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Plant Aquaporins and Metalloids

Manuela Désirée Bienert and Gerd Patrick Bienert

Abstract  The metalloids represent a group of physiologically important elements, 
some of which are essential or at least beneficial (boron and silicon) for plant growth 
and some of which are toxic (arsenic, antimony and germanium). Exposure to and 
availability of metalloids can have major effects on plant fitness and yield and can 
seriously downgrade the end-use quality of certain crop products. Plants have evolved 
various membrane transport systems to regulate metalloid transport both at the cellu-
lar and whole plant level. To date, the channel proteins referred to as aquaporins 
(AQPs) represent the most favored candidates ensuring metalloid homeostasis. AQPs 
are found in all living organisms. From bacteria to mammals and also in plants, sev-
eral distinct AQP subfamilies facilitate the transmembrane diffusion of the set of 
physiologically and environmentally important metalloids. A subgroup of the 
Nodulin26-like intrinsic protein AQP subfamily (NIPs) has been designated as func-
tional metalloidoporins. NIPs are the only known transport protein family in the plant 
kingdom which are essential for the uptake, translocation, or extrusion of various 
uncharged metalloid species. This chapter describes the various features, and particu-
larly the metalloid transport properties of plant AQPs, and illustrates their physiologi-
cally important contributions to metalloid homeostasis. Their intimate involvement in 
metalloid transport underlines their relevance to plant nutrition, detoxification of toxic 
mineral elements phytoremediation, phytomining, and biofortification.

1  �The Metalloids

The metalloids represent a group of elements whose physical and chemical proper-
ties define them as being neither metals nor nonmetals. The six elements falling into 
this class are boron (B), silicon (Si), arsenic (As), antimony (Sb), germanium (Ge), 
and tellurium (Te). Selenium (Se), polonium (Po), and astatine (At) also belong to 
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the group but are less commonly designated as such. The lack of an unambiguous set 
of defining criteria reflects the dependence of many of their physical and chemical 
properties on ambient temperature and pressure, as well as on their crystal lattice/
crystal structure. The metalloids have a metallic appearance but are brittle. They are 
electrical semiconductors, can alloy with metals, and typically form amphoteric to 
weakly acidic oxides (Fig. 1). Their abundance in the Earth’s crust varies from Si – 
the second most abundant element after oxygen, constituting ~25 % by mass of the 
Earth’s crust (Lombi and Holm 2010) – to At, of which not more than 25 g is present 
in the total Earth’ s crust at any given time (Lombi and Holm 2010).

The biological significance of the metalloids ranges from essential through ben-
eficial to toxic. B is required for plant growth (Marschner 2012); Si is not generally 
recognized as essential, except for a few algal species and members of the 
Equisetaceae (Epstein 1994), although it is recognized as being beneficial for 
growth in many species. Se is essential in the human diet and for the growth of some 
algae, but is not so for plants (Pilon-Smits and Quinn 2010). As, Sb, Ge, and Te are 
all considered to be (phyto)toxic. The molecular form and the concentration of met-
alloids are both important in assessing the reaction of a plant to exposure. The 
impact of beneficial and essential metalloids on a given plant’s metabolism can be 
summarized, pace Paracelsus: “the only difference between a nutrient and a poison 
is the dose.”
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9.25 boric acid H3BO3 pH < 8.30 [H4BO4]- borate

9.51 silicic acid H4SiO4 pH < 8.56 [H3SiO4]- silicate

9.23 arsenous acid H3AsO3 pH < 8.28 [H2AsO3]- arsenite

2.26 arsenic acid H3AsO4 pH < 1.31 [H2AsO4]- arsenate

11.8 antimonous acid H3SbO3 pH < 10.85 [H2SbO3]- antimonite

2.85 antimonic acid H3SbO4 pH < 1.9 [H2SbO4]- antimonate

9.0 germanic acid H2GeO3 pH < 8.05 [HGeO3]- germanate

2.57 selenous acid H2SeO3 pH < 1.62 [HSeO3]- selenite

1.74 selenic acid H2SeO4 pH < 0.79 [HSeO4]- selenate

Fig. 1  pH-dependent acid-base equilibrium of hydroxylated metalloid acids. The green color 
indicates the chemical form and structural formula of the metalloid which predominates at the 
physiological pH range. Only neutral forms of metalloid acids are channeled by metalloidoporins. 
pKa values of the metalloid acids and the structural formula are given. The pH range in which more 
than 90 % of the metalloid acid occurs in its fully protonated acid species is displayed
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2  �The “Major Intrinsic Proteins” or Aquaporins

The large family of “major intrinsic proteins” comprises transmembrane-span-
ning channel proteins, found in almost all life forms (the exceptions being certain 
thermophilic Archaea and intracellular bacteria) (Abascal et al. 2014). The term 
“aquaporin” (AQP) is widely used as a synonym. Despite their sequence variation 
at the amino acid level, crystal structures acquired to date imply a high degree of 
conservation. The AQPs form tetramers: each monomer constitutes a functional 
channel on its own and is composed of six transmembrane-spanning helices 
(TMHs) with five connecting loops (loop A to loop E) and two cytoplasmic ter-
mini (see chapter “Structural Basis of the Permeation Function of Plant 
Aquaporins”). They define a narrow path across various cellular membranes, 
including the plasma membrane, the endoplasmic reticulum, the mitochondria, 
the vacuole, the vesicles involved in the trafficking pathway, the tonoplast, and the 
chloroplast (Maurel et al. 2015). They facilitate the diffusion of water and small 
uncharged solutes and have been shown by various means to control water homeo-
stasis. In plants, they function to import water into the root from the soil, to trans-
port it from the root to the shoot, to drive osmotic force-driven growth, and to 
ensure cytoplasmic osmolarity (Maurel et al. 2015; Chaumont and Tyerman 2014; 
see chapters “Aquaporins and Root Water Uptake” and “Aquaporins and Leaf 
Water Relations”). AQPs also have an impact on the uptake, translocation, seques-
tration, and extrusion of uncharged and physiologically important compounds 
such as glycerol (Richey and Lin 1972; Luyten et  al. 1995), nitric oxide (NO) 
(Herrera et  al. 2006), hydrogen peroxide (H2O2) (Bienert et  al. 2006, 2007; 
Dynowski et al. 2008), urea (CH4N2O) (Liu et al. 2003), ammonia (NH3) (Jahn 
et  al. 2004; Loqué et  al. 2005), lactic acid (Tsukaguchi et  al. 1998; Choi and 
Roberts 2007; Bienert et al. 2013), and acetic acid (Mollapour and Piper 2007). 
Of note in the context of this chapter, they also transport arsenous acid (H3AsO3) 
(Bienert et al. 2008a, b; Ma et al. 2008; Kamiya et al. 2009), boric acid (H3BO3) 
(Takano et al. 2006; Tanaka et al. 2008; Hanaoka et al. 2014), silicic acid (H4SiO4) 
(Ma et al. 2006), antimonous acid (H3SbO3) (Bienert et al. 2008a; Kamiya et al. 
2009), germanic acid (H4GeO4) (Ma et al. 2006; Hayes et al. 2013), and selenous 
acid (H2SeO3) (Zhao et al. 2010a, b) (Fig. 2).

AQPs allow the passage of a single continuous file of molecules. While a few 
ion-mediating AQPs have been identified (reviewed by Yool and Campbell 
2012), the consensus, based on chemical species selectivity, is that only non-
charged molecules are able to pass through the majority of AQP channels. 
However, compared to animal AQPs, not many plant AQPs have been assessed 
for being permeable to ions. The selectivity and transport capacity of each iso-
form are determined by the identity of the amino acids aligned along the chan-
nel pathway (see also chapter “Structural Basis of the Permeation Function of 
Plant Aquaporins”). The so-called “aromatic/arginine” (ar/R) selective filter, 
situated on the luminal side of the membrane, comprises four residues (R1–R4), 
located in TMH2 (R1), TMH5 (R2), and loop E (R3 and R4); this structure 
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Fig. 2  The periodic table of metalloidoporins. (a) Aquaporin channel proteins, which were 
shown to be permeable to the corresponding metalloid acid in transport assays performed in 
plants, or heterologous expression systems (i.e., plants, frog oocytes, or yeasts) are listed. (b) 
Listed aquaporins have either been identified to occur in quantitative trait loci genomic regions 
linked to the tolerance toward toxicity or deficiency of the corresponding metalloid species (indi-
cated by “QTL”) or which, when being silenced or knocked out in planta (indicated by “mutant”), 
caused obvious metalloid deficiency or tolerance phenotypes. (c) Phylogenetic or functional plant 
aquaporin groups which were shown to be permeable to the corresponding metalloid acid in trans-
port assays performed in plants or heterologous expression systems (plants, frog oocytes, or 
yeasts) are listed
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forms a size exclusion barrier and the hydrogen bond environment necessary for 
the efficient transport of a particular substrate (Murata et al. 2000). A second 
selectivity filter, the so-called “NPA” motif (asparagine-proline-alanine or vari-
ants thereof), is formed by the two membrane-embedded half-helices of loop A 
and loop E, each containing the conserved AQP signature. The “NPA”motifs 
meet in the center of the membrane, forming a narrow hydrophilic cavity 
(Murata et  al. 2000) and are responsible for the exclusion of water-mediated 
proton and ion transport.

A major difference between plants and other organisms is the large number of 
AQP isoforms encoded by plant genomes (Abascal et al. 2014). While the norm in 
bacteria, fungi, and mammals is 2–13 genes per genome (Agre and Kozono 2003), 
the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii 
encode, respectively, 23 and 19 AQPs (Danielson and Johanson 2008; Anderberg 
et al. 2012). Higher plant genomes harbor from 30 to 70 isoforms: the number in 
Arabidopsis thaliana is 35 (Johanson et al. 2001), in cabbage (Brassica oleracea) 
67 (Diehn et al. 2015), in Chinese cabbage (Brassica rapa) 57 (Diehn et al. 2015), 
in poplar (Populus trichocarpa) 55 (Gupta and Sankararamakrishnan 2009), in 
banana (Musa sp.) 47 (Hu et al. 2015), in castor bean (Ricinus communis) 47 (Zou 
et al. 2015), in soybean (Glycine max) 66 (Zhang et al. 2013), in potato (Solanum 
tuberosum) 41 (Venkatesh et al. 2013), in tomato (Solanum lycopersicum) 47 (Sade 
et al. 2009; Reuscher et al. 2013), in cotton (Gossypium hirsutum) 71 (Park et al. 
2010), in rice (Oryza sativa) 33 (Sakurai et al. 2005), and in maize (Zea mays) at 
least 36 (Chaumont et al. 2001).

Based on their sequence, the AQPs have been classified into two major sub-
groups, which in both bacteria and mammalians reflect their contrasting function-
ality: the orthodox AQPs (AQPs) act as channels for water and small solutes such 
as ammonia or hydrogen peroxide, while the aquaglyceroporins (GLPs) are 
responsible for the transport of solutes, such as glycerol or urea. In plants, the 
congruence between phylogeny and functionality is less clear. The sequences 
present in higher plants cluster phylogenetically with the AQPs and have been 
arranged into five distinct subfamilies, namely, the nodulin26-like intrinsic pro-
teins (NIPs), the plasma membrane intrinsic proteins (PIPs), the tonoplast intrinsic 
proteins (TIPs), the small basic intrinsic proteins (SIPs), and the as yet poorly 
characterized X intrinsic proteins (XIPs) (Chaumont et al. 2001; Johanson et al. 
2001; Danielson and Johanson 2008). XIPs are found in many, but not all, species 
within the section Magnoliopsida (they are not present in species belonging to the 
Brassicaceae), but have not been identified in any section Liliopsida species to 
date (Danielson and Johanson 2008). Analyses of the genomes of lower plants and 
algae have revealed several mostly not yet functionally characterized but clearly 
distinct AQP subfamilies (Anderberg et  al. 2011; Khabudaev et  al. 2014). For 
some plant AQPs (notably the NIPs and XIPs), certain specific sequence features, 
along with their functionality, have been taken to suggest a functional equivalence 
with the GLPs.

﻿Plant Aquaporins and Metalloids
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3  �Non-plant AQP and GLP-Mediated Metalloid Transport

The transport of glycerol mediated by GLPs is an important component of carbon 
metabolism and osmoregulation in bacteria, Archaea, protozoans, and mammals 
(Hara-Chikuma and Verkman 2006; Laforenza et al. 2015; Ahmadpour et al. 2014). 
Some GLPs are better described as “metalloidoporins” (Pommerrenig et al. 2015), 
since they fulfill physiologically important metalloid channel functions, thereby 
ensuring cellular metalloid homeostasis. Representative examples for such func-
tional metalloidoporin GLPs are isoforms, which are part of As resistance (ars) 
operons. For example, the As resistance operons in bacteria such as Escherichia 
coli comprise the five genes arsR, arsD, arsA, arsB, and arsC (Rosen and Tamas 
2010). The presence of arsenate (H2AsO4

−) in the growing medium activates arsR, 
which encodes a regulatory protein; the products of arsC and arsD are, respec-
tively, an arsenate reductase and an arsenate binding metallochaperone, which 
together deliver arsenite (H2AsO3

−) to the ATP-driven extrusion pump encoded by 
arsA and arsB (Rosen and Tamas 2010). In the bacterial species Sinorhizobium 
meliloti, Mesorhizobium loti, Caulobacter crescentus, and Ralstonia sola-
nacearum, a gene encoding a GLP aquaporin, which functions as an As-permeable 
channel, replaces the arsB-encoded efflux pump (Yang et al. 2005). These cases 
demonstrate that certain bacteria have adapted AQPs to handle As efflux and that 
an inheritable link between AQPs and metalloid transport exist (Yang et al. 2005). 
A further exciting link between metalloid transport and AQP function is repre-
sented in the actinomycete Salinispora tropica, where a GLP sequence has been 
fused to the sequence encoding an arsenate reductase domain, resulting in the 
translation of a dual function protein (Wu et al. 2010). The N-terminal GLP chan-
nel protein shows a greater selectivity for H3AsO3 than for either water or glycerol 
(Mukhopadhyay et al. 2014) and facilitates the efflux of H3AsO3 out of the cells 
directly at its site of production catalyzed by the C terminal arsenate reductase 
region of the protein (Wu et al. 2010). This spatially identical site of production 
and transport has the advantage that toxic As species do not pass through the cyto-
plasm before reaching their efflux site.

In Saccharomyces cerevisiae, the GLP FpsI acts normally as an osmoregulator. 
When the yeast cells are exposed to H3AsO3 stress, FpsI transcription is downregu-
lated, and the preexisting FpsI in the cell will be inactivated in a phosphorylation-
dependent manner (reviewed by Maciaszczyk-Dziubinska et  al. 2012). Once 
inactivated, short-term H3AsO3 uptake is prevented; after a longer exposure to the 
stress, the abundance of FpsI transcript rises, which increases the efficiency of 
H3AsO3 efflux. The required concentration gradient is established in the yeast cell 
via the exudation of glutathione, which enables the exported H3AsO3 to be extracel-
lularly chelated (Thorsen et al. 2012). Mammalian GLPs have also been identified 
as participating in As detoxification. This was demonstrated by the impaired ability 
of AQP9-null mice and mouse hepatocytes to dispose of As and which therefore 
suffer an increased severity of toxicity symptoms (Carbrey et al. 2009; Shinkai et al. 
2009). Reviews by Mukhopadhyay et  al. (Mukhopadhyay et  al. 2014) and by 
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Maciaszczyk-Dziubinska et al. (Maciaszczyk-Dziubinska et al. 2012) have detailed 
how non-plant AQP channels support the bidirectional cross-membrane movement 
of metalloids in a range of organisms.

The above-depicted examples of non-plant AQP and GLP-mediated metalloid 
transport processes are listed to demonstrate that the link between AQPs and metal-
loid transport is non-incidental in nature and is given across kingdoms. Diverse 
organisms independently evolved different AQP-employing strategies to regulate 
the transport and homeostasis of various metalloids. The adaption of AQPs to act as 
metalloidoporins is, on the one hand, based on the chemical characteristics of the 
channel and, on the other, on the physicochemical properties of uncharged hydrox-
ylated metalloid species resembling those of glycerol, the suggested original sub-
strate of AQPs. The size of undissociated hydroxy-metalloid acids (Fig. 1) and their 
volume, dipole moment, surface charge distribution, and ability to form hydrogen 
bonds are all reminiscent of glycerol. All these attributes are decisive for the effi-
cient passage though the AQP pore and metalloids behave as effective molecular 
transport mimics of glycerol (Porquet and Filella 2007). The experimental data 
derived from bacteria to mammals did significantly change the view on how mem-
brane permeability to metalloids might be regulated in planta. The long-held 
assumption that uncharged metalloids are solely transported across plant mem-
branes via a process of passive nonprotein-facilitated diffusion has had to be recon-
sidered in the light of the discovery of metalloid-permeable plant AQPs.

The following observations support the view that plant membranes can obstruct 
the diffusion of metalloids and that plant AQPs, like their GLP counterparts, offer 
the means to adjust membrane permeability appropriately: (1) concentration gradi-
ents across membranes of uncharged metalloid species have been detected (Meharg 
and Jardine 2003; Dordas et al. 2000; Dordas and Brown 2000), (2) the permeability 
coefficients for B measured in certain plant vesicles are significantly higher than 
those measured in synthetic liposomes (Dordas et  al. 2000; Dordas and Brown 
2000), (3) the transmembrane transport of B and As can be inhibited by potent AQP 
blockers (Meharg and Jardine 2003; Dordas et al. 2000), while (4) glycerol acts as 
a competitor for As flux (Meharg and Jardine 2003). As described subsequently, a 
number of both target-oriented and nontargeted approaches have revealed that cer-
tain plant AQPs (and especially members of the NIP subfamily) are physiologically 
important metalloidoporins.

4  �NIP-Mediated Metalloid Transport in Plants

The evolutionary origin of the NIPs is unclear. Phylogenetically, they cluster with 
bacterial and archaeal NIP-like proteins, forming a basal lineage within the AQPs 
distinct from the aquaporin Z-like or glycerol uptake facilitator-like proteins 
(Abascal et al. 2014). Their phylogeny provides support for the notion that plant 
NIPs were originally acquired via horizontal gene transfer from the prokaryotic 
chloroplast progenitor (Abascal et al. 2014), but the alternative route of convergent 
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functional evolution cannot be totally excluded. The plant NIPs can be phylogeneti-
cally divided into subgroups NIP1 through NIP5, which are remarkably well con-
served across species (Danielson and Johanson 2010; see also chapter “The Nodulin 
26 Intrinsic Protein Subfamily”). Note that the numerals “1” to “5” designating the 
five phylogenetically NIP subgroups do not match with the designated numerals 
designating NIP genes within one species. The low level of node support and the 
various polytomies that arise in NIP phylogenies emphasize the uncertain evolu-
tionary relationships obtained between the NIP subgroups and isoforms (Danielson 
and Johanson 2010; Abascal et al. 2014). Based on the amino acid composition of 
the ar/R constriction region, three functional groups (NIP-I through -III) have been 
recognized (Wallace and Roberts 2004; Mitani et al. 2008; see chapter “The Nodulin 
26 Intrinsic Protein Subfamily”). The three functional NIP subgroups are repre-
sented in all higher plants, although NIP-III is largely confined to section Liliopsida 
species (Danielson and Johanson 2010).

The soybean NIP GmNOD26 was the first plant AQP to be described (Fortin 
et al. 1987; see chapter “The Nodulin 26 Intrinsic Protein Subfamily”) and became 
the eponym of the NIP subfamily. It is the major proteinaceous constituent of the 
root nodule membranes (Fortin et  al. 1987; Dean et  al. 1999). Transport assays 
designed to assess the permeability of diverse functional NIP subgroups have 
shown that glycerol, NH3, CH4N2O, water, H2O2, and metalloids can all be trans-
ported via these proteins (Bienert and Chaumont 2011). To date, however, in planta 
evidence for physiologically relevant non-metalloid transport is lacking. NIPs are 
not only channel metalloids but are also essentially required for their transport into 
and within the plant. Evidence gathered from genetic, physiological, and molecu-
lar biology experiments argues for them having a major impact on metalloid 
homeostasis. Indeed, they are the only protein family in plants known to be essen-
tial for the uptake, translocation, as well as extrusion of a number of uncharged 
metalloids (Fig. 2).

4.1  �NIP-Mediated Transport of Boron

B has long been recognized as essential for plant growth (Warrington 1923); never-
theless, the only known function of B surrounds the formation of borate ester 
bridges within the primary cell wall, which serve to crosslink rhamnogalacturonan-
II (RG-II) monomers. Dimerized RG-II contributes to the overall network of pectic 
polysaccharides (Funakawa and Miwa 2015). In a standard plant cell wall, >90 % of 
RG-II monomers are dimerized, and although the overall proportion of cell wall 
pectin represented by RG-II is only around 10 %, it is clear that the quantity of free 
and cross-linked RG-II is critical for cell differentiation and elongation, as well as 
for plant growth and development (Funakawa and Miwa 2015). Insufficient cross-
linking induced by B-deficient growing conditions has a deleterious effect on plant 
growth and results in dwarfed plants (O’Neill et al. 2001). Magnoliopsida species 
tend to have a higher B demand than those in the class of Liliopsida, which 
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correlates with the quantity of RG-II found within the cell wall (Pérez et al. 2003). 
B deficiency manifests itself in the form of meristematic defects, abnormal cell dif-
ferentiation, and a compromised expansion of the stem, leaf, and vascular system. 
Flowering – especially pollen development – and pollen tube growth are also highly 
sensitive to B deficiency (Marschner 2012). While the molecular roles of B are 
enigmatic, the last years have provided detailed understanding on B transport mech-
anisms in plants.

The transcription of NIP-II genes in roots such as AtNIP5;1 and its orthologs in 
various plant species responds rapidly to B starvation (Takano et al. 2006; Hanaoka 
et al. 2014; Zhou et al. 2015). NIP5;1 transcripts of Arabidopsis, citrus, and rice are 
strongly upregulated within 24 h after the onset of B-deficient conditions. Reverse 
genetic approaches in Arabidopsis and rice using NIP-II knockout and silenced 
plants have shown that B uptake into the roots requires a functional AtNIP5;1 and 
OsNIP3;1, respectively (Takano et al. 2006; Hanaoka et al. 2014). The heterologous 
expression of AtNIP5;1, AtNIP6;1, and OsNIP3;1 promotes the transport of H3BO3 
in yeast, frog oocytes, and plants, demonstrating that they are all functional B trans-
porters (Takano et al. 2006; Tanaka et al. 2008; Hanaoka et al. 2014). Atnip5;1 and 
Atnip6;1 knockouts display characteristic symptoms of B deficiency, i.e., reduced 
stability of the epidermis abolished apical dominance and perturbed cell differentia-
tion (Takano et al. 2006; Tanaka et al. 2008). While AtNIP5;1 is expressed in the 
root epidermis and operates to move H3BO3 into the root, the AtNIP6;1 product is 
deposited in young leaf phloem companion and parenchyma cells, where it presum-
ably is involved in unloading H3BO3 from the xylem into the phloem (Takano et al. 
2006; Tanaka et al. 2008) (see also chapter “Plant Aquaporin Trafficking”).

Under B-deficient conditions, the shoot growth of Atnip6;1 knockouts is restricted, 
suggesting that AtNIP6;1 is important for the allocation of B to developing and meri-
stematic tissue (Tanaka et  al. 2008). Under such conditions, both Atnip5;1 and 
Atnip6;1 knockouts form largely sterile flowers. In rice, OsNIP3;1 has been shown 
as responsible for the uptake of B into the root, its translocation into the shoot, and 
its unloading from the xylem into the phloem in the mature leaf (Hanaoka et  al. 
2014). Its encoding gene is strongly transcribed in the root exodermis and in the cells 
surrounding the vascular bundles in both the root and shoot. When the OsNIP3;1 
gene is silenced, neither the total B concentration nor its distribution between the 
shoot and root is disturbed, provided that the conditions are not B-deficient; however, 
when the supply of B is limiting, the shoot’s B content is significantly decreased. 
This indicates different regulations of AtNIP5;1 and its ortholog OsNIP3;1. 
Consistent with this result, a map-based cloning approach targeting the Dwarf and 
tiller-enhancing 1 (dte-1) rice mutant identified OsNIP3;1 as the candidate gene 
underlying the mutated locus (Liu et  al. 2015); the mutant displays B deficiency 
symptoms when the supply of B is suboptimal (Liu et al. 2015). These results clearly 
indicate the crucial function of NIPs in plant B homeostasis. ZmNIP3;1, the maize 
ortholog of OsNIP3;1, has been similarly identified thanks to its positional cloning 
to underlie the phenotype of the tassel-less1 (tsl-1) mutant (Durbak et al. 2014). This 
mutant produces not only an aberrant flower, but its vegetative growth resembles that 
of a B-deficient maize plant. When expressed heterologously, ZmNIP3;1 facilitates 
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the uptake of B into both frog oocytes and yeast cells (Durbak et al. 2014). Tissue B 
content is suboptimal in the tassel-less1 mutant, and the mutant phenotype can be 
rescued by providing a source of B. ZmNIP3;1 transcript is highly abundant in the 
wild-type silk and (to a lesser extent) in the tassel and root, a distribution which is 
dissimilar to that shown by its A. thaliana and rice orthologs. The tassel-less 1 mutant 
carries a gene encoding for a mutated ZmNIP3;1 protein resulting in a nonfunctional 
channel protein (Durbak et al. 2014, Leonard et al. 2014).

Even though they differ with respect to their spatial transcription profile, each of 
the Atnip5;1, Atnip6;1, Osnip3;1 (dte-1), and Zmnip3;1 (ts-l1) loss-of-function 
mutants expresses a normal phenotype, provided that the supply of B is non-limiting; 
however, when this is not the case, the plants remain stunted, their apical dominance 
is compromised, and they suffer from inflorescence defects and reproductive steril-
ity (Takano et al. 2006; Tanaka et al. 2008; Durbak et al. 2014; Hanaoka et al. 2014; 
Liu et al. 2015). The NIP-II group AQP isoforms are therefore crucial for the uptake 
and distribution of B within the plant not just in section Magnoliopsida species, 
which have a relatively high B requirement, but also in section Liliopsida ones, 
which do not need as much B for growth (Marschner 2012).

Excessive soil B is phytotoxic. B is taken up in the transpiration stream, so tends 
to accumulate initially in more mature leaves (Nable et al. 1997). As a result, B 
toxicity manifests itself as leaf chlorosis/necrosis, spreading from the leaf margin 
into the center of the leaf (Nable et al. 1997; Shatil-Cohen and Moshelion 2012). 
Barley (which, like all of the cereals, has a relatively low B requirement) is particu-
larly sensitive to B toxicity (Schnurbusch et al. 2010). The genomic region of bar-
ley associated with B tolerance harbors HvNIP2;1. The mapping population 
progeny carrying the HvNIP2;1 allele that is present in the B tolerant mapping 
parent (the Algerian landrace Sahara 3771) exhibits a higher level of tolerance and 
accumulates less B in their leaves than those which carry the alternative allele from 
cv. Clipper. The level of HvNIP2;1 transcript increases from the root tip to the 
basal root region in both parental lines, but its abundance is up to 15-fold higher in 
the roots of the sensitive parent (Schnurbusch et al. 2010). A sequence comparison 
of the alternative HvNIP2;1 coding sequences identified only one base variation, 
while the predicted encoded proteins are identical. The HvNIP2;1 upstream 
sequence (up to −1377 nt) is wholly monomorphic, so the differential transcription 
of the gene has been concluded to reflect sequence variation even further upstream 
(Schnurbusch et al. 2010). Based on its H4SiO4 permeability both in frog oocytes 
and in planta, and its tissue distribution, the barley protein HvNIP2;1 is also 
thought to have an impact on the supply of the metalloid Si, even though no cor-
relation could be established between HvNIP2;1 transcription and the plant’s Si 
uptake capacity (Chiba et al. 2009).

In Medicago truncatula, Bogacki et al. (2013) show that 95 % of the phenotypic 
variation for B tolerance displayed by the progeny of a cross between two contrast-
ing parents could be linked to two microsatellite loci, which flank a cluster of five 
predicted AQP genes. Among them, only one (MtNIP3) is transcribed in the leaf 
and root. While the transcript levels are low and indistinguishable in the roots of 
tolerant and sensitive types, a fourfold difference in the leaf is observed, and the 
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leaf B concentration is correlated with the phenotype, suggesting that MtNIP3 is 
likely the gene underlying B tolerance (Bogacki et al. 2013). Based on the observed 
B distribution, it can be excluded that an enhanced B translocation from the roots 
is responsible for the differential B tolerance between these genotypes. It has been 
suggested that the redistribution of B from the symplast to the apoplast of leaves 
and subsequent leaching through rain and/or the removal of B via guttation repre-
sents the basis for the observed MtNIP3-dependent tolerance (Bogacki et al. 2013).

These examples demonstrate that the regulation of NIP-metalloidoporin activity 
and expression are important mechanisms for plants to adapt to either B-deficient or 
toxic environmental conditions.

NIPs are not the only proteins known to be involved in B transport in plants. The 
first B transporter to be described was identified from the analysis of an A. thaliana 
mutant in which shoot, but not root growth, was severely inhibited by B deficiency 
(Takano et al. 2002). The product of the mutated gene AtBOR1 was shown to medi-
ate the xylem loading of B. BOR proteins share homology with the Slc4 bicarbonate 
transporters (Parker and Boron 2013) and are predicted to form 14 plasma 
membrane-spanning helices. Potentially, a secondary active transport process is 
responsible for the BOR-mediated efflux of B (Parker and Boron 2013). The sub-
strate used by HvBOT1, a sodium-dependent BOR transport protein from barley, 
was demonstrated to be the borate anion H4BO4

− (Nagarajan et al. 2015). H4BO4
− 

represents highly likely also the substrate of other BOR proteins. BOR-type trans-
porters and NIP-II group AQPs cooperatively regulate B influx and efflux in a 
species-dependent manner. In rice, OsNIP3;1 – but not OsBOR1 – is expressed in 
the stele, while in the exodermis and endodermis, the genes are co-expressed 
(Nakagawa et al. 2007). In contrast, in A. thaliana AtBOR1 and AtNIP5;1 together 
control the radial transport of B to the vascular system in various cell types together, 
and are co-expressed in the endodermis (Takano et al. 2008, 2010).

A responsive metalloid transport system is of biological importance because 
plants can face sudden changes in the availability of these elements. Several 
AtNIP5;1 gene homologs, the products of which are both able to channel H3BO3 
and are known to be important for B uptake, are transcriptionally upregulated when 
the availability of B is limiting but downregulated when B is in oversupply (Takano 
et al. 2006; Tanaka et al. 2008; Hanaoka et al. 2014; Zhou et al. 2015; Martínez-
Cuenca et al. 2015). The AtNIP5;1 5′-UTR is particularly important both for the 
induction of AtNIP5;1 transcription and for its mRNA degradation under B-sufficient 
conditions (Tanaka et al. 2011). A similar regulatory role has been suggested for the 
almost identical 5′-UTR of OsNIP3;1 in B-deficient conditions and after B resup-
ply. While the molecular basis for this upregulation is unknown, an 18 bp sequence 
within the AtNIP5;1 5′ UTR has been shown to be responsible for the rapid desta-
bilization of AtNIP5;1 mRNA when the plants are oversupplied with B, shortening 
the mRNA’s half-life to about 30 % compared to plants grown under B-limiting 
conditions (Tanaka et al. 2011). This specific 18 bp sequence also influences the 
abundance of other tested downstream mRNA sequences in a B concentration-
dependent manner (Tanaka et al. 2011), leading to the suggestion that a number of 
genes are regulated via a B-dependent mRNA (de-)stabilization or translational 
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efficiency mechanism. It remains to be shown if the mRNA destabilization is caused 
by a direct interaction between H3BO3 and the ribose sugar component of the RNA, 
as ribose moieties can chemically interact with H3BO3 or via other yet unknown 
mechanisms.

4.2  �NIP-Mediated Transport of Silicon

Si is a non-essential element for most plants, but it does exert some highly beneficial 
effects on growth and productivity (Ma et al. 2002; Ma and Yamaji 2015). The pres-
ence of silica in plant tissue has been associated with an enhancement to certain 
plants’ tolerance to drought, salinity, extreme temperature stress, and nutrient 
imbalance, as well as providing physical strength to the stem and leaves, thereby 
increasing lodging resistance in the field (Ma and Yamaji 2015). In addition, small 
herbivores typically avoid feeding on grasses that deposit significant quantities of 
silica in their leaves and digest them rather inefficiently. High silica contents also 
protect plants from fungal pathogens. The element has been designated as quasi-
essential for rice (Epstein 1994), and Si fertilizers (the bioavailable form is silicic 
acid [H4SiO4]) are widely used in rice production in various continents (Ma and 
Yamaji 2015). The tissue concentration of Si in the aerial part of the plant varies 
across species from 0.1 % to 10 % of dry weight and by 5–10 % from rice cultivar 
to rice cultivar (Ma and Takahashi 2002).

The first higher plant Si transporter to be identified was OsNIP2;1 (syn. OsLsi1) 
(Ma et al. 2006). The low-silicon (lsi) mutant displays severe Si deficiency symp-
toms; the mutated gene product differs from that of the wild type by a single residue. 
The substitution of ala132 by thr132 significantly alters the protein conformation, 
resulting in a loss of its channel functionality. RNAi-induced suppression of 
OsNIP2;1 expression in cv. Nipponbare reduces Si uptake considerably, producing a 
phenotype resembling that of the lsi1 mutant (Ma et al. 2006). The wild-type gene 
product localizes to the exodermis and endodermis and to root zones, which are 
decisive for and intimately associated with Si uptake. The expression of OsNIP2;1 in 
frog oocytes results in a de novo capacity to transport H4SiO4, but not glycerol or 
water (Ma et al. 2006). OsNIP2;1 is a NIP-III AQP, a class of protein typically char-
acterized by an ar/R selectivity filter comprising gly, ser, gly, and arg. The small size 
of these four residues leads to the formation of a pore diameter that is somewhat 
larger than those produced by NIP-I and -II proteins. Once Si is taken up by rice 
roots, more than 95 % of it is translocated from the roots to the shoots (Ma and 
Takahashi 2002). In the shoot, OsNIP2;2 is responsible for the unloading of H4SiO4 
from the xylem sap into the cytoplasmic leaf space (Yamaji and Ma 2009). This pro-
tein is polar-localized to the adaxial side of xylem parenchyma cells in the leaf sheath 
and blade (Yamaji and Ma 2009). Transpirational water loss drives the gradual 
polymerization of H4SiO4 into amorphous silica, which is deposited as a double layer 
beneath the cuticle (Ma and Takahashi 2002). In OsNIP2;2 knockout plants, H4SiO4 
accumulates in the leaf guttation sap, and an altered pattern of silica deposition in the 
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leaf is observed (Yamaji and Ma 2009). NIP-III isoforms permeable to H4SiO4 and 
important for the uptake and distribution of Si have been identified in barley (HvLsi1 
[HvNIP2;1] and HvLsi6 [HvNIP2;2]: Chiba et al. 2009; Yamaji et al. 2012), wheat 
(TaLsi1: Montpetit et  al. 2012), maize (ZmLsi1 [ZmNIP2;1] and ZmLsi6 
[ZmNIP2;2]: Mitani et al. 2009a), cucumber (CsiT-1 and CsiT-2: Wang et al. 2015), 
pumpkin (CmNIP2;1: Mitani et al. 2011), and soybean (GmNIP2;2: Deshmukh et al. 
2013).

OsNIP2;1, HvNIP2;1, ZmNIP2;1, and TaLsi1 channels are present mainly in the 
root and are known to be required both for the uptake of H4SiO4 into the plant and 
for its transport toward the vasculature (Ma et al. 2006; Montpetit et al. 2012; Mitani 
et  al. 2009a; Chiba et  al. 2009). OsNIP2;2, HvNIP2;2, ZmNIP2;2, GmNIP2;1, 
GmNIP2;2, CmNIP2;1, CSiT1, and CSiT2 transcripts are all detectable in both the 
root and the shoot; the function of their products in rice, barley, and maize is con-
sidered to lie in xylem unloading in the leaf sheath and blade (Yamaji and Ma 2009; 
Yamaji et al. 2012; Mitani et al. 2009a); an additional function in rice is the inter-
vascular transfer of nutrients at the nodes (Yamaji and Ma 2009; Yamaji et al. 2015).

While the abovementioned NIP-IIIs all share a capacity to transport H4SiO4, the 
various orthologs differ from one another with respect to both their spatial expres-
sion and their transcriptional response to specific stimuli. For example, OsNIP2;1, 
OsNIP2;2, GmNIP2;1, and GmNIP2;2 are all downregulated by the presence of 
H4SiO4 (Ma et  al. 2006; Yamaji and Ma 2009; Deshmukh et  al. 2013), whereas 
ZmNIP2;1, TaLsi1, and HvNIP2;1 are nonresponsive (Chiba et  al. 2009; Mitani 
et al. 2009a; Montpetit et al. 2012). OsNIP2;1 is abundant in the exodermis and 
endodermis in primary and lateral roots where casparian strips exist (Ma et  al. 
2006); both HvNIP2;1 and ZmNIP2;1 are active in the epidermis, hypodermis, and 
cortex (Chiba et al. 2009; Mitani et al. 2009a); CmNIP2;1 is ubiquitous throughout 
the root (Mitani et al. 2011); OsNIP2;2/Lsi6 homologs in rice, barley, and maize are 
deposited throughout the root tip and in xylem parenchyma in the leaf (Yamaji et al. 
2008; Yamaji et al. 2012; Yamaji and Ma 2009; Mitani et al. 2009a). The herbaceous 
perennial horsetail (Equisetum arvense) is one of the highest accumulators of Si in 
the plant kingdom (Chen and Lewin 1969). It encodes nine NIPs (EaNIP3;1 through 
9), of which EaNIP3;1, EaNIP3;3, and EaNIP3;4 have each been shown to be per-
meable to H4SiO4 and to feature a distinct amino acid residue composition in their 
selectivity filter, namely, composed of ser, thr, ala, and arg (Grégoire et al. 2012).

The composition of cereal and horsetail Si channel ar/R selectivity filters is too 
variable for it to be usable as a diagnostic for Si transporters. Nonetheless, an in 
silico analysis has identified a phenylalanine in TMH6 and a polar serine/threonine 
residue in TMH5 that are shared by all Si-permeable NIP-III group proteins while 
being absent from all other NIPs (Pommerrenig et  al. 2015). However, whether 
these residues are indeed critical for H4SiO4 selectivity has yet to be experimen-
tally verified.

NIP-III group channels are encoded by the genomes of both Liliopsida and 
Magnoliopsida species, including the Gramineae, Arecaceae, Musaceae, Solanaceae, 
Rosaceae, Cucurbitaceae, Leguminosae, Vitaceae, Rubiaceae, and Rutaceae, as well 
as in the species Amborella trichopoda, which has been placed at, or near the base of, 
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the angiosperm lineage (Ma and Yamaji 2015). A. thaliana lacks any NIP-III genes. 
Note that the presence of a NIP-III gene(s) does not correlate with an enhanced 
capacity to accumulate Si. For example, NIP-III group isoforms are produced by 
tomato, which is a non-accumulator (Mitani and Ma 2005). Thus, NIP-IIIs likely 
fulfill also other physiological functions – an example is the previously mentioned 
barley HvNIP2;1 protein, associated with B tolerance (Schnurbusch et al. 2010).

NIP channels are not the only plant proteins able to transport Si. The Lsi2-type 
transporters have been designated as putative anion transporters (Ma et al. 2007; 
Mitani et al. 2009b; Mitani-Ueno et al. 2011; Yamaji et al. 2015); they form 11 pre-
dicted plasma membrane-spanning helices and remove Si from the cell via a sec-
ondary active process driven by the establishment of a proton gradient across the 
plasma membrane (Ma et al. 2007). In rice, an Lsi2 homolog governs the uptake and 
transport of H3AsO3/H2AsO3

− and its translocation into the grain (Ma et al. 2008). 
Lsi2-type transporters are found in many Magnoliopsida (including A. thaliana) 
and Liliopsida species (Ma and Yamaji 2015). The function of the A. thaliana homo-
log (encoded by At1g02260) is still unknown. The cooperation of Lsi2-type trans-
porters and NIP-III channels is required for cell-to-cell Si transport (reviewed by 
Ma and Yamaji 2015). In some cases, NIP channels and Lsi2-type efflux transport-
ers are located within the same cell type but with opposite polarity; in other cases, 
they appear in adjacent cell layers. A mathematical modeling approach has calcu-
lated that the polar localization of the two transporter types (NIPs and Lsi2-type 
transporters) at the exodermis and endodermis is optimal with respect to an energy 
efficient and high capacity Si uptake into the rice root (Sakurai et al. 2015).

4.3  �NIP-Mediated Transport of Arsenic

As is an acutely toxic and carcinogenic though relatively abundant and highly bio-
available metalloid, which can enter the human food chain via contaminated water 
or plant biomass (mainly via staple crops) (Meharg and Zhao 2012). The most com-
mon forms present in soil are H2AsO4

− and H3AsO3. In well-aerated (oxidative) 
soils, the former type predominates, while the latter type is associated with hypoxic 
(reducing) conditions. Both forms are readily taken up by plants (Meharg and Zhao 
2012). Arsenate (H2AsO4

−) and phosphate (H2PO4
−), the salts of arsenic acid 

(H3AsO4) and phosphoric acid (H3PO4), share a similar tetrahedral structure, pKa, 
molecular volume, and electrostatic behavior. Thus, being chemical analogs, 
H2AsO4

− can readily replace H2PO4
−, entering the plant via phosphate transporters 

(Zangi and Filella 2012). High affinity phosphate transporters are unable to distin-
guish between the two compounds (Zangi and Filella 2012; Li et al. 2015). Once 
taken up, H2AsO4

− forms As-adducts which are typically short-lived and nonfunc-
tional compared to the physiologically functional P-adducts; an example is the for-
mation and rapid autohydrolysis of H2AsO4

−-ADP, initiating a futile cycle which 
uncouples oxidative phosphorylation and interferes with enzymes regulated by 
phosphorylation (Finnegan and Chen 2012). As most arable soils are not hypoxic, 
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most of the As taken up by plants is in the form H2AsO4
−. Shortly after entering the 

root, it is enzymatically or nonenzymatically reduced to H2AsO3
− and then proton-

ated to form H3AsO3 (Finnegan and Chen 2012). The reduction of H2AsO4
− to 

H2AsO3
− is a common detoxification strategy used by most organisms, including 

plants (Bienert and Jahn 2010b). In the form H2AsO3
−/H3AsO3, As is more easily 

transported than H2AsO4
−, but its toxicity is enhanced by its ready reactivity with 

sulfur groups, thereby inactivating enzymes for which their functionality depends 
on cysteine residues or dithiol cofactors (Finnegan and Chen 2012). In non-
hyperaccumulators, most of the H2AsO3

−/H3AsO3 taken up is chelated by glutathi-
one or a metallothionein and sequestered into root cell vacuoles by the action of 
ABC transporters; alternatively it can be effluxed out of the cells (Li et al. 2015). 
The H2AsO3

−/H3AsO3 which is neither compartmentalized nor effluxed is distrib-
uted throughout the plant either actively by members of the secondary active 
Si-transporting Lsi2-type transporter family or passively along a concentration gra-
dient by NIPs which transport Si and B (see elsewhere in this chapter; Pommerrenig 
et al. 2015; Li et al. 2015).

In bacteria, fungi, fish, and mammals (including humans), H3AsO3 is transported 
by specific GLPs (reviewed in Bienert and Jahn 2010a; Maciaszczyk-Dziubinska 
et al. 2012; Mukhopadhyay et al. 2014). Evidence supporting the involvement of 
AQPs in As transport has been obtained from kinetic uptake studies of the rice root 
(Meharg and Jardine 2003). In particular, when H2AsO3

− was supplied to rice roots, 
As uptake can be partially inhibited by alternative AQP substrates (such as glycerol 
and antimonite) or by the AQP inhibitor HgCl2 (Meharg and Jardine 2003). 
Consequently, Meharg and Jardine postulated already in 2003 that H3AsO3 is trans-
ported across plant plasma membranes via MIPs/AQPs. In 2008, three studies inde-
pendently and congruently demonstrated in direct uptake experiments that certain 
plant NIPs are permeable to H3AsO3 (Isayenkov and Maathuis 2008; Bienert et al. 
2008a; Ma et al. 2008). The effect of exposing plants to NaAsO2 and As trioxide 
(As2O3) on uptake and growth implies strongly that the uncharged H3AsO3 molecule 
permeates plant NIPs (NaAsO2 and As2O3 form H3AsO3 in aqueous solution). A 
detailed study has shown that H3AsO3 shares several physicochemical and structural 
characteristics with the canonical NIP substrate glycerol, further supporting the idea 
that it is transported in planta through AQP channels (Porquet and Filella 2007).

A number of rice (OsNIP2;1, OsNIP2;2, and OsNIP 3;2), A. thaliana (AtNIP5;1, 
AtNIP6;1, and AtNIP7;1), and Lotus japonicus (LjNIP5;1 and LjNIP6;1) proteins 
have been tested for their ability to abolish the As tolerance displayed by certain S. 
cerevisiae yeast strains (Fig. 2); all of them significantly increase the level of sensi-
tivity to NaAsO2 (Bienert et al. 2008a). When the yeast is cultured on a medium 
containing H2AsO4

−, the NIP proteins also facilitate the efflux of the H3AsO3 gener-
ated in vivo through enzymatic reduction of H2AsO4

− (Bienert et al. 2008a), clearly 
demonstrating the bidirectional flux of H3AsO3 carried out by plant NIPs.

The physiological consequences of NIP-mediated H3AsO3 transport have been 
revealed by exposing an Osnip2;1 knockout rice line (defective in Si uptake) to 
H2AsO3

−. The accumulation of As in the mutant’s shoot and root is reduced by, 
respectively, 71 % and 53 % compared to that recorded for a wild-type plant grown 
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in a medium lacking H4SiO4 (Ma et al. 2008). The presence of H4SiO4 reduces As 
uptake in the wild type but not in the Osnip2;1 mutant plants, indicating a competi-
tively inhibited flux of the two substrates through the native OsNIP2;1 channel. A 
short-term uptake assay has demonstrated that As uptake by the mutant is 57 % less 
than that of the wild type (Ma et  al. 2008). The conclusion is that OsNIP2;1 is 
responsible for H3AsO3 uptake in planta (Ma et al. 2008). The addition of H2AsO4

− 
to the growth medium promotes OsNIP2;1-mediated H3AsO3 efflux (Zhao et  al. 
2010b). The suggestion here was that NIPs are able to reinforce As detoxification by 
effluxing H3AsO3 out of the roots after its intracellular formation through the reduc-
tion of H2AsO4

−, provided that the rhizosphere environment is permissive. When 
challenged with organic (methylated) molecules involving As, the Osnip2;1 mutant 
takes up only half the amount of either monomethylarsonic acid (CH5AsO3) or 
dimethylarsinic acid (C2H7AsO2) taken up by wild-type plants (Li et al. 2009). The 
heterologous expression of OsNIP2;1 in frog oocytes has shown that this NIP facili-
tates both the influx and efflux of H3AsO3, as well as that of CH5AsO3 and C2H7AsO2 
(Ma et al. 2008; Li et al. 2009). The indications are therefore that OsNIP2;1 repre-
sents an important bidirectional channel for a range of uncharged As species and 
represents the major uptake pathway for these species into rice.

A screen of an EMS mutagenized population of A. thaliana was used by Kamiya 
et al. (Kamiya et al. 2009) to identify individuals compromised for root growth in 
the presence of H3AsO3/H2AsO3

−. The three selected mutants all carry a mutation in 
the AtNIP1;1 coding sequence. The heterologous expression of each of the mutant 
alleles in frog oocytes has shown that they specify a nonfunctional As-impermeable 
AtNIP1;1 channel. The abundance of wild-type AtNIP1;1 transcript was 20 times 
higher in the root than the shoot, and a promoter-GUS fusion analysis showed that 
the AtNIP1;1 promoter is active in the stomata, the root-hypocotyl junction, the lateral 
root tip and stele, and the primary root stele (Kamiya et al. 2009). These data suggest 
that AtNIP1;1 contributes to As uptake into Arabidopsis roots. Similarly, AtNIP3;1 has 
been shown to participate in both As uptake and root-to-shoot translocation in plants 
subjected to H3AsO3 stress (Xu et  al. 2015). Several independent Atnip3;1 loss-of-
function mutants display a clear improvement in their level of H3AsO3 tolerance, as 
expressed by their aerial growth and their reduced ability to accumulate As in the shoot 
(Xu et  al. 2015). The Atnip3;1/Atnip1;1 double mutant exhibits a strong degree of 
H3AsO3 tolerance; its root and shoot continue to grow even in the presence of normally 
toxic levels of H3AsO3. AtNIP3;1 promoter activity is confined largely to the root, 
although not in the root tip (Xu et al. 2015). The overall conclusion is that AtNIP3;1 
participates in H3AsO3 uptake and root-to-shoot translocation (Xu et al. 2015).

Studies based on a range of heterologous expression systems have demonstrated that 
members of all three functional NIP subclasses have the ability to channel uncharged 
As species. The outcome of expressing the rice (OsNIP1;1, OsNIP2;1, OsNIP2;2, and 
OsNIP3;1) and A. thaliana (AtNIP1;1, AtNIP1;2, AtNIP5;1, and AtNIP7;1) genes in 
frog oocytes is an increased influx of H3AsO3, moreover the expression of AtNIP3;1, 
HvNIP1;2, HvNIP2;1, HvNIP2;2, and OsNIP3;3 in yeast enhances the cells’ sensitiv-
ity to H3AsO3 providing additional evidence for the H3AsO3 permeabilities of NIPs 
(Fig. 2; Ma et al. 2008; Kamiya et al. 2009; Katsuhara et al. 2014; Xu et al. 2015).
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A QTL mapping study in rice, based on a cross between the H2AsO4
− tolerant cv. 

Bala and the sensitive cv. Azucena, was able to identify three genomic regions har-
boring genes determining the tolerance of the former cultivar (Norton et al. 2008). 
Analysis of the progeny suggested that an individual needs only to inherit any two 
of the three tolerance loci from cv. Bala for it to be tolerant. One of the three QTL 
regions harbored two genes which were differentially regulated when the plants 
were exposed to As stress: one encodes an aminoacylase and the other is OsNIP4;1; 
both are more actively transcribed in the tolerant parent (Norton et al. 2008). The 
latter gene is particularly significant as NIPs are implicated in the transport of 
H3AsO3 into the root. However, the heterologous expression of OsNIP4;1 – unlike 
that of other NIPs – in an As-sensitive yeast cell line does not increase their H3AsO3 
sensitivity (Katsuhara et al. 2014). The mechanistic basis of OsNIP4;1 on H3AsO3 
tolerance remains to be determined.

OsNIP3;1, required for the uptake and translocation of H3BO3 (Hanaoka et al. 
2014), also transports H3AsO3 when expressed in frog oocytes (Ma et  al. 2008). 
OsNIP3;1 is downregulated in response to an elevated supply of H3AsO3/H2AsO3

− 
but not of H2AsO4

− (Chakrabarty et al. 2009). As-responsive downregulation may 
help to lower the level of OsNIP3;1-mediated As root uptake under B-deficient con-
ditions. All acquired information on As transport mechanisms controlling As fluxes 
into and within plants, particularly to edible plant parts such as rice grains, is highly 
valuable for the development of breeding strategies or the engineering of minimal-
As-accumulating plants.

Two independent analyses have failed to identify any QTL linked to either 
OsNIP2;1 or OsNIP3;1 associated with the grain content of either H2AsO3

−/
H2AsO4

− or C2H7AsO2 (Kuramata et al. 2013; Norton et al. 2014). However, one 
QTL region (harboring OsNIP2;2) has been identified as contributing to the methyl-
ated As content of the grain (Kuramata et al. 2013). When tested at the seedling 
stage, both the shoot and root As contents in an OsNIP2;2 knockout line are indis-
tinguishable from those recorded in the wild type (Ma et al. 2008). Since OsNIP2;2 
is expressed in the node below the panicle after the onset of grain filling (Yamaji and 
Ma 2009), it has been suggested that differences in the grain C2H7AsO2 content are 
due to a genotype-dependent transport efficiency and/or expression of OsNIP2;2 
(Kuramata et  al. 2013). Carey et  al. (Carey et  al. 2010; Carey et  al. 2011) have 
shown that C2H7AsO2 is highly mobile in the panicle vascular system and is readily 
translocated into the grain. Whether OsNIP2;2 is permeable to either CH5AsO3 or 
C2H7AsO2 remains to be shown.

So far, the indication is that the toxic metalloid As (both in its reduced and 
uncharged forms) transport in plants is handled largely by NIPs. Whether NIP-
mediated H3AsO3 transport is simply an adventitious nonphysiological side activity, 
as a consequence of the compound’s structural similarity to that of certain other 
essential metalloid nutrient substrates, or whether it has evolved as a genetically or 
physiologically implemented detoxification strategy along the lines of the GLPs in 
microbes, still remains to be resolved. Given that plants are sessile, it may well be 
that, in addition to their efflux activity from the root, the involvement of NIPs in As 
cell-to-cell translocation adds to the final compartmentalization of As-phytochelatin 
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complexes in vacuoles of specific As-tolerant cell types (Moore et al. 2011) and/or 
an ability to protect As-sensitive cells. The latter two hypothesized roles of NIPs 
may also be supported by the observation that when AtNIP1;2- and AtNIP5;1-
mediated As transport are disrupted in planta, the level of H3AsO3 tolerance is not 
increased, even though the tissue As content is markedly lowered (Kamiya et al. 
2009). These findings indicate that H3AsO3 tolerance cannot be solely explained by 
a decreased As content in plants. The importance of gaining a better understanding 
of the regulation and mode of As transport has practical importance, as it will guide 
breeding strategies to selectively route As fluxes to targeted locations within or out-
side of crop plants depending on the objectives (i.e., accumulation, enrichment in, 
or exclusion from certain tissues) and to generate crop varieties that take up little or 
no As or at least do not translocate it to the edible parts of the plant.

4.4  �NIP-Mediated Transport of Antimony

Trivalent and pentavalent Sb species have no known physiological role for plants, 
rather they are toxic (Kamiya and Fujiwara 2009). Homologous and heterologous 
expression systems have been used to show that various NIPs (Bienert et al. 2008a, 
b; Kamiya and Fujiwara 2009) and mammalian and microbial GLPs (reviewed by 
Maciaszczyk-Dziubinska et al. 2012) facilitate the movement of trivalent uncharged 
Sb species. The expression of AtNIP5;1, AtNIP6;1 and AtNIP7;1, LjNIP5;1 and 
LjNIP6;1, and OsNIP3;2 and OsNIP2;1 in a metalloid-tolerant yeast mutant abol-
ishes the tolerance when the transformants were exposed to C8H4K2O12Sb2 (potas-
sium antimonyl tartrate) (Bienert et  al. 2008a, b). The two independent 
AtNIP1;1 T-DNA insertion mutants mentioned above in the context of tolerance to 
H3AsO3 are also able to both maintain root growth in the presence of toxic levels 
of C8H4K2O12Sb2 and limit the accumulation of Sb (Kamiya and Fujiwara 2009). 
As the knockout of other NIPs (such as AtNIP1;2 and AtNIP5;1) expressed in the 
root do not reduce Sb sensitivity, it is likely that AtNIP1;1 is responsible, at least 
in part, for regulating and mediating the entry of Sb (Kamiya and Fujiwara 2009). 
Thus, NIPs belonging to each of the three functional subgroups NIP-I (AtNIP1;1), 
NIP-II (AtNIP5;1, AtNIP6;1, AtNIP7;1, LjNIP5;1, LjNIP6;1, and OsNIP3;2), and 
NIP-III (OsNIP2;1) facilitate the transport of Sb across plant membranes (Fig. 2). 
The Sb concentrations used in yeast and A. thaliana toxicity assays (up to 100 μM) 
do not occur in natural soils (Bienert et al. 2008a; Kamiya and Fujiwara 2009). 
Nevertheless, localized pollution associated with certain industrial activity has led 
to heavy loading with Sb2O3, so knowledge of Sb transport mechanisms is of rele-
vance in the context of phytoremediation measures based on either Sb hyperaccu-
mulators or on crop plants able to restrict the quantity of Sb translocated to edible 
parts. The likelihood is that the involvement of NIPs in the transport of trivalent Sb 
is an adventitious feature of these channels, which are presumed to have evolved as 
a means of transporting metalloids of physiological significance such as boric acid 
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or silicic acid. Various microbial GLPs have also proven to be Sb permeable 
(reviewed by Maciaszczyk-Dziubinska et  al. 2012; Zangi and Filella 2012; 
Mukhopadhyay et al. 2014; Mandal et al. 2014), even though there is no known 
biological requirement for this element. The nonspecificity of AQP/GLP channels 
is exploited in some cases in order to infiltrate curative drugs into parasitic or 
abnormal cells (notably cancerous cells). For example, Sb-containing drugs used 
to kill certain protozoan parasites are effectively taken up by the target organism 
via their AQP transport systems (Mandal et al. 2014). Two of the major drugs used 
to combat leishmaniasis are the pentavalent antimonials sodium stibogluconate 
(Pentostam) and meglumine antimoniate (Glucantime) (Mukhopadhyay et  al. 
2014). One of the five AQPs of Leishmania major (LmAQP1) is known to be 
involved in the as yet mechanistically non-understood uptake process of these 
drugs. Both experimentally induced and naturally occurring mutations in LmAQP1 
have been shown to reduce the uptake of Sb and hence increase the parasite’s toler-
ance of the drugs (Mandal et al. 2014).

A similar scenario applies with respect to the arsenical drug melarsoprol, which 
enters the target cell via an AQP; drug resistance arises when the AQP is mutated to 
a form that hinders the free passage of the drug (Baker et al. 2012; Alsford et al. 
2012). As pointed out in a recent review (Pommerrenig et al. 2015), it has been sug-
gested that antimonous acid (H3SbO3) is the form of Sb generally permeating 
through NIPs and other GLPs when C8H4K2O12Sb2 (antimony potassium tartrate) is 
provided as the source of Sb source in toxicity assays. This conclusion is largely 
based on the physicochemical similarity of H3SbO3 with H3AsO3 (Porquet and 
Filella 2007). Salts of H3SbO3 formally exist. In water, they form a gelatinous pre-
cipitate, which is formed by antimony trioxide (Sb2O3 * H2O) which is itself poten-
tially formed by C8H4K2O12Sb2. However, the uncharged H3SbO3 is suggested to be 
metastable and, thus, does not occur in nature in significant quantities (Vink 1996). 
Some doubt remains therefore as to the form of Sb that permeates AQPs. Therefore, 
scientific efforts should be initiated to assess which Sb species permeates AQPs.

4.5  �NIP-Mediated Transport of Germanium

Due to the absence of any known biological function and the rarity of Ge in most 
soils, the permeability of certain NIPs to this element is again likely a serendipitous 
effect of the structural similarity of Ge compounds to those formed by other physi-
ologically significant metalloids. The bioavailable forms of Ge are the polar tetrahe-
dral ortho-acid (H4GeO4) and the nonpolar, planar meta-acid form (H2GeO3), the 
chemical properties of which resemble, respectively, H4SiO4 and H3BO3 (Fig. 1). 
Neither of these forms has been exhaustively quantified in natural soils, the rhizo-
sphere, or within plant tissue. The element is present in many silicate minerals in 
quantities of up to a few ppm; an estimate of the mean soil Ge concentration is 
1.6 mg kg−1 (Rosenberg 2009). The dissociation behavior of germanic acid (pKa1=9) 
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resembles that of H3BO3 and H4SiO4, suggesting that at physiological pH, the preva-
lent form is non-charged and therefore capable of being transported by NIPs (Fig. 1). 
It has been long assumed that the uptake and translocation properties of Ge are simi-
lar to those shown by Si (Nikolic et  al. 2007, Takahashi et  al. 1976a, b). Plants 
containing high amounts of Si (particularly grasses) tend to be more sensitive to 
excess Ge than those containing little Si (Nikolic et al. 2007). The Ge concentration 
in soil-grown plants ranges from 0.01 mg kg−1 (Magnoliopsida species) to 1 mg kg−1 
(Poaceae species), reflecting the more effective H4SiO4 transporter machinery pres-
ent in grasses (Ma and Yamaji 2015), which comprises the NIP-IIIs and the Lsi2-
type efflux transporters. The former facilitate the passive transport of Si across the 
plasma membrane between the apoplast/soil solution and plant cells down concen-
tration gradients (Ma et al. 2006), while the latter are responsible for the efflux of Si 
from the cell (Ma et al. 2007).

Long before the discovery of Si and Ge transporters (Ma et al. 2006, 2007) and 
the molecular basis for the dual transport functions of NIPs and Lsi2-type transport-
ers was described (reviewed by Ma and Yamaji 2015), existing knowledge of the 
chemical similarity between Si and Ge hydroxylated compounds was exploited in 
the use of Ge as an Si analog in toxicity screens (Ma et al. 2002; Nikolic et al. 2007). 
This form of screen was used to identify the rice lsi mutants (Ma et  al. 2002). 
Subsequent mapping approaches identified the underlying responsible NIP aquapo-
rin (OsNIP2;1 and OsNIP2;2) and Lsi2-type transporter (OsLsi2 and OsLsi3) genes 
(Ma et  al. 2006; Ma et  al. 2007; Yamaji and Ma 2009; Yamaji et  al. 2015). The 
radioactive 68Ge isotope and the non-radioactive isotopes in the form of germanic 
oxide (GeO2) are frequently used as chemical tracer analogs for studying Si trans-
port features of certain NIPs in planta as well as in the S. cerevisiae and Xenopus 
laevis frog oocyte heterologous expression systems (Ma et al. 2006; Nikolic et al. 
2007; Schnurbusch et al. 2010; Mitani-Ueno et al. 2011; Gu et al. 2012; Hayes et al. 
2013; Bárzana et al. 2014). A genome-wide association mapping study in rice has 
shown that some Ge sensitive loci coincide with known QTL underlying Si or As 
accumulation, but none map in the vicinity of either OsNIP2;1 or OsNIP2;2 
(Talukdar et al. 2015). A QTL associated with Ge sensitivity lies within 200 Kbp of 
OsLsi2. OsNIP4;1 (Os01g02190) is located within the genomic region of the 
detected loci. OsNIP4;1 is strongly expressed in the inflorescence and particularly 
in the anthers (Liu et al. 2009). However, substrate selectivity data are not available, 
making it difficult to interpret its function with respect to Ge tolerance. The chemi-
cal similarities between the nonpolar, planar H3BO3 and H2GeO3 have prompted 
Hayes et al. (Hayes et al. 2013) to use Ge treatment as a surrogate for the effect of 
B toxicity on barley and wheat. A barley cultivar showing a mild reaction to the 
presence of GeO2 is also tolerant to high levels of B; the underlying basis for B 
tolerance is a very low transcript abundance of HvNIP2;1, the gene implicated as 
encoding a B and Si transporter (Schnurbusch et al. 2010).

In summary, the nonspecific selectivity of NIP-IIIs being permeable to Si, B, and 
Ge represents a valuable feature, allowing to use Ge as a suitable tracer in science 
to mimic and characterize Si and B transport processes or to screen graminaceous 
crop populations for altered functions of NIP-III channels and related proteins 
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(Hayes et  al. 2013). Ge is an important element for the semiconductor industry. 
However, unlike most metalloids and metals, it is not generally found in concen-
trated form in nature, so it has been suggested that plant accumulators could be 
exploited to extract it from contaminated but also agricultural soils. In this context, 
NIPs could potentially be engineered to increase the efficiency of the extraction 
process, allowing Ge to be recovered from biomass grown for the purpose of phy-
tomining. Ge could then be extracted from, e.g., plant digestates of bioenergy crops 
or from straw or other not used plant residuals as a second add-on “yield” value.

4.6  �NIP-Mediated Transport of Selenium

Se is essential in the human and animal diet, but is not essential for plant growth. 
The biologically active form of Se is the derived amino acid selenocysteine, which 
is inserted into bacterial, archeal, and eukaryotic mRNA by a specific tRNA. Because 
of the lower reduction potential of selenocysteine compared to cysteine itself, this 
compound has an important role in the catalytic sites of glutathione peroxidases and 
thioredoxin reductases, which act as protectants against oxidative stress (Lobanov 
et  al. 2009). Vegetables and fruits represent the major source of dietary Se. The 
content of Se within plant tissue is rather low, presumably because it has no benefit 
for the plant; nevertheless, the element is readily taken up from the soil (Pilon-Smits 
and Quinn 2010). Thus, a suggested strategy to counteract Se deficiency in the diet 
is Se biofortification of staple crops, which would require the selection of Se accu-
mulators or effective translocators of Se into the edible part of the plant.

The most prominent forms of soil Se are selenite (HSeO3
−) and selenate 

(HSeO4
−), with the latter predominating in well-aerated soils. The similar structure 

and pKa values of selenate and sulfate result in the former being recognized and 
transported by sulfate transporters (Sors et al. 2005). The cross talk between sele-
nate and sulfur metabolism makes this transport system unfavorable in the context 
of biofortification, as modifications to sulfur transport may have detrimental effects 
on a range of important traits, thereby outweighing any advantages of enhanced Se 
accumulation (Bienert and Chaumont 2013). H2SeO3 is a diprotic weak acid with 
pka1 and pka2 vales of 2.57 and 6.6, respectively, so that at physiological pHs it exists 
predominantly in the form of both HSeO3

− and SeO3
2− (Fig. 1). Phosphate transport-

ers (such as rice OsPT2) have been implicated in the active uptake of HSeO3
− into 

the root (Zhang et al. 2014). Under acidic conditions, selenous acid (H2SeO3) pre-
dominates (Fig. 1). The standard AQP inhibitors HgCl2 and AgNO3 both inhibit the 
uptake of H2SeO3 into the rice and maize root (Zhang et al. 2012; Zhang et al. 2010). 
Supplying HSeO3

− in a kinetic study of Se uptake into the maize root has shown 
that, when grown in an acidic (pH 3) medium, uptake is mostly in the form H2SeO3 
(Zhang et al. 2010). Se uptake kinetics follow a linear trend which may suggest that 
the limiting step is a channel-mediated transport mechanism.

The first plant H2SeO3 transporter to be identified was OsNIP2;1 (Zhao et  al. 
2010); when grown in the presence of HSeO3

−, the loss-of-function mutant Osnip2;1 
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accumulates significantly less Se in its shoot and xylem sap than does the wild type. 
In contrast, the mutant and the wild type accumulate an equal amount of Se when 
grown on a medium supplemented with HSeO4

−. Further experiments have revealed 
that H2SeO3 is most likely the Se form transported by OsNIP2;1 (Zhao et al. 2010a). 
The ability of OsNIP2;1 to transport Se has been further demonstrated by heterolo-
gously expressing it in yeast (Zhao et al. 2010a). NIPs may be involved in the inter-
cellular transport of Se as well as in its uptake. Once HSeO4

− is taken up, it is 
reduced to HSeO3

− in both the chloroplast and the cytoplasm, before being further 
reduced to the Se2− ion and hence incorporated into selenocysteine or selenomethio-
nine; these amino acids can be nonspecifically incorporated into proteins instead of 
cysteine, leading to toxicity (Pilon-Smits and Quinn 2010). Still unresolved is 
whether (1) NIP isoforms of plant species other than rice are permeable to Se, (2) 
the permeability of NIPs to H2SeO3 is a feature of only the H4SiO4-permeable NIP-
III isoforms present in both Liliopsida and Magnoliopsida species, and (3) the engi-
neering of NIPs could represent viable means of directing Se flux in staple crops.

5  �PIP-Mediated Metalloid Transport in Plants

On the basis of their sequence, the PIPs are the most homogeneous of the plant 
AQPs and also the most numerous (Anderberg et  al. 2012). Two PIP subgroups 
(PIP1 and PIP2) are recognized and share a sequence identity above 50 %. The 
PIP1s have a longer N terminal and a shorter C terminal domain than the PIP2s, as 
well as having a shorter extracellular loop A (Chaumont et al. 2001). PIP1 and PIP2 
genes behave differently when heterologously expressed in frog oocytes: in general, 
only PIP2s are able to induce a significant level of transmembrane water movement 
(Fetter et al. 2004; see chapter “Heteromerization of Plant Aquaporins”). When a 
PIP1/PIP2 pair cloned from several section Liliopsida and Magnoliopsida species 
is co-expressed in frog oocytes, their products interact to modify their trafficking 
into and/or stability within the host membrane, thereby cooperating to synergisti-
cally increase water permeability (see chapter “Heteromerization of Plant 
Aquaporins”). A combination of physiological and molecular genetic evidence indi-
cates that PIP water channels are highly important for the plant’s water homeostasis 
(Maurel et al. 2015; Chaumont and Tyerman 2014). A small number of PIPs have 
been shown to be permeable to molecules other than water, including H2O2 and urea 
(reviewed by Maurel et al. 2015), and of note in the context of this chapter, they also 
transport uncharged metalloid species.

5.1  �PIP-Mediated Transport of Boron

Direct evidence for the involvement of PIPs in B transport is fragmentary. Maize 
ZmPIP1;1 was the first plant AQP shown to have the capacity to transport H3BO3: 
the heterologous expression of ZmPIP1;1 in frog oocytes results in a 30 % increase 
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in B permeability over that achieved in control oocytes or those expressing ZmPIP3 
(renamed ZmPIP2;5), AtNLM1, or EcGlpF (Dordas et al. 2000). The H3BO3 perme-
ability of plasma membranes isolated from squash (Cucurbita pepo) vesicles is par-
tially inhibited by the AQP inhibitors HgCl2 and phloretin and is reversibly rescued 
by treatment with 2-mercaptoethanol. As mentioned earlier, this sort of compound-
dependent on-off transport behavior is indicative of AQP-mediated transport. 
Dordas et al. (2000) have suggested that some H3BO3 enters the plant cell via pas-
sive diffusion through the plasma membrane lipid bilayer, while the rest is trans-
ported through PIP1 channels. Therewith this study provided the first experimental 
indication that plant AQPs are involved in metalloid transport and particularly in B 
transport. Subsequently, it has been shown that transferring either maize plants or 
transgenic tobacco plants overexpressing GFP:ZmPIP1 to a B-deficient medium for 
about 1 h results in the rapid disappearance of ZmPIP1 channels from the root apex 
cell plasma membrane (Goldbach et al. 2002). The implication is that the ZmPIP1 
product cannot be directly involved in B uptake under B-deficient conditions, since 
otherwise its upregulation would have been expected, as is the case for AtNIP5;1 
(Takano et al. 2006). Instead, the removal of B-permeable proteins from the plasma 
membrane may serve to prevent an undesirable loss of B from the root. A possible 
hypothesis is that the B permeability shown by certain PIPs only functions when the 
supply of B is non-limiting; alternatively, it may be that the removal of PIPs from 
the plasma membrane is independent of any potential H3BO3 channeling activity 
associated with these membrane pores. Based on yeast toxicity growth assays, 
H3BO3 permeability has also been inferred for the grapevine PIP isoforms 
VvTnPIP1;4 and VvTnPIP2;3 (Sabir et al. 2014).

The barley HvPIP1;3 and HvPIP1;4 resemble ZmPIP1;1 at the sequence level, 
and localize to the plasma membrane in both heterologous and native expression 
systems, in contrast to many PIP1s derived from other species (see chapter 
“Heteromerization of Plant Aquaporins”). The B permeability of these PIP1s has 
been investigated using a yeast toxicity growth assay (Fitzpatrick and Reid 2009). 
Both proteins increase the sensitivity of the yeast cells to exogenously supplied B, 
and an analysis of the cellular B content has confirmed that both are capable of 
mediating the uptake of B (Fitzpatrick and Reid 2009). The quantitative response of 
these HvPIP1s to a variation in the external concentration of B is unclear, since the 
transcription of their genes is unresponsive to the B nutritional status of the plant. In 
contrast, the transcription of both OsPIP2;4 and OsPIP2;7 does respond to the rice 
plant B nutritional status: they are downregulated in the shoot and strongly upregu-
lated in the root when the external concentration of B is raised (Kumar et al. 2014). 
The heterologous expression of OsPIP2;4 and OsPIP2;7 in a yeast mutant fre-
quently used to assess As permeability results in an increased sensitivity to B and in 
a significantly higher accumulation of B.  When these proteins are constitutively 
expressed in A. thaliana, the plants produce more biomass and longer roots when 
being exposed to high levels of B but do not accumulate either more or less 
B.  However, a short-term kinetic uptake assay has suggested that the stems and 
roots of the OsPIP2-expressing plants contain more B than do those of the wild type 
(Kumar et al. 2014). While the outcomes of heterologous expression clearly imply 
that certain PIPs are permeable to B, it remains to be demonstrated that the observed 
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differences in B content of plants derive from a capacity of the PIPs to transport B, 
rather than reflecting a secondary effect of an AQP function unrelated to B transport. 
For example, a PIP-mediated change in the flux of water will alter the plant water 
status and hence its transpiration rate. As the transport of B within the plant depends 
strongly on the volume of the transpiration stream, an altered tissue B status can 
occur independently of active B uptake. The failure to measure tissue Ca in the 
above study is unfortunate, since B and Ca share a similar mobility through the 
xylem and distribution within the plant. A critical experiment would be to demon-
strate whether or not plants experiencing a dissimilar B transport and PIP protein 
amount are also differentiated with respect to transpiration rate. Why ZmPIP1;3/
PIP1;4 and ZmPIP2;2 are impermeable to B despite sharing a high level of sequence 
similarity with ZmPIP1;1 remains a puzzle (Bárzana et  al. 2014). In brief, the 
assumption is that certain PIP1 and PIP2 isoforms possess residual permeability to 
H3BO3 sufficient to facilitate its transmembrane transport when expressed in a het-
erologous expression context; however, irrefutable evidence for their participation 
in B transport in plants is still lacking.

5.2  �PIP-Mediated Transport of Arsenic

To date, the only claim that PIPs can be permeable to H3AsO3 was made by Mosa 
et  al. (Mosa et  al. 2012), who were able to demonstrate the downregulation of 
OsPIP1;2, OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7 in the root and shoot in 
response to H2AsO3

− treatment. The heterologous expression of OsPIP2;4, 
OsPIP2;6, and OsPIP2;7 in frog oocytes caused increased As uptake, and the con-
stitutive expression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in A. thaliana results in 
an enhancement to the plant’s tolerance toward H2AsO3

−, in contrast to the expecta-
tion that the transgene products should have increased the uptake of As (Mosa et al. 
2012). The transgenic plants, however, show no evidence of an increased accumula-
tion of As in either their shoot or their root.

The responsiveness of PIPs to As stress is a feature displayed by a number of 
plant species. As in rice, the abundance of five Brassica juncea PIP1 and eight PIP2 
transcripts is reduced by exposing the plants to H3AsO3/H2AsO3

− stress (Srivastava 
et al. 2013). Whether the observed variation was influenced, even in part, by diurnal 
cycling (which is known to affect PIP expression, see review by Heinen et al. 2009) 
cannot be ascertained. A subsequent whole genome transcriptome profiling of B. 
juncea subjected to H3AsO3/H2AsO4

− stress has identified PIP1;1 and PIP2;2 as 
both being significantly downregulated by the stress (Srivastava et al. 2015). The 
stress also decreases the tissue water content of the plants, which inhibits seedling 
growth; at the same time increases are induced with respect to the production of 
reactive oxygen species, the extent of lipid peroxidation and in the level of root 
oxidation (Srivastava et al. 2013). Given that reactive oxygen species act to down-
regulate PIP2 in the root (Hooijmaijers et al. 2012) and to drive the internalization 
of plasma membrane-localized PIPs (Wudick et al. 2015), it has yet to be resolved 
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whether the altered state of PIP transcription is a direct effect of the As stress or 
whether it is rather a secondary effect, generated, for example, by a raised level of 
reactive oxygen species.

While direct uptake assays in heterologous expression systems provide a line of 
evidence suggesting the permeability of specific PIPs to metalloids, it remains puz-
zling why orthologous isoforms, despite their sharing a high degree of overall 
sequence homology and being 100 % identical in the regions of the protein known 
to determine selectivity (the NPA motifs and the ar/R selectivity filters) and reach 
the plasma membrane in the heterologous expression systems, are nevertheless 
impermeable to As and other metalloids.

6  �TIP-Mediated Metalloid Transport in Plants

The TIPs are localized in the tonoplast (the vacuolar membrane). Vacuolar subtypes 
are characterized by a specific set of TIP isoforms dependent on the developmental 
stage of the plant and the cell differentiation status (Jauh et  al. 1999). The TIPs 
make an important contribution to cellular osmoregulation, turgor, osmo-sensing, 
cell growth, and vacuolar differentiation, thanks to their capacity to transport water 
across the tonoplast (reviewed in Maurel et al. 2015). The various TIP subgroups are 
highly variable with respect to sequence, especially within their ar/R selectivity 
filter, resulting in a broad substrate spectrum, including urea (Liu et al. 2003, Soto 
et al. 2008), NH3 (Jahn et al. 2004; Loqué et al. 2005), glycerol (Gerbeau et al. 1999; 
Li et  al. 2008), H2O2 (Bienert et  al. 2007) and various metalloids (as discussed 
below). It has been suggested that these transport functions are additive to the water 
transport function.

6.1  �TIP-Mediated Transport of Boron

The heterologous expression of maize ZmTIP1;2 in yeast increases the host cells’ 
sensitivity to the presence of H3BO3 in the growth medium and increases H3BO3 
flux in an iso-osmotic swelling assay when being expressed in frog oocytes (Bárzana 
et al. 2014). No attempt has been made so far to test whether this increased B per-
meability can be explained by a rise in the passive transmembrane diffusion of 
H3BO3 through the lipid bilayer induced by an increased rate of water transport. The 
substrate selectivity of the grapevine TIPs VvTnTIP1;1 and VvTnTIP2;2 has been 
assessed by expressing them in yeast, and both proteins strongly induce the cells’ 
sensitivity to externally supplied B (Sabir et al. 2014). The potential physiological 
significance of these vacuolar-localized proteins to plant B homeostasis has not 
been investigated, either in conditions of B under- or oversupply. The A. thaliana 
pollen-specific gene AtTIP5;1 appears to be induced by B stress, and its ectopic 
expression in the rest of the plant significantly increases the level of the plant 
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tolerance to normally toxic levels of B (Pang et al. 2010). The interpretation of these 
outcomes might be that the plant is able to sequester B into the vacuoles when B is 
oversupplied. While the pollen specificity of AtTIP5;1 has been ascribed to the high 
demand for B during pollen germination and pollen tube growth, the way in which 
AtTIP5;1 affects the transport of B within the pollen remains to be demonstrated. 
There is no convincing molecular or physiological evidence as yet for the involve-
ment of TIPs in B homeostasis.

A QTL mapping approach targeting B efficiency in A. thaliana has been 
described by Zeng et al. (Zeng et al. 2008). The focus was on a trait referred to as a 
“B efficiency coefficient” (BEC), defined as the ratio between the seed yield of a 
given genotype grown under limiting B conditions and its seed yield when grown 
under non-limiting conditions. Five QTL have been identified, of which three  – 
including the largest effect one named AtBE1–2 – map within the same genomic 
region as a QTL for seed yield under limiting B conditions. The AtBE1–2 harboring 
region also contains the BOR1 homolog BOR5 (At1g74810) and AtTIP3;1 
(At1g73190), while the AtBE2 region contains AtTIP4;1 (At2g25810). The implica-
tion is that at least two TIPs may well contribute to B efficiency, although as yet 
neither TIP gene product has been associated with B homeostasis. No NIP gene 
maps within any of QTL regions associated with either BEC or seed yield under 
limiting B conditions. Transcription profiling of contrasting B deficiency-tolerant 
citrus rootstocks has revealed that again a TIP4;1 gene variant is substantially 
upregulated within the first 24 h of exposure to B deficiency but only in the tolerant 
genotype (Zhou et al. 2015). The significance of B to vacuolar function (if any) and 
the B storage capacity of different vacuole types remain obscure.

6.2  �TIP-Mediated Transport of Arsenic

The As hyperaccumulator fern species Pteris vittata tolerates high concentrations of 
As in the growth substrate. The species reduces H2AsO4

− to H2AsO3
−, which is then 

moved into the lamina of its fronds, where it is stored as free H3AsO3/H2AsO3
−. Few 

of the proteins contributing to these transport processes have yet been described. 
Indriolo et al. (Indriolo et al. 2010) have isolated the genes PvACR3 and PvACR3;1, 
which encode proteins similar to the active ACR3 H2AsO3

− efflux permease present 
in yeast. Like its yeast ortholog, PvACR3 actively transports As and localizes it to 
the vacuolar membrane in the gametophyte, where it is presumably detoxified. He 
et al. (He et al. 2015) have transformed a P. vittata cDNA library into yeast in an 
attempt to identify further As transporting proteins via a functional complementa-
tion assay. The screen has revealed PvTIP4;1 gene, which encodes a protein perme-
able to H3AsO3/H2AsO3

−. Within its native species, PvTIP4;1 transcription is largely 
confined to the roots. Unlike other TIP family members, PvTIP4;1 localizes to the 
plasma membrane rather than to the tonoplast. The capacity of PvTIP4;1 to trans-
port As has been explored in both yeast and A. thaliana. Its heterologous expression 
in yeast results in an increased sensitivity to externally supplied H2AsO3

− and in an 
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increased uptake of As; furthermore, the mutation of the cysteine residue in the R3 
position of its ar/R selectivity filter abolishes its ability to transport As (He et al. 
2015). The constitutive expression of PvTIP4;1 in A. thaliana boosts the accumula-
tion of As and causes H2AsO3

− sensitivity.
The conclusion is that certain TIPs are As permeable and that As sequestration is 

probably adopted for physiological As detoxification. Evidence, albeit indirect, 
showing that some TIPs can influence membrane permeability to metalloids has 
arisen from a study of the hydrangea (Hydrangea macrophylla) TIP1 HmPALT1, 
which, when heterologously expressed in yeast, facilitates the transmembrane diffu-
sion of a not determined form of the Al3+ ion (Negishi et al. 2012). The form of Al 
transported across the tonoplast may be aluminum hydroxide (H3AlO3), an 
uncharged compound which shares some physicochemical similarities to certain 
AQP-channeled metalloid species.

7  �XIP-Mediated Metalloid Transport in Plants

7.1  �XIP-Mediated Transport of Boron

The plant and fungal AQP subfamily denoted as XIPs was first discovered by 
Danielson and Johanson (2008). While XIPs occur in many sections, Magnoliopsida 
species, the Brassicaceae spp. (including A. thaliana), and Poaceae lack any XIPs 
(Abascal et al. 2014). It is possible that other AQP isoforms have adopted the func-
tion of XIPs in these taxa. Based on the nature of their selectivity filter, the XIPs 
resemble the NIPs more closely than they do either the TIPs or the PIPs (Bienert 
et al. 2011). Their absence from both A. thaliana and rice, the two leading model 
plant species, reasons that little is known of their physiological role in plants. Initial 
studies support the notion that XIPs are not highly permeable to water, but favor 
larger uncharged solutes (Bienert et al. 2011; Lopez et al. 2012). The expression of 
six Solanaceae XIPs (NtXIP1;1α and NtXIP1;1β, StXIP1;1α and StXIP1;1β, 
SlXIP1;1α and SlXIP1;1β) in yeast results in an increased sensitivity to externally 
supplied H3BO3 (Bienert et al. 2011), suggesting the permeability of XIPs to H3BO3. 
The evidence supports the idea that the XIPs contribute to metalloid transport in 
plants, but this suggestion needs experimental confirmation. Whether XIPs facili-
tate the transport of other metalloids such as H3AsO3 or H4SiO4 remains to be seen.

8  �Outlook

Given the rarity of At, Po, and Te and the lack of any biological significance for any 
of these metalloids in most organisms, any potential AQP-mediated transport asso-
ciated with them is unlikely to be of any biological importance (Pommerrenig et al. 
2015). At present, whether uncharged forms of these trace elements are transported 
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in planta by AQPs is unknown. A number of challenges and open questions associ-
ated with plant AQP-mediated metalloid transport need to be addressed to comple-
ment the present knowledge. These are: (1) Which plant AQPs are permeable to 
which metalloid(s)? (2) Which metalloid-permeable AQPs are physiologically and 
actively involved in metalloid metabolism or response reactions? (3) How are plant 
AQPs regulated at the transcriptional and posttranslational level in response to met-
alloid exposure? (4) How do plant AQPs cooperatively orchestrate the transport of 
a given metalloid in one plant species? (5) What sequence motifs determine the 
metalloid selectivity of an AQP? (6) How can the ability of AQPs to transport and 
modify metalloid level and distribution be exploited to generate plants showing 
tolerance to either a high or a low level of metalloid? The answers to these questions 
will bear on the potential of plants to be exploited for certain agricultural conditions, 
for phytoremediation, for phytomining, or for biofortification. Finally, it will be 
interesting to analyze in an evolutionary and ecophysiological context when and 
where the ability of plant AQPs to channel metalloids was transformed into a main 
channel function.
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