3D Human Pose Estimation Using Convolutional
Neural Networks with 2D Pose Information

Sungheon Park, Jihye Hwang, and Nojun Kwak®™)
Graduate School of Convergence Science and Technology,
Seoul National University, Seoul, Korea
{sungheonpark,nojunk}@snu.ac.kr,
hjh881120@gmail.com

Abstract. While there has been a success in 2D human pose estimation
with convolutional neural networks (CNNs), 3D human pose estimation
has not been thoroughly studied. In this paper, we tackle the 3D human
pose estimation task with end-to-end learning using CNNs. Relative 3D
positions between one joint and the other joints are learned via CNNs.
The proposed method improves the performance of CNN with two novel
ideas. First, we added 2D pose information to estimate a 3D pose from
an image by concatenating 2D pose estimation result with the features
from an image. Second, we have found that more accurate 3D poses are
obtained by combining information on relative positions with respect
to multiple joints, instead of just one root joint. Experimental results
show that the proposed method achieves comparable performance to the
state-of-the-art methods on Human 3.6m dataset.

Keywords: Human pose estimation - Convolutional neural network -
2D-3D joint optimization

1 Introduction

Both 2D and 3D human pose recovery from images are important tasks since
the retrieved pose information can be used to other applications such as action
recognition, crowd behavior analysis, markerless motion capture and so on. How-
ever, human pose estimation is a challenging task due to the dynamic variations
of a human body. Various skin colors and clothes also make the estimation dif-
ficult. Especially, pose estimation from a single image requires a model that is
robust to occlusion and viewpoint variations.

Recently, 2D human pose estimation achieved a great success with convolu-
tional neural networks (CNNs) [1-3]. Strong representation power and the ability
to disentangle underlying factors of variation are characteristics of CNNs that
enable learning discriminative features automatically [4] and show superior per-
formance to the methods based on hand-crafted features. On the other hands,
3D human pose estimation using CNNs has not been studied thoroughly com-
pared to the 2D cases. Estimating a 3D human pose from a single image is more
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challenging than 2D cases due to the lack of depth information. However, CNN
can be a powerful framework for learning discriminative image features and esti-
mating 3D poses from them. In the case where the target object is fixed such
as human body, it is able to learn useful features directly from images without
keypoint matching step in the typical 3D reconstruction tasks.

Though recent algorithms that are based on CNNs for 3D human pose esti-
mation have been proposed [5-7], they do not make use of 2D pose information
which can provide additional information for 3D pose estimation. From 2D pose
information, undesirable 3D joint positions which generate unnatural human
pose may be discarded. Therefore, if the information that contains the 2D posi-
tion of each joint in the input image is used, the results of 3D pose estimation
can be improved.

In this paper, we propose a simple yet powerful 3D human pose estimation
framework based on the regression of joint positions using CNNs. We introduce
two strategies to improve the regression results from the baseline CNNs. Firstly,
not only the image features but also 2D joint classification results are used as
input features for 3D pose estimation. This scheme successfully incorporates the
correlation between 2D and 3D poses. Secondly, rather than estimating relative
positions with respect to only one root joint, we estimated the relative 3D posi-
tions with respect to multiple joints. This scheme effectively reduces the error of
the joints that are far from the root joint. Experimental results validate the pro-
posed framework significantly improves the baseline method and achieves com-
parable performance to the state-of-the-art methods on Human 3.6m dataset [§]
without utilizing the temporal information.

The rest of the paper is organized as follows. Related works are reviewed
in Sect.2. The structure of CNNs used in this paper and two key ideas of our
method, (1) the integration of 2D joint classification results into 3D pose estima-
tion and (2) multiple 3D pose regression from various root nodes, are explained
in Sect. 3. Details of implementation and training procedures are explained in
Sect. 4. Experimental results are illustrated in Sect. 5, and finally conclusions are
made in Sect. 6.

2 Related Work

Human pose estimation has been a fundamental task since early computer vision
literature, and numerous researches have been conducted on both 2D and 3D
human pose estimation. In this section, we will cover both 2D and 3D human
pose estimation methods focusing on the CNN-based methods.

Early works for 2D human pose estimation which are based on deformable
parts model [9], pictorial structure [10-12], or poselets [13] train the relationship
between body appearance and body joints using hand-crafted features. Recently
proposed CNN based methods drastically improve the performance over the
previous hand-crafted feature based methods. DeepPose [1] used CNN-based
structure to regress joint locations with multiple iterations. Firstly, it predicts
an initial pose using holistic view and refine the currently predicted pose using
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relevant parts of the image. Fan et al. [14] integrated both the local part appear-
ance and the holistic view of an image using dual-source CNN. Convolutional
pose machine [3] is a systematic approach to improve prediction of each stage.
Each stage operates a CNN which accepts both the original image and confi-
dence maps from preceding stages as an input. The performance is improved
by combining the joint prediction results from the previous step with features
from CNN. Carreira et al. [2] proposed a self-correcting method by a top-down
feedback. It iteratively learns a human pose using a self-correcting CNN model
which gradually improves the initial result by feeding back error predictions. Chu
et al. [15] proposed an end-to-end learning system which captures the relation-
ships among feature maps of joints. Geometrical transform kernels are introduced
to learn features and their relationship jointly.

Similar to the 2D case, early stage of 3D human pose estimation is also
based on the low-level features such as local shape context [16] or segmentation
results [17]. With the extracted features, 3D pose estimation is formulated as a
regression problem using relevance vector machines [16], structured SVMs [17],
or random forest classifiers [18]. Recently, CNNs have drew a lot of attentions
also for the 3D human pose estimation tasks. Since search space in 3D is much
larger than 2D image space, 3D human pose estimation is often formulated as
a regression problem rather than a classification task. Li and Chan [5] firstly
used CNNs to learn 3D human pose directly from input images. Relative 3D
position to the parent joint is learned by CNNs via regression. They also used
2D part detectors of each joints in a sliding window fashion. They found that loss
function which combines 2D joint classification and 3D joint regression helps to
improve the 3D pose estimation results. Li et al. [6] improved the performance of
3D pose estimation by integrating a structured learning framework into CNNs.
Recently, Tekin et al. [7] proposed a structured prediction framework which
learns 3D pose representations using an auto-encoder. Temporal information
from video sequences also helps to predict more accurate pose estimation result.
Zhou et al. [19] used the result of 2D pose estimation to reconstruct a 3D pose.
They represented a 3D pose as a weighted sum of shape bases similar to typical
non-rigid structure from motion, and they designed an EM-algorithm which
formulates the 3D pose as a latent variable when 2D pose estimation results are
available. The method achieved the state-of-the-art performance for 3D human
pose estimation when combined with 2D pose predictions learned from CNN.
Tekin et al. [20] used multiple consecutive frames to build a spatio-temporal
features, and the features are fed to a deep neural network regressor to estimate
the 3D pose.

The method proposed in this paper aims to provide an end-to-end learning
framework to estimate 3D structure of a human body from a single image. Similar
to [5], 3D and 2D pose information are jointly learned in a single CNN. Unlike
the previous works, we directly propagate the 2D classification results to the
3D pose regressors inside the CNNs. Using additional information such as 2D
classification results and the relative distance from multiple joints, we improve
the performance of 3D human pose estimation over the baseline method.
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Fig. 1. The baseline structure of CNN used in this paper. Convolutional and pooling
layers are shared for both 2D and 3D losses, and the losses are attached to different
fully connected layers.

3 3D-2D Joint Estimation of Human Body Using CNN

The task of 3D human pose estimation is defined as predicting the 3D joint
positions of a human body. Specifically, we estimate the relative 3D position
of each joint with respect to the root joint. The number of joints N; is set to
17 in this paper according to the dataset used in the experiment. The key idea
of our method is to train CNN which performs 3D pose estimation using both
image features from the input image and 2D pose information retrieved from
the same CNN. In other words, the proposed CNN is trained for both 2D joint
classification and 3D joint regression tasks simultaneously. Details of each part
is explained in the following subsections.

3.1 Structure of the Baseline CNN

The CNN used in this experiment consists of five convolutional layers, three
pooling layers, two parallel sets of two fully connected layers, and loss layers for
2D and 3D pose estimation tasks. The CNN accepts a 225 x 225 sized image as
an input. The sizes and the numbers of filters as well as the strides are specified
in Fig.1. The filter sizes of convolutional and pooling layers are the same as
those of ZFnet [21], but we reduced the number of feature maps to make the
network smaller.

Joint optimization using both 3D and 2D information helps CNN to learn
more meaningful features than the optimization using 3D regression alone. Li
et al. [5] trained a CNN both for 2D joint detection task and for 3D pose regres-
sion task. Since both tasks share the same convolutional layers, features that are
useful for estimating both 2D and 3D positions of joints in an image are learned
in convolutional layers. Following the idea, we also used both 2D and 3D loss
functions in the CNN. Convolutional layers are shared, and the feature maps
after the last pooling layer are connected to two different fully connected layers,
each of which is connected to 2D loss function and 3D loss function respectively
(See Fig.1).

We formulated 2D pose estimation as a classification problem. For the 2D
classification task, we divided an input image into Ny X N, grids and treat each
grid as a separate class, which results in V. 92 classes per joint. The ground truth
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label is assigned in accordance with the ground truth position of each joint.
When the ground truth joint position is near the boundary of a grid, zero-one
labeling that is typically used for multi-class classification may give unprecise
information. Therefore, we used a soft label which assigns non-zero probability
to the four nearest neighbor grids from the ground truth joint position. The
target probability for the ith grid g; of the jth joint is inversely proportional to
the distance from the ground truth position, i.e.,

d_l(ij ci)I(g:)
Zk q1 d=1(§;,ck)I(gk)

where d~!(x,y) is the inverse of the Euclidean distance between the point x and
y in the 2D pixel space, §; is the ground truth position of the jth joint in the
image, and c; is the center of the grid ¢;. I(g;) is an indicator function that is
equal to 1 if the grid g; is one of the four nearest neighbors, i.e.,

1 if d(yj, Ci) < Wy
I(g;) = 2
(9:) {O otherwise, @)

pi(g:) = (1)

where wy is the width of a grid. Hence, higher probability is assigned to the
grid closer to the ground truth joint position, and p;(g;) is normalized so that
the sum of the class probabilities is equal to 1. Finally, the objective of the 2D
classification task for the jth joint is to minimize the following cross entropy loss
function.
Ny
Lap(j) =— Zﬁj (9:) log p;(9:), 3)
i=1
where p;(g;) is the probability that comes from the softmax output of the CNN.
On the other hand, estimating 3D position of joints is formulated as a regres-
sion task. Since the search space is much larger than the 2D case, it is undesir-
able to solve 3D pose estimation as a classification task. The 3D loss function is
designed as a square of the Euclidean distance between the prediction and the
ground truth. We estimate 3D position of each joint relative to the root node.
Hence, the loss function for the jth joint when the root node is the rth joint

becomes )

; (4)
where Rj is the predicted relative 3D position of the jth joint from the root
node, jj is the ground truth 3D position of the jth joint, and J. is that of

the root node. The overall cost function of the CNN combines (3) and (4) with
weights, i.e.,

Lsp(j,r) = HRJ — (J5—Jr)

N; N,
Lau=X2p Y L2p(j) +Xsp ¥ _ Lsp(j,7). (5)

J=1 J#r
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Fig. 2. Structure of fully connected layers and loss functions in the proposed CNN. The
numbers in parentheses indicate the dimensions of the corresponding output feature
vectors.

3.2 3D Joint Regression with 2D Classification Features

In the baseline architecture in Fig. 1, 2D and 3D losses are separated with differ-
ent fully connected layers. Though convolutional layers learn features relevant to
both 2D and 3D pose estimation thanks to the shared convolutional layers, the
probability distribution that comes from 2D classification may give more stable
and meaningful information in estimating 3D pose. The joint locations in an
image are usually a strong cue for guessing 3D pose. To exploit 2D classification
result as a feature for the 3D pose estimation, we concatenate the outputs of
softmax in the 2D classification task with the outputs of the fully connected
layers in the 3D loss part. The proposed structure after the last pooling layer
is shown in Fig. 2. First, the 2D classification result is concatenated (probs 2D
layer in Fig. 2) and passes the fully connected layer (fc probs 2D). Then, the fea-
ture vectors from 2D and 3D part are concatenated (fc 2D-3D), which is used
for 3D pose estimation task. Note that the error from the fc probs 2D layer is
not back-propagated to the probs 2D layer to ensure that layers used for the 2D
classification are trained only by the 2D loss part. The idea of using 2D clas-
sification result as an input for another task is similar to [3], which repeatedly
uses the 2D classification result as an input by concatenating it with feature
maps from CNN. Unlike [3], we simply vectorized the softmax result to produce
Ny x Ny x N; feature vector rather than convolving the probability map with
features in the convolutional layers.

The proposed framework can be trained end-to-end via back-propagation
algorithm. Because 2D classification will give an inaccurate prediction in the
early stage of training, it is possible that 3D regression may be disturbed by
the classification result. However, we empirically found that 3D loss converges
successfully, and the performance of 3D pose estimation improves as well, as
explained in Sect. 5.
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(a) (b)

Fig. 3. Visualization of joints to be estimated (red and green dots). (a) Baseline method
predicts relative position of the joints with respect to one root node (green dot). (b) For
multiple pose regression, the positions of joints are estimated with respect to multiple
root nodes (green dots) (Color figure online).

3.3 Multiple 3D Pose Regression from Different Root Nodes

In the baseline architecture, we predicted the relative 3D position of each joint
with respect to only one root node which is around the position of the hip.
When joints such as wrists or ankles are far from the root node, the accuracy
of regression may be degraded. Li et al. [5] designed a 3D regression loss to
estimate the relative position between each joint and its parent joint. However,
errors may be accumulated when intermediate joint produces inaccurate result
in this scheme. As an alternative solution, we estimate the relative position over
multiple joints. We denote the number of selected root nodes as N,.. For the
experiments in this paper, we set NV, = 6 and selected six joints so that most
joints can either be the root node or their neighbor nodes. The selected joints
are visualized in Fig. 3(b). Therefore, there are six 3D regression losses in the
network, which is illustrated in Fig. 2. Then, the overall loss becomes

Nj Nj
Lai=X2p Y Lap(j)+Xsp D> Lsp(j,r), (6)

j=1 rER jF#r

where R is the set containing the joint indices that are used as root nodes. When
the 3D losses share the same fully connected layers, the trained model outputs
the same pose estimation results across all joints. To break this symmetry, we
put the fully connected layers for each 3D losses (fc2 3D layers in Fig. 2).

At the test time, all the pose estimation results are translated so that the
mean of each pose becomes zero. Final prediction is generated by averaging
the translated results. In other words, the 3D position of the jth joint X; is

calculated as )
X"
X, = 7ZT€; J_. (7)
where Xg-r) is the predicted 3D position of the jth joint when the rth joint is set
to a root node.
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4 Implementation Details

The proposed method is implemented using Caffe framework [22]. Batch nor-
malization [23] is applied to all convolutional and fully connected layers. Also,
drpoout [24] is applied to every fully connected layers with drop probability of
0.3. Stochastic gradient descent of batch size 128 is used for optimization. Ini-
tial learning rate is set to 0.01, and it is decreased by a factor of 0.5 for every
4 epochs. The optimization is finished after 28 epochs. The momentum and
the weight decay parameters are set to 0.9 and 0.001 respectively. The weight-
ing parameter Asp and A3p are initially set to 0.1 and 0.5 respectively. Aop is
decreased to 0.01 after 16 epochs because we believe that 2D pose information
plays an important role in learning informative features especially in the early
stage of training.

Input images are cropped using the segmentation information provided with
the dataset so that a person is located around the center of an image. The
cropped image is resized to 250 x 250. We randomly cropped the resized image
into an image of 225 x 225 size, then it is fed into the CNN as an input image.
During the test time, only the center crop is evaluated for the pose predic-
tion. Data augmentation based on the principal component analysis of training
images [25] is also applied. Ny is set to 16, so the input image is divided into
256 square grids for 2D loss calculation. N, is set to 6, and the position of the
root nodes are illustrated in Fig. 3(b).

For the ground truth 3D pose that is used in the training step, we firstly
translated the joints to make the shape to be zero mean. Then, we scaled the
3D shape so that the Frobenius norm of the 3D shape becomes 1. Since different
person has different height and size, we believe that the normalization helps to
reduce ambiguity of scale and to predict scale-invariant poses. During the testing
phase, scale should be recovered to evaluate the performance of the algorithm.
Similar to [19], we infer the scale using the training data. The lengths of all
connected joints from the training set are averaged. The scale of the result from
the test data is determined so that the length of connected joints in the estimated
shape is equal to the pre-calculated average length. Since the lengths for arms
and legs from the estimated shape often have a large variation, we only used the
length of joints in the torso which is stable in most cases.

5 Experimental Results

We used Human 3.6m dataset [8] to evaluate our method and compared the
proposed method with the other 3D human pose estimation algorithms. The
dataset provides 3D human pose information acquired by a motion capture
system with synchronized RGB images. It consists of 15 different sequences
which contain specific actions such as discussion, eating, walking, and so on.
There are 7 different persons who perform all 15 actions. We trained and tested
each action individually. Following the previous works on the dataset [5,19], we
used 5 subjects (S1, S5, S6, S7, S8) as a training set, and 2 subjects (S9, S11) as
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Table 1. Quantitative results on Human 3.6m dataset. The best and the second best
methods for each sequence are marked as (1) and (2) respectively.

Directions | Discussion | Eating Greeting Phoning | Photo
LinKDE [8] 132.71 183.55 132.37 164.39 162.12 205.94
Li and Chan [5] |- 148.79 104.01 127.17 - 189.08
Li et al. [6] - 136.88 96.94 124.74 - 168.68
Tekin et al. [7] |- 129.06 91.43 121.68 - 162.17
Tekin et al. [20] | 102.41 147.72 88.83(2) 125.28 118.02 182.73
Zhou et al. [19] |87.36(1) |109.31(1) | 87.05(1) 103.16(1  116.18() | 143.32(1)
Our method 100.34() [116.19(2) | 89.96 116.49  115.34() | 149.55(2)
Posing Purchases | Sitting Sitting down | Smoking | Waiting
LinKDE [8] 150.61 171.31 151.57 243.03 162.14 170.69
Li and Chan [5] |- - - - - -
Li et al. [6] - - - - - -
Tekin et al. [7] |- - - - - -
Tekin et al. [20] |112.38(?) |129.17 138.89 224.90 118.42 138.75
Zhou et al. [19] | 106.88(1) |99.78(1) | 124.52(1) 199.23  107.42® |118.09())
Our method 117.57 106.94(2) |137.21(2) 190.82(1)  |105.78() [125.12(2)
Walk dog | Walking | Walk together | Average
LinKDE [8] 177.13 96.60 127.88 162.14
Li and Chan [5] | 146.59 77.60 - -
Li et al. [6] 132.17 69.97 - -
Tekin et al. [7] |130.53 65.75 - -
Tekin et al. [20] | 126.29(?) |55.07(1) | 65.76(1) 124.97
Zhou et al. [19] |114.23(M1) |79.39 97.70 113.01()
Our method 131.90 62.64(2) | 96.18(2) 117.34(2)

a test set. The training and the testing procedures are conducted on a single PC
with a Titan X GPU. Training procedure takes 7-10 h for one action sequence
depending on the number of training images. For the evaluation metric, we used
the mean per joint position error (MPJPE).

First, we compared the performance of our method with the conventional
methods on Human 3.6m dataset. Table1 shows the MPJPE of our method
and the previous works. The smallest and the second smallest errors for each
sequence are marked. Our method achieves the best performance in 3 sequences
and shows the second best performance in 9 sequences. Note that the methods of
[20] and [19] make use of temporal information from multiple frames. Meanwhile,
our method produce a 3D pose from a single image. Our method is also beneficial
against [20] and [19] in terms of running time and the simplicity of the algorithm
since the estimation is done by a forward pass of the CNN and simple averaging.
Moreover, from Tablel, it is justified that our method outperforms the CNN
based methods that predict 3D pose from a single image [5-7].
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Table 2. Comparison of our method with the baseline.

Discussion | Eating | Greeting | Phoning | Photo | Walking
Baseline CNN 125.45 95.21 |120.69 119.66 | 153.76 |72.55
Multi-reg 122.71 94.67 |119.70 119.25 | 153.54 | 71.19
2D-cls 118.19 91.39 |118.19 115.84 | 149.97 |64.27
Multi-reg+2D-cls | 116.19 89.96 | 116.49 |115.34 |149.55|62.64

Next, we measured the effect of our contribution, (1) the integration of 2D
classification results and (2) regression from multiple root nodes, by comparing
their performance with the baseline CNN. Note that the 2D classification loss
is also used in the baseline CNN. The difference of the baseline CNN is that
2D classification results are not propagated to the 3D loss part, i.e., probs 2D,
fe probs 2D and fc 2D-3D layers in Fig. 2 are deleted in the baseline CNN. The
results are shown in Table 2. Multiple regression from different root nodes and
the integration of 2D classification results are denoted as Multi-reg and 2D-cls
respectively. Both modifications improve the result over the baseline CNN in
all tested sequences. 2D classification integration showed larger error reduction
rate than the multiple regression strategy, which proves that the 2D classification
information is indeed a useful feature for 3D pose estimation. Multiple regression
can be considered as an ensemble of different estimation results, which improves
the overall performance. It can be found that the error reduction rate for the case
that both 2D classification result integration and multiple regression are applied
is slightly bigger than the sum of the reduction rates when they are individually
applied in most sequences. Since each 3D pose regressor takes advantage of 2D
classification feature, there is a synergy effect between the two schemes.

We also analyzed the effect of integrating 2D classification result in terms of
3D losses. Training losses are measured every 50 iterations and testing losses are
measured every 4 epochs. The results on the Walking sequence are illustrated
in Fig.4. For the training data, loss is slightly smaller when 2D classification

0.1 0.1
With 2D class info

With 2D class info

Without 2D class info

Without 2D class info

0.04 0.04

loss
loss

Fig. 4. The 3D losses of Walking sequence with and without 2D classification result
integration. (a) Losses for training data. (b) Losses for test data.
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Input Image Ground Truth Without 2D info With 2D info

Fig. 5. Qualitative results of our method on Human 3.6m test dataset. The estima-
tion results are compared with the results from the baseline method. First column:
input images. Second column: ground truth 3D position. Third column: pose esti-
mation result without 2D classification information integration. Fourth column: pose
estimation result with 2D classification information integration. (Color figure online)

information is not used (Fig.4(a)). However, test loss is much lower when 2D
classification information is used (Fig.4(b)). This indicates that 2D classifica-
tion information impose generalization power and reduce overfitting for CNN
regressor. Since the 2D joint probabilities provide more abstracted and subject-
independent information compared to the features obtained from an image, the
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CNN model is able to learn representations that are robust to variability of
subjects in the image.

Finally, we illustrated qualitative results of our method in Fig.5. Input
images, ground truth poses, and the estimation results with and without 2D
classification information are visualized. Different colors are used to distinguish
the left and right sides of human bodies. It can be found that 2D pose esti-
mation results help reducing the error of 3D pose estimation. While the CNN
which does not use 2D classification information gives poor results, the estimated
results are much more improved when 2D classification information is used for
3D pose estimation.

6 Conclusions

In this paper, we propose novel strategies which improve the performance of the
CNN that estimates 3D human pose. By reusing 2D joint classification result, the
relationship between 2D pose and 3D pose is implicitly learned during the train-
ing phase. Moreover, multiple regression results with different root nodes gives
an effect of ensemble learning. When both strategies are combined, 3D pose esti-
mation results are significantly improved and showed comparable performance
to the state-of-the-art methods without exploiting any temporal information of
video sequences.

We expect that the performance can be further improved by incorporat-
ing temporal information to the CNN by applying the concepts of recurrent
neural network or 3D convolution [26]. Also, efficient aligning method for mul-
tiple regression results may boost the accuracy of pose estimation.
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