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Abstract. The dominant paradigm for video-based action segmentation
is composed of two steps: first, compute low-level features for each frame
using Dense Trajectories or a Convolutional Neural Network to encode
local spatiotemporal information, and second, input these features into
a classifier such as a Recurrent Neural Network (RNN) that captures
high-level temporal relationships. While often effective, this decoupling
requires specifying two separate models, each with their own complex-
ities, and prevents capturing more nuanced long-range spatiotempo-
ral relationships. We propose a unified approach, as demonstrated by
our Temporal Convolutional Network (TCN), that hierarchically cap-
tures relationships at low-, intermediate-, and high-level time-scales. Our
model achieves superior or competitive performance using video or sen-
sor data on three public action segmentation datasets and can be trained
in a fraction of the time it takes to train an RNN.

1 Introduction

Action segmentation is crucial for numerous applications ranging from collab-
orative robotics to modeling activities of daily living. Given a video, the goal
is to simultaneously segment every action in time and classify each constituent
segment. While recent work has shown strong improvements on this task, mod-
els tend to decouple low-level feature representations from high-level temporal
models. Within video analysis, these low-level features may be computed by
pooling handcrafted features (e.g. Improved Dense Trajectories (IDT) [21]) or
concatenating learned features (e.g. Spatiotemporal Convolutional Neural Net-
works (ST-CNN) [8,12]) over a short period of time. High-level temporal classi-
fiers capture a local history of these low-level features. In a Conditional Random
Field (CRF), the action prediction at one time step is are often a function of
the prediction at the previous time step, and in a Recurrent Neural Network
(RNN), the predictions are a function of a set of latent states at each time step,
where the latent states are connected across time. This two-step paradigm has
been around for decades (e.g., [6]) and typically goes unquestioned. However, we
posit that valuable information is lost between steps.

In this work, we introduce a unified approach to action segmentation that
uses a single set of computational mechanisms – 1D convolutions, pooling, and
channel-wise normalization – to hierarchically capture low-, intermediate-, and
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high-level temporal information. For each layer, 1D convolutions capture how
features at lower levels change over time, pooling enables efficient computation
of long-range temporal patterns, and normalization improves robustness towards
varying environmental conditions. In contrast with RNN-based models, which
compute a set of latent activations that are updated sequentially per-frame, we
compute a set of latent activations that are updated hierarchically per-layer. As
a byproduct, our model takes much less time to train. Our model can be viewed
as a generalization of the recent ST-CNN [8] and is more similar to recent models
for semantic segmentation than it is to models for video-analysis. We show this
approach is broadly applicable to video and other types of robot sensors.

Prior Work: Due to space limitations, here we will only briefly describe models
for time-series and semantic segmentation. See [8] for related work on action
segmentation or [20] for a broader overview on action recognition.

RNNs and CRFs are popular high-level temporal classifiers. RNN variations,
including Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU),
model hidden temporal states via internal gating mechanisms. However, they are
hard to introspect and difficult to correctly train [13]. It has been shown that
in practice LSTM only keeps a memory of about 4 s on some video-based action
segmentation datasets [15]. CRFs typically model pairwise transitions between
the labels or latent states (e.g., [8]), which are easy to interpret, but over-simplify
the temporal dynamics of complex actions. Both of these models suffer from the
same fundamental issue: intermediate activations are typically a function of the
low-level features at the current time step and the state at the previous time
step. Our temporal convolutional filters are a function of raw data across a much
longer period of time.

Until recently, the dominant paradigm for semantic was similar to that of
action segmentation. Approaches typically combined low-level texture features
(e.g., TextonBoost) with high-level spatial models (e.g., grid-based CRFs) that
model the relationships between different regions of an image [7]. This is similar
to action segmentation where low-level spatiotemporal features are used in tan-
dem with high-level temporal models. Recently, with the introduction of Fully
Convolutional Networks (FCNs), the dominant semantic segmentation paradigm
has started to change. Long et al. [11] introduced the first FCN, which leverages
typical classification CNNs like AlexNet, to compute per-pixel object labels. This
is done by intelligently upsampling the intermediate activations in each region
of an image. Our model is more similar to the recent encoder-decoder network
by Badrinarayanan et al. [1]. Their encoder step uses the first half of a VGG-like
network to capture patterns in different regions of an image and their decoder
step takes the activations from the encoder, which are of a reduced image res-
olution, and uses convolutional filters to upsample back to the original image
size. In subsequent sections we describe our temporal variation in detail.

2 Temporal Convolutional Networks (TCN)

The input to our Temporal Convolutional Network can be a sensor signal (e.g.
accelerometers) or latent encoding of a spatial CNN applied to each frame.
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Fig. 1. Our temporal encoder-decoder network hierarchically models actions from video
or other time-series data.

Let Xt ∈ R
F0 be the input feature vector of length F0 for time step t for

1 < t ≤ T . Note that the time T may vary for each sequence, and we denote the
number of time steps in each layer as Tl. The true action label for each frame is
given by yt ∈ {1, . . . , C}, where C is the number of classes.

Our encoder-decoder framework, as depicted in Fig. 1, is composed of tempo-
ral convolutions, 1D pooling/upsampling, and channel-wise normalization layers.

For each of the L convolutional layers in the encoder, we apply a set of 1D
filters that capture how the input signals evolve over the course of an action. The
filters for each layer are parameterized by tensor W (l) ∈ R

Fl×d×Fl−1 and biases
b(l) ∈ R

Fl , where l ∈ {1, . . . , L} is the layer index and d is the filter duration. For
the l-th layer of the encoder, the i-th component of the (unnormalized) activation
Ê

(l)
t ∈ R

Fl is a function of the incoming (normalized) activation matrix E(l−1) ∈
R

Fl−1×Tl−1 from the previous layer

Ê
(l)
i,t = f(b(l)i +

d∑

t′=1

〈W (l)
i,t′,·, E

(l−1)
·,t+d−t′〉) (1)

for each time t where f(·) is a Leaky Rectified Linear Unit. The normalization
process is described below.

Max pooling is applied with width 2 across time (in 1D) such that Tl =
1
2Tl−1.1 Pooling enables us to efficiently compute activations over a long period
of time.
1 In theory, this implies T must divisible by 2L. In practice, we pad each sequence to

be of an appropriate length, given the pooling operations, such that the input length
of the whole sequence, T , and the length of the output predictions are the same.
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We apply channel-wise normalization after each pooling step in the encoder.
This has been effective in recent CNN methods including Trajectory-Pooled
Deep-Convolutional Descriptors (TDD) [10]. We normalize the pooled activation
vector Ê

(l)
t by the highest response at that time step, m = maxi Ê

(l)
i,t , with some

small ε = 1e-5 such that

E
(l)
t =

1
m + ε

Ê
(l)
t . (2)

Our decoder is similar to the encoder, except that upsampling is used instead
of pooling, and the order of the operations is now upsample, convolve, then
normalize. Upsampling is performed by simply repeating each entry twice.

The probability that frame t corresponds to one of the C action classes is
given by vector Ŷt ∈ [0, 1]C using weight matrix U ∈ R

C×F0 and bias c ∈ R
C

Ŷt = softmax(UD
(1)
t + c). (3)

We explored many other mechanisms, such as adding skip connections
between layers, using different patterns of convolutional layers, and other normal-
ization schemes. These helped at times and hurt in others. The aforementioned
solution was superior in aggregate.

Implementation Details: Each of the L = 3 layers has Fl = {32, 64, 96}
filters. Filter duration, d, is set as the mean segment duration for the shortest
class from the training set. For example, d = 10 s for 50 Salads. Parameters of
our model were learned using the cross entropy loss with Stochastic Gradient
Descent and ADAM step updates. All models were implemented using Keras
and TensorFlow.

For each frame in our video experiments, the input, Xt, is the first fully
connected layer computed in a spatial CNN trained solely on each dataset. We
trained the model of [8], except instead of using Motion History Images (MHI) as
input to the CNN, we concatenate the following for image It at frame t: [It, It−d−
It, It+d−It, It−2d−It, It+2d−It] for d = 0.5 s. In our experiments, these difference
images – which can be viewed as a simple type of attention mechanism – tend
to perform better than MHI or optical flow across these datasets. Furthermore,
for each time step, we perform channel-wise normalization before feeding it into
the TCN. This helps with large environmental fluctuations, such as changes in
lighting.

3 Evaluation

We evaluate on three public datasets that contain action segmentation labels,
video, and in two cases sensor data.

University of Dundee 50 Salads [18] contains 50 sequences of users making a
salad. Each video is 5–10 min in duration and contains around 30 action instances
such as cutting a tomato or peeling a cucumber. This dataset includes video
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and synchronized accelerometers attached to ten objects in the scene, such as
the bowl, knife, and plate. We performed cross validation with 5 splits on the
“eval” action granularity which includes 10 action classes. Our sensor results
used the features from [9] which are the absolute values of accelerometer values.
Previous results (e.g., [9,14]) were evaluated using different setups. For example,
[9] smoothed out short interstitial background segments. We reran all results to
be consistent with [14]. We also included an LSTM baseline for comparison which
uses 64 hidden states.

JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [5]
was introduced to improve quantitative evaluation of robotic surgery training
tasks. We used Leave One User Out cross validation on the suturing activity,
which consists of 39 sequences performed by 8 users about 5 times each. The
dataset includes video and synchronized robot kinematics (position, velocity, and
gripper angle) for each robot end effector as well as corresponding action labels
with 10 action classes. Sequences are a few minutes long and typically contain
around 20 action instances.

Georgia Tech Egocentric Activities (GTEA) [4] contains 28 videos of 7
kitchen activities including making a sandwich and making coffee. For each of
the four subjects, there is one instance of each activity. The camera is mounted
on the head of the user and is pointing at the area in front them. On average
there are about 30 actions per video and videos are around a minute long. We
used the 11 action classes defined in [3] and evaluated using leave one user out.
We show results for user 2 to be consistent with [3] and [16].

Metrics: We evaluated using accuracy, which is simply the percent of cor-
rectly labeled frames, and segmental edit distance [9], which measures the cor-
rectness of the predicted temporal ordering of actions. This edit score is com-
puted by applying the Levenshtein distance to the segmented predictions (e.g.
AAABBA → ABA). This is normalized to be in the range 0 to 100 such that
higher is better.

4 Experiments and Discussion

Table 1 includes results for all datasets and corresponding sensing modalities.
We include results from the spatial CNN which is input into the TCN, the
Spatiotemporal CNN of Lea et al. [8] applied to the spatial features, and our
TCN.

One of the most interesting findings is that some layers of convolutional filters
appear to learn temporal shifts. There are certain actions in each dataset which
are not easy to distinguish given the sensor data. By visualizing the activations
for each layer, we found our model surmounts this issue by learning temporal
offsets from activations in the previous layer. In addition, we find that despite
the fact that we do not use a traditional temporal model, such as an RNN or
CRF, our predictions do not suffer as heavily from issues like over-segmentation.
This is highlighted by the large increase in edit score on most experiments.
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Table 1. Results on 50 Salads, Georgia Tech Egocentric Activities, and JHU-ISI Ges-
ture and Skill Assessment Working Set. Notes: (1) Results using VGG and Improved
Dense Trajectories (IDT) were intentionally computed without a temporal component
for ablative analysis, hence their low edit scores. (2) We re-computed [9] using the
author’s public code to be consistent with the setup of [14].

50 Salads (“eval” setup)
Sensor-based Edit Acc
LC-SC-CRF [9] 50.2 77.8
LSTM 54.5 73.3
TCN 65.6 82.0
Video-based Edit Acc
VGG [8] 7.6 38.3
IDT [8] 16.8 54.3
Seg-ST-CNN [8] 62.0 72.0
Spatial CNN 28.4 68.6
ST-CNN 55.5 74.2
TCN 61.1 74.4

GTEA
Video-based Edit Acc
Hand-crafted [3] - 47.7
EgoNet [16] - 57.6
TDD [16] - 59.5
EgoNet+TDD [16] - 68.5
Spatial CNN 36.6 56.1
ST-CNN 53.4 64.5
TCN 58.8 66.1

JIGSAWS
Sensor-based Edit Acc
LSTM [2] 75.3 80.5
LC-SC-CRF [9] 76.8 83.4
Bidir LSTM[2] 81.1 83.3
SD-SDL[17] 83.3 78.6
TCN 85.8 79.6
Vision-based Edit Acc
MsM-CRF [19] - 71.7
IDT [8] 8.5 53.9
VGG [8] 24.3 45.9
Seg-ST-CNN [8] 66.6 74.7
Spatial CNN 37.7 74.0
ST-CNN 68.0 77.7
TCN 83.1 81.4

Richard et al. [14] evaluated their model on the mid-level action granularity
of 50 Salads which has 17 action classes. Their model achieved 54.2 % accuracy,
44.8 % edit, 0.379 mAP IoU overlap with a threshold of 0.1, and 0.229 mAP
with a threshold of 0.5.2 Our model achieves 59.7 % accuracy, 47.3 % edit, 0.579
mAP at 0.1, and 0.378 mAP at 0.5.

On GTEA, Singh et al. [16] reported 64.4 % accuracy by performing cross
validation on users 1 through 3. We achieve 62.5 % using this setup. We found
performance of our model has high variance between different trials on GTEA–
even with the same hyper parameters – thus, the difference in accuracy is not
likely to be statistically significant. Our approach could be used in tandem with
features from Singh et al.to achieve superior performance.

Our model can be trained much faster than an RNN-LSTM. Using an Nvidia
Titan X, it takes on the order of a minute to train a TCN for each split, whereas
it takes on the order of an hour to train an RNN-LSTM. The speedup comes
from the fact that we compute one set of convolutions for each layer, whereas
RNN-LSTM effectively computes one set of convolutions for each time step.

Conclusion: We introduced a model for action segmentation that learns a hier-
archy of intermediate feature representations, which contrasts with the tradi-
tional low- versus high-level paradigm. This model achieves competitive or supe-
rior performance on several datasets and can be trained much more quickly than
other models. A future version of this manuscript will include more comparisons
and insights on the TCN.

2 We computed our metrics using the predictions given by the authors.
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