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Abstract. In this paper, we tackle the problem of risk-averse route plan-
ning in a transportation network with time-dependent and stochastic
costs. To solve this problem, we propose an adaptation of the A* algo-
rithm that accommodates any risk measure or decision criterion that is
monotonic with first-order stochastic dominance. We also present a case
study of our algorithm on the Manhattan, NYC, transportation network.
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1 Introduction

Shortest path problems have been extensively studied as they are canonical prob-
lems that appear in many domains, for instance transportation [2,7], artificial
intelligence [28] or circuit design [25] to cite a few. The standard version of this
problem can easily be solved with classic shortest path algorithms such as the
Dijkstra algorithm [8] or the A* algorithm [16].

In this paper, we focus more particularly on route planning in transportation
networks. While classically route planning operates with deterministic informa-
tion (e.g., expected travel duration), with the advent of intelligent transportation
systems that provide real-time and historical traffic data, it becomes possible
to design route planning approaches that take into account the stochastic and
time-dependent nature of traffic condition. Indeed, as more and more cities open
the access to historical traffic data, it is now possible to estimate a probability
distribution over durations for each street at different times of the day. Such
information can then serve as input to determine “shortest” paths that takes
into account the variability of durations.

More specifically, in this paper we focus on building a risk-averse route plan-
ning system for drivers in networks with stochastic and time-dependent costs.
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For a given origin and destination positions, it determines a shortest risk-averse
path with respect to a pre-specified risk measure or decision criterion. With this
system, a driver could not only plan their trip in advance, but also avoid possi-
ble congestions. Consequently, this system could help reduce in particular travel
time, traffic congestion and as a consequence exhaust emissions.

The contributions of this paper are twofold. First, we propose an adaption
of the A* algorithm, which extends and unifies previous algorithms [6,24] for
computing a risk-averse shortest path in transportation networks where costs
are stochastic and time-dependent. Our approach can accommodate any risk
measure or decision criterion that is monotonic with respect to first-order sto-
chastic dominance. Second, we demonstrate our proposition in the Manhattan,
NYC transportation network with Conditional Value-at-Risk as a risk measure.

The paper is structured as follows. The next section discusses the related
work. Section 3 recalls the standard shortest path problem and the A* algorithm.
Section 4 defines the time-dependent stochastic-cost shortest path problem tack-
led in this paper. Section 5 presents an adapted version of the A* algorithm
to solve our problem. Section 6 demonstrates our solution algorithm to route
planning in Manhattan, NYC. Finally, we conclude in Sect. 7.

2 Related Work

Over the past decades, much effort has been devoted to the solution of the
shortest path problem and its many variants.

Classic shortest-path algorithms such as the Bellman-Ford algorithm [4,11,
19], the Dijkstra algorithm [8] or the A* algorithm [16] have been proposed before
1970s to solve the static version of the problem where edge costs are scalar and
constant. However, in route planning, drivers usually value more travel times
than distances, which has several implications. Edge costs are generally non-
stationary, that is they are a function of time (e.g., driving the same street
during peak hours or during normal hours lead to different durations). They
also tend to be random, depending on traffic conditions and other drivers. For
these reasons, those classic algorithms for static shortest-path problems need to
be adapted to this more general setting.

On the one hand, many studies have considered the non-stationary case,
i.e., time-dependent shortest path problem (TDSPP). Dreyfus [9] extended the
Dijkstra algorithm to TDSPP and Goldberg and Harrelson [15] solved TDSPP
with a variant of the A* algorithm. TDSPP has been proven to be solvable
in polynomial time under the First In First Out (FIFO) property (i.e., which
forbids an earlier arrival time while traversing an edge at a later time) [18] while
it reveals to be an NP-hard problem without the FIFO property [23].

On the other hand, since Frank [12] studied stochastic-cost shortest path
problem (SSPP), extensive work has been done on this problem (e.g., [14,21,
24,31]). Bertsekas and Tsitsiklis [5] considered an even more general class of
stochastic shortest path problems (where node transitions are stochastic) and
modeled them as a Markov Decision Problem [26]. In SSPP, some researchers,
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such as Nie and Wu [21], aimed at determining a shortest path guaranteeing a
given probability of arriving on time. Recently, Gavriel et al. [14] and Parmentier
and Meunier [24] investigated risk-averse versions of SSPP by considering dif-
ferent risk measures, such as conditional Value-at-Risk (CVaR) [10]. However,
neither of them considered the case where costs are time-dependent.

Besides, some work also tackles problems where edge costs are both non-
stationary and random. Fu and Rilett [13] considered the problem of expected
shortest paths in dynamic and stochastic traffic networks. Chen et al. [6] studied
time-dependent stochastic shortest path problems and proposed an adapted A*
algorithm with first-order stochastic dominance in order to compute a reliable
shortest path. However, the risk measure they use is Value-at-Risk (VaR) [17],
which may not always be the most suitable measure. In this paper, we propose
a practical algorithm for any risk measure that is monotonic with respect to
first-order stochastic dominance (as in [24]) and test it with CVaR, which may
be considered a better criterion than VaR as it has better properties [1] and
takes into account not only VaR but also the tail distribution.

3 Background

We first recall the definition of the classic shortest path problem. Let G = (V,E)
be a directed graph (e.g., corresponding to a transportation network) where V
is a set of nodes (e.g., intersections and landmarks in a city) and E ⊂ V 2 is a
set of directed edges (e.g., lanes of streets). The set of successors of a node n is
denoted E+(n), i.e., E+(n) = {n′ ∈ V | (n, n′) ∈ E}. A path π of length k in G is
a sequence of k edges in E: (n1, n2), (n2, n3), . . . , (nk, nk+1). For convenience, we
write π = (n1, n2, . . . , nk+1). A subpath of a path is a consecutive subsequence
of edges of that path.

The edges of graph G are assumed to be valued by a cost function c : E → R

(e.g., representing the distance or duration of travel in an edge). We assume that
costs are non-negative. By extension, the cost of a (sub)path π, denoted c(π),
is defined as the sum of the costs of the edges in that (sub)path. Let πon be a
subpath from node o to node n and πnd a subpath from node n to node d. We
denote πon ⊕πnd the path obtained from the concatenation of the two subpaths.
Obviously, c(πon ⊕ πnd) = c(πon) + c(πnd).

Let o ∈ V (resp. d ∈ V ) be an origin (resp. destination) node. The shortest
path problem consists in searching for the path starting from node o and ending
in node d that has the lowest cost. Many efficient algorithms, such as the Ford-
Bellman algorithm [4,11] or the Dijkstra algorithm [8], have been proposed to
solve this problem. In the case of transportation networks where the number
of nodes may be large, those algorithms, even though polynomial in the size of
graph G may become impractical. In that case, the A* algorithm may help to
determine a shortest path faster.

The A* algorithm, proposed by Hart et al. [16], has been widely accepted as
an efficient algorithm to solve the shortest path problem. As it is well-known, we
only recall its principle and not its pseudo-code for space reasons. In this algo-
rithm, an extra heuristic information is assumed to be given: for any node n, an
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estimation h(n) of the cost of the shortest path from node n to destination node
d is available. For instance, in transportation networks, where path distances are
minimized, h(n) can be defined as the Euclidean distance from node n to desti-
nation node d. The A* algorithm finds a path from origin node o to destination
node d by exploring a tree of (sub)paths following a best-first-search strategy. In
order to choose the best subpath to extend, the A* algorithm usually maintains
a priority queue O of nodes representing subpaths ending in those nodes. The
priority f(n) of a subpath πon ending in a node n is defined as the sum of the
cost cumulated so far and the heuristic estimation, i.e., f(n) = g(n)+h(n) where
f(n) represents an estimation of the cost of of a path to node d whose subpath
is πon, g(n) is the cost of πon and h(n) is the heuristic estimation of the cost of
a subpath from node n to node d.

Heuristic function h(n) plays a significant role in the A* algorithm by influ-
encing the number of (sub)paths A* algorithm will examine. Besides, whether
the A* algorithm can eventually find the shortest path in the graph depends on
the selection of the heuristic function h(n). In order to guarantee the soundness
of the A* algorithm, h(n) should satisfy the following inequality: ∀n ∈ V ,

h(n) ≤ min
πnd

c(πnd) (1)

where πnd represents a subpath from node n to node d. This property means
that the heuristic information provided by h(n) is a lower bound to the best
possible cost to reach node d from node n. For instance, the heuristic function
defined as the Euclidean distance is admissible. A heuristic function that satisfies
inequality (1) is called an admissible heuristic function.

4 Problem Statement

We start with some notations. For any random variable X, we denote PX

its probability densition function (pdf), FX its cumulative distribution (i.e.,
FX(c) =

∫ c

−∞ PX(x)dx) and F−1
X the (pseudo)inverse of FX (i.e., F−1

X (α) =
inf{c ∈ R |FX(c) ≥ α}).

In a real transportation network, the duration for traversing an edge (i.e.,
portion of a street) is stochastic and dynamic. Such a network can be represented
as a directed graph G = (V,E) as before, however, edge costs are now time-
dependent real random variables. For an edge (n, n′), random variable Ct(n, n′)
denotes the random cost of traversing that edge at time t. We assume random
costs take non-negative values (representing durations) and S-FIFO1 (Stochastic
FIFO) [21], which is a natural property in transportation networks, holds.

1 The SFIFO property states that for any confidence level α, leaving later cannot lead
to an earlier arrival time: t ≤ t′ =⇒ t + F −1Ct(α) ≤ t′ + F −1Ct′ (α) where t, t′ are
departure times, Ct, Ct′ random costs of an edge and α ∈ [0, 1].
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For a path π = (n1, n2, . . . , nk+1), its cost Ct(π) for a departure time t is
also a random variable defined as the sum of the random costs of its edges. It
can be written recursively as follows:

Ct(π) = Ct(π′) + Ct+Ct(π′)(nk, nk+1) (2)

where π′ = (n1, n2, . . . , nk). In a similar fashion, the pdf of Ct(π) can be written:

PCt(π)(c) =
∫ +∞

−∞
PCt(π′)(x)PCt+x(nk,nk+1)(c − x)dx (3)

The problem we tackle in this paper can then be formulated: given a risk-
averse criterion or risk measure ρ : X → R (with X the set of real random
variables), we search for the ρ-minimum path π∗ for a departure time t, i.e.,

ρ(Ct(π∗)) = min
π

ρ(Ct(π)) (4)

We call π∗ a risk-averse shortest path. We assume that criterion ρ satisfies a
consistency property that relates ρ to the first-order stochastic dominance, which
is a partial order defined over probability distributions [30].

Definition 1. First-order stochastic dominance (FSD) is defined as follows:
Let F1, F2 be two cumulative distributions, F1 (weakly) first-order-stochastically
dominates (or FSD-dominates) F2, denoted F1 �FSD F2, iff ∀x, F1(x) ≤ F2(x).
An illustration of FSD is shown in Fig. 1.

The consistency property that we assume states that ρ is monotonic with
respect to first-order stochastic dominance:
FSD FX �FSD FY ⇒ ρ(X) ≥ ρ(Y )
where X and Y are two real random variables and FX and FY are their respective
cumulative distributions. This property is important because it will allow us to
prune in the adapted A* algorithm.

Fig. 1. Illustration of first-order stochastic dominance: the green cumulative distribu-
tions FSD-dominates the blue and red ones, while the latter two are incomparable.
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Let us introduce another property that states that ρ is increasing with the
addition of a non-negative random variable:
INC ρ(X) ≤ ρ(X + C)
where X and C are two real random variables and C takes non-negative values.
In our setting, this is a natural property as random variables represent durations.

To prove that FSD implies INC, we first introduce a lemma2:

Lemma 1. Let X be a real random variable and C be a non-negative real ran-
dom variable. Then, FX+C �FSD FX .

Then, as a direct consequence of Lemma 1, we obtain:

Proposition 1. If ρ satisfies FSD, ρ also satisfies INC.

As illustrations of ρ, we present three examples, Value-at-Risk, Conditional
Value-at-Risk and Expected Utility, which all satisfy FSD (and therefore INC).

Example 1. Value-at-Risk (VaR) [17] is a widely-used risk measure in finance.
For a fixed α ∈ [0, 1], it represents the threshold loss value, such that the proba-
bility the loss on an investment exceeds this value is α. Formally, in our context,
it is defined by: V aRα(X) = F−1

X (α) = inf{x ∈ R |FX(x) ≥ α} In other terms,
V aRα(X) is defined in our context as the α-quantile of random variable X. It
is well-known that VaR satisfies FSD [3].

Example 2. Conditional Value-at-Risk (CVaR) [10], also called Expected Short-
fall is a risk measure that refines VaR. Because VaR is a threshold value (for
a single fixed probability α), it neglects the risk at the tail of the distribution.
CVaR remedies this shortcoming of VaR by measuring the expected loss at the
tail above VaR. CVaR is mathematically defined by: CV aRα(X) = E[X |X ≥
V aRα(X)] where X is a real random variable. The benefit of using CVaR instead
of VaR is that CVaR takes into account not only the VaR value but also the tail
information of a distribution. CVaR is known to satisfy FSD [3].

Example 3. Expected Utility (EU) is a well-known decision criterion in decision
under risk [20] and decision under uncertainty [29], which is known to satisfy FSD
[3]. It is defined as follows: EU(X) = E(u(X)) where X is a real random variable
and u : R → R is a so-called von Neumann-Morgenstern utility function. The
utility value u(x) represents how much x is valuable. For this reason, function
u is assumed to be monotonic (i.e., in our settings, x ≤ y ⇒ u(x) ≥ u(y)). In
decision theory, it is well-known that a concave (resp. convex) function u leads
to a risk-averse (resp. risk-seeking) decision criterion. Although we focus on risk-
averse criteria in this paper (as it is most people’s concern in transportation),
note that our approach could also tackle the risk-seeking case.

There are many other possible examples of ρ that satisfies property FSD:
for instance, semideviations [22], rank-dependent utility [27], Yaari’s dual model
[32]... Our solution algorithm covers all those cases.
2 For space reasons, we do not include the proofs.
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Algorithm 1. Proposed adapted A* algorithm
Data: graph G = (V, E), random costs Ct, heuristic h, criterion ρ, upperbound

UB, origin node o, destination node d, departure time t
Result: risk-averse shortest path

1 begin
2 O ← {(o, 0)}
3 while O �= ∅ do
4 (n, C) ← highest priority pair in O
5 if n = d then return corresponding path
6 remove (n, C) from O
7 for n′ ∈ E+(n) do
8 C′ ← C + Ct+C(n, n′) �initial time t + C selects the edge cost
9 f(n′, C′) ← ρ(C′ + h(n′))

10 if n′ = d and f(n′, C′) < UB then
11 UB ← f(n′, C′)
12 else
13 if f(n′, C′) ≥ UB then continue

14 if n′ /∈ O then
15 add (n′, C′) in O
16 else
17 if C′ not FSD-dominating any (n′, C′′) ∈ O then
18 add (n′, C′) in O and remove FSD-dominating (n′, C′′) ∈ O
19 else
20 continue

21 return ∅

5 Solution Algorithm

We propose an algorithm that is an adapted version of the standard A* algorithm
to solve the proposed risk-averse shortest path problem using time-dependent
stochastic costs. It generalizes the algorithm proposed by Chen et al. [6] to
general ρ measures that satisfies FSD and extends the algorithm proposed by
Parmentier and Meunier [24] to the time-dependent cost setting.

The proposed algorithm keeps the basic features of the standard A* algo-
rithm, for example, an open set O while adding new features such as labeling
with random variables and path pruning using FSD dominance. We now explain
why the notions of label (for evaluating the value of a subpath ending in node
n) and priority (for guiding the order the subpaths are examined) need to be
redefined in our setting and how they can be redefined. In the standard A* algo-
rithm for computing a shortest path, a node n in the priority queue O is the end
node of a subpath for which only one label (i.e., cumulated cost g(n) = c(πon))
needs to be stored. This is possible because we have ∀n ∈ V :

c(πon) ≤ c(π′
on) =⇒ c(πon ⊕ πnd) ≤ c(π′

on ⊕ πnd)
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Table 1. Cumulative distributions.

x 0 1 2 3 4

FCt(πon) 0 0.95 1 1 1

FCt(π′
on) 0.9 0.9 1 1 1

FCt(πnd) 0.8 0.9 1 1 1

FCt(πon⊕πnd) 0 0.76 0.895 0.995 1

FCt(π′
on⊕πnd) 0.72 0.81 0.98 0.99 1

where πon and π′
on are two paths from node o to node n and πnd is a path from

n to d. Unfortunately, in our setting, a counterpart of these inequalities with
respect to ρ does not hold, due to the possible non-linearity of criterion ρ:

ρ(Ct(πon)) ≤ ρ(Ct(π′
on)) 
=⇒ ρ(Ct(πon ⊕ πnd)) ≤ ρ(Ct(π′

on ⊕ πnd)) (5)

In words, a dominated subpath can become non-dominated when extended.

Example 4. We give an example for the case when ρ is VaR with α = 95%.
Assume the probability distributions are given in Table 1. One can check that:

V aR(Ct(πon)) = 1 < 2 = V aR(Ct(π′
on)) and

V aR(Ct(πon ⊕ πnd)) = 3 > 2 = V aR(Ct(π′
on ⊕ πnd))

As a consequence of (5), labels have a more complex form. Following previ-
ous related work [6,21,24], the label of node n is defined as Ct(πon) instead of
ρ(Ct(πon)). For a given node, two labels can be compared with FSD-dominance
(thanks to Corollary 1). As it is a partial order, a node can then receive several
labels. For this reason, elements of O are pairs (n,C) where n is a node and C
is a random variable representing the cost of a subpath from node o to node n.

The priority of a pair (n,C) in O is defined as f(n,C) = ρ(C + h(n)) where
h(n) is a known heuristic evaluation of a subpath from node n to node o. We
assume that h(n) is FSD-dominated by the random cost of any subpath from
node n to node d. Heuristic h(n) can be a deterministic value [6] as usual or
more generally a random variable [24].

Defining the label as such and comparing them with FSD dominance are jus-
tified because of the following lemma [6,21,24] and corollary, written for X,Y,Z
three real random variables.

Lemma 2. If FX �FSD FY , then FX+Z �FSD FY +Z .

This lemma can be interpreted in our context as follows: If the label (i.e., random
variable or its associated probability distribution more exactly) of a subpath π
ending in n FSD-dominates the label of another subpath also ending in n, then
any extension of those two subpaths will keep the direction of the dominance.
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As a direct consequence of Lemma 2 and FSD, we have:

Corollary 1. If FX �FSD FY , then ρ(X + Z) ≥ ρ(Y + Z).

This corollary states that if a given node n has two labels, one FSD-dominating
the other, the former label can be pruned as it will lead to a higher ρ value.

Thanks to INC, the following proposition explains why it is sound to end the
algorithm as soon as node d is examined (Line 5 of Algorithm 1).

Proposition 2. When node d is chosen, the corresponding path is ρ-minimum.

Property INC was not considered in Parmentier and et al.’s work [24]. Contrary
to their algorithm, ours can stop as soon as a path to node d is found.

In order to avoid generating too many subpaths, we use an upperbound
UB on the best ρ value known so far. When starting Algorithm 1, we can use
UB = +∞ or better compute a standard shortest path and use its ρ value as an
upperbound. Then, UB can be updated each time a path to d is found (Line 10).
Besides, this algorithm can be sped up by pruning with any other known lower
bound to the ρ value (see the case study where we use the expected duration).

Note that in general, Line 5 may be hard to compute. In our case study,
we assume the time is discretized into equal-length intervals on which proba-
bility distributions are assumed to be constant. Moreover, we also assume all
distributions are discretized. In the next section, we explain this in more details.

6 Case Study

We demonstrate our algorithm with ρ chosen as the conditional value-at-risk
(CVaR) with α = 90%. This seems to be a better choice than VaR, which
was used in Chen et al.’s work [6], because it not only takes into account the
VaR threshold, but also the tail distribution. Besides, being a coherent risk
measure [1], it enjoys nicer properties than VaR. We implemented our adapted
A* algorithm in OpenTripPlanner3, an open-source platform for route planning,
which offers a map-based web interface and standard shortest path algorithms.

In order to work with real traffic data, we estimated the dynamic random
costs from taxi trip data4 released by the New York City TLC (Taxi and Limou-
sine Commission). We first explain how a probability distribution for the random
duration of an edge was estimated and then present an illustration of results that
can be obtained thanks to our algorithm.

Data Cleaning and Estimation. The dataset contains records of taxi trips
in Manhattan from 2009 to 2015. We only used the data from 2011 to 2015, as
the data size was large and we preferred focusing on the most recent records.
The dataset contains trip information including pick-up/drop-off locations and

3 http://www.opentripplanner.org.
4 http://www.nyc.gov/html/tlc/html/about/trip record data.shtml.

http://www.opentripplanner.org
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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pick-up/drop-off times. We only took into account trips inside the Manhattan
area, which represents a network of 5,111 nodes and 16,396 edges. During the
data cleaning phase, we filtered out trips that had a pick-up or drop-off loca-
tion outside Manhattan. We also removed abnormal trips, which may be due to
incorrect GPS readings.

Because the actual path of a trip and detailed times at each intersection of
a trip were not provided, we had to make two assumptions to extract random
duration Ct(e) of an edge e ∈ E from the dataset:

A1 A trip follows the shortest path from origin to destination.
A2 The driver maintains the same speed along the trip.

Given the nature of the dataset, the assumptions seem reasonable enough.
A1 leads to a small overestimation of travel durations in each edge. For our risk-
averse route planning problem, overestimation is better than underestimation.
A2 is a simplifying assumption, which neglects the effects of traffic lights, inter-
sections, turns... We do not think it has a too big impact for our application,
especially given that we have already overestimated the durations.

Based on A1, for each trip, we computed its shortest path from its origin to
its destination using standard A* in terms of duration, where the duration of
an edge (i.e., portion of a street) equals to the length (i.e., distance) of an edge
divided by the maximum speed limit allowed in that edge. Then, given the
computed shortest path π, we could generate a duration sample for each of its
edge based on A2 with ce = cπ × le

lπ
where ce is the duration of an edge e of π,

cπ the total duration of the trip, le the length of edge e and lπ the length of π.
Samples ce’s were then collected and used to estimate PCt(e). As we expect

different traffic patterns on weekdays and during weekends, we divided the days
of a week into two classes: Weekdays = {Mon., Tues.,Wed., Thur., Fri.} and
Weekends = {Sat., Sun.}. We divided a day into 24 bins of 1 h. For a specific
edge e, we obtained 24 distributions PCt(e) (one for each hour) and assume the
distribution was constant during an interval of one hour. Moreover, we assume
those distributions are discrete and defined over 100 bins of 6 s. Durations that
exceeds 600 s were counted as 600 s.

Experimental Results. With the adapted A* algorithm described before, we
can find the risk-averse path between any pair of origin and destination. For this
case study, following Chen et al.’s work [6], we define the heuristic function used
in the implemented risk-averse path finding system as h(n) = d(n)

vmax
where d(n)

is the shortest length of a path from node n to node d and vmax is the maximum
travel speed in the network. Therefore, h(n) is the shortest possible duration to
go from n to d.

Besides, it is known that CV aRα is increasing with α and CV aR0% is the
expectation. Therefore, we also maintained an expected duration of a subpath
πon and estimated a lowerbound of the expected duration of an extension of πon

to node d (as in standard A*). This lower bound can be used to prune subpaths
by comparing it with the upperbound UB.
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(a) path at 6:00 a.m. on
Wednesday

(b) path at 8:00 a.m. on
Wednesday

Fig. 2. Examples of risk-averse paths.

To illustrate our system, we present one example where for the same pair of
origin and destination nodes, CVaR yields different risk-averse paths depending
on the departure time. As depicted in Fig. 2, at 6:00 a.m. on Wednesday, before
rush hours, the risk-averse path (with a CVaR of 24 mins) is very similar to the
shortest distance path because there is little risk of congestion. Its CVaR can be
interpreted as follows: In the worst 10% of the case, the average duration of the
trip will be 24 mins. And, in most cases, the observed travel duration would be
much less than 24 min. In contrast, at 8:00 a.m. on the same day during rush
hour, the risk-averse path is no longer the shortest distance path, but a path
(with a CVaR of 31 mins) that passes via a highway, which has less probability
of congestion. Although the risk-averse path may be a longer path to drive, it is
a less risky path in terms of CVaR.

The computation times depend on the origin and destination nodes. By aver-
aging over 100 runs where those pairs where selected randomly, the average
computation time was less than one second (976.2 millisecs) using a computer
equipped with an Intel Xeon E31225 @ 3.10GHz. To make this system usable in
a real application, the computation time could be further improved. We expect
this could be achieved with different optimization techniques: e.g., memoiza-
tion, better heuristics, fitting duration samples to continuous distributions...
As we wanted to demonstrate the feasibility of our approach, we leave this as
future work.

7 Conclusion

In this paper, we proposed an adapted A* algorithm, which accommodates any
risk measure or decision criterion that is monotonic with first-order stochastic
dominance, to find a risk-averse shortest path in a transportation network with
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time-dependent stochastic costs. Besides, we demonstrated our algorithm on a
case study with NYC taxi data and obtained reasonable results.

As future work, we plan to improve the computational efficiency of our
method, taking inspiration from the techniques developed for standard short-
est path problems [2,7]. Moreover, we would like to test our system on more
accurate historical traffic data. Finally, we plan to extend the approach to take
into account other kinds of costs, such as power consumption.
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