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Abstract. Recent research towards 3D reconstruction has delivered reli-
able and fast pipelines to obtain accurate volumetric maps of large envi-
ronments. Alongside, we witness dramatic improvements in the field of
semantic segmentation of images due to deployment of deep learning
architectures. In this paper, we pursue bridging the semantic gap of
purely geometric representations by leveraging on a SLAM pipeline and
a deep neural network so to endow surface patches with category labels.
In particular, we present the first system that, based on the input stream
provided by a commodity RGB-D sensor, can deliver interactively and
automatically a map of a large scale environment featuring both geo-
metric as well as semantic information. We also show how the significant
computational cost inherent to deployment of a state-of-the-art deep net-
work for semantic labeling does not hinder interactivity thanks to suit-
able scheduling of the workload on an off-the-shelf PC platform equipped
with two GPUs.

Keywords: SLAM · Deep learning · Semantic segmentation · Large
scale reconstruction · Semantic fusion

1 Introduction

Most previous work on recovery the world from images has been concerned with
3D geometry only, the advent of commodity RGB-D sensors having made this
task remarkably affordable and effective. On the other hand, Deep Learning
is emerging as the state of the art approach to infer complex semantics from
images. In this paper we bring together geometric reconstruction by RGB-D
sensing and semantic perception by Deep Learning to create a novel Semantic
SLAM pipeline. With the proposed system, the user can explore the environ-
ment interactively by a hand-held RGB-D sensor. As in most previous work,
this allows to attain a dense, detailed 3D reconstruction of the scene; pecu-
liarly to our system, though, the resulting map is also endowed online and fully
automatically with semantic labels determining the likelihood of each surface
patch to depict objects of specific categories. To achieve this objective, we build
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upon a deep convolutional network for semantic image segmentation [11] and a
real-time reconstruction approach suited to map large-scale environments [15].
Driving factor behind the development of this pipeline is the need for a system
whereby an untrained user may reliably scan and acquire semantically anno-
tated 3D reconstructions of large indoor environments. As highlighted in Sect. 2,
previous work [18] would allow generation of similarly annotated 3D maps while
requiring proper interaction with a trained user. Conversely, to minimize the
effort by the user, we integrate seamlessly dense mapping and semantic labeling
into a single pipeline that can output detailed reconstructions of large scale envi-
ronments wherein each voxel stores a complete probability mass function over a
set of semantic categories of interest. Hopefully, our accomplishment may foster
research on topics such as indoor scene understanding, object discovery and/or
recognition, human/robot interaction and navigation.

The paper is organised as follows: next section discusses previous work related
to the proposed system, which will then be described in Sect. 3. Quantitative and
qualitative results are provided in Sect. 4, while in Sect. 5 we will draw concluding
remarks.

2 Related Work

One of the first breakthroughs in the field of real time 3D reconstruction is
KinectFusion by Newcombe et al . [14]. Their system shows how the processing
power of modern GPUs and the availability of affordable RGB-D sensors can be
harnessed to accurately reconstruct the workspace in real time. KinectFusion,
though, is bound to map small scale environments due to its reliance on a dense
voxel grid as mapping data structure. Several subsequent works tackled this
shortcoming, at first by moving the active reconstruction volume alongside with
camera movements and downloading from GPU to CPU memory the map previ-
ously observed by the sensor [16,20]. More sophisticated data structures aimed
at storing only those pieces of information required by the mapping task were
then introduced, so to enlarge significantly the mappable volume and speed up
the computation, either via hierarchical, octree-based methods [22], hash-based
data-structures [9,15] or combinations of both techniques [10].

Thanks to the focus on deep learning in the last years, several semantic seg-
mentation techniques were proposed that could process entire images in fractions
of a second, providing pixel-wise category labels or probability mass functions
over a set of such categories. Gupta et al . [8], process pairs of RGB and Depth
images with multiple deep neural networks followed by an SVM classifier, pro-
viding a threefold output: bounding boxes for object detection, per-pixel confi-
dences to segment such instances and a full-image semantic segmentation output.
Long et al . [11] show how Fully Convolutional Networks can provide accurate
per-pixel, per-category scores on entire images in a deterministic amount of time.
Eigen and Fergus [6] demonstrate how a single deep network architecture can
successfully be employed for three different tasks: predicting depth and normals
from RGB images as well as performing semantic segmentation to infer, again,
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per-pixel category probabilities. Zheng et al . [23], then, join the strengths of
Conditional Random fields and Convolutional Neural Networks within a unique
framework trained end-to-end to obtain semantic segmentation.

Recently, works concerning semantic labeling of reconstructed environments
have started appearing: Valentin et al . [18] show a system, based on the Infini-
TAM 3D reconstruction pipeline [9], that, employing multi-modal user inter-
action, can learn to classify user selected categories via random forests trained
on-line. Miksik et al . [13] deploy a setup based on a head-mounted stereo camera
together with the VoxelHashing 3D reconstruction pipeline [15]; by tracking the
target of a portable laser pointer through the acquired frames, the user is able
to mark areas of the scene as pertaining to a certain object category. Such labels
are then fed to a densely connected Conditional Random Field that learns how
to classify voxels online in the reconstructed scene. Differently from these recent
works, the pipeline proposed in this paper does not require any user interaction
to perform the labeling and train the classifier, and, therefore, an untrained user
can proficiently reconstruct large scale environments just by moving around a
hand-held RGB-D sensor.

The work by Cavallari and Di Stefano [5] shows integration of the semantic
labels output by the Fully Convolutional Networks [11] into a dense reconstruc-
tion obtained by the original KinectFusion [14]. While the approach described in
[5] is similar to that proposed in this paper, their pipeline cannot map accurately
large workspaces due to reliance on a dense voxel grid. Moreover, the structure of
their pipeline makes it impossible to achieve interactive frame rates with current
hardware. Hence, the system presented in this paper is the first ever to permit
on-line fully automatic semantic reconstruction of large environments.

Finally, unlike all the above mentioned works addressing volumetric semantic
reconstruction, the pipeline proposed in this paper yields at each voxel the full
probability mass function across categories rather than estimating the most likely
label only. Such a richer output enables not only generation of semantically
labeled maps but also assessment of the likeliness of each and every category
across the whole scene surface.

3 Description of the Method

The proposed pipeline is composed of two subsystems, each tailored to a spe-
cific task, controlled by a main engine handling all input/output operations and
dispatching work to both. The two subsystems are:

Labeling Subsystem: tasked with semantically labeling the RGB images gath-
ered from the sensor.

SLAM Subsystem: dealing with camera tracking, map building and on-
demand rendering of the reconstructed 3D scene from arbitrary viewpoints.

In the next paragraphs we will provide a detailed description of the above sub-
systems and then show how the main engine ties them together to attain the
overall system.
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3.1 Labeling Subsystem

This subsystem represents the interface of our pipeline to an image-based seman-
tic labeling algorithm: given an input RGB image and, optionally, a depth map,
this block provides per pixel confidences for a set of categories of interest, thus
providing us with a full probability mass function across categories for each pixel
of the input image. More specifically, given input images of size H × W and a
set of N categories of interest, C, the output is a “volume” of confidences, L,
of size N × H × W and wherein each element Li,j,k represents the confidence
that the semantic labeling algorithm assigns to category i at pixel (j, k). Should
a single label for a pixel become necessary, a simple argmax operation over the
N confidences would provide the required output. In our system, though, we
exploit the availability of multiple confidences at each image location to recon-
struct a multi-label 3D map of the environment wherein each voxel is endowed
with information about the likeliness of each category of interest.

The interface just described is sufficiently generic that any labeling algorithm
may in principle be incorporated within our pipeline. For instance, algorithms
returning rectangular or polygonal ROIs with associated labels can have their
output post-processed to paint each ROI in the volume “slice” associated to the
correct category. Overlapping ROIs of the same category may also be handled,
e.g. by applying a max operator to the confidence stored in each pixel whereas
overlapping regions of different categories can be drawn on the corresponding
slices and a final per-pixel normalization can then turn the confidence values for
each pixel in a proper probability mass function. Additionally, multiple labeling
algorithms may be deployed, the only requirement being to run a normaliza-
tion step independently on each pixel volume “column”. Yet, to minimize the
postprocessing necessary to obtain the labeled volume, those inherently more
amenable to our pipeline are semantic labeling algorithms providing directly
per-pixel confidences across categories, nowadays the most effective and effi-
cient proposals in this space relying on Deep Learning [6,8,11,23]. As such, we
found Deep Learning particularly conducive to on-line, fully-automatic semantic
mapping.

Among deep networks for semantic labeling, our pipeline deploys the Fully
Convolutional Network by Long et al. [11], as we found experimentally that, in
our settings, this architecture can provide quite clearly the best trade-off between
classification accuracy and speed. Given an input RGB image, the pre-trained
networks1 can yield per-pixel confidences for a large number of categories (20,
40 or 60, depending on the specific model) dealing with both indoor and outdoor
objects. As the use case of our system concerns mapping indoor environments by
a commodity RGB-D sensor, we reduce the number of categories of interest by
dropping some unnecessary classes and applying per-pixel softmax normaliza-
tion on the remaining raw scores to convert the output into a probability mass
function.

1 https://github.com/shelhamer/fcn.berkeleyvision.org.

https://github.com/shelhamer/fcn.berkeleyvision.org
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3.2 SLAM Subsystem

The generation of a semantic map of the observed environment is a task left
to the SLAM Subsystem. A typical Simultaneous Localization and Mapping
pipeline consists of two main components: the first localizes the camera within
the environment by tracking its movements over time (localization task); the
second relies on the estimated camera pose to integrate the data provided by
the sensor into the current representation of the scene (mapping task). Typically
a third, optional, component is tasked with visualization of the reconstructed
scene to provide feedback to the user.

In the system presented in this paper we add a fourth component to perform
what we call the semantic fusion task, i.e. integration within the reconstructed
scene of the semantic information provided by the Labeling Subsystem. This
might also be seen as part of the standard mapping task but, as we will illustrate
in Subsect. 3.3, we split the standard SLAM mapping operation (integrating
data from the RGB-D sensor) and the semantic mapping operation (integrating
the information provided by the labeler) in order to decouple them and allow
for deferred integration of the per-pixel category probabilities into the scene
representation. Indeed, this approach is mandatory to enable on-line operation
of the overall semantic reconstruction pipeline.

The SLAM subsystem adopted in our system is built on top of the VoxelHash-
ing reconstruction pipeline by Nießner et al. [15] that, unlike KinectFusion [14],
permits mapping of large workspaces by storing the map as a hash-based data
structure instead of a dense voxel grid. For a detailed description of VoxelHashing
we refer the interested reader to the original paper. In the following, we highlight
the main modifications required to store the semantic information peculiar to
our approach.

Map Generation and Storage. VoxelHashing employs a hash-based data
structure to efficiently index a heap of voxel data blocks. Each voxel block rep-
resents the map of a limited region of space. By storing into the GPU memory
only such blocks conveying informations useful to the mapping task, and employ-
ing an efficient swapping technique to move unneeded blocks from GPU to CPU
memory and vice-versa, the extent of the mappable environment can, in princi-
ple, be of arbitrary size. Each voxel in the map is endowed with three tokens of
information:

TSDF Value: The truncated signed distance from the voxel to the closest
surface; being a floating point value, it can be stored as a half precision
number so to occupy 2 bytes of memory;

Weight: The confidence in the stored TSDF value; it is used in operations such
as fusion of new depth measurements and raycasting of the map; typically is
akin to a counter of the number of times the specific voxel has been observed,
though other weighting strategies have been proposed [3,14]; again, a half-
precision floating point number;

RGB Data: Colour of the surface patch associated with the voxel; typically
encoded as a 4-tuple of unsigned chars to optimize memory alignment.
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The memory occupancy for a single voxel amounts thus to 8 bytes. In our
pipeline, we augment the standard voxel data structure by a histogram storing
a probability mass function over a set of N categories. Each bin represents the
probability that an item of a specific category is located in the surface area asso-
ciated with the voxel. Each histogram bin should therefore be able to encode
a floating point value in the interval [0..1]. To reduce memory occupancy, we
encode such values into bytes by scaling the floating point number to the inter-
val [0..255]. The final size of the voxel data structure thus increases by N bytes.
The set of categories is application dependent and in our tests we employ 8 cate-
gories, thus having each voxel occupying 16 bytes, thereby doubling the memory
footprint with respect to the standard data structure. Doubling the per-voxel
memory occupancy would be worrying if we were using a dense data structure as
deployed by KinectFusion. Conversely, thanks to the reduced memory pressure
allowed by VoxelHashing, we can easily accommodate such informations onto
the GPU memory and, if necessary, move it back and forth with the system
RAM via swapping operations. When a new voxel is allocated by VoxelHashing,
its histogram is set to the uniform probability, thus having each bin initialized
to the value 255/N , so to express maximum uncertainty on the type of object
located within its boundaries.

Rendering. Visualization of the reconstructed scene is typically performed via
raycasting. First, a synthetic range image is extracted: given a camera pose of
interest, a ray is marched for each pixel of the output image from the camera
center until a positive to negative zero-crossing of the TSDF function is encoun-
tered, this signaling the presence of a surface. Clearly, marching a ray from the
camera centre is expensive since the hash table has to be queried for every step,
therefore several optimizations are described in the VoxelHashing paper [15].
The InfiniTAM pipeline [9] also details more enhancements to the raycasting
operation that can speed up sensibly the computation.

The raycasted range map can then be used to extract a coloured represen-
tation of the environment by trilinearly interpolating the RGB values of the 8
voxels closest to each zero crossing point. Point normals can also be computed
by estimating the TSDF gradient in the location corresponding to the range map
point.

Semantic labels for each rendered point can then be extracted. In order to
determine the label of a single pixel, we apply an argmax operation over the
N histogram bins associated to each raycasted 3D point and store the resulting
label in an output category map and the associated confidence in an output
probability map. While we could trilinearly interpolate between bins associated
to the histograms of 8 neighboring voxels in order to obtain an interpolated
histogram to subject the argmax operation, in practice we consider only the
voxel whose center is closest to the candidate 3D point, on account that, typi-
cally, object categories are “large scale” scene attributes and the interpolation
of neighboring voxel probabilities would not provide much additional informa-
tion while notably slowing down the processing speed of the pipeline. The left
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picture in Fig. 1 provides an exemplar image obtained by raycasting into the
current camera view the most likely label in each voxel provided by the argmax
operation.

Fig. 1. Left: semantic labels assigned to the reconstruction of an office environment.
Right: heat map showing the spatial distribution of “chair” objects. It can be seen
how, even in presence of mislabeled areas (highlighted by the red ellipse), the “chair”
confidence is not null and thus may help to segment out chairs. (Color figure online)

Our category representation scheme allows also to render the likeliness of
a category in each voxel seen from the current camera view. Indeed, we can
provide visualizations detailing the spatial distribution of a certain category of
interest by selecting the histogram bin associated to that category in every voxel
defined by the raycasted range image. For example, as shown in the right picture
of Fig. 1, we might wish to render the “chairness” of the reconstructed scene.
It is worth observing that, although some surface patches belonging to chairs
are mislabeled in the left image of Fig. 1, the right image provides evidence that
these indeed may possibly belong to chairs, this information may likely help
performing an higher lever task such as segmenting out all the chairs present in
the scene.

Once the range, normals, RGB, category and score maps are extracted, shad-
ing can be applied to obtain pleasant visualizations. While the described render-
ings may convey useful informations to the user, all but those dealing with the
range and normal maps are optional in our pipeline and thus can be disabled
to increase processing speed. The renderings of the range and normal maps,
instead, are pivotal in the camera localization step that will be described next.

Camera Localization. Camera localization is an essential step of the SLAM
pipeline: to integrate RGB-D frames coming from the sensor into the global
map of the environment, one has to know the pose from which the camera
captured such informations. Typically, thanks to the high processing rate of
KinectFusion/VoxelHashing, this task can be simplified into the tracking of the
camera movement from one frame to the following.

Several approaches to camera tracking task have been proposed in the
literature related to KinectFusion, either relying on purely geometric clues, such
as the projective ICP approach of the original paper [14] and the direct align-
ment methods described in [3,4], or aimed at deploying colour information to
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maximize the photo-consistency between pairs of consecutive frames [17,19] or
between the current frame and the colour information stored into voxels [2].

In our system we employ the projective ICP approach described by
Newcombe et al. [14] to estimate sensor pose. The method relies on the raycasted
depth and normals map as seen from the previous camera pose and the current
depth map. An iterative process performs a projective association between points
in the current and in the raycasted range maps [1], computes an energy term
at each pixel based on the point to plane metric [21], and finally minimizes the
sum of all pixel energies by linearising such function in a neighborhood of the
previous pose and computing an increment using the Lie algebra representation.

Semantic Fusion. The Semantic Fusion component integrates into the voxel-
based map of the environment the per-pixel semantic labels extracted from an
input RGB-D frame by the Labeling subsystem. As mentioned earlier, this task
is kept disjoint from the canonical “fusion” operation performed by KinectFu-
sion/VoxelHashing to allow the labeler to work asynchronously with respect to
the SLAM process, thus not hindering the real-time nature of the latter due to
the former being significantly slower.

Once a frame has been labeled, its associated pose, Tl, which was estimated
by the camera localisation component, is retrieved and can be used to perform
the actual fusion step. Likewise fusion of the RGB-D image, the process is applied
to those voxels that fall into the camera frustum and are “close enough” to the
surface described by the depth frame associated with the previously extracted
labels (cached at the beginning of the labeling); purposely, we employ the same
truncation distance as used by the depth integration step.

More precisely, as a first step, the location of each mapped voxel block in
the world coordinate frame is transformed in the appropriate camera reference
frame by the inverse transformation described by the camera pose. The trans-
formed block center is then projected onto the image plane and, if the resulting
coordinates lie inside the image, the block is marked as potentially visible and
thus to be updated. Thanks to the GPU, this first step can be efficiently carried
out in parallel by associating a thread to each voxel block. A scan-and-compact
operation is then performed to gather the indexes of all the blocks to be updated
in a single buffer, which in turn is used to launch an update thread for each voxel
residing in such blocks.

Each voxel center is then projected onto the depth frame by applying the
T−1
l transformation and the depth camera intrinsics; its associated depth is then

sampled: if the 3D point determined by such depth is sufficiently close to the
voxel itself, then the label probabilities vector is subject to the update operation
that will be described next.

To integrate the pixel category probabilities provided by the labeling algo-
rithm into the probability histogram stored in each voxel, we perform an opera-
tion akin to the running average adopted for the depth integration step followed
by a renormalization step to ensure attainment of a valid probability mass func-
tion. Denotes as L ∈ R

N the pixel p.m.f. and H ∈ R
N the corresponding voxel
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p.m.f., firstly we compute a weight wp associated to the pixel (employing the
same strategy used during the depth integration phase, i.e. we assign a unitary
weight to the new labels; see also the description of the Weight field in Sect. 3.2);
we then sample the weight stored in the voxel wv. We compute the updated
probability histogram H ′ as follows:

H ′
i =

Hiwv + Liwp

wv + wp
with i ∈ [1..N ] (1)

We then normalize the histogram to obtain a valid probability mass function,
H ′′, that is stored back into the voxel:

H ′′
i =

H ′
i∑

i H
′
i

with i ∈ [1..N ] (2)

We do not update the associated voxel weight, leaving that task to the depth
fusion component. While weights wv depend on the number of times a specific
voxel has been observed and that number typically differs from the number of
times a voxel has been semantically labeled, we found no significant difference
between using an ad-hoc semantic weight (that would need to be stored alongside
the p.m.f.) and just piggy-backing on the already present TSDF weight. Hence,
we exploit the wv values to give an appropriate strength to the past probability
values and prevent a single measurement from significantly changing the stored
probabilities. Also, as typically the frame rate of the SLAM subsystem is con-
stant and the time required by the labeling algorithm is also deterministic, the
relationship between the depth weight (a counter of the number of integrated
frames) and a “semantic weight” would be linear.

3.3 Main Engine

The Main Engine of our system interacts with the RGB-D sensor, dispatches
the work to the SLAM and Labeling subsystems, and provides the user with
feedback on the on-going operation by displaying rendered images.

One of the key novelties of our proposal is its ability to perform SLAM and
semantic mapping fully automatically and on-line. This means that while the
user moves around the RGB-D sensor she/he would see on the screen a semantic
reconstruction of the workspace created incrementally at interactive frame-rate.
In other words, while in KinectFusion/VoxelHashing the user would perceive
incremental reconstruction of the geometry of the scene interactively, our system
is aimed at providing, just as interactively, both geometry and semantics in the
form of surfaces tagged with category labels. Processing speed is therefore of
paramount importance to the pipeline as a whole. However, while the SLAM
Subsystem can comfortably keep-up with the 30 Hz RGB-D stream delivered by
the sensor, state-of-the-art deep networks for semantic labeling require hundreds
of milliseconds or even seconds to process a single frame.

This state of affairs mandates the two subsystems to be decoupled so to
execute their code in parallel and prioritize SLAM to provide interactive feedback
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Fig. 2. Sequence diagram depicting the execution flow of the proposed system. The
SLAM and Labeling subsystems are deployed on two different GPUs, here colour coded
in red and blue. The main engine moves the data between the host memory and the
two GPU memories as needed. (Color figure online)
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to the user. The Labeling subsystem is thus run on the remaining CPU and
GPU time and, by exploiting the deferred Semantic Fusion algorithm described
in Sect. 3.2, its output is integrated into the voxel map as soon as it becomes
available. To obtain an even higher throughput, we deploy the two subsystems
onto two different GPUs, the Main Engine performing the appropriate copies or
movements of the data to and from the different boards.

While all frames captured by the RGB-D sensor are used to perform the
SLAM task (necessary to obtain an accurate map and a reliable camera localisa-
tion), only a minority of those are provided to the Labeling Subsystem. Choice
of such candidate frames is left to the Main Engine and performed in a greedy
fashion by ignoring all frames grabbed while the Labeling Subsystem is busy
labeling a frame and marking for labeling the first new frame received after the
labeler has finished its work on a previous frame. We elected not to use a queue-
based system to privilege the labeling of several areas of the environment instead
of filling the queue with similar frames acquired by nearby viewpoints and have
the labeler unavailable to process newly explored areas of the environment.

Figure 2 shows a sequence diagram detailing the execution flow of the system.
Once an RGB-D frame is grabbed by the sensor, its data is copied to both GPUs
and the labeling thread is activated. At the same time, the camera pose from
which the environment was observed is estimated by the SLAM Subsystem and
stored in a pose database together with the frame timestamp, used to retrieve
such pose at a later stage; subsequently, depth and colour information are fused
into the hash-based TSDF structure. A raycasting operation is then performed
to obtain the range and normals maps required by the ICP algorithm to localize
the camera at the next iteration; if semantic visualization is desired, then colour,
label and confidence maps are rendered as well.

The main engine then verifies if the labeling algorithm has terminated its
computation; if not, another iteration of the SLAM pipeline is executed. Con-
versely, the labeling output (i.e. the N×H×W volume storing per-pixel category
probabilities described in Subsect. 3.1) is transferred from the labeler GPU to
the SLAM GPU and the viewpoint from which the frame had been observed
is retrieved from the pose database. The semantic labels are then fused via the
algorithm described in Sect. 3.2. The process is repeated until the user wishes
to terminate; at that point the entire map of the environment can be saved as
a mesh via application of the marching cubes algorithm [12]. The mesh can be
coloured using either the RGB values stored in the hash-based map or a colour
mapped representation of category or confidence values.

4 Results

The system presented in this paper pursues interactive and fully automatic
semantic mapping of large workspaces. In this section we will show quantitative
and qualitative results provided by the system. Firstly, we present an evaluation
of the computational requirements of the entire system, detailing the overall
impact of the two main subsystems. Afterwards, we show qualitative results
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depicting the kind of semantic reconstructions that can be achieved by running
the system. In the supplementary material we provide a video demonstrating
interactive semantic mapping. From the video, one may perceive the effect of
the deferred semantic fusion and how this approach does not hinder incremental
interactive reconstruction while adding semantic information into the map over
time.

4.1 Performance Evaluation

Our system relies on computation modules deployed on both the CPU and two
graphics processors. Our testing setup consists in a PC with a Intel Core i7
4960X CPU and two GeForce Titan Black graphics cards (each with 6GB of
dedicated memory). The SLAM Subsystem is deployed on one card while the
Labeling Subsytem based on the Fully Convolutional Network [11] is deployed
on the other (the amount of GPU memory required by the neural network is
∼5.5GB).

Table 1 shows the average time spent in the main components of the pipeline.
It is evident how the most computationally intensive component of the proposed
system is that concerned with semantic labeling of input frames and how its
decoupling and deployment on a separate GPU is necessary to maintain an
interactive frame-rate (∼17Hz) that allows users to seamlessly deploy the system
to semantically reconstruct a location. For comparison, in the last column we

Table 1. Processing time broken down by component. *Total time per frame does not
include the exact time spent in executing the SemanticFusion step as this is performed
only after the Labeling Subsystem terminates processing an input RGB-D image and
therefore its execution time is amortized over a larger number of frames. The total time
per frame is thus the average time spent to process a frame, yielding a frame-rate of
17.48 fps for the multi GPU system and of 5.4 fps for the single GPU setup.

Algorithm section Times (ms.)

Multiple GPU Single GPU

GPU 1 GPU 2

Frame Grabbing + Preprocessing 10.27 – 20.21

Camera Localisation 4.30 – 24.90

Depth + RGB Fusion 8.79 – 16.96

ICP Raycast (Depth + Normals) 5.16 – 13.35

RGB + Labels + Confidence Raycast 6.49 – 23.79

Shading + GUI update 11.32 – 71.64

Other processing 7.70 – 10.26

SemanticFusion* 9.59 – 10.44

Frame Labeling – 284.09 438.91

Total time per frame* 57.20 284.09 186.55
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Fig. 3. A semantically reconstructed office environment. The left image shows the
coloured mesh generated by our system. The center image shows the most likely cate-
gory label for each voxel, while the associated confidence values are displayed as a heat
map on the right.

show the processing times that can be obtained by running the proposed pipeline
on a single GPU accelerator. For this test, we employed a workstation with
an Intel Core i7 4930K CPU and a Tesla K40, with 12GB of memory. The
availability of a single GPU, even with twice the memory as those deployed in the
previous test, severely hinders the overall system speed due to the computation
being bound by the number of available GPU cores rather than by memory
availability, this bringing evidence towards the idea of deploying two separate
GPUs to realize our system.

4.2 Qualitative Results

Our system enables the user to attain interactively a semantic reconstruction
of the environment by employing a hand-held commodity RGB-D sensor such
as the Kinect. In this section we show exemplar results obtained in different
environments.

Several office sequences depicting a variety of indoor objects such as “mon-
itors”, “chairs”, “tables”, etc. . . were acquired and processed by our system.
Figure 3 shows a view from one of such sequences where chairs, monitors, and
the keyboard are labeled quite correctly. Wall and floor regions are also mostly
correct while the “table” category shows a slightly lower segmentation accuracy,
its labels bleeding into the “cabinet” located below. The Fully Convolutional
Network model used to obtain the depicted results is “pascalcontext-fcn8s”.

Using the same neural network as in Fig. 3, we have run our system also on
sequences belonging to the Stanford 3D Scene Dataset [24,25]. In Figs. 4 and 5 we
show the resulting reconstructions. It can be observed how the system can label
correctly large objects, such as sofas and tables. Moreover, voxels pertaining
to smaller objects, such as the stacked books in Fig. 4, are mostly correctly
labeled alike. The two lamps in Fig. 4 (top row) are inevitably mislabeled because
“lamp” does not belong to the set of categories handled by the neural network.
As concerns the potted plant in Fig. 5, it is worth pointing out that labels tend
to propagate into the wall due to the thin and partially reflective nature of the
leaves which causes depth estimation by the RGB-D sensor to fail and prevent
accurate 3D reconstruction of the object.
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Fig. 4. ReadingRoom sequence from the Stanford 3D Scene Dataset. Top row: ray-
casted views acquired during the reconstruction. Bottom row: details from the final
reconstruction. Columns as in Fig. 3.

Throughout our experiments, we observed that the boundaries between dif-
ferent objects are reasonably accurate for smaller items (e.g . books, keyboards,
chairs, monitors,. . . ) while the contours dealing with larger objects, such as
tables, sofas and structural elements (i.e. walls, floors and ceilings) tend to be
less accurately localized and “bleed” onto neighboring voxels. It is noteworthy,
though, that the confidence associated to such incorrect boundary zones is typ-
ically significantly lower than that estimated within the internal portions of
objects. This effect is especially evident if the object is observed from a signifi-
cant distance and can be traced back to the 2D nature of the semantic labeling
process: labeled pixels are reprojected onto the voxel-based map using the cur-
rent depth image and thus a single (potentially mis-)labeled pixel affects a larger
area of the reconstruction the farther away it is from the camera.

Overall, the experimental findings suggest that our system can label correctly
both the main large-size scene structures such as floor, walls, tables, chairs as
well as several smaller objects like monitors, books, keyboards. Moreover, the
confidence maps turn out quite reliable, due to high confidence labels unlikely
turning out wrong and mislabeled areas featuring low scores. Therefore, our
semantic reconstructions and associated confidence maps may provide valuable
cues to facilitate high-level reasoning pursuing indoor scene understanding.

Fig. 5. Details of the reconstruction of the Lounge sequence from the Stanford 3D
Scene Dataset. Columns as in Fig. 3.
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5 Final Remarks

We have presented the first interactive system allowing an user to perform
3D reconstruction of a large scale environment while semantically labeling the
observed surfaces seamlessly. To this purpose, we split the proposed pipeline in
two subsystems, each relying on state-of-the-art approaches. The Labeling sub-
system pursues per-pixel semantic segmentation of RGB images by a recently
proposed deep neural network [11]. Indeed, our architecture is agnostic to the
actual labeler and, thus, holds the potential to accommodate the advances in the
field likely to be provided by the ever-increasing research efforts on deep learn-
ing architectures for semantic segmentation and object detection. The SLAM
subsystem relies on the VoxelHashing approach [15] to handle reconstruction of
large scenes. Nießner’s pipeline, though, has been modified to achieve storage,
deferred integration and visualization of semantic information. To provide the
user with a fluid interactive experience we deploy the proposed system on a off-
the-shelf Personal Computer endowed with two GPUs and suitably schedule the
work-load on such platforms.

Among the shortcomings of our system is, in primis, reliance of the camera
localization step on a purely geometric tracking approach (i.e. the standard pro-
jective ICP used by VoxelHashing and KinectFusion) which, while good enough
to accurately estimate camera poses across frames, is not immune from a cer-
tain amount of drift that may become evident when the hand-held sensor is
brought back to a previously observed area. Hence, we plan to deploy more
recent approaches, such as [7], that may enable exploration of large-scale envi-
ronments with negligible drift. Another issue worthy of further investigation
concerns the accuracy of the semantically labeled 3D maps: sometimes labels
bleed onto voxels belonging to neighboring objects due to the independence of
category histograms computed at neighbouring voxels. Accordingly, the appli-
cation of pairwise CRFs either at label integration or mesh generation time to
ensure spatial consistency of neighboring labels is currently under investigation.
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tion with the donation of the Tesla K40 GPU used for this research.
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8. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from
RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T.,
Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-10584-0 23

9. Kahler, O., Prisacariu, V.A., Ren, C.Y., Sun, X., Torr, P., Murray, D.: Very high
frame rate volumetric integration of depth images on mobile devices. IEEE Trans.
Visual. Comput. Graph. 21(11), 1241–1250 (2015)

10. Kahler, O., Prisacariu, V., Valentin, J., Murray, D.: Hierarchical voxel block hash-
ing for efficient integration of depth images. IEEE Rob. Autom. Lett. 3766(c), 1
(2015)

11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015)

12. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface con-
struction algorithm. In: Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques - SIGGRAPH 1987, vol. 21, issue 4, pp. 163–
169 (1987)

13. Miksik, O., Torr, P.H., Vineet, V., Lidegaard, M., Prasaath, R., Nießner, M.,
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