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Abstract. In probabilistic accounts of belief change, traditionally
Bayesian conditioning is employed when the received information is con-
sistent with the current knowledge, and imaging is used otherwise. It is
well recognised that imaging can be used even if the received informa-
tion is consistent with the current knowledge. Imaging assumes, inter
alia, a relational measure of similarity among worlds. In a recent work,
Rens and Meyer have argued that when, in light of new evidence, we no
longer consider a world ω to be a serious possibility, worlds more similar
to it should be considered relatively less plausible, and hence more dis-
similar (distant) a world is from ω, the larger should be its share in the
original probability mass of ω. In this paper we argue that this approach
leads to results that revolt against our causal intuition, and propose a
converse account where a larger share of ω’s mass move to worlds that
are more similar (closer) to it instead.

1 Introduction

Our knowledge is often fallible, uncertain and incomplete. How this knowledge
should evolve in light of observations made and evidence acquired is a subject of
much research. Research in this area can be divided into two broad approaches.
In the first, “deterministic approach”, knowledge is assumed to be certain but
fallible, and the crux of the problem is to devise a rational model for modify-
ing it in light of evidence that contravenes this knowledge. Literature in this
approach is directly or indirectly inspired by the AGM paradigm [1] and deals
with issues such as the problem of repeated belief change [10,11], the problem
of belief change when knowledge is finitely represented [5] and the problem of
belief modification when the world described by the knowledge is dynamic [7].
A knowledge state (or belief state) in such approaches is represented as a set of
sentences together with a mechanism to capture the firmness of beliefs, semanti-
cally underpinned by a plausibility ranking of worlds. In the second, “probabilis-
tic approach”, a knowledge state is often represented as a probability function,
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with beliefs being interpreted as “full beliefs”, meaning propositions assigned
probability 1. Evidence with non-zero prior is then processed using standard
Bayesian conditioning; however belief-contravening evidence, that is evidence
with zero prior needs special treatment using “imaging” first introduced by David
Lewis in the context of analysing conditionals [9].

It has been proposed that distance between worlds captured by a pseudo-
distance function can be used to “implement” the notion of imaging and provide
a construction of belief-contravening operations in a probabilistic framework.
The idea is that if a world ω has to lose a portion (or all) of the probabil-
ity apportioned to it, rationality dictates that this unaccounted for probability
should be gained by the world that is closest to ω among the set of potentially
deserving worlds.1 In a recent work it has been suggested that such bias in the
movement of probability may not be appropriate [13]. The rationale behind this
suggestion is that a world that is losing probability is doing so because it is no
longer deemed plausible, and hence, worlds similar to it would also suffer from
a reduction in plausibility. Increasing probability of such worlds runs counter to
this intuition, and so the probability salvaged should be distributed in proportion
to their distance from the worlds losing that probability.

Out primary objective is to examine this suggestion. First of all, the sugges-
tion that salvaged probabilities should be mostly contributed to worlds farthest
from the “victim worlds” is based on abstract intuitions which are not much
better than the counter-intuition that such probabilities should mostly be con-
tributed to wolds closer to them. Consider for instance the counterfactual, If
Oswald had not killed Kennedy, someone else would have. In order to evaluate
such a counterfactual, it is natural to consider worlds that are very similar to the
“real world” except that in them Oswald didn’t kill Kennedy (but yet, it was the
post-Cuban crisis period, JFK was a Democrat visiting Dallas on a reelection
campaign, bullets are designed to kill people, and so on). If we take the sugges-
tion in [13] seriously, we should instead consider worlds that are diametrically
opposite to the real world in which, not only that Oswald didn’t kill Kennedy,
but also, presumably, JFK was a Republican visiting Alaska, bullets have salu-
tary effects on humans, and so on which would make a complete mess of our
understanding of counterfactuals. Secondly, while our intuitions about counter-
factuals may not be very reliable,2 we have quite strong causal intuitions. In
the next section we look at a simple cause-effect scenario and examine what
happens if, instead of doing Bayesian conditioning using the ratio principle we
distribute probability along the way suggested by [13] and observe that it leads
to counterintuitive consequences.

This leads us to explore the converse approach in causal domains. In Sect. 3 we
define closeness between worlds based on the distance between them, and examine
some properties of this measure. This notion of closeness is then used to develop
an account of probabilistic reasoning, particularly probabilistic expansion, and

1 Assuming such a unique closest world exists. Short of it, an appropriate distribution
mechanism should be employed.

2 Recall the standard refrain of the politicians, I don’t answer hypothetical questions.
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study its behaviour in our chosen example. Finally, in Sect. 4, we briefly outline
the implications and limitations of our proposal, and our future research work.

2 Farther is not Better

We assume a propositional language and classical logic with standard notation.
A world is defined to be a unique assignment of truth values {0, 1} to all the
atoms in the propositional language. The set of all the worlds is denoted by
Ω. An agent’s body of beliefs, denoted b, contains information as to different
subjective probability it assigns to different worlds, and the set of all possible
belief sets is denoted by B.

Definition 2.1. A belief set b is the set of pairs
⋃

ωi∈Ω{(ωi, pi)} where world
ωi is allotted probability pi = P (ωi) such that Σipi = 1.

It is understood that the probability that the agent assigns to a proposition Φ
is given by P (Φ) = Σi{pi | ωi |= Φ}.

The belief state of an individual is rationally modified in the light of new
information Ψ that the agent receives. Received wisdom has it that the nature
of this modification is sensitive to whether the knowledge domain is static or
dynamic [7] and whether the new information contravenes current knowledge or
not [4]. In this paper we will assume that the knowledge domain is static, and the
received information is not knowledge contravening. In such case, as advocated
in [4], the belief modification should be carried out using Bayesian conditioning,
in other words, b + Ψ =

⋃
ωi∈Ω{(ωi, p

′
i)} where p′

i = pi

P (Ψ) if ωi |= Ψ and 0
otherwise. Note that for this purpose no other machinery such as a plausibility
ranking of worlds is used – if there is any implied notion of plausibility at all, it
is presumably captured by probability.

Intuitively, similar scenarios are similarly plausible – that, at least, is the
picture portrayed by plausibility rankings. However, this nice picture does not
extend to probability calculation, as illustrated by the following example, and
hence, arguably, plausibility and probability may not be reducible to each other.

Example 1. Three coins are tossed. We know that they are similarly biased:
the odds of getting head are same for each of the three coins – either 9:1 or
1:9 – but we don’t know which. If the bias favours heads, probabilities of the
events (HHH,HHT,HTH,HTT, THH, THT, TTH, TTT ) are respec-
tively (0.729, 0.081, 0.081, 0.009, 0.081, 0.009, 0.009, 0.001). The respective
probabilities are (0.001, 0.009, 0.009, 0.081, 0.009, 0.081, 0.081, 0.729) on
the other hand if the bias favours tails. Appealing to the principle of indif-
ference we obtain (0.365, 0.45, 0.045, 0.045, 0.45, 0.045, 0.045, 0.365) as the
final probabilities. Clearly, the outcome HHH is more similar to HHT
(and HTH and THH), and less similar to the outcome TTT . Yet, the
outcomes HHH and TTT are equally probable, and that probability is
very different from the probabilities of HHT !
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Indeed, probability has been supplemented by an extraneous notion of plau-
sibility in an account of probabilistic belief change advocated in [3]. In this
approach it has been argued that imaging [9] which is designed to deal with
knowledge update in dynamic worlds can also be used to capture probabilistic
belief change in static worlds, and they use (pseudo-)distance between worlds
[8] to compute the image of a world among a given set of worlds for this pur-
pose. This approach can be used irrespective of whether the new information
is belief-contravening or not. Nonetheless, this approach is rather restrictive in
that given a world ω and a set X of worlds, the former has a unique image in
the latter, that is, there is a unique world in X that is closer or more similar
to ω than any other world in X. In a subsequent work [13] Rens and Meyer
have developed a more general method that effectively allows multiple images
of a world. We will now briefly outline how they deal with probabilistic belief
change (called belief expansion) when the evidence does not contravene current
knowledge before examining it. We assume here onwards that the new evidence
is not belief-contravening.

In general, when evidence Ψ does not contravene existing knowledge, there
are at least some worlds ω |= Ψ with non-zero prior. Evidence Ψ suggests that
any world ω′ �|= Ψ is a scenario not longer deemed seriously possible and must
be eliminated from the hypotheses space, that is it must be assigned a (poste-
rior) probability 0, and the probability thus salvaged must be distributed among
worlds ω |= Ψ . For simplicity let us use the following notation:

Notation 1. Removal set R and Acceptance set S.

1. R = {ω∈Ω �|= Ψ} is the set of worlds that conflict with the evidence and should
receive zero posterior.

2. S = Ω \ R = {ω∈Ω |= Ψ} is the set of worlds consistent with the evidence
and the probability salvaged from members of R should be distributed among
its members.

In the Bayesian conditioning, so to speak, the probabilities salvaged from mem-
bers of R are all pooled together and then distributed among those in S in
proportion to their prior probabilities. The worlds in S with zero prior will con-
tinue have zero posterior. In the approach described in [13], instead of using the
priors in S as the basis of distribution, the distance between an individual world
ω× ∈ R and the worlds ω ∈ S is used to determine the share of ω in the prob-
ability of ω×. This distance between worlds is captured by a pseudo-distance
function d.

Definition 2.2 [8]. The pseudo-distance d : Ω × Ω → Z between two worlds
satisfies:

1. d(ω, ω′) ≥ 0 (Non-negativity)
2. d(ω, ω) = 0 (Identity)
3. d(ω, ω′) = d(ω′, ω) (Symmetry)
4. d(ω, ω′) + d(ω′, ω′′) ≥ d(ω, ω′′) (Triangle Inequality)

for all worlds ω, ω′ and ω′′ ∈ Ω,
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This distance function is then used to determine the different weights that
members of ω ∈ S will carry while receiving their share of probability from any
ω× ∈ R. This weight, δrem(ω×, ω, S) is the distance d(ω×, ω) normalised over
the total distance of different worlds in S from ω×.

Definition 2.3. [13] δrem(ω×, ω, S) =
d(ω×, ω)

∑
ω′∈S d(ω×, ω′)

The weight δrem(ω×, ω, S) is used to compute total share of any ω ∈ S in the
probability salvaged from R, denoted σ(ω, S,R):

Definition 2.4. σ(ω, S,R) =
∑

ω×∈R P (ω×) ∗ δrem(ω×, ω, S).

We note that the probability function P in Definition 2.4 is sensitive to the
contextually fixed belief set b. The probability P (ω×) is the p× extracted from
the pair (ω,× p×) ∈ b.

Finally, an operation 〈prem〉 : B × 2Ω → B is used to determine the result
of modifying a belief set b in light of evidence Ψ by topping up the existing
probability of each world in ω ∈ S by its share σ(ω, S,R).

Definition 2.5. b〈prem〉R =
⋃

ω∈S{(ω, p′) | (ω, p) ∈ b and p′ = p+σ(ω, S,R)}.

Let us illustrate the application of the proposed probabilistic reasoning using a
simple example that also brings to the surface a problem with this approach.

Example 2. The major causes of asthma are polluted air and stress. R is
a factory town with bad air pollution. On a given day, the chance of R
having high pollution index is 60 %. On the other hand, children in R have
easy, stress-free life, and the probability that a child in this town suffers
from stress is negligible, say 5 %. Both pollution and stress are equally
efficacious in causing asthma, with a probability of 10 % each. In presence
of both pollution and stress, there is a multiplier effect and the chance of
asthma attack goes up to 25 %. On a particular day a little child who lives
in R suffered from an asthma attack. Between pollution and stress, which
factor should we blame?

This scenario is compactly represented as a Bayesian Network [12] as depicted
in Fig. 1 below.

Intuitively, since pollution and stress are equally efficacious in causing asthma
attack, and the prior of pollution is a lot higher, around 12 fold, than the prior
of stress, pollution is more likely the cause of the asthma attack. Indeed this is
indicated by Bayesian updating: the posterior probabilities, P ′(P ) = P (P |A) =
0.91 and P ′(S) = P (S|A) = 0.13. Both pollution and stress contributed to the
attack and accordingly both of their probabilities hiked.

Let us now consider what happens if, instead of Bayesian Conditioning, we
employ the distance based approach outlined above. There are eight worlds here
that we denote as APS, APS. . .APS along expected lines. The A-worlds here
represent the accepted set S and A-worlds the removal set R. We use Hamming
Distance as the pseudo-distance function d between different worlds.
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Pollution Stress

Asthma

P(S) = 0.05P(P) = 0.6

P S P(A)

1 1 0.25
1 0 0.1
0 0.1
0 0.010

1

Fig. 1. A simple Bayesian Network depicting pollution and stress as the causes of
asthma, with conditional probability tables (CPTs) given for each node. Pollution,
stress and asthma are represented by P , S and A respectively.

Table 1 provides the distance between different worlds,3 the weight of different
A-worlds ω with respect to different A-worlds ω×,4 and accordingly the share
of ω in the probability of ω×. The original probability of different A-worlds is
conveniently given beside their names in parentheses. For instance, the entry
on top left says that d(APS,APS) = 1, since the total distance from APS to
different A-worlds is 8, the weight of APS with respect to APS is 1

8 , and hence
the share APS will claim in the probability of APS (0.0225) is 0.0225

8 ≈ 0.0028.

Table 1. Hamming distance, weight and share of an A-world with respect to different
A-worlds.

APS (0.0225) APS (0.513) APS (0.018) APS (0.3762)

APS (1, 1/8, 0.0028) (2, 2/8, 0.1282) (2, 2/8, 0.0045) (3, 3/8, 0.141)

APS (2, 2/8, 0.0056) (1, 1/8, 0.0641) (3, 3/8, 0.0066) (2, 2/8, 0.094)

APS (2, 2/8, 0.0056) (3, 3/8, 0.1923) (1, 1/8, 0.0022) (2, 2/8, 0.094)

APS (3, 3/8, 0.0084) (2, 2/8, 0.1282) (2, 2/8, 0.0044) (1, 1/8, 0.047)

Now, the total probability share that an A-world receives from A-worlds can
be computed by simply adding up the third figures for each entry in a row.
For instance, the total share that the world APS receives is 0.0028 + 0.1282 +
0.0045 + 0.141 ≈ 0.2766. These are shown in the third column in Table 2. It
is easily noted that among the A-worlds, the worlds APS and APS account
for most of the initial probability, and consequently the two A-worlds APS
and APS benefit the most from the probabilities initially allotted to the A-
worlds since they are both relatively “far away” from each of APS and APS.

3 The distance between different A-worlds, or between different A-worlds is not shown
since they will not be used in the calculation.

4 The more distant/different a world is from a target world, the higher is its relative
weight.
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The result of topping up the old probabilities by these shares gives the new
probability of the A-worlds, as shown in the fourth column. Now, to compute
the posterior probability of Pollution, say P ′′(P ), following this distance based
approach, we simply add up the new probabilities of APS and APS, and get
0.2841+0.2275 ≡ 0.51.5 Similarly, the posterior P ′′(S) = 0.2841+0.2963 ≡ 0.58.
In other words, stress is the more likely cause of the asthma attack than pollution.
This is rather unexpected! Pollution and stress are equally effective in causing an
asthma attack, the chance of pollution is very high, and the presence stress was
assessed to be unlikely. And yet, when an asthma attack happens we conclude
that stress was the likely cause of the attack. This is akin to believing in miracles.

Table 2. Old probabilities of A-worlds, their total probability share from A-worlds,
and the new probabilities.

Old probability Share from A New probability

APS 0.0075 0.2766 0.2841

APS 0.0570 0.1705 0.2275

APS 0.0020 0.2943 0.2963

APS 0.0038 0.1882 0.1920

So we consider closeness rather than distance as the basis for probabilistic
reasoning instead.

3 From Distance to Closeness

In this section we will develop an account of probabilistic belief change that
uses a closeness measure between worlds. Intuitively, the smaller the distance
between two worlds is, the closer they are, and this measure will exploit this
conviction. In many ways it will mimic the approach in [13] but trail imaging by
moving the probability of a “discredited” world to similar worlds. This process
makes use of the pseudo-distance function but dispenses with the unique closest
world assumption, and in that it generalises the approach developed in [3].

We denote by c(ω, ω′) the closeness or similarity between two worlds ω and
ω′, and let the minimum closeness between two worlds to be 0 and the maximum
to be 1. Intuitively, c(ω, ω′) attains the value 0 when ω and ω′ are at farthest
distance from one another. On the other hand, it is standard practice in the
modal semantics to assume that each world is most similar to itself. This is
indeed indicated by the fact that d(ω, ω) = 0 in case of pseudo-distance. Hence we
would want that the closeness between any world and itself should be maximum

5 We need not worry about adding the new probabilities of relevant A-worlds since
they are all zero.
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and equal to 1, that is c(ω, ω) = 1. We will also assume that the closeness or
similarity is symmetric, that is c(ω, ω′) = c(ω′, ω) for all worlds ω and ω′.6

These properties are very similar to those of a pseudo-distance function.
Where these two functions diverge is the Triangle Inequality which is satisfied
by the pseudo-distance function but not satisfied by closeness function. It is easily
seen that this is not a desirable property for closeness function. For instance,
consider the major cities in Australia. Sydney is not very close to Perth, say the
c(Sydney, Perth) ≈ 0, and hence by Symmetry we also have c(Perth, Sydney) ≈
0. On the other hand, by Identity we have c(Sydney, Sydney) = 1. However,
Triangle Inequality mandates that c(Sydney, Perth) + c(Perth, Sydney) ≈ 0 ≥
c(Sydney, Sydney) = 1.

In order to limit the range of c(ω, ω′) to [0, 1], apart from the pseudo distance,
we will need the maximum distance between any two worlds in any set X that
we call its diameter Δ(X).

Definition 3.1. Δ(X) = max{d(ω, ω′) | ω, ω′ ∈ X} for any set X of worlds.

Closeness, being the complementary concept of distance, it is natural to assume
that the closeness between two worlds would correspond to the gap between the
distance between them and the maximum distance possible between any two
worlds. We define the closeness function c : Ω × Ω → [0, 1], parametrised to a
relevant set X ⊆ Ω as:

Definition 3.2. cX(ω, ω′) =
Δ(X) − d(ω, ω′)

Δ(X)
for ω and ω′ ∈ X ⊆ Ω.

Note that when we set X to be Ω in this definition, we get the absolute close-
ness between two worlds, and in that case we drop the subscript Ω in cΩ(·, ·). In
Fig. 2 below we graphically illustrate the notion of this parametrised closeness (or
comparative similarity). Two sets of worlds are represented as two spheres with
diameters X and X ′. We want to capture the comparative similarity between
two pairs of worlds, (a, b) in the first set and (a′, b′) in the second. The actual dis-
tances between the two pairs of worlds is given by d(a, b) = x and d(a′, b′) = x′.
The “raw similarity” between the pairs is given by y and y′. The correspond-
ing degrees of comparative closeness are given by y

x+y and y′

x′+y′ . Assuming
y

x+y < y′

x′+y′ , the worlds a′ and b′ are comparatively closer to each other in
comparison to the worlds a and b.

It is easily shown that the closeness measure as defined in Definition 3.2 has
the desirable properties we discussed earlier.

Observation 1. The closeness function c (appropriately parametrised to a set
X) satisfies the following conditions:

1. 0 ≤ c(ω, ω) ≤ 1 (Range)
6 Arguably the use of similarity in common parlance is non-symmetric. For instance,

if John is non-violent, we would say John is like Gandhi. But saying Gandhi is like
John would mean a very different thing. Capturing such asymmetry in our simple
framework may not be quite feasible.
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y
b ca a’ b’ c’

x’ y’x

Fig. 2. Worlds a′ and b′ are closer to each other than a and b are since
y′

x′ + y′ >
y

x + y
.

2. c(ω, ω) = 1 (Identity)
3. c(ω, ω′) = c(ω′, ω) (Symmetry)

Now, let us see how we can distribute the probability of a world ω× ∈ R
among worlds ω ∈ S with R,S ⊆ Ω. One way would be to use the absolute
closeness c(ω×, ω) for different ω ∈ S and then compute the weight of different
worlds in S with respect to ω× based on it analogous to the approach in [13].
This would entail that all worlds in S except the farthest ones will receive
some non-zero share from the probability of ω×. It would appear rather ad hoc
since, if every other world in S benefits from the probability of ω×, there is
no reason why the least close ones should be deprived of this benefit. Hence
we suggest that only those worlds in S that are in the “neighbourhood” of ω×

should receive a portion of the latter’s probability. We view neighbourhood as a
very flexible concept – ranging from a very tight neighbourhood encompassing
only those worlds in S closest to ω×, to a very liberal one that includes almost
the whole of S – and it can be adapted to suit the needs as necessary. (It is
easily seen that classical imaging can be thus modeled by suitably choosing the
distance function and required closeness of neighbours.) Here we provide only
a particular interpretation of neighbourhood via what we call mean proximity
below. Also, we use absolute closeness for convenience since it will not make any
difference at the end. The mean proximity of a world ω× ∈ R with respect to
set S is given as:

Definition 3.3. Mean proximity of ω× wrt S: π(ω×, S) =
∑

ω′∈S c(ω×, ω′)
|S|

Intuitively, mean proximity gives us the boundary of the neighbourhood of ω×

in which its probability will be distributed. We define the neighbourhood of a
world ω× in a set S, denoted by ν(ω×, S), as those worlds in S that are at most
mean-proximity away from ω×.

Definition 3.4. ν(ω×, S) = {ω ∈ S | c(ω×, ω) ≥ π(ω×, S)}
Now we define the closeness-based weights δcl of the worlds in the neighbour-
hood of ω× along the expected lines. The δcl of ω to ω× is its closeness to ω×

appropriately normalised. The closeness-weight of ω wrt ω× is given by:
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Definition 3.5. For all ω× ∈ R,ω′ ∈ ν(ω×, S),

δcl(ω×, ω, S) =

⎧
⎪⎨

⎪⎩

c(ω×, ω)
∑

ω′∈ν(ω×,S) c(ω×, ω′)
if ω ∈ ν(ω×, S)

0 otherwise.

Now, analogous to Definition 2.4, we use the weights δcl(ω×, ω, S) to compute
the total share of any ω ∈ S in the overall probability salvaged from R, denoted
σcl(ω, S,R):

Definition 3.6. σcl(ω, S,R) =
∑

ω×∈R P (ω×) ∗ δcl(ω×, ω, S).

Subsequently, we use the operation 〈premcl〉 : B × 2Ω → B to determine the
result of modifying a belief set b by new evidence Ψ through supplementing the
existing probability of each world in ω ∈ S by its share σcl(ω, S,R):

Definition 3.7. b〈premcl〉R =
⋃

ω∈S{(ω, p′′) | (ω, p) ∈ b, p′′ = p +
σcl(ω, S,R)}.

The closeness based probabilistic belief expansion operation 〈premcl〉 described
above may be operationalised by the algorithm displayed below.

Algorithm: Closeness based Expansion

Input:b: belief-state, R: set of worlds that conflict with
evidence
Output: new belief-state b′; R has total probability 0

1. foreach ω× ∈ R do
2. foreach ω ∈ S do
3. Calculate closeness c(ω, ω′)
4. endfor
5. Calculate mean proximity π(ω×, S)
6. Determine neighborhood ν(ω×, S)
7. foreach ω′ ∈ ν(ω×, S) do

8. δcl(ω×, ω′, S) ← c(ω×, ω′)
∑

ω′∈ν(ω×,S) c(ω×, ω′)
9. pnew ← pold + p× ∗ δcl(ω×, ω, S)

10. endfor
11. endfor

Let us now see how our proposal fares vis-a-vis Example 2. As before, we
use the Hamming distance displayed in Table 1 as the pseudo-distance. As the
parameter X for computing closeness we will use the space Ω, and hence, for this
purpose, use as diameter Δ(Ω) = 3. Closeness function is availed to calculate
the closeness between pairs of worlds as shown in Table 3. For instance,
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c(APS,APS) =
Δ(Ω) − d(APS,APS)

Δ(Ω)
=

3 − 1
3

≈ 0.67.

Table 3. Closeness between A-worlds and A-worlds.

APS APS APS APS

APS 0.67 0.33 0.33 0

APS 0.33 0.67 0 0.33

APS 0.33 0 0.67 0.33

APS 0 0.33 0.33 0.67

Now, when we learn A: the child has had an asthma attack, the A-worlds
will lose their probabilities which would be distributed in their respective neigh-
bourhoods. We provide in Table 4 below for each A-world its mean-proximity
to the set of A-worlds, its neighbourhood among A-worlds, and the respective
weight of each such neighbour. As in the case of distance based approach, we
can compute the total probability share that an A-world receives from A-worlds
by adding up the weighted probabilities of each A-world in whose neighbour-
hood it resides. For instance, APS is in the neighbourhoods of three A-worlds:
APS, APS, and APS. Furthermore, its claim to the probabilities of these A-
worlds receives the respective weights of 0.5, 0.25 and 0.25 (the first entries in
the last column for the three relevant rows of Table 4). The total share of APS
in the probabilities of A-worlds is then the weighted sum of their probabilities,
that is, 0.0225 ∗ 0.5 + 0.513 ∗ 0.25 + 0.018 ∗ 0.25 ≈ 0.144. These total shares
that different A-worlds receive from A-worlds are shown in the third column in
Table 5. The result of topping up the A-worlds’ old probabilities by these shares
gives the new probability of the A-worlds, as shown in the fourth column in
Table 5.

Table 4. Mean proximity and neighbourhood of an A-world and the respective weights
of its neighbours. Probabilities of the A-worlds are also provided for convenience.

A-worlds Mean proximity Neighborhood Weights

APS (0.0225) 0.33 {APS, APS, APS} (0.5, 0.25, 0.25)

APS (0.513) 0.33 {APS, APS, APS} (0.25, 0.5, 0.25)

APS (0.018) 0.33 {APS, APS, APS} (0.25, 0.5, 0.25)

APS (0.3762) 0.33 {APS, APS, APS} (0.25, 0.25, 0.5)

Now, we compute the posterior probability of Pollution, say P ′′
cl(P ), fol-

lowing this closeness based approach by adding up the new probabilities of
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APS and APS, and get 0.1515 + 0.4131 ≡ 0.564. Similarly, the posterior
P ′′

cl(S) = 0.1515 + 0.1106 ≡ 0.262. The observation of asthma attack has resulted
in slight decrease in probability of pollution, and some increase in the probability
of stress, and yet pollution remains the major causal contributor. This is more
in alignment with our causal intuition.

Table 5. Old probabilities of A-worlds, their total probability share from A-worlds,
and the new probabilities using closeness based approach.

Old probability Share from A New probability

APS 0.0075 0.144 0.1515

APS 0.0570 0.3561 0.4131

APS 0.0020 0.1086 0.1106

APS 0.0038 0.3208 0.3246

4 Discussion and Future Work

We looked at a simple scenario from the causal domain, described as Exam-
ple 2 and sought to examine the propagation of probabilities when an effect is
observed. The example was a case of multiple causes with a single effect. The two
causes, stress and pollution, are equally efficacious as far as effecting an asthma
attack is concerned. However, the pollution is a lot more prevalent than stress.
When a child gets an asthma attack, which factor should we causally attribute
it to?

Bayesian conditioning leads to results that are pleasing to the intuition. How-
ever since Bayesian conditioning cannot handle belief-contravening evidence we
sought to explore unified methods that are more comprehensive.

A method advocated by Rens and Meyer [13] is one such more general app-
roach. This approach exploits the distance between worlds to determine how
the probabilities of the worlds “eliminated” by evidence should be distributed
among those that “survive”. It shifts the probability of a world to be eliminated
to other worlds in the proportion of their distance from it. The rationale behind
this approach is that if a world is considered implausible, then the worlds similar
to it should also be considered implausible as well. The major flaw inherent in
this method is that, as illustrated in Example 2, it produces counter-intuitive
results. Given multiple causes of an effect, if the causes have equal efficacy, intu-
ition demands that updating in light of the effect should not reverse the profile
of the causal priors – if the prior of one cause dominates the prior of the other,
their posteriors should exhibit that trend as well. In Example 2, both pollution
and stress are taken to be equally good in effecting asthma attack, and prior of
pollution is a lot higher than the prior of stress. However, the distanced based
approach using Hamming distance shows a reversal of this trend – the posterior
of stress is higher than the posterior of pollution.
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The approach developed in this paper is based on closeness instead of dis-
tance. It may be considered to be a generalisation of imaging [9], as well as of
an approach proposed in [3], in that it dispenses with the unique closest world
assumption and distributes the probability of an eliminated world ω among
those not eliminated roughly based on their similarity to ω. It is shown that
when applied to Example 2, the posteriors of the causes do not reverse the direc-
tion of their priors. This indicates that the intuition behind imaging is basically
sound, and probabilities of worlds eliminated by observed evidence should be
moved to worlds similar to them, not to worlds dissimilar to them.

This paper is based on our preliminary exploration to probabilistic belief
change based on closeness. There are a number of issues to be addressed down
the road:

1. In this paper the closeness measure we employed is based on Hamming dis-
tance. The properties of Hamming distance that primarily contributed to the
desirability of the outcome need to be formally captured.

2. This paper is based on a single, simple example. It does not show if the
approach will work in other examples. We have tried it with a few other
examples, and when there is substantial conflict between the distance based
approach and the closeness based approach, the result of the latter appeared
more intuitive. That, however, is no substitute for a formal proof.

3. The scope of this paper was restricted to belief non-contravening evidence.
It will be interesting to see how the closeness based reasoning behaves when
the evidence is belief-contravening.

4. It is likely that in different problem domains different approaches to proba-
bilistic reasoning will be more appropriate. It will be fruitful to comprehen-
sively explore this issue and compile the findings.

5. In the literature on logic of action there have been attempts to marry qualita-
tive and quantitative approaches to causality and diagnosis (see, e.g., [2,6]).
It will be interesting to see how our proposal sits in with such approaches.

We seek to address these issues in our future work.
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