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Abstract. Object removal from an image is a novel problem with a lot
of applications, in the area of computer vision. The ill-posed nature of
the problem and the non-stationary content present in the image render
it a complicated task. The diffusion-based and self-similarity based algo-
rithms available in the literature explicitly model either the structures or
the textures but not the both. They are good at solving small instances of
the problem. However, they tend to produce low fidelity results and turn
out to be intractable if the relative size of the object to the input image
increases. The moving average based Spatial Anisotropic Interpolation
(SAI) for text removal, proposed in our previous work also failed due
to its poor extrapolation capability. Thus, it is imperative to develop a
sampling scheme which can retain the interpolation feature while show-
ing an apposite concern to the non-stationary features present in the
image. The proposed, Design of Computer Experiments (DACE) driven
Scalable SAI (SSAI) is a natural extension of SAI in three aspects. Pre-
cisely, it extends the Systematic Sampling to ‘Not only Symmetric Hier-
archical Sampling’ (NoSHS), intelligently selects a basis based on Hurst
Exponent, and employs Elastic Net regularization of Gaussian regression
error for determining the order of the polynomial. Hence, these adaptive
features increase the fidelity of the results. This paper elaborates the pro-
posed framework- SSAI and demonstrates its capabilities by comparing
the results with the latest hybrid approaches using the PSNR metric.

Keywords: Spatial anisotropic interpolation · DACE · Kriging · Hurst
exponent · Elastic net regularization · NoSHS

1 Introduction

In real world situations, an expert artist renovates the damaged wall paint-
ings, manually either by continuing the surrounding information or copying the
coherent portions that are present in the vicinity of the target region. Trans-
lation of this natural art form into a computer program to process the digital
images is a challenge for computer vision community. Researchers from vari-
ous domains- computational fluid dynamics, mathematics, computer graphics
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and signal processing have been attempting to solve this problem by utilizing
the domain-specific tools. The process of restoring the missing portions of an
image by using the information available in the neighboring locations, therein
the modifications are indiscernible to new observers is called Image Inpainting
[1]. The scale of the problem ranges from removal of small scratches to larger
objects from images. Let � be the image which is mathematically defined as
� : �m → �n where m = 2 and n = 3 for color images; denoting the radiomet-
ric color channels Red(R), Green(G) and Blue(B) within RGB model or n = 1
for grayscale images. Concerning image inpainting, the input image is assumed
to suffer from some degradation process, denoted with an operator T leading to
missing of some pixel values. The resulting image I is seen as a composition of
two disjoint parts: Ω- represents the locations x at which the pixel values are
not known and Φ- corresponds to the locations of which pixel values are known.
Ω is considered as the inpaint region and Φ as the source region. Mathematically
the degraded/damaged image is expressed as I = T�, which is a composition
of T and �. The goal of inpainting is to recover the image by estimating the
pixel value px at all locations x ∈ Ω by utilizing the information available in Φ.
Hence this problem can be viewed as an inverse problem for which more than one
solution may be possible. In literature, such problems are referred to as ill-posed
problems [2], and none of the possible solutions is perfect. Object removal is one
of the inpainting category problems wherein the region to be filled is large and
is of arbitrary shape that renders the task complicated. Figure 1(a) presents an
instance of the object removal wherein the man standing to the right is treated
as an unwanted object, and the effect of his removal is presented in Fig. 1(b).
Overall, an object removal problem is abstracted to ensure that the inpainting
model should produce a visually plausible result and retains the overall unity of
the image. Now the existing models in the literature are presented briefly.

Fig. 1. (a) Image with unwanted man present (b) and unwanted man removed

1.1 Local and Greedy Approaches

The first set of formal models for inpainting is derived from Partial Differential
Equations (PDE). These methods just fill the missing parts of the image by
propagating the information available in the surrounding regions, thereby fall
under the local category. Bertalmio [1] pioneered in this field by developing a
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non-linear PDE of order three, for controlled transportation of data into the
inpaint region, which is named as anisotropic diffusion. Cahn-Hillard equations
which are of order four [2] are developed that are capable of interpreting the
geometrical structures succinctly. But these methods are less preferred for inter-
active applications because of their high computational complexity and are best
suited for extending small structures only. Another set of models represent the
inpaint problem in a variational framework which models the problem as an
energy function, and the solutions to minimize it turn out to be ill-posed as
the inverse of the energy function is unbounded. A standard way to handle the
ill-posed nature is to include some aprior information into the model along with
the fidelity term, which is referred to as regularization in the literature [2]. The
chronological developments in variational models [2] range from simple Total
Variation (TV) to Curvature Driven Diffusion (CDD) of information into the
inpaint region. These models also come under the local category as they don’t
involve global features such as large scale textures. The second category of regu-
larization models is based on self-similarity measure which is grossly referred to
as exemplar-based methods [3]. These methods iteratively select a patch from
the boundary of the inpaint region, analyze its content and search for a similar
patch in the source region. Then the best matching patch content is copied into
the selected patch. These exemplar-based methods are the examples of non-local
methods but work in a greedy manner i.e. they inpaint the hole in a single pass.
Though this model seems to be simple, it is necessarily required to answer many
design issues that otherwise end up with texture garbages and have a significant
bearing on the quality of the result. Even though a lot of variants are derived,
the primary features of these methods aim at large-scale texture reproduction
but fail to propagate the structures [3].

1.2 Global and Dynamic Approaches

This set of algorithms address the ailments of the local and greedy approaches
by defining the inpainting aspect as an energy function and evolving an itera-
tive algorithm to minimize it. The energy minimization, for example, is realized
by combining multiple patches and verifying the coherence among the neigh-
boring patches. This spatial phenomenon is achieved over a Markov Random
Field (MRF) which offers suitable inference algorithms to attain global opti-
mal solutions [4]. The MRF based solutions follow dynamic programming model
that strive to achieve spatial coherence [4], among the Exemplar patches while
inpainting the image. Authors in [5] observed that the Exemplar patches are sep-
arated by the same offset in the image and histogram offer a clue about statistics
of dominant offsets. Then the image is shifted based on the dominant offsets,
and the resulting images are combined through the MRF framework to achieve
better results. But these methods involve manual intervention to separate the
texture and structure components and are sensitive to the initial setting.
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1.3 Hybrid Approaches

The domain decomposition approaches [6] solve the structure propagation and
texture synthesis problems simultaneously by decomposing the image into car-
toon and texture components using Morphological Component Analysis (MCA),
inpaint both the components independently based on component specific algo-
rithms and combine the partial results to get the overall results. These decom-
position based methods are computationally expensive and are capable of filling
medium size gaps. Another set of models [7] combine the energy terms related to
self-similarity for texture synthesis, diffusion of information for structure Prop-
agation and coherence between inpaint and source region pixels based on the
precomputed correspondence map. This method is very sensitive to the initial
setting and could solve small scale problems. The latest trend in image inpainting
domain is to use non-local statistical information and to combine the Exemplar
method with non-local models [8]. These methods are sound in addressing both
the functional aspects of inpainting but are applicable for small to medium scale
problems. The proposed DACE model attempts to solve the medium to large
scale inpainting instance which can address both the texture and structures con-
currently without modeling them explicitly.

2 Object Removal as a Spatial Interpolation Problem

For many problems in Computer Vision, it is a formulation necessity to incor-
porate the notion of representing the gray value or color information of a pixel
as a random variable. While imputing the mission values, this association offers
a tolerance to a certain degree of variation and is expressed as error [9]. The
spatial arrangement of random variables Z(xi), i = 1 : n at locations xi forms
a random field. For example, an image I of size M × N can represent a ran-
dom field which is composed of the rectangular arrangement of pixels refer-
ring to design sites, and the corresponding pixel values are the responses. In
the model building, X = [x1, ..., xm]T ; xi ∈ �n stands for the design sites
and Y = [y1, ..., ym]T ; yi ∈ �q represents the corresponding pixel values- the
responses. Then an attempt to solve the inpainting problem by casting it as a
regular image interpolation problem fails because of its over sensitive nature to
the outliers and the absence of error modeling capabilities [9].

2.1 Design and Analysis of Computer Experiments (DACE) Model

DACE [10] is a ‘surrogate computer model’ which presents the spatial interpola-
tion, namely kriging, in a deterministic way. Kriging model exploits the spatial
correlation among the design sites of the underlying random field in contrast to
ordinary interpolation which is independent of the location [11]. At a high-level
description, kriging model involves the convolution of Polynomial regression with
Gaussian regression model. The polynomial regression effectively captures the
global patterns (also called as the trend), and the Gaussian regression controls
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the prediction error incurred over Ω. Universal kriging [9], a variant of kriging,
assumes that the design sites exhibit some trend, and it is possible to capture it,
through fitting a higher order polynomial F with unknown coefficients β which
constitutes the polynomial regression. Subsequently, kriging controls the predic-
tion error in an unbiased and quantitative manner by associating a stationary
field Z(x), which is further governed either by a pre-conceived or well-understood
correlation function R. This feature of kriging strikes a behavioral advantage over
general regression that analyzes prediction errors through white noise [11]. The
combined kriging model could predict the response ŷ at a design site x as

ŷ(x) =
p∑

j=1

βjFj + z(x). (1)

The first term on the right-hand side in Eq. 1, models the trend through a poly-
nomial regression through an assumed basis F and the unknown coefficients
βj . The second term z(x), x ∈ �n on the right hand side models the residual
over a random field Z(X). The residual is assumed to follow the second order
stationary property i.e. the error exhibits zero mean and finite covariance and
its minimization requires computation of covariance matrix as σ2R(θ, xi, xl), for
i, l = 1...m where R is the correlation kernel with θ as the parameter and σ is the
standard deviation. R, inherently offers a quantitative description for the spatial
anisotropy. Thus, kriging addresses the modeling of the given trend and the asso-
ciated correlation structure simultaneously [13] for computing β. The kriging, as
a linear regression model, collects the responses Y at the given design sites in
2 − D and predicts the response at an unobserved site x as

ŷ(x) = CT Y with C ∈ �m. (2)

Subsequently, kriging computes three terms: F = {F (x1)...F (xm)}T - the col-
location matrix over the selected basis function, R = {R(xi, xl)}- the spatial
correlation expressed in terms of the lag between every pair of design sites i, l
and r(x) = [R(x, x1), ...R(x, xm)]T - the correlation between every design site xi

and an untried location x. Then the Best Linear Unbiased Estimator (BLUE)
of kriging predicts the response at x from Eq. 2 as [10]

ŷ(x) = rT R−1Y − (FT R−1r − f)
T
(FT R−1F )

−1
FT R−1Y. (3)

Now the Generalized Least Square Solution (GLS) for the multivariate polyno-
mial regression [10]

Fβ = Y (4)

is expressed as
β̂ = (FT R−1F )

−1
FT R−1Y. (5)

The overall predictor can be modeled [10] from Eqs. 3 and 5 as

ŷ(x) = FT β̂ + rT R−1 (Y − F β̂), (6)



A Scalable Spatial Anisotropic Interpolation Approach 131

with an estimate of error variance

σ2(x) =
1
m

(Y − F β̂)
T
R−1(Y − F β̂). (7)

The correlation kernel, in case of 2-D exponential model, is defined as the tensor
product of the individual correlations along the columns and the rows

R(x, y) =
∏

p=1

2
exp(−θp|dp|). (8)

It is evident from the correlation kernel, given in Eq. 8, the correlation decreases
exponentially with lag dp, and the parameter θp plays a role in model fitting. In
DACE, the parameter θp is learned through Maximum Likelihood (ML) principle
[10]. Hence, the vector θ can induce the anisotropy if the correlation among the
pixel locations along columns differs from the rows.

2.2 Not only Symmetric Hierarchical Sampling Scheme

If the number of design sites grow high then the Kriging model, which involves
computation of the inverse for a large scale correlation matrix, suffers from mem-
ory hungry problem. This aspect is referred to as ‘curse of dimensionality’ in the
literature [14]. Hence, it is essential to select a subset of representatives from the
entire set of available design sites. The proposed Not only Symmetric Hierarchi-
cal Sampling scheme (NoSHS) is an extension of the sampling schemes widely
used in the super resolution analysis [13]. Systematic Sampling addressed in [14]
generates only one sub-image from the input image. Where as, NoSHS produces
multiple sub-images recursively by probing the entire image with a dummy ele-
ment of size l×k for l, k ∈ {2, 3} and arranges each pixel spanned by the probing
element spatially along the rows and the columns of the respective sub-image
indexed by l and k. For example, if an image I of size M × N is subjected to
NoSHS for once, with l = 3 and k = 2 using the Algorithm Extract 6, then
the sampling by factor 3 along the row and 2 along the column produces six
sub-images In with n = 1 : 6, each of size M

3 × N
2 . This sampling stands for

an asymmetric instance of NoSHS and is chosen if the underlying image exhibits
more spatial correlation along the rows than the columns. In contrast, if the
data present in the image exhibits isotropic correlation then Extract 4 (which
is not presented in this article ) employs a probing element of size is 2 × 2 and
the NoSHS generates four sub-images through symmetric sampling along both
the dimensions. Figure 2 presents the functionality of NoSHS which takes a syn-
thetic input image of size 4 × 4 (column 1) as input and produces 4 sub-images
I1 - I4 (columns 2–4 ) of size 2 × 2. On the input image NoSHS is performed
recursively until the size of the Ω present in a sub-image reduces to a minimum.
This hierarchical sampling honors the underlying stationary property witnessed
in the image and improves the fidelity of prediction process as elaborated in
Sect. 2.3. The intuition behind introducing the NoSHS is depicted in the Fig. 3.
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I =

�• ◦ • ◦�
� � � �
• ◦ • ◦
�� � � ��

I1 =
�• •�
�• •� I2 =

�◦ ◦�
�◦ ◦� I3 =

�� ��
�� �� I4 =
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Fig. 2. The first column presents a synthetic input image I and the following columns
present the sub-images I1–I4 extracted through symmetric version of NoSHS from the
input image

Fig. 3. (a) Input image [(b)–(e)] The sub-images extracted through NoSHS

Algorithm 1. Extract 6
Input: Input Image I
Output: Extracted Sub-images Ii; i = 1 : 6

1. l := 1; k := 1;; i2 := 2; j2 := 2; j3 := 3;
2. for i1 := 1 : M − 1 : step by 2

3. i2 := i1 + 1;
4. for j1 := 1 : N − 2 : step by 3

5. j2 := j1 + 1; j3 := j1 + 2;
6. I1(l, k) := I(i1, j1);
7. I2(l, k) := I(i1, j2);
8. I3(l, k) := I(i1, j3);
9. I4(l, k) := I(i2, j1);

10. I5(l, k) := I(i2, j2);
11. I6(l, k) := I(i2, j3);
12. k := k + 1;
13. end
14. l := l + 1; k := 1;; i2 := i2 + 2;
15. end

2.3 Higher Order Polynomial Basis as the Trend

The next criticality of kriging is to solve the multivariate polynomial regres-
sion problem which models the trend. The Universal kriging fits a non-linear
polynomial basis. However, the nature of the basis and the order of the polyno-
mial are not addressed formally and hence assumes immense importance from
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large scale pattern detection point of view. The authors in [15] developed a
Bayesian approach based Blind Kriging to resolve this situation. Blind Kriging
is essentially the ‘multi kriging’ model, with a conservative approach involv-
ing the fitting of an increasing sequence of orthogonal polynomials, in search of
the best-fit polynomial for the input data. Clearly, this approach turns the pre-
diction process a computationally expensive one. The proposed algorithm SSAI
addresses the polynomial basis selection issue by employing a futuristic approach
which involves kriging, just for once. Initially, for the given design space the cor-
relation R is expressed as the tensor product of the Correlations: one along the
rows and the other along the columns, and they may exhibit anisotropy over
Z(X). Subsequently, a higher order polynomial F including the cross product
terms is selected to model the global trend. For example, if a polynomial basis
of order n is selected then the total number of quotients βk to be learned is
n(n+1)

2 . As the object removal problem entails with a wide range of design sites
when compared to the number of candidate terms of higher order polynomial,
the chances of wiggling of the regression due to an overfit is less likely. The
regression model given in Eq. 5, is a GLS solution that employs the Mahalanobis
distance [9] which is scale invariant. This point substantiates that extraction of
sub-images from the input image through the NoSHS will not negatively influ-
ence the model fitting. Subsequently, the GLS is appropriately regularized with
an intention to annihilate the quotients that are either less important or playing
spoilsport in predictions. The literature says such a regularization issue is well
addressed through feature selection [16], pattern search, etc. The SSAI utilizes
the feature selection approach.

2.4 Feature Selection Using Elastic Net

In the proposed model the feature selection is achieved by applying the Elastic
net model, developed by Zou and Hastie [16]. Elastic net regularizes the data
term with a convex combination of the L1 (LASSO) and L2 (ridge) terms of the
regression coefficients as

β̂ = argmin
β

(‖Y − Xβ‖2 + λ‖β‖2 + (1 − λ)‖β‖1). (9)

It inherently replaces the Euclidean distance measure with checkerboard dis-
tance which induces sparsity into the solution and the value of λ determines the
level of sparsity. According to the literature [16], small values of λ yields a sparse
solution. Thus, even if the trend is modeled with higher order basis, the con-
tribution of particular unnecessary basis terms can be, subsequently curtailed
by annihilating the corresponding coefficients to zeros and retaining only the
remaining. The future experiments are based on the proposed proactive model
and is named as Enhanced DACE (EDACE) which is implemented by utilizing
the LARS LASSO [16] model.
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3 Adaptive Basis Selection

The object removal algorithm SSAI is capable of selecting a basis from the
predefined collection of different basis functions in an adaptive manner. From
our empirical observations, the nature of the polynomial can be a constant or any
higher order polynomial, each of them with varying capabilities while modeling
the trend. The subjective issue of basis selection is addressed by extracting the
Hurst exponent H [17]. H ∈ [0 1], is a self-similarity based measure capable
of manifesting the non-stationary behavior present in the content of the image.
Signal process community uses H for measuring the strength of singularity [18].
Hurst exponent describes the probability with which the autocorrelation among
the pixels of the image changes asymptotically with the lag h as follows:

E[
R(h)
S(h)

] = ChH as h → ∞, (10)

where R refers to the range of values spanned by h, S represents the standard
deviation of the data and C is a constant. H value can be estimated in various
ways such as Box Counting, Rescaled Range Analysis [18], Wavelet Spectral
Density, etc., and is extended to 2-D images also [15]. To understand Hurst
exponent, R/S- one of the estimation methods, is discussed for 1-D data. Given
yi; i = 1 : n the pixel responses at locations xi; i = 1 : n with mean m,
then calculate the deviations di of each yi from m using di = yi − m. The series
of partial sums pi over di are calculated in a cumulative manner as detailed in
Eq. 11.

sk =
∑

l=1:k

dl k = 1 : n. (11)

Then the difference of max{sk} and min{sk} denotes Range R and the slope
of ‘bestfit’ line for log(R

S ) vs log(n) represents the estimate of Hurst expo-
nent H. Inherently, it models the Fractal coefficient which is a measure of self-
similarity of Brownian motion [17]. The estimated Hurst exponent value, can
be utilized to characterize the underlying process into three classes: stationary,
not-known and non-stationary. The proposed SSAI utilizes the value of H to
categorize the images into two classes as follows. If H ∈ [0 0.5], then the image
is classified to possess second order stationary trend and is modeled by deploying
a higher order polynomial. Otherwise, the content of the image is assumed to be
smooth, and the trend is represented through a constant. This adaptive feature
in SSAI is a novel contribution in inpainting domain and avoids the formulations
for texture and structure specific components.

4 The PushBack Operation

As the last step in the proposed framework, all inpainted sub-images belong-
ing to a particular level of the hierarchy required being systematically com-
bined in an anti-recursive manner to get the overall result. It is a PushBack
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of the chosen hierarchical sampling that merely rearranges the pixels from each
inpainted sub-image back into their proper locations until the original size of the
input image is reached. Algorithm PushBack 4 takes the 4 inpainted sub-images
Ii, i = 1 : 4, in the case of symmetric sub-sampling by order 2, and reconstructs
the original image I. A similar algorithm can be evolved for Asymmetric Push-
Back 6 through a relatively simple effort.

Algorithm 2. PushBack 4
Input: Set of all 4 inpainted sub-images Ii, i = 1 : 4 each of size m×n that are extracted
from I
Output: Reconstructed image I

1. for i := 1 : m : step by 1
2. for j := 1 : n : step by 1
3. I(2 × i − 1, 2 × j − 1) := I1(i, j);
4. I(2 × i − 1, 2 × j) := I2(i, j);
5. I(2 × i, 2 × j − 1) := I3(i, j);
6. I(2 × i, 2 × j) := I4(i, j);
7. end
8. end

5 The Algorithm: SSAI

Algorithm SSAI, summarizes the steps discussed so far and presents the com-
plete algorithm for object removal from images. If the input image possesses the
correlation which is same along the rows and columns then their tensor product
gains circular shape (see Fig. 4(a)) and the symmetric kernel of the proposed
NoSHS, Extract 4 carries out uniform sampling and extracts four sub-images.
In contrast to this, if the correlation is more prominent along the columns than
the rows then their tensor product assumes elliptic shape, as shown in Fig. 4(b).
Then the asymmetric kernel of NoSHS, Extract 6 performs coarse sampling along
the columns and fine-grained sampling along the rows to derive 6 sub-images.

x

y

(a)

x

y

(b)

Fig. 4. (a) presents the pictorial representation of the Isotropic correlation in which
case symmetric kernel for sampling is required and (b) presents the Anisotropic corre-
lation that prompts the selection of asymmetric sampling kernel
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Finally, the EDACE model is developed for predicting the pixel values at inpaint
locations for each sub-image.

Algorithm 3. SSAI
Data: Input Image I and the associated Mask M
Result: Inpainted image
1. Derive H from I
2. Select the forward sampling kernel Sect. 2.2 under NoSHS

3. Check the size of the inpaint region and determine the levels of

hierarchy k
4. Apply the chosen NoSHS scheme on I and M to extract k sub-images

5. Select the sub-images available at bottom-most level of the hierarchy

and put them into array A
6. Choose a basis F to represent the trend based on H and the

correlation model R.

7. Fit EDACE model for every sub-image on A and predict the responses

over Ω
8. Invoke the corresponding PushBack kernel Sect. 4 recursively on

inpainted sub-images, about step 2, to produce the inpainted image.

6 Experiments and Results

Experiment 1. The fidelity gain through Elastic net regularization-

Here we demonstrated the effect of the Elastic net regularization term intro-
duced in the proposed model. In this experiment, initially a fifth order poly-
nomial with 21 coefficients was selected to represent the trend in the course
of polynomial regression. The over sensitive nature of the linear regression to
the outliers was addressed by Elastic net regularization while eliminating the
non-essential coefficients of the higher order polynomial. This improved the
fidelity of the results as shown in Fig. 5- compare Fig. 5(b) with 5(c) and Fig. 5(e)
with 5(f).

Experiment 2. Structure and Texture preserving capabilities without model-
ing them explicitly-

In Experiment 2, images with a large whole marked in white color were
taken up. SSAI modeled the trend as a constant and employed the exponential
correlation basis for the input images in Fig. 6(a) and (g). We could observe that
SSAI was able to fill the holes, see Fig. 6(b) and (h), with a meaningful content
on both sides of the linear structures. The anisotropy feature of the interpolation
resolved the confusion as to extend the horizontal structure or vertical structure
and achieved the better control. In Fig. 6(c) and (d), the staircase was preserved
thoroughly by propagating the information along the structures. The image in
Fig. 6(e) possesses small H value and is considered to be non-stationary image
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Fig. 5. Column1 presents the input images, column 2 presents the results of the pro-
posed SSAI model and column 3 presents the results in the absence of Elastic net
regularization.

Fig. 6. Row 1 presents the input images. Row 2 presents the corresponding inpainted
results of SSAI Model.

and Fig. 6(f) demonstrated the capability of SSAI model to synthesize the fine
texture.

Experiment 3. Large Scale object Removal - comparison with Hybrid
approach
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Fig. 7. Row 1- Input images, row 2 presents the results of SSAI and row 3 presents
the results of Aria’s [7] method.

Table 1. The Hurst exponent based Decision Table and the improvement in PSNR
through SSAI

Image H Nature Basis Before After

Grid-6(d) 0.89 Stationary Constant 16.8 db 59.41 db

Trouser-6(c) 0.19 Second-order-stationary Polynomial 22.6 db 39.76 db

Gantry-5(e) 0.42 Second-order-stationary Polynomial 16.32 db 46.45 db

In this experiment, Fig. 7, the input images that had cartoon components and
texture elements separated by structures were considered. SSAI preserved the
structures and interpolated the texture components successfully. Whereas [7],
a non-local Total Variational method failed to synthesize the textures clearly,
compare Fig. 7(c) with 7(e) and Fig. 7(d) with 7(f). The efficacy of the adaptive
basis selection feature of the proposed SSAI model and the quality of results in
PSNR values are presented in Table 1.
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7 Summary

In this paper, the object removal problem was solved without involving ‘locate
and copy’ or diffusion of information models which were developed around the
texture and structure components. In contrast, the proposed SSAI, employed the
anisotropy based sampling scheme NoSHS, and addressed the ill-posed nature
of the problem, through an adaptive polynomial basis selection based on Hurst
exponent. The SSAI enhanced the quality of the solution through Elastic net
regularization and overcome the stigma of Blind kriging over DACE. The exper-
iments established the fact that high fidelity results are realizable for large scale
inpainting problems through the properly modeled spatial interpolation.
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