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1 Introduction

Richard and I had many interesting discussions about aggregative games and games
in which there are multiple aggregates, and it was firmly on both of our agendas to
pursue joint research on multiple aggregate games. As is often the case, momentum
in pursuing ideas takes time to establish, and it was very unfortunate that we were
not afforded the opportunity to work closely on developing these ideas before
Richard sadly passed away in 2015. It is a great honour to have the opportunity
to communicate the current state of my thoughts on multiple aggregate games
in this volume dedicated to Richard: the aim has been to provide an accessible
exposition of the ideas and establish a framework for analysis, rather than to derive
the most general results under the weakest assumptions, that I believe Richard would
appreciate. The work has undoubtedly benefitted from the discussions I had with
Richard, as well as with Roger Hartley, and it is also without doubt that what is
presented here is inferior to what might have been achieved had Richard co-authored
the contribution: he had amazing intuition and an ability to explain complex ideas
in a simple way, that only comes from having a truly deep understanding. I hope to
have done the ideas justice.

In a strategic decision making environment there is strategic interdependence
between individuals playing a non-cooperative game; each is influenced by, and
influences, the other players in the game. Sometimes individuals care about exactly
which of their adversaries does what, but in many interesting economic applications
players care only about the aggregation of other players’ actions, since it is this
that influences their payoff. Such games are called aggregative games. Often,
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individuals within an environment are organised into groups and they contribute
to the collective action of their group which in part determines their payoff,
but they are also affected by the collective actions of other groups: there are
externalities between groups that are transmitted through the aggregation of groups’
actions. Whilst the theory of aggregative games has been successfully applied to
study games with a single aggregate, the setting just described features multiple
aggregations of actions, one for each group, and the nature of the intra-group
strategic interaction—where players contribute to the collective action of their
group—may be very different to the inter-group strategic interaction. The aim of
this paper is to establish a framework in which to consider such ‘multiple aggregate
games’; present a method to analyse the existence and properties of equilibria;
and to discuss some applications of the theory—to contests; public goods games;
and bilateral oligopoly—to demonstrate how useful the technique is for analysing
strategic interactions between groups of individuals.

Consider a simultaneous-move game of complete information involving i D
1; : : : ; N individuals where each has to decide on a single action xi 2 RC. Each
player’s payoff depends on their own action and the vector of all other players’
actions. The game is an ‘aggregative game’ if each player cares only about the
aggregation of other players’ actions, X�i D X � xi, where X is the sum of all
players’ actions. The standard approach to finding a Nash equilibrium involves
identifying each player’s best response function, bi.X�i/; this is player i’s action
consistent with a Nash equilibrium in which the aggregate actions of other players
is X�i. The problem is that for each player this is defined on a different domain, and
therefore the joint best response function, of which a fixed point must be found, has
as many dimensions as there are players. An aggregative approach does something
different: rather than finding a best response, instead consider the action of player i
consistent with a Nash equilibrium in which the aggregate of all players, including
player i, takes the value X. This gives the ‘replacement function’1 ri.X/, so called
because finding it involves replacing X�i with X � xi in the equation that defines
the best response and then solving for xi. A Nash equilibrium is identified at the
level of the aggregation of actions, and requires aggregate consistency between
individual actions and the aggregate; that is, for X to be such that the sum of
replacement functions evaluated at X exactly equals X. This is a much simpler
problem than finding mutually consistent best responses! Existence, uniqueness and
comparative static properties can be investigated by understanding the properties
of replacement functions and their aggregation, which is tractable even in a game
with heterogeneous players; and whether these players are active in equilibrium
or not can be deduced by evaluating their replacement function at the equilibrium
aggregate.

The methods of aggregative games have been used to good effect in the study of
Cournot oligopoly (Novshek 1985); public goods games (Cornes and Hartley 2007);

1Elsewhere this is called the ‘cumulative best reply’ (Selten 1970), the ‘inclusive reaction function’
(Wolfstetter 1999) and the ‘backward reaction correspondence’ (Novshek 1985).
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and Tullock contests (Cornes et al. 2005); among others. In contests, a contestant’s
share of the aggregate action naturally features in their payoff function, and in
the analysis of the game it is often convenient to use share functions rather than
replacement functions; since si.X/ D ri.X/=X can be monotonically decreasing in
X when ri.X/ is not. Aggregate consistency with share functions requires their sum
to take the value 1. The share function approach was first introduced by Cornes
and Hartley (2000) in studying joint production games. In addition to exploring the
use of aggregative games in particular applications, there have been some general
treatments including those by Corchon (1994), Jensen (2010) (who considers that
the aggregation of players’ actions can be more general than the simple unweighted
sum), Cornes and Hartley (2012), and Acemoglu and Jensen (2013).

In a ‘multiple aggregate game’ each player is a member of a single group and
their action contributes to the collective action of their group. Individuals within a
group care about their own action, the collective action of their group, and also the
collective actions of other groups: there is intra-group strategic interaction which
takes the form of an aggregative game; and inter-group spill-overs that transmit
through the aggregate actions of groups. The applicability of this framework that
extends the scope of aggregative games is clear. Inspiration for the study of multiple
aggregate games comes from the analysis of bilateral oligopoly (see, for example,
Dickson and Hartley 2008) in which there is a set of buyers and a set of sellers
and, in essence, each group of traders plays a simple Tullock contest in which
they receive a proportional share of a prize, the size of which is determined by
the aggregate actions of the other group of traders.

The method used to analyse multiple aggregate games first resolves the intra-
group strategic interaction, and then essentially treats groups as players that choose
an aggregate action to resolve the inter-group interaction. First, a group is selected
and the aggregate actions of other groups are fixed at arbitrary levels. This defines a
‘partial game’ that involves only the members of the selected group, and since each
group member cares only about their own action and the aggregation of other group
members’ actions, this is an aggregative game. Within the partial game, aggregative
methods can be applied to identify a Nash equilibrium: individual replacement
or share functions are derived that represent the consistent behaviour of group
members; then aggregate consistency within the group is imposed to identify the
Nash equilibrium in the partial game, which reveals the ‘group best response’. This
is repeated for each group, and the resulting group best responses represent the
collective action of each group consistent with a Nash equilibrium in which the
aggregate actions of other groups take a particular value, having accounted for the
strategic tension within groups. A Nash equilibrium in the full game can then be
identified at the level of group aggregates, that requires the aggregate action of each
group to be a group best response to the aggregate actions of the other groups.

Whilst identifying Nash equilibrium is a fixed point problem, it involves the joint
group best response and therefore only has as many dimensions as there are groups
even though there are heterogeneous players within each group. This may be as few
as two, as in bilateral oligopoly. As such, exploiting the aggregative nature of the
game considerably simplifies the analysis and, since group best responses are found
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using the aggregation of replacement or share functions whose properties are easily
deduced, the features of Nash equilibrium can be easily understood.

In some games there is more structure to the group interaction: a ‘nested
aggregative game’ has the feature that individuals not only care just about the
aggregation of others’ actions within their group, they also care only about the
aggregation of other groups’ actions. Such games are aggregative both at the level of
individuals within groups, and at the level of groups. The analysis slightly differs to
exploit this additional aggregative structure: within ‘partial games’ individual and
group consistency with a Nash equilibrium in which the aggregate of all groups’
actions takes a particular value is sought to define ‘group replacement functions’,
following which overall consistency is required for a Nash equilibrium,which needs
the sum of group replacement functions to be equal to the aggregate action, a simpler
problem than finding mutually consistent group best responses. Thus, consistency
in aggregation is required twice: once at the level of individuals within groups in
partial games; and once at the level of groups within the full game. The analysis
of a game between individuals using aggregative techniques renders the study of
equilibrium tractable and permits uniqueness of equilibrium to be considered even
in the presence of heterogeneous players, and the same is true of a nested aggregative
game with heterogeneous groups and heterogeneity of players within groups, which
is explored here in a general setting.

There is some existing literature on strategic interactions between individuals
within groups that is related to the ideas presented here. Cornes et al. (2005) consider
a model in which individuals in groups contribute to a public good enjoyed by their
group, and there are also spill-overs in the public good provided by each group.
Restrictions are imposed on the nature of the spill-overs that ensure the game has
the form of what has been called here a nested aggregative game, and the idea of both
group and overall consistency to identify Nash equilibria is introduced. Nitzan and
Ueda (2014) study a ‘collective contest’ in which individuals in groups contribute
effort to the group in contesting a rent. The cost of effort is heterogeneous among
group members, as is their valuation of the rent, and the approach taken to analyse
a Nash equilibrium recognises that it is a nested aggregative game and appeals to
group and overall consistency to analyse the effect of heterogeneity within groups.

In strategic interactions where group structure is important, some contributions
have used ideas that are similar to the partial game approach taken here. In
particular, Baik (2008) studies a collective contest and uses the idea of a ‘group-
specific equilibrium’ to analyse the game, albeit in a simple setting since there
is essentially a single active player in each group. Kolmar and Rommeswinkel
(2013) study a contest between groups in which there are complementarities in effort
within groups, and use the idea of a group best response function to identify Nash
equilibria.

In the setting explored here each individual belongs to a single group and
contributes only to the aggregate of that group; there are multiple aggregates because
there are multiple groups. In other settings there might be multiple aggregations of
actions where all players contribute to all aggregates. Models of production and
appropriation fall into this category and, whilst aggregative methods can be used to
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analyse such models (Cornes et al. 2010), the lack of group structure means they
fall outside the remit of the current exposition.

The remainder of the paper is structured as follows. Section 2 presents the
economic environment, defines the game that is played, and introduces the idea
of partial games and group best responses. In Sect. 3 partial games are analysed by
exploiting their aggregative properties to derive group best responses, and in Sect. 4
Nash equilibrium in the full game is studied by considering mutual consistency of
group best responses. Section 5 considers the special case of nested aggregative
games. In Sect. 6 some applications of the method—to contests; bilateral oligopoly;
and public goods—are considered, and conclusions follow. All proofs are contained
in an Appendix.

2 The Economic Framework

Consider a strategic interaction between individuals that are exogenously organised
in groups where each individual belongs to a single group and their payoffs depend
on the actions of their fellow group members and on the actions of members of
other groups, perhaps in a fundamentally different way than within the group. It
is natural to think of the influence of members of other groups working through
the aggregation (i.e., the sum) of those groups’ actions, and attention is restricted
to this case. The (finite) set of groups is J D f1; : : : ; j; : : : ; Ng and the (finite) set
of individuals in group j is Ij D f1; : : : ; i; : : : ; Njg. Subscripts are used to identify
individuals, superscripts to identify the group they belong to. Each individual must
simultaneously choose a single action x j

i 2 RC; capitals are used to represent
aggregations of actions, and vectors of actions are in boldface, as the following
statement makes clear.

Notation x D fx j
i gi2Ij;j2J is the vector of all players’ actions. x j D fx j

i gi2Ij is the

vector of all actions of members of group j, and x j
�i D x j n x j

i . Xj D P
i2Ij x j

i is the
aggregation of actions of the members of group j, and Xj

�i D Xj � x j
i . X D fXjgj2J

is the vector of all group aggregates, and X�j D X n Xj. Where appropriate, X DP
j2J Xj is the aggregation of all groups’ aggregate actions, and X�j D X � Xj.

In a strategic environment individuals’ actions have external consequences for
others, so typically an individual’s payoff will depend both on their own action
and on the actions chosen by all other individuals. Here, an individual’s actions
have external consequences both within and outside their group, and the effect on
members of other groups comes only through the aggregation of the group’s actions.
As such, each individual cares about the actions of members of other groups only
through their aggregation, so the payoff to a typical individual in group j can be
written

u j
i .x

j
i ; x

j
�iIX�j/:
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This allows externalities between players within a group as well as externalities
between groups that work the level of aggregate group actions to be considered,
where the nature of the strategic interaction within groups may be very different
to that between groups: for example, an individual’s actions may have negative
consequences for the members of their own group, and positive consequences for
the members of other groups, or vice versa.

The game G is the simultaneous-move game of complete information with player
set [j2JIj; actions x j

i 2 RC; and payoffs u j
i .x

j
i ; x

j
�iIX�j/: the equilibrium concept

is Nash equilibrium in pure strategies. If no further attention was paid to the group
structure of the game, the analysis would proceed by attempting to find a vector of
actions, one for each player, that constitute mutually consistent best responses. This
involves finding a fixed point of the joint best response function, that has as many
dimensions as there are players in the game; whilst there are well-known approaches
for studying the existence of such fixed points, understanding the properties of
equilibrium is a more difficult task. This is particularly true when the game does
not exhibit strategic complementarities so the tools of supermodular games cannot
be exploited, which is likely to be the case in many interesting applications given
the potentially different nature of the intra- and inter-group interaction.

By recognising the group structure of the game, a somewhat different approach to
identifying Nash equilibria can be taken. The method follows a two-step procedure.
First, select a group and fix the actions of the members of all other N � 1 groups,
so the aggregate action of each of these groups (which is what the members of
the group in question care about) takes a particular value. Consider the strategic
interaction among the members of the group in question, seeking to find actions
that are consistent with a Nash equilibrium in the game in which the other groups’
aggregate actions take the specified values. Repeat this for each group (fixing the
aggregate actions of the other N � 1 groups in turn), which identifies consistent
behaviour within groups taking as fixed the aggregate actions of all other groups.
The second step then looks at between-group consistency. The aggregation of the
consistent individual actions found in the first step gives a ‘group best response’
to the aggregate actions of other groups; a Nash equilibrium of the game requires
mutual consistency of these group best responses at the level of group aggregates.
Once an equilibrium has been identified, individual actions can be deduced from
the characterisation of equilibrium behaviour within groups from step 1, evaluated
at the equilibrium values of the aggregate actions of other groups.

More precisely, select a group j and fix the aggregate actions of other groups at
some levels collected in X�j. Define a ‘partial game’ Gj.X�j/ amongst the members
of group j, in which the aggregate actions of all other groups are fixed. The analysis
of the intra-group strategic interaction involves finding a Nash equilibrium of this
partial game. Restrictions will be imposed ensuring uniqueness of equilibrium
within each partial game for any X�j; the action of individual i in this Nash
equilibrium is written Qx j

i .X
�j/ and the aggregation of group j’s equilibrium actions

is QXj.X�j/ D P
i2Ij Qx j

i .X
�j/. Having resolved the strategic interaction within the

group, this function gives the ‘group-j best response’ to the aggregate actions of
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the other groups contained in X�j. This is then repeated for all other N � 1 groups
to deduce a group best response function for each group. The remaining task is to
ensure between-group consistency, which requires mutual consistency of group best
responses: to identify a Nash equilibrium in the game G a vector of group aggregates
X� is sought such that Xj� D QXj.X�j�/ for all j 2 J; the equilibrium action of each
player will consequently be x j�

i D Qx j
i .X

�j�/. Essentially, having ensured intra-group
consistency groups are treated as players in an N-player game where they ‘choose’
aggregate actions and have best response functions given by QXj.X�j/.

The following proposition establishes that the two-step procedure just outlined is
valid in identifying Nash equilibria in the game G, since mutually consistent group
best responses are in one-to-one correspondence with Nash equilibria in the game.

Proposition 1 Consider the N partial games fGj.X�j/gj2J of the game G in which
the player set is the members of group j, their actions are x j

i 2 RC, and their payoffs
are u j

i .x
j
i ; x

j
�iIX�j/ where X�j is considered fixed. Suppose a Nash equilibrium

in Gj.X�j/ exists and is unique for any X�j 2 R
N�1C , and write Qx j

i .X
�j/ for the

equilibrium strategy of player i and QXj.X�j/ D P
i2Ij Qx j

i .X
�j/ for the aggregation of

group j’s actions in the Nash equilibrium. Then x� is a Nash equilibrium in G if and
only if Xj� D QXj.X�j�/ for all j 2 J, where x j�

i D Qx j
i .X

�j�/.

This proposition supposes there is a unique Nash equilibrium in each partial
game. To understand the conditions under which this will be true attention is
restricted to strategic interactions where, within each group, individuals only care
about the aggregation of other group members’ actions. In this case, a player’s
payoff can (with a slight abuse of notation) be written

u j
i .x

j
i ; Xj

�iIX�j/:

With this structure, which is a common feature of many games with continuous
strategies, a typical individual’s payoff depends on their own action, the aggregation
of their group’s actions, and the vector of all other groups’ aggregate actions, since
it can be written

Qu j
i .x

j
i ; XjIX�j/ � u j

i .x
j
i ; Xj � x j

i IX�j/: (1)

As such, once the vector of other groups’ aggregate actions is fixed, each partial
game Gj.X�j/ is an aggregative game, and this aggregative structure will be
exploited to establish uniqueness of equilibrium within partial games. The game
G, being constituted of N aggregative games, is thus a ‘multiple-aggregate game’.

In the special case of a ‘nested aggregative game’ individuals in group j not only
care just about the aggregation of other group members’ actions, they also care only
about the aggregation of other groups’ actions. Then payoffs (again with a slight
abuse of notation) can be written

Qu j
i .x

j
i ; XjI X�j/:
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Since X�j D X � Xj, in such games an individual’s payoff will depend on their own
action, the aggregation of their group’s action, and the aggregation of all groups’
actions, since

Ou j
i .x

j
i ; XjI X/ � Qu j

i .x
j
i ; XjI X � Xj/:

This special case is the focus of attention in Sect. 5.

3 Study of Group Partial Games

In the partial game Gj.X�j/ with X�j fixed, a Nash equilibrium among the Nj

members of group j is sought. The payoff functions of these players, as noted
in (1), can be written Qu j

i .x
j
i ; XjIX�j/; consequently, the group-j partial game is

an aggregative game since with X�j fixed each player’s payoff depends only on
their own action and the aggregation of all players’ actions (within that player’s
group) which will be exploited to study the Nash equilibria of the partial game and
understand the features of group best response functions QXj.X�j/.

Basically, the aim is to define for each player a ‘share function’ that represents
their behaviour consistent with a Nash equilibrium in a partial game in which the
group aggregate takes a particular value, and show that there is a Nash equilibrium
in the partial game if and only if the sum of shares equals one. If share functions
are strictly decreasing in the group aggregate then the sum of shares will inherit this
property, so if the sum of shares exceeds one when the group aggregate is small,
and is less than one when it is large, there will be a unique Nash equilibrium in the
partial game. Under what conditions is this true?

If a player’s payoff function u j
i is strictly concave in own strategy, which will be

assumed, their best response will be unique and the best response function, denoted
b j

i .X
j
�iIX�j/, is identified by the necessary and sufficient first-order condition. Thus,

b j
i .X

j
�iIX�j/ D maxf0; x j

i g where x j
i satisfies

@u j
i .x

j
i ; Xj

�iIX�j/

@x j
i

D 0: (2)

A player’s best response gives their action consistent with a Nash equilibrium in
Gj.X�j/ in which the actions of all other players in group j sum to Xj

�i.
Rather than working with best responses, an aggregative approach considers

the strategy of a player that is consistent with a Nash equilibrium in which the
aggregate action of all members of the group, including the player in question,
takes a particular value Xj. This will be given by the player’s ‘replacement function’
r j

i .X
jIX�j/ which is defined by

r j
i .X

jIX�j/ � b j
i .X

j � r j
i .X

jIX�j/IX�j/:
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Note that the replacement function is given by r j
i .XjIX�j/ D maxf0; x j

i g where x j
i is

defined by

@u j
i .x

j
i ; Xj � x j

i IX�j/

@x j
i

D 0 (3)

so long as r j
i .X

jIX�j/ � Xj, otherwise the function is deemed undefined.
A player’s replacement function gives their individual action consistent with

a Nash equilibrium in the game Gj.X�j/ in which the aggregate action of all
members of group j is Xj. Consistency of individual group members’ actions with
the aggregate of the group requires the sum of their actions consistent with a
particular group aggregate to be exactly equal to that group aggregate. This simple
equilibrium identification condition in the partial game, which involves finding a
fixed point of

P
i2Ij r j

i .X
jIX�j/ W RC ! RC at the level of the aggregate action of

the group, makes clear the appeal of an aggregative game approach.

Proposition 2 xj� is a Nash equilibrium in the game Gj.X�j/ if and only if

X

i2Ij

r j
i .X

j�IX�j/ D Xj�: (4)

An aggregate action by the members of group j that satisfies the consistency
condition (4) constitutes a ‘group best response’ in Gj.X�j/, which is denoted
QXj.X�j/. Whether Nash equilibria in partial games are unique, so QXj.X�j/ can be
considered a function, will rely on the monotonicity properties of the representation
of consistent individual behaviour with respect to the group aggregate. Rather than
working with levels of a player’s action, represented by the replacement function,
it is often more convenient to work with their share of the group aggregate, �

j
i D

x j
i =Xj, as this can be monotonically decreasing in Xj when replacement functions are
not. For Xj > 0, an individual’s ‘share function’ is2 s j

i .X
jIX�j/ D r j

i .X
jIX�j/=Xj

which is implicitly defined by s j
i .X

jIX�j/ D maxf0; �
j
i g where �

j
i satisfies

l j
i .�

j
i ; XjIX�j/ � @u j

i .�
j
i Xj; XjŒ1 � �

j
i �IX�j/

@x j
i

D 0 (5)

so long as �
j
i � 1, otherwise the share function is undefined.

The analogue of individual actions summing to the aggregate action that achieves
aggregate consistency within group j is that the shares of the members of group j

2A downside of the share function approach is that attention must be restricted to non-null
equilibria in which Xj > 0, and whether a null equilibrium also exists considered separately.
Where a null equilibrium is considered it is referred to explicitly, reserving ‘Nash equilibrium’
for an equilibrium in which some individuals are active.
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sum to one. As such, the group-j best response must satisfy

X

i2Ij

s j
i .X

jIX�j/ D 1: (6)

Clearly, the properties of share functions are important in determining the
properties of the group best response, elucidating the details of which is turned to
next. In applications, it is often straightforward to understandwhat conditions on the
primitives imply share functions are monotonically decreasing in Xj. The following
assumption details the conditions on preferences required in the general model.

Assumption 1 For each individual i 2 Ij, suppose that u j
i is continuously

differentiable as many times as required, and that:

a)
@2u

j
i

@.x
j
i /2

< 0;

b) if
@2u

j
i

@x
j
i @X

j
�i

< 0 then

ˇ
ˇ
ˇ
ˇ

@2u
j
i

@.x
j
i /2

ˇ
ˇ
ˇ
ˇ >

ˇ
ˇ
ˇ
ˇ

@2u
j
i

@x
j
i @X

j
�i

ˇ
ˇ
ˇ
ˇ; and

c)
@2u

j
i

@x
j
i @X

j
�i

C �
j

i

�
@2u

j
i

@.x
j
i /2

� @2u
j
i

@x
j
i @X

j
�i

�

< 0 for all �
j

i 2 .0; 1�.

In addition, lim
x

j
i !1

@u
j
i .x

j
i ;�I�/

@x
j
i

< 0.

Thus, payoffs are strictly concave, as previously noted; the substitutability or
complementarity of actions within groups must not be too strong; and players will
always use a finite action. The following proposition details the properties of share
functions; Fig. 1 illustrates.

Proposition 3 Suppose the preferences of player i 2 Ij satisfy Assumption 1. Each
player’s share function s j

i .X
jIX�j/ is defined for all Xj � X j

i .X
�j/ which is Xj such

that l j
i .1; XjIX�j/ D 0 if this is strictly positive, otherwise the share function is

defined for all Xj > 0. Define player i’s drop-out value as NX j
i .X�j/ which is Xj such

that l j
i .0; XjIX�j/ D 0 if this exists, or C1 if it does not. Then the share function

has the following properties:

a) s j
i .X

jIX�j/ D 0 for all Xj � NX j
i .X�j/;

b) it is continuous and, where it is defined, strictly decreasing in Xj < NX j
i .X�j/;

and
c) if X j

i .X
�j/ > 0 then s j

i .X
j
i .X

�j/IX�j/ D 1, otherwise limXj!0 s j
i .X

jIX�j/ D
Ns j

i .X
�j/.

The consistency condition (6) that identifies an equilibrium in the partial game
Gj.X�j/ requires Xj to be such that the sum of individual share functions equals
one, for then the sum of the individual actions consistent with a Nash equilibrium in
which the aggregate action is Xj will sum precisely to Xj. Note that if X j

i .X
�j/ > 0

for anymember of group j then the aggregate share function is defined only where all
members’ share functions are defined, i.e. for Xj � maxi2IjfX j

i .X
�j/g. If individual
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share functions are strictly decreasing in Xj, the aggregation of these will also be
strictly decreasing, so under the conditions of Proposition 3 there will be at most one
Nash equilibrium. For large enough values of Xj it can be shown that the aggregate
share function will take values less than one, so whether a Nash equilibrium exists
depends on whether, when Xj is small, the aggregate share function exceeds one.
The following proposition makes the conditions for the existence of a unique Nash
equilibrium clear.

Proposition 4 Suppose the preferences of all members of group j satisfy Assump-
tion 1. Then there is a unique Nash equilibrium in the partial game Gj.X�j/ in which
the aggregate action of the members of group j is Xj > 0 if either X j

i .X
�j/ > 0 for

any i 2 Ij, or
P

i2Ij Ns j
i .X

�j/ > 1.

Under the conditions stated in the proposition the group best response function
QXj.X�j/ satisfies

X

i2Ij

s j
i .

QXj.X�j/IX�j/ D 1: (7)

The equilibrium action of individual i 2 Ij is given by QXj.X�j/
P

i2Ij s j
i .

QXj.X�j/I
X�j/, which is positive if QXj.X�j/ < NX j

i .X�j/; for some players this inequality may
not hold in which case their equilibrium action is zero. If the conditions stated in
the proposition are not satisfied then the only Nash equilibrium involves all group
members choosing x j

i D 0 and so QXj.X�j/ � 0 in these circumstances.3

Fig. 1 Illustrating share
functions. For individual 1,
X j

1.X�j/ > 0; for individual 2
X j

2.X�j/ D 0 and
NX j

2.X�j/ > 0. For individual
3 X j

3.X�j/ D NX j
3.X�j/ D 0

and therefore their share
function is zero for all
Xj > 0. The diagram also
illustrates the aggregation of
share functions for these three
players and, assuming they
constitute group j, the
equilibrium aggregate action
in the partial game is
identified

Xj

σj
i

1

sj1(X
j ;X−j)

Xj
1(X

−j) X̄j
1(X

−j)

sj2(X
j ;X−j)

s̄j2(X
−j)

X̄j
2(X

−j)

sj3(X
j ;X−j)

i∈Ij sji (X
j ;X−j)

X̃j(X−j)

3The justification for this definition comes from thinking about replacement functions. If
X j

i .X
�j/ D 0 for all i 2 Ij then the replacement function is defined for all Xj � 0, and will

take the value zero at Xj D 0 (since by definition the replacement value must not exceed Xj).
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4 Nash Equilibrium in the Full Game

Having established the existence and uniqueness of Nash equilibrium in group
partial games, which has allowed group best response functions QXj.X�j/ to be
defined, attention now turns to consider mutual consistency of these group best
response functions and Nash equilibrium in the full game G. Inter-group consistency
of actions occurs with a vector of group aggregates X� such that Xj� D QXj.X�j�/

for all j 2 J. Finding group aggregate actions that are mutually consistent in the
sense of group best responses is analogous to finding mutually consistent individual
actions within an N-player game; as with the standard problem, understanding the
characteristics of best response functions is important in understanding the features
of the equilibrium.

The group structure of the game makes it natural to assume that the members
within each group are influenced by the actions of other groups in the same way,
captured in the following definition.

Definition The members of group j are ‘qualitatively symmetric’ if, for any h; i 2
Ij, sgnf @2u

j
h

@x
j
h@Xk

g D sgnf @2u
j
i

@x
j
i @Xk

g and sgnf @u
j
h

@Xk g D sgnf @u
j
i

@Xk g for all k ¤ j 2 J.

Formally, only the first of the conditions, that says the marginal payoff of each
group member is influenced by the actions of another group in the same direction, is
required but it is very natural to also assume the externality from other groups takes
the same sign for members of the same group. Note that assuming the members of
group j are qualitatively symmetric does not impose that individuals within groups
are homogeneous, nor does it restrict the effect of any two different groups on the
members of group j to be the same.

The following proposition clarifies the behaviour of group best response func-
tions.

Proposition 5 Suppose the preferences of all members of all groups satisfy
Assumption 1 and that the members of each group are qualitatively symmetric.
Then for each j 2 J and all k ¤ j 2 J, QXj.X�j/ is a continuous function of Xk, and,
defining NX j � R

N�1C as the set of values of X�j where QXj.X�j/ D 0,

sgn

(
@ QXj.X�j/

@Xk

)

D sgn

(
@2u j

i

@x j
i @Xk

)

Taking the sum of these replacement functions (of which a fixed point is sought), if the slope at
Xj � 0 does not exceed 1 (which is intimately related to the condition stated in Proposition 4) then
(given share functions are decreasing) it will never exceed 1, and so the only fixed point will be at
Xj D 0.
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for all X�j 2 R
N�1C n NX j. Moreover, if the strategic effects within group j are stronger

than the strategic effects between group j and group k, which requires that

ˇ
ˇ
ˇ
ˇ

@2u
j
i

@x
j
i @Xk

ˇ
ˇ
ˇ
ˇ <

ˇ
ˇ
ˇ
ˇ�

j
i

@2u
j
i

@.x
j
i /2

C Œ1 � �
j

i �
@2u

j
i

@x
j
i @X

j
�i

ˇ
ˇ
ˇ
ˇ for all �

j
i 2 Œ0; 1�, for all i 2 Ij, then

ˇ
ˇ
ˇ

@QXj.X�j/

@Xk

ˇ
ˇ
ˇ < 1.

Mutual consistency of group best responses requires the identification of a
fixed point of the N-dimensional joint group best response function. Since strong
assumptions about the differentiability of individuals’ payoffs are made, group
best responses are continuous functions and therefore the existence of a Nash
equilibrium is ensured by Brouwer’s fixed point theorem (so long as an assumption
of bounded aggregate strategy spaces can also be made). In applications, careful
consideration might also be given to whether this fixed point lies in the interior of
the aggregate action space, or whether some groups are inactive in equilibrium (i.e.
if X�j 2 NX j for any j 2 J).

It may be possible to say something not only of existence, but also of uniqueness;
and to study the comparative static properties of equilibrium: using the approach
of group best responses, a comparative static exercise will reveal the effect on
group aggregates directly, which are often of primary interest, without having to
first deduce the effect on individual equilibrium behaviour that is then aggregated.
In applications group best response functions may have clear properties that allow
definitive statements about the nature of equilibrium to be made.Whilst it is difficult
to draw conclusions in such a general setting as this, the following two statements
can be made:

1. If QXj.X�j/ is increasing in Xk for all k ¤ j 2 J, then the strategic interaction
at the level of groups exhibits complementarities, and the insights from the
study of supermodular games (see, for example, Vives 1990) can be used to
understand the comparative static properties of the equilibrium group aggregates
at the extremal equilibria.4

2. If N D 2 and the absolute value of the slope of group best response functions
for each group (that can be drawn in the space of aggregate group actions) is
less than 1, the conditions for which are presented in Proposition 5, the joint
group best response will be a contraction and so there will be a unique Nash
equilibrium.5 Whilst there might be many heterogeneous players within groups,

4Note, however, that ‘group payoff functions’ are not defined, so the ideas of supermodular games
need only be applied to group best responses. An interesting line of inquiry lies in considering
whether, for each group, a payoff function can be defined that, when optimised over the choice of
group aggregate (taking the aggregates of other groups as fixed) identifies the same group aggregate
as that at the Nash equilibrium within the group. This requires the partial game to be a ‘potential
game’ (Monderer and Shapley 1996), study of which would be an interesting alternative approach
to that taken here.
5With more than two groups and a desire for uniqueness of equilibrium when the game does not
have the features of a nested aggregative game (see below), the approach of Rosen (1965) might
be appealed to.
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using a multiple aggregate game approach renders the study of the comparative
static properties of the equilibrium relatively simple, for the effect of a change in
the economic environment on group aggregates in the two-group case will follow
from a simple diagrammatic exercise.

5 Nested Aggregative Games

If a strategic interaction has the features of a ‘nested aggregative game’ more
structure can be added to the analysis to draw conclusions about uniqueness of
Nash equilibrium in the full game, denoted OG, even when there are several groups.
In such games the members of each group care about their own action, their
group’s aggregate action, and the aggregation of all other groups’ aggregate actions,
so payoffs can be written Ou j

i .x
j
i ; XjI X/. To analyse this game, the share function

approach will be applied twice: once at the level of individuals in groups to replace
the fixed point problem of finding consistent actions within groups, as with the
analysis so far; and then at the level of groups to replace the fixed point problem
of finding consistent aggregate actions between groups.

First fix a value for the aggregate actions of all groups, X, select a group j, and
define a ‘partial game’ OGj.X/ in which only the members of group j are considered.
The analysis of the partial games is slightly different since whilst the aggregate X is
treated as fixed, the influence of players within the group on this aggregate must be
accounted for. The aim is to find a group aggregate action that is consistent with a
Nash equilibrium in OG in which the aggregate of all individuals is X, which means
that the group aggregate action must be consistent with the behaviour of members
of the group.

Thus, in OGj.X/ consider the actions of each member of the group consistent with
a Nash equilibrium in which the aggregate of all players is X, and the aggregate of
the members of group j is Xj. Share functions that represent consistent individual
behaviour in this partial game are denoted Os j

i .X
jI X/, and take the form Os j

i .X
jI X/ D

maxf0; �
j
i g where �

j
i is the solution to

Ol j
i .�

j
i ; XjI X/ � dOu j

i .�
j
i Xj; XjI X/

dx j
i

D @Ou j
i

@x j
i

C @Ou j
i

@Xj
C @Ou j

i

@X
D 0 (8)

so long as this does not exceed 1, otherwise the share function is undefined.
Consistency of the aggregate action of the members of group j requires individual
actions to sum to this aggregate action, or for

P
i2Ij Os j

i .X
jI X/ D 1. On varying X,

this gives the ‘group replacement function’ OXj.X/, and to find a Nash equilibrium in
the game OG an aggregate action X must be found that is consistent with the collective
behaviour of groups.
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Proposition 6 In a nested aggregative game OG, x� is a Nash equilibrium if and only
if

X

j2J

OXj.X�/ D X�:

As with individuals within groups, it is often more convenient to work with a
group’s share of the overall aggregate action, rather than the group aggregate itself.
For X > 0, the ‘group share function’ is OSj.X/ D OXj.X/=X; letting ƒj D Xj=X the
group share function (if it is positive) is that value of ƒj that satisfies

OLj.ƒj; X/ �
X

i2Ij

Os j
i .ƒ

jXI X/ � 1 D 0 (9)

so long as the resulting ƒj does not exceed 1, in which case the group share function
is undefined. Accordingly, taking the aggregation of group share functions to be
defined only for values of X where the group share function of all groups is defined,
there is a Nash equilibrium in the game OG with aggregate action X > 0 if and only
if

X

j2J

OSj.X/ D 1:

The next proposition collects the features of group share functions that allow
conclusions about uniqueness of Nash equilibrium to be drawn (in the proof the
properties of individual share functions that are relied on to construct the aggregate
share functions are also elucidated).

Proposition 7 Suppose that for each i 2 Ij; j 2 J utility Ou j
i is continuously

differentiable in each argument as many times as required, and that
dOu j

i .�
j

i Xj;XjIX/

dx
j
i

is strictly decreasing in each of its arguments. Then within each partial game
OGj.X/ the group share function OSj.X/ is defined for all X � OXj

which is X such
that OLj.1; X/ D 0 if this is strictly positive, otherwise it is defined for all X > 0

with limX!0
OSj.X/ D ONSj; and it is positive for all X < ONXj which is X such that

OLj.0; X/ D 0. Where it is defined and positive, the group share function is strictly
decreasing in X. Consequently, there is at most one Nash equilibrium with X > 0 in
OG, and if either OXj

> 0 for any j 2 J, or
P

j2J
ONSj > 0 if OXj D 0 for all j 2 J, there is

exactly one such Nash equilibrium.

Thus, in a nested aggregative game the aggregative properties of the game are
exploited twice: once at the level of individuals within groups; and once at the
level of groups. Deductions concerning the uniqueness of equilibrium can then be
made even when there are many groups of heterogeneous players and indeed, once
an equilibrium has been identified, whether all groups are active, and whether all
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individuals within active groups are active, can be understood: in particular, if there

is a Nash equilibrium with aggregate X� and ONXj � X� then group j will be inactive
in equilibrium. If a comparative static exercise were to be undertaken for a nested
aggregative game, the effect of a change in the economic environment on individual
and therefore group share functions must first be understood, and then the effect on
the equilibrium aggregate action can be determined, which may in fact be of primary
interest; if desired, the effect on the equilibrium aggregate actions of each group can
then be considered, along with the effect on individual group members’ actions.

6 Applications

6.1 Group Contests

In a standard (Tullock-style) contest each of several individuals chooses the level
of ‘effort’ to exert in contesting a rent, and their success in doing so is determined
by the contest success function. In a ‘winner-take-all’ contest the rent is indivisible
and the contest success function determines the probability of a contestant being
awarded the rent; hence the contest (imperfectly) discriminates between contestants,
giving a higher probability of winning to contestants that exert more effort. In
a ‘rent-sharing’ contest the rent is perfectly divisible and the contest success
function determines the share of the rent awarded to each contestant. This discussion
considers contests of the latter variety.

If the set of contestants is f1; : : : ; i; : : : ; Ng, the effort chosen by contestant i is
ei � 0, the aggregate effort of all contestants is E, and E�i D E � ei, then in a
simple Tullock contest the contest success function is given by ei

eiCE
�i

(if E > 0,
otherwise it is 1=N), and so if R is the contested rent and there is a unit cost of
effort each contestant’s payoff takes the form ei

eiCE
�i

R�ei. Extensions to this simple
model include non-linear costs of effort ci.ei/; endogenous determination of the
rent whereby R D f .E/ (Chung 1996); and of course more general contest success
functions in which the impact of effort in the contest is given by pi.ei/ and the
contest success function takes the form pi.ei/PN

hD1 ph.eh/
(see, for example, Cornes et al.

2005). With these extensions, contests capture a multitude of interesting economic
environments, so understanding their properties is of upmost importance. There is,
of course, a substantial literature on contests, and several contributions have used
the techniques of aggregative games to undertake the analysis; it is clear from the
contest success function that a contestant’s share of the aggregate is important, and
it was indeed in the study of a ‘joint production game’—in which the collective
output of individuals is determined by their aggregate input, which is then shared
in proportion to those inputs; a simple Tullock contest with an endogenous rent—
that the Cornes-Hartley duo first utilised the share function approach (Cornes and
Hartley 2000).
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While standard contests are appropriate for modelling many economic environ-
ments, in some settings individuals are naturally organised into groups and the group
plays at least some role in the outcome of the contest. There are, inter alia, three
interesting scenarios to consider in the context of group contests:

1. In a collective contest each individual belongs to a group and decides on a level of
effort to contribute to the group. The collective effort of a group then determines
the share of the rent received by that group (or the probability of winning the rent
in a winner-take-all contest) which then becomes a public good for the group
enjoyed equally by all groupmembers irrespective of their initial choice of effort.

2. In an intra- and inter-group contest each individual belongs to a group and
decides on a level of effort that contributes to the collective effort of the
group which determines the share of the rent awarded to that group (as in a
collective contest); and a group member’s contribution to this collective effort
also influences their allocation of the rent within the group.6

3. Individuals within groups may be engaged in a contest in which there are
spill-overs between groups, captured by the size of the rent that each group
enjoys itself being influenced by the actions of other groups. Individuals within
groups might be engaged in otherwise independent contests, so the actions of
members of other groups only influence the rent being contested within each
group. Alternatively, groups might be engaged in a contest with each other where
the valuation of the rent by each group is influenced by the actions of other
groups, which then either becomes a public good for the group members (as
in a collective contest), or is contested within the group (as in an intra- and inter-
group contest).

6.1.1 Collective Contests

In a collective contest individual i in group j chooses a level of effort x j
i to contribute

to the group. Xj is then the collective effort of the group. The relative effort of group
j, Xj=X, determines the share of an exogenously given rent R awarded to group j that
becomes a public good for its members. Let v

j
i be individual i’s valuation of the rent

and c j
i .�/ their cost of effort, which are possibly different for different individuals

within each group. Then the payoff to a typical contestant is given by

Ou j
i .x

j
i ; XjI X/ D Xj

X
v

j
i � c j

i .x
j
i /:

6Note that an individual’s effort choice determines both their contribution to the collective effort
in the inter-group contest, and their action in the intra-group contest. This is different to sequential
inter- and intra-group conflict, where first individuals in groups secure a rent via their collective
action in a contest between groups; and then individuals within each group (or just in the winning
group in a winner-take-all contest) seek to appropriate the group’s rent with a separate strategic
choice (see, for example, Katz and Tokatlidu 1996).
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As such, it is clear that collective contests exhibit the features of a nested aggregative
game, since payoffs depend only on individual actions, the aggregate action of the
group, and the aggregation of all groups’ actions.

Such contests capture the essence of collective action; as Konrad (2009, p.
129) notes, “[given the aggregate effort of other groups] the individual effort
contributions to the aggregate group effort are contributions to a public good”: the
quantity of the public good is Xj=X and individual i’s valuation of it is .Xj=X/v

j
i .

It is of course very interesting to understand the effect of collective action on the
outcome of the contest, and there is no lack of literature on this subject. Katz
et al. (1990) show that when the cost of effort is linear and the valuation of the
rent of each member of a group is the same the aggregate effort of each group
is uniquely determined and independent of group size, but there is indeterminacy
over the split of aggregate effort within the group. In this case the fact that
individuals are in groups plays very little role in the outcome, since groups act as
though they are one individual, despite the presence of a free-rider problem within
groups. Baik (2008) allows for heterogeneous valuations and shows that only the
highest-valuation individuals choose positive effort in equilibrium, the remaining
individuals free-riding, so consequently there is under-investment in effort by the
group. The analysis of this game is very much in the spirit of the idea of partial
games since it proceeds by focussing on a group, fixing the actions of the agents in
other groups, and considering what is termed the “group [j]-specific equilibrium”,
which has a straightforward solution given that a single player in each group
contributes to collective effort, or if more than one player contributes then those
players are necessarily identical.

That all members of a group except those that value the good highest free-ride
on the highest valuation members is sensitive to the assumption of linear costs of
effort. If costs are convex (but the same for all group members) then all members
of a group will contribute to collective effort, as explained by Esteban and Ray
(2001) and neatly summarised in Corchón (2007, Sect. 4.2). In these collective
contests with convex costs the idea of the “group size paradox”—that free riding
is more acute in large groups, meaning smaller groups are more effective—can
be explored: however, it is found that whilst individual effort is lower in larger
groups the aggregate effort of the group is higher, in contrast to the paradox. This
is true where the group see the contested rent as a public good, and even when
there is some congestion of it, so long as it is not too strong. Nitzan and Ueda
(2014) have extended this literature to allow for members of groups to have both
different valuations and different costs, which they do by utilising what has been
called here a nested aggregative game approach to derive group share functions and
establish consistency of aggregate actions to identify the Nash equilibrium. Being
very tractable, this method of analysis allows free riders within groups that make
no contribution to group effort to be identified, and the effect of heterogeneity on a
group’s performance and the contest outcome to be carefully considered.
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6.1.2 Intra- and Inter-Group Contests

In an intra- and inter-group contest it is again the relative collective effort of groups
that determine their share of the rent (which is taken to have a common value for all
group members), but the allocation of that rent share within the group is influenced
by the relative effort of group members. In Nitzan (1991) the intra-group allocation
is partially determined by the relative effort of group members, with the remaining
rent being distributed in an egalitarian way. If ˛j is the proportion of the rent that is
equally distributed within group j, the payoff to contestant i in group j is given by

Ou j
i .x

j
i ; XjI X/ D

"

˛j 1

Nj
C .1 � ˛j/

x j
i

Xj

#
Xj

X
R � c j

i .x
j
i /;

which is again a nested aggregative game.
If ˛j D 0 for all groups then the Xj in the intra-group contest success function

cancels with that in the inter-group contest success function, and the group structure
becomes irrelevant as the contest can be seen as a standard Tullock contest withP

j2J Nj contestants; hence the characteristics of groups plays no role in the outcome
of the contest. If ˛j D 1 then the case collapses to a contest that is similar to a
collective contest in which the value of the contested rent to group j is given by
R=Nj. Nitzan (1991) undertook an in-depth analysis of this contest by appealing to
the symmetry of contestants within groups by assuming a linear cost of effort and
symmetry of sharing rules for groups, showing that as a larger proportion of the rent
within groups is allocated based on relative effort, so the collective effort of groups,
and consequently the aggregate effort and dissipation of the rent, increases.

By using a nested aggregative game approach, unrealistic symmetry assumptions
can be avoided, allowing contestants to have convex costs of effort that can be
different. The analysis would proceed by first fixing the aggregate effort of all
groups at X and considering consistency of actions among the members of group
j. This will define individual share functions, and the value of Xj such that the sum
of these share functions is equal to one will give the group-j reaction function,
revealing the aggregate effort of group j consistent with a Nash equilibrium in
which the aggregate effort of all groups is X. The Nash equilibrium can be found by
identifying the level of aggregate effort of all groups that generates consistent group
efforts that exactly sum to it, which is where the sum of group share functions is
equal to one.

As Konrad (2009) notes, when groups have different sharing rules it is not
necessarily the case that all groupswill be active in equilibrium, and indeed it will be
the case that when contestants within a group have different costs not all contestants
will be active. The multiple aggregate game approach, being very tractable in terms
of the representation of behaviour consistent with equilibrium, allows for a full
understanding of the composition of equilibrium effort to be understood: once
group share functions have been aggregated and the equilibrium aggregate effort
of all groups found, each group’s share function merely needs evaluating at the
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equilibrium aggregate effort to check whether or not it is zero; and for those groups
where it is strictly positive the share functions of individuals within groups can be
evaluated to understand which group members are active. The approach holds much
hope for understanding the fine details of the equilibrium in group contests, even in
quite general settings.

6.1.3 Contests with Group Spill-Overs

An area where multiple aggregate games is likely to make a strong contribution to
the analysis of contests in the future is where there are spill-overs between groups’
collective effort in terms of the value of the rent being contested by the group,
and there is heterogeneity both within and between groups. This can be captured
specifying that the value of the rent contested by group j is given by f j.Xj;X�j/.
This specification allows the rent to be influenced by the group’s own aggregate
effort, but not necessarily so. If @f j=@Xk > .</0 then there are positive (negative)
externalities between group k and group j. With this rent structure, there might be
no other inter-group conflict as contestants within groups contest their group’s rent
in N otherwise independent group contests; or there may be additional inter-group
conflict since the rent, which is valued differently by different groups, is contested
between groups as in a collective contest, which could also be coupled with an inter-
group contest. The payoff to a typical contestant in the former case would be of the
form u j

i .x
j
i ; XjIX�j/ D .x j

i =Xj/f j.Xj;X�j/ � c j
i .x

j
i /, and for the latter case it would

be

u j
i .x

j
i ; XjIX�j/ D

"

˛j 1

Nj
C .1 � ˛j/

x j
i

Xj

#
Xj

X
f j.Xj;X�j/ � c j

i .x
j
i /;

both of which are multiple aggregate games, but not nested aggregative games.
Contests with group spill-overs hold a wealth of interest in terms of applica-

tions. In industrial organisation, the framework could be used to capture Cournot
competition (which is a simple Tullock contest where effort is output and the
rent is endogenously determined as total revenue in the market) between two (or
more) groups of sellers who each produce a homogeneous good that acts as a
substitute or complement to the other, so the aggregate actions of one group of
sellers influence the total revenue that the other group is contesting. In political
settings, individuals within political allegiances might contest a rent and the value
of this rent is influenced by the actions of competing groups during the campaign.
In international trade, groups of traders located in different countries interact both
with each other in the home market and, because of trade, the value of this activity
will be influenced by the aggregate actions of firms in different locations.

Using the framework of multiple aggregate games, by first resolving the within-
group strategic interaction having fixed the behaviour of other groups, and then
seeking mutual consistency of behaviour at the level of groups, gives hope for
developing an understanding of the features of equilibrium in these as well as
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other settings to generate new insight concerning these relatively under-explored
yet interesting economic environments.

6.2 Bilateral Oligopoly

Bilateral oligopoly is a model of trade in which there is market power on both sides
of the market. Given this, a group-based analysis is likely to be fitting as the actions
of traders on each side of the market will affect each other, and they will also affect,
and be affected by, the actions of traders on the opposite side of the market in the
aggregate. One approach to modelling bilateral oligopoly is using a two-commodity
version of a Shapley-Shubik strategic market game (Shapley and Shubik 1977) in
which one of the goods takes the role of money, and each trader is endowed either
with the good or money. This model was originally introduced by Gabszewicz and
Michel (1997) and has seen careful study in the literature by Dickson and Hartley
(2008), which inspires this discussion, and Amir and Bloch (2009).

Consider an economic environment in which there is a single good g, and money
m, that is populated by traders who have preferences that can be represented by
utility functions vi.g; m/. Suppose that the set of traders is partitioned into two
groups: group 1 contains individuals that are endowed with e1

i > 0 units of the
good but no money, and are called sellers; group 2 contains individuals endowed
with e2

i > 0 units of money but none of the good, and are called buyers. Each seller
decides on an offer of the good to make to the market x1

i � 0 to be exchanged
for money; and each buyer decides on an amount of money to send to the market
x2

i � 0 to be exchanged for the good.7 The market aggregates these offers and bids,
and then sellers are awarded a share of the aggregate amount of money sent to the

market in proportion to their offer, so receive x1
i

X1 X2 units of money; and similarly
buyers are awarded their proportional share of the aggregate amount of the good in

the market, so receive x2
i

X2 X1 units of the good.8

Bilateral oligopoly is therefore a game between two groups where, within each
group, individuals engage in a simple Tullock contest in which they choose actions
to contest a perfectly divisible prize, the value of which is determined by the
aggregation of actions of members of the other group. Payoffs in this game take
the form

u j
i .x

j
i ; Xj

�iIX�j/ D
8
<

:

vi

�
e1

i � x1
i ;

x1
i

x1
i CX1

�i
X2

�
if j D 1; or

vi

�
x2

i

x2
i CX2

�i
X1; e2

i � x2
i

�
if j D 2;

7For simplicity, it is assumed that endowments are large enough that they will never be constraining
and so are ignored in the definition of strategy sets, and in the analysis.
8If either X1 D 0 or X2 D 0, no trader receives anything from the market.
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and so the game is a multiple (two) aggregate game, but is not a nested aggregative
game.

An analysis using the approach outlined here involves first fixing the actions
of the buyers and considering the partial game played by the sellers to deduce
a function QX1.X2/ that represents the aggregate offers from the sellers consistent
with a Nash equilibrium in which the aggregate bid made by the buyers is X2;
and second considering the partial game played by the buyers when the actions
of the sellers are considered fixed to deduce the consistent aggregate bid function
of the buyers QX2.X1/. When traders’ preferences are ‘binormal’, which requires the
(absolute value of) the marginal rate of substitution of the good for money ( @vi=@g

@vi=@m ) to
be decreasing as consumption of the good increases and increasing as consumption
of money increases, the share function of every trader is strictly decreasing in the
aggregate on their side of the market (Dickson and Hartley 2008; Dickson 2013).
Moreover, as Dickson (2013) showed, if for each seller the ratio of the marginal rate
of substitution to m is decreasing in m then the consistent aggregate offer function
will be increasing in the aggregate bid; and if for each buyer the product of the
marginal rate of substitution and g is increasing in g then the consistent aggregate
bid function will be increasing in the aggregate offer, as illustrated in Fig. 2.

Under these conditions on preferences there are ‘group complementarities’, and
therefore the ideas of supermodular games applied to group best response functions
could be used to discern some comparative static properties of the extremal
equilibria. In the illustration there is a single Nash equilibrium, but in this case, since
the game has features that mean the group best responses begin from the origin,
uniqueness of (non-null) Nash equilibrium cannot be ascertained by appealing to
the contraction principle for, if the slope of each group best response is everywhere

Fig. 2 Consistent aggregate
bid and offer functions in
bilateral oligopoly

X1

X2

X̃2(X1)

X̃1(X2)
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below 1 they will never cross in the interior of aggregate action space. Another
possibility is to consider that the slope at the origin exceeds 1 and the group best
response functions are concave: in practice many standard utility functions give
rise to this property, but deriving an intuitive general statement on preferences is
difficult.

To circumvent these issues, Dickson and Hartley (2008) characterised the
individual and aggregate behaviour of the two groups consistent with a Nash
equilibrium in which the ratio of the aggregate money bid to the aggregate amount
of commodity offered—which is the price of the good—takes a particular value. For
the sellers this is a strategic supply function, and when the consistent aggregate bid
of the buyers is divided by the price it is a strategic demand function. Nash equilibria
in bilateral oligopoly are identified by the intersections of these strategic versions
of Marshallian supply and demand functions, which are monotonic in the expected
direction under the stated conditions on preferences and so intersect only once.

This analysis, and in particular study of the uniqueness of Nash equilibrium
which is tackled in an environment of heterogeneous traders, is made possible only
by taking a multiple aggregate game approach and fixing one side of the market
to consider consistent behaviour in the partial game played on the other side of
the market. Once the within-group strategic interaction has been resolved and the
consistent aggregate behaviour derived, the intersection of strategic supply and
demand functions ensures consistency between the sides of the market.

After determining the equilibrium price, equilibrium values of the aggregate
offer and bid can be deduced, following which individual traders’ strategies can
be found, revealing whether there are any inactive traders on either side of the
market. Comparative statics are relatively straightforward to undertake to develop
an understanding of, for example, the effect of increasing the number of traders on
one side of the market, or of increasing the endowment of goods for some sellers,
where the effect on the number of sellers that are active in equilibrium might be of
relevance.

6.3 Group Public Goods

In an unpublished manuscript, Cornes et al. (2005) consider the provision of public
goods within groups when there are spill-overs between groups, capturing the
principal of the free-rider problem but where there is also group inter-dependence.
If x j

i is the contribution of player i to the public good of group j then the quantity
of the public good provided by group j is Xj and, because of the spill-overs between
groups the level of the public good consumed by individuals in group j is given
by Xj C P

k¤j2J � j;kXk, where � j;k is the spill-over parameter capturing how the
public good provided by group k influences the members of group j. If there is
concordance of interests between group k and j then � j;k > 0, whilst if their interests
are conflicting � j;k < 0. The consumption of the private good is m j

i � c j
i x j

i where m j
i
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is income and c j
i the cost of public good provision. The payoff to a typical player is

thus

u j
i .x

j
i ; XjIX�j/ D v

j
i .m j

i � x j
i ; Xj C

X

k¤j2J

� j;kXk/;

where v
j
i .�; �/ is the player’s utility defined over private good consumption and public

good consumption. More general formulations of the ‘public good production func-
tion’ for each group could be considered that might account for complementarities
between public goods, for example. So long as it is only the aggregate provision
of public goods by other groups that matters to an individual, this is a multiple
aggregate game.

If the spill-over parameter is common for all groups, i.e. � j;k D � for all k ¤ j 2
J, for all j 2 J, then the quantity of the public good consumed by group j can be
written �X C .1 � �/Xj. In this case, payoffs are

Ou j
i .x

j
i ; Xj; X/ D v

j
i .m j

i � x j
i ; �X C .1 � �/Xj/;

and therefore the game is a nested aggregative game.
Cornes et al. (2005) investigate the latter formulation using a replacement

function approach. Individual replacement functions Or j
i .X

jI X/ give the contribution
of player i in group j consistent with a Nash equilibrium in which the aggregate
contribution of group j is Xj, and the aggregate contribution of all groups is X. They
seek group consistency by requiring, for a given X, that

P
i2Ij r j

i .X
jI X/ D Xj for

each j 2 J which gives the group-j consistent contribution OXj.X/, which is a group
replacement function. Overall consistency then requires

P
j2J

OXj.X/ D X.
They are able to show that with appropriate restrictions on preferences individual

replacement functions are decreasing in Xj and therefore the group-j consistent con-
tribution is unique, so group replacement functions are indeed functions. Moreover,
if groups’ interests are concordant then individual replacement functions are also
decreasing in X which implies that group replacement functions are decreasing in
X, so there is a unique value of X where

P
j2J

OXj.X/ D X and so a unique Nash
equilibrium. If group interests are conflicting then group replacement functions are
increasing in X, but so long as the conflict is not too strong the function

P
j2J

OXj.X/

will be a contraction (its slope will be less than one) with a unique fixed point
and therefore a unique Nash equilibrium. Given uniqueness of equilibrium, found
under quite general conditions, understanding the comparative static properties of
equilibrium is a relatively straightforward task.

Cornes et al. (2005) suggest an extension to the case where the good generated
by contributions of individuals does not become a pure nonexcludable good, but is
distributed among group members according to some sharing rule. This could be
captured by considering that the good becomes a private good and is shared among

group members according to the rule Œ˛ 1
Nj C x

j
i

Xj �, as in Nitzan (1991). This preserves
the nested aggregate nature of the game, and is consistent with the idea of contests
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between groups where the size of the contested rent is influenced by the actions
of other groups, introduced previously, and so could be analysed using the tools of
multiple aggregate games.

7 Concluding Remarks

This contribution considers the theory of multiple aggregate games, in which
individuals are organised into groups and there are both within-group and between-
group strategic tensions that can be very different in nature. This general framework
captures environments in which there is a collective element to individual actions
within groups, and externalities between groups’ aggregate actions. The within-
group strategic interaction is assumed to have the features of an aggregative game,
and this is exploited in the method proposed to analyse these games, which follows
a two step procedure: first, the intra-group strategic interaction is resolved through
study of group ‘partial games’ to derive group best responses; then the inter-group
game is analysed by considering mutual consistency of these group best responses
at the level of group aggregates. If ‘aggregativeness’ also pervades the between-
group interaction, as in a nested aggregative game, then rather than using group best
responses, group replacement functions can be derived that have a much simpler
consistency requirement to identify equilibria.

Exploiting the aggregative properties of games makes for a very tractable
analysis since the structure of the game is used to reduce the dimensionality of the
problem. Replacement (or share) functions often have very clear properties in terms
of their monotonicity and where they drop to zero, that are preserved when they
are aggregated. Establishing existence and uniqueness of Nash equilibrium; under-
standing which players are active in equilibrium; and undertaking a comparative
static analysis (that may involve adding players) are all relatively straightforward
tasks.

By using this method within groups and, if appropriate, also between groups,
the analysis of multiple aggregate games becomes much less daunting even with
heterogeneity of players in groups, and heterogeneity between groups. In applica-
tions, this permits a rather general analysis to be undertaken that has the scope to
answer many interesting questions that might be posed, particularly related to the
effect of heterogeneity within and between groups. Some applications that have
been considered in the literature—collective contests; group provision of public
goods; bilateral oligopoly—have been discussed, and others speculated upon. Some
of these, as well as many others, fit within a model of group contests with group
spill-overs, careful study of which seems to be a fruitful direction for future research.
I hope that the exposition of multiple aggregate games presented here is useful in
pursuing this and other lines of research, and I also hope that I have done justice to
the ideas that Richard and I discussed.
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Appendix: Proofs

Proof of Proposition 1 The proof is by simple definition chasing. If x� is a Nash
equilibrium in G, then by definition x j�

i D Qx j
i .X

�j�/ for all i 2 Ij; j 2 J. But then
for each j 2 J, Xj� D P

i2Ij Qx j
i .X

�j�/ D QXj.X�j�/. Conversely, if Xj� D QXj.X�j�/

for all j 2 J, then by definition xj� where x j�
i D Qx j

i .X
�j�/ for each i 2 Ij is a Nash

equilibrium in Gj.X�j�/ for all j 2 J; it then follows that x� is a Nash equilibrium.
ut

Proof of Proposition 2 The proof is again by definition chasing. First, if xj� is a
Nash equilibrium then x j�

i D b j
i .X

j�
�iIX�j/ for all i 2 Ij. This implies x j�

i D
b j

i .X
j��x j�

i IX�j/, and so by definition x j�
i D r j

i .X
j�IX�j/ for all i 2 Ij; and therefore

P
i2Ij r j

i .X
j�IX�j/ D Xj�. To prove necessity, suppose

P
i2Ij r j

i .Xj�IX�j/ D Xj�
and consider the strategy x j�

i D r j
i .Xj�IX�j/. By definition of the replacement

function, x j�
i D b j

i .X
j� � x j�

i IX�j/, and since Xj� D P
i2Ij r j

i .X
j�IX�j/ it follows

that Xj� � x j�
i D P

h¤i2Ij rj
h.Xj�IX�j/ D Xj�

�i. As such, x j�
i D b j

i .X
j�
�iIX�j/ for all

i 2 Ij, so xj� is a Nash equilibrium in Gj.X�j/. ut
Proof of Proposition 3 A player’s share function is the value of �

j
i that makes l j

i ,
defined in (5), equal to 0—however, if this is below zero the share function is defined
as zero; and if it is above 1 the share function is undefined. First, note that under
Assumption 1

@l j
i

@�
j
i

D Xj

"
@2u j

i

@.x j
i /

2
C @2u j

i

@x j
i @Xj

�i

#

< 0 and

@l j
i

@Xj
D �

j
i

@2u j
i

@.x j
i /

2
C Œ1 � �

j
i �

@2u j
i

@x j
i @Xj

�i

< 0:

The first inequality implies there is at most one �
j
i 2 Œ0; 1� where l j

i D 0 so the
share function is indeed a function. Continuity of this function, where it is defined,
follows from l j

i varying continuously in all its arguments by virtue of the assumed
differentiability of utility functions.

If X j
i .X

�j/ > 0, by definition, l j
i .1; X j

i .X
�j/IX�j/ D 0, so s j

i .X
j
i .X

�j/;X�j/ D 1

and the monotonicity properties just stated imply that for all Xj < X j
i .X

�j/, l j
i > 0

for all �
j
i � 1, and therefore the share function is undefined. In addition, again by

definition, if NX j
i .X�j/ < 1 then l j

i .0; NX j
i .X�j/IX�j/ D 0 so s j

i .
NX j

i .X�j/IX�j/ D 0

and the monotonicity properties of l j
i imply that for all Xj > NX j

i .X�j/, l j
i D 0 only

when �
j
i < 0, and therefore by definition s j

i .X
jIX�j/ D 0.
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Where it is positive and defined, implicit differentiation of the first-order
condition that defines the share function, (5), gives

@s j
i

@Xj
D �

@l
j
i

@Xj

@l
j
i

@�
j
i

< 0;

where the inequality follows from the deductions above.
If X j

i .X
�j/ D 0 the share function is defined for all Xj > 0 where it takes values

in the compact set Œ0; 1�, so (taking subsequences if necessary) the limit as Xj ! 0

will exist, which is denoted Ns j
i .X

�j/. ut
Proof of Proposition 4 If NX j

i .X�j/ < 1 the share function of individual i 2 Ij

is equal to zero for all Xj � NX j
i .X�j/. If not, then since it is assumed that

lim
x

j
i !1

@u
j
i .x

j
i ;�I�/

@x
j
i

< 0 the first-order condition (5) can hold as Xj ! 1 only if

limXj!1 �
j
i Xj < 1 which requires �

j
i ! 0, implying the share function vanishes

in the large Xj limit. This implies there is an Nx j.X�j/ such that
P

i2Ij s j
i .X

jIX�j/ < 1

for all Xj > Nx j.X�j/. The function
P

i2Ij s j
i .X

jIX�j/ is continuous and strictly
decreasing in Xj for all maxi2Ij fX j

i .X
�j/g < Xj < Nx j.X�j/, and is therefore

equal to 1 for at most one value of Xj. If X j
i .X

�j/ > 0 for any i 2 Ij then
P

i2Ij s j
i .maxi2IjfX j

i .X
�j/g;X�j/ � 1 and so there is a unique value of Xj where

P
i2Ij s j

i .X
j;X�j/ D 1. If X j

i .X
�j/ D 0 for all i 2 Ij then the aggregate share function

is defined for all Xj > 0, with limXj!0

P
i2Ij s j

i .X
j;X�j/ D P

i2Ij Ns j
i .X

�j/. As such,
the existence of a (unique) Nash equilibrium requires

P
i2Ij Ns j

i .X
�j/ > 1. ut

Proof of Proposition 5 For X�j 2 R
N�1C n NX j, the group best response is implicitly

defined by (7). Continuity of the group best response follows from continuity of
individual share functions in each of its arguments, which follows from the assumed
differentiability of utility functions. With apology9 implicit differentiation of (7)
gives

@ QXj.X�j/

@Xk
D �

P
i2Ij

@s
j
i

@Xk

P
i2Ij

@s
j
i

@Xj

: (10)

9Whilst individual share functions very smoothly in their arguments, the aggregation of these
within a group, whilst continuous, does not necessarily vary in a smooth way, in particular in
a neighborhood of a group member’s ‘dropout value’ NX j

i .X�j/. As such, implicit differentiation
should not be used at these points on the domain but, with apology, it is given its intuitive merit.
In a neighborhood of any NX j

i .X�j/ the derived derivatives do not hold and indeed should not be
defined; the monotonicity properties can nevertheless be proved for these regions of the domain by
a contradictory argument (details omitted).
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Where an individual’s share function is positive, recall that it is defined by the
first-order condition l j

i .�
j
i ; XjIX�j/ D 0 as in (5). As deduced previously,

@s j
i

@Xj
D �

@l
j
i

@Xj

@l
j
i

@�
j
i

D
�

j
i

@2u
j
i

@.x
j
i /2

C Œ1 � �
j
i �

@2u
j
i

@x
j
i @X

j
�i

Xj

�
@2u

j
i

@.x
j
i /2

� @2u
j
i

@x
j
i @X

j
�i

� < 0

under Assumption 1. In addition,

@s j
i

@Xk
D �

@l
j
i

@Xk

@l
j
i

@�
j
i

D �
@2u

j
i

@x
j
i @Xk

Xj

�
@2u

j
i

@.x
j
i /2

� @2u
j
i

@x
j
i @X

j
�i

� :

Since the denominator is negative under Assumption 1, sgnf @s
j
i

@Xk g D sgnf @2u
j
i

@x
j
i @Xk

g.
As such, since group members are qualitatively symmetric, it follows that

sgnf @QXj.X�j/

@Xk g D sgnf @2u
j
i

@x
j
i @Xk

g, as stated.
ˇ
ˇ
ˇ

@QXj.X�j/

@Xk

ˇ
ˇ
ˇ < 1 if the numerator in (10) is less than the denominator, a sufficient

(but by no means necessary) condition for which is

ˇ
ˇ
ˇ
ˇ

@s
j
i

@Xk

ˇ
ˇ
ˇ
ˇ <

ˇ
ˇ
ˇ
ˇ

@s
j
i

@Xj

ˇ
ˇ
ˇ
ˇ for all i 2 Ij, which

is implied by the inequality in the proposition. ut
Proof of Proposition 6 If x� is a Nash equilibrium, then by definition of share
functions x j�

i D Xj�Os j
i .X

j�I X�/ for all i 2 Ij; j 2 J. As such,
P

i2Ij Os j
i .X

j�I X�/ D 1

and therefore Xj� D OXj.X�/ for all j 2 J, implying X� D P
j2J

OXj.X�/. For
necessity of the condition, define a player’s best response in a nested aggregative
game as b j

i .X
j
�iI X�j/. Consider the strategy x j�

i D OXj.X�/Os j
i .X

j�I X�/. By definition
of share functions and the consistency of OXj.X�/ within group j (which implies
OXj.X�/ � x j�

i D Xj�
�i), x j�

i D b j
i .X

j�
�iI X� � OXj.X�//. When X� D P

j2J
OXj.X�/,

it follows that X� � OXj.X�/ D X�j�, and therefore x j�
i D b j

i .X
j�
�iI X�j�/ for all

i 2 Ij; j 2 J, giving the conclusion that x� is a Nash equilibrium. ut
Proof of Proposition 7 The properties of individual share functions in OGj.X/ are first
deduced. The conditions stated on preferences are equivalent to assuming

@Ol j
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j
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D Xj

"
@2 Ou j
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2
C @2 Ou j
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2
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C @2 Ou j
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C �
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@2 Ou j
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C @2 Ou j
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@Xj@X
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@Ol j
i

@X
D @2 Ou j

i

@x j
i @X

C @2 Ou j
i

@Xj@X
C @2 Ou j

i

@.X/2
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Under the first two conditions (as previously) two thresholds OX j
i .X/ (which is Xj > 0

such that Ol j
i .1; XjI X/ D 1) and ONX j

i .X/ (which is Xj such that Ol j
i .0; XjI X/ D 1 if such

an Xj exists, otherwise it is defined as C1) can be defined, between which the share
function is defined and takes positive values, and where

@Os j
i

@Xj
D �

@Ol j
i

@Xj

@Ol j
i

@�
j
i

< 0:

If OX j
i .X/ as defined above does not exist then the share function is defined for all

Xj > 0 with limXj!0 Os j
i .X

jI X/ D ONs j
i .X/.

As before, the aggregation of individual share functions is taken to be defined
only for values of Xj where all group members’ share functions are defined. Noting
that share functions are either equal to zero for large enough Xj, or are vanishing

in the large Xj limit, if either OX j
i .X/ > 0 for any i 2 Ij, or

P
i2Ij ONs j

i .X/ > 1

then there is a single consistent aggregate action OXj.X/ in OGj which is such thatP
i2Ij Os j

i .
OXj.X/I X/ D 1. If this is not the case then OXj.X/ D 0.

Consider now varying X to change the partial game played by group j. Group j’s
share of the total aggregate is OSj.X/ D OXj.X/=X, defined by (9) if the resulting share
is between 0 and 1. Note that

@ OLj

@ƒj
D X

X

i2Ij

@Os j
i

@Xj
and

@ OLj

@X
D

X

i2Ij

ƒj @Os j
i

@Xj
C @Os j

i

@X
:

Now,

@Os j
i

@X
D �

@Ol j
i

@X

@Ol j
i

@�
j
i

< 0;

which, combined with the monotonicity of share functions with respect to group
aggregate, implies both of the expressions above are negative. Given this, the
thresholds and the monotonicity of group share functions stated in the proposition
can be derived analogously to the case within groups, so the details are omitted.

Aggregate share functions are either equal to zero for X > ONXj or, if this is not finite,
vanish in the large X limit—this follows by recalling that individual share functions
vanish in the large Xj limit, so as X ! 1 (9) can hold only if limX!1 ƒjX < 1
which requires ƒj ! 0. Given this, if either OXj

> 0 for any j 2 J, or
P

j2J
ONSj > 0 if
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OXj D 0 for all j 2 J, the aggregate share function will exceed one for small enough
X and since it is strictly decreasing in X will be equal to one at exactly one value of
X, so consequently there is a unique Nash equilibrium. ut
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