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1 Introduction

Aggregative games are a special class of games in which the payoff of a player
depends on the player’s own strategy and on a (common across players) aggregate
of players’ strategies. An early example of a work on aggregative games is Corchón
(1994) but in a more recent series of works, Richard Cornes and Roger Hartley
elucidated the usefulness of studying the mathematical structure of these games
for establishing equilibrium existence and for finding equilibria in situations going
beyond textbook symmetric examples. They applied this methodology to such
classic examples of economic analysis as public good games (Cornes and Hartley
2007) and contests (Cornes and Hartley 2003, 2005),1 as well as studying the
general structure of aggregate games further (Cornes and Hartley 2012).

Before turning his attention to aggregative games, Richard also worked on
applications of the concept of conjectural variations. This concept was extensively
analyzed in the context of industrial organization games (see e.g. Laitner 1980;
Bresnahan 1981; Perry 1982); its application in common property exploitation
model was considered in Cornes and Sandler (1983) and in public good games in
Cornes and Sandler (1984a).

Paper prepared for a volume honoring the memory of Richard Cornes. In his time at the University
of Nottingham, Richard was a helpful colleague, ready to give advice in his usual witty and
entertaining manner.
1Further examples of aggregative games are listed in Cornes and Hartley (2011) and Cornes (2016)
discusses the applications of aggregative games in the analysis of environmental problems.
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In this paper, I also focus on a representation of games that is similar to the
aggregative one and on conjectural variations. The representation is such that a
player’s payoff depends on the player’s strategy and on a certain aggregate of all
player’s strategies, personalized for the player. Thus the aggregates do not have
to be the same for all players, as in a usual aggregative game. Nevertheless, the
aggregates fulfill a similar role of reducing the dimensionality of what a player
needs to consider about the other players. In such a representation (which I call
semi-aggregative), what is relevant for the player is how the aggregate measure of
players’ strategies possibly changes. This is precisely what the conjectures of the
players in such a game are about.

Given their conjectures about possible changes in the respective aggregates, the
players in the game behave rationally, that is, maximize their payoff. Their decisions
characterize an equilibrium, for the given conjectures. But where do the conjectures
come from? I suppose that they represent players’ innate beliefs, but those beliefs are
subject to evolution. Different conjectures will lead to different equilibrium choices
and thus different payoffs. From the point of view of evolution, those conjectures
that led to higher payoff are more likely to propagate.2

I focus on the setting where a game is not necessarily symmetric, thus players
can have different roles (for example, one player can have a larger marginal benefit
from a public good than another player, or a lower cost of contributing to it). Since
roles are different, evolution is considered as happening within each role separately.
Instead of considering an explicit dynamic process, I look for evolutionarily stable
conjectures, which are conjectures that no other conjectures can invade by achieving
a higher payoff for this player’s role, given the conjectures of the other players and
the equilibrium that the players play.

I find that the evolutionary stability of conjectures is linked to their consistency.
An equilibrium in the model is at the intersection of the reaction functions of the
players, which also define the reaction of the aggregates. If a player’s strategy
changes, for whatever reason, the reaction functions determine how the other players
change (optimally) their strategies, and thus how the aggregates change. Conjectures
are considered consistent if the belief of a player locally coincides, to the first
approximation, to the actual change in the player’s personalized aggregate. The main
result of the paper is that, in well-behaved games, only consistent conjectures of a
player can be evolutionary stable for this player.

The result extends the link between consistent and evolutionarily stable con-
jectures. Previous works noted this connection in simple duopoly models (Dixon
and Somma 2003; Müller and Normann 2005), in two-player games (Possajennikov
2009) and in symmetric aggregative games (Possajennikov 2015). What I add in this
paper is that the link between consistent and evolutionarily stable conjectures hold

2Another interpretation is that players first choose conjectures and then play the game. The search is
then for an equilibrium in the game of choosing conjectures. I nevertheless prefer the evolutionary
interpretation, which makes it clearer that the process of forming beliefs and choosing strategies
occur at different times. This evolutionary interpretation is an example of the “indirect evolution
approach” (Güth and Yaari 1992).
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in more general n-player asymmetric situations. Thus it is not only that evolution
selects consistent conjectures when other players’ conjectures are consistent; for
any conjectures of the other players, it is best, from the evolutionary point of view,
to have a consistent conjecture.

This result is illustrated on two examples of games that were often the subject
of Richard Cornes’s work and that are aggregative or naturally semi-aggregative,
namely public good games and contests. In these settings, I show that for many
parameter values consistent and evolutionarily stable conjectures coincide, thus
consistency is not only a necessary but also a sufficient condition for evolutionary
stability.

2 Games and Conjectures

2.1 Semi-aggregative Representation of Games

A simultaneous-move game on the real line is G D .N; fXigniD1; fuigniD1/, where
N D f1; : : : ; ng is the set of players, Xi � R is the strategy set of player i, and
ui W X1 � : : : �Xn ! R is the payoff function of player i. It is assumed that the game
is well-behaved: strategy sets are convex and the payoff functions are differentiable
as many times as required.

For any game, the payoff of player i can be written as ui.xi;Ai/, where Ai D
fi.x1; : : : ; xn/ for some function fi W X1 � : : : � Xn ! R.3 I call the representation
of the payoffs in the form ui.xi;Ai/ semi-aggregative, since Ai can be seen as a
personalized aggregate of player i, which summarizes the dependence of the payoff
of player i on the strategies of other players. Note that the aggregate Ai can include
the strategy xi of player i. A game is aggregative if there exists a semi-aggregative
representation with A D Ai for all i, i.e. with the same functions fi for all players
and a common aggregate A.

While in general games the payoff representation discussed above may appear
strange, there are classes of games for which a (semi-)aggregative representation is
natural. For example, in a differentiated product oligopoly, the price pi.q1; : : : ; qn/
for the product of firm i is determined by the inverse demand from the quantities
chosen by all firms. This price can then naturally be taken as the personalized
aggregate of firm i. The payoff for firm i is the profit � i.qi; pi/ D piqi � Ci.qi/,
where Ci.qi/ is the cost function of firm i.4

For another example, consider a (pure) public good game. Each player i
contributes a part xi of the endowment mi to the public good, leaving mi � xi

3For example, consider the identity ui.x1; : : : ; xn/ D xi C ui.x1; : : : ; xn/ � xi. Let Ai D
fi.x1; : : : ; xn/ D ui.x1; : : : ; xn/ � xi and write ui.xi;Ai/ D xi C Ai.
4In a homogeneous good market with one price, the aggregate (the price) is the same for all firms,
and the game is properly aggregative.
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for private good consumption. The aggregate production of the public good is
A D Pn

iD1 xi. Player i’s payoff is given by the utility function ui.mi�xi;A/, which is
already a semi-aggregative representation. In fact, with pure public goods the game
is properly aggregative, since the aggregate amount of public good A is the same for
all players; it is not needed to have personalized aggregates for each player.

The advantage of the semi-aggregative representation is the reduction in the
dimensionality of the problem. In a sense, a player sees his or her opponents as
one aggregate opponent and is only concerned about the aggregate effect of such an
opponent on payoff. In the next section I discuss how this can be used to formulate
in a simple manner players’ expectations about the behavior of other players.

2.2 Conjectures and Conjectural Variation Equilibria

Suppose that player i has some conjectures ri about the reaction of other players
to a change in the player’s own strategy. With the semi-aggregative representation
of the game, the conjectures are about the change in the personalized aggregate,

ri D
�
dAi
dxi

�e
, where the superindex is meant to convey that it is an expected, rather

than actual, change. It is assumed that the conjectures are constant, ri 2 Ri, where
Ri is a convex subset of R, i.e. conjectures do not depend on the current strategies
of players. This assumption again reduces the dimensionality of the problem while
still allowing consideration of consistent conjectures.

A change in player i’s own strategy xi also can directly affect the aggregate Ai D
fi.x1; : : : ; xn/. But the conjecture is about the total effect of a change in xi on Ai: it
incorporates the direct effect @Ai

@xi
but also the effect from the expected changes in

the other players’ strategies. This formulation is slightly more general than the one
with the aggregate being a function of the other players’ strategies only, as was used
in e.g. Perry (1982) for oligopoly and in Cornes and Sandler (1984a) for a public
good model. It can still represent the usual Nash behavior: ri D @Ai

@xi
means that

the strategies of the other players are kept fixed; player i does not expect the other
players to react.

Having conjecture ri, player i maximizes payoff ui.xi;Ai/. The first-order
condition for maximization is

Fi.xi;AiI ri/ D @ui
@xi

.xi;Ai/ C @ui
@Ai

.xi;Ai/ � ri D 0: (1)

Suppose now that all players have certain conjectures, summarized by vector
r D .r1; : : : ; rn/. Suppose further that for each player i, the solution of the
player’s maximization problem is characterized by Eq. (1). A conjectural variation
equilibrium (CVE) for the given vector r of conjectures consists of the vector
of players’ strategies x�.r/ D .x�

1 .r/; : : : ; x�
n .r// and the vector of personalized
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aggregates A�.r/ D .A�
1 .r/; : : : ;A�

n .r// that satisfy the system of equations

Fi.xi;AiI ri/ D 0; i D 1; : : : ; n; (2)

Ai � fi.xi; : : : ; xn/ D 0; i D 1; : : : ; n:

It is assumed that the solution of this system of equations exists for the values of
conjectures in sets Ri. There may be multiple solutions of the system; in the analysis
below I consider any particular solution that is locally unique and well-behaved.

Although conjectures are about changes in a player’s strategy and reactions to
them, the conjectural variation equilibrium is a static concept. However, it can
be interpreted as a convenient short-cut summarizing the result of a more explicit
dynamic analysis,5 and this is the interpretation I have in mind by focusing on CVE
in this paper.

2.3 Consistent Conjectures

Recall that a conjecture of player i is a belief about the change in the personalized
aggregate Ai in response to a change in player i’s strategy xi. To define consistent
conjectures, let xi vary unconstrained and concentrate on optimal responses of the
other players. Consider the system of equations

Fj.xj;AjI rj/ D 0; j D 1; : : : ; n; j ¤ i (3)

Aj � fj.x1; : : : ; xn/ D 0; j D 1; : : : ; n;

which is like system (2) except that the first-order condition for player i is
not there. Thus, the strategy xi of player i is not constrained to be optimal; it
can take any value. The strategies of the other players are still characterized
by the first-order conditions; thus the system describes optimal responses of
the other players to arbitrary values of xi. Denote a solution of system (3) as
.x��

1 .xi/; : : : ; x��
i�1.xi/; x��

iC1.xi/; : : : ; x��
n .xi/IA��

1 .xi/; : : : ;A��
n .xi//.

Consider a vector of conjectures r and a certain CVE .x�;A�/ D
.x�

1 ; : : : ; x�
n IA�

1 ; : : : ;A�
n / for these conjectures. Note that for xi D x�

i there exists a
solution of system (3) with x��

j .x�
i / D x�

j for all j ¤ i and A��
j .x�

i / D A�
j for all

j D 1; : : : ; n. Consider such a solution and consider A��
i .xi/. Conjecture ri of player

5In a duopoly context, Dockner (1992) and Cabral (1995) show that a dynamic model indeed can
lead to the same outcomes as certain CVEs, and Itaya and Dasgupta (1995) and Itaya and Okamura
(2003) do so for a public good game.
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i is consistent if ri D dA��

i
dxi

.x�;A�/, i.e. the conjecture about the reaction of the

personalized aggregate is, to a first approximation, correct at equilibrium.6

Whether a particular conjecture ri is consistent depends on the vector of
conjectures r�i of the other players. Given a vector r, it is possible that some
players hold consistent conjectures and others not. One can define conjectures to
be mutually consistent if for all i, ri is consistent against r�i. However, it will not
be important for the analysis of conjectures of player i what conjectures the other
players hold thus I do not focus only on mutually consistent conjectures.

3 Evolutionary Stability of Conjectures

Imagine that for each of the n player roles there is a large (infinite) population of
players, and players from each population from time to time are called to play the
game G against opponents randomly drawn from the other populations. Consider
the population for the role of player i. Each player in the population has some
conjectures. Suppose that in all other player populations conjectures have stabilized
on some values r�i. Thus, if called to play, a player with a certain conjecture ri
from the population of players i will play the game against the other players with
conjectures r�i. Suppose that when the game is played, a CVE is played. The
question is: for the given conjectures r�i of the other players, which conjecture
of player i is evolutionarily stable?

Different conjectures in the population for the role of player i will lead to differ-
ent CVEs and thus to different payoffs. Conjecture r ESi is said to be evolutionarily
stable (Maynard Smith and Price 1973; Selten 1980) if

ui.x
�
i .r ESi ; r�i/;A

�
i .r ESi ; r�i// > ui.x

�
i .ri; r�i/;A

�
i .ri; r�i// for any ri ¤ r ESi :

The above inequality means that in the population for the role of player i, a player
with conjecture r ESi will get a higher payoff when called to play than a player with
any other value ri of the conjecture. The evolutionary intuition is that players with
any other conjecture ri in the population for the role of player i would have lower
fitness than the players with conjecture r ESi . Therefore evolution will favor players
with conjecture r ESi to survive and thrive.7

With the alternative interpretation that players first choose their conjectures and
then play a CVE of the game G, an evolutionarily stable conjecture of player i
is a strict best response of player i to the given conjectures of the other players.
If a vector of conjectures rES D .r ES1 ; : : : ; r ESn / is such that for each player i the

6This consistency requirement was introduced by Bresnahan (1981) for a duopoly, and also used
e.g. in Perry (1982) in an oligopoly and Cornes and Sandler (1984a) in a public good game context.
7Note that the definition focuses on player i treating the other players conjectures as fixed; Selten
(1980) showed that such an approach is appropriate in asymmetric games.
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conjecture r ESi is evolutionarily stable given rES�i , then .r ES1 ; : : : ; r ESn / is a strict Nash
equilibrium in the game where players choose conjectures and their payoffs are
determined via conjectural variations equilibria.

Whatever the interpretation, an evolutionary stable conjecture solves

max
ri

ui.x
�
i .ri; r�i/;A

�
i .ri; r�i//:

The first-order condition for maximization is8

@ui
@xi

@x�
i

@ri
C @ui

@Ai

dA�
i

dri
D 0:

Therefore (provided that @ui
@Ai

¤ 0 and @x�

i
@ri

¤ 0), � @ui=@xi
@ui=@Ai

D dA�

i =dri
@x�

i =@ri
. Since from

Eq. (1) ri D � @ui=@xi
@ui=@Ai

, an interior evolutionarily stable conjecture satisfies

rESi D dA�
i =dri

@x�
i =@ri

: (4)

Speaking somewhat loosely in mathematical terms, if dri D @ri is treated as a
small change in the independent variable ri, then it can be canceled from (4). Note

also that dxi D dx�
i D @x�

i if only ri changes. Therefore rESi D dA�

i
dxi

. Recall that a

conjecture is consistent if ri D dA��

i
dxi

. Since at a CVE A��
i .x�

i / D A�
i , the first-order

condition for evolutionary stability and the consistency condition are essentially the
same.9

For a more formal demonstration of the reasoning, consider system (2). To
simplify notation, focus on i D 1. Differentiating each line of (2) with respect to r1,

@F1

@x1

@x�
1

@r1

C : : : C 0 C @F1

@A1

dA�
1

dr1

C : : : C 0 D �@F1

@r1

� � � � � � � � � � � � � � � � � �
0 C : : : C @Fn

@xn

@x�
n

@r1

C 0 C : : : C @Fn

@An

dA�
n

dr1

D 0

� @f1
@x1

@x�
1

@r1

C : : : C � @f1
@xn

@x�
n

@r1

C dA�
1

dr1

C : : : C 0 D 0

� � � � � � � � � � � � � � � � � �
� @fn

@x1

@x�
1

@r1

C : : : C � @fn
@xn

@x�
n

@r1

C 0 C : : : C dA�
n

dr1

D 0

8To save space, arguments of derivatives are omitted. It is understood that they are evaluated at
r D .r ESi ; r�i/ and CVE .x�.r/;A�.r//.
9The relationship between consistent conjectures and the conjectures that maximize the indirect
payoff function ui.x

�

i .ri; rj/;A
�

i .ri; rj// was noted by Itaya and Dasgupta (1995) for a two-player
public good game.
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Define

M D

0

B
B
B
B
B
B
B
B
B
@

@F1

@x1
: : : 0 @F1

@X1
: : : 0

� � � : : : � � � � � � : : : � � �
0 : : : @Fn

@xn
0 : : : @Fn

@Xn

� @f1
@x1

: : : � @f1
@xn

1 : : : 0
:::

: : :
::: � � � : : : � � �

� @fn
@x1

: : : � @fn
@xn

0 : : : 1

1

C
C
C
C
C
C
C
C
C
A

;

M�11 D

0

B
B
B
B
B
B
B
B
B
@

@F2

@x2
: : : 0 @F2

@X2
: : : 0

� � � : : : � � � � � � : : : � � �
0 : : : @Fn

@xn
0 : : : @Fn

@Xn

� @f2
@x2

: : : � @f2
@xn

1 : : : 0
:::

: : :
::: � � � : : : � � �

� @fn
@x2

: : : � @fn
@xn

0 : : : 1

1

C
C
C
C
C
C
C
C
C
A

;

and

M�1A D

0

B
B
B
B
B
B
B
B
B
B
B
B
@

0 @F2

@x2
: : : 0 @F2

@X2
: : : 0

::: � � � : : : � � � � � � : : : � � �
0 0 : : : @Fn

@xn
0 : : : @Fn

@Xn

� @f1
@x1

� @f1
@x2

: : : � @f1
@xn

0 : : : 0

� @f2
@x1

� @f2
@x2

: : : � @f2
@xn

1 : : : 0
:::

:::
: : :

::: � � � : : : � � �
� @fn

@x1
� @fn

@x2
: : : � @fn

@xn
0 : : : 1

1

C
C
C
C
C
C
C
C
C
C
C
C
A

:

If jMj ¤ 0, by Cramer’s rule, @x�

1

@r1
D 1

jMj
�
� @F1

@r1

�
jM�11j and @A�

1

@r1
D

1
jMj .�1/n @F1

@r1
jM�1Aj. Therefore, if jM�11j ¤ 0 (from Eq. (1) @F1

@r1
D @ui

@Ai
thus @F1

@r1
¤ 0

if @ui
@Ai

¤ 0), Eq. (4) becomes

r ES1 D .�1/n�1jM�1Aj
jM�11j : (5)
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To determine dA��

1

dx1
, consider system (3). Differentiating each of the equations

with respect to x1,

@F2

@x2

@x��
2

@x1

C : : : C 0 C 0 C @F2

@A2

dA��
2

dx1

C : : : C 0 D 0

� � � � � � � � � � � � � � � � � � � � � � � �
0 C : : : C @Fn

@xn

@x��
n

@x1

C 0 C 0 C : : : C @Fn

@An

dA��
n

dx1

D 0

� @f1
@x2

@x��
2

@x1

C : : : C � @f1
@xn

@x��
n

@x1

C dA��
1

dx1

C 0 C : : : C 0 D @f1
@x1

� � � � � � � � � � � � � � � � � � � � � � � �
� @fn

@x2

@x��
2

@x1

C : : : C � @fn
@xn

@x��
n

@x1

C 0 C 0 C : : : C dA��
n

dx1

D @fn
@x1

Define

L�11 D

0

B
B
B
B
B
B
B
B
B
B
B
B
@

0 @F2

@x2
: : : 0 @F2

@A2
: : : 0

::: � � � : : : � � � � � � : : : � � �
0 0 : : : @Fn

@xn
0 : : : @Fn

@An

1 � @f1
@x2

: : : � @f1
@xn

0 : : : 0

0 � @f2
@x2

: : : � @f2
@xn

1 : : : 0
:::

:::
: : :

::: � � � : : : � � �
0 � @fn

@x2
: : : � @fn

@xn
0 : : : 1

1

C
C
C
C
C
C
C
C
C
C
C
C
A

and

L�1A D

0

B
B
B
B
B
B
B
B
B
B
B
B
@

0 @F2

@x2
: : : 0 @F2

@A2
: : : 0

::: � � � : : : � � � � � � : : : � � �
0 0 : : : @Fn

@xn
0 : : : @Fn

@An
@f1
@x1

� @f1
@x2

: : : � @f1
@xn

0 : : : 0
@f2
@x1

� @f2
@x2

: : : � @f2
@xn

1 : : : 0

:::
:::

: : :
:::

:::
: : : � � �

@fn
@x1

� @fn
@x2

: : : � @fn
@xn

0 : : : 1

1

C
C
C
C
C
C
C
C
C
C
C
C
A

Then jL�11j D .�1/njM�11j and jL�1Aj D �jM�1Aj. Using Cramer’s rule again,
dA��

1

dx1
D 1

jL�11j jL�1Aj D �jM�1Aj
.�1/njM�11j D .�1/n�1jM�1Aj

jM�11j , which is the same as the right-
hand side of Eq. (5). Thus, the following proposition is proved:

Proposition 1 Consider a semi-aggregative representation of the game G and
consider conjecture profile r D .r1; : : : ; rn/. Suppose that there exists a CVE
.x�.r/;A�.r// for this r. If @ui

@Ai
¤ 0, jMj ¤ 0 and jM�11j ¤ 0 at r and
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.x�.r/;A�.r//, then if ri is an evolutionarily stable conjecture for player i, then
it is a consistent conjecture for player i.

Since the analysis was based only on the first-order condition for evolutionary
stability, it is not necessarily the case that a consistent conjecture is evolution-
arily stable. Concavity or quasi-concavity conditions on the indirect function
ui.xi.r/;Ai.r// can guarantee this. Instead of stating these conditions in general,
evolutionarily stability of consistent conjectures is demonstrated for particular
games in Sect. 4.

The practical usefulness of the result is that it is usually easier to find consistent
conjectures than to derive the indirect function to search for the evolutionarily stable
ones. Since the result shows that in well-behaved games only consistent conjectures
can be evolutionarily stable in the interior of the conjecture space, the search for
evolutionarily stable conjectures can be reduced to the consistent ones.

The conceptual usefulness of the result is to provide foundations for consistent
conjectures. Consistency of conjectures is not always accepted as a plausible
criterion for preferring some conjectures over others.10 The result in this paper
shows though, that if players are endowed with conjectures that are subject to
evolutionary pressure (or, equivalently, if players could choose conjectures before
playing the game), then only consistent conjectures can survive such a process.

Note that the proof of the result concentrated on player i, while taking arbitrary
conjectures held by the other players. The conjectures of the other players may
or may not be consistent; if one wants all players to have evolutionarily stable
conjectures, then only profiles with mutually consistent conjectures can be such.
The result shows that it is best for player i to have consistent conjectures whatever
the conjectures of the other players are (but which value of the conjecture is
consistent, and thus possibly evolutionarily stable, for player i depends on the
current conjectures of the other players).11

The current result generalizes the previous ones in Possajennikov (2009, 2015)
to asymmetric games with more than two players. In principle, the games do not
even need to have an obvious aggregative structure: what was used is that the players
make conjectures about the appropriate quantity Ai that was relevant for their payoff.
In general, the function fi determining this quantity may be complicated and thus it
is not likely that the players would consider conjectures about it; however, in some
games, illustrated in the next section, the aggregate quantity Ai arises naturally in
the formulation of the problem.

10See e.g. Makowski (1987) and Cornes and Sandler (1996, p. 32) say that they do not attach any
particular importance to consistent conjectures.
11The observation that the consistent conjecture is the best response conjecture of one player to any
given conjecture of the other player was made in Dixon and Somma (2003) for a linear-quadratic
Cournot duopoly game.
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4 Examples

4.1 Semi-public Good Games

Cornes and Sandler (1984a,b) explored the public good model, including the impact
of various conjectures and the possibility of impure public goods, where a player’s
contribution to a public good also provides a private benefit. I will use instead the
formulation of semi-public goods from Costrell (1991) that models the same idea—
that a player benefits more from his or her own contribution to a public good than the
other players do—in a more transparent manner. The formulation also encompasses
a pure public good model.

Suppose that each player i has a money endowment mi that can be spent either
on a private good or on a semi-public good. Assuming for simplicity that prices
of all goods are equal and normalizing the price to 1, mi D yi C xi, where yi is
the amount spent on the private good and xi the amount spent on the public good.
Player i has the utility function ui.yi;Gi/, where Gi is the quantity of the public
good available to player i. The semi-public nature of the public good is modeled by
Gi D xi C bi

P
j¤i xj, where 0 < bi � 1. Player i benefits most from his or her own

contribution to the public good, but other players’ contributions also spillover to
player i’s benefit. Quantity Gi naturally plays the role of the personalized aggregate
for player i.12

To illustrate the result in the previous section, consider the three-player case (n D
3) and Cobb-Douglas utility functions for all players

ui.xi;Gi/ D .mi � xi/
˛iG1�˛i

i ;

with 0 < ˛i < 1. Suppose that each player i has conjecture ri � 0. Player i’s first-
order condition for utility maximization is �˛i.mi � xi/˛i�1G1�˛i

i C .1 � ˛i/.mi �
xi/˛iG�˛i

i ri D 0, or, in the interior where xi ¤ mi and Gi ¤ 0, �˛iGiC.1�˛i/.mi�
xi/ri D 0. Therefore

˛iGi C .1 � ˛i/xiri D .1 � ˛i/miri

characterizes the solution of player i utility maximization problem.13

To find consistent conjectures for player 1, consider the system

˛2G2 C .1 � ˛2/x2r2 D .1 � ˛2/m2r2

˛3G3 C .1 � ˛3/x3r3 D .1 � ˛3/m3r3

12Note that if bi D 1 for all i, then the public good becomes a pure public good and the same
aggregate G D Pn

iD1 xi can be used for all players.
13The second-order condition ˛i.1�˛i/.mi�xi/˛i�2G�˛i�1

i .�G2
i �2.mi�xi/Giri�.mi�xi/2r2

i / <

0 is satisfied for ri � 0 and all interior xi;Gi.
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G1 � x1 � b1x2 � b1x3 D 0

G2 � b2x1 � x2 � b2x3 D 0

G3 � b3x1 � b3x2 � x3 D 0:

Substituting the last three equations into the first two,

..1 � ˛2/r2 C ˛2/x2 C ˛3b3x3 D .1 � ˛2/m2r2 � ˛2b2x1

˛2b2x2 C ..1 � ˛3/r3 C ˛3/x3 D .1 � ˛3/m3r3 � ˛3b3x1:

If bj < 1; j D 2; 3, then the solution of these two equations is guaranteed to exist.
It is

x��

2 .x1/ D .m2.1 � ˛2/r2 � ˛2b2x1/..1 � ˛3/r3 C ˛3/ � ˛2b2.m2.1 � ˛3/r3 � ˛3b3x1/

..1 � ˛2/r2 C ˛2/..1 � ˛3/r3 C ˛3/ � ˛2b2˛3b3

x��

3 .x1/ D ..1 � ˛2/r2 C ˛2/.m3.1 � ˛3/r3 � ˛3b3x1/ � .m2.1 � ˛2/r2 � ˛2b2x1/˛3b3

..1 � ˛2/r2 C ˛2/..1 � ˛3/r3 C ˛3/ � ˛2b2˛3b3

:

Since G��
1 .x1/ D x1 C b1x��

2 .x1/ C b1x��
3 .x1/, the consistent conjecture is

rC1 D dG��
1

dx1

D 1�b1

˛2b2..1 � ˛3/r3 C ˛3/ C ..1 � ˛2/r2 C ˛2/˛3b3 � 2˛2b2˛3b3

..1 � ˛2/r2 C ˛2/..1 � ˛3/r3 C ˛3/ � ˛2b2˛3b3

This consistent conjecture is the unique candidate to be evolutionarily stable. Note
that the consistent conjecture is less than unity, meaning that player 1 (correctly)
expects the other players to partially offset an increase in his or her contribution
to the public good. This exacerbates the inefficiency of the private provision of the
good.

A CVE of the game is characterized by the equations

˛1G1 C .1 � ˛1/x1r1 D .1 � ˛1/m1r1

˛2G2 C .1 � ˛2/x2r2 D .1 � ˛2/m2r2

˛3G3 C .1 � ˛3/x3r3 D .1 � ˛3/m3r3

G1 � x1 � b1x2 � b1x3 D 0

G2 � b2x1 � x2 � b2x3 D 0

G3 � b3x1 � b3x2 � x3 D 0:

Substituting the last three equations into the first three, the system becomes

..1 � ˛1/r1 C ˛1/x1 C ˛2b2x2 C ˛3b3x3 D .1 � ˛1/m1r1

˛2b2x1 C ..1 � ˛2/r2 C ˛2/x2 C ˛3b3x3 D .1 � ˛2/m2r2

˛3b3x1 C ˛2b2x2 C ..1 � ˛3/r3 C ˛3/x3 D .1 � ˛3/m3r3:
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Let

jMj D ..1 � ˛1/r1 C ˛1/..1 � ˛2/r2 C ˛2/..1 � ˛3/r3 C ˛3/ C 2˛1b1˛2b2˛3b3

�˛1b1..1 � ˛2/r2 C ˛2/˛3b3 � ..1 � ˛1/r1 C ˛1/˛2b2˛3b3

�˛1b1˛2b2..1 � ˛3/r3 C ˛3/;

jM1j D m1.1 � ˛1/r1..1 � ˛2/r2 C ˛2/..1 � ˛3/r3 C ˛3/ C ˛1b1m2.1 � ˛2/r2˛3b3

C˛1b1m2.1 � ˛2/r2˛3b3 � ˛1b1..1 � ˛2/r2 C ˛2/m3.1 � ˛3/r3

�m1.1 � ˛1/r1˛2b2˛3b3 � ˛1b1m2.1 � ˛2/r2..1 � ˛3/r3 C ˛3/;

jM2j D ..1 � ˛1/r1 C ˛1/m2.1 � ˛2/r2..1 � ˛3/r3 C ˛3/ C m1.1 � ˛1/r1˛2b2˛3b3

C˛1b1˛2b2m3.1 � ˛3/r3 � ˛1b1m2.1 � ˛2/r2˛2b2 � ..1 � ˛1/r1

C˛1/˛2b2m3.1 � ˛3/r3 � m1.1 � ˛1/r1˛2b2..1 � ˛3/r3 C ˛3/;

jM3j D ..1 � ˛1/r1 C ˛1/..1 � ˛2/r2 C ˛2/m3.1 � ˛3/r3 C m1.1 � ˛1/r1˛2b2˛3b3

C˛1b1m2.1 � ˛2/r2˛3b3 � m1.1 � ˛1/r1..1 � ˛2/r2 C ˛2/˛3b3

�..1 � ˛1/r1 C ˛1/m2.1 � ˛2/r2˛3b3 � ˛1b1˛2b2m3.1 � ˛3/r3:

Then x�
1 D jM1j

jMj , x�
2 D jM2j

jMj , x�
3 D jM3j

jMj and G�
1 D jM1j

jMj C b1
jM2jCjM3j

jMj .
Evolutionarily stable conjectures of player 1 are found from the problem

max
r1

.m1 � x�
1 .r1; r�1//˛iG�

1 .r1; r�1/
1�˛i

The first-order condition for maximization is

.m1 � x�
1 /˛1�1.G�

1 /�˛1

�

�˛1G
�
1

dx�
1

dr1

C .1 � ˛1/.m1 � x�
1 /
dG�

1

dr1

�

D 0:

Since in a CVE �˛iGi C .1 � ˛i/.mi � xi/ri D 0, the condition simplifies to

.m1 � x�
1 /˛1.G�

1 /�˛1.1 � ˛1/

�

�r1

dx�
1

dr1

C dG�
1

dr1

�

D 0: (6)

Consider dx�

1

dr1
D 1

jMj
�

@jM1j
@r1

jMj � jM1j @jMj
@r1

�
. Since @jM1j

@r1
D m1.1 � ˛1/..1 �

˛2/r2 C ˛2/..1 � ˛3/r3 C ˛3/ � m1.1 � ˛1/˛2b2˛3b3 and @jMj
@r1

D .1 � ˛1/..1 �
˛2/r2 C ˛2/..1 � ˛3/r3 C ˛3/ � .1 � ˛1/˛2b2˛3b3,

dx�
1

dr1

D jK1j
jMj ...1 � ˛2/r2 C ˛2/..1 � ˛2/r3 C ˛3/ � ˛2b2˛3b3/;



98 A. Possajennikov

where jK1j D ˛1.1�˛1/m1..1�˛2/r2.1�˛3/r3 C .1�˛2/r2˛3.1�b1b3/C˛2.1�
˛3/r3.1 � b1b2/ C ˛2˛3.1 � b2b3 � b1b3 � b1b2 C 2b1b2b3/ C b1...1 � ˛2/r2 C
˛2.1 � b2//m3.1 � ˛3/r3 C m2.1 � ˛2/r2..1 � ˛3/r3 C ˛3.1 � b3//// > 0.

Consider now dG�

1

dr1
D dx�

1

dr1
C b1

�
dx�

2

dr1
C dx�

3

dr1

�
. Since dx�

2

dr1
D 1

jMj
�

@jM2j
@r1

jMj �
jM2j @jMj

@r1

�
and @jM2j

@r1
D .1�˛1/m2.1�˛2/r2..1�˛3/r3C˛3/Cm1.1�˛1/˛2b2˛3b3�

.1 � ˛1/˛2b2m3.1 � ˛3/r3 � m1.1 � ˛1/˛2b2..1 � ˛3/r3 C ˛3/,

dx�
2

dr1

D jK1j
jMj ˛2b2..1 � ˛3r3/ C ˛3 � a3b3/:

Analogously,

dx�
3

dr1

D jK1j
jMj ˛3b3..1 � ˛2r2/ C ˛2 � a2b2/:

Therefore, �r1
dx�

1

dr1
C dG�

1

dr1
D 0 is equivalent to

.1 � r1/...1 � ˛2/r2 C ˛2/..1 � ˛2/r3 C ˛3/ � ˛2b2˛3b3/ C
b1.˛2b2..1 � ˛3r3/ C ˛3 � ˛3b3/ C a3b3..1 � ˛2r2/ C ˛2 � a2b2// D 0

and thus a candidate evolutionarily stable conjecture is

rES1 D 1 � b1

.a2b2..1 � ˛3r3/ C ˛3 � a3b3/ C a3b3..1 � ˛2r2/ C ˛2 � a2b2//

...1 � ˛2/r2 C ˛2/..1 � ˛2/r3 C ˛3/ � ˛2b2˛3b3/
;

the same as the consistent conjecture.
Now note that the left-hand side of the first order condition (6) is positive for

r1 < r ES1 and negative for r1 > r ES1 . Thus r ES1 is indeed evolutionarily stable.

Proposition 2 If the parameters of the semi-public good game of this section are
such that for given rj; rk and consistent

rCi D 1 � bi
.ajbj..1 � ˛krk/ C ˛k � akbk/ C akbk..1 � ˛jrj/ C ˛j � ajbj//

...1 � ˛j/rj C ˛j/..1 � ˛j/rk C ˛k/ � ˛jbj˛kbk/

the CVE .x�.r/;A�.r// is interior, then conjecture rCi is evolutionarily stable for
player i.

To illustrate the proposition, consider first the symmetric case m1 D m2 D m3 D
m, a1 D a2 D a3 D a, b1 D b2 D b3 D b. It is then natural to expect conjectures
to be symmetric too, r1 D r2 D r3 D r. The (mutual) consistency condition then

reduces to r D 1 � 2˛b2.˛C.1�˛/r�˛b/

.˛C.1�˛/r/2�˛2b2 D 1 � 2˛b2

˛C.1�˛/rC˛b . This holds if .1 � ˛/r2 C
.2˛C˛b�1/rC˛.2b2�b�1/ D 0. For r D 0, the left-hand side is ˛.2b2�b�1/ < 0

for 0 < b < 1; for r D 1, the left-hand side is 2˛b2 > 0. For positive values of
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Table 1 (Mutually) consistent conjectures in the public good game with m D 1, b D 0:5

˛1 ˛2 ˛3 rC1 D r ES1 rC2 D r ES2 rC3 D r ES3 x�

1 x�

2 x�

3

0:25 0:25 0:25 0:879 0:879 0:879 0:569 0:569 0:569

0:5 0:5 0:5 0:781 0:781 0:781 0:281 0:281 0:281

0:75 0:75 0:75 0:712 0:712 0:712 0:106 0:106 0:106

0:25 0:5 0:5 0:784 0:821 0:821 0:637 0:217 0:217

0:4 0:5 0:5 0:782 0:797 0:797 0:423 0:255 0:255

0:65 0:5 0:5 0:779 0:758 0:758 0:070 0:320 0:320

conjectures there is thus one consistent rC 2 .0; 1/, confirming the result in Costrell
(1991) that consistent conjectures correspond to negative reactions, i.e. if a player
increases his or her contributions, the other players decrease theirs.14

The proposition can be used to find consistent and evolutionarily stable conjec-
tures also for cases that are asymmetric either in parameters or conjectures. For
example, consider symmetric values of parameters m D 1, b D 0:5 and ˛ D 0:5.
If players 2 and 3 have the (Nash) conjectures r2 D r3 D 1, then the consistent
conjecture for player 1 is rC1 D 0:8 (and it is evolutionarily stable because the CVE
for these conjectures is interior). Table 1 shows the numerical calculations to find
(mutually) consistent conjectures for some particular values of the parameters, and it
also shows that the CVEs for these conjectures are interior. Therefore the consistent
conjectures in Table 1 are also evolutionarily stable. Note that as the parameter ˛

increases, less weight is put in the utility function on the public good; mutually
consistent conjectures then decrease and so do contributions to the public good. The
last line in the table shows that asymmetries between players should not be too large
for an interior solution to exist; if the parameter ˛1 increased further, x�

1 becomes 0

and the propositions cease to apply.

4.2 Contests

Consider rent-seeking contests introduced in Tullock (1980) and investigated using
the techniques for aggregative games in Cornes and Hartley (2003, 2005). Each
player i contributes a costly effort xi � 0 and can win a prize of value V with
probability xi

x1C:::Cxn
. Each player i’s payoff function is thus given by

ui.xi;A/ D xi
A
V � cixi;

14Note that if b D 1, then r D 0 is the solution of the consistency condition (Sugden 1985).
However, for r D 0 the solution of the players’ maximization problem is not interior and the
first-order conditions do not characterize it. The propositions do not apply in this case.
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where A D x1C: : :Cxn is the aggregate.15 This aggregate is the same for all players;
the game is truly aggregative. The game can still be asymmetric though, represented
by possibly different marginal costs ci of the players.

Consider player i with conjecture ri � 0. The first-order conditions for player i’s
payoff maximization problem is Fi D biA�bixiri

A2 V � ci D 0, or 1
A2 .biV.A � xiri/ �

ciA2/ D 0. Writing A D xiCA�i, the first order condition becomes 1
A2 .�cix2

i C..1�
ri/V � 2ciA�i/xi C .V � ciA�i/A�i D 0. The left-hand side is negative as xi ! 1
and positive at xi D 0 if V � ciA�i > 0. In this case, the equation

V.A � xiri/ � ciA
2 D 0 (7)

characterizes the choice of player i.
Consider again for illustration the case of three players (n D 3). The system

describing a CVE is

V.A � x1r1/ � c1A
2 D 0

V.A � x2r2/ � c2A
2 D 0

V.A � x3r3/ � c3A
2 D 0

A � x1 � x2 � x3 D 0

(since there is only one aggregate, there is only one additional accounting equation).
To solve the system, from the first three equations xi D A

riV
.V � ciA/. Therefore

A � A
r1V

.V � c1A/ � A
r2V

.V � c2A/ � A
r3V

.V � c3A/ D 0, or r1r2r3V3 � r2r3V2.V �
c1A/ � r1r2V2.V � c2A/ � r1r2V2.V � c3A/ D 0. Thus

A� D r2r3 C r1r3 C r1r2 � r1r2r3

r2r3c1 C r1r3c2 C r1r2c3

V: (8)

To find consistent conjectures of player 1, consider the system

V.A � x2r2/ � c2A
2 D 0

V.A � x3r3/ � c3A
2 D 0

A � x1 � x2 � x3 D 0:

Solving for x2 and x3 from the first two equations and substituting into the third one
gives A� x1 � A

r2V
.V � c2A/ � A

r3V
.V � c3A/ D 0, or .r3c2 C r2c3/A2 C .r2r3 � r2 �

r3/VA � r2r3Vx1 D 0. Using the implicit function theorem,

dA��

dx1

D r2r3V

2.r3c2 C r2c3/A�� C .r2r3 � r2 � r3/V
:

15To avoid indeterminacies, let ui D 1
n if A D 0.
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Since A��.x�
1 / D A�, dA��

dx1
.x�

1 / can be found using A�. Rearranging, the consistent
conjecture satisfies

r1 D r2r3.r2r3c1 C r1r3c2 C r1r2c3/

2.r3c2 C r2c3/.r2r3 C r1r3 C r1r2 � r1r2r3/ C .r2r3 � r2 � r3/.r2r3c1 C r1r3c2 C r1r2c3/
:

Simplifying this expression leads to .c2r1r3 � c1r2r3 C c3r1r2/.r2r3 C r1r3 C r1r2 �
r1r2r3/ D 0. If r2r3 Cr1r3 Cr1r2 �r1r2r3 D 0, then A� D 0 thus x�

1 D x�
2 D x�

3 D 0,
which is not an interior equilibrium. Thus consider c2r1r3 � c1r2r3 C c3r1r2 D 0.
The consistent conjecture of player 1 possibly leading to an interior CVE is thus

rC1 D c1r2r3

r3c2 C r2c3

:

For evolutionary stability analysis of conjectures of player 1, consider

max
r1

x�
1 .r1; r�1/

A�.r1; r�1/
V � c1x

�
1 .r1; r�1/:

The first order condition for maximization is 1
.A�/2 V

�
dx�

1

dr1
A� � x�

1
dA�

dr1

�
� c1

dx�

1

dr1
D 0.

Using Eq. (7), the condition can be rewritten as

Vx�
1

.A�/2

�

r1

dx�
1

dr1

� dA�

dr1

�

D 0: (9)

Equation (7) also implies that x�
1 D 1

r1
A� � c1

r1V
.A�/2. Therefore dx�

1

dr1
D

1

r2
1

�
dA�

dr1
r1 � A�

�
� c1

V
1

r2
1

�
2A� dA�

dr1
r1 � .A�/2

�
. Equation (9) can then be written as

x�
1

.A�/2r1

�

c1A
� � V � 2c1r1

dA�

dr1

�

D 0:

Using A� from Eq. (8), finding dA�

dr1
D �r2r3.c2r3Cc3r2�c1r3�c1r2Cc1r2r3/

.r2r3c1Cr1r3c2Cr1r2c3/2 V , and substi-
tuting, the first-order condition (9) becomes

x�
1

.A�/2

�.c3r1r2 � c1r2r3 C c2r1r3/.c2r3 C c3r2 � c1r3 � c1r2 C c1r2r3/

.r2r3c1 C r1r3c2 C r1r2c3/2
V D 0:

(10)

Therefore, provided that the CVE is interior, the first order condition is satisfied
only if c3r1r2 � c1r2r3 C c2r1r3 D 0, i.e.

rES1 D c1r2r3

c3r2 C c2r3

:
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The unique candidate for the evolutionarily stable conjecture of player 1 is the
consistent conjecture of the player.

Suppose that c2r3Cc3r2�c1r3�c1r2Cc1r2r3 D .c2�c1/r3C.c3�c1/r2Cc1r2r3 >

0, which is the case unless all ri D 0 or unless player 1 has marginal cost much
higher than those of the other players. Then the left-hand side of (10) is positive if
r1 < r ES1 and negative if r1 > r ES1 . The consistent conjecture is then evolutionarily
stable.

Proposition 3 If the parameters of the contest game of this section are such that
for given rj; rk and consistent

rCi D cirjrk
ckrj C cjrk

the CVE .x�.r/;A�.r// is interior and .cj � ci/rk C .ck � ci/rj C cirjrk > 0, then
conjecture rCi is evolutionarily stable for player i.

Consider again a few numerical examples to illustrate the proposition. Suppose
that the players are symmetric, c1 D c2 D c3 D c, and that they hold symmetric
conjectures r1 D r2 D r3 D r. Then the condition for the (mutually) consistent
conjectures becomes r D r

2
. The consistent conjecture is then rC D 0, i.e. each

player expects that a increase in his or her effort is fully offset by the decrease in the
effort of the other players, leaving A unchanged. Although A� D V and x�

i D V
3

is an
interior equilibrium with such a conjecture, the proposition does not apply because
the condition .cj � ci/rk C .ck � ci/rj C cirjrk > 0 is not satisfied. Indeed, if rj D 0

for one of the players, then Eq. (7) becomes A.V � A/ D 0, leading to A D V in
equilibrium and zero payoff to all players. Any conjecture ri ¤ 0 of player i implies
a corner solution x�

i D 0 in a CVE, again with zero payoff. Therefore rC D 0 for all
players is not evolutionarily stable but can be seen as neutrally stable for player i:
alternative conjectures cannot lead to a higher payoff although they can be equally
successful.16

Although the proposition does not apply to the symmetric case, it still can be
used for asymmetric costs or conjectures. Table 2 shows numerical calculations
for finding consistent conjectures of player 1, for given conjectures of players 2
and 3 (conjectures r2 and r3 are not consistent; mutually consistent conjectures
are always zero for the parameters in the table). Those conjectures of player 1
are also evolutionarily stable because the conditions in Proposition 3 are satisfied.
Consistent conjectures of player 1 increase with the given conjectures of the other
players and with the cost of player 1 but typically stay below unity, implying that
the player correctly expects the aggregate to increase by less than the increase in
his or her own effort. However, it is also possible that player 1 correctly anticipates

16For n D 2, there are non-zero symmetric conjectures that are consistent and evolutionarily stable.
The consistency condition for n D 2 is ri D ci

cj
rj. If ci D cj, then any r is consistent. It is shown in

Possajennikov (2009) that any 0 < r < 2 is evolutionarily stable then.
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Table 2 Consistent conjectures for player 1 in the contest game with V D 1

c1 c2 c3 rC1 D r ES1 r2 r3 x�

1 x�

2 x�

3

1 1 1 0:375 0:75 0:75 0:406 0:203 0:203

1 1 1 0:5 1 1 0:375 0:188 0:188

1 1 1 0:625 1:25 0:125 0:344 0:172 0:172

0:75 1 1 0:281 0:75 0:75 0:925 0:027 0:027

0:75 1 1 0:375 1 1 0:764 0:076 0:076

0:75 1 1 0:469 1:25 1:25 0:655 0:010 0:010

1:25 1 1 0:781 1:25 1:25 0:200 0:194 0:194

2 1 1 1:25 1:25 1:25 0:044 0:197 0:197

that the aggregate increases by more than the increase in player’s own effort if the
cost and the other players’ conjectures are high enough (the last line of the table).
Equilibrium efforts are inversely related to cost parameters and to conjectures; but it
is possible (the penultimate line in the table) that a player with a higher cost makes
a higher effort in equilibrium than the other players, due to this player holding lower
conjectures (that also happen to be consistent).

5 Conclusion

Richard Cornes has done much work on public good games, on contests, and on
games with aggregative structure in general. Some of his work also considered
conjectural variations, mostly in public good games. In this paper I also consider
conjectures and I use representations of games that share some properties with
aggregative games. In such representations, there is a personalized aggregate for
each player; I call these representations semi-aggregative.

The idea of a semi-aggregative representation is that a player forms appropriate
conjectures about how the aggregate changes and how it affects the player’s payoff.
In a sense, the game is reduced to just two players: the player him- or herself and
the aggregate opponent. Thus the dimensionality of players’ conjectures is reduced
and such conjectures can be analyzed.

I show that if conjectures are subject to evolution, then only consistent conjec-
tures can be evolutionarily stable. The result provides foundations for the (much
discussed) notion of consistent conjectures as the result of evolution. On the other
hand, the result can be used to find evolutionarily stable conjectures more easily,
through finding first consistent conjectures. While this observation is not new for
some classes of games, the result in this paper extends it to any well-behaved game.

The result is illustrated on the examples of (impure) public good games and
contests. Although finding the exact value of consistent (and evolutionarily stable)
conjectures in specific asymmetric games is still a difficult task (thus only 3-player
examples are considered for illustration), the point of the examples is to demonstrate
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that it can be done, and that often consistent conjectures are indeed evolutionarily
stable. The choice of public good games and contests as the examples shows that
those games, to which Richard Cornes dedicated much of his work, are still a source
of useful insights.
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