped together.

MixColumns. The bytes of each column of STATE are linearly combined
by multiplying them with an 8 × 8 MDS matrix over GF (28). The vector
v = (0x01, 0x01, 0x05, 0x01, 0x08, 0x06, 0x07, 0x04) is used for the encryp-
tion. Unlike AES, the MixColumns operation takes place in every round of the
encryption.

XorRoundKey. Finally, at the end of each round (except for the final round),
the round key is bitwise xor-ed with STATE.

2.2 Key Scheduling

The key schedule of Kalyna is made of two steps. During the first step Kt is
computed from the master key K.

In the second step K and Kt are used with another value tmvi:
{
tmv0 = 0x01000100..0100
tmvi+2 = tmvi << 1

where “<< 1” corresponds to a binary left shift of one position. Round keys with
even indices are generated with round operations while round keys with odd
indices are generated by rotating the previous (even) round key in the following
way: k2i+1 = k2i <<< 7.

Figure 1 summarizes Kalyna 128/128 key schedule. This key schedule does
not allow better recovery of the master key from a round key than brute force [1].

Breaking Kalyna 128/128 with Power Attacks 405

Plaintext

SubBytes

ShiftRows

MixColumns

SubBytes

ShiftRows

MixColumns

K0

Ciphertext

Ki

K10

9 times

0x05

K

SubBytes

ShiftRows

MixColumns

SubBytes

ShiftRows

MixColumns

K

K

SubBytes

ShiftRows

MixColumns

Kt

K

SubBytes

ShiftRows

MixColumns

SubBytes

ShiftRows

MixColumns

Kt + tmvi

K2i

Kt + tmvi

Kt + tmvi

K2i+1 = K2i <<< 7

Fig. 1. Kalyna 128/128 encryption scheme (left part) and Kalyna 128/128 key schedule
(right part).

3 SCA on Kalyna

The goal of an attacker during a side-channel attack on a block cipher scheme
is to get the master key that is used to generate all round keys during the
encryption. For modern block cipher like DES and AES, an attacker that knows
a set of plaintexts would focus the attack on the output of the S-box of the
first round in order to recover the first round key. In case of ciphers such as
AES [8], DES [9] or Present [4] it is easy to reconstruct the master key from
its round keys. For example, in AES-128 the first round key is the master key
and in Present-80 the first round key immediately gives us 64 most significant
bits of the master key. In some cases it is necessary to consider more that the
first round key, e.g., in AES-256 the second round key has also to be targeted
in order to get the second half of the master key. In case of DES an attacker
would have to brute force one byte of a key (because of the compression function
Permutation Choice) in order to get the master key from the extracted round
key.

If an attacker knows a set of ciphertexts, he would generally implement the
attack in a similar way, but with the focus on the last round key of the cipher.
The key scheduling algorithm of ciphers such as AES, DES or Present are easily
reversible i.e. one could easily obtain a previous round key from a given known

406 S. Fernandes Medeiros et al.

round key. Extracting the last round key of such cipher allows an attacker to
compute the master key using a small amount of additional effort.

Kalyna block cipher does not allow to easily run the key scheduling algorithm
backwards and it is not using its master key directly in the encryption process as
one of the round keys. Thus, getting the master key from round keys of Kalyna
cipher is not as easy as for other commonly used ciphers such as mentioned
above. This property makes Kalyna an interesting case-study for side-channel
attacks.

The attacker has a choice between targeting K (the master key), Kt (the
derived master key that is used to generate round keys) or to target directly the
round keys Ki. All of these values might be targeted using a profiled attack in a
usual way (as any other block cipher) and it would be easier for an attacker to
directly target K in order to extract the entire master key at once. However it
implies that the attacker has to build a profile on the basis of a similar device.
In this paper we try to avoid this constraint.

Considering non-profiled attacks and the particular case of Kalyna, the easi-
est target seems to be the round keys because they are used with different inputs
(different plaintexts). A non-profiled DPA style attack that targets Kt might be
considered in combination with SCA-collision attacks [20,21]. However in this
scenario, an attacker would have to work with a very limited amount of different
inputs (that he would not be able to choose).

In this paper we are considering a scenario where an attacker is not able
to mount a profiled attack on the device and we are focusing on classical non-
profiled CPA. Our CPA on Kalyna targets all round keys Ki.

3.1 CPA

Correlation Power Analysis is a statistical approach aiming at finding a cor-
relation between the expected variation of a device’s power consumption for a
given key hypothesis and the real variation of the consumption somewhere in
the power traces, confirming the hypothesis.

Let us say that a device containing a (secret) key sk is running a crypto-
graphic algorithm successively on a set of plaintexts P = {p1, p2, ..., pm}. During
the ith encryption, there should be an operation depending on both pi and
sk. Let us call it f(pi, sk). Given a set of power traces T measured while the
device encrypts the plaintexts in P, we aim to find a correlation between the
variation of the power consumption at a certain point in the traces and the
expected variation of the power consumption while performing f(·, ·), accord-
ing to an appropriate leakage model. In order to do so, we pre-compute, for
each element kj of a set of key hypothesis K, the expected power consump-
tion ej = {L(f(p1, kj)), L(f(p2, kj)), ..., L(f(pm, kj))} where L(·) is the leakage
model function. If we find j such that ej correlates with a place in the traces,
we can, with high confidence, say that kj = sk. More precisely, we can split the
process in three phases.

Breaking Kalyna 128/128 with Power Attacks 407

Measurement phase. We acquire power traces by measuring the consump-
tion of a device running the cryptographic algorithm for a set of plaintexts
P = {p1, p2, ...pm}. Each trace can be seen as a vector t ∈ R

n with each ele-
ment representing the instantaneous consumption at a given point in time and
n depending on the measurement device. We end up with a matrix T ∈ R

m×n

containing the data of all the measurements made.

Expected consumption estimation. First, we choose an operation f(p, sk) depend-
ing on (a part of) the plaintext and on (a part of) the key. Then, for each possible
key hypothesis kj and each message pi ∈ P, we compute L(f(pi, kj)) with L(·) a
function depending on the leakage model mapping the co-domain of f(·, ·) on a
value e ∈ R representing the expected consumption of the device just after per-
forming f(pi, kj). Finally we store those values in a matrix E ∈ R

m×|K| in which
each column expresses the expected variation of the device’s power consumption
as a function of the plaintext, for a given key hypothesis.

Finding the key. In this last phase, we are going to find which key hypothesis
corresponds to the real key used by the device. To do that, we look for a column
c1 of T and a column c2 of E such that c1 and c2 correlates greatly. If we
are able to find them, the key kj that spanned c2 in E is the key sk used by
the device with high probability. To evaluate the correlation, we usually simply
use the sample correlation coefficient which associates to two S-size datasets
D = {d1, d2, ..., dS} and D′ = {d′

1, d
′
2, ..., d

′
S} the value:

r =
∑S

i=1(di − D) · (d′
i − D′)

√∑S
i=1(di − D)2 · ∑S

i=1(d
′
i − D′)2

(1)

where X denotes the mean value of the dataset X.

3.2 CPA on Kalyna

Our approach was to apply a classical CPA attack round by round. We use the
Hamming weight model as leakage model. This choice was made considering (1)
a univariate non-profiled attack using first-order success rate, (2) attacking an
8-bit microcontroller that leaks the Hamming weight of a byte and (3) Gaussian
noise seems the optimal choice in this context [11]. Once a round key is found
the solution is used for attacking the next round: computing Kalyna cipher
until the next round with all the guessed round keys. We use the round keys
dependency to verify our guesses: if k2∗i+1 is not equivalent to k2∗i with the
rotation then k2∗i must have been incorrectly guessed. For the first round key
we have also to take the carry bit into account: due to the fact that the cipher
starts with a modular addition the CPA attack not only have to consider the
message pi and the key hypothesis kj but also the carry bit cb when computing
the leakage: L(f(pi, kj , cb)). Thus the attack on one byte of the round key of
Kalyna is dependent of the attack on the previous byte (except the first byte of

408 S. Fernandes Medeiros et al.

each column). This property forces the attacker to perform more computations
during the attack. When all the keys are retrieved the attack succeeds the same
way as it had retrieved the master key.

4 Experiments

4.1 Simulations

We compare the S-boxes of Kalyna from a side-channel point of view (1) between
them and (2) to the AES S-box.

We simulated in all 5 cases the application of an S-box on a bitwise exclusive-
or between a fixed key and a random plaintext (one byte each):

Res = Sbox(plaintext ⊕ key)

Since Kalyna block cipher also uses a modular addition, we also did the same
type of simulation where the S-box is applied on the result of modular addition
between two bytes:

Res = Sbox((plaintext + key) (mod 256))

We will call these simulations the xor-scenario and the add-scenario.
We used Hamming Weight leakage model and simulated traces while increas-

ing the variance of the noise in them i.e., decreasing the Signal-to-Noise Ratio
(SNR). Simulations were repeated 100 times.

Figures 2 and 3 plot the success rate of the attack as a function of the number
of traces needed to extract the key (i.e. the correct key is ranked as the first one
after a CPA) and with different SNR. The simulation with the AES S-box uses
the exclusive-or operation in both figures.

In case of the xor-scenario, Fig. 2, we can notice that all S-boxes of Kalyna
block cipher behave similarly to the AES S-box. The same happens in the add-
scenario, Fig. 3. Based on these simulations, the expectations are that the attack
on Kalyna should succeed like any CPA attack on an unprotected AES imple-
mentation.

4.2 Data Acquisition Setup

For our experiments we have implemented1 Kalyna block cipher on a popular
8-bit microcontroller ATMega 328. We used a fixed key and random plaintexts
during the execution of the algorithm. We acquired 1000 power traces using
Infiniium MSO9254A oscilloscope that was set up to acquire 200 MSamples/s.
Each power trace is the average of 64 single acquisitions, the averaging was
done by the oscilloscope in order to reduce noise. A small 10 Ω resistor was
placed between the group of our 5 Volt power supply and the ground pin of the
microcontroller in order to do the acquisitions.
1 The implementation is available on demand.

Breaking Kalyna 128/128 with Power Attacks 409

Fig. 2. CPA on simulated traces (application of different S-boxes with exclusive-or).
Success rate of attack as a function of the number of traces and the SNR.

Fig. 3. CPA on simulated traces (application of different S-boxes with modular addi-
tion). Success rate of attack as a function of the number of traces and the SNR.

410 S. Fernandes Medeiros et al.

4.3 Our Attack

Based on a set of traces, we begin the attack with the bytes of K0. The first
roundkey is a particular key to attack since we have to take the carry into
account2 (except for the first byte of each column). Once we have a complete
guess for K0 and K1 we must ensure that they match (i.e. K1 is a rotation of
K0). If K0 and K1 do not match, we must consider adding more traces to the set
and start again. Otherwise we can focus on roundkeys 2 to 9. Each time a pair
of roundkeys is found we verify whether they match or not (starting the attack
again in case they do not). For the final roundkey K10, we execute the cipher
until the final AddRoundKey operation and retrieve it based on the computation
and the ciphertext. Algorithm1 summarizes our attack.

4.4 CPA Results

Figure 4 shows the average3 probability of a practical attack on the four S-boxes
for the first roundkey (K0). Unlike what appears in our simulations, with a small
number of traces (less than 100) the four S-Boxes do not behave the same way
(S-box3 seems to be the easiest S-box to attack and S-box2 seems to be the
hardest).

50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nbr of traces

P
[B

yt
e

co
rr

ec
t]

S−Box 0
S−Box 1
S−Box 2
S−Box 3

Fig. 4. Average success rate of the four S-boxes when attacking K0.

Our attack manages to recover all the round keys with less than 171 traces
as we can see on Fig. 5. This figure shows the number of traces we needed for
the attack of the round keys 0 to 9 (the last round key can be retrieved from
the ciphertext and the execution of the algorithm until the last AddRoundKey
2 An error propragation of the carry will be noticed at the end of K1 recovery and

will result in a mismatching of K0 and K1. This will imply restarting the recovery
of K0 with more traces.

3 Since is each S-box is used four times for each round we averaged the results of each
S-box for the same round.

Breaking Kalyna 128/128 with Power Attacks 411

Algorithm 1. Pseudo-code of CPA attack on Kalyna 128/128
Require: Set of traces, ciphertext
Ensure: Roundkeys K0 to K10

1: /* Attacking K0 and K1 */
2:
3: for i ← 0, 1 do
4: CPA on byte 0 of column i of K0

5: for j ← 1, 7 do
6: CPA on byte j of column i of K0 using guessed byte (j-1)
7: end for
8: for i ← 0, 1 do
9: for j ← 0, 7 do

10: CPA on byte j of column i of K1

11: end for
12: end for
13: end for
14: if K1 is not a rotation of K0 then
15: add more traces to the set of traces
16: restart attack of K0 and K1

17: end if
18:
19: /* Attacking K2 to K9 */
20:
21: for k ← 1, 4 do
22: for i ← 0, 1 do
23: for j ← 0, 7 do
24: CPA on byte j of column i of K2∗k
25: end for
26: end for
27: for i ← 0 to 1 do
28: for j ← 0 to 7 do
29: CPA on byte j of column i of K2∗k
30: end for
31: end for
32: if K2∗k+1 is not a rotation of K2∗k then
33: add more traces to the set of traces
34: restart attack of K2∗k and K2∗k+1

35: end if
36: end for
37:
38: /* Attacking K10 */
39:
40: pre cipher ← execute encryption until final AddRoundKey using K0 to K9

41: from ciphertext and pre cipher compute K10

412 S. Fernandes Medeiros et al.

0 2 4 6 8

0
50

10
0

15
0

Round Key Index

N
um

be
r

of
 tr

ac
es

 n
ee

de
d

(a)

50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nbr of traces

P
[K

ey
 c

or
re

ct
]

(b)

Fig. 5. Result of a single CPA on real power traces (left part) and Average success
rate of the entire attack as a function of the number of traces (right part).

operation). The number of needed traces is always growing since the number of
traces needed for step i is the minimum number required for step i+1 as Ki+1 is
attacked from Ki guess. However we cannot claim that our attack requires only
117 traces to succeed. We realized 100 attacks for each number of used traces.
Each of those attacks were executed with randomly chosen traces (out of a set
of 1000 traces). Figure 5 shows the average (from 100 experiments) success rate
of the entire attack: retrieving all the 10 keys (K0 to K9). With 250 traces the
success rate of the attack is 96%.

5 Conclusions

This paper provides a first look on Kalyna from the perspective of side-channel
attacks. From this point of view Kalyna stands out among other block ciphers,
since its key schedule does not allow to get the master key from its round keys
thus, forcing an attacker to analyse all rounds in a case of a non-profiled DPA
attack. However, getting all the round keys is equivalent as getting the master key
(since for a given master key, round keys will always be the same). Nevertheless,
if the master key is changed relatively often and the attacker can only perform
non-profiled attacks, then he is forced to spend more time into each attack
(compared to other popular block ciphers). Our CPA attack succeed in finding
successively all round keys with a high success rate and few measurements. This
only allows us to claim that an attack can be easily performed, as expected,
against Kalyna with a reasonable amount of measurements.

The goal of this paper was to look at the security of Kalyna from a side-
channel point of view. We have implemented Kalyna without countermeasures,
which explains why we need a few measurements to break our implementa-
tion. The other point of this paper is to point out the fact that new algorithms
are developed but most of them are not designed to resist against side-channel
attacks (there exists some algorithms that are designed with the protection
against side-channel attacks in mind such as NOEKEON [7], FIDES [3] . . . but

Breaking Kalyna 128/128 with Power Attacks 413

these algorithms are not standards) while it is a common threat nowadays. It
would be worth thinking about side-channel countermeasures during the design
phase. Doing so one could try to exploit the structure of the algorithm to develop
countermeasure and achieve better performances than adding countermeasure on
an existing solution. The design of the key-schedule of Kalyna makes an attempt
to force an attacker to spend more computational resources into a side-channel
attack. However, this increase is only linear and proportional to the number of
rounds.

A lot of work should still be done for assessing the security of Kalyna: per-
forming a profiled attack on the key scheduling to observe whether it requires
less or more power traces, improving the security scheme with state-of-the-art
countermeasures such as masking and hiding.

References

1. Donghoon Chang, A., Ghosh, M., Goel, A., Kumar Sanadhya, A.: Single key recov-
ery attacks on 9-round kalyna-128/256 and kalyna-256/512. Cryptology ePrint
Archive, Report 2015/1227 (2015). http://eprint.iacr.org/

2. AlTawy, R., Abdelkhalek, A., Youssef, A.M.: A meet-in-the-middle attack on
reduced-round kalyna-b/2b. Cryptology ePrint Archive, Report 2015/762 (2015).
http://eprint.iacr.org/

3. Bilgin, B., Bogdanov, A., Knezevic, M., Mendel, F., Wang, Q.: FIDES: lightweight
authenticated cipher with side-channel resistance for constrained hardware. IACR
Cryptology ePrint Arch. 2015, 424 (2015)

4. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

6. Coron, J.-S., Kocher, P., Naccache, D.: Statistics and secret leakage. In: Frankel, Y.
(ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001). doi:10.
1007/3-540-45472-1 12

7. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: the block
cipher Noekeon. Nessie submission (2000). http://gro.noekeon.org/

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

9. NIST Fips. 46-3: The official document describing the des standard. Technical
report, Technical report, NIST (1999)

10. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85053-3 27

11. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough. In: Batina, L.,
Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 55–74. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44709-3 4

12. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/3-540-45472-1_12
http://dx.doi.org/10.1007/3-540-45472-1_12
http://gro.noekeon.org/
http://dx.doi.org/10.1007/978-3-540-85053-3_27
http://dx.doi.org/10.1007/978-3-662-44709-3_4
http://dx.doi.org/10.1007/3-540-68697-5_9

414 S. Fernandes Medeiros et al.

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

14. Lerman, L., Bontempi, G., Markowitch, O., Attack, S.C.: an Approach Based on
Machine Learning, pp. 29–41. Center for Advanced Security Research Darmstadt
(2011)

15. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach
based on machine learning. IJACT 3(2), 97–115 (2014)

16. State Service of Special Communication and Information Security of Ukraine.
Statement about public competition of cryptographic algorithms (in ukrainian)
(2006). http://www.dstszi.gov.ua/dstszi/control/ru/publish/article;jsessionid=
F88A950B67D1FC50BA7C7CB669238287?art id=48387&cat id=42056

17. Oliynykov, R., Gorbenko, I., Dolgov, V., Ruzhentsev, V.: Results of ukrainian
national public cryptographic competition. Tatra Mountains Math. Publ. 47(1),
99–113 (2010)

18. Oliynykov, R., Gorbenko, I., Kazymyrov, O., Ruzhentsev, V., Kuznetsov, O., Gor-
benko, Y., Dyrda, O., Dolgov, V., Pushkaryov, A., Mordvinov, R., Kaidalov, D.: A
new encryption standard of ukraine: The kalyna block cipher. Cryptology ePrint
Archive, Report 2015/650 (2015). http://eprint.iacr.org/

19. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

20. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28632-5 12

21. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39887-5 16

http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://www.dstszi.gov.ua/dstszi/control/ru/publish/article;jsessionid=F88A950B67D1FC50BA7C7CB669238287?art_id=48387&cat_id=42056
http://www.dstszi.gov.ua/dstszi/control/ru/publish/article;jsessionid=F88A950B67D1FC50BA7C7CB669238287?art_id=48387&cat_id=42056
http://eprint.iacr.org/
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/978-3-540-28632-5_12
http://dx.doi.org/10.1007/978-3-540-39887-5_16

Fault Injection Attacks: Attack Methodologies,
Injection Techniques and Protection Mechanisms

A Tutorial

Shivam Bhasin1,3(B) and Debdeep Mukhopadhyay2,3

1 Physical Analysis and Cryptographic Engineering, Temasek Laboratories,
Nanyang Technological University, Singapore, Singapore

sbhasin@ntu.edu.sg
2 Department of Computer Science and Engineering, Indian Institute of Technology,

Kharagpur, India
3 Embedding Security and Privacy Pvt Ltd. (ESP-Research), Kharagpur, India

debdeep@cse.iitkgp.ernet.in

Abstract. Fault Injection Attacks are a powerful form of active attack
mechanism which can threaten even the strongest of cryptographic algo-
rithms. This attack vector has become more pertinent with the grow-
ing popularity of the Internet of things (IoT), which is based on small
omnipresent embedded systems interacting with sensitive data of per-
sonal or critical nature. This tutorial addresses this issue of fault attacks,
covering a wide range of topics which has accumulated through years
of research. The first part of the talk will cover fault attacks and its
application to attack standard cryptosystems. Different popular forms of
fault attacks, namely Differential Fault Attacks (DFA) and Differential
Fault Intensity Attacks (DFIA) are presented. It is followed subsequently
by a discussion on the underlying injection techniques. Finally, protec-
tion mechanism will be discussed highlighting on information redundancy
based reactive countermeasures and sensor-based protection mechanisms
as two alternative strategies for security against the menacing fault
attacks.

Keywords: Fault injection attacks · Differential fault analysis · Parity ·
Sensors

1 Overview

Fault analysis of cryptographic primitives was first reported by Boneh et al. [3]
in 1996 to attack an RSA cryptosystem. After this seminal work, a new research
direction was triggered to conduct study of fault analysis with respect to all
popular cryptosystems, including symmetric key cryptosystems, public key cryp-
tosystems and hash function. Fault attacks involve injecting faults into an imple-
mentation of a cryptographic algorithm, followed by analysis under different
fault models to recover the key. Such attacks have rendered even mathemati-
cally robust and classically secured cryptosystems vulnerable. With fault attacks
c© Springer International Publishing AG 2016
C. Carlet et al. (Eds.): SPACE 2016, LNCS 10076, pp. 415–418, 2016.
DOI: 10.1007/978-3-319-49445-6 24

416 S. Bhasin and D. Mukhopadhyay

now being an established threat to cryptosystems, sound countermeasures are
needed to protect them. Designing countermeasures against fault attacks is a
non-trivial task in the present scenario, given the multitude of fault models and
fault injection techniques that an adversary has at her disposal. Finally, it is
also important to design suitable metrics to quantify the vulnerability of a given
crypto primitive against a particular fault model, as well as to compare multiple
cryptosystems in terms of their security against fault attacks. The tutorial at
hand presents a comprehensive coverage of the state-of-the-art in each of these
aspects, and also points out future research directions.

In this talk, we first present the concept of fault analysis and its relation
to cryptography. Subsequently, we discuss on Differential Fault Analysis (DFA)
[2] of the world-wide standard block cipher, namely the Advanced Encryption
Standard (AES). A detailed case study of DFA on AES-128 is presented to show
how a single well formed fault can lead to a drastic reduction of the key-space,
and eventually its leakage [8,14]. The optimality of this attack is subsequently
discussed. Thereafter, we extend these attacks to multiple byte faults, using a
new fault model based on the diagonals of the AES state matrix. This fault
attack, commonly called as the Diagonal Fault Attack shows that the cipher can
be attacked if one, two or three diagonals are affected needing 2, 2 or 4 faulty
cipher-texts respectively to uniquely obtain the key [13]. In order to thwart such
powerful attacks, fault tolerance is introduced in block ciphers through either
detection or infective schemes. However, there is a gap!; While conventional
fault tolerance offers large amount of reliability under the assumption that all
faults are equally likely, an attacker is equipped with a biased fault injection
mechanism, which can threaten most existing fault tolerant architectures. We
formalize the notion of bias of a fault model using the variance of the fault distri-
bution. Subsequently, we discuss that the bias in the fault injection increases the
probability of fault collisions which can lead to attacks against popular detec-
tion schemes [10]. In this context, we further discuss a different flavour of fault
attacks, called Differential Fault Intensity Analysis (DFIA), that combines prin-
ciples of differential power analysis with fault attacks [4].

The second part of the tutorial will cover practical aspects of fault attacks.
Research on fault injection techniques has advanced over the last two decades.
From global and inexpensive methods like power glitch [1] which troubled the
pay television industry for several years, to sophisticated and local methods
employing techniques like laser [11] or electromagnetic injections [12] which can
penetrate with precision even the latest technology nodes. A comparative analy-
sis of techniques involved, their extent, limitations and applications are dis-
cussed. The study of injection techniques is naturally followed by protection
mechanisms. These protection can be applied either at the physical level [7,15]
to detect injection attempts or at the information level [5,6] to detect data
modification. Physical level countermeasures are based on sensors which detect
any change in environmental condition that may result in faults. On the other
hand, information level countermeasures profits from concurrent error detection
mechanisms to detect data change by faults. However, the biasness of the fault

Fault Injection Attacks 417

injection techniques makes many classic fault tolerant techniques weak and can
be still subjected to fault analysis [10]. Finally, we conclude with the novel idea
of Fault Space Transformation (FST) as a novel proposition to counter such
biased fault attacks [9].

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). doi:10.1007/BFb0052259

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

4. Ghalaty, N.F., Yuce, B., Taha, M.M.I., Schaumont, P.: Differential fault intensity
analysis. In: Tria, A., Choi, D. (eds.) 2014 Workshop on Fault Diagnosis and Toler-
ance in Cryptography, FDTC 2014, Busan, South Korea, 23 September 2014, pp.
49–58. IEEE Computer Society (2014). http://dx.doi.org/10.1109/FDTC.2014.15

5. He, W., Breier, J., Bhasin, S., Chattopadhyay, A.: Bypassing parity protected
cryptography using laser fault injection in cyber-physical system. In: Proceedings
of the 2nd ACM International Workshop on Cyber-Physical System Security, pp.
15–21. ACM (2016)

6. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for
fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 21(12), 1509–1517 (2002)

7. Miura, N., Najm, Z., He, W., Bhasin, S., Ngo, X.T., Nagata, M., Danger, J.L.: Pll
to the rescue: a novel em fault countermeasure. In: Proceedings of the 53rd Annual
Design Automation Conference, p. 90. ACM (2016)

8. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption
standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02384-2 26

9. Patranabis, S., Chakraborty, A., Mukhopadhyay, D., Chakrabarti, P.P.: Using state
space encoding to counter biased fault attacks on AES countermeasures. IACR
Cryptology ePrint Archive 2015, 806 (2015). http://eprint.iacr.org/2015/806

10. Patranabis, S., Chakraborty, A., Nguyen, P.H., Mukhopadhyay, D.: A biased
fault attack on the time redundancy countermeasure for AES. In: Mangard, S.,
Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 189–203. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-21476-4 13

11. Pouget, V., Douin, A., Lewis, D., Fouillat, P., Foucard, G., Peronnard, P.,
Maingot, V., Ferron, J., Anghel, L., Leveugle, R., Velazco, R.: Tools and method-
ology development for pulsed laser fault injection in SRAM-based FPGAs. In: 8th
LATW 2007, Session 8. IEEE Computer Society, Cuzco, Peru (2007)

12. Quisquater, J.J., Samyde, D.: Eddy current for magnetic analysis with active sen-
sor. In: Esmart 2002, Nice, France (2002)

13. Saha, D., Mukhopadhyay, D., Chowdhury, D.R.: A diagonal fault attack on the
advanced encryption standard. IACR Cryptology ePrint Archive 2009, 581 (2009).
http://eprint.iacr.org/2009/581

http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1109/FDTC.2014.15
http://dx.doi.org/10.1007/978-3-642-02384-2_26
http://eprint.iacr.org/2015/806
http://dx.doi.org/10.1007/978-3-319-21476-4_13
http://eprint.iacr.org/2009/581

418 S. Bhasin and D. Mukhopadhyay

14. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21040-2 15

15. Zussa, L., Dehbaoui, A., Tobich, K., Dutertre, J.M., Maurine, P., Guillaume-Sage,
L., Clediere, J., Tria, A.: Efficiency of a glitch detector against electromagnetic
fault injection. In: Proceedings of the conference on Design, Automation & Test in
Europe, p. 203. European Design and Automation Association (2014)

http://dx.doi.org/10.1007/978-3-642-21040-2_15
http://dx.doi.org/10.1007/978-3-642-21040-2_15

Author Index

Ajay Kumara, M.A. 281
Alkim, Erdem 332
Annadurai, Suganya 179

Batina, Lejla 89
Bertoni, Guido 363
Bhasin, Shivam 27, 47, 415
Bol, David 233
Bouallegue, Belgacem 138
Breier, Jakub 27, 47
Burdges, Jeffrey 251

Chakraborti, Avik 66
Chang, Donghoon 66, 383
Chauhan, Amit Kumar 383
Chen, Lusheng 109
Chowdhury, Dipanwita Roy 194

Daemen, Joan 159
Danger, Jean-Luc 213
de Streel, Guerric 233
Deepthi, P.P. 124
Del Pozo, Santos Merino 233
Dold, Florian 251

El-Mrabet, Nadia 138

Fernandes Medeiros, Stephane 402
Flandre, Denis 233

Gan, Chee Lip 47
Gérard, François 402
Grothoff, Christian 251
Guilley, Sylvain 213
Gupta, Naina 383
Gupta, Sanchit 271

He, Wei 27, 47

Jaidhar, C.D. 281
Jakubeit, Philipp 332
Jap, Dirmanto 47

Jati, Arpan 383
Jilna, Payingat 124

Kakarla, Sourya 194
Kamel, Dina 233
Karimi, Naghmeh 213
Karmakar, Angshuman 323
Kaur, Sarvjeet 271
Kumar, S.V. Dilip 66

Lashermes, Ronan 138
Lerman, Liran 402
Liu, Jian 109
Lozac’h, Florent 213

Machhout, Mohsen 138
Maghrebi, Houssem 3
Mandava, Srinath 194
Markowitch, Olivier 402
Martinoli, Marco 363
Massolino, Pedro Maat C. 89
Mesnager, Sihem 109, 138
Mrabet, Amine 138
Mukhopadhyay, Debdeep 66, 415

Nandi, Mridul 66
Nawaz, Kashif 233

Ong, Hock Guan 47

Portigliatti, Thibault 3
Prouff, Emmanuel 3

Rangasamy, Jothi 179
Renes, Joost 89
Rigaud, Jean-Baptiste 138
Roy, Debapriya Basu 66
Roy, Sujoy Sinha 323

Saha, Dhiman 194
Sanadhya, Somitra Kumar 383
Schwabe, Peter 303, 332

Selvam, Ravikumar 179
Shanmugam, Dillibabu 179
Sharma, Harshit 271
Standaert, François-Xavier 233, 353
Stanisci, Marcello 251

Verbauwhede, Ingrid 323
Veshchikov, Nikita 402

Westerbaan, Bas 303

420 Author Index

	Preface
	Organization
	Abstracts of Tutorials
	Side-Channel Attacks on PKC
	Sponge-Based Cryptography
	Elliptic Curve Cryptography and Isogeny-Based Cryptography
	Abstracts of Keynotes
	Secure Hardware and Hardware-Enabled Security
	Practical Post-quantum Key Exchange from Supersingular Isogenies
	Contents
	Deep Learning and Fault Based Attacks
	Breaking Cryptographic Implementations Using Deep Learning Techniques
	1 Introduction
	2 Overview on Machine Learning Techniques
	2.1 Perceptron
	2.2 Multilayer Perceptron
	2.3 Decision Trees and Random Forest
	2.4 Support Vector Machine

	3 Overview on Deep Learning Techniques
	3.1 Convolutional Neural Networks
	3.2 Stacked Auto-Encoders
	3.3 Recurrent Neural Networks
	3.4 Long and Short Term Memory Units

	4 Towards New Profiling Methods
	4.1 Template Attack
	4.2 Deep Learning in Side Channel Analysis Context

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Unprotected AES Implementations
	5.3 First-Order Masked AES Implementation

	6 Conclusion and Perspectives
	A Attack Settings
	A.1 How to Choose the Optimal Parameters?

	References

	Cheap and Cheerful: A Low-Cost Digital Sensor for Detecting Laser Fault Injection Attacks
	1 Introduction
	2 Background
	2.1 Fault Attacks on Cryptographic Primitives
	2.2 Laser Fault Injection
	2.3 Countermeasures
	2.4 Previous Works on Sensor Based Countermeasures
	2.5 Lightweight PRESENT Cipher

	3 Low-Cost Digital LFI Sensor
	3.1 Digital Fault Injection Detector
	3.2 Timing Violation Detection
	3.3 Target FPGA and Digital-Sensor Implementation

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Timing Response
	4.3 Scanning Results
	4.4 Full Cipher Protection
	4.5 Further Discussions

	5 Conclusions
	References

	Comprehensive Laser Sensitivity Profiling and Data Register Bit-Flips for Cryptographic Fault Attacks in 65 Nm FPGA
	1 Introduction
	2 Related Work
	3 Chip Preparation and Device Configuration
	3.1 Optical Property of Silicon
	3.2 Backside Substrate Thinning of Virtex-5
	3.3 Device Under Test and Configuration

	4 Laser Sensitivity Profiling
	4.1 Global Array Scan
	4.2 Configurable Logic Block Column Scan
	4.3 Flip-Flop Scan

	5 Results and Discussions
	5.1 Success Rate
	5.2 Discussion on Central Fault Region

	6 Conclusions
	References

	Fault Based Almost Universal Forgeries on CLOC and SILC
	1 Introduction
	2 Preliminaries
	2.1 Description of CLOC
	2.2 Description of SILC
	2.3 Integrity Security Models

	3 Motivation
	4 Fault Based Existential Forgery on CLOC
	4.1 A Fault Based Forgery on CLOC with Nonce Respecting Encryption Queries

	5 Fault Based Almost Universal Forgery on CLOC
	6 Fault Based Existential Forgery on SILC
	6.1 A Fault Based Forgery on SILC with Nonce Misusing Encryption Queries.
	6.2 Fault Based Almost Universal Forgery on SILC

	7 Experimental Validation of Proposed Fault Based Forgery Attack
	8 Preventing Fault Based Forgery on CLOC and SILC
	8.1 Redesign of ENCk algorithm
	8.2 Structural Modification of ENCk algorithm

	9 Conclusion
	References

	Applied Cryptography
	Implementing Complete Formulas on Weierstrass Curves in Hardware
	1 Introduction
	2 Preliminaries for Elliptic Curve Cryptography
	3 Parallelism
	4 Implementation of the Formulas with Three Processors
	4.1 The Montgomery Processor
	4.2 Memory
	4.3 Control Logic
	4.4 Consecutive Additions
	4.5 Scheduling
	4.6 Comparison

	A More complete results comparison
	B Algorithms
	C Verification code
	References

	Partially Homomorphic Encryption Schemes over Finite Fields
	1 Introduction
	2 Preliminaries
	3 Relationships Between Homomorphisms over Finite Fields with q-Ary Functions
	4 Partially Homomorphic Encryption Schemes
	4.1 A Multiplicative Homomorphic Encryption Scheme
	4.2 An Additive Homomorphic Encryption Scheme

	5 Concluding Remarks
	References

	Light Weight Key Establishment Scheme for Wireless Sensor Networks
	1 Introduction
	2 Related Works and Their Security Analysis
	2.1 LEAP+
	2.2 COKE

	3 Proposed Method for Key Establishment
	3.1 Adversary Model
	3.2 System Model

	4 Performance Evaluation of the Proposed Scheme
	4.1 Security Analysis
	4.2 Computational Cost
	4.3 Memory Requirement
	4.4 Communication Cost
	4.5 Connectivity
	4.6 Structural Complexity

	5 Comparison with Related Works
	5.1 Security Metric
	5.2 Efficiency Metric
	5.3 Scalability Metric

	6 Conclusion
	References

	A Scalable and Systolic Architectures of Montgomery Modular Multiplication for Public Key Cryptosystems Based on DSPs
	1 Introduction
	2 Brief State of the Art
	3 Montgomery Multiplication
	3.1 CIOS Method

	4 Hardware Implementation
	4.1 Block DSP in Xilinx FPGAs
	4.2 Proposed Architecture
	4.3 Internals Architectures of Cells
	4.4 Our Architectures

	5 Results
	6 Conclusion
	A Architecture
	References

	Iterative Ciphers
	Spectral Characterization of Iterating Lossy Mappings
	1 Introduction
	1.1 Overview
	1.2 Conventions and Notation

	2 Distributions and Their (imbalance) Spectrum
	2.1 Parities, Imbalances and Spectrum
	2.2 The Walsh-Hadamard Transform
	2.3 Product of Independent Distributions
	2.4 Projection of a Distribution

	3 Lossy Mappings and Their Impact on Local Imbalance
	3.1 Correlation Matrices and Linear Trails
	3.2 Propagation of Imbalance Through a Mapping
	3.3 Propagation of Imbalance Through Iterative Mappings

	4 Lossy Mappings and Their Impact on Macroscopic Imbalance
	4.1 Collision Probability and Total Imbalance
	4.2 Collision Probability and Imbalance Contribution
	4.3 Total Imbalance Evolution Through a Lossy Mapping
	4.4 Total Imbalance Evolution in Iterative Mappings

	5 Sampling Noise and Random Mappings
	5.1 Sampling with Replacement and Random Transformations
	5.2 Sampling Without Replacement and Random Injective Mappings
	5.3 Summary of This Section

	6 Imbalance Contribution of Mappings with Known Collision Profile
	6.1 Collision Profile and Implications
	6.2 Example: A Round Function with Lossy S-Boxes

	7 Experiments
	8 Conclusions and Acknowledgments
	References

	Decomposed S-Boxes and DPA Attacks: A Quantitative Case Study Using PRINCE
	1 Introduction
	2 On Estimation Formula for Weighted Sum
	3 Threshold Implementation of PRINCE S-Box
	3.1 Optimised Hardware Implementation and DPA Experiments

	4 Transparency Order and DPA Attacks
	4.1 Experimental Result
	4.2 Comparative Study of PRINCE S-Box Results for Constrained Device

	5 Conclusion
	A TI Solution
	References

	Gain: Practical Key-Recovery Attacks on Round-reduced PAEQ
	1 Introduction
	2 The Design of PAEQ
	2.1 PPAE Mode of Operation
	2.2 The Internal Permutation: AESQ

	3 Handling Partially Specified States/Sub-states
	4 Some Observations on PAEQ
	5 Gain6: Key Recovery Attack on PAEQ 6 = PPAEAESQ 6
	6 Gain7: Extending the attack to PAEQ 7 = PPAEAESQ 7
	7 Gain8: A Guess-Invert-Guess attack on PAEQ 8 = PPAEAESQ8
	8 Complexity Analysis
	9 Discussion
	10 Conclusion
	References

	Hardware Security
	Predictive Aging of Reliability of Two Delay PUFs
	1 Introduction
	2 Aging Mechanisms
	2.1 Background on NBTI Aging

	3 Loop-PUF and Arbiter-PUF
	3.1 Loop-PUF
	3.2 Arbiter-PUF

	4 Aging Methodology with MOSRA
	5 Impact of Aging on the Reliability of PUFs
	5.1 Experimental Setup
	5.2 Experimental Results of the Loop-PUF Aging
	5.3 Experimental Results of the Arbiter-PUF Aging
	5.4 Discussion

	6 Aging Acceleration on Real Silicon
	6.1 Aging Acceleration Setup

	7 Conclusions and Perspectives
	References

	Towards Securing Low-Power Digital Circuits with Ultra-Low-Voltage Vdd Randomizers
	1 Introduction
	2 Related-Work and Contributions
	2.1 Related Work
	2.2 Contributions

	3 Vdd Randomizer Design
	3.1 Circuit Implementation
	3.2 Performance Benchmark and Test Setup

	4 Methodology
	4.1 Evaluation Settings
	4.2 Information Theoretic Metric
	4.3 Information Extraction Tools

	5 Security Analysis
	5.1 ULV Operation and Decoupling Capacitors
	5.2 Vdd Randomizer

	6 Cost Comparison
	7 Conclusions
	References

	Security
	Enabling Secure Web Payments with GNU Taler
	1 Introduction
	2 Existing Payment Workflows
	2.1 Credit and Debit Cards
	2.2 Bitcoin
	2.3 Walled Garden Payment Systems

	3 Taler
	3.1 Withdrawing Coins
	3.2 Spending Coins
	3.3 Giving Change and Refunds
	3.4 Deployment Considerations for Merchants

	4 Discussion
	4.1 Security Risks
	4.2 Failure Modes
	4.3 Comparison

	5 Conclusions
	References

	Malware Characterization Using Windows API Call Sequences
	Abstract
	1 Introduction
	2 Methodology
	2.1 Overall Malware Classification and Characterization Framework
	2.2 Malware Dataset Preparation and Extraction of Win-API Calls
	2.3 Categorization of Win-API Calls
	2.4 Creating Fuzzy Hash Signatures
	2.5 Matching Fuzzy Hash Signatures

	3 Classification Results and Analysis
	4 Conclusion
	5 Future Work
	References

	VMI Based Automated Real-Time Malware Detector for Virtualized Cloud Environment
	1 Introduction
	2 Background and Related Work
	3 Overview of the VMI Based Automated Internal-External System
	3.1 Guest Virtual Machine State Information Extractor
	3.2 Time Interval Threshold
	3.3 Intelligent Cross-View Analyser
	3.4 Online Malware Scanner

	4 Windows VM Memory State Reconstruction
	5 Experimental Results and Evaluation
	5.1 Experimental Setup
	5.2 Implementation
	5.3 Windows Malware and Windows Rootkits

	6 Performance Overhead
	7 Discussion
	8 Conclusion and Future Work
	References

	Post-quantum Cryptology
	Solving Binary MQ with Grover's Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Quantum Computing
	2.3 Applying Grover's Algorithm

	3 A Collection of Quantum Gates
	4 The First Grover Oracle for MQ over F2
	5 The Second Grover Oracle for MQ over F2
	6 Circuit Depth
	7 Conclusion
	A Example code
	References

	Ring-LWE: Applications to Cryptography and Their Efficient Realization
	1 Introduction
	2 Current Trends
	References

	NewHope on ARM Cortex-M
	1 Introduction
	2 The NewHope RLWE-based Key Exchange
	3 The Cortex-M Family of Microcontrollers
	4 Implementation Details
	4.1 Cortex-M0 Specific Optimization
	4.2 Cortex-M4 Specific Optimization

	5 Results and Comparison
	References

	Leakage, Power and Fault Analysis
	Towards Fair and Efficient Evaluations of Leaking Cryptographic Devices
	References

	A Methodology for the Characterisation of Leakages in Combinatorial Logic
	1 Introduction
	2 Preliminaries
	2.1 Power Consumption Model

	3 Simulation of Signal Propagation
	3.1 Operations Among Transients
	3.2 Glitch-Counting Algorithm

	4 LP Model
	4.1 Structure of LP Model
	4.2 Application to Circuits

	5 Case of Study: Keccak
	6 Computational Effort and Multi-output Circuits
	7 Conclusions
	References

	Exploiting the Leakage: Analysis of Some Authenticated Encryption Schemes
	1 Introduction
	1.1 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Authenticated Encryption
	2.3 Correlation Power Analysis

	3 AEGIS
	3.1 State Update Function
	3.2 Initialization Phase
	3.3 Encryption
	3.4 State Recovery and Forgery Attacks on AEGIS-128
	3.5 Forgery Attack on AEGIS-128 using a Recovered State

	4 Joltik-BC
	4.1 Message Authentication and Tag Generation Phase
	4.2 TWEAKEY Framework Instantiation
	4.3 Key Recovery Attack on Joltik-BC
	4.4 Applicability of Joltik-BC Key Recovery Attack on Deoxys-BC

	5 ELmD
	5.1 Recovery of Intermediate State Variables Using Side Channels
	5.2 Key Recovery in ELmD using Recovered Intermediate States

	6 Experimental Results
	7 Conclusion and Future Work
	References

	Breaking Kalyna 128/128 with Power Attacks
	1 Introduction
	2 Kalyna
	2.1 Encryption Algorithm
	2.2 Key Scheduling

	3 SCA on Kalyna
	3.1 CPA
	3.2 CPA on Kalyna

	4 Experiments
	4.1 Simulations
	4.2 Data Acquisition Setup
	4.3 Our Attack
	4.4 CPA Results

	5 Conclusions
	References

	Fault Injection Attacks: Attack Methodologies, Injection Techniques and Protection Mechanisms
	1 Overview
	References

	Author Index

