
Lightweight Unsupervised Domain Adaptation
by Convolutional Filter Reconstruction

Rahaf Aljundi(B) and Tinne Tuytelaars

ESAT-PSI - iMinds, KU Leuven, Leuven, Belgium
Rahaf.aljundi@esat.kuleuven.be

Abstract. Recently proposed domain adaptation methods retrain the
network parameters and overcome the domain shift issue to a large
extent. However, this requires access to all (labeled) source data, a
large amount of (unlabeled) target data, and plenty of computational
resources. In this work, we propose a lightweight alternative, that allows
adapting to the target domain based on a limited number of target sam-
ples in a matter of minutes. To this end, we first analyze the output of
each convolutional layer from a domain adaptation perspective. Surpris-
ingly, we find that already at the very first layer, domain shift effects
pop up. We then propose a new domain adaptation method, where first
layer convolutional filters that are badly affected by the domain shift are
reconstructed based on less affected ones.

1 Introduction

In recent years, great advances have been realized towards image understanding
in general and object recognition in particular, thanks to end-to-end learning of
convolutional neural networks, seeking the optimal representation for the task at
hand. Unfortunately, performance remarkably decreases when taking the trained
algorithms and systems out of the lab and into the real world of practical appli-
cations. This is known in the literature as the domain shift problem. The default
solution is to retrain or finetune the system using additional training data, mim-
icking as close as possible the conditions during testing. However, such large
labeled data is not always available.

Overcoming this domain shift problem without additional annotated data
is the main goal of unsupervised domain adaptation. State-of-the-art methods
for unsupervised domain adaptation of deep neural network architectures such
as Domain Adversarial Training of Neural Networks(DANN) [1] and Learning
Transferable Features with Deep Adaptation Networks (DAN) [2] proceed by
adding new layers to the deep network or learning a joint architecture in order
to come up with representations that are more general and informative across
the source and target domains.

However, in spite of their good results on various benchmarks, these methods
seem to be of limited value in a practical application. Indeed, deep adaptation
methods require access to all the source data, a lot of computation time, a lot of
resources, and a lot of unlabeled target data. This is in contrast to the typical
c© Springer International Publishing Switzerland 2016
G. Hua and H. Jégou (Eds.): ECCV 2016 Workshops, Part III, LNCS 9915, pp. 508–515, 2016.
DOI: 10.1007/978-3-319-49409-8 43

Lightweight Unsupervised DA by Convolutional Filter Reconstruction 509

domain adaptation setting, where we want networks trained on big datasets such
as Imagenet to be readily usable by different users and in a variety of settings.

So instead, we advocate the need for light-weight domain adaptation schemes,
that require only a small number of target samples and can be applied quickly
without heavy requirements on available resources, in an on-the-fly spirit. Using
only a few samples, such a system could adapt to new conditions at regular time
intervals, making sure the models are well adapted to the current conditions.
The simpler sub-space based domain adaptation methods developed earlier for
shallow architectures [3–5] seem good candidates for this setting. Unfortunately,
when applied to the last fully connected layer of a standard convolutional neural
network, they yield minimal improvement [6,7]. However, the last layer might
not be the best place to perform domain adaptation (DA). In this work, we start
by analyzing the different layers of a deep network from a domain adaptation
perspective. First, we show that domain shift does not only affect the last layers
of the network, but can already manifest itself as early as the very first layer.
Second, we show that the filters exhibit different behavior in terms of domain
shift: while some filters result in a largely domain invariant representation, oth-
ers lead to very different filter responce distributions for the source and target
data. Based on this analysis, we propose a new light-weight domain adaptation
method, focusing just on the first layer of the network.

2 Analysis of Domain Shift in the Context of Deep
Learning

Deep adaptation methods typically assume that the first layers are generic and
need no adaptation, while the last layers are more specific to the dataset used for
training and thus sensitive to the shift between the two domains. Therefore, most
adaptation methods tend to adapt only the last layers and freeze the first lay-
ers [2,8]. This assumption is based on the fact that the first layers mainly detect
colors, edges, textures, etc. - features that are generic to all domains. On the
other hand, in the last layers we can see high level information about the objects,
which might be domain-specific. However, even if the feature extraction method
is generic, the features may still convey information about the domain. This is
indeed what one would expect for features that are not trained to be domain
invariant. To understand how the domain shift evolves through the different lay-
ers, we perform an analysis of the output of each layer using Alexnet [9]. We
use the standard adaptation benchmark, the Office dataset [10], specifically the
two sets Amazon (A) and Webcam (W). This setup resembles the typical case of
domain adaptation where the datasets are gathered from different resources. In
addition, to study the low level shift, we created a gray scale set that contains
the same images as in the Amazon dataset but converted to gray scale. We call
it Amazon-Gray (AG). We consider two adaptation cases: A→AG and A→W.
We start by fine-tuning AlexNet on the Amazon dataset (the source). Then,
we consider each convolutional layer as an independent feature extraction step.
Each layer is composed of a set of filter maps. We consider one filter from one

510 R. Aljundi and T. Tuytelaars

conv1 conv2 conv3 conv4 conv5

A-W

A-AG

95%

60%

70%

35%

Fig. 1. The histograms of the filters’ H-divergences for different layers.

layer at a time, and consider, for this analysis, the corresponding filter map as
our feature space. Each instance (image) is a point in that space. For example,
the first convolutional layer is composed of 96 filter maps, each of size [55× 55].
We reshape each [55 × 55] filter map into a feature vector of length 3025 and
consider this the feature representation of the image.

To quantify the domain shift, we study the H-divergence [11] w.r.t. each
layer/filter and using linear SVM as our hypothesis. In Fig. 1, we show the his-
tograms of the filters’ H-divergences w.r.t. each layer regarding the two study
cases A→W and A→AG. We encode the value of the H-divergence by the color
where blue indicates a low H-divergence (= “good” filters) while red indicates a
high H-divergence (= “bad” filters).

Discussion. From Fig. 1, we can conclude that, in contrast to common belief,
the first layers are susceptible to domain shift even more than the later layers
(i.e., the distributions of the source and target filter outputs show bigger dif-
ferences in feature space, resulting in larger H-divergence scores). Indeed, the
filters of the first layers are similar to HOG, SURF or SIFT (edge detectors,
color detectors, texture, etc.); they are generic w.r.t. different datasets, i.e. they
give representative information regardless of the dataset. However, this informa-
tion also conveys the specific characteristics of the dataset and thus the dataset
bias. As a result, when the rest of the network processes this output, it will be
affected by the shown bias, causing a degradation in performance.

Especially in the first layer of the convolutional neural network, we see large
differences between different filters while in later layers the H-divergence of the
filters follows a normal distribution as their input is affected by the domain shift
in some of the first layer filters and thus it is harder to find non affected filters
in later layers. Based on this analysis of the domain bias over different layers,
we believe that a good solution of the domain adaptation problem should start
from the first layers in order to correct each shift at the right level rather than
waiting till the last layer and then trying to match the two feature spaces.

Our DA Strategy. Based on these findings we suggest: (1) to compute the
divergence of the two datasets with respect to each filter as a measure for how
good each filter is, and (2) since the filters of a convolutional layer are often
correlated, to re-estimate the response map of the filters that are affected by
the domain shift using those filters that are not. Here the goal is to obtain a
new response map that resembles more the response of a source image for the

Lightweight Unsupervised DA by Convolutional Filter Reconstruction 511

affected filters. Instead of applying a threshold to decide on a set of good filters
and bad filters and use the former set to re-estimate the later which might not
be correlated and thus not optimal, we decide which filters to reconstruct and
which to use for their reconstruction in one step using a Lasso based optimization
problem. Below, we first explain the divergence measure and then proceed to the
core of the proposed method.

Divergence Measure. Instead of using the H-divergence that will add an extra
cost due the need to train a domain classifier and also the need to have access to
sufficient amount of data, we use the KL-divergence [12,13] which is a measure
of the difference between two probability distributions, in our case the source
distribution PS and the target distribution PT . We estimate the probability
distribution of the filter response given a small subset of the source data as
input and likewise for the target data.

Filter Selection. As we explained before, we want to find the affected filters
and the ones to be used in their reconstruction in one step. For that purpose we
put each filter under a sanity check where we try to select the set of filters to be
used in a regression function that predicts its output. Here, we do not consider
the entire filter map, but rather the filter response at each point of the filter map
separately, where, given the response of the other filters at this point we want to
predict the current response. We use (a subset of) the source data as our training
set. Going back to the literature, feature selection for regression has been studied
widely. Lasso [14] and Elastic net [15] have shown good performance. We favor
Lasso as it introduces the sparsity which is essential in our case to select as few
and effective filters as possible. Having the response fy and the set of predictors
fx, the main equation of Lasso can be written as follows:

B∗ = argminB{
n∑

i=1

(fyi
− β0 −

p∑

j=1

fjxi
βj)2 + λ

p∑

j=1

|βj |} (1)

where β0 is the residual, B = {βj} the estimated coefficients, n the number of
source samples, p the number of filters, and λ a tuning parameter to control the
amount of shrinkage needed. Clearly, if we have the response itself as a choice
in the filters set, it will be directly selected as it is the most correlated with the
output (i.e. itself). What we need to do next is to insert our additional selection
criterion, i.e. the KL-divergence, where for each filter fj , we have computed a KL
divergence value, ΔKL

j . We will use this divergence value to guide the selection
procedure. This can be achieved by simply plugging the ΔKL

j value in the L1

norm regularization as follows:

B∗ = argminB{
n∑

i=1

(fyi
− β0 −

p∑

j=1

fjxi
βj)2 + λ

p∑

j=1

|ΔKL
j · βj |} (2)

Solving this optimization problem, we obtain the weights vector B∗, with a
weight β∗

j for each filter fj , including the filter we try to reconstruct. If the filter
in hand has a non-zero weight, that means it is considered a good filter and we

512 R. Aljundi and T. Tuytelaars

will keep its value. On the other hand, if the filter has zero weight then it will
be marked for reconstruction and its set of filters with non-zero weights are used
for this purpose.

Reconstruction. After selecting the set of filters to be used for reconstruction
{fb}, we use the linear regression method to predict the filter output fby given
the responses of the selected filters. The linear regression is in its turn simple
and efficient to compute. As a result, we obtain the final set of coefficients Bb

for each bad filter fb.

Prediction. At test time we receive a target sample xt. We pass it through the
first layer and obtain the response of each filter map. Then, for each bad filter fb,
we use the responses of the selected set of filters to predict a source like response
given the coefficients Bb. After that, we pass the reconstructed data to the next
layer up to prediction.

3 Experiments

3.1 Setup and Datasets

Office Benchmark [10]: we use three sets of samples: Webcam (W), DSLR (D)
and Amazon (A). In addition, we use the gray scale version of the Amazon data
(AG). The main task is object recognition. We use Alexnet [9] pretrained on
Imagenet and fine-tuned on the Amazon data. We deal with three adaptation
problems: A → AG, A → W and A → D. We do not consider D↔W, as with
deep features the shift between the two sets is minimal.

Synthetic Traffic Signs → Dark Illumination (Syn→Dark): to imitate the
real life condition, we train a traffic signs recognition network [16] on synthetic
traffic signs [17] and test it on extreme dark cases that we extract from GSTRB
[18]. In all experiments we used 10 % of the target dataset as our available target
samples and retain only 1 % of the source for the adaptation purpose.

Baselines: We compare with the following baselines: No adaptation(NA)
by testing the network fine-tuned on the source dataset directly on the target
set without adaptation. DDC [8] adapts the last layer of AlexNet. Subspace
Alignment(SA)[3] is a simple method, yet shows good performance. To make
a fair comparison, we take the activations of the last fully connected layer before
the classification layer and use them as features for this baseline. We perform the
subspace alignment and retrain an SVM with a linear kernel on the aligned source
data, then use the learned classifier to predict the labels of the target data. We
also show the result of the SVM classifier trained on the source features before
alignment(SVM-fc). We don’t compare with deep DA methods such as DAN
and DANN as they are not lightweight and don’t fir our specifications.

Lightweight Unsupervised DA by Convolutional Filter Reconstruction 513

3.2 Results and Discussion

Table 1 shows the results achieved by different methods. In spite of the method’s
simplicity and the fact that it is just active on the first layer, we systematically
improve over the raw performance obtained without domain adaptation. In the
case of low level shift (Syn-Dark and in Amazon-Gray), the method adapts by
anticipating the color information of the target dataset, i.e. reconstructing the
color filters. In the case of Amazon-Webcam and Amazon-DSLR, the method
tries to ignore the background of Webcam and DSLR datasets that is different
from the white background in Amazon dataset. Of course in this case there is
also a high level shift that can be corrected by adapting the last layer features.
In Fig. 2 we show a filter reconstruction example from Amazon-Gray target set
where we have the original color image from Amazon and also each filter output
which serves as a reference. The method also outperforms the DDC [8] which is
dedicated to correct the shift at the last layer only as well as SA [3] where the
method improvement was moderate.

Table 1. Recognition accuracies of our method and the baselines

Method A→W A→D A→AG Syn→Dark

CNN(NA) 60.5 65.8 94.8 75.0

DDC [8] 61.8 64.4 - -

SVM-fc(NA) 60.5 61.5 95.0 74.0

SA 61.8 61.5 95.2 76.1

Filter reconstruction (Our) 62.0 67.2 97.0 80.0

Fig. 2. From left to right: a sample image from Amazon, the corresponding gray image,
the output of a bad filter w.r.t. the color image, the output of the same bad filter w.r.t.
the gray image and the reconstructed output. (Color figure online)

4 Conclusion

In this work, we aim to push the limits of unsupervised domain adaptation
methods to settings where we have few samples and limited resources to adapt,
both in terms of memory and time. To this end, we perform an analysis of the
output of a deep network from a domain adaptation point of view. We deduce

514 R. Aljundi and T. Tuytelaars

that even though filters of the first layer seem relatively generic, domain shift
issues already manifest themselves at this early stage. Therefore, we advocate
that the adaptation process should start from the early layers rather than just
adapting the last layer features, as is often done in the literature. Guided by
this analysis, we propose a new method that corrects the low level shift without
retraining the network. The proposed method is suitable when moving a system
to a new environment and can be seen as a preprocessing step that requires just
a few images to be functional.

Acknowledgment. This work was supported by the FWO project “Representations
of and algorithms for the captation, visualization and manipulation of moving 3D
objects, subjects and scenes”. The first author PhD is funded by the FWO scholarship.

References

1. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J.
Mach. Learn. Res. 17(59), 1–35 (2016)

2. Long, M., Wang, J.: Learning transferable features with deep adaptation networks.
CoRR abs/1502.02791, 1, 2 (2015)

3. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual
domain adaptation using subspace alignment. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 2960–2967 (2013)

4. Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: discrimi-
natively learning domain-invariant features for unsupervised domain adaptation.
In: Proceedings of The 30th International Conference on Machine Learning, pp.
222–230 (2013)

5. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition:
an unsupervised approach. In: 2011 IEEE International Conference on Computer
Vision (ICCV), pp. 999–1006. IEEE (2011)

6. Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T.: A deeper look at dataset
bias. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp.
504–516. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24947-6 42

7. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell,
T.: DeCAF: a deep convolutional activation feature for generic visual recognition.
arXiv preprint arXiv:1310.1531 (2013)

8. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

10. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category mod-
els to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15561-1 16

11. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F., et al.: Analysis of represen-
tations for domain adaptation. Adv. Neural Inf. Process. Syst. 19, 137 (2007)

12. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Statist.
22(1), 79–86 (1951)

http://dx.doi.org/10.1007/978-3-319-24947-6_42
http://arxiv.org/abs/1310.1531
http://arxiv.org/abs/1412.3474
http://dx.doi.org/10.1007/978-3-642-15561-1_16
http://dx.doi.org/10.1007/978-3-642-15561-1_16

Lightweight Unsupervised DA by Convolutional Filter Reconstruction 515

13. Kullback, S.: Letter to the editor: the kullback-leibler distance (1987)
14. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.:

Ser. B (Methodol.) 58, 267–288 (1996)
15. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.

Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)
16. Cireşan, D., Meier, U., Masci, J., Schmidhuber, J.: Multi-column deep neural net-

work for traffic sign classification. Neural Netw. 32, 333–338 (2012)
17. Moiseev, B., Konev, A., Chigorin, A., Konushin, A.: Evaluation of traffic sign recog-

nition methods trained on synthetically generated data. In: Blanc-Talon, J., Kasin-
ski, A., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol.
8192, pp. 576–583. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02895-8 52

18. Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale convolutional
networks. In: The 2011 International Joint Conference on Neural Networks
(IJCNN), pp. 2809–2813. IEEE (2011)

http://dx.doi.org/10.1007/978-3-319-02895-8_52

	Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction
	1 Introduction
	2 Analysis of Domain Shift in the Context of Deep Learning
	3 Experiments
	3.1 Setup and Datasets
	3.2 Results and Discussion

	4 Conclusion
	References

