
An Entailment Procedure for Kleene Answer
Set Programs

Patrick Doherty1 and Andrzej Sza�las1,2(B)

1 Department of Computer and Information Science,
Linköping University, SE-581 83 Linköping, Sweden

{patrick.doherty,andrzej.szalas}@liu.se
2 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

andrzej.szalas@mimuw.edu.pl

Abstract. Classical Answer Set Programming is a widely known
knowledge representation framework based on the logic programming
paradigm that has been extensively studied in the past decades. Semantic
theories for classical answer sets are implicitly three-valued in nature, yet
with few exceptions, computing classical answer sets is based on trans-
lations into classical logic and the use of SAT solving techniques. In this
paper, we introduce a variation of Kleene three-valued logic with strong
connectives, R3, and then provide a sound and complete proof procedure
for R3 based on the use of signed tableaux. We then define a restriction
on the syntax of R3 to characterize Kleene ASPs. Strongly-supported
models, which are a subset of R3 models are then defined to charac-
terize the semantics of Kleene ASPs. A filtering technique on tableaux
for R3 is then introduced which provides a sound and complete tableau-
based proof technique for Kleene ASPs. We then show a translation
and semantic correspondence between Classical ASPs and Kleene ASPs,
where answer sets for normal classical ASPs are equivalent to strongly-
supported models. This implies that the proof technique introduced can
be used for classical normal ASPs as well as Kleene ASPs. The relation
between non-normal classical and Kleene ASPs is also considered.

1 Introduction

Classical Answer Set Programs (ASP) [1,3,15–17,22] belong to the family of
rule-based logic programming languages. The semantic framework for classical
ASPs is based on the use of stable model semantics. There are two characteristics
intrinsically associated with the construction of stable models (answer sets) for
answer set programs. Any member of an answer set is supported through facts
and chains of rules and those members are in the answer set only if generated
minimally in such a manner. These two characteristics, supportedness and min-
imality, provide the essence of answer sets. Classical ASPs allows two kinds of

This work is partially supported by the Swedish Research Council (VR) Linnaeus
Center CADICS, the ELLIIT network organization for Information and Communica-
tion Technology, the Swedish Foundation for Strategic Research (CUAS, SymbiCloud
Project), and Vinnova NFFP6 Project 2013-01206.

c© Springer International Publishing AG 2016
C. Sombattheera et al. (Eds.): MIWAI 2016, LNAI 10053, pp. 24–37, 2016.
DOI: 10.1007/978-3-319-49397-8 3

Entailment Procedure for Kleene Answer Set Programs 25

negation, classical or strong negation and default or weak negation. Additionally,
answer sets are implicitly partial and that partiality provides epistemic overtones
to the interpretation of disjunctive rules and default negation.

There has been much work in providing numerous definitions [24] of what an
answer set is and then relating particular definitions to other formalisms such as
Circumscription [27] or Default Logic [32]. This body of research has provided
much insight into the nature of answer sets. Additionally, the relationship with
other formalisms has provided a basis for algorithms that generate answer sets
for classical ASPs in addition to inference procedures (for implementations see,
e.g., CLASP [13], ASSAT [25], CMODELS [23], SMODELS [36], DLV [21]).
The majority of these approaches often use syntactic translations and encodings
of classical ASPs into a classical two-valued framework using standard model
theory. The benefit is that one can appeal to the broad body of techniques from
classical logic.

In this paper, we are interested in Kleene Answer Set programs (Kleene
ASPs) introduced in [7]. Our approach is based on an extension of the three-
valued logic with strong connectives, K3, of Kleene [19], extended with an exter-
nal negation connective, ∼, characterizing default negation and an implication
connective, →s, suitable for Kleene ASPs. This logic, which we call R3, has been
considered in [7]. Kleene ASPs are directly represented as a fragment of the R3

language. The semantics of Kleene ASPs is based on the use of strongly sup-
ported models which turn out to be a subset of the R3 models. It was stated
previously that the intuitions behind classical ASP semantics are based on sup-
portedness and minimality. One of the purposes in introducing Kleene ASPs and
strongly supported models is to provide a weaker interpretation of non-normal
ASPs where the minimality assumption on disjunction is relaxed. Separation of
supportedness and minimality technically turns out to have complexity advan-
tages when dealing with non-normal Kleene ASPs. As a derivative of this work,
it can be shown that there is an equivalence between the strongly supported
models of a normal Kleene ASP and the answer sets of a normal classical ASP.
Consequently, these proof techniques may also be of wider interest.

The following are the main results in this paper:1

– We present a semantic tableaux procedure for R3 based on the use of signed
formulas that is both sound and complete for R3. It can be used both for
model generation and entailment.

– The general tableaux procedure for R3 is only sound for Kleene ASPs. For
completeness, the following method is proposed:

A filtering procedure on tableaux branches is introduced based on
the definition of strong supportedness. For both normal and non-
normal Kleene ASPs, the filtering procedure is shown to be sound
and complete. For normal ASPKs it is tractable and for non-normal
ones it is in ΠP

1 .

1 For clarity, we restrict the results to the propositional case, but they are easily
generalized to the first-order case with certain restrictions.

26 P. Doherty and A. Sza�las

– Due to the equivalence between strongly supported models for a normal Kleene
ASP and answer sets for its corresponding normal classical ASP, the proof
techniques proposed here can be used directly for normal classical ASPs. Since
classical answer sets are strongly supported, the proposed proof techniques
remain sound for disjunctive classical ASPs.

Structure of the Paper. The paper is structured as follows. In Sect. 2 the
augmented Kleene three-valued logic, R3, is specified. Section 3 presents the
general tableaux procedure for R3. Section 4 is devoted to Kleene ASPs and its
relation to classical ASPs. It is assumed the reader is familiar with classical ASP
definitions (see, e.g., [24]). In Sect. 5, a sound and complete entailment procedure
for Kleene ASPs, using semantic tableaux and filtering, is presented. Section 6
concludes with related work and conclusions.

2 Three-Valued Logic R3

The basis for our approach begins with the three-valued logic with strong con-
nectives, K3, of Kleene [19], extended with an external negation connective, ∼,
characterizing default negation.2 We assume that constants T (true), F (false), U
(unknown) are part of the language. The implication connective, →s , is defined
using, ∼, as:3

A →s B = ∼A ∨ ¬ ∼B.

We denote this logic by R3.
Truth tables for connectives of R3 are shown in Table 1, where ¬,∨,∧ are

the strong connectives of K3, ∼ is the weak or external negation connective and
→s is a newly defined implication for ASP rules.

Table 1. Truth tables for R3 connectives.

¬ ∼
T F F
F T T
U U T

∨ F U T
F F U T
U U U T
T T T T

∧ F U T
F F F F
U F U U
T F U T

→s F U T
F T T T
U T T T
T F F T

Let P be the set of propositional variables. By a valuation of propositional
variables we understand a mapping P −→ {T,U,F}. If A is an R3 formula and
v is a valuation then the truth value of a formula, denoted by v(A), is defined
inductively extending v by using the semantics of the connectives provided in
Table 1.

By a positive literal (or an atom) we mean any propositional variable of P.
A negative literal is an expression of the form ¬r, where r ∈ P. A (classical)
2 Strong negation, conjunction and disjunction have also been used in [26].
3 The implication connective, →s , is in fact equivalent to that used in [35].

Entailment Procedure for Kleene Answer Set Programs 27

literal is a positive or a negative literal. For a literal � = ¬p, by ¬� we understand
p. A set of literals is consistent when it does not contain a propositional variable
together with its negation. An interpretation is any consistent set of literals.

Any interpretation I defines a three-valued valuation vI by:

vI(p) def=

⎧
⎨

⎩

T when p ∈ I;
F when ¬p ∈ I;
U otherwise.

(1)

Also, given v, one can construct a corresponding interpretation Iv by setting:

Iv
def= {p | p ∈ P and v(p) = T} ∪ {¬p | p ∈ P and v(p) = F}. (2)

In the rest of the paper, we will freely switch between interpretations and
valuations, using (1) and (2).

An interpretation I is a model of a set of formulas S iff for all A ∈ S,
vI(A) = T, where vI is the valuation corresponding to I.

By convention, the empty conjunction is T and the empty disjunction is F.

3 Signed Tableaux for Three-Valued Logic R3

We follow the signed tableaux style of [6], extended with rules for →s.4 The
generalization to multivalued logics is derived from [37].

By an information constraint lattice we mean the lattice L
def= 〈S;	,
〉 where:

– S = {[T], [F], [U F T], [U T], [U F], [U], []} is the set of signs which also con-
tains the element [], representing contradiction; moving upwards in the lattice
should be interpreted as tightening for possible truth values for a formula;

– 	 (
) are the join (meet) operation on S defined respectively as the least
upper bound and greatest lower bound w.r.t. the ordering shown in Fig. 1.

Fig. 1. Information constraint lattice.

4 This signed approach to semantic tableaux for multi-valued logic was discovered
independently, by [6,18] who generalized the technique for a larger class of multi-
valued logics. The approach of [6] was used as a basis for [28].

28 P. Doherty and A. Sza�las

A signed formula is any expression of the form [s]A, where [s] ∈ S in the
lattice L. A valuation u satisfies a signed formula [a . . . b]A if it satisfies the
disjunction:

u(A) = a or . . . or u(A) = b, (3)

where “or” in (3) is the classical disjunction.
A valuation u satisfies a set of signed formulas S iff u satisfies every for-

mula in S. An interpretation is a model of S iff the corresponding valuation
satisfies S.

3.1 Tableaux Construction Rules

Tableaux [37] are used to construct models for formulas. The construction of a
tableau starts with a formula for which models (if any) are constructed. The
tableau is then expanded according to rules provided in the subsequent subsec-
tions. The following types of rules are used, where ‘,’ and ‘|’ represent conjunction
and disjunction, respectively:

[s]A [s]A

[s′]B [s′]B, [s′′]C

[s]A

[s′]B | [s′′]C

The following theorem can be proved extending the corresponding proof for K3

given in [6] by considering the new connective →s.

Theorem 1. Tableau rules shown in Table 2 are sound and complete for R3,
i.e., a formula A is unsatisfiable iff there is a closed tableau for A. �

Table 2. Tableaux rules.

Entailment Procedure for Kleene Answer Set Programs 29

3.2 Constructing Models Using Tableaux

A path in a tableau is completed if no tableau rule can extend the path. A tableau
is completed when all its paths are completed.

Let [s]A and [s′]A be signed formulas. A path in a tableau is closed if both
[s]A and [s′]A are in the path and [s] 	 [s′] = []. A path is open when it is not
closed.

A tableau T is closed if all its branches are closed. A tableau is open if it is
not closed.

Given a tableau T for a formula A, to extract u satisfying A we look for
an open branch. If such a branch does not exist then there is no model for A.
Otherwise, for each propositional variable p appearing in the branch let:

Σ(p) def= {s | [s]p occurs in the branch} and let σ(p) def=
⊔

s∈Σ(p)

[s].

The satisfying valuations (models) are then defined by assigning, to each p
occurring in the branch, a value from σ(p). If for a propositional variable p,
occurring in A, no formula of the form [s]p occurs on a given branch then p is
unconstrained and can be assigned any truth value. Note that, due to the form of
rules, only signs [F], [T], [U F] and [U T] can appear in tableaux. If a proposition
p does not occur in a branch, we assume that implicitly [U F T]p occurs in that
branch.

Example 1. Consider the following tableau:

[T]((p ∨ ¬q)∧ ∼q)

[T](p ∨ ¬q), [T](∼q)

[U F]q

[T]p | [T]¬q

[F]q

The first branch contains [U F]q and [T]p, so σ(q) = [U F] and σ(p) = [T].
The branch then encodes two models:

v1(q) = U, v1(p) = T, corresponding to {p},

v2(q) = F, v2(p) = T, corresponding to {¬q, p}.

The second branch contains [U F]q and [F]q, so σ(q) = F. Since p remains uncon-
strained, the branch encodes models:

u1(q) = F, u1(p) = T, corresponding to {¬q, p},

u2(q) = F, u2(p) = F, corresponding to {¬q,¬p},

u3(q) = F, u3(p) = U, corresponding to {¬q}.

Of course, v1, v2, u1, u2, u3 are all models for the starting formula
(p ∨ ¬q)∧ ∼q.

�

30 P. Doherty and A. Sza�las

We have the following theorem which can be proved by extending the proof of
the analogous theorem for K3 given in [6].

Theorem 2. Given an R3 formula A, every interpretation satisfying A can be
extracted from a completed tableau for [T]A. �

4 (Kleene) Answer Set Programs

The syntax for Kleene Answer Set Programs, ASPK , is identical for that of
classical ASP programs. The semantics for Kleene ASPK programs is based on
the use of the augmented three-valued Kleene logic R3 and strongly-supported
models presented in [7]. The semantics for classical ASP programs is based on
stable model semantics [24]. Correspondences between classical answer sets and
strongly supported models will be considered later in this section. For the sake
of clarity we consider propositional programs only.

By an ASPK rule we understand an expression � of the form:

�1 ∨ . . . ∨ �k ← �k+1, . . . , �m,not �m+1, . . . ,not �n, (4)

where n ≥ m ≥ k ≥ 0 and �1, . . . , �k, �k+1, . . . , �m, �m+1, . . . �n are (positive or
negative) literals. The expression at the lefthand side of ‘←’ in (4) is called the
head and the righthand side of ‘←’ is called the body of the rule. The rule is
called disjunctive if k > 1.

An ASPK program Π is a finite set of rules. A program is normal if each of
its rules has at most one literal in its head. If a program contains a disjunctive
rule, we call it disjunctive or non-normal.

An interpretation I satisfies a rule � of the form (4), denoted by I |= �,
if whenever �k+1, . . . , �m ∈ I and �m+1, . . . , �n �∈ I, we have �i ∈ I for some
1 ≤ i ≤ k. An interpretation I satisfies an ASPK program Π, denoted by
I |= Π, if for all rules � ∈ Π, I |= �.

We say that an Kleene ASP program Π entails an R3 formula A, and denote
it by Π |= A, provided that A is true in every strongly supported model of Π.

The concept of strong supportedness [7] builds on the principle of construct-
ing models through chains of rules grounded in facts. When evaluating the body
of a rule to determine whether it is applicable, literals outside the scope of not
must be evaluated against the set of literals for which support has already been
found, represented as an interpretation I. However, literals inside the scope of
not must be evaluated against a strongly supported model candidate J , similarly
to how not � is evaluated against an answer set candidate S when a reduct ΠS is
computed classically. We therefore evaluate formulas w.r.t. two interpretations.
Given interpretations I and J , the value of a formula A w.r.t. (I, J), denoted
by (I, J)(A), is defined as follows:

(I, J)(A) def=

⎧
⎨

⎩

T when I |= reductJ (A);
F when I |= reductJ (¬A);
U otherwise.

(5)

Entailment Procedure for Kleene Answer Set Programs 31

where reductJ (A) (respectively, reductJ(¬A)) is a formula obtained from A (¬A)
by substituting subformulas of the form not � by their truth values evaluated in J .

Now we are ready to define strong supportedness. An interpretation N is a
strongly supported model of an ASPK program Π provided that N satisfies Π
and there exists a sequence of interpretations I0 ⊆ I1 ⊆ . . . ⊆ In where n ≥ 0
such that I0 = ∅, N = In, and:

1. for every 1 ≤ i ≤ n and every rule �1 ∨ . . . ∨ �k ← B of Π,
if

(
Ii−1, N

)
(B) = T then a nonempty subset of {�1, . . . , �k} is included in Ii;

2. for i = 1, . . . , n, Ii can only contain literals obtained by applying point 1.

A Kleene Answer Set for an ASPK program is a strongly supported model.
The terminology will be used interchangeably.

The following correspondences between classical answer sets with stable
model semantics (for definitions see, e.g., [24]) and Kleene answer sets with
strongly-supported model semantics relate the two semantics.

In [7] the following theorem is proved (see [7, point 2 of Theorem 1]).

Theorem 3. For any normal ASPK program Π, I is a classical answer set of
Π iff I is a strongly supported model of Π. �

The following theorem clarifies the role of strong supportedness in the context
of disjunctive programs.

Theorem 4. For any ASPK program Π, if I is a classical answer set of Π then
I is a strongly supported model of Π. �

Theorem 3 allows us to use the filter-based tableau technique introduced in
Sect. 5 below, not only for Kleene ASPs, but for classical normal ASPs, too.
Theorem 4 shows that filtering remains sound for disjunctive classical ASPs.5

5 Filtering Technique for Kleene Answer Set Programs

To construct tableaux for Kleene ASP entailment we first translate Kleene ASPs
into formulas of R3 using the translation Tr defined as follows:

Tr(¬A) def= ¬A, Tr(not A) def=∼A,

Tr(A ◦ B) def= Tr(A) ◦ Tr(B), for ◦ ∈ {∨,∧},
T r(A ← B) def= Tr(B) →s Tr(A). (6)

Rules are then translated as follows:

Tr(�0 ∨ . . . ∨ �i ← �i+1, . . . , �j ,not �j+1, . . . ,not �m) =
(�i+1 ∧ . . . ∧ �j∧ ∼�j+1 ∧ . . . ∧ ∼�m) →s (�0 ∨ . . . ∨ �i). (7)

5 In understanding the theorems, recall that the syntax for ASPK programs and
classical ASP programs is identical.

32 P. Doherty and A. Sza�las

For a Kleene ASP program Π, Tr(Π) def=
∧

r∈Π Tr(r). By a model of a Kleene
ASP program Π we understand any model of Tr(Π).

Note that every Kleene answer set for a program Π is an R3 model for Tr(Π).
Therefore, we have the following theorem.

Theorem 5. Let Π be a Kleene ASP program, A be an R3 formula, and T be
a tableau for:

[T]
(
Tr(Π)∧∼A

)
. (8)

Then, if T is closed then Π |= A. �

That is, the tableaux procedure provided in Sect. 3.1 is sound for Kleene ASP
entailment.

Example 2. Let Π consists of rules:

q ← p.

q ← not p.

To show that Π |= q we construct the following tableau:

[T]
(
(p →s q) ∧ (∼p →s q)∧ ∼q

)

[T]
(
(p →s q) ∧ (∼p →s q)

)
, [T](∼q)

[T](p →s q), [T](∼p →s q), [T](∼q)

[U F]q

[U F]p | [T]q

[U F] ∼p | [T]q

[T]p

On the first branch σ(p) = [] and on the other two branches σ(q) = []. Thus
the above tableau is closed. �

For completeness of ASPK, a filtering technique is required to filter out non-
strongly supported models associated with open branches. To decide whether
Π |= A we first construct a tableau T for signed formula (8). Then,

1. if T is closed then Π |= A; otherwise
2. filtering: eliminate every open branch of T encoding only non-strongly sup-

ported models of Π. If all open branches of T are eliminated then Π |= A,
otherwise Π � |= A.

The filtering described in point 2. Above is sound and complete for ASPK ,
as stated in the following theorem.

Theorem 6. Let Π be a Kleene ASP program, A be an R3 formula, and T be
a tableau for [T]

(
Tr(Π)∧ ∼A

)
. Then, Π |= A iff filtering eliminates every open

branch of T . �

Entailment Procedure for Kleene Answer Set Programs 33

Example 3. Let program Π consist of a single rule: q ← not p. To show that
Π |= q, we construct the following tableau:

[T]
(
(∼p →s q)∧ ∼q)

)

[T](∼p →s q), [T](∼q)

[U F]q

[U F] ∼p | [T]q

[T]p

The first branch is open and the second branch is closed. Therefore we have
to check whether the first branch represents a strongly supported model for
Π. Since the branch contains [U F]q and [T]p, the candidates for a strongly
supported model for Π are {p} and {¬q, p}.6 Of course, {p} and {¬q, p} are
not strongly supported, so there are no open branches representing strongly
supported models for Π. Therefore, Π indeed entails q. �

For non-normal programs an open branch may encode more than one strongly
supported model, consequently the technique shown in Example 3 does not apply
since one uses an assumption of equivalence between minimality and strong
supportedness that only applies to normal programs. In this case one is required
to filter all potential interpretations, including non-minimal ones, associated with
an open branch.

To verify strong supportedness one can use Algorithm 1 provided in [7, p.
137]. Given a program Π and an interpretation I, this algorithm checks whether
I is a strongly supported model of Π in deterministic polynomial time w.r.t.
Π and I. Recall that due to the form of tableau rules shown in Table 2, only
signs [F], [T], [U F] and [U T] (and implicitly [U F T]) can appear in tableaux.
Therefore, to check whether a given open branch of a tableau encodes a strongly
supported model, one can extract the candidate valuation v in such a way that
whenever for a given proposition p, U is in σ(p), we set v(p) def= U, otherwise
v(p) is the (uniquely determined) truth value from σ(p). That way, for normal
programs, v represents a minimal interpretation uniquely determined by this
branch. By Theorem 3, for normal programs strong supportedness is equivalent
to minimality, so we have the following theorem.

Theorem 7. For any normal ASPK program Π checking whether a given
tableau branch for [T]Π encodes a strongly supported model is tractable. �

For non-normal programs, checking whether an open branch exists such that
there is a valuation encoded by the branch defining a strongly supported model,
is obviously in ΣP

1 . Therefore, checking whether a branch can be closed via
filtering (does not encode a strongly supported model), is in ΠP

1 (i.e., co-NP) as
stated in the following theorem.

6 Note that both {p} and {¬q, p} are R3 models for the considered formula, so the
fact that q is entailed by Π cannot be proved using only rules provided in Sect. 3.1.

34 P. Doherty and A. Sza�las

Theorem 8. For any non-normal ASPK program Π checking, in general,
whether a given tableau branch for [T]Π encodes a strongly supported model,
is in ΠP

1 . �

Note that Theorem 8, ensures that our entailment procedure is in ΠP
1 .

Remark 1. The technique of filtering can be applied to classical answer sets,
too. First, one can filter out non-strongly supported models. This can be done
“locally” node by node. Normal classical ASP programs are equivalent to normal
ASPK programs so for this case our procedure remains sound and complete.
For non-normal classical ASP programs, the minimality requirement results
in a higher complexity of reasoning [8,9], [7, Thm. 2, p. 137] (assuming that
the polynomial hierarchy does not collapse). In this case, checking for non-
minimality rather than for non-supportedness is required. It calls for pairwise
comparisons with all models, perhaps encoded by other nodes in the constructed
tableaux. Therefore, rather than checking for minimality, we could achieve com-
pleteness for non-normal classical ASPs by suitably adding a generalization
of Clark’s completion and loop formulas provided in [25] to the original ASP
program. �

6 Related Work and Conclusions

There is a rich history of explicit use of partial interpretations and multi-valued
logics as a basis for semantic theories for logic programs. Some related and addi-
tional representative examples are [5,11,12,20,30,31,34,38]. Supportedness is
analyzed in many papers, starting from [10]. One of most recent generalizations,
via grounded fixpoints, is investigated in [2]. However, grounded fixpoints are
minimal (see [2, Proposition 3.8]) while strongly supported models do not have
to be minimal.

In [33] a possible model semantics for disjunctive programs is proposed. It
is formulated with the use of split programs and there can be exponentially
many of them comparing to the original program. Similar semantics was inde-
pendently proposed in [4] under the name of the possible world semantics. In
comparison to [33], ASPK programs allow for strong negation and a three-valued
model-theoretic semantics is provided. The presence of both default and strong
negation in ASPK provides a tool to close the world locally in a contextual
manner, more flexible than possible model negation proposed in [33]. Though
defined independently and using different foundations, both semantics appear
compatible on positive programs, so the results of the current paper apply to
possible model semantics of [33], too.

Paper [14] defines a tableaux framework for classical ASP, using two (explicit)
truth values T, F. They require a cut rule, whereas we do not. Loop formulas
are explicit in some rules and supportedness is encoded as an additional set of
inference rules. Our approach is very much in the spirit of Smullyan [37] and
does not require special inference rules, although loop and completion formu-
las would have to be added to an ASP if one wanted to deal with classical
non-normal ASPs.

Entailment Procedure for Kleene Answer Set Programs 35

In [29,30], the logic of here-and-there (HT) is used to define a direct
declarative semantics for classical ASPs, although HT has greater generality
and wider application. HT can be defined by means of a five-valued logic, N5,
defined over two worlds: h (here) and t (there), where the set of literals asso-
ciated with h is included in the set of literals associated with t. N5 uses truth
values {−2,−1, 0, 1, 2}, where the values −1, 1 characterize literals associated
with h and not associated with t. On the other hand, for classical ASP models
it is assumed that these sets are equal, so −1, 1 become redundant. Therefore,
in the context of classical ASPs one actually does not have to use full N5 as
it reduces to the three-valued logic R3, with −2, 0, 2 of N5 corresponding to F,
U, T of R3, respectively. Consequently, tableaux techniques used in [29] for N5

could then be simplified when focus is on ASPs.
Kleene Answer set programs, ASPK , and connectives used in R3 have been

proposed in [7]. The current paper introduces a sound and complete tableaux-
based proof procedure for them. A filtering technique is introduced which, when
added to the R3 tableaux based proof procedure, provides a sound and complete
proof procedure for Kleene ASPs. As a derivative result, it is shown that the proof
procedure is also sound and complete for classical normal ASPs and remains
sound for disjunctive classical ASPs.

References

1. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press, Cambridge (2003)

2. Bogaerts, B., Vennekens, J., Denecker, M.: Grounded fixpoints and their applica-
tions in knowledge representation. Artif. Intell. 224, 51–71 (2015)

3. Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In:
Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th IJCAI, pp. 867–872. Morgan
Kaufmann (2003)

4. Chan, P.: A possible world semantics for disjunctive databases. IEEE Trans. Knowl.
Data Eng. 5(2), 282–292 (1993)

5. Denecker, M., Marek, V., Truszczynski, M.: Stable operators, well-founded fix-
points and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-
Based Artificial Intelligence, pp. 127–144. Kluwer Academic Publishers, Dordrecht
(2000)

6. Doherty, P.: A constraint-based approach to proof procedures for multi-valued log-
ics. In: Proceedings of the 1st World Conference Fundamentals of AI (WOCFAI),
pp. 165–178. Springer (1991)

7. Doherty, P., Sza�las, A.: Stability, supportedness, minimality and Kleene Answer Set
Programs. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances
in Knowledge Representation, Logic Programming, and Abstract Argumentation.
LNCS (LNAI), vol. 9060, pp. 125–140. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-14726-0 9

8. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set
programming with bounded predicate arities and implications. Ann. Math. Artif.
Intell. 51(2–4), 123–165 (2007)

http://dx.doi.org/10.1007/978-3-319-14726-0_9
http://dx.doi.org/10.1007/978-3-319-14726-0_9

36 P. Doherty and A. Sza�las

9. Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and
application to nonmonotonic logics. In: Miller, D. (ed.) Proceedings of the Logic
Programming, pp. 266–278 (1993)

10. Fages, F.: Consistency of Clark’s completion and existence of stable models. Meth-
ods Logic Comput. Sci. 1, 51–60 (1994)

11. Fitting, M.: A Kripke-Kleene semantics for logic programs. J. Logic Program. 2(4),
295–312 (1985)

12. Fitting, M.: The family of stable models. J. Logic Program. 17(2–4), 197–225
(1993)

13. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

14. Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set seman-
tics. ACM Trans. Comput. Log. 14(2), 15:1–15:40 (2013)

15. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents - The Answer-Set Programming Approach. Cambridge Univer-
sity Press, Cambridge (2014)

16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the International Logic Program-
ming, pp. 1070–1080. MIT Press (1988)

17. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

18. Hähnle, R.: Uniform notation of tableau rules for multiple-valued logics. In:
ISMVL, pp. 238–245 (1991)

19. Kleene, S.C.: On a notation for ordinal numbers. Symbolic Logic 3, 150–155 (1938)
20. Kunen, K.: Negation in logic programming. J. Log. Program. 4(4), 289–308 (1987)
21. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The

DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (2006)

22. Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: unfounded sets, fix-
point semantics, and computation. Inf. Comput. 135(2), 69–112 (1997)

23. Lierler, Y.: Relating constraint answer set programming languages and algorithms.
Artif. Intell. 207, 1–22 (2014)

24. Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N.,
Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15025-8 24

25. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artif. Intell. 157(1–2), 115–137 (2004)

26. �Lukasiewicz, J.: O logice trójwartościowej (in Polish). Ruch filozoficzny 5, 170–171
(1920). English translation: On three-valued logic. In: Borkowski, L. (ed.) Selected
works by Jan �Lukasiewicz, pp. 87–88. North-Holland, Amsterdam (1970)

27. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. Intell.
13(1–2), 27–39 (1980)

28. Murray, N., Rosenthal, E.: Adapting classical inference techniques to multiple-
valued logics using signed formulas. Fundam. Inform. 21(3), 237–253 (1994)

29. Pearce, D.: Equilibrium logic. Ann. Math. AI 47(1–2), 3–41 (2006)
30. Pearce, D., Guzmán, I.P., Valverde, A.: Computing equilibrium models using

signed formulas. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
pp. 688–702. Springer, Heidelberg (2000). doi:10.1007/3-540-44957-4 46

31. Przymusinski, T.: Stable semantics for disjunctive programs. New Gener. Comput.
9(3/4), 401–424 (1991)

http://dx.doi.org/10.1007/978-3-642-15025-8_24
http://dx.doi.org/10.1007/3-540-44957-4_46

Entailment Procedure for Kleene Answer Set Programs 37

32. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)
33. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic

programs and deductive databases. J. Autom. Reasoning 13(1), 145–172 (1994)
34. Seipel, D., Minker, J., Ruiz, C.: A characterization of the partial stable models for

disjunctive databases. In: Ma�luszyński, J. (ed.) Logic Programming Symposium,
pp. 245–259 (1997)

35. Shepherdson, J.C.: A sound and complete semantics for a version of negation as
failure. Theor. Comput. Sci. 65(3), 343–371 (1989)

36. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1–2), 181–234 (2002)

37. Smullyan, R.: First-Order Logic. Dover Publications, Mineola (1968)
38. Stamate, D.: Assumption based multi-valued semantics for extended logic pro-

grams. In: 36th IEEE International Symposium on ISMVL, p. 10. IEEE Computer
Society (2006)

	An Entailment Procedure for Kleene Answer Set Programs
	1 Introduction
	2 Three-Valued Logic R3
	3 Signed Tableaux for Three-Valued Logic R3
	3.1 Tableaux Construction Rules
	3.2 Constructing Models Using Tableaux

	4 (Kleene) Answer Set Programs
	5 Filtering Technique for Kleene Answer Set Programs
	6 Related Work and Conclusions
	References

