
Software Quality Assurance During
Implementation: Results of a Survey in Software
Houses from Germany, Austria and Switzerland

Michael Felderer(B) and Florian Auer

Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{michael.felderer,florian.auer}@uibk.ac.at

Abstract. Context: Quality assurance performed during the implemen-
tation phase, e.g., by coding guidelines, static analysis or unit testing,
is of high importance to ensure quality of software, but there is a lack
of common knowledge and best practices on it. Objective: The goal of
this paper is to investigate the state-of-practice of quality assurance dur-
ing the implementation phase in software houses. Method: For this pur-
pose, we conducted a survey in Germany, Austria, and Switzerland where
57 software houses participated. The questionnaire comprised questions
regarding techniques, tools, and effort for software quality assurance dur-
ing implementation as well as the perceived quality after implementation.
The results were complemented by interviews and results from other sur-
veys on software quality in general. Results: Results from the survey show
that the most common software quality assurance techniques used dur-
ing implementation are unit testing, code reviews and coding guidelines.
Most tool support is used in the areas of bug tracking, version control and
project management. Due to relationships between the used tool types,
it seems that the introduction of one tool leads to the adoption of sev-
eral others. Also quality assurance techniques and tools are correlated.
Bug fixing takes a significant ratio of the overall project effort assigned
to implementation. Furthermore, we found that the more developers a
software company has, the more effort is spent on bug fixing. Finally,
more than half of all companies rated the quality after implementation
as rather good to good. Conclusion: For the most important quality
assurance techniques and supporting tool types clear usage patterns can
be seen and serve as a basis to provide guidelines on their application in
practice.

Keywords: Software quality assurance · Implementation · Software
development · Software quality · Software houses · Survey

1 Introduction

Quality assurance performed during the implementation phase, e.g., by coding
guidelines, static analysis or unit testing, is critical to create software of high
quality [1]. According to the ISO/IEC/IEEE Standard 24765 implementation or
c© Springer International Publishing AG 2017
D. Winkler et al. (Eds.): SWQD 2017, LNBIP 269, pp. 87–102, 2017.
DOI: 10.1007/978-3-319-49421-0 7



88 M. Felderer and F. Auer

coding is defined as “the process of translating a design into hardware compo-
nents, software components, or both” [2]. The respective phase in the software
development life cycle, i.e., the implementation phase, is defined as the “period
of time in the software life cycle during which a software product is created
from design documentation and debugged” [2], which also comprises bug fixing
and therefore quality assurance activities. Nevertheless, quality assurance during
implementation, which we also call integrated quality assurance, lacks a com-
mon body of knowledge and is often handled as a “black box” in the overall
development process individually managed by developers. Given that a consid-
erable large amount of the total project effort is spent on implementation [3],
it is important to investigate the state-of-practice and to provide guidelines for
respective quality assurance techniques and tools. This holds especially for soft-
ware houses, i.e., companies whose primary products are software [4], for which
quality assurance is essential to guarantee quality of their delivered software
products.

The goal of this paper is to investigate the state-of-practice of quality assur-
ance during the implementation phase in software houses. For this purpose, we
present results of a survey conducted by the University of Innsbruck together
with the Austrian consultancy company Software Quality Lab in software houses
from Germany (D), Austria (A) and Switzerland (CH), the so called “DACH
region”. Overall 57 software houses from the DACH region responded to ques-
tions on software quality assurance techniques, tools, effort, and perceived quality
after implementation. The results were complemented by interviews and results
from related surveys. However, this is the first survey dedicated to software qual-
ity assurance during implementation in software houses, which provides due to
central role of software development for the whole organization a valid source
to investigate best practices. Furthermore, our survey does not only consider
agile practices like other surveys (for instance, [5,6]) and especially also statis-
tically investigates correlations between software quality assurance techniques
and tools.

The results presented in this paper provide information on the state-of-
practice and are equally relevant for research (by guiding it to relevant topics)
and practice (by serving as a baseline for comparison).

This paper is structured as follows. Section 2 presents related work. Section 3
discusses the survey goal, design and execution. Section 4 presents results and
discusses them. Finally, Sect. 5 concludes the paper.

2 Related Work

In this section, we summarize related results on software quality assurance dur-
ing implementation from other surveys reporting respective results [3,5–8]. Rel-
evant related results reported in these studies address the project effort spent
on implementation, tool support during implementation as well as the usage of
agile practices during implementation. In the following paragraphs we summa-
rize these quantitative and qualitative results and later in Sect. 4 we relate them
to our findings.



Software Quality Assurance During Implementation 89

Regarding agile practices, Vonken et al. [5] found that the use of a coding
standard correlates to the subjective satisfaction with the development process.
70 % of the participants responded to use coding standards regularly or exten-
sively and only 4 % responded to never use any coding standard. In addition,
Perez et al. [6] found that pair programming has a positive correlation with
the perceived quality of the development process. Schindler [8] examined in a
2008 Austrian-wide survey that although the agile practice pair-programming is
known by 71 % of all participants, it was only used by 46 %. Furthermore, all
of the participants that claimed to use this practice, also admitted to not use
pair-programming regularly but instead rarely or on demand [8]. Furthermore, a
third of the 46 % also said to only use pair-programming in the case of complex
tasks. Schindler [8] also noted that pair programming is important for knowledge
exchange between senior and junior developers as well as to get new develop-
ers up to speed. Another observation made by Vonken et al. [5] is that pair
programming correlates with unit testing and refactoring. A more unexpected
observation made by the same authors is that unit testing and refactoring are
unrelated, which is surprising as unit testing can be considered as safeguard
during refactoring.

Regarding the effort spent, Garousi et al. [3] found that on average around
31 % of the total project effort was spent on implementation. This is more than
two times the effort of the second most reported effort consuming activity, i.e.,
testing. Armbrust et al. [7] observed a higher amount of the total project effort
allocated to implementation. According to their findings, on average around 48 %
of the software development effort was assigned to development, the smallest
amount assigned was 10 % and the highest 85 %.

Regarding tool support, Pérez et al. [6] found that version control (93 %)
as well as bug notification and tracking (86 %) are commonly used tools. In
contrast, tools that support the development process like continuous integration
(45 %), testing (52 %) or configuration (45 %) are only used by about half of the
respondents. Furthermore, Vonken et al. [5] found similar high usage ratios for
version control systems (88 %). Also Garousi et al. [3] investigated the usage of
tools [3] and found that static code analysis and automation tools are used by
64 % of all respondents. Whereas 24 % responded to never use and 12 % to seldom
use this type of tools. Finally, Schindler [8] identified that the most frequently
used tools to support agile development are unit tests (75 %), generators for
documentation from source code (71 %) as well as continuous integration (39 %).

3 Survey Goal, Design, Distribution, and Analysis

This section provides the survey goal and research questions (Sect. 3.1), the
survey design (Sect. 3.2), the survey distribution (Sect. 3.3), as well as the survey
analysis (Sect. 3.4). Finally, Sect. 3.5 provides a summarizing timeline of the
performed survey design, distribution and analysis activities.



90 M. Felderer and F. Auer

3.1 Goal and Research Questions

The goal of this survey is to investigate the role of software quality assurance
during the implementation phase in software houses from Germany, Austria and
Switzerland. The target audience of the survey are therefore software houses
that are located in Germany, Austria or Switzerland and do not operate in a
domain that may impose restrictions on their software development, e.g., medical
or automotive. Based on the goal and taking industrial relevance from experi-
ences of the involved company Software Quality Lab into account, we raise the
following four research questions (RQs):

RQ 1 Which quality assurance techniques are used during development?
RQ 2 Which tool support is used for quality assurance during development?
RQ 3 How much effort is spent on implementation and integrated quality

assurance?
RQ 4 How is the perceived software quality after implementation (including the

integrated quality assurance)?

3.2 Survey Design

In the survey design, we used and benefited from lessons learned and guidelines
reported by other researchers in software engineering [9,10]. We therefore present
the sampling plan, the questionnaire design and the performed pilot test.

Sampling Plan. The sampling plan describes how the participants are rep-
resentatively selected from the target population. The first decision, whether
a probabilistic, non-probabilistic or census sample should be considered, was
already made by selecting the target audience. Given that no list of all compa-
nies exists that have the characteristics of to target audience, a truly probabilistic
or census sample is not feasible. The first (probabilistic) would require an enu-
meration of all members of the target audience to select randomly participants
and the later (census) can as well only be conducted if all individuals of the
target audience are known. As a result, non-probabilistic sampling was chosen.

As a method to draw the sample from the population quota sampling with
the two strata geographical location of the software house (Germany, Austria
or Switzerland) and number of employees (less or equal 10, 11 to 100 and more
than 100) was applied.

Overall 57 software houses, 19 from each of the three countries, evenly dis-
tributed over the three company sizes were selected and could be consulted
within the given time and resources. Based on the activities relevant for soft-
ware houses from the OECD [11] industry categories, i.e., 62 – Computer pro-
gramming, consultancy and related activities, as well as 631 – Data process-
ing, hosting and related activities; web portals, the overall number of software
houses in Germany, Austria and Switzerland could be estimated based on data
from governmental statistical offices. For Germany, the “IKT-BRANCHE IN



Software Quality Assurance During Implementation 91

DEUTSCHLAND” [12] report identified 61,029 companies in 2013 that are clas-
sified with one of the two categories1. For Austria, the governmental statistical
office reported 13,281 companies in the respective categories2 in 2012. Finally
for Switzerland, the federal statistical office measured 2008 in the census of com-
panies3 15,466 companies that have amongst their main activities programming,
information technology consulting and data processing. As a result, the total
number of software houses in the DACH region can be estimated with 90,000
(61, 029 + 15, 466 + 13, 281 = 89, 776). Taking the population size of 90,000 into
account, with the 57 participating companies a precision [9], which measures how
close an estimate (resulting from the survey data) is to the actual characteristic
in the population, of 87 % is achieved.

Questionnaire Design. The questionnaire was designed based on the experi-
ences of Software Quality Lab and the involved researchers in conducting surveys
as well as academic findings of related surveys (see Sect. 2) and the software engi-
neering body of knowledge (SWEBOK) [13]. The knowledge and practical con-
sultancy experience of Software Quality Lab was a valuable input to design the
questionnaire. Furthermore, a technical report of a survey on software quality con-
ducted by Winter et al. [14] in 2011 provided many useful insights for the ques-
tionnaire design. The questions included in the questionnaire were transformed
into closed-ended questions and ordered by topic. The questionnaire was imple-
mented and performed online with the survey tool LimeSurvey4. For software
quality assurance during implementation five questions were raised, i.e., one ques-
tion for RQ 1, one for RQ 2, two for RQ 3, and one for RQ 4, and embedded into a
larger questionnaire on software quality processes. The questions of the question-
naire correspond to the research questions, where RQ 3 is split into two questions,
one for the development and one for the bug fixing effort. The answer options for
each of the five questions are shown in Figs. 2, 4, 6, 7, and 8, respectively. The
complete questionnaire is available via the first author upon request.

Pilot Test. The questionnaire was validated internally, i.e., by the involved
researchers and Software Quality Lab, as well as externally by six employees
of software houses. Internally, there were several iterations and the involvement
of researchers and industrialists guaranteed a high quality review from different
perspectives. Externally, the reviewers provided valuable, written feedback to
further improve the questionnaire.

3.3 Survey Distribution

The distribution of the questionnaires among the potential participants included
a pre-notification, the invitation with the questionnaire, reminders and a thank-
you letter. The survey distribution started on April 1, 2015. The participants
1 http://bit.ly/1Sqfb3z.
2 http://bit.ly/22IjjeS.
3 http://bit.ly/22IkScL.
4 http://www.limesurvey.org.

http://bit.ly/1Sqfb3z
http://bit.ly/22IjjeS
http://bit.ly/22IkScL
http://www.limesurvey.org


92 M. Felderer and F. Auer

were selected by using Google Maps and searching for ‘software company’.
Searching for this term reveals all software companies at the related location.
Furthermore, information about the number of employees for each found soft-
ware house were determined. This allowed to come up with 450 participants –
50 small, 50 medium and 50 big software houses per country. Two weeks after
the pre-notification emails were sent, the invitation emails with a link to the
online survey were distributed. As a result, 13 participants responded to not
wish to participate and 20 software houses participated. One reminder were sent
in the middle of the survey (end of April 2015) to remember possible partic-
ipants about the survey. Due to the low number of responses, additional 500
software companies were contacted via email. In addition, new participants were
searched and contacted exclusively by phone to invite them to the survey. Dur-
ing three days within the last week, 200 potential software houses in Germany,
Austria and Switzerland were called and asked for participation. In this three
days 18 software houses could be convinced to participate. Thus, the response
rate for the phone calls was 9 %, which is double the response rate of the email
invitations (4 % for the first half of the survey and 3 % for the second). In the
phone calls, also some of the reasons against the participation were mentioned.
Amongst others, no time, no interest, already having participated in similar
surveys and the absence of the respective decision maker were mentioned. The
survey distribution ended on May 22, 2015.

3.4 Survey Analysis

The data was first analyzed quantitatively and then qualitatively by interviews
with survey participants and evidence extracted from related work.

As the responses for each question were nominally scaled, the votes for each
question were counted and then visualized in bar charts. Furthermore, Pear-
son correlation coefficients between answers were computed to find correlations
within and between quality assurance techniques and tools to support implemen-
tation. The analysis was performed in IBM SPSS and the resulting correlation
coefficients have been interpreted as suggest by Evans [15], i.e., in steps of 0.2
from very weak to very strong.

We performed 12 interviews with survey participants (i.e., 21 % of all par-
ticipants) to triangulate the quantitative analysis and to identify the reasons
behind some survey answers. The semi-structured interview type was chosen,
because the structured interview limits the discussion freedom to enter unfore-
seen subtopics or ask questions that may arise during the interview. Another
alternative would have been the unstructured interview. However, this form
would have not allowed to ask prepared questions of interest that emerged dur-
ing the analysis of the empirical survey. Telephone calls were used contact each
participant in an economic and for the interviewee time- and place-flexible way.
In the short interview one question on implementation was asked. In addition,
the non-structured part of the interview followed subtopics of interest that were
raised by the interviewee or that turned out as a result of previously conducted
interviews to be of interest.



Software Quality Assurance During Implementation 93

3.5 Survey Timeline

This section summarizes the survey design, distribution and analysis by provid-
ing the concrete timeline in which the respective activities were performed in
2015. Figure 1 shows the timeline for survey design, distribution and analysis
activities. Activities with concrete dates in parentheses were performed in the
given date range, the other activities were performed during the whole month.

February • – collect requirements for the instrument
– setup and customize the online survey instrument
– explicit target audience characterization

March • – design sampling plan
– collect possible participants
– design and refine questionnaire
– distribute pilot test invitations (30.3 - 31.3)

April • – distribute survey announcement emails (1.4 - 7.4)
– perform pilot test (8.4 - 16.4)
– evaluate and consider feedback, adapt questionnaire (17.4 - 21.4)
– perform survey (21.4 - 4.5); (27.4) send reminder

May • – extend the survey because of low participation (5.5 - 22.5)
– analyze the results
– describe and summarize findings

June • – analyze the results (22.5 - 7.6)
– prepare email invitations and interviews (13.6 - 14.6)
– send out email invitations for interviews (15.6)
– conduct interviews (16.6 - 19.6)
– analyze interview results (19.6 - 28.6)
– describe and summarize findings

Fig. 1. Timeline of the survey.

4 Results and Discussion

In this section, we first present the demographics of our survey, then we present
and discuss main findings for each of the four research questions, and finally we
discuss threats to validity.



94 M. Felderer and F. Auer

4.1 Demographics

Overall 57 software houses, 19 from Germany, 19 from Austria and 19 from
Switzerland, participated in the survey. Most of the software houses (84 %) stated
that they perform more than one type of software project. On average three types
were stated. The three most common project types are development of web-
applications (71 %), individual software (61 %), and standard software (56 %).

In the sample of 57 software houses small, medium and large companies are
present with a similar frequency: 38 % of the companies are small-sized (up to
10 employees), 35 % medium-sized (11 to 100) and 26 % large-sized (more than
100 employees).

4.2 Main Findings

In this section we present the main findings for each of the four research
questions.

RQ1: Quality Assurance Techniques. Figure. 2 shows the quality assur-
ance techniques applied by the responding software houses during implementa-
tion. The most commonly used techniques are unit testing (68 %), code reviews
(63 %) and coding guidelines (61 %). Only one participants responded to apply
no technique at all.

Fig. 2. Quality assurance techniques during development. One participant responded
to apply no techniques at all.



Software Quality Assurance During Implementation 95

So similar to Vonken et al. [5], we found a high ratio of people using cod-
ing guidelines. Furthermore, our results are also compliant with the finding of
Schindler [8] that pair programming is only applied moderately.

Correlation analysis shown in Fig. 3 revealed six positive relationships
between quality assurance techniques, i.e., using one technique increases the
likelihood of using the related one. Static code analysis is related to coding
guidelines, test-driven development (TDD) as well as unit testing. Furthermore,
coding guidelines are related to TDD, unit testing to code reviews and model-
driven development to behavior-driven development (BDD). Considering the
relationships, it is surprising that static code analysis is not amongst the most
commonly used techniques given its positive correlations to coding guidelines
and unit testing which are both used by more than 60 % of the responding soft-
ware houses. Another notable, relationship is between model-driven development
and BDD that have only a significant positive correlation to each other, but not
to other techniques.

BDDCode ReviewsStatic Code Analysis

Unit TestingTDD

Coding Guidelines Model-Driven Development

r=0.271,

p=0.041

r=0.264,

p=0.048

r=0.284,

p=0.032

r=0.413,

p=0.001

r=0.278,

p=0.036

r=0.307,

p=0.020

Fig. 3. Positive correlations between quality assurance techniques. Note that for all
relationship n = 57, which is why it is not explicitly mentioned at every correlation.

Quality assurance techniques like unit testing, code reviews or the usage of
coding guidelines are commonly practices according to the results of the empiri-
cal survey. In addition, reviews, tests during development, checklists and reviews
at milestones are commonly used methods to control and support the software
development process. Thus, it seems that implementation is well supported by
respective quality assurance techniques. However, in the interviews with most
participants the domain-specific side of the software, the rules and peculiarities
of the domain, are seldom addressed explicitly, although they often lead to costly
bugs.

RQ2: Tool Support. The participants were asked to indicate in which areas
implementation is supported by tools. The results depicted in Fig. 4 show that



96 M. Felderer and F. Auer

Fig. 4. Areas in which tools are used to support implementation.

bug tracking (84 %), version control (73 %) and project management (63 %) are
the most common areas. Continuous integration (42 %) and requirements man-
agement (38 %) are mentioned only half as often as the other tool types.

Furthermore, relationships to quality assurance techniques were statistically
analyzed. The calculation of each possible correlation revealed four significant
relationships:

– Coding guidelines are in a positive, moderate strong correlation with the use
of continuous integration (r = 0.457, p = 0.000) and version control tools
(r = 0.426, p = 0.001).

– Static code analysis is in a positive and moderate strong correlation with con-
tinuous integration (r = 0.454, p = 0.000) and in a positive, weak relationship
with version control. In addition, it also has a positive, weak relationship with
bug tracking (r = 0.331, p = 0.012).

– Code Reviews are in a weak, positive correlation with version control (r =
0.287, p = 0.030) and bug tracking (r = 0.367, p = 0.005).

– Unit testing is in a weak, positive correlation with project management (r =
0.264, p = 0.048) and in a strong, positive with bug tracking (r = 0.430, p =
0.001).

Thus, coding guidelines and static code analysis are often used in environ-
ments with continuous integration and version control. Bug tracking tools are
often used in environments in which also static code analysis, code reviews and
unit testing are performed.

Correlations between the tool types have also been analyzed and are shown in
Fig. 5: continuous integration tools are positively correlated with requirements
management and version control tools, and bug tracking tools are positively
correlated with version control and project management tools. One can observe
that all tools are related directly or indirectly (via other tools). Thus, it seems
that the introduction of one tool leads to the adoption of several others. This is



Software Quality Assurance During Implementation 97

Fig. 5. Positive correlations between the tool types. Note that for all relationships hold
that n = 57.

supported by the fact, that a high number of participants (64 %) stated to use
three or more tools. Tools supporting implementation are therefore often used
together.

Also several other surveys [3,5,6,8] found that different types of tools are
commonly-used to support development. Our results confirm the findings of
Perez et al. [6] who also found that version control and bug tracking tools are
often used, but continuous integration only moderately. Furthermore, Vonken
et al. [5] also found high usage rates of version control systems. Finally,
Schindler [8] reported a similar usage rate of continuous integration (around
40 %) as we did.

RQ3: Effort. We asked for the ratio of the total project effort spent on imple-
mentation and integrated quality assurance. Figure 6 indicates a clear trend
towards the range 41 % to 60 % of the total project effort, which was selected
by 49 % of all participants. Thus, it seems that in practice most often a ratio
between 41 % and 60 % of the total project effort is spent on implementation.

So in our case, the effort spent on programming is higher than reported in
Garousi et al. [3] (i.e., 31 %) and compliant with the finding of Armbrust et al. [7]
who reports a ratio of the overall effort spent on implementation of 48 % (and
integrated quality assurance).

The most important integrated quality assurance technique during imple-
mentation is bug fixing. Figure 7 shows that with respect to the ratio of the
total project effort developers spend on bug fixing, most participants (63 %)
responded that up to 20 % of the total project effort is spent on bug fixing. Even
higher efforts were stated by 25 % of the respondents. Moreover, 12 % could not
estimate the effort for bug fixing, which may indicate that they are not aware of
the effort that is used for bug fixing or do not measure it.

According to two interviewees, a reason for the relatively high bug fixing
effort is that a small amount of bugs requires a large amount of time and effort



98 M. Felderer and F. Auer

Fig. 6. Amount of total project effort dedicated to implementation.

Fig. 7. Ratio of total project effort spent on bug fixing by developers.

to be fixed. An example stated by one interviewee was a wrong variable name
caused by copying similar source code. Another reason that was commonly men-
tioned are incomplete requirements specifications that result in bugs that are
not caused by wrong code, but by missing edge cases that were not properly
specified. One interviewee explicitly highlighted that not technical aspects cause
high bug fixing efforts, but domain aspects. Developers typically do not have the
same deep understanding of the business domain of the software as for instance
requirements engineers or customers have. This often results in bugs caused by
missing or wrongly interpreted domain-specific aspects of requirements.

Given that more developers work on the same code, bugs may be introduced
by other employees that have to fix them. As a result, it could be that a higher
ratio of the total effort is spent on bug fixing with an increasing number of
employees. This is also supported by the fact that with an increasing number of



Software Quality Assurance During Implementation 99

developers also the system complexity increases, which makes it more difficult
to find and fix bugs. The statistical analysis confirmed this correlation and iden-
tified a strong positive correlation between the number of employees in software
development and the effort for bug fixing (r = 0.485, n = 56, p = 0.000). Thus,
the more developers a software company has, the more effort is spent on bug
fixing.

RQ4: Perceived Quality. We asked for the perceived software quality after
implementation (including the integrated quality assurance) at the handover
to system testing. Figure 8 shows that 41 % responded to perceive the quality
neither as good nor as bad, 56 %, more than half of all companies, rated the
quality as rather good to good. Only one participant mentioned that the quality
of the software at this point in development is rather bad. Thus, it seems that
the quality of the software is considered to be in an at least rather good quality
in most cases. This may indicate that the applied quality assurance measures
during the development are working.

Fig. 8. Perceived software quality after implementation with integrated quality
assurance.

The software quality in development may also depend on the number of
developers. Thus, the correlation between the number of employees in total and
the number of employees in software development, respectively, as well as the
perceived software quality before testing was statistically analyzed. As a result,
two weak, negative correlations were found:

– Perceived software quality is in a weak, negative correlation with the number
of employees (r = −0.334, n = 55, p = 0.013).

– Perceived software quality is in a weak, negative correlation with the number
of employees in software development (r = −0.307, n = 55, p = 0.023).



100 M. Felderer and F. Auer

These two negative correlations indicate that the higher the number of
employees, the lower the perceived software quality is.

4.3 Threats to Validity

In this section we discuss critical threats to validity and how we addressed them.
One critical threat to validity is the limited number of participating software
houses, i.e., 57. Nevertheless by estimating the overall number of software houses
in the DACH region, a precision of 87 % of our results could be reached. To
further increase validity of the results, the questionnaire was triangulated by
interviews and evidence from related studies. Conclusions on correlation were
drawn based on statistical significance.

Furthermore, it has to be mentioned that the study was only conducted in
the DACH region and that the validity of the results is therefore limited to that
region. But due to the facts that similar surveys were initially performed in the
DACH region and then replicated in other regions with similar results [16,17] and
that we could not find significant differences between the results from Germany,
Austria and Switzerland, we think that the survey will deliver similar results in
other regions as well. However, a replication in other regions, which is already
planned as future work, is required to confirm this statement. The questionnaire
itself was constructed based on the experiences of Software Quality Lab and the
involved researchers in conducting surveys as well as academic findings of related
surveys. Furthermore, the questionnaire was refined by internal and external
reviews in several iterations.

5 Conclusion

This paper presented a survey on quality assurance during implementation in
software houses from Germany, Austria and Switzerland. Overall 57 software
houses participated. Results from the survey show that the most common soft-
ware quality assurance techniques used during implementation are unit testing,
code reviews and coding guidelines. Most tool support is used in the areas of bug
tracking, version control and project management. Due to relationships between
the used tool types, it seems that the introduction of one tool leads to the
adoption of several others. We also found that coding guidelines and static code
analysis are often used in environments with continuous integration and version
control. Bug tracking tools are often used in environments in which also static
code analysis, code reviews and unit testing are performed. Bug fixing takes a
significant ratio of the overall project effort assigned to implementation. Fur-
thermore, we found that the more developers a software company has, the more
effort is spent on bug fixing. Finally, more than half of all companies rated the
quality after implementation as rather good to good and there seems to be a neg-
ative correlation between the number of employees and the perceived software
quality.



Software Quality Assurance During Implementation 101

In future, we plan to replicate the survey in other regions and to perform case
studies to investigate in which context (for instance, with respect to the process
model applied) specific quality assurance techniques during implementation are
promising. Based on the results of these empirical studies we plan to derive
practical guidelines to improve quality assurance during implementation.

Acknowledgments. The authors thank Software Quality Lab GmbH and especially
its CEO Johannes Bergsmann for joint operation of this survey as well as all partici-
pating companies, interview partners and colleagues who helped to make this survey
possible.

References

1. Venkitaraman, R.: Software quality assurance. Int. J. Res. Appl. Sci. Eng. Technol.
(IJRASET) 2, 261–264 (2014)

2. ISO, IEC, IEEE: Iso/iec/ieee 24765: 2010 - systems and software engineering -
vocabulary. 418 (2010)

3. Garousi, V., Coşkunçay, A., Betin-Can, A., Demirörs, O.: A survey of software
engineering practices in turkey. J. Syst. Soft. 108, 148–177 (2015)

4. Roebuck, K.: Legacy Application Modernization: High-impact Strategies - What
You Need to Know: Definitions, Adoptions, Impact, Benefits, Maturity, Vendors.
Emereo Publishing, Aspley (2012)

5. Vonken, F., Brunekreef, J., Zaidman, A., Peeters, F.: Software engineering in the
Netherlands: the state of the practice. Technical report, Delft University of Tech-
nology, Software Engineering Research Group (2012)

6. Pérez, J., Puissant, J.P., Mens, T., Kamseu, F., Habri, N.: Software quality prac-
tices in industry-a pilot study in wallonia. University of Mons, Technical report
(2012)

7. Armbrust, O., Ochs, M., Snoek, B.: Stand der praxis von software-tests und deren
automatisierung. Fraunhofer IESE-REPORT NR 93 (2004)

8. Schindler, C.: Agile software development methods and practices in austrian it-
industry: results of an empirical study. In: 2008 International Conference on Com-
putational Intelligence for Modelling Control and Automation, pp. 321–326. IEEE
(2008)

9. Kasunic, M.: Designing an effective survey. Technical report, DTIC Document
(2005)

10. Linaker, J., Sulaman, S.M., Maiani de Mello, R., Höst, M., Runeson, P.: Guidelines
for conducting surveys in software engineering v. 1.0 (2015)

11. On Indicators for the Information Society, W.P: Information economy - sec-
tor definitions based on the internet standard industry classification (isic 4).
DSTI/ICCP/IIS(2006)2/FINAL (2007)

12. Bundesamt, S.: Ikt-branche in deutschland - bericht zur wirtschaftlichen entwick-
lung (2013)

13. Society, I.C: Guide to the Software Engineering Body of Knowledge (SWE-
BOK(R)): Version 3.0. IEEE Computer Society Press (2014)

14. Winter, M., Vosseberg, K., Spillner, A., Haberl, P.: Softwaretest-umfrage 2011-
erkenntnisziele, durchführung und ergebnisse. In: Software Engineering, pp. 157–
168 (2012)



102 M. Felderer and F. Auer

15. Evans, J.D.: Straightforward Statistics for the Behavioral Sciences. Brooks/Cole,
Salt Lake City (1996)

16. Fernandez, D.M., Wagner, S., Kalinowski, M., Schekelmann, A., Tuzcu, A., Conte,
T., Spinola, R., Prikladnicki, R.: Naming the pain in requirements engineering:
comparing practices in Brazil and Germany. IEEE Soft. 5, 16–23 (2015)

17. Kalinowski, M., Felderer, M., Conte, T., Sṕınola, R., Prikladnicki, R., Winkler, D.,
Fernández, D.M., Wagner, S.: Preventing incomplete/hidden requirements: reflec-
tions on survey data from Austria and Brazil. In: Winkler, D., Biffl, S., Bergsmann,
J. (eds.) SWQD 2016. LNBIP, vol. 238, pp. 63–78. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-27033-3 5

http://dx.doi.org/10.1007/978-3-319-27033-3_5

	Software Quality Assurance During Implementation: Results of a Survey in Software Houses from Germany, Austria and Switzerland
	1 Introduction
	2 Related Work
	3 Survey Goal, Design, Distribution, and Analysis
	3.1 Goal and Research Questions
	3.2 Survey Design
	3.3 Survey Distribution
	3.4 Survey Analysis
	3.5 Survey Timeline

	4 Results and Discussion
	4.1 Demographics
	4.2 Main Findings
	4.3 Threats to Validity

	5 Conclusion
	References


