
Chapter 5
Implementation of a Multiscale Core Model

The concept of a multiscale simulation for battery production systems is centered
around a process chain model which acts as a coordinator for other models. Such
process chain model determines the activities within a production system and derives
inputs for detailed models of system elements. Consequently, this model is a key
component of multiscale simulations.

For this reason, an adaptable multiscale core model was developed and imple-
mented, which can be configured to any kind of process chain, contains essential
sub-models, which can by extended by external simulation models. The intention
behind this model is to provide a flexible software tool which contains the minimum
functionality needed for the realization of specific multiscale simulation applica-
tions. To serve this purpose, the core model allows simulating the material flow
of processing units and contains generic models for machines, product character-
istics and processes, lighting, and workers. Furthermore, the model has interfaces
for connecting external simulation models such as detailed process models, TBS
system models, or a building model. As an example, a model for a compressed air
generation system was implemented which is connected to the core model via a mid-
dleware software. This chapter presents the architecture of the core model (Sect. 5.1),
its components (Sect. 5.2), the compressed air generation system model (Sect. 5.3),
the synchronization concept for the connection of external models (Sect. 5.4), as well
as the verification of the overall model (Sect. 5.5).

5.1 Core Model Architecture

The model architecture describes the components and their interactions within the
core model. The main function of the core model is the simulation of the flowof

© Springer International Publishing AG 2017
M. Schönemann, Multiscale Simulation Approach for Battery Production Systems,
Sustainable Production, Life Cycle Engineering and Management,
DOI 10.1007/978-3-319-49367-1_5

131



132 5 Implementation of a Multiscale Core Model

processing units through a virtual shop floor consisting of different machines1.
Processing units are of a certain product typewhich specifies the sequence of required
production steps, each of which is allocated to one or several machines. Furthermore,
processing units belong to jobs which are characterized by a job type and a quan-
tity of final products. During production time, processing units search for suitable
machines, move to these machines and are processed until the last production step is
finished (see Sect. 4.3.2). Processing units and machines are modeled as agents with
individual properties based on agent classes. This allows the replication of agents
and a flexible definition of process chain layouts.

The core model also contains models for lighting and workers (agents) according
to themultiscalemodel structure shown inFig. 4.28.All systemelements are assigned
or dynamically linked to building zones. The core model aggregates all variables on
the main level – and if necessary for each building zone –, provides data to interfaces
for external models, and determines performance indicators. These indicators are
visualized within a cockpit for result evaluation during simulation runs. The model
also has an export function to make the results available after simulation. Figure5.1
drafts the model architecture by showing the different sub-models and components
with their inherent variables and information, as well as the interfaces for external
models.

Based on this architecture, the core model is implemented within the software
AnyLogic. AnyLogic is a hybrid simulation tool which enables combining DE, DS,

Fig. 5.1 Architecture of the multiscale core model with interfaces for external models

1As stated in the concept derivation, machines can also be substituted by workstations which do
not utilize any equipment.

http://dx.doi.org/10.1007/978-3-319-49367-1_4
http://dx.doi.org/10.1007/978-3-319-49367-1_4


5.1 Core Model Architecture 133

AB, and SD simulation within onemodel. The software is based on the programming
language Java.2

5.2 Core Model Components

As shown in Fig. 5.1, themain components of the coremodel are sub-models for jobs,
product types, processing units, machine agents, workers, lights, building zones, the
evaluation cockpit, and schedules. This section describes these components.

5.2.1 Jobs and Product Types

Jobs and product types are objects used for defining and controlling the sequence
and routing of processing units. Jobs correspond to requests for the production of a
quantity of a product type. As an example, a job is created for the production of 1000
battery cells of a certain type or for the assembly of 200 specific modules. Depending
on the product type, different processing units are required to simulate the routing of a
job as well as to track product characteristics along the process chain. For this reason,
job objects define the type and quantity of processing units which are required to
simulate the production of a desired quantity of final products.3 In the process chain
model, a job is characterized by a job type, the desired quantity of final products and
the associated product type(s). Three different job types have been predefined. The
first is a generic job type which can be used to imitate the production of one product
type in a certain quantity. This job creates a number of processing units corresponding
to the desired quantity. Processing units can be treated as single product units or as
batches.4 This allows using the generic job type if identical product units should be
produced. The second job type addresses the production of battery cells. A job defines
two processing units, each ofwhich represents an electrode batch.When both batches
are completed, the job defines processing units according to the desired quantity of
cells. A job is completed when the last related processing unit (cell) is finished. It
is necessary to specify the product types for anodes, cathodes, and cells. The third
job type is usable for the combined assembly of modules and systems. The desired
quantity of systems has to be specified to derive the required number of modules.5

As soon as enough modules are finished to complete a system, a processing unit of
a system may start production. Table5.1 summarizes the characteristics of the three
job types.

2Further information about AnyLogic can be found on www.anylogic.com.
3As an example, the production of 100 cells requires two processing units representing the electrode
batches and 100 processing units for representing each cell.
4That means that the number of processing units is different for single unit or batch production.
Example: If 100 product units should be produced in batches of 20 units, required are five processing
units. A generic job would have to be defined with a quantity of five.
5The number of modules per system has to be specified in the system’s product type definition.

www.anylogic.com


134 5 Implementation of a Multiscale Core Model

Table 5.1 Characterization of job types regarding quantity, product types (anodes (a), cathodes
(c), cells (ce), modules (m), and systems (s)) and related processing units

Job type Quantity (Q) Product type (PT) Processing units

Generic Q PT

Cell Qcell PTanode, PTcathode, PTcell

System Qsystem PTmodule, PTsystem

The definition of product types allows the differentiation of electrodes, cells, mod-
ules, and systems. Moreover, a product type can specify different variants of these
products such as electrodes of different materials or cells with different numbers
of layers. In this model, product types specify processing units regarding their pro-
duction step sequences, the allocation of production steps to machines, as well as
processing times and material inputs per production step.

In summary, the job and product type objects make it possible to configure the
model to simulate a specific process chain. It can be used to simulate different pro-
duction stages – according the defined system boundaries – separately or within a
combined process chain.

5.2.2 Processing Unit Agents

Processing units are modeled as agents based on a processing unit agent class. On
process chain level, processing units are displayed by simplified interactive icons
which indicate the ID and product type. Moreover, a dynamic circle indicates the
progress during processing. Within each agent, the icon contains further information
about the current state, accumulatedmaterial cost and direct embodied energy (DEE),
as well as an illustration of the current product state. Figure5.2 shows an exemplary
icon of an electrode processing unit within the first mixing process, still in raw
material state.

This agent class contains a state chart for representing the states of a processing
unit during production, parameters for defining the product specifications, the related
job and assigned product type, variables for product characteristics, input materials,
and direct embodied energy as well as an algorithm for selecting the next suitable
machine. The state chart of a processing unit indicates if a processing unit is already
started, searches for a next machine, moves to a machine, is at a machine, or is
completed after the last production step. These states allow to control and monitor
the behavior of processing units within the process chain. When a processing unit is
created and initialized, it searches for the first machine. For this task, the algorithm
is implemented according to the shortest throughput time control strategy.6 This

6Other control strategies and selection criteria are possible (see Sect. 4.3.2).

http://dx.doi.org/10.1007/978-3-319-49367-1_4


5.2 Core Model Components 135

Fig. 5.2 Icon of an electrode
processing unit (here:
processing unit nr. 1 of
product type 2)

Fig. 5.3 Screenshot (for illustration only) of processing unit agent class content: top left icon, state
chart, parameters and variables; top right product specification and characteristics per state; bottom
algorithm (action chart) for machine selection

algorithm requires information from machine agents such as the location and the
time until availability.7 After a machine is selected, the processing unit agent moves
to the machine. When the processing is finished, the machine agent sends a signal
to the processing unit which searches for the next machine. If no available machine
can be found, the processing unit blocks the current machine. In this case, the search
algorithm stays active until a machine becomes available. This logic corresponds to
the processing unit flow illustrated in Fig. 4.9. Figure5.3 presents a screenshot of the
processing unit agent.

The flow of processing units is visualized by a value stream map. For each pro-
duction step, the model creates a data field which is filled with related performance
indicators such as processing time and waiting time. This allows analyzing if, where,
and for how long a processing unit had to wait prior to processing. Also it is possible
to determine the overall time of production for each processing unit. Each agent con-

7If external machine models are used, the remaining processing time might not be known or prede-
termined but a result of the simulation. In this case, the algorithm considers a very long time until
availability. As a result, a machine is usually not selected unless no other machine is available.

http://dx.doi.org/10.1007/978-3-319-49367-1_4


136 5 Implementation of a Multiscale Core Model

Fig. 5.4 Screenshot of an exemplary VSM representation within a processing unit agent

tains a VSM representation showing the history of processing. Figure5.4 presents a
screenshot of an exemplary VSM representation of an processing unit for an elec-
trode batch. The figure shows the sequence of processes for an electrode job with
related processing data as well as a summary of derived indicators such as lead time.
The bars indicate the productive and non-productive time shares. Furthermore, the
representation shows the direct energy demands from processing at each machine.

5.2.3 Machine Agents

Machines are also modeled as agents based on a machine agent class. On process
chain level, machines are displayed by interactive icons which indicate machine
name, number, current state (by the color of the border), the current demands,machine
temperature, the number of processing units within the buffer, and the time shares
per state. Figure5.5 shows an exemplary screenshot of a machine icon.

The dynamic characteristics of a machine are determined decentralized within a
machine agent. On the inside, each machine agent consists of a flow chart for mod-
eling the processing unit agent flow through the machine, a state chart for modeling
of possible states and their transitions, parameters for specifying machine properties
(e.g. location, buffer size, etc.)8, and variables for describing the machine character-
istics (e.g. power demand, compressed air demand, and heat emissions). Elements of
the AnyLogic enterprise library are used to model the processing unit flow through
a machine. These elements allow to control the routing of processing unit entities
entering a machine to a buffer (queue element) which is closed (by a hold element) in
case the machine is still ramping-up. After ramp-up, a processing unit is routed to the
actual process (delay element) and – after the processing time – the processing unit

Fig. 5.5 Representation of a
machine agent on process
chain level

8Machine parameters can be externally configured in spreadsheets and imported to the model.



5.2 Core Model Components 137

leaves the machine if a new machine (or a buffer) is available for further processing.
If a processing unit does not find a next machine, the processing unit blocks the
current machine. If a machine failure occurs, the state chart switches to the failure
state and it is assumed that the machine behaves as in idle state. The processing of
the current processing unit is resumed after the failure is resolved.9

The flow chart communicates with the state chart which describes possible
machine states according to the definition of the generic machine model. The state
chart further determines the demands for electric power and compressed air. Fur-
thermore, the state chart allows to determine the time shares of different operational
states such as ramp-up time, idle time, and processing time. This also enables to
derive the utilization of each machine. The power demand is input to the calcula-
tions of machine temperature and heat emissions which also require certain machine
parameters (mass, surface area, etc.) and the current building zone temperature.

In addition, machine agents contain an algorithm for determining the time until a
machine is available for processingof a next processingunit. This algorithmconsiders
various factors such as the current state and buffer level, remaining processing time,
future processing times of buffered processing units, and remaining movement times
of processing units which are currently moving to a machine. Figure5.6 shows a
screenshot excerpt of the machine agent class content.

Machine agents can further contain process models and a set of associated process
parameters. Process models describe how a process modifies particular product char-
acteristics of processing units. Depending on the specific process, process models
can be realized by functions which calculate the resulting product characteristics
based on specifications and existing characteristics of a processing unit. Alterna-
tively, if the processing results vary over time or different sequential activities can
be distinguished, it is also possible to use timed state charts to define the execution
of functions in more detail.10

Finally, machine agents are responsible for the connection of external machine
models. For eachmachine, amachine agent has to be placedwithin the process chain.
If an external machine model is used, the machine agent coordinates the execution of
the external model. For this purpose, the state chart contains a section which controls
the interaction with external models. This is important since the external model has
to behave according to the defined states. Thus, the state chart of the machine agent
is used to send and receive coordinating signals. The machine agent also receives
values for power and compressed air demand from the external model. Table5.2 lists
the variables for communication with an external model.

This set of variables may be extended for specific purposes. For example, if an
external machine model simulates the detailed thermal behavior of machine compo-

9Different failure behavior could be implemented.
10This might be relevant for processes with long processing times. As an example, the process
characteristics during coating and drying may vary over time if the machine temperature increases
or the coating thickness increases due to variations in the coating device. The characteristics of the
coating layer may vary over time and may differ for different fragments of the layer. In this case, a
state chart may repeatedly trigger the process model function.



138 5 Implementation of a Multiscale Core Model

nents, the external model has to provide the heat emissions to the related machine
agent.

Fig. 5.6 Screenshot (for illustration only) of machine agent class content: top left icon, flow chart
and state chart; top middle parameters and variables; top right evaluation of time shares; bottom left
energy and heat calculation; bottom right algorithm (action chart) for determination of time until
availability

Table 5.2 Required
standardized variables for
interaction with external
models

Send variables Receive variables

Ramp-up Is ramped-up

Processing unit
available for processing

Is processing

Product type Processing completed

Product specifications/
Characteristics

Power demand
compressed air demand



5.2 Core Model Components 139

Fig. 5.7 Representation of a
worker agent on process
chain level

5.2.4 Workers

Within the core model, it is assumed that each machine needs at least one worker
for operation. Workers are modeled as agents.11 As soon as a processing unit has
selected a machine which is currently turned off, this machine agent requests the
required number of workers. On process chain level, worker agents are represented
by an interactive icon, which is shown in Fig. 5.7. Each worker agent contains a state
chart with the states standing, walking, light work, and hard work. During walking,
a worker moves along a defined path to the target location. The current location of a
worker is mapped with the building zone areas and the heat and moisture emissions
are allocated to the current zone. In general, modeling of worker agents allows either
to determine the minimum number of workers or if a specific number of workers if
sufficient for the operation of all machines. Furthermore, it allows to determine the
heat and moisture emissions to each building zone. This aspect may be relevant for
dry rooms which accept only a certain internal moisture intake.

5.2.5 Building Zones and Lighting

The coremodel allows defining building zoneswithin the global shopfloor coordinate
system. Zones are characterized by area, temperature, lighting condition, and inside
heat and moisture emissions. Heat emissions are caused by machines, workers, and
lighting. For this reason, machines are assigned to building zones according to their
position within the shop floor and processing units and workers are linked to zones
based on their current location. The core model aggregates these emissions for each
building zone and provides the internal loads to an interface for the connection
of a building model. In return, a building model is expected to provide the inside
temperature – and, depending on the specific building model – humidity of each
zone. For this purpose, the definition of building zones in the process chain model
has to match the zone definition in the external building model.

Each building zone has light sources which can be operated according to different
schedules and control strategies. In the current model, the lights are turned on when a
worker enters a zone and turned off if the last worker leaves a zone.12 The control of
lighting for each zone is realized by a state chart which assigns a state-based power

11The model contains a pool of workers which are all able to operate any type of machine. It would
also be possible to specify the skills and characteristics of each worker agent in more detail.
12It is assumed that all lights within a zone are turned on and off simultaneously.



140 5 Implementation of a Multiscale Core Model

Fig. 5.8 Screenshot of core model level with zones, machines, workers, and processing units

demand for lighting. This power demand depends on the required lighting intensity,
efficiency, zone area, and type of light source. The power demand equals the heat
emission to the building zone. Figure5.8 presents a partial screenshot of the process
chain level showing multiple machines and workers within three building zones.
The characterizing variables of each zone are presented at the top of each zone. The
circles around machines indicate the current intensity of heat emissions.

5.2.6 Shift Schedules

Mostly, production facilities operate only during defined shift hours according to
schedules. Considering these schedules in the simulation is important sincemachines
and lights may be turned off and HVAC operation switched into energy saving mode
during non-operation hours. Furthermore, the output of final products per time period
strongly depends on the shift schedules. AnyLogic allows simulating dates and times
based on a calender. This enables defining schedules and deriving control signals for
machines, TBS, and machine operators. In the implemented model, it is required to
define a daily start time and a shift duration. However, it is also possible to define
other schedules considering breaks and weekends.

5.2.7 Evaluation and Visualization

Simulation runs generate various data and values for defined performance indica-
tors. The AnyLogic model allows browsing through all agents and model compo-
nents to inspect specific variables, plots, and charts. Furthermore, on core model
level, the evaluation cockpit provides an overview about the key indicators of each
simulation run and allows to visualize and export time series of indicators. Plotting
various system variables over a longer period of time enables the analysis of effects
acting on a larger time scale such as weather impacts. Also it supports the obser-
vation of the required initiation time or so-called warm-up period of the simulation



5.2 Core Model Components 141

Fig. 5.9 Screenshot (for illustration only) of the visualization of performance indicators within the
model cockpit (energy demands, process chain utilization, building zone characteristics, lead times
per job, time shares of machine operation, etc.)

model.13 Examples of indicators in the cockpit are the electrical power demand of
all machines, the compressed air demand of all machines and the resulting compres-
sor power demand, the process chain utilization, as well as the aggregated heat and
moisture emissions per building zone. In addition, a pie chart illustrates the shares
of demanding systems on the overall energy demand. Furthermore, the cockpit con-
tains histograms of the lead times and embodied energy of jobs as well as a display
showing the current output of final products. Figure5.9 shows a screenshot of the
evaluation cockpit.

5.3 Compressed Air Generation System

The model for a compressed air generation system is implemented in the software
Matlab Simulink based on the previously described concept model. The model con-
sists of the three blocks tank, controller, and compressors. The tank block contains
the functions for the calculation of the system pressure cap. Inputs to the block are the
compressed air demand from the process chain, pressure losses due to leaks, and the
air supply from the compressor. The output of the block is the system pressure which
is an input to the controller block. The controller determines the air supply required
to maintain a system pressure within the accepted interval. It generates signals for
switching the compressor on and off. In the compressor block, Stateflow elements are
used to model the compressor states off, on, and idle as well as to determine the air
supply, the state-based power demand and the count of switching cycles. Figure5.10
shows a screenshot of the implemented model.

13The warm-up period refers to the time from the start of a simulation run until the model represents
the normal or balanced behavior of the real system. For example, in the simulation of a series
production, the model is warmed-up if all machines are operating and buffers are filled. This period
has to be considered in the result evaluation.



142 5 Implementation of a Multiscale Core Model

Fig. 5.10 Screenshot of compressed air generation system model in Simulink

Fig. 5.11 Exemplary
structure for model coupling
via TISC middleware

5.4 Coupling and Synchronization of Models

The core model provides two different types of interfaces for the coupling of external
models. First, static numeric models can be connected by a direct interface.14 The
process chain model calls the external model and waits for the results of the external
model in order to continue the simulation based on these results. For example, this
interface can be used to utilize static processmodelswhich calculate resulting product
characteristics based on empirical data samples. Such model can be called by a
machine agent during the processing state.

Second, external simulation models can be coupled with the core model by using
a middleware software. The TISC software suite is used which provides different
packages for establishing co-simulations.15 The core element is the TISC Center
which connects different client models. The TISC Center is responsible for the co-
simulation configuration, synchronization, and data exchange between all models.16

Figure5.11 illustrates the connection of external models to the core model using
TISC. At model start-up, AnyLogic has to load the required Java classes and connect
to the TISC server. Moreover, all exchanged variables have to be defined at model
start up. In the AnyLogic model, a reoccurring event triggers the synchronization by
sending values to the TISC server, waiting for a synchronization signal, and writing
the received values to the corresponding variables in AnyLogic. Figure5.12 shows
a screenshot of the TISC server control window.

14This coupling approach was used in Schönemann et al. (2016).
15TISC is offered by TLK-Thermo GmbH. Information can be found on www.tlk-thermo.com.
16The TISC suite provides interfaces to various software tools such as Matlab, Modelica (Dymola),
Ansys, and others. However, TISC did not provide a standardized interface for AnyLogic. For this
reason, the TLK-Thermo GmbH developed a TISC-to-java interface which enables AnyLogic to
communicate with TISC via defined Java classes. This support is gratefully acknowledged!

www.tlk-thermo.com


5.5 Verification 143

Fig. 5.12 Screenshot of the TISC server control window

5.5 Verification

The multiscale core model was verified during implementation. To demonstrate the
used verification procedure, a generic job and model configurations were defined
which support testing of all model functions and generating transparent results which
are comparable with static calculations. The job defines the production of one batch
of a product type. The product type requires three production steps, each of which is
allocated to one machine and needs 60min of processing time. The three machines
are located in two different building zones both with an installed lighting power of
1500 W. Table5.3 lists the characteristics of the machines.

The energy demand per machine can be calculated based on the time shares
for each operational state and the associated power demands. The results of static
calculations state that the energy demands of the machines for the production of
one batch are 5,500 kWh for machine 1, 8,400 Wh for machine 2, and 6,400 Wh
for machine 3.17 Figure5.13 presents a plot of the resulting power demand profile
and the values of the resulting electrical energy demands. The figure also shows the
power demand of lighting. During the operation of the first machine, the lighting in
zone 1 is turned on. Afterwards, the lighting in zone 2 is turned on. Since machine 1
is in idle mode for 10min after processing, there has to be a short period in which the
lighting in both zones is turned on. This behavior can be seen in Fig. 5.13. Moreover,
the power demand profile allows verifying the correct order of production steps.
And since the lighting is turned on and off by workers, the power demand profile of
lighting allows to conclude that workers enter and leave the zones correctly.

Similarly, in order to verify the determination of the machine temperature, the
simulation results are compared to static calculations. The temperature of a machine
can be calculated by using the equationQ = m · c · Δ T . With the values for the mass
and specific heat capacity, the power inputs, and an initial temperature of 20 ◦C for
each machine, the resulting temperatures of the three machines can be calculated to
be 20.61, 20.23, and 20.84 ◦C. During simulation, the model determines the increase
of the temperatures up to the expected values, as shown in Fig. 5.14. After the power
is switched off, the machines cool down due to the colder surrounding environment.
The calculations of heat emissions of machines, workers, and lights as well as their
allocation to building zones were also verified.

17For example, the calculation for machine 1 is EDMACH1 = 10/60 h · 2, 000W + 1 h · 5, 000W +
10/60 h · 1000 Wh = 5, 500 Wh.



144 5 Implementation of a Multiscale Core Model

Table 5.3 Machine configuration for model verification

Machine 1 Machine 2 Machine 3

Zone 1 2 2

tramp−up (min) 10 10 10

tshutdown (min) 10 10 10

PDrampup (W) 2,000 3,600 4,800

PDidle (W) 1,000 3,600 4,800

PDprocessing (W) 5,000 7,200 4,800

CADidle (m3/h) 0 0 0

CADprocessing (m3/h) 122 10 10

Mass (kg) 5,000 11,000 3,000

Spec. heat capacity (kJ/(kg · K)) 0.6 0.9 0.7

Fig. 5.13 Simulated power demand of the three machines and lighting

Fig. 5.14 Temperatures of the three machines

The compressed air systemmodel was verified with an approach similar to Thiede
(2012), who used a calculation example shown by Bierbaum and Hütter (2004) to
verify his compressed air module. They assumed a constant compressed air demand
of 122m3/h, a systemvolume of 3m3, aswell as a compressorwith amaximal volume
flow of 201 m3/h, 30 kW power demand during operation and 10 kW during idle.
Furthermore, Thiede assumed an initial pressure of 8 bars and that the compressor
stays in idle mode for 60 s before being switched off. He simulated a period of
one hour and the results showed eight compressor cycles and a power demand of
19.4 kWh. This scenario was also used for the verification of the developed Simulink



5.5 Verification 145

Fig. 5.15 Plots of
compressed air demand
(top), system pressure
(middle), and compressor
power demand (bottom)

4000 4500 5000 5500 6000 6500 7000 7500 8000

time [seconds]

0

100

200

4000 4500 5000 5500 6000 6500 7000 7500 8000

time [seconds]

0

5

10

p
re

s
s
u

re
 [

b
a

r]
4000 4500 5000 5500 6000 6500 7000 7500 8000

time [seconds]

0

2

4

p
o

w
e

r 
[k

w
] ↓ 104

d
e

m
a

n
d

 [
m

3
/h

]

4000 5000 6000 7000 8000

time [seconds]

7

8

9

10

11

p
re

s
s
u

re
 [

b
a

r]

step size 1s step size 10s step size 60s

4000 5000 6000 7000 8000

time [seconds]

0

0.5

1

1.5

2

2.5

3

3.5

c
o

m
p

re
s
s
o

r 
p

o
w

e
r 

d
e

m
a

n
d

 [
W

] ↓ 104

step size 1s step size 10s step size 60s

Fig. 5.16 Plots of pressure (left) and compressor power demand (right) for different simulation
time step sizes (1, 10, 60 s)

model. One of themachineswas specifiedwith a compressed air demand of 122m3/h.
Themodel generated the same results with eight cycles and 19.55 kWh.18 Figure5.15
shows plots of the compressed air demand of the machine, the system pressure, and
the resulting compressor power demand.

Another important aspect is the simulation step size of the compressed air system
model as well as the step size for synchronization with the core model. In general,
shorter time steps result in more accurate results but correspond to a longer execution
time. The definition of the step size may have significant impact on the results. As
an example for verification, three different step sizes of the compressed air system
model have been tested. The results – shown in Fig. 5.16 – reveal that the step
size effects the simulated system pressure and compressor power demand. If the
simulation step size is larger, the lower and upper pressure limit is detected too late.
This caused the compressor to start and stop the air supply too late which also effects

18The slight deviation is caused by the initial pressure of 10 bars and by the fact that the last
compressor cycle was completely simulated and not stopped after exactly 3600s.



146 5 Implementation of a Multiscale Core Model

1.628 1.63 1.632 1.634 1.636 1.638 1.64 1.642

time [seconds]

-100

0

100

200

300

d
e

m
a

n
d

 [
m

3
/h

]

sync step size 1s

sync step size 10s

sync step size 60s

1.628 1.63 1.632 1.634 1.636 1.638 1.64 1.642

time [seconds] ↓ 104

↓ 104

8.5

9

9.5

10

10.5

p
re

s
s
u

re
 [
b

a
r]

sync step size 1s

sync step size 10s

sync step size 60s

Fig. 5.17 Plots of demand (top) and pressure (bottom) for different synchronization time steps
(1, 10, 60 s)

the resulting power demand of the compressor. The values for the power demand
are 19.55, 19.583, and 19.50 kW for a model step size 1, 10, and 60s respectively.
Although these variations are rather low, they could add up to a larger error over the
simulation period.19

In addition to the simulation step size, the synchronization step size is another
relevant factor. This step size indicates how often variables are synchronized between
the two models. At every synchronization step, the core model provides the current
compressed air demand to the compressed air system model. That means that peaks
in the compressed air demand which occur between two synchronization steps will
not be communicated. To demonstrate this effect, a compressed air demand peak
of 200 m3/h was generated for 30 s. Three simulation runs were conducted with
synchronization step size of 1, 10, and 60s. Figure5.17 shows the results. It can be
seen that the time of occurrence and the duration of the peak are detected wrongly
for synchronization step sizes of 10 and 60s.20 This leads to the incorrect simulation
of the system pressure. Since short synchronization time steps may result in longer
simulation execution times, this experiment has shown that the step size must be
defined according to the desired accuracy.

In summary, all relevant model functions were verified and found to provide
accurate results. This includes also the correct creation of value stream maps for
processing units and the functionality to use process models for the modification of
product characteristics within processing units. Consequently, the model can be used
as a core model for multiscale simulations. However, the exemplary results of the
experiments with different model and synchronization step sizes show that it is of

19The simulation runs have been repeated for the production of 50 instead of one product unit. Shift
schedules have been ignored. With a model time step of 1 s, the energy demand was 974.417 kWh.
For 10s it was 976.78 kWh and for 60s it was 962.67 kWh.
20In this example, the demand started exactly simultaneously to the synchronization step of 60s. If
it would have started just a bit later, it would have been ignored completely.



5.5 Verification 147

importance to set time steps which are suitable for the specific machine behavior,
desired result accuracy, and acceptable simulation execution time. Otherwise, even
a verified model may deliver inaccurate results.

References

U. Bierbaum and J. Hütter. Druckluft kompendium. Hoppenstedt Bonnier Zeitschriften GmbH,
Darmstadt, 2004. ISBN 3935772114.

M. Schönemann, C. Schmidt, C. Herrmann, and S. Thiede. Multi-level Modeling and Simulation
of Manufacturing Systems for Lightweight Automotive Components. Procedia CIRP, 41: 1049–
1054, 2016. doi: 10.1016/j.procir.2015.12.063.

S. Thiede. Energy Efficiency in Manufacturing Systems. Sustainable Production, Life Cycle Engi-
neering and Management. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-
642-25913-5. doi: 10.1007/978-3-642-25914-2.

http://dx.doi.org/10.1016/j.procir.2015.12.063
http://dx.doi.org/10.1007/978-3-642-25914-2

	5 Implementation of a Multiscale Core Model
	5.1 Core Model Architecture
	5.2 Core Model Components
	5.2.1 Jobs and Product Types
	5.2.2 Processing Unit Agents
	5.2.3 Machine Agents
	5.2.4 Workers
	5.2.5 Building Zones and Lighting
	5.2.6 Shift Schedules
	5.2.7 Evaluation and Visualization

	5.3 Compressed Air Generation System
	5.4 Coupling and Synchronization of Models
	5.5 Verification
	References


