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Abstract. Fuzzy-rough set based feature selection is highly useful for
reducing data dimensionality of a hybrid decision system, but the reduct
computation is computationally expensive. Gaussian kernel based fuzzy
rough sets merges kernel method to fuzzy-rough sets for efficient feature
selection. This works aims at improving the computational performance
of existing reduct computation approach in Gaussian kernel based fuzzy
rough sets by incorporation of vectorized (matrix, sub-matrix) opera-
tions. The proposed approach was extensively compared by experimen-
tation with the existing approach and also with a fuzzy rough set based
reduct approaches available in Rough set R package. Results establish
the relevance of proposed modifications.
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1 Introduction

Rough Set Theory(RST), introduced by Prof. Pawlak [10] in 1980s, is very useful
for classification and analysis of imprecise, uncertain or incomplete information
and knowledge. The fundamental concept behind RST is the approximation
space of a concept represented as the set. The process of knowledge discovery
in a given decision system primarily consists of reduct computation (or feature
selection) as the preprocessing step for dimensionality reduction. The features
which are not a part of the reduct can be removed from the dataset with mini-
mum information loss.

Feature Selection of a dataset with categorical attributes can be carried out
by RST, but feature selection of a dataset with real-valued attributes is not
possible through the classical RST. For handling this situation the fuzzy-rough
set model is used. The Fuzzy Rough Set Theory (FRST) was introduced by
Dubois and Prade [4] in 1990s and extended by several researchers [3,7,12].
Many reduct computation approaches were developed using FRST. They are
categorized into fuzzy discretization based [1,6] and fuzzy similarity relation
based [5,7,15,15]. In [7], it is established that fuzzy similarity relation based
reduct computation are more efficient.
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Recently an extension to fuzzy rough set model, named as Gaussian
Kernel-based fuzzy rough set (GK-FRS) model, by adopting a Gaussian ker-
nel function fuzzy similarity relation was introduced by Hu et al. [5]. The
GK-FRS models combine the advantages of kernel methods with fuzzy rough
sets. A sequential forward selection (SFS) based reduct computation approach
was also proposed [18] based on GK-FRS. In 2015, GK-FRS was adopted to sys-
tems with various type of attributes (real-valued, categorical, boolean, set, inter-
val based) with the concept of hybrid distance by Zeng et al. [18]. FRSA-NFS-
HIS algorithm was introduced in [18] based on the extended GK-FRS model.

The computation complexity of fuzzy rough set based reduct algorithm is
much higher than classical rough set based reduct algorithms [14]. The reason
being, in later approaches computation, is based on the granules (equivalence
classes), but fuzzy rough set based reduct computation inevitably involved object
based computations. The existing approaches do not attempt any possibility of
imposing granular or sub-granular aspect in fuzzy rough set based reduct com-
putations. The aim of this paper is to improve the computational performance of
FRSA-NFS-HIS algorithm by bringing an aspect of granular/sub-granular com-
putations. This study brings out the importance of modeling fuzzy rough set
reduct computation using matrix, sub-matrix based vectorized operations in the
efficient vector-based environment such as Matlab and R. Our proposed Modified
FRSA-NFS-HIS (MFRSA-NFS-HIS) algorithm was implemented in R environ-
ment, and extensive comparative analysis with existing approaches is reported
in this paper.

This paper is organized as follows. Section 2 gives the theoretical back-
ground. Section 3 discusses the Gaussian Kernel-based Fuzzy-Rough Sets and
FRSA-NFS-HIS. In Sect. 4 Proposed MFRSA-NFS-HIS Algorithm is detailed.
Section 5 describes Experiments, Results and Analysis of these different
approaches. The paper is concluded with Sect. 6.

2 Theoretical Background

2.1 Rough Set Theory

Rough Set Theory is a useful tool to discover data dependency and to reduce
the number of attributes contain in the dataset using data alone requiring no
additional information. Let DS = (U, A ∪{d}) is a decision system, where d is
a decision attribute and d /∈ A, U is nonempty set of finite objects and A is
a nonempty finite set of conditional attributes such that a : U → Va for every
a ∈ A. Va is the set of domain values of attribute ’a’. For any R ⊆ A, there is
an associated equivalence relation, called as indiscernible relation IND(R),

IND(R) = {(x, y) ∈ U2|(∀a ∈ R)(a(x) = a(y))} (1)

The equivalence relation partitions the universe into a family of disjoint sub-
sets, called equivalence classes. The equivalence class including x is denoted
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by [x]R and the set of equivalance classes induced by IND(R) is denoted by
U/IND(R) or U/R in short.

Let X be a concept (X ⊆ U) and approximations to X are defined using
U/R. The lower and the upper approximations of X are defined respectively as
follows:

RX = {x ∈ U |[x]R ⊆ X}; (2)
RX = {x ∈ U |[x]R ∩ X �= φ}; (3)

The pair < RX,RX > is called a rough set when RX �= RX.
Let R and Q be sets of attributes inducing equivalence relations over U, then

the positive regions can be defined as:

POSR(Q) =
⋃

X∈U/Q

RX (4)

The positive region POSR(Q) contains all the objects of the universe U that
can be classified into different classes of U/Q using the information of attribute
set R. The dependency or gamma (γ) is calculated as:

γR({d}) =
|POSR({d})|

|U | (5)

2.2 Fuzzy-Rough Sets

The classical Rough Set Theory cannot deal with real-valued data and the fuzzy-
rough set is a solution to that problem as it can efficiently deal with real-valued
data without resorting to discretization. Let R is a fuzzy relation and decision
system DS =(U, A ∪ {d}) where U is a non-empty set of objects and A is a
set of conditional attributes, a∈ A be a quantitative(real-valued) attribute. For
measurement of the approximate similarity between two objects for a quanti-
tative attributes, fuzzy similarity relations are used. Few example of the fuzzy
similarity relation are [7]:

(1) μRa
(x, y) = 1 − |a(x) − a(y)|

|amax − amin| (6)

(2) μRa
(x, y) = exp

(
− (a(x) − a(y))2

2σ2
a

)
(7)

(3) μRa
(x, y) = max

(
min

(
a(y) − a(x) + σa

σa
,
a(x) − a(y) + σa

σa

)
, 0

)
(8)

where σa denotes the standard deviation of a. If attribute a∈A is qualitative
(nominal) then Ra(x,y) = 1 for a(x) = a(y) and Ra(x,y) = 0 for a(x) �= a(y).
The similarity relation is extended to a set of attributes A by

RA(x, y) = 	(Ra∈A(x, y)) (9)

where 	 represent a t-norm.
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The lower and upper approximations are defined based on fuzzy similarity
relations. The fuzzy R-lower and R-upper approximations are defined in
Radzikowska-Kerry’s fuzzy rough set model [3,12] as:

RA(y) = infx∈XI(R(x, y), A(x)) (10)
RA(y) = supx∈X	(R(x, y), A(x)) (11)

where for all y in U, I is the implicator and 	 is the t-norm. The pair < RA,RA >
is called a fuzzy-rough set.

3 Gaussian Kernel Based Fuzzy-Rough Sets

The kernel methods and rough set are crucial domains for machine learning and
pattern recognization. The kernel methods map the data into a higher dimen-
sional feature space while rough set granulates the universe with the use of
relations. Hu et al. [5] used the benefits of both and made a Gaussian kernel
based fuzzy rough set approach for reduct computation. The content of this
section is already discussed in the literature [5,18]. For the completeness of the
paper, we give a summary of the original content.

3.1 Hybrid Decision System (HDS) and Hybrid Distance (HD)

A HDS can be written as (U,A ∪ {d}, V, f), where U is the set of objects, A =
Ar∪Ac∪Ab, Ar is the real-valued attribute set, Ac is the categorical attribute set
and Ab is the boolean attribute set. {d} denotes a decision attribute. Ar∩Ac = φ,
Ar ∩ Ab = φ, and A ∩ {d} = φ.

In HDS, there may be different types of attributes. To construct the distance
among the objects, different distance measurement functions are used based on
attribute type in literature [18]. The Hybrid Distance(HD) for a Hybrid Decision
System (HDS) based on different types of attributes is defined as:

HDB(x, y) =
√∑

a∈B

d2(a(x), a(y)) (12)

where B is the set of conditional attributes of the HDS, and

d(a(x), a(y)) =

⎧
⎪⎨

⎪⎩

vdm(a(x), a(y)), a is a categorical attribute
vdr(a(x), a(y)), a is a real-valued attribute
vdb(a(x), a(y)), a is a boolean attribute

(13)

3.2 Gaussian Kernel

In the literature Hu et al. [5] uses gaussian kernel function for computing the
fuzzy similarity relation between the objects. The gaussian kernel function is
defined as:

k(xi, xj) = exp

(
−||xi − xj ||2

2δ2

)
(14)
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where ||xi−xj || is the distance between the objects and δ is the kernel parameter.
δ plays an important role in controlling the granularity of approximation. In [18],
||xi − xj || was taken as HD(xi, xj) for generalised the GK-FRS to HDS.

3.3 Dependency Computation

RB
G denotes Gaussian kernel based fuzzy similarity relation where HD is com-

puted over B ⊆A. Based on Proposition 3 in [18], R
{a}∪{b}
G can be computed

using R
{a}
G , R

{b}
G by,

R
{a}∪{b}
G (x, y) = R

{a}
G (x, y) × R

{b}
G (x, y) ∀x, y ∈ U (15)

It is essential to find the fuzzy lower and upper approximation for calculating
the dependency of the attributes. This approximation is calculated from the
fuzzy similarity relation RG.

Proposition 1 [18]. The formula for calculating the fuzzy lower and upper
approximation is defined as:

RGdi(x) =
√

1 − (
supy/∈di

RG(x, y)
)2 (16)

RGdi(x) = supy∈di
RG(x, y) (17)

where ∀di ∈ U/{d}.
The universe U is divided into different granules U/{d} = {d1, d2, ..., dl}. The

fuzzy positive regions of decision attribute ({d}) concerning B are defined as:

POSB({d}) =
l⋃

i=1

RB
Gdi. (18)

The dependency of the attribute or a set of attributes is defined as follows:

γB({d}) =
|POSB({d})|

|U | =
|⋃l

i=1 RB
Gdi|

|U | (19)

where
⋃l

i=1 RB
Gdi =

∑
i

∑
x∈di

RB
Gdi(x).

3.4 The FRSA-NFS-HIS Algorithm

The FRSA-NFS-HIS algorithm uses SFS control strategy for reduct computa-
tion. This Algorithm starts with an empty reduct set R. In every iteration an
attribute a ∈ A − R is added to R based on the criteria of giving maximum
gamma gain (γR∪{a}({d}) − γR({d})). The end condition is determined by a
parameter ε (a very small value near to zero and is a user control parameter).
The algorithm completes execution and returns R when no available attributes
a ∈ A − R gives a gamma gain exceeding epsilon (ε).
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4 Proposed MFRSA-NFS-HIS Algorithm

This section describes the proposed MFRSA-NFS-HIS algorithm by incorporat-
ing vectorized operation in the FRSA-NFS-HIS algorithm.

4.1 Vectorization in FRSA-NFS-HIS Algorithm

All fuzzy similarity relation based fuzzy rough set reduct computation involves
object based computation. Starting with the computation of fuzzy similarity rela-
tion for each conditional attributes, computation of fuzzy lower approximation
involves object-wise computation. Hence the implementation involves several
nested looping structures over the space of objects (U). Computing environments
such as R, Matlab have excellent support for matrix and sub-matrix based oper-
ation. Vectorization is the process of modeling the computation involving nested
loops into matrix, sub-matrix based operations. It is established [16] that the
same computation through vectorization can result in significant performance
gain over implementation using loops.

The first important computation involved in FRSA-NFS-HIS algorithm is
the calculation of fuzzy silmilarity relation for individual conditional attributes.
This requires computation of appropriate distance function between a pair of
objects requiring two loops. These are translated as matrix based operation by
replication of attribute column |U | times resulting in |U | × |U | matrix and find-
ing matrix based distance computation with its transpose and applying gaussian
kernel function on the resulting matrix. The fuzzy similarity relation computa-
tion between a set of attributes is computed by element-wise multiplication of
individual similarity matrices by using Eq. 15.

The most frequent computation in FRSA-NFS-HIS algorithm is the com-
putation of gamma using Algorithm 1 which computes fuzzy dependency using
Eq. 19. Improving the computation efficiency of Algorithm1 has an immense
impact on the overall performance of MFRSA-NFS-HIS algorithm.

The Algorithm 1 calculates lower approximation of each concept using all
the objects. For an example, let U/{d} = {d1, d2, d3}, d1 = {x1, x2, x3, x8},
d2 = {x4, x5}, and d3 = {x6, x7}.

Algorithm 1. Dependency with Gaussian Kernel Approximation (DGKA) [18]

Input: The fuzzy relation R.
Output: The fuzzy dependency γB({d}) of {d} to B
1: γB({d}) = 0
2: for each di ∈ U/{d} do
3: for j = 0; j < |U |; j + + do
4: Find the nearest sample Mj of xj with a different class.
5: γB({d}) = γB({d}) +

√
1 − R2

G(Mj , xj)
6: end for
7: end for
8: return γB({d})
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RGd1(x1) =
√

1 − (
supy/∈d1RG(x1, y)

)2 =
√

1 − (sup{RG(x1, x4), RG(x1, x5), RG(x1, x6), RG(x1, x7)})2

But when we calculating lower approximation for the object x4 which is belong
to the different decision class (x4 ∈ U − di)
RGd1(x4) =

√
1 − (sup{RG(x4, x4), RG(x4, x5), RG(x4, x6), RG(x4, x7), RG(x4, x9), })2

and as the value of RG(x4, x4) = 1, the total value becomes zero. It means all
the objects which do not belong to the same decision class contribute zero in
gamma calculation.

Algorithm 2. Improved Dependency with Gaussian Kernel Approximation (IDGKA)

Input: The fuzzy similarity relation RB where B⊆A of the HDS.
Output: The fuzzy dependency γB({d}) of {d} to B
1: γB({d}) = 0
2: POSB

G = zeros(|U |, 1)
3: for each di ∈ U/{d} do
4: POSB

G (di) =
√

1 − (rowmax(RB
G(di, U − di)))2

5: end for
6: γB({d}) =

sum(POSB
G )

|U|
7: return γB({d})

The proposed algorithm IDGKA (Algorithm2) computes gamma using only
the objects which are belonging to the same decision class. The IDGKA algo-
rithm does not use the objects which are belonging to a different decision class.
For computing gamma, the IDGKA algorithm uses all the objects only once for
any number of decision classes. So, the Algorithm2 reduces |U − di| iterations
for each decision class (di) and executes only |di| times for each decision class
(concept). The computation of the proposed Algorithm2 involves sub-matrix
based operation described below.

POSB
G is a zero vector of size |U | representing a fuzzy positive region mem-

bership of each object. The actual membership is incrementally assigned by con-
sidering each decision concept objects in(line no 3 to 5 of Algorithm 2) iteration.
For a decision concept di the row-wise maximum are computed on sub-matrix
RB

G(di, U −di) and the positive region membership for di objects is computed as
a vector operation using Eq. 16. Finally, in line number 6 γB({d}) is computed
through a summation of the POSB

G vector. Hence all the required computation
of DGKA are vectorized in IDGKA using submatrix and vector operations.

4.2 Overcoming ε-Parameter Dependency

In SFS based reduct computation algorithm based on classical rough sets, the
possibility of occurrence of a trivial ambiguous situation is identified in [14]. In
such situation, no available attributes are resulting any gamma gain leading to
sub reduct computation instead of reduct computation. The end condition of
FRSA-NFS-HIS can result in a similar situation wherein no available attributes
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give a gamma gain exceeding ε but has a possibility for an increase in gamma if
proceeded to future iterations. Such situation results in sub reduct computation
in FRSA-NFS-HIS algorithm. To overcome this we have modified the end con-
dition as γR == γA. This will incur computation overhead for γA computation
but is required for having proper end condition.

The resulting MFRSA-NFS-HIS algorithm is given in Algorithm3.

Algorithm 3. Modified FRS Approach for Naive Feature Selection in HIS (MFRSA-
NFS-HIS)

Input: HDS = (U, A ∪ {d})
Output: Reduct red
1: red = φ, γred = 0
2: for each a ∈ A do
3: Compute R

{a}
G

4: end for
5: Compute RA

G //Computing using Eq. 15
6: γA = IDGKA(RA

G) //Computing the γ by Algorithm 2
7: while (γred < γA) do
8: γmax = 0
9: b = φ

10: for each ai ∈ (A − red) do

11: Compute R
red∪{ai}
G

12: γi = IDGKA
(
R

red∪{ai}
G

)

13: end for
14: Find the maximal dependency γmax and the corrosponding attribute b
15: red = red ∪ {b}
16: γred = γmax

17: end while
18: return red

5 Experiments, Results and Analysis

The experiments are conducted on Intel (R) i5 CPU, Clock Speed 2.66 GHz,
4 GB of RAM, Ubuntu 14.04, 64 bit OS and R Studio, Version 0.99.447. In this
work, we have used benchmark datasets for performing the experiments. The
datasets are described in Table 1. All the datasets are from UCI Machine Learn-
ing Repository [8]. The proposed MFRSA-NFS-HIS algorithm is implemented
in R environment.

5.1 Comparative Experiments with FRSA-NFS-HIS Algorithm

The experiments are performed on proposed feature selection (MFRSA-NFS-
HIS) algorithm. The results obtained are compared with the result of the existing
FRSA-NFS-HIS algorithm reported in [18] for all the datasets in Table 1. In [18],
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Table 1. Description of datasets

No Dataset Objects Attributes Decision classes

1 Wine 178 14 3

2 Hepatitis 155 19 2

3 Horse 368 26 2

4 Ionosphere 351 34 2

5 Credit 690 15 2

6 German 1000 20 2

7 Bands 540 40 2

Table 2. Comparison with FRSA-NFS-HIS and MFRSA-NFS-HIS algorithms with
respect to computational time (in seconds) and reduct size

Datasets Computation time (s) Reduct size Computation gain

No Name FRSA-NFS-HIS MFRSA-NFS-HIS FRSA-NFS-HIS MFRSA-NFS-HIS MFRSA-NFS-HIS

1 Wine 17.5 0.144521 6 6 99.17 %

2 Hepatitis 8 0.175910 7 8 97.80 %

3 Horse 80 1.189067 4 12 98.51 %

4 Ionosphere 118 2.070024 7 18 98.24 %

5 Credit 185 2.225725 5 14 98.79 %

6 German 500 3.606263 11 11 99.27 %

7 Bands 240 1.672623 11 10 99.30 %

the results of the FRSA-NFS-HIS algorithm is reported in Fig. 1, where results
are varying, and we take the lower bound of the results for comparing the result
with MFRSA-NFS-HIS algorithm. The Table 2 shows the comparison of the
results of FRSA-NFS-HIS and MFRSA-NFS-HIS algorithm.

Analysis of Results. The comparison of the results of existing feature selection
approach and proposed feature selection approach is given in Table 2. From the
Table 2, it is observed that the proposed approach takes less time than existing
approach for all the datasets in Table 1 and the computation gain of the algo-
rithm MFRSA-NFS-HIS is varying from 97 % to 99 %. The size of the reduct is
almost same for both the approaches. The size of the reduct in a few datasets is
higher in MFRSA-NFS-HIS due to the modification of the end condition deter-
mined by γA.

5.2 Comparative Experiments with L-FRFS and B-FRFS
Algorithms

The feature selection algorithm Fuzzy Lower Approximation based FS (L-FRFS)
and Fuzzy Boundary Approximation based FS (B-FRFS) are proposed by Jensen
et al. [7] which are implemented in Rough Set package in R environment [13].
The proposed algorithm MFRSA-NFS-HIS also implemented in R environment
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using the vectorized operations [16]. For executing the L-FRFS and B-FRFS
algorithms, we used Lukasiewicz t-norm, Lukasiewicz implicator, and fuzzy sim-
ilarity measure defined in Eq. 8. The comparison of results of the algorithm
L-FRFS, B-FRFS with MFRSA-NFS-HIS are given in Table 3.

Table 3. Comparison of algorithm L-FRFS and B-FRFS available in R package with
MFRSA-NFS-HIS algorithms with respect to computational time (in seconds) and
reduct size

Datasets Reduct size Time (s) Computation Gain

No Name L-FRFS B-FRFS MFRSA-NFS-HIS L-FRFS B-FRFS MFRSA-NFS-HIS MFRSA-NFS-HIS

1 Wine 5 5 6 4.9116 4.6624 0.144521 97.05 % & 97.04 %

2 Hepatitis 7 7 8 4.6299 4.6553 0.175910 96.20 % & 96.22 %

3 Horse 10 10 12 43.5804 43.8784 1.189067 97.27 % & 97.29 %

4 Iono 7 7 18 42.9626 43.6401 2.070024 95.18 % & 95.25 %

5 Credit 12 12 14 82.3428 81.7314 2.225725 97.29 % & 97.27 %

6 German 10 10 11 248.6718 230.3088 3.606263 98.54 % & 98.43 %

7 Bands 8 8 10 56.4242 57.0249 1.672623 97.03 % & 97.06 %

The computation time of the algorithms L-FRFS and B-FRFS reported in
the literature [7], and the results of Rough Set R package executed on the above
mentioned system is significantly different. This may be primarily due to the
hardware configuration used in [7]. But the details of the hardware configurations
are not specified in [7]. So, for the completeness of comparative analysis, we
have executed MFRSA-NFS-HIS on the datasets used in [7] and the results are
summarized in Table 4.

Table 4. Comparison of algorithm L-FRFS and B-FRFS reported in the literature
[7] with MFRSA-NFS-HIS algorithms with respect to computational time (in seconds)
and reduct size

Datasets Reduct Size Time(s) Computation Gain

No Name Objects Features L-FRFS B-FRFS MFRSA-NFS-HIS L-FRFS B-FRFS MFRSA-NFS-HIS MFRSA-NFS-HIS

1 Cleveland 297 14 9 9 10 3.32 8.78 0.41058 87.63 % & 95.32 %
2 Glass 214 10 9 9 9 1.53 3.30 0.15331 89.97 % & 95.35 %
3 Heart 270 14 8 8 11 2.17 3.61 0.32041 85.23 % & 91.12 %
4 Ionosphere 230 35 9 9 18 3.77 8.53 2.02270 46.41 % & 76.28 %
5 Olitos 120 26 6 6 7 0.72 1.29 0.19042 73.61 % & 85.23 %
6 Web 149 2557 21 20 23 541.85 949.69 84.0546 84.48 % & 91.09 %
7 Wine 178 14 6 6 6 0.97 1.69 0.14312 85.26 % & 91.53 %

Analysis of Results. From the analysis of the results, it is observed that
the reduct computation algorithm MFRSA-NFS-HIS takes comparatively lesser
computation time than the algorithms L-FRFS and B-FRFS which is available
in Rough Set package in R platform. The last column of the Table 3 depicts the
computational gain percentage obtained by MFRSA-NFS-HIS over L-FRFS and
B-FRFS algorithm respectively. The computation gain with respect to L-FRFS
and B-FRFS is more than 95 %.
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From the analysis of the results reported in the literature for the algorithm
L-FRFS and B-FRFS, it is observed that the computation gain of MFRSA-
NFS-HIS algorithm with respect to algorithm L-FRFS and B-FRFS is more
than 84 % for all datasets from Table 4 except the Ionosphere dataset in which
a gain percentage 46 % with L-FRFS is obtained. The reduct size of MFRSA-
NFS-HIS is also much higher than FRFS algorithms. This is primarily due to the
difference in Ionosphere dataset size used in [7] and in our experiments. From the
comparison of the results of R package and results reported in the literature with
MFRSA-NFS-HIS it is observed that the proposed MFRSA-NFS-HIS algorithm
achieves a significant computational gain over the existing methods.

6 Conclusion

In this paper, improvements for FRSA-NFS-HIS algorithm are proposed by
incorporation of vectorized operation as MFRSA-NFS-HIS algorithm. The pro-
posed MFRSA-NFS-HIS algorithm has a significant improvement on computa-
tion time over the existing method. The size of the reduct computed by MFRSA-
NFS-HIS algorithm are almost same as FRSA-NFS-HIS. We have also compared
the MFRSA-NFS-HIS with L-FRFS and B-FRFS algorithms available in R pack-
age and obtained significant computational gains. The obtained results estab-
lish the relevance and role of vectorization in fuzzy rough reduct computation.
The proposed approach facilitates model construction in HDS by giving relevant
reduced feature set in an effective manner. In future distributed/parallel algo-
rithm for MFRSA-NFS-HIS will be investigated for feasible fuzzy rough reduct
computation in Big data scenario.
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