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Abstract
Type IV collagen is a ubiquitous component of
basement membranes along with laminin,

entactin/nidogen, and heparan sulfate proteo-
glycans. Six type IV collagen genes
(COL4A1–COL4A6) encode six unique alpha
chains of type IV collagen [α1(IV)–α6(IV)].
Mutations in several of the type IV collagen
genes can cause a number of progressive andM. N. Rheault (*)
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nonprogressive glomerular disorders. Muta-
tions in COL4A3, COL4A4, and COL4A5
may cause Alport syndrome (AS), an inherited
kidney disease that classically leads to ESKD,
sensorineural hearing loss, and eye abnormal-
ities in affected individuals. Mutations in
COL4A6 along with COL4A5 are associated
with AS accompanied by leiomyomatosis.
Heterozygous mutations in COL4A3 and
COL4A4 are associated with thin basement
membrane nephropathy (TBMN), a generally
nonprogressive kidney disorder presenting
with isolated microscopic hematuria. Finally,
mutations in COL4A1 cause hereditary
angiopathy with nephropathy, aneurysms,
and muscle cramps (HANAC) syndrome.
This chapter will review the genetics, clinical
manifestations, pathology, diagnosis, and
treatment of each of these type IV collagen
disorders.

Keywords
Glomerular basement membrane · Type IV
collagen · End-stage kidney disease ·
Hematuria · Proteinuria · Sensorineural
hearing loss · Alport syndrome · Familial
nephritis

Normal GBM Structure

Glomerular basement membranes (GBMs) are
vital for normal functioning of the glomerular
filtration barrier and are composed of type IV
collagen, laminin, entactin/nidogen, and agrin, a
heparan sulfate proteoglycan (Miner 2012). Lam-
inin forms a network within the GBM based on
heterotrimeric association of α, β, and γ isoforms.
Laminin-521 is the form found in mature GBM
and has the composition α5β2γ1 (Miner 2012).
Mutations in LAMB2 encoding laminin β2 cause
massive failure of the glomerular filtration barrier
with clinical symptoms of congenital nephrotic
syndrome and eye abnormalities (Zenker et al.
2004). Laminin and type IV collagen networks

closely interact and are bridged by entactin/
nidogen and agrin molecules.

There are six isoforms of type IV collagen
designated α1(IV)–α6(IV) encoded by one of six
distinct genes, COL4A1–COL4A6. COL4A1
and COL4A2 are present on chromosome 1 and
encode α1(IV) and α2(IV). The α3(IV) and
α4(IV) chains are encoded by the COL4A3
and COL4A4 genes on chromosome 2, while the
α5(IV) and α6(IV) genes are encoded by the
COL4A5 and COL4A6 genes on the X chromo-
some. Each pair of genes is situated in a 50-50

head-to-head orientation, with intervening pro-
moter and transcriptional regulatory sites (Poschl
et al. 1988; Segal et al. 2001). All type IV collagen
isoforms share several common structural fea-
tures: a collagenous domain of �1,400 amino
acids containing the repetitive triplet sequence
glycine-X-Y (Gly-X-Y, with X and Y
representing other amino acids), a noncollagenous
carboxy-terminal (NC1) domain of �230 amino
acids that includes 12 conserved cysteine resi-
dues, and a noncollagenous amino-terminal
sequence of 15–20 residues (7S domain). Individ-
ual type IV collagen isoforms associate to form
trimers determined by specific interactions regu-
lated by sequences in the NC1 domain. Despite
the large potential number of trimer conforma-
tions, only three major trimeric species have
been found in mammalian species: α1α1α2(IV),
α3α4α5(IV), and α5α5α6(IV) (Khoshnoodi et al.
2006; Hudson 2004). In contrast to type I colla-
gens that lose their NC1 domains after tri-
merization and form fibrillar networks, type IV
collagen trimers form open, nonfibrillar networks
through NC1-NC1 and amino-terminal interac-
tions between trimers.

α1α1α2(IV) networks are ubiquitously present
in basement membranes including the developing
GBM. The α3α4α5(IV) network is restricted to
mature GBM, Bowman’s capsule, and distal
tubule in the kidney and is also found in alveolar
basement membranes and basement membranes
of the testis, eye, and ear (Khoshnoodi et al.
2008). The α5α5α6(IV) network is restricted in
the kidney to Bowman’s capsule and distal tubular
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and collecting duct basement membranes and is
also found in epidermal basement membranes, the
eye, bronchial epithelium, and smooth muscle
(Peissel et al. 1995; Yoshioka et al. 1994).

Alport Syndrome

Epidemiology

Familial nephritis was first reported in the medical
literature in the early 1900s (Guthrie 1902). In
1927, Cecil Alport published a description of a
large family affected by kidney disease and deaf-
ness with a male predominance, and this entity
thereafter took on his name (Alport 1927). It was
not until 1972, after the widespread application of
electron microscopy to kidney biopsies, that AS
was recognized as a disorder of GBMs (Hinglais
et al. 1972). In the 1980s, histochemical investi-
gations determined that type IV collagen chains
were missing in the GBM of individuals with AS
(Kashtan et al. 1986; Olson et al. 1980). In 1990,
mutations in COL4A5were identified as causative
of X-linked AS (Barker et al. 1990). Shortly there-
after, mutations in COL4A3 and COL4A4 were
identified in patients with autosomal recessive
and autosomal dominant AS (Mochizuki et al.
1994; Jefferson et al. 1997). AS is a rare disease,
affecting approximately 1:50,000 people and is
seen in all ethnicities and races (Levy and
Feingold 2000). AS accounts for approximately
0.5% of adults and 1.7% of children with end-
stage kidney disease (ESKD) in the United States
(Saran et al. 2016).

Genetics and Pathogenesis

AS can be inherited as an X-linked condition
due to mutations in COL4A5 on the X chromo-
some (Barker et al. 1990). Affected males are
hemizygotes and have only one copy of a mutated
COL4A5 allele, whereas affected females are
heterozygotes with one normal COL4A5 allele
and one mutated COL4A5 allele. Due to

X-inactivation, this leads to a mosaic expression
pattern for α5(IV) in basement membranes in
females. Autosomal recessive inheritance can
also be observed due to homozygous or com-
pound heterozygous mutations in COL4A3 or
COL4A4 (Mochizuki et al. 1994). Digenic inher-
itance was also recently described (Mencarelli
et al. 2015). Finally, autosomal dominant AS is
caused by heterozygous mutations in COL4A3 or
COL4A4 (Jefferson et al. 1997). Individuals with
heterozygous mutations in COL4A3 or COL4A4
may exhibit classic AS or TBMN with non-
progressive isolated microscopic hematuria. Clas-
sically, approximately 80% of AS was thought to
be inherited in an X-linked manner, with 15%
autosomal recessive and 5% autosomal dominant
inheritance patterns observed. With the advent of
next-generation sequencing, it is clear that auto-
somal dominant AS is more common than previ-
ously recognized, accounting for approximately
19–31% of affected families (Fallerini et al. 2013;
Moriniere et al. 2014).

Over 1,200 pathogenic mutations have been
identified in the COL4A5 gene in patients with
XLAS (Crockett et al. 2010; Hertz et al. 2012).
There are no hot spots within the gene and muta-
tions have been found in all 51 exons. COL4A5 is
a large gene and about 10–15% of mutations
occur as spontaneous events; therefore a family
history is not required to consider a diagnosis of
AS. A variety of mutation types have been
described: large rearrangements (~20%), small
deletions and insertions (~20%), missense muta-
tions altering a glycine residue (Gly-X-Y repeat
region) in the collagenous domain of α5(IV)
(30%), other missense mutations (~8%), nonsense
mutations (~5%), and splice site mutations
(~15%) (Jais et al. 2000). Genotype has a strong
correlation with kidney disease progression in
males with XLAS (Jais et al. 2000; Gross et al.
2002). In males with a large deletion, nonsense
mutation, or a small mutation changing the
mRNA reading frame, the risk of developing
ESKD before age 30 is 90%. In contrast, splice
site mutations and missense mutations have a less
severe renal phenotype with 70% and 50%
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reaching ESKD by age 30 years, respectively (Jais
et al. 2000). In addition, the position of a glycine
substitution within the gene may also impact the
rate of disease progression as those with 50 glycine
missense mutations demonstrate a more severe
phenotype than those with 30 glycine mutations
(Gross et al. 2002). In contrast to males with
XLAS, there is no genotype-phenotype correla-
tion in females with XLAS (Jais et al. 2003). In
patients with autosomal recessive AS, the pres-
ence of at least one mutation leading to a prema-
ture stop codon was associated with earlier onset
renal failure; however a genotype-phenotype cor-
relation was not confirmed in other small studies
(Storey et al. 2013; Oka et al. 2014). There does
not appear to be a genotype-phenotype correlation
in patients with autosomal dominant AS
(Marcocci et al. 2009; Kamiyoshi et al. 2016). It
is unclear why some individuals with one
COL4A3 or COL4A4 mutation develop progres-
sive kidney disease while others have a more
benign clinical course (Lemmink et al. 1996).

Mutations in any of the COL4A3, COL4A4, or
COL4A5 genes may alter the composition of
affected basement membranes. In the setting of
severe mutations in COL4A5 or severe homozy-
gous or compound heterozygous mutations in
COL4A3 or COL4A4 (deletions, frameshift muta-
tions, premature stop codons leading to the
absence of protein expression), the other collagen
chains normally present in the type IV collagen
trimer are degraded, and no α3α4α5(IV) trimers
are deposited in basement membranes (Gunwar
et al. 1998). In the absence of the α3α4α5(IV)
network, the embryonal α1α1α2(IV) network per-
sists. Missense mutations may produce misfolded
proteins that are retained within the endoplasmic
reticulum of the cell and degraded (Bateman et al.
2009). Alternately, missense mutations that affect
the glycine residues involved in triple helix for-
mation may lead to the formation of abnormally
folded trimers that can be deposited into the base-
ment membrane. In this case, an abnormal type IV
collagen network is formed. The α3α4α5(IV) is
not necessary for development of the GBM; how-
ever it is required for normal maintenance of the
GBM structure and function due to its increased
strength and stability compared to the α1α1α2(IV)

network. This may be in part due to the greater
number of disulfide bonds in the α3α4α5(IV) net-
work making it more highly cross-linked and thus
more resistant to proteases than the α1α1α2(IV)
network (Gunwar et al. 1998; Zeisberg et al.
2006). The glomerular capillary walls of AS
patients are mechanically weak and provoke path-
ologic stretch-related responses in glomerular
cells (Meehan et al. 2009).

Clinical Features

Individuals with AS may have progressive
chronic kidney disease (CKD), sensorineural
hearing loss, and ocular abnormalities. The fre-
quency of each finding depends on genotype,
gender, and age. In general, patients with autoso-
mal dominant AS and females with XLAS have
less severe kidney disease and are less likely to
have extrarenal manifestations (Marcocci et al.
2009; Savige et al. 2016).

Renal Findings
Males with XLAS and males and females with
autosomal recessive AS have a similar clinical
course. Kidney disease in AS progresses predict-
ably through a series of clinical phases (Gross et al.
2012a) [Table 1, Fig. 1]. Phase 0 typically lasts
from birth until late childhood or early adolescence
and is characterized by isolated microscopic hema-
turia, with the absence of proteinuria and normal
kidney function. Episodes of gross hematuria are
common in up to 60% of affected individuals,
particularly in association with infection, which
may lead to diagnostic confusion with IgA
nephropathy (Jais et al. 2000; Gubler et al. 1981).

Table 1 Clinical stages of Alport syndrome

Stage Definition

0 Isolated microscopic hematuria þ/� gross
hematuria

I Hematuria þ microalbuminuria (30–300 mg
albumin/g creatinine)

II Hematuria þ overt proteinuria (>300 mg
albumin/g creatinine)

III Decline of glomerular filtration rate by >25%

IV End-stage renal disease
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Persistent gross hematuria for months or years is
also observed. In phase I, microalbuminuria
(30–300 mg albumin/g creatinine) develops, but
renal function remains normal (Kashtan et al.
2013; Gubler et al. 1981). Overt proteinuria
(>300 mg albumin/g creatinine) signals the start
of phase II and the beginning of a decline of renal
function (Kim et al. 1995). Hypertension may be
present in this phase, whereas blood pressures are
generally normal prior to this. In phase III, individ-
uals have a progressive decline of renal function
with >25% reduction in GFR. The rate of passage
through these phases is primarily a function of the
causative mutation and gender. Progression from
one phase to the next is utilized as an outcome
measure in clinical trials of AS (Gross et al.
2012a). Females with XLAS and males and
females with autosomal dominant AS demonstrate
a similar progression through each phase; however
the course may be slow enough that they do not
require renal replacement therapy in their lifetime
(Jais et al. 2003; Kamiyoshi et al. 2016).

In untreated males with XLAS, the risk of
ESKD is 50% by age 25 years, 80% by 40 years,

and 100% by age 60 year (Jais et al. 2000). With
the adoption of early treatment with angiotensin-
converting enzyme (ACE) inhibitor therapy, the
age at ESKD may be increasing in this population
(Gross et al. 2012b). In patients with autosomal
recessive AS, the risk of ESKD is 50% by age
21–22 years; however ESKD as young as 9 years
has been reported (Storey et al. 2013; Oka et al.
2014). In patients with autosomal dominant AS,
the lifetime risk of ESKD is lower and most often
occurs after the age of 40 years (Kamiyoshi et al.
2016; Marcocci et al. 2009). In one retrospective
study, the median renal survival in autosomal
dominant AS was 70 years (Kamiyoshi et al.
2016).

Females who are heterozygous for COL4A5
mutations are commonly referred to as “carriers”
of AS; however this term is not entirely accurate
because almost all have some manifestation of
disease (Rheault 2012; Savige et al. 2016). Hema-
turia is reported in 95.5% of affected women and
proteinuria in 75% (Jais et al. 2003). Proteinuria is
a risk factor for adverse pregnancy outcomes in
general, and there are reports of hypertension,

Fig. 1 Clinical stages of Alport renal disease and extra-
renal manifestations over time. Alport renal disease fol-
lows a distinct progression from hematuria alone to

microalbuminuria to proteinuria to GFR decline and
ESKD. Onset of hearing loss and eye abnormalities is
variable, but is rare prior to the onset of microalbuminuria
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preeclampsia, and decline in renal function during
pregnancy in women with XLAS (Yefet et al.
2016; Hladunewich et al. 2016; Alessi et al.
2014). Females with XLAS have a smaller, but
not insignificant, risk of ESKD compared to
affected males. There was a 12% risk of ESKD
by age 40 years and 30% by age 60 years reported
by the European Community Alport Syndrome
Concerted Action group (Jais et al. 2003). A
more recent European report similarly showed
15.4% prevalence of ESKD in women with
XLAS (Temme et al. 2012b). The explanation
for the wide variation in outcomes for females
with XLAS is unclear, but likely multifactorial.
Risk factors for ESKD in females with XLAS
include proteinuria and sensorineural hearing
loss (Grunfeld et al. 1985; Jais et al. 2003).
There does not appear to be a genotype-phenotype
to explain the severity of kidney disease (Jais et al.
2003). X-inactivation, the process by which one X
chromosome in females is silenced to adjust for
gene dosage differences between males and
females, may play a role as well in CKD progres-
sion in women with XLAS (Guo et al. 1995;
Iijima et al. 2010; Rheault et al. 2010). Further
studies are necessary to determine how to accu-
rately predict the risk of progressive kidney dis-
ease in women who are affected with XLAS.

Sensorineural Hearing Loss
Newborn hearing screening is always normal in
AS, but bilateral loss of perception of high-fre-
quency sounds often becomes detectable in late
childhood or early adolescence. The hearing loss
is progressive and extends into the range of con-
versational speech with advancing age, often
requiring amplification with hearing aids or
cochlear implants. Sensorineural hearing loss
(SNHL) is present in 50% of males with XLAS
by approximately age 15, 75% by age 25, and
90% by age 40 (Jais et al. 2000). Similar to renal
disease, genotype can predict the risk of SNHL in
affected individuals. Severe mutations such as
splice site mutations, deletions, insertions, and
nonsense mutations are associated with a 90%
risk of SNHL before the age of 30 years; however
missense mutations are associated with a lower
risk of SNHL of 60% at age 30 years (Jais et al.

2000). SNHL is less common in females with
XLAS. About 10% of XLAS females have
SNHL by 40 years of age and about 20% by age
60 (Jais et al. 2003). SNHL is common in autoso-
mal recessive AS as well with approximately
40–66% of individuals affected (Storey et al.
2013; Oka et al. 2014). The risk of SNHL in
autosomal dominant AS is lower than other
genetic forms of the disease, with only 2–13% of
individuals affected depending on the series
(Kamiyoshi et al. 2016; Marcocci et al. 2009).

The SNHL in AS is due to the absence of the
α3α4α5(IV) network in the cochlea (Wester et al.
1995). In normal cochleae, the α3α4α5(IV) net-
work is expressed in a number of basement mem-
branes including the spiral limbus, the spiral
ligament, and stria vascularis and in the basement
membrane situated between the organ of Corti and
the basilar membrane (Kleppel et al. 1989;
Cosgrove et al. 1998; Harvey et al. 2001). How-
ever, this network is absent in animal models of
AS and in men with XLAS (Cosgrove et al. 1998;
Harvey et al. 2001; Zehnder et al. 2005). Cochleae
from men with XLAS demonstrate separation
between the organ of Corti, the structure that pro-
duces nerve impulses in response to sound vibra-
tions, and the underlying basement membrane
(Merchant et al. 2004). This separation may be
responsible for the decreased acuity of hearing
observed in patients with AS. An alternative
hypothesis is that hearing is impaired by changes
in potassium concentration in the scala media, or
cochlear duct, induced by the absence of the
α3α4α5(IV) network in the stria vascularis
(Gratton et al. 2005). Further research is required
to elucidate the exact cause of hearing loss in
patients with AS.

Ocular Findings
Anomalies of the lens, retina, and cornea are com-
mon in patients with AS (Savige et al. 2015). The
α3α4α5(IV) network is normally found in several
basement membranes in the eye including the lens
capsule, corneal basement membrane, Descemet’s
membrane, internal limiting membrane of the ret-
ina, and the retinal pigment epithelium basement
membrane (Kleppel et al. 1989; Cheong et al.
1994; Ohkubo et al. 2003; Chen et al. 2003b).
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Ocular anomalies are more common in males with
XLAS and males and females with autosomal
recessive AS, affecting 35–80% of affected indi-
viduals (Jais et al. 2000; Wang et al. 2014; Oka
et al. 2014; Storey et al. 2013). Ocular findings are
less common in women with XLAS (~15%) and
are almost never observed in autosomal dominant
AS (Jais et al. 2003; Marcocci et al. 2009;
Kamiyoshi et al. 2016).

Anterior lenticonus, a conical protrusion of the
lens anteriorly through the capsule, is diagnostic for
AS and is present in 13% ofmales with XLAS (Jais
et al. 2003). Some reports suggest a higher inci-
dence of anterior lenticonus in autosomal recessive
AS with up to 80% affected in one series (Wang
et al. 2014). Lenticonus generally presents in mid-
dle age, after the development of CKD. Due to the
abnormal shape of the lens, vision may be affected.
The absence of the α3α4α5(IV) network in the lens
capsule leads to abnormal splits in the capsule that
may rupture, allowing protrusion of the lens. The
lens capsules of Alport patients with anterior
lenticonus are thin with focal areas of dehiscence,
suggesting that the lens capsule lacks the mechan-
ical strength to maintain normal lens shape
(Ohkubo et al. 2003; Sonarkhan et al. 2014; Kato
et al. 1998). Increased distensibility in the lens
capsule has been demonstrated in experimental
models of AS and correlates with the observed
clinical findings (Gyoneva et al. 2013). Healing of
lens capsule rupturesmay lead to cataract formation
(Sonarkhan et al. 2014). Anterior lenticonus and
cataracts can successfully be treated with lens
replacement and do not recur (Liu et al. 2008).

Retinal anomalies are also common in AS
including central or peripheral fleck retinopathy.
Central fleck retinopathy appears as whitish-yel-
low perimacular dots and flecks that are present
from early adolescence and is more common in
patients with more severe kidney disease. It is
present in 50–60% of men with XLAS and men
and women with autosomal recessive AS and in
~15% of women with XLAS (Wang et al. 2014).
Peripheral retinopathy appears as asymmetric
patches of confluent flecks and is the most com-
mon ocular finding in patients with AS. With
either type of retinopathy, visual acuity is normal
and no treatment is required.

Corneal erosions can be observed in <10% of
patients with AS due to abnormal α3α4α5(IV)
network in the corneal subepithelium (Rhys
et al. 1997; Burke et al. 1991). Posterior polymor-
phous corneal dystrophy is a more serious corneal
issue that is visualized as vesicular lesions, linear
bands, or irregular diffuse opacities of the poste-
rior corneal surface involving Descemet’s mem-
brane by slit lamp exam (Teekhasaenee et al.
1991). Affected patients may be asymptomatic
or have recurrent episodes of eye watering, for-
eign body sensation, and photophobia. Treatment
may require corneal transplant.

Other Clinical Associations
The association of XLAS with smooth muscle
tumors (leiomyomas) of the respiratory, gastroin-
testinal, and female reproductive tracts has been
described in some families (Zhou et al. 1993; Anti-
gnac and Heidet 1996; Heidet et al. 1997). Symp-
toms such as difficulty swallowing, vomiting,
epigastric or retrosternal pain, recurrent bronchitis,
shortness of breath, cough, and stridor may appear
in late childhood or adolescence. This syndrome
arises from a contiguous gene deletion on the X
chromosome involving exon 1 of COL4A5, the
common promoter region that regulates gene
expression of COL4A5 and COL4A6, and the first
two exons of the adjacent COL4A6 gene (Zhou
et al. 1993). The genotype-phenotype relationship
in this disorder was put into question recently by a
report that showed that deletions in this region may
not always lead to leiomyomas and conversely that
some families with XLAS and leiomyomas do not
have deletions involving the common promoter
region and COL4A6 (Sa et al. 2013).

Deletions that extend downstream of the 30 end
of the COL4A5 gene are associated with
mental retardation, midface hypoplasia, and
elliptocytosis in a small number of XLAS males
(Jonsson et al. 1998; Vitelli et al. 1999). Abnor-
malities in arterial vessels have been described
in males with XLAS including aortic root
dilatation and aneurysms of the thoracic and
abdominal aorta, possibly due to abnormalities
of the α5α5α6(IV) network normally present in
arterial smooth muscle basement membranes
(Kashtan et al. 2010).
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Renal Histopathology

Children with AS may have normal findings by
light microscopy before about 5 years of age. In
older patients, mesangial hypercellularity and
matrix expansion may be observed. By age
10 years, focal segmental glomerulosclerosis
(FSGS), tubular atrophy, and interstitial fibrosis
become the predominant light microscopic abnor-
malities (Kashtan et al. 1998). Although some
patients exhibit increased numbers of immature
glomeruli or interstitial foam cells, these changes
are not specific for AS.

Electron microscopy of kidney biopsy speci-
mens is frequently diagnostic (Fig. 2). In early
childhood, the predominant ultrastructural lesion
in males is diffuse thinning of the GBM (Fig. 2b).
This may be identical in appearance to patients
with thin basement membrane nephropathy
(TBMN), and differentiation between these two
entities can be difficult in young children. The
classic ultrastructural lesion in AS is diffuse thick-
ening of the glomerular capillary wall, accompa-
nied by “basket-weave” transformation of the
lamina densa and intramembranous vesicles,
scalloping of the epithelial surface of the GBM,

Fig. 2 Electron micrographs from patients with hematu-
ria. Magnifications are similar, but not identical. (a) Nor-
mal GBM. (b) Attenuated GBM in a patient with TBMN.
(c) This female with a heterozygous COL4A5 mutation

exhibits both thin and split, lamellated GBM. (d) This
male with XLAS shows diffuse thickening and lamellation
of GBM (Reprinted from Kashtan (2002), with permission
from Elsevier)
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and effacement of overlying podocyte foot pro-
cesses (Fig. 2c, d). These changes are more prev-
alent in males with XLAS and males and females
with autosomal recessive AS, and the percentage
of GBM displaying this lesion increases progres-
sively with age (Rumpelt 1980). Affected females
with XLAS can display a spectrum of lesions,
demonstrating either predominantly normal-
appearing GBM, focal GBM thinning, diffuse
GBM thinning, thickening/basket weaving, or dif-
fuse basket weaving. The classic GBM lesion is
not found in all kindreds with AS. Recently, a
number of families with primary FSGS with or
without the classic AS basement membrane lesion
have been found to have mutations in COL4A3 or
COL4A4 (Deltas and Pierides 2015; Malone et al.
2014). These findings expand the spectrum of
histopathology phenotype associated with type
IV collagen mutations (Miner 2014).

Routine immunofluorescence microscopy is
normal or shows nonspecific deposition of

immunoglobulins. In contrast, specific
immunostaining for type IV collagen α chains is
frequently diagnostic and can distinguish between
the X-linked and autosomal recessive forms of the
disease (Fig. 3). In approximately 80% of XLAS
males, immunostaining of kidney biopsy speci-
mens for α3(IV), α4(IV), and α5(IV) chains is
completely negative (Kashtan et al. 1996).
About 60–70% of XLAS females exhibit mosaic
expression of these chains, while in the remainder
of females, immunostaining for these chains is
normal. It is important to note that normal
immunostaining for type IV collagen does not
exclude a diagnosis of AS in males or females.
Mutations in COL4A3 and COL4A4 in patients
with autosomal recessive AS may prevent expres-
sion of α3α4α5(IV) trimers but will have no effect
on expression of α5α5α6(IV) trimers. Therefore,
in kidney biopsy specimens from patients with
autosomal recessive AS, immunostaining for
α3(IV), α4(IV), and α5(IV) chains is negative in

Fig. 3 Glomerular immunofluorescence microscopy in
XLAS and ARAS. α3(IV), α4(IV), and α5(IV) chains are
expressed in the GBM in patients with normal glomeruli
and TBMN. All three chains are missing in affected males
with XLAS. A mosaic pattern is present for heterozygous

females with XLAS due to X-inactivation. In ARAS,
α3(IV), α4(IV), and α5(IV) chains are absent from the
glomerulus; however α5(IV) is visible in Bowman’s cap-
sule as part of the α5α5α6 network (Reprinted from
Kashtan (2005), with permission from Elsevier)
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the GBM. However, expression of α5(IV) in
Bowman’s capsule, distal tubular basement mem-
branes, and collecting duct basement membranes
remains positive for α5(IV), due to the normal
expression of α5α5α6(IV) trimers. Immuno-
staining in autosomal dominant AS is normal.

Skin Histopathology

In some situations, a skin biopsy can be consid-
ered as an initial diagnostic step. Normal epider-
mal basement membranes contain the α5α5α6(IV)
trimer. Consequently, about 80% of males with
XLAS can be diagnosed by skin biopsy on the
basis of the absence of α5(IV) expression in EBM.
In 60–70% of XLAS females, there is a mosaic,
discontinuous expression pattern for α5(IV) by
immunostaining. Epidermal basement membrane
expression of α5(IV) is normal in patients with
autosomal recessive or autosomal dominant AS.

Diagnosis and Differential Diagnosis

Accurate, early diagnosis of AS is important in
order to initiate potentially beneficial therapy
when appropriate and to identify other family
members who may be at risk of kidney disease.
Differentiation between AS and other causes of
glomerular hematuria can be performed based on
careful clinical evaluation, examination of pedi-
gree data, selective application of invasive diag-
nostic tests such as skin or kidney biopsy, hearing
assessment, and genetic testing (Table 2).

In children with familial glomerular hematuria,
alternate potential diagnoses include the autoso-
mal dominant MYH9 disorders (Epstein and
Fechtner syndromes, in which thrombocytopenia
and large platelets are a constant feature, familial
IgA nephropathy, X-linked membranoproli-
ferative glomerulonephritis, and familial hemo-
lytic uremic syndrome) (Bostrom and Freedman
2010; Kiryluk and Novak 2014; Redahan et al.
2014). The presence of autosomal dominant
microscopic hematuria in a family with no history
of ESKD or hearing loss is suggestive of TBMN
(see below), but AS cannot be definitively

excluded. In children with no family history of
hematuria, AS is still possible since 10–15% of
cases are due to spontaneous mutations. Alter-
nately the differential diagnosis may include IgA
nephropathy, C3 glomerulopathy, lupus nephritis,
active or resolving postinfectious glomerulone-
phritis, Henoch-Schönlein nephritis, and TBMN.
Some of these entities may be diagnosed or
suspected based on clinical and laboratory find-
ings; however others can only be confirmed by
kidney biopsy.

In a child at risk for AS based on family his-
tory, the presence of persistent hematuria is diag-
nostic. Biopsy or genetic studies are required
when clinical and pedigree information cannot
rule out AS in a patient with hematuria (Savige
et al. 2013). Several options are available for
confirming a diagnosis of AS including skin
biopsy, kidney biopsy, and genetic testing. Skin
biopsy may be utilized as the initial invasive diag-
nostic procedure in patients suspected of having
XLAS because it is less invasive and less expen-
sive than a kidney biopsy. Unfortunately, not all
centers offer this procedure and this may limit its
utility as a diagnostic test. On skin biopsy, the
majority of subjects with XLAS will display
abnormal expression of the α5(IV) chain in epi-
dermal basement membranes, as described above.
Skin biopsy is normal in individuals with autoso-
mal recessive and autosomal dominant AS and
should not be utilized if this diagnosis is
suspected. If skin biopsy is not diagnostic, kidney
biopsy with type IV collagen immunostaining and
careful examination of GBM ultrastructure by
electron microscopy can be performed.

Mutation analysis using conventional Sanger
sequencing is capable of identifying COL4A5
mutations in 80%–90% of males with XLAS
(Martin et al. 1998). Next-generation sequencing
has supplanted Sanger sequencing in recent years
and allows for simultaneous evaluation of
COL4A3, COL4A4, and COL4A5 mutations
(Moriniere et al. 2014; Kovacs et al. 2016). Iden-
tification of a specific mutation can provide some
prognostic information about the risk of kidney
disease progression and risk of associated symp-
toms such as hearing loss and eye findings in a
patient (Jais et al. 2000). Once a new diagnosis of
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AS is made in a family, all potentially affected
family members including females should be
screened with a urinalysis to identify those at risk
of progressive kidney disease (Savige et al. 2013).

Treatment

The goal of treatment in children and adults with
AS is to slow the progression of CKD and to delay
the need for dialysis or kidney transplantation.
There are no currently approved therapies for
AS. Recommendations for treatment are derived
from expert consensus, uncontrolled studies, ret-
rospective registry studies, and data from treat-
ment in animal models.

Treatment of mice and dogs with AS with
angiotensin-converting enzyme (ACE) inhibition
leads to significantly prolonged renal survival
(Grodecki et al. 1997; Gross et al. 2003).
Uncontrolled studies in pediatric and adult
patients with AS have shown that angiotensin
blockade can transiently reduce proteinuria
(Cohen and Lemann 1996; Proesmans and Van
Dyck 2004). In a large multicenter, randomized,
double-blind study comparing losartan with pla-
cebo or amlodipine in proteinuric children, eval-
uation of the subpopulation with AS demonstrated
a significant reduction in proteinuria in the
losartan-treated group over 12 weeks of therapy
(Webb et al. 2011). A 3-year extension of this
study showed comparable efficacy of either

Table 2 Type IV collagen disorders.

Gene Protein Risk of ESKD

Kidney
pathology:
IF

Kidney pathology:
EM

Extrarenal
manifestations

Alport syndrome

X-linked
males

COL4A5 α5(IV) 100% Absent
α3α4α5(IV)
in GBM in
80%

GBM thinning
(early)
GBM lamellation
(late)

Hearing loss
Lenticonus
Retinopathy

X-linked
females

COL4A5 α5(IV) 30% by age
60 years

Mosaic
α3α4α5(IV)
in GBM in
60–70%

GBM thinning
(early)
GBM lamellation
(late)

Hearing loss
Retinopathy

Autosomal
recessive

COL4A3 or
COL4A4
(biallelic)

α3(IV)
α4(IV)

100% Absent
α3α4α5(IV)
in GBM in
majority

GBM thinning
(early)
GBM lamellation
(late)

Hearing loss
Lenticonus
Retinopathy

Autosomal
dominant

COL4A3 or
COL4A4
(heterozygous)

α3(IV)
α4(IV)

50% by
50–70 years

Normal
α3α4α5(IV)
GBM

GBM thinning
(early)
GBM lamellation
(late)

Hearing loss
Retinopathy

Thin basement membrane nephropathy

Autosomal
dominant

COL4A3 or
COL4A4
(heterozygous)

α3(IV)
α4(IV)

0 Normal
α3α4α5(IV)
GBM

GBM thinning None

HANAC syndrome

Autosomal
dominant

COL4A1 α1(IV) Not reported Normal
α3α4α5(IV)
GBM

Normal GBM
thickening and
splitting of BM in
tubules, Bowman’s
capsule, and
interstitial capillaries

Arterial
aneurysms
muscle
cramps

BM basement membrane, EM electron microscopy, ESKD end-stage renal disease,GBM glomerular basement membrane,
HANAC hereditary angiopathy with nephropathy, aneurysms, and cramps, IF immunofluorescence microscopy
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enalapril or losartan in reducing proteinuria in
children with AS (Webb et al. 2013). A retrospec-
tive review of Chinese children with AS showed a
decline in proteinuria with ACE inhibition over
the first 2 years of therapy that was sustained over
5 years of follow-up (Zhang et al. 2016). A report
from the European Alport Registry, which
included 283 patients followed over 20 years,
compared renal outcomes in AS patients initiated
on therapy with ACE inhibitors at various timing:
microalbuminuria, proteinuria, or in CKD (CKD)
stage III–IV (Gross et al. 2012b). Findings from
this retrospective review suggested that earlier
treatment with ACE inhibitors is more beneficial.
They demonstrated a delay in renal replacement
therapy by 3 years in the treated CKD group and
by 18 years in the treated proteinuric group (Gross
et al. 2012b). Similar benefits of ACE inhibition
were found in women with XLAS or individuals
heterozygous for COL4A3 or COL4A4 mutations
(Temme et al. 2012b). Side effects of ACE inhi-
bition are rarely reported but include hyper-
kalemia, cough, and hypotension. Based on
these promising retrospective findings, a prospec-
tive, double-blind, randomized, placebo-con-
trolled trial is underway in Germany to compare
outcomes in children with AS treated with the
ACE inhibitor ramipril vs. placebo at an early
disease time point (microalbuminuria or isolated
hematuria) (Gross et al. 2012a). Prospective trials
in AS are challenging due to the rare nature of the
disease and slow progression to hard end points
such as doubling of serum creatinine or ESKD.

Clinical practice guidelines have been devel-
oped to guide treatment of children with AS
(Kashtan et al. 2013) (Table 3). Treatment with
ACE inhibitors or angiotensin receptor blockers
should be offered to all affected individuals, male
or female, with AS and overt proteinuria (Kashtan
et al. 2013). ACE inhibition should be considered
for affected individuals at the microalbuminuria
stage if they have either a family history of ESKD
at a young age (<30 years) or a known severe
COL4A5 mutation (deletion, splice site, or non-
sense mutation). Women of childbearing age,
including adolescents, should be carefully
counseled about the risks of birth defects while
taking ACE inhibitors and risks and benefits of
treatment considered prior to initiation. Treatment
of hypertension and other manifestations of CKD
is similar to children with other etiologies of CKD.

In animal models of AS, several novel strate-
gies have proven effective in prolonging renal
survival including TGFβ-1 inhibition (Sayers
et al. 1999), chemokine receptor 1 suppression
(Ninichuk et al. 2005), administration of bone
morphogenic protein-7 (Zeisberg et al. 2003),
blockade of matrix metalloproteinases (Zeisberg
et al. 2006), anti-microRNA-21 therapy (Gomez
et al. 2015), treatment with mycophenolate
mofetil (Petrova et al. 2014) or paricalcitol
(Rubel et al. 2014), and bone marrow transplan-
tation (Sugimoto et al. 2006; Gross et al. 2009a).
Cyclosporine therapy slowed the progression of
kidney disease in a dog model of AS; however
human studies have demonstrated significant

Table 3 Recommendations for treatment based on urinary findings and anticipated disease course

Family history of early ESKD (<30 years) or
severea COL4A5 mutation

Family history of late ESKD (>30 years) or
less severeb COL4A5 mutation

Males Females Males Females

Hematuria Intervention prior to onset of
microalbuminuria is not
recommended at this time

No No No

Hematuria þ
microalbuminuria

Consider intervention Consider
intervention

No No

Hematuria þ
proteinuria

Yes Yes Yes Yes

Reprinted Kashtan et al. (2013), Published by Springer
ESKD end stage renal disease
aDeletion, nonsense, or splice site mutation
bMissense mutation

204 M. N. Rheault



nephrotoxicity and adverse effects, and this treat-
ment is no longer recommended (Chen et al.
2003a; Charbit et al. 2007; Massella et al. 2010;
Sugimoto et al. 2014). Gene therapy, the transfer
of wild-type COL4A5 genes into glomerular cells
to restore the normal composition of the GBM, is
an attractive potential therapy for Alport syn-
drome. Proof of concept studies in mice has dem-
onstrated that restoration of the normal collagen
α3α4α5(IV) network in Alport mice slows the
progression of kidney disease and prolongs
lifespan (Lin et al. 2014). However, application
to humans with Alport syndrome is still in devel-
opment and is limited by the ability to deliver
genes to the glomerulus.

Kidney Transplantation

Outcomes following kidney transplantation in
patients with AS are generally excellent with
graft survival as good or better than other forms
of glomerulonephritis (Yilmaz et al. 2015; Temme
et al. 2012a). Clinicians involved in transplanta-
tion of AS patients must be aware of the two
important aspects of the disease. First, the donor
selection process must avoid accepting donors
who may be at risk for CKD themselves. Second,
post-transplant management should provide sur-
veillance for post-transplant anti-GBM nephritis.

As discussed above, women with XLAS are at
risk for progressive CKD (Rheault 2012).
Nephrectomy in this population may lead to
poor outcomes in the donor including hyperten-
sion, proteinuria, or more rapid progression of
CKD. A report from Germany described five
women with XLAS and one ARAS carrier who
served as kidney donors (Gross et al. 2009b). One
donor had proteinuria prior to transplant and all
had microscopic hematuria. Three donors devel-
oped new-onset hypertension and two developed
new proteinuria, while renal function declined by
25–60% over 2–14 years after donation in four of
the donors, highlighting the increased donor risk
in this population (Gross et al. 2009b). In addition,
receipt of a kidney from a heterozygous carrier
may not be optimal for the recipient. A donor
kidney from a woman with XLAS may have

shorter graft survival than would be expected
from a graft with completely normal basement
membranes; however this has not been studied.

In males with XLAS and a complete absence
of α5(IV) in the GBM, autoantibodies may
develop that then cause anti-GBM nephritis after
transplant in about 3% of patients (Dehan et al.
1996; Brainwood et al. 1998; Kashtan 2006).
Onset is typically in the first year after transplant
and presents with hematuria or elevated creati-
nine. Kidney allograft biopsy with routine immu-
nofluorescence should be performed early in the
evaluation of AS patients after transplantation if
anti-GBM disease is suspected. Anti-GBM
nephritis often results in irreversible graft failure
within weeks to months of diagnosis. Treatment
with cytotoxic therapy and plasmapheresis have
been attempted with little success (Kashtan 2006).
The risk of recurrence in subsequent grafts is high.
Females with XLAS are at little or no risk of
developing anti-GBM nephritis after transplanta-
tion to the presence of at least some α5(IV) in the
kidney due to X-inactivation. Both males and
females with autosomal recessive AS can develop
post-transplant anti-GBM nephritis due to anti-
bodies directed against the α3(IV) chain
(Brainwood et al. 1998; Kalluri et al. 1995).

Thin Basement Membrane
Nephropathy

Epidemiology

The prevalence of thin basement membrane
nephropathy (TBMN) is estimated at 1–2% of
the general population, making it one of the
most common causes of glomerular hematuria
(Haas 2006). In children undergoing kidney
biopsy for persistent microscopic hematuria with-
out proteinuria, 15–50% are diagnosed with
TBMN (Trachtman et al. 1984; Schroder et al.
1990; Piqueras et al. 1998). Classically, families
with isolated microscopic hematuria transmitted
in an autosomal dominant manner were described
as having “benign familial hematuria” (Marks and
Drummond 1969; McConville et al. 1966). Kid-
ney biopsies in these individuals are usually
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normal except for thin GBMs compared to age-
and sex-matched controls (Haas 2006). Over time,
it has become clear that these pathological find-
ings are not only seen in benign conditions and
can be observed in early AS or women with
XLAS who have a risk of progressive CKD. The
more descriptive term of “thin basement mem-
brane nephropathy (TBMN)” has gradually
supplanted the prior nomenclature to more accu-
rately describe the associated findings and risks.
While usually nonprogressive, careful evaluation
and follow-up of individuals with TBMN are
required to monitor for progressive kidney
disease.

Genetics

In discussing the genetics of TBMN, it is impor-
tant to recall that GBM thinning is a pathological
description rather than a distinct, homogeneous
entity. The first causative mutation for TBMN
was identified in 1996 when Lemmink and col-
leagues reported a heterozygous COL4A3 muta-
tion in a family with autosomal dominant
hematuria (Lemmink et al. 1996). Since then, a
number of heterozygous mutations in COL4A3
and COL4A4 (the carrier state for autosomal
recessive AS) have been found in association
with TBMN (Rana et al. 2005; Nabais Sa et al.
2015). GBM thinning can also be seen in early
kidney biopsies in individuals with hemizygous
or heterozygous mutations in COL4A5 (XLAS)
or biallelic mutations in COL4A3 or COL4A4
(autosomal recessive AS). Approximately
40–50% of families with TBMN will have a
mutation in COL4A3 or COL4A4 identified or
demonstrate linkage to this region. Mutations at
other unknown genetic loci may exist, but have
not been identified. The factors that influence
clinical outcome in individuals with heterozy-
gous mutations in COL4A3 or COL4A4 are
unknown, but may be related to genotype or
the presence of modifier genes. Recently, co-
inheritance of podocin variants with heterozy-
gous mutations in COL4A3 and COL4A4 was
found to be associated with worse renal out-
comes (Stefanou et al. 2015).

Clinical Findings

Children with TBMN typically present with per-
sistent microscopic hematuria, although intermit-
tent hematuria or even gross hematuria may be
observed. The penetrance of hematuria is only
approximately 70% (Savige et al. 2003). TBMN
is the most common cause of persistent micro-
scopic hematuria in children and adults and is
common in the general population with an esti-
mated prevalence of 1–2% (Tryggvason and
Patrakka 2006; Haas 2006). A family history of
dominantly inherited hematuria with a negative
history of renal failure or hearing loss is typical.
Adults with familial hematuria may not be aware
that they are affected, and urinalyses on first
degree family members may be useful to make
the diagnosis in a child with isolated microscopic
hematuria (Blumenthal et al. 1988).

Proteinuria is rare in childhood but can be
observed in up to 30% of adult patients (Gregory
2005; van Paassen et al. 2004). CKD is observed
in <5% of affected adults (Gregory 2005;
Auwardt et al. 1999; Nieuwhof et al. 1997; van
Paassen et al. 2004). Individuals with progressive
CKD and a heterozygous mutation in COL4A3 or
COL4A4 may be more accurately described as
having autosomal dominant AS rather than
TBMN. Extrarenal abnormalities, such as hearing
loss or ocular defects, are rare and probably not
related to the underlying type IV collagen
mutation.

Renal Histopathology

Light and routine immunofluorescencemicroscopy
typically is entirely normal. Adult patients with
TBMN who have proteinuria, CKD, or hyperten-
sion may exhibit premature glomerular obsoles-
cence (Nieuwhof et al. 1997). In contrast to
patients withAS, type IV collagen immunostaining
is normal (Kashtan et al. 1986; Pettersson et al.
1990). Electron microscopy is required for diagno-
sis and identifies the characteristic isolated thinning
of the GBM with preservation of normal podocyte
anatomy (Fig. 2b). Patients with TBMN typically
exhibit diffuse thinning of the lamina densa. The
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thickness of normal GBM is age and sex dependent
(Haas 2006). Both the lamina densa and the GBM
increase rapidly in thickness between birth and age
2 years, followed by gradual thickening throughout
childhood and adolescence (Vogler et al. 1987).
Normal GBM thickness of adult men is greater
than that of adult women (Steffes et al. 1983).
Because a variety of techniques can be used to
measure GBM width, there is no standard defini-
tion of “thin” GBM, and local normative values
should be taken into consideration. The cutoff
value in adults ranges from 250 nm to 330 nm,
depending upon the technique (Dische 1992;
Tiebosch et al. 1989). For children, the normal
range for GBM width is >200–250 nm (250 nm
is within 2SD of the mean at age 11) (Schroder
et al. 1990; Lang et al. 1990; Milanesi et al. 1984).

Diagnosis and Differential Diagnosis

In a child with persistent isolated microscopic
hematuria of glomerular origin, a strong family
history of hematuria inherited in an autosomal
dominant manner, and a negative family history
for renal failure or hearing loss, a presumptive
clinical diagnosis of TBMN can be made without
need for a kidney biopsy. Genetic testing is not
required. If there are atypical findings (no family
history of hematuria, presence of non-orthostatic
proteinuria or microalbuminuria, elevated creati-
nine, recurrent gross hematuria, etc.), then a kid-
ney biopsy may be required for diagnosis. IgA
nephropathy and AS are alternate diagnoses that
may be seen in this clinical scenario.

In the young child with GBM thinning by kid-
ney biopsy and a negative or limited family history,
the challenge for the physician is to distinguish
nonprogressive TBMN from AS. Audiometry and
ophthalmologic examination may be helpful if
abnormal, but may not be useful given the usual
absence of these abnormalities in young children.
Immunostaining for type IV collagen α3(IV),
α4(IV), and α5(IV) chains can be particularly help-
ful in these situations to identify individuals with
AS who may be early in their clinical course or
women with XLAS. Genetic testing for mutations
in all three associated genes (COL4A3-COL4A5) is

recommended in individuals with TBMN and pro-
teinuria, renal impairment, or when AS cannot be
excluded based on family history.

Monitoring and Treatment

Individuals with TBMN should be monitored
every 1–2 years for progression of their disease
including evaluation for proteinuria, hyperten-
sion, and renal impairment and to update the fam-
ily history. Treatment for children and adults with
TBMN is not recommended since the course is
typically nonprogressive. The presence of pro-
teinuria should prompt treatment with an ACE
inhibitor, similar to patients with AS (Savige
et al. 2013; Kashtan et al. 2013).

Hereditary Angiopathy with
Nephropathy, Aneurysms, and Cramps
(HANAC) Syndrome

Clinical Features and Histopathology

Hereditary angiopathy with nephropathy, aneu-
rysms, and cramps (HANAC) syndrome is a very
rare systemic disorder. Kidney involvement in
HANAC syndrome is variable and may include
isolated microscopic hematuria or cortical and/or
medullary cysts (Plaisier et al. 2007; Gale et al.
2016). In reports of kidney biopsy findings in
HANAC syndrome, light and immunofluorescence
microscopy is normal (Plaisier et al. 2007). By
electron microscopy, irregular thickening and split-
ting of the basement membranes of the tubules,
Bowman’s capsule, and interstitial capillaries are
observed. Electron-lucent areas can also be present.
Type IV collagen immunostaining is normal. Pro-
gressive CKD can be observed, but generally in
individuals after the age of 40–50 years.

Patients with HANAC syndrome present with
an angiopathy that affects both small and large
vessels leading to retinal tortuosity and retinal
hemorrhages, leukoencephalopathy, and intracra-
nial aneurysms (Plaisier et al. 2007). They often
have muscle cramps with persistent elevated cre-
atine kinase levels.

11 Alport Syndrome and Other Collagen Disorders 207



Genetics

Mutations inCOL4A1 encode the α1 chain of type
IV collagen HANAC syndrome in an autosomal
dominant manner (Plaisier et al. 2007). α1(IV) is
expressed in the GBM during development and
appears to be important for normal podocyte dif-
ferentiation (Chen et al. 2016). Mutations are
localized in the region of the protein that encom-
passes the major integrin binding site, suggesting
that abnormal interactions between cells and the
basement membrane may underlie the systemic
defects observed in this syndrome (Plaisier et al.
2010). The type of mutation influences the patient
phenotype in individuals with COL4A1mutations
(Chen et al. 2016).

Monitoring and Treatment

No specific treatment is available for individuals
with HANAC syndrome, and supportive care is
tailored to individual signs and symptoms. Blood
pressure, urinalysis, and creatinine should be
monitored routinely and hypertension promptly
treated to reduce risk of stroke. Ophthalmologic
evaluation is recommended at diagnosis and rou-
tinely thereafter to monitor for retinal involve-
ment, glaucoma, and cataracts. Brain imaging to
assess for asymptomatic cerebral aneurysms
should be performed at diagnosis. Genetic
counseling is recommended to review risk of dis-
ease in other family members and to review repro-
ductive risk if applicable.
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